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Abstract

Lactic acid bacteria are a group of bacteria that share the characteristic of lactate fermentation,
and are in particular focus of microbiological research not only because of their involvement
in human health, but also due to their role in the food industry. On the one hand, they can
be used as probiotics, contributing to healthy micro flora in the human body. On the other
hand, they can take part in the production of fermented foods and flavour development. En-
terococcus faecalis and Streptococcus pyogenes are two lactic acid bacteria that cause several
infections in the human body. Therefore, they have been in the focus of clinical studies for the
past few decades. The rising trend of resistance to multiple antibiotics makes the treatment of
the infections caused by theses two pathogens very hard. To overcome this progressive trend of
resistance, it is important to find novel drug targets in these pathogens. In the present study, I
investigated the metabolic characteristics of these two pathogens using an integrative method,
comprising multi-omics data integrated with the respective genome-scale metabolic models un-
der the conditions comparable to different tracts in the human body. First, I investigated the
effect of glutamine auxotrophy on the metabolic adjustments of E. faecalis (in the case of a
∆glnA mutant) in response to a change in environmental pH, using an integrative approach
combining metabolic and proteome data with genome-scale modelling. The result suggested
that the higher energy demand in the ∆glnA mutant of E. faecalis is most likely due to the lack
of control on glutamine transport system as a result of the absence of glnA in the mutant. In the
next part, I developed a method for functional analysis of the solution space of the genome-scale
metabolic models. This method employs random perturbation to discover the reliability of flux
distribution in the network. Additionally, it allows to find out which type of experimental data
is most effective in limiting the solution space when the data are used as constraints. Finally, I
generated tract-specific genome-scale metabolic models for E. faecalis and S. pyogenes in or-
der to find tract-specific drug targets in their metabolic networks. I used multi-omics profiles
(metabolic, transcriptome and proteome data) obtained under the conditions comparable to nat-
ural physiological condition in the human body, namely root canal, unrinary tract and plasma,
and used the data to constraint the respective genome-scale metabolic models. The models were
used to find potential drug targets using different levels of threshold for metabolic flux values
and growth rate of the bacteria. The results suggested that there exist potential drug targets
in different subsystems in the metabolic network, from central carbon metabolism to transport
system. The presented profiles of drug targets have to be validated experimentally in order to
be used for the development of new treatment approaches.
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Zusammenfassung

Milchsäurebakterien sind eine Gruppe von Bakterien, die das Merkmal der Milchsäuregärung
teilen. Sie stehen nicht nur wegen ihrer Bedeutung für die menschliche Gesundheit, sondern
auch wegen ihrer Rolle in der Lebensmittelindustrie im besonderen Fokus der mikrobiolo-
gischen Forschung. Sie können sowohl als Probiotika, die zu einer gesunden Mikroflora im
menschlichen Körper beitragen, als auch zur Herstellung von fermentierten Lebensmitteln und
Entwicklung von Aromen genutzt werden. Enterococcus faecalis und Streptococcus pyogenes
sind zwei Milchsäurebakterien, die verschiedene Infektionen im menschlichen Körper verur-
sachen. Aus diesem Grund stehen sie seit mehreren Jahrzehnten im Mittelpunkt klinischer Stu-
dien. Die Tendenz zur zunehmenden Resistenz gegen multiple Antibiotika macht die Behand-
lung von Infektionen, die durch diese beiden Erreger verursacht werden, sehr schwierig. Um
diesen fortschreitenden Trend der Resistenz zu überwinden ist es wichtig neue Ansatzpunkte
für Medikamente gegen diese Krankheitserreger zu finden. In der vorliegenden Studie unter-
suchte ich die Stoffwechseleigenschaften dieser beiden Erreger mit einer integrativen Methode,
bei welcher Multi-Omics-Daten die in jeweiligen Stoffwechselmodellen auf Genomebene unter
Bedingungen integriert wurden, die mit verschiedenen Abschnitten des menschlichen Körpers
vergleichbar sind. Zu Beginn untersuchte ich die Auswirkungen der Glutamin-Auxotrophie
auf die metabolischen Anpassungen von E. faecalis (im Falle einer ∆glnA-Mutante) als Reak-
tion auf eine Veränderung des pH-Werts in der Umwelt. Dazu verwendete ich einen integra-
tiven Ansatz, der Stoffwechsel- und Proteomdaten mit einer Modellierung auf Genomebene
kombiniert. Das Ergebnis deutet darauf hin, dass der höhere Energiebedarf in der ∆glnA-
Mutante von E. faecalis höchstwahrscheinlich auf die fehlende Kontrolle des Glutamintrans-
portsystems infolge des Fehlens von glnA in der Mutante zurückzuführen ist. Im folgenden
Teil habe ich eine Methode zur funktionellen Analyse des Lösungsraums der genomweiten
Stoffwechselmodelle entwickelt. Bei dieser Methode werden zufällige Störungen genutzt, um
die Zuverlässigkeit der Flussverteilung im Netz zu ermitteln. Zusätzlich erlaubt sie es her-
auszufinden, welche Art von experimentellen Daten den Lösungsraum am effektivsten begren-
zen, wenn diese als Einschränkungen (not sure how to translate constrains the best) verwendet
werden. Schließlich habe ich traktspezifische Stoffwechselmodelle auf Genomebene für E.
faecalis9 und S. pyogenes erstellt, um traktspezifische Wirkstoffziele in deren Stoffwechselnet-
zwerken zu ermitteln. I would change this sentence to: Ich verwendete Multi-Omics-Profile
(Stoffwechsel-, Transkriptom- und Proteomdaten), die unter Bedingungen gewonnen wurden,
die mit den natürlichen physiologischen Bedingungen des Wurzelkanals, Harnwegs und Plas-
mas im menschlichen Körpers vergleichbar sind und nutzte diese Daten, um die jeweiligen
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Zusammenfassung

genomweiten Stoffwechselmodelle einzuschränken. Die Modelle wurden eingesetzt, um poten-
zielle Wirkstoffziele in Abhänigkeit verschiedener Grenzwerte für den Stoffwechselfluss und
die Wachstumsrate der Bakterien zu finden. Die Ergebnisse weisen darauf hin, dass es poten-
zielle Wirkstoffziele in verschiedenen Teilsystemen des Stoffwechselnetzes gibt, angefangen
beim zentralen Kohlenstoffmetabolismus bis hin zu Transportsystemen. Die dargelegten Pro-
file von Wirkstoffzielen müssen experimentell validiert werden, um für die Entwicklung neuer
Behandlungsansätze genutzt werden zu können.
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Chapter 1

INTRODUCTION

1.1 Systems biology

Studying the characteristics of living organisms has been the focal point of many research
projects. For the most part, after the development of the modern scientific approaches emerg-
ing in the 19th century, living organisms were subjected to investigations that were focused
on unravelling the features of their individual components. However, the invention of high-
throughput technologies boosted the process of data generation on numerous components at
the same time. The development of genomics facilities has resulted in whole genome sequenc-
ing of various organisms. On the other hand, the application of other technologies, such as
mass-spectrometry, and more recently, next generation sequencing resulted in the analysis of
biological phenotypes at multiple scales, both qualitatively and quantitatively. Following these
developments, we are currently able to quantify the expression level of a desired set of genes at
the level of mRNA or protein, or measure the concentration of certain metabolites or signalling
components in a living organism. Taking advantage of these breakthrough developments and
large data sets, we have been able to switch from an individualistic to a collective standpoint,
which enhances the already existing comprehension of living organisms as systems.
A biological system like any other system comprises a massively organized structure and func-
tion which can be decomposed into different levels of complexity and studied at different scales.
From this perspective, a biological system can be investigated at the scale of an organ, a tissue,
a cell or a pathway, for instance. Each of these scales can then be broken up into its components
in order to determine the structure of the system. Moreover, each system can be studied at dif-
ferent levels. A metabolic pathway can be studied either at the metabolic level by measuring the
concentration of the involved metabolites, or at the proteome level by quantifying the expression
level of enzymes. Depending on the question in place, a certain single or multi-omics profile
would help to find the best answer. To make the study of a biological system more efficient, it
is important to keep the following principles in mind.
The information flow in biological systems was determined by Francis Crick in 1970, known
as central dogma [Crick, 1970]. He explained how the information stored in DNA translates
into the functional component, namely protein, through mRNA transcription. The information
flow of course is not exclusive to this simplistic view, and occurs in other forms as well. An
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interesting aspect of central dogma is that from DNA to protein, the universality of information
decreases, while the specificity increases. In a broader spectrum, ranging from the information
storage part (DNA) to the functional parts, whether it is a single protein, or a signalling or
metabolic pathway, units are more universal when they are dealing with information storage
and more specific when they are functional. That is, while a certain open reading frame (ORF)
might exist in several organisms, various protein isoforms might be expressed in each organism
due to reasons such as post translational modification [Brett et al., 2002] or single nucleotide
polymorphism (SNP) [Lander et al., 2001]. Moreover, the expression level of the identical
proteins might be different between various organisms due to dissimilar regulatory regimes.
Therefore, while the specificity increases along with the functionality of units, the information
storing units are quite universal among biological systems.

Taking this scheme into account, the more universal part of the central dogma is a very practi-
cal resource to reconstruct the draft of any biological network (bottom-up approach) [Palsson,
2006], since the universality of genetic information allows a rough determination of the genetic
products by means of bioinformatics tools such as sequence alignment. However, in order to
make the reconstructed network organism-specific, the refinement of the network using the data
from the more specific part is essential (top-down approach). In essence, a biological system
is characterized by the connection between its components [Palsson, 2006]. While components
come and go, a persistent characteristic of any complex system is the interconnection between
its different parts [Palsson, 2006]. As the number of components in a system grows, the number
of potential connections increases exponentially. Since not all of these connections occur in re-
ality, it is crucial to eliminate the unrealistic ones [Palsson, 2006]. Therefore, the integration of
the bottom-up and top-down approaches helps to come up with a well designed structure which
can be further used to predict the function [Palsson, 2006].

Defining the structure of any biological system is the first step in simulating/predicting its be-
haviour. Structure determines what are the inputs of the system, how the input material is
processed through the network, and what are the outcomes of it. In a signalling network, the
input of the system might be an extracellular signal, triggering a signalling pathway in a cell.
The input signal is then processed through a pathway by for example phosphorylation/dephos-
phorylation of various proteins which eventually alter the expression level of a certain gene
[Ardito et al., 2017]. In a metabolic network, the input can be a carbohydrate, serving as an
energy resource for the cell. The carbohydrate will be metabolized through glycolysis and pro-
duces energy or converts to other metabolites to produce other necessary components of a cell
[Alberts et al., 2003]. A comprehensive network structure brings the opportunity to consider
all the possibilities in a network and to predict the physiologically relevant functional states.
However, defining the structure is far from enough when it comes to determining the dynamics
of a system and predicting the correct functions.

A key step in predicting the behaviour of biological systems is to find out the rates at which
system’s components are interconverted to each other, all the way from the input to the output
[Klipp et al., 2016]. This information helps to determine what a real functional state looks
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like, and what phenotypes are likely to emerge as a consequence. Acquiring such information
requires a proper experimental setup under desired conditions. As a result, the dynamics of,
e.g., protein phosphorylation in a signalling pathway, or the uptake rate of a carbohydrate in a
metabolic pathway can be discovered [Klipp et al., 2016]. The integration of these data results
not only in a better fit of the parameters in a model, but also increases the accuracy of phenotype
prediction [Klipp et al., 2016].
By reconstructing well structured networks that can successfully simulate the functional states
of a given system, an integrative analysis of biological systems becomes feasible. Integrative
analysis has become more popular in the scientific community, as it enables scientists to predict
phenotypes at the system level, which is a huge advantage over individualistic approaches.
This integrative approach, meaning the combination of preferably but not exclusively large data
sets at the system level, with mathematical and computational approaches which enable the
simulation of a biological phenomenon, is referred to as systems biology.

1.1.1 Mathematical modelling in biology

Mathematical models are a key part of the systems biology approach. The outcome of a com-
plex system cannot be predicted by intuition, since the resultant phenotype of any system is
not equivalent to the sum of its parts [Klipp et al., 2016]. Mathematical models are a tool to
make the integrative analysis of a complex system possible. This is something that a purely
experimental approach is unable to do. Experiments in general help to generate hypotheses
about a phenomenon and the ways it emerges, but they often come up short in providing a
global overview of the whole process. Using mathematical models, we are able to achieve a
more comprehensive knowledge about the dynamics of the system, the nature of the internal
processes and test the experimentally generated hypotheses [Klipp et al., 2016].
A mathematical model is used to answer specific questions [Klipp et al., 2016], [Palsson, 2006].
Therefore, a model should be developed according to the problems to be solved and its level
of confidence as well as limitations should be clear. To achieve this goal, the structure of the
model should be faithfully taken from the real system and the experimental data integrated into
the model should be chosen specifically with respect to the question in place [Klipp et al., 2016],
[Palsson, 2006]. The level of complexity in a model is not a criterion for a model to be right or
wrong, it just determines the extent to which a model can make predictions [Klipp et al., 2016].
The model should be able to predict the functional state of the system with acceptable preci-
sion, which should be further validated experimentally or by extrapolations from comparable
systems.
A biological process can be modelled using different approaches, depending on the nature of
the process, the problem to be solved and the availability of the data. If the time course of a
metabolic or signaling pathway is going to be simulated, kinetic models using ordinary differ-
ential equations (ODE) are powerful methods to mimic the time course [Klipp et al., 2016].
If the spatial information of the system is also a point of interest, then spatio-temporal mod-
elling using partial differential equations (PDE) will be the correct approach to use [Resat et al.,
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2011]. On the other hand, if the steady-state flux distribution of a metabolic system (at large or
small scale) is the aim of study, constrained-based models provide the respective answers to the
question [Klipp et al., 2016], [Palsson, 2006]. Furthermore, other modelling formalisms such
as agent-based models (ABM) can be used if the interaction of autonomous parts is the point
of interest [Klipp et al., 2016]. In the paragraphs ahead, I will elaborate on the background and
the applications of ODE models with a particular focus on metabolism. The constraint-based
modelling, which is the approach I used for this project, will be explained separately in more
detail in the next section.

The kinetic models find their roots in the early years of the twentieth century, when Leonor
Michaelis and Maud Menten proposed a mathematical model for enzyme activity [Michaelis
et al., 1913]. This model described the rate of an enzymatic reaction by forming a relationship
among substrate concentration, the maximum rate at which an enzyme can catalyse a reaction
(Vmax), and Km, which is a numerical constant, representing the concentration of the substrate
at which the reaction rate is half of the Vmax. Using Michaelis-Menten kinetics as a founda-
tion, a series of various kinetic formula have been proposed and applied to simulate different
metabolic pathways in different organisms.

Kinetic models have been widely used to simulate different biological processes. Among all,
modelling the central carbon metabolism and glycolysis for different organisms have been the
subject of numerous studies. Hess and Boiteux showed that the oscillation in glycolysis in
yeast is independent of the current state of the cell and can emerge by the addition of a variety
of substrates [Hess and Boiteux, 1968]. Cortassa and Aon applied metabolic control analysis
(MCA) to determine the rate-controlling steps in glycolysis, in aerobic chemostat cultures of
Saccharomyces cerevisiae [Cortassa and Aon, 1994]. In another study on S. cerevisiae, kinetic
models were used to assess the effect of a glucose pulse on glycolysis in a steady-state continu-
ous culture [Rizzi et al., 1997]. Furthermore, glycolytic pathway in prokaryotes heve also been
modelled using kinetic laws. Chassagnole and colleagues developed a kinetic model for central
carbon metabolism in Escherchia Coli that connected the phosphotransferase system (PTS) to
glycolysis and pentose-phosphate shunt, allowing to simulate the transient concentration of in-
tracellular metabolites [Chassagnole et al., 2002]. The model was also used to perform MCA
to gain an insight into the functional characteristics of the system [Chassagnole et al., 2002].
In another project, Levering and colleagues used kinetic modelling to study the role of phos-
phate in central carbon metabolism and its role in glucose uptake in two lactic acid bacteria,
Lactococcus lactis and Streptococcus pyogenes [Levering et al., 2012]. On the other hand, ki-
netic models can be used to spot targets for metabolic engineering. Andreozzi and colleagues
employed large-scale kinetic models of a recombinant Escherichia coli to increase the produc-
tion of 1,4-butanediol. They reported that the computationally detected targets were in good
agreement with experimental results [Andreozzi et al., 2016]. Kinetic modelling has been also
used for drug target identification in the case of numerous pathogens. To name a few, Haanstra
and colleagues employed kinteic modelling to find drug targets in the metabolic network of
Trypanosoma brucei (a parasite causing sleeping sickness) that do not interfere with host me-
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tabolism. They computationally identified and experimentally verified that glyceraldehyde-3-
phosphate dehydrogenase and glucose transport are very effective drug targets to combat this
parasite [Haanstra et al., 2017]. Kinetic models were also used to determine the metabolite
enzyme interactions in micro organisms. Link and colleagues performed metabolite tracing
experiments in the example of E. coli to identify the allosteric interaction of metabolites and
proteins. They fit the data to a kinetic model of E. coli comprising glycolytic reactions, sug-
gesting the allosteric interactions involved in the glycolysis/gluconeogenesis switch, one of the
being the interaction between pyruvate and fructose-1,6-bisphosphatase [Link et al., 2013]. In
another study, Hackett and colleagues found three previously unknown cross pathway regula-
tory interactions in yeast, using a kinetic model [Hackett et al., 2016]. The model showed that
pyruvate kinase (PYK) and pyruvate decarboxylase are inhibited by citrate and phenylpyruvate,
respectively. The results were validated experimentally [Hackett et al., 2016]. Of course, the
examples of the application of ODE models are not limited to the ones that were mentioned in
this paragraph, and the extent of research subjects using this method is very large.
While kinetic models are usually focused on small-scale metabolic pathways, large-scale path-
ways simulation is often done using another modelling formalism called constraint-based mod-
elling. In the absence of detailed kinetic data, constraint-based models provide a platform to
discover the metabolic characteristics when pathways are analysed in ,e.g., genome-scale.

Constraint-based modelling

Constraint-based modelling is an approach for simulating the flux distribution of metabolic
networks at steady-state. The objective function of a constraint-based model, which can be the
production rate of biomass, or uptake rate of a certain metabolite, can be optimised by fulfilling a
set of constraints [Palsson, 2006]. The primary constraint in such a model is the mass and charge
conservation [Palsson, 2006]. As a consequence, the exact same amount of mass and charge
entering the system must be converted to biomass or exported out of the system. This shows the
importance of the exchange reactions in constraint-based models, as they determine the amount
of mass and charge that can be imported in and exported from the system. Another type of
constraints in a constraint-based model are the thermodynamic constraint, determining the the
reversibility of reactions [Palsson, 2006]. In addition to these intrinsic constraints, there are
also user-defined constraints which can considerably increase the accuracy of flux distribution
in a model, such as reaction flux boundaries. The upper and lower boundaries of reactions
can be adjusted to direct the flux towards the intended directions based on experimental data,
whether it is a metabolite conversion rate, or gene expression data. The aggregation of all these
constraints determines the outcome of a constraint-based model. Constraint-based models can
be developed either at the level of a single pathway, or at genome-scale. Since in this thesis I
present the results from two constraint-based models at genome-scale, for the rest of this thesis
I use the term genome-scale model (GEM).
To solve a GEM mathematically, the system has to be converted into mathematical terms. In
the constraint-based approach, metabolic reactions are translated into a stoichiometric matrix in
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which rows correspond to metabolites and columns correspond to reactions. The stoichiometric
matrix is then used to calculate the flux distribution using the following equation:

S.v = 0

where S is the stoichiometric matrix, and v is the vector of flux which satisfies the steady-state
assumption.This equation, also known as general equation [Llaneras and Picó, 2008], maintains
the mass balance constraint for the whole system, one of the most fundamental constraints that
significantly determines the outcome of the system.

GEMs have been used for a variety of tasks in the past few decades. They are used for metabolic
engineering in cell factories, drug target identification, studying host-pathogen interactions, in-
vestigation of novel enzymatic functions, etc. Therefore, a broad spectrum of approaches can be
used to investigate the metabolic capabilities of an organism by means of GEMs. For instance,
if metabolic engineering is intended, OptKnock, OptGene and RobustKnock can be used to
consider single or multiple gene deletion scenarios[Simeonidis and Price, 2015]. The in silico
generated scenarios can then be used to manipulate the organism of interest experimentally, to
increase the production of certain metabolites, gain/loss of function or other engineering tasks.
For example, a previously developed E. coli GEM [Orth et al., 2011] was used for GEM-directed
metabolic engineering of E. coli to increase the production of D-phenyllactic for aromatic poly-
mers production[Yang et al., 2018]. In another study, a GEM of Yarrowia lipolytica was used
to apply strain design strategies to enhance the production of dodecanedioic acid [Mishra et al.,
2018]. GEM-directed metabolic engineering was also used in the case of eukaryotic organisms.
A GEM of S. cerevisiae was used by Bordina and colleagues to simulate the effect of introduc-
ing a new synthetic pathway, enabling the de novo biosynthesis of 3-hydroxypropionic acid in
this organism [Borodina et al., 2015].

Another important application of GEMs is in drug target identification. Using GEMs, it is
possible to spot essential genes and reactions. The suppression of essential genes results in
the growth inhibition of pathogens. On the other hand, one can find the essential reactions
whose inhibition stops the growth of pathogens. However, a more realistic approach would be
to find the reaction whose flux reduction to a certain extent limits the growth of a pathogen,
as neither the enzyme nor growth inhibition can be achieved in absolute form. In one of the
earliest attempts to investigate drug targets using GEMs, Beste and colleagues probed the gene
essentiality of known drug targets in Mycobacterium tuberculosis [Beste et al., 2007]. They
predicted an additional 220 essential genes using their models, suggesting potential drug targets
to overcome the multi-drug resistance of M. tuberculosis [Beste et al., 2007], [Espinal, 2003],
[Raviglione et al., 2001]. In another study, a set of 26 non condition-specific essential genes and
17 combinations of 21 condition-specific genes were identified in Pseudomonas aeruginosa,
without having homology with any human gene [Sigurdsson et al., 2012].

The comparison GEM-generated essential genes and experimental data can bring a deep insight
into the predictability of GEMs and the confidence level of the predicted drug targets. For this
matter, Kim and colleagues performed a gene essentiality analysis on a GEM of Acinetobacter
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baumannii AYE and compared the results to the experimental observations from single-gene
deleted mutants of A. baylyi ADP1 [Kim et al., 2010]. They found that the predicted profile
of essential genes has an overall 72% consistency with the experimental data. Interestingly,
the in silico profile was always smaller than the experimental profile (meaning that the number
of computationally predicted targets was smaller than the experimentally detected ones), both
when it was compared at the whole-metabolism level, or at the individual subsystem level. They
also performed metabolite essentiality analysis and reported a set of 9 metabolites that do not
interfere with human metabolism, and the enzymes for which these metabolites were a substrate
were reported as potential drug targets [Kim et al., 2010]. In another investigation, using the
same approach to screen essential metabolites, the authors recognized five essential metabolites
in the opportunistic human pathogen Vibrio vulnificus which were further experimentally val-
idated to be essential for the cell survival [Kim et al., 2011]. GEMs also provide a powerful
platform to discover different drug responses, not only between different species in the same
genus, but also between different life cycles of a single organism. A GEM-driven drug response
discovery on the Plasmodium genus determined stage- and species-specific drug targets in these
parasites [Abdel-Haleem et al., 2018]. They reported that the stage-specific models showed dif-
ferences in central carbon metabolism, while species-specific did so in thiamine, choline and
pentothenate metabolism.

Linear optimization

To solve the general equation, which was introduced earlier in this chapter, several algorithms
have been developed based on linear optimization, allowing the calculation of the flux vectors.
The most famous one is called flux balance analysis (FBA) [Orth et al., 2010]. In FBA, a vector
of flux distribution is calculated following the optimisation of the objective function, which by
no means is unique. In fact, as the system is mathematically underdetermined (considering that
there are more reactions (n) than metabolites (m) in the system and therefore more unknown
variables than equations), solutions can be found in a convex space, usually referred to as the
solution space [Orth et al., 2010], [Llaneras and Picó, 2008], [Famili and Palsson, 2003]. The
solution space contains all the feasible flux distribution profiles resulting in the optimal value
of the objective function. As there is no unique solution for the general equation, alternative
optimal values exist for some of the reactions, which can be found using flux variability anal-
ysis (FVA) [Mahadevan and Schilling, 2003]. FVA tries to find the feasible flux interval for
each reaction by optimising the objective function in the first place, and using the value as an
additional constraint. This results in two additional values for variable reactions, minimum and
maximum boundaries. An FVA problem can be formulate as follows:

Max f T v,

s.t.S.v = 0,
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vmin ≤ v≤ vmax

where f is the vector of the objective function and vmax and vmin are the vectors of maximum
and minimum allowable flux values, respectively, for each reaction [Mahadevan and Schilling,
2003]. FVA is therefore the most straightforward approach to investigate the solution space at
the level of individual reactions.

Solution space of constraint-based models

The solution space of constraint-based models is a consequence of having more unknown vari-
ables(reactions) than equations (since there are more reactions than compounds) in the system.
In a stoichiometric matrix of a metabolic network with m row and n column (corresponding
to metabolites and reactions, respectively), the system has n-m degree of freedom [Orth et al.,
2010], resulting in a very large solution space. This solution space is convex [Famili and Pals-
son, 2003], containing all the flux distribution profiles resulting in the optimal value of the
objective function and, therefore, all these profiles are considered as optimal. When the system
is solved using a linear algorithm like FBA, one single flux distribution profile is arbitrarily
reported as an optimal distribution. However, it is crucial to keep in mind that it is semantically
wrong to refer to this profile as ’the optimal’, since there are too many other profiles that are
equally optimal. Generally speaking, a large solution space emerges from having numerous al-
ternative optima for individual reactions. The combination of these alternative values results in
a huge number of solutions. However, the alternative optima does not exist for all the reactions
in the network. Depending on the degree to which the system is constrained, the number of
variable reactions differs.

The presence of various alternative solutions limits the reliability of the outcome of FBA. There-
fore, to increase the predictability of a model, it is important to shrink the solution space by in-
tegrating additional constraints, which are ideally obtained from experimental data. Additional
constraints can be applied in different ways. A very common method is to integrate the up-
take and production rate of metabolites into the boundaries of the respective exchange reactions
[Veith et al., 2015], [Levering et al., 2016], [Großeholz et al., 2016]. This is a very efficient
approach to increase the predictability of a GEM, as it determines the input and output of mass
in the system. Adjusting the constraints which determine the flow of mass into the system has a
significant impact on the outcome of optimization, as it deals with the mass-balance constraint,
which is one of the most fundamental constraints in GEMs. On the other hand, constraints
can be applied at the level of internal reactions. One possibility is to deactivate the reactions
for which an enzyme was not observed in the expression profile. With this approach, one can
employ a proteome profile, for instance, and deactivate the absent enzymes [Großeholz et al.,
2016]. Moreover, the flux boundaries of the internal reactions can also be subjected to adjust-
ment based on the experimental measurements. Therefore, different experimental results such
as fluxome, transcriptome or proteome profiles can be used for this purpose. To increase the
precision of flux distribution using fluxomics profiles, a method called metabolic flux analysis
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(MFA) has been developed which incorporates flux values obtained by labeled tracer to estimate
the flux distribution in a network [Crown and Antoniewicz, 2013], [Leighty and Antoniewicz,
2013], [Swarup et al., 2014]. The major problem with MFA was that the precision of flux es-
timation drops, going from central to peripheral metabolism. However, different methods have
been developed in recent years to expand the accuracy of flux distribution to the genome-scale
[Garcı́a Martı́n et al., 2015], [McCloskey et al., 2016]. In a different approach, the internal flux
boundaries can be adjusted also based on the transcriptome profiles [Kim and Lun, 2014]. For
example, a method (PROM) has been developed to adjust the maximal flux value of a reaction
by a factor of expression probability of its enzyme relative to the activity of its transcription
factor [Chandrasekaran and Price, 2010]. In another method (MADE), the flux boundaries of
reactions are adjusted based on the differential expression of the respective genes from one
condition to another [van Berlo et al., 2009]. This is the assumption that is employed in this
study to integrate the transcriptome data into the models. Finally, the internal flux boundaries
can be adjusted based on the comparative proteomics, adjusting reaction boundaries relative to
the change in enzyme abundances [Großeholz et al., 2016]. This is the approach I used in this
thesis to incorporate the proteome data into the models.

Solution spaces have been studied from various perspectives. Using convex analysis, two fun-
damental types of pathways, namely elementary flux modes [Schuster and Hilgetag, 1994],
[Schuster et al., 1999], and extreme pathways [Schilling et al., 2000] have been determined.
The identification of the elementary flux modes resulted in the calculation of the minimal set
of fluxes resulting in the optimal value of the objective function. This approach was used to
redirect fluxes to enhance the production of aromatic amino acids in E. coli [Liao et al., 1996].
Extreme pathways, on the other hand, are a unique set of systematically independent biochem-
ical pathways (vectors) that fully characterize the steady-state flux distribution of a network
[Schilling et al., 2000]. This concept was recently used to perceive the regulatory structures
from metabolic pathways [Xi and Wang, 2019]. In a fundamental analysis, Famili and Pals-
son showed that the left null space of the stoichiometric matrix contains information about the
time invariant metabolite concentrations in combination, which can be further used for clas-
sification of the metabolic networks [Famili and Palsson, 2003]. For instance, metabolically
relevant pools can be determined using a convex basis for the null space [Famili and Palsson,
2003]. Moreover, they classified metabolic pools into three different categories according to
the incorporation of primary metabolites (molecules that undergo conversion, Type A), pri-
mary and secondary metabolites (the combination of primary and secondary metabolites, Type
B), and only secondary metabolites (cofactors, Type C) [Famili and Palsson, 2003]. Type A
pools account for the conservation of biochemical elements and therefore contain only primary
metabolites, which are analogous to type I pathways (flux pathways). Type B pools determine
the conservation of exchanged biochemical moieties and incorporate both primary and sec-
ondary metabolites. Type B pools are analogous to Type II pathways (futile cycles coupled to
cofactors with internal input and output). Type C pools account for cofactor conservation and
only incorporate secondary metabolites and are analogous to Type III pathways (internal cycles
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with no input and output) [Famili and Palsson, 2003]. All these were possible using the analogy
of the left null space to the right null space [Famili and Palsson, 2003]. The metabolic pools can
then be used to visualize pathways and to find out which reactions take part in the conservation
relationships [Famili and Palsson, 2003].

From a new perspective, Kelk and colleagues developed a method to study the solution space
which defines a set of modules comprising variable reactions that are linearly independent [Kelk
et al., 2012]. This method divides various flux routes into three categories, vertices, rays and
linealities, which correspond to paths, reversible and irreversible cycles in a model, respectively.
Therefore, reactions in the same modules are the ones whose flux values are correlated across
all vertices, regardless of appearing in the same flux route or not. Solution space has also been
extensively analysed by methods based on Monte-Carlo sampling. The majority of Monte-
Carlo methods focus on analysing the solution space with respect to individual reactions. For
instance, these methods have been used to calculate the probability distribution of individual
flux values or defining correlated reaction sets [Price et al., 2004]. Correlated reaction/gene
sets reportedly enable defining the regulatory networks [Papin et al., 2004]. Moreover, Monte-
Carlo sampling has been used to calculate the average and standard deviation of flux values,
allowing the comparison between different conditions and to compare the simulation results to
the transcriptome profiles [Bordel et al., 2010]. In another study, sampling the solution space
was applied to discover the steady-state flux distributions that are consistent with experimental
data in human mitochondrion [Thiele et al., 2005]. A major drawback of the Monte-Carlo
methods is the need for a very large sample size and, consequently, expensive computations.
However, there have been some attempts recently to increase the efficiency of these methods
with respect to computation time [Fallahi et al., 2020]. For example, coordinated hit-and-run
with rounding (CHRR) is a computationally efficient method that is used to study the properties
of the bacterial GEMs [Fallahi et al., 2020], [Pinhal et al., 2019]. Furthermore, sampling the
solution space has been used to investigate the impact of changing ATP maintenance (ATPm),
biomass precursors and metabolites uptake/production rates following temporal fluctuations in
environments, on the outcomes of GEMs [Dinh et al., 2021]. The authors then suggested that
the integration of these constraints significantly increases the predictability of a model [Dinh
et al., 2021].

Strictly speaking, a large solution space would mean that many of the solutions correspond
to biologically unrealistic phenotypes. For example, it has been reported that the occurrence
of internal loops in a model can result in the generation of energy resources like ATP, or in
the interconnectivity of two electron pools [Maranas and Zomorrodi, 2016]. Therefore, the
large size of the solution space of GEMs is considered as one of the major drawbacks of this
modelling platform. This signifies the importance of shrinking the solution space by means of
case-specific experimental data.
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1.2 Lactic acid bacteria

As previously explained by several examples, mathematical modelling and more specifically,
constraint-based modelling has been used to simulate and investigate the metabolic character-
istics of different microorganisms including bacteria. A group of bacteria that are of significant
importance, not only because of their role in human health, but also in the food industry, are
lactic acid bacteria. So far, a number of lactic acid bacteria have been studied using different
mathematical modelling formalisms [Veith et al., 2015], [Levering et al., 2016], [Großeholz
et al., 2016], [Levering et al., 2016], [Teusink et al., 2006]. In this thesis, I employed constraint-
based modelling to study the metabolic network of two lactic acid bacteria, namely Enterococ-
cus faecalis and Streptococcus pyogenes. In the rest of this chapter, I give a general introduction
on lactic acid bacteria, and introduce the two aforementioned species in more detail.

Lactic acid bacteria (LAB) are a large group of bacteria sharing the characteristic of lactate fer-
mentation as the main strategy to produce energy [Holzapfel and Wood, 1995]. These bacteria
are gram-positive, low G+C content organisms, non-respiring cocci or rods that are classified
based on their physiological and metabolic characteristics [Franz et al., 1999], [Dworkin, 2006],
[Salminen and Von Wright, 2004], [Stiles and Holzapfel, 1997]. This group comprises a wide
variety of species, classified into different genera such as Enterococcus, Streptococcus, Lacto-
coccus, Lactobacillus, Leuconostoc, Carnobacterium, Enterococcus, Wissella, Oenococcus and
Pediococcus [Stiles and Holzapfel, 1997]. Lactic acid bacteria are in particular focus of micro-
biological research, not only because of their pathogenic characteristics, but also due to their
role in the food industry [Schillinger et al., 1996]. In general, those strains of lactic acid bacteria
that are used in the food industry are referred to as GRAS (generally regarded as safe) and can
be used as, for example, probiotics [AFRC, 1989] or cheese starter [Dahlberg and Kosikowsky,
1948]. These bacteria can also be used for food preservation as a result of producing lactic
acid and other organic acids; flavour formation and also the production and secretion of bacteri-
ocins, which reduce the growth of pathogens and therefore sustain a high quality in microflora
[Schillinger et al., 1996], [Stiles and Holzapfel, 1997], [Leroy and De Vuyst, 2004], [Franz
et al., 1999]. Probiotic lactic acid bacteria mostly belong to the genera of Lactobacillus and
Bifidobacterium and are prominently used in milk-based products [Lavermicocca et al., 2021].
To name a few species that are widely used in the food industry: Lactobacillus lactis is used
in the production of various types of cheese [Leroy and De Vuyst, 2004], Lactobacillus plan-
tarum is employed in the fermentation of pickles, olives and sauerkraut [Leroy and De Vuyst,
2004], and Lactobacillus delbrueckii and Streptococcus thermophilus are used in the cheese
and yoghurt production [Leroy and De Vuyst, 2004]. The use of probiotic lactic acid bacteria
facilitates the growth of beneficial species and restrains the growth of pathogens by modulating
the constituents of the host intestinal immune system, which might boost the immune response
in the host [Chugh and Kamal-Eldin, 2020]. The probiotic species, however, must be screened
to make sure of the absence of antimicrobial resistance genes and transferable virulence factors
[Baccouri et al., 2019].
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On the other hand, there are numerous species in the group of lactic acid bacteria that are serious
pathogens for human [Stiles and Holzapfel, 1997] and cause serious problems in hospital envi-
ronments. The role of several lactic acid bacteria in human health was reviewed in the 1990’s
by Aguirre and Collins [Aguirre and Collins, 1993], [Aguirre and Collins, 1993], bringing the
attention of the community to the important role of this group in bacterial infections. Pathogenic
lactic acid bacteria belong to different genera, such as Enterococcus and Streptococcus. In the
present study, I investigated the metabolic characteristics of Enterococcus faecalis and Strepto-
coccus pyogenes, using an integrative approach, comprising the integration of multi-omics data
into the genome-scale models of these two bacteria. In the paragraphs ahead, I introduce these
two species and denote their most relevant characteristics.

1.2.1 Enterococcus faecalis

E. faecalis belongs to the group of lactic acid bacteria and is usually referred to as an oppor-
tunistic pathogen [Franz et al., 1999], [Moreno et al., 2006], [Murray, 1990]. Depending on the
strain, E. faecalis can be considered as a pathogen, a probiotic or a food-production supplement.
This organism can be used as a starter for cheese production [Dahlberg and Kosikowsky, 1948],
or as a probiotic, which can contribute to health [AFRC, 1989]. E. faecalis is a commensal
organism which is a natural inhabitant of the human gastrointestinal tract, where it can take part
in the maintenance of a healthy flora. Conversely, E. faecalis can cause serious infections in
different human tracts, such as urinary tract infection, bacteremia, endocarditis, root canal and
wound infection [Kristich et al., 2014], [Kau et al., 2005]. Many strains of E. faecalis have de-
veloped resistance against multiple antibiotics, making the treatment of the infections caused by
this pathogen very hard [Kau et al., 2005]. E. faecalis makes up a large part of the nosocomial
infections in hospital environments [Pöntinen et al., 2021], such as post surgical contaminations
[Franz et al., 1999].
Comprising one chromosomal DNA and three plasmids, the genome of E. faecalis contains
3337 open reading frames (ORF) with a G+C content of 37.5% (in the chromosome) [Paulsen
et al., 2003]. More than a quarter of its genome is made of probable mobile or foreign DNA,
being characterized by seven probable integrated phage regions, 38 IS (insertion sequence)
elements, a putative pathogenicity island, multiple conjugative and composite transposons and
integrated plasmid genes [Paulsen et al., 2003]. This very diverse genome composition might be
the underlying reason for the very high survival capability of E. faecalis, resonating in its ability
to colonize various environments and resist to antimicrobial agents. The natural habitats of E.
faecalis range from the gastrointestinal tract of human and animals, to water, plant material and
soil [Moreno et al., 2006]. This organism is intrinsically resistant to several antibiotics, such as
vancomycin [Cetinkaya et al., 2000], [Kafil and Asgharzadeh, 2014] and cephalosporins [Sny-
der et al., 2014]. In general, E. faecalis owns three major mechanisms of resistance against an-
tibiotics, namely beta-lactam resistance, vancomycin resistance and aminoglycoside resistance
[Cetinkaya et al., 2000]. Moreover, E. faecalis acquires more flexibility and stress resistance
by producing biofilms and bacteriocins such as enterocines [Snyder et al., 2014], [Jayaraman,

12



1.2 Lactic acid bacteria

2009]. E. faecalis is reportedly the most prominent cause of enterococcal infections and its
treatment is particularly hard due to its resistance to numerous antibiotics [Cetinkaya et al.,
2000], [Sahm et al., 1989], [Norrby et al., 2005].
The very versatile metabolism of E. faecalis enables its growth on various carbon sources,
ranging from primary ones such as glucose, sucrose and fructose, to the secondary ones such
as lactate, malate, citrate, amino acids and glycerols [De la Maza et al., 2013]. Interestingly,
similar to several other bacteria, E. faecalis is able to employ the ”phpshoenolpyruvate phos-
photransferase system” (PTS) system to pair sugar uptake with phosphorylation, resulting in a
very effective use of energy resources in comparison to non-PTS sugar uptake [Gilmore et al.,
2002]. E. faecalis can withstand ethanol, heavy metals, azide [Stuart et al., 2006], and oxidative
stress [De la Maza et al., 2013]. In order to combat the infections caused by this highly flexible
pathogen, a system-wide analysis of its metabolic characteristics is essential.

1.2.2 Streptococcus pyogenes

S. pyogenes, also known as group A streptococcus (GAS), is a non-sporeforming and non-
motile, facultative anaerobic bacteria, triggering various infections in human body. This or-
ganism triggers infections such as scarlet fever, puerperal sepsis, bacteremia, pharyngitis, im-
petigo, pneumonia, streptococcal toxic shock (STSS), root canal infection, blood stream in-
fection, endocarditis and necrotizing fasciitis [Walker et al., 2014]. S. pyogenes also causes
immune-mediated post-infectious disorders like rheumatic heart disease (RHD) and rheumatic
fever (ARF) [Walker et al., 2014]. The genome of this bacterium is composed of one genomic
DNA, comprising 1699 ORFs [McShan et al., 2008]. 85.3% of its DNA is used as a coding se-
quence. Similar to other lactic acid bacteria, S. pyogenes possesses a low G+C content genome
with 38.57%, which in the ORFs is slightly increased to 39.18% [McShan et al., 2008]. Similar
to E. faecalis, foreign DNA makes up a part of the genome of S. pyogenes. There are three
different prophage regions in the genome of S. pyogenes, introducing 112 ORFs to the organ-
ism. Despite one susceptible virulence gene, prophage 1 plays no part in virulence. However,
phage 2 and phage 3 contain several virulence genes, such as streptococcal pyrogenic exotoxin
H (speH) (prophage 2), streptodornase (spd3), paratox genes and hyaluronidase (prophage 3)
[McShan et al., 2008]. In addition to prophage regions, IS elements also exist in its genome
which take part in the virulence of S. pyogenes as well. Interestingly, there are several CRISPR
elements as spacers in the genome of S. pyogenes, which are most likely involved in the lytic
cycle [Mojica et al., 2005]. Among other genomic regions coding for virulence factors, there
are virulence-associated hyper variable regions encoding different virulence factors such as ma-
jor antiphagocytic M protein (emm), vir regulon, streptococcal pilus or T-antigen: Cpa, FctA
and PrtF2 [McShan et al., 2008]. Additionally, there are several unique gene clusters like Nudix
hydrolase, which plays a role in host cell invasion, and NudA, nudB and nudC, which most
likely take no part in the virulence of this pathogen [McShan et al., 2008].
From a metabolic standpoint, S. pyogenes is not as versatile as E. faecalis, although it can grow
on several energy resources besides glucose, which is the primary energy resource. [Gera and
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McIver, 2013], [Ferretti et al., 2016]. S. pyogenes owns an intact glycolysis comprising 12
enzymes, some of them such as GAPDH and enolase can be exported to the cell surface too
[Ferretti et al., 2016]. Nevertheless, the mechanism of this export is not known [Ferretti et al.,
2016]. Surface GAPDH is reported in several studies to take part in the virulence of S. pyogenes
[Jin et al., 2011], seidler2013. S. pyogenes is capable of using various kinds of carbohydrates
based on the content of the extracellular environment. For instance, during biofilm formation in
saliva, it takes up maltodextrin, which is more abundant in saliva compared to glucose. How-
ever, when colonizing the throat (pharyngitis) or in the case of deep wound infection, rapidly
metabolized mono- and di-saccharides are its favourite choice [Ferretti et al., 2016]. Moreover,
several vitamins are required for the growth of S. pyogenes such as biotin, riboflavin and thi-
amine [Koser et al., 1968]. Likewise, amino acids are also very important for S. pyogenes. The
growth rate of S. pyogenes is significantly influenced by the lack of amino acids, except for glu-
tamine, glutamate, cysteine, proline, cystine, asparagine, alanine and aspartate [Levering et al.,
2016]. However, the same study reported that S. pyogenes can adapt to the lack of glycine and
serine in the environment [Levering et al., 2016].
To impose its virulence capability, S. pyogenes employs LPXTG-containing proteins to attach
to human cells. LPXTG is known as the major cell-anchoring motif in many species of gram-
positive bacteria [Terao, 2012]. Among LPXTG-containing proteins, a fibronectin (fn) binding
protein has been characterised (fbaA) which is experimentally shown to attach to human fn
[Terao, 2012]. On the other hand, it is shown that when spreading to deep human tissues,
S. pyogenes disrupts the complement immune system in the human body [Terao, 2012]. To
do so, it uses an extracellular cysteine protease, SpeB [Wexler and Cleary, 1985], [Chen and
Cleary, 1989] to cleave C3b, an important component of the human complement immunity
[Terao, 2012]. The same study also showed that SpeB increases the survival rate of S. pyogenes
when growing on human blood [Terao, 2012]. Other studies also have shown that S. pyogenes
employs fn binding proteins together with M protein and LTA as a device to attach to the host
tissues [Todar, 2006].

1.2.3 multi-omics data to study lactic acid bacteria

multi-omics refers to multiple libraries of large scale data sets which are produced with the aim
of studying a particular system as a whole. Following a top-down approach, omics data sets
bring knowledge about as many as possible components of a system, on the contrary to the re-
ductionist approach. Therefore, the use of omics libraries would enable researchers to study the
overall phenotypic landscape of a biological system under certain circumstances. Multi-omics
libraries are composed of different types of data. Most conventionally, genomics, transcrip-
tomics and proteomics libraries are used to characterize the genotype as well as the phenotypes
of different organisms at different levels. More recently, metabolomics and epigenomics are
also used to answer the particular questions requiring those data [O’Donnell et al., 2020].
The technologies producing omics data have been widely used to study lactic acid bacteria
[O’Donnell et al., 2020], [Huang et al., 2017]. The use of metabolomics and comparative
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genomics studies in the case of LAB was reported as early as 2004, showing that these tech-
nologies had been used to improve our understanding of food microbes [Leroy and De Vuyst,
2004]. In recent years, these technologies have been used, singly or in combination, to study
different characteristics of LAB. Lahtvee and colleagues used microarray transcriptomics to-
gether with Mass-spectrometry (MS) based proteomics to investigate the growth capabilities
and amino acid metabolism in Lactococcus lactis, [Lahtvee et al., 2011]. In another study, au-
thors used multi-omics libraries to have a better-designed platform to select probiotics, aiming
at the attenuation of infectious diseases such as chytridiomycosis [Rebollar et al., 2016]. Fur-
thermore, multi-omics data sets can be used to study microbial communities [O’Donnell et al.,
2020], [Wang et al., 2019],[Sirén et al., 2019]. As an example, DNA and cDNA libraries (gener-
ated by NGS) together with Mass-spectrometry were used to identify and assess the microbial
community as well as compounds related to the organoleptic properties in milk whey [Sattin
et al., 2016]. In another study, 16S RNA profiling, shotgun metagenomics and metabolomics
profiling were used to investigate metabolic interactions in the bifidobacterial community and
their impact on gut-microbiota [Turroni et al., 2016].

