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Abstract

Are inventory-based CO to fossil fuel CO
2

and NO
x

to fossil fuel CO
2

emission

ratios correct? Three measurement campaigns are conducted for this thesis,

investigating highway traffic and residential heating to find their sector-dominated

CO to fossil fuel CO
2

and NO
x

to fossil fuel CO
2

emission ratios.

Two mobile laboratories equipped with ten meter tall masts are used to ensure

proximity to the emitters in order to isolate emissions from the sector in ques-

tion. The determined sector-dominated effective atmospheric emission ratios are

compared to emission ratios from an emission inventory. The long-term trend of

measured CO emission ratios in Heidelberg are evaluated and compared to mod-

elled CO emission ratios based on an inventory combined with an atmospheric

transport model.

It is found that CO emissions from highway traffic are underestimated by the

inventory. Correcting the modelled CO emission ratios with the highway traffic

results leads to a better agreement between measured and modelled CO emission

ratios for the long-term trend. These results call for an investigation of the problem

by the traffic modelling community.
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Kurzfassung

Sind die Verhältnisse von CO und NO
x

zu fossilem CO
2

in Emissionsinventaren

korrekt? Drei Messkampagnen werden im Zuge dieser Arbeit durchgeführt, die

für Autobahnverkehr und Heizungen diese Emissionsverhältnisse feststellen.

Zwei mobile, mit zehn Meter hohen Masten ausgestattete Labors werden einge-

setzt, um die Nähe zu den Emittenten zu gewährleisten und die Emissionen des

jeweiligen Sektors zu isolieren. Die ermittelten sektorbezogenen Emissionsverhält-

nisse werden dann mit den Emissionsverhältnissen aus einem Emissionsinventar

verglichen. Der langfristige Trend der gemessenen CO-Emissionsverhältnisse in

Heidelberg wird ausgewertet und mit modellierten CO-Emissionsverhältnissen

verglichen, die auf einem Inventar in Kombination mit einem atmosphärischen

Transportmodell basieren.

Die Ergebnisse der Autobahnmesskamagne zeigen, dass CO Emissionen vom

Emissionsinventar unterschätzt werden. Korrigiert man die modellierten CO-

Emissionsverhältnissen mit den Ergebnissen der Autobahnkampagne, führt dies

zu einer besseren Übereinstimmung zwischen gemessenen und modellierten

CO-Emissionsverhältnissen für den langfristigen Trend. Dieses Ergebnis sollte

von der Verkehrsmodellierungscommunity weiter untersucht werden.
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Chapter 1

Introduction

The climate on our planet experiences continuous change. On geological time

scales, change is linked to Earth’s orbit (Paillard, 2001). The largest variations

are glacial and inter-glacial cycles. While the sun is the most significant driver of

this system, the interconnections between hydrosphere, cryosphere, biosphere,

atmosphere, and lithosphere bring nonlinear responses to the sun’s radiative

forcing (Beer et al., 2000).

The atmosphere has a special role when it comes to radiative forcing. Depending

on the wavelength of the incoming light, gases may interact with radiation. If

a gas has absorption lines in the infrared spectrum, it is called a greenhouse

gas. Greenhouse gases effectively trap radiation close to the surface by absorbing

radiation from the Earth’s surface, known as the greenhouse effect. The most

important greenhouse gas is CO
2

(IPCC, 2014), not because it is the most efficient

greenhouse gas, CH
4

for instance, cause more additional radiative forcing per

molecule on the timescale of a century, but because it is the most abundant. Its

abundance is directly linked to its atmospheric lifetime, i.e. the duration it stays

in the atmosphere, which can be in the order of hundreds to thousands of years

(Archer et al., 2009). As long as no major emissions such as volcanic eruptions

disturb the equilibrium, interactions between biosphere and hydrosphere keep

the CO
2

in balance.

Anthropogenic emissions of CO
2

through the burning of fuels, especially fossil

fuels, lead to increased concentrations in the atmosphere. Charles David Keeling

was the first to report increasing CO
2

concentrations at Mauna Loa in Hawaii

in 1958 (Hofmann et al., 2009). Humanity has used fire for more than a million

years (Gowlett, 2016), but only in the last 250 years the CO
2

concentration has

increased at an unprecedented rate, that is, when fossil fuels became the energy

source of the industrial revolution. Yearly emissions of gigatons of CO
2

previously

stored underground into the atmosphere disrupts the equilibrium between the

atmosphere and, e.g. the ocean and the biosphere. The increase in radiative

forcing due to CO
2

from fossil fuel burning could have catastrophic consequences

for humanity. Industrialised countries have recognised the danger of climate

change and began reducing CO
2

emissions.
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Chapter 1 Introduction

1.1 Motivation

In order to check if pledged emission reduction goals are reached, countries of

the United Nations established the United Nations Framework Convention on

Climate Change (UNFCCC, 2022). Yearly National Inventory Reports (NIR, 2022)

are submitted to the UNFCCC. The NIR are based on consumption statistics and

calculations according to guidelines of the Intergovernmental Panel for Climate

Change (Intergonvernmental Panel on Climate Change, 2022). The general formula

is 𝐸 = 𝐹 · 𝐴. The emission 𝐸 is equivalent to the activity 𝐴 multiplied with an

emission factor 𝐹.

Activity is an overarching term and describes something different for every

sector. Some examples are mass of coal burned in power plants for heat and

electricity, sum of driven kilometers in the traffic sector, and number of livestock

in agriculture. Even though the equation is simple, determining 𝐴 and 𝐹 is a

complex problem, requiring measurements and models to obtain good estimates.

NIRs are the data basis for emission inventories. Emission inventories spatially

disaggregate the emissions to model surface flux emission maps.

Atmospheric greenhouse gas concentrations are an independent measure of emis-

sions. Linking atmospheric CO
2

concentration enhancements to anthropogenic

(human made) fossil fuel combustion emissions is challenging because of the

interactions of CO
2

with the biosphere (Miles et al., 2021). Respiration and

photosynthesis can lead to strong fluctuations of CO
2

concentrations. Separating

biospheric CO
2

(bioCO
2
) and fossil fuel CO

2
(ffCO

2
) is therefore essential. The

state-of-the-art method involves measuring
14

CO
2

(Levin et al., 2003), an isotope

that can be found in bioCO
2

but is completely absent in ffCO
2

due to its radioactive

decay with a half-life time of 5730 years. Measuring
14

CO
2

is laborious and costly.

In consequence, quasi-continuous measurements rely on weekly or bi-weekly

accumulated samples. This poses a problem for models.

Inverse atmospheric models estimate a posteriori surface fluxes of ffCO
2

by updating

a priori surface fluxes from emission inventories with atmospheric concentration

measurements using Bayesian statistics (Joyce, 2021; Bayes, 1764). This requires

atmospheric ffCO
2

concentration measurements on an hourly timescale, but the

current technology only allows for weekly or biweekly measurements. One

proposed solution to this problem is inferring ffCO
2

concentrations from concen-

trations of gas species co-emitted in combustion (Levin and Karstens, 2007; Vogel

et al., 2010; Super et al., 2017). These so-called proxy gases, e.g. CO and NO
x
, can

easily be measured on an hourly timescale. To estimate ffCO
2
, the proxy/ffCO

2

emission ratios have to be determined precisely.

2



1.2 State of the art

Inventory emission ratios are directly coupled to emission factors. When calculat-

ing an emission ratio of a proxy 𝑅proxy for a sector

𝑅proxy =
𝐸proxy

𝐸
ffCO

2

=

𝐸proxy

𝐴

𝐸
ffCO

2

𝐴

=
𝐹proxy

𝐹
ffCO

2

,

the activity 𝐴 cancels out. Determining 𝐹
ffCO

2

is comparatively easy, because

besides H
2
O, ffCO

2
is one of two main products of the fossil fuel combustion. If the

carbon content of the educts (fuel) are known and the fuel is fully oxidised, calcu-

lating the emission factor is straight-forward. However, fuels are usually not fully

oxidised. Hence, in addition, a small fraction of CO is produced. Determining

𝐹proxy, e.g. 𝐹CO precisely is challenging, because it depends strongly on combustion

conditions. While 𝐹
ffCO

2

may change by 0.1 to 1 %, depending on oxygen availabil-

ity, 𝐹CO changes by a factor of 10 simultaneously. Emission factors for inventories

necessarily depend on models that inherently contain uncertainties. e.g. in the

traffic sector (Hausberger et al., 2009), a sample of vehicles is tested for each vehicle

group. From the test data, the Passenger Car Heavy duty Emission Model (PHEM)

estimates emission factors. Hausberger et al. (2009) list three categories of uncer-

tainties related to (1) the sample of vehicles for each group, (2) the model and (3)

other problems like cold start conditions, fuel influence, load conditions et cetera.

Atmospheric measurements can be an independent check of proxy/ffCO
2

emission

ratios. Many studies already investigated atmospheric emission ratios (Zondervan

and Meĳer, 1996; Potosnak et al., 1999; Levin and Karstens, 2007; Djuricin et al.,

2010; Vogel et al., 2010; Newman et al., 2013; Janssen et al., 2013; Gamnitzer

et al., 2006; Turnbull et al., 2006; Vollmer et al., 2007; Graven et al., 2009; Turnbull

et al., 2015) for different reasons. However, proxy/ffCO
2

emission ratios are

source dependent, spatially heterogeneous and ever-changing. Consequently,

continuous monitoring and investigation of atmospheric proxy/ffCO
2

emission

ratios is necessary.

1.2 State of the art

Quantification of surface flux via emission inventories is the foundation of

ffCO
2

monitoring. Necessary independent verification is possible with inverse

atmospheric models. The models require continuous ffCO
2

concentration mea-

surements, a feat that can only be achieved indirectly by using proxy gases and

their corresponding emission ratios.

3



Chapter 1 Introduction

Emission inventory. A multitude of emission inventories are publicly available.

However, no two emission inventories are the same and differences already arise

just by what is included and what is not (Andrew, 2020). In the following I list a

few prominent emission inventories and their corresponding institutions.

• Open-source Data Inventory for Anthropogenic CO
2

(ODIAC), National

Institute for Environmental Studies, Japan (ODIAC, 2022)

• Carbon Dioxide Information Analysis Center inventory (CDIAC), U.S. De-

partment of Energy (CDIAC, 2022)

• Emissions Database for Global Atmospheric Research (EDGAR), Joint Re-

search Centre of the European Commission (EDGAR, 2022)

• Copernicus Atmosphere Monitoring Service REGional inventory (CAMS-

REG), Netherlands Organisation for Applied Scientific Research (TNO)

(Kuenen et al., 2022)

• Hestia, National Institute for Standards and Technology, U.S.A. (Hestia,

2022)

ODIAC estimates global ffCO
2

emissions based on satellite nighttime light data

and individual power plant emission/location profiles (ODIAC, 2022). CDIAC

uses energy statistics provided by the United Nations to estimate global ffCO
2

emissions (CDIAC, 2022). EDGAR uses international statistics as well, but provides

information on other greenhouse gases in addition to ffCO
2

by using a consistent

IPCC methodology (EDGAR, 2022). CAMS-REG is based on National Inventory

Reports instead of energy statistics and is a European, not a global emission

inventory (Kuenen et al., 2022). Hestia is a high-resolution, city-level emission

inventory for US cities, e.g. Indianapolis (Gurney et al., 2012).

Ratio measurements. Emission ratios can only be determined if proxy gases

and ffCO
2

are measured simultaneously. There is a wide range of instruments

capable of measuring CO and CO
2

– but not ffCO
2

– at high temporal reso-

lution using characteristic light absorption to determine concentrations. Two

examples are the Fourier-transform infrared spectrometer (FTIR, Griffith (1996);

Hammer et al. (2013)) and the cavity ring-down spectrometer (CDRS Busch

and Busch (1999)). For NO
x
, inexpensive in-situ instruments are also read-

ily available, e.g. the ICAD instruments used in the measurement campaigns

(Horbanski et al., 2019). Directly measuring ffCO
2

is currently not possible,

instead air samples have to be collected. CO
2

is extracted from the air sam-

ples cryogenically, before it is graphitised to carbon. The graphitised car-

bon is then analysed for
14

C either by low-level counting (LLC, Kromer and

4



1.2 State of the art

Münnich (1992)) or isotope measurements with an accelerator mass spectrom-

eter (AMS, Miller et al. (2013); Hammer et al. (2017)). Lux (2018) describes

the processing at the Heidelberg Central Radiocarbon Laboratory of the Inte-

grated Carbon Observation System (ICOS CRL, 2022). The same methods are

used all over the world, cf. Turnbull et al. (2015, 2017); Levin and Rödenbeck

(2008).

Proxy ratios in previous studies. Traffic studies often only measure CO
2
, not

ffCO
2
, since 5 % or less of the CO

2
is non-fossil (Popa et al., 2014; Ammoura

et al., 2014). Two prominent methods to determine traffic emission ratios are

tailpipe emission measurements (Bishop and Stedman, 2008; Vollmer et al., 2010)

and tunnel studies (Vollmer et al., 2007). Today, tailpipe measurements are

performed during real driving conditions by portable emission measurement

systems (PEMS) in the vehicle, that capture exhaust gases directly and analyse

them on board (Weiss et al., 2012). Besides PEMS, test-stand measurements

can be used to determine traffic emission factors. Keller et al. (2017) model

traffic emission factors for Austria, Germany, and Switzerland based on such

measurements. Tunnel studies typically use two measurement stations, one at

medium distance to the entrance and one close to the exit of a one directional car

tunnel (Vollmer et al., 2007; Popa et al., 2014). Bradley et al. (2000) used an Open

Path FTIR (i.e. the light path is across the street) to measure absolute emission

ratios. While emission ratios are usually determined by dividing CO enhancement

by CO
2

enhancement (Popa et al., 2014), here total concentrations were divided.

The two in-situ methods, tailpipe measurements and tunnel measurements,

are suitable to investigate some aspects of traffic emissions. However, tailpipe

emissions are limited to individual vehicles and capture the gas before any

atmospheric chemistry processes take effect. Tunnel studies are physically limited

to tunnels.

The approach in this thesis yields an effective average traffic emission ratio,

representative for a highway traffic signal that reaches a potential measurement

station. The distinction ‘effective’ is important, since traffic plumes that reach a

measurement station have been affected by some atmospheric chemistry, e.g. the

interaction of CO with OH (Crutzen and Fishman, 1977). With the accompanying

traffic count data and the month-long continuous measurements, separate ratios

for heavy duty vehicles and passenger cars can be identified. The fleet composition

is crucial for the measured emission ratio, a fact that was omitted, overseen or not

quantifiable in previous studies.

Studies of residential heating usually focus on comparing stoves or boilers

(Johansson et al., 2004; McDonald, 2009; Win et al., 2012) in test-bed environments.

However, even when residential areas are studied, the focus is not on residential

heating emission ratios (Helfter et al., 2016). To the best of my knowledge, no

5



Chapter 1 Introduction

study focusing on effective atmospheric emission ratios from residential heating

exists to date.

Once proxy/ffCO
2

emission ratios are determined, they help to improve the

ability to detect ffCO
2

concentration enhancements (ΔffCO
2
) in the atmosphere.

Proxies have improved the temporal resolution of ΔffCO
2

(Levin and Karstens,

2007), the spatial localisation of ΔffCO
2

plumes, estimation of ΔffCO
2

emissions

from satellite measurements (Reuter et al., 2019; Konovalov et al., 2016), and the

sectoral attribution of ΔffCO
2

(Turnbull et al., 2015).

Levin and Karstens (2007) showed that continuous CO measurements can be

used as a proxy for regional ΔffCO
2
. They estimated uncertainties between 20 %

and 40 % for hourly ffCO
2

values. In satellite studies, proxy measurements are

used for constraining the spatial extent of urban or industrial CO
2

plumes (Reuter

et al., 2019). Konovalov et al. (2016) developed an inverse modelling method

using satellite proxy measurements and emission inventory NO
x
/ffCO

2
ratios

to estimate ffCO
2
. These examples demonstrate the broad application range of

ffCO
2

proxies.

As part of the INdianapolis FLUX experiment (INFLUX) (Miles et al., 2021; Davis

et al., 2017; Richardson et al., 2017; Miles et al., 2017; Cambaliza et al., 2015),

Turnbull et al. (2015) use CO
2
, CO, and

14

CO
2

in-situ measurements from tall

towers in and around the city to quantify urban emissions. With the emission

inventory developed by Gurney et al. (2012) and the tall tower measurements,

Lauvaux et al. (2016) designed a high-resolution inversion system to estimate

the carbon budget of Indianapolis. INFLUX is one of the largest comprehensive

experiments investigating anthropogenic urban emissions. Turnbull et al. (2015)

used characteristic ΔCO/ΔffCO
2

ratios to identify the contribution of different

source sectors over the course of a day. The measurements have also been used to

evaluate inventory-based CO/ffCO
2

ratios for the traffic sector.

Modern emission inventories can provide ffCO
2

as well as proxy gas emissions.

The ratio between proxy gas emissions and ffCO
2

emissions contain uncertainties

originating in the emission factors of the proxy gas and – to a lesser degree – the

emission factors of ffCO
2
. Consequently, independent verification in the form of

atmospheric measurements is necessary. Although many studies on atmospheric

proxy/ffCO
2

emission ratios exist, none focus on residential heating and most

that focus on traffic are either restricted to individual vehicles or tunnels and thus

cannot capture traffic emissions in all their complexity. Long-term comparisons of

proxy/ffCO
2

emission ratios between measurements and inventories are necessary

to check the consistency over an extended time period. Unfortunately, long-term

14

CO
2

records for (semi-)polluted measurement stations are rare. However, for

Heidelberg such a record exists.

6



1.3 Objectives and structure

Fig. 1.1 Overview of the campaign sites. White rectangles indicate emission inventory cells used

for comparison with collected data.

1.3 Objectives and structure

This thesis aims to provide a quantitative comparison of inventory-based proxy to

ffCO
2

emission ratios with atmospheric effective Δproxy/ΔffCO
2

ratios. To this

end, sector-dominated emission ratios were measured in three campaigns: two

for the heating sector, one for highway traffic. For this purpose, two semi-mobile

laboratories, capable of sample collection for
14

C analysis and continuous trace

gas measurements of CO
2
, CO, CH

4
, NO

x
, and NO

2
using spot samples (also

denoted flasks) are built for the three campaigns. The campaigns are conducted

in proximity to Heidelberg (Fig. 1.1). Their goal is to (1) demonstrate that in-situ

measurements of sector-dominated Δproxy/ΔffCO
2

ratios is possible and (2)

use the measured data to verify proxy/ΔffCO
2

ratios provided by the emission

inventory of TNO (Kuenen et al., 2014). This novel approach brings new insight

because it determines effective atmospheric proxy/ffCO
2

emission ratios, i.e.

emission ratios as they would be measured at in-situ measurement stations. In

addition, a 15-year time series of ffCO
2

at the Heidelberg measurement site is

analyzed to investigate the long-term ΔCO/ΔffCO
2

trend.

Chapter 2 describes the conceptual and methodical tools used to answer the

questions above. Chapters 3 and 4 present a traffic campaign at the A5 highway

and two heating campaigns in Leimen and Gaiberg, respectively. The sections for

each campaign are structured in the same way, starting with a description of the

campaign site, followed by results, discussion, and perspectives. Both heating

campaigns are discussed jointly. Chapter 5 describes the comparison of long-term

trends in measured and modelled CO/ffCO
2

emission ratios in Heidelberg. Finally,

7



Chapter 1 Introduction

in Chapter 6 I conclude the thesis by bringing the results from campaigns and

long-term record into perspective. The appendices contain detailed information

about the instruments used during the campaigns (Appendix A), the quality

check of the traffic campaign (Appendix B), and the data used in the long-term

record calculations (Appendix C).

8



Chapter 2

Background and methods

This chapter introduces theoretical concepts behind the measurements and models

used in this thesis. Relevant atmospheric trace and proxy gases are discussed. The

measurement principles for proxy/ffCO
2

emission ratios and the corresponding

modelling approach are presented. Additionally, intricacies of the used emission

inventory concerning the two sectors of interest – traffic and residential heating –

are discussed. Calculations of average emission ratios, a dispersion model and

wind direction statistics are presented.

Experimental design is the key to successful measurement campaigns. In-situ

measurements are unable to distinguish between CO
2

from different sources,

e.g. traffic or a coal-fired power plant. Focusing on one sector, e.g. residential

heating, requires spatial and/or temporal separation from sources of other sectors.

Consequently, the conducted measurement campaigns were designed to maximise

temporal and spatial separation in order to measure sector-dominated emission

ratios with as little interference from other sectors as possible.

2.1 Atmospheric tracers and proxies

Environmental physics as a field relies heavily on tracers and proxies to reconstruct

natural processes and phenomena. Tracers are substances that are are present in

processes, sometimes substituting other molecules or elements without affecting

the process itself. A good example is dying a water stream with a chemically inert

dye. Proxies of species are produced in the same environment and by the same

process, but in a different chemical reaction. For instance, CO as a proxy for CO
2

where their only difference is that CO is not fully oxidised. In other words, tracers

trace processes, while proxies are stand-ins for the gas species of interest.

Radon.
222

Rn is progeny of
238

U exhaled from soils at a rate of in the order of

1 atom cm
−2

s
−1

(Karstens et al., 2015). The exhalation rate varies depending on soil

texture, local water table depth, and uranium content. For simplicity, we assume

a constant exhalation rate. With a half-life of 3.83 days,
222

Rn is an excellent

9



Chapter 2 Background and methods

tracer for local atmospheric transport and mixing. During nightly inversions,

222

Rn and other trace gases accumulate in the planetary boundary layer. While

accumulation of other trace gases depend on local sources, the exhalation rate

of
222

Rn is approximately constant. Hence, the
222

Rn concentration increase

over time only depends on the mixing height. During well mixed atmospheric

conditions,
222

Rn is diluted, same as other trace gases.

Carbon dioxide.
14

CO
2

is a tracer for fossil fuel contributions to a CO
2

enhance-

ment. CO
2

from fossil fuel burning is chemically indistinguishable from CO
2

emitted by the biosphere. Physically, however, fossil fuel CO
2

misses the isotopo-

logue
14

CO
2

because
14

C is a radioactive isotope with a half-life of 5730 years
1
.

The reduction of the ratio 𝑅 = 14

C/12

C due to fossil fuel burning is called the

Suess effect (Suess, 1955) and consequently,
14

CO
2

can be used as a tracer of the

fossil contribution to a local, temporary increase in CO
2
.

14

C abundance is given

in reference to the United States’ National Bureau of Standards (NBS, now named

National Institute of Standards and Technology, NIST) oxalic acid (Stuiver and

Polach, 1977) as

Δ =

(︃
𝑅sample

𝑅standard

− 1

)︃
· 1000h. (2.1)

With this, following Levin et al. (1989, 2003); Levin and Rödenbeck (2008);

Levin et al. (2008, 2011), we can calcuate ffCO
2

with the following mass balance

equations:

CO
meas

2
= CO

bg

2
+ CO

bio

2
+ CO

nuc

2
+ CO

ff

2
(2.2)

CO
meas

2
(Δ14

C
meas + 1000h) = CO

bg

2
(Δ14

C
bg + 1000h)

+ CO
bio

2
(Δ14

C
bio + 1000h)

+ CO
ff

2
(Δ14

C
ff + 1000h)

+ CO
nuc

2
(Δ14

C
nuc + 1000h)

(2.3)

where the superscript meas denotes the measured quantity at the station of interest,

bg denotes to background station, bio denotes a biospheric origin, nuc denotes

nuclear origin, and ff denotes the origin from fossil fuel. The nuclear term was

added to this equation more recently (Maier et al., 2021) and was not present

in the original publications (e.g. Levin et al., 2003; Levin and Rödenbeck, 2008;

Levin et al., 2011).

1
The isotope

14

C is formed in the upper troposphere in an (n,p) reaction where Nitrogen absorbs

a thermal neutron (n + 14

7
N → 14

6
C + p).

14

C is then oxidised in two steps to form
14

CO
2
, which,

in return, is photosynthesised by plants, joining the biosphere carbon cycle.

10



2.1 Atmospheric tracers and proxies

The simplest solution to calculate ffCO
2

assumes no influence from nuclear sources

(CO
nuc

2
= 0) and the biosphere in very close equilibrium with atmospheric CO

2
,

i.e.Δ
14

CO
bio

2
= Δ14

CO

bg

2
(Levin et al., 2003). Then, assumingΔ

14

C
ff = −1000h,

i.e. 𝑅sample = 0 in Eq. (2.1), we obtain

CO
ff

2
= CO

meas

2

Δ
14

C
bg −Δ14

C
meas

Δ
14

C
bg + 1000h

. (2.4)

Taking into account that in reality Δ
14

CO
bio

2
≠ Δ14

CO

bg

2
, Levin and Rödenbeck

(2008) used model calculations by Naegler (2005) to obtain a better estimate for

Δ
14

CO
bio

2
by assuming Δ

14

CO
bio

2
in Heidelberg is comprised of roughly equal

parts of heterotrophic and autotrophic respiration, i.e.

Δ14

CO
bio

2
= 0.5 · Δ14

CO
het

2
+ 0.5 · Δ14

CO
auto

2
, (2.5)

where het and auto denote heterotrophic and autotrophic respiration, respectively.

Naegler (2005) estimated monthly Δ
14

CO
het

2
values, whereas Δ

14

CO
auto

2
is esti-

mated to be equal to the background, i.e. Δ14
CO

bg

2
= Δ14

CO
auto

2
. With this and the

modelled influence of nuclear facilities (Kuderer et al., 2018), the new equation to

calculate ΔCO
ff

2
is

ΔCO
ff

2
=

CO

bg

2
(Δ14

C
bg −Δ14

C
bio) − CO

meas

2
(Δ14

C
meas −Δ14

C
nuc −Δ14

C
bio)

Δ
14

C
bio + 1000h

.

(2.6)

At this time, no instrument is readily available to measure
14

CO
2

with high

temporal resolution. The current procedure involves collection of air samples,

either in Raschig-tubes or in flasks, graphitisation of CO
2
, and analysis in an AMS.

2

Because this is a costly and laborious processing chain, so-called proxy gases are

investigated by numerous studies (Zondervan and Meĳer, 1996; Potosnak et al.,

1999; Levin and Karstens, 2007; Djuricin et al., 2010; Vogel et al., 2010; Newman

et al., 2013; Janssen et al., 2013; Gamnitzer et al., 2006; Turnbull et al., 2006). Proxy

gases are co-emitted during combustion and can typically be measured relatively

easily, continuously, and cheaply. An ideal proxy for the present case would have

no sources other than combustion of fossil fuels (i.e. is chemically inert) with a

constant Δproxy/ΔffCO
2

emission ratio and a short life time (hours). The proxy

gases used in this thesis are CO and NO
x
. Their characteristics will be described

in the following.

In general, the emission ratios of proxy gases depend on many factors, e.g.

source type, fuel, combustion conditions, or after-treatment of exhaust gases. A

2
A detailed description of the whole workflow is beyond the scope of this thesis but is given by

Lux (2018).
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Chapter 2 Background and methods

particular challenge is bio-fuel burning, which increases proxy concentrations

while not increasing ffCO
2
, and hence increasing the proxy emission ratios. New

technologies such as new catalysts, increases in combustion efficiency, or changes

in heating systems, constantly change proxy emission ratios creating a need for

new studies. While many studies focus only the transport sector (Ammoura et al.,

2014; Popa et al., 2014; Vollmer et al., 2007; Bradley et al., 2000), because it is

one of the largest contributors to climate change and air pollution, I additionally

measured residential heating emissions with an approach different from other

studies (McDonald, 2009; Johansson et al., 2004). To quantify the change in

Δproxy/ΔffCO
2

emission ratios over time, a long term record for CO and ffCO
2

is analysed and compared to bottom-up inventory emission ratios.

Carbon monoxide. CO is generated in every carbon-fuel combustion process and

is therefore a proxy candidate. The amount of CO produced generally depends on

oxygen availability, i.e. if enough oxygen is readily available, fossil fuel combustion

will produce very little CO. Typically, the CO/ffCO
2

emission ratio lies somewhere

between 0.3 ppb/ppm and 35 ppb/ppm. Power plants ideally are at the lower end

because they run at nearly perfect combustion efficiency by monitoring flue gases

and increasing oxygen supply when CO concentrations exceed the acceptable

threshold (Nicks Jr et al., 2003). CO/(ff)CO
2

ratios of residential heating systems

depend on fuel-type and efficiency. According to McDonald (2009), fossil fuel

systems (oil, gas) emit very little CO (<1 ppb/ppm), whereas bio fuel systems

have high CO/CO
2

emission ratios (1 to 6 ppb/ppm).

Similarly, traffic emission ratios depend mostly on the engine type. As will be

explained later in this section, gasoline-fuelled vehicles emit large amounts of CO,

with CO/ffCO
2

emission ratios of up to 35 ppb/ppm (Tietge et al., 2020). Even

larger CO emissions occur during cold-start conditions when the catalyst is not

yet hot enough. Here, CO/ffCO
2

emission ratios can be 3 to 5 times higher, i.e.

CO/ffCO
2

emission ratios of 100 ppb/ppm or more are possible (Dey et al., 2019).

Diesel vehicles exhibit CO/ffCO
2

emission ratios from 1 ppb/ppm for heavy duty

vehicles down to 0.3 ppb/ppm for passenger cars (Tietge et al., 2020).

Nitrogen oxides. NO
x

is also produced during combustion, making it another

proxy candidate. In the so-called Zeldovich mechanism (Zeldovich, 1946; Glarborg

et al., 2018), where an O radical attacks the triple bond in N
2
. The left-over N atom

is rapidly oxidised to NO by reaction with OH or O
2
. The Zeldovich mechanism

is the main production pathway for NO
x

and is promoted by high temperatures.

Typically, the NO
x
/ffCO

2
emission ratio is <1 ppb/ppm for industry and power

plants according to the TNO inventory (Kuenen et al., 2022). Heating NO
x
/ffCO

2

emission ratios usually fall between 0.1 and 1.3 ppb/ppm for oil, gas, and wood-

pellet heating systems (McDonald, 2009). Burning green cuttings, e.g. from

12



2.1 Atmospheric tracers and proxies

barley or corn, can lead to much higher NO
x

emission ratios of ≈5 ppb/ppm

(Dell’Antonia et al., 2012).

Diesel and gasoline engines. Traffic exhaust emissions, i.e. the emissions mea-

surable with the set-up used here, are affected by fuel composition, engine type,

combustion temperature, the after-treatment, and many more parameters of the

combustion process (Wallington et al., 2006). Here, I will focus on passenger

cars and explain (1) why gasoline engines emit significantly more CO than diesel

engines and (2) why diesel engines emit significantly more NO
x

than gasoline

engines.

