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Breaking Through Computational Barriers In Lattice QCD With Arti-
ficial Intelligence

Progress in answering some of the most interesting open questions about the na-
ture of reality is currently stalled by hard computational barriers. Research into
artificial intelligence may provide solutions to these challenges. In this thesis, the
applicability of modern machine learning algorithms to three longstanding prob-
lems in lattice quantum chromodynamics is investigated. First, normalizing flow
architectures for the generative neural sampling of lattice field theories with dy-
namical fermions are developed and demonstrated to solve topological freezing in
the Schwinger model at criticality. Flows are then applied to the density-of-states
approach to complex action problems, showing that the Lee-Yang zeroes of the
partition function of a scalar field theory with an imaginary external field can
be successfully located. Finally, the problem of extracting real-time physics from
imaginary-time data via spectral reconstruction is approached from the perspec-
tive of probabilistic inverse theory with Gaussian processes to compute ghost and
gluon spectral functions. Future research directions are outlined for the application
of the present work to state-of-the-art lattice and phenomenological calculations.

Rechnerische Hürden der Gitter-QCD mittels künstlicher Intelligenz
überwinden

Fortschritte in der Beantwortung einiger der interessantesten Fragen über das Uni-
versum werden derzeit von hohen rechnerischen Barrieren verhindert. Die Er-
forschung künstlicher Intelligenz mag dabei helfen, diese Herausforderungen zu
meistern. In dieser Arbeit wird die Anwendbarkeit moderner Algorithmen des
maschinellen Lernens auf drei langjährige Probleme der Gitterquantenchromody-
namik untersucht. Zunächst werden normalisierende Flüsse zur neuronalen Stich-
probenerzeugung von Gitterfeldtheorien mit dynamischen Fermionen entwickelt
und zur Bewältigung des topologischen Einfrierens im Schwinger-Modell bei Kri-
tikalität benutzt. Ferner werden Flüsse auf den Zustandsdichtenansatz für Vorze-
ichenprobleme angewendet. Es wird gezeigt, dass die Lee-Yang-Nullstellen der
Zustandssumme einer skalaren Feldtheorie mit einem imaginären externen Feld
erfolgreich lokalisiert werden können. Abschließend wird das Problem der Extrak-
tion von Realzeitphysik aus Imaginärzeitdaten durch spektrale Rekonstruktion aus
der Perspektive der probabilistischen Inverstheorie mit Gaußprozessen angegangen,
um Geist- und Gluonspektralfunktionen zu berechnen. Zukünftige Forschungsrich-
tungen bezüglich der Anwendung der vorliegenden Arbeit auf moderne Gitterrech-
nungen und phänomenologische Ansätze werden skizziert.
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1

1 Introduction

Trying to explain the nature of reality has been part of the human experience for
millennia, ever since our primate ancestors had the audacity to develop some level of
higher brain function. However, significant progress in this endeavor has only been
achieved more recently through the widespread application of the scientific method.
In the 20th century, efforts to elucidate the fundamental properties of our universe
finally culminated in the formulation of the theories that are still our most successful
descriptions of physical phenomena at the largest and smallest scales. On the one
hand, we have general relativity as the theory of gravity; on the other hand, the
standard model of particle physics, which is the quantum field theory describing all
known elementary particles and their electromagnetic, weak, and strong interactions.

After successful experimental confirmation of these theories to extremely high
precision, the very end of fundamental theoretical physics seemed to lie within reach.
However, as even the most optimistic contemporaries soon realized, unifying all four
fundamental interactions into a consistent theoretical framework turned out to be
much more difficult than anticipated. Moreover, even just within the individual
theories themselves, there are still many open problems and unanswered questions
that continue to puzzle physicists today and have opened a myriad of exciting new
avenues to explore. Their resolution may not only complete our understanding of
the currently known set of elementary particles, but also eventually lead to novel
insights that could facilitate a unified description of gravity and quantum theory.

In parallel to these exciting developments in fundamental theoretical physics re-
search, the past two decades have seen the rise of modern artificial intelligence (AI),
with many areas of industry and public life now in the process of being utterly
revolutionized. While initially the machine learning architectures achieving never-
before-seen milestones in various settings—such as image classification or natural
language processing—were as powerful as they were mysterious, advances in the
understanding of these black boxes have led to their increasing application also in
the natural sciences. The massive engineering efforts invested over many years are
finally paying off, with meticulously crafted models impressively solving such grand
challenges as the protein folding problem.

Perhaps unsurprisingly, AI has found its perfect match in the areas of scientific
research that have already heavily relied on numerical approaches, and has become
an integral part of many scientists’ algorithmic toolbox. Its potential to overcome
long-standing problems in these fields and take on a transformative role is rooted in
a combination of ingenious model design and increasing levels of available computa-
tional power, facilitated by the ongoing deep learning revolution and the associated
development of efficient, specialized accelerator hardware.
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This thesis is written with the ambition that also some of the most difficult open
questions about the nature of reality can be answered through the synergy of physical
intuition, AI, and advances in high-performance computing. The present work is
based on a series of papers [1–7] that document some of my own humble attempts
at furthering our understanding of a tiny piece of the big puzzle.

1.1 Motivation

A component of the standard model that has turned out to be particularly diffi-
cult to understand is quantum chromodynamics (QCD)—the theory of the strong
interaction—mainly because it cannot be treated perturbatively at low energies.
One of the most interesting open problems in this context is the QCD phase dia-
gram, specifically in the T -µB plane (temperature and baryon chemical potential).
For example, it has been speculated that unlike the crossover encountered at low
µB, at higher baryon densities the phases are separated by a first-order transition
that ends in a critical point of second order. A simplified sketch of the phase dia-
gram is shown in Figure 1.1; however, most of the displayed features are conjectural
or based on model predictions because ab-initio computations in the relevant re-
gion are extremely difficult. Moreover, accessing non-equilibrium properties of the
theory exhibits even harder challenges. This only adds to the fact that even in
the arguably simplest setting, namely in thermodynamic equilibrium at vanishing
chemical potential, extracting experimentally testable predictions from the theory
with first-principles calculations already requires enormous computational efforts.
Utilizing recent advances in AI research to break through the barriers that prevent
further progress in this area is the focus of the present work.

Before we delve further into the nature of these computational barriers, let us
begin with a brief survey of what is currently possible with existing methods. In the
past decades, two complementary frameworks for the non-perturbative treatment
of strongly interacting matter have emerged, namely lattice field theory and func-
tional methods. While both types of approaches play a role in this thesis, our main
focus will be on the former. In this framework, path integrals are discretized on a
Euclidean spacetime lattice, which enables access to equilibrium properties of the
theory under consideration. This is achieved by switching from real to imaginary
time via Wick rotation, yielding integrals over field configurations weighted by a
Boltzmann factor with the Euclidean lattice action in the exponent. Expectation
values are then evaluated stochastically by recasting the problem in terms of sta-
tistical sampling: ensembles of field configurations are generated via Markov chain
Monte Carlo (MCMC) algorithms that typically explore the configuration space se-
quentially along some fictitious computer time. Physical observables can then be
approximated in terms of ensemble averages. These calculations are by now well
enough under control to fully convince us of the theory’s correctness in the descrip-
tion of the strong nuclear force. As a result of these developments, lattice QCD has
arguably entered the precision era of predicting standard model processes.
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Figure 1.1: Sketch of the conjectured phase diagram of QCD in the T -µB plane.

However, further progress in understanding QCD from first principles is hampered
by the aforementioned computational barriers. Even without considering finite den-
sities or non-equilibrium processes, approaching the continuum limit of lattice QCD
leads to severe slowing down of the commonly employed sampling algorithms. This
is because traditional MCMC methods are based on local or diffusive updates. When
the parameters of the system are tuned towards criticality, mapping out all relevant
regions of configuration space in a reasonable time becomes increasingly difficult,
even with the world’s most powerful supercomputers. Specifically, state-of-the-art
calculations based on the Hybrid/Hamiltonian Monte Carlo (HMC) algorithm are
severely affected by so-called topological freezing. Such in-practice violations of er-
godicity are highly problematic for the reliability of expectation values, since asymp-
totic correctness is only guaranteed for ensembles of statistically independent field
configurations. To unlock larger volumes in these calculations—required e.g. for
many problems in nuclear physics—exponentially improved sampling algorithms are
urgently needed. In particular, first-principles calculations for nuclei with high mass
numbers would significantly support the interpretations of several current and future
intensity-frontier experiments that so far rely on computations in nuclear effective
theory. For example, the determination of the neutrino mixing parameters and
mass hierarchy from results of the DUNE long-baseline experiment requires axial
form factors of argon. Likewise, scalar matrix elements in xenon are relevant for the
dark matter direct detection search with XENONnT. Furthermore, in order to work
out whether neutrinos are majorana particles, one would like to compute double-
beta decay rates of heavy isotopes. In addition, defeating critical slowing down may
also improve our understanding of universal properties of condensed matter systems
where current calculations face similar problems.
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Returning to the QCD phase diagram, further exploration of the yet uncharted
waters is additionally prohibited by the infamous sign problem associated with fi-
nite chemical potential. Roughly speaking, at non-zero values of µB the imaginary
part of the lattice action of the theory is non-vanishing, which leads to a breakdown
of standard importance sampling. Naive attempts at circumventing such complex
action problems often result in extremely unfavorable signal-to-noise ratios. The
required computational effort to reach some fixed precision for physical predictions
then grows exponentially with the system size. This renders many ab-initio com-
putations infeasible outside of the region where the ratio µB/T is sufficiently small.
Fully charting the phase diagram would lead to a better understanding of the prop-
erties of thermal nuclear matter and the physics of neutron stars, as well as cast
light on possible exotic phases of quark matter. Apart from finite-density lattice
QCD, research into approaches to complex action problems is also relevant in other
contexts; e.g. for field theories with topological terms, spin- and mass-imbalanced
cold atom systems, or similar problems in condensed matter theory.