Different types of omics and multi-omics libraries such as metabolic, transcriptome and pro-
teome libraries have been generated to study LAB [O’Donnell et al., 2020]. A metabolic profile
can reflect how an organism reacts to different environmental conditions as well as to explain
the metabolic interaction in bacterial communities. This method has been widely used to study
the metabolic behaviours of numerous species of LAB which are involved in the production
of fermented foods, such as Streptococcus strains found in fermented soymilk [Mozzi et al.,
2013]. On another level, transcritome data have been used to study different aspects of LAB,
especially their virulence. Vebo and colleagues used transcriptome profiles of E. faecalis to
assess the expression level of the genes involved in virulence, as well as other characteristics
such as modulation of fatty acid composition in membrane, in a comparative study between
the cultures of 2xYT with 10% blood and 100% blood [Vebø et al., 2009]. In another investi-
gation, Solheim and colleagues reported that bovine bile impacts the expression level of drug
resistance transporters, using a transcriptome data set from E. faecalis [Solheim et al., 2007].
At the proteome level, proteome profiles have been used to study the impact of tract-specific
environments on the protein abundances of E. faecalis. For instance, the expression level of
proteins involved in the secretome of E. faecalis when growing in urine was investigated and
the effect of the environment on the expression of antigens and other components was observed
[Arntzen et al., 2015]. Moreover, the proteome profile of E. faecalis cultured in bovine bile was
used to study the impact of the environment on the metabolic programming of the bacterium,
such as on the fatty acid and phospholipid biosynthesis and energy metabolism [Bøhle et al.,
2010].

Omics data sets have been previously used here in the department of biological processes (Bio-
quant, Heidelberg University) to study E. faecalis and S. pyogenes. Veith and colleagues used
metabolic profile of E. faecalis to study amino acid metabolism, in an integrative study us-
ing genome-scale modelling [Veith et al., 2015]. In a similar approach Levering and colleagues
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investigated amino acid essentiality of S. pyogenes [Levering et al., 2016]. Furthermore, a work-
flow was developed by Großeholz and colleagues to integrate proteome data into genome-scale
models, enabling the application of multi-omics data in integrative studies using genome-scale
metabolic models [Großeholz et al., 2016]. This is the approach that I also used in the present
study, which was previously published in an article too [Loghmani et al., 2021].

1.3 Aim of study

In this project, I studied the metabolic characteristics of two human pathogens, E. faecalis and
S. pyogenes, using an integrative approach comprising experimentally acquired multi-omics
data and mathematical modelling, with the aim of finding tract-specific drug targets in their
metabolic networks. The tract-specific new drug targets were in particular focus due to the rising
trend of multi-resistance to conventional antibiotics in these two species. As mentioned earlier
in this chapter, metabolism has been one of the primary candidates for drug target identification
in human pathogens. To acquire a comprehensive understanding of metabolic characteristics
as well as adjustments, different experiments were designed to acquire omics data at different
levels. First, I studied adaptive metabolism of a ∆glnA mutant of E. faecalis during a pH shift
experiment, using metabolic and proteomic data, combined with mathematical modelling. The
integrative analysis of adaptive metabolism enables us to understand the behaviour of the or-
ganism under different environmental conditions, which in this case was the extracellular pH.
Considering the fact that this pathogen colonizes different tracts, it is subjected to a wide range
of environmental conditions, many of which might have different pH values. Taking advantage
of its highly versatile metabolism, E. faecalis is able to survive different types of stress and
shock, and further grow and colonize different tissues. Moreover, studying the characteristics
of the ∆glnA mutant and comparing it to those of the wildtype would provide a deep insight
towards the nitrogen metabolism in E. faecalis, as glutamine is the main donor of the amino
groups in the metabolic network.

Next, in order to discover the sensitivity/robustness of the results generated by genome-scale
models, I developed a method based on random perturbation. Genome-scale modelling have
been shown to be powerful a approach to simulate metabolic networks and the conclusions
drawn based on its results have helped scientists to find answers to their questions of interest.
However, a major drawback of this modelling formalism is a very large solution space as a
consequence of having a high degree of variability in the system. The flux distribution profiles
obtained from this large solution space are, therefore, highly variable, many of them are con-
tradictory to actual biological phenotypes. The most powerful approach to shrink the solution
space of genome-scale models is to integrate experimentally measured data into models. In
this study, I developed a method to analyse the reliability of the results generated by genome-
scale models. Using random perturbation to sample the solution space, the method allows to
functionally analyse the solution space and to determine what fraction of the solutions are con-
sistent with the actual biological phenotypes. The method is particularly useful when the flux
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distribution of a set of internal reactions is of interest, which is the case when looking for drug
targets in the metabolic networks of pathogens. Moreover, the method allows to discover the
impact of different types of experimental data on shrinking the solution space and increasing
the predictability of a model.
The final part of this study was developing tract-specific genome-scale models in the example of
E. faecalis and S. pyogenes in order to find tract-specific drug targets in their metabolic network.
Considering the fact that genome-scale models are often developed based on experimental data
generated from the standard lab conditions, there is a relatively big gap between the insight that
these models provide us with and the actual physiological phenotypes of a pathogen in human
body. The need for tract-specific analysis of pathogens becomes even more significant, given
the progressive trend of bacterial resistance to current antimicrobial agents. To bridge this gap,
I collected different types of omics data and integrated into the genome-scale metabolic models
of these two pathogens to simulate their metabolic behaviour under the conditions comparable
to actual physiological conditions in human body. Using this approach, I generated a set of
libraries containing potential drug targets under each condition. The computationally found
drug targets are still to be validated experimentally. Finding tract-specific drug targets would
be the first step in overcoming the drug resistance in these two pathogens and bringing the
treatment strategies to the next level.
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Chapter 2

Materials and Methods

2.1 Studying the impact of glutamine auxotrophy on the
adaptive metabolism of Enterococcus faecalis

The method for this part of the thesis is obtained from my previous publication on this part
[Loghmani et al., 2021].

2.1.1 Experimental

Bacterial strains and culture conditions

Enterococcus faecalis V583 ∆glnA [Veith et al., 2015] was grown in batch cultures at 37 ◦C in
a chemically defined medium for lactic acid bacteria (CDM-LAB [Levering et al., 2016], pH
7.5 and 6.5). The CDM-LAB medium contained the following per liter: 1 g K2HPO4, 5 g
KH2PO4, NaHCO3, 0.6 g ammonium citrate, 1 g acetate, 0.25 g tyrosine,0.24 g alanine, 0.5
g arginine, 0.42 g aspartic acid, 0.13 g cysteine, 0.5 g glutamic acid, 0.15 g histidine, 0.21 g
isoleucine, 0.475 g leucine, 0.44 g lysine, 0.275 g phenylalanine, 0.675 g proline, 0.34 g serine,
0.225 g threonine, 0.05 g tryptophan, 0.325 g valine, 0.175 g glycine, 0.125 g methionine, 0.1 g
asparagine, 0.2 g glutamine, 10 g glucose, 0.5 g L-ascorbic acid, 35 mg adenine sulfate, 27 mg
guanine, 22 mg uracil, 50 mg cystine, 50 mg xanthine, 2.5 mg D-biotin, 1 mg vitamin B12, 1
mg riboflavin, 5 mg pyridoxamine-HCl, 10 mg p-aminobenzoicacid, 1 mg pantothenate, 5 mg
inosine, 1 mg nicotinic acid, 5 mg orotic acid, 2 mg pyridoxine, 1 mg thiamine, 2.5 mg lipoic
acid, 5 mg thymidine, 200 mg MgCl2, 50 mg CaCl2, 16 mg MnCl2, 3 mg FeCl3, 5 mg FeCl2,
5 mg ZnSO4, 2.5 mg CoSO4, 2.5 mg CuSO4, and 2.5 mg (NH4)6Mo7O24.

pH shift experiments in chemostat cultures

The pH shift experiments were carried out as previously described [Großeholz et al., 2016]. In
short, E. faecalis V583 DeltaglnA was grown in glucose-limited chemostat cultures in Biostat
B Plus benchtop bioreactors (Sartorius) in 750 ml CDM-LAB with a dilution rate of 0.15/h at
37 ◦C and gassing with 0.05 L/min nitrogen and stirring with 250 rpm. The pH was kept at
the desired level by titrating with 2 M KOH. Initially, the pH was kept constant at 7.5 until
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a steady-state was reached. Steady-state was assumed when no glucose was detectable in the
culture supernatant anymore, and dry mass and optical density (600 nm) were constant on two
consecutive days. For the pH shift, the pH control was switched off until the desired pH (6.5)
value was reached. The cultivation was continued until the steady-state was reached again.
Samples were taken at steady state pH 7.5 and at several time points during and after the pH
shift as indicated in Figure 1. Per sampling point, samples for determination of dry mass, ex-
tracellular metabolites, and proteomic analysis were taken as previously described [Großeholz
et al., 2016].

Chemostat cultures for determination of ATP maintenance

For determination of ATPmaintenance (ATPm), E. faecalis V583 DeltaglnA was grown in
glucose-limited chemostats as described above (except for pH shift) at two different dilution
rates, 0.15 h-1, and 0.05 h-1, with three biological replicates per dilution rate. At steady-state
samples were taken and processed as described above.

Quantification of extracellular metabolites

For samples from pH shift experiments, quantification of amino acids in media and culture
supernatants was done by Frank Gutjahr Chromotgraphie (Balingen, Germany); quantification
of lactate, formate, acetate, glucose, acetoin, 2,3-butanediol, ascorbate, citrate, pyruvate, and
ethanol were done by Metabolomics Discoveries GmbH (Potsdam, Germany). For quantifica-
tion of amino acids, glucose, and fermentation products in CDM-LAB and culture supernatants
of samples from ATPmaintanance experiments, the following two methods were used:

Method 1: an Agilent 1260 Infinity II HPLC system was used. The system was controlled by
OpenLAB CDS Workstation software. For amino acids analysis, sample supernatants were fil-
tered through a 0.22 µm syringe filter into an HPLC sample vial. Amino acids were derivatized,
separated on a reversed-phase column (Agilent Poroshell 120 EC-C18 4.6x100mm, 2.7µm),
detected with a diode array detector (DAD G7117A), and quantified following manufacturer’s
guidelines (AdvanceBio Amino Acid Analysis, © Agilent Technologies, Inc. 2018). Standards
ranging from 5 µM to 30 mM were used to quantify aspartate, glutamate, asparagine, serine,
glutamine, histidine, glycine, threonine, arginine, alanine, tyrosine, valine, methionine, trypto-
phan, phenylalanine, isoleucine, leucine, lysine, and proline.

For the analysis of organic compounds, samples were prepared as follows: 100 µl 35 % per-
chloric acid was added to 1 ml sample, mixed, and placed on melting ice for 10 minutes. Subse-
quently, 55 µl potassium hydroxide solution (7 M) was added, and the sample was centrifuged
for 2 min at 20,000 g. The supernatant was filtered through a 0.22 µm syringe filter into an
HPLC sample vial. Separation of sugars and fermentation products in the sample was per-
formed by using an Agilent Hi-Plex H column (4.6x250 mm, 8 µm) with a working temperature
of 65 ◦C using 10 mM H2SO4 as a mobile phase with a flow rate of 0.4 ml/min. For detection, a
refraction index detector (RID) with a working temperature of 35 ◦C and a diode array detector
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(DAD) with a wavelength of 210nm/4nm with a reference wavelength of 360nm/100nm were
used. Standards ranging from 50 µM to 150 mM were used for the quantification of glucose,
ethanol, citrate, lactate, pyruvate, formate, and acetate.

Method 2: Sugars and organic acids in the supernatant were measured with an isocratic Agilent
1200 series HPLC system equipped with a Phenomenex guard carbo-H column (4 by 3.0 mm)
and a Rezex ROA organic acid H (8%) column (300 by 7.8 mm, 8 µm; Phenomenex) main-
tained at 50◦C. Analytes were separated and detected using 5 mM H2SO4 with a constant flow
rate of 0.4 mL min-1. Prior to analysis, samples were pretreated for precipitation of abundant
phosphate by adding 4 M NH3 and 1.2 M MgSO4 solution, followed by incubation with 0.1
M H2SO4. Absolute concentrations were obtained by standard-based external calibration and
normalization with L-rhamnose as internal standard.

Determination of protein abundances

All proteomics experiments and relevant downstream data analyses were done as part of a previ-
ous study as essentially described and published in [Großeholz et al., 2016], where the methods
were detailed. The following sections briefly describe the proteome sample preparation and
quantification of protein abundances using SWATH-MS.

Proteome sample preparation

Bacterial cell pellets were washed three times with PBS and kept frozen until experimentation
began. These non-viable cell pellets were processed in two technical replicates using Baro-
cyclerrNEP2320 (PressureBioSciences, Inc, South Easton, MA). Briefly, samples were lysed
in buffer containing 8 M urea, 0.1 M ammonium bicarbonate, 10% trifluoroethanol, and com-
pleteTM protease inhibitor under pressure cycling (PCT) program (198 cycles, 20 seconds 45
kpsi, 10 seconds 0 kpsi) at 35 ◦C. Whole cell lysates were then sonicated for 30 seconds with
1-minute interval on ice for 3 times. Cellular debris was removed by centrifugation and sample
protein concentration was determined by BCA assay prior to protein reduction with 10 mM
TCEP for 25 min at 35 ◦C, and alkylation with 40 mM iodoacetamide in the dark for 30 min at
room temperature. LysC digestion (1/50, w/w) was performed in 6 M urea under PCT program:
90 cycles, 25 seconds 22 kpsi, 10 seconds 0 kpsi at 35 ◦C; subsequent trypsin digestion (1/30,
w/w) was performed at further diluted urea (1.6 M) under PCT program: 180 cycles, 25 seconds
22 kpsi, 10 seconds 0 kpsi 35 ◦C. Digestion was stopped by acidification with trifluoroacetic
acid (TFA) to a final pH of approximately 2 before C18 column desalting using SEP-PAK C18
cartridges (Waters Corp., Milford, MA, USA).

Data acquisition and quantification of protein abundances using SWATH-MS

We used available, published SWATH MS Spectral and assay library generated by [Großeholz
et al., 2016]. For SWATH-MS data acquisition, the same mass spectrometer and LC-MS/MS
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setup was operated essentially as described before20, except that 64 windows of variable effec-
tive isolation widths were used (with an additional 1 Da overlap on the left side of the window),
with a dwell time of 100 ms to cover the mass range from 400 - 1200 m/z in 3.3 s. The collision
energy for each window was set using the collision energy of a 2+ ion centered in the mid-
dle of the window with a spread of 15 eV. The SWATH targeted data analysis was carried out
using (OpenMS 1.12) analysis workflow (OpenSwathWorkflow21, http://www.openswath.org)
running on an internal computing cluster and consists of the following steps. First, fragment-
ion chromatograms were extracted for each peptide precursor in its appropriate SWATH-MS
window based on the target and decoy assays in TraML format, with an extraction width of
0.05 Thomson (OpenSwath ChromatogramExtractor) and a retention time extraction window
of ±300 seconds around the expected retention time. Additionally, ion chromatograms for
the iRT retention time standard peptides were extracted to facilitate projection of the assays
from the normalized iRT retention time space into the retention time space for each individual
run (OpenSwath RTNormalizer). Peak groups from the extracted fragment-ion chromatograms
were formed and scored according to their elution profiles, similarity to the target assay in
terms of retention time and relative fragment-ion intensity, as well as features from the full
MS2 SWATH spectrum extracted at the chromatographic peak apex (OpenSwath Analyzer).
Finally, the optimal separation between true and false peak groups was achieved using a lin-
ear discriminant model training with 60-fold semi-supervised learning iterations; and the score
distribution from the shuffled decoy assays was used to estimate the false discovery rate us-
ing pyProphet (0.9.2) (https://pypi.python.org/pypi/pyprophet21) based on the mProphet algo-
rithm22 and filtered using 1% FDR at the peptide feature level. Further, peak-groups were
aligned among all 48 SWATH runs (24 wt and 24 GlnA mutant samples) using the OpenSwath
feature aligner to ensure the consistent quantification of peak groups (peptide features) that
could otherwise not be confidently identified above the FDR cut-off from a single run alone. Re-
quantification option was also enabled to provide an upper bound for the intensity of target ana-
lyte where no peak-group passed the confidence filter so that the final data matrix did not contain
any missing data point. Protein quantification was computed using R package, MSStats.daily
2.3.523. Briefly, we preprocessed the dataset from openSWATH extraction by log2 transfor-
mation and quantile normalization and generated the protein quantity matrix from the frag-
ment ion level data using the ’groupComparison’ and ’quantification’ function of MSstats. The
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org/) via the PRIDE partner repository with the data
set identifier PXD030778. Users can sign in via http://www.ebi.ac.uk/pride/archive/ to access
the SWATH data with: Reviewer account details:
Username: reviewer pxd030778@ebi.ac.uk Password: SfhNDiaz
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2.1.2 Computational

Determination of non-growth associated ATPmaintenance

The determination of non-growth associated ATP (ATPm) was performed as described in [Teusink
et al., 2006]. Thus, the measured flux value for the carbohydrates, organic acids, and amino
acids were integrated in the genome-scale model as constraints. The biomass reaction was fixed
at the respective growth rate (dilution rate), and the flux of the ATPm reaction was maximized
as the objective function. The obtained values were used to fit a linear function, for which the
y-intercept determines the required energy for the organism at a zero growth rate. This value is
then applied to the model as the lower bound of the ATPm reaction.

Software, model, and computational methods

PySCeS-CBMPy[Olivier et al., 2005] was used for constrained-based modelling. The genome-
scale metabolic model of E. faecalis [Veith et al., 2015] was used for all the computational
analyses (BioModels: MODEL1510010000). To optimize the growth rate, ATPm, and obtain-
ing flux distribution profiles, flux balance analysis (FBA)11 was used. This method calculates
a vector of flux values while optimizing the user-defined objective function. To calculate the
feasible range of each reaction that results in the optimized value of the objective function, flux
variability analysis (FVA) [Mahadevan and Schilling, 2003] was applied. FVA uses the opti-
mized value of the objective function as an additional constraint and subsequently calculates
the maximum and minimum boundary of the feasible interval for each reaction.

Integration of constraints to the genome-scale model

The integration of constraints to the genome-scale model was done as indicated in [Großeholz
et al., 2016]. To integrate the metabolic data, a tolerance level of 40% was applied to the
measured flux rates to account for measurement errors. The obtained values were applied to the
upper (+ 20%) and lower (-20%) bounds of the respective exchange reactions at both conditions.
Regarding the proteome data, reactions with no experimental evidence (after the comparison to
the list of essential genes and reactions at the proteome level at pH 7.5 were deactivated. For
the model to have a feasible solution, several genes had to be reactivated (EF0387, EF3069,
EF0108, EF0929, EF0547, EF2442, EF3015, EF3199, EF3200, EF3117). To represent the
significant fold changes of proteins in response to pH shift, the log2 fold-changes of protein
abundances were multiplied by 40% (tolerance level) and then applied to the maximum and
minimum value of respective reactions, obtained by flux variability analysis (FVA)26 at pH 7.5.
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2.2 Inspecting the solution space of genome-scale metabolic
models

The method for this part is obtained from my previous publication on ’Inspecting the solution
space of genome-scale metabolic models’ [Loghmani et al., 2022].

Models, experimental data and constraints integration

The genome-scale metabolic models of E. faecalis (wildtype) [Veith et al., 2015] and of a knock-
out mutant of glutamine synthase (DeltaglnA) of Enterococcus faecalis [Veith et al., 2015] were
used for the initial analysis. The experimental data was obtained from [Großeholz et al., 2016]
for the wildtype and [Loghmani et al., 2021] for the mutant. The findings reported here were
validated using the genome-scale models of Streptococcus pyogenes [Levering et al., 2016] and
Lactococcus lactis [Flahaut et al., 2013] together with the respective published experimental
data. The models with no constraints (denoted by nc throughout the text) had all the upper
bounds set to +1000 (representing +infinity) and lower bounds to -1000 (representing -infinity)
except for the biomass reaction that was fixed at the intended objective function value. Con-
straints were integrated at three different steps using the respective experimental data, medium
composition, metabolite uptake/secretion rates (organic acids and amino acids) and proteome
data. To integrate the medium composition data, the upper and lower boundaries of the re-
spective reactions were adjusted. To integrate the metabolite uptake and secretion rates, the
experimentally measured flux value of metabolites was used as the basis and a tolerance value
of 40% was considered to account for measurement error. Consequently, 20% were added to
the measured value and used as the upper bound and the subtraction of 20% was used as the
lower bound [Großeholz et al., 2016]. To integrate proteome data, the flux value of the reac-
tions whose respective proteins were not detected by the proteomics experiment were set to
zero [Großeholz et al., 2016]. In summary, the E. faecalis model contains 709 reactions (in the
case of the wildtype, 708 in the case of the mutant), 644 metabolites and 688 genes. The model
of S. pyogenes contains 576 reactions, 558 metabolites and 481 genes. The model of L. lactis
contains 754 reactions, 650 metabolites and 516 genes.

Perturbation procedure

The perturbation procedure was used to determine the effect of alternative optimal values taken
by each reaction on the flux distribution profile of the network. Given the fact that parameters
within the permissible flux interval calculated by FVA can result in the optimal value of the
objective function, we wanted to find out how each point in the permissible interval affects the
quantitative and qualitative flux distribution in the network. The steady-state flux distribution
of a constraint-based model can be obtained by:

S.v = 0
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where S represents the stoichiometric matrix and v is the vector of flux distribution. Here, the
maximum and minimum values of individual reactions can be obtained using FVA [Mahadevan
and Schilling, 2003] by maximizing the objective function and using the respective value as an
additional constraint:

Max f T v,

s.t.S.v = 0,

vmin ≤ v≤ vmax

where f is the objective function vector and vmax and vmin are the vectors of maximum and
minimum allowable flux values, respectively, for each reaction. Using this characteristic of
constraint-based models, the perturbation procedure we proposed is based on the idea that a
change in the flux value of a reaction would result in a different combination of fluxes in the
network, as shown in the Figure, in the example of two flux combinations:

Figure 2.1: Perturbation procedure to determine the robustness of FBA/FVA outcome. The
figure shows how fixing one reaction at various random values results in a different range for
flux combinations between two fluxes.

Consequently, the robustness of model predictions, whether they are qualitative biological phe-
notypes, or flux values/range for a several reactions can be examined and the overall predictabil-
ity of the model can be determined.
All analyses were done using the FBA perturbation toolbox which is available on Github
(https://github.com/babakml/FBAperturbation.git),developed f orthispro ject.T hetoolboxwasprimarilydeveloped f orMAT LAB,butaPythonversionisavailableaswell.AllanalysesinthispaperweredoneusingtheCobratoolboxversion3.1[Heirendtet al., 2019][V lassiset al., 2014]astheplat f orm f orconstraint−
basedmodellingonMAT LABR2018a[MAT LAB, 2018]onMacOSMo javeversion10.14.6(Apple.com).Toper f ormtheperturbations, thebiomassreactionwassetasconstraintand f ixedattheintendedvalue(lowerandupperboundshavingthesamevalue).A f terwards, the f luxboundarieso f variablereactionsweredeterminedbyFVA(usingCPLEX12.8.0[IBMILOG, 2017](ibm.com)asthesolver)withanoptimalitypercentageo f 100%or99%asindicatedinthetext.T hepermissibleintervalsize f orthe f luxo f eachreactionascalculatedbyFVAwasdeterminedandathresholdo f 10−
6wasappliedtoconsiderareactionasvariable.Next, f oreachvariablereaction,10randomvalueswithinthedetermined permissibleintervalwereselectedusingthe‘rand′ f unctioninMAT LAB.T herand f unctionyieldsasingleuni f ormlydistributednumberwithinthegiveninterval.T herespectivereactionwas f ixedatthegivenrandomvalue(lowerandupperboundshavingthesamevalue)andthe f luxdistributionpro f ilewasrecalculatedeachtimeusingFVA.Forvalidationpurposes, theanalysiswasrepeatedandthe f luxdistributionwasobtainedwithFBA(usingCPLEXandGLPK4.65[Makhorin, 2008])inCOBRA.T heanalysiswasalsorepeatedusingPySCeS−
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Table 2.1: Bacterial strains used for the tract-specific drug target identification

Species strain Reference

Enterococcus faecalis V583 [Paulsen et al., 2003]
Streptococcus pyogenes M49 NZ131 [McShan et al., 2008]

CBMPy0.8.0[OlivierandGottstein, 2021]onPython2.7[VanRossumFredLandJr, 1995]andthe f luxdistributionpro f ileswereagainobtainedusingFVA(usingCPLEXassolver).T heobtained f luxdistribution f oreachreactionwasthencomparedtotheoriginal f luxdistributionanda f luxvaluewasconsideredtochangesigni f icantly, i f itwasalteredbeyond±5%
of the original flux value. In the cases where the original flux value was zero, the threshold was
set to 10-6.

Analysing the solution space using CoPE-FBA

A standard analysis of the solution space was performed using CoPE-FBA with CPLEX as
solver [Kelk et al., 2012]. For this purpose, FVA was performed and variable reactions were
determined with the interval size of 10-6 as a threshold. Afterwards, flux modules, which are
the sets of variable reactions that are linearly independent, were determined. The modules were
then used to analyse the solution space.

2.3 Integrative tract-specific drug target identification in E.
faecalis and S. pyogenes

Bacterial strains

Standard cultivation of bacteria

For standard cultivation, E. faecalis and S. pyogenes were grown in THY medium or on Columbia
agar plates containing 5% sheep erythrocytes at 37 ◦C in 5% CO2 enriched atmosphere. Cul-
tures on agar plates were kept in the refrigerator and were used to inoculate fresh liquid cultures
for maximum 4 weeks.

Batch growth experiments

For batch growth experiments, E. faecalis and S. pyogenes were grown in overnight cultures
in THY medium, with the culture volume of ten percent of the main culture for CDM-LAB,
artificial saliva and artificial urine, and 15% of the main culture for the plasma. The overnight
cultures were spun down by centrifugation at 3345 x g for 10 min. The supernatants were
discarded and the pellets were washed twice with PBS. Afterwards, bacteria were suspended in
1 ml PBS and added to the medium.
For CDM-LAB, artificial saliva, and artificial urine, a culture volume of 500 ml was used.
Cultures were incubated at 37 ◦C. After two hours, a 15 ml sample was collected and bacteria
were spun down at 3345 x g for 10 minutes. The supernatant were collected and stored at -20
◦C for the metabolic analysis. At the second time point, two hours after inoculation, a 400 ml
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sample was taken and spun down at 12000 x g for 5 min. A sample of 15 ml supernatant was
taken and stored in -20 ◦C for analysis of extracellular metabolites. The bacterial pellets were
suspended in PBS and transferred to 15 ml tubes for centrifugation at 3345 x g for 10 min.
Then, the supernatant was discarded and pellets were suspended in 2 ml PBS and divided into
1.5 ml tubes, each containing 1 ml. The samples were spun down again with a centrifuge at
3099 x g for 10 min. The supernatant was discarded and the pellets were stored at -20 ◦C for
transcriptomic and proteomic analysis.

Plasma cultures were prepared in a total volume of 100 ml. The first sample for metabolic
analysis was taken at four hours after the start of the incubation, the OD was measured and
supernatant was collected in the same way as in the other media. For the second time point, five
hours after the start of the incubation, the OD was measured and the remaining 85 ml of the cul-
tures were spun down using centrifuge at 8000 rpm for five minutes, 15 ml of supernatants were
collected for metabolic analysis and stored at -20 ◦C. Pellets for transcriptomic and proteomic
analysis were collected in the same way as in the other media.

Measurement of organic acids and sugars via HPLC Agilent InfinityLab LC Series 1260
Infinity II Quaternary System

The method for this part is provided by Eric Zitzow, who performed the measurement of the
organic acids in Rostock medical university.

Detectable substances: glucose, pyruvate, acetate, citrate, (ethanol,) formate, lactate

Mobile phase: 10 mM H2SO4 (555,7 µl conc. sulfuric acid (96%) in 1 l water)

Column: -Hi-Plex H 4.6 x 250 mm, 8 µm (column storage condition: water) - 65 ◦C (max.
temperature for the column: 70◦C; pH range: 0-7; separation mode ion exchange (IEX); H-
phase)

Flow rate: 0.4 ml/min (max. flow rate: 0.4 ml/min(!!!)) Duration: 25 min Injection volume: 20
µl

DAD: 210 nm/4nm; reference: 360nm/100nm (main detector is RID) RID: 35 ◦C

Sample preparation: -taking of 1 ml sample (e.g. culture supernatant) -addition of 100 µl 35%
PCA (perchloric acid) solution -mix and place on melting ice for 10 minutes -addition of 55 µl 7
M KOH solution -mix shortly and centrifuge at maximum speed for 2 minutes -filter supernatant
through a 0.22 µm syringe filter into an HPLC sample vial

Source:

-HPLC Analysis of Sugars and Glycoproteins in Biological Systems

https://www.agilent.com/cs/library/applications/SI-01410.pdf

-Agilent Hi-Plex Columns for Carbohydrates, Alcohols, and Acids

https://www.agilent.com/cs/library/applications/5990–8264EN.pdf
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Table 2.2: Gradient program

Time (min) % B

0 2
0.35 2
13.4 57
13.5 100
15.7 100
15.8 2
18 end

Amino acid measurement via HPLC Agilent InfinityLab LC Series 1260 Infinity II
Quaternary System

The method for this part is provided by Eric Zitzow, who performed the measurement of the
amino acids in Rostock medical university.
Detectable substances: alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine,
glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine,
tryptophan, tyrosine, valine, (hydroxyproline, sarcosine, proline,norvaline)
Mobile phase A: 10 mM Na2HPO4, 10 mM Na2B4O7 pH 8.2 To prepare 1 L, weigh out 1.4
g anhydrous Na2HPO4 and 3.8 g Na2B4O7 10H2O in 1 L water. Adjust to approximately pH
8.4 with 1.2 mL concentrated HCl, then add small drops of acid and adjust to a final pH of
8.2. Allow stirring time for complete dissolution of borate crystals before adjusting pH. Filter
through 0.45 µm (or 0.22 µm) regenerated cellulose membranes (p/n3150-0576).
Mobile phase B: Acetonitrile:methanol:water (45:45:10, v:v:v) (Mobile phase A is consumed
twice as fast as mobile phase B) (A: ca. 1,123 ml/min; B: ca. 0,377 ml/min per run)-¿ Volume:
1/3 A= B
Derivatization reagents: Injection diluent: 10 ml mobile phase A with 40 µl conc. H3PO4
OPA: 100 µl aliquots (vial with insert), potent for 7 to 10 days FMOC: 100 µl aliquots (vial
with insert), potent for 7 to 10 days Borate buffer: change every 3 days
Column: Agilent Poroshell 120 EC-C18 4.6x100mm, 2.7µm 40 ◦C (max. temperature for the
column: 60 ◦C; pH range: 2-8; separation mode: Reversed phase, EC-C18 phase), Column
storage condition: 60% ACN, 40% H2O
Derivatization: 1. Draw 2.5 µL from borate vial (p/n5061-3339) 2. Draw 1.0 µL from sample
vial 3. Mix 3.5 µL in wash port five times 4. Wait 0.2 minutes 5. Draw 0.5 µL from OPA
vial (p/n 5061-3335) 6. Mix 4.0 µL in wash port 10 times default speed 7. Draw 0.4 µL from
FMOC vial (p/n 5061-3337) 8. Mix 4.4 µL in wash port 10 times default speed 9. Draw 32
µL from injection diluent vial 10. Mix 20 µL in wash port eight times 11. Inject 12. Wait 0.1
minutes 13. Valve bypass
Flow rate: 1.5 ml/min for columns with 4.6 mm inner diameter (like our column) 0.62 ml/min
for columns with 3 mm inner diameter
Injection volume: 1 µl
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DAD: Signal A: 338 nm, 10 nm bandwith; reference: 390 nm, 20 nm bandwith Signal B: 262
nm, 16 nm bandwith; reference: 324 nm, 8 nm bandwith
Duration: 20 min Sample preparation: -taking of 1 ml sample (e.g. culture supernatant) -
addition of 100 µl 35 %PCA (perchloric acid) solution -mix and place on melting ice for 10
minutes -addition of 55 µl 7 M KOH solution -mix shortly and centrifuge at maximum speed
for 2 minutes -filter supernatant through a 0.22 µm syringe filter into an HPLC sample vial

Calculation of the growth rate and flux values

The growth rate of the bacteria were calculated using the following formula for the exponential
growth [Seviour and Nielsen, 2010] using the measured OD values:

lnX = lnXo+µ(t− to)

where X is a straight line showing the growth rate, Xo is the initial OD, µ is the specific growth
rate constant (h-1), t is the time point and t0 is the initial time point.
The measured flux value of metabolites were calculated according to the exponential growth
rate by fitting the data to the following linear equation:

S = So− (q/µ)∗ (X−Xo)

where S is the substrate concentration, S0 is the substrate value at initial time point. The method
for the calculation of the growth rate and substrate uptake/production rate was obtained from
[?].

The measurement of the protein abundances

The method for this part is provided by Dr. Sergo Kasvandik who performed the measurement
of the protein abundances in Proteomics Core Facility, Institute of Technology, University of
Tartu, Tartu, Estonia.
Sample preparation:

Cell pellets were suspended in 10 volumes of 6 M guanidine-HCl, 100 mM Tris-HCl pH 8.0,
20 mM DTT buffer. Samples were heated at 95◦C for 10 min, followed by sonication in a
Bioruptor (Diagenode) sonicator at 4◦C. Samples were further homogenized with FastPrep24
(MP Biomedicals) bead beating device two times at 4 m/s for 30 s with cooling between cy-
cles. After removal of beads, the samples were cleared with centrifugation at 17 000 g for
10 min at 4◦C. Cell proteins were precipitated at 4oC by adding 1/4 volume of 0.4% sodium-
deoxycholate, 20% trichloroacetic acid. Protein concentrations were measured with the Micro-
BCA Assay (Thermo Fisher Scientific). Pellets were then suspended in 30 µl of 7 M urea /
2 M thiourea, 100 mM ABC, 20 mM methylamine solution, followed by disulfide reduction
and cysteine alkylation with 5 mM DTT and 10 mM chloroacetamide for 30 min each at room
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Table 2.3

Fraction Elution buffer
BRP1 200 mM AF* pH 10
BRP2 200 mM AF pH 10, 10% ACN
BRP3 200 mM AF pH 10, 15% ACN
BRP4 200 mM AF pH 10, 20% ACN
BRP5 200 mM AF pH 10, 25% ACN
BRP6 200 mM AF pH 10, 50%* ACN

temperature. Proteins were predigested with 1:50 (enzyme to protein) Lys-C (Wako Chem-
icals) for 4 h, diluted 5 times with 100 mM ABC and further digested with trypsin (Sigma
Aldrich) overnight at room temperature. Enterococcus faecalis digests were desalted using C18
StageTips and resuspended in 0.5% trifluoroacetic acid (TFA) ready for LC/MS/MS injection.
Streptococcus pyogenes digests were further fractionated into six fractions using basic reversed
phase chromatography with in-house made C18 StageTips using following elution buffers:

*AF – ammonium formatted, ACN – acetonitrile

Nano-LC/MS/MS measurement:

Samples were injected to an Ultimate 3000 RSLCnano system (Dionex) using a C18 trap-
column (Dionex) and an in-house packed (3 µm C18 particles, Dr Maisch) analytical 50 cm x
75 µm ID emitter-column (New Objective). Peptides were eluted at 250 nl/min with a 8-40% B
240 min gradient (buffer B: 80% acetonitrile + 0.1% formic acid, buffer A: 0.1% formic acid) to
a Q Exactive Plus (Thermo Fisher Scientific) mass spectrometer (MS) using a nano-electrospray
source (spray voltage of 2.5 kV). The MS was operated with a top-10 data-dependent acquisi-
tion strategy. Briefly, one 350-1400 m/z MS scan at a resolution setting of R=70 000 at 200 m/z
was followed by higher-energy collisional dissociation fragmentation (normalized collision en-
ergy of 26) of 10 most intense ions (z: +2 to +6) at R=17 500. MS and MS/MS ion target values
were 3e6 and 5e4 with 50 ms injection times. Dynamic exclusion was limited to 60 s.

Raw Data Processing:

Mass spectrometric raw files were analyzed the with the MaxQuant software package (version
1.6.15.0). Methionine oxidation, glutamine/asparagine deamidation and protein N-terminal
acetylation were set as variable modifications, while cysteine carbamidomethylation was de-
fined as a fixed modification. Search was performed against UniProt (www.uniprot.org) En-
terococcus faecalis and Streptococcus pyogenes reference proteome database using the tryptic
digestion rule (including cleavages after proline). Only identifications with minimally 1 peptide
7 amino acids long were accepted and transfer of identifications between runs was enabled.
Label-free quantification normalization with MaxQuant LFQ algorithm was enabled with de-
fault settings. Peptide-spectrum match and protein false discovery rate (FDR) was kept below
1% using a target-decoy approach. All other parameters were default.
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Calculation of the significant fold changes in protein abundances

To calculate the significant protein abundances between the different conditions, I used the
DEP package (Differential Enrichment analysis of Proteomics data) [Zhang et al., 2018] in
R [R Core Team, 2021]. For the statistical analysis, I filtered out the proteins with missing
values in the replicates of the same condition. Afterwards, I corrected the data for background
and normalized using variance stabilizing transformation method [Huber et al., 2002]. The
data was then imputed using random draws from a Gaussian distribution centered around a
minimal value. The imputed data were used for the differential enrichment analysis using linear
models and empirical Bayes statistics, provided by limma [Ritchie et al., 2015]. The p-values
were adjusted for multiple testing by Benjamini-Hochberg (BH) multiple testing correction.
An adjusted p-value of 0.05% was considered as a threshold for significance. A more elaborate
description on data analysis can be found in the results chapter.

Integration of experimental data into genome-scale metabolic models

To integrate the metabolic data, I used the method published in [Großeholz et al., 2016]. There-
fore, a 40% measurement error was applied to the measured values to calculate the flux bound-
aries. A +20% measurement error was applied to the flux values to calculate the upper bound,
while a -20% was applied to the flux values to calculate the lower bound. For the integration
of the transcriptome data, I used the published in [Großeholz et al., 2016] for the integration
of the proteome data.The calculated significant fold changes were applied to the flux intervals
obtained by FVA for the control conditions. An error rate of 40%, and when necessary, 60%
was applied to the calculated values for the model to have a feasible solution.

Identification of the drug targets

In order to find the drug targets in a model. I used three different strategies. In the first method, I
inactivated all the reactions in a model and those whose inhibition reduced the flux value of the
bacteria to 30%, 20% and 10% were regarded as potential drug targets. In the second approach,
I decreased the flux interval of all the reactions to 30%, 20% and 10% of the original value,
and the reactions which a reduction in their flux values resulted in zero growth of the bacteria
were considered as potential drug targets. In the third approach, I combine the two previous
methods, meaning that I reduced the flux intervals of all reactions to 30%, 20% and 10%, and
the reactions which a reduction in their flux reduced the growth rate of the bacteria to 30% or
lower were considered as potential drug targets. A more detailed description of the integrative
drug target identification can be found in the results chapter.
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RESULTS

In this chapter, I present the result of my thesis. The aim of this study was to discover tract-
specific drug targets in the metabolic network of two pathogenic bacteria, E. faecalis and S.
pyogenes, using an integrative approach that combines multi-omics profiles with genome-scale
modelling. To do so, I employed numerous experimental as well as computational approaches,
not only to uncover the phenotypes of these two pathogens under certain circumstances, but
also to develop and improve the required computational tools. First, I studied the role of glu-
tamine auxotrophy in E. faecalis by analyzing the metabolic and proteomic profiles of a ∆glnA
mutant of E. faecalis. I also integrated the two profiles into the genome-scale model of the
∆glnA mutant to discover the role of glutamine auxotrophy on the metabolic behaviour of this
organism in large scale by comparing the results to those of the wildtype, and also to predict
certain metabolic adjustments by means of the genome-scale model. Considering the fact that
glutamine is the main nitrogen donor in E. faecalis metabolism, studying the role glutamine
auxotrophy brings a profound knowledge about the characteristics of not only the nitrogen me-
tabolism, but also the carbohydrate metabolism and protein expression profiles. Next, I devel-
oped a method that enables us to study the sensitivity of genome-scale models by means of
random perturbation. The method allows to find out how reliable the flux distributions in dif-
ferent parts of the network are, and how this reliability can be improved by integrating different
types of experimental data. Being the major draw back of genome-scale models, internal flux
distributions are often highly variable, containing a very large number of solutions that many
of them are contradictory to biological reality. Therefore, a key step to generate highly reliable
predictions with genome-scale models is to determine which set of results are relatively more
reliable compared to the others. Having said that, when trying to find drug targets in a metabolic
network, this method allows to compare the sensitivity of the potential drug targets. As a result,
the potential drug targets can be presented with their degree of confidence. Last, I tried to find
tract-specific drug targets in the metbolic network of E. faecalis and S. pyogenes by integrating
the multi-omics profiles to the respective genome-scale models. To do so, I performed batch
culture experiments in Rostock Medical University and collected samples for metabolic, tran-
scriptome and proteome measurments. These data were then integrated into the genome-scale
models and tract-specific drug targets were determined.
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3.1 The effect glutamine auxotrophy on metabolic
characteristics of E. faecalis

As mentioned above, I discovered the role of glutamine auxotrophy on the metabolism of the
∆glnA mutant of E. faecalis by analysing its metabolic and proteome profiles, integrated into
the respective genome-scale metabolic model. As glutamine is the main provider of amino
groups in metabolism, it has a comprehensive impact on the growth and phenotype of organisms
in general. Therefore, studying the effect of glutamine auxotrophy would provide important
information of metabolic adjustments and performance of E. faecalis. The results of this section
is previously published in [Loghmani et al., 2021].

To find out the effect of glutamine auxotrophy on metabolic characteristics of E. faecalis, the
gluthamine synthetase ∆glnA mutant of E. faecalis was subjected to pH shift in the course of
21 hours (Figure 3.1). The time course comprised two steady-states, at pH 7.5 and pH 6.5.
Samples were taken at 8 different time points, time point 1 (t1) was the steady-state at pH 7.5,
t2 the transition state, and t3, t4, t5, t6 and t7 were at pH 6.5, 80, 100, 120 and 240 minutes after
the start of the pH shift. T8 was the steady-state at pH 6.5, 21 hours after the start of the pH
shift. Samples were then used to calculate the exchange fluxes of organic acids, carbohydrates
and amino acids, and to quantify the protein concentration at each time point.

3.1.1 Effect of pH on the growth rate

To find out about the effect of a pH shift on the growth rate of ∆glnA E. faecalis, the biomass
was measured at different time points and were compared to those of the wildtype to discover
the effect of glutamine auxotrophy. As shown in fig 3.2, the biomass of the ∆glnA E. faecalis
decreased from 1.54 to 1.15 g/l, showing that the more acidic condition reduces the growth
capabilities of the organism. Compared to the wildtype, the biomass production of the mutant
is lower at all time points, pointing out to the fact that glutamine auxptrophy negatively affects
growth of the bacterium. However, the trend of relative biomass reduction in response to pH
shift is similar (approximately 25%) between the wildtype and the mutant.

3.1.2 Effect of the pH shift on protein expression profile of ∆glnA E.
faecalis

To uncover the effect of the pH shift on the protein expression profile of ∆glnA E. faecalis,
the significant fold change of all the detected proteins compared to t1 were calculated fig 3.3.
The complete list of all the significant fold changes can be found in the supplementary data.
Overall, 1681 open reading frames (ORF) were detected by SWATH-MS. While no significant
fold change was detected at t2, t3 contained the highest number of significant fold changes with
more than 40 proteins being affected by the pH shift. I performed a pathway analysis and the
result showed that 11 of these proteins were involved in membrane and cell wall production and
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Figure 3.1: The pH shift experiment over the course of 21 hours. The experiment started at
steady-state at pH 7.5 (t1), followed by a transition state (t2, the pink area) to pH 6.5. Samples
were taken at pH 6.5 at t3-t7, as well as t8, the steady-state at pH 6.5. The figure is adapted
from [Loghmani et al., 2021]

two proteins were involved in peptidoglycan biosynthesis. This finding suggests that the pH
shift has a prompt effect on the restructuring and reshaping of the cell membrane and envelope.
In contrast, at t3, there were only a few proteins being affected by the pH shift from t4 to t7 and
all were down-regulated. The number of significant fold changes increased to 40 at t8, 21 hours
after the pH shift. A major part of these proteins were down-regulated. Among all, it involved
several proteins in the nucleotide metabolism, all down-regulated. Given the fact that de novo
biosynthesis of nucleotides is energy consuming, the downregulation of nucleotide metabolism
is consistent with the lower growth rate and higher energy demand in a more acidic environment.