The most commonly known difference between diesel and gasoline engines is the

ignition. While diesel engines rely on self-ignition of compressed fuel, gasoline

engines ignite the fuel with a spark. However, the difference in the air-fuel mixing

ratio between diesel and gasoline engines is more consequential for NO
x

and CO

emissions.

While most gasoline engines work with a stoichiometric air-fuel mixing ratio, i.e.

just enough air to completely convert the fuel to CO
2

and H
2
O, diesel engines

work with a lean air-fuel mix ratio, i.e. more air than needed is present during

combustion. As a consequence, the exhaust gas of a diesel engine contains

more O
2

than that of a gasoline engine. A surplus of O
2

in diesel exhaust gas

means that the reduction of NO
x

to N
2

is more difficult to catalyse, leading to

elevated exhaust NO
x

emissions
3
. At the same time, CO is easily oxidised to CO

2
,

leading to low exhaust CO emissions. For gasoline engines, it is the other way

around: low O
2

levels in the exhaust gas mean more NO
x

is reduced in catalytic

reactions, leading to lower NO
x

exhaust emissions, while at the same time CO

oxidisation is more difficult, leading to higher CO exhaust emissions (Wallington

et al., 2006).

Offset and background. Trace gas enhancements, also known as offsets, are

calculated from in-situ concentrations by subtracting an appropriate background.

How exactly the background is chosen, depends on what emissions are of interest.

For example, a background for continental Europe can be determined from

measurements from the station Mace Head on the west coast of Ireland which

measures the maritime background. If emissions on a sub-regional, local scale are

of interest, the single-station and two-station approach (Section 2.8) are effective

and efficient ways to determine background and offset.

3
This is despite the fact that diesel engines usually run at lower combustion temperatures

than gasoline engines, which speaks to the fact that combustion temperature is not the only

determining factor for exhaust NO
x

emissions.
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Fig. 2.1 TNO emissions folded with STILT footprints for winter 2015 (December 2014, January and

February 2015). The color scale is logarithmic.

2.2 Modelling trace gas enhancements

Trace gas enhancements at the Heidelberg Institute for Environmental Physics can

be calculated using surface flux maps folded with surface influence maps. Surface

influence maps, also referred to as ‘footprints’, are the result of atmospheric

transport modelling and show how emissions have to be weighted. Folding

inventory emission maps with footprints weights each inventory cell surface flux

appropriately and summation over the weighted emission for every cell yields

the concentration enhancement in Heidelberg. A map of emissions folded with

footprints is shown in Fig. 2.1.

Footprints are acquired through the Carbon Portal (2022) and based on the

Stochastic Time-Inverted Lagrangian Transport model (STILT), see Lin et al. (2003).

STILT transports a particle ensemble backwards in time to calculate footprints.

Conceptually, Lagrangian transport models differ from their counterparts, Eule-

rian transport models, in what is observed. Eulerian models essentially calculate

in-flow and out-flow of grid cells, whereas Lagrangian models transport particles

on a sub-grid scale, achieved by interpolating meteorological data. ‘Time-inverted’

means that particles are transported backwards in time. That is, if Heidelberg is

the point of interest, particles start there and are transported to where they came

14



2.3 Emission inventories

from originally by inverting the time axis. The STILT is stochastic in the sense

that turbulent flow is ‘simulated by a Markov chain process based statistically on

observed meteorological parameters.’ (Lin et al., 2003).

STILT can be run in conjunction with different meteorological prediction models.

The implementation on the Carbon Portal (2022) uses the model of the European

Center for Medium-Range Weather Forecasts (ECMWF). For instance, Maier et al.

(2021) used the Weather and Research Forecasting (WRF) model to increase the

spatial resolution of meteorological data fed into STILT. This modus operandi is

commonly referred to as WRF-STILT (Nehrkorn et al., 2010).

The representation of the planetary boundary layer height is essential for near-

surface observations (Lin et al., 2003). Without the correct planetary boundary

layer height, emissions are incorrectly diluted. Closely connect to this problem

is the question of emission height. The footprints I use, strictly use the surface

source influence ansatz, i.e. everything is emitted at the surface. Maier et al. (2021)

show how the emission height of sources influence modelled CO
2

concentrations

in Heidelberg by comparing the surface source influence ansatz (SSI) with the

volume source influence ansatz (VSI), where emissions happen at the correct

height. Running 20 years of STILT with the VSI ansatz was beyond the scope of

this thesis. Instead, I use a constant factor of 3.4 (Fig. C.6) to reduce the emissions

of point sources with large stack heights around Heidelberg (closer than 50 km)

that was determined by Maier et al. (2021) in their study of the years 2018 to

2020.

2.3 Emission inventories

Maps of emission data, categorised according to gas species, emission sector, and

possibly fuel type, are called emission inventories. Most emission inventories are

based on reports like the National Inventory Reports (NIR) and Informative Inven-

tory Reports (IIR), which are handed to the UNFCCC (2022) every year by each

contributing country. Reported emissions can be disaggregated (e.g. brought down

to a sub-national scale) using proxies like local energy consumption data or statis-

tical data and a consistent set of emission factors, e.g. Hestia (Gurney et al., 2012)

or the Emissions Database for Global Atmospheric Research (EDGAR, 2022).

The TNO inventory (Denier van der Gon et al., 2013; Kuenen et al., 2014; Denier

Van Der Gon et al., 2017; Kuenen et al., 2022) and its temporal profiles (Guevara

et al., 2020) are used in conjunction with STILT to create a 15 year record of

the ΔCO/ΔffCO
2

ratio at the Heidelberg Institute for Environmental Physics to

compare this to the measured emission ratio. Emission ratios from TNO will also

be used as a frame of reference for the campaigns of heating and traffic emissions.
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Chapter 2 Background and methods

To model concentration enhancements in Heidelberg, footprints from the STILT

tool on Carbon Portal are combined with TNO inventory emission maps. Unfor-

tunately, the grids of the footprints and the emission maps do not match. I used

the Climate Data Operators (CDO, Climate Data Operators, 2022; Schulzweida,

2021) provided by the Max Planck Institute for Meteorology (MPI-MET) to adjust

TNO maps to the STILT grid. In doing so, point source emissions are assigned

to the whole grid-cell (the information of the precise locations for point sources

provided by TNO is lost).

Traffic. How are traffic emission factors (EF) determined? As previously ex-

plained, EFs are not constant but depend on environmental circumstances,

combustion efficiency, vehicle, and engine type. Measuring EFs is not straight

forward, especially when engines are manipulated to fit pollution norms when

driving in a testing facility. Small, stable instruments (so-called Portable Emissions

Measurement Systems, or PEMS) allow for on-board testing with real driving

emission (RDE) levels, improving the accuracy of EFs. A range of vehicles from

each vehicle group is tested to prevent biasing the EFs
4
. For Germany and a

number of other countries, EFs are available in the form of the Handbook Emission

Factors for Road Transport (Keller et al., 2017), which ‘provides emission factors,

i.e. the specific emission in g/km for all current vehicle categories (PC, LDV, HDV,

buses, and motor cycles), each divided into different categories, for a wide variety

of traffic situations.’ (HBEFA, 2022)

With the EFs from the HBEFA, the Institute for Energy and Environmental

Research (Ifeu, 2022) in Heidelberg runs a Transport Emission Model (Tietge

et al., 2020) that ‘maps motorised traffic in Germany with regard to its traffic and

mileage, energy consumption and the associated climate gas and air pollutant

emissions [...]’ (TREMOD, 2022)
5
. Emissions calculated by TREMOD are part of

the yearly NIR (NIR, 2022) and the IIR (Informative Inventory Report, 2022) data

reported by the German Environmental Agency (Umweltbundesamt, 2022). 92 %
of traffic CO

2
emissions are caused by cars (diesel 32 %, gasoline 29 %, others 1 %)

and heavy duty trucks (30 %), while the rest is comprised of motor cycles (1 %)

and light duty trucks (7 %) (NIR, 2022). Road transport emissions are split into

fuel types and road types based on data from EMISIA
6
. for spatial disaggregation

4
How many vehicles are tested varies from group to group. According to Stefan Hausberger

(personal communication September 30, 2021), diesel passenger cars have the largest test pool of

about 80 vehicles.

5
TREMOD data were provided by Wolfram Knörr of ifeu via personal communication (May 17,

2021.

6
EMISIA is a spin-off company of the Aristotle University Thessaloniki (AUTh) in Greece that

developed COPERT, a software similar to TREMOD supported by the European Environment

Agency and the Joint Research Centre (Emisia, 2022).
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2.4 Averaging emission ratios

TNO, uses their own proxies based on OpenStreetMaps and OpenTransportMaps
7
.

TNO traffic data are based on the reference year 2017 and extrapolated for recent

years. Consequently, emissions may be sightly misestimated.

Heating. Like traffic emissions, heating emissions, too, are primarily tied to fuel

consumption statistics. The fuel types are gas, oil, coal, and biomass (e.g. wood

pellets). For residential heating in Germany, gas (46 %) and oil (31 %) are the most

prevalent fuel types, while biomass burning (22 %) is less prominent, and coal

is negligible (NIR, 2022). The TNO emission inventory uses LandScan (2022)

based population density maps as a proxy to distribute emissions from gaseous

and liquid fuels. Solid, non-biomass fuel emissions are distributed using the

rural population density (<250 inhabitants per km
2

), while biomass emissions

are distributed by population density and in proximity to forested (mostly rural)

areas.
8

2.4 Averaging emission ratios

There are many ways to average emission ratios. For brevity, I will use the CO emis-

sion ratio as an example. Of course, this paragraph applies to NO
x
, too. Imagine

two data points with 𝑃1 = [ΔCO = 10 ppb,ΔffCO
2
= 1 ppm] and 𝑃2 = [ΔCO =

50 ppb,ΔffCO
2
= 10 ppm]. To calculate the average emission ratio ΔCO/ΔffCO

2
,

one could calculate the means of the components first (i.e. ⟨ΔCO⟩/⟨ΔffCO
2
⟩)

or one could calculate 𝑛 individual ratios and then calculate their average (i.e.

⟨ΔCO/ΔffCO
2
⟩). The difference lies in the weighting. Calculating the mean

according to ⟨ΔCO/ΔffCO
2
⟩ conceptually means giving each individual emission

ratio the same weight. In our example 𝑅1 = ΔCO(𝑃1)/ΔffCO
2
(𝑃1) = 10 ppb/ppm

and 𝑅2 = ΔCO(𝑃2)/ΔffCO
2
(𝑃2) = 5 ppb/ppm. The mean emission ratio then

is ⟨𝑅⟩ = 7.5 ppb/ppm. Using ⟨𝑅⟩ = ⟨ΔCO⟩/⟨ΔffCO
2
⟩ = 60/11 ≈ 5.5 ppb/ppm.

Here, emission ratios are weighted according to their contribution. This is akin to

what is measured, since ΔffCO
2

is derived from (bi)weekly integrated samples.

However, measurements contain errors that have to be accounted for. Weighting

measurements with the inverse square of their errors approximating the maximum

likelihood, is common practise to obtain weighted means. Maier et al. (2021)

have shown that this method introduces a bias for emission ratios, because of the

uncertainty of ΔffCO
2
.

For Heidelberg measurements, Maier et al. (2021) plotted ΔCO/ΔffCO
2

against

ΔffCO
2
, and found the ratios rapidly increase for low values of ΔffCO

2
, giving

7
Personal communication Stĳn Dellaert, April 21, 2021.

8
Personal communication Stĳn Dellaert, January 31, 2022.
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the impression of a 1/𝑥 curve. With synthetic data
9

it can be shown that this

originates from the measurement uncertainty of Δ
14

CO
2
, which is fixed at ≈2h

and translates to an uncertainty of 1.0 ppm to 1.2 ppm ΔffCO
2
. Measurements

with ΔffCO
2
< 5 ppm therefore have uncertainties of 20 % to 100 %, while the

uncertainty in CO is low (<10 %). This means, that for small ΔffCO
2
, the

denominator of the ratio varies enormously, while the numerator does not,

leading to the observed 1/𝑥-behaviour.

An alternative calculation method for mean emission ratios is orthogonal regres-

sion, also known as weighted total least squares regression. Graphically, this

means plotting ΔCO against ΔffCO
2

and fitting a regression line through the

available data points, minimising the orthogonal distance of the points to the

regression. Maier et al. (2021) have shown that such an orthogonal weighted

least squares regression yields unbiased results with the same synthetic data that

showed the bias due to the uncertainty in Δ
14

CO
2
.

An algorithm for such a regression is described by Krystek and Anton (2007).

Here, the two-dimensional problem is reduced to a one-dimensional problem by a

shift from the equation 𝑦 = 𝑎𝑥 + 𝑏 to 0 = 𝑦 cos 𝛼− 𝑥 sin 𝛼− 𝑝, where 𝛼 is the angle

between abscissa and regression line and 𝑝 is the orthogonal distance to the origin.

An initial value for 𝛼 is guessed (unweighted linear regression) from which 𝑝 is

then calculated (weighted mean of 𝑦 multiplied by cos 𝛼 minus weighted mean

of 𝑥 multiplied by sin 𝛼). Finally only 𝛼 is optimised and 𝑝 recalculated with the

new 𝛼. For physical reasons, the distance from the origin (𝑝 or 𝑏) should be zero:

if no ffCO
2

is emitted, no CO is emitted. Wurm (2022) provides a version of the

weighted total least square regression that allows forcing the regression through

the origin.

2.5 Gaussian plume model

Atmospheric dispersion models describe how emission plumes behave or in other

words how emitted particles disperse. The Gaussian plume model (GPM) is one

widely used standard variant, where the emission distribution is assumed to be

shaped like a Gaussian bell curve, both in vertical and in horizontal direction

(Turner, 1970). Conventionally, the coordinate system is oriented such that the

𝑥-axis points in the direction of the plume, 𝑦 is the horizontal direction and 𝑧

is the vertical direction (Fig. 2.2). The most important parameters of this model

are the horizontal and vertical standard deviation of the plume concentration

9
Generate a data-set of ΔCO andΔffCO

2
with a fixed emission ratio, add or subtract values in

the uncertainty range from and to both components, calculate the resulting ratio, and compare

this to the original ratio.
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2.5 Gaussian plume model

Fig. 2.2 Sketch of the Gaussian plume model, taken from Turner (1970) Fig. 3-1.

distribution, 𝜎𝑦 and 𝜎𝑧 , respectively. 𝜎𝑦 and 𝜎𝑧 depend on the meteorological

factors wind speed, solar radiation and (during the night) cloud cover. Pasquill

(1961) postulated six stability classes (A–F), see Table 2.1. For each class, the

calculation of 𝜎𝑦 and 𝜎𝑧 is different. The comprehensive formula for the Gaussian

plume model is given by Turner (1970). For my estimations for the traffic campaign,

I calculate concentrations along the center line of the plume at ground level and

assume no effective plume rise, which reduces the equation to

𝑐(𝑥) = 1

𝜎y(𝑥) 𝜎z(𝑥)
𝑄

𝜋 𝑢
(2.7)

where 𝑐(𝑥) is the concentration (in g/m
3
) in downwind distance 𝑥 (in km) from

the source, 𝑄 is the source emission flux (in g/s), 𝜎𝑦 and 𝜎𝑧 are the horizontal

and vertical standard deviation of the plume concentration distribution (in m),

respectively, and 𝑢 is the wind speed (in m/s) at 10 m above ground. I calculate

𝜎𝑦 and 𝜎𝑧 according to the EPA’s handbook for the ISC3 model (model guide,

2022):

𝜎𝑦(𝑥) = 465.11628 𝑥 tan (�(𝑥)) , (2.8)

with

�(𝑥) = 0.017453293

(︁
𝑐′𝑑′ ln 𝑥

)︁
, (2.9)

and

𝜎𝑧(𝑥) = 𝑎′𝑥𝑏
′
. (2.10)

The parameters 𝑎′, 𝑏′, 𝑐′, and 𝑑′ depend on the stability class and can be found on

pages 1-16 and 1-17 in the EPA handbook for ISC3 (model guide, 2022).
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Table 2.1

Pasquill–Gifford stability classes, taken from Turner (1970) Table 3-1.

Surface

wind speed

at 10 m (m/s)

Day Night

Incoming solar radiation Thinly overcast or

≥ 4/8 low cloud

Thinly overcast or

≤ 3/8 cloudStrong Moderate Slight

< 2 A A–B B

2-3 A–B B C E F

3-5 B B–C C D E

5-6 C C–D D D D

> 6 C D D D D

2.6 Wind direction statistics

Calculating a mean wind direction requires viewing wind as a vector. Calculations

in this section are adapted from Farrugia et al. (2009); Farrugia and Micallef

(2017).

Consider a coordinate system such that the positive 𝑥 direction is north and the

positive 𝑦 direction is east. Then, the angle with the 𝑥 axis is the same as the wind

direction. From the measured wind speed 𝑤𝑖 and wind direction 𝜙𝑖 (in degrees)

at time 𝑖, we calculate

𝑣𝑥 = − 1

𝑛

𝑛∑︂
𝑖=1

𝑤𝑖 cos

(︁
𝜙𝑖

)︁
, (2.11)

𝑣𝑦 = − 1

𝑛

𝑛∑︂
𝑖=1

𝑤𝑖 sin

(︁
𝜙𝑖

)︁
, (2.12)

where 𝑣𝑥 is the mean component of the vector in 𝑥 direction and 𝑣𝑦 is the mean

component of the vector in 𝑦 direction. Note that the minus sign is necessary due

to a difference in conventions: the vectors point in direction of the wind, but in

meteorology, wind is defined by the direction it is coming from, i.e. wind from the

west at 27
◦

corresponds to a vector pointing east. The mean wind speed reads

𝑤 =

√︂
𝑣

2

𝑥 + 𝑣
2

𝑦 , (2.13)

and the mean wind direction is given by

𝜙 = arctan

(︃
𝑣𝑦

𝑣𝑥

)︃
. (2.14)

As quality check during the traffic campaign the fluctuations of the wind direction

have to be quantified. The vector weighted standard deviation 𝑠 according to
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2.7 Sampling strategies for sector-dominated measurements

Eq. (25) of Farrugia and Micallef (2017) is

𝑠2 =
1

𝑛 𝑤

𝑛∑︂
𝑖=1

(︂
𝑤𝑖 Δ

(︁
𝜙𝑖 , 𝜙

)︁ )︂
, (2.15)

where Δ
(︁
𝜙𝑖 , 𝜙

)︁
is the minimum angular distance, calculated according to Eq. (13)

of Farrugia et al. (2009) as

Δ
(︁
𝜙𝑖 , 𝜙

)︁
= arctan

(︂
tan

(︁
0.5 𝜙𝑖 − 𝜙

)︁ )︂2

. (2.16)

2.7 Sampling strategies for sector-dominated measurements

Considerable efforts were undertaken to overcome the problem of spatial sep-

aration. Two mobile laboratories were designed, built, and maintained over

the course of two years to allow measurements (1) in the middle of residen-

tial areas and (2) at a major highway. Each mobile laboratory requires a 220 V

power supply, limiting the choice of location to a 50 m radius from a power

outlet. For the traffic campaign, spatial separation was excellent and no temporal

separation was required. For the residential heating sector, spatial separation

from traffic is impossible. Thus, temporal separation of the traffic sector and

the heating sector is key. The temporal separation of traffic and heating emis-

sions requires knowledge about their diurnal time profile. Fig. 2.3 shows the

normalised diurnal pattern of the heating load (Heitkoetter et al., 2020, cf. Figs.

14 and 15) and traffic emissions (TNO inventory time profile). The normali-

sation is such that any point below the line 𝑦 = 1 shows below average load

and any point above shows above average load. Traffic peaks during commut-

ing rush-hours (7:00 h to 9:00 h in the morning and 16:00 h to 18:00 h in the

evening) and reaches 5 % of average hourly emissions during the night (1:00 h to

5:00 h).

Demand for space heating and hot water during workdays starts one hour earlier

in the morning than traffic, peaking just as workers begin to commute. Over the

day, the demand for space heating remains constant until it drops to half the

daytime demand from 22:00 h to 4:00 h. Consequently, the sampling strategy for

the heating emission campaigns was to collect samples during the night, when

traffic emissions are virtually absent in residential areas (the remaining fraction of

traffic emissions are mostly trucks on the highway) and heating systems operate

at base load conditions.

21



Chapter 2 Background and methods
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Fig. 2.3 Diurnal time profile of normalised traffic, domestic hot water, and space heating loads

based on TNO time profile for traffic and supplementary material of Heitkoetter et al. (2020) for

space heating and domestic hot water. Note that for the heating data from Heitkoetter et al. (2020),

load refers to area specific heat demand (without declaring how the demand is met i.e. by which

heating system), while the TNO traffic load refers to emissions directly.

2.8 Mobile laboratories

Each mobile laboratory (ML) is equipped with instruments for CO
2
, CO, and

NO
x

measurements and for flask sampling. Flask samples are 3 l air containers

that are necessary for Δ
14

CO
2

analyses. The main mobile laboratory, ML1, is

additionally equipped with a weather station for measurements of wind speed,

wind direction, and temperature and a Rn-monitor (Levin et al., 2002). That is,

ML1 is equipped to monitor atmospheric transport. A picture of the exterior of

ML1 is shown in Fig. 2.4. Both MLs are equipped with a 10 m mast which mounts

the inlet lines for the instruments, and in the case of ML1 the weather station.

Air conditioning units were mounted on the draw-bar and the inner front wall

to keep the instruments at a stable temperature, stabilising the measurements.
10

Depending on the conditional requirements of the measurement campaign, either

just one or both of MLs were used.

10
All construction jobs in and around the MLs were done by the staff of the Institute’s workshop.

Please refer to the acknowledgements, where their contributions are honoured accordingly.
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2.8 Mobile laboratories

Fig. 2.4 Main mobile laboratory (ML1) with fully extended mast.

Table 2.2

Intake lines attached to the 10 m mast of both Mobile Laboratories.

Line Outer Instrument Instrument Comment

material ⌀ ML1 ML2

Dekabon 1/4 " Flask sampler, (and

Picar-

ro/Aerolaser)

FTIR Main air intake, flexible

Teflon 1/4 " ICAD ICAD NO
x

instruments require

reaction-inert material

Dekabon 1/2 " Rn-Monitor Flask sampler Rn-monitor requires larger

inner diameter for aerosols

Exterior modifications. The mobile laboratories were built into two box trailers

with inside measures of 3060×1750×1900 mm (L×W×H). Exterior modifications

were the same for both MLs, while the interior setups are different, based on the

instrument used. Descriptions of the basic working principles of the instruments

can be found in Appendix A. Air inlets for the instruments have to be at a

certain height above ground to capture emissions from sources in the vicinity.

To this end, a 10 m mast was installed, equipped with three detachable intake

lines (Table 2.2). A meteorological station can be placed on top of the mast.

For all measurements described in this thesis, the station was atop ML1. For

temperature stability as required by the instruments, a split air conditioner system

was installed.
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Chapter 2 Background and methods

Main mobile laboratory. The main mobile laboratory, also denoted mobile

laboratory 1 (ML1) in the following, contains a Cavity Ring-Down Spectrometer

(CDRS, Picarro model G2301)
11

, a fluorescence CO analyser (Aerolaser model

L5001) and a flask sampler accompanied by a drying unit (both provided by ICOS

Flask and Calibration Laboratory in Jena). Figure 2.5 shows the gas flow setup

of the instruments. Gas from mast is pumped through the drying unit by either

the flask sampler (during sampling) or the external pump (only online when no

sampling takes place). Five solenoid valves (V1 to V5), controlled by the CRDS

instrument, are used to switch between air (V2) and calibrated gas cylinders.

Three of the gas cylinders are for calibration (W1, C1, C2), while the other (T1) is

for quality control. The gas tubing behind the valve array splits and goes to the CO

analyser and the CRDS instrument (CO
2

and CH
4
, the following called Picarro).

The CO analyser (in the following called Aerolaser) requires two supply gases

(N
2

at a purity of at least 99.999 % and a mix of 99.75 % Ar (6.0) and 0.25 % CO
2
)

and an independent calibration standard (WA). During the internal calibration of

the Aerolaser, gas from the cylinder (pressure around 1000 mbar) displaces gas

from the sample intake. However, the valve does not close the intake line causing

back-flushing: The pressure in the sample line is lower. Consequently, calibration

gas not only enters the Aerolaser, but also the tubing connected to the valve array

and the CRDS instrument. Sampling of flasks, calibration of the Aerolaser, and

measurements of the calibration cylinders attached to the solenoid valves all have

to be timed meticulously to avoid interference by the back-flushing of Aerolaser

calibration gas.

During the traffic campaign, the ML1 setup had to be adapted due to failure of

Aerolaser L5001 and Picarro G2301. The failure was caused by failure of the

air conditioning unit and by a power outage. Thanks to our colleague Olivier

Laurant of LSCE, the campaign could continue nonetheless, because he provided

a Picarro G2401, capable of measuring CO
2
, CO, and CH

4
. The setup depicted in

Fig. 2.5 only changes downstream of the drying unit, flask sampler, and external

pump. The solenoid valves were replaced by a multi-port valve directly controlled

by the Picarro G2401. The tank N
2
, ArCO

2
and CA were no longer in use. This

new setup was also used during the second heating campaign in 2021.

Background mobile laboratory. The background mobile laboratory, also denoted

Mobile Laboratory 2 (ML2) in the following, contains a Fourier-transform infrared

spectrometer (FTIR) and an institute-built flask sampler (see Rieß (2019) and

Kneuer (2020) for details), each on a separate line with their individual air drying

systems (Mg(ClO4)2 for the flask sampler and a combination of Mg(ClO4)2 and

counter-flow drying for the FTIR). The FTIR spectrometer is capable of measuring

11
I will refer to CDRS instruments as ‘Picarro’ throughout this thesis.

24



2.8 Mobile laboratories

drying

unit

a
i
r

i
n

t
a
k
e

f
r
o
m

m
a
s
t

W1

T1

C1

C2

V5

V4

V3

V2

V1

ICOS

flask sampler

external

pump

CRDS

Picarro

(CO
2
, CH4)

CO analyser

Aerolaser

N2
ArCO

2

CA

Fig. 2.5 Gas flow diagram for Mobile Laboratory 1. V1 to V5 are solenoid valves controlled by

the Picarro instrument. Calibrated gas cylinders are C1 (low calibration), W1, T1, C2, and WA.

C1, W1, and C2 are calibration cylinders for external calibration listed from low to high trace

gas concentrations. T1 is a target cylinder, i.e. a reference gas not used in calibration to check

the quality of the data. CA is the calibration cylinder for the Aerolaser required for the internal

calibration. ArCO
2

and N
2

are supply gases for the Aerolaser.

CO
2
, CO, CH

4
, N

2
O, and H

2
O simultaneously at a time resolution of 3 minutes.

Similar to ML1, the spectrometer is calibrated with three gas cylinders and quality-

checked by a target cylinder. For drying and case-flushing, N
2

has to be supplied

at all times, too. Instrument specifications are given by Hammer et al. (2013).

Single-station approach. For diffuse area sources, e.g. heating in residential areas,

a single-station approach is applicable. Measurements from a single station are

used in conjunction with prior knowledge of emission patterns of the source, as dis-

cussed above. Using
222

Rn as a tracer for atmospheric conditions, well-mixed situa-
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Chapter 2 Background and methods

Table 2.3

Tanks in Mobile Laboratory 1. Uncertainties assigned by ICOS FCL in

Jena were <0.01 ppm for CO
2
. For CO, uncertainties assigned by FCL were

<0.005 ppb for UHEI30 and UHEI34, 0.07 ppb for UHEI32, and 0.25 ppb for

UHEI36. CH
4

uncertainties were ≤0.05 ppb. PIC4_3 was measured in the

IUP laboratory with a CRDS instrument (Picarro).

Tank Function, CO
2

CO CH
4

Value assignment

label (ppm) (ppb) (ppb)

UHEI30 C1 400.31 95.89 2008.41 FCL Jena

UHEI32 W1 553.18 560.82 2403.75 FCL Jena

UHEI34 T1 499.61 369.20 2206.73 FCL Jena

UHEI36 C2 714.47 976.67 2815.85 FCL Jena

PIC4_3 CA 490.12 450.85 2203.02 Own measurements

tions are sampled as a background, while during an inversion, when trace gas con-

centrations build up, ‘signal’ samples are collected. There are two ways to identify

the background when using the single station approach. First, taking one sample

each noon during well-mixed conditions, one can determine a background for the

next 24 h. Conceptually, this means it is assumed that every day, fresh air with trace

gas concentrations at background level is mixed into the planetary boundary layer

at noon. When an inversion develops during the afternoon and the night, emissions

from local sources accumulate in the planetary boundary layer. Hence, concentra-

tion enhancements during the night with respect to the noon background originate

from local sources and their emission ratios can be identified. I call this the day-by-

day ansatz for background determination. However, Peter (2020) found that noon

flasks do not necessarily reflect the true (free troposphere) background, but contain

residual anthropogenic emissions that pollute the background sample, leading to

skewed proxy emission ratios. In practise this means that I aim to find one ‘global’

background, in the sense that it preferably applies to the whole campaign or at least

multiple flasks. This global background is still based on noon flasks, but the con-

centrations may now be the average of said flasks, so conceptually, the day-by-day

linking of noon concentrations to nightly concentration increases is avoided.

Two-station approach and same air-mass approach. For spatially isolated sources,

the two-station approach is applicable. Its applicability was first demonstrated by

Rieß (2019) in the ‘Research Infrastructures: Needs, Gaps and Overlaps’ Project

(RINGO, 2022). In this thesis, the two-station approach is realised by positioning

two mobile laboratories such that the source of interest is the only, or at least the

dominant, emitter between the two stations. Usually, sampling takes place when

an air parcel moves directly from one station to the other, loading up on emissions

from the source of interest on the way. Then, the concentrations at the station first

passed by the air parcel are the background for the other station.
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Fig. 2.6 Double ratio plot of TNO emission ratios for Germany from winter 2005/2006 until winter

2019/2020. Darker tones indicate later years. For each sector, the average ffCO
2

contribution is

given in the legend. The numbers do not add up to 100 % because not all but only the largest

sectors are shown. Public power and industry (pp+ind) were combined in an effort to display

emissions from all point sources together.

Another way to use this setup is the same air-mass approach. The same air-mass
approach assumes well-mixed conditions, i.e. homogeneous trace gas concentrations

perpendicular to the wind direction. This assumption is justified if the air-mass

was previously influenced only by homogeneous surface sources or sinks or if

sufficient horizontal mixing occurred after the air-mass passed heterogeneous

source or sink areas. The question of sufficient horizontal mixing depends not only

on the heterogeneity of the source, but also on the horizontal distance between the

upwind and downwind stations, and a close distance is advantageous. (Rosendahl

et al., 2021) The same air-mass approach requires a much higher effort, since it is

necessary to verify the (approximate) homogeneity of the air-mass. However,

once this is sufficiently shown, the same air-mass approach greatly increases the

number of possible sampling situations.