Furthermore, as mentioned previously, the imaginary-time computations in Eu-
clidean space described above are generally limited to equilibrium properties of the
theory. For the real-time physics of non-equilibrium processes, the associated weight-
ing factor in the path integral is a pure phase. Hence, this is in some sense the most
difficult type of complex action problem imaginable. Progress in tackling such prob-
lems directly may eventually also help us to achieve genuine real-time computations
and gain full access to the physics of dynamical QCD processes, whose theoreti-
cal treatment is essential for understanding many current and future experimental
results. However, since for now we are restricted to computations in equilibrium,
it makes sense to also explore approaches that extract real-time physics indirectly
from imaginary-time data. This includes the numerical inversion of the spectral
representation of Euclidean correlation functions in order to obtain real-time prop-
agators, which is a heavily ill-conditioned inverse problem in need of regularization.
Such calculations are relevant for the description of scattering processes as well as
the hadronic resonance spectrum, and can provide first-principles QCD inputs for
phenomenological approaches to transport processes in heavy-ion collisions.

In this thesis, I discuss several applications of modern machine learning methods
to the computational problems described above, with an aim towards lattice QCD
at scale. Specifically, deep neural networks are investigated for the generation and
analysis of lattice field configurations. The main contributions here concern the
mitigation of critical slowing down and the treatment of complex action problems
via generative neural samplers with tractable probabilities. Furthermore, recent de-
velopments in probabilistic inverse theory with stochastic processes are utilized for
the spectral reconstruction of correlation functions. As already stated in the begin-
ning, in many cases such machine learning algorithms are black boxes if approached
naively. Achieving a deeper understanding of their inner workings to facilitate novel
insights and theoretical guarantees will be a recurring theme throughout this work.
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1.2 Publications
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[4] Michael S. Albergo, Denis Boyda, Kyle Cranmer, Dan C. Hackett, Gurtej Kan-
war, Sébastien Racanière, Danilo J. Rezende, Phiala E. Shanahan, Julian M. Urban,
Flow-based sampling for fermionic lattice field theories, Phys.Rev.D 104 (2021) 11,
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[5] Jan Horak, Jan M. Pawlowski, José Rodríguez-Quintero, Jonas Turnwald, Julian
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tions with Gaussian Processes, Phys.Rev.D 105 (2022) 3, 036014, arXiv:2107.13464
[hep-ph]

Preprints

[6] Michael S. Albergo, Denis Boyda, Kyle Cranmer, Dan C. Hackett, Gurtej Kan-
war, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López, Phiala E.
Shanahan, Julian M. Urban, Flow-based sampling in the lattice Schwinger model at
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1.3 Outline

• In Chapter 2, the basic concepts behind lattice field theory and MCMC algo-
rithms are briefly reviewed. Based on more general descriptions of the lattice
formulations of scalar fields, fermions, and gauge fields, scalar Yukawa theory
and the Schwinger model are introduced.

• In Chapter 3, we discuss the computational barriers in lattice QCD that are
the primary focus of this work: topological freezing, complex action problems,
and accessing real-time physics.

• Chapter 4 introduces the machine learning methods that form the basic build-
ing blocks of the architectures and frameworks used throughout this work:
deep neural networks, normalizing flows, and Gaussian process regression.

• In Chapter 5, we take a first look at two machine learning applications to
lattice field theory. First, a hybrid sampling algorithm employing a generative
adversarial network is developed and applied to real, scalar ϕ4-theory. Then, it
is demonstrated that interpretable AI techniques can be used to extract novel
insights from lattice data in the context of scalar Yukawa theory.

• Chapter 6 concerns the development of normalizing flow architectures for the
generative sampling of lattice field theories with dynamical fermions. After a
proof-of-principle demonstration in scalar Yukawa theory, the chapter culmi-
nates in a study of flow-based sampling in the Schwinger model at criticality. It
is shown that topological freezing can be successfully mitigated in a situation
where standard MCMC algorithms fail to achieve sufficient ergodicity.

• In Chapter 7, the application of normalizing flows to the density-of-states
approach to complex action problems is discussed in the context of scalar field
theory with an imaginary external field. It is demonstrated that the density
of states can be computed directly with this method and that the Lee-Yang
zeroes of the partition function can be successfully located.

• In Chapter 8, spectral reconstruction is investigated in the framework of prob-
abilistic inverse theory with Gaussian processes. Ghost and gluon spectral
functions are computed from imaginary-time data supplied by lattice and func-
tional computations in QCD and Yang-Mills theory.

• Chapter 9 provides a summary and outlook.
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2 Lattice field theory

In this chapter, the basic concepts behind lattice field theory are introduced and
we discuss the particular fields and models that are relevant for this work. With
the exception of dynamical fermion fields—on whose treatment we put particular
emphasis—in most places lengthy discussions about technical details are avoided
and merely the most important aspects necessary to digest the following chapters
are summarized. For pedagogical introductions to the subject where these technical
discussions take place, see one of the standard textbooks [8–10]. The following text
has some overlap with parts of [1, 3, 4, 6].

2.1 Introduction

Lattice field theory is among the most successful methods for regularizing and com-
puting path integral expectation values in quantum field theory. In this approach,
path integrals are evaluated numerically by discretizing the fields on a Euclidean
spacetime lattice and formulating a stochastic process weighted by the lattice action
[11]. The expectation value of some observable O can then be approximated as

⟨O⟩ = 1

Z

∫
Dϕ e−S(ϕ)O(ϕ) ≃ 1

N

N∑
i=1

O(ϕi), (2.1)

where Z is the partition function, S is the Euclidean lattice action, and {ϕi} is
a set of N samples of the lattice field degrees of freedom distributed as p(ϕ) =
exp[−S(ϕ)]/Z. Statistical uncertainties decrease as 1/

√
N as the estimate converges

to the true value. The Euclidean lattice results can then be systematically related
to the corresponding continuum Minkowski theory. This procedure enables the
investigation of equilibrium properties in the theory of interest, and is a powerful
and well-established method to study strongly coupled quantum field theories non-
perturbatively. Key areas of application include fundamental interactions, most
prominently QCD, as well as problems in condensed matter theory; see [12–19] for
recent reviews.

Direct sampling schemes for high-dimensional lattice distributions are typically
not known. Nevertheless, the distribution p(ϕ) can be sampled via MCMC methods
with guaranteed asymptotic exactness under certain ergodicity and balance con-
straints [20]. Here, the ‘gold standard’ method is the Metropolis-Hastings algorithm
[21]. It sequentially explores the configuration space through aperiodic updates en-
suring ergodicity, combined with an accept/reject rule: starting from some initial
field configuration ϕ, a new candidate sample ϕ′ is generated with some a priori
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Figure 2.1: Illustration of the Metropolis-Hastings algorithm for MCMC sampling.

selection probability A0(ϕ → ϕ′). It is then accepted or rejected according to the
acceptance probability

A(ϕ→ ϕ′) = min

(
1,

A0(ϕ
′ → ϕ) exp(−S(ϕ′))

A0(ϕ→ ϕ′) exp(−S(ϕ))

)
, (2.2)

see Figure 2.1 for an illustration. One usually considers a symmetric selection prob-
ability, i.e. A0(ϕ

′ → ϕ) = A0(ϕ→ ϕ′). Equation (2.2) then simplifies to

A(ϕ→ ϕ′) = min(1, exp(−∆S)) , (2.3)

where ∆S = S(ϕ′)−S(ϕ). After ‘thermalization’, i.e. a sufficient number of updates,
the equilibrium distribution of this process is guaranteed to be the desired p(ϕ). In
order to determine whether a Markov chain has been sufficiently equilibrated, one
usually verifies the convergence of a set of representative observables.

Local or diffusive updating methods often exhibit strong correlations between
subsequent samples in the Markov chain. Given a chain of N measurements for
some real-valued observable X, its autocorrelation function is defined as

ΓX(τ) =
1

N − τ

N−τ∑
i=1

XiXi+τ − ⟨X⟩2 , (2.4)

where τ denotes the number of Markov chain steps separating the pair of measure-
ments considered. Typically, ΓX(τ) decays exponentially,

ΓX(τ) ∼ exp

(
− τ

τexp

)
. (2.5)

Here, τexp denotes the exponential autocorrelation time, which one expects to scale
as a power of the correlation length, τexp ∼ ξz. The dynamical critical exponent
z ≥ 0 depends on the type of algorithm used. In the continuum, the correlation
length diverges at criticality. On a lattice of finite extent L, ξ approaches O(L).