I also compared the protein expression profile of the mutant to that of the wildtype in order to
investigate the effect of glutamine auxotrophy on protein expression in E. faecalis in response to
pH shift (Figure 3.3). The number of significant changes at the protein level in the wildtype was
higher than in the mutant, except for t8. At t3, a large number of significantly affected proteins
in both genotypes were involved in membrane and cell envelope biosynthesis, pointing out to
the fact that the restructuring of cell membrane and envelope happens early in response to pH
shift [Großeholz et al., 2016]. Unlike the mutant, several glycolytic enzymes were affected by
the pH shift in the wildtype. Considering the fact that the growth and survival of E. faecalis at
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Figure 3.2: The biomass production of the ∆glnA mutant and the wildtype E. faecalis in response
to pH shift over the course of 21 hours. The biomass value of the mutant is lower than of the
wildtype at all during the whole time course. The figure is adapted from [Loghmani et al.,
2021].

pH 6.5 is more energy demanding (compared to pH 7.5), due to the metabolic adjustments such
as maintenance of internal pH homoeostasis; as well as the central role of glycolysis in energy
metabolism, the increase in the expression of glycolytic enzymes is predictable. However, the
lack of upregulation in glycolytic enzymes in the mutant was surprising, suggesting that this
genotype had already been introduced to high energy demand as a consequence of glutamine
auxotrophy. On the other hand, both wildtype and the mutant showed a similar pattern of down-
regulation of genes involved in nucleotide metabolism.

3.1.3 Integrative computational metabolic analysis of ∆glnA E. faecalis

To get a comprehensive understanding of metabolic adjustments in ∆glnA E. faecalis in re-
sponse to pH shift, I used a previously published genome-scale metabolic model of E. faecalis
[Veith et al., 2015] and integrated the metabolic and proteome data into the model as constraints.
The metabolic and proteomic constraints were integrated into the model using a previously de-
veloped method that translates flux values and significant fold changes into the flux boundaries
of the respective reactions [Großeholz et al., 2016]. I used the integrative analysis to contex-
tualize the quantitative metabolic and proteomic data within the framework of whole-system
computational metabolic analysis.
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Figure 3.3: Left panel: the number of significant fold changes at the protein level in ∆glnA E.
faecalis at different time points. Right panel: the number of significant fold changes at the
protein level in the wildtype (pink) and the ∆glnA mutant of E. faecalis at different time points.
The figures are adapted from [Loghmani et al., 2021]

Integrative determination of ATP maintenance

To improve the accuracy and predictability of the genome-scale model, I calculated the ATPM
value using experimental data integrated with the genome-scale model of ∆glnA E. faecalis.
ATPM is the amount of energy required for the organism to sustain life at zero growth rate.
This is a particularly important parameter in genome-scale modelling and helps to improve
the predictability of FBA results. To estimate the ATPM value using an integrative approach,
comprising experimental data and genome-scale modelling, I performed chemostat experiments
under the supervision of PD Dr. Tomas Fiedler at Rostock medical university. I grew ∆glnA E.
faecalis in chemostat cultures at two different dilution rates, 0.15 and 0.05 h-1 at pH 7.5 and 6.5.
I let the cultures continue until reaching the steady-state and took samples for metabolic analy-
sis. I spun down the samples and supernatant and took the supernatant to analyse extracelullar
concentration of glucose, organic acids and amino acids. Using the metabolites concentration,
I calculated the flux values (uptake/production rate) for each individual metabolites and used
the values as the flux boundaries of the exchange reactions for respective metabolites. After
integrating the constraints, I fixed the biomass production rate at the growth rate (equal to the
dilution rate) and set the objective function to ATPM reaction to obtain the maximum value.
I performed this process for both dilution rates and used the ATPM flux values to fit a linear
function with respect to growth rate. In this sense, if we plot the linear line as a function of
growth rate (x-axis), the y-intercept would be the ATPM value at zero growth rate. This value
is considered as the minimum amount of energy that is required only for survival and does not
contribute to growth. The ATPM value is used as the lower boundary of the ATPM reaction
to make sure that the minimum required amount of energy is produced by the system, while
maximising the growth rate.

Using the above mentioned procedure, the estimated ATPM value for ∆glnA E. faecalis was
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5.977 and 6.224 mmol/g-1
DWh-1 at pH 7.5 and 6.5, respectively. However, the integration of

these values into the genome-scale model resulted in an overproduction of biomass. In fact, the
excretion rate of fermentation products is at such a high value that the produced ATP would
excessively boost the biomass production, while the ATPM value is at this low level. There-
fore, the lower bound of the ATPM reaction has to be set on a higher value at both pH to make
sure that the biomass production is inline with the experimental data. There are several factors
allowing such an adjustment without violating modelling rules. For one, the ATPM value is an
estimated value being the outcome of integrating around 30 metabolite’s measurements into the
genome-scale model. This makes the optimization process very error prone, since the accumu-
lation of all the measurement errors would affect the result. As an example, in the data set used
for the estimation of the ATPM value, the glucose uptake rate at pH 7.5 at the dilution rate of
0.15 h-1 was 6.32 mmol/g-1

DWh-1, while in the data set from the pH shift experiment it was 7.17
mmol/g-1

DWh-1. The 0.85 mmol/g-1
DWh-1 difference between these two measurements would

make a difference of 2 mmol/g-1
DWh-1 at the estimated value of ATPM. Therefore,the accu-

mulation of measurement errors for about 30 metabolites would obviously have a significant
impact on the optimization result. Moreover, ATPM is a parameter to make sure that the min-
imum required energy of the cell (non-growth associated) is produced while maximizing the
biomass production. Thus, the divergence from the ATPM value to a higher level would not be
a violation of the ATPM assumption, whereas the deviation to a lower level should be done by
having more solid evidences. In the case of this study, the estimated value for both pH condi-
tions seem to be very low and therefore had to be increased. If lactate production is considered
as an indicator of the energy production state in the system, the fact that lactate production in
the mutant is several times higher than in the wildtype would imply that the ATPM value of the
mutant should be considerably higher than in the wildtype (the estimated ATPM value for the
wildtype is reportedly 3.9 and 8.4 mmol/g-1

DWh-1 at pH 7.5 and 6.5, respectively [Großeholz
et al., 2016]). As a result, the lower bound of the ATPM reaction (ATPM value) was increased
to 9.7 and 10.6 mmol/g-1

DWh-1 for pH 7.5 and 6.5, respectively. At pH 7.5, this value ensures
the correct production rate of biomass. Regarding pH 6.5, the value can possibly go higher, but
it does not change the outcome of optimization. These values enable the accurate prediction
of the production rate of biomass and fermentation products. It has to be mentioned that the
chemostat cultures growing the mutant were not only glucose-limited, but also glutamine lim-
ited. Therefore, it can be suggested that glutamine was an additional growth limiting factor in
these cultures.

Predicted flux through the energy metabolism in the ∆glnA mutant

As described above, I used a previously developed framework for integrating the metabolic
and proteome data into genome-scale metabolic models [Großeholz et al., 2016] to perform the
integrative analysis of ∆glnA E. faecalis metabolism during the pH shift experiment. For this
purpose, the update/production rate of carbohydrates, organic acids and amino acids were inte-
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grated into the upper/lower boundaries of the respective exchange reactions (measured flux ±
20%). For the integration of the proteome data, the flux of reactions associated with no proteins
in the proteome data was set to zero. To account for the protein fold changes after the pH shift,
the log fold change value of the respective enzymes were used to adjust the reaction boundaries.

The experimental data showed that the mutant has a higher energy demand compared to the
wildtype. This was successfully captured by the model, reproducing a higher ATP production
rate and a higher flux through glycolysis as the central part of energy metabolism. The higher
energy demand was also reflected in the higher flux through lactate dehydrogenase (LDH) which
can be considered as an indicator of the energy requirements of the system.

I also compared the flux distribution profile in glycolysis between the mutant and the wildtype
to find out about the differences in flux values in energy metabolism. The flux through gly-
colysis in the mutant was higher at pH 7.5, consistent with the higher energy demand in the
mutant as a result of glutamine auxotrophy. The need for extracellular glutamine in the model
is translated to glutamine uptake either by GLNab (glutamine ATP binding cassette) transporter
or by glutamine permease. Using GLNabc would require ATP to import glutamine into the sys-
tem, while glutamine permease would import a proton along with glutamine which further has
to be actively pumped to extracellular environment. Either way, glutamine uptake would add
additional energy costs to the cell. However, glutamine synthesis from glutamate would also
consume one ATP per glutamine, preventing to draw any conclusion on the underlying reason
for higher energy demand in the mutant at this point.

Impact of glutamine uptake in the model of ∆glnA E. faecalis

Glutamine auxotrophy in the mutant requires the organism to take up glutamine from extra-
cellular environment at a higher level compared to the wildtype. Based on experimental data,
the glutamine uptake in the mutant increased from 0.147 to 0.197 mmol/g-1

DWh-1 from pH
7.5 to pH 6.5. The model originally contained two mechanisms for glutamine uptake, namely
GLNabc and glutamine permease, as mentioned previously. Based on the proteome data, the
ATP binding site (EF0760) in GLNabc protein complex was up-regulated following the pH shift,
suggesting an increase in transporter demand which is expected based on the metabolic data.
Since a lot of membrane associated proteins were absent in the proteome data due to technical
issues (protein isolation), it is possible that other subunits of GLNabc were also subjected to
an upregulation after the pH shift. However, after applying the upregulation of transporter into
the model, the original transporter design in the model failed to reproduce the higher glutamine
flux by means of GLNabc. The flux distribution obtained from FBA showed a zero flux through
GLNabc reaction at both pH levels. Therefore, I changed the design of the glutamine transport
system in the model to enable it to reproduce the experimental data. Reportedly, the glutamine
permease in E. faecalis is not an amino acid specific enzyme, but is rather shared by multiple
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amino acids [Holden and Bunch, 1973]. Among all, glutamine has the highest affinity for the
permease, while asparagine and threonine have a lower affinity. Therefore, to account for the
difference in the level of affinity of different amino acids, I introduced a new permease reaction
to the model, carrying two molecules of glutamine together with one asparagine, one threonine
and 4 protons. Accordingly, the single amino acid permease reactions of all three amino acids
were deactivated. The newly developed transport system correctly mimics the uptake rate of
all three amino acids and also brings the glutamine ABC transporter into use at pH 6.5. This
system results in a more accurate reproduction of the actual transport system in the organism
as it takes the shared permease system into account and also makes use of the glutamine ABC
transporter when necessary. The involuntarily uptake of other amino acids besides glutamine
either by means of permease or active transport might provide a potential answer on the higher
energy demand in the mutant. Furthermore, the absence of glnA potentially prevents GlnR (the
regulatory protein) to properly function, as it is reported that GlnR needs glnA to control the
glutamine uptake in Streptococcus pneumonia [Kloosterman et al., 2006]. As a result, the lack
of control over glutamine uptake might cause an unnecessary uptake of glutamine and poten-
tially all the other amino acids that share the same transporter together. Hence, the excessive
import of amino acids would force additional energy costs to the organism.

Figure 3.4: The effect of increased glutamine uptake and decreased glutamate uptake on the
glutamine/glutamate metabolism. Following an increase in glutamine uptake, more glutamate
is produced from glutamine by means of ASNTAL (aspartyl-tRNA(Asn):L- glutamine amido-
ligase (ADP-forming)) and CBPS (carbamoyl-phosphate synthase (glutamine-hydrolysing)).
Moreover, the increased glutamate production by GLUDy (glutamate dehydrogenase) results
in less NADPH being available for reductive-biosynthesis reactions.
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Predicted flux through glutamine/glutamate metabolism

I further used the flux distribution profile of the genome-scale model obtained from FBA and
FVA to analyse the glutamine/glutamate metabolism in response to pH shift. This pathway
was particularly important as the aim of this study was to investigate the effect of glutamine
auxotrophy on metabolic characteristics of E. faecalis. The increase in glutamine uptake and
the decrease in glutamate uptake following the pH shift in the genome-scale model is trans-
lated into a higher conversion of glutamine to glutamate by means of a flux switch through two
reactions, namely aspartyl-tRNA(Asn):L- glutamine amido-ligase (ADP-forming) (ASNTAL)
and carbamoyl-phosphate synthase (glutamine-hydrolysing) (CBPS). Moreover, the model pre-
dicted that the glutamine-fructose-6-phosphate (gam6p) transaminase reaction would be shut
down. This reaction produces gam6p by catalyzing a transaminase reaction between glutamine
and fructose-6-phosphate (f6p). The model rather produced gam6p by assimilating ammonia
into f6p. Furthermore, the model produced glutamate from 2-oxoglutarate by increasing the
flux towards the reverse direction of glutamate dehydrogenase (GLUDy). The directionality of
GLUDy is considered as an indicator of the balance between the carbon and nitrogen meta-
bolism [Hwang and Lee, 2018]. The redirection of flux towards glutamate production would
change the NADPH/NADP ratio such that less NADPH would be available for, e.g., amino acid
biosynthesis. This is consistent with the lower biomass production at pH 6.5. The decrease in
the NADPH level also prevents reductive synthesis reactions to occur (Figure 3.4), which can
be also observed in the proteome data by the significant downregulation of proteins involved
in nucleotide metabolism. Another effect of the reverse direction of GLUDy reaction is con-
suming one proton, which is important for the cell in a more acidic environment. Moreover,
the production and the degradation of some other amino acids were also affected following the
direction change in GDH flux. For example, the conversion rate of glutamate to alanine and
aspartate was predicted to be higher, with alanine being produced by the organism after the pH
shift, based on the metabolic data.

3.2 Inspecting the solution space of genome-scale metabolic
model

Having studied the impact of glutamine auxotrophy on metabolic adjustments, protein expres-
sion and flux distribution in the genome-scale model of E. faecalis, it became clear that the
genome-scale model can mimic the actual physiological condition to a large extent. However,
as mentioned before, there are limitations in the extent to which the results of the model can be
interpreted, the most prominent being the internal flux distribution in the model. Therefore, it
is necessary to determine the degree of robustness of the genome-scale model from a functional
stand point. This would enable to determine which parts of the predictions made by the model
are more reliable. to do so, I developed a method to discover the degree of sensitivity/robustness
in genome-scale models. In this sub chapter, I present the results of the method development,
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which is previously published in [Loghmani et al., 2022].
As described previously in the introduction, there is no single solution for genome-scale metabolic
networks, but rather and often solutions are contained in a huge solution space. This is due to
the fact that they are mathematically underdetermined, meaning that there are more unknown
(reactions) than known (metabolites) variables in these systems. Inevitably, a large part of the
solutions provided by these systems are contradictory to biological phenotypes. This shortcom-
ing is usually overcome by integrating experimental data as additional constraints into models,
attempting to shrink the solution space. However, even after integrating additional constraints
the solution space although smaller than before, remains large enough so the probability of ac-
quiring contradictory results is still high. Therefore, whenever a genome-scale model is used
to draw a biological conclusion, it is necessary to discover and analyse numerous sets of alter-
native solutions. In this perspective, taking the flux range of reactions into account would be
a more solid basis to draw conclusions rather than just considering a single value obtained by
FBA. For this purpose, FVA is a common approach as it provides the feasible range of all the
reactions for which an alternative optimal value exists. Nonetheless, FVA does not provide any
information on how different combinations of these alternative optimal values shape the flux
distribution profiles. To acquire such knowledge, one way to go is to calculate all the possible
flux combinations and enumerate the number of solutions. Unfortunately, this approach is not
computationally feasible when the solution space is relatively large (which is often the case).
A feasible alternative to this process would be to have an estimation of how the overall pattern
of solutions looks like by sampling the solution space. A comprehensive overview of the back-
ground and perspective of different sampling methods is described in the introduction. Here,
I present the result of the new method I developed for sampling the solution space by means
of random perturbation. Using this method, one would be able to assess the sensitivity and
robustness at the whole-network level as well as investigating various potential scenarios at the
branching points in the network, where the qualitative aspect of solutions are decided. As the
case study, I used the previously published genome-scale metabolic model of E. faecalis (wild-
type and the ∆glnA mutant) [Veith et al., 2015], genome-scale model of S. pyogenes [Levering
et al., 2016] and Lactococcus lactis [Flahaut et al., 2013]. I also used the previously mentioned
framework for the integration of metabolic and proteomic data [Großeholz et al., 2016] to ex-
amine the extent to which various constraints affect the solution space.

3.2.1 Effect of different constraints on the flux variability in the network

As the first step to analyse the effect of different constraints on the solution space, I analysed
how various sets of constraints affected flux variability in the network. For this purpose, I used
the genome-scale metabolic model of E. faecalis in the wildtype and the ∆glnA mutant from
[Veith et al., 2015] and integrated the constraints stepwise. Starting from a completely non-
constrained model, I first integrated the medium composition data, followed by the integration
of the metabolic data, namely the uptake rate of glucose, production rate of organic acids (fer-

42



3.2 Inspecting the solution space of genome-scale metabolic model

Table 3.1: Number of variable reactions in differently constrained genome-scale models of E.
faecalis wildtype (wt) and the ∆glnA mutant (mt). Here, “nc” indicates model version without
any constraints, 181 “med” indicates integration of medium composition, “met” the additional
integration of data on 182 metabolite uptake and release and “pro” the additional integration of

proteome data. The table is adapted from [Loghmani et al., 2022].

Model Name # Variable Reaction
Variability >10-6

# Variable Reaction
Variability >10-3 No of Reactions

mt + nc 397 397 708
mt + med 362 340 708

mt + med + met 347 315 708
mt + med + met + pro 298 289 708

wt + nc 398 398 709
wt + med 363 341 709

wt + med + met 362 340 709
wt + med + met + pro 307 85 709

mentation products) and amino acid, and finally, the proteome data. To determine the level of
variability in the system at each step, the feasible flux interval for each reaction was calculated
by FVA (Table 3.1). The addition of constraints at each step resulted in a decrease in the num-
ber of variable reactions in the network. This information is important as it’s the variability at
the level of individual reactions which gives rise to the very large number of feasible solutions.
Therefore, the reduction in the number of variable reactions gives an initial hint on how the
solution space changes following the integration of constraints.

3.2.2 Inspecting the solution space using random perturbations

As mentioned in the previous paragraph, the information regarding the number of variable reac-
tions in the network provides a good introductory insight on how the solution space is affected
by the integration of constraints. However, it is incapable of providing a deep insight on how
biological phenotypes are distributed in the solution space. To obtain such information, I devel-
oped a method to randomly perturb the results of FBA and assess how robust the flux distribu-
tion and the resulting conclusions are. Therefore, I first obtained the feasible flux interval for
all the variable reactions. An interval size of 10-6 was considered as a threshold for a reaction
being “variable“. All the other reactions were considered as “stable“. Interestingly, the majority
of the variable reactions in these two models (wildtype and mutant E. faecalis) had an interval
size of larger than 10-3. Next, for each variable reaction, I randomly chose 10 different values,
fixed the reactions at the random values (by making the upper and lower bounds equal to that
value) and performed FBA/FVA to obtain the alternative flux distribution profiles. This proce-
dure will be referred throughout this work as the “perturbation“. In order to have an accurate
account on the behaviour of reactions during the perturbation process, the variable reactions
whose flux value in response to perturbation changed for more than ±5% will be referred to as
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Figure 3.5: The fraction of variable reactions that are sensitive or robust in each model. The term
“robust“ in this figure refers to those variable reactions whose variability interval (feasible flux
interval) is smaller than the ±5% of the original value. The figure is adapted from [Loghmani
et al., 2022].
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“sensitive“, while the rest of variable reactions which take more or less the same flux value all
the time, irrespective of any perturbation, will be referred to as “robust“. The ±5% threshold
provided a good basis for distinction of characteristics between different models in this setup,
but it can be changed to other values if necessary. It has to be pointed out that the concepts of
“stable“ and “robust“ here are essentially different, as “stable“ refers to reactions for which an
alternate optima does not exist according to FVA, while “robust“ refers to those of “variable“
reactions which did not change their flux in response to perturbation by more than ±5%. I also
found that the width of the feasible interval has a direct impact on whether a reaction is sensi-
tive or robust according to the provided definition of sensitivity. That means, if the width of the
feasible interval in a reaction is larger than ±5% of the original flux value, the reaction is most
likely sensitive, and robust otherwise. Therefore, to calculate the number of sensitive reactions,
it is not necessary to perform the perturbation procedure. However, perturbation is necessary to
investigate additional properties of sensitive reactions.

I applied the above-mentioned strategy on the wildtype and the ∆glnA mutant of E. faecalis
before and after the integration of experimental constraints. First, I calculated the number
of sensitive reactions in each model fig 3.5. Expectedly, the number of sensitive reactions
decreased following the integration of constraints. However, the trend in which the number
of sensitive reactions changed was surprisingly independent of that of the variable reactions.
For instance, after the integration of proteome data, the number of variable reactions in the
model of wildtype was higher than in the model of mutant, but its number of sensitive reactions
was considerably lower. Furthermore, the integration of constraints at each step resulted in a
considerable drop of the number of reactions that changed the directionality of their flux in
response to perturbation.

Having defined the concepts of sensitivity and robustness, a more in-depth analysis is necessary
to grasp a better understanding of these concepts in constraint-based models. One of the key
findings in this study was that the overall sensitivity in the model, namely the number of sensi-
tive reactions, has a direct correlation with and therefore can be used as an indicator of the size
of the solution space. Later in this chapter, I would discuss how the wildtype model constrained
with medium composition, metabolic and proteome data (wt+med+met+pro) has a considerably
more limited solution space compared to its mutant counterpart. The comparison between these
two cases is particularly informative as the former model has a much lower number of sensitive
reactions than the latter.

In order to have a more elaborate analysis of the sensitivity in the genome-scale models, I
performed a comprehensive statistical analysis on the results of the perturbation. For one, I
calculated the average number of the times that one perturbation in a variable reaction resulted
in a flux change in a sensitive reaction. This can be looked at in two different ways: 1. the
number of perturbations in a reaction that resulted in a flux change in other reactions, and
2: the number of reactions that changed their flux in response to perturbation in that particu-
lar reaction. I refer to the first case as “affecting average perturbation-wise“ and the second
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case as “affecting average reaction-wise“ (Figure 3.6). The distinction between the two is nec-
essary and will be discussed in more details later in this chapter. The comparison of these
two statistical indices among different models showed that the models of wildtype and mutant
represent a different pattern after integrating the constraints. In the model of wildtpye, the in-
tegration of constraints consistently reduced the “affecting average“ index, both reaction-wise
and perturbation-wise. Whereas in the model of mutant, a considerable decrease occurred af-
ter the integration of medium composition data, but the index increased in the next two steps,
again both reaction-wise and perturbation-wise. The results are shown in the fig 3.7. A more
in-depth analysis is necessary to uncover the reason for discrepancy between the results of the
two models. However, to the extent of this study, it can be suggested that this index can be
hugely affected by the numerical routines and software implementations.

Figure 3.6: A hypothetical representation of affecting average and average sensitivity. Affecting
average shows how often on average a perturbation in a reaction causes a flux change in another
reaction. Average sensitivity denotes the average number of time a reaction undergoes a flux
change as a result of a perturbation in another reaction. The reaction wise analysis reports these
two statistical indices with respect to the number of reactions, while perturbation wise analysis
does so with respect to the number of perturbations.

To gain a better understanding of how perturbations in some reactions would affect the flux
value in some other reactions, the same analysis was performed from a different perspective.
This time, I calculated the average number of times that a reaction changes its flux in response
to perturbation in another reaction. I refer to this index as “average sensitivity“. Similar to
the previous index, I distinguished between the “reaction-wise“ and the “perturbation-wise“
indices. The “reaction-wise“ index indicates the average number of variable reactions that a
sensitive reaction changed its flux in response to their perturbations. The “perturbation-wise“
in turn shows the average number of perturbations in variable reactions in response to which a
sensitive reaction changed its flux. The trend that “average sensitivity“ developed after the inte-
gration of constraints was very similar to that of “affecting average“, again both reaction-wise
and perturbation-wise (Figure 3.8). Likewise, the average number of flux changes in response
to perturbations in exchange reactions in both models changed similarly to the two previous
indices(Figure 3.9).
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Figure 3.7: The average number of flux changes (reaction-wise and perturbation-wise) in re-
sponse to a perturbation in a variable reaction

Figure 3.8: The average number of times a sensitive reaction responded to perturbations in
variable reactions (reaction-wise and perturbation-wise)
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Figure 3.9: The average number of flux changes in response to perturbations in exchange reac-
tions.

As previously mentioned, to find out whether numerical libraries and softwares impose bias and
affect the result of the perturbation procedure, I repeated the procedure using other software
and numerical solvers. The original study was performed using COBRA toolbox on MATLAB,
CPLEX as the numerical solver, and the flux distribution profiles obtained from fastFVA func-
tion (a faster implementation of fluxvariabilityanalysis in COBRA). Therefore, to assess the
effect of library/function -generated biases, I repeated the analysis in COBRA on MATLAB,
obtaining the flux distribution profiles using FBA (optimizeCBmodel function), with CPLEX
and glpk as numerical solvers. I also repeated the analysis in python, using PySCeS-CBMPy,
CPLEX as the solver and the flux distribution profiles obtained with FVA. Surprisingly, the
comparison of the results from the different methods showed a huge disagreement, not only in
the numerical values of the different indices, but also in their trend of development after inte-
grating the constraints (Figure 3.10). As shown in the figure, the most pronounced difference
appeared when the affecting average and the average sensitivity indices were compared among
the different approaches reaction-wise. The affecting-average index increased from mut-med
onwards when using FVA in COBRA and CBMPy, while using FBA in COBRA resulted in a
decrease from mut-med to mut-med-met and an increase to mut-med-met-pro, in the case of
the both solvers (CPLEX and glpk). Here, there is clearly a bias imposed by the method of use
(FVA or FBA) to obtain flux distributions. Between the two software, COBRA and CBMPy,
however, the numerical values are considerably different, while the trend into which the index
developed was similar when using FVA. Furthermore, despite a small difference in numerical
value, the use of different numerical solvers, namely CPLEX and glpk did not significantly im-
pact the result of the perturbation procedure. A relatively similar pattern was observed when
average sensitivity was compared between the two software. However, the trend to which the
average sensitivity developed was different between COBRA and CBMPy. The average sensi-
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Figure 3.10: The comparison of the affecting average and average sensitivity indices, reaction-
wise, among different methods. The figure shows that there are not only numerical differences
among the results of different methods, but also qualitative differences in the trend at which the
two statistical indices change following the integration of constraints.

tivity generated by COBRA followed a similar pattern to that of the affecting average, while it
decreased from mut-med-met to mut-med-met-pro when generated by CBMPy. Here, a clear
bias towards the software of use can be observed.

I also compared the affecting average and the average sensitivity indices among the different
approaches in perturbation-wise manner (Figure 3.11). The perturbation-wise results showed
a higher level of consistency among the different approaches. The affecting average index in-
creased from mut-med onwards in the results from all the software/functions/solvers. However,
when CBMPy (FVA) was used, the increase from mut-med-met to mut-med-met-pro was very
small. Here, the choice of software did not have a pronounced impact on the trend to which
the index developed, but it had a huge impact on the individual numerical values of the index.
When comparing the average sensitivity results, however, the trend was not consistent among all
the approaches. The use of CBMPy (FVA) resulted in an increase from mut-med to mut-med-
met and a further decrease to mut-med-met-pro, while all the methods in COBRA (FBA using
CPLEX and glpk, FVA) reported a constant increase at each step. Interestingly, the results from
CPLEX and glpk (FBA in COBRA) were almost the same with negligible differences. Similar
to the previous cases, the choice of method and software had a big impact on the numerical
value of the index. All in all, the comparison of the results among the different methods showed
a clear bias towards the software/function/solver of choice. Consequently, I regard the analysis
of the affecting average and the average sensitivity as inconclusive, as a consistent reproducibil-
ity of the indices is impossible by various method. Moreover, the increasing trend in the model
of mutant (from the medium level to proteome level), while the otherwise is expected, cannot
be explained at this stage of the study and more detailed analysis is necessary to uncover the
underlying reasons.
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Figure 3.11: The comparison of the affecting average and average sensitivity indices,
perturbation-wise, among different methods. Similar to the previous figure, both quantitative
and qualitative differences exist in the results obtained by different methods.

In the previous paragraphs I discussed the consistent and reproducible statistical indices (num-
ber of variable and sensitive reactions) and irreproducible indices (affecting average and aver-
age sensitivity) in the used genome-scale metabolic models. As this study aims to uncover the
properties of the solution space in these models, I tried to find the consistent routine in which
perturbation affects the sensitive reactions. Considering the fact that it is the sensitive reactions
which give rise to a big solution space in genome-scale models, uncovering the trend in which
sensitive reactions perform would help us to grasp a better understanding of the solution space.
Therefore, I investigated the interval in which the sensitive reactions responded to perturbation,
as well as the frequency of individual flux values within those intervals. Performing such anal-
ysis in the case of the three models, namely mut-med, mut-med-met, mut-med met-pro, where
the number of sensitive reactions decreased consistently and expectedly, and the affecting av-
erage and the average sensitivity indices increased unexpectedly would help to find an overall
consistent and conclusive pattern on how sensitive reactions respond to perturbation. For that
matter, I first divided the individual flux values taken by the sensitive reactions (in response to
perturbation) into 20 bins and calculated the number of values in each bin (Figure 3.12 panel A,
B, C). Second, I compared the interval in which those values were taken (sensitivity interval) to
the interval given by FVA (variability interval) (Figure 3.12 panel D, E, F). The result showed
that not surprisingly, the flux values taken by the sensitive reactions in response to perturbations
spread in larger intervals in the mut-med model compared to mut-med-met and mut-med-met-
pro (the models integrated with more constraints). Following the addition of constraints, more
and more fluxes sat on the boundaries of the variability intervals. This holds true both regarding
the number of reactions which take flux values at the boundaries of the variability intervals,
and the frequency of flux values sitting at the boundaries of the variability intervals. In another
word, in the mut-med model, the variability and the sensitivity intervals are relatively distanced
from each other in several reactions, but the distance shrinks following the addition of con-
straints in the mut-med-met and mut-med-met-pro models. In the mut-med-met-pro model, the
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two intervals are aligned in almost all reactions (Figure 3.13).

Figure 3.12: The distribution of alternative flux values across the flux intervals. Panel (A–C)
show the frequency of flux values of sensitive reactions divided into 20 bins in the mt + med, mt
+ med + met and mt + med + met + pro models, respectively. Panel (D) to F show the intervasl
in the respective models in which sensitive reactions responded to perturbations (red and blue
lines, indicating lowest and highest flux values, respectively), and the interval given by FVA,
indicated by red dots (lower bounds) and blue dots (upper bounds). For the sake of clarity, a
few extreme points in panel (D–F) are excluded. The figure is adapted from [Loghmani et al.,
2022].
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Figure 3.13: Hypothetical depiction of how the integration of constraints shrinks the gap be-
tween variability intervals and sensitivity intervals. According to the results of the perturbation
procedure, the variability interval and sensitivity interval are not necessarily the same, meaning
that the part of the variability interval is sometimes unused when the solution space is sampled.
Following the integration of experimental data and shrinking the solution space, the distance
between the two intervals decreases.

The result suggests that FVA is a key, initial step in the analysis of the solution space. It provides
the mathematically feasible range for individual reactions. However, it does not provide any
information on the interval that alternate optima is most likely taken. This study showed that
this latter interval, namely the sensitivity interval, is a more informative indication of the size
of the solution space, and the perturbation procedure presented in this study is an efficient way
to calculate the sensitivity interval.

3.2.3 Investigating biological phenotypes in FBA results

In order to investigate the variation in biological phenotypes in the solution space of FBA, I
analysed the flux distribution at three branching points in the two models of E. faecalis using the
perturbation approach. Branching points provide a good example on how biological phenotypes
can significantly vary within a given set of intervals. That said, by taking the results of FVA
into account, one would be able to gain knowledge on the feasible range of individual reactions,
but no information on different flux combinations that would change the quality of biological
phenotypes.
First, I analysed the flux distribution at the pyruvate branching point. There, pyruvate is dis-
tributed into two major fermentation routes, lactate fermentation and mixed-acid fermentation
comprising ethanol, acetate, and formate production (Figure 3.14). The predominantly lactate
production is referred to as homolactic fermentation, while the otherwise is called mixed-acid
fermentation. This branching point is of biotechnological importance as it decides for the out
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coming fermentation products. Furthermore, it is often regarded as a deciding factor and there-
fore an indicator of the state of energy production in the system. Normally, lactic acid bacteria
use homolactic fermentation under high energy demand and mixed-acid fermentation under the
otherwise. To analyse the flux distribution through this branch, I calculated the ratio between
the homolactic and mixed-acid fermentation, generated by various FVA runs during the pertur-
bation process in the models with different sets of constraints (Figure 3.15).

Figure 3.14: The pyruvate branching point. This branch decides for the type of fermentation in
the system. The figure is adapted from [Loghmani et al., 2022].

As shown in fig 3.15, the integration of constraints at each step resulted in a reduction in the
variability of relative flux distribution at the branching point. The non-constrained model, both
in the case of the wildtype and the mutant, showed a very highly variable flux distribution,
ranging from entirely homolactic fermentation to a lactate-free fermentation, expectedly so as
there is no constraint in place. The integration of medium-composition constraints resulted in
the removal of the lactate-free fermentation, but still an entirely homolactic fermentation along
with mixed-acid fermentation exist in the solution space. This is a noticeable finding as FBA
very often is performed using only medium-composition data, which is clearly shown that is
not sufficient. The turning point in the stepwise integration of constraints into the models, both
in the wildtype and the mutant, was the integration of metabolic data (uptake and production
rates) which had an enormous impact on limiting the flux distribution. However, the extent of
this impact was very different between the wildtype and the mutant. In the wildtype, in which
the mixed-acid fermentation was dominant, the variability was almost vanished. Whereas in the
mutant model which produced a higher percentage of lactate (based on experimental data), the
extent of variability was much larger, ranging from homolactic to mixed-acid (less than 50%
lactate) fermentation. The integration of proteome data helped to shrink the range of variability,
but did not eliminate it.

I showed that the integration of constraints in the model of wildtype resulted in elimination
of physiologically irrelevant results from the solution space. Hence, it can be suggested that
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Figure 3.15: The relative flux distribution in the branching point of carbohydrate fermentation
(y-axis) in response to one perturbation in each of the variable reactions (x-axis) in the two
studied genome- scale models of E. faecalis, resulting in homolactic or mixed acid fermentation
in the two genome- scale models of E. faecalis. The figure is adapted from [Loghmani et al.,
2022].

the model of wildtype has a more limited and smaller solution space compared to the model
of mutant. This is consistent with the results from the previous section on sensitivity analysis,
showing that there were fewer sensitive reactions in the wildtype model and therefore suggesting
a smaller solution space compared to the mutant model. It has to be emphasized that all the flux
distribution profiles were obtained while satisfying the optimum value of the objective function
(biomass production).
In the second example, I analysed the flux distribution at a branching point in serine metabolism
(Figure 3.16). The flux through this branching point would spread to amino acid metabolism,
tRNA loading and central metabolism by producing pyruvate.

Figure 3.16: The serine branching point by which serine is distributed. Pyr: pyruvate; sertrna:
L-seryl- tRNA; acetyl-ser: Acetyl-serine. The figure is adapted from [Loghmani et al., 2022].

The integration of medium-composition data in both models resulted in a very large fraction of
flux being redirected into serine O-acetyltransferase reaction. The integration of metabolic data,
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Figure 3.17: The relative flux distribution in the branching point of serine metabolism (y-axis)
in response to one perturbation in each of the variable reactions (x-axis) in the two studied
genome- scale models of E. faecalis, resulting in the production of acetyl serine, or seryl-tRNA
or serine secretion. The figure is adapted from [Loghmani et al., 2022].

however, shifted the flux distribution to the other two reactions, namely serine dehydrogenase
and seryl-tRNA synthetase. I have to mention that although I did not explicitly include the tRNA
loading data in this study, but recently there have been efforts to include these data into genome-
scale models, facilitating the integration of expression data [Gu et al., 2019] [Oftadeh et al.,
2021] [Salvy and Hatzimanikatis, 2020] [Lloyd et al., 2018] [Garcia et al., 2020]. In the mutant
model constrained with all the data, around 95% of the flux went through serine dehydrogenase
reaction, which could vary by 1% in the solution space (Figure 3.17). The variation here was
considerably smaller compared to the variation at the pyruvate branching point. In the case of
the wildtype model, there is no variation at this branching point which again supports the idea
that the solution space in the wildtype model is more limited and smaller than in the mutant
model.

Figure 3.18: The glutamine branching point distributing amino-groups via the amino acid L-
glutamine. Gln: glutamine, pram: 5-Phospho-beta-D-ribosylamine, fpram: 2-(Formamido)-
N1-(5-phospho- D-ribosyl) acetamidine, gmp: guanosine monophosphate, gam6p: glu-
coseamine 6 phosphate. The figure is adapted from [Loghmani et al., 2022].

In the third example, I studied a branching point in glutamine metabolism which distributes ni-
trogen groups via the amino acid L-glutamine to different parts of metabolism (fig, 3.18). Sim-
ilar to the previous two cases, the two models with no constraint and the medium-composition
data showed a huge variability, whereas the integration of metabolic and further proteome data
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Figure 3.19: The relative flux distribution in the glutamine branching point(y-axis) in response
to one perturbation in each of the variable reactions (x-axis)) in the two studied genome-scale
models of E. faecalis, resulting in the distribution of glutamine in different pathways, namely
amino acid, purine and pyrimidine metabolism.The figure is adapted from [Loghmani et al.,
2022].

resulted in a more limited and precise flux distribution pattern. As a result, the integration of
proteome data in both models resulted in the large part of the fluxs channel towards pyrimidine
and purine metabolism, by means of PRFGS and GLUPRT reactions (Figure 3.19). In the wild-
type model, the integration of the metabolic data (without the integration of proteome data) led
to a very diverse flux distribution profile, which signifies the importance of the proteome data.

3.2.4 The influence of specific quantitative constraints on the solution
space

As discussed above, the results from the perturbation procedure revealed that the solution space
in the model of wildtype is considerably more limited than that of the model of mutant. The
number of sensitive reactions in the wildtype model was nearly as half as of the mutant model,
when constrained with all the experimental data. This can be considered as an informative
indicator of the size of the solution space. Furthermore, the analysis of the flux distribution at
branching points showed little to no variation in the model of wildtype, Whereas in the model
of mutant, especially in the case of the pyruvate branching point, the solution space contained a
highly variable results, many of them contradicted the experimental data.
In order to validate that the wildtype model is more accurate in simulating the experimental data
as a result of the proclaimed smaller solution space, I compared the production rate of organic
acids, obtained from the perturbation approach, to the experimental data in both models. Based
on the results, in the model of mutant, only 2.8% of the ethanol production values, 7.9% of the
formate and 50% of the acetate production values were within ± 10% interval of the measured
experimental values. Whereas, in the model of wildtype, none of the production values in the
flux distribution profiles obtained from the perturbation process were beyond ± 10% interval
of the experimental data. This was no surprise, as the flux distribution analysis at the branching
points previously showed that there is no variation at the pyruvate branching point in the wild-
type model.
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To find out whether it is the constraints on the fermentation products which results in the smaller
solution space in the wildtype model, the constraints of the four fermentation products from the
mutant model, namely lactate, ethanol, acetate and formate were integrated into the wildtype
model. The newly constrained model was used to perform the perturbation procedure and the
results revealed that the sensitivity of the model increased to a comparable level to that of the
mutant model. The results propose that the more limited and smaller solution space in the model
of wildtype is primarily the consequence of the specific constraints on the exchange reactions
of the four fermentation products. This is, however, no surprise as these reactions are involved
in energy metabolism and the flux ratio at this branching point determines the state of energy
production in the system. Considering the fact that maximising the growth associated energy
is the primary objective of FBA, the flux distribution at this branching point has an expectedly
enormous impact on the solution space of FBA. Overall, the results showed that the functional
analysis of the solution space is very informative and necessary in the assessment of the bio-
logically relevant phenotypes. Moreover, it helps to investigate the functional consequences of
larger or smaller solution spaces.

3.2.5 Analysing the solution space using CoPE-FBA

The results from the perturbation procedure showed that in a relatively computationally cheap
fashion, we would be able to analyse the overall sensitivity in the network, compare the level
to which solution space of different models is limited, and also functionally analyse the solu-
tion space. To find out whether the results from this approach can be investigated using other
techniques, I used CoPE-FBA to analyse the solution space of the aforementioned models.
CoPE-FBA is an open source software, trying to estimate the size of the solution space by de-
termining a set of modules of variable reactions which share certain characteristics together.
I wanted to see whether the modules created by CoPE-FBA can reflect the difference in the
size of the solution space in different models, and whether they can determine the biological
reproducibility of each model.
For that matter, I investigated the quantitative impact of different constraints on the modules
generated by CoPE-FBA. The modules generated by this software consist of variable reactions
whose fluxes are linearly independent of each other, and the combinations of their fluxes give
rise to big solution spaces in genome-scale models.
I again used the wildtype and the mutant models of E. faecalis, for which various experimental
data, namely medium-composition data, metabolic and proteome data was available. Similar
to the perturbation approach, I investigated the size of the solution space of the models in a
stepwise fashion by generating modules for each model. Here, the higher number of modules
with the lower number of reactions in each would imply a smaller solution space. The result is
shown in Table 3.2. As the result shows, the integration of proteome data had the most enor-
mous impact on the solution space in the case of both models, while the integration of metabolic

57



Chapter 3 RESULTS

data did so to a much smaller degree.

Table 3.2: The number of reactions in the existing modules in each model when their solution
space was analysed with CoPE-FBA. The table is adapted from [Loghmani et al., 2022].

Model name Number of reactions in each module
mt+nc 399

mt+med 360, 4
mt+med+met 345, 4

mt+med+met+pro 286, 5, 4, 4
wt+nc 400

wt+med 361, 4
wt+med+met 360, 4

wt+med+met+pro 295, 5, 4, 4

When compared to the results from the perturbation procedure, CoPE-FBA could successfully
determine the quality of shrinking the solution space by integrating more constraints. However,
it could not reflect the extent to which the solution space in each model was limited. The per-
turbation procedure showed that the integration of metabolic data had a significant impact on
the sensitivity of both models both in the general term and the functional term (flux distribu-
tion at the branching points). Moreover, the perturbation procedure reported that the solution
space of the fully constrained wildtype model is considerably smaller than that of the mutant
model, which is also not reflected in the CoPE-FBA results. However, it has to be mentioned
that CoPE-FBA could not be performed to its full extent, as the enumeration of individual so-
lutions in the case of these models was computationally infeasible due to the enormously large
solution spaces. Therefore, it can be suggested that the perturbation procedure is not only a
more efficient platform, but also provides more aspects to the analysis of solution space, such
as functional analysis.

3.2.6 The influence of ATP maintenance on the solution space

The maximal growth rate is very often the objective function in use, especially in the case of
bacterial genome-scale models, which is formulated as the biomass reaction. The stoichiome-
try of this reaction accounts for the growth associated ATP. Therefore, while maximizing the
growth rate, the model maximizes the growth associated ATP and minimizes the non growth
associated ATP in turn. The non-growth associated ATP is often formulated in a generic reac-
tion (ATPM), accounting for all the processes that use ATP, but do not contribute to the growth
of the organism. As a result, the boundaries of both reactions are important parameters in the
model and contribute to shaping the solution space, as the main criteria in the optimization is
maximizing the growth associated ATP (when biomass is the objective function). It has been
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shown that ATPM is an important parameter in FBA and has a direct impact on the consistency
of the biomass production rate [Dinh et al., 2021].

There have been several studies in which the ATPM value is estimated in an integrative way
(using genome-scale models integrated with experimental data) and used to constrain the model
in a biologically consistent way [Veith et al., 2015], [Teusink et al., 2006], [Loghmani et al.,
2021]. A constrained model with the estimated ATPM value would account for the minimum
amount of energy required for non-growth purposes, when maximizing the growth associated
ATP. To find out whether the value of ATPM has a direct impact on the solution space, the
wildtype model was subjected to a flux scan over the whole feasible range of ATPM reaction
and the solution space was calculated using CoPE-FBA accordingly (Figure 3.20).

Figure 3.20: Flux scan of the ATPm value over the feasible region of the wildtype model. The
blue line shows the ratio between the number of variable reactions and the number of modules
generated by CoPE-FBA. The figure is adapted from [Loghmani et al., 2022].

The results indicated that the ATPM value did not have a significant impact on the solution
space, up to the boundary of the feasible region. The module analysis using CoPE-FBA at
this point reported a much smaller solution space (in an implicit way) compared to previous
points. However, when calculating the modules, FVA failed to determine the feasible interval
for several reactions at this point. This problem is supposedly a consequence of numerical
instability at this point. I performed the same flux scan process on the mutant model in order to
make sure that this is not a model-specific problem and it resulted in the same kind of artefact.
The result proposes that when a parameter (a flux boundary in this case) is adjusted at the
point which is in line with the boundary of the feasible region (possibly several digits after the
decimal), FVA fails to calculate the feasible interval for several reactions. In the case of this
study, this failure and the resulting artefact led to the calculation of a false smaller solution
space.
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To find out whether this artefact exclusively exists in the case of ATP/energetically-involved
reactions, the same flux scan was performed on two other reactions: 1. lactate dehydrogenase,
as an example of an energetically important reaction which does not include ATP in its stoi-
chiometry, and 2. ribulose 5-phosphate 3-epimerase as an example of the reactions with non
related energetic importance. The results showed that the same phenomenon happened in the
case of both reactions, although two different extents. All in all, the results suggest that as a
universal characteristic of genome-scale models, applying constraints up to to the edge of the
feasible region in a reaction would result in numerical instabilities, which further leads to some
artefacts in downstream analyses. Especial considerations should be taken in the case of the
constraints whose values are obtained from the optimization process, such as ATPM, as these
values usually contain several digits after the decimal.