2.9 Double ratio plots

For all campaigns the results will presented in so-called double ratio plots. Double

ratio plots show the ΔCO/ΔffCO
2

ratio on the 𝑥-axis and the ΔNO
x
/ΔffCO

2

ratio on the 𝑦-axis. In other words, with a double ratio plot we can assess both

proxy ratios simultaneously. Assessing both proxies for all samples at the same
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Chapter 2 Background and methods

time enables better separation of sources. For instance, with only CO as a proxy, it

is sometimes difficult to distinguish traffic from residential heating in residential

areas, since both can show ΔCO/ΔffCO
2

ratios in the range of 4 ppb/ppm to

10 ppb/ppm as the measurement campaigns will show. Diesel light duty vehicles

and heavy duty vehicles have roughly the sameΔCO/ΔffCO
2

emission ratio, but

passenger cars emit markedly more NO
x
. Hence, traffic and residential heating

can be differentiated on the NO
x

scale.

Fig. 2.6 shows a double ratio plot for winter (December, January, February) TNO

emission ratios for years 2005 to 2020. Progression of time is indicated by colors

from light to dark, i.e. 2005 is the lightest tone and 2020 the darkest. CO emissions

from residential heating increased until winter 2010/2011, decreasing afterwards

and stagnating close to 6 ppb/ppm. The traffic sector shows the largest progress,

both in NO
x

and CO emissions. The decrease in total emission ratios (all sectors

combined) is much smaller than that of traffic and heating sector, because power

plants and industry are the largest emitters (≈62 % of ffCO
2

emissions), and

the total emission ratios are dominated by these two sectors, when all German

emissions are considered.
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Chapter 3

Traffic campaign

I conducted a measurement campaign at the A5 highway, north-west of Heidelberg

from October 2020 until February 2021 using both mobile laboratories. With

the background mobile laboratory (ML2) to the west of the highway and the

main mobile laboratory (ML1) to the east of it, the goal was to measure the

traffic-dominated proxy/ffCO
2

emission ratios. I find that emission ratios strongly

depend on fleet composition. In general, NO
x

emissions by heavy duty vehicles are

overestimated, whereas CO emissions by light duty vehicles are underestimated

by the TNO inventory.

Parts of this chapter – most of Section 3.1 and parts of Section 3.2 – are taken

(sometimes verbatim) from Deliverable 2.8 of the Verify Project
12

. Section 3.2.2

was crafted after the submission of Deliverable 2.8.

3.1 Campaign setup and site description

To study traffic emissions from a highway, the two-station approach (cf. Section 2.8)

using both mobile laboratories was applied. The experimental setup was located

in the Rhine Valley to the north-west of Heidelberg and targeted highway A5 that

connects Frankfurt and Karlsruhe. The highway speed limit at this location is

120 km/h, and there were no construction sites nearby. The campaign lasted from

October 2020 until February 2021. Typical vehicle densities during daytime are

between 50 and 100 vehicles per minute (both directions combined). Figure 3.1

shows the location in three levels of detail. The mobile laboratories were in

west-east alignment, approximately 800 m apart.

The downwind station (ML1) was installed about 20 m from the centre of the

highway. The height difference between the highway and the intake of the

downwind station was about 8.5 m. To the west, shrubs lower than the extended

12
I authored Deliverable 2.8 in collaboration with Samuel Hammer. Please refer to the online

documentation (Rosendahl et al., 2021). All Deliverable contributions written by Carlos Alberti

and Frank Hase (Karlsruhe Institute of Technology; remote sensing approach) are not in this

thesis.
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Chapter 3 Traffic campaign

Table 3.1

Instruments used in ML1 for the traffic campaign. Reproducibility is based on quality control

(target) cylinder measurements: offset ± standard deviation to the calibrated values are given.

Entry for ICAD and weather station based on precision described in instrument manual.

Use period Instrument Function Reproducibility Temporal

resolution

Oct 13 to

Nov 11, 2020

Picarro G2301 CO
2
, CH

4

recordings

CO
2
: −0.02 ± 0.13 ppm 1 s, averaged

to minutes

Oct 13 to

Nov 11, 2020

Aerolaser

L5001

CO recordings CO: −15.07 ± 6.18 ppb 1 s, averaged

to minutes

Dec 03, 2020

to end

Picarro G2401 CO
2
, CO, and

CH
4

recordings

CO
2
: −0.03 ± 0.05 ppm

CH
4
: 0.45 ± 0.10 ppb

CO: −2.50 ± 1.92 ppb

1 s, averaged

to minutes

Whole

campaign

ICAD05 NO
2

and NO
x

recordings

NO
x
: 0.15 ppb or 2 %

NO
2
: 0.15 ppb or 2 %

60 s

Whole

campaign

Flask sampler collects

1 h-accumulated

air samples

– –

Whole

campaign

Heidelberg

Radon Monitor

214

Po recording,

222

Rn estimation

– 30 min

Whole

campaign

Thies weather

station

wind speed,

wind direction

speed: ±0.3 m/s

direction: ±2
◦

1 s, averaged

to minutes

10 m mast separated ML1 from the highway. To the north, tall conifers slightly

hindered the air flow from that direction.The selection of sampling locations had

to consider that both laboratories require a wired power supply. The instruments

used in mobile laboratories 1 (ML1) and 2 (ML2) are listed in Tables 3.1 and 3.2,

respectively, each with their corresponding reproducibility. Instrument failure

in ML1 forced a change of instruments in November 2020. The campaign was

without continuous measurements of CO
2
, CO and CH

4
in ML1 until December

3, 2020. Tables 3.1 and 3.2 are inadequate to fully validate the data to the required

accuracy. An in-depth discussion of the quality check, bias and uncertainty

estimation for the traffic campaign is given in Appendix B. The traffic campaign

requires higher levels of accuracy for the in-situ data than the other campaigns

because the in-situ data are used to calculate emission ratios in the later parts

of Section 3.2 (whereas normally, the precise flask sample measurements by the

ICOS Flask and Calibration Laboratory in Jena are used).

We installed the upwind station on the western boundary of a pig farm. The

farmhouse is located downwind of the upwind station (see Fig. 3.1 c) for winds

from the northwestern sector (250
◦

to 345
◦
). The area enclosed by the two

stations comprises the highway, the farmhouse, and agricultural fields. In this
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3.1 Campaign setup and site description

a
b

c

ML2 ML1

ML2 ML1

Fig. 3.1 Traffic campaign set up. (a) Overview. Mobile laboratories are cyan pins. Highway

marked red, traffic counting station Eppelheim is the white pin at the bottom. Grey polygons

are close-by towns that are relevant for the same air-mass approach (Edingen-Neckarhausen,

Ladenburg). (b) Sampling region. Mobile laboratories are in West-East alignment, 800 m apart,

shown here as a cyan line. The yellow rectangle indicates farms near ML2, the upwind station.

The purple rectangle indicates two farms 350 m to the north-west of ML1, the downwind station.

(c) Detailed view of the upwind station. ML2 is circled red, the South quadrant (135
◦

to 225
◦
)

is indicated by white dashed lines. Blue rectangles mark animal housings, and the open slurry

storage is the yellow circle. Large arrows indicate main wind directions (west, north-west).

experimental setting, the highway is the dominant fossil fuel source contributing

to the concentration enhancements between the two stations. To estimate the fossil

fuel CO
2

influence of the farmhouse on the downwind station, a Gaussian plume

model (Turner, 1970) was applied as described in Section 2.5. The ffCO
2

emissions

of the farmhouse are assumed to correspond to the averaged heating emissions

per house in the Heidelberg area, calculated based on the TNO emission inventory.

We assume that the total residential heating emissions occur during the three

winter months and are constant in time. These assumptions result in a mean

winter ffCO
2

emission of 1.2 g/s for the farmhouse. Using the Gaussian plume

model, the calculated farmhouse influence on downwind station (ML1) is smaller

than 0.02 ppm CO
2

for all Pasquill–Gifford atmospheric stability classes (Pasquill,
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Table 3.2

Instruments used in ML2 for the traffic campaign. Reproducibility is based on quality control

cylinder measurements. Multiple targets were measured at the FTIR and gave no consistent

results. The displayed reproducibilities give the range of offsets. An in-depth discussion of the

quality checks of the traffic campaign is given in Appendix B. Entry for ICAD and weather station

based on precision described in instrument manual.

Use period Instrument Function Reproducibility Temporal

resolution

Whole

campaign

FTIR CO
2
, CH

4
, CO

recordings

CO
2
: ±0.2 ppm

CH
4
: ±0.5 ppb

CO:±2 ppb

3 min

Whole

campaign

ICAD04 NO
2

and NO
x

recordings

NO
x
: 0.15 ppb or 2 %

NO
2
: 0.15 ppb or 2 %

20 s,

averaged to

minutes

Whole

campaign

Heidelberg

Flask Sampler

collects

1 h-accumulated

air samples

– –

1961) applied in Turner (1970). The farmhouse influence on the downwind station

(ML1) is thus smaller than the measurement precision and much smaller than the

observed CO
2

enhancements. In order to increase the number of suitable wind

conditions for up- and downwind sampling, we applied the same air-mass approach
(Section 2.8).

Figures 3.1b and 3.1c show the upwind station’s location (ML2) in detail. The

farm, including the animal housings and the slurry storage, excludes the southern

wind sector from the same air-mass approach. Significant CH
4

emissions, partly

accompanied by NO
x

emissions from the slurry storage and animal housing

(Bava et al., 2017), are observed from this southern wind sector. There are no

buildings directly to the north or west of both stations. The closest buildings to

the downwind station are two farms in 350 m distance in north-western director,

marked purple in Fig. 3.1b. Both farms do not have livestock. We estimated the

influence of the farmhouses ffCO
2

emissions by using same residential heating

emission flux as before for the Gaussian plume model and obtained a ffCO
2

contribution of smaller than 0.1 ppm for the downwind station (ML1) during

daytime. This is less than 2 % of the average observed total CO
2

difference between

the laboratories and less than the detection limit.

In the larger catchment area (Fig. 3.1a), two medium-sized towns (Edingen-

Neckarhausen: 14 000 inhabitants, Ladenburg: 11 500 inhabitants) are located

to the north west of the setup (at approx. 315
◦

and 330
◦
, and distances of

2.5 km and 4.5 km, respectively). TNO emission data suggest comparable ffCO
2
,

CO, and NO
x

emissions for the two towns. In the Gaussian plume model, the
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3.1 Campaign setup and site description

(a) CO
2

offset at ML2. (b) CH
4

offset between ML1 and ML2.

Fig. 3.2 Windrose plots of average measured concentrations enhancements for (a) CO
2

offset at

ML2 (relative to 3-day minimum at ML2) and (b) CH
4

offset between ML1 and ML2 (concentration

at ML1 minus concentration at ML2). Concentration enhancements are plotted on the radial axes,

wind direction on the angular axis. Colors only emphasise values. If the towns north-west of

the setup had significant influence on our measurements, a corresponding large offset would be

visible to the north-west in (a). In (b), negative values indicate higher CH
4

concentrations at ML2 –

mostly from the south, where the pig sties, slurry storage, and other farm houses are located. The

positive offset to the north-north-east can be attributed to either the recycling facility Recyclinghof

Wieblingen or the chemical plants Kluthe GmbH.

horizontal dispersion coefficient 𝜎y at a distance of 2 km is between 150 m and

500 m depending on the atmospheric conditions. At a distance of 5 km, 𝜎y

increases to between 300 m and 800 m. Thus, plumes of point sources in a distance

of 2 km cannot be treated as well-mixed across the horizontal distance of both

stations. However, in neither of the two towns, significant point sources are

present. Therefore, we regard the towns as expanded anthropogenic area sources.

The spatial west-east extend of both towns (parallel to the line between ML2 and

ML1) is 1.2 km and 2 km, respectively, exceeding the laboratories’ distance. The

upwind in-situ observations were examined for enhanced concentration during

situations when the emission plumes of the cities turn over the station.

Neither for CO
2
, CO, or NO

x
a significant concentration enhancement, larger

than the typical temporal variability were found. CO
2

is shown as an example in

Fig. 3.2a. Plotting the CH
4

difference between ML1 and ML2 in a similar way in

Fig. 3.2b, we find that ML2 shows large CH
4

enhancements from the south and

ML1 shows large CH
4

enhancements from the north north-east (25
◦
). Because

we do not know what else this source may emit (CO, CO
2

and NO
x

emissions

would be indistinguishable from traffic emissions), air from that direction is

not suitable for traffic-dominated emission ratio measurements. Based on these
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results, we conclude that the same air-mass approach is applicable to the western

and northwestern catchments. Urban influence can affect the downwind station

(ML1) for easterly wind directions and highway emissions would be too diluted

at ML2. Hence, easterly winds are excluded. We chose wind directions such

that to the south west (<250
◦
) of ML2, the closest neighbour houses are excluded

(yellow rectangle in Fig. 3.1). For northerly winds, we excluded situations where

air would pass over the industrial area (at >345
◦
).

For the same air-mass approach, the condition of air-mass homogeneity is only

fulfilled if the broad (laterally extended) air parcel travels along the main wind

direction without strong disturbance from lateral air currents (i.e. air currents that

are not parallel to the main wind direction). For the direct two station approach,

the assumptions require the air to travel more or less directly from the upwind

station to the downwind station. Therefore, I introduce a 20
◦

wind direction

spread
13

threshold. The value of 20
◦

originates from a closer look at the second

flask pair (October 16, 19:30 h). The spread of the wind direction over the hour

is 24
◦
. While the wind direction is relatively stable for the most time, for 11 min

the wind direction changed from roughly 330
◦

to somewhere between 0
◦

and 80
◦

(19:56 h to 20:07 h). In other words, for roughly 1/6 of the sampling, the wind

came from an undesirable direction. I chose the wind direction criterion such that

this kind of situation would be excluded, i.e. the threshold is 20
◦

of variation. All

valid flask pairs fall way below this value. Only two virtual flasks (explanation

of the term in Section 3.2.2) fall above 10
◦

of variation and were examined more

closely, finding that both have reasonable wind conditions.

In addition to these spatial (wind direction related) sample selection criteria, a

valid sample must fulfil additional quality criteria. The difference between the

in-situ measurement of the mobile laboratories and the offline flask measurement

in the ICOS Flask and Calibration Laboratory (FCL) must not exceed 1 ppm

and 10 ppb for CO
2

and CO, respectively. If the two measurement methods

diverge beyond these thresholds, this indicates that the flask air sample may

not correspond to the hourly averaged ambient air concentrations. Since ΔNO
x

can only be determined from hourly averaged ambient air concentrations, it is

important that in-situ measurements and flask measurements agree.

The applied sample selection criteria can be summarised as follows:

(1) Hourly mean wind direction between 250
◦

and 345
◦

(2) Hourly wind direction variation less than 20
◦

(3) absolute difference between in-situ and flask measurements in CO
2
<1 ppm

13
Calculation of this spread can be found in Section 2.6.
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(4) absolute difference between in-situ and flask measurements in CO <10 ppb

Consult Section 2.6 for the calculations of mean wind direction and wind direction

variation.

3.2 Results

This section has two parts. First, I discuss the flask samples taken during the

campaign according to the criteria laid out above. Second, I will discuss a

broader approach, in which I identified and analysed episodes with suitable wind

conditions and estimated emission ratios for those episodes from continuous

measurements (by assuming a large fraction of ΔCO
2

is of fossil origin). The

episodes were split into time frames of 45 to 90 min to make them comparable to

the flask samples. Since the episodes are like flask samplings but without ffCO
2

(or rather
14

CO
2
) measurements, I will refer to them as ‘virtual flasks’ from this

point on. Virtual flasks will be discussed in section 3.2.2.

3.2.1 Flask samples

Initially, 33 flask pairs were collected. For six pairs, no Δ
14

CO
2

measurements

were possible due to mislabelling (flasks were emptied completely by FCL in Jena,

because they were not marked for Δ
14

CO
2

measurements in the flask sampling

program). Another 15 pairs were discarded because they violated the wind

selection criteria (wind direction outside the range of 250
◦

to 345
◦

or variation

larger than 20
◦
). Of the remaining 12 pairs, two pairs had aΔCO

2
>1 ppm between

flask and average atmospheric concentration and another pair had no discernible

ΔffCO
2

(<0.1 ppm). A very low ΔffCO
2

value results in very large ratios with

relative errors of >1000 %. Such results do not further our understanding of the

issue at hand and I discarded the corresponding flask.

Of the remaining nine pairs, two pairs (numbered #2, #6, according to the row

of the result table (not shown), where odd rows are background flasks and even

rows are signal flasks) were not taken simultaneously, but with a 30 min offset

(background samples taken too early) due to an operational error. Asynchronous

flask sampling is mainly a problem of Δ
14

CO
2
. All other components necessary

for ratio calculation can be taken from continuous in-situ data synchronously to

the downwind sample time-frame. If all trace gas concentrations are stable over

the 1.5 hours of sampling (30 min early start at upwind station plus one full hour

of sampling at the downwind station), I assume this is the case for Δ
14

CO
2

as

well.
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first results of traffic campaign (UHEI)
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Fig. 3.3 In-situ data for the first two days of the (active) traffic campaign with the first five flask

pairs shown as vertical blue bars.
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Fig. 3.3 shows the data for the two days surrounding the first five flask samples.

The first four panels give the in-situ CO
2
, CO, NO

x
, NO

2
, and CH

4
concentrations

of the downwind station (ML1, blue) and the upwind station (ML2, red). The

222

Rn activity concentration, wind speed and wind direction – all measured at

the downwind station – are given in panels 5 to 7, and the traffic load for the

Eppelheim counting station
14

is plotted in the bottom panel. Vertical blue shading

indicates flask sampling times.

Are flask pairs #2 and #6 suitable for evaluation, despite the asynchronicity? Flask

pair #2 cannot be used, since the in-situ data do not cover the full 1.5 hours which

can be seen in Fig. 3.3 as the line-break of the red line during the sampling marked

‘2’ (first blue-shaded bar). Flask pair #6 spikes in CO
2

in the overlap period

and is near-constant in the half-hour before and the half-hour after. Hence, the

spike does not affect the mean CO
2

significantly (difference <1 ppm). Comparing

Δ
14

CO
2

for pair #6 (−20.3 ± 1.5h) and pair #8 (−22.0 ± 1.5h) shows that the

plateau in CO
2

(03:00 h until 07:30 h) had an almost constant Δ
14

CO
2

value, i.e.

the measured Δ
14

CO
2

value of pair #6 is very close (within uncertainties) to the

value we would have measured half an hour later. For further calculations I use

the measured Δ
14

CO
2

value of pair #6 in combination with in-situ data at the

time of downwind sampling.

Remaining is a total of eight flask pairs. This scarcity of valid flask pairs led to the

concept of virtual flasks (Section 3.2.2) and subsequently to a deeper insight into

the issue.

Figure 3.4 shows a full day of the in-situ traffic campaign measurement from

January 22, 2021 as an example. It has the same structure as Fig. 3.3. I chose

this day to illustrate how wind direction affects trace gas concentrations. A

different way to show this data is Fig. 3.5, where the in-situ CO
2
, CO, and NO

x

concentration enhancements (downwind minus upwind) for the example day of

January 22, 2021, are displayed.

We find a good correlation between the CO
2
, CO and NO

x
enhancements and

the traffic volume for wind directions fulfilling the same air-mass approach require-

ments in Fig. 3.5. Consider, for instance, the period after the second flask pair

was sampled (labelled #34). When the wind direction changes from north to

east, the CO
2

enhancement drops to zero. As the wind turns back north, the

CO
2

concentration enhancement returns. The
222

Rn concentration also strongly

indicates that the measured enhancements are from a source in the immediate

14
Note that between the sampling site and the Eppelheim counting station there is a highway

intersection where vehicles can get on and off the highway (Fig. 3.1). Consequently, the counts

at the station in Eppelheim do not represent the exact amount of traffic that is sampled, but give

a realistic estimate of traffic activity.
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Fig. 3.4 Continuous data from upwind (red) and downwind (blue) station on January 22, 2021.

Traffic counts according to sampling station Eppelheim. Shaded blue bars are flask sampling

times.
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Fig. 3.5 CO
2
, CO, and NO

x
concentration enhancements between down- and upwind station on

January 22, 2021. The auxiliary parameters (
222

Rn and wind) are measured at the downwind

station. Traffic counts according to sampling station Eppelheim. Vertical blue shaded areas

indicate flask sampling times. The
14

C-based ffCO
2

enhancement during the flask sampling

periods is shown as red stars with respect to the right y-axis in the CO
2

panel. CO enhancements

plotted as red stars are based on the flask samples and correspond to the right axis, too. The same

holds for hourly mean NO
x

concentrations in the NO
x

panel.
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vicinity, because the usual inversion-based correlation between
222

Rn concen-

trations and concentration enhancements of other trace gases is absent. Such

high concentration enhancements without an inversion require a strong close-by

source. That is, the data confirm that the highway must be the dominant source

of the concentration enhancements (since no other strong sources are nearby).

The
14

C-basedΔffCO
2

concentrations make up the major share (≈ 90 %) of the CO
2

enhancement. To see this graphically, compare the blue line (CO
2

enhancement)

with the red stars (ΔffCO
2
) in the top panel of Fig. 3.5. Due to the addition of

bio-fuels to diesel and petrol, we expect a non-fossil CO
2

contribution from traffic

emissions. Measurements by Friedrich and Hammer (2017) show that the average

bio-fuel admixture for diesel and petrol in the Rhine Valley region was 5 % in 2017.

TREMOD suggests a bio-fuel contribution of of 5.2 % for all of German highways

(Tietge et al., 2020). The average bioCO
2

fraction in the valid flasks was 10 ± 20 %
(the error is the standard deviation). The >10 % measured bioCO

2
fraction and

the large standard deviation indicate that some non-fossil CO
2

(other than from

bio fuels) is emitted between ML2 and ML1. The prime suspect is soil respiration,

which is low, but non-zero in winter (Dörr and Münnich, 1987). Therefore, I do

not use a bioCO
2

fraction of 5 % that is expected from traffic, but rather a bioCO
2

fraction of 10 ± 20 % for the ffCO
2

estimation for the virtual flasks, carrying over

the large uncertainty into the uncertainties of the ratios.

3.2.2 Virtual flasks

With the information from the valid flask samples, a solid understanding of our

sampling setup, and the same air-mass approach, we hypothesise that for west to

north-west wind (wind direction 250
◦

to 345
◦
) ΔffCO

2
can be approximated by

ΔffCO
2
≈ 0.9ΔCO

2
. Consequently, Δproxy/ΔffCO

2
ratios can be calculated for

these episodes, which I call virtual flasks. Since no comparison between in-situ

and flask measurements is possible, virtual flasks must only fulfil the following

conditions:

• average wind direction 250
◦

to 345
◦

• stable wind (deviation <20
◦
)

This selection yields 112 virtual flasks, spread over all hours of the day, a variety

of traffic compositions and atmospheric conditions, representing many different

situations. The results are shown in Fig. 3.6. Please refer to Appendix B for an

in-depth analysis of quality checks, bias corrections, and uncertainty estimates.

Everything described in Appendix B is applied to the results shown in Fig. 3.6.
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Fig. 3.6 Proxy ratios of traffic campaign flasks plotted against each other. Points in shades of blue

represent virtual flasks: the darker the color, the higher the fraction of trucks on the highway.

Flask samples are indicated by a red border. Black dots show TNO emission ratios for three traffic

vehicle categories: light duty vehicles (LDV), heavy duty vehicles (HDV), and mix (LDV & HDV).

Similarly, TREMOD emission ratios for truck-only traffic (bottom left) and car-only traffic (top

right) are shown in grey and connected by a dashed line of the same color.

In Fig. 3.6, every virtual flask is assigned a ‘heavy duty vehicle (HDV) emission

fraction’. The HDV emission fraction is the percentage of CO
2

emissions that is

caused by HDV. I calculate the HDV emission fraction by using traffic density

data provided by the Bundesanstalt für Straßenwesen (BASt) and emission factors

(in units of g/km) provided by HBEFA (Section 2.3). The CO
2

emission factors for

HDV are roughly four times higher than for LDV
15

. Weighting the HDV fraction

𝑓HDV = #HDV/(#HDV + #LDV) (i.e. the percentage of vehicles that are HDV) with

15
The grouping into LDV and HDV is done according to BASt (Vehicle Groups according to

Bundesamt für Straßenwesen, 2022). Here, the German Pkw is equivalent to LDV and Lkw is

equivalent to HDV. The difference to TREMOD is, that TREMOD has an own category for motor

cycles and passenger cars with trailers are not considered HDVs. Since both motor cycles and

cars with trailers are rather rare, the difference is small.
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the emission factors yields the HDV emission fraction

𝑓 emis

HDV
=

4 #HDV

4 #HDV + #LDV

. (3.1)

Black dots in Fig. 3.6 represent single-cell
16

highway TNO emission ratios for the

different vehicle classes light duty vehicle (LDV), heavy duty vehicle (HDV), and

both light and heavy duty (mix) and are labelled accordingly. The ‘all roads mix’

data point represents not only highway emissions but also emissions from all

other road types in the area. Grey points represent emission ratios according

to TREMOD for all of Germany. For clarification, passenger cars (TREMOD

point at the top left) are a subgroup of LDV. LDV additionally include vans and

small transporters, which only make up 10 % of the LDV traffic on highways.

Similarly, trucks are a subgroup of HDV. HDV additionally include (travel) busses,

which make up ≈ 3 % of the highway HDV traffic (according to TREMOD). The

difference between HDV and trucks, as well as between LDV and passenger cars

is graphically visible in the point ‘mix TREMOD’ where all vehicles are combined.

The distance of this point from the dashed line is due to the influence of all other

vehicle categories (if passenger cars and trucks truly where the only vehicles that

emit gases on the highway, the mix TREMOD point would be exactly on the line

between the points ‘trucks TREMOD’ and ‘pass. cars TREMOD’). Uncertainties for

TREMOD are estimated at 20 %, based on the educated guess of Stefan Hausberger

(personal communication, October 14, 2021), whose group is responsible for the

modelling of the emission factors for the vehicle fleets of Germany, Austria and

Switzerland, i.e. providing the emission factors in HBEFA. For details on the

emission factors, revisit Section 2.3.

While the category LDV is not strictly the same as passenger cars and the category

HDV is not strictly the same as trucks, the corresponding TREMOD and TNO

points in Fig. 3.6 should be in close proximity to each other. However, this is

not the case. While the truck and HDV points are reasonably close together,

the LDV and passenger cars points are not. TREMOD assigns much higher CO

ratios to gasoline passenger cars than TNO (individual emission ratios of gasoline

passenger cars for TNO and TREMOD not shown here), leading to an overall

higher CO ratio for passenger cars.

In an effort to make the measured data comparable with the three points (LDV,

mix, HDV) of TREMOD and TNO, I calculated three mean ratio points by

orthogonal weighted total least squares regression, as described in Section 2.4.

16
The emission ratios are calculated from emissions of the single 1 km × 1 km cell that contains

the sampling site. Calculating the emission ratios for all German highways does not change the

values significantly, meaning the traffic on this highway is very close to the average traffic on

any German highway.
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Fig. 3.7 Sample distribution over the hour of day for all virtual flasks. Day hours (between 06:00 h

and 18:00 h) are over-represented, making up 63 % of all samples (75 of 119).

The calculated ratio points have two error bars, because the uncertainty of the slope

of the orthogonal weighted total least squares regression visibly underestimates

the real uncertainty. I want the error bars to represent the possible spread

of ratios (in the chosen vehicle class category), so as the second error bar I

use the standard deviation of the selected ratios. The dark blue right-pointing

grey-bordered triangle shows the mean ratio of points that have a 𝑓 emis

HDV
> 80 %.

The light blue left-pointing triangle shows the mean ratio of points that have

a 𝑓 emis

HDV
< 20 %, i.e. 80 % or more LDV emission fraction. The upward pointing

triangle accounts for points with 39.5 % ≤ HDV emission fraction ≤ 48.5 %,

because the mix point for TNO is at 𝑓 emis

HDV
= 48.5 % and the TREMOD point

is at 𝑓 emis

HDV
= 39.5 %. Choosing the range of 𝑓 emis

HDV
to determine a measured

mix ratio is challenging, since it is not clear what that mix is exactly. From

the inventory perspective, it is clear: take all highway traffic emissions and

divide CO by ffCO
2
. Since the measurements do not capture all emissions and

a mean over all virtual and sampled flasks would be biased towards daytime

hours as Fig. 3.7 shows, this simple approach does not work for the measured

emissions.

Choosing the range of 𝑓 emis

HDV
between 39.5 % and 48.5 % conceptually means

that I consider every measurement within the range a reasonable example of

the average traffic situation on the highway. One way to look at 𝑓 emis

HDV
is to

imagine a point on each dashed line: 𝑓 emis

HDV
dictates where on the line the point

is. A 𝑓 emis

HDV
= 0 % is equal to the LDV/pass. cars point for TNO and TREMOD,

respectively. 𝑓 emis

HDV
= 100 % is equal to the HDV/trucks point for TNO and

TREMOD, respectively. Spanning the range from 39.5 % and 48.5 % on the dashed

lines then provides the range of expected ratios that must be compared to the mix

mean point of the measurements.
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3.3 Discussion

In order to interpret the dependence of the ratios on 𝑓 emis

HDV
, note that the underlying

BASt traffic density data originate from a counting station to the south. As shown

in Fig. 3.1, there is a highway intersection between the counting station and the

campaign site. Consequently, 𝑓 emis

HDV
shown in Fig. 3.6 has an unknown uncertainty

attached to it. This is not a problem as long as 𝑓 emis

HDV
is used for qualitative analysis

only (e.g. visualising the difference between truck-heavy traffic and car-heavy

traffic). The only time the 𝑓 emis

HDV
is used in a certain quantitative way is for the

selection of virtual flasks to calculate the average measured ratios for trucks,

passenger cars, and the mix. Since here, 𝑓 emis

HDV
only dictates what points are

considered for each mean and slightly changing the selection has little effect on

the mean, I argue that using 𝑓 emis

HDV
in this way is reasonable. To support this, I

compared daily traffic counts found on the BASt website (Automatic traffic counts

by Bundesanstalt für Straßenwesen, 2022) for the counting station south of the

intersection and a counting station north of our campaign site (I only have detailed

data for the southern counting station). The data show a difference of 11 % in

average daily HDV traffic between the northern (8980 counts per day) and the

southern (7980 counts per day) counting station in 2020 and a difference in average

daily LDV traffic of 3 % between the two stations. A 10 % change in truck count

shifts 𝑓 emis

HDV
by roughly 2 %. Changing the threshold 𝑓 emis

HDV
for any of the ratios by

2 % does not change the results significantly, consequently the calculated means

are well estimated, even if the real traffic differs from the counts of the southern

counting station.