Autocorrelations can be problematic because the approximation in Equation (2.1)
is only valid for ensembles of statistically independent field configurations. Corre-
lated samples introduce an additional systematic error, which one should try to
reduce as much as possible. Significant improvements over purely local updates can
be achieved with the HMC algorithm [22]. It has been established as the de facto
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standard method for producing configurations in lattice field theory and is routinely
employed in state-of-the-art lattice calculations of QCD and other theories due to its
superior volume scaling of the computational cost and other attractive features, see
e.g. [8] for an in-depth discussion. The algorithm is based on the numerical treat-
ment of Hamiltonian equations of motion in a fictitious time dimension. Quantum
fluctuations are encoded by random sampling of the associated canonical momenta.
Given a field configuration and a set of momenta, the Hamiltonian evolution is
computed with a symplectic integrator such as the leapfrog method. An additional
accept/reject step results in an algorithm satisfying detailed balance, despite the
accumulation of numerical errors along the discretized integration trajectory. This
allows to take larger steps in configuration space while retaining reasonable accep-
tance rates. Nevertheless, the HMC algorithm does not solve the problem of critical
slowing down, which will be discussed in Section 3.1.

2.2 Scalar fields

We first consider the lattice formulation of one of the simplest interacting quantum
field theories with bosonic fields, namely real, scalar ϕ4-theory. This discussion
serves a dual purpose: on the one hand, it illustrates the basics and is instructive
for the more involved concepts introduced later. On the other hand, the model
considered in this section represents the bosonic part of scalar Yukawa theory, which
is important for some of the machine learning applications in this work.

For simplicity, we restrict ourselves to isotropic, symmetric lattices spanning L
sites in each dimension with periodic boundary conditions. The lattice action in d
dimensions is defined as

S(ϕ0) =
∑
x∈Λ

ad

[
1

2

d∑
µ=1

(ϕ0(x+ aµ̂)− ϕ0(x))
2

a2
+
m2

0

2
ϕ0(x)

2 +
g0
4!
ϕ0(x)

4

]
, (2.6)

where Λ denotes the set of all lattice sites, a is the lattice spacing, ϕ0,m0, g0 cor-
respond to the bare field, mass, and coupling constant, and µ̂ is a unit vector in
µ-direction. We only consider single-component scalar fields for now, however, the
generalization to N -component fields with an additional, internal O(N) symmetry
is straightforward.

The action can be cast into a dimensionless form through the following transfor-
mation:

a
d−2
2 ϕ0 = (2κ)

1/2ϕ

(am0)
2 =

1− 2λ

κ
− 2d

a−d+4λ0 =
6λ

κ2
.

(2.7)

Here, κ is commonly called the hopping parameter and λ now takes the role of the
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Figure 2.2: Sketch of the phase diagram of real, scalar ϕ4-theory in the dimensionless
formulation.

coupling constant. Applying this transformation results in

S(ϕ) =
∑
x∈Λ

[
−2κ

d∑
µ=1

ϕ(x)ϕ(x+ µ̂) + (1− 2λ)ϕ(x)2 + λϕ(x)4

]
. (2.8)

The theory belongs to the Ising universality class. As such, in d ≥ 2 it exhibits a
phase transition associated with spontaneous breaking of the Z2 symmetry, where
field variables will jointly fall into one of two possible orientations. This can be
quantified by the magnetization, defined as the average value of the field,

M(ϕ) =
1

V

∑
x∈Λ

ϕ(x) , (2.9)

where V = |Λ| = Ld denotes the dimensionless volume, i.e. the number of lattice
sites. Its staggered counterpart is given by

Ms =
1

|Λ|
∑
x∈Λ

(−1)x1+···+xdϕ(x) , (2.10)

which is relevant for negative κ. The dimensionless action has the additional stag-
gered symmetry

κ 7→ −κ and ϕ(x) 7→ (−1)x1+···+xdϕ(x), (2.11)

which connects both magnetizations. One usually measures the average absolute
values ⟨|M |⟩, ⟨|Ms|⟩, which provide non-zero order parameters that are large in the
(anti-)ferromagnetic phases where the Z2 symmetry is broken, and exponentially
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suppressed in the paramagnetic (symmetric) phase; see Figure 2.2 for a sketch of
the phase diagram of this theory.

In the continuum, the phase transition is characterized by a divergence in the
connected two-point susceptibility,

χ2 = V
(
⟨M2⟩ − ⟨M⟩2

)
. (2.12)

On a finite lattice, one instead observes a peak which becomes narrower as the lattice
volume is increased. Furthermore, the connected two-point correlation function of
ϕ is defined as

Cϕ(x, y) = ⟨ϕ(x)ϕ(y)⟩ − ⟨ϕ(x)⟩⟨ϕ(y)⟩ , (2.13)

where we fix ⟨ϕ(x)⟩ = ⟨M⟩ = 0 analytically. Here, one is often interested in the
source-averaged correlator projected to zero momentum, defined as

Cϕ(t) =
1

V

∑
x

∑
y⃗

C(x, x+ (y⃗, t)) . (2.14)

2.3 Fermions

The simulation of dynamical fermion degrees of freedom in lattice field theory is a
highly non-trivial task for many theories of physical interest, both conceptually and
computationally. In this section, the main concepts behind formulations of lattice
fermions and their numerical implementation are reviewed.

2.3.1 Path integrals with fermions

We consider field theories of interacting fermionic and bosonic degrees of freedom
discretized on a d-dimensional Euclidean hypercubic lattice with periodic boundary
conditions. The action of such a theory can be expressed as

S(ψ, ψ̄, ϕ) = SB(ϕ) + SF (ψ, ψ̄, ϕ) , (2.15)

where the subscripts B and F denote the bosonic and fermionic contributions to the
action, the discretized boson field variables are collectively denoted by ϕ, and the
discretized fermion field variables are denoted by ψ, ψ̄. Here, we assume that the
fermionic action is bilinear in Nf flavors of Dirac fermions ψf , ψ̄f and is given by

SF (ψ, ψ̄, ϕ) =

Nf∑
f=1

ψ̄f Df (ϕ)ψf , (2.16)

where the Dirac operator Df (ϕ) includes the kinetic terms, mass terms, and any
coupling to bosonic fields for each fermion flavor f . The precise form of Df (ϕ) is
determined by the theory of interest and the choice of discretization.
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Expectation values of observables O are computed via path integrals of the form

⟨O⟩ = 1

Z

∫
D[ϕ]D[ψ, ψ̄]e−SF (ψ,ψ̄,ϕ)e−SB(ϕ)O(ψ, ψ̄, ϕ) , (2.17)

where
Z =

∫
D[ϕ]D[ψ, ψ̄] e−SF (ψ,ψ̄,ϕ)e−SB(ϕ) , (2.18)

and the fermion fields ψ and ψ̄ are defined in terms of anti-commuting Grassmann
numbers. For bilinear actions of the form given in Equation (2.16), integration over
the Grassmann-valued fermion fields can be performed explicitly, giving

∫
D[ψ, ψ̄]e−SF (ψ,ψ̄,ϕ) =

Nf∏
f=1

detDf (ϕ) . (2.19)

By applying Wick’s theorem, the dependence of the observable on the fermions can
be integrated out. Path integral expectation values can then be written in terms of
purely bosonic degrees of freedom as

⟨O⟩ = 1

Z

∫
D[ϕ]

 Nf∏
f=1

detDf (ϕ)

 e−SB(ϕ)O(ϕ) . (2.20)

This expectation value may again be estimated via MCMC sampling, by computing
an average over a statistical ensemble of configurations ϕ sampled from the proba-
bility distribution

p(ϕ) =
1

Z
e−SB(ϕ)

Nf∏
f=1

detDf (ϕ) . (2.21)

For large lattice volumes, the fermion determinants are treated stochastically via
the pseudofermion method introduced in the following section.

2.3.2 Pseudofermions

The fermion determinants in Equation (2.21) have to be evaluated for every pro-
posed field configuration in order to determine the acceptance probability. They are
not calculated exactly for large volumes because the Dirac matrices Df are high-
dimensional, which makes it difficult to frequently perform a direct evaluation with
currently accessible computing platforms. To see this, consider d-dimensional field
configurations with L sites per spatial dimension and Lt sites in the temporal di-
mension. Since the total number of fermionic degrees of freedom scales as the total
number of lattice sites, V = LtL

d−1, each Dirac matrix Df then has dimensions
O(V × V ). An exact computation of the determinants of such matrices quickly
becomes intractable because the cost naively scales like O(V 3).
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Instead, Gaussian integrals over auxiliary bosonic fields—the pseudofermions—
can be used to replace the direct evaluation of determinant factors [23], based on
the identity

detM =
1

ZN

∫
D[φR, φI ] e

−φ†M−1φ , (2.22)

where the normalization constant ZN is defined as

ZN =

∫
D[φR, φI ] e

−φ†φ . (2.23)

Here, φR, φI denote the real and imaginary components of the auxiliary complex
field φ, and the matrix M must be positive-definite. Since the Dirac matrices Df

are typically not positive-definite, one cannot directly apply this identity to each
factor of detDf . However, for fermion flavors f1 and f2 appearing as degenerate
pairs, based on γ5-hermiticity one can instead use the equality

detDf1 detDf2 = detDf1D
†
f1
, (2.24)

and then apply Equation (2.22) to the positive-definite matrix M = Df1D
†
f1

. For
fermion flavors f not included in any degenerate pair, one can apply one-flavor algo-
rithms [24–26] to replace Df with a positive-definite matrix M capturing identical
dynamics.