It has to be mentioned that the problem of having numerical artefacts was first found in the orig-
inally published genome-scale metabolic model of the wildtype E. faecalis when constrained
with the experimental data and the optimality tolerance of FVA was set to 100% [Großeholz
et al., 2016]. The ATPM value in this case was optimized in a way that it was right at the edge
of the feasible region. Therefore, I investigated two different ways of avoiding the problem of
having numerical artefacts. The first way to avoid this problem is the one that was also used
in the original study [Großeholz et al., 2016], which is decreasing the optimality tolerance of
FVA from 100% to 99.9%. This approach results in a higher number of variable reactions and
potentially a larger feasible interval for several reactions. Another approach would be to change
the flux boundary of one or few reactions to a small extent, so the model would not be at the
edge of feasibility any more. Therefore, in this case, I decreased the lower boundary of the for-
mate exchange reaction by 0.05 unit, allowing the constraint on the ATPM reaction to remain
at the optimized value. This is the approach that I took throughout this study. In order to find
out how these different approaches of avoiding artefacts (as a result of the model being at the
edge of feasibility) would affect the analysis of the solution space as well as the biologically
relevant results, I compared the results from these two different approaches using perturbation
procedure and CoPE-FBA. The results are shown in Table 3.2. I found that when the optimality
tolerance is reduced to 99.9%, a higher number of variable reactions was reported by FVA for
both models (the model with original parametrisation and the adjusted model). The extent of
difference however is dissimilar between the two and is more dramatic in the case of the model
at the edge of feasibility. Of course this is no surprise as I previously mentioned that FVA is
not able to find the feasible interval for several reactions due to numerical instabilities. The
comparison of the number of sensitive reactions in each model also showed the same trend.
However, the difference in this case was less dramatic. Regarding the CoPE-FBA results, as
discussed above, the solution space of the model is considerably smaller when the model is at
the edge of feasibility, which is clearly an artefact. When the optimality tolerance is reduced
to 99.9% or the model is adjusted for not being at the edge, the calculated solution space by
CoPE-FBA is similar between the two models and is relatively large. Moreover, I analysed the
impact of reducing the optimality tolerance of FVA on the flux distribution at the branching
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points in metabolism and I found no significant impact on the biologically relevant results in
this case. The results can be found in the supplement

Table 3.3: Number of variable reactions according to FVA, number of sensitive reactions
according to the solution space inspection 530 procedure (perturbation analysis), and the

number of reactions in existing modules in each model (CoPE-FBA). All three methods 531
were used with two optimality tolerance value (100% and 99.9%) and the respective results are

compared. The table is adapted from [Loghmani et al., 2022].

Wt+med+met+pro-edge Wt+med+met+pro
optimality tolerance 100 99.9 100 99.9

FVA 209 387 307 387
#reactions, sensitive to perturbation 87 137 133 147
#modules according to CoPE-FBA 4, 13, 7, 5, 4, 4, 12, 3 295,5,4,4 295,5,4,4 295,5,4,4

3.2.7 Validating the results using models of other species

In order to find out whether the results of the above-mentioned analyses, namely the functional
analysis of the solution space and its following conclusions are general characteristics of all
genome-scale models or rather limited to the genome-scale model of E. faecalis, I performed
parts of the analyses on the example of two other genome-scale models, S. pyogenes [Levering
et al., 2016] and L. lactis [Flahaut et al., 2013]. In the case of S. pyogenes, the previously pub-
lished genome-scale model together with the experimental data including medium composition
and metabolites uptake/production rates were used. In the absence of proteome data, two sets of
artificially generated data were used to constrain the model and study the resulting impacts on
the solution space. Similar to the case of E. faeclis, the data were integrated into the genome-
scale metabolic model in a stepwise manner. The two artificially generated sets of proteome
data were integrated into the model separately. Each set comprised 11 reactions, with one set
containing 5 variable and 6 stable reactions, and the other containing 1 variable and 10 stable
reactions. The definition of variable and stable was done based on the original model before the
integration of proteome data. Similar to E. faecalis and expectedly, the integration of data at
each step resulted in shrinking the solution space, reflected in the lower number of variable and
sensitive reactions. Regarding the artificially generated proteome data, both data sets resulted
in reducing the size of the solution space, although the extent of impact was different. The inte-
gration of the data set containing a higher number of variable reactions had a more pronounced
impact on shrinking the solution space compared to the integration of the other data set. It has
to be pointed out again that the integration of proteome data here means the deactivation of the
respective reactions in the model.
In order to ensure that the inactivation of variable reactions, resulting in the increase in the
proportion of stable reactions in the model, has a reproducible effect on the decreasing the
number of sensitive reactions (and therefore shrinking the solution space), again, two sets of
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artificially generated proteome data were used to constrain the genome-scale metabolic model
of L. lactis [Flahaut et al., 2013]. Here, one data set comprised only 15 variable reactions and
the other contained only 15 stable reactions. The integration of the first data set decreased the
number of sensitive reactions by 44, whereas the integration of the second data set did so by
only 3 reactions. Therefore, it can be proposed that the inactivation of reactions such that the
proportion of variable reactions in the model decreases (deactivating more variable than stable
reactions), results in a more robust behaviour and consequently a smaller solution space. The
deactivation of stable reactions does not necessarily have the similar effect.

3.3 Integrative tract-specific drug target identification in E.
faecalis and S. pyogenes

In the previous chapters, I studied different aspects of metabolic behaviour in E. faecalis,
through studying the impact of glutamine auxotrophy and comparing it to those of the wildtype.
It became clear that E. faecalis has a very adaptable metabolism, even under suboptimal condi-
tions such as uncontrolled amino acid uptake, lower pH level, etc. Afterwards, I presented the
results from the method I developed to investigate the robustness/sensitivity of genome-scale
models. The results showed that genome-scale models are powerful tools to capture actual
physiological conditions, of course with many limitations. However, I showed that by inte-
grating different types of experimental data, one can significantly increase the predictability of
genome-scale models. Therefore, to reach the ultimate goal of this project, which is finding
tract-specific drug targets in the metbolic network of E. faecalis and S. pyogenes, a compre-
hensive experimental set up was designed to acquire different types of omics data to constrain
the respective genome-scale models. In the rest of the results chapter I introduce the results
from the experimental and computational parts of this project. It is noteworthy to mention that
I performed the bacterial cell cultures in Rostock Medical University under the supervision of
PD Dr. Tomas Fiedler. The metabolic profiles were analysed in the same group by Eric Zitsow,
and the proteomics experiments were performed in University of Tartu, Tartu, Estonia.

In order to find tract-specific drug targets in the metabolic network of E. faecalis and S. pyo-
genes, a comprehensive study was designed to acquire multi-omics data from the physiological
conditions comparable to the natural conditions in human body. The acquired data were then
integrated into the genome-scale metabolic model of the respective organism to develop tract-
specific models and finally suggest drug targets. Therefore, two tract-specific conditions were
used for each of the bacteria and the data were compared to those of the standard lab conditions
(CDM-LAB). For E. faecalis, artificial saliva and artificial urine were used to mimic the physi-
ological condition during root canal infection and urinary tract infection. For artificial saliva, a
second condition containing 11 g/l of glucose (similar to the glucose content in CDM-LAB) was
used as well, representing a high sugar condition in the mouth. For artificial urine, two different
sugar contents were used: 1. 1 g/l of glucose, representing diabetic condition, and 2. 0.7 g/l
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of fructose + 0.3 g/l sucrose, representing healthy condition. The standard lab condition for all
of the above treatments was CDM-LAB at pH 6.5. For S. pyogenes, the exact same conditions
for artificial saliva as for E. faecalis were used. Moreover, natural human plasma was used to
mimic the physiological condition during blood stream infection caused by S. pyogenes. For
artificial saliva, CDM-LAB at pH 6.5 was used as the control condition, whereas for plasma,
CDM-LAB at pH 7.4 was the standard lab condition.
To acquire multi-omics data, samples were used for quantitative metabolic, transcriptomic and
proteomic analysis. The transcritome data analysis was published in my master thesis [Logh-
mani, 2020], but the data was used for the tract-specific modelling in this thesis. The metabolic
and proteomic data were analysed and used for the modelling and will be presented in this the-
sis. In the following, I will present the results of the experiments, metabolic and proteomic
data analysis, and finally, the integrative drug target identification using the two genome-scale
metabolic models.

3.3.1 Cell culture and growth rates

First, the growth capabilities of the E. faecalis and S. pyogenes wild type strains in media
resembling environments under infection conditions in comparison to CDM-LAB should be
analysed. For that purpose, I cultured E. faecalis in batch in 50 ml CDM-LAB, artificial saliva,
and artificial urine, and S. pyogenes in CDM-LAB, artificial saliva and natural human plasma. I
grew the bacteria in the media for six hours, and took samples at each hour for the measurement
of the ODs. Figure 3.21 shows the growth curves of both species in different media. Both
bacteria had the highest growth rate in CDM-LAB, with the exponential growth between the
first and the fourth hours after the start of the experiment. Although to a lesser extent, both
bacteria also grew exponentially in artificial saliva, E. faecalis from time point zero until two
hours later and S. pyogenes from time point zero until three hours later. Surprisingly, E. faecalis
did not grow in artificial urine, most likely due to the lack of a proper carbon source.
To assess whether an additional carbon source increases the growth rate of the two bacterial
species in the artificial media, I repeated the growth experiments using artificial saliva and
artificial urine supplemented with glucose at the same concentration as in CDM-LAB (11 g/l).
The results showed that the addition of glucose to artificial urine enables E. faecalis to reach
an OD level comparable to that in CDM-LAB (Figure 3.22). As the recipe of artificial urine
contains none of the primary carbon sources, the result suggests that E. faecalis fails to use
alternative carbon sources in this medium and does not grow on the original artificial urine as a
result. Interestingly, while the addition of glucose to artificial saliva increased the growth rate
of E. faecalis compared to the original condition (artificial saliva with no additional glucose), it
did not have a considerable impact on the growth rate of S. pyogenes. The additional glucose
enabled E. faecalis to growth at a higher rate compared to the original condition. The OD of
the E. faecalis culture three hours after the start of the incubation with additional glucose was
0.52, which is approximately twice as high as the OD in the original medium that was 0.25. On
the other hand, the growth of S. pyogenes did not remarkably change by the addition of glucose
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Figure 3.21: The growth curve of E. faecalis and S. pyogenes growing on CDM-LAB, artificial
saliva and artificial urine (only E. faecalis). Despite the faster growth on artificial saliva at
early time points, both bacteria reached a higher OD level after on CDM-LAB at the end of
the time course. The growth of E. faecalis on artificial urine was very poor. EF-CDM: E.
faecalis growing in CDM-LAB; EF-Saliva: E. faecalis growing in artificial saliva; EF-Urine:
E. faecalis growing in artificial Urine; SP-CDM: S. pyogenes growing in CDM-LAB; SP-Saliva:
S. pyogenes growing in artificial saliva.

to the medium. Comparing the OD values of the two conditions, S. pyogenes started to grow
exponentially one hour later in the presence of additional glucose, however, the OD values of
the two conditions were comparable during the exponential phase. At the stationary phase, the
OD value of the original medium was 0.26, while it was 0.31 in the other medium. The growth
curves in the glucose supplemented media are shown in the figure 3.22.
In order to investigate the obtainable amount of dry mass of the bacteria growing in the differ-
ent media, I performed an experiment to measure the dry mass at different OD values. Both
bacteria were grown in CDM-LAB and artificial saliva, and E. faecalis was grown in artificial
urine as well. Both artificial media were supplemented with additional glucose. Initially, each
treatment was performed with two technical replicates in a culture volume of 100 ml, with the
starting dilution of 1.5% and samples were taken at three hours, followed by four and a half
and six hours after the start of the incubation. At each time point, samples were taken in 20 ml.
After measuring the OD, pellets were dried, and the respective weight was measured. However,
the cell amount was too low to reliably measure the dry weight. To increase the reliability of the
measurements, the culture volume was increased to 400 ml and samples of 200 ml were taken
after one and four hours for all the treatments. The samples were spun down after measuring the
OD and the respective dry mass values were calculated in gram per 200 ml, and extrapolated
for gram per 1 Litre. The measurement of the dry mass values suggested that an acceptable
measurement of biomass for all the treatments seems to be possible.
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Figure 3.22: The growth curve of E. faecalis and S. pyogenes growing on CDM-LAB, artificial
saliva with additional glucose, and artificial urine with additional glucose (only E. faecalis).
The addition of glucose resulted in a considerable in increase in the growth of the bacteria on
artificial media. EF-CDM: E. faecalis growing in CDM-LAB; EF-Saliva: E. faecalis growing
in artificial saliva; EF-Urine: E. faecalis growing in artificial Urine; SP-CDM: S. pyogenes
growing in CDM-LAB; SP-Saliva: S. pyogenes growing in artificial saliva.

3.3.2 Correlation of OD and dry mass

Next, in order to see whether the dry mass to OD ratio is independent of the medium, I grew E.
faecalis and S. pyogenes in CDM-LAB and artificial saliva. If the dry mass to OD ratio is inde-
pendent of the medium, the dry mass can be calculated from the OD value using a calibration
curve as obtained from this experiment. This was an essential step in the project since neither
of the bacteria grows well enough in the artificial media to acquire enough palettes for reliable
dry mass measurement as well as omics experiments (transcriptomics and proteomics) from the
same batch. To overcome this limit, I tried to create calibration curves to estimate the dry mass
based on the OD values for each bacteria and each condition. Using a calibration curve, there
was no need to collect bacterial pellets for the dry mass measurements, but they could rather
be used for transcriptomics and proteomics. The experiment was designed for two biological
replicates, each having one technical replicate. I grew both species in 500 ml of each medium
until a high OD was reached. For that, I measured the OD once an hour to make sure that a
proper OD has been reached. Afterwards, a 200 ml sample was taken, its OD was measured,
and the sample was kept for dry mass measurement. Another 200 ml sample was taken and di-
luted with 200 ml of fresh medium, out of that, a 200 ml sample was taken for OD and dry mass
measurement. The rest of the diluted sample was further diluted with 200 ml fresh medium, and
200 ml of that was taken for OD and dry mass measurement. Diluting the sample twice with
the fresh medium supposedly decreases the OD to its half at each step. If the dry mass value

65



Chapter 3 RESULTS

of each diluted sample decreases proportionally to its OD in both media, one could conclude
that the dry mass to OD ratio is independent of the medium. Figure 3.23 shows the result of
the calibration curve for E. faecalis and S. pyogenes growing in CDM-LAB and artificial saliva.
Based on the figure, the dry mass to OD is nicely proportioned for E. faecalis in both media.
Despite the small differences between the values in the two media, the overall slope of the curve
is approximately the same, fulfilling the initial expectation. In the case of S. pyogenes, the val-
ues are not as nicely proportioned as for E. faecalis. However, both numerical discrepancies in
CDM-LAB and artificial saliva have occurred of lower OD values, which might be the result
of measurement errors, either in the case of OD or dry mass. Hence, it was assumed that the
dry mass value of S. pyogenes can be estimated from the OD value independent of the medium
similar to the case of E. faecalis, based on the similarity of the overall shape of the curves in the
two media and the respective slopes.

Figure 3.23: Th calibration curve derived from the results of the experiments to estimate the dry
mass based on OD for E. faecalis and S. pyogenes on CDM-LAB and artificial saliva. EF CDM-
LAB: E. faecalis growing in CDM-LAB; EF Saliva: E. faecalis growing in artificial saliva; SP
CDM: S. pyogenes growing in CDM-LAB; SP Saliva: S. pyogenes growing in artificial saliva.
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In order to analyse the growth capabilities of E. faecalis and S. pyogenes in human plasma,
I grew both species in two technical replicates in citrated human plasma (pooled from three
donors), and the respective OD was measured once an hour. Figure 3.24 shows the time course
data. While S. pyogenes grew well until six hours after the start of the incubation, E. faecalis
barely grew at all. All cultures were inoculated with an initial OD value of 0.3. After increasing
to 0.4 after one hour, E. faecalis barely reached an OD of 0.5 even after six hours, suggesting
that the medium is not suitable for its growth. On the other hand, S. pyogenes continued to
grow until six hours after the start of the incubation and reached a final OD of approximately
1.4. Based on the preliminary experiment’s results, we decided to use only S. pyogenes for
further experiments in human plasma. Due to the shortage of available human plasma, and the
very promising growth of S. pyogenes in it, a medium size of 100 ml was chosen for the main
experiment, with samples being taken four and five hours after the start of the incubation.

Figure 3.24: The growth curve of E. faecalis and S. pyogenes when growing on natural human
plasma. While S. pyogenes grew very fast, E. faecalis hardly showed any growth after the first
hour. EF 1: E. faecalis culture replicate 1; EF 2: E. faecalis culture replicate 2; SP 1: S.
pyogenes culture replicate 1; SP 2: S. pyogenes culture replicate 2.

3.3.3 Main experiments and sample collection

To measure the growth rate of the two bacteria in different media and collect samples for the
omics studies, I performed batch culture experiments in three biological replicates per medium,
each having one technical replicate. For the growth of E. faecalis in CDM-LAB, artificial saliva
and artificial urine, as well as S. pyogenes in CDM-LAB and artificial saliva, 500 ml cultures

67



Chapter 3 RESULTS

were prepared, and samples were taken at one hour after inoculation for metabolic analysis and
at two hours after inoculation for metabolic, transcriptomic and proteomic analysis. For the
growth of S. pyogenes in natural human plasma, cultures of 100 ml were used, and samples
were taken after four hours of growth for metabolic analysis, and after five hours of growth for
metabolic, transcriptomic, and proteomic analysis. E. faecalis was used to grow on CDM-LAB
at pH 6.5, artificial saliva, artificial saliva with additional glucose (saliva+glc), artificial urine
with additional glucose (urine+glc) and artificial urine with additional sucrose and fructose
(urine+fru+suc). S. pyogenes was used to grow on CDM-LAB at pH 6.5 and 7.4, artificial
saliva and artificial saliva with additional glucose, and natural human plasma. Interestingly,
E. faecalis grew faster in two hours in artificial saliva than in CDM-LAB, which had been
observed also in the test experiments. Although E. faecalis in a more extended period (e.g., 6
hours) reaches a higher OD in CDM-LAB, it does not grow as fast as in artificial saliva at initial
time points. Starting at an OD of approximately 0.14, artificial saliva facilitates the growth of E.
faecalis to the OD of 0.24 after two hours, while CDM-LAB enables the growth until the OD of
0.17 - 0.19. The addition of glucose to artificial saliva did not change the growth capability of
E. faecalis remarkably, as it grows from 0.15 to 0.25. The addition of glucose to artificial urine
had a more pronounced impact on the growth of E. faecalis. According to the experiments, it
grew on artificial urine with additional glucose very fast, and the OD increased from 0.13 to
0.26 within 2 hours. It grew even faster on urine with additional sucrose and fructose, as the
OD increased from 0.13 to 0.33 within 2 hours. In general, while the growth capability of E.
faecalis on CDM-LAB is higher in a more prolonged period, artificial media facilitate a faster
growth at early time points.

Table 3.4: The OD value of the E. faecalis from the three biological replicates when growing
on CDM-LAB at pH 6.5, artificial saliva, artificial saliva + glucose, artificial urine + fructose
and sucrose, artificial urine + glucose.

Medium Replicate Initial OD 1st h OD 2nd h OD

CDM-LAB pH 6.5
1 0,14 0,17 0,19
2 0,13 0,148 0,17
3 0,13 0,15 0,176

Artificial Saliva
1 0,14 0,18 0,24
2 0,12 0,17 0,24
3 0,17 0,2 0,24

Artificial Saliva + glc
1 0,15 0,18 0,25
2 0,18 0,2 0,29
3 0,15 0,19 0,25

Artificial Urine + glc
1 0,16 0,24 0,37
2 0,12 0,14 0,2
3 0,13 0,16 0,26

Artificial Urine + fru + suc
1 0,16 0,21 0,36
2 0,11 0,16 0,27
3 0,13 0,19 0,33
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Figure 3.25: The growth curve of E. faecalis when grew on different media. Each experiment
contained three biological replicates. EF CDM-LAB: E. faecalis growing in CDM-LAB; EF
Saliva: E. faecalis growing in artificial saliva; EF Saliva+glc: E. faecalis growing in artificial
saliva+glc; EF Urine+glc: E. faecalis growing in artificial urine+glc; EF Urine+fru+suc: E.
faecalis growing in artificial urine+fru+suc.

I grew S. pyogenes in CDM-LAB at pH 6.5 and 7.4, artificial saliva, artificial saliva with ad-
ditional glucose and natural human plasma. Based on the experiments, CDM-LAB at pH 7.4
facilitates a faster growth compared to pH 6.5. While at pH 6.5 the OD of the culture increased
from 0.11 to 0.14, at pH 7.4 the OD had a more noticeable increase, starting from 0.1 going to
0.15-0.16 within 2 hours. This is no surprise as it is known that lactic acid bacteria have their
fastest growth at pH 7 to 7.5. The growth rate of S. pyogenes at artificial saliva was slightly
higher than the growth in CDM-LAB at pH 6.5, but the difference between the two was not as
large as in the case of E. faecalis. However, the difference between the growth rate on origi-
nal artificial saliva and artificial saliva with additional glucose was more pronounced than in E.
faecalis. The addition of glucose to artificial saliva enabled S. pyogenes to grow faster, and the
culture OD increased from 0.12 to 0.17. Similar to the test experiments, the most consistent
growth condition for S. pyogenes was in natural human plasma. Due to the small size of the
culture, the bacteria were incubated for five hours to obtain more bacteria for omics experi-
ments. Starting at the OD value of 0.17, S. pyogenes reached the OD of 1.11 after five hours.
The growth curve of all cultures of E. faecalis and S. pyogenes are shown in figure 3.25 and
3.26, respectively. All samples from different cultures were used to analyse the concentration
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Table 3.5: The OD value of the S. pyogenes from the three biological replicates when growing on
CDM-LAB at pH 6.5, CDM-LAB at pH 7.4,artificial saliva, artificial saliva + glucose, natural
human plasma.

Medium Replicate Initial OD 1st h OD 2nd h OD 4th h OD 5th h OD

CDM-LAB pH 6.5
1 0,11 0,13 0,14
2 0,11 0,12 0,136
3 0,12 0,13 0,15

CDM-LAB 7.4
1 0,1 0,12 0,135
2 0,1 0,128 0,16
3 0,14 0,17 0,22

Artificial Saliva
1 0,11 0,14 0,15
2 0,11 0,13 0,16
3 0,09 0,13 0,16

Artificial Saliva + glc
1 0,15 0,16 0,2
2 0,13 0,14 0,16
3 0,11 0,14 0,18

Human Plasma
1 0,16 0,74 1,12
2 0,17 0,7 1,08
3 0,17 0,83 1,11

Figure 3.26: The growth curve of S. pyogenes when grew on different media. Each experiment
contained three biological replicates. SP CDM-LAB 6.5: S. pyogenes growing in CDM-LAB
at pH 6.5; SP CDM-LAB 7.4: S. pyogenes growing in CDM-LAB at pH 7.4; SP Saliva: S.
pyogenes growing in artificial saliva; SP Saliva+glc: S. pyogenes growing in artificial saliva+glc;
SP Plasma: S. pyogenes growing in natural human plasma.
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of extracellular metabolites, namely carbohydrates, organic acids and amino acids. Moreover,
transcriptome and proteome analysis were performed for all the samples.

3.3.4 Comparative proteome data analysis of E. faecalis and S. pyogenes

To investigate the effect of different physiological conditions on the proteome profile of E.
faecalis and S. pyogenes, bacterial pellets obtained from the cell cultures were used for the
proteomics study. For E. faecalis, pellets from CDM-LAB as well as saliva+glc and urine+glc
were used for proteomics. For the S. pyogenes, pellets from CDM-LAB at pH 7.4 and plasma
were used for proteome analysis. In the following paragraphs I present the results from the
comparative proteome data analysis and highlight the notable findings.

To calculate the significant fold changes between the conditions, I prepared the data in a way
that suits best for statistical analysis. Therefore, I first transformed all the signal intensities
into log2-transformed and then filtered the proteins with missing values across the samples. In
the case of the E. faecalis, samples from all conditions contained an almost similar number of
proteins, whereas in the case of S. pyogenes, samples from plasma contained a considerably
higher number of proteins compared to the ones from CDM-LAB (Figure 3.27). According to
this figure, there were around 500 proteins available in the plasma samples and absent in the
ones from CDM-LAB. Considering the fact that plasma medium was natural human plasma, it
contained a lot of human proteins as well. Therefore, to be able to analyse the bacterial proteins
without having the effect of human proteins on the statistical analysis, I excluded the human
proteins and reperformed the analysis using only bacterial proteins. As a result, the number of
proteins between the two conditions, CDM-LAB and plasma became almost similar. Addition-
ally, I performed principal component a analysis (PCA) to find out how different samples are
grouped together. While E. faecalis samples were grouped in a reasonable way, the first CDM
sample of S. pyogenes was very distant from the other two across the first component. There-
fore, I decided to exclude the first sample and performed all the downstream analyses using two
samples for CDM-LAB. I also calculated the number of overlaps between the samples for both
bacteria and the results showed that a lot of the proteins were identified in all samples.
Next, the data were normalized by variance stabilizing transformation and then checked to see
whether missing values are biased to specific samples.The results showed that in both bacteria,
there is a bias towards samples and certain proteins are missing in there(figure 3.28). As can
be seen in the figure, there are large groups of proteins existing in certain conditions and not in
the others. This is even more eye catching in the case of S. pyogenes, where there are so many
proteins that are available in the CDM-LAB library, but not in the plasma library. Therefore, to
see whether this systematic loss of proteins is due to the fact that the signal intensity of those
missing proteins are close to the detection limit, the signal intensity as well as the cumulative
fraction values were calculated against log2 transformed values. The result showed that the sig-
nal intensity of the missing proteins were generally lower than the proteins without the missing
values, pointing out to the fact that the missing values are possibly missed as a result of lower
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Figure 3.27: The protein content of the each sample; left: E. faecalis, right : S. pyogenes.
While samples of E. faecalis contain almost a similar number of proteins, S. pyogenes samples
in plasma contain almost 500 more proteins compared to CDM-LAB, due to the presence of
human proteins in the cultures.

intensities and therefore they had to be imputed.

Finally, to find out about the significant fold changes between the conditions, I used protein-
pairwise model together with empirical Bayes statistics. The p-values were adjusted for multiple
testing by Benjamini-Hochberg (BH) multiple testing correction. In the case of E. faecalis, the
significant fold changes between saliva+glc and CDM-LAB as well as urine-glc and CDM-LAB
were investigated. For S. pyogenes, samples from plasma were compared to those from CDM-
LAB at pH 7.4. Principal component analysis (PCA) was used to gain a high level overview over
the data. Using PCA to analyse the E. faecalis samples, it became cleart that while saliva+glc
samples, and to a lower extent, CDM-LAB samples were well grouped together, samples from
urine+glc were quiet distant from each other. In the case of S. pyogenes, plasma samples were
almost perfectly grouped together, whereas the CDM-LAB samples showed some variations.
The results from PCA were further validated by the results from the pearson correlation anal-
ysis (Figure 3.29). In the case of E. faecalis, the pearson correlation analysis shown that the
saliva+glc samples are more distanced from the control condition compared to the urine+glc
samples. In the case of S. pyogenes, plasma samples are perfectly distanced from the control
condition. The results from the significant fold change analysis were plotted in volcano plots
for all the intended comparisons (figure 3.30 and 3.31).

To find out about the significant changes in protein abundances, I performed pairwise enrich-
ment analysis. For E. faecalis, saliva+glc and urine+glc samples were compared to those of
CDM-LAB. In saliva+glc, there were 69 proteins that were differentially expressed compared
to CDM-LAB. More specifically, seven proteins were involved in quorum sensing (all down-
regulated), five in two-component system (all up-regulated) and four in beta-lactam resistance
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Figure 3.28: The log2-transformed intensity of the normalised and fitted data; left: E. faecalis,
right : S. pyogenes. The figure shows that there is a bias in the missing proteins with respect to
samples.

Figure 3.29: Pearson correlation analysis; left: E. faecalis, right : S. pyogenes. The figure shows
that the samples are relatively distant from each other, especially in S. pyogenes.
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Figure 3.30: Volcano plot showing significantly changed proteins; left: E. faecalis on artificial
saliva+glc, right : E. faecalis on artificial urine+glc.

Figure 3.31: Volcano plot showing the significantly changed proteins on natural human plasma
in S. pyogenes.
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(all down-regulated), highlighting the impact of a natural physiological condition on the pro-
teins involved in pathogenic characteristics of E. faecalis. Moreover, five of the affected proteins
belonged to the family of ABC Transporters, expectedly so, given the difference in the compo-
sition of the two media. In urine+glc, there were a total of 30 proteins being differentially ex-
pressed compared to CDM-LAB. Eight of the 30 proteins belonged to ABC Transporters, with
four up-regulated and four down-regulated. Additionally, two proteins were involved in beta-
Lactam resistance (both down-regulated), and two in quorum sensing (both down-regulated). I
also performed pairwise significant fold change analysis for S. pyogenes. In total, there were 65
proteins being significantly changed between plasma and CDM-LAB. Interestingly, none of the
major metabolic pathways were significantly affected by the medium in both species, as there
were multiple pathways having one protein being significantly changed between the two media.
The complete list of all the significantly expressed proteins can be found in the supplement.

3.3.5 Integrative investigation of tract-specific drug targets

As described previously in the introduction, tract-specific drug targets provide a more accurate
targeted therapy which potentially restrain the trend of multi resistance. In order to investigate
potential tract-specific drug targets in the metabolic networks of E. faecalis and S. pyogenes, I
used the respective genome-scale metabolic models constrained by metabolic and transcriptome
data obtained from batch culture experiments.
The metabolic profiles comprised the uptake and production rate of carbon sources (sugars),
organic and amino acids. The extracellular concentration of each metabolite was quantified
using HPLC (at Rostock Medical University) at each time point as well as in the fresh media.
The values were then used to calculate the uptake/secretion rates with respect to the exponential
growth rate of the bacteria under each condition. The calculated flux values were integrated
into the respective genome scale models as metabolic constraints. A 40% measurement error
was considered and applied to the values when integrated into the models. However, due to the
poor quality of the measurements, a lot of the flux boundaries had to be adjusted to values far
beyond the error intervals. Unfortunately, this decreased the expected impact from the metabolic
constraints, which earlier in this thesis were shown to be quite useful to limit the solution space.
Nevertheless, redoing the experiments was beyond the time frame of this project and the data
had to be used with a lot of adjustments. Therefore, a conclusive biological discussion of
the metabolic profiles of the two bacteria under different circumstances was not possible. I
rather used the data only to constrain the models, but having in mind that these are only very
rough estimates and therefore only very lose contraints. However, establishing the technology
and work flow will later on allow a very fast integration of repeated metabolic profiles. The
measured concentration of the metabolites under each condition and the respective calculated
uptake/production rate can be found in the supplement.
In order to find out tract-specific drug targets, I first developed tract-specific genome-scale
metabolic models using different types of constraints. To do so, I first integrated the metabolic
data for CDM-LAB (at pH 6.5 for E. faecalis and S. pyogenes and 7.4 for S. pyogenes) into
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the respective genome-scale metabolic models. Afterwards, I calculated the flux intervals for
variable reactions using FVA. Moreover, I determined the essential reactions for each bacteria
growing on CDM-LAB at the respective pH values. To develop tract-specific models compared
to CDM-LAB, I first integrated the respective metabolic data into models and calculated the
flux intervals for variable reactions using FVA. Afterwards, I used the transcriptome data and
applied the respective fold changes to the flux intervals obtained with FVA from the CDM-LAB
models. Whenever necessary, the boundaries were adjusted to the point allowing a feasible
solution. Finally, the essential reactions as well as potential tract-specific drug targets were
investigated using the approaches that will be described in the next paragraph.

The main idea behind finding tract-specific drug targets in this study is that the integration of
tract-specific constraints enables us to simulate the metabolic behaviour of the pathogen while
growing in a tract environment. Therefore, the enzymes whose inhibition result in a lower
growth rate would be considered as drug targets. To be more specific, I distinguished between
enzymes whose inhibition fully inhibits the growth (essential enzymes) and those which only
restrain the growth of the bacteria. Although essential genes for all the different conditions
were investigated, I did not regard them as drug targets. The primary reason for that was the
fact that there is hardly any drug which results in a 100% inhibition of an enzyme. There
is always a certain level of an inhibited reaction that takes place, even if the inhibitor is very
strong. Hence, the assumption that an essential reaction (whose inhibition results in zero growth
rate) fully kills the bacteria is not realistic. To have a more biologically feasible assumption, I
used two different approaches. First, I investigated the enzymes whose inhibition would reduce
the growth rate to 30%, 20% and 10% of the original rate. This way, the enzymes whose
inhibition had more impact on the growth rate would be considered potentially more effective
drug targets. In a different approach, I reduced the flux boundaries of all the reactions in the
network to 30%, 20% and 10% of the original flux boundaries. The enzymes whose reduced
flux interval resulted in zero growth rate would be considered as potential drug targets. With
this method, a more effective drug target would be the one that inhibits the growth with lower
reduction to its flux boundaries. I also used the two methods in combination, meaning that
reducing the flux boundaries to 30%, 20% and 10% of their original values, and those which
reduced the growth rate to 30% or lower of the original growth rates would be considered as
potential drug targets. Of course, the reactions with lower reduction in their flux interval would
be considered as more effective drug targets. An overview of the strategy to find the drug targets
and the points at which libraries of drug targets were generated is shown in figure 3.32. Each
library contains a set of single reactions whose inhibition (to different extent) affects the growth
rate in the model.

I have to point out that despite introducing the calibration curve to estimate the dry mass based
on the OD value earlier in this chapter, I decided to use the growth rate as OD/hour. The reason
for that was the very unrealistic values for metabolite uptake and production rates, when the
estimated gram/hour was used for the calculation of flux rates. Therefore, in the rest of this
chapter, all the introduced results were based on the models using OD/hour as the growth rate,
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and metabolite uptake and production rates as millimolar/OD/h.

Figure 3.32: Spread of libraries of potential drug targets in the landscape of reaction flux in-
tervals and growth rate. Each library contains a set of reactions whose inhibitions (at the level
of single reaction) or flux reduction (at the level of single reaction) reduces the growth rate to
different extent. According the assumption used in this study, Lib 7 supposedly suggests a more
realistic set of drug targets compared to the others.

For E. faecalis, I first investigated the drug targets for the CDM-LAB environment. As men-
tioned above, the model was developed based on the data from the CDM-LAB. At CDM-LAB
at pH 6.5, E. faecalis grew at the rate of 0.146 OD/h further adjusted for the model to have a
feasible solution. The FVA result of the CDM-LAB model can be found in the supplementary
information. A total of 243 essential reactions were found in the CDM-LAB model. The list
of essential reactions can be found in the supplementary information. I also calculated the po-
tential drug targets in CDM-LAB using the three above-mentioned approaches. The number
of potential drug targets in each library from the different approaches is shown in Table 3.6.
Among all the libraries, I consider the Lib 7, which actually contains the drug targets whose
flux interval reduction to 30% reduces the growth rate of the bacteria to 30% or lower of its
original value, as the most realistic and therefore accurate one.

Table 3.6: The number of drug targets in E. faecalis according to each libraries.

Lib 1 Lib 2 Lib 3 Lib 4 Lib 5 Lib 6 Lib 7 Lib 8 Lib 9
CDM-LAB 6.5 251 249 244 70 72 73 71 238 245

Saliva 289 289 289 61 68 257 63 248 257
Saliva+glc 308 308 308 108 108 287 108 289 293
Urine+glc 282 282 282 71 76 79 72 247 256

Urine+fru+suc 234 232 232 53 60 64 53 221 224
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Table 3.7: The number of drug targets in S. pyogenes according to each libraries.

Lib 1 Lib 2 Lib 3 Lib 4 Lib 5 Lib 6 Lib 7 Lib 8 Lib 9
CDM-LAB 6.5 217 217 217 27 29 29 27 196 205

Saliva 220 220 220 39 204 210 40 206 211
Saliva+glc 249 249 249 55 225 231 57 225 235

CDM-LAB 7.4 237 236 236 48 48 51 48 221 226
Human plasma 226 224 224 41 43 216 43 206 218

In the next step, I performed pathway analysis to put the findings in a metabolic context. The
result of the pathway analysis for Lib 7 from CDM-LAB at pH 6.5 is shown in Table 3.8.
According to the table, 3 of the 71 potential drug targets involved to glycolysis / gluconeoge-
nesis, including lactate dehydrogenase (LDH) and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH or GAPD). This is no surprise, as E. faecalis significantly rely on glycolysis for energy
production and growth. More specifically, LDH in general play a significant role in energy pro-
duction in E. faecalis and other lactic acid bacteria. On the other hand, the role of GAPDH as a
target for antimicrobial agents used against gram-positive bacteria has been previously reported
[Gómez et al., 2019]; pointing out to the fact that GAPDH is potentially an effective drug target
in E. faecalis. Morovere, three enzymes were involved in amino acid biosynthesis, includ-
ing serine dehydrogenase (SERD) and aspartyl-tRNA(Asn):L-glutamine amido-ligase (ADP-
forming) (ASNTAL). The third enzyme, GAPDH belongs also to glycolysis. The pathway
analysis showed to the important role of central metabolism in the growth of the bacteria, as
expected.

Table 3.8: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
E. faecalis from CDM-LAB.

Pathway No. Reactions

Metabolic pathways 7
Biosynthesis of secondary metabolites 5

Microbial metabolism in diverse environments 4
Biosynthesis of amino acids 3

Carbon metabolism 3
Cysteine and methionine metabolism 3

Glycolysis / Gluconeogenesis 3
Pyruvate metabolism 2

Searching for the tract-specific drug targets, I investigated the targets in the E. faecalis metabolic
network when growing on artificial saliva. The growth rate of E. faecalis under this condition
was equal to 0.263 OD/h. First, I calculated the essential reactions and compared it to the ones
from the CDM-LAB condition. I would like to remind that the model for saliva condition is
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constrained with metabolic and transcriptome data. There were 296 essential reactions in the
model for the saliva condition, which denotes an increase of 53 reactions compared to CDM-
LAB. This is translated to 162 essential genes that are necessary for the model to have a feasible
solution. The Lib 7 library of the potential drug targets in artificial saliva showed that there are
three transporters, ILEt6 (for isoleucine transport), VALt6 (for valine transport) and METabc
(for methionine transport), whose flux reduction reduced the growth. Methionine uptake rate
was one of the cases in which the flux boundary of the exchange reaction had to be adjusted after
the integration of the metabolic data. A more accurate measurement of the methionine uptake
rate might bring more insight in this regard. Interestingly, none of the glycolytic enzymes ex-
isted in this library, which might be due to the fact that none of the primary carbon sources exist
in artificial saliva. However, other enzymes from central metabolism were identified as drug
targets such as enzymes involved in amino acid biosynthesis, including SERD (similar to the
library from CDM-LAB), L-threonine deaminase (THRD) and cystathionine b-lyase (CYSTL).
The results from the pathway analysis is shown in Table 3.9.

Table 3.9: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
E. faecalis from artificial saliva.

Pathway No. Reactions

ABC transporters 3
Biosynthesis of amino acids 3

Biosynthesis of secondary metabolites 3
Cysteine and methionine metabolism 3

Metabolic pathways 3
Carbon metabolism 2

Glycine, serine and threonine metabolism 2
Two-component system 2

I also investigated the drug targets in the metabolic network of E. faecalis when growing on
saliva+glc. E. faecalis grew at the rate of 0.249 OD/h under this condition .I found 310 es-
sential reactions and 175 essential genes for the model to have a feasible solution under this
condition. Similar to the drug target profile of the CDM-LAB condition, GAPDH, LDH and
PGDH from glycolysis and pentose phosphate pathway existed in the Lib 7 of the saliva+glc
condition, which is most likely due to the addition of glucose into the medium. This might
suggest that under the conditions which are rich in terms of primary carbon sources, enzymes
in central carbon metabolism might be a good target for inhibiting the growth of the bacteria.
The pathway analysis also showed that there are 7 enzymes involved in the biosynthesis of
secondary metabolites, most of them were involved also in central metabolic pathways such
as glycolysis or amino acid biosynthesis, including, LDH, GAPDH, PGDH, CYSTL and cys-
tathionine g-lyase (substrate homoserine) (CYSTH). The results from the pathway analysis is
shown in Table 3.10.
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Table 3.10: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
E. faecalis from artificial saliva+glc.

Pathway No. Reactions

Metabolic pathways 10
Biosynthesis of secondary metabolites 7

Microbial metabolism in diverse environments 6
Biosynthesis of amino acids 5

ABC transporters 4
Carbon metabolism 3

Cysteine and methionine metabolism 3
Glycolysis / Gluconeogenesis 3

In Urine-glc, E. faecalis grew at the rate of 0.34 OD/h. The model integrated with the data from
urine+glc comprised 282 and 170 essential reactions and genes, respectively. The addition of
glucose to artificial urine did not have the same effect as it had on artificial saliva, in the sense
that none of the glycolytic enzymes were identified as a potential drug target in the Lib 7 library
of urine+glc condition; only one enzyme from pentose phosphate pathway, PGDH existed in
the library. On the other hand, there were several enzymes such as SERD, CYSTL and or-
nithine carbamoyltransferase (OCBT) belonging to the biosynthesis of secondary metabolites
and amino acids. The latter case, together with carbamate kinase (CK), are involved in argi-
nine biosynthesis, which might suggest the important role of arginine metabolism under this
condition. The results from the pathway analysis is shown in Table 3.11.

Table 3.11: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
E. faecalis from artificial urine+glc.

Pathway No. Reactions

Metabolic pathways 7
Biosynthesis of secondary metabolites 4

Biosynthesis of amino acids 3
Carbon metabolism 3

Interestingly, when fructose and sucrose were used as carbon sources, E. faecalis grew at a
higher rate, 0.44 OD/h, compared to the previous condition. Under this condition, the model
comprised 235 essential reactions and 126 essential genes. In the Lib 7 library of potential drug
targets, LDH was one of the eye identified targets. Considering the fact that LDH was absent
from the Lib 7 of the urine+glc condition, it might be suggested that lactate fermentation under
this condition, with fructose and sucrose as primary energy resources, is more of a limiting
factor of the growth rate, compared to the condition with glucose as the energy resource. Addi-
tionally, the transporters of isoleucine and leucine were also among the identified targets. Other
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targets involved in other metabolic pathways such as biosynthesis of secondary metabolites as
well as amino acids, including THRD-L and CYSTL. The results from the pathway analysis is
shown in Table 3.12.

Table 3.12: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
E. faecalis from artificial urine+fru+suc.

Pathway No. Reactions

Biosynthesis of secondary metabolites 4
Metabolic pathways 4

Biosynthesis of amino acids 3
Cysteine and methionine metabolism 3

The growth rate of S. pyogenes in CDM-LAB at pH 6.5 was lower than that of E. faecalis, being
0.113 OD/h. First, I looked for the potential drug targets. There were 209 essential reactions and
197 essential genes for the model to have a feasible solution. The Lib 7 library of the potential
drug targets showed 11 reactions involved in glycolysis, including triose-phosphate isomerase
(TPI), phosphofructokinase (PFK), GAPDH, LDH and several others. Again, having glucose as
the primary energy sugar in CDM-LAB, there is no surprise that glycolysis has a great impact
on the growth of the organism. A lot of these enzymes also play a role in other metabolic
pathways such as biosynthesis of secondary metabolites and amino acids, fructose and mannose
metabolism and microbial metabolism in diverse environments. Moreover, glutamine ABC
transporte (GLNabc) as well as two enzymes involved in fatty acid biosynthesis, namely alcohol
dehydrogenase (ethanol: NAD) (ALCD2x) and acetaldehyde reversible transport (ACALDt)
were also identified as potential drug targets. The results from the pathway analysis is shown in
Table 3.13.

Table 3.13: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
S. pyogenes from CDM-LAB at pH 6.5.

Pathway No. Reactions

Biosynthesis of secondary metabolites 12
Metabolic pathways 12

Glycolysis / Gluconeogenesis 11
Microbial metabolism in diverse environments 11

Biosynthesis of amino acids 8
Carbon metabolism 8

Methane metabolism 4
Fructose and mannose metabolism 3

Pentose phosphate pathway 3
Pyruvate metabolism 3
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The increase at the pH level (from 6.5 to 7.4) resulted in a higher growth rate of S. pyogenes
when growing on CDM-LAB. S. pyogenes grew at 0.203 OD/h under this condition. For the S.
pyogenes model constrained by the data obtained from CDM-LAB at pH 7.4, I found 226 es-
sential reactions and 208 essential genes. Similar to the previous conditions, several glycolytic
enzymes were identified as potential drug targets in the Lib 7 library, a lot of them being also
involved in the biosynthesis of amino acids. In addition to enzymes involved in central me-
tabolism, others which are involved in other pathways such as biosynthesis of cofactors (e.g.,
methylenetetrahydrofolate dehydrogenase (NADP) (MTHFD)) were also identified as potential
targets. The results from the pathway analysis is shown in Table 3.14.

Table 3.14: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
S. pyogenes from CDM-LAB at pH 7.4.

Pathway No. Reactions

Metabolic pathways 23
Biosynthesis of secondary metabolites 17

Microbial metabolism in diverse environments 14
Carbon metabolism 13

Glycolysis / Gluconeogenesis 12
Biosynthesis of amino acids 11

Biosynthesis of cofactors 6
Methane metabolism 5

Alanine, aspartate and glutamate metabolism 4
Glycine, serine and threonine metabolism 4

One carbon pool by folate 4
Pyruvate metabolism 4

Fructose and mannose metabolism 3
Pentose phosphate pathway 3

Similar to E. faecalis, S. pyogenes was grown on artificial saliva with and without additional
glucose. The growth rate of S. pyogenes growing on artificial saliva (without additional glucose)
was 0.21 OD/h. I found 220 essential reactions and 211 essential genes for the model to have
a feasible solution. Unlike, in E. faecalis, when growing on saliva, the Lib 7 library showed 8
glycolytic reactions as potential drug targets. Not surprisingly, drug targets were also identified
in other central metabolic pathways such as biosynthesis of amino acids and central carbon
metabolism. Interestingly, the addition of glucose to the medium did not affect the number of
glycolytic enzymes which were identified as drug targets. Likewise, a number of central and
secondary metabolic pathways contained identified drug targets in the Lib7 library of potential
drug targets. The growth rate of S. pyogenes under this condition was equal to 0.16 OD/h. I
found 249 essential reactions and 219 essential genes. The results from the pathway analysis
are shown in Table 3.15 and 3.16 for saliva saliva+glc conditions, respectively.
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Table 3.15: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
S. pyogenes from artificial saliva.