As 𝑓 emis

HDV
in Fig. 3.6 increases (darker colors), the emission ratios decrease, be-

cause gasoline cars emit more CO/ffCO
2

than trucks and diesel cars emit more

NO
x
/ffCO

2
than trucks. At a general level, this finding agrees with TNO inventory

data (in black) and TREMOD results, which both show HDV (or, respectively,

trucks) at low CO/ffCO
2

ratios and LDV (or, respectively, passenger cars) at

high(er) CO/ffCO
2

and NO
x
/ffCO

2
ratios. For a comparison of the subcategory

ratios and the mix ratios, consult Table 3.3 in addition to Fig. 3.6. Both TNO

and TREMOD generally overestimate NO
x
/ffCO

2
ratios, even if we consider a

potential 10 % bias inΔNO
x

(Appendix B.3). In particular, trucks seem to emit far

less NO
x

than either TNO (46 %) or TREMOD (70 %) predict.

To improve comparability between measured emission ratios (where up to 20 %
of emissions come from the other vehicle category) and TNO/TREMOD emission

ratios (where 100 % of emissions are from the right vehicle category), I calculate

‘inferred’ emission ratios. To this end, I assume that any measured ratio is a linear

combination of the ‘true’ truck and the ‘true’ car emission ratio, weighted with

𝑓 emis

HDV
and (1 − 𝑓 emis

HDV
), respectively.
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Table 3.3

Ratios from Fig. 3.6. Uncertainties for TREMOD are educated guesses from Stefan Hausberger

(personal communication October 14, 2021), uncertainties for TNO provided by Super et al.

(2020). Selection of (virtual) flasks for subcategories is described in the text. ‘Ideal’ values in

parenthesis calculated according to Eq. (3.2) for LDV, Eq. (3.3) for HDV and Eq. (3.4) for the

mix.

mix LDV, pass. cars HDV, trucks

Sources ΔCO

ΔffCO
2

ΔNO
x

ΔffCO
2

ΔCO

ΔffCO
2

ΔNO
x

ΔffCO
2

ΔCO

ΔffCO
2

ΔNO
x

ΔffCO
2

(ppb/ppm)

TNO 3.16 ± 0.31 2.23 ± 0.06 5.03 ± 0.49 2.55 ± 0.06 1.10 ± 0.11 1.90 ± 0.05

TREMOD 11.84 ± 2.37 3.61 ± 0.72 18.97 ± 3.79 4.10 ± 0.82 0.31 ± 0.06 2.21 ± 0.44

Measured 5.62 ± 1.02 2.35 ± 0.28 12.50 ± 2.74 2.92 ± 0.14 2.98 ± 1.11 1.30 ± 0.32

Inferred 8.26 ± 1.77 2.20 ± 0.48 13.62 ± 3.07 3.10 ± 0.81 1.45 ± 1.01 1.04 ± 0.38

The mean 𝑓 emis

HDV
of the points that make up the passenger-car-mix mean is 9.18 %.

For the truck-mix mean, the mean is 𝑓 emis

HDV
= 87.43 %. The inferred mean ratios are

calculated from

𝑅measured

cars
= 𝑅inferred

cars
· 90.82 % + 𝑅inferred

trucks
· 9.18 % (3.2)

𝑅measured

trucks
= 𝑅inferred

cars
· 12.57 % + 𝑅inferred

trucks
· 87.43 % (3.3)

where 𝑅 can be either the CO emission ratio or the NO
x

emission ratio. With

the results from Eq. (3.2) and Eq. (3.3), the inferred mix ratio follows using the

𝑓 emis

HDV
= 44 % (center of the previously discussed mix range), i.e.

𝑅inferred

mix
= 𝑅inferred

cars
· 56 % + 𝑅inferred

trucks
· 44 %. (3.4)

The results are shown in the row ‘inferred’ in table 3.3. The uncertainties are the

uncertainties of the measured ratios propagated with Gaussian error propagation.

Graphically, these results would be a line through the measured mean truck point

and the measured mean passenger car point. The ‘true’ car and truck ratios would

slightly extend this line beyond the measured points. The ‘true’ mix point would

lie close to the middle of the line (on the point that splits the line 44:56, i.e. skewed

towards the inferred car ratio).

TNO underestimates the inferred CO emission ratio for LDV by a factor of 2.7,

while ratios for HDV agree within error margins. TREMOD, on the other hand,

overestimates the CO emission ratio for passenger cars by almost 40 % and under-

estimates truck CO emissions. The stark differences between measurements and

inventories call for an investigation of this problem by inventory experts. For NO
x
,

the inventories consistently overestimate truck NO
x

emissions. Note that TNO

data are based on the year 2017, whereas TREMOD data are based on the year 2019.

Every year, more and more old trucks are replaced by newer models, following the
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Chapter 3 Traffic campaign

EU regulations of the EURO-IV norm. Hence, we expect truck NO
x

to decrease

over the years. TNO compensates for the lack of recent data by extrapolating trends

in vehicle fleet development. Still, I would expect TREMOD with its more recent

data to fit the measured data better than TNO, but both overestimate truck NO
x

emissions by a factor of ≈ 2. If a unusually large fraction of trucks on this highway

are EURO-IV conform (compared to the average German highway), this could lead

to smaller-than-expected NO
x

emissions, but no data are available (or even exist)

that could support this hypothesis. For the traffic mix and LDV, TNO estimates

the NO
x

emissions quite well, while TREMOD again overestimates both.

In terms of our measurements, it is striking that the calculated inferred mix CO

emission ratio is much larger than the measured. The largest accumulation of

points is not scattered around a line through the truck-mix mean and passenger-

car-mix mean points in Fig. 3.6, but rather shifted to the top and/or left. While

the assumptions for the inferred ratios oversimplify the real situation, it is unclear

how any of the assumptions would lead to such a medium-sized overestimation

of CO emissions or a medium-sized underestimation of NO
x

emissions. I can only

hypothesise that, similar to the mix point of TREMOD, the non-ideal measured

mix point deviates from the inferred mix point due to influence of vehicles not

captured by the truck mix point or the passenger car mix point. TREMOD data

suggest that (travel) buses emit more CO and NO
x

than trucks. Assuming buses

only drive during the day, their emissions would not be captured in the truck mix

point. However, it is rather unlikely that buses have such a large impact, since they

only contribute 1 % of CO
2

emissions according to TREMOD. While I cannot offer a

convincing explanation of the slight shift, I do not deem the shift significant for the

general observation of the mismatch between inventories and measurements.

In conclusion, using the same air-mass approach and an estimation formula for the

ΔffCO
2

(ΔffCO
2
= 0.9ΔCO

2
), the set of valid data points increased by 112. Because

of this and the available traffic count data, I was able to show that the vehicle

mix has a large impact on emission ratios. The average traffic TNO NO
x
/ffCO

2

emission ratios agree reasonably well with the measurements, although NO
x

emissions of trucks are likely overestimated. TNO CO emissions, especially of

passenger cars and of the mix, are much lower than what we measured and

disagree with TREMOD results, too. This has to be investigated by emission

inventory experts.

3.4 Perspectives

For future highway campaigns, the ideal sampling site would have a traffic

counting station nearby (without any exits or intersections between the sampling
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site and the counting station). A small distance of the downwind mobile laboratory

to the highway (just as it was here) is desirable. If possible, the connection line

between the laboratories should be parallel to the main wind direction.

City traffic may be a interesting source to investigate for the next traffic campaign.

Ideally, the campaign would take place in summer to minimize the influence of

heating emissions. In such a setting, it may even be possible (depending on the

traffic density on the chosen road) to identify individual car emission ratios. To

measure a mean urban traffic ratio, possibly, sampling air at a height of 30 m (such

as at the Institute of Environmental Physics) with a stationary laboratory is more

feasible. A short test run may already show how much we can or cannot learn

with 10 m of sampling height next to a busy street during rush hour.

The workload associated with a traffic campaign could be significantly reduced

by establishing the ffCO
2

fraction early and relying on virtual flasks for the rest of

the campaign. In general, running two mobile laboratories at the same time is

time consuming. Instruments should be as low-maintenance as possible.

Planning for the campaign should also include at least one side-by-side comparison,

maybe even two (one before, one after). For side-by-side comparison, flask

measurements are mandatory. One should also perform a line test (i.e. releasing

gas at the inlet on top of the mast) to gauge the delay between the MLs.
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Heating campaigns

I conducted measurement campaigns in two residential areas not far from Hei-

delberg. In late March 2020, I conducted the first-ever campaign with the main

mobile laboratory (ML1). The second residential heating campaign took place

mid-March 2021 in Gaiberg. I find that the emission ratios strongly depend on

the contributions from bio-fuelled heating systems. The agreement between TNO

inventory emission ratios and measured effective atmospheric emission ratios

hinges on the inventory proxy used to distribute bio-fuelled heating emissions.

For Gaiberg, the agreement is good, but for Leimen the influence of bio-fuelled

heating systems is strongly underestimated by the TNO inventory.

The two heating campaigns will be reviewed one after the other. Results will also

be presented separately at first and jointly in the comparison Section 4.4.

Parts of this chapter are taken (sometimes verbatim) from Deliverable 2.8 of the

Verify Project
17

. Section 4.3 was written after the submission of Deliverable 2.8.

4.1 Preliminary considerations

Heating emissions cannot be isolated spatially from traffic emissions. For the

temporal isolation, the diurnal profiles of the sectors are analysed.

Residential heating emissions have seasonally changing diurnal patterns depend-

ing on ambient temperature and human behaviour (Gadd and Werner, 2013).

Especially during shoulder seasons, when the campaigns took place, the nocturnal

heat demand is relatively constant and at its diurnal minimum, but the heating

systems still operate at base-load conditions. The heat demand increases 4 to

6-fold in the early morning hours between 04:00 h and 06:00 h local time. This

peak in heat demand is due to the consumption of hot water and the heating of

living areas at the beginning of the daily human routine (Heitkoetter et al., 2019),

17
I authored Deliverable 2.8 in collaboration with Samuel Hammer. Please refer to the online

documentation Rosendahl et al. (2021). All Deliverable contributions written by KIT members

Carlos Alberti and Frank Hase (remote sensing approach) are not in this thesis.
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Fig. 4.1 Time profile of normalised traffic, domestic hot water, and space heating loads. For traffic,

the TNO time profile is used. For space heating and domestic hot water, supplementary material

from Heitkoetter et al. (2019, cf. Figs. 14 and 15 in the manuscript) is used. Note that for the

heating data from Heitkoetter, load refers to area specific heat demand (without declaring how

the demand is met i.e. by which heating system), while the TNO traffic load refers to emissions

directly.

see Fig. 4.1. Depending on the type of heating systems, ambient temperatures and

individual human behaviour, the heating demand during the day is 1 to 3-fold the

nocturnal demand. In the evening hours between 17:00 h and 22:00 h, the second

smaller and much broader heating demand peak occurs with about 2 to 4 times

the nocturnal demand (Heitkoetter et al., 2019). Hence, the diurnal cycle of the

ffCO
2

emissions from the residential heating sector is different from the one of

traffic or industry. As shown in Fig. 4.1, traffic emissions are directly linked to

human movement and thus minimal during night, even lower than residential

emissions operating in base-load conditions
18

. Traffic emissions typically start

at 05:00 h and strongly peak between 07:00 h and 09:00 h local time. High traffic

emission persists throughout the day with a smaller and broader peak in the

evenings between 16:00 h and 19:00 h. After that, the traffic emissions decrease

towards their nocturnal minimum.

18
The traffic and residential heating sector contribute 19 % and 16 % of the ffCO

2
emissions in

Germany, therefore the displayed normalised relative difference translates very well into an

absolute difference as well
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4.2 Leimen campaign, 2020

Fig. 4.2 Overview of the Leimen heating campaign site (Google Earth). The lightly shaded

rectangle indicates the TNO emission inventory cell used for comparison.

To maximise the influence of the residential heating sector when applying the

single-station approach, we focus on the observations during the nocturnal build-

up before the strong traffic emissions in the morning start. According to the

diurnal cycles of traffic and residential heating, the strongest heating imprint can

be expected between 4:00 h and 5:00 h when the heating systems started, but the

traffic is still very limited.

4.2 Leimen campaign, 2020

We applied the single-station approach in a semi-urban residential area, sampling

between late evening and early morning to target residential heating emissions

specifically.

Campaign setup and site description. We conducted the residential heating

campaign in Leimen, Germany (lat. 49.352
◦

N, long. 8.691
◦

E, alt. 138 m asl) from

March 27 to April 2, 2020. Leimen is located on the east edge of the Upper

Rhine Valley, partially elevated by the offshoots of Odenwald, a mountain ridge

confining the Upper Rhine Valley to the east. Figure 4.2 shows an aerial image

(Google Earth) of the measurement site, located at the end of a dead-end road to

avoid emissions from transit traffic. The closest, more significant road is located
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Chapter 4 Heating campaigns

Table 4.1

Instruments used in Mobile Laboratory 1 for the residential heating sector campaign. Repro-

ducibilities are based on target cylinder measurements: the offset (measurement minus assign

cylinder value) to the calibrated value and the standard deviation of the measurements are given.

Entry for ICAD and weather station based on precision described in instrument manual.

Use period Instrument Function Reproducibility Temporal

resolution

Mar 17 to

Apr 2, 2020

Picarro G2301 CO
2

recordings CO
2
: −0.03 ± 0.51 ppm 1 s, averaged

to minutes

Mar 17 to

Apr 2, 2020

Aerolaser

L5001

CO recordings CO: −1.01 ± 8.49 ppb 1 s, averaged

to minutes

Mar 17 to

Apr 2, 2020

ICAD05 NO
2

and NO
x

recordings

NO
x
: 0.15 ppb or 2 %

NO
2
: 0.15 ppb or 2 %

60 s

Mar 17 to

Apr 2, 2020

Flask sampler collects

1 h-accumulated

air samples

– –

Mar 17 to

Apr 2, 2020

Heidelberg

Radon Monitor

214

Po recording,

222

Rn estimation

– 30 min

Mar 17 to

Apr 2, 2020

Thies weather

station

wind speed,

wind direction

speed: ±0.3 m/s

direction: ±2
◦

1 s, averaged

to minutes

in a westerly direction at a distance 150 m. The houses in the immediate vicinity

comprise different heating systems using different fuels. The nearest five houses

use oil-fuelled heating systems. Further to the south, oil- and gas-fuelled heating

systems are supported by wood-fuelled tiled and fireplace stoves. To the best of

our knowledge, no coal-fired heating systems exist in Leimen.

Although the timing of the campaign was quite late in the seasonal heating

period, the average temperature was 5.4 ◦
C with typical night time (18:00 h to

6:00 h) temperatures of 0
◦
C to 5

◦
C (mean 3.1 ◦

C) and daytime (06:00 h to 18:00 h)

temperatures of up to 12.5 ◦
C (mean 7.6 ◦

C). The actual temperatures measured

during the campaign are given in Fig. 4.3 in the lowest panel.

Table 4.1 shows the instruments used for the heating campaign, including re-

producibilities and temporal resolutions. While the performance of the Picarro

G2301 was stable, the Aerolaser L5001 showed stability issues. Throughout the

whole campaign, the sensitivity fell off by 12.5 % and the instrument temperature

was unstable. However, this is of no strong concern for the evaluation, since

in this campaign the continuous data were used for quality checks only. As a

consequence of the unstable Aerolaser instrument, CO was not used as a quality

check between continuous in-situ measurements and flask measurements. Quality
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4.2 Leimen campaign, 2020

Table 4.2

Background samples and averaged background concentrations of the heating campaign in

Leimen. The NO
x

instrument failed during the first measurement, so no average NO
x

concen-

tration is available. For Δ
14

CO
2
, the uncertainty of the mean is a combination of the standard

deviation and the measurement uncertainty of the three measurements.

CO
2

CO NO
x

Rn Δ
14

C Δ
13

C

Date (ppm) (ppb) (ppb) (Bq/m
3
) (h) (h)

Mar 30 7:00 h 421.35 ± 0.04 143.90 ± 5.17 – 0.62 −7.52 ± 2.24 −9.15 ± 0.03

Mar 31 9:30 h 421.88 ± 0.04 153.13 ± 1.01 2.12 ± 0.09 1.97 −8.58 ± 2.24 −9.24 ± 0.02

Apr 1 1:30 h 422.57 ± 0.04 150.74 ± 0.47 1.42 ± 0.02 1.91 −9.06 ± 2.27 −9.44 ± 0.01

Mean ± SD 421.93 ± 0.61 149.26 ± 4.79 1.77 ± 0.49 1.50 −8.38 ± 3.04 −9.28 ± 0.15

checks with the Picarro data were still possible. The agreement between flasks

and in-situ concentrations was better than 1 ppm for CO
2
.

Results and discussion. Twenty flasks were sampled during the Leimen heating

campaign. The first two flasks were discarded because no suitable background

sample was available. The remaining 18 flasks were analysed for Δ
14

CO
2

to

derive ΔffCO
2

estimates using Eq. (2.6). We use this equation because we expect

biospheric activity at the start of spring. Figure 4.3 gives an overview of the

continuous in-situ measurements from March 30, 2020 6:00 h to April 2, 2020

4:00 h.
19

The first four panels show CO
2
, CO, NO

x
(NO

x
in red, NO

2
in blue), and

222

Rn concentrations. The lower three panels show the meteorological parameters

wind speed, wind direction, and temperature. Vertically shaded bars depict flask

sampling times. Each flask sample is numbered in the order of appearance. We

screened the three-day observation period for background conditions applying

two criteria low
222

Rn concentrations and moderate wind speeds. Samples #3, #8

and #9 fulfil these criteria.

Table 4.2 summarises the concentrations and the isotopic composition for those

three background flasks. Although the flasks were taken on different days and

at different times of the day, they all show a remarkable agreement between

their concentrations. We conclude that this is a representative estimate of the

background concentrations that occur when the locally polluted air is removed

and replaced by fresh air. Thus, for the remaining evaluation, the average of these

three events is used as background concentration for the individual species.

The first three panels of Fig. 4.4 show the continuously measured local trace

gas enhancements ΔCO
2
, ΔCO, and ΔNO

x
with respect to average background

concentrations. The red stars show enhancements for the flask sampling time

19
Measurements stopped abruptly due to electrical failure of the instrument drying the air for the

other instruments.
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Fig. 4.3 Overview of the continuous in-situ measurements for the Leimen heating campaign.

The first four panels show CO
2
, CO, NO

x
(NO

x
in red, NO

2
in blue), and

222

Rn concentrations.

The lower three panels show the meteorological parameters wind speed, wind direction, and

temperature. Vertically shaded bars depict flask sampling times. The flask numbers referred to in

the text are displayed at the very top of the CO
2

panel.
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heating campaign 2020 -- offsets (with respect to averaged background) and ratios
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Fig. 4.4 Concentration enhancements during the Leimen heating campaign, 2020. This graph is

akin to Fig. 4.3, only that the average background (defined by samples #3, #8, and #9) has been

subtracted from the continuously measured concentrations. Flask numbers are shown in the

Radon panel (central panel). The red stars indicate flask values (ΔffCO
2
, ΔCO in the top two

panels) and mean concentrations (ΔNO
x

in panel 3). For the red stars in panel 5,ΔNO
x

is divided

by ΔCO from the flask measurements to calculate the ΔNO
x
/ΔCO ratio.
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according to the right axis. In theΔCO
2

panel, the
14

CO
2
-basedΔffCO

2
estimates

are shown. In the ΔCO panel, the red stars are derived from the flask measure-

ments providing independent quality checks for the in-situ measurements, while

in the ΔNO
x

panel, the red stars give the averaged ΔNO
x

value for the flask

sampling period. The fourth panel shows the ΔNO
x
/ΔCO ratio of the in-situ

NO
x

data and the CO flask data. The atmospheric transport-related variability

observed in the individual enhancements cancels out in the ratio as both tracers

are subject to the same atmospheric transport (assuming no demixing). The last

three panels show
222

Rn, wind speed, and wind direction, similar to Fig. 4.3, to

indicate atmospheric conditions.

Looking at the
222

Rn concentrations in Fig. 4.3, we can identify three events with

reduced atmospheric mixing:

• Event I from March 30, 18:00 UTC to March 31, 6:00 UTC

• Event II from April 1, 3:00 UTC to April 1, 9:00 UTC

• Event III from April 1, 18:00 UTC to April 2, 4:00 UTC

Low wind speeds and accumulating trace gas concentrations characterise all

three events. The temporal variations of ΔCO
2
, ΔCO, and ΔNO

x
, are strongly

correlated throughout the entire period.

During event I (March 30, 18:00 UTC to March 31, 6:00 UTC), the CO
2
, CO, and

NO
x

enhancements fluctuated strongly and almost down to background levels.

Joint interpretation of wind conditions and CO
2

enhancements (Fig. 4.5a) showed

that enhanced wind speeds and northerly directions are correlated with lower

ΔCO
2
, while high ΔCO

2
was dominant at low wind speeds. Also, the

222

Rn

build-up is interrupted before samples #6 and #7. We interpret this as flushes

of ‘fresh’ air. As the individual concentration build-ups occur during low wind

speeds, we conclude that we measured local source emissions during this event.

Sample #7 was collected at the end of the event at 4:00 UTC (6:00 h local time), and

the ΔNO
x
/ΔCO ratio of #7 is three times higher compared to the earlier samples.

Based on the timing, a mix between heating and traffic emissions can be expected

and, hence, sample #7 will be excluded.

Event II (April 1, 3:00 UTC to April 1, 9:00 UTC) is different from event I. Figure 4.3

shows only for event II a split between NO
x

and NO
2
. That is, the NO

x
signal

contains NO. In Fig. 4.4 it is shown that theΔNO
x
/ΔCO ratio changes significantly

during this event and is three to four times the ratio observed during event I. The

build-up of event II started around 4:00 UTC (6:00 h local time). The first flask

was sampled between 6:00 and 7:00 UTC. Similar to sample #7, samples #10 and

#11 are excluded when determining the average heating emission ratios.
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Fig. 4.5 Correlation between CO
2

concentration and wind direction for two events during the

Leimen heating campaign. The radial axes describe wind velocity (one ring corresponds to 1 m/s).

Event III (April 1, 18:00 UTC to April 2, 4:00 UTC) shows similarities to event I. In

the beginning, we see a gentle
222

Rn build-up, which is accelerating after 22:00 h

local time. Around 4:00 h local time, the decrease in
222

Rn indicates a contribution

of ‘fresh’ air. Combining wind and ΔCO
2

data confirms the earlier finding that

larger ΔCO
2

go along with lower wind speeds (Fig. 4.5a for event I and Fig. 4.5b

for event III). Apart from sample #13 taken at 18:00 UTC (20:00 h local time), which

still may contain traffic emission contribution, the remaining samples #14 to #20

have been sampled during conditions where the residential heating emissions

dominate.

Apart from the flasks sampled during background conditions (#3, #8, and #9),

only flask #12 was not sampled during one of three events. Flask #12 was

taken at 8:00 UTC (10:00 h local time) and is, hence, not suited for determining

the heating ratios. From the remaining flasks, #6 and #14 are excluded, too.

Flask #6 shows considerably higher CO
2

concentrations than the mean of the

continuous measurements over the hour (ΔCO
2
= 2.7 ppm), marking a situation

where atmospheric conditions were too unstable and consequently, due to slight

asynchronicity or the imperfect weighing function of the flask sampling, lead

to a discrepancy of the means. Flask #14 was contaminated with
14

CO
2

from

nuclear facilities (according to WRF-STILT modelling of Fabian Maier) and was
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Fig. 4.6 Δproxy/ΔffCO
2

ratios for the heating campaign in Leimen. For reference, heating

emission ratios from the TNO cell containing the campaign site are shown in black. Light-green

points are individual measurements, the dark green point gives an estimate of the average ratios,

obtained by regression of Δproxy versus ΔffCO
2

with a forced intercept of 0. See Section 2.4 for

details on the regression-mean. The regression lines are plotted in Fig. 4.7. The small error bars of

the mean show the uncertainty of the regression slope, the large error bars show the standard

deviation of the individual ratios.

thus excluded. We use the remaining seven signal flasks to determine heating

proxy emission ratios.

Figure 4.6 shows Δproxy/ΔffCO
2

ratios in a double ratio plot to compare our

measured effective atmospheric heating-dominated emission ratios to TNO in-

ventory emission ratios for the cell containing the campaign site. The ratios for

individual flask samples are plotted in light green, whereas the mean (determined

via weighted total least squares regression, see Appendix D) is dark green. The

mean heating ratio has two error bars. The smaller error is the uncertainty of

the fit parameter of the linear regression, when the origin is a fixed point. The

regressions for CO and NO
x

are displayed in Fig. 4.7.

The uncertainty of the slope fit parameter of the linear regression underestimates

the variability of the mean ratio. Therefore, the second, larger error bar is

the standard deviation of the individual proxy emission ratios. Estimating the

uncertainty of the mean proxy emission ratios by taking the standard deviation

is reasonable, because, conceptually, we do not measure one specific heating

emission ratio, but rather multiple variations, i.e. every sample experiences a

different fuel-mix and consequently a different heating ratio. The mean heating
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Fig. 4.7 Weighted total least square regressions for the mean in Fig. 4.6. The origin is fixed for

the regression (𝑏 = 0). Uncertainties are calculated from measurement uncertainties by Gaussian

error propagation. The uncertainty of the slope parameter 𝑎 underestimates the real uncertainty

of the mean heating emission ratio.

emission ratio and its uncertainty just give us an idea about how the possible

heating ratios are distributed.

The average heating emission ratios estimated from our measurements are

ΔCO/ΔffCO
2
= 8.02± 3.12 ppb/ppm andΔNO

x
/ΔffCO

2
= 0.84± 0.14 ppb/ppm.

Both ratios exceed the prediction of TNO (ΔCO/ΔffCO
2
= 1.79 ppb/ppm and

ΔNO
x
/ΔffCO

2
= 0.45 ppb/ppm). An explanation for this will be presented in

the discussion of Fig. 4.14.

4.3 Gaiberg campaign, 2021

The single-station approach was applied in a rural residential area where no gas

network exists. Consequently, a different ratio distribution than in Leimen is

expected.

Campaign setup and site description. We conducted the residential heating

campaign in Gaiberg, Germany (long. 49.364
◦

N, lat. 8.754
◦

E, alt. 290 m asl) from

March 17 to March 28, 2021. Gaiberg is located on a plateau at the south west end

of the Odenwald, east of the Upper Rhine Valley, approximately 5 km to the east

of Leimen. Gaiberg is a roughly star-shaped town, where the main road (roughly

from west to east) slopes downward. ML1 was parked on an even-levelled road at

an elevation of 290 m asl
20

in the south eastern residential area, which is elevated

between 280 m asl and 295 m asl. The main road is located in northerly direction

at a distance just short of 150 m at an elevation of 280 m asl. Oil-fuelled heating

20
Placement of the mobile laboratory was restricted to proximity of the house of Jochen Wallwein,

who graciously provided the electricity.
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Fig. 4.8 Overview of the Gaiberg heating campaign site. The lightly shaded rectangle indicates

the TNO emission inventory cell used for comparison.

systems are the most prevalent in the neighbourhood, only one house in westerly

direction uses gas from a subterranean tank. Figure 4.8 shows an aerial image

(Google Earth) of the measurement site. Gaiberg is more isolated than Leimen,

separated from other towns by ridges of the Odenwald.

This campaign started slightly earlier in March than the Leimen campaign.

Temperatures during sampling were between 4
◦
C and 5

◦
C for four of the five

signal samples. The last sample was taken during a rather warm night with

a temperature of circa 11
◦
C. I judge the heating campaigns similar enough in

both season-wise timing and temperatures to be comparable, i.e. even though the

campaigns were not conducted back-to-back, I expect heating behaviour to be

similar between the two.

The instruments used in this campaign are listed in Table 4.3 with their repro-

ducibilities. Reproducibilities of the G2401 Picarro decreased between the traffic

campaign and the Gaiberg heating campaign. For ratio calculations, only flask

data were used. That is, the results are unaffected. Quality checks with the Picarro

data were still possible and agreement between flasks and in-situ concentrations

was better than 1 ppm for CO
2

and better than 10 ppb for CO.

Results and discussion. Eight flasks were sampled during this heating campaign

and subsequently analysed for
14

CO
2
. Equation (2.6) was used to calculate
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4.3 Gaiberg campaign, 2021

Table 4.3

Instruments used in Mobile Laboratory 1 for the residential heating sector campaign in Gaiberg.

Reproducibilities are based on target cylinder measurements: the offset to the calibrated value

and the standard deviation of the measurements are given. Entry for ICAD and weather station

based on precision described in instrument manual.

Use period Instrument Function Reproducibility Temporal

resolution

Mar 17 to

Mar 28, 2021

Picarro G2401 CO
2
, CO

recordings

CO
2
: 0.22 ± 0.25 ppm

CO: −5.44 ± 1.27 ppb

1 s, averaged

to minutes

Whole

campaign

ICAD05 NO
2

and NO
x

recordings

NO
x
: 0.15 ppb or 2 %

NO
2
: 0.15 ppb or 2 %

60 s

Mar 17 to

Mar 28, 2021

Flask sampler collects air

samples

– –

Mar 17 to

Mar 28, 2021

Heidelberg

Radon Monitor

214

Po recording,

222

Rn estimation

– 30 min

Mar 17 to

Mar 28, 2021

Thies weather

station

wind speed,

wind direction

speed: ±0.3 m/s

direction: ±2
◦

1 s, averaged

to minutes

ΔffCO
2

(nuclear source influence was negligible, but biospheric influence was

not). Figure 4.9 shows the continuous in-situ measurements. Samples were

collected during three day-night periods between March 22 and March 27, 2021.

For each period, one flask was sampled in the afternoon during well-mixed

conditions to function as a background for the night-time samples. The offset

between signal and background is shown in Fig. 4.10. Taking daily noon or

afternoon samples as background is a different approach than the one applied in

Leimen.