Using the pseudofermion approach, a path integral as in Equation (2.20) can thus
be rewritten in terms of an action involving the auxiliary pseudofermion fields φ,

S(ϕ, φ) = SB(ϕ) + SPF (ϕ, φ) with

SPF (ϕ, φ) = φ†M−1(ϕ)φ ≡
Npf∑
k=1

φ†
kM−1

k (ϕ)φk ,
(2.25)

after replacing the fermion determinants in the given lattice theory by the determi-
nants of Npf positive-definite matrices Mk as

Nf∏
f=1

detDf (ϕ) =

Npf∏
k=1

detMk(ϕ) . (2.26)

Each term φ†
kM−1

k φk in the pseudofermion action can be efficiently computed using
iterative solvers such as the conjugate gradient method. Having formulated the
theory using pseudofermions in Equation (2.25), evaluation of the path integral via
MCMC can then be performed in this augmented space by sampling from the joint
distribution

p(ϕ, φ) =
1

Z
e−SB(ϕ)−SPF (ϕ,φ) . (2.27)

This is commonly done via Gibbs sampling: the boson and pseudofermion variables
are evolved in an alternating fashion where one set of variables is kept fixed while the
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Figure 2.3: Illustration of updates with pseudofermions via Gibbs sampling.

Name Probability density
JointA p(ϕ, φ) = 1

Z
exp(−SB(ϕ)− φ† [M(ϕ)]−1 φ)

ϕ-marginal p(ϕ) = ZN
Z

exp(−SB(ϕ)) detM(ϕ)

φ-conditionalA,B p(φ|ϕ) = 1

ZN detM(ϕ)
exp(−φ† [M(ϕ)]−1 φ)

φ-marginalC p(φ) = 1
Z

∫
dϕ exp(−SB(ϕ)− φ† [M(ϕ)]−1 φ)

ϕ-conditionalA p(ϕ|φ) = exp(−SB(ϕ)− φ† [M(ϕ)]−1 φ)∫
dϕ exp(−SB(ϕ)− φ† [M(ϕ)]−1 φ)

Table 2.1: List of possible distributions derived from the joint target density in Equa-
tion (2.27). The normalizing constant Z is given by Equation (2.18)
and ZN is defined in Equation (2.23). Notes: (A) Only the joint, φ-
conditional, and ϕ-conditional densities can be tractably computed (up
to normalization). (B) The φ-conditional can be sampled exactly. (C)
A closed form for the φ-marginal density is not generally known (even
unnormalized).

other is updated using the respective conditional; see Figure 2.3 for an illustration.
However, the joint distribution p(ϕ, φ) admits several possible marginalizations and
decompositions; see Table 2.1. This will be relevant for the different generative
modeling approaches introduced in Chapter 6.

While the pseudofermion method renders the treatment of fermion determinants
tractable in principle, the joint action may strongly fluctuate in certain limits. This
feature can slow down MCMC sampling of the joint distribution and can lead to an
unfavorable volume scaling of the associated computational effort, especially when
many components of the bosonic field are updated simultaneously. Accordingly,
numerous modifications of the pseudofermion formulation have been developed to
improve the structure of the action; see e.g. [27–32].
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2.3.3 Boundary conditions and translational symmetry

In lattice studies of purely bosonic theories, it is common to choose periodic bound-
ary conditions in all directions of the lattice, allowing the incorporation of an exact
discrete translational symmetry in lattice actions for such theories. For fermion
fields, one needs to impose antiperiodic boundary conditions in the time direction in
order to obtain a consistent definition of the trace for the Euclidean partition func-
tion. Actions for theories involving fermionic fields are then invariant under simulta-
neous spatio-temporal translations of ϕ, ψ, ψ̄ with appropriate boundary conditions
applied for each field. To be consistent with the boundary conditions for ψ and
ψ̄, each Dirac matrix Df (ϕ) must include appropriate signs for any terms coupling
fields across the temporal boundary. As a result, these boundary conditions affect
the pseudofermion formulation of the theory as well, and the pseudofermion action
SPF (ϕ, φ) is invariant under simultaneous translations of ϕ and φ with antiperiodic
temporal boundary conditions applied to φ.

In general, the discretization chosen for the Dirac operator determines which
particular lattice translations are included in the translational symmetry group. In
the staggered formulation [33], for example, the spinor components of each flavor
of fermion are distributed over the components of hypercubes with 2d sites each,
and the translational symmetry group includes all translations by an even number
of sites. Translations by an odd number in particular directions correspond to more
complicated internal symmetry transformations that mix spinor degrees of freedom,
and must involve sign flips on specific field components to leave the staggered action
invariant [34]. These symmetries of the staggered formulation play a role in the
staggered-fermion Yukawa model presented in the next section.

2.4 Yukawa theory

The simplest theories with dynamical fermions considered in this work are two-
and three-dimensional models of a scalar field coupled to fermions via a Yukawa
interaction. Specifically, we consider a real, scalar field ϕ coupled to one mass-
degenerate pair of Kogut-Susskind staggered fermions [33]. This model provides a
testbed which features fermionic fields, but without the additional complications
brought on by gauge symmetry. The phase diagram of this theory at small values
of the Yukawa coupling is similar to the one for pure ϕ4-theory shown in Figure 2.2.
The effect of introducing fermions then only amounts to a global shift and smearing
of the phase boundaries; see Figure 2.4 for a slice of the phase diagram at fixed
values of the couplings. For larger values of g, the fermions take on an increasingly
important role and can give rise to new phases; see [9] for further information. Apart
from providing a suitable test case, studying Yukawa interactions is also interesting
in its own right, e.g. for Higgs physics [35] or the quark-meson model [36].

For the purely bosonic SB(ϕ), we choose the ϕ4-theory action introduced in Sec-
tion 2.2. The fermionic action SF is given by the bilinear form in Equation (2.16)
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Figure 2.4: Slice of the phase diagram of three-dimensional Yukawa theory for fixed
couplings g = 0.25, λ = 1.1 using normalized values of ⟨M⟩ and ⟨Ms⟩.
Phase transitions separating an antiferromagnetic (AFM), a paramag-
netic (PM), and a ferromagnetic (FM) phase are highlighted by the
shaded bars. For details about the calculation, see Appendix A.1.

with Nf = 2, and both fermion flavors are defined by the discretized Dirac operator

Dxy =
d∑

µ=1

ηµ(x)
δ(x− y + µ̂)− δ(x− y − µ̂)

2

+ δ(x− y)(mf + gϕ(x)) ,

(2.28)

where mf is the bare mass of the fermion and g the Yukawa coupling. The staggered
factor ηµ is obtained from the Dirac γ-matrices after the staggered transformation
and is defined as

η1(x) = 1 and ηl(x) = (−1)x1 · · · (−1)xl−1 . (2.29)

The Kronecker δ is defined to have antiperiodic boundary conditions in the time
direction (conventionally taken to be µ = d) and periodic boundary conditions in
the spatial directions, i.e.

δ(x) =
d∏

µ=1

δµ(xµ) , (2.30)

where

δµ ̸=d(xµ) =

{
1 if xµ = 0,±L
0 otherwise

and δd(xd) =


1 if xd = 0

−1 if xd = ±Lt
0 otherwise.

(2.31)
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Fermionic observables can be computed from the matrix elements of the inverse
Dirac operator. The chiral condensate of the fermion field is defined as

⟨ψ̄ψ⟩ =
〈
1

V
TrD−1

〉
, (2.32)

and one measures ⟨|ψ̄ψ|⟩ as for the magnetization of the scalar field. Using the
off-diagonal matrix elements, one can also evaluate the average fermionic two-point
correlator in the time direction,

Cψ(t) =
〈
ψ(y) ψ̄(0)

〉
=
〈
D−1
y,0

〉
, (2.33)

where y = (⃗0, t) with t odd. The particular choices of offsets y select staggered
spinor components at the sink ψ(y) that result in a non-zero average correlation
function originating from the source ψ̄(0).

2.5 Gauge fields

The introduction of gauge fields becomes necessary when one assumes local gauge
invariance, a symmetry principle that is essential in the formulation of the standard
model of particle physics1. Specifically, we demand that a local gauge transformation
of the fermion fields on each lattice site of the form

ψ(x) → Ω(x)ψ(x) and ψ̄(x) → ψ̄(x)Ω†(x) (2.34)

leaves the action of the theory invariant. Here, the Ω(x) are arbitrary, independent
elements of the chosen gauge group. In this work, only the unitary gauge groups
U(1), SU(N) are considered, for which Ω−1 = Ω† and in the case of SU(N) we
additionally demand detΩ = +1. This allows for some simplifications, however,
other choices of compact Lie groups are also possible. The unitary groups have
particular physical relevance, since the standard model is constructed from U(1)×
SU(2)× SU(3).

Analyzing the effect of a local gauge transformation on the discretized derivative
term in the fermionic action,

ψ̄(x)
1

2a
(ψ(x+ µ̂)− ψ(x− µ̂)) , (2.35)

we find that it is not invariant:

ψ̄(x)ψ(x+ µ̂) → ψ̄(x)Ω†(x)Ω(x+ µ̂)ψ(x+ µ̂) . (2.36)

To restore the invariance of the action under the transformation, an additional field
Uµ(x) must be introduced which transforms as

Uµ(x) → Ω(x)Uµ(x)Ω
†(x+ µ̂) . (2.37)

1Interestingly, it can also be used to construct general relativity—the theory of gravity—from the
perspective of quantum field theory [37].
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Figure 2.5: Illustration of a plaquette, the smallest possible Wilson loop.