Pathway No. Reactions

Metabolic pathways 20
Biosynthesis of secondary metabolites 15

Biosynthesis of amino acids 14
Microbial metabolism in diverse environments 12

Carbon metabolism 11
Glycolysis / Gluconeogenesis 8

Methane metabolism 6
Cysteine and methionine metabolism 5

Biosynthesis of cofactors 3
Fructose and mannose metabolism 3

Pentose phosphate pathway 3
Propanoate metabolism 3

Purine metabolism 3
Pyruvate metabolism 3

Table 3.16: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
S. pyogenes from artificial saliva+glc.

Pathway No. Reactions

Metabolic pathways 27
Biosynthesis of secondary metabolites 18

Biosynthesis of amino acids 16
Carbon metabolism 16

Microbial metabolism in diverse environments 14
Glycolysis / Gluconeogenesis 8

Methane metabolism 7
Biosynthesis of cofactors 5

Cysteine and methionine metabolism 5
One carbon pool by folate 4

Pentose phosphate pathway 4
Alanine, aspartate and glutamate metabolism 3

Fructose and mannose metabolism 3
Glycine, serine and threonine metabolism 3

Purine metabolism 3

Finally, I sought for the drug targets in the metabolic network of S. pyogenes when growing
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Table 3.17: The result of the pathway analysis on drug targets from the Lib 7 of the cultures of
S. pyogenes from natural human plasma

Pathway No. Reactions

Metabolic pathways 23
Biosynthesis of secondary metabolites 14

Biosynthesis of amino acids 13
Carbon metabolism 12

Microbial metabolism in diverse environments 11
Biosynthesis of cofactors 7

Glycolysis / Gluconeogenesis 7
Methane metabolism 5

One carbon pool by folate 4
Alanine, aspartate and glutamate metabolism 3

Cysteine and methionine metabolism 3
Fructose and mannose metabolism 3

Glycine, serine and threonine metabolism 3
Pentose phosphate pathway 3

Purine metabolism 3

on natural human plasma. The growth rate of S. pyogenes under this condition was equal to
0.94 OD/h. I found 224 essential reactions and 205 essential genes. Similar to the previous
conditions, a number of drug targets were identified in central metabolism, such as glycolytic
enzymes (TPI, PFK, GAPDH), biosynthesis of amino acids (SERD, phosphoribosylpyrophos-
phate synthetase (PRPPS)). The results from the pathway analysis is shown in Table 3.17.
The complete list of all the potential drug targets can be found in the appendix. The list of
exclusive tract-specific drug targets for each conditions based on the combo-approach at 30%
flux boundaries can be seen in the figures 3.33 and 3.34.
Considering the fact that proteome data in the case of both organisms contained non of the
available enzymes in the genome-scale models, the integration of proteome data had no effect
on constraining the models and tract-specific drug target identification. This shortcoming can
be overcome by repeating the experiments using a set up that results in higher yields of bacteria,
which in turn brings a higher protein content for quantification.
The results from the integrative tract-specific drug target identification suggested that the math-
ematical modelling of pathogens under tract-specific conditions is essential, as the phenotypes
of pathogens vary considerably according to environmental conditions. Therefore, integrative
tract-specific analysis of would bring a deeper insight towards the adaptive metabolism of these
micro organisms and help to design new treatment strategies.
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Figure 3.33: The number of common drug targets between different conditions, as well as the
exclusive targets under each condition in E. faecalis.

Figure 3.34: The number of common drug targets between different conditions, as well as the
exclusive targets under each condition in S. pyogenes.
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Chapter 4

Discussion

Studying the metabolic characteristics of pathogens is a common approach to uncover their
strategies to grow, survive, colonize and resist to antimicrobial agents in the human body. Some
of the pathogenic bacteria possess a versatile metabolism that allows them to adapt to var-
ious environments, whether its different parts of the human body for its goods (working as
probiotics) and bads (causing infections), or plant and dairy products that usually results in
developing fermentation products and flavours. In this study, I investigated the metabolic at-
tributes of two pathogenic bacteria, E. faecalis and S. pyogenes, using their multi-omics profiles
(metabolic, transcriptome and proteome) together with their respective genome-scale models,
aiming at finding tract-specific drug targets. Prior to this main goal, I performed a more in-
depth analysis of E. faecalis metabolism by studying the properties of a (∆glnA) mutant, which
helped to better understand the metabolic and proteomic adjustments of this species under dif-
ferent environmental conditions.

4.1 The effect of glutamine auxotrophy on metabolic
characteristics of E. faecalis

E. faecalis is a growing concern in hospital environments as more of its strains are progressively
developing resistance against conventional antibiotics. On the other hand, E. faecalis plays an
important role in the food industry, specifically in the dairy sector. As a result, studying its
adaptive behaviour is a key step in understanding the survival strategies of this distinctly flex-
ible microorganism. The integrative analysis of metabolism comprising metabolic, proteomic
and mathematical modelling presented in this study provides a subtle ground to characterize
different aspects of E. faecalis adaptive metabolism. Here, I studied the impact of dropping en-
vironmental pH from 7.5 to 6.5 over the course of 21 hours on a glutamine synthetase (∆glnA)
mutant of E. faecalis. Considering the fact that E. faecalis colonizes different tracts in the hu-
man body, it is often exposed to the conditions with highly variable parameters, one of them
being the environmental pH. Therefore, studying the adaptation strategies of this species from
one pH level to another would help us to understand the underlying mechanisms, which can
be useful when designing treatment plans. To uncover the role of glutamine auxotrophy on the
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pH adaptation of the mutant, I compared the results to those of the wildtype [Großeholz et al.,
2016]. A focal point in adapting to the new and more acidic environmental pH shared by the
mutant and the wildtype was maintaining the internal pH homoeostasis by pumping protons
to extra cellular environment, which of course increases the energy demand. To enable such a
mechanism, proteome and metabolic profiles had to be adjusted accordingly. Therefore, there
were many similarities between the wildtype and the mutant following the decline in the envi-
ronmental pH, while there were of course some differences. Although the two genotypes shared
the quality of increasing energy demand in response to pH shift, the quantity of energy demand
reflected in biomass production was dissimilar.

The most prominent consequence of the increasing energy demand was the decline in biomass
production that occurred both in the wildtype and the mutant. Moreover, the fermentation pat-
tern shifted from mixed acid fermentation to homolactic fermentation in response to pH shift.
The change in fermentation pattern was observed in the case of both genotypes, although the
degree of change was considerably higher in the mutant, with the larger part of the fermentation
profile being made of lactate. This verifies the fact that under a more energy demanding condi-
tion, being the ∆glnA mutant or a more acidic environment, E. faecalis changes its fermentation
pattern from mixed acid to homolactic fermentation. Based on the stoichiometry of the fer-
mentation pathway, mixed acid fermentation produces one more ATP compared to homolactic
fermentation. However, it is reported that lactic acid bacteria like L. plantarum and L. lactis use
homolactic fermentation under conditions such as high substrate availability, rapid growth rate
or high glycolytic flux [Teusink et al., 2011]. As a result of a higher energy demand, more glu-
cose is taken up from the medium, which further increases the flux through glycolysis as well as
the NDAH/NAD ratio. The higher ratio of NADH/NAD is reported to up-regulate the activity
of lactate dehydrogenase (LDH) in L. lactis [Garrigues et al., 1997]. Although the up-regulation
of lactate production under energetically demanding conditions is widely reported in the liter-
ature, a conceivable biological explanation of why an energetically less efficient fermentation
pattern is used by lactic acid bacteria is still to be discovered.

The overwhelming impact of increased energy demand in a more acidic environment was again
reflected in the amino acid uptake/production profile. Except for serine, arginine and glutamine,
the uptake rate of amino acids decreased in response to pH shift. Decreasing amino acid uptake
might be due to regulation as a result of decreasing biomass production, in addition to the
fact that it saves energy. Generally, amino acid uptake is coupled to either ATP hydrolysis
or proton symport, which in both cases increases the energy demand of the cell. However,
as arginine and serine can be used for energy production, the increased uptake rate of these
two amino acids in the more acidic environment can be easily explained. As reported in the
literature, arginine is widely used as a valuable energy resource in lactic acid bacteria, especially
in the ones that are used in the food industry [Hwang and Lee, 2018] [Tonon and Lonvaud-
Funel, 2000]. When used for energy production, arginine is converted into ornithin instead
of citruline, whether arginnine deaminase is used or not [Hwang and Lee, 2018] [Tonon and
Lonvaud-Funel, 2000]. Likewise, serine is reportedly deaminated to ammonia and pyruvate
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(which further promotes the production of acetate and formate) and therefore contributes to
energy production in the growth cells of L. plantarum isolated from cheese [Liu et al., 2003].
The flux distribution profile obtained from the genome-scale model in this study successfully
replicated this behaviour, predicting an increase in arginine uptake in response to pH shift that
results in an increase in ornithine production. The model also correctly predicted the conversion
of citruline to ornithine by ornithine carboyl transferase, a reaction that is previously reported
to take place in E. faecalis [Knivett, 1954]. The produced ornithine is further used to import
arginine by arginine-ornithine antiporter.

The metabolic profiles obtained from the chemostat experiments showed a very big difference in
glutamine/glutamate metabolism between the wildtype and the mutant. Following the pH shift,
the glutamate uptake rate considerably decreased in both genotypes. However, the glutamine
uptake rate increased only marginally in the wildtype, while it increased substantially in the
mutant. As discussed earlier in the results chapter, there are multiple mechanisms that could
potentially lead to this observation. For one, as it is reported on S. pneumoniae [Kloosterman
et al., 2006], it can be proposed that the regulatory effects of GlnR (a transcription factor),
including the control over glutamine transport depend on the presence of an intact gene for
GlnA. As the gene for GlnA is absent in the ∆glnA mutant, GlnR might lose its functionality
and it results in an unregulated glutamine uptake. Moreover, the change in the directionality of
the GDH and its following regulatory effects is only possible if more 2-oxoglutarate is available.
For this to happen, glutamine is required. Also, as reflected in the results from the genome-scale
model, the lack of specificity of the amino acid transporters plays an important role and has to
be taken into account. The uptake rate of the co-transported amino acids with glutamate such
as aspartate, which are not very easy to catabolize (and their uptake rate decreased in response
to pH shift) underwent a decrease, while the ones that are co-transported with glutamine such
as arginine can be used for energy production and their uptake rate increased following the pH
shift.

Ammonium assimilation takes place mainly by the glutamine synthetase reaction (catalyzed
by the enzyme GlnA) [Forchhammer, 2007]. This reaction of course does not occur in the
∆glnA mutant. In this study, glutamine uptake happens at such a high rate that part of the
imported glutamine is further converted into glutamate and ammonium by a deaminase reaction.
This might explain the slight amount of glutamate export at pH 6.5 and is also successfully
replicated by the model. Additionally, the higher uptake rate of arginine and serine in the
mutant compared to the wildtype and their respective deamination would increase the amount
of intracellular ammonium even further. The high intracellular concentration of ammonium is
reported to decrease the growth rate in bacteria [Müller et al., 2006]. However, it is suggested
that it is rather the general osmotic or ioinic effects of ammonium, than its toxicity, which affects
the growth rate [Müller et al., 2006]. Although not being completely clear, the ammonium
export occurs either using a proton antiporter or active transport by using ATP, which in either
case adds up to the energy expense of the mutant.

The proteome data used in this study uncovered some additional aspects of the metabolic ad-
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justments in the mutant in response to pH shift. These findings paralleled those of the wildtype
in some ways, while being different in other ways. The down regulation of genes in nucleotide
metabolism after pH shift occurred in both genotypes, as the bacteria grew at a lower rate, less
nucleotides were required for cells to grow. In addition, de novo synthesis of nucleotides is not
energetically favourable, so the bacteria could take up the required nucleotides from the medium
when energy was more of a limiting factor. Moreover, the up-regulation of enzymes involved in
the restructuring of the cell membrane and cell wall, which are necessary to control the proton
leak in a more acidic environment, was shared between the wildetype and the mutant. On the
other hand, the up-regulation of glycolytic enzymes at the beginning of the pH shift which was
previously observed in the wildtype, was not found in the mutant. Considering the fact that
the glycolytic flux in the mutant was already at a higher level at the start of the experiment in
the mutant, it can be suggested that the expression of the glycolytic enzymes was already at a
higher level in the first place.

The genome-scale model successfully predicted a large fraction of the experimental data. How-
ever, the model had to be adjusted with respect to the stoichiometry of amino acid transporters
in order to reflect their real unspecific character, so it would be able to mimic the experimental
data. As far as this study is concerned, such adjustment has no precedence in bacterial genome-
scale models.

The prominent outcome of the integrative analysis of the metabolic network in the ∆glnA mu-
tant was a higher energy demand compared to the wildtype. The results suggested that this is
perhaps a consequence of losing control on the glutamine transport system. To the extent of my
knowledge, glutamine is the main nitrogen donor in bacteria. Glutamine has to be provided in
surplus in the cell to ensure the sufficient supply of amino-groups [Reitzer, 2014]. Glutamine
can either be synthesised by glutamine synthetase, or taken up from the extracellular environ-
ment. While both can happen in the wildtype, the mutant is only capable of doing the latter. The
stochiometric analysis of both processes suggests that one ATP has to be consumed to provide
one molecule of glutamine, either way. So the energetic cost would be similar. However, if
glutamine transport is unregulated due to the lack of GlnA, an excessive amount of glutamine
would be imported into the cell, which is costly. Furthermore, the uncontrolled glutamine trans-
porter would import other amino acids in surplus as a consequence of being unspecific. These
two factors together with the need to export the resultant high level of ammonia would add
additional costs to the cell.

The metabolic and proteome data used in this part of the study could reflect the biological phe-
notypes of the ∆glnA mutant to an acceptable extent. The metabolic data clearly showed the
fermentation pattern shift, both in the wildtype and the mutant, which is reportedly a shared
characteristic of LABs under more energetically demanding conditions [Teusink et al., 2011].
However, there were possible measurement flaws as well. For what I expect, the glutamate
should still be taken up from the medium after the pH shift, while the data is suggesting oth-
erwise. Overall, the metabolic data presented a good and acceptable account of the metabolic
behaviour of the ∆glnA mutant under both pH conditions. The proteome profile contained the
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relative abundances of around 1600 gene products, presenting a very large fraction of the whole
proteome of E. faecalis. As a result, most of the metabolic genes were detected and subjected
to the relative significance analysis. However, the absence of membrane integrated proteins
in the data was noticeable and limited the room to explain the adjustments in response to pH
shift, especially when amino acids uptake and production were the most probable reason for the
major outcome of the study, which was the higher energy demand in the mutant.

From the modelling point of view, genome-scale model of E. faecalis was a powerful tool to
analyse the metabolic behaviour of this species and predict the phenotypes that were not re-
flected in the data, which of yourse have to be experimentally verified. Despite the overall
success of the genome-scale model in simulating the experimental data, the model possess a
very large solution space containing highly variable flux distribution profiles. This imposes
limitations to the conclusions drawn from modelling. The approach used in this study to shrink
the solution space was to integrate omics profiles obtained from experimental data, which sup-
posedly increases the predictability of models. In order to find out how efficient the data reduced
the solution space of the genome-scale models of E. faecalis, and in general any other genome-
scale model, and to find out what portion of the results in the solution space are biologically
feasible, I developed a method to inspect the solution space of genome-scale models.

4.2 Inspecting the solution space of genome-scale metabolic
models

Genome-scale metabolic models comprise almost all the existing reactions in an organism and
therefore are large systems. As a result of the large number of reactions and parameters, these
models are mathematically underdetermined, meaning that they contain more unknown vari-
ables than equations. Hence, there is no single solution available for these systems, and solu-
tions have to be rather found in a large solution space. The solution space contains all the flux
distribution profiles that satisfy the optimum value of the objective function. These profiles can
be highly variable as a result of nonlinearities and branching points in the metabolic network
on the one hand, and the lack of enough constraints on the other hand. Therefore, two flux
distribution profiles can be enormously different while fulfilling the same value for the objec-
tive function. In the present thesis, in order to find out about the extent of variability, as well
as the effect of different types of constraints on the results of FBA, a method was developed
and the results were introduced in the results chapter. Briefly speaking, the method subjects the
results of FBA to random perturbation and collects the resultant flux distribution profiles for
downstream statistical analysis. This allows for computationally cheap yet statistically exten-
sive sampling of the solution space. In the case of the wildetype and the mutant models of E.
faecalis, the method showed that there are not only quantitative differences between different
flux distribution profiles that have to be the point of attention, but also qualitative differences
which in many cases might result in biologically inconsistent interpretations of FBA results.
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From the quantitative standpoint, this method allows us to asses the sensitivity in genome-scale
models by defining the number of sensitive reactions and the spread of the flux values within
the variability interval. For that, I defined the reactions changing their flux value in response
to perturbation for more than ±5% as sensitive, and robust if otherwise. The distinction be-
tween sensitive and robust reactions enables us to study the effect of different constraints on the
sensitivity and predictability of genome-scale models. I therefore proposed that the number of
sensitive reactions in a model is a very good indicator of the size of the solution space. The
downstream analysis showed that the models with a lower number of sensitive reactions fit the
experimental data better and are potentially more accurate when it comes to predictions.

The high variability among flux distribution profiles acquired by FBA emphasizes the point that
an optimal flux distribution profile generated by FBA is just one arbitrary selection of too many
fitting profiles and is by no means unique. Therefore, when discussing the results from only one
run of FBA, it is important to refer to the results as ‘an optimal’ rather than ‘the optimal’ flux
distribution.

Moreover, three different aspects of the results have to be discussed further:

1. The integration of biological constraints obtained from experimental data is key to decrease
the number of biologically irrelevant results. In this study, the integration of proteome data was
the most effective way to decrease the solution space. Nonetheless, metabolic data, namely
the uptake and production rate of metabolites, integrated into the boundaries of exchange reac-
tions can also considerably shrink the solution space. The effect of metabolic data perhaps is
best reflected on lowering the flux variability at the branching points in metabolism. However,
the degree of reduction is actually case-specific, signifying the importance of the second point
[Razmilic et al., 2018].

2. It is necessary to analyse the solution space when using FBA. The results from this study
showed that the frequently used constraints such as metabolic data can effectively shrink the so-
lution space. As a result, drawing biological conclusions, e.g., the type of fermentation pattern
in this case, can be done with higher accuracy. Of course, the ability to acquire such knowledge
and the extent of accuracy depends significantly on the type of biological question and avail-
able data-sets. The analysis of the solution space can be done in different ways. The method
presented in this thesis provides an easy method to study various optimal flux distributions by
means of random perturbation. As demonstrated by the results, functional analysis of the so-
lution space using the perturbation method provides a deep insight towards the robustness and
reliability of the outcomes obtained from a genome-scale model. The use of this method would
also enable us to determine which type of experimental data was most effective in shrinking the
solution space and support a better experimental design.

There are also other methods available for the analysis of the solution space that were not used in
this study. The most frequently used technique in sampling the solution space is Monte-Carlo
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sampling. There have been several methods developed based on the Monte-Carlo sampling,
most of them are used to calculate the probability distribution of individual flux values or to
determine the correlated reaction sets used for experimental design [Price et al., 2004] [Thiele
et al., 2005]. The perturbation method on the other hand, is focused on revealing the existing
uncertainty in the interplay of different fluxes. As previously mentioned, correlated reaction
sets obtained by Monte-Carlo methods enable the determination of candidate reactions for flux
measurements, which can be further used to estimate the flux value of the correlated ones.
However, the perturbation method showed that the integration of the metabolic data on the
fermentation products for which the internal reactions were reported to be correlated (e.g., LDH,
PFK) does not essentially eliminate the biologically irrelevant results (in the case of pyruvate
branching point in the mutant). Hence, the functional analysis of the solution space provided
by the perturbation method helps to obtain a comprehensive knowledge and overview regarding
the behaviour of genome-scale models. Moreover, the perturbation process requires far less
data points compared to most of the Monte-Carlo methods, which normally need a very large
sample size (250,000 data points in [Price et al., 2004]) in order to deliver a reliable outcome.
The perturbation process, as it is defined in this study, needs ∼ 10 times the number of variable
reactions in the model, which in the examples of the models used as the case study here would
be 2900 ∼ 3980 data points. However, as a result of having fewer data points, our method
does sample the solution space in a less extensive way and some alternative solutions might be
dismissed. Furthermore, despite the fact that the perturbation method has a different focus, it
is important to mention that it is computationally more efficient and faster compared to Monte-
Carlo methods. As it is reported by Fallahi and colleagues [Fallahi et al., 2020], sampling the
solution space in the case of the models of comparable size to the model of E. faecalis takes
approximately 7.64 to 10.67 minutes, using the CHRR method (as the fastest available Monte-
Carlo method) on a processor of intel Core i7 at 2.5 GHz. It is important to mention that in this
study, a reduced version of the genome-scale models, in the sense that the reactions carrying
no flux were discarded, were used. As a result, the number of reactions of the four models,
iLJ478, iSB619, iHN637 and iJN746 were reduced from 652, 743, 785 and 1054 to 380, 450,
522 and 652, respectively [Fallahi et al., 2020]. On the other hand, the perturbation process in
this study for the models of E. faecalis took between 122 to 175 seconds for different models
(wildtype or mutant), and of course depending on how constrained a model was, on a processor
of Intel Core i5 2.3 GHz, 16 MB memory and HDD hard drive. The flux distributions in this
case were acquired by FBA on MATLAB. The perturbation method also allows to obtain the
flux distribution profiles by FVA, which in this case the run time increased to 31 to 51 minutes
for the same models using the same hardware. The comparison of the run time together with
the number of reactions in each model for CHRR as well as the perturbation method is shown
in detail in the supplement. It has to be pointed out that additional statistical analyses take more
time.

3. Caution has to be taken when some of the parameter values sit at the edge of the feasible
region, as it can significantly affect the result of optimization and therefore, produce artefacts.
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Our result showed that particularly the methods using FVA can fail to generate reliable out-
comes, as FVA usually fails to fully operate under such circumstances. In the case of this study,
the failure of FVA resulted in the calculation of an artificially smaller solution space.

Finally, it has to be mentioned that at this point, we cannot distinguish between the absolute
solution space and the ones that are reported by various methods, software implementations
and numerical methods. The perturbation method presented in this thesis reported no quali-
tative difference when analysing the solution space by means of different numerical libraries
or software implementations. For example, the decreasing trend of the number of sensitive
reactions following the integration of constraints were obtained by all the applied software im-
plementations/numerical libraries. However, there were minor quantitative differences between
the outcome of these methods, e.g., the number of sensitive reactions. There were also some
major quantitative differences such as the average number of reactions reacting to one perturba-
tion. Hence, it can be suggested that the most reliable indicator of the size of the solution space
using the perturbation method is the number of sensitive reactions, which shows only small dif-
ferences between different implementations/libraries. The qualitative aspect, namely the trend
of change in the number of sensitive reactions is also an informative indicator to analyse how
different types of experimental data affect the solution space.

So far, I showed that genome-scale models are powerful and useful instruments to analyse me-
tabolism in large scale and capture biological phenotypes. I also explained how experimentally
measured omics data can effectively shrink the solution space, increasing the predictability of
genome-scale models. As a result, I used the genome-scale model of E. faecalis and S. pyo-
genes to find tract-specific drug targets in their metabolic network. I used different types of
omics data to make the models tract-specific and shrink the solution space, so the predictions
would be more trustworthy.

E. faecalis and S. pyogenes are two important bacterial pathogens causing severe problems in
hospital environments. They both cause various infections in different tracts. E. faecalis for ex-
ample causes urinary tract infection, root canal infection, bacteremia, endocarditis and wound
infection [Fiore et al., 2019]. S. pyogenes on the other hand, provokes scarlet fever, puerperal
sepsis, pharyngitis, impetigo, pneumonia, root canal infection and blood stream infection. Ad-
ditionally, S. pyogenes can cause immune-mediated post-infectious disorders such as rheumatic
heart disease (RHD) and rheumatic fever (ARF) [Walker et al., 2014]. The ongoing trend of
multi resistance, especially in the case of E. faecalis has resulted in serious problems in the
hospital environments and made the treatment of resistant isolates extremely hard.

A wide range of antibiotics have been used to treat the infections caused by these two pathogens.
Ampicillin is widely used to treat the infections caused by E. faecalis [Kristich et al., 2014].
Penicillin, vancomycin and daptomycin are also used against E. faecalis, although to a smaller
extent [Kristich et al., 2014]. E. faecalis, however, employed various strategies to resist the
aforementioned antibiotics, giving rise to the current trend of multi-resistant in this organism
[Miller et al., 2014]. On the other hand, S. pyogenes is still susceptible to beta-Lactam antibi-
otics like penicillin, amoxicillin and cephalosporins [Camara et al., 2013]. While the treatment
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of S. pyogenes using conventional antibiotics is still possible, combating E. faecalis strains
with multi-resistance character is extraordinarily hard. This ever-growing trend of resistance
amongst pathogenic bacteria points out the necessity of developing new strategies to fight these
micro organisms. Of course, a big part of such a plan is the development of new antibiotics.
However, finding new drug targets, e.g., in the metabolic network of pathogens, which do not
allow for the rapid development of resistance, is equally important and recently in the focus
of international research. To do so, metabolism of the pathogenic bacteria has to be studied in
more detail.

Comprising all the functional biochemical reactions, metabolism determines how a living or-
ganism performs under a given condition. Through the extensive exchange of metabolites with
extracellular environment, it allocates resources to serve in the best interest of the cell. There-
fore, environmental conditions play a significant role on the metabolic characteristics of a cell.
There are various aspects of extracellular environment that affect the phenotypes of a living cell.
To name a few, extracellular pH can impact the growth rate as well the fermentation pattern of
E. faecalis (as also mentioned previously in this thesis) [Großeholz et al., 2016], [Loghmani
et al., 2021]. Likewise, the glucose content of the extracellular environment and also the use
of different carbohydrates are reported to take part in the virulence of S. pyogenes [Shelburne
et al., 2008], [Thurlow et al., 2009]. Therefore, it is crucial to take the characteristics of the
extracellular environment into account when analysing metabolism. This also holds true when
metabolism is studied with the aim to find novel drug targets. That being said, the environmental
condition in different parts of the human body can be considerably different, forcing pathogens
to adapt to each and adjust their metabolic characteristics accordingly. Hence, it is essential
to distinguish between the characteristics of different environmental conditions when trying to
find efficient drug targets. Such an approach does not only enable us to combat a pathogen
very effectively (as a result of identifying the drug targets by taking the tract-specific conditions
and the respective metabolic adjustments into account), but also prevents the pathogen from a
rapid development of resistance. The latter would be due to a smaller evolutionary pressure
on the pathogen as a result of employing different antibiotics to pick out different targets when
colonizing different tracts.

4.3 Integrative tract-specific drug target identification in E.
faecalis and S. pyogenes

With such perspective, I used an integrative approach to find new drug targets in the metabolic
network of E. faecalis and S. pyogenes. The experimental design comprised the growth of the
bacteria in the media comparable to the actual physiological condition in different tracts in
human body, namely root canal (for E. faecalis and S. pyogenes), urinary tract (for E. faecalis)
and human plasma (for S. pyogenes). In order to account for the variation in sugar content in
these environments, an additional treatment with additional glucose (for saliva and urine) and
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additional fructose and sucrose (only for urine) were used. To develop the tract-specific omics
profiles, metabolic data (uptake and production rate of carbohydrates, organic and amino acids)
were quantified in each environment. The transcriptome and proteome profiles, however, were
determined relative to the profiles from the standard lab condition (CDM-LAB). The aim of
such design was to determine the tract-specific multi-omics profile of the two pathogens and
use them for mathematical modelling.

For the bacterial cell cultures, I used artificial saliva and artificial urine because of the consistent
composition of the artificial media. As the composition of biological media vary significantly,
not only from person to person, but also from time to time, and depending on the specific diet
before sampling, the reproducibility of cultures using those media is very low. This is even
a bigger problem when quantitative data are needed for mathematical modelling, when even
small variability in some parameters enormously affects the outcome. For saliva, the content
can be mainly affected by food intake or during sleep, when low oxygen availability in the
mouth can promote lactate fermentation. In urine, it has been shown that the composition is
not only dependent on the diet, but also on other factors such as age, gender, etc. [Mack et al.,
2018]. Therefore, the choice of the artificial media helped to have a higher reproducibility in
the experiments, which, however, was achieved at the expense of lower growth rate compared
to natural media such as plasma. Regarding plasma, a preliminary test experiment resulted in
zero growth of the bacteria, therefore, the only choice was to use natural human plasma.

During the test experiments it became clear that the lack of primary sugar content prevents a
high growth rate in the artificial media. It has been previously reported that E. faecalis has
an overall poor growth rate in artificial saliva [Kampfer et al., 2007]. It is also shown that the
growth rate of E. faecalis on artificial urine supplemented with additional metabolites such as
folic acid can be considerably increased compared to pure artificial urine [Lara et al., 2021]. The
same phenomenon has been observed in the case of S. pyogenes. More specifically, the addition
of artificial saliva to BHI (Brain heart infusion) supplemented with 5% glucose has been shown
to reduce the already poor growth rate of S. pyogenes [Riani, 2009]. Interestingly, S. pyogenes
M49, the strain that is used in this thesis, showed one of the lowest growth rates in artificial
saliva compared to the other dental colonizing species including E. faecalis [Riani, 2009]. The
very high growth rate of S. pyogenes on natural human plasma, however, very clearly showed
the effect of a rich biotic environment on the growth capability of this pathogen. Despite the
poor growth rate of E. faecalis and S. pyogenes, I was able to obtain a sufficient amount of
supernatant and bacterial pellets for multi-omics experiments.

As mentioned above, the poor growth rate was a limiting factor in the experimental design.
The already low amount of bacterial pellets had to be saved for transcriptomics and proteomics
studies. Therefore, I could not afford to sacrifice a large part of the pellets to calculate the dry
mass for each treatment. On the other hand, the dry mass calculation was necessary to calculate
the uptake/production rate of metabolites. To overcome this issue, I ran an experiment to derive
calibration curves to allow for the estimation of the dry mass based on OD values. This is a
necessary step, as the estimation of dry mass based on OD needs to be condition-specific. As
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the chemical composition of each medium is different, the metabolic phenotype of organisms
would vary, which in turn results in the excretion of different metabolites that would affect the
OD measurement. As a result, the dry mass of bacterial cultures cannot be simply estimated
by the same calibration cure when growing on different media. As I mentioned earlier, the
calibration curve was developed with the aim to calculate the metabolite uptake/production
rates to be integrated into the genome-scale models. However, when the modelling started, the
calculated metabolic fluxes based on the estimated dry mass resulted in very unrealistic values.
A very probable reason for such inaccuracy could be the very low quality of the metabolic
measurements. Repeating the metabolomics experiments with a better measurement set up
would potentially solve this shortcoming. Therefore, I calculated the flux values based on the
OD measurements, which resulted in acceptable and realistic values.

To acquire multi-omics profiles, the metabolic, transcriptome and proteome profiles of the two
bacteria were determined. As mentioned in the previous paragraph, the quality of measurements
in metabolomics experiments were very low. Hence, an informative and reliable biological
conclusion from the metabolic profiles is not possible at this point. The transcriptome data has
been previously published in my master thesis [Loghmani, 2020].

The proteome profile of the two pathogens was analysed and presented earlier in the resuls chap-
ter To determine the proteome content, shotgun DDA mass-spectrometry was used. The plasma
samples were fractionated into 6 fractions before quantification. The samples from other con-
ditions were subjected to proteomics without fractionation. Whole cell proteome experiments
have been previously used for tract-specific studies in the case of E. faecalis. Arntzen and col-
league performed proteomics on E. faecalis growing on urine relative to 2xYT [Arntzen et al.,
2015]. They reported that six proteins that were exclusively expressed in urine, including en-
docarditis specific antigen and its homologue, adhesion lipoprotein [Arntzen et al., 2015]. To a
lower extent, proteomics was applied to study the membrane associated proteins in E. faecalis,
although in a non tract-specific study [Yan et al., 2018]. The lack of extensive tract-specific
proteomics holds true in the case of S. pyogenes too. In one of the few attempts, Edwards
and colleagues performed proteome analysis on the S. pyogenes isolates obtained from infected
patients fluids (empyema, septic arthritis, necrotising fasciitis) in an attempt to find new diag-
nostic targets [Edwards et al., 2018]. Similar to this, they also faced the problem of identifying
many streptococcal proteins in the samples. In another study, the proteome interaction map of
S. pyogenes and human plasma were investigated [Sjöholm et al., 2014]. To the best of my
knowledge, this theses presents the first study trying to determine the multi-omics profile of E.
faecalis and S. pyogenes in tract-specific conditions.

Unlike the transcriptome data, only the cultures with additional glucose as well as the ones from
CDM-LAB were used for the proteomics study for E. faecalis. In the case of S. pyogenes, only
the cultures from natural human plasma and CDM-LAB at pH 7.4 were used for the proteomics.
The reason for this selection, in the case of E. faecalis, was the very minimal difference in the
transcriptome profile [Loghmani, 2020] between the different sugar contents of the same media.
Therefore, it was assumed that most of the conclusions drawn from the proteome profile of the
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samples from one sugar content can be extrapolated to the other. Regarding S. pyogenes, there
were so few significant fold changes in artificial saliva cultures even at the transcriptome level,
that there was no realistic chance of observing significant changes at the proteome level. Hence,
the saliva cultures were completely excluded from the proteomics for S. pyogenes. It should be
mentioned that the following discussion on the up- and down-regulated proteins is primarily
done to put the data in context and to mention similar findings in other studies. For a conclusive
biological discussion on the findings of the proteomics in this study, the results have to undergo
a validation process, as the quality of the data in the present study cannot be guaranteed to be
very high.

Surprisingly, the most up-regulated protein in E. faecalis in saliva with additional glucose (com-
pared to CDM-LAB) was an uncharacterised protein Q832L5 (EF2211), showing the necessity
of more detailed and accurate proteomics study under tract-specific conditions. Among other
highly up-regulate proteins, there was the glyoxalase family protein Q838D9 (EF0630), which
has been previously shown that its disruption (at the gene level) attenuates the killing ability of
E. faecalis in the nematode model Caenorhabditis elegans [Maadani et al., 2007]. This protein
is prominently involved in damage control and repair. I also found a putative permease Q82ZR3
(EF2985) and oxidoreductase, aldo/keto reductase family Q838E0 (EF0629) among the highly
up-regulated proteins, for which a connection to virulence has not been reported yet. Among
others, there were three transporte proteins that were highly up-regulated, ABC transporter,
ATP-binding protein Q82ZR2 (EF2986), ABC transporter, permease protein, putative Q833B5
(EF2049) and ABC transporter, ATP-binding protein Q833B4 (EF2050), showing the impor-
tant role of transporters in adjusting to different environmental conditions. I also observed an
up-regulation in the expression level of a lipoteichoic acid biosynthesis Q830N3 (dltD). Lipote-
ichoic acid has been reported to take part in the inflammatory response caused by E. faecalis
[Baik et al., 2008].

On the other hand, there were multiple proteins that were highly down-regulated in E. faecalis
in the saliva + glucose compared to CDM-LAB. Among the two most down-regulated pro-
teins, there were two proteins involved in pheromone signalling, namely Pheromone binding
protein, putative Q839T9 (EF0063) and Pheromone binding protein Q834W4 (EF1513). The
pheromone system is a way of communication in enterococci coupled with the conjugation
system, which is mostly used to transfer the genes responsible for antimicrobial agents and vir-
ulence [Dunny et al., 1995], [Sterling et al., 2020]. The down regulation of proteins involved in
pheromone signalling in the saliva environment is a novel finding and can be used for further
investigations in clinical and systems biology studies. However, it should be pointed out that
the results of the proteomics presented in this thesis have to be validated by additional exper-
iments to prove the validity of observations. The results also showed the down regulation of
Peptidase, M20/M25/M40 family Q839D6 (EF0236), which has been previously shown to be
down-regulated in a ∆rnjB mutant of E. faecalis [Gao et al., 2017]. The rnjB gene encodes an
active RNase J2 and its deletion has been reported to attenuate the virulence capability of E.
faecalis [Gao et al., 2010]. This protein has been also found in a proteomics study on the en-
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dodonic infection, in which bacterial cells were isolated from patients with root canal infection
[Nandakumar et al., 2009]. Seemingly correlated, the role of this protein in root canal infection
cannot be conclusively discussed at this point.

The comparative proteome analysis also showed a number of significant fold changes in the
urine with additional glucose cultures compared to the ones from CDM-LAB in E. faecalis. The
most highly up-regulated protein was Universal stress protein family Q836Q0 (EF1058). Uni-
versal stress proteins in general help bacteria to cope with the stresses imposed by various fac-
tors [Kvint et al., 2003]. ABC transporter, ATP-binding protein Q832Z4 (EF2074) and Cationic
ABC transporter, ATP-binding protein H7C6W2 (EF0575) were also up-regulated in artificial
urine (supplemented with additional glucose) compared to CDM-LAB. Although the significant
fold change of transporter proteins between different media is no surprise, they would signifi-
cantly impact the outcome of mathematical models in case they are part of the model. Earlier
in this chapter I discussed how an up-regulation of the ATP-binding subunit of glutamine ABC
transporter directed us to come up with a new transporter design for the genome-scale model
of ∆glnA E. faecalis. The up-regulation of Endocarditis specific antigen Q832Z2 (EF2076) was
also observed in the transcriptome profile [Loghmani, 2020]. While it is reported that this pro-
tein is a major factor in root canal infection [Preethee and Deivanayagam Kandaswamy, 2012],
its involvement in urinary tract infection has not been reported yet.

For S. pyogenes, the comparative proteomics was performed only between plasma and CDM-
LAB 7.4 samples. Two of the three most highly up-regulated proteins in plasma compared to
CDM-LAB were Ribonucleoside-diphosphate reductase A0A0H3BZA0 (nrdE.2) and Ribonucleoside-
diphosphate reductase A0A0H3BYW0 (nrdF.2). Ribunucleotide reductase enzymes have been
shown to be essential for the survival of bacteria [Torrents, 2014], but an indication of their
involvement in virulence has not been reported so for. Another highly up-regulated protein was
ABC-type cobalt transport system, permease component CbiQ A0A0H3C149 (Spy491396c).
The role of cobalt transport system has not been studied in S. pyogenes, however, a cobalt trans-
porter (Opp1 ABC transporter) has been reported to affect the urease activity and help with
colonization and virulence of Staphylococcus aureus in urinary tract infection models [Remy
et al., 2013]. Sugar ABC transporter, sugar-binding protein A0A0H3BVP3 (Spy490212) is an-
other highly up-regulated protein in plasma. ABC transporters are not only responsible for the
active transport of necessary metabolites, but they are also involved in the export of capsular
polysacharides (in gram-positive bacteria) [Silver et al., 2001], export of antibiotics in antibi-
otic producing bacteria [?], export of antibiotics resistant agents [van Veen et al., 2001] and
also export of cellular toxins [Garmory and Titball, 2004]. Quinolinate phosphoribosyltrans-
ferase [decarboxylating] A0A0H3BVM1 (Spy490176) is also highly up-regulated in plasma.
Quinolinate- salvage pathway (QSP) pathway has been shown to be important in the virulence
of S. pyogenes [Sorci et al., 2013]. Among the highly up-regulated proteins in plasma, this has
been the only protein that reportedly plays a role in the virulence of this species.

The most highly down-regulate protein in S. pyogenes in plasma compared to CDM-LAB was
the Putative short chain dehydrogenase/reductase A0A0H3BYU6 (Spy490881). The expression
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of Citrate (pro-3S)-lyase subunit beta A0A0H3C0N9 (citE) and Citrate lyase acyl carrier protein
B5XLM6 (citD), two subunits of citrate lyase which is an important enzyme in the fermenta-
tion of citrate [Subramanian and Sivaraman, 1984] was down-regulated too. It seems that as a
result of excessive substrate availability in the plasma environment, S. pyogenes down-regulates
the citrate lyase that perhaps brings no advantage to the bacteria. Other highly down-regulated
proteins were Uncharacterized phage-associated protein A0A0H3C1X0 (Spy491458c) and Pu-
tative major head protein (Phage associated) A0A0H3BYL2 (Spy490774).

Unlike in the transcriptome profile, not so many virulence related proteins were shown by the
proteome profile to be significantly changed in the tract-specific environment. One possible
reason could be the low protein content of the pelletes (as a result of poor growth rate) which
does not result in a comprehensive detection of all the significantly changed proteins.

As mentioned earlier in this chapter, I used the metabolic, transcriptome and proteome data to
constrain the genome-scale model of E. faecalis and S. pyogenes. This workflow was designed
to find tract-specific drug targets in the respective metabolic networks. Therefore, the metabolic
data were integrated to each model independently to determine the state of metabolite uptake
and production rate under each condition. Unfortunately, as a result of the poor quality of the
data, a lot of adjustments to the flux bounds of the respective exchange reactions had to be
made for the models to have a feasible solution. Next, I tried to integrate the transcriptome
and proteome data individually to the models to observe the effect of integrated constraints on
the models. This process made it clear that only the integration of the transcriptome data had a
meaningful outcome. The reason is that there was hardly any protein responsible for the existing
reactions in the metabolic networks that were present in the list of significant fold changes in
the proteome profiles. Therefore, there was actually no constraint to be integrated. As also
discussed earlier, the most possible explanation for that would be the low protein content of the
samples, so many of the proteins were below the detection limit and therefore are absent from
the statistical analysis. On the other hand, the profiles of the significant fold changes from the
transcriptomics contained a large number of metabolic genes. Hence, integration of those sets
of constraints affected the genome-scale models considerably.

During the process of drug target identification, I distinguished between essential reactions and
drug targets. The use of essential reactions as drug targets would mean that a drug absolutely
inhibits an enzyme, which in turn would absolutely kill the bacteria. This is not a very realistic
assumption. There is always a limit in the level at which drugs inhibit a biological process.
Moreover, the likelihood of a drug killing a micro organism in an absolute way is also very
low. Therefore, a realistic assumption would be to consider a margin of dysfunction, not only
at the level of enzyme inhibition, but also at the level of killing the pathogen. Having said that,
I decided to consider three levels at which an enzyme can be inhibited by a drug, which would
be reducing the enzyme activity to 30%, 20% 10% of its original activity. In the first scenario,
I assumed that this inhibition absolutely kills the bacteria. Of course this is not realistic, but
it brings more input to the context. In the second scenario, with the same aim of having more
input, I assumed that a drug would entirely inhibit an enzyme and this reduction would reduce
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the growth rate of the pathogen to 30%, 20% 10% of its original value. In the third attempt,
which I referred to as the combo approach, I assumed that a drug would reduce the enzyme
activity to its 30%, 20% 10% of its original value, and the attenuation of enzyme would reduce
the growth rate of the bacteria to 30%, 20% 10% of its original value. From this perspective, a
drug target (enzyme) with the need for a lower reduction of its activity, which in turn reduces
the growth rate of bacteria more dramatically, would be a more efficient drug target.

I performed the explained processes for all the intended conditions. Not surprisingly, the size of
the profiles of potential drug targets, with few exceptions, grew along with a more restricted in-
hibition, both at the level of enzyme inhibition and the growth inhibition. However, the margin
was larger in the case of enzyme inhibition. In general, the libraries were in size of 50 to less
than 300 reactions. The potential drug targets belong to different subsystems such as glycol-
ysis, amino acid metabolism, etc. However, the identified drug targets which were previously
reported to serve as drug targets, such as GAPDH, are more promising candidates [Gómez et al.,
2019]. For each condition, there were a lot of reactions shared between the different libraries.
The reason was that a lot of the enzymatic inhibitions resulted in zero growth rate in the sys-
tem. Also, a lot of the reactions existed in the list of essential reactions too. The small margin
of difference in the libraries when distinguishing between the growth rate reduction to 20% or
10%, points out to the fact that genome-scale models are not very flexible with respect to the
reduction in enzyme activity. As the models in this study are not designed to simulate a com-
munity of bacterial cells, therefore, the system assumes that every single metabolite has to be
produced internally (of course other than the ones that are defined by exchange reactions) and
the metabolic communication under a normal physiological condition is not taken into account.
However, these results give us a rough idea on which enzymes are the most likely successful
candidates for inhibition.

Genome-scale metabolic models are widely used to find novel drug targets in various organisms.
A common problem in this field is that these studies normally use the unrealistic assumption
of full inhibition and full mortality. For instance, Paul and colleagues investigated potential
drug targets for cancer by screening the gene knockouts [Paul et al., 2021]. Likewise, Larsson
and colleagues investigated drug targets in the case of glioblastoma, assuming full inhibition
of 5 gene products [Larsson et al., 2020]. In another attempt, Jerbyn and Ruppin investigated
potential drug targets, again in cancer cell lines, by generating a library of synthetic lethal genes
whose knockouts would kill the cancer cells [Jerby and Ruppin, 2012]. However, the relative
inhibition has also been previously considered by the community. In a study aimed to provide
more insight for personalized medicine, a human genome-scale model was used, in which a
therapeutic window of 80% or lower rate of enzyme activity which reduces the growth rate to
45% to 75% of its original value is considered to be effective [Raškevičius et al., 2018]. Of
course the margin used there is much larger than the one used in this study, which allows for
the detection of more potential drug targets.