For Leimen, we found that all background flasks had very similar trace gas concen-

trations and isotopic compositions, see Table 4.2, indicating that all background

flasks essentially sample the same background air-mass. This is not the case for

Gaiberg.
222

Rn data in Fig. 4.9 suggest an air-mass change in the early hours

of March 26, where the
222

Rn concentration abruptly increased with a change

of wind direction and does not decrease when the wind speed increases. The

first two background flasks on March 22 and 23 are more similar, as Table 4.4

shows. Comparing the standard deviation of the means in Tables 4.2 and 4.4

exemplifies this. For CO
2

the SDs differ by a factor of approximately 8, for CO

by a factor of approximately 3, and for NO
x

by a factor of 4. For the first two

background flasks of Gaiberg, the difference in CO
2
, NO

x
, and

222

Rn is fairly

low. They differ more in CO and Δ
14

CO
2

than all Leimen background flasks,

even though the two Gaiberg flasks are less than 24 hours apart. I conclude

that while for Leimen the assumption that all background flasks essentially

sample the same background holds, this is not the case in Gaiberg. Therefore,
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Fig. 4.9 Overview of the continuous in-situ measurements for the first sampling period of the

Gaiberg heating campaign. The first four panels show CO
2
, CO, NO

x
(NO

x
in dark blue, NO

2
in

light blue), and
222

Rn concentrations. The lower three panels show the meteorological parameters

wind speed, wind direction and temperature. Vertically shaded bars depict flask sampling times.

Red stars are flask concentrations or, in the case of NO
x
, the mean concentration during sampling.
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Fig. 4.10 Concentration enhancements during the sampling periods of the Gaiberg heating

campaign. This graph is similar to Fig. 4.9, only that the background (defined by the corresponding

afternoon sample, vertical blue bar without red star in the center) has been subtracted from the

continuously measured concentrations. Red stars show (from top to bottom) ffCO
2
, CO offset

between signal and background flask, mean NO
x

offset during sampling of signal and background

flask, and CH
4

offset between signal and background flask.

the assumption for Gaiberg is that the nightly concentration build-up is on

top of the midday ‘clean air’ concentration, which I call the day-by-day ansatz.

The evaluation method employed during the Leimen campaign is preferable,

because Peter (2020) found that midday flasks do not necessarily reflect the

true (free troposphere) background, but contain residual anthropogenic emis-

sions that pollute the background sample, leading to skewed proxy emission

ratios.

The third Gaiberg background flask is of special interest, because its Rn con-

centration is much larger than for the two other background flasks, but its CO
2

concentration is almost 10 ppm lower. The sunny weather accompanied by warm

temperatures on March 26 suggest that the biosphere was no longer dormant and

the CO
2

draw-down effect by photosynthesis caused the low CO
2

concentration.

63



Chapter 4 Heating campaigns

Table 4.4

Background samples and averaged background concentrations of the heating cam-

paign in Gaiberg, 2021. The mean is not used for calculations and is displayed here

only to signify the difference between the two heating campaigns.

CO
2

CO NO
x

Rn Δ
14

C

Date (ppm) (ppb) (ppb) (Bq/m
3
) (h)

Mar 22 15:00 h 428.36 ± 0.02 183.53 ± 0.14 6.85 ± 0.09 1.07 −23.61 ± 2.02

Mar 23 13:30 h 429.71 ± 0.04 160.79 ± 0.48 7.28 ± 0.15 1.04 −26.64 ± 1.77

Mar 26 11:00 h 420.95 ± 0.04 162.45 ± 0.30 3.60 ± 0.10 3.63 −10.24 ± 1.72

Mean ± SD 426.34 ± 4.72 168.92 ± 12.67 5.91 ± 2.01 1.91 −20.16 ± 8.73

In any case, all the background flasks differ markedly in at least two tracer

concentrations. Hence, I cannot determine one true background and I am forced

to use the day-by-day ansatz.
21

The Gaiberg campaign can be separated into three periods:

• Period I from March 22, 12:00 UTC to March 23, 0:00 UTC

• Period II from March 23, 12:00 UTC to March 24, 6:00 UTC

• Period III from March 26, 18:00 UTC to March 27, 6:00 UTC

each with their own midday background sample and one (period III) or two

(periods I and II) signal samples (Fig. 4.9). Periods I and II are similar in many

ways. Both show a build-up in
222

Rn over the day, starting from roughly 1 Bq/m
3

to 2 to 3 Bq/m
3

in the night. Night temperatures are similar (5
◦
C or less) and

the wind pattern is favourable – high wind speeds during the day and low wind

speeds during the night – matching the concept of clean air background samples

and locally influenced signal samples (Fig. 4.11a).

After period II, the daily temperature maximum increased from 5 to 10
◦
C to 15

◦
C,

indicating a weather change that affected period III, displayed in the bottom panel

in Fig. 4.10. While
222

Rn also increased between the background sample and the

signal sample in period III, the background sample already contained 4 Bq/m
3
.

Together with the temperature profile, the
222

Rn profile can be interpreted in

the following way. A large air-mass from the south-west/west brought warm

continental air passing over Gaiberg. Over night, an inversion started and

increased the
222

Rn load until it reached a maximum of 7 Bq/m
3
. Shortly after, at

around 3:00 h UTC in the morning, strong winds brought fresh, slightly colder

air-masses from the west, visible through the rapid drop in
222

Rn accompanied by

a decline in temperature. The adverse wind conditions are also visible in Fig. 4.11b.

21
Note that for a long time, this was the go-to ansatz in our group, until Peter (2020) revealed its

shortcomings. While this ansatz is inferior it is by no means inapplicable.
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Fig. 4.11 Dependence of CO
2

concentration on wind direction during the Gaiberg heating campaign.

The radial axes describe wind velocity (each ring is 1.5 m/s). Periods I and II are shown together,

since they are also shown together in Figs. 4.9 and 4.10 and are very similar with regard to their

meteorological conditions.

When, at the start of the depicted period (March 26, 6:00 UTC), the wind turned

from North over East to South, wind speeds were low and concentrations high

– an optimal sampling situation but unfortunately not sampled. As the wind

turned west and we moved into the night, the anti-correlation between wind

speed and CO
2

concentration was no longer valid, i.e. high-speed winds brought

an increase in CO
2

and
222

Rn. The only nighttime sources of ffCO
2

to the west are

another Gaiberg residential area 150 to 350 m away, and much further to the west

(approximately 3.5 km) Emmertsgrund, another residential area.

Even though the picture is much more complicated for period III, there is no reason

to exclude the sample from the evaluation, since the sample is dominated by

residential heating emissions, even though they may not come only from Gaiberg.

In addition, exclusion would not change the mean ratio (i.e. the regression in

Fig. 4.12 would not change; the period III flask is the point closest to the regression

for both CO and NO
x
).

Similar to the Leimen heating campaign, the Δproxy/ΔffCO
2

ratios for Gaiberg

are shown in a double ratio plot in Fig. 4.13. Uncertainties of individual ratios

are dominated by the uncertainty inΔffCO
2
, which is roughly 1 to 1.2 ppm for all
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of the mean heating emission ratio. R
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x
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Fig. 4.13 Δproxy/ΔffCO
2

ratios for the heating campaign in Gaiberg. For reference, heating

emission ratios from the TNO cell containing the campaign site are shown in black. Light-green

points are individual measurements, the dark green point gives an estimate of the average ratios,

obtained by regression of Δproxy versus ΔffCO
2

with a forced intercept of 0. See Section 2.4 for

details on the regression-mean. Figure 4.12 shows the regression lines. The small error bars of

the mean show the uncertainty of the regression slope, the large error bar show the standard

deviation of the individual ratios.
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samples. Concentration enhancements for Gaiberg were low compared to Leimen

(3.2 to 8 ppm in Gaiberg compared to 11 to 28 ppm – with one exception at 3 ppm

– in Leimen), resulting in relative errors of up to 33 %. In analogy to Fig. 4.6, the

mean in Fig. 4.13 has two error bars. The smaller error bars show the uncertainty of

the slope fit parameter of the linear regression, which once again underestimates

of the variability of the mean ratio. Therefore the second, larger error bar is

the standard deviation of the individual proxy emission ratios. The estimated

average heating emission ratios are ΔCO/ΔffCO
2
= 10.72 ± 2.38 ppb/ppm and

ΔNO
x
/ΔffCO

2
= 0.57 ± 0.30 ppb/ppm. Both ratios match the prediction of

TNO (9.5 ppb/ppm for CO and 0.78 ppb/ppm for NO
x
) quite well. A detailed

explanation for this will be presented in the discussion of Fig. 4.14.

4.4 Campaign comparison

Although the heating campaigns were conducted one year apart, the conditions

(temperatures between 0 and 10
◦
C, season was end of winter, beginning of spring)

were sufficiently similar to allow for a comparison of both campaigns.

The spatial disaggregation of heating emissions by the TNO model is key to

understand Fig. 4.14, where agreement between proxy emission ratios of TNO and

measurements is analysed. While total population density is used to distribute

gaseous and liquid fuels
22

, the proxy for biomass (e.g. wood) burning, is more

intricate, taking into account not only rurality (rural means <250 inhabitants per

km
2

), but proximity to forested areas, too
23

. This way of assigning emissions puts

Gaiberg in the rural category and Leimen in the urban category (the corresponding

points in Fig. 4.14 are labelled accordingly). From Samuel Hammer, resident

providing the power, we know that Leimen has a certain amount of heating by

biomass burning, which puts the town closer to the ‘rural’ TNO ratios. The TNO

spatial proxy does not have this level of detail and thus cannot (re)produce the

emission ratios for Leimen correctly. TNO emissions suggest 7 % bio-fuel CO
2

for

Leimen and 34 % for Gaiberg, supporting the hypothesis that the assignment of

bio-fuel burning is too low for Leimen.

By definition, biomass burning never contributes to ffCO
2
, while it does contribute

to CO and NO
x
, increasing the proxy emission ratios measured. Consequently,

the rural TNO emission ratios are higher than their urban counterparts. This

could also explain the difference in ΔCO/ΔffCO
2

between Gaiberg and Leimen.

The measured bioCO
2

enhancement in Gaiberg was, on average, 14 % higher

22
Solid non-biomass fuels are distributed to rural populations (<250 inhabitants per km

2

), but are

negligible since barely any are burned in Germany

23
personal communication with Stĳn Dellaert on January 31, 2022
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Fig. 4.14 Proxy ratios (CO, NO
x
) plotted against each other. Estimated average ratios shown in

dark and light green, for Leimen and Gaiberg, respectively, samples in the same color but faded.

Error bars are standard deviations of individual ratios. Black points connected by a dashed line

are TNO heating ratios for Leimen (labelled urban) and Gaiberg (labelled rural).

than in Leimen, which aligns with explanation given above (more bioCO
2
, higher

emission ratio). Biomass burning cannot explain why ΔNO
x
/ΔffCO

2
is higher

in Leimen than in Gaiberg, even though the emission ratios agree within their

uncertainties. The ΔNO
x
/ΔffCO

2
emission ratio strongly depends on the type of

heating system, and can range from 0.10 ppb/ppm to 1.30 ppb/ppm (McDonald,

2009). Therefore, differences in the prevalent heating systems in Leimen and

Gaiberg are a reasonable explanation for the difference in ΔNO
x
/ΔffCO

2
.

In conclusion, biomass burning has a significant impact on measured proxy

emission ratios, since only proxy enhancements are increased and ΔffCO
2

is not.

If our understanding of the emission ratios is correct, Gaiberg and Leimen both

exhibit sizeable biomass burning contributions. The TNO proxy for biomass

burning considers proximity to forested areas and reproduces the emission ratios

for Gaiberg. Leimen’s biomass burning is on par with Gaiberg’s, but not captured

in the TNO proxy. Consequently TNO underestimates proxy emission ratios for

Leimen.

Perspectives. For future campaigns, location and length of the campaigns will be

key. Since I was able to confirm that TNO captures rural emission ratios quite well

(if the area is correctly identified by the proxy for biomass burning), following

campaigns should focus on urban heating emissions. Urban residential heating
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is fuelled by oil and gas as well as district heating (which, of course, does not

contribute to local emissions). Future campaigns would have to show if emissions

from gas heating systems and oil heating systems are as ‘clean’ (i.e. low in proxy

emissions) as TNO and other sources (e.g. measurements by chimney sweepers)

suggest, after some time in the ‘reaction chamber’ of the boundary layer.

Since it is impossible to predict when atmospheric conditions will be beneficial

for sampling, campaigns should span at least two weeks. However, based on my

experiences, I suggest four weeks or longer. Our observations show that roughly

50 % to 60 % of all samples will be invalidated during data analysis. Hence, it may

be advisable to run the campaign for as long as it takes to acquire a good number

of valid samples (10 to 15).

The campaigns conducted for this thesis covered the transition between winter

and spring, future campaigns should (also by necessity of length of the campaign)

start earlier in the heating season. Synoptic scale weather systems may prevent

sampling the true background for several days, which should be taken into

account when planning the length of the campaign.
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Chapter 5

Historical winter CO-ratio record of Heidelberg station

Using continuously recorded Δ
14

CO
2
, I investigate the effective

24
atmospheric

ΔCO/ΔffCO
2

emission ratio in Heidelberg over the past 20 years and compare its

development to modelled CO/ffCO
2

emission ratios based on the TNO inventory

and the atmospheric transport model STILT. Comparing measured effective

atmosphericΔCO/ΔffCO
2

ratios to modelled CO/ffCO
2

emission ratios provided

by TNO provides insight into the long-term compatibility of measurements and

inventories. In general, the ΔCO/ΔffCO
2

emission ratio is expected to decrease

over time owing to the development of more efficient combustion processes.

Differences between measured and modelled ratios point to an underestimation

of CO emissions. This result is in accordance with the previous chapters about the

measurement campaigns for traffic and heating, which suggest that CO emissions

may be underestimated for these two sectors.

Heidelberg station. Heidelberg is one of few non-background measurement

sites, that has a Δ
14

CO
2

record that reaches back into the 1980s. The Institute

of Environmental Physics Heidelberg houses the laboratory for continuous

measurements (CO
2
, CO, and more), the integrated sample collection station, and

the low level counting laboratory. The air intake is located 30 m agl on the roof

of the institute. The integrated samples are used to determine average Δ
14

CO
2

during the integration time.

Background station. When analysing emissions via atmospheric trace gas concen-

trations, a suitable reference point, i.e. a background, has to be established against

which all offsets are calculated (ΔCO = COmeas − CO
bg

, ΔffCO
2

via Eq. (2.4)).

Comparing model results to measurements requires a similar assumption for

background concentrations. STILT has all concentrations set to zero outside

its domain (that extends from 15
◦

W to 35
◦

E and from 33
◦

N to 73
◦

N), making

maritime stations prime candidates. Maritime stations are also preferable, because

influences of regional local sources can be excluded by sampling only when the

24
‘Effective’ in this case means that some time has passed since the emission(s) and atmospheric

mixing and chemical processes – e.g. catalytic reactions in car exhaust systems – affecting the CO

concentration lead to emission ratios that differ from the emission ratio directly after combustion.
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wind blows from the sea. The prime candidate for this thesis is Mace Head

(MHD), a maritime background station on the west coast of Ireland. Ten-day-back

trajectory analysis
25

for the year 2020 by Fabian Maier (unpublished) showed

that most air masses reaching Heidelberg enter the European domain in close

vicinity to Mace Head, see Fig. C.1 (77 % of trajectories end at the western edge of

the domain), consolidating that Mace Head is the optimal choice. Conceptually,

choosing Mace Head as the background station means committing to the idealised

view of the atmosphere, that there is a global background that is well described

by Mace Head measurements. In comparison with other background stations

(i.e. calculating ratios with respect to a different background station), I found

that differences in CO
2

and Δ
14

CO
2

had a negligible impact, i.e. the assumption

that MHD is representative of the global background holds. This is not the case

for differences in CO. When CO concentrations at Mace Head (53
◦

N) and Izaña

(28
◦

N, on Tenerife, Canary Islands) are compared, a strong latitudinal gradient

is present in winter. I try to account for this by using Fabian Maier’s trajectory

data for 2020 (unpublished) to estimate a representativeness uncertainty (see

Appendix C.3). Still, this may not account for air masses of continental origin. at

the end of the chapter, I will discuss mean winter ΔCO/ΔffCO
2

emission ratios.

For each winter, roughly six to 12 integrated samples contribute to the mean,

meaning multiple different background situations are averaged for every winter.

Averaging over multiple integrated samples ameliorates the agreement between

reality and our idealised view, since – according to Fabian Maier’s trajectory data

(unpublished) – most air actually does originate near Mace Head.

In short, Mace Head is not in all cases the optimal background station and

even though I try to account for this, for some integrated samples the effective

atmospheric ΔCO/ΔffCO
2

emission ratio will be skewed. An estimation of the

magnitude of this problem will be addressed in Section 5.3.

To model emission ratios, the TNO emission inventory is combined with the

atmospheric transport model STILT to estimate CO and ffCO
2

enhancements in

Heidelberg. Since the STILT model covers the whole European domain and has

background concentrations at the edges set to zero, conceptually, both measured

and modelled concentration enhancements both originate from emissions on

the European continent and can be compared (if the aforementioned caveats of

choosing MHD as the background station are accounted for).

I only analyse average winter ratios for two reasons. Firstly, ffCO
2

concentrations

in summer are much lower due to an increased mixing height, leading to relative

uncertainties of 50 % or more because the measurement uncertainty is fixed at circa

1 ppm ffCO
2
. For small ffCO

2
concentrations, deviations of 50 % can double the

25
100 trajectories per hour were calculated. For atmospheric transport modelling, STILT was used

with ECMWF meteorological data on a 0.25
◦

by 0.25
◦

resolution.
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ΔCO/ΔffCO
2

emission ratio
26

. Secondly, CO is less stable in summer. Its lifetime

depends on the production of OH, which is linked to O
3

production that depends

on solar radiation. This is just one example for light-dependent chemical reaction

chains that affect CO more strongly during the summer (other examples would

be the oxidation of CH
4

and other hydrocarbons). Consequently, CO is of lower

quality as a tracer for fossil fuel burning in summer and atmospheric chemistry

models are necessary to fully understand atmospheric CO concentrations. This

goes beyond the scope of this thesis and, hence, I confine my analysis to winter

months December, January, and February.

5.1 Measured emission ratio data acquisition

In the following paragraphs, I describe the data used to calculate the emission ratios

in Heidelberg. Data onΔ
14

CO
2

and weekly flasks for CO and CO
2

are necessary for

Heidelberg and the background station, Mace Head. Minor corrections toΔ
14

CO
2

are necessary to account for biospheric influence and emissions from nuclear

facilities, the corresponding data are also introduced. Additional information is

given in Appendix C.

Background data signal processing. CO and CO
2

data for Mace Head were

provided through the ObsPack framework (Schuldt et al., 2021b,a). Δ
14

CO
2

data

were provided by Samuel Hammer and are part of the ICOS network (public

access: doi:10.18160/CE2R-CC91, does not cover all the data I used). Data

smoothing was necessary because the background data (two-week integrated

samples for Δ
14

CO
2

and weekly flasks for CO and CO
2
), especially Δ

14

CO
2

data,

were too noisy. The noise is the result of sampling and measurement processes

that introduce uncertainties. Using an interpolation instead of smoothing the

data would lead to overfitting. The data smoothing is founded in the physical

understanding of processes affecting concentrations (a detailed explanation can be

found in Appendix C) and avoids overfitting. The Carbon Cycle Greenhouse gases

Curve fitting routines (CCGCRV, Carbon Cycle Greenhouse gases Curve Fitting

Methods, 2022) developed by the National Oceanic and Atmospheric Administra-

tion (NOAA) were applied to all background data. The CCGCRV fitting routines

are designed specifically for time series analyses of background concentrations. In

essence, the time series is fitted with combination of a polynomial and a harmonic

oscillation. Then, the residuals are Fourier-transformed into frequency space, a

26
This is illustrated by the following example. Assuming a real ffCO

2
enhancement of 2 ppm and

a real CO enhancement of 15 ppb with a measurement precision is of ±1 ppm for ffCO
2
, we

obtain a variation of the measured ratio between 5 ppb/ppm and 15 ppb/ppm where the real

ratio is 7.5 ppb/ppm.
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low-pass filter is applied (to remove unwanted high-frequency signals that are

not representative for the overall trend), and the data is transformed back into

time space. To cover the first two months of 2021, where no data is available yet,

the CO and Δ
14

CO
2

records of Mace Head were extrapolated using the CCGCRV

fit (without the residual analysis, since this requires data). The smoothed curves

are show in Figs. C.3 to C.5 in Appendix C.

Heidelberg data. The Heidelberg data record is based on Gas Chromatographic

analysis system (GC) recordings and cavity ring-down spectroscope (CRDS,

Picarro G2401) measurements. CRDS measurements were processed by the ICOS

Atmospheric Thematic Centre (ATC, Hazan et al., 2016). GC data were used

until the end of 2018. In 2019, the CO quality check measurements of the GC

showed irregularities, also confirmed by the comparison between GC and FTIR

(same instrument as used in the traffic campaign) that showed good agreement

for earlier years. As a consequence, the GC was shut down on the December 18,

2019. Fortunately, the Picarro instrument began its measurements early in the year

2018. To ensure continuity, I shifted the Picarro data by the mean offset between

GC and Picarro in the overlap period 2018 (ΔCO
2
= −1.1 ppm, ΔCO = 2.1 ppb).

With this step I aim to create a consistent and continuous data record, where

the change of instruments affects the results as little as possible, i.e. no sudden

jump in concentrations. This comes at the cost of modifying a well-calibrated

data set. However, considering the relevant scales (CO offsets between MHD

and Heidelberg at the order of 100 to 200 ppb, CO
2

concentrations of more than

400 ppm
27

), I argue that this is acceptable.

14
CO

2
nuclear correction. A minor correction is applied to the measuredΔ

14

CO
2

to account for
14

CO
nuc

2
emissions from nuclear facilities. Estimates are based

on the Radioactive Discharges Database (RADD, annual emissions available for

EU members) inventory emissions combined with atmospheric transport models.

For January 2018 to February 2021 I use corrections provided by Maier et al.

(2021), calculated with WRF-STILT. For 2000 to 2017, I use calculations by Ida

Storm (unpublished) and Kuderer et al. (2018) (using HYSPLIT) for far-field and

near-field emissions, respectively.

The Carbon Portal (2022) provides Δ
14

CO
nuc

2
contamination in Heidelberg calcu-

lated by Ida Storm (unpublished) with STILT. In STILT, all nuclear
14

CO
2

emissions

are released from the ground (surface source influence ansatz) by ignoring the

actual emission stack heights. As Maier et al. (2021) showed, the surface source

influence ansatz provides good results if point sources are more than 50 km from

27
Consult Eq. (2.6) confirming the importance absolute concentrations as opposed to the offset

between MHD and Heidelberg.
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Heidelberg, i.e. in the far field. For the near field (closer than 50 km), a different

approach was necessary, as will be discussed below. The Carbon Portal data

cover the years 2006 to 2020. For the earlier years 2000 to 2005, the data were

extrapolated. The detailed calculation can be found in Appendix C. Far-field

and near-field contamination was addressed separately for the years 2000 to

2017. In short, for the far-field, I calculated an average dilution factor (i.e. how

much of the far-field emissions reached Heidelberg) and multiplied it with the

available far-field RADD emissions for each year
28

to extrapolate the
14

CO
nuc

2

influence. This is a rather rough estimate of the nuclearΔ
14

CO
2

far-field influence.

However, making the estimates more precise, does not change the results, because

the far-field nuclear influence is very small (on average 1h), smaller than the

uncertainty of Δ
14

CO
2

measurements (2h). Consequently, a rough estimation of

far-field influence is sufficient.

In the near-field of Heidelberg, there are five facilities (Biblis, Karlsruhe, Obrigheim,

Neckarwestheim, Philippsburg) where the surface source influence ansatz is not

recommendable. Treating nearby point sources (i.e. stacks with typical emission

heights of >100 m for nuclear facilities) as surface sources can result in too large

estimates for the nuclear contamination at low-altitude measurement sites like

Heidelberg (intake height of 30 m agl ), especially during stable atmospheric

conditions. Since only nighttime samples are analysed, predominantly collected

during stable conditions, a different model approach is required. Kuderer et al.

(2018) calculated nuclear Δ
14

CO
2

emissions for the five closest facilities around

Heidelberg for the years 1986 to 2015 using HYSPLIT with a particle dispersion

forward run, using the correct stack height for emissions. I extrapolated Kuderer

et al. (2018) results for 2016 and 2017 similar to the extrapolation for the far-field.

The average dilution factor this time was based on the years 2012 to 2015, because

in 2011, the nuclear power plant Philippsburg Block-I was shut down. This is

also a rough, but reasonable estimate. Δ
14

CO
2

from near-field nuclear facilities

occasionally surpasses the measurement uncertainty. When Philippsburg Block-I

was still running, the Δ
14

CO
2

occasionally reached >10h, but since the shut-

down, near-field nuclear influence mostly falls below 2h. Consequently, a rough

estimation of near-field influence in 2016 and 2017 is sufficient. In closing, note

that since RADD emissions are only available on a yearly basis, all extrapolated

corrections also are constant over the year.

Generally speaking, after the shutdown of Philippsburg Block-I, the total nuclear

correction for Δ
14

CO
2

is smaller than 4.5h across all models/data sets. This is

on the scale of the uncertainty of the measurement, roughly equivalent to 2 𝜎. It is

a necessary correction, since otherwise the measurements are biased, but a rough

28
RADD only provides annual emissions, but in reality, emissions are not distributed homoge-

neously in time (Varga et al., 2021).
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extrapolation of near and far-field contamination (in years without modelling of

such) suffices.

Biospheric CO
2
. For the calculation of ffCO

2
, Δ

14

CO
2

measurements have to

be corrected for influence from the biospheric emissions, e.g. plant and soil

respiration. Biospheric Δ
14

CO
2

was modelled by Naegler and Levin (2009a) (the

mean of Δ
14

CO
2

HI and LO was used for calculations in this thesis). Samuel

Hammer extended the calculations from Naegler and Levin (2009a) to the current

year (Levin et al., 2011). Following Levin et al. (2008), I use Eq. (2.5), i.e. I assume

that only half of the biogenic CO
2

originates from the heterotrophic respiration

for which Naegler and Levin (2009a) calculated Δ
14

CO
het,bio

2
.

Average winterΔCO/ΔffCO
2

emission ratios. The average winterΔCO/ΔffCO
2

ratios were calculated with a weighted total least squares regression, as described

in Section 2.4. To be consistent with our idealised view of a global background

well represented by Mace Head measurements, I fixed the intercept of the fit

at zero, ensuring that the resulting ratio describes emissions in reference to

Mace Head. An intercept ≠ 0 is conceptually the same as changing the (CO)

background. The resulting ΔCO, ΔffCO
2
, and ΔCO/ΔffCO

2
for Heidelberg are

shown in Fig. 5.1. The left plot shows winter averages, the right plot shows each

individual integrated night-time sample. Winters with higher density of lines

have one-week integrated samples. Note that the winter average ratio is calculated

according to the weighted total least squares regression, not by dividing the

average ΔCO by the average ΔffCO
2
.

5.2 Emission ratio modelling

TNO provides a high resolution (6 km × 6 km) Europe-wide emission inventory

with yearly emissions and time profiles to increase the temporal resolution (cf.

Section 2.3). The inventory is based on National Inventory Reports (NIR), for

CO
2
, CH

4
, and other greenhouse gases. For pollutants like CO, NO

x
, particulate

matter, the Informative Inventory Reports (IIR) provides data for the inventory.

NIRs and IIRs are submitted to the UNFCCC and publicly available. Emissions

from the reports are disaggregated to the 6 km × 6 km grid based on proxies, e.g.

population density or traffic volume. The heating campaigns (Chapter 4 showed

that TNO proxies do not always correctly assign emissions to individual cells.

This does not necessarily indicate flaws that affect the large scale distribution.

Consistency was a large concern for TNO. Hence, the inventory was constructed

such that emission sums of (sub)regions always add up to the emissions of the

larger region. For instance, the sum of all cells in Germany reproduce the total
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(b) Integral night-time samples.

Fig. 5.1 ΔCO, ΔffCO
2

and ΔCO/ΔffCO
2

of the Heidelberg record with respect to MHD as

background station. (a) Mean for every winter, (b) individual night-time samples. Note the

different 𝑦-axis scales and that the ratio in the bottom panels is not the quotient of the two

upper panels. Instead, it is calculated with the weighted total least squares regression method.

Uncertainties are shown in pink. The smaller error bar corresponds to the regression fit parameter

uncertainty, the larger error bar corresponds to the uncertainty in the CO background.

emissions for Germany. For the emission ratio modelling, The TNO inventory is

folded with the surface flux influence maps (footprints) of STILT, weighting all

emissions of continental Europe. Consequently, the correct large scale distribution

is more important for the modelled total residential heating emissions than the

local scale misassignment. The folding of the TNO inventory with the STILT

footprints is flawed, as discussed before.

Recall the following two problems with calculations of modelled ΔCO/ΔffCO
2

emission ratios. First, since I use two dimensional, monthly aggregated footprints

provided by the Carbon Portal and fold them with the monthly emission maps

of the TNO inventory (offline calculation), I am restricted to the surface source

influence ansatz. Consequently, point source emissions in the near-field (50 km)

around Heidelberg are overestimated. Second, due to the offline calculation, the

sub-monthly variations in sources are misrepresented. In other words, there is

no way to tell when the air passed which source – which may be important. For
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(b) Weekly emission time profiles

Fig. 5.2 Sub-monthly time profiles for emissions in TNO. (a) Diurnal time profiles normalized to

24 hours, i.e. value of 1 is the average, (b) weekly time profiles normalized to seven days, i.e. value

of 1 is the average.

instance, as explained for the heating campaign, the residential heating sector

has its highest emissions in the evening and in the morning. So whether the air

passed a residential area at 20:00 h or 1:00 h is crucial (Fig. 5.2a). The reduced

emissions during the weekend do not affect the ratios as much, since all three major

sectors show similar behaviours (Fig. 5.2b). Online calculations of concentrations

that avoid these problems by folding emissions with 3-hourly footprints were

beyond the scope of this thesis. Both problems will be addressed in the next

section.

5.3 Results and discussion

As discussed above, there are three major points of contention when comparing

measured and modelled emission ratios as shown in Fig. 5.3.