This is the gauge field. Gauge invariance is restored by using

ψ̄(x)Uµ(x)ψ(x+ µ̂) instead of ψ̄(x)ψ(x+ µ̂) (2.38)

in the derivative term. In contrast to the types of fields discussed so far, Uµ(x)
has a direction: it does not live on the lattice sites themselves, but connects the
neighboring sites x and x + µ̂. For this reason, it is also commonly called a gauge
link. Evaluating a gauge link in the opposite direction gives its inverse Uµ(x)† and
we identify U−µ(x) = Uµ(x− µ̂)†.

The last step in our construction is to equip the gauge field with its own dynamics,
i.e. to find a gauge-invariant action that only depends on Uµ(x). In its simplest form,
such an action may be defined as

Sg(U) = − β

N

∑
x

∑
µ,ν
µ<ν

ReTrPµν(x) . (2.39)

Here, β is the inverse of the squared gauge coupling, and the plaquette Pµν(x) is
the smallest possible Wilson loop—a product of links around a 1× 1 square whose
trace is gauge-invariant; see Figure 2.5 for an illustration. It is defined as

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) . (2.40)

This action is called the Wilson gauge action and is perhaps the most widely used
version, although other forms yielding the same continuum limit have been studied
as well. To see how the familiar gauge action in terms of the field strength tensor is
recovered in the continuum, the discussion in [8] is recommended.
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2.6 The Schwinger model

One of the simplest fermionic gauge theories is the Nf = 2 Schwinger model, a
strongly interacting two-dimensional U(1) gauge theory coupled to two degenerate
fermions (conventionally with a charge of +1). The theory exhibits similar features
to QCD: confinement, spontaneous chiral symmetry breaking due to a chiral con-
densate, and non-trivial topology [38, 39]. It commonly serves as a toy model for
QCD, and is often used for testing new approaches to lattice field theory [40–46],
including methods using quantum technologies [47–49]. It has also been used to
study properties of quantum field theories [39, 50–59].

Integrating out the fermionic degrees of freedom as described in Section 2.3 yields
a lattice action of the form [60–62]

S(U) = −β
∑
x

ReP01(x)− log detD[U ]†D[U ] , (2.41)

where the first term is the gauge action as defined in the previous section, but
specifically for the gauge group U(1) in two dimensions. We consider the Wilson
discretization [63, 64] of the lattice Dirac operator D[U ], given by

D[U ](y, x)βα = δ(y − x)δβα − κ
∑
µ=0,1

{
[1− σµ]

βαUµ(y)δ(y − x+ µ̂)

+[1 + σµ]
βαU †

µ(y − µ̂)δ(y − x− µ̂)
}
,

(2.42)

where σµ = (σx, σy), with σx,y denoting the usual Pauli matrices, and µ̂ is again
a unit vector in direction µ. The δ-functions are again defined with anti-periodic
boundary conditions in the time direction. The bare fermion mass m0 is controlled
by the hopping parameter κ = 1/(4 + 2m0) that parametrizes D.
U(1) lattice gauge field configurations in two dimensions belong to discrete topo-

logical sectors, as quantified by the integer-valued topological charge, commonly
defined as [55]

Q =
1

2π

∑
x

θP (x) ∈ Z , (2.43)

where the plaquette angles θP are restricted to the principal branch,

θP (x) = Im logP01(x) ∈ (−π, π] . (2.44)

The associated topological susceptibility is defined as

χQ =
1

V
⟨Q2⟩ , (2.45)

where V is the volume in lattice units, i.e. the total number of sites.
For the action parameters and lattice volume investigated in this work, the topo-

logical charge distribution displays frequent UV fluctuations. This issue complicates
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the unambiguous detection of topological freezing based solely on Q values—akin
to the situation in QCD—thereby making it difficult to conclusively demonstrate
whether a given sampling algorithm is frozen or not. For the Schwinger model, a
more suitable observable that indicates hops between sectors and appears unaffected
by this problem is the sign of the real part of the fermion determinant,

σ = sign(Re detD) . (2.46)

This can be inferred from a lattice analysis of the continuum Atiyah-Singer in-
dex theorem [60]. Additionally, the chiral condensate defined in Equation (2.32) is
considered for the Schwinger model as well. Its value is also correlated with the
topological sectors and is therefore sensitive to freezing.

The Schwinger model is quantum electrodynamics in two spacetime dimensions,
but shares many features with QCD, as mentioned above. One may also view QCD
as a generalization of the Nf = 2 Schwinger model discussed here, namely in four
dimensions, with the gauge group U(1) replaced by SU(3), and more dynamical
quark flavors. While there are six quarks in the standard model, accurate results
at the energy scales of interest can already be obtained with a dynamical treatment
of only the three lightest flavors, namely up, down, and strange. Of course, there
are many conceptual and practical differences between calculations in the Schwinger
model and QCD, and this short comment certainly does not do justice to the great
efforts invested over many years into making QCD calculations work at scale. For a
detailed treatment of full QCD on the lattice, the interested reader is again referred
to one of the standard textbooks [8–10].
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3 Computational barriers in lattice QCD

After introducing the relevant theoretical and algorithmic concepts in the last chap-
ter, we are now ready to face the computational barriers that are the focus of this
work. In Section 3.1, aspects of critical slowing down in lattice calculations are
considered, specifically the problem of topological freezing. Subsequently, complex
action problems are illustrated in Section 3.2. Finally, we discuss the problem of
extracting real-time physics from imaginary-time data via spectral reconstruction in
Section 3.3. The following text has some overlap with parts of [2, 4–7].

3.1 Topological freezing

The sequential nature of the Markov chain is a potential drawback to the MCMC
sampling approach for computing path integrals in lattice field theory. As already
mentioned in Chapter 2, known Markov chain update schemes for many theories
of interest are local or diffusive, which results in autocorrelations between succes-
sive elements of the chain. Naturally, the stronger these autocorrelations become,
the more samples must be drawn to achieve a result at fixed statistical precision.
Close to criticality—e.g. when approaching the continuum limit of lattice field the-
ories or in order to describe universal properties of condensed matter systems—
autocorrelations diverge rapidly for such local or diffusive Markov chains. This issue,
referred to as critical slowing down, can render computations prohibitively expen-
sive [65–67]. Autocorrelations may become especially severe if MCMC updates are
unlikely to generate transitions between modes that are separated in configuration
space. This effect, known as “freezing,” can prevent an effective exploration of the
distribution for any practical sample size and amounts to an in-practice violation of
ergodicity, which is a necessary condition for the validity of MCMC.

In particular, as explained previously, the HMC algorithm generates samples by
continuously evolving the fields through configuration space via Hamiltonian dy-
namics. Calculations based on HMC for theories whose path integral is separated
into distinct topological sectors are often plagued by a pathologically slow mixing
of the associated topological charges or winding numbers; see Figure 3.1 for an il-
lustration. In the continuum theory, transformations between field configurations of
different topology cannot be achieved by smooth deformations due to the presence
of poles. In the lattice formulation, the sectors are instead separated by large po-
tential barriers, which are difficult to overcome with any sampling algorithm that
takes small steps in configuration space. As the height of these barriers increases
when approaching the continuum limit, tunneling becomes extremely unlikely and
achieving ergodicity grows prohibitively expensive.
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Figure 3.1: Illustration of topological freezing with rare tunneling events (left) vs
the desired behavior of a fast mixing topological charge (right).

The existence of discrete topological sectors is a consequence of the commonly
employed periodic boundary conditions. Hence, one may argue that the importance
of topological effects is negligible for lattices beyond a certain size. However, in
practice it is difficult to precisely specify when this point is reached, which makes
it hard to guarantee correctness. Generally, the validity of expectation values com-
puted via MCMC methods requires the autocorrelation times of all observables to be
much shorter than the total length of the sampled Markov chain. The occurrence of
topological freezing indicates insufficient ergodicity at reasonable simulation times
even with modern supercomputers, which makes it difficult to rigorously quantify
statistical uncertainties. Hence, this may be problematic for results derived from
statistical ensembles that are obtained with conventional HMC or similar methods.

These challenges have motivated extensive work to replace such local/diffusive
MCMC algorithms with other sampling procedures. Specialized Markov chain steps
have been developed in a number of specific contexts, including cluster updates
[68–76], worm algorithms [77–79], sampling in terms of dual variables [80–82], and
event-chain algorithms [83–87]. Though these ideas have been shown to mitigate
critical slowing down in some settings, currently they cannot be applied to many
theories of interest, including lattice QCD. Solving critical slowing down would un-
lock much larger physical volumes in such calculations and thereby open up a num-
ber of interesting scientific avenues to explore. In particular, it would allow us to
study the physics of large nuclei from first principles. Moreover, it may improve
our understanding of condensed matter systems where no efficient algorithms are
currently known. In this context, a promising ansatz is the use of novel generative
machine learning models that can provide statistically independent samples. A first
step in this direction based on overrelaxation with generative adversarial networks
is detailed in Section 5.1; however, such ideas have since been massively improved
upon through architectures with tractable likelihoods. These types of models en-
able direct importance sampling with guaranteed asymptotic exactness and exhibit
various other attractive features. In Section 6.6, such an approach is investigated
in the context of the Schwinger model at critiality, demonstrating that topological
freezing can be successfully mitigated.
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3.2 Complex action problems

Moving on to the second of the computational challenges outlined above, in this
section we briefly discuss complex action problems. As already mentioned, the
notorious sign problem associated with finite baryon chemical potential µB prevents
the exploration of the QCD phase diagram in some of the most interesting regions.
For a pedagogical introduction to the topic, [88] is recommended. This particular
issue is an instance of a fermionic sign problem, versions of which also prohibit
studies of many strongly correlated condensed matter systems. Different types of
complex action problems can also emerge in various settings, such as with topological
terms in the actions of lattice gauge theories (e.g. QCD with a θ-term) or for complex
external fields, among others.