Genome-scale metabolic models can be used as powerful tools for identification of drug targets.
Metabolic drug targets can be more efficient than the ones from the signalling pathways, which
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are normally used in cancer therapies, due to the more conserved nature of metabolism [Lo-
casale and Cantley, 2011]. However, the investigation of drug targets should be done by having
realistic assumptions, sophesticated experimental design and experimental validation.
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CONCLUSION

In this thesis, I employed the genome-scale metabolic model of two human pathogens, Entero-
coccus faecalis and Streptococcus pyogenes to find tract-specific drug targets in their metabolic
networks. The idea was promoted given the rising trend of multi-resistance to antibiotics in
these two bacteria. First, In order to acquire a better understanding of the adaptive metabolism
of E. faecalis, I investigated the effect of glutamine auxotrophy on the adaptation of this species
to a declining environmental pH (from 7.5 to 6.5) at the metabolic and proteomic level. To get
an overall understanding of its metabolic adjustments, I integrated the experimental data into
the genome scale metabolic model of a ∆glnA mutant of E. faecalis. The genome-scale model
was successful in reproducing a large part of the experimental data, which was proven by the
comparison to the results of the wildtype. The integrative study resulted in a new design for the
transport system in the genome-scale model, which accounts for the different level of affinity
among the amino acids for the same transporter. This way, the model could successfully re-
flect the metabolic and proteome data into the flux distribution of the network. I also suggested
that the absence of glnA from the genome of the mutant potentially results in the lost control
of the glutamine uptake system, which further leads to a higher energy demand in the mutant
compared to the wildtype. In the next step, I developed a method for functional analysis of the
solution space of genome-scale metabolic models. The large solution space of genome-scale
models is considered as a major drawback of this modelling formalism, with part of the flux dis-
tribution profiles being contradictory to the actual biological phenotypes. The method presented
in this thesis enables one to identify the number of sensitive reactions in a metabolic network,
which I showed to be an informative indicator of the size of the solution space. The method also
allows for studying the flux distribution profiles at the branching points in the metabolic net-
work, and also to determine how effectively each set of experimental data shrinks the solution
space. In the last part, I used several libraries of multi-omics data (metabolic, transcriptome and
proteome) to develop tract-specific genome-scale models of E. faecalis and S. pyogenes. The
tract-specific models were then used to find tract-specific drug targets. As the quality of the
metabolic data was not very high, an improvement in that part might increase the reliability of
the results. The transcriptome data contained information regarding a large number of enzymes
under all conditions and therefore had a meaningful effect in constraining the models, although
with many adjustments being necessary. The proteome data in the case of the both bacteria did
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not contain any information about metabolic enzymes, therefore, was not effective in drug target
identification. For each of the bacteria, several libraries of potential drug targets were generated.
The drug targets have to be experimentally validated to prove their effectiveness. Overall, the
reliability of the suggested libraries of drug targets can be increased by improving the quality
of the experimental data which were used as constraints for the genome-scale models.
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Table A.1: Time course data showing the flux measurement of glucose, organic acids and amino
acids in the course of 21 hours (t1-t8) in chemostat cultures of ∆glnA mutant of E. faecalis. The
table is adapted from [Loghmani et al., 2021]

Exchange reaction t1 t2 t3 t4 t5 t6 t7 t8

R Ex glc e -7.170 -7.036 -7.455 NA -7.560 NA -7.881 -9.593
R Ex etoh e 2.157 2.035 2.134 NA 1.899 NA 1.689 1.490
R Ex ac e 4.037 4.385 4.161 NA 2.931 NA 3.314 2.568
R Ex lac L e 5.878 6.467 7.671 NA 7.339 NA 10.720 15.026
R Ex for e 7.109 7.522 7.262 NA 5.506 NA 5.570 4.226
R Ex asp L e -0.127 -0.117 -0.121 -0.105 -0.102 -0.108 -0.092 -0.095
R Ex ser L e -0.289 -0.283 -0.296 -0.292 -0.295 -0.317 -0.312 -0.387
R Ex glu L e -0.057 -0.045 -0.043 -0.020 -0.014 -0.014 0.010 0.014
R Ex gly e -0.085 -0.080 -0.087 -0.075 -0.073 -0.077 -0.062 -0.081
R Ex his L e -0.016 -0.012 -0.012 -0.006 -0.004 -0.005 0.002 -0.004
R Ex nh4 e 0.253 0.274 0.290 0.338 0.363 0.387 0.409 0.530
R Ex arg L e -0.284 -0.279 -0.295 -0.294 -0.300 -0.318 -0.312 -0.380
R Ex thr L e -0.054 -0.050 -0.054 -0.045 -0.043 -0.045 -0.034 -0.051
R Ex ala L e 0.060 0.065 0.059 0.080 0.088 0.093 0.117 0.124
R Ex pro L e -0.064 -0.057 -0.074 -0.045 -0.039 -0.047 -0.014 -0.043
R Ex cys L e 0.035 0.034 0.038 0.045 0.045 0.050 0.054 0.068
R Ex tyr L e -0.032 -0.022 -0.031 -0.034 -0.013 -0.055 -0.046 -0.045
R Ex val L e -0.084 -0.078 -0.085 -0.072 -0.069 -0.074 -0.056 -0.074
R Ex met L e -0.021 -0.019 -0.020 -0.017 -0.016 -0.017 -0.013 -0.019
R Ex orn L e 0.197 0.198 0.207 0.223 0.233 0.246 0.261 0.316
R Ex lys L e -0.075 -0.068 -0.076 -0.058 -0.052 -0.057 -0.035 -0.062
R Ex ile L e -0.076 -0.073 -0.076 -0.069 -0.067 -0.070 -0.060 -0.073
R Ex leu L e -0.134 -0.125 -0.131 -0.114 -0.108 -0.112 -0.087 -0.106
R Ex phe L e -0.046 -0.042 -0.046 -0.038 -0.034 -0.040 -0.029 -0.041
R Ex asn L e -0.051 -0.049 -0.051 -0.046 -0.046 -0.047 -0.041 -0.052
R Ex gln L e -0.147 -0.144 -0.153 -0.152 -0.155 -0.164 -0.162 -0.197
R Ex trp L e -0.006 -0.005 -0.006 -0.006 -0.005 -0.006 -0.004 -0.006
R Ex citr L e 0.022 0.022 0.021 0.022 0.023 0.022 0.023 0.019
R Ex cys L e -0.062 -0.060 -0.061 -0.057 -0.055 -0.055 -0.050 -0.053
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Table A.4: List of inactivated genes following the integration of proteome data at pH 7.5 from
the pH shift experiment. The table is adapted from [Loghmani et al., 2021]

Reactions Genes Reactions Genes

R TAL EF3304 R FRDx EF2566
R LDH D EF2295 R ARABte EF2773
R MALt EF1920 R PNTOt2 EF2657
R SERt6 EF3015 R THMASE EF2767
R DALAt EF1103 R RMK EF0433
R TMDPK EF3117 R RMI EF0434

R RIBFLVt2 EF1541 R GARFT EF1779
R HXANt2 EF2935 R VANX EF2293
R MENE EF0446 R GLNS EF2159

R ARGORNt EF0108 R NH4t EF0547
R LYSt6 EF0929 R UNAGAMAMT EF1173
R XYLB EF0557 R RAFDH EF1603
R XYLA EF0556 R CYSTGL EF3284
R XYLI EF0557 R DSERt EF1103
R FUMt EF1920 R PIht6 EF2442
R PTB EF1663 R RIBt2 EF2959
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Table A.5: List of proteomic constraints in the form of reactions upper and lower bounds at pH
6.5 from the pH shift experiment. The table is adapted from [Loghmani et al., 2021]

Reactions Adjusted lower bound Adjusted upper bound

R PRFGS 0 0
R SPMDabc 0 0

R PDE1 0.0 0.0
R PDE2 0.0 0.0
R PDE3 0.0 0.0
R PDE4 0.0 0.0
R PDE5 0.0 0.0

R NDPK9 0.0 0.0
R NDPK8 0.0 501130
R NDPK7 0.0 0.0010203525938033196
R NDPK6 0.0 0.0013224859790384868
R NDPK5 0.0 0.0010203525938033196
R GLNabc 0.0 0.06837444461554447
R GMPR 0.0 0.000768957299464954
R XANt2 0.002012843715119238 0.005257190576108279
R IMPC 0.0 0.0
R ME1x 0.0 0.0
R AIRC 0.0 0.0

R FMETDF 0.0 0.0
R TREpts 0.0 0.0
R ADSS 0.0 0.0

R GLUPRT 0.0 0.0
R URAt2 0.0003167241962024313 0.011771168317517122

R AICART 0.0 0.0
R XPPT 0.002720007446909017 0.007104176766568783

R PMANM 0.0 0.0
R PTRCabc 0.0 0.0

R CDD 0.0 0.0
R GLYK 0.0 0.0024090417384447812

R PRAGS 0.0 0.0
R MALPP 0.0 0.0
R OAADC 0.0 0.011374005166922309
R PRAIS 0.0 0.0
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Table A.6: List of missing essential genes from the experimentally detected protein library in
the pH shift experiment. The table is adapted from [Loghmani et al., 2021]

Genes Reactions

EF0168 R PNTK
EF0739 R NACUP, R NCAMRNSt
EF0904 R MEVK
EF0992 R PAPPT1 A, R PAPPT1 L
EF1391 R PZS
EF1392 R PZS
EF1393 R PZS
EF1396 R PZS, R Moabc
EF2183 R LTAS2
EF2294 R VANB
EF2411 R DAGK LPL
EF2439 R UDCPK, R UDCPDP
EF2494 R DASYN LPL
EF2661 R DAGK LPL
EF2746 R DARTAL EFA, R DALTAL EFA
EF2748 R DARTAL EFA, R DALTAL EFA
EF2973 R ALKP Efa
EF3072 R BTNt2i
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Table A.7: List of essential reactions (reactions that are necessary for the ∆glnA E. faecalis
model to have a feasible solution). The table is adapted from [Loghmani et al., 2021]

R ACACT1 R UAGPT1 A R DPMVD R HBUHL1 R TMDS
R ACCOAC R UAGPT1 L R DTMPK R HBUR1 R TRDR
R AGAT EFA R UAMAGS R EPA PS EFA R HCO3E R TRPTRS
R ALAR R UAMAS R Ex arg L e R HDDHL5 R TYRTRS
R ALATA Lr R UAPGR R Ex btn e R HDDR5 R HISTRS
R ALATRS R UDCPDP R Ex glyclt e R HDEHL4 R HMGCOAR
R ALKP Efa R UDCPDPS R Ex his L e R HDER4 R HMGCOAS
R ARGTRS R UDPG4E R Ex ile L e R HDMAT7 R HOCHL3
R ASPTRS R UGLDDS1 A R Ex leu L e R HEMAT2 R HOCR3
R BIOMASS R UGLDDS1 L R Ex nac e R HHDHL7 R HODHL8
R BPPA1 R URIDK1 R Ex pydam e R HHDR7 R HODR8
R BPPA1 L R VALt6 R Ex thm e R HHYHL2 R HPPK
R BPPA2 R VALTRS R Ex trp L e R HHYR2 R HTDHL6
R BPPA2 L R VANB R Ex val L e R HISt6 R HTDR6
R BTMAT1 R WTASI R FABM1 R MCMAT6 R ILEt6
R BTNt2i R WTASII R FABM2 R MCMAT7 R ILETRS
R CLPNS LPL R DARTAL EFA R G1PACT R MCMAT8 R IPDDI
R CPS EFA SYNTH R DASYN LPL R G1PTMT R PYDAMt R kaasIII
R CPS PS EFA R DDL R GALU R PYDXK R LEUt6
R CRCT R DDMAT5 R GAT1 EFA R PZS R LEUTRS
R CYSTRS R DEMAT4 R GCALDD R RBT5PDHy R LPGS EFA
R CYTK1 R DEX PS EFA R GF6PTA R RNAS LPL R LTAS1
R DAGGT LPL R DHFR R GLNTAL R SERTRS R LTAS2
R DAGK LPL R DHFS R GLUR R TAPGL4 EFA R LYSTRS
R DALTAL EFA R DHNPA R GLUTRS R TDMAT6 R MACPMT
R UAAGLS1 R DHPS3 R GLYCLTt2r R TDPDRE R MCMAT2
R UACGE R DMATT R GLYTRS R TDPGDH R MCMAT3
R UAGCVT R DNAS LPL R GRTT R THMabc R MCMAT4
R UAGDP R DPCOAK R GTPCI R THRTRS R MCMAT5
R LEUt6 R LEUTRS R LPGS EFA R LTAS1 R LTAS2
R LTAS2 R LYSTRS R MACPMT R MCMAT2 R MCMAT3
R MCMAT4 R MCMAT5
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Table A.8: List of essential genes and their respective enzymes in the ∆glnA E. faecalis model. The table is adapted from [Loghmani et al., 2021]

Genes Enzyme
EF0043 Glutamyl-tRNA synthetase
EF0045 Cysteinyl-tRNA synthetase (Cysteine–tRNA ligase) (CysRS)
EF0059 glucosamine-1-phosphate-N-acetyltransferase
EF0090 Diacylglycerol kinase (LPL specific)
EF0168 pantothenate kinase
EF0268 Lysyl-tRNA synthetase
EF0680 peptidoglycan glycosyltransferase
EF0724 glutamyl-tRNA(Gln):L-glutamine amido-ligase (ADP-forming)
EF0725 glutamyl-tRNA(Gln):L-glutamine amido-ligase (ADP-forming)
EF0726 glutamyl-tRNA(Gln):L-glutamine amido-ligase (ADP-forming)
EF0727 Diacylglycerol kinase (LPL specific)
EF0739 Nicotinic acid uptake
EF0770 Phosphatidylglycerol phosphate phosphatase (LPL specific)
EF0801 Leucyl-tRNA synthetase
EF0843 D-alanine—D-alanine ligase (reversible) (D-Ala-D-Ala ligase) (D-alanylalanine synthetase)
EF0845 UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine synthetase (alpha-glutamate)
EF0849 alanine racemase
EF0880 dephospho-CoA kinase
EF0901 isopentenyl-diphosphate D-isomerase
EF0902 phosphomevalonate kinase
EF0903 diphosphomevalonate decarboxylase
EF0904 mevalonate kinase
EF0930 Methionyl-tRNA synthetase113
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EF0981 geranyltranstransferase
EF0991 peptidoglycan glycosyltransferase
EF0992 phospho-N-acetylmuramoyl-pentapeptide-transferase (alpha-glutamate) (D-ala)
EF0993 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase
EF0994 UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide)pyrophosphoryl-undecaprenol N-acetylglucosamine transferase
EF1003 Isoleucyl-tRNA synthetase
EF1036 nucleoside-diphosphate kinase (ATP:GDP)
EF1115 Phenylalanyl-tRNA synthetase (Phenylalanyl-tRNA synthetase alpha subunit)
EF1116 Phenylalanyl-tRNA synthetase (Phenylalanyl-tRNA synthetase beta subunit)
EF1121 glutamate racemase
EF1148 peptidoglycan glycosyltransferase
EF1364 Hydroxymethylglutaryl CoA reductase
EF1379 Alanyl-tRNA synthetase (AlaRS)
EF1391 precursor Z synthase
EF1392 precursor Z synthase
EF1393 precursor Z synthase
EF1396 precursor Z synthase
EF1547 cytidylate kinase (dCMP)
EF1576 thymidylate synthase
EF1577 dihydrofolate reductase
EF1711 carbonate dehydratase (HCO3 equilibration reaction)
EF1746 UTP-glucose-1-phosphate uridylyltransferase
EF1908 UDP-N-acetylmuramoyl-L-alanine synthetase
EF1970 Aspartyl-tRNA synthetase (AspRS)
EF1971 Histidyl-tRNA synthetase
EF2150 UDP-N-acetylglucosamine 4-epimerase
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EF2162 dimethylallyltranstransferase
EF2182 Lipoteichoic acid synthase (LPL specific)
EF2183 Lipoteichoic acid modification (koijbiose)
EF2192 dTDPglucose 4
EF2193 dTDP-4-dehydromannose 3
EF2194 glucose-1-phosphate thymidylyltransferase
EF2294 D-alanine—(R)-lactate ligase
EF2379 Prolyl-tRNA synthetase
EF2396 uridylate kinase (UMP)
EF2406 Glycyl-tRNA synthetase
EF2407 Glycyl-tRNA synthetase
EF2411 Diacylglycerol kinase (LPL specific)
EF2439 Undecaprenyl-diphosphatase
EF2451 pantetheine-phosphate adenylyltransferase
EF2471 Arginyl-tRNA synthetase (ArgRS)
EF2476 peptidoglycan glycosyltransferase
EF2494 CDP-Diacylglycerol synthetase (Phosphatidate cytidylyltransferase) (LPL specific)
EF2495 Undecaprenyl diphosphate synthase
EF2644 Diacylglycerol kinase (LPL specific)
EF2655 phosphopantothenate-cysteine ligase
EF2656 phosphopantothenoylcysteine decarboxylase
EF2658 UDP-N-acetylmuramoylpentapeptide-lysine-N6-alanyltransferase
EF2661 Diacylglycerol kinase (LPL specific)
EF2691 1-Acyl-glycerol-3-phosphate acyltransferase (Efa specific)
EF2746 D-Alanine lipoteichoic acid ligase
EF2747 D-Alanine lipoteichoic acid ligase
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EF2748 D-Alanine lipoteichoic acid ligase
EF2749 D-Alanine lipoteichoic acid ligase
EF2764 Thymidylate kinase (dTMP kinase)
EF2858 Threonyl-tRNA synthetase
EF2871 nicotinate-nucleotide adenylyltransferase (nicotinate)
EF2875 acetyl-CoA carboxylase
EF2876 acetyl-CoA carboxylase
EF2877 acetyl-CoA carboxylase
EF2879 acetyl-CoA carboxylase
EF2882 Malonyl-CoA:[acyl-carrier-protein] S-malonyltransferase
EF2883 Tetradecanoyl-[acyl-carrier protein]:malonyl-CoA C-acyltransferase
EF2885 beta-ketoacyl-ACP synthase III
EF2890 1
EF2891 1
EF2908 peptidoglycan glycosyltransferase
EF2928 dihydrofolate synthase
EF2931 Valyl-tRNA synthetase
EF2973 alkaline phosphatase
EF3072 Biotin uptake
EF3112 glycerol 3-phosphate acyltransferase (Efa specific)
EF3129 peptidoglycan glycosyltransferase
EF3148 lysylphosphatidyl-glycerol synthetase
EF3265 dihydropteroate synthase
EF3267 GTP cyclohydrolase I
EF3268 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase
EF3269 dihydroneopterin aldolase
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Table A.9: Significant fold changes at the proteome level between t3 and t1. The table is adapted
from [Loghmani et al., 2021]

Reaction abbreviation Change p-value

R CTPS2 1.63890193589 0.04828668
R PMEVK 1.97630931519 0.049963774
R TAGA 1.71091285581 0.048401574

R FMNAT 1.53450840082 0.018418951
R NNAMr 0.579906671149 0.043743765
R RNDR2 0.113556516552 0.014524055
R ASPCT 0.540883578382 0.014436519

R DEX PS EFA 0.677245103099 0.034169764
R G3PO 2.93224651611 0.049505943
R OCBT 0.540883578382 0.014436519
R GMPR 0.580492532748 0.044735034
R SBTpts 0.208542436348 0.010564345
R DHNAS 1.54800580009 0.042118513

R PGL 0.620953374912 0.016626571
R MALTabc 2.71542379428 0.014436519

R ARGD 1.57686937955 0.038619556
R TYRTA 1.83546731126 0.030302482

R CDPMEK 2.9629291135 0.042488016
R RNDR4 0.113556516552 0.014524055
R RNDR3 0.113556516552 0.014524055

R PGPP LPL 0.486269996416 0.014436519
R TAPGL4 EFA 0.540883578382 0.014436519

R DAPDC 1.60416754956 0.031295061
R DHFOR2 0.444448732256 0.042674702
R TDPDRE 0.526923889232 0.040338473
R UACGE 0.677245103099 0.034169764
R DHFR 0.444448732256 0.042674702

R VALTRS 2.33769302453 0.032222324
R GTHS 2.02787326816 0.031295061
R CDD 0.486664770062 0.00041297

R RNDR1 0.113556516552 0.014524055
R CELBpts 0.532183444906 0.004964827
R CELBpts 0.532183444906 0.004964827
R BPPA2 L 0.677245103099 0.034169764

R RPI 2.73601994462 0.043937668
R GLUCYSL 2.02787326816 0.031295061

R EPA PS EFA 0.677245103099 0.034169764
R ALATA L 2.46626089459 0.04926589
R ACTPASE 0.543284194457 0.014436519

R BPPA2 0.677245103099 0.034169764
R PANB 1.54123791035 0.031265045

R G1PACT 2.26209396876 0.029276069
R UAGDP 2.26209396876 0.029276069
R RBFK 1.53450840082 0.018418951

R MTHPTGHM 2.01200124101 0.045724593
R GHMT 2.31513631222 0.031295061
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Table A.10: Significant fold changes at the proteome level between t4 and t1. The table is
adapted from [Loghmani et al., 2021]

Reaction abbreviation Change p-value

R PGL 0.5738456585 0.019662016
R CDD 0.58433750945 0.008558951

R ACTPASE 0.543462288312 0.031954297

Table A.11: Significant fold changes at the proteome level between t5 and t1. The table is
adapted from [Loghmani et al., 2021]

Reaction abbreviation Change P-value

R CDD 0.584205462912 0.011112227
R ACTPASE 0.523644783934 0.025410243

Table A.12: Significant fold changes at the proteome level between t6 and t1. The table is
adapted from [Loghmani et al., 2021]

Reaction abbreviation Change P-value

R CDD 0.521029799606 0.001808714
R ACTPASE 0.477016117438 0.009193028

Table A.13: Significant fold changes at the proteome level between t7 and t1. The table is
adapted from [Loghmani et al., 2021]

Reaction abbreviation Change P-value

R CDD 0.526602135869 0.004403881
R ACTPASE 0.544365914365 0.032780414
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Table A.14: Significant fold changes at the proteome level between t8 and t1. The table is
adapted from [Loghmani et al., 2021]

Reaction abbreviation Changes p-value

R PRPPS 0.702185299835 0.01759182
R PRFGS 0.294343721566 0.000171526

R SPMDabc 0.128708671432 0.000891361
R PDE1 0.579410399883 0.011248306
R PDE2 0.579410399883 0.011248306
R PDE3 0.579410399883 0.011248306
R PDE4 0.579410399883 0.011248306
R PDE5 0.579410399883 0.011248306

R NDPK9 0.357950631741 0.042018929
R NDPK8 0.357950631741 0.042018929
R NDPK7 0.357950631741 0.042018929
R NDPK6 0.357950631741 0.042018929
R NDPK5 0.357950631741 0.042018929
R NDPK4 0.357950631741 0.042018929
R NDPK3 0.357950631741 0.042018929
R NDPK2 0.357950631741 0.042018929
R NDPK1 0.357950631741 0.042018929
R GLNabc 1.55907771659 0.003943372
R GMPR 0.457885582652 0.006045753
R XANt2 0.379306679373 0.011248306
R IMPC 0.116277843614 1.52e-05
R ME1x 0.615708970929 0.018231213
R AIRC 0.228685137252 0.000929637

R FMETDF 1.6307598154 0.023588934
R PGAMT 0.355650632158 0.009695126
R TREpts 0.280736842019 5.44e-05
R ADSS 0.406572914915 2.98e-05

R GLUPRT 0.337390147352 0.023338551
R URAt2 0.379306679373 0.011248306

R AICART 0.116277843614 1.52e-05
R XPPT 0.512566866275 0.0159729

R PMANM 0.355650632158 0.009695126
R PTRCabc 0.128708671432 0.000891361

R PGMT 0.355650632158 0.009695126
R CDD 0.395281255682 8.09e-06

R GLYK 0.591527293003 0.026602872
R PRAGS 0.366141109905 0.024864028
R MALPP 0.564735962708 0.023338551
R OAADC 0.615708970929 0.018231213
R PRAIS 0.331714599531 0.010924227
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Table A.15: Flux measurement of glucose, organic acids and amino acids at two dilatation rates,
0.15 and 0.05 h-1 at pH 7.5 and 6.5. The data is used for the estimation of ATP maintenance.
The table is adapted from [Loghmani et al., 2021]

Reactions Experimental value

7,5, 0,15 6,5, 0,15 7,5 0,05 6,5, 0,05
R Ex glc e -6,3230357 -8,74125 -4,1436652 -5,2328571

R Ex etoh e 3,00853211 1,31258619 1,954819 1,43534594
R Ex ac e 3,24047722 1,6646415 2,34504525 1,81889951

R Ex lac L e 7,54292064 15,9580439 2,60823222 5,56738437
R Ex for e 5,57835409 2,79945752 4,41502043 3,30368615
Succinate 0 0 0 0

R Ex pyr e 0,10182884 0,10656909 0,09474662 0,12763664
Acetoin 0 0 0 0

2.3-butanediol 0 0 0 0
CO2 0 0 0 0
O2 0 0 0 0

R Ex asp L e -0,1308159 -0,137878 -0,1313828 -0,1505571
R Ex ser L e -0,3023771 -0,3221543 -0,1854702 -0,2508137
R Ex glu L e -0,0824365 -0,0705838 -0,0275192 -0,0733358
R Ex gly e -0,0953275 -0,0597635 -0,0581162 -0,0977894

R Ex his L e -0,0333229 -0,0289961 -0,0186223 -0,0300862
R Ex nh4 e -0,5438415 -0,751831 -0,3563948 -0,4500757

R Ex arg L e -0,2994718 -0,4119674 -0,121859 -0,2481603
R Ex thr L e -0,0737675 -0,0530418 -0,0425567 -0,0646863
R Ex ala L e 0,00692002 0,15424036 -0,000855 0,00952816
R Ex pro L e 0,0554295 0,16986676 -0,0973449 -0,1101082
R Ex cys L e -0,0859643 -0,1188409 -0,0563348 -0,0711429
R Ex tyr L e -0,0770671 -0,1081494 -0,0298488 -0,0621639
R Ex val L e -0,1156056 -0,1069205 -0,0658251 -0,1054554
R Ex met L e -0,0339244 -0,038035 -0,0570136 -0,0515313

Ornithine 0 0 0 0
R Ex lys L e -0,043371 -0,0116138 -0,0139551 -0,0388254
R Ex ile L e -0,0906547 -0,0875255 -0,0409405 -0,0770522
R Ex leu L e -0,1538447 -0,1398334 -0,0807965 -0,1387774
R Ex phe L e -0,0653184 -0,078708 -0,0400491 -0,0649809
R Ex trp L e -0,0071603 -0,0063578 -0,0165611 -0,007572
R Ex asn L e -0,0527041 -0,0388719 -0,0513122 -0,0335545
R Ex gln L e -0,1416857 -0,1958727 -0,0928507 -0,1172571
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Figure A.1: Comparison between the frequency of response to perturbation (sensitivity fre-
quency) and the FVA interval size in the mutant model integrated with medium composition,
metabolic and proteome data. The graph shows that the frequency of sensitivity is not correlated
with the FVA interval size. The figure is adapted from [Loghmani et al., 2022]
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Figure A.2: The proportion of sensitive reactions with respect to perturbations in other reactions
in the genome-scale models of E. faecalis wildtype (wt) and ∆glnA mutant (mt), when the
perturbation procedure was performed with opt-percentage of 99.9 in FVA. The integration of
constraints (none, medium composition, metabolic and proteome data, from left to right) into
the model results in reducing the number of sensitive reactions (red) and increasing the number
of robust reactions (blue). The figure is adapted from [Loghmani et al., 2022]
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Figure A.4: The relative flux distribution at the branching point in serine metabolism in the two
studied genome-scale models of E. faecalis with an opt-percentage of 99.9 in FVA, resulting
in the production of acetyl serine, seryl-tRNA or serine secretion. The figure is adapted from
[Loghmani et al., 2022]

Figure A.5: The relative flux distribution at the branching point in glutamine metabolism in the
two studied genome-scale models of E. faecalis with opt-percentage of 99.9 in FVA, resulting in
the distribution of glutamine in different pathways, namely amino acid, purine and pyrimidine
metabolism. The figure is adapted from [Loghmani et al., 2022]
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Figure A.6: The proportion of sensitive reactions with respect to perturbations in other reactions
in the genome-scale models of S. pyogenes. In the two charts on the bottom, “var” refers to the
case when more variable reactions were deactivated than stable reactions, and “stab” refers to
the case when more stable reactions were deactivated than variable reactions. The integration
of constraints (none, medium composition, metabolic and proteome data, from left to right)
into the model results in reducing the number of sensitive reactions (red) and increasing the
number of robust reactions (blue). The deactivation of a higher number of variable reactions
had a slightly more impact on the decrease of the number of sensitive reactions. The figure is
adapted from [Loghmani et al., 2022]
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Figure A.7: The relative flux distribution through the carbohydrate branchpoint, resulting in
homolactic or mixed acid fermentation in the genome-scale models of S. pyogenes. The figure
is adapted from [Loghmani et al., 2022]

Figure A.8: The relative flux distribution through the serine metabolism in the genome-scale
model of S. pyogenes, resulting in the production of acetyl serine, or seryl-tRNA or serine
secretion. The figure is adapted from [Loghmani et al., 2022]
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Figure A.9: The relative flux distribution through a branch point in glutamine metabolism in
the genome-scale model of S. pyogenes, resulting in the distribution of glutamine in different
pathways, namely amino acid, purine and pyrimidine metabolism. The figure is adapted from
[Loghmani et al., 2022]
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Figure A.10: The proportion of sensitive reactions with respect to perturbations in other reac-
tions in the genome-scale models of L. lactis wildtype. “stab” refers to the case when only
stable reactions were deactivated, while “var” refers to the case when only variable reactions
were deactivated. Not surprisingly, the deactivation of variable reactions had more impact on
the number of sensitive reactions. The figure is adapted from [Loghmani et al., 2022]
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Table A.17: Metabolic constraints integrated into the genome-scale metabolic model of E. fae-
calis to specify the CDM-LAB condition.

Reaction Lower bound Upper bound

R Ex cit e -9.0858053952 -6.0572035968

R Ex pyr e 1.1119774888 1.6679662332
R Ex lac L e 16.0 20.0
R Ex ac e 0.0 8.8
R Ex glc e -80.0 -15.0
R Ex asp L e 0.950435772 1.425653658
R Ex glu L e 1.9722732968 2.9584099452
R Ex asn L e 0.5276403992 0.7914605988
R Ex ser L e -0.0705287604 -0.0470191736
R Ex gln L e -10.0 10.0
R Ex his L e -1000.0 1000.0
R Ex gly e -2.0268700116 -1.3512466744
R Ex thr L e 1.8797085064 2.8195627596
R Ex arg L e -1000.0 1000.0
R Ex ala L e -1.7645513088 -1.1763675392
R Ex tyr L e 0.37976486 0.56964729
R Ex val L e -1000.0 1000.0
R Ex met L e 0.0 25.880516952
R Ex trp L e -10.0 0.30185178
R Ex phe L e -2.4554629944 -1.6369753296
R Ex ile L e -10.0 2.5319808948
R Ex leu L e -10.0 4.771032564
R Ex lys L e 0.753295696 1.129943544
R Ex cys L e -0.2307378216 -0.1538252144
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Table A.18: Metabolic constraints integrated into the genome-scale metabolic model of E. fae-
calis to specify the artificial saliva condition.

Reaction Lower bound Upper bound

R Ex cit e -0.1110395292 -0.0740263528
R Ex pyr e -2.9452427004 -1.9634951336

R Ex lac L e 0.0 10.0
R Ex ac e -6.0251192472 -4.0167461648
R Ex glc e -1.4729048976 -0.9819365984

R Ex asp L e -11.4799505136 -0.2
R Ex glu L e -17.588414748 10.0
R Ex asn L e -2.43410115 -1.6227341
R Ex ser L e -7.6286039364 -5.0857359576
R Ex gln L e -0.8403180408 -0.5602120272
R Ex his L e -1000.0 1000.0
R Ex gly e -2.646900366 -0.05

R Ex thr L e -2.0695203324 -1.3796802216
R Ex arg L e -1.0485705036 -0.6990470024
R Ex ala L e -9.8885349024 -0.05
R Ex tyr L e -17.063932644 -0.05
R Ex val L e -0.1412160492 -0.0941440328
R Ex met L e -5.647497468 -0.05
R Ex trp L e -2.959803234 -1.973202156
R Ex phe L e -2.132379954 -1.421586636
R Ex ile L e -10.3274020116 -0.05
R Ex leu L e -21.514502784 -0.05
R Ex lys L e -15.640768056 -0.05
R Ex cys L e -0.6024232356 -0.4016154904
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Table A.19: Transcriptomic constraints integrated into the genome-scale metabolic model of E.
faecalis to specify the artificial saliva condition.

Reaction Lower bound Upper bound Reaction Lower bound Upper bound

R CTPS2 0.0 0.045358235004 R TYRTA -0.177904448613 -0.072969058704
R ADCS 0.0 7.79918e-07 R ASAD -3.908536943211 -0.864389656599

R ALATRS 0.0 0.462093088076 R LTAS1 0.0 0.006244352138
R ASP2DC 0.0 0.739189880667 R LPGS EFA 0.000607625859 0.001419212883
R GLYCK 0.0 2.068254277975 R CITt6 0.0 840.139581492607
R ACACT1 0.0 0.00100484336 R ASNTRS 0.0 0.096616511483

R ALAR 0.016234043834 0.037917352965 R DTMPK 0.000681284165 0.001591254306
R DEX PS EFA 0.0 0.00019377711 R SHK3D 0.0 0.002779501922

R TMDS 0.0 0.008355982644 R TRE6PH 0.0 1.634006329198
R ASPTA1 -5.358540653769 -1.407600285225 R DAPDC 0.207199905183 0.490331329466

R GLCt 0.0 6.587879344828 R ARGORNt 0.0 86.822676956651
R UGLDDS1 A 0.0 0.059462642828 R LEUTRS 0.0 0.098255803102
R UGLDDS1 L 0.0 0.059462642828 R XYLA 0.0 324.208853487699

R GF6PTA 0.0 10.296700850497 R UACGE 0.0 0.178025157692
R PROTRS 0.0 0.044477277847 R TDPGDH 0.0 0.083299451623
R ARGTRS 0.0 0.048671204997 R GLNS 0.0 0.126605638935

R TPI 0.0 90.08586003439 R ASCt 0.0 4.650374090233
R NDPK8 0.0 5717662.18629238 R METTRS 0.0 0.026769162748
R NDPK7 0.0 0.011331297123 R PGSA LPL 0.013653056642 0.031889021185
R NDPK6 0.0 0.200047367356 R DRPA -0.036928574945 0.0
R NDPK5 0.0 0.011331297123 R MTHFD -0.686680217151 -0.287741879381
R NDPK4 0.0 0.18899703336 R MTHFC -0.686680217147 -0.287741879381
R NDPK3 0.0 0.614683932407 R RBK 0.0 0.096090242606
R NDPK2 0.0 1.892404991959 R TREPP -2.392325298199 0.0
R NDPK1 0.0 4.883249598052 R LEUt6 0.083400827666 0.358793399742

R ENO 5.0 183.64011056531 R 5RNTP1 -0.000109388957 0.065535188864
R CELBP -0.839972245292 0.0 R BPPA2 L 0.0 0.027555182955
R GMPR 0.0 0.077783634179 R DHDPS 0.202935792795 0.480240456621

R GLUSYN1 -8.718683174643 0.0 R EPA PS EFA 0.0 0.005231981978
R ILEt6 0.045977379355 0.271472018604 R CYSTRS 0.0 0.014345239124
R PGL 0.0 52.061242514703 R BPPA2 0.0 0.027555182955
R PGI -39.43265314777 31.316352762482 R ADPT 0.0 0.076586858641

R DURIPP -0.008340676585 0.0 R FBA -0.115696214635 61.715598372292
R 5RNTP2 -0.000109388918 0.0 R GLYK 0.0 1582.03221867543
R ASPTRS 0.006604631971 0.015426234167 R PPM2 -0.016756694571 0.0

R SERt6 0.002255190308 10.0 R HISTRS 0.001782683291 0.004163758103
R ARGD 0.0 218.474210820336 R ASPK 0.27927410487 5.0
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Table A.20: Metabolic constraints integrated into the genome-scale metabolic model of E. fae-
calis to specify the artificial saliva+glc condition.

Reaction Lower bound Upper bound

R Ex cit e -0.1764291744 -0.1176194496
R Ex pyr e -3.1336668072 -2.0891112048

R Ex lac L e 0.0 16.0
R Ex ac e -5.5356831228 -3.6904554152
R Ex glc e -38.793431628 -25.862287752

R Ex asp L e -0.0745011444 -0.0496674296
R Ex glu L e -1.567765728 -1.045177152
R Ex asn L e -0.1364143104 -0.0909428736
R Ex ser L e 0.815419712 1.223129568
R Ex gln L e 0.1579788344 0.2369682516
R Ex his L e -1000.0 1000.0
R Ex gly e -1000.0 0.5726552088

R Ex thr L e 1.3875473776 2.0813210664
R Ex arg L e -1000.0 1.0825183428
R Ex ala L e 3.286534108 4.929801162
R Ex tyr L e 0.8657114496 1.2985671744
R Ex val L e -0.050440662 -0.033627108
R Ex met L e -1.127462148 -0.751641432
R Ex trp L e -1000.0 0.3082542132
R Ex phe L e -1.8013793616 -1.2009195744
R Ex ile L e -1.0631915016 -0.7087943344
R Ex leu L e -0.1029384372 -0.0686256248
R Ex lys L e 5.6221317272 8.4331975908
R Ex cys L e -0.4073369328 -0.2715579552
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Table A.21: Transcriptomic constraints integrated into the genome-scale metabolic model of E.
faecalis to specify the artificial saliva+glc condition.

Reaction Lower bound Upper bound

R BUK 0.0000 0.0000
R FOLt 0.0000 0.0000

R ASP2DC 0.0000 1.6404
R MNLpts 0.0000 0.0000
R MENF 0.0000 0.0000
R MEND 0.0000 0.0000
R MENH 0.0000 0.0000

R ACACT1 0.0000 0.0011
R PDE1 0.0000 0.0000
R PDE2 0.0000 0.0000
R PDE3 0.0000 0.0000
R PDE4 0.0000 0.0000
R PDE5 0.0000 0.0000
R FRUK 0.0000 56.1331

R ARGTRS 0.0000 0.0504
R TPI 0.0000 76.8103

R M1PD 0.0000 0.0000
R TYRt6 -3.3086 -0.7907
R ENO 5.0000 157.6671
R PGK 5.0000 187.4988

R ASPTRS 0.0041 0.0382
R SERt6 -10.0000 0.0313
R DALAt 0.0000 0.0000

R ADPRDP 0.0000 0.0000
R UAMAS 0.0000 0.1591

R ADSS 0.0000 0.1573
R SHK3D 0.0000 0.0034

R ARGORNt 1.4204 8.1652
R XYLB 0.0000 0.0000
R XYLI 0.0000 0.0000
R PTB 0.0000 0.0000

R RIBt2 0.0000 0.0000
R GLNS 0.0000 0.3778
R ASCt 0.0000 10.9841
R RBK 0.0000 0.1277

R TREPP -0.1516 0.0000
R GLYC3Pabc 0.0000 0.0000

R DSERt 0.0000 0.0000
R ARABte 0.0000 0.0000

R MTHPTGHM 0.0000 0.0000
R ASPK 0.2962 100.0000
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Table A.22: Metabolic constraints integrated into the genome-scale metabolic model of E. fae-
calis to specify the artificial urine+glc condition.

Reaction Lower bound Upper bound

R Ex cit e -0.1680858588 -0.1120572392
R Ex pyr e 0.4944608472 0.7416912708

R Ex lac L e 0.0 16.0
R Ex for e 0.0 5.0
R Ex ac e 0.188004336 0.282006504
R Ex glc e -1.4732685504 -0.9821790336

R Ex asp L e 3.657555964 5.486333946
R Ex glu L e 7.2807040024 10.9210560036
R Ex asn L e 0.970110976 1.455166464
R Ex ser L e 2.287170024 3.430755036
R Ex gln L e -10.0 0.1294142196
R Ex his L e -1000.0 1000.0
R Ex gly e -1000.0 1.2799458408

R Ex thr L e 0.3877419584 0.5816129376
R Ex arg L e -1000.0 -0.0812764728
R Ex ala L e 1.3508984912 2.0263477368
R Ex tyr L e 3.084489 8.9767328352
R Ex val L e -10.0 10.0
R Ex met L e -10.0 4.33919415
R Ex trp L e -10.0 1.2122225328
R Ex phe L e -10.0 2.5365151608
R Ex ile L e -10.0 7.0297080324
R Ex leu L e -10.0 9.3360988308
R Ex lys L e 0.6182596768 0.9273895152
R Ex cys L e 0.0934520136 0.1401780204
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Table A.23: Transcriptomic constraints integrated into the genome-scale metabolic model of E.
faecalis to specify the artificial urine+glc condition.

Reaction Lower bound Upper bound Reaction Lower bound Upper bound

R CTPS2 0.0 0.087626334013 R TRE6PH 0.0 0.186650796687
R GLCpts 0.0 46.199781800126 R GLUPRT 0.0 1.415251689591

R ALATRS 0.0 0.428169938893 R GALU 0.0 0.467926255596
R ASP2DC 0.0 0.461376654738 R ARGORNt 0.0 100.0

R PPND 0.067848754978 10.0 R AICART 0.0 0.96664539192
R ACACT1 0.0 0.000924644451 R BTNt2i 0.0 0.000273242914

R SHKK 0.0 0.003642241016 R GLNS 0.0 0.132900051431
R FRUK 0.0 75.624389112006 R DRPA -0.042126778376 0.0

R UGLDDS1 A 0.0 0.060600870086 R RBK 0.0 0.158278121315
R UGLDDS1 L 0.0 0.060600870086 R TREPP -0.194577065149 0.0

R DHDPRy 0.565184 3.23065 R LEUt6 0.05169632412 0.222399470174
R GF6PTA 0.0 7.180629147768 R 5RNTP1 -0.000178938906 0.10720273176
R ARGTRS 0.0 0.052164505905 R OMPDC 0.0 2.363574788171

R TPI 0.0 202.703722364358 R URIDK2 0.0 0.234622546977
R G6PDA -0.381337207678 4.132117566719 R URIDK1 0.0 0.637314551939

R ENO 0.0 342.684563453802 R ADK1 -1.862741217194 0.0
R GMPR 0.0 1.261911251968 R PAPPT1 A 0.004539 0.058175
R ILEt6 0.028499255604 0.168272975891 R PAPPT1 L 0.00453 0.049775
R PGK 0.0 274.51428129779 R CYSTRS 0.0 0.012062860155
R PGI -42.262871201178 33.564035834253 R ADPT 0.0 0.069504041262

R DASYN LPL 0.0101 0.13367 R FBA -0.233001890895 124.289728612101
R 5RNTP2 -0.000178938842 0.0 R GLYK 0.0 77.577332570816
R SERt6 -10.0 0.025250003512 R DMATT 0.0 0.000111119513
R ARGD 0.386206922623 100.0 R PRAGS 0.0 1.803824084126
R IMPC -0.966645385676 0.0 R PRASCS 0.0 1.190080066819
R ORPT -1.906558125183 0.0 R PPM2 -0.016640947627 0.0
R PYK 0.0 97.359266882558 R G1PACT 0.0 0.448066349523

R HCO3E 0.271139379878 10.0 R UAGDP 0.0 0.448066349523
R CHORM 0.0 0.00387653107 R PNTOt2 0.0 1.9881067e-05
R PSCVT 0.0 0.003823321117 R ADD 0.0 5.145248211735
R ADSS 0.0 1.001250151411 R ACLDC 0.0 0.01358740313

R SHK3D 0.0 0.001209848482 R GARFT 0.0 2.550992466621
R TRE6PH 0.0 0.186650796687 R PRAIS 0.0 1.465160424421

R ASPK 0.659641336758 2.982720251091
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Table A.24: Metabolic constraints integrated into the genome-scale metabolic model of E. fae-
calis to specify the artificial urine+fru+suc condition.

Reaction Lower bound Upper bound

R Ex cit e -0.366158136 -0.244105424
R Ex pyr e 0.4695568464 0.7043352696

R Ex lac L e -0.553859808 -0.369239872
R Ex for e 0.0 16.0
R Ex ac e -1.2906393756 -0.8604262504
R Ex fru e -3.87308541 -1.582057

R Ex sucr e -1.3944038856 0.0
R Ex asp L e -5.5010967552 -3.6673978368
R Ex glu L e -9.4550768844 -6.3033845896
R Ex asn L e -1.4848437384 -0.9898958256
R Ex ser L e -4.8983897988 -3.2655931992
R Ex gln L e -0.661173516 -0.440782344
R Ex his L e -1000.0 1000.0
R Ex gly e -2.0970642996 -1.3980428664

R Ex thr L e -1.6845762804 -1.1230508536
R Ex arg L e -0.5750998476 -0.3833998984
R Ex ala L e -6.7073995824 0.0
R Ex tyr L e -11.11577145 0.0
R Ex val L e -1000.0 -0.0319046248
R Ex met L e -2.860459644 2.0
R Ex trp L e -1.3189221864 -0.8792814576
R Ex phe L e -1000.0 0.0
R Ex ile L e -5.2378809396 -3.4919206264
R Ex leu L e -11.406732642 -7.604488428
R Ex lys L e -12.796433472 0.0
R Ex cys L e -0.1786157952 10.0
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Table A.25: Transcriptomic constraints integrated into the genome-scale metabolic model of E.
faecalis to specify the artificial urine+fru+suc condition.