I. Offline folding of footprints and emission maps causes incorrect weighing

of emissions because diurnal variations in source strength are ignored

II. Assumption of a global background that is well represented by measure-

ments at MHD oversimplifies the background

III. Surface source influence ansatz overestimates near-field point source emis-

sions
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Fig. 5.3 shows winter (December, January, February) average ΔCO/ΔffCO
2

emis-

sion ratios and their trends. Modelled emission ratios, calculated from TNO

inventory combined with STILT footprints, are shown in black and blue. The

measured emission ratios are displayed in purple. Uncertainties for the modelled

emission ratios are based on Super et al. (2019). In short, the total uncertainty

of the modelled emission ratio for each winter is based on sector-specific rela-

tive uncertainties provided by Ingrid Super through personal communication,

October 1, 2020. Detailed calculations can be found in Appendix C.4. Two

uncertainty estimates for the measured ratios are shown in the plot. The smaller

error bar indicates the uncertainty of the fit parameter of the weighted total

least squares regression
29

. The larger error bars were determined by varia-

tion of the CO background (i.e. the intercept) by ±21 ppb corresponding to 3 𝜎
of the representativeness uncertainty (7 ppb, cf. Appendix C.3). The trend

of the measured ΔCO/ΔffCO
2

emission ratios, shown as dashed and solid

purple line, is practically the same, regardless of whether the winters before

2006/2007 are considered or not. The trend of the modelled ΔCO/ΔffCO
2

emission ratios is less negative than the trend of the measured emission ra-

tios, no matter what corrections are applied. The corrections will be dis-

cussed shortly. In theory, it is straightforward to address point I through

online folding of 3-hourly footprints with the emission inventory. However,

practically, this goes beyond the scope of this thesis. Only data modelled

by Maier et al. (2021) with WRF-STILT (surface source influence ansatz) for

the winter 2018/2019, shown as a red × in Fig. 5.3, provides an indication

of how large the difference in emission ratio is. I will come back to this be-

low.

Point II is essentially addressed by the larger error bars of the measured data in

Fig. 5.3. Using 3 𝜎 of the representativeness uncertainty corresponds to the range

that almost certainly covers the misrepresentation of the CO background.

In order to address point III, I used data from a study of point source emissions

by Maier et al. (2021) to calculate an average overestimation factor of 3.4 for the

surface source influence ansatz compared to the volume source influence ansatz

(Fig. C.6b). Reducing the point source emissions by a factor of 3.4 increases

the modelled ΔCO/ΔffCO
2

emission ratio markedly, since point sources have

low ΔCO/ΔffCO
2

emission ratios in general. This is visualised in Fig. 5.3:

compare downward pointing triangles and upward pointing triangles. Note

however, that this is a rather rough estimate, since assuming a constant factor

of 3.4 is an oversimplification, both in space and time. Realistically, the factor

depends on the distance from Heidelberg. The momentary planetary boundary

layer (PBL) height also plays a major role in how much of the point source

29
The regression plot for each winter can be found in Appendix D.
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Fig. 5.3 Mean winter ΔCO/ΔffCO
2

ratios based on measurements (purple circles) and on

inventory data (black triangles, blue diamonds). Three iterations of modelled ratios are shown.

The ratios based on the unchanged TNO inventory are downward pointing triangles. The second

iteration (upward pointing triangles) corresponds to reduced emissions from point sources in

the surroundings of Heidelberg (8.0◦ to 9.4◦ E, 49.0◦ to 49.8◦ N) by a factor of 3.4 compensating

for the shortcomings of the surface source influence ansatz of STILT. The third iteration (blue

diamonds) has the same reduced point source emissions and, additionally, traffic emissions were

increased according to the difference between inventory emission ratio and measured emission

ratio for the highway traffic mix (80 % increase). Slopes of the linear trends are given in the

figure legend. The measurement point for winter 2017/2018 is shown as an empty circle, because

no integrated samples from January and February 2018 are available and, hence, the value is

unreliable. Measured mean winter ratios have two error bars: the smaller one portraits the

uncertainty of the weighted total least squares fit on which the mean is based, the larger one

was determined by variation (±21 ppb) of the CO background. The trend of the measured ratios

calculated based on two different time frames. The dashed purple line shows the trend for winters

2001/2001 until 2020/2021, while the solid purple line shows the trend for winters 2006/2007 and

later.

emissions reach Heidelberg.
30

Hence, there is a time variation of the factor as

well. Nevertheless, this still shows that the shortcomings of the surface source

influence ansatz are partially responsible for the difference between measured and

modelled ΔCO/ΔffCO
2

emission ratios. Since the traffic campaign (Chapter 3)

showed that measured trafficΔCO/ΔffCO
2

emission ratios were 80 % higher than

modelled emission ratios, another iteration of modelled emission ratios is plotted

in Fig. 5.3 as blue diamonds, where all traffic CO emissions (highway and all

other road types) are increased by 80 %, and near-field point source emissions

30
For instance if the nightly PBL height is close to or lower than the stack height of a point source,

its emissions are not (fully) mixed into the PBL. STILT often overestimates the nightly PBL

height, leading to a large overestimation of the night-time concentrations in Heidelberg.
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were reduced in the same way as before. This closes the gap between measured

and modelled ΔCO/ΔffCO
2

emission ratios further. Note that CO emissions of

the residential heating sector are not modified, in spite of the large discrepancy

that the heating campaign in Leimen (Section 4.2) showed (factor 4.5). As I argue

in Section 4.4, this discrepancy is the result of a sub-optimal proxy for heating

emission disaggregation in TNO. This means the CO heating emissions cannot

be corrected, since it is a challenging spatial distribution problem. However, for

traffic, the case is different. TNO emission ratios for German highway traffic are

nearly identical for the whole country. Small differences only arise for roads or

highways that have a different traffic mix, e.g. more trucks. I therefore argue that

the 80 % difference in ΔCO/ΔffCO
2

emission ratio can be applied to all traffic

(highway and all other road types) as an estimate for the required correction.

Even with the changes to near-field point source emissions and the traffic

ΔCO/ΔffCO
2

emission ratio, a small difference in trends between measurements

and model remains. One possible explanation is that the traffic ΔCO/ΔffCO
2

emission ratio has to be adjusted by a different factor each year. The traffic cam-

paign showed an 80 % difference for the year 2021. It is possible that the difference

was larger for earlier years. Modelled ΔCO/ΔffCO
2

emission ratios depend on

emission factors determined in test-bed environments and by portable emission

measurement systems (PEMS). It is conceivable that with improvements in PEMS

and other measurement techniques, emission factors get more realistic every year.

The year-to-year changes (how the emission ratio of the previous compares to the

emission ratio of the current year) are not the same when comparing modelled

and measured emission ratios. The total emission ratios of TNO are steadily

declining and only in combination with the footprints of STILT year-over-year ups

and downs appear. Footprints differ from winter to winter. Hence, the source

mix (i.e. how much each sector contributes) does, too, and with it the average

ΔCO/ΔffCO
2

emission ratio.

As point I states, there is a irreconcilable problem with using the monthly

aggregated footprints, i.e. making offline calculations that essentially ignore

source variations on time intervals smaller than a month. Consider the red × in

Fig. 5.3. The WRF-STILT calculations that result in this point are based on the

surface source influence ansatz. Hence, it must be compared to the downward

pointing triangles on the solid line, showing the modelled ratios without any

changes to the inventory. The online-calculated ratio is 22 % lower than the

offline-calculated ratio. Using nightly footprints for the calculations (18:00 UTC to

6:00 UTC), may introduce a systematic bias between offline and online calculations,

because for online calculations, the influence of the heating and the traffic sector

are lower owing to the night-time low of emissions from both sectors. In order to

quantify the extend of the problem, I calculated the night-time sector contributions

and the total (i.e. emissions from all sectors combined) ΔCO/ΔffCO
2

emission
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ratio. For power plants, industry, and residential heating, emissions are ≈ 80 %
of the average whole-day emissions during night (18:00 UTC to 06:00 UTC). For

traffic, the value is ≈ 50 % since evening hours still have large traffic contributions.

These reductions are only applied to the surroundings of Heidelberg (8.0◦ to

9.4◦ E, 49.0◦ to 49.8◦ N ). Conceptually this is equivalent to assuming that only

near-field emissions are biased towards nightly emissions, while for the rest of

the domain, there is no bias. That is, it is equivalent to assuming it is random

whether a source adds its emission load to the air parcel during the night or the

day and, consequently, ignoring the diurnal cycle and assuming a daily average is

reasonable. The difference between full-day ΔCO/ΔffCO
2

emission ratios and

night-timeΔCO/ΔffCO
2

emission ratios varies from 4 % to 9 %, decreasing almost

monotonously over the years.

How can the decrease of the difference from year to year be explained? The

diurnal profile of the total emissions is dominated by the traffic sector, because it

has the largest variations over the day: close to zero emissions during the night

and peaking emissions during rush hour. The difference between full-day and

night-time ΔCO/ΔffCO
2

emission ratios decreases, because, while the relative

difference is ≈ 50 %, the absolute difference between night-time average and

full-day average traffic CO emissions decreases as the ΔCO/ΔffCO
2

emission

ratio decreases. Fig. 2.6 shows this decrease in emission ratios.

In 2019, where the difference between the online calculations of Maier et al. (2021)

and my offline calculations is 22 %, the difference according to my diurnal-profile

calculations is only 5 %. In other words, while the diurnal-profile calculations

suggest an average bias of less than 10 % between online and offline calculations

(online < offline), the true magnitude of the bias is not calculated easily. Online

calculations for all years are necessary to eliminate the problem. For the interpre-

tation of Fig. 5.3, this means that all modelled emission ratios are overestimated

and that, hence, the applied corrections are potentially insufficient to bring forth

agreement between modelled and measured emission ratios.

5.4 Conclusion and perspectives

In summary, I studied the record of measured ΔCO/ΔffCO
2

emission ratios for

Heidelberg from winter 2001/2002 until winter 2020/2021 and compared this to

modelled CO/ffCO
2

emission ratios (TNO inventory emissions combined STILT

atmospheric transport) for the winters from 2006/2007 until 2019/2020.

Modelled and measured emission ratios agree within error margins for most

years when the model is corrected for (1) overestimation of near-field point source

emissions and (2) erroneously low CO emissions from traffic. However, modelled
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emission ratios have a positive bias of unknown magnitude because diurnal

time profiles are disregarded by the offline folding of inventory and footprints.

Hence, the true agreement is slightly worse than it appears in Fig. 5.3. Measured

emission ratios show a faster year-over-year decline (−0.29±0.08 (ppb/ppm)/year)

than modelled emission ratios (−0.18 ± 0.05 (ppb/ppm)/year). The corrections

applied to the modelled emission ratios are estimates. Refining them may already

ameliorate the agreement between trends. The aforementioned bias can vary from

year to year and, thus, affect the trend of the modelled emission ratios, too. Traffic

CO emission corrections, necessary for a better agreement between measurements

and model, calls for an investigation of the problem on the side of inventory and

traffic-emission-model specialists. This is the main result of this thesis: using

the results from the highway traffic campaign, I am able to explain the difference

between model and measurement in the long-term record. This leads to a more

precise CO emission ratio for the traffic sector. While finding discrepancies

between measured and modelled emission ratios is the accomplished goal of this

thesis, the results consequentially also lead to better traffic emission ratios and

more precise ffCO
2

estimates for the traffic sector.
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Conclusions and perspectives

Three measurement campaigns were conducted for this thesis, investigating

highway traffic and residential heating emissions. I used two mobile laboratories

equipped with ten meter tall masts to get as close as possible to the emitters while

still maintaining enough distance to get a mix from different sources of the same

sector, not just one.

The thus determined sector-dominated effective atmospheric emission ratios were

compared to modelled emission ratios based on the TNO inventory. For heating,

the two different campaigns compared very differently to the corresponding

TNO emission ratios. For Leimen, CO emissions from residential heating was

underestimated by TNO, while for Gaiberg, the agreement was good. The

most likely explanation is, that the TNO proxy used for bio-fuel burning in the

residential heating sector mischaracterises Leimen as a rather urban residential

area, when its heating systems are using nearly as much bio-fuel as the rural

Gaiberg residential area.

Using mobile laboratories is a new method to determine emission ratios. No

similar approach to measure residential heating emissions is found in the literature.

The results shed light on the problem of spatial disaggregation of bio-fuelled

heating emissions. It is challenging to solve this problem using mobile laboratories,

because that requires measurement campaigns in virtually every city or town.

With the technology described in this thesis, this is an insurmountable task. If

instruments were available that could run without intermediate calibrations at

sufficient precision and if ΔffCO
2

(or Δ
14

CO
2
) could be determined in a simpler

way, the task would no longer be insurmountable, but still inefficient. Instead

using the presented method this way, one could target specific towns close to

points-of-interest (e.g. measurement stations) that may be affected by emissions

from residential heating and improve model estimates that way.

The traffic campaign revealed that TNO underestimates the average traffic CO

emissions, i.e. the ΔCO/ΔffCO2 emission ratio of the traffic mix is 80 % too low.

Traffic emission ratios have been measured in many ways, every method with its

advantages and disadvantages. E.g., the method described here was difficult to

set up (in part due to the required power supply), but is still less confined than
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tunnel studies and could be applied to virtually any road type. In the literature,

fleet composition is at best mentioned as metadata. I was able to incorporate the

fleet composition into my results, showing that it is of utmost importance, e.g.

to compare measured emission ratios between studies. Models can benefit from

this, if the diurnal time profile for the traffic sector accounts for differences in fleet

composition.

I evaluated the long-term trend of the measured ΔCO/ΔffCO2 emission ratio in

Heidelberg and compared this to the modelled CO emission ratio (based on TNO

and STILT). Modelled and measured ratios only agree if (1) the overestimation of

point source emissions close to Heidelberg due to shortcomings in the atmospheric

transport model is compensated and (2) CO emissions are increased in accordance

with the results of the highway traffic campaign. Even with the two corrections,

the measurements still show a faster decline of the CO emission ratio.

The goal of this thesis is to better our understanding of proxy/ffCO
2

emission

ratios. The focus lay on CO as a proxy, because NOx is not as widely used

and has no decade-long record that can be studied. Both the highway traffic

campaign results themselves and also these campaign results in conjunction with

the long-term trend point towards an underestimation of CO emissions from the

traffic sector in Germany. This warrants further study. The experimental data is

convincing, so it falls to experts in traffic modelling to investigate the discrepancy

and, if necessary, adjust models.
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Instrument specifications

The following sections describe basic working principles, calibration schemes,

and accompanying literature for all instruments used for the present thesis. In

particular, it covers trace gas measurements and flask processing.

A.1 Trace gas measurements

To reach the required accuracy for the trace gas measurements, we use up to

three gas cylinders for calibration and at least one gas cylinder as an independent

quality control, also denoted target.

A.1.1 Main mobile laboratory

The main mobile laboratory (ML1) first used a Picarro G2301 cavity ring down

spectrometer (CDRS) for CO
2
, CH

4
measurements, in conjunction with an Aero-

laser CO-analyser for CO measurements. Later, a Picarro G2401 instrument was

installed, replacing the Picarro G2301 and the Aerolaser. For NO
x

measurements,

a Iterative Cavity Enhanced Differential Optical Absorption Spectrometer (ICAD)

manufactured by airyx is used. Additionally, ML1 uses a Rn-monitor to detect

222
Rn indirectly.

Picarro G2301 and G2401. Two cavity ring down spectrometers (CDRS) were

used in the campaigns. A Picarro G2301, provided by Environment and Climate

Change Canada
31

, capable of measuring CO
2

and CH
4

(in conjunction with an

Aerolaser L5001 for CO). The G2301 seized services during the campaigns and

was by a Picarro G2401, provided by the Laboratoire des sciences du climat et

de l’environnement, LSCE
32

. Cavity ring down spectroscopy (Cavity Ring-Down

Spectroscopy, 2022) uses a cavity with near-perfectly reflecting mirrors (99.999 %

31
Special thanks to Lauriant Giroux, Doug Worthy, Senen Racki, and Felix Vogel.

32
Special thanks to Olivier Laurent.
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Table A.1

Calibration cylinders for all instruments (Picarro, Aerolaser) in ML1. Gas concentrations for

UHEI tanks provided by ICOS FCL. Concentrations for PIC4_3 provided through measurements

by Picarro instrument in our laboratory.

CO
2

CO CH
4

N
2
O

Tank FSN UCN Function (ppm) (ppb) (ppb) (ppb)

UHEI30 i20200193 D810583 standard low 400.31 95.89 2008.41 320.82

UHEI32 i20200194 D810585 target 553.18 560.82 2403.75 334.04

UHEI34 i20200196 D810587 standard medium 499.61 369.20 2206.73 326.22

UHEI36 i20200195 D810589 standard high 714.47 976.67 2815.85 342.24

PIC4_3 – – Aerolaser calibration 490.12 450.85 2203.02 –

according to Picarro). A laser operates until a threshold of intensity is reached.

It is then shut off and a photo detector measures the decrease of intensity over

time (‘ring down’) that is caused by the imperfect reflection of the mirrors. If an

absorbing gas is present, the ring down time is shorter, since light intensity is now

additionally absorbed by the gas. For additional details, the interested reader can

refer to Busch and Busch (1999).

Aerolaser L5001. Since the Picarro G2301 cannot measure CO, we additionally

employed an Aerolaser L5001 for this purpose. The Aerolaser L5001 mea-

surements rely on resonance fluorescence. That is, atmospheric CO is excited

by optically filtered radiation from a CO resonance lamp (Gerbig et al., 1996).

To ameliorate precision, Gerbig et al. (1996) flushed the optical filter with N
2

to reduce the influence of O
2
, which absorbs in the same spectral region as

CO, and operated the resonance lamp with a mixture of 99.75 % Ar and 0.25 %
CO

2
, which yields the optimum sensitivity. Further details can be found in

Gerbig et al. (1996). We used an old version of the instrument that is no longer

produced and ultimately failed during the traffic campaign. It was replaced by

the aforementioned Picarro G2401, that is capable of measuring CO
2
, CH

4
, and

CO.

Table A.1 shows the gas concentrations for the cylinder used in ML1. Note that

the CO concentration of PIC4_3 was initially erroneously assigned as 447.79 ppb.

This only became clear after all campaigns, when the cylinder was once again

measured at the Picarro G2401 instrument in our laboratory. The value in

the table was reconstructed by re-evaluating measurements from before the

campaigns with help of Amara Abbaris of the Atmospheric Thematic Centre

(ATC). Because I did not solely rely on the internal calibration, which was done

with CO = 447.79 ppb, but also corrected the Aerolaser L5001 data with the

measurements of the calibration tanks, the effect of this erroneous assignment

was minimal.
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Rn-monitor.
222

Rn is a tracer for atmospheric transport due to its rather constant,

homogeneous exhalation rate from the soil (Dorr and Munnich, 1990). The

Rn-monitor used in the main mobile laboratory (ML1) was provided by Ingeborg

Levin, its functionality is described in Levin et al. (2002). Instead of measuring

222

Rn directly, the Rn-monitor exploits its daughter elements
218

Po and
214

Po

that attach to aerosols. The aerosols are caught on a filter and their α-decay is

measured by an α-detector. Assuming
222

Rn and its daughter elements are close

to radioactive equilibrium,
222

Rn concentrations can be inferred from
218

Po and

214

Po if the disequilibrium factor (
214

Po/
222

Rn) is known (Levin et al., 2002).

Iterative Cavity Enhanced Differential Optical Absorption Spectrometer. For

NO
x

measurements, an Iterative Cavity Enhanced Differential Optical Absorption

Spectrometer (ICAD) was installed in the main mobile laboratory (ML1). The

measurement technique is described by Horbanski et al. (2019) and is based on

differential optical absorption spectroscopy (Platt et al., 1979, 2009). The following

description is based on Platt et al. (1979, 2009); Horbanski et al. (2019) as well

as Juchem (2021). I simplified the equations to refer to a single absorbing gas,

because this paragraph is only meant to instruct the reader in the basic principles

behind the ICAD instruments.

Absorption spectroscopy is based on Lambert–Beer’s Law:

𝐼 = 𝐼0 exp (−𝜖𝐿), (A.1)

were 𝐼 is the reduced intensity of light after passing a medium of length 𝐿 with

an extinction coefficient 𝜖. 𝐼0 is the original light intensity. In general, 𝐼0, 𝐼, and 𝜖
are wavelength dependent. The concentration 𝑐 of an absorbing gas relates to 𝜖
via the cross section 𝜎:

𝑐 =
𝜖
𝜎
. (A.2)

Defining the optical density 𝐷 as

𝐷 := ln

(︃
𝐼0

𝐼

)︃
, (A.3)

Lambert–Beer’s Law can be written as

𝑐 =
𝐷

𝜎 𝐿
. (A.4)

Determining 𝐼0 precisely is challenging because light source intensity, temperature,

and pressure variations. Differential optical absorption spectroscopy (DOAS)

circumvents the problem of knowing 𝐼0 by (1) using reference spectra (𝐼0 = 𝐼
ref

)

and (2) splitting the cross section 𝜎 into a broad-band part (𝜎
b
) and a narrow-band
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part (𝜎n), i.e. 𝜎 = 𝜎
b
+ 𝜎n. With this and Lambert–Beer’s Law, we can write the

optical density as

𝐷 = ln

(︃
𝐼
ref

𝐼

)︃
= 𝑐𝐿𝜎

b
+ 𝑐𝐿𝜎n +

∑︂
𝑘

𝛽𝑘�
𝑘 . (A.5)

∑︁
𝑘 𝛽𝑘�

𝑘
is a polynomial that includes Rayleigh and Mie scattering, light (source)

variability, and light attenuation. The broad-band features of a spectrum can be

included in the polynomial. The optical density (for one absorbing gas) can then

be written as

𝐷 = 𝜎n𝑎 +
∑︂
𝑘

𝛽𝑘�
𝑘 , (A.6)

where 𝑎 is the fit parameter of the narrow-band. By doing so, any changes in

the broad-band structure (due to changes in temperature, pressure, light source

intensity) are ‘absorbed’ in the polynomial. Since the polynomial does not depend

on 𝜎, the concentration reads

𝑐 =
𝐷

𝜎n 𝐿
=

𝑎

𝐿
. (A.7)

Further details can be found in Horbanski et al. (2019), but go beyond the scope

of this thesis. Broadly speaking, some correction factors are necessary, e.g. an

effective path length 𝐿
eff

is introduced to account for the reduction of the real

path length 𝐿 due to absorption in the optical resonator. The Iterative CAvity

enhanced DOAS (ICAD) instruments used for NO
x

measurements in this thesis

employ an iterative algorithm to optimise the 𝐿
eff

. ICAD instruments do not

require periodic calibration with gases of known concentration like other in-situ

instruments, thanks to the DOAS method with its already calibrated reference

spectra.

A.1.2 Background mobile laboratory

The background mobile laboratory (ML2), too, uses an ICAD instrument as

described above for NO
x

measurements. Furthermore it uses a Fourier-transform

infrared spectrometer (FTIR) to measure CO
2
, CO, CH

4
and other gases and

isotopes that are irrelevant for this thesis.

Fourier-transform infrared spectrometer. The Fourier-transform infrared spec-

trometer (FTIR) used in ML2 was manufactured by the University of Wollongong
33

and is described in Hammer et al. (2013). The following information is an excerpt

of Hammer et al. (2013):

33
Contact person for the software is David Griffith (griffith@uow.edu.au).
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A.1 Trace gas measurements

The instrument consists of an interferometer and a 3.5 l cell in a

temperature-controlled box, permanently flushed with N
2

(5.0). The

interferometer has a moving mirror which allows for scanning through

a broad spectrum of wavelengths. The resulting interferogram is

then Fourier-transformed (hence the name), yielding an absorption

spectrum. The main advantage of an FTIR spectrometer is the broad-

ness of the scanned spectrum. Most spectrometers are tuned for a

narrow light frequency (laser) and few gas species of interest. An FTIR

spectrometer measures all gas species at once and can even discrim-

inated isotopologues like Δ
13

CO
2
. The temporal resolution is 3 min,

with 2.5 min of spectra collection and 0.5 min of online analysis. At

flow rates of 1 l/min, 3 min is also roughly enough time to completely

exchange the gas in the measurement cell. (Hammer et al. (2013))

For calibration purposes, the three gas cylinders described in Table A.2 (calibrated

by the ICOS FCL in Jena) are connected to the FTIR and measured once a week. A

MATLAB-based GUI is used to flag the data and to apply the calibration provided

by the three standard cylinders. An independent quality check is provided by

measuring target cylinders (Table A.3), one at a time. Because the FTIR requires

more gas due to its large measurement cell, I had to use multiple target cylinders.

Heidelberg station laboratory. In the laboratory of our group at the Institute

for Environmental Physics in Heidelberg, currently the aforementioned FTIR

instrument and a CRDS instrument (Picarro G2401) are used to measure trace

gases like CO
2
, CO and CH

4
continuously. Previously, until December 2019, an

additional gas chromatographic system (GC) was running in the laboratory. I

performed the data quality checks and calibrations for the FTIR instrument. For

the CRDS instrument, Julian Della Coletta of our group performed quality checks,

while the rest of the data processing is handled by the ICOS Atmosphere Thematic

Centre, ATC (Hazan et al., 2016). Recent, fully processed data from the Picarro

G2401 can be found here: Heidelberg ATC panel (2022). Before its shutdown, the

GC provided quasi-continuous measurements for more than 20 years. A detailed

description of the instrument is given by Hammer et al. (2008). The system is

Table A.2

Calibration cylinders for FTIR in ML2. Gas concentrations provided by ICOS FCL.

CO
2

CO CH
4

N
2
O

Tank FSN UCN Function (ppm) (ppb) (ppb) (ppb)

UHEI31 i20200197 D810584 standard low 401.32 96.77 2008.68 320.96

UHEI33 i20200198 D810586 standard medium 553.61 559.52 2388.01 334.10

UHEI35 i20200199 D810588 standard high 715.42 963.91 2835.30 342.43
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Table A.3

Target cylinders for FTIR in ML2. Gas concentrations for UHEI37 provided by ICOS FCL

and for N146 and PIC4_3 by CRDS instrument in IUP laboratory.

CO
2

CO CH
4

N
2
O

Use time Tank FSN UCN (ppm) (ppb) (ppb) (ppb)

Sep 21 to

Nov 3, 2020

N146_6 – – 423.23 185.02 2028.74 –

Nov 3 to

Dec 11, 2020

UHEI37 i20200200 D810590 499.74 370.30 2212.51 326.44

Dec 30, 2020

to Feb 2, 2021

N146_7 – – 436.56 261.87 2060.63 –

Feb 26 to

Mar 5, 2021

PIC4_3 – – 490.12 450.85 2203.02 –

equipped with three detectors: (1) a Flame Ionisation Detector (FID) for CO
2

and

CH
4
, (2) an Electron Capture Detector (ECD) for N

2
O and SF

6
, and (3) a Reduction

Gas (HgO) Detector for the measurement of CO and H
2
.

A.2 Flask processing

Air samples forΔ
14

CO
2

measurements are collected in so-called flasks. Flasks are

glass cylinders with a volume of 3 l and two ports. The collection with so-called

flask samplers is fully automated. Measurements of CO
2
, CO, CH

4
, and other

trace gases (but not NO
x
) in flask samples are conducted in the ICOS Flask and

Calibration Laboratory (FCL) in Jena in order to standardise the procedure. Then,

Δ
14

CO
2

measurements are conducted in the ICOS Central Radiocarbon Laboratory

(CRL) in Heidelberg, also following a standardised procedure. Measurements

in Jena always come first, since all available CO
2

has to be extracted for Δ
14

CO
2

measurements.

A.2.1 Flask samplers

The ICOS FCL in Jena developed and provides flask samplers for ICOS stations.

One such ICOS flask sampler was used in the main mobile laboratory (ML1). The

CRL in Heidelberg developed its own independent flask sampler for a two-station

approach measurement campaign (Freinsheim–Heidelberg) within the ‘Research

Infrastructures: Needs, Gaps and Overlaps’ Project (RINGO, 2022; Rieß, 2019;

Kneuer, 2020). After this campaign, the sampler was installed in the background

mobile laboratory (ML2).
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ICOS flask sampler. A manual for the ICOS flask sampler is available here: ICOS

Flask Sampler (2022). The manual for the accompanying air dryer can be found

here: air dryer (2022). The functionality of the sampler is described in Levin et al.

(2020) and the rest of the paragraph follows this manuscript. Different sampling

methods were tested by Maier (2018) but are not discussed here.

The sampler version used for the campaigns can hold up to 12 flasks at a time.

The air passes through the ICOS air dryer before collection. The ICOS air dryer

consists of two cryogenic water traps. Air flows through glass structures that

are submerged in a silicon oil cooled to −40
◦
C. Water in the air freezes on the

glass walls. To ensure seamless operation, a second water trap of the same kind

is used when the first either freezes shut or after 12 hours (mode can be chosen

by user). After the switch from one trap to another, the silicon oil in the ‘full’

trap is heated, melting the ice and ejecting the water through a dedicated outlet.

This back-and-forth can go on for 20 days (or 500 working hours) or more before

the oil has to be purged of water originating from condensation of laboratory

air or seeping through tiny crevices. The then-dry air is filled into the flasks

(one at a time) according to the 1/t filling approach. This requires permanent

flushing of the flask and continuously decreasing the flow-rate by 1/t to capture

the ‘real’ average hourly ambient air concentrations. In theory, the starting flow

rate would have to be quasi infinite, in reality the maximum flow rate is 2 L/min.

To compensate, the flask is flushed for 30 min prior to sampling, so that initial

concentrations in the flask are already at the level of ambient air. However, this

only works if concentrations are stable. Hence, for large ambient air concentration

variations, the agreement between flasks and in-situ means deteriorates.

Heidelberg flask sampler. The setup of the Heidelberg flask sampler is described

in Rieß (2019). It can hold up to 12 flasks at a time. Air is dried by a combination of

a Nafion (counter flow drying) and a Mg(ClO
4
)
2
-filled cylinder (chemical drying).

Sampling times can be dictated in the LabView interface. 55 min before the indi-

cated time, the flask is evacuated for 25 min, then flushed with air for 10 min, then

evacuated again for 20 min. This way, contamination by previous fillings is min-

imised. At the indicated time and the following 60 min, the flask is filled at a con-

stant flow of 95 ml/min up to a pressure of 1.9 bar. Filling at a constant flow means

concentrations at each point in time are weighted the same. That is, agreement be-

tween mean hourly ambient air concentrations and the flasks should be excellent.

A.2.2 Flask measurements

The ICOS Central Analytical Laboratories (CAL) are the institutions responsible

for flask measurements. In Jena, the Flask and Calibration Laboratory (FCL)
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measures many trace gases including but not limited to CO
2
, CO, CH

4
, and N

2
O.

The Central Radiocarbon Laboratory (CRL) in Heidelberg specialises in
14

CO
2

and
13

CO
2

measurements.

ICOS Flask and Calibration Laboratory Jena. The ICOS FCL is responsible for

calibration reference gases and flask measurements. Consequently, excellent

the precision is required. The most recent quality control report can be found

here: Jordan and Schumacher (2022). Flask samples are measured with a gas

chromatographic analysis system (GC) equipped with three different detectors to

detect CO
2

and CH
4

(both flame ionisation detector), CO (reduction gas detector),

and N
2
O (electron capture detector). The working principle can be found in the

literature, e.g. Grob and Barry (2004) and is described briefly by Helmenstine

(2021). In essence, gas chromatography relies on the interaction of the gas in

question with a liquid phase. The main element of a GC is the column: a heated,

long tube coated with a thin layer of a liquid, the so-called stationary phase.