To illustrate complex action problems with a simple example, consider the purely
real Gaussian integral [89]

Z(λ) =

∫ ∞

−∞
dx e−x

2+iλx =
√
πe−

λ2

4 . (3.1)

It has the form of a simple partition function with a complex action for non-zero
values of λ. The real part of the integrand is shown in Figure 3.2, illustrating that
it is a smooth and positive function for λ = 0, but oscillates wildly for λ = 50.
Whereas the integral takes the value

√
π for λ = 0, for λ = 50 it evaluates to

∼ 6.5 × 10−272. Therefore, for a naive stochastic evaluation of this integral, an
extremely large number of Monte Carlo samples with contributions of the order O(1)
needs to be averaged over in order to yield a result that is hundreds of orders of
magnitude smaller. Obtaining a reliable result with sufficient statistical significance
to be distinguished from zero thus represents a highly difficult task. The precise
evaluation of integrals of highly oscillatory functions via statistical sampling is an
instance of a numerical sign problem or complex action problem. In specific cases,
sign problems can be shown to be NP-hard [90]. This means that the complexity of
the algorithm scales worse than polynomially with the system size.

For complex actions, standard importance sampling is not applicable due to the
breakdown of the usual interpretation of the Boltzmann factor as a positive-definite
probability. Formally, this is not a problem, since in principle it is always possible to
shift the problematic part of the full weighting factor ρ(x) ∈ C into the observable
and computing expectation values using a smooth and real weight ρR(x) ∈ R, i.e.

⟨O(x)⟩ =
∫
dxO(x)ρ(x)∫

dx ρ(x)
=

∫
dxO(x) ρ(x)

ρR(x)
ρR(x)∫

dx ρ(x)
ρR(x)

ρR(x)
=

〈
O(x) ρ(x)

ρR(x)

〉
x∼ρR(x)〈

ρ(x)
ρR(x)

〉
x∼ρR(x)

. (3.2)

This procedure is called reweighting, and the denominator of the last expression
is usually referred to as the average sign. A common choice for the real-valued
weighting factor is ρR ≡ |ρ|. Using the language of statistical mechanics, the average
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Figure 3.2: Illustration of a complex action problem in a simple Gaussian integral.

sign can be written as

1

ZR

∫
dx

ρ(x)

ρR(x)
ρR(x) =

1

ZR

∫
dx ρ(x) =

Z

ZR
= e−

V
T
∆f(T ) . (3.3)

Here, we have identified Z = e−V/Tf(T ), where f(T ) denotes the free energy density.
Accordingly, one can see that at fixed temperature, the average sign decays expo-
nentially with increasing system size. Since one is usually interested in taking the
thermodynamic limit, this becomes problematic: for an average sign close to zero,
the cancellation of large contributions requires an extremely large sample size to
yield a reliable result. The computational cost then grows exponentially with the
volume in order to achieve the same numerical accuracy.

A variety of approaches has been explored to solve complex action problems in
many contexts. For QCD and related theories, these include reweighting [91], com-
plex Langevin [92–95], Lefschetz thimbles [96–98], dual formulations [99–104], Taylor
expansion around µB = 0 [105–107], analytic continuation from imaginary µB [107–
109], and the density-of-states (DoS) method [110–112]. It is widely believed that
no general solution exists that is applicable to all complex action problems. Instead,
different problem settings likely require individual, specialized approaches. In this
thesis, the focus is on the DoS method. Specifically, in Chapter 7 it is shown that
with a particular generative machine learning architecture—the same approach used
to solve critical slowing down in the Schwinger model—the DoS can be computed
directly for certain theories with complex actions, thereby circumventing some of
the limitations of traditional MCMC methods.
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3.3 From imaginary to real time

We now turn our attention to the third and final computational barrier considered
in this work: the extraction of real-time physics from imaginary-time data via spec-
tral reconstruction, which is a heavily ill-conditioned inverse problem. While many
static properties of strongly correlated quantum systems are by now well understood
and routinely computed using the combined strength of different non-perturbative
approaches—such as lattice calculations and functional methods—a similar under-
standing of real-time properties is still the subject of ongoing research. Take e.g.
the phenomenon of energy and charge transport, which so far has defied a quanti-
tative understanding from first principles. This universal phenomenon is relevant
to systems at vastly different energy scales, ranging from ultracold quantum gases
to the quark-gluon plasma. There are two limitations preventing the direct applica-
tion of most non-perturbative approaches to this problem. Firstly, in order to carry
out quantitative computations, time has to be analytically continued into the com-
plex plane to Euclidean time. Direct computations in Minkowski spacetime would
require evaluating path integral expressions weighted by a pure phase of the form
exp (iS), which may be viewed as the most difficult type of complex action problem
imaginable. Secondly, explicit computations are either fully numerical or at least in-
volve intermediate numerical steps, thereby complicating the analytic continuation
of results from imaginary back to real time.

For QCD in particular, the resolution of many open questions requires the knowl-
edge of time-like observables and hence the computation of real-time correlation
functions. Applications include the hadronic resonance spectrum, scattering pro-
cesses, as well as transport and non-equilibrium phenomena in heavy-ion collisions.
For example, the computation of the glueball spectrum via Bethe-Salpeter equations
relies on time-like propagators for the gluon and ghost. Likewise, QCD transport co-
efficients used in hydrodynamic simulations can be computed diagrammatically from
the real-time gluon propagator. Furthermore, phenomenological transport models
with their underlying assumption of a quasi-particle nature of the gluon can hugely
benefit in multiple ways from these quantities. First of all, a reliable computation
of the gluon spectral function may offer much-needed support for the quasi-particle
assumption of these models, as well as give access to its limitations. Secondly, the
gluon spectral function itself can feature as a direct input and pivotal building block
in these models. Together with further time-like correlation functions, this offers
a path for a systematic quantitative improvement of phenomenological transport
approaches towards first-principle transport in QCD.

To make progress in this direction, one needs to undo the analytic continuation of
approximately known Euclidean correlation functions. The most relevant examples
are two-point functions, the Euclidean propagators. The Källén-Lehmann (KL)
spectral representation [113, 114] relates the propagators, be they in Minkowski or
Euclidean time, to a single function encoding their physics—the spectral function.
If one can extract from the Euclidean two-point correlator its spectral function, the
corresponding real-time propagator can be immediately computed.
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The KL representation of two-point correlation functions in momentum space
reads

G(p0) =

∫ ∞

0

dω
π

ω ρ(ω)

ω2 + p20
=

∫ ∞

0

dωK(p0, ω) ρ(ω) , (3.4)

with the KL kernel K(p0, ω) and ρ(−ω) = −ρ(ω). In the vacuum, the spatial
momentum dependence of the propagator can be obtained via a Lorentz boost by
p20 → p2 with p2 = p20 + p⃗2, and we write p instead of p0 from now on for notational
simplicity. With Equation (3.4), the spectral function is obtained from the retarded
propagator via

ρ(ω) = 2 ImG(−i(ω + i0+)) . (3.5)

A general spectral function consists of a continuous part ρ̃ and a sum of particle and
resonance peaks (proportional to the δ-function and its derivatives). For asymptotic
states, ρ is the probability for (multi-)particle excitations to be created from the
vacuum in the presence of the corresponding quantum field. Consequently, in this
case it is positive semi-definite. For propagators of ‘unphysical’ fields, such as gauge
fields, the spectral representation may still hold. However, the spectral function can
then also have negative parts, and the existence of a spectral representation simply
constrains the allowed complex structure of correlation functions; see e.g. [115–119].

Importantly, Euclidean correlators obtained from numerical calculations are gen-
erally only available in terms of discrete sets of observations Gi at NG Euclidean
momenta pi with finite precision. Relating the results to the associated Minkowski
propagators via Equation (3.5) is problematic; see e.g. [120, 121]. The analytic con-
tinuation via p→ −i(ω + i0+) is formally ill-conditioned, since further assumptions
about the complex structure need to be made. Instead, the usual strategy is the
numerical inversion of the integral transformation—which, however, is numerically
ill-conditioned and needs to be regularized. This quickly becomes evident when
one approximates the KL integral by a discrete sum and attempts a naive inversion
of the resulting matrix-vector multiplication to compute the spectral function at a
discrete set of frequencies ωi with spacing ∆ω, i.e.