Reaction Lower bound Upper bound Reaction Lower bound Upper bound

R CTPS2 0.0 0.091982824738 R UACGE 0.0 0.159336979391
R GLCpts 0.0 54.941109228283 R AICART 0.0 0.642184009753

R ALATRS 0.0 0.434146968502 R PPNCL 6.362031e-06 0.00015
R ASP2DC 0.0 0.575950572659 R BTNt2i 0.0 0.000851604802
R ACACT1 0.0 0.001203278526 R GLNS 0.0 0.193233022331

R DEX PS EFA 0.0 0.00015175595 R DRPA -0.018852261402 0.0
R TMDS 0.0 0.007890760862 R MTHFD -0.767218974591 -0.321490300917

R UGLDDS1 A 0.0 0.070182 R MTHFC -0.767218974587 -0.321490300917
R UGLDDS1 L 0.0 0.070182 R RBK 0.0 0.138747506704

R DHDPRy 1.327852821455 3.142317264689 R LEUt6 0.039043955016 10.0
R GF6PTA 0.0 13.399527789717 R 5RNTP1 -0.000129187555 0.077396577114
R ARGTRS 0.0 0.058282731512 R OMPDC 0.0 2.971045120413

R TPI 0.0 104.201249838725 R URIDK2 0.0 0.23789775568
R ENO 0.0 202.353977312061 R URIDK1 0.0 0.646211131546

R GMPR 0.0 1.409917211213 R BPPA2 L 0.0 0.024662579579
R ILEt6 0.021524231611 10.0 R EPA PS EFA 0.0 0.004682755041
R PGK 0.0 172.534061544285 R UDCPDPS 7.887059e-06 0.00018
R PGI -42.262871201178 33.564035834253 R BPPA2 0.0 0.024662579579

R DASYN LPL 0.009721318991 0.162706 R ADPT 0.0 0.10246766851
R 5RNTP2 -0.000129187509 0.0 R FBA -0.260330015843 138.867315172787
R SERt6 0.005074441981 10.0 R GLYK 0.0 73.903114793851
R ARGD 0.409634300892 1.81337098052 R PRAGS 0.0 1.293301505965
R IMPC -0.642184005605 0.0 R PRASCS 0.0 0.847366875965
R ORPT -2.100846151855 0.0 R G1PACT 0.0 0.493726602792

R HCO3E 0.351615133168 0.959942711579 R UAGDP 0.0 0.493726602792
R ADSS 0.0 0.85963877323 R ADD 0.0 10.009102257617

R SHK3D 0.0 0.001305702644 R ACLDC 0.0 0.013033908298
R GLUPRT 0.0 1.133715497739 R GARFT 0.0 1.730343709752

R GALU 0.0 0.580091782066 R PRAIS 0.0 1.087532592403
R ARGORNt 0.134556132554 0.593514393258 R ASPK 0.721841359905 3.263971983392
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Table A.26: Metabolic constraints integrated into the genome-scale metabolic model of S. pyo-
genes to specify the CDM-LAB condition at pH 6.5.

Reaction Lower bound Upper bound

R EX cit e -9.6235255896 -6.4156837264
R EX ac e -55.129986552 5.0
R EX glc e -133.02224724 -10.0

R EX asp L e -6.2520499224 0.0
R EX glu L e -5.7362575416 -3.8241716944
R EX asn L e -7.2009017724 10.0
R EX ser L e -6.1695196536 -4.1130131024
R EX gln L e -2.1533685192 -1.4355790128
R EX his L e -1000.0 1000.0
R EX gly e -4.3555498884 10.0

R EX thr L e -2.9160152508 10.0
R EX arg L e -5.9403631632 10.0
R EX ala L e -6.220312086 10.0
R EX tyr L e -2.42864223 10.0
R EX val L e -1000.0 1000.0
R EX met L e -10.0 11.7261942768
R EX trp L e -0.2844561204 10.0
R EX phe L e -4.6855814232 10.0
R EX ile L e -1.1667264108 10.0
R EX leu L e -6.2215703112 10.0
R EX lys L e -10.0 0.5168450544
R EX cys L e -0.1937968236 10.0
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Table A.27: Metabolic constraints integrated into the genome-scale metabolic model of S. pyo-
genes to specify the CDM-LAB condition at pH 7.4.

Reaction Lower bound Upper bound

R EX cit e -1.3164671244 -0.8776447496
R EX pyr e 0.8269069024 1.2403603536
R EX ac e -1.0235968464 1.0
R EX glc e -35.256143556 -23.504095704

R EX asp L e -3.3049111296 -2.2032740864
R EX glu L e -3.2999236704 -2.1999491136
R EX asn L e -4.2329161932 -2.8219441288
R EX ser L e -3.640351326 -2.426900884
R EX gln L e -10.0 -1.2882045352
R EX his L e -1000.0 1000.0
R EX gly e -2.7074387664 10.0

R EX thr L e -3.1555247232 0.0
R EX arg L e -1.58946093 0.0
R EX ala L e -3.882668694 10.0
R EX tyr L e -1.39532211 0.0
R EX val L e -1000.0 1000.0
R EX met L e -10.0 6.4621847856
R EX trp L e -0.2205567996 0.0
R EX phe L e -2.4181307064 0.0
R EX ile L e -1.24260867 0.0
R EX leu L e -3.6736642524 0.0
R EX lys L e -0.3800688624 0.0
R EX cys L e -0.24030171 0.0
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Table A.28: Metabolic constraints integrated into the genome-scale metabolic model of S. pyo-
genes to specify the artificial saliva condition.

Reaction Lower bound Upper bound

R EX cit e -10.0 0.0287347944
R EX pyr e -0.9915097476 -0.6610064984

R EX lac L e 2.41 21.2
R EX ac e -2.122382616 -1.414921744
R EX glc e 0.0678873536 0.1018310304

R EX asp L e 1.678316024 2.517474036
R EX glu L e 4.359376276 6.539064414
R EX asn L e 0.3508170312 0.5262255468
R EX ser L e -2.0283197352 -1.3522131568
R EX gln L e -10.0 -0.2480597256
R EX his L e -1000.0 1000.0
R EX gly e -1.409 6.0

R EX thr L e -2.1453065064 10.0
R EX arg L e -10.0 4.534827294
R EX ala L e -4.280043126 10.0
R EX tyr L e -2.3005155708 0.0
R EX val L e -1000.0 1000.0
R EX met L e -10.0 4.6478316792
R EX trp L e -10.0 0.517699368
R EX phe L e -10.0 2.9871315672
R EX ile L e -10.0 2.847198168
R EX leu L e -3.005394084 10.0
R EX lys L e -10.0 7.745355072
R EX cys L e 10.0 60.467352144
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Table A.29: Transcriptomic constraints integrated into the genome-scale metabolic model of S.
pyogenes to specify the artificial saliva condition.

Reaction Lower bound Upper bound

R HDER4 0.005221 0.026195
R HTDR6 0.005221 0.026195
R HHYR2 0.005221 0.026195

R RHC 0.004003066683 0.040753447996
R PIt6 -100.0 0.109993561852

R HOCR3 0.005221 0.026195
R HDDR5 0.005221 0.026195

R UAMAGS 0.0036 0.026425
R ASPCT 0.02428 6.76029

R VALTRS 0.013975 0.065998
R HHDR7 0.00472 0.024036
R GLUR -0.026092 -0.00389

R GSHPO 0.0 25.587280606423
R HODR8 0.003028 0.016073

R METTRS 0.003527907361 0.018239
R HBUR1 0.005221 0.026195
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Table A.30: Metabolic constraints integrated into the genome-scale metabolic model of S. pyo-
genes to specify the artificial saliva+glc condition.

Reaction Lower bound Upper bound

R EX cit e -0.1693921176 -0.1129280784
R EX pyr e -2.5767719232 -1.7178479488

R EX lac L e -7.3592431392 -4.9061620928
R EX ac e -3.667778598 -2.445185732
R EX glc e -36.089528184 -10.0

R EX asp L e 0.8544850832 1.2817276248
R EX glu L e -1.8712230192 -1.2474820128
R EX asn L e -1.1914247172 -0.7942831448
R EX ser L e -5.779830444 10.0
R EX gln L e -10.0 -0.3684283016
R EX his L e -1000.0 1000.0
R EX gly e -2.339162622 10.0

R EX thr L e -2.5504304676 0.0
R EX arg L e -10.0 5.4569316288
R EX ala L e -2.3433739944 10.0
R EX tyr L e -9.25615866 0.0
R EX val L e -1000.0 1000.0
R EX met L e -10.0 1.354339656
R EX trp L e -10.0 0.1415635632
R EX phe L e -10.0 3.6364343196
R EX ile L e -5.9458412172 0.0
R EX leu L e -5.3395903032 0.0
R EX lys L e -3.3482730072 0.0
R EX cys L e 14.828757456 22.243136184

Table A.31: Transcriptomic constraints integrated into the genome-scale metabolic model of S.
pyogenes to specify the artificial saliva+glc condition.

Reaction Lower bound Upper bound

R RHC 0.003866707537 0.039365235949
R UAMAGS 0.003329 0.019776

R GRTT 9.848762e-06 3.3e-05
R GLUR -0.01996 -0.002166

R DMATT 9.848762e-06 3.3e-05
R METTRS 0.002975 0.01395
R UAGPT1 0.005066 0.019829

R DASYN LLA 0.01138 0.045589
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Table A.32: Metabolic constraints integrated into the genome-scale metabolic model of S. pyo-
genes to specify the natural human plasma condition.

Reaction Lower bound Upper bound

R EX cit e -0.4103004 -0.2735336
R EX pyr e 0.5014021176 0.7521031764

R EX lac L e 6.398 22.597
R EX for e 7.2926827712 10.9390241568
R EX ac e 1.473 8.2095
R EX glc e -2.695 -1.7969

R EX asp L e -4.495 -2.9972
R EX glu L e 2.42471 3.637
R EX asn L e -1.1607528696 -0.7738352464
R EX ser L e -0.8010762036 -0.5340508024
R EX gln L e -4.599068196 -3.066045464
R EX his L e -1000.0 1000.0
R EX gly e -1.388821302 -0.925880868

R EX thr L e -1.5783836796 0.0
R EX arg L e -0.165972 -0.03064
R EX ala L e -2.8190148984 0.0
R EX tyr L e -1.6670289696 0.0
R EX val L e -1000.0 1000.0
R EX met L e -0.098379 0.0
R EX trp L e -3.3910862388 0.0
R EX phe L e -4.3261799868 0.0
R EX ile L e -3.6185486256 10.0
R EX leu L e -10.0 1.2940224024
R EX lys L e -2.2327705056 0.0
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Table A.33: Transcriptomic constraints integrated into the genome-scale metabolic model of S.
pyogenes to specify the natural human plasma condition.

Reaction Lower bound Upper bound Reaction Lower bound Upper bound

R CITt6 0.0 1.925063216232 R GMPR 0.0 0.006014577206
R G6PI -1.706659545171 0.0 R AGAT LLA 0.00227713096 2.0

R DTMPK 0.004255 0.03294 R RPE -0.596412106775 -0.021236008114
R HDER4 0.00596 0.123895 R LTAS LLA 0.0021 0.03144
R CTPS2 0.0 0.089487595026 R PGK 31.97499165858 128.093450694278
R HTDR6 0.00596 0.123895 R HHDHL7 0.0159 0.103763

R PAP LLA 0.0 0.011619397254 R ALAALA 0.0 0.197417780428
R HHYR2 0.00596 0.123895 R CTPS1 1 0.0 0.089487595026

R RHC 0.065742904643 0.274205016606 R LDH L -289.188534671265 -20.0
R HCYSMT 0.0 10.0 R LYSTRS 0.0437 0.232089

R PIt6 0.0 1.304724689533 R PGI 15.243928832298 64.876767742903
R FFSD 0.0 0.753236747085 R URIDK2 0.0 0.013072501467

R HOCR3 0.00596 0.123895 R HODR8 0.00346 0.073859
R HDDR5 0.00596 0.123895 R METTRS 0.0121 0.088602

R UAMAGS 0.0 0.329722407032 R SUCH 0.0 0.012539981607
R TDPGDH 0.0 0.007729 R MACPMT 0.039704196119 2.0

R G5SD 0.0 0.130095371752 R CYSTRS 0.0 0.301441238719
R VALTRS 0.0 0.292254 R G1PTMT 0.0 0.007309
R HODHL8 0.010205 0.070865 R GAPN 0.0 0.00495355176
R HOCHL3 0.017596 0.120456 R HBUR1 0.00596 0.123895

R RPE L -1.640584263525 0.0 R HHYHL2 0.0175 0.120456
R PROTRS 0.008373 0.173528 R HTDHL6 0.0175 0.120456
R HHDR7 0.0054 0.111625 R HDDHL5 0.01759 0.120456

R HDEHL4 0.01759 0.120456 R TDPDRE 0.0 0.007199
R HBUHL1 0.01759 0.120456 R CYNt 0.0 0.04949231049

R FORt2 -10.0 -1.309221213781 R ACTPASE 0.0 0.030877056598
R PFK 7.46111 28.6435 R UAGPT1 0.0 0.253371092041

R GLUR -0.175473349266 0.0 R DASYN LLA 0.0355 0.262378
R NADN 0.0 0.000922423278 R GHMT -10.0 8.885434429244
R SERAT 0.001006092738 0.025691847404
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Table A.34: Significant fold changes at the protein level in E. faecalis between Saliva+glc and
CDM-LAB.

Genes log fold change adjusted p-value Genes log fold change adjusted p-value

CON A2I7N0 3.19 4.09e-05 EF 1573 1.28 0.000544
CON P28800 5.87 4.48e-14 EF 1753 836 0.0111
CON P41361 4.14 4.48e-14 EF 1904 2.7 1.2e-09
CON Q3SX09 2.75 5.53e-12 EF 1937 -1.45 0.00156

dapH -1.15 0.000139 EF 2049 3.66 5.19e-06
dltA 1.58 2.41e-10 EF 2050 3.36 4.48e-14
dltD 2.76 4.48e-14 EF 2067 -2.58 0.00138

EF 0063 -6.69 4.48e-14 EF 2174 814 0.0072
EF 0157 -2.82 4.48e-14 EF 2211 6.22 1.57e-05
EF 0164 -1.04 0.00196 EF 2222 -815 0.0378
EF 0236 -3.17 1.94e-07 EF 2254 1.19 0.000361
EF 0382 -1.84 26 EF 2445 661 0.0139
EF 0512 793 0.0257 EF 2458 724 0.0276
EF 0629 4.21 4.48e-14 EF 2460 811 0.00126
EF 0630 4.94 4.41e-12 EF 2893 1.39 0.000704
EF 0686 824 0.00304 EF 2919 -656 0.0457
EF 0799 1.58 0.000117 EF 2985 4.51 4.48e-14
EF 0822 877 0.0101 EF 3054 -1.37 1.32e-05
EF 0829 1.24 0.00538 EF 3079 -1.76 6.08e-07
EF 0871 -858 0.0356 EF 3106 -1.97 0.000839
EF 0911 -918 0.00495 EF 3108 -2.04 0.0186
EF 0912 -1 0.0049 EF 3109 -1.64 4
EF 1022 1.4 12 EF 3168 607 0.0232
EF 1082 1.4 1.59e-07 EF 3206 1.28 0.00157
EF 1102 3 7.59e-05 EF 3276 -2.66 0.00394
EF 1153 -1.11 2.14e-07 glnA 1.05 0.0277
EF 1199 0.95 0.0482 gspA-2 -3.15 29
EF 1264 1.56 4.06e-05 rplX 1.06 0.000782
EF 1340 698 0.0345 rpsF 1.26 0.00806
EF 1352 1.66 1.73e-07 rpsJ 0.8 0.0158
EF 1511 -6.38 4.91e-08 rpsM 618 0.0441
EF 1513 -5.86 4.48e-14 rpsN2 1.45 0.00184
EF 1533 937 0.0465 rpsS 719 0.0154

sstT -2.91 2.43e-06 tag-2 -1.45 0.00727
traB-2 -715 0.0273
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Table A.35: Significant fold changes at the protein level in E. faecalis between Urine+glc and
CDM-LAB.

Genes log fold change adjusted p-value

argS 1.3 1.3e-05
cdd 778 0.0289

EF 0063 -4.86 3.1e-05
EF 0157 -2.17 3.14e-10
EF 0236 -2.45 0.00566
EF 0247 -847 0.0137
EF 0512 1.07 0.00901
EF 0575 2.63 0.000155
EF 0577 2.46 1.34e-13
EF 0647 1.28 0.0487
EF 0686 1.02 0.00224
EF 0797 -1.08 0.0047
EF 0822 1.35 0.000164
EF 1057 3.74 0.0299
EF 1058 3.39 7.37e-05
EF 1511 -8.84 2.49e-11
EF 1513 -5.51 1.58e-11
EF 1525 1.13 0.0096
EF 2074 3.37 1.34e-13
EF 2076 2.9 1.34e-13
EF 2174 1.16 0.000499
EF 2222 -1.05 0.0254
EF 2254 1.2 0.00734
EF 2458 1.34 2.52e-05
EF 3079 -1.77 7.43e-05

gatC 1.3 0.0315
proC.1 2.27 0.000136
rplX 1.14 0.00595
rpsM 762 0.0466
ssb-4 2.9 0.0392
tpiA 1.04 0.0282
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Table A.36: Significant fold changes at the protein level in S. pyogenes between Plasma and
CDM-LAB at pH 7.4.

Genes log fold change adjusted p-value Genes log fold change adjusted p-value

accA -2.13 0.0123 pyrF 4.04 0.0114
accC -2.68 8.38e-08 pyrR 3.35 0.00089
accD -1.86 0.00102 recX -2.1 0.0171
adhE 1.84 0.0271 sgaT -3.63 0.0463
carA 3.73 4.46e-10 ska 2.24 0.0431
carB 4.56 4.64e-10 Spy49 0176 4.74 2.72e-13
citD -5.33 4.12e-10 Spy49 0212 5.31 0.00272
citE -5.59 0.0452 Spy49 0441 -2.68 0.0201

codY 1.93 0.0111 Spy49 0579 -4.82 0.00413
dacA1 -2.98 0.000608 Spy49 0622 -3.81 2.06e-06
fabD -2.35 0.000495 Spy49 0715 2.22 0.0123
fabF -2.04 0.00785 Spy49 0756 -2.15 0.00603
fabG -1.68 0.0157 Spy49 0774 -5.4 0.000129
fabH -2.02 0.00876 Spy49 0794 -1.6 0.0254
fabK -1.83 0.0339 Spy49 0822 -3.94 1.74e-08
fruK 1.53 0.0189 Spy49 0881 -7.63 0.00115
hasA -2.86 0.00615 Spy49 0901 -4.78 0.000159
hasC -2.89 0.000511 Spy49 0997c -3.83 0.00544
lacD1 3.8 0.000544 Spy49 1092c 2.05 0.0307
mtsA 2.29 0.0011 Spy49 1224c 1.89 0.0499
mtsB 3.08 4.59e-10 Spy49 1297c 2.46 0.0183

nrdE.2 6.76 0.000407 Spy49 1298c 3.55 3.89e-10
nrdF.2 5.74 0.00569 Spy49 1299c 3.92 0.00782
oppA 1.63 0.0115 Spy49 1320c -3.35 0.0144
pepC 2.12 0.0253 Spy49 1386c 3.98 0.0297
pepD 2.47 0.0221 Spy49 1396c 5.82 0.0153
phaB -1.96 0.0272 Spy49 1405c 4.11 0.00311
plr 1.91 0.0161 Spy49 1458c -5.53 0.000707

ptsH 2.38 0.0244 Spy49 1510c -3.59 0.0195
purD 1.79 0.0263 Spy49 1525 -4.69 0.00442
pyrB 5.03 1.12e-07 Spy49 1609c -1.43 0.0188
pyrE 4.15 0.00145 Spy49 1686 1.98 0.0373

Spy49 1784c -3.86 0.000891
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Table A.37: Essential reactions in the model of E. faecalis constrained with the metabolic data
from the batch culture experiment in CDM-LAB at pH 6.5.

PRPPS NDPK3 UAMAS Ex ch4s e METGL 1 AGAT EFA
THMabc NDPK2 MCMAT5 GLYTRS URIDK1 PROTRS
LYSTRS NDPK1 MCMAT4 ETOHt1 HISt6 WTASI

DARTAL EFA HDDHL5 MCMAT2 UACGE RPE ACCOAC
HTDR6 HMGCOAS OCMAT3 Ex lac L e BPPA2 L HHDR7

DAGK LPL HMGCOAR MCMAT8 MCMAT6 PPNCL GLYt6
DHPS3 TYRt6 BIOMASS HOCR3 RPI GRTT
PMEVK TYRTA HODR8 BTMAT1 DHDPS TPI

Ex ala L e ASPTRS 1 UAMAGS DHFS EPA PS EFA MEVK
ADPTA ASNTAL MACPMT DHFR ALATA L NDPK4
HPPK PYDXK THRt6 TDPGDH Ex leu L e G6PDHy

HHYR2 PZS PKL FTHFL CPS EFA SYNTH CPS PS EFA
SERTRS PTAr LTAS1 ALCD2x Ex ac e TDMAT6
WTASII IPDDI LTAS2 VALTRS PAPPT1 A ENO
SERD L CO2t G1PTMT METS UDCPDPS ASPTRS
DHNPA ASPt6 ASNt6 PTPAT PAPPT1 L LDH L
HDDR5 CH4St DAPE HOCHL3 CYSTRS SERt6
TRPTRS ILEt6 HHYHL2 BTNt2i BPPA2 TAL
ACACT1 CRCT HTDHL6 HDMAT7 DNAS LPL ASAD

Ex trp L e ALA Lt6 CYSTGL DALTAL EFA DMATT GLUR
GAT1 EFA FORt ADPDS PFL ACt6 ILETRS

ALAR DEMAT4 PGPP LPL DDL ALKP Efa CYTK1
Ex arg L e FABM1 PYK APAT Ex thm e LEUTRS

PGDH FABM2 ALATA Lr UAPGR TYRTRS Ex his L e
UDPG4E Ex co2 e PGAMT METTRS VANB GALU

CLPNS LPL BPPA1 L HCO3E PPND PROTS LPL v6 0 LYSt6
GLUTRS ASPK LPGS EFA RNAS LPL HSDy Ex btn e
HODHL8 PGM PPCDC Ex ile L e G1PACT TDPDRE

Ex gln L e PGL PHEt6 PGSA LPL HEMAT2 DAPDC
DEX PS EFA PGK CITt6 UAGCVT Ex cys L e PGSYNTH

TMDS Ex glyclt e ALATRS UDCPDP CITL
DPMVD HHDHL7 GLYCLTt2r DDMAT5 UAGDP Ex etoh e
GLNTAL DASYN LPL DTMPK HDEHL4 Ex val L e PYRt2
ASPTA1 H2Ot5 HDER4 GCALDD ACALDt RBT5PDHy
PNTK VALt6 OCDMAT8 Ex glc e HBUR1 Ex cit e

UGLDDS1 A DAGGT LPL GLUt6 MTHFD HISTRS GAPD
UAGPT1 A kaasIII ARGTRS MTHFC THRTRS TKT1
UAGPT1 L TRDR UAAGLS1 HBUHL1 GTPCI TKT2

UGLDDS1 L ASNPTH TAPGL4 EFA DPCOAK BPPA1 LEUt6
DHDPRy METFR MCMAT3 Ex h2o e GHMT CYSTL
PHETRS MCMAT7 ACALD

148



Table A.38: Potential drug targets in E. faecalis under CDM-LAB condition according to the
Lib 7.

ADPTA PYK PGM Ex etoh e CO2t APAT
SERD L PHEt6 PGL PYRt2 ASPt6 PPND
PGDH CITt6 PGK Ex cit e CH4St Ex glc e

Ex gln L e GLUt6 H2Ot5 GAPD ALA Lt6 MTHFD
ASPTA1 LYSt6 ASNPTH TKT1 FORt MTHFC
DHDPRy DAPDC METFR TKT2 Ex co2 e Ex h2o e

GLYt6 ETOHt1 G6PDHy CYSTL ASPK THRt6
TPI Ex lac L e ENO METGL 1 HSDy ASNt6

TYRt6 FTHFL LDH L RPI CITL DAPE
TYRTA ALCD2x SERt6 DHDPS ACALDt CYSTGL

ASPTRS 1 METS TAL Ex ac e GHMT ADPDS
ASNTAL PFL ASAD ACt6 ACALD

Table A.39: Essential reactions in the model of E. faecalis constrained with the metabolic and
transcriptome data from the batch culture experiment in Saliva.

PRPPS GLU5K OCBT ASAD HDER4 DHFS RBT5PDHy ALKP Efa
ADCS Ex phe L e IPDDI IMPC SHK3D DHFR GAPD Ex thm e
ASNN TMDS CO2t GLUR DHQD TDPGDH AIRC TYRTRS

THMabc DPMVD ASPt6 GARFT OCDMAT8 FTHFL Ex ival e NACUP
PSCVT GLNTAL CH4St UAMAS DHQS ALCD2x TKT1 VANB

DARTAL EFA ASPTA1 ILEt6 MCMAT4 ILETA2 PAt TKT2 LYSTRS
Ex 2mbut e PNTK DPR MCMAT2 ARGTRS VALTRS LEUt6 P5CRr

ADCL UGLDDS1 A CRCT ILETA4 ILETA2t METS CYSTL PRAGS
HTDR6 UAGPT1 A ALA Lt6 LEUTA UAAGLS1 PTPAT OMPDC PROTS LPL v6 0

DAGK LPL UAGPT1 L DEMAT4 OCMAT3 TAPGL4 EFA HOCHL3 METGL 1 HSDy
DHPS3 UGLDDS1 L VALTA MCMAT8 MCMAT3 BTNt2i URIDK1 FRDx
PMEVK DHDPRy FABM1 BIOMASS PRFGS PDUL PYDAMK PRASCS
ADPTA AGAT EFA FABM2 HODR8 ILETRS GLNS HISt6 G1PACT
HPPK PROTRS Ex co2 e UAMAGS CYTK1 LEUTA2t Ex acald e HEMAT2

HHYR2 WTASI BPPA1 L IMPD GLUPRT HDMAT7 HYPOE CITL
SERTRS ACCOAC ASPK MACPMT LEUTRS DALTAL EFA RPE UAGDP
DAHPS HHDR7 ILETA THRt6 Ex his L e PDUW ORPT Ex val L e
WTASII GLYt6 PGM PKL GALU DDL BPPA2 L ACALDt
DHNPA LEUTA2 PGL LTAS1 ARGORNt APAT PPNCL Ex pa e
HDDR5 LEUTA3 PGK LTAS2 LYSt6 UAPGR RPI HBUR1
TRPTRS LEUTA4 Ex glyclt e G1PTMT SUCCt6 METTRS DHDPS CYSTH
ACACT1 GRTT HHDHL7 DAPE Ex btn e PPND EPA PS EFA HISTRS

Ex trp L e TPI DASYN LPL HHYHL2 TDPDRE RNAS LPL CK THRTRS
Ex gly e MEVK Ex orn L e HTDHL6 DAPDC Ex ile L e ALATA L GTPCI

GAT1 EFA NDPK4 H2Ot5 CYSTGL PGSYNTH PGSA LPL Ex leu L e BPPA1
ALAR NDPK3 VALt6 ADPDS Ex ch4s e UAGCVT CPS EFA SYNTH GHMT

GLUDy NDPK2 DAGGT LPL PGPP LPL METabc UDCPDP PAPPT1 A ACALD
Ex arg L e NDPK1 kaasIII PYK GLYTRS DDMAT5 UDCPDPS MCMAT7

GMPS2 DUTPDP TRDR CHORS ADSL2 HDEHL4 PAPPT1 L PHETRS
NAPRT HDDHL5 METFR ALATA Lr ADSL1 GCALDD ACKr PRAIS
G5SADs Ex succ e G6PDHy PGAMT ETOHt1 Ex glc e CYSTRS
PGDH HMGCOAS CPS PS EFA HCO3E UACGE MTHFD BPPA2

ASP1DC HMGCOAR TDMAT6 LPGS EFA AICART MTHFC DNAS LPL
UDPG4E PC ENO PPCDC Ex lac L e HBUHL1 GLNt6

CLPNS LPL TYRt6 ASPTRS PHEt6 ILETA3 DPCOAK DMATT
SHKK PRDH LDH L CITt6 HOCR3 Ex h2o e ACt6

GLUTRS TYRTA SERt6 ALATRS BTMAT1 PGMT PANB
G5SD PYDXK ARGD ADSS MCMAT6 Ex nac e PANC

HODHL8 PZS PHETA GLYCLTt2r PFLpa Ex etoh e PYDXPP
DEX PS EFA PTAr TAL DTMPK MCMAT5 PYRt2 Ex glu L e

149



Appendix A Supplementary materials

Table A.40: Potential drug targets in E. faecalis under artificial saliva condition according to the
Lib 7.

ASNN PC ILETA4 ILETA2t NH4t DHDPS
Ex nh4 e TYRt6 THRt6 TRPDC APAT ACKr

Ex 2mbut e PRDH DAPE DAPDC PPND ACt6
VALTA3 CH4St CYSTGL METabc MTHFD PYDXPP
VALTA2 ILEt6 ADPDS ILETA3 MTHFC CITL
ADPTA VALTA ALATA Lr PFLpa THRD L Ex ibut e
SERD L TRPAt HCO3E FTHFL Ex h2o e PHEDC
PHEAt ILETA PHEt6 PAt PYRt2 METFR

VALTA4 H2Ot5 CITt6 METS CYSTL SERt6
DHDPRy VALt6 ILETA2 PDUL METGL 1 ARGD
PDUW PHETA VALTA2t

Table A.41: Essential reactions in the model of E. faecalis constrained with the metabolic and
transcriptome data from the batch culture experiment in Saliva+glc.

PRPPS GLU5K OCBT ASAD HDER4 DHFS RBT5PDHy ALKP Efa
ADCS Ex phe L e IPDDI IMPC SHK3D DHFR GAPD Ex thm e
ASNN TMDS CO2t GLUR DHQD TDPGDH AIRC TYRTRS

THMabc DPMVD ASPt6 GARFT OCDMAT8 FTHFL Ex ival e NACUP
PSCVT GLNTAL CH4St UAMAS DHQS ALCD2x TKT1 VANB

DARTAL EFA ASPTA1 ILEt6 MCMAT4 ILETA2 PAt TKT2 LYSTRS
Ex 2mbut e PNTK DPR MCMAT2 ARGTRS VALTRS LEUt6 P5CRr

ADCL UGLDDS1 A CRCT ILETA4 ILETA2t METS CYSTL PRAGS
HTDR6 UAGPT1 A ALA Lt6 LEUTA UAAGLS1 PTPAT OMPDC PROTS LPL v6 0

DAGK LPL UAGPT1 L DEMAT4 OCMAT3 TAPGL4 EFA HOCHL3 METGL 1 HSDy
DHPS3 UGLDDS1 L VALTA MCMAT8 MCMAT3 BTNt2i URIDK1 FRDx
PMEVK DHDPRy FABM1 BIOMASS PRFGS PDUL PYDAMK PRASCS
ADPTA AGAT EFA FABM2 HODR8 ILETRS GLNS HISt6 G1PACT
HPPK PROTRS Ex co2 e UAMAGS CYTK1 LEUTA2t Ex acald e HEMAT2

HHYR2 WTASI BPPA1 L IMPD GLUPRT HDMAT7 HYPOE CITL
SERTRS ACCOAC ASPK MACPMT LEUTRS DALTAL EFA RPE UAGDP
DAHPS HHDR7 ILETA THRt6 Ex his L e PDUW ORPT Ex val L e
WTASII GLYt6 PGM PKL GALU DDL BPPA2 L ACALDt
DHNPA LEUTA2 PGL LTAS1 ARGORNt APAT PPNCL Ex pa e
HDDR5 LEUTA3 PGK LTAS2 LYSt6 UAPGR RPI HBUR1
TRPTRS LEUTA4 Ex glyclt e G1PTMT SUCCt6 METTRS DHDPS CYSTH
ACACT1 GRTT HHDHL7 DAPE Ex btn e PPND EPA PS EFA HISTRS

Ex trp L e TPI DASYN LPL HHYHL2 TDPDRE RNAS LPL CK THRTRS
Ex gly e MEVK Ex orn L e HTDHL6 DAPDC Ex ile L e ALATA L GTPCI

GAT1 EFA NDPK4 H2Ot5 CYSTGL PGSYNTH PGSA LPL Ex leu L e BPPA1
ALAR NDPK3 VALt6 ADPDS Ex ch4s e UAGCVT CPS EFA SYNTH GHMT

GLUDy NDPK2 DAGGT LPL PGPP LPL METabc UDCPDP PAPPT1 A ACALD
Ex arg L e NDPK1 kaasIII PYK GLYTRS DDMAT5 UDCPDPS MCMAT7

GMPS2 DUTPDP TRDR CHORS ADSL2 HDEHL4 PAPPT1 L PHETRS
NAPRT HDDHL5 METFR ALATA Lr ADSL1 GCALDD ACKr PRAIS
G5SADs Ex succ e G6PDHy PGAMT ETOHt1 Ex glc e CYSTRS
PGDH HMGCOAS CPS PS EFA HCO3E UACGE MTHFD BPPA2

ASP1DC HMGCOAR TDMAT6 LPGS EFA AICART MTHFC DNAS LPL
UDPG4E PC ENO PPCDC Ex lac L e HBUHL1 GLNt6

CLPNS LPL TYRt6 ASPTRS PHEt6 ILETA3 DPCOAK DMATT
SHKK PRDH LDH L CITt6 HOCR3 Ex h2o e ACt6

GLUTRS TYRTA SERt6 ALATRS BTMAT1 PGMT PANB
G5SD PYDXK ARGD ADSS MCMAT6 Ex nac e PANC

HODHL8 PZS PHETA GLYCLTt2r PFLpa Ex etoh e PYDXPP
DEX PS EFA PTAr TAL DTMPK MCMAT5 PYRt2 Ex glu L e
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Table A.42: Potential drug targets in E. faecalis under artificial saliva+glc condition according
to the Lib 7.

ASNN ARGORNt PGK TKT1 PTAr MTHFC
Ex 2mbut e LYSt6 Ex orn L e TKT2 OCBT Ex h2o e

ADPTA DAPDC H2Ot5 LEUt6 CO2t Ex etoh e
Ex gly e METabc VALt6 CYSTL ASPt6 PYRt2
GLUDy ETOHt1 METFR METGL 1 CH4St GAPD

Ex arg L e Ex lac L e G6PDHy Ex acald e ILEt6 Ex ival e
G5SADs ILETA3 ENO RPE ALA Lt6 ADPDS
PGDH PFLpa LDH L RPI Ex co2 e ALATA Lr
G5SD FTHFL SERt6 DHDPS ASPK HCO3E

GLU5K ALCD2x ARGD CK ILETA PHEt6
Ex phe L e PAt PHETA ALATA L PGM CITt6

ASPTA1 METS TAL ACKr PGL ILETA2
DHDPRy PDUL ASAD GLNt6 ACALDt ILETA2t

GLYt6 GLNS ILETA4 ACt6 CYSTH PC
LEUTA2 LEUTA2t LEUTA PYDXPP GHMT TYRt6
LEUTA3 PDUW THRt6 P5CRr ACALD PRDH
LEUTA4 APAT PKL HSDy Ex glc e TYRTA

TPI PPND DAPE CITL MTHFD CYSTGL
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Table A.43: Essential reactions in the model of E. faecalis constrained with the metabolic and
transcriptome data from the batch culture experiment in Urine+fru+suc.

PRPPS UAGPT1 A VALt6 PPCDC BTNt2i CPS EFA SYNTH
ASNN UAGPT1 L DAGGT LPL PHEt6 LEUTA2t FRUt6

THMabc UGLDDS1 L kaasIII CITt6 HDMAT7 PAPPT1 A
DARTAL EFA AGAT EFA TRDR ALATRS DALTAL EFA UDCPDPS
Ex 2mbut e PROTRS METFR GLYCLTt2r DDL PAPPT1 L

HTDR6 WTASI CPS PS EFA DTMPK APAT ACKr
DAGK LPL ACCOAC TDMAT6 HDER4 UAPGR CYSTRS

DHPS3 HHDR7 ASPTRS OCDMAT8 METTRS BPPA2
PMEVK GLYt6 LDH L ILETA2 RNAS LPL DNAS LPL
ADPTA LEUTA2 SERt6 ARGTRS Ex ile L e DMATT
HPPK LEUTA3 ARGD ILETA2t PGSA LPL ACt6
CYSt6 LEUTA4 TAL UAAGLS1 UAGCVT ALKP Efa

HHYR2 GRTT ASAD TAPGL4 EFA UDCPDP Ex thm e
SERTRS MEVK GLUR MCMAT3 DDMAT5 TYRTRS
WTASII NDPK4 UAMAS ILETRS HDEHL4 NACUP
DHNPA NDPK3 MCMAT4 CYTK1 GCALDD VANB
HDDR5 NDPK2 MCMAT2 TRPDC MTHFD LYSTRS
TRPTRS NDPK1 ILETA4 LEUTRS MTHFC P5CRr
ACACT1 HDDHL5 LEUTA Ex his L e THRD L PROTS LPL v6 0

Ex trp L e HMGCOAS OCMAT3 GALU HBUHL1 G1PACT
GAT1 EFA HMGCOAR MCMAT8 Ex btn e DPCOAK HEMAT2

ALAR PYDXK BIOMASS TDPDRE Ex h2o e Ex cys L e
GLUDy PZS HODR8 DAPDC PGMT CITL

Ex arg L e IPDDI UAMAGS PGSYNTH Ex nac e UAGDP
G5SADs CO2t MACPMT GLYTRS PYRt2 Ex val L e
UDPG4E ASPt6 THRt6 XYLA RBT5PDHy Ex trpa e

CLPNS LPL ILEt6 LTAS1 UACGE Ex seL e HBUR1
GLUTRS CRCT LTAS2 ILETA3 Ex ival e HISTRS

G5SD DEMAT4 G1PTMT HOCR3 TKT1 PGI
HODHL8 FABM1 DAPE BTMAT1 TKT2 THRTRS

DEX PS EFA FABM2 HHYHL2 MCMAT6 LEUt6 GTPCI
P15DAt Ex co2 e HTDHL6 MCMAT5 CYSTL BPPA1
GLU5K TRPAt CYSTGL DHFS URIDK1 GHMT

Ex phe L e BPPA1 L ADPDS DHFR HISt6 MCMAT7
LYSDC ILETA PGPP LPL TDPGDH BPPA2 L PHETRS
TMDS Ex glyclt e ALATA Lr FTHFL PPNCL

DPMVD HHDHL7 PGAMT VALTRS RPI
GLNTAL DASYN LPL HCO3E METS DHDPS

PNTK Ex orn L e Ex p15da e PTPAT EPA PS EFA
UGLDDS1 A H2Ot5 LPGS EFA HOCHL3 Ex leu L e
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Table A.44: Potential drug targets in E. faecalis under artificial urine+fru+suc condition accord-
ing to the Lib 7.

ASNN ILETA2 LDH L CYSTL MTHFD LEUTA3
Ex 2mbut e ILETA2t SERt6 DHDPS MTHFC LEUTA4

ADPTA TRPDC ARGD ACKr THRD L ASPt6
CYSt6 DAPDC ILETA4 ACt6 PGMT ILEt6

Ex arg L e XYLA LEUTA P5CRr PYRt2 TRPAt
G5SADs ILETA3 THRt6 Ex cys L e Ex ival e ILETA

G5SD FTHFL DAPE CITL LEUt6 METFR
GLU5K METS CYSTGL PGI CITt6 APAT
GLYt6 LEUTA2t ADPDS GHMT LEUTA2

Table A.45: Essential reactions in the model of E. faecalis constrained with the metabolic and
transcriptome data from the batch culture experiment in Urine+glc.

PRPPS Ex phe L e ILEt6 OCMAT3 TAPGL4 EFA APAT ALATA L
ADCS TMDS DPR MCMAT8 MCMAT3 UAPGR Ex leu L e

THMabc DPMVD CRCT BIOMASS PRFGS METTRS CPS EFA SYNTH
Ex nh4 e GLNTAL ALA Lt6 HODR8 ILETRS PPND PAPPT1 A

PSCVT ASPTA1 DEMAT4 UAMAGS CYTK1 RNAS LPL UDCPDPS
DARTAL EFA PNTK VALTA IMPD GLUPRT Ex ile L e PAPPT1 L

ADCL UGLDDS1 A FABM1 MACPMT LEUTRS PGSA LPL ACKr
HTDR6 UAGPT1 A FABM2 THRt6 Ex his L e UAGCVT CYSTRS

DAGK LPL UAGPT1 L Ex co2 e PKL GALU UDCPDP BPPA2
DHPS3 UGLDDS1 L BPPA1 L LTAS1 ARGORNt DDMAT5 DNAS LPL
PMEVK DHDPRy PGM LTAS2 LYSt6 HDEHL4 DMATT
ADPTA AGAT EFA PGL Ex h e SUCCt6 GCALDD ACt6
HPPK PROTRS PGK G1PTMT Ex btn e MTHFD PANB
CYSt6 WTASI Ex glyclt e ASNt6 TDPDRE MTHFC PANC

HHYR2 ACCOAC HHDHL7 DAPE DAPDC HBUHL1 PYDXPP
SERTRS HHDR7 DASYN LPL HHYHL2 PGSYNTH DPCOAK ALKP Efa
DAHPS GLYt6 Ex orn L e HTDHL6 METabc Ex h2o e Ex thm e
WTASII GRTT H2Ot5 CYSTGL GLYTRS PGMT TYRTRS
SERD L MEVK VALt6 ADPDS ADSL2 Ex nac e NACUP
DHNPA NDPK4 DAGGT LPL PGPP LPL ADSL1 PYRt2 VANB
HDDR5 NDPK3 kaasIII CHORS UACGE RBT5PDHy LYSTRS
TRPTRS NDPK2 TRDR ALATA Lr AICART GAPD PRAGS
ACACT1 NDPK1 ASNPTH PGAMT HOCR3 AIRC PROTS LPL v6 0

Ex trp L e DUTPDP METFR HCO3E BTMAT1 TKT1 FRDx
Ex gly e HDDHL5 G6PDHy LPGS EFA MCMAT6 TKT2 PRASCS

GAT1 EFA Ex succ e CPS PS EFA PPCDC MCMAT5 LEUt6 G1PACT
Ex met L e HMGCOAS TDMAT6 PHEt6 DHFS CYSTL HEMAT2

ALAR HMGCOAR ENO CITt6 DHFR OMPDC CITL
Ex arg L e PC ASPTRS ALATRS TDPGDH URIDK1 UAGDP

GMPS2 TYRt6 SERt6 ADSS FTHFL PYDAMK Ex val L e
NAPRT PRDH ARGD GLYCLTt2r VALTRS HISt6 HBUR1
PGDH TYRTA PHETA DTMPK METS HYPOE HISTRS

ASP1DC ASPTRS 1 TAL HDER4 PTPAT RPE PGI
UDPG4E ASNTAL ASAD SHK3D HOCHL3 ORPT THRTRS

CLPNS LPL PYDXK IMPC DHQD BTNt2i BPPA2 L GTPCI
SHKK PZS GLUR OCDMAT8 HDMAT7 PPNCL BPPA1

GLUTRS OCBT GARFT GLUt6 DALTAL EFA RPI GHMT
HODHL8 IPDDI UAMAS DHQS PFL DHDPS ACALD

Ex gln L e CO2t MCMAT4 ARGTRS NH4t EPA PS EFA MCMAT7
DEX PS EFA ASPt6 MCMAT2 UAAGLS1 DDL CK PPDK

PHETRS PRAIS
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Table A.46: Potential drug targets in E. faecalis under artificial urine+glc condition according
to the Lib 7.

Ex nh4 e DAPE ASPTRS 1 APAT PHETA ACt6
ADPTA CYSTGL ASNTAL PPND TAL PYDXPP
SERD L ADPDS OCBT MTHFD ASAD CITL
Ex gly e ALATA Lr CO2t MTHFC THRt6 PGI

Ex arg L e HCO3E ASPt6 Ex h2o e Ex h e GHMT
PGDH PHEt6 ALA Lt6 PYRt2 ASNt6 PPDK

Ex gln L e CITt6 Ex co2 e TKT1 TYRt6 METS
Ex phe L e GLUt6 PGL TKT2 PRDH PFL

ASPTA1 ARGORNt Ex orn L e CYSTL TYRTA NH4t
DHDPRy LYSt6 H2Ot5 RPE G6PDHy CK

GLYt6 DAPDC ASNPTH RPI SERt6 ALATA L
PC FTHFL METFR DHDPS ARGD ACKr
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Table A.47: Essential reactions in the model of S. pyogenes constrained with the metabolic data
from the batch culture experiment in CDM-LAB at pH 6.5.

CITt6 EX lys L e HDEHL4 ADK1 LYSTRS EX tyL e
ALATRS RBK GRTT METACH TRPTRS ACALD
PRPPS ALAR XPPT FABM1 FABM ENO

ASNTRS TDMAT6 MEVK FABM2 SERt6 UAGPT1
DTMPK DAGK LLA NDPK3 RPE PGI PHETRS
HDER4 PGGT2 NDPK2 LTAS LLA LPGS LLA PPCDC

CPSS LLA NAPRT NDPK1 NNAT EX lac L e L LACt2
THMabc ORPT DUTPDP DPCOAK akg demand PHEt6

DALTAL LLA HOCR3 DNAS LLA RPI HODR8
EX met L e BTMAT1 G1PTMT PGM PTPAT

EX nac e PPNCL HBUHL1 RNAS LLA UAGCVT
EX py e DHFR GLNabc PGK PROTS LLA
HTDR6 TDPGDH CYSM HHDHL7 TMDPK

MCMAT7 ALCD2x HMGCOAS EX glu L e G1PACT
ARGTRS GLUTRS HMGCOAR EX xan e UAMAS

EX arg L e VALTRS AHCYSNS H2Ot5 MCMAT6
MCMAT5 EX pnto e TYRt6 EX phe L e MCMAT4
PMEVK HODHL8 PGMT CFAS180 MCMAT2
HEMAT2 HOCHL3 ALAALA UDPG4E OCMAT3

EX etoh e OCDMAT8 PFK UDCPDPS MCMAT8
PAPPT1 THRTRS PYRt2 ACACT1 UAGDP

DEMAT4 HDMAT7 NDPK4 HSAT UAMAGS
ILETRS TMDS MCMAT3 ACKr MACPMT
CYTK1 GLNTAL UAAGLS1 PPA DDMAT5
HHYR2 ASPTA1 GLUR GMPS2 CYSTRS
SERTRS DMATT GAT1 LLA GALTAL EX h2o e

HISt6 UAPGR EX val L e FBA PGPP LLA
THRS NADS1 PGSA LLA GLYK EX trp L e

EX gln L e ACt6 PTAr PNTK HBUR1
THRt6 DPMVD biomass EX his L e GAPD
CITL UGT1 LLA UGLDDS1 TRDR PNTOt2
RHC GF6PTA SERAT METTRS HTDHL6

IPDDI PROTRS HHYHL2 DASYN LLA HISTRS
GALU HSK LEUt6 TYRTRS METAT

TDPDRR EX leu L e AGAT LLA VALt6 XANt2
LYSt6 ACCOAC CLPNS LLA EX thL e TRPt6

HDDR5 HHDR7 OMPDC ASPTRS kaasIII
LEUTRS UDCPDP EX thm e NACUP PGAMT
GLYTRS EX ac e ILEt6 LDH L HDDHL5
ETOHt1 TPI EX ile L e TDPDRE
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Table A.48: Potential drug targets in S. pyogenes under CDM-LAB condition at pH 6.5 accord-
ing to the Lib 7.