Air is injected into the column alongside an inert carrier gas. As the gaseous

mix (mobile phase) moves along the column, different gas species interact with

the stationary phase, the strength of the interaction depends on physical and

chemical properties of the gas species (e.g. polarity of the molecule). The weaker

the interaction, the faster the gas species moves through the column. Ideally, all

gas species are completely separated. The chromatogram of the detector(s) then

shows multiple separate peaks. Peak positions depend on the gas species (i.e. how

fast it reached the detector) while peak areas depends on the concentration of the

gas species. To calibrate, one measures chromatograms of calibration cylinders

(where gas concentrations are known) to identify peaks and correlate peak area

to concentration.

ICOS Central Radiocarbon Laboratory. The ICOS CRL is best described here:

ICOS CRL (2022). The description there is as follows:

The Central Radiocarbon Laboratory (CRL) is one of the Central

Analytical Laboratories of ICOS Research Infrastructure. It is affiliated

to the Institute of Environmental Physics of Heidelberg University.

The ICOS-CRL builds upon the former Heidelberg Radiocarbon (
14

C)

laboratory, which was operated for more than 50 years by the Heidel-

berg Academy of Sciences and the Institute of Environmental Physics

of Heidelberg University. The Heidelberg Radiocarbon laboratory

gained international recognition in many scientific fields exploiting

radiocarbon, such as groundwater dating, oceanography, tree ring

analysis as well as atmospheric and carbon cycle research. The main
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task of the ICOS CRL is high precision analysis of CO
2

samples from

the ICOS atmospheric station network.

The analytical technique of the Heidelberg
14

C-laboratory was origi-

nally based on high precision proportional gas counting. The ICOS-

CRL will continue using this conventional counting technique to allow

for a smooth transition to state-of-the-art Accelerator Mass Spectrome-

try (AMS) radiocarbon analysis and provide a solid link to the historic

data sets. ICOS-CRL operates up to 19 proportional gas counters,

which are located in an underground laboratory, specially shielded

against cosmic radiation. The analytical capacity of these counters

is 500 unknown samples per year at precision of 2h or better. The

majority of the atmospheric air samples from the ICOS RI atmospheric

station network will however be analyzed by AMS. For both analytical

techniques we developed optimized CO
2

extraction and processing

methods and built the respective semi-automated processing lines in

house. The AMS
14

C analyses are currently performed at the CEZA

laboratory in Mannheim. One important aim is to maintain a long-term

compatibility of both analytical techniques of better than 1h.

Apart from the analytical challenge of making accurate and precise

atmospheric
14

CO
2

measurements, the ICOS-CRL operates an urban

atmospheric measurement station in order to test and implement new

methods for atmospheric fossil fuel CO
2

(ffCO
2
) quantification. New

surrogate tracers or sampling strategies are tested here before they are

implemented in the ICOS RI atmospheric station network. (ICOS CRL

(2022))

A detailed description of the extraction and graphitisation line is described in

Lux (2018). The functionality of AMS is described in Beta Analytic Inc. (2014).

The low level counting method is described in Kromer and Münnich (1992). A

comparison between low-level counting and AMS measurements is described in

Hammer et al. (2017).
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Appendix B

Traffic campaign quality control

As discussed in Chapter 3, continuous data were used to calculate emission ratios

for the traffic campaign. This requires special care when it comes to data validity

and quality. In the following bias and uncertainty estimates are elaborated.

Based on target cylinder measurements, I apply a H
2
O correction to the FTIR CO

2

measurements and discuss their inadequacy for bias and uncertainty estimation,

although normally used for this purpose. Using a side-by-side comparison

of the two mobile laboratories, a second possibility for the estimation of bias

and uncertainty is discussed, including its shortcomings. Finally, I show that

comparisons between in-situ measurements and flasks are most suited to estimate

the bias and uncertainty in the present case.

Tables B.1 and B.2 provide an overview of the biases and uncertainties that will

be addressed in this section. The calculation of values displayed in the bottom of

Table B.2 will be explained throughout the following sections and are linked to

(1) Figs. B.10 and B.11 for column in-situ/flask, (2) Figs. B.5 and B.6 for column

in-situ/in-situ, and (3) Figs. B.7 and B.8 for column flask/flask.

Table B.1

Instrument uncertainties associated with

measurements of target cylinders of

known gas compositions. The instruments

are a CRDS Picarro G2401 instrument

(ML1) and a FTIR (ML2). Multiple tar-

get cylinders were measured at the FTIR

with varying offsets, thus only a rough

range of deviations is given.

Value (targets)

δCO
2

(ppm) δCO (ppb)

ML1 0.00±0.03 1.23 ± 0.41

ML2 ±0.20 ±2
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Table B.2

Uncertainty sources during traffic campaign. Cells with yes/no refer to

whether the uncertainty is relevant to measurement type named at the top

of the column. For each ML the internal quality control is the comparison

between in-situ measurements and flasks. For the side-by-side comparison

(Appendix B.2), in-situ measurements of both laboratories (column in-situ/in-

situ, ML1 minus ML2) are compared, as well as flasks of both laboratories

(column flask/flask, ML1 minus ML2).

Uncertainty source In-situ/flask

Side-by-side

In-situ/in-situ Flask/flask

Instrument ML1

yes yes no

uncertainty ML2

Air-mass ML1

no yes yes

inhomogeneity ML2

Asynchronicity

ML1

no yes yes

ML2

Different flask ML1

no no yes

sampling methods ML2

δCO
2

(ppm)

ML1 −0.04 ± 0.48

0.47 ± 0.52 0.65 ± 0.56

ML2 −0.15 ± 0.51

δCO (ppb)

ML1 −2.96 ± 5.11 −2.78 ± 2.00 1.55 ± 2.20

ML2 −2.11 ± 2.85

B.1 Targets and FTIR H
2
O correction

This section first considers the Picarro G2401 target cylinder measurements, then

H
2
O for the FTIR and the FTIR target cylinder measurements.

Picarro G2401. All cylinders attached to the Picarro G2401 are listed in table A.1.

The measurements of the target cylinder are shown in Fig. B.1. The discrepancy in

CO
2

and CO is very small at −0.03 ± 0.01 ppm and −0.46 ± 0.44 ppb, respectively.

Taking the mean over the period of the side-by-side comparison does not change

the CO
2

value, while the CO value worsens to −1.23 ± 0.21 ppb. As discussed

above, target cylinder measurements will not be used for the final bias estimation,

but they give a frame of reference.

FTIR. The four target cylinders used for the FTIR are shown in Fig. B.2. Meta data

show that an increase in H
2
O caused the jump in the CO

2
concentration of cylinder

N146_7 (yellow), see Fig. B.3. This raised concerns for data measured starting

December 2020, where H
2
O concentrations increased above the limit of 8 ppm

98



B.1 Targets and FTIR H2O correction
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Fig. B.1 Target cylinder measurements of Picarro G2401. Reference values (labelled ‘soll’) are

plotted as red horizontal lines. During the side-by-side comparison (shown as an orange horizontal

line), the frequency of target measurements were increased. Generally speaking, the measurements

fit the theoretical values well.

set by Hammer et al. (2013). Figure B.3 indicates that H
2
O concentrations above

10 ppm change the CO
2

concentration markedly (even leading to a continuous

offset after one large jump, indicating a hysteresis effect). At levels of more than

12.5 ppm H
2
O, CO concentrations are affected as well. Consequently, I discard

all FTIR data with H
2
O concentrations above 10 ppm. Any CO

2
FTIR data above

5 ppm H
2
O and before January 15, 2021 (i.e. before the jump in H

2
O and CO

2

concentration) will be assigned an additional uncertainty of ±0.25 ppm. 0.25 ppm

this is roughly the increase of the CO
2

concentration of cylinder N146_7 during the

two-week long period after the jump in H
2
O. Because we can track the changes

in CO
2

concentrations after January 15, 2021 with the target cylinder N146_7

and because an increase in H
2
O can only increase CO

2
concentrations, for that

period a bias correction of −0.22 ppm is applied and the additional uncertainty of

±0.25 ppm is also assigned.

For the side-by-side comparison, no H
2
O correction is applied. Between the end

of the traffic campaign and the side-by-side comparison, the set-up was turned
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Fig. B.2 FTIR quality control target tanks for the traffic campaign. The vertical lines represent

calibration measurements. A green vertical line means the calibration was successful (i.e. I

observed no unusually large variations in calibration gas concentrations during manual quality

control), while a red line means the calibration was unsuccessful (in such a case the previous

calibration is kept). The grey shaded area is the relevant period, where virtual flask episodes occur.

Due to the large volume of the measurement cell (3.5 liters) the small gas cylinders did not last for

the whole campaign. Thus, four different cylinders functioned as targets for the traffic campaign.

N146_6, N146_7 and PIC4_3 were filled and measured at the Institute for Environmental Physics

in Heidelberg, whereas UHEI37 was filled and measured at the ICOS FCL in Jena.

off, transported and turned on again. While turned off, the casing is not flushed

with N
2

and water vapour can enter the casing. At the new location, the casing

is flushed again to purge away the water vapour. This whole process can reset

the hysteresis effect seen in Fig. B.3 after the jump in H
2
O concentration. It

is possible also that the flushing N
2

flow slightly changed when the FTIR was

moved. Consequently, conditions relating to H
2
O are not necessarily the same

for the end of the traffic campaign and the side-by-side comparison. Also, the

H
2
O concentrations remained stable (Fig. B.4). Therefore, I do not apply the bias
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Fig. B.3 Target cylinder N146_7 measurements. First panel shows CO
2
, second is CO, and third

is H
2
O. With the jump in H

2
O on January 15, the CO

2
concentrations increased on average

by 0.22 ppm. The difference in mean CO over the same periods is less than 0.05 ppb and thus

negligible. The last point illustrates the effect of an H
2
O increase above 10 ppm, but is not shown

in Fig. B.2.

PIC4_3

489.9

489.95

490

490.05

490.1

C
O

2
 (

pp
m

)

451.4

451.6

451.8

452

C
O

 (
pp

b)

Feb 27 Feb 28 Mar 01 Mar 02 Mar 03
2021   

0

5

10

15

H
2
O

 (
pp

m
)

Fig. B.4 Target cylinder PIC4_3 measurements. First panel shows CO
2
, second is CO and third is

H
2
O. This target was attached during the side-by-side comparison and shows roughly constant

H
2
O concentrations. Variations in CO

2
and CO concentrations do not correlate with changes in

H
2
O concentrations.
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correction to the data of the side-by-side comparison, but do apply the additional

uncertainty of ±0.25 ppm to FTIR CO
2

data.

Revisiting Fig. B.2, I find that the target cylinder measurements are not a good tool

to estimate the bias of the FTIR. For CO
2
, the difference ranges roughly from −0.2

to 0 ppm, for CO from −2 to 2 ppb. This is the reason I cannot base my final bias

and uncertainty on the target cylinder measurements. Still, these measurements

give us a frame of reference: The uncertainty cannot be smaller than ±0.2 ppm for

CO
2

and ±2 ppb for CO.

B.2 Laboratory side-by-side comparison

After the traffic campaign, we brought ML2 next to ML1 to run a side-by-side

comparison of the mobile laboratories as a quality check and to estimate the

bias between the two MLs. The distance between the in-take lines was <3 m.

The experiment ran for six days from February 26 to March 3, 2021. Flasks

were taken every second hour during the last afternoon, evening, or night of

the experiment. The wind mainly varied between north and west, bringing

highway traffic emissions to the mobile laboratories. But February 26 was a Friday,

consequently the first three days had relatively small CO
2

and CO concentrations

(Fig. B.5). On Monday, March 1, the morning rush hour is captured by the

mobile laboratories, bringing CO
2

concentrations up to 510 to 520 ppm and CO

concentrations up to 450 ppb. Wind speed was low in the evening/night from the

March 2 to 3, leading to accumulation of trace gases during the period when the

flasks were sampled.

Initially, the side-by-side comparison was thought to directly supply the bias

between ML1 and ML2 for CO
2
, CO and NO

x
. But concentration differences

between the MLs during the side-by-side comparison were unexpectedly high.

At closer inspection, several uncertainty sources (listed in the first column of

Table B.2) affected the side-by-side comparison, rendering its results inadequate

to be used for bias estimation between the MLs. As a consequence, I chose results

from flask measurements to estimate the bias for CO and CO
2
. Unfortunately, the

lifetime of NO
x

is too short to be measured in flasks. I therefore cannot determine

a bias in NO
x
. I can only use the side-by-side comparison results to get an idea

how large the maximum bias for hourly differences may be – we will come back

to this in Appendix B.3 and only deal with CO
2

and CO until then.

Throughout this section, I will show why the side-by-side comparison was

ineffective in reaching the original goal of bias determination. Consider the

uncertainty sources (beyond simple measurement uncertainty) listed in Table B.2.

First, the two MLs do not measure exactly the same air, even though we brought
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Fig. B.5 Side-by-side comparison for CO
2
. The top panel shows atmospheric concentrations and

hourly means. The bottom panel shows the minute-by-minute difference (ML1 – ML2), as well as

hourly means (horizontal bars) with their standard deviation (pink shaded area). Blue shaded

areas are flask sampling times. For the mean hourly difference of 0.47 ± 0.52 ppm, only hourly

differences with standard deviations (of the minutely differences) smaller 2 ppm were considered

to avoid the air inhomogeneity effect as much as possible.

the MLs as close together as possible. Measuring so close to the highway means

that the emission plumes have not mixed completely, thus the concentration

field downwind is not homogeneous. I will call this the air inhomogeneity

problem. Second, air sucked in simultaneously at both intakes does not reach the

instruments at the same time, due to differences in the setup (e.g. flow velocity,

in-line resistances). I call this the delay or asynchronicity problem. Third, the flask

sampling methods are not the same. While the FCL-built (ML1) flask sampler

uses the 1/𝑡 method, where the flask is flushed with a flow rate decreasing by

1/time, described, e.g. by Levin et al. (2020), the IUP-built (ML2) flask sampler

fills the flask from 0 to 2 bar at a constant flow rate. In theory, both methods

lead to a constant weighting factor at any given time, i.e. a real average trace gas

concentration. In practise, the 1/𝑡 method requires extremely large flow rates

in the beginning to result in a constant weighting factor. Consequently, the first

minutes are weighted less than the rest, and the concentrations at the end of

the flushing time (30 min before sampling) have a small impact as well. Also,

there is a slight delay depending on what port of the flask sampler the flask was

collected (physically greater distance). Since no corrections were applied for both

effects, small differences between the two flask samplers are expected. All three

problems scale with the variation of the atmospheric trace gas concentrations

in some shape or form, i.e. possible differences between ML1 and ML2 caused
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Fig. B.6 Side-by-side comparison for CO. The top panel shows atmospheric concentrations and

hourly means. The bottom panel shows the minute-by-minute difference, as well as hourly means

(horizontal bars) with their standard deviation (pink shaded area). Blue shaded areas are flask

sampling times. For the mean hourly difference of −2.78 ± 2.00 ppb, only hourly differences with

standard deviations (of the minutely differences) smaller 15 ppb were considered to avoid the air

inhomogeneity effect as much as possible.

by the three problems will increase with increasing concentration fluctuation.

Since both laboratories where downwind of the highway for the side-by-side

comparison, variations of atmospheric trace gas concentrations were larger than

3.5 ppm.

Figure B.5 shows the side-by-side comparison of continuous CO
2

measurements.

The mean difference over the course of the experiment is 0.47 ± 0.52 ppm CO
2
, i.e.

the Picarro G2401 in ML1 measures slightly higher CO
2

concentrations than the

FTIR in ML2. Similarly, Fig. B.6 shows the side-by-side comparison of continuous

CO measurements. The mean difference over the course of the experiment is

−2.78 ± 2.00 ppb CO, i.e. the Picarro G2401 in ML1 measures slightly lower CO

concentrations than the FTIR in ML2. Strong, fast variations in concentration lead

to the largest differences between the mobile laboratories, just as hypothesised

above. This is evident in the standard deviation for hourly means of CO
2
, shown

as pink-shaded area in the lower panel of Fig. B.5, which indicates how much

the 3-minutely concentration differences vary during that hour. During the rush-

hour, the standard deviation can easily double, compared to the days without

rush-hour.

The observed average difference between ML1-flasks and ML2-flasks is 0.65 ±
0.56 ppm for CO

2
. For CO, the observed mean difference between ML1-flasks
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Fig. B.7 Side-by-side comparison for CO
2

in flasks. For March 2, 2021 18:00 h, the in-situ

measurements in ML1 contain a large gap, so the mean had to be discarded. Consequently, no

flask minus in-situ value and no in-situ minus in-situ value exists.

and ML2-flasks is 1.55 ± 2.20 ppb. Note that these values are based on the flasks

sampled in periods when the standard deviation of the concentration difference

between ML1 and ML2 was below 2 ppm CO
2

or 15 ppb CO, respectively. I will

use the observed mean differences later to check whether my bias correction is

reasonable.

For the side-by-side campaign, Figs. B.7 and B.8 show a four-way comparison

of differences in CO
2

and CO, respectively. The four differences are in-situ

measurements ML1 minus in-situ measurements ML2 (purple triangles), flask

measurements ML1 minus flask measurements ML2 (blue triangles), in-situ

measurements ML1 minus flask measurements ML1 (yellow diamonds) and

in-situ measurements ML2 minus flask measurements ML2 (pink diamonds).

During an ideal side-by-side comparison, all the differences would be zero,

indicating perfect agreement between in-situ and flask measurements, as well

as between mobile laboratories. The differences in some cases agree reasonably

well, while in other cases they are driven apart by the variability of atmospheric

concentration differences between the MLs (indicated by purple error bars). The

mean differences shown in the legend of the figures are based on periods when

the standard deviation of the concentration difference between ML1 and ML2

was below 2 ppm CO
2

or 15 ppb CO, respectively. For the FTIR bias calculation,

only the thus selected samples will be considered. The numbers of the selected

flasks/periods is also written in the headline of the figures.

105



Appendix B Traffic campaign quality control

02
/0

3 
15

:0
0

02
/0

3 
16

:0
0

02
/0

3 
17

:0
0

02
/0

3 
18

:0
0

02
/0

3 
19

:0
0

02
/0

3 
20

:0
0

02
/0

3 
21

:0
0

02
/0

3 
22

:0
0

02
/0

3 
23

:0
0

03
/0

3 
00

:0
0

03
/0

3 
01

:0
0

03
/0

3 
02

:0
0

03
/0

3 
03

:0
0

03
/0

3 
04

:0
0

03
/0

3 
05

:0
0

03
/0

3 
06

:0
0

03
/0

3 
07

:0
0-100

-80

-60

-40

-20

0

20

40

60

80

100

C
O

 (
pp

b)

CO side-by-side comparison, means based on flasks #4, #6

3-minutely Picarro - FTIR, mean: -4.05 32.2
flask ML1 - flask ML2, mean: 1.55 2.2
insitu ML1 - insitu ML2, mean: -3.36 1.62
insitu-flask (ML1), mean: -8 0.05
insitu-flask (ML2), mean: -3.09 0.53

Fig. B.8 Side-by-side comparison for CO in flasks. For March 2, 2021 18:00 h, the in-situ

measurements in ML1 contain a large gap, so the mean had to be discarded. Consequently, no

flask minus in-situ value and no in-situ minus in-situ value exists.

Air inhomogeneity. We suspect that some of the difference between ML1 and

ML2 found during the side-by-side comparison comes from air inhomogeneity.

The small distance from the source, i.e. the highway, means that emissions are

not well mixed yet when they reach the downwind laboratory. Consequently, the

position of the MLs changes the measured concentrations. Does it change the

measured ratios, too? Theoretically, if we measure concentration enhancements,

the answer is no. No matter which part of the plume we measure (i.e. no matter

the dilution), the emission ratio is baked into the plume and does not change

with transport. Consequently, even if concentration fluctuations are large, ratio

fluctuations ought to be small, because any change in CO
2

is accompanied by

a proportional change in CO and vice versa. Formulated as a question: does

the measured ΔCO/ΔCO
2

ratio change significantly with the position of the

downwind ML due to air inhomogeneity? If that is not the case, then it is

reasonable to assume that air inhomogeneity is at least partly responsible for

the concentration difference between ML1 and ML2. It also follows that air

inhomogeneity does not affect the results (i.e. effective atmospheric highway

emission ratios) of the traffic campaign.

Answering this question requires calculations of ΔCO/ΔCO
2

for each ML. Be-

forehand, we have to reduce the mismatch between FTIR and Picarro, since I want

to isolate the air inhomogeneity effect. First, I reduced the bias by subtracting

the mean difference in CO and CO
2

concentration from the Picarro data. Then,

I calculate the enhancements ΔCO and ΔCO
2

by subtracting the lowest value
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Fig. B.9 Hourly emission ratios ΔCO/ΔCO
2

measured by Picarro and FTIR in comparison. The

underlying black line shows where FTIR ratio = Picarro ratio. Error bars are based on atmospheric

CO and CO
2

variability. A weighted total least squares regression yields a slope of 1.02 ± 0.05

with an intercept of −0.081 ± 0.146, i.e. ratios from both instruments agree within error margins.

measured by the FTIR during the side-by-side comparison (one could choose

the Picarro just as well). The exact value of the CO and CO
2

background is

inconsequential, since I am not interested in determining correct ΔCO/ΔCO
2

emission ratios. Rather, this step ensures that the relative differences of CO
2

and

CO are both comparable to the changes that would affect the true measured ratios

in the normal campaign setup.

To reduce the influence of the delay effect, I averaged ΔCO and ΔCO
2

for each

instrument over an hour and calculatedΔCO/ΔCO
2

from these means. Note, that

the alternative, calculating the mean of allΔCO/ΔCO
2

in one hour would result in

an average that is not weighted according to CO
2

enhancements (i.e. if one minute

we detect 15 ppb ΔCO and 1 ppm ΔCO
2

and the next minute 50 ppb ΔCO and

10 ppm ΔCO
2
, the unweighted mean would be (15 ppb/ppm + 5 ppb/ppm)/2 =

10 ppb/ppm, the weighted mean would be 32.5/5.5 ppb/ppm = 5.9 ppb/ppm)

and results in erroneous means. The thus calculated ratios for each instrument

are plotted against each other in Fig. B.9. The hourly ratios agree within error

margins, indicating that air inhomogeneity does not cause a change in ratio.

In short, when I calculate ratios for both MLs during the side-by-side comparison

in the same way I do for virtual flasks during the campaign, the ratios are

unaffected by air inhomogeneity. At the same time, air inhomogeneity does (at
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least partly) explain the difference in CO
2

and CO concentration between the two

MLs. Consequently, the side-by-side comparison cannot be used to estimate the

true bias.

B.3 Bias correction

FTIR and Picarro G2401 data have to be corrected to remove the systematic

bias between the two. Usually, target measurements suffice, but as shown in

Fig. B.2 it is not clear how to correct the instrument measurements, because the

FTIR shows a different offset for each target (and trace gas). To overcome this

issue, I take advantage of the sampled flasks, that were measured at ICOS FCL,

Jena. ICOS FCL delivers reliable concentration values measured under excellent

laboratory conditions with tightly controlled and checked calibration cylinders

as well as target cylinders. The same instrument is used for flasks from both

ML1 and ML2. In other words, the flask measurements are an independent

reference on which the bias correction is based. Using flask measurements to

estimate the bias has another advantage. In contrast to target cylinders, which –

by design – only show the difference between measurements and expected values

for one specific concentration of a trace gas, the deviations between flasks and

in-situ measurements cover a broader range of concentrations for all trace gases.

Consequently, I argue that the standard deviations of the mean difference between

in-situ instrument and flask measurement is an excellent measure for the accuracy

of our measurements.

One obstacle when using the comparison between in-situ measurements and

flasks to estimate the bias is that the achievable agreement between the two

depends on atmospheric concentration variability. Levin et al. (2020) showed that

in Heidelberg, for the flask and in-situ measurements to agree within roughly

±0.1 ppm CO
2
, the atmospheric CO

2
concentration may not vary more than

1 ppm (the standard deviation of the hour in question is defined as the CO
2

variation). The left plots in Figs. B.10 and B.11 show the difference between

in-situ measurements and flasks plotted against the atmospheric concentration

variability for both FTIR/ML2 (orange and red triangles) and Picarro (dark and

light blue x and +), for CO
2

and CO, respectively. Darker colours indicate flasks

sampled during the campaign, lighter colours indicate flasks sampled during the

side-by-side comparison. These figures are similar to Figs. 3 and Fig. 4 by Levin

et al. (2020).

Following Levin et al. (2020), to estimate the FTIR CO
2

bias (versus flask mea-

surements) I only consider flask samplings during which the atmospheric CO
2

variability is smaller than 2 ppm. For the CO bias, I only consider flask samplings
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Fig. B.10 Left: CO
2

difference in-situ minus flask plotted over CO
2

variability (standard deviation

of atmospheric concentration over the hour). Right: Sample distribution of CO
2

variability for

virtual flasks.
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Fig. B.11 Left: CO difference in-situ minus flask plotted over CO variability (standard deviation of

atmospheric concentration over the hour). Right: Sample distribution of CO variability for virtual

flasks.

during which the atmospheric CO variability is smaller than 15 ppb (Fig. B.11,

left). The CO
2

threshold I choose is more lenient than by Levin et al. (2020): 2 ppm

instead of 1 ppm. I do not require the level of precision or accuracy described

in the paper. From Fig. B.10 (left) I surmise that no outliers between 1 ppm and

2 ppm CO
2

variability exist, which are much further from zero than the outliers

between 0 ppm and 1 ppm CO
2

variability. The threshold for CO is an educated

guess from Fig. B.11 (left). I took a value that would divide the plot similarly

as 2 ppm divides the plot in Fig. B.10 (left) and that – applied to virtual flasks

– would contain most upwind (FTIR) samples in Fig. B.11 (right). Most virtual

flasks exhibit such favourable low variability conditions at the upwind mobile

laboratory (ML2), as shown in the right plot of Figs. B.10 and B.11. The thick

black vertical line indicates the threshold. As most virtual flasks fall below the

109



Appendix B Traffic campaign quality control

thresholds, the FTIR biases calculated from these sub-samples are good estimates

to correct all virtual flasks.

For the bias (versus flask measurements) of the Picarro G2401 instrument, consider

that the proximity to the highway results in high CO
2

and CO variabilities for all

flasks (excluding two, for which the CO
2

variability was <1 ppm). I decided to

take all campaign flasks into consideration, as well as side-by-side comparison

flasks for which the variation of the difference between ML1 and ML2 was <2 ppm.

Otherwise, no bias correction with in-situ versus flask measurements would be

possible for the Picarro. I support the decision to consider all flasks with the

following argument. In case ML1 always encounters high CO
2

and CO variability

during flask sampling, uncertainty and bias should reflect this. As Figs. B.10

and B.11 show, this is indeed the case. All but two ML1 flasks (in blue) show CO
2

variabilities larger than 2 ppm and all ML1 flasks show CO variabilities larger

than 20 ppb.

The FTIR is biased by −0.15±0.51 ppm CO
2

and −2.11±2.85 ppb CO. The Picarro

is biased by −0.02 ± 0.72 ppm CO
2

and −2.96 ± 5.11 ppb CO. The total biases of

ΔCO
2

and ΔCO are

𝑏ΔCO
2

= −0.13 ± 0.88 ppm, (B.1)

𝑏ΔCO = −0.85 ± 5.85 ppb. (B.2)

During the side-by-side comparison, I found the difference between Picarro and

FTIR to beΔCO
2
= 0.47±0.52 ppm andΔCO = −2.78±2.00 ppb (calculated based

on hourly means of the difference, see Figs. B.5 and B.6). With the bias correction,

the values are closer to zero and are less than 1 𝜎 away from zero. The results

of the target measurements (±0.2 ppm CO
2
, ±2 ppb CO) are also well within the

uncertainty margins of the bias. Therefore, I conclude that the calculated bias

and uncertainty is adequate both for CO
2

and CO.

The offsets ΔCO
2

and ΔCO from which the emission ratios for the virtual flasks

are calculated, will have their biases corrected according to Eq. (B.1) (displayed

values are subtracted, i.e. the CO offset increases, the CO
2

offset decreases and

thus the ratio increases).

Finally, coming back to NO
x
, it should be clear by now that the methods applied to

determine CO
2

and CO bias and uncertainty cannot be applied to NO
x
. Apart from

the above mentioned problems, the main problem with the NO
x

measurements is

that the instruments, in order to measure NO
2

as well as NO
x
, switch between

normal sample air (for NO
2
) and O

3
-enriched sample air (for NO

x
). Consequently,

there is some switch-over period during which data have to be discarded. These

data gaps affect the minutely mean, especially when concentrations change fast.

This, in conjunction with the air inhomogeneity effect, leads to the bias seen
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Fig. B.12 Side-by-side comparison for NO
x
. The top panel shows atmospheric concentrations and

hourly means. The bottom panel shows the minute-by-minute difference (ML1 - ML2), as well as
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areas are flask sampling times. For the mean hourly difference of −1.09 ± 3.00 ppb, only hourly
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to avoid the air inhomogeneity effect as much as possible.
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Fig. B.13 Proxy ratios of traffic campaign flasks plotted against each other. Black points show TNO

traffic sector ratios. The traffic fuel mix lies on the dashed line between diesel and gasoline. Traffic

ratios for highways are shown separately. Points in shades of blue represent virtual flasks: the

darker the color, the higher the fraction of trucks on the highway. Flask samples are marked with

a red border. TREMOD ratios for pure truck traffic (bottom left) and pure car traffic (top right) are

shown in grey and connected by a dashed line of the same color.
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in Fig. B.12. For high NO
x

concentrations around 100ppb, the absolute hourly

difference reaches up to 10 ppb, in one case even 15 ppb, or 10 % to 15 %. Since

the difference at high NO
x

concentrations are always negative (ML − ML2 < 0),

NO
x

emission ratios could be underestimated by up to 10 % to 15 %, but likely

less, since the air inhomogeneity effect does increase the difference during the

side-by-side comparison, but leaves emission ratios unaffected (cf. paragraph ‘Air

inhomogeneity’ above). To gauge what difference a 10 % increase inΔNO
x

makes,

I show a version of Fig. 3.6 with a 10 % increase inΔNO
x

in Fig. B.13b side by side

with the original (Fig. B.13a). Overall, the distance to the TNO and TREMOD

points decreases with increasing ΔNO
x
. The ΔNO

x
/ΔffCO

2
mix mean value is

centered between TNO’s ‘all roads mix’ value and LDV value, instead of being

on the same level in ΔNO
x
/ΔffCO

2
like the ‘all roads mix’ point. While in the

original plot TNO seems to underestimate CO emissions, with the increased NO
x

it looks like NO
x

is also underestimated slightly for the ‘mix’ and ‘LDV’ point.