Gi = K̃ij ρj −→ ρi = (K̃−1)ij Gj , (3.6)

where K̃ij = ∆ωK(pi, ωj). For common ranges of pi and ωi, the matrix K̃ exhibits
a pathologically large condition number due to the presence of small eigenvalues.
Since these eigenvalues become extremely large in the inverse matrix, even tiny
fluctuations in the data points Gi are greatly exacerbated. Hence, any attempt to
compute an approximation ρ̂ by naive inversion fails spectacularly at the magni-
tudes of statistical errors typically achieved in numerical calculations of Euclidean
correlation functions.

The problem is illustrated in Figure 3.3 at the example of a Breit-Wigner distri-
bution as the spectral function, defined as

ρB(ω) =
4AΓω

4Γ2ω2 + (M2 + Γ2 − ω2)2
, (3.7)
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Figure 3.3: Illustration of an ill-conditioned reconstruction. (a) Breit-Wigner spec-
tral function and associated propagator. (b) Spectral function obtained
from the propagator with small additive noise using a naive matrix in-
version. The result is completely polluted by strong fluctuations.

using the parameters A = 1.6, M = 1, Γ = 0.8. Equation (3.4) can be solved
analytically for this spectral function to yield the propagator

GB(p) =
A

(p+ Γ)2 +M2
. (3.8)

Applying Equation (3.6) to compute an approximation ρ̂B from ĜB = GB+ ϵ, using
additive Gaussian noise ϵ ∼ N (0, σ) with σ = 10−4, results in fluctuations tens of
orders of magnitude larger than the true solution.

A variety of approaches has been explored to tackle this issue, such as the max-
imum entropy method [122–124], Bayesian inference techniques [125, 126], suitable
expansions in functional spaces [117, 120, 121, 127, 128], Padé-type approximants
[129, 130], Tikhonov regularization [131–133], neural networks [134–137], and kernel
ridge regression [138, 139]. Alternative approaches based on the existence of complex
conjugate poles have also been considered, see e.g. [129, 140–147]. In Chapter 8,
a novel approach to spectral reconstruction from the perspective of probabilistic
inverse theory with Gaussian processes is investigated.
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4 Machine learning

In our quest towards breaking through the computational barriers discussed in Chap-
ter 3, we turn to the application of machine learning techniques. These methods
have proven capable of efficiently identifying high-level features in a broad range of
data types—in many cases, such as speech or image recognition, with spectacular
success. They are also increasingly applied to a variety of problems in the natu-
ral sciences. Deep neural networks in particular have demonstrated unprecedented
levels of prediction and generalization performance in scientific tasks. Accordingly,
there is also growing interest in the lattice community to harness the capabilities
of these algorithms. Applications include predictive objectives, such as detecting
phase transitions from lattice configurations or predicting action parameters, as
well as generative modeling for the development of novel sampling algorithms. For
a pedagogical introduction to machine learning for physicists, the interested reader
is referred to [148]. For reviews on applications in physics, see [149–151].

This chapter introduces the relevant frameworks that are employed in the present
work, namely deep neural networks in Section 4.1, normalizing flows in Section 4.2,
and Gaussian process regression in Section 4.3. The following text has some overlap
with parts of [5–7].

4.1 Deep neural networks

In this section, the principles behind deep neural networks are sketched, starting
with the multi-layer perceptron (MLP) as an illustrative example and subsequently
introducing convolutional neural networks (CNN). Afterwards, the meaning of learn-
ing is explained and some aspects of classification and regression tasks are discussed.
For a comprehensive textbook treatment of these deep learning concepts, [152] is
recommended.

4.1.1 Multi-layer perceptrons

Simply put, artificial neural networks are just parametrized functions. They can
exhibit high complexity, but are usually built from simple elements inspired by the
basic computational units of biological brains, namely neurons and synapses. Each
neuron performs a simple arithmetic operation on its input, which can be one or a
collection of numbers, from which a single output is calculated. More specifically,
consider a collection of neurons labeled by the index j connected by synapses to one
receiving neuron i. Let xj ∈ R be the output of neuron j. The associated synapse
is given a weight wij which acts as a multiplicative factor on xj. Neuron i collects
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Figure 4.1: Illustration of a standard MLP with one hidden layer.

all outputs in a sum and optionally adds a bias bi. Finally, the result is handed to a
non-linear activation function A(·). Taken together, the output xi is calculated as

xi = A

(∑
j

wijxj + bi

)
. (4.1)

This allows for the construction of in principle arbitrarily structured neural net-
works by composing many such units in various ways. Here, we restrict ourselves to
the case where neurons are organized in layers, with each neuron connected only to
neurons of the immediate previous and next layer. Networks of this type are called
“shallow” if they consist of only an input and output layer, and “deep” if there also
are intermediate (“hidden”) layers. This is the basic structure of the MLP, shown
schematically in Figure 4.1. Essentially, a MLP performs repeated matrix-vector
multiplications with additional non-linearities in between. Without further restric-
tions on the connectivity, such networks and layers are called fully-connected. The
parameters of a MLP are its weights and biases, while e.g. the number of layers and
neurons per layer are usually called hyperparameters. In such a network, information
can only be processed in one direction, i.e. the transformation is not invertible per
se and contains no loops. Architectures of this type are called feedforward networks.

Two of the most important aspects of MLPs are the non-linearity of activations
and the utilization of hidden layers, which together allow to distinguish data that
are not linearly separable. Without non-linear activation functions, a network con-
sisting of several layers can always be reformulated in terms of a shallow network
since all operations are linear transformations. Hence, networks may only be con-
sidered “deep” if they exhibit both hidden layers and non-linearities between them,
which has been one of the main pillars of deep learning’s success. Even though the
basic operation performed by a single neuron is just weighted addition, it has been
demonstrated that deep neural networks are able to learn extremely complicated
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transformations. In fact, one can formally prove that under certain conditions, any
continuous function can be approximated by a deep neural network with a finite
number of neurons [153]. Such proofs are called universal approximation theorems.

In practice, many different types of activation functions are employed. One of
the most common choices, which is also used throughout this work, is the rectified
linear unit (ReLU) [154] and its variants. It is defined as

ReLU(x) = max(0, x) . (4.2)

A popular smooth alternative to this activation with similar properties is given by
the SoftPlus function, defined as

SoftPlus(x) = log(1 + exp(x)) . (4.3)

Other frequently employed activations include e.g. sigmoid-type functions like tanh
or the logistic function, which are used to constrain neuron outputs to fixed intervals.

4.1.2 Convolutional neural networks

This section briefly introduces CNNs [155]. They are inspired by the biological
structure of the animal visual cortex, where patches of a largely homogeneous dis-
tribution of neurons only fire in response to activity in restricted clusters of the
visual field. Similarly, convolutional layers in artificial neural networks enforce lo-
cality and translational symmetry, and their primary area of application has been in
the field of computer vision. From the computational viewpoint, one of the CNN’s
most important features is its amenability to parallelization on graphical processing
units, which can render its evaluation significantly more efficient than the dense
matrix-vector multiplications in the fully-connected layers of a MLP. The advent
of the CNN has seen tremendous impact in the machine learning community. Its
use first led to a significant improvement of earlier performance benchmarks of neu-
ral networks in various image classification challenges. Subsequently, it has been
established as one of the most important building blocks of modern deep learning
architectures; see [156] for a recent review.

In convolutional layers, the same arithmetic operation is applied to different
patches of input data on a regular grid, thereby mapping it to an output of the
same dimensions. Mathematically, this is still just a matrix-vector multiplication as
in fully-connected layers, but with additional constraints enforcing greater sparsity
and redundancy in the weight matrix. Consider the one-dimensional case which
operates on input vectors x ∈ Rn. We define the convolution kernel or filter as a
set of weights w ∈ Rm≤n. Furthermore, we introduce a stride parameter s which
determines the gap between consecutive applications of the convolution operation.
x is mapped to a vector y by

yi =
m∑
j=1

wj · xs·i+j + b , (4.4)
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Figure 4.2: Illustration of a convolutional layer for two-dimensional input data.

where b again denotes an optional bias. The above definition straightforwardly
generalizes to higher dimensions; an illustration for two-dimensional input data is
shown in Figure 4.2. Usually, more than one pair of kernel and bias is applied in
the same layer, leading to several outputs. These are called channels, following the
naming convention of color channels in images. Accordingly, input data can also
have multiple channels already, which may be mixed into a single output channel
by applying different kernels and summing all contributions.

An essential advantage of convolutional over fully-connected layers is that the
degree to which information is locally mixed can be precisely controlled by the choice
of the kernel size. This is important whenever a notion of spatial or temporal locality
is present in the input, such as in images or time series data. By taking such prior
information about the data into account, the learning of meaningful representations
is encouraged. Considering e.g. the task of object recognition, the first layer might
learn to identify edges, which may then be clustered into simple shapes, and finally
internal representations of whole objects. Learning abstract representations is often
additionally facilitated through the use of so-called pooling layers. They reduce the
information content by filtering the outputs of several neurons into a single input for
the next layer, essentially creating an information bottleneck. Common choices are
average pooling, which calculates the mean, as well as max pooling, which singles
out the largest value.