R CITt6 R PYRt2
R EX pyr e R PGM
R EX etoh e R PGK

R EX gln L e R EX glu L e
R CITL R FBA

R ETOHt1 R LDH L
R ALCD2x R SERt6
R ASPTA1 R PGI

R ACt6 R EX lac L e
R EX ac e R akg demand

R TPI R GAPD
R GLNabc R ACALD

R PFK R ENO
R L LACt2
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Table A.49: Essential reactions in the model of S. pyogenes constrained with the metabolic data
from the batch culture experiment in CDM-LAB at pH 7.4.

CITt6 GLYTRS GLYt6 CO2t PNTK GFT1
ALATRS ETOHt1 TPI LEUt6 EX his L e PGPP LLA
PRPPS EX lys L e HDEHL4 EX ala L e EX h e EX trp L e

ASNTRS EX co2 e GRTT AGAT LLA TRDR HBUR1
DTMPK RBK XPPT CLPNS LLA METTRS GAPD
HDER4 ALAR MEVK OMPDC DASYN LLA PNTOt2

CPSS LLA TDMAT6 MTHFD EX thm e TYRTRS HTDHL6
ASNN DAGK LLA NDPK3 ILEt6 VALt6 HISTRS

THMabc PGGT2 NDPK2 ALA Lt6 EX orot e METAT
DALTAL LLA ORPT NDPK1 EX ile L e EX thL e XANt2
EX met L e HOCR3 DUTPDP URIDK1 ASPTRS PYK

HTDR6 BTMAT1 DNAS LLA ADK1 LDH L TRPt6
MCMAT7 PPNCL ASPt6 METACH LYSTRS kaasIII
ARGTRS DHFR G1PTMT FABM1 TRPTRS PGAMT

EX arg L e OROt6 HBUHL1 FABM2 FABM HDDHL5
MCMAT5 TDPGDH GLNabc FGF SERt6 TDPDRE
PMEVK ALCD2x CYSM RPE PGI EX tyL e
HEMAT2 GLUTRS HMGCOAS LTAS LLA LPGS LLA ACALD

EX etoh e ASPCT HMGCOAR DPCOAK EX lac L e PDH
PAPPT1 VALTRS AHCYSNS RPI akg demand ENO

DEMAT4 EX pnto e TYRt6 GHMT HODR8 UAGPT1
ILETRS HODHL8 PGMT PGM PTPAT PHETRS
CYTK1 O2t ALAALA RNAS LLA UAGCVT PPCDC
HHYR2 HOCHL3 PFK PGK PROTS LLA L LACt2
SERTRS OCDMAT8 PYRt2 HHDHL7 TMDPK PHEt6

HISt6 THRTRS NDPK4 EX xan e G1PACT
THRS HDMAT7 MCMAT3 H2Ot5 UAMAS

EX gln L e TMDS UAAGLS1 ALATA L MCMAT6
THRt6 GLNTAL GLUR EX phe L e MCMAT4
CITL ASPTA1 GAT1 LLA CFAS180 MCMAT2

SERD L DMATT EX gly e UDPG4E OCMAT3
RHC UAPGR EX val L e UDCPDPS MCMAT8

IPDDI DPMVD ADEt2 FITHFC UAGDP
GALU UGT1 LLA EX o2 e ACACT1 EX ade e

TDPDRR GF6PTA PGSA LLA HSAT UAMAGS
FAH PROTRS biomass PPA MACPMT

LYSt6 HSK UGLDDS1 GMPS2 DDMAT5
HDDR5 EX leu L e SERAT GALTAL CYSTRS

DHORTS ACCOAC HHYHL2 FBA EX h2o e
LEUTRS HHDR7 GLYK ASNt6
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Table A.50: Potential drug targets in S. pyogenes under CDM-LAB condition at pH 7.4 accord-
ing to the Lib 7.

CITt6 ALA Lt6
ASNN FGF

EX etoh e GHMT
EX gln L e PGM

CITL PGK
SERD L H2Ot5

FAH ALATA L
DHORTS FITHFC
ETOHt1 FBA
OROt6 EX h e

ALCD2x EX orot e
ASPCT LDH L

O2t SERt6
ASPTA1 PGI
GLYt6 EX lac L e

TPI akg demand
MTHFD EX h2o e
ASPt6 ASNt6

GLNabc GFT1
PFK GAPD

PYRt2 ACALD
EX gly e PDH
EX o2 e ENO

EX ala L e L LACt2
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Table A.51: Essential reactions in the model of S. pyogenes constrained with the metabolic and
transcriptome data from the batch culture experiment in Saliva.

CITt6 GALU HSK CYSM TYRTRS PNTOt2
ALATRS TDPDRR EX leu L e EX thm e VALt6 HTDHL6
PRPPS LYSt6 ACCOAC ILEt6 EX thL e HISTRS

ASNTRS HDDR5 HHDR7 SERAT ASPTRS METAT
DTMPK DHORTS UDCPDP EX ile L e NACUP XANt2

FOLt LEUTRS TPI URIDK1 LDH L THRTRS
HDER4 EX cyn e HDEHL4 ADK1 LYSTRS TRPt6

CPSS LLA GLYTRS GRTT ORPT TRPTRS kaasIII
HCYSMT EX lys L e XPPT METACH FABM PGAMT

PFL RBK GAT1 LLA FABM1 SERt6 HDDHL5
EX fol e ALAR NDPK4 FABM2 LPGS LLA TDPDRE
THMabc TDMAT6 NDPK3 EX cit e EX lac L e EX tyL e

DALTAL LLA DAGK LLA NDPK2 RPE HODR8 CYNt
EX met L e PGGT2 NDPK1 LTAS LLA PGSA LLA ENO

EX nac e NAPRT DUTPDP NNAT EX pi e UAGPT1
GLUt6 HOCR3 DNAS LLA DPCOAK PTPAT PHETRS
HTDR6 BTMAT1 ASPt6 RPI ADPT PPCDC

MCMAT7 PPNCL G1PTMT PGM UDCPDPS L LACt2
ARGTRS DHFR HBUHL1 RNAS LLA UAGCVT PHEt6

EX arg L e TDPGDH GLNabc PGK PROTS LLA
MCMAT5 GLUTRS HMGCOAS ASNS2 TMDPK
PMEVK VALTRS HMGCOAR HHDHL7 G1PACT

DASYN LLA EX pnto e AHCYSNS EX xan e UAMAS
ATPS3r HODHL8 TYRt6 CYSTGL1 MCMAT6
PAPPT1 HOCHL3 PGMT EX phe L e MCMAT4

DEMAT4 OCDMAT8 MEVK CFAS180 HEMAT2
ILETRS HDMAT7 PYRt2 UDPG4E MCMAT2
CYTK1 TMDS MCMAT3 ACACT1 OCMAT3
CYSt6 PFK UAAGLS1 HSAT MCMAT8

HHYR2 GLNTAL GLUR ACKr UAGDP
SERTRS ASPTA1 EX val L e EX his L e EX ade e

HISt6 DMATT ADEt2 PPA UAMAGS
THRS UAPGR PTAr GMPS2 MACPMT

EX gln L e NADS1 biomass GALTAL DDMAT5
THRt6 ACt6 UGLDDS1 FBA CYSTRS
CITL DPMVD HHYHL2 GLYK ASNt6

SERD L UGT1 LLA LEUt6 PNTK PGPP LLA
RHC GF6PTA AGAT LLA ALAALA EX trp L e

DHFOR2 PROTRS CLPNS LLA TRDR HBUR1
IPDDI TCYS OMPDC METTRS GAPD
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Table A.53: Essential reactions in the model of S. pyogenes constrained with the metabolic and
transcriptome data from the batch culture experiment in Saliva+glc.

CITt6 GALU ACt6 MCMAT3 HHDHL7 ADPT
ALATRS TDPDRR DPMVD UAAGLS1 EX xan e UDCPDPS
PRPPS FAH UGT1 LLA NH4DIS H2Ot5 UAGCVT

ASNTRS LYSt6 GF6PTA GLUR CYSTGL1 PROTS LLA
DTMPK HDDR5 EX actn e EX gly e ALATA L TMDPK

FOLt LEUTRS PROTRS EX val L e EX phe L e G1PACT
HDER4 EX cyn e TCYS ADEt2 CFAS180 UAMAS

CPSS LLA GLYTRS HSK EX o2 e UDPG4E MCMAT6
ASNN ETOHt1 EX leu L e PTAr FITHFC MCMAT4

HCYSMT EX lys L e ACCOAC biomass ACACT1 HEMAT2
EX fol e RBK HHDR7 UGLDDS1 HSAT MCMAT2
THMabc ALAR UDCPDP ALA Lt6 ACKr OCMAT3

DALTAL LLA TDMAT6 GLYt6 HHYHL2 EX his L e MCMAT8
EX met L e NH3t TPI LEUt6 PPA UAGDP

EX nac e DAGK LLA HDEHL4 EX ala L e GMPS2 EX ade e
HTDR6 PGGT2 GRTT AGAT LLA EX btd R e UAMAGS

MCMAT7 NAPRT XPPT CLPNS LLA GALTAL MACPMT
ARGTRS HOCR3 ACTNdiff OMPDC FBA DDMAT5

EX arg L e BTMAT1 GAT1 LLA CYSM GLYK CYSTRS
MCMAT5 PPNCL NDPK4 EX thm e EX seL e EX h2o e
PMEVK DHFR NDPK3 ILEt6 PNTK ASNt6

DASYN LLA TDPGDH NDPK2 SERAT ALAALA PGPP LLA
EX etoh e ALCD2x NDPK1 EX ile L e TRDR EX trp L e

ATPS3r GLUTRS DUTPDP URIDK1 METTRS HBUR1
PAPPT1 VALTRS DNAS LLA ADK1 TYRTRS GAPD

DEMAT4 EX pnto e ASPt6 ORPT VALt6 PNTOt2
ILETRS HODHL8 G1PTMT METACH EX thL e HTDHL6
CYTK1 O2t BTDD RR FABM1 ASPTRS HISTRS
CYSt6 HOCHL3 HBUHL1 FABM2 NACUP METAT

HHYR2 MTHFD GLNabc FGF LYSTRS XANt2
SERTRS OCDMAT8 FORt2 RPE TRPTRS THRTRS

HISt6 HDMAT7 HMGCOAS LTAS LLA FABM TRPt6
THRS TMDS HMGCOAR NNAT SERt6 kaasIII

EX gln L e EX fo e AHCYSNS DPCOAK PGI PGAMT
THRt6 PFK TYRt6 RPI LPGS LLA HDDHL5
CITL GLNTAL PGMT EX asn L e akg demand TDPDRE

SERD L ASPTA1 BTDt1 RR GHMT HODR8 EX tyL e
RHC DMATT G6PDA PGM PGSA LLA ACALD

DHFOR2 UAPGR MEVK RNAS LLA EX pi e CYNt
IPDDI NADS1 PYRt2 PGK PTPAT ENO

UAGPT1 GFT1 PHETRS PPCDC L LACt2 PHEt6
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Table A.54: Potential drug targets in S. pyogenes under artificial saliva+glc condition according
to the Lib 7.

CITt6 EX gly e PFK FITHFC RBK PGM
PRPPS EX o2 e ASPTA1 ACKr NH3t PGK
ASNN PTAr ACt6 PPA O2t CYSTGL1

HCYSMT ALA Lt6 TCYS FBA MTHFD ALATA L
ATPS3r EX ala L e GLYt6 EX ser L e NH4DIS GAPD
CYSt6 CYSM TPI SERt6 ENO METAT

EX gln L e SERAT ASPt6 PGI GFT1 CYNt
CITL ADK1 GLNabc akg demand L LACt2 GHMT

SERD L FGF AHCYSNS ADPT FAH EX asn L e
PYRt2 ASNt6 EX cyn e
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Table A.55: Essential reactions in the model of S. pyogenes constrained with the metabolic and
transcriptome data from the batch culture experiment in Plasma.

CITt6 GALU UGT1 LLA LEUt6 TRDR ASNt6
ALATRS TDPDRR GF6PTA AGAT LLA METTRS PGPP LLA
PRPPS FAH PROTRS CLPNS LLA TYRTRS EX trp L e

ASNTRS LYSt6 HSK CYSM VALt6 HBUR1
DTMPK HDDR5 EX leu L e EX thm e EX orot e GAPD

FOLt DHORTS ACCOAC ILEt6 EX thL e PNTOt2
HDER4 LEUTRS HHDR7 SERAT ASPTRS HTDHL6

CPSS LLA GLYTRS UDCPDP EX ile L e NACUP HISTRS
ASNN EX lys L e GLYt6 URIDK1 LDH L METAT

HCYSMT RBK TPI ADK1 LYSTRS THRTRS
PFL ALAR HDEHL4 METACH TRPTRS TRPt6

EX fol e TDMAT6 GRTT FABM1 FABM kaasIII
THMabc DAGK LLA GAT1 LLA FABM2 SERt6 PGAMT

DALTAL LLA PGGT2 NDPK4 FGF PGI HDDHL5
EX met L e NAPRT NDPK3 RPE LPGS LLA TDPDRE

EX nac e HOCR3 NDPK2 LTAS LLA EX lac L e EX tyL e
GLUt6 BTMAT1 NDPK1 NNAT HODR8 ENO
HTDR6 PPNCL DUTPDP DPCOAK PGSA LLA UAGPT1

MCMAT7 DHFR DNAS LLA RPI EX pi e GFT1
ARGTRS OROt6 ASPt6 GHMT PTPAT PHETRS

EX arg L e TDPGDH G1PTMT PGM ADPT PPCDC
MCMAT5 GLUTRS HBUHL1 RNAS LLA UDCPDPS L LACt2
PMEVK ASPCT GLNabc PGK UAGCVT PHEt6

DASYN LLA VALTRS FORt2 HHDHL7 PROTS LLA
PAPPT1 EX pnto e HMGCOAS EX glu L e TMDPK

DEMAT4 HODHL8 HMGCOAR EX phe L e G1PACT
ILETRS HOCHL3 AHCYSNS CFAS180 UAMAS
CYTK1 MTHFD TYRt6 UDPG4E G3PD1
HHYR2 OCDMAT8 PGMT FITHFC MCMAT6
SERTRS HDMAT7 MEVK ACACT1 MCMAT4

HISt6 TMDS PYRt2 HSAT HEMAT2
THRS EX fo e MCMAT3 ACKr MCMAT2
G3PD2 PFK UAAGLS1 EX his L e OCMAT3

EX gln L e GLNTAL GLUR PPA MCMAT8
THRt6 ASPTA1 EX val L e GALTAL UAGDP
CITL DMATT ADEt2 FBA EX ade e

SERD L UAPGR PTAr GLYK UAMAGS
RHC NADS1 biomass PNTK MACPMT

DHFOR2 ACt6 UGLDDS1 ALAALA DDMAT5
IPDDI DPMVD HHYHL2 EX h e CYSTRS
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Table A.56: Potential drug targets in S. pyogenes under natural human plasma condition accord-
ing to the Lib 7.

CITt6 CITL MTHFD FORt2 PGK EX lac L e
PRPPS SERD L PFK AHCYSNS EX glu L e ADPT
ASNN FAH ASPTA1 PYRt2 FITHFC ASNt6

HCYSMT DHORTS GLYt6 ADK1 PPA GAPD
PFL RBK TPI FGF FBA METAT

GLUt6 OROt6 ASPt6 GHMT EX orot e ENO
EX gln L e ASPCT GLNabc PGM SERt6 GFT1

L LACt2
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Appendix B

Scripts

The following scripts were developed to produce the results of this thesis. Theses scripts are
were developed for inspecting the solution space of genome-scale metabolic models, using
Matlab. The scripts are obtained from my previous publication [Loghmani et al., 2022], and can
also be accessed from my github repository : https://github.com/babakml/FBAperturbation.

1
2 function [fbasol_fin , randval_fin] = perturb(model_n , solver_n , method)

3
4 %pertub function discovers the effect of random perturbation in

5 %FBA/FVA results. It selects 10 random values in the feasible interval

of

6 %each variable reaction (with an interval larger than 0.000001) , fixes

7 %reactions in those values and collect the flux distribution profile of

the

8 %whole metabolic network

9
10 %USAGE

11
12 % [fbasol_fin , randval_fin] = perturb(model_n , solver_n , method)

13
14
15 %INPUT

16
17 % model_n: metabolic model in SBML format

18 % solver_n: solver name

19 % method: ’fba ’ or ’fva ’, to determine the method of use to obtain flux

20 % distributions

21
22 % OUTPUT

23
24 % fbasol_fin: flux distribution profiles following 10 perturbation in

each

25 % variable reaction

26
27 % randval_fin: random values at which variable reactions were fixed

28
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29 %Example:

30
31 % [fbasol_fin , randval_fin] = perturb(’mut -chem.xml ’,’ibm_cplex ’,’fba ’)

32
33 % Authors:

34
35 % Seyed Babak Loghmani

36
37 % Last updated: August 2021

38
39
40
41
42 initCobraToolbox;

43
44 %defining the solver

45 changeCobraSolver(solver_n);

46 model = readCbModel(model_n);

47
48 [minFluxF1 , maxFluxF1 , optsol , ret , fbasol , fvamin , fvamax ,

statussolmin , statussolmax] = fastFVA(model);

49
50
51
52
53 da = maxFluxF1;

54 db = minFluxF1;

55 fbasol_fin = [];

56 randval_fin =[];

57 dif = (da - db);

58
59 rxn_n = numel(model.rxns);

60
61 %runing the model while fixing each reaction in 10 random values

62 for i =1: rxn_n

63 fbasol_m = [];

64 randval_m = [];

65 dif = (da(i) - db(i));

66 if dif > 0.000001

67 if dif ~= 0

68 for j = 1:10

69
70 %finding a random value

71 randval = random(’unif’,db(i),da(i));

72 %saving the original lower and upper bounds

73 pu = model.ub(i);

74 pl = model.lb(i);

75 %fixing the reaction at the randomly selected value
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76 model.ub(i) = randval;

77 model.lb(i) = randval;

78 i

79 da(i)

80 db(i)

81
82
83 da(i) - db(i)

84 %collecting flux distributions using FBA

85 if method == ’fba’

86 sol_dist = optimizeCbModel(model);

87 fbasol_m = [fbasol_m , sol_dist.v];

88
89 %collecting flux distributions using FVA

90 elseif method == ’fva’

91 [minFluxF1 , maxFluxF1 , optsol , ret , fbasol , fvamin , fvamax ,

statussolmin , statussolmax] = fastFVA(model);

92 fbasol_m = [fbasol_m , fbasol ];

93 end

94 %saving the random value in randval_m

95 randval_m = [randval_m , randval ];

96
97
98 %bringing the original uppre and lower bound back

99 model.ub(i) = pu;

100 model.lb(i) = pl;

101
102 end

103
104 %saving the flux distribution profiles & random values for 10

perturbation in one

105 %reaction in fbasol_fin & randval_fin , respectively

106 fbasol_fin = [fbasol_fin; fbasol_m ];

107 randval_fin = [randval_fin; randval_m ];

108
109
110
111
112 end

113 end

114 end

115
116 save fbasol_fin.dat fbasol_fin -ascii -double

117 save randval_fin.dat randval_fin -ascii -double

1 function [per_result] = calculation(model_n , fbasol_fin , randval_fin ,

method)

2
3 % calculation finds the optimal values in flux distribution profiles
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following perturbation that

4 % are significantly different ( >0.05 0r >0.000001) from the original

FBA/FVA flux distribution

5 % profiles.

6
7 %USAGE:

8 % [per_result] = calculation(model , fbasol_fin , randval_fin)

9
10 %INPUT

11
12 %model: metabolic model in SBML format

13
14 %fbasol_fin: flux distribution profiles following perturbation

15
16 %randval_fin: random values at which variable reactions were fixed

17
18 %method: ’fba ’ or ’fva ’, to determine the method of use to obtain flux

19
20 %OUTPUT:

21
22 %per_result: significantly different flux values in a sorted format

23
24 %Example:

25
26 % [per_result] =

calculation(’mut -chem.xml ’,’fbasol_fin.dat ’,’randval_fin.dat ’,’fba ’)

27
28 % Authors:

29
30 % Seyed Babak Loghmani

31
32 % Last updated: August 2021

33
34 initCobraToolbox;

35
36 model = readCbModel(model_n);

37 load(fbasol_fin)

38 load(randval_fin)

39
40 %FVA

41 [minFluxF1 , maxFluxF1 , optsol , ret , fbasol , fvamin , fvamax ,

statussolmin , statussolmax] = fastFVA(model);

42
43 if method == ’fva’

44 opt_sol = fbasol;

45 elseif method == ’fba’

46 sol_dist = optimizeCbModel(model);

47 opt_sol = sol_dist.v;
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48 end

49
50 %finding reactions with fva intervals larger that 0.000001

51 fva_n = maxFluxF1 - minFluxF1;

52 r=fva_n > 0.000001;

53 fva_n_f=find(r);

54
55 n = numel(model.rxns);

56 opt_som = [];

57 sols = [];

58 per_result = [];

59 %opt_sol = fbasol (1:n);

60 opt_sol_abs = abs(opt_sol);

61
62 % defining the 5% tolerance

63 tol = 5* opt_sol_abs /100;

64 s = size(randval_fin);

65 f = 0;

66 rxn_n = numel(model.rxns);

67
68
69 %finding and sorting significant flux changes , assigning their indices

and random values in which they

70 %got fixed

71
72 num_f_p = numel(fva_n_f)/50;

73 num_f = ceil(num_f_p);

74 rg = 1:num_f;

75 c=1;

76 file_names = [];

77
78 for i = 1: numel(fva_n_f)

79 k = i-1;

80
81 l = (k*n) + 1;%lowe3r end of the data set

82 h = (i*n);%higher end of the data set

83
84
85 if i == rg(c)*50%counter to save the data regarding ecery 50 reactions

at once

86 f = 1

87 c = c+1;

88 elseif c == max(rg)

89
90 if i == numel(fva_n_f)

91 f = 1

92 end

93 end
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94
95
96 if i ==1

97
98 sols = fbasol_fin (1:rxn_n ,1:10);%extracting the data for the first

reaction

99 else

100 sols = fbasol_fin(l:h ,1:10);%extracting the data for the other

reactions

101 end

102
103 for j = 1:10

104
105 dif = opt_sol - sols(:,j);

106 dif_abs = abs(dif);

107 for k = 1: rxn_n

108
109 %finding changes in flux values larger than 0.000001 for

110 %reactions whose original value was 0

111
112 if tol(k)==0

113 if dif_abs(k) > 0.000001

114 opt_som = [i,j, k, sols(k,j), opt_sol(k),tol(k),

randval_fin(i,j)];

115 per_result = [per_result; opt_som ];

116
117 end

118
119 else

120
121 %finding changes in flux values larger than 5% tolernace

122
123 if dif_abs(k) > tol(k)

124
125 %saving significantly different flux values in per_result

126
127 opt_som = [i,j, k, sols(k,j), opt_sol(k),tol(k),

randval_fin(i,j)];

128 per_result = [per_result; opt_som ];

129 end

130
131 end

132
133 end

134 end

135
136 %saving sorted flux values in multiple files for the sake of memory

usage
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137
138 if f ==1

139 filename = sprintf(’%s%d’,’per_result_new ’,i, ’.dat’);

140 save(filename ,’per_result ’,’-ascii’,’-double ’);

141
142 f_str = string(filename)

143 file_names = [file_names , f_str ];

144
145 f=0;

146 clear per_result

147
148 per_result =[];

149
150 end

151 end

152
153
154 %merging all the files into one comprehensive file

155 for i = 1: numel(file_names);

156
157 file = load(file_names(i));

158 per_result = [per_result;file];

159 end

160 save(’per_result ’,’per_result ’,’-ascii’,’-double ’);

1
2 function table = stat(model_n , per_result , print)

3
4 % stat function calculates various statiscal measures on the flux values

5 % following perturbation in metabolic network

6
7 %USAGE: table = stat(model_name , per_result , print)

8
9

10 %INPUT

11
12 %model_n: metabolic model in SBML format

13
14 %per_result: significantly different flux values in a sorted format

15
16 %print: printing the statistics in an excel file (default: false)

17
18 %OUTPUT:

19
20 %table: statistical categories obtained from analysis of flux

distribution

21 %profiles

22
23 %Example:
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24
25 %table = stat(’mut -chem.xml ’, ’per_result ’) using the perturbation

results

26 %from MATLAB version

27
28 %table = stat(’mut -chem.xml ’, ’final.csv ’) using the perturbation result

29 %from the python version

30
31
32
33 % Authors:

34
35 % Seyed Babak Loghmani

36
37 % Last updated: August 2021

38
39
40 if (nargin < 3)

41 print = false;

42 end

43
44 % loading model and sorted results from perturbation

45 model = readCbModel(model_n);

46 final = load(per_result);

47
48 % FVA

49 [minFluxF1 , maxFluxF1 , optsol , ret , fbasol , fvamin , fvamax ,

statussolmin , statussolmax] = fastFVA(model);

50
51 % finding the number of variable and stable reactions

52 fva_n = maxFluxF1 - minFluxF1;

53 fva_ind = find(fva_n);

54 stable_ind = find(~fva_n);

55 fva=numel(find(fva_n)); %number of variable reactions

56 stable = numel(stable_ind); %number of stable reactions

57 % finding variable reactions with the interval size larger than 10e-6,

used

58 % for perturbation

59 r=fva_n > 0.000001;

60 fva_n_f=find(r);

61
62 rxn_n = numel(model.rxns);

63 rxn_n2 = rxn_n +1;

64
65
66 reac =[];

67 reac_no =[];

68 rand_no1 =[];
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69 rand = [];

70 rand_no = [];

71 prt_rec = final (:,1);

72 sz = size(final);

73 mx = final(sz(1));

74 robust_var= [];

75
76 %finding how many reactions were affected by each reaction

77
78 for i = 1:mx

79 %picking the respective data for each perturbed reaction in the

sorted

80 %results

81 r_a = find(ismember(prt_rec , i));

82 r_a_min = min(r_a);

83 r_a_max = max(r_a);

84 r_a_n = numel(r_a);

85 r_af = final(r_a_min:r_a_max ,2);

86
87 for j = 1:10

88 r_af_i = find(ismember(r_af , j));

89 d1 = numel(r_af_i);

90 rand = [i,j,d1]; %finding the number of times each perturbation

in each reaction affected other reactions

91 rand_no = [rand_no;rand]; % saving the results for all 10

perturbations

92 end

93
94 r_a_al = final(r_a_min:r_a_max ,3);%finding affected reactions by

each reaction

95 r_a_al_u = unique(r_a_al);

96 r_a_num = numel(r_a_al_u); %finding the index of affected reaction

97 r_a_n2 = r_a_n /10;

98 reac = [i,r_a_n ,r_a_n2 ,r_a_num ]; % the index of the perturb

reaction , the number of resultant flux changes , the number of

resultant flux changes per 10 perturbations , the number of

affected reactions

99 reac_no = [reac_no;reac]; %size equal to fva result

100
101 end

102 rec = reac_no (:,3);

103 re_r = reac_no (:,4);

104 mean_re = mean(rec); %affecting avg(perturbation wise)

105 mean_re2 = mean(re_r); %affecting avg(reaction wise)

106 std_dev_meanre= std( rec ); %standard deviation

107 std_dev_meanre2= std( re_r ); %standard deviation

108 min_re = min(rec); %affecting min

109 max_re = max(rec); %affecting max

173



Appendix B Scripts

110
111 %finding sensitivity of each reaction

112 %column= affected , row = affecting

113
114 reac_sen =[];

115 ou = [];

116 robust =[];

117 pul = 0;

118
119 %creating a matrix containing the information of affected and affecting

reactions

120 mat = cell(rxn_n2:rxn_n2)

121 mat (2: rxn_n2) = model.rxns;

122 mat(1,2: rxn_n2) = model.rxns;

123 for i = 1: rxn_n

124 rc = find(ismember(final (:,3), i));

125 t = numel(rc); %the number of significant flux changes in the

respective sensitive reaction

126 ou = [];

127
128 if isempty(rc) == 1

129 robust =[ robust; i];%robust reaactions

130 else

131
132 for j =1: numel(rc)

133 ind = rc(j);

134 ou =[ou; final(ind , 1)];%saving the index of reactions that

affected each sensitive reaction

135 end

136
137 ou_u = unique(ou);

138 for s = 1: numel(ou_u)

139 s_id = find(ismember(ou , ou_u(s)));

140 s_id_u = numel(s_id);

141 nb = ou_u(s);

142 i2 = fva_n_f(nb)+1; %the index of affecting reaction in the

’mat ’ matrix

143 i3 = i+1; %the index of affecrted reaction in the ’mat ’ matrix

144
145 mat{i2 , i3} = s_id_u; %implementing the information regarding

the number of times the reaction i2 affected the reaction i3

146 end

147 gu = numel(ou);

148 n_ou = numel(ou_u);%the number of reactions that affected the

respective sensitive reaction

149 reac_sen = [reac_sen; i, model.rxns(i), n_ou , t]; %sensitive to

perturbation

150
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151 end

152 end

153
154 for i = 1: rxn_n2

155 mat{i,i}=0;%clearing the diagonal information to avoid counting

the self affecting reactions

156 end

157
158 sz_sen = size(reac_sen);

159 szs = sz_sen (1);

160
161
162 sensitivity =[];

163 for i = 1:szs

164 u=reac_sen{i,1};

165 sensitivity =[ sensitivity;u];%sensitive reactions

166 end

167
168 num_sen = numel(sensitivity);%number of sensitive reactions

169 num_robust = numel(robust);%number of robust reactions

170
171
172
173 %average and maximum and minimum number of sensitivities

174
175 sen1 = cell2mat(reac_sen (:,3));

176 sen2 = cell2mat(reac_sen (:,4));

177 msen = mean(sen1); %average sensitivity

178 msen2 = mean(sen2); %average sensitivity(perturbation wise)

179 std_dev_sen= std( sen1 ); %standard deviation

180 std_dev_sen2= std( sen2 ); %standard deviation 2

181 maxsen = max(sen1); %max sensitivity

182 minsen = min(sen1); %min sensitivity

183
184
185 %robusts with and without flux

186
187 rec_f = find(fbasol);

188 r_w_f = find(ismember(rec_f ,robust));

189 ind_rwf = rec_f(r_w_f);

190 robust_wf = model.rxns(ind_rwf); %robust with flux

191
192 %finding robust reactions that are variable

193
194 robust_var = [];

195 for i = 1: numel(robust)

196 ek = find(ismember(fva_ind , robust(i)));

197 if numel(ek) == 1
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198 robust_var = [robust_var; robust(i)];

199 end

200 end

201
202 num_robust_var = numel(robust_var);%number of robust -variable

reactions

203 num_robust_wf = numel(robust_wf);%number of robust reactions with

flux in original FBA/FVA

204 num_robust_wof = numel(model.rxns) - num_robust_wf -

num_sen;%number of robust reactions without flux in original

FBA/FVA

205
206
207 %variability caused by exchange reactions

208 num_imp = [];

209 for i = 2: rxn_n2

210 c_count = 0;%counter

211 ex_ind = findstr(mat{i,1}, ’Ex’);

212 if numel(ex_ind) ==1

213 mat_row = mat(i,:);

214 for j = 2: rxn_n2

215 if j~=i

216 mat_cell = mat_row{j};

217 if numel(mat_cell) == 1

218 c_count = c_count + 1;

219 end

220 end

221 end

222 end

223 num_imp = [num_imp; i-1,c_count ];%saving the number of

significant flux changes caused by perturbation in exchange

reactions

224 end

225
226 %maximum and average number that reactions got affected by exchange

227 %reactions

228 nimp = num_imp (:,2);

229 f_nimp = find(nimp);

230 nimp_e=nimp(f_nimp);

231 avg_ex = mean(nimp_e); %avg affected by Ex

232 std_dev_ex= std( nimp_e ); %standard deviation

233 max_ex = max(nimp_e); %max affected by Ex

234
235 out={’model 

name’,’variable ’,’stable ’,’sensitive ’,’robust ’,’affecting -avg(reaction -wise)’,’std -aff’,’affecting -avg(perturbation -wise)’,’std -aff’,’avg -sensitivity(reaction -wise)’,’std -sen’,’avg -sensitivity(perturbation -wise)’,’std -sen’,’max -sensitivity ’,’min -sensitivity ’,’robust 

with flux’,’robust without 

flux’,’robust -w-variability ’,’avg -affected by 

ex’,’std -ex’,’max -affected by ex’,’max -affected by 
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all’,’min -affected by 

all’;model.description ,fva ,stable ,num_sen ,num_robust ,mean_re2 ,std_dev_meanre2 ,mean_re ,std_dev_meanre ,msen ,std_dev_sen ,msen2 ,std_dev_sen2 ,maxsen ,minsen ,num_robust_wf ,num_robust_wof ,num_robust_var ,avg_ex ,std_dev_ex ,max_ex ,max_re ,min_re };

236 table=cell2table(out);

237 if (print)

238 writetable(table ,’statistics.xls’,’WriteVariableNames ’ ,0)

239 end

The following scripts were developed based on python to find potential drug targets in tract-
specific genome-scale mmetabolic models.

1
2 #Inserting the model

3
4 modelDir = os.getcwd ()

5 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

6
7 #FVA

8
9 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

10
11
12 #finding drug targets that reduce the growth rate by 30%

13
14
15 cmod.setReactionBounds(’R_BIOMASS ’, 0,1)

16 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

17
18 react_list=cmod.getReactionIds ()

19 drug_30_react = []

20 for h in react_list:

21 r=cmod.getReactionBounds(h)

22
23 cmod.setReactionBounds(h, 0,0)

24 t= cbm.analyzeModel(cmod)

25 if t <= 0.0789:

26
27 g_o = cmod.getGPRforReaction(h)

28 if bool(g_o)==True:

29 g = g_o.getGeneIds ()

30 drug_30_react.append ([h,g,t])

31
32
33 elif np.isnan(t)==True:

34 g_o = cmod.getGPRforReaction(h)

35 if bool(g_o)==True:

36 g = g_o.getGeneIds ()

37 drug_30_react.append ([h,g,t])

38
39 #elif t==0:

177



Appendix B Scripts

40 # drug_30_react.append(h)

41 #elif t==0.0:

42 # drug_30_react.append(h)

43
44 cmod.setReactionBounds(h, r[1],r[2])

45
46
47 textfile = open("drug_30_percent_growth.txt", "w")

48 for element in drug_30_react:

49 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

50 textfile.close ()

51
52
53
54 #finding drug targets that reduce the growth rate by 20%

55
56 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

57 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

58 cmod.setReactionBounds(’R_BIOMASS ’, 0,1)

59
60
61 react_list=cmod.getReactionIds ()

62 drug_20_react = []

63 for h in react_list:

64 r=cmod.getReactionBounds(h)

65
66 cmod.setReactionBounds(h, 0,0)

67 t= cbm.analyzeModel(cmod)

68 if t <= 0.0526:

69 g_o = cmod.getGPRforReaction(h)

70 if bool(g_o)==True:

71 g = g_o.getGeneIds ()

72 drug_20_react.append ([h,g,t])

73
74 elif np.isnan(t)==True:

75
76 g_o = cmod.getGPRforReaction(h)

77 if bool(g_o)==True:

78 g = g_o.getGeneIds ()

79 drug_20_react.append ([h,g,t])

80
81 #elif t==0:

82 # drug_30_react.append(h)

83 #elif t==0.0:

84 # drug_30_react.append(h)

85
86 cmod.setReactionBounds(h, r[1],r[2])

178



87
88
89 textfile = open("drug_20_percent_growth.txt", "w")

90 for element in drug_20_react:

91 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

92 textfile.close ()

93
94
95 #finding drug targets that reduce the growth rate by 10%

96
97 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

98 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

99 cmod.setReactionBounds(’R_BIOMASS ’, 0,1)

100
101
102 react_list=cmod.getReactionIds ()

103 drug_10_react = []

104 for h in react_list:

105 r=cmod.getReactionBounds(h)

106
107 cmod.setReactionBounds(h, 0,0)

108 t= cbm.analyzeModel(cmod)

109 if t <= 0.0263:

110
111 g_o = cmod.getGPRforReaction(h)

112 g = g_o.getGeneIds ()

113 if bool(g_o)==True:

114 g = g_o.getGeneIds ()

115 drug_10_react.append ([h,g,t])

116
117 elif np.isnan(t)==True:

118
119 g_o = cmod.getGPRforReaction(h)

120 if bool(g_o)==True:

121 g = g_o.getGeneIds ()

122 drug_10_react.append ([h,g,t])

123
124 #elif t==0:

125 # drug_30_react.append(h)

126 #elif t==0.0:

127 # drug_30_react.append(h)

128
129 cmod.setReactionBounds(h, r[1],r[2])

130
131
132 textfile = open("drug_10_percent_growth.txt", "w")

133 for element in drug_10_react:
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134 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

135 textfile.close ()

136
137
138
139 #finding drug targets that 30% reduction in theri flux kills the

bacteria

140
141 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

142 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

143 cmod.setReactionBounds(’R_BIOMASS ’, 0.,1)

144
145 drug_30_flux = []

146 for h in react_list:

147 ind = n.index(h)

148 r=cmod.getReactionBounds(h)

149
150 n_l_b = 0.3*f[ind ][2]

151 n_u_b = 0.3*f[ind ][3]

152
153 cmod.setReactionBounds(h, n_l_b ,n_u_b)

154 t= cbm.analyzeModel(cmod)

155 if np.isnan(t)==True:

156 g_o = cmod.getGPRforReaction(h)

157 if bool(g_o)==True:

158 g = g_o.getGeneIds ()

159 drug_30_flux.append ([h,g,t])

160
161 elif t==0.0:

162
163 g_o = cmod.getGPRforReaction(h)

164 if bool(g_o)==True:

165 g = g_o.getGeneIds ()

166 drug_30_flux.append ([h,g,t])

167
168 cmod.setReactionBounds(h, r[1],r[2])

169
170
171 textfile = open("drug_30_percent_flux.txt", "w")

172 for element in drug_30_flux:

173 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

174 textfile.close ()

175
176
177
178
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179 #finding drug targets that 20% reduction in theri flux kills the

bacteria

180
181 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

182 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

183 cmod.setReactionBounds(’R_BIOMASS ’, 0.,1)

184
185 drug_20_flux = []

186 for h in react_list:

187 ind = n.index(h)

188 r=cmod.getReactionBounds(h)

189
190 n_l_b = 0.2*f[ind ][2]

191 n_u_b = 0.2*f[ind ][3]

192
193 cmod.setReactionBounds(h, n_l_b ,n_u_b)

194 t= cbm.analyzeModel(cmod)

195 if np.isnan(t)==True:

196 g_o = cmod.getGPRforReaction(h)

197 if bool(g_o)==True:

198 g = g_o.getGeneIds ()

199 drug_20_flux.append ([h,g,t])

200 #if t<= 0.1:

201 # drug.append(h)

202 elif t==0.0:

203
204 g_o = cmod.getGPRforReaction(h)

205 if bool(g_o)==True:

206 g = g_o.getGeneIds ()

207 drug_20_flux.append ([h,g,t])

208
209 cmod.setReactionBounds(h, r[1],r[2])

210
211
212 textfile = open("drug_20_percent_flux.txt", "w")

213 for element in drug_20_flux:

214 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

215 textfile.close ()

216
217
218 #finding drug targets that 10% reduction in theri flux kills the

bacteria

219
220 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

221 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

222 cmod.setReactionBounds(’R_BIOMASS ’, 0.,1)

223
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224 drug_10_flux = []

225 for h in react_list:

226 ind = n.index(h)

227 r=cmod.getReactionBounds(h)

228
229 n_l_b = 0.1*f[ind ][2]

230 n_u_b = 0.1*f[ind ][3]

231
232 cmod.setReactionBounds(h, n_l_b ,n_u_b)

233 t= cbm.analyzeModel(cmod)

234 if np.isnan(t)==True:

235 g_o = cmod.getGPRforReaction(h)

236 if bool(g_o)==True:

237 g = g_o.getGeneIds ()

238 drug_10_flux.append ([h,g,t])

239 #if t<= 0.1:

240 # drug.append(h)

241 elif t==0.0:

242
243 g_o = cmod.getGPRforReaction(h)

244 if bool(g_o)==True:

245 g = g_o.getGeneIds ()

246 drug_10_flux.append ([h,g,t])

247
248 cmod.setReactionBounds(h, r[1],r[2])

249
250
251 textfile = open("drug_10_percent_flux.txt", "w")

252 for element in drug_10_flux:

253 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

254 textfile.close ()

255
256
257 #finding drug targets that 30% reduction in their flux resulting in 30%

reduction in growth rate or kill

258
259 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

260 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

261 cmod.setReactionBounds(’R_BIOMASS ’, 0.,1)

262
263 drug_30_combo = []

264 for h in react_list:

265 ind = n.index(h)

266 r=cmod.getReactionBounds(h)

267
268 n_l_b = 0.3*f[ind ][2]

269 n_u_b = 0.3*f[ind ][3]
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270
271 cmod.setReactionBounds(h, n_l_b ,n_u_b)

272 t= cbm.analyzeModel(cmod)

273
274 if t <= 0.0789:

275
276 g_o = cmod.getGPRforReaction(h)

277 if bool(g_o)==True:

278 g = g_o.getGeneIds ()

279 drug_30_combo.append ([h,g,t])

280
281
282 elif np.isnan(t)==True:

283
284 g_o = cmod.getGPRforReaction(h)

285 if bool(g_o)==True:

286 g = g_o.getGeneIds ()

287 drug_30_combo.append ([h,g,t])

288 #if t<= 0.1:

289 # drug.append(h)

290 elif t==0.0:

291
292 g_o = cmod.getGPRforReaction(h)

293 if bool(g_o)==True:

294 g = g_o.getGeneIds ()

295 drug_30_combo.append ([h,g,t])

296
297 cmod.setReactionBounds(h, r[1],r[2])

298
299
300 textfile = open("drug_30_percent_combo.txt", "w")

301 for element in drug_30_combo:

302 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

303 textfile.close ()

304
305
306 #finding drug targets that 20% reduction in their flux resulting in 20%

reduction in growth rate or kill

307
308 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

309 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

310 cmod.setReactionBounds(’R_BIOMASS ’, 0.,1)

311
312 drug_20_combo = []

313 for h in react_list:

314 ind = n.index(h)

315 r=cmod.getReactionBounds(h)
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316
317 n_l_b = 0.2*f[ind ][2]

318 n_u_b = 0.2*f[ind ][3]

319
320 cmod.setReactionBounds(h, n_l_b ,n_u_b)

321 t= cbm.analyzeModel(cmod)

322
323 if t <= 0.0789:

324
325 g_o = cmod.getGPRforReaction(h)

326 if bool(g_o)==True:

327 g = g_o.getGeneIds ()

328 drug_20_combo.append ([h,g,t])

329
330
331 elif np.isnan(t)==True:

332
333 g_o = cmod.getGPRforReaction(h)

334 if bool(g_o)==True:

335 g = g_o.getGeneIds ()

336 drug_20_combo.append ([h,g,t])

337 #if t<= 0.1:

338 # drug.append(h)

339 elif t==0.0:

340
341 g_o = cmod.getGPRforReaction(h)

342 if bool(g_o)==True:

343 g = g_o.getGeneIds ()

344 drug_20_combo.append ([h,g,t])

345
346 cmod.setReactionBounds(h, r[1],r[2])

347
348
349 textfile = open("drug_20_percent_combo.txt", "w")

350 for element in drug_20_combo:

351 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

352 textfile.close ()

353
354
355 #finding drug targets that 10% reduction in their flux resulting in 10%

reduction in growth rate or kill

356
357 cmod=cbm.CBRead.readSBML3FBC(’saliva -fc -ful -3. xml’, modelDir)

358 f, n = cbm.FluxVariabilityAnalysis(cmod , optPercentage =99.9)

359 cmod.setReactionBounds(’R_BIOMASS ’, 0.,1)

360
361 drug_10_combo = []
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362 for h in react_list:

363 ind = n.index(h)

364 r=cmod.getReactionBounds(h)

365
366 n_l_b = 0.1*f[ind ][2]

367 n_u_b = 0.1*f[ind ][3]

368
369 cmod.setReactionBounds(h, n_l_b ,n_u_b)

370 t= cbm.analyzeModel(cmod)

371
372 if t <= 0.0789:

373
374 g_o = cmod.getGPRforReaction(h)

375 if bool(g_o)==True:

376 g = g_o.getGeneIds ()

377 drug_10_combo.append ([h,g,t])

378
379
380 elif np.isnan(t)==True:

381
382 g_o = cmod.getGPRforReaction(h)

383 if bool(g_o)==True:

384 g = g_o.getGeneIds ()

385 drug_10_combo.append ([h,g,t])

386 #if t<= 0.1:

387 # drug.append(h)

388 elif t==0.0:

389
390 g_o = cmod.getGPRforReaction(h)

391 if bool(g_o)==True:

392 g = g_o.getGeneIds ()

393 drug_10_combo.append ([h,g,t])

394
395 cmod.setReactionBounds(h, r[1],r[2])

396
397
398 textfile = open("drug_10_percent_combo.txt", "w")

399 for element in drug_10_combo:

400 textfile.write(str(element [0]) + ’\t’ + str(element [1])+ ’\t’ +

str(element [2])+ "\n")

401 textfile.close ()
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Heinken, Hulda S Haraldsdóttir, Jacek Wachowiak, Sarah M Keating, Vanja Vlasov, Stefania
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