As discussed above, Fig. B.13b most likely shows overestimated ΔNO
x
/ΔffCO

2
,

since a 10 % increase is the upper limit of possible bias. Even a 10 % increase

in NO
x
/ΔffCO

2
does not ameliorate the difference between measured truck

NO
x
/ΔffCO

2
and inventory NO

x
/ΔffCO

2
. I therefore argue that this is a real

discrepancy that may have to be addressed by the responsible emission inventory

experts.

Figures B.14 and B.15 investigate prevalent wind direction and hour of day when

‘sampling’ starts, respectively by showing the same data as Fig. 3.6 but using

different color bars. Figure B.14, where 𝑓 emis

HDV
color bar was replaced by wind

direction (from 250
◦

to 345
◦
), shows no clear correlation between color and ratios.

This is additional evidence in favour of the same air-mass approach. A strong

dependence on wind direction would suggest influence by other sources from a

specific wind direction. In Fig. B.15, where the hour of day is color-coded, virtual

flasks ‘sampled’ during nightly hours (between 22:00 h and 4:00 h) are in the

bottom left, while mid-day points are in the top right, similar to the distribution of

𝑓 emis

HDV
. This correlation between hour of day and 𝑓 emis

HDV
is expected. Passenger cars

are primarily used for work-related travel (commuting, crafts-persons visiting

customers) during day, while truck driving is a work also carried out during the

night. Thus, nightly emissions are always dominated by trucks whereas daytime

emissions are dominated by passenger cars.
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Fig. B.14 Proxy ratios of traffic campaign flasks plotted against each other. Rainbow colored

points represent virtual flasks where the color codes the prevalent wind direction. Real flask

samples are marked with a red border. Black points show TNO emission ratios for three traffic

vehicle categories: light duty vehicles (LDV), heavy duty vehicles (HDV), and mix (LDV & HDV).

Similarly, TREMOD emission ratios for truck-only traffic (bottom left) and car-only traffic (top

right) are shown in grey and connected by a dashed line of the same color.
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Fig. B.15 Proxy ratios of traffic campaign flasks plotted against each other. Points in shades

of yellow-orange-red represent virtual flasks where the color codes the hour of the day when

‘sampling’ starts. Real flask samples are marked with a red border. Black points show TNO

emission ratios for three traffic vehicle categories: light duty vehicles (LDV), heavy duty vehicles

(HDV), and mix (LDV & HDV). Similarly, TREMOD emission ratios for truck-only traffic (bottom

left) and car-only traffic (top right) are shown in grey and connected by a dashed line of the same

color.
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Appendix C

Data for long-term record

This appendix provides an overview of the data processing for the long-term

record in Heidelberg. Starting with the data sources, it then discuss the fitting

routine, uncertainties, and lastly the averaging. The data sets in question are:

14

CO
2
, CO

2
and CO for MHD and Heidelberg, as well as nuclear Δ

14

CO
2

and

biospheric Δ
14

CO
2

for Heidelberg.

C.1 Data sources

Mace Head CO
2

and CO data were provided through OBSPACK (Schuldt et al.,

2021a,b). Both data sets were acquired in February 2022 and covered the range

from 2000 until 2020. For the two remaining winter months January and February

2021, data were extrapolated with the fitting routine described later in this chapter.

For CO and CO
2
, the data were weekly surface flasks

34
, flagged for background

and non-background situations (we only used background situations). The

Heidelberg CO
2

and CO record are data measured by GC until 2018. 2019 CO data

show large deviations between GC and two other instruments, therefore from

January 2019 until February 2021 the record is covered by the Picarro instrument

instead. To avoid a jump in concentrations, Picarro data were shifted by the mean

offset between GC and Picarro for integrated samples during the overlapping

period in 2018 (ΔCO
2

= −1.1 ppm, ΔCO = 2.1 ppb). The Δ
14

CO
2

data for both

Heidelberg and MHD were provided by our own ICOS RCL in Heidelberg, where

the samples were measured.

Δ
14

CO
2

nuclear correction. Nuclear facilities emit
14

CO
nuc

2
. A minor correction

is applied to the measured Δ
14

CO
2

to account for
14

CO
nuc

2
emissions. In the

following, three models are discussed: STILT (used by Ida Storm (unpublished)

on the Carbon Portal), WRF-STILT (Maier et al., 2021) and HYSPLIT (Kuderer

et al., 2018). Details on the HYSPLIT parameters are given by Kuderer et al. (2018)

34
For CO

2
, an in-situ record is also available. Maksym Gachkivskyi (unpublished) found no

difference between the smoothed curves based on weekly samples and hourly data.
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in their Table 2. STILT (as used on the Carbon Portal) uses ECMWF (European

Centre for Medium-range Weather Forecasts) meteorology at a resolution of

0.25
◦ × 0.25

◦
. Emissions are mapped onto a 0.125

◦ × 0.083
◦

grid (longitude ×
latitude) and emitted at the surface (surface source influence ansatz). WRF-STILT

uses ECMWF ERA5 meteorology at a resolution of 0.25
◦ × 0.25

◦
, brought to a

resolution of 2 km in the Rhine Valley and 2 km everywhere else. Emissions are

released in heights between 120 m to 140 m (volume source influence ansatz). Both

STILT models use annual emissions from the RAdioactive Discharges Database

(RADD, annual emissions available for EU members), while Kuderer et al. (2018)

use data from the German Federal Office for Radiation Protection and monthly

emissions from nuclear power plant Philippsburg (obtained through personal

communication).

As nuclear emissions are mainly released from stacks with a height of typically

>100 m, the standard STILT surface source influence ansatz (i.e. releasing all

emissions from the ground) used by Ida Storm can result in too large
14

CO
nuc

2

contamination estimates from facilities in the near-field (ca. <50 km) of Heidelberg.

Therefore, I split the correction term into a near-field and a far-field component,

i.e.

Δ14

CO
nuc

2
=

(︂
Δ14

CO
nuc

2

)︂
near

+
(︂
Δ14

CO
nuc

2

)︂
far

. (C.1)

In the vicinity of Heidelberg, there are five facilities (Biblis, Karlsruhe, Obrigheim,

Neckarwestheim, Philippsburg) too close to use the surface source influence

ansatz. Kuderer et al. (2018) calculated nuclear Δ
14

CO
2

emissions with HYSPLIT,

emitted at the correct stack height, for these five facilities. I combined both data

sets (Carbon Portal and Kuderer) to estimate Delta
14

CO
nuc

2
in Heidelberg for

2000 to 2017, and added Delta
14

CO
nuc

2
emissions of Maier et al. (2021), calculated

with the volume source influence ansatz, which assumes that the emissions are

released at 120 m to 140 m (typical stack heights) for 2018 to 2020. The Carbon

Portal data cover the years 2006 to 2020. For the earlier years 2000 to 2005, the

data were extrapolated. I calculated a dilution factor 𝑓 nuc
(in h/GBq per year)

for every available year (2006 to 2020):

𝑓 nuc

𝑖 =

⟨︁(︁
Δ14

CO
nuc

2

)︁
far

⟩︁
𝑖

𝐸far

𝑖

, (C.2)

where 𝐸far

𝑖
are the RADD emissions in year 𝑖 for far-field sources (i.e. more than

50 km from Heidelberg) and

⟨︂
Δ

(︂
14

CO
nuc

2

)︂
far

⟩︂
𝑖
is the annual mean Delta

14

CO
nuc

2

influence from far-field sources. In other words, I calculate how much of the

emitted Δ

(︂
14

CO
nuc

2

)︂
far

ends up in Heidelberg. Next, I calculated the mean

dilution factor 𝑓
nuc

between 2006 and 2013. After 2013, the dilution factor declines
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steadily. I read this as a general trend and conclude that it is more appropriate

to only average the dilution factors for the earlier years 2006 to 2013 to get a

good estimate for the year 2000 ot 2005. I multiply 𝑓
nuc

with the far-field RADD

emissions for 2000-2005 to estimate the far-field Delta
14

CO
nuc

2
influence:

𝑓
nuc · 𝐸far

𝑖 =

(︂
Δ14

CO
nuc

2

)︂
𝑖, far

. (C.3)

Kuderer et al. (2018) calculated near-field Delta
14

CO
nuc

2
influences for the years

1986 to 2015. I extrapolated the results from Kuderer et al. (2018) for 2016 and

2017 similarly to the extrapolation for the far-field. The dilution factor this time

was based on the years 2011 to 2015, because in 2011, the nuclear power plant

Philippsburg Block-I was shut down. Note that, since RADD emissions are only

available on a yearly basis, the extrapolated corrections also do not change over

the year.

To summarise, the nuclear corrections were split into a near-field and a far-field

component. For 2000 to 2017, far-field emissions are based on surface source

influence calculations from the Carbon Portal (extrapolated for 2000 to 2005) while

near-field emissions are based on Kuderer et al. (2018) calculations (extrapolated

for 2016 to 2017). Necessary extrapolations are based on RADD emissions

and average dilution factors that describe how much of the
14

CO
nuc

2
emissions

described in RADD reach Heidelberg on average. For 2018 to 2020, the volume

source influence ansatz WRF-STILT calculations of Maier et al. (2021) are used for

both near-field and far-field contributions.

The far-field extrapolations I used are rather rough estimates of the nuclear

Δ
14

CO
2

influence. However, making the estimates more precise, i.e. using a more

sophisticated model, does not change the results, because the far-field nuclear

influence is very small (on average 1h), smaller than the uncertainty of Δ
14

CO
2

measurements (2h). Consequently, a rough estimation of far-field influence

is sufficient. Δ
14

CO
2

from near-field nuclear facilities occasionally surpass the

measurement uncertainty. When Philippsburg Block-I was still running, the

Δ
14

CO
2

occasionally reached >10h, but since then near-field nuclear influence

mostly falls below 2h. Consequently, a rough estimation of near-field influence in

2016 and 2017 is sufficient. Generally speaking, after the shutdown of Philippsburg

Block-I, the total nuclear correction for Δ
14

CO
2

is smaller than 4.5h, roughly

equivalent to 2 𝜎 uncertainty of the measurement. It is a necessary correction,

since otherwise the measurements are biased, but rough estimates of near and far

field influence (in years without modelling of such) suffice.

For the biogenic Δ
14

CO
2

contribution from heterotrophic respiration, the model

by Naegler (2005) was used. His calculations were extended to the current year
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by Levin et al. (2011). Naegler and Levin (2009b) provided two scenarios HI(gh)

and LO(w) activity of the biosphere. The mean of Δ
14

CO
2

HI and LO was used

for calculations in this thesis.

C.2 Fitting routine

Maksym Gachkivskyi (unpublished) implemented and ran the fitting routine

for the whole work group so we would have a consistent data set. For CO
2

and

CO in MHD, we used the full CCGRV routine (Carbon Cycle Greenhouse gases

Curve Fitting Methods, 2022), including the high-frequency filter. The short-term

cutoff parameter was 240 days for Δ
14

CO
2

and 160 days for ΔCO
2

and CO. This

parameter describes at what frequency the filter response is 0.5 on the residuals,

evaluated daily (Carbon Cycle Greenhouse gases Curve Fitting Methods, 2022).

The daily record was then averaged over the time frames of the integrated samples

in Heidelberg.

For Δ
14

CO
2
, we used a more rigid fit of the CCGCRV routine, i.e. only using the

harmonic, polynomial and inter-annual parts of the fit function excluding the

residual analysis. We argue that this provides a solid curve, that is understood

physically: a gradual, polynomial decrease of Δ
14

CO
2
, with a yearly harmonic

oscillation superimposed and allowance for small inter-annual variations. Other-

wise, we would rely heavily on each measurement point, although we know that

the uncertainty of Δ
14

CO
2

measurements is high. In the wake of this discussion,

we also discovered a temporary problem with measurements between 2010 and

2012 in Heidelberg. Consequently, samples measured in the period from June 29,

2010 to July 3, 2012 were excluded from the fit.
35

C.3 Individual ratio uncertainties

Assigning correct uncertainties is paramount for the interpretation of results. The

sources of uncertainty described here are (1) instrument/measurement uncertainty

(i.e. how precise are the measurements?), (2) representativeness uncertainty (i.e.

how well-defined is our background?), (3) fit uncertainty (i.e. how well does our

fit describe the real concentrations?) and (4) model uncertainty.

35
The dates refer to the point in time when the samples were measured in Heidelberg, not when

they were taken at Mace Head.
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Fig. C.1 Endpoints of back-trajectories for Europe, modelled with STILT by Fabian Maier (unpub-

lished). For every hour in the year 2020, 100 particles were transported 10 days backwards in

time. The underlying meteorological data have a 0.25
◦ × 0.25

◦
resolution and were provided by

ECMWF. Darker colors indicate higher fraction of trajectories ending in that area. Trajectories

that would go beyond the borders of the STILT domain have their endpoints at the edge of the

domain. Very few particles actually remain in the STILT domain, consequently most coloration

is at the edges of the domain. For visibility, ten vertically adjacent STILT cells are summed and

then plotted (i.e. the real STILT resolution is ten times finer than the resolution of the rectangles

shown here). MHD (suggested background station) and Heidelberg (release point of particles)

are shown as purple diamonds.

Instrument/measurement uncertainty. From instrument inter-comparisons, we

determined the measurement uncertainty of our Heidelberg instruments to be

ΔCO
2
= 0.1 ppm andΔCO = 3 ppb. Δ

14

CO
2

uncertainties are well established in

the measurement process and usually amount to approximately 𝛿
(︁
Δ

14

CO
2

)︁
≈ 2h.

This is true for Heidelberg and MHD samples, since they are both measured at the

ICOS CRL in Heidelberg. We also transfer the measurement uncertainty found for

CO
2

and CO in Heidelberg to MHD, assuming that there is no significant quality

difference between the involved instruments.

Representativeness uncertainty. For CO, additional uncertainties have to be

estimated. Unlike CO
2

and Δ
14

CO
2

that differ very little between MHD and

other maritime background stations like Izaña in winter, CO has a latitudinal

gradient. The latitudinal gradient causes differences in CO between MHD and

Izaña of up to 25 ppb in winter. Based on STILT trajectories for 2020 by Fabian

Maier (unpublished), we find that most air that arrives in Heidelberg previously

passed close to MHD as can be seen in Fig. C.1. I used the spread of the

trajectory endpoints on the western edge of the STILT domain in conjunction

with an assumed linear latitudinal CO gradient to estimate the representativeness

uncertainty and bias. While the bias was small (1.15 ppb CO), the standard
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Fig. C.2 Fit of STILT trajectory endpoint distribution at the west edge of the STILT domain. Mace

Head is at a latitude of 53.3◦ N, very close to the peak of the fit curve. I assume a latitudinal CO

gradient of 1 ppb/°, i.e. a difference between Mace Head and Izaña (28.3◦ N) of 25 ppb CO.

deviation of the probability distribution function was 7 ppb CO. This is added

as an independent error (i.e. no Gaussian error propagation) to the CO record in

MHD. While this suffices for the purpose of estimating the representativeness

uncertainty for this case, this method has some shortcomings. First, only the

year 2020 was investigated. The magnitude of variations between years could

not be investigated in the scope of this thesis. Second, I only used the trajectory

endpoints counted on the western edge of the STILT domain (i.e. including all that

fall to the west of this), which make up 77 % of all points. The remaining points,

mostly counted on the other edges of the STILT domain, are ignored to reduce

the problem to one dimension (edge of the domain). Third, we assume a linear

latitudinal gradient in CO from Izaña (28.3◦ N) to Mace Head (53.3◦ N) with an

upper bound 25 ppb CO in winter (based on CO data from Izaña and Mace Head).

While this gradient has been described in the literature (Novelli et al., 1998, Fig.

7), assuming it is linear is a simplification. I also ignore the altitude difference

between the two stations (Izaña 2373 m, MHD 5 m), i.e. I assume both measure

a free troposphere background. Forth, to estimate the width of the distribution

of trajectory endpoints I fitted a Gauss-curve to the data, see Fig. C.2. There is

not mathematical basis for this, i.e. there is no reason to assume the trajectory

endpoints follow this specific probability distribution. Visually, the width of

the curve fits the data well enough for me to deem the standard deviation an

appropriate parameter to quantify the spread of the trajectory endpoints.
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Fig. C.3 MHDΔ
14

CO
2

fit with CCGCRV routine by Maksym Gachkivskyi (unpublished). While

the ‘smoothed’ fit uses all tools in the CCGCRV routine, the ‘3-component function’ is comprised

of the polynomial, the harmonic and the inter-annual variation parts of the fit (no analysis of the

residual). The short term cut-off parameter for the FFT was set to 240 days. The results from the

‘3-component function’ fit are used in the evaluation.

Fit uncertainty. The fit routine is another source of uncertainty. I estimate this

uncertainty by calculating the standard deviation of the fit with regards to the

data points (as expected, the bias is zero). The fit uncertainty is 2.56h forΔ
14

CO
2
,

1.15 ppm for CO
2

and 9.4 ppb for CO. Figures C.3 to C.5 show data points and fit

functions either with (‘smoothed’) or without (‘3-component function’) analysis

of residuals. The second panel shows residuals from the fit function to the data

points. For Δ
14

CO
2
, the ‘3-component function’ fit is used. For CO and CO

2
,

the ‘smoothed’ fit was applied. The decision which plot to use is based on our

confidence in the data and was described previously in Appendix C.2.

Uncertainty for nuclear and biogenic contributions. The biogenic and nuclear

corrections were modelled. For the biogenic heterotrophic Δ
14

CO
bio,het

2
, Naegler

and Levin (2009b) give a lower and upper bound, as well as the best estimate. I use

the best estimate in my calculations. As an uncertainty I simply use the distance
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Fig. C.4 MHD CO
2

fit with CCGCRV routine by Maksym Gachkivskyi (unpublished). While the

‘smoothed’ fit uses all tools in the CCGCRV routine, the ‘3-component function’ is comprised of

the polynomial, the harmonic and the inter-annual variation parts of the fit (no analysis of the

residual). The short term cut-off parameter for the FFT was set to 160 days. The results from the

‘smoothed’ fit are used in the evaluation.

to the upper/lower bound. As described in Appendix C.1, the nuclear correction

is a compound of different models, mostly based on the RADD nuclear emission

inventory. RADD only provides annual emissions without any information

on the smaller time scales (months, weeks, days, etc.). Without more detailed

information available, I assume a relative uncertainty of 100 %.

Gap uncertainty. The in-situ instruments used for continuous CO
2

and CO

measurements in Heidelberg require constant attention and maintenance. Even

when running perfectly, calibrations and target cylinder measurements break the

continuity of the air measurements periodically. The integrated Δ
14

CO
2

samples
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Fig. C.5 MHD CO fit with CCGCRV routine by Maksym Gachkivskyi (unpublished). While the

‘smoothed’ fit uses all tools in the CCGCRV routine, the ‘3-component function’ is comprised of

the polynomial, the harmonic and the inter-annual variation parts of the fit (no analysis of the

residual). The short term cut-off parameter for the FFT was set to 160 days. The results from the

‘smoothed’ fit are used in the evaluation.

are not interrupted when air is collected. Consequently, integrated Δ
14

CO
2

samples collect in Heidelberg 12 h ambient air every day (18:00 UTC to 6:00 UTC),

but the continuous data, which are needed to calculate two-week averages for the

integrated Δ
14

CO
2

sampling periods, do not cover this period fully. I investigate

how gaps in the data change means, first for a one-hour mean and then for the

two-week integration periods. I am interested in an upper limit for gaps, which is

still manageable. This has consequences for the choices I make when designing

my thought experiment.

The CRDS (Picarro) instrument data (used 2019 to 2020) is averaged to hours from

minutely values, with another column showing how many minutes 𝑚 go into

the hourly mean. For 2018 to 2020, 82.7 % of all hours have 𝑚 ≥ 58. Only 3.5 %
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have 48 ≤ 𝑚 < 58. I conducted the test described in this section for different

cutoff criteria for 𝑚 and found that it is not worth it to lower the threshold below

𝑚 ≥ 58, i.e. final results did not improve, while accuracy of hourly means were

significantly worse. Consequently, I will present the results achieved with the

threshold 𝑚 ≥ 58.

I calculate the mean uncertainty ⟨𝛿𝑋⟩ for 2018 to 2020 to estimate how hourly

values usually fluctuate (𝑋 either CO or CO
2
). To cover roughly 95 % of all

possible fluctuations, I add twice the standard deviation to the mean. I find

⟨𝛿CO2⟩ = 2.2 + 2 · 2.5 = 7.2 ppm and ⟨𝛿CO⟩ = 8.8 + 2 · 10.0 = 28.8 ppb. I then

follow the steps below to calculate the possible additional uncertainty 𝛿+𝑋:

1. generate a 60-entry synthetic data set 𝐷, normally distributed with ⟨𝛿𝑋⟩ as

standard deviation

2. sample 58 entries from the synthetic data set to create the sub-sample 𝑆𝑖 ⊂ 𝐷

and calculate the mean

3. calculate the difference 𝑑𝑖 between the mean of the sub-sample (58 entries)

and the mean of the full sample (60 entries)

4. repeat the previous two steps 10000 times

5. calculate 𝛿+𝑋 as the standard deviation of all 𝑑𝑖

Note that 𝛿+𝑋 is not the mean bias, but the standard deviation of the bias, because

this is a better representation of what the bias of an individual hour looks like

(between ±𝛿+𝑋). I find 𝛿+CO2 = 0.3 ppm and 𝛿+CO = 1.4 ppb as the upper limit

for the bias introduced to an hourly mean by missing 2 entries. Comparing this to

the instrument uncertainties (0.1 ppm CO
2
, 3 ppb CO) I find that the possible bias

in CO
2

is larger than the instrument uncertainty, while for CO the instrument

uncertainty is larger.

The question now is, how the means for the integrated samples are affected by

hours with such increased uncertainties. On average, 29 hours out of 12 · 14 = 168

hours are based on less than 58 minutely values (randomly distributed, no more

than two in succession). Of the remaining 139 hours, at most 12 are based on 58 to

59 minutely values (the rest has full 60 min coverage). The average variation of the

168-hour mean is ≈15 ppm CO
2

and ≈44 ppb CO. Similar to before, I follow the

steps below to calculate the possible additional uncertainty Δ+𝑋 due to gaps:

1. generate a 168-entry synthetic data set 𝐵, normally distributed with ⟨Δ𝑋⟩
as standard deviation

2. sample 168 − 29 = 139 entries from 𝐵 to create the sub-sample 𝑃𝑖 ⊂ 𝐷

3. sample 12 entries from 𝑃𝑖 to create the sub-sub-sample 𝑄𝑖 ⊂ 𝑃𝑖
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4. ∀𝑞 ∈ 𝑄𝑖 add 𝛿+𝑋 as standard deviation

5. calculate the difference 𝜖𝑖 between the sub-sample (139 entries, 12 of them

with enlarged uncertainty) mean and the full sample (168 entries) mean

6. repeat four previous steps 10000 times

7. calculate Δ+𝑋 as the standard deviation of all 𝜖𝑖

Note that, again, Δ+𝑋 is not the mean bias, but the standard deviation of the bias,

because this is a better representation of what the bias of an individual hour looks

like (between ±Δ+𝑋). I find Δ+
CO2 = 1.0 ppm (2 𝜎) and Δ+

CO = 3.0 ppb (2 𝜎) as

the upper limit (therefore twice the standard deviation) for the bias introduced to

an hourly mean by missing 29 entries and having 12 entries averaged over only

58 to 59 minutes (the number of such entries is of little consequence, even for 16,

the maximum found, the result is the same at this decimal precision). A quick

counter-check confirmed that the increased uncertainty for the hourly means does

not affect the bias of the two-week mean. Rather, the bias is a result of the large

variability of the occurring concentrations.

In conclusion, based on the occurring data gaps (on average 29 hours per sample

of 168 hours), an additional uncertainty of Δ+
CO

2
= ±1.0 ppm (2 𝜎) and Δ+

CO =

±3.0 ppb (2 𝜎) is applied.

Final uncertainty calculation. For uncorrelated, random (i.e. stochastic) errors,

Gaussian error propagation applies. That is, the root of the sum of squares of

the errors yields the correct total error. The errors discussed above for measured

CO
2
, CO, Δ

14

CO
2

are the instrument or measurement error (Δmeas), the represen-

tativeness error (Δrepre), the fit uncertainty (Δ
fit

) and the gap uncertainty (Δgap).

Uncertainties for Delta
14

CO
nuc

2
andΔ

14

CO
2

bio
were also discussed but only have

one component and thus do not require an error propagation discussion.

Δrepre is not stochastic, i.e. does not change from measurement to measurement,

because it describes how uncertain my choice for the average winter background

is. It applies to every measurement during one winter in the same way, so it is

not stochastic. Δmeas depends on the instrument, its calibration, and is essentially

a result of the basic physical process of the measurement. Consequently, Δmeas

is stochastic and not correlated to other errors. Δgap is purely stochastic, as the

derivation above clearly shows. It is correlated to the atmospheric concentration

variability, not to Δmeas. As it only applies to the Heidelberg station, it is

automatically independent of the fit uncertainty, Δ
fit

. The fit uncertainty (i.e. the

standard deviation of the residuals between fit and measurements) necessarily

arises when low-frequency data are fitted correctly (i.e. without over-fitting each

point). By using a 3-part fit function with a polynomial, a harmonic and an
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Fig. C.6 Differences between volume source influence ansatz and surface source influence ansatz,

adapted from PhD thesis Fabian Meier (unpublished). (a) Absolute difference in ffCO
2

between

surface-source and volume-source influence ansatz, (b) Relative difference in ffCO
2

between

surface-source (‘ground’) and volume-source (‘stack’) influence ansatz.

inter-annual component, we try to represent physical processes, i.e. a year-to-year

trend (increase in case of CO
2
, decrease in case of Δ

14

CO
2
), a seasonal cycle and

extraordinary events (e.g. a global pandemic), respectively. Conceptually, we can

imagine the measurement points as results of the physical processes (represented

by the fit) with statistical noise (instrument uncertainty, atmospheric variability)

added on top. I argue that Δ
fit

is the only way to account for atmospheric

variability at the background site. In this capacity, it is not correlated to Δmeas.

Consequently, even though you could well argue that Δ
fit

and Δmeas are weakly

correlated, I treat them as independent.

In conclusion, I calculate the total error for CO
2
, CO, Δ

14

CO
2

of the background

station Mace Head as

ΔMHD

total
= ΔMHD

repre
+
√︂(︁

ΔMHD

meas

)︁
2 +

(︁
ΔMHD

fit

)︁
2

. (C.4)

The total error for CO
2
, CO, Δ

14

CO
2

of the Heidelberg station is

ΔHD

total
=

√︂(︁
ΔHD

meas

)︁
2 +

(︁
ΔHD

gap

)︁
2

. (C.5)

C.4 Modelled emission ratio uncertainty calculations

Uncertainties for the modelled emission ratios are only based on the uncertainties

of the TNO inventory emissions, uncertainties from atmospheric modelling are
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Table C.1

Relative uncertainties for TNO inventory emissions for

Germany for the year 2017, provided by Ingrid Super

(personal communication October 1, 2020). Uncertainties

are based on reported uncertainty ranges in NIR reports

(for CO
2
) and EEA guidelines (CO and NO

x
) (Super et al.,

2019).

Sector

Relative uncertainty (%)

CO
2

CO

Public power 2.93 23.10

Industry 2.69 1.21

Residential heating 4.11 22.14

Road transport 4.69 9.74

unknown and rectified by reducing point source emissions around Heidelberg,

as described in Section 5.3. The reduction factor is the mean of the data shown in

Fig. C.6b. Fig. C.6a shows the corresponding absolute difference. The uncertainties

of the TNO inventory emissions are discussed below.

Necessary considerations. Super et al. (2019) analysed uncertainties in the TNO

inventory emissions with a focus on Germany and surrounding countries, see

Fig. C.7. The sector-specific relative uncertainties are shown in Table C.1. Note that

the sector-specific relative uncertainties are CO and CO
2

for Germany in 2017. I

apply them to the total modelled concentration enhancements, implicitly assuming

that (1) 2017 is representative for all investigated years, (2) uncertainties for other

countries are the same or at least similar and thus well represented by the given

values and (3) the uncertainty for CO
2

approximates the uncertainty for ffCO
2
.

Ingrid Super provided insights on the first points via personal communication

(April 26, 2022). According to her, ‘uncertainties apply to all years in the reported

time series’, consequently assumption (1) is permissible. Regarding assumption

(2), ‘reported uncertainties do not differ much between European countries. There

are some exceptions, but those are usually for very small sectors that have a high

uncertainty. In the aggregated total, this will have a minor impact.’ Pertaining

point (3) – that the uncertainty for CO
2

approximates the uncertainty for ffCO
2

–

the main argument is that bio fuels play a minor role for power plants, industry,

traffic, even residential heating (where it depends on the region how high the

bio fuel contribution is). Consequently, since most CO
2

is of fossil origin, the

uncertainty for CO
2

approximates the uncertainty for ffCO
2

well.

Calculation. For each winter, I calculate total emission uncertainties as follows:

Δtot’ = 𝛿%
pp
𝑐pp + 𝛿%

ind
𝑐

ind
+ 𝛿%

rh
𝑐

rh
+ 𝛿%

tr
𝑐tr (C.6)
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(a) CO
2

emission uncertainty. (b) CO emission uncertainty.

Fig. C.7 Figures taken from Super et al. (2019, Figs. 14 and 15) showing absolute and relative

uncertainties in emissions of TNO inventory.

where 𝑐 is the modelled concentration enhancement in Heidelberg (either for

ffCO
2

or CO) and 𝛿% is the relative uncertainty given in Table C.1. The indices

indicate the different sectors: pp – power plants, ind – industry, rh – residential

heating and tr – traffic. These are not all the available sectors, only the ones

responsible for 𝑓 ≈ 97 % of all ffCO
2

emissions. To account for this, I assume the

relative uncertainty of the remaining emissions are on average equal to Δtot’ and

calculate the ‘true’ total uncertainty as Δtot = Δtot’/ 𝑓 (where 𝑓 is calculated for

each year). With this I calculate the total relative uncertainty

𝛿%
tot

=
Δtot

𝑐tot

. (C.7)

Using the Gaussian error propagation rule for quotients, the relative uncertainty

of the ratio is

Δ%
(︃

CO

ffCO
2

)︃
=

√︃(︂
𝛿%

tot
CO

)︂
2

+
(︂
𝛿%

tot
ffCO

2

)︂
2

(C.8)

It varies slightly from year to year, staying within the range 12 % to 14 %. The

variations come from the different composition of the enhancements, e.g. a larger

contribution from the industry sector reduces uncertainties in both ffCO
2

and

CO.
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Auxiliary data

Weighted total least square regressions for measured ratios displayed in Fig. 5.3,

calculated according to Wurm (2022).
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