4.1.3 Learning as an optimization problem

Having discussed the meaning of “deep”, we now move on to define “learning”. Gen-
erally speaking, neural networks are made to approximate some desired function by
optimizing their weights and biases. This is usually achieved by iteratively mini-
mizing an appropriate loss function L with respect to the model’s parameters using
some form of gradient descent. In their most basic implementation, discrete gradient
updates take the form

w′
i = wi − γ

∂

∂wi
L(wi) . (4.5)



Chapter 4. Machine learning 33

The step size hyperparameter γ is commonly called the learning rate. The optimiza-
tion procedure consists of repeatedly calculating the loss gradients via automatic
differentiation [157] and applying a gradient update, which is called training. The
gradients are calculated successively from the last to the first layer by applying the
chain rule. This procedure is called backpropagation.

Traditionally, optimization was performed on the whole available dataset at once.
However, this is computationally expensive and often completely infeasible with the
increasingly large datasets available today. Instead, the data is now usually split
into randomized batches, and the batch size is considered a hyperparameter. Since
the gradients of the loss function computed only on a subset of the data are an
approximation of the actual gradient from the whole dataset, this optimization pro-
cedure is commonly called stochastic gradient descent. Many improved versions of
gradient descent have been developed, such as the popular Adam optimizer [158],
which is also used throughout this work. It adds momentum terms to Equation (4.5)
and computes individual learning rates γi for all weights wi from some base learning
rate γ. It is not clear a priori what are the optimal values for γ and other hyper-
parameters that lead to the best performance for a given problem setting, and they
must generally be determined empirically.

In the following, two supervised learning scenarios are illustrated for which neural
networks are commonly employed, starting with non-linear regression. Here, the
optimization objective is to approximate some desired function that maps input
data to n-dimensional vectors of real numbers. To achieve this, n neurons without
activation functions are used in the last layer of a feedforward network. Denoting
their outputs after a forward pass as y ∈ Rn and the associated ground truth labels
as ŷ, a common choice for a suitable loss function is the mean squared error, defined
as

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.6)

for a single input-output pair. Hence, using LMSE for optimization corresponds to
minimizing the Euclidean distance between predictions and ground truth values. If
the trained network generalizes well, it should be able to correctly predict labels in
close proximity to the ground truth for previously unseen data.

Another common task is the classification of input data into distinct categories.
Assuming n different classes, one can use similar networks as for the non-linear
regression task, but with an additional SoftMax activation function in the last layer,
defined as

si(y) =
eyi∑n
j=1 e

yj
with

n∑
i=1

si = 1 . (4.7)

Since the sum of all outputs is always exactly 1, they can be interpreted as proba-
bilities for each class. The ground truth labels are so-called one-hot vectors ŷ, which
are simply n-dimensional vectors with a single entry of 1 corresponding to the asso-
ciated class of a sample and and all other components set to 0. The corresponding
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Figure 4.3: Classification of spiral arms using a MLP. Dot colors represent class
labels, background colors show the associated prediction landscape.

loss function is the cross entropy, defined as

LCE = −
n∑
i=1

ŷi · log(si(y)) . (4.8)

For the case of n = 2 (binary classification), it is possible to reduce the number
of neurons in the last layer to a single output, using 0 and 1 as the class labels.
The activation function is then just the sigmoid-shaped logistic function, of which
SoftMax is a generalization. It is defined as

σ(y) =
1

1 + e−m(y−y0) , (4.9)

where y0 corresponds to the curve’s midpoint and m determines its logistic growth
rate or steepness. The loss then simplifies to the binary cross entropy, defined as

LBCE = −(ŷ · log(σ(y)) + (1− ŷ) · log(1− σ(y)) . (4.10)

If the trained network generalizes well, it should assign high probability to the correct
class for previously unseen data.

In order to illustrate both the capabilities and limitations of simple deep neural
networks, a MLP with two hidden layers is trained to classify spiral arms; see Fig-
ure 4.3. This dataset cannot be linearly separated, but the network still manages
to correctly identify which arm a given point belongs to by learning reasonable de-
cision boundaries. Nevertheless, the depicted prediction landscape also shows that
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its performance would break down when trying to classify longer arms than it has
seen during training: beyond the most extreme points of the training dataset, the
decision boundaries start to propagate linearly away from the center. The issue
illustrates one of the pitfalls of many deep learning architectures, namely their in-
ability to properly extrapolate predictions unless explicitly designed to do so. This
goes to show that deep learning is not magic, and we have to adjust our expecta-
tions of what it can achieve. In most cases, neural networks will try to find the
least-effort solution to a given problem if they are not deliberately nudged towards
something better.2 For the particular case of classifying spiral arms, one may po-
tentially achieve this by implementing some form of rotational symmetry into the
network, similar to how convolutional layers implement translational symmetry. We
will return to this powerful idea in later chapters when deep learning architectures
are designed to respect the symmetries of lattice field theories.

Moreover, from the perspective of traditional statistical modeling and optimiza-
tion theory, it may seem highly counterintuitive that neural networks with many pa-
rameters are able to generalize to previously unseen data at all. Naively, it appears
that models are in fact completely overparametrized, especially when considering
some of the current state-of-the-art architectures whose parameter counts go into
the billions [159]. While these models are incredibly successful empirically, theo-
retical understanding of their success is still the subject of ongoing research [160].
Nevertheless, overfitting does indeed occur when models are trained naively. The
simplest strategy to prevent this from happening is to just stop the training as soon
as the prediction error on a test dataset is observed to reach a minimum. Other
techniques to combat overfitting include e.g. Dropout [161] and regularization by
weight decay [162].

4.2 Normalizing flows

Beyond their usefulness as predictive models, feedforward neural networks may also
be used as trainable components in more complicated transformations, such as nor-
malizing flows used for generative modeling. Flows are a class of probabilistic models
for which both efficient sampling and density estimation are made possible using a
change-of-variables formula [163–167]. Provably exact sampling that corrects for
deviations between the model and target distributions can be obtained with inde-
pendence Metropolis [168] or reweighting. These may be applied a posteriori, en-
abling embarrassingly parallel sampling that can provide practical advantages over
standard MCMC algorithms.

Normalizing flows are attractive because—among several other interesting features—
they have the potential to solve critical slowing down, for reasons that will become
clear later. In the context of lattice calculations, they have been successfully applied
to model scalar field theory [169–173] as well as U(1) and SU(N) gauge theories
[174–178]. In Chapter 6, normalizing flows are developed to model lattice field

2Perhaps artificial neural networks are not so different from human brains after all.
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Figure 4.4: Illustration of a normalizing flow composed of n invertible flow layers.

theories with dynamical fermions. Regarding their application to complex action
problems, flows have been studied in the context of contour deformations [179, 180].
In Chapter 7, flows are applied to the density-of-states approach. For an in-depth
introduction to normalizing flows for lattice field theory with further implementa-
tion details and explanations, see [181]. Other machine learning approaches studied
in this context are the restricted Boltzmann machine [182, 183], autoregressive net-
works [184–188], the self-learning Monte Carlo method [189–195], and adversarial
learning [196–198]; see also Section 5.1.

Starting with a prior distribution over a continuous space X with a known prob-
ability density r(ξ), an invertible transport map (“flow”) f : X → X , ξ 7→ ϕ can be
used to redistribute samples ξ under r(ξ) to samples ϕ = f(ξ) under a new den-
sity q(ϕ). We only require that the map be diffeomorphic, i.e. that both f and its
inverse are differentiable. The resulting density q(ϕ) is fixed by the choice of prior
distribution and map. It can be evaluated explicitly as

q(ϕ) = r(ξ)

∣∣∣∣det(∂f∂ξ
)∣∣∣∣−1

, (4.11)

where ξ = f−1(ϕ) and det(∂f/∂ξ) is the Jacobian determinant of f . Because the
density after the transformation can be computed explicitly, flows provide a mecha-
nism for both sampling and density estimation. Similar to the standard deep neural
networks discussed previously, a flow f is often constructed by composing a number
of flow layers fi; see Figure 4.4 for an illustration. However, in contrast to the layers
of feedforward networks, individual flow layers must be invertible by construction.

By choosing a sufficiently expressive parametrization of f , the space of associated
transformations (corresponding to a large variational family of model densities q)
can be explored through numerical optimization in order to find an instance that
best approximates some target density p. In particular, the parameters of f may be
optimized by performing stochastic gradient descent on a measure of the discrepancy
between the two densities q and p, i.e. an appropriate loss function. A common choice
is the Kullback-Leibler divergence [199], which is a measure of the relative entropy
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Figure 4.5: Illustration of the affine coupling layer defined in Equation (4.15). The
blue boxes depict element-wise operations.

between distributions. It is defined as

DKL(q||p) =
∫

Dϕ q(ϕ)(log q(ϕ)− log p(ϕ))

=
〈
log q(ϕ)− log p(ϕ)

〉
ϕ∼q(ϕ) ≥ 0

(4.12)

and takes the minimum value DKL(q||p) = 0 iff q = p. With expectation values mea-
sured using samples from the model distribution q, DKL(q||p) can be stochastically
estimated without requiring samples from the target distribution p.

For targets of the form p(ϕ) = e−S(ϕ)/Z, the Kullback-Leibler divergence can be
evaluated as

DKL(q||p) =
〈
log q(ϕ) + S(ϕ)

〉
ϕ∼q(ϕ) + logZ . (4.13)

When the normalization Z is not known a priori—e.g. for virtually all interesting
lattice field theories—DKL can only be estimated up to the constant logZ. However,
this does not affect optimization and one may freely use (DKL − logZ) as the loss
function for training, which then provides a bound on logZ. Writing the partition
function as

Z =

∫
Dϕ q(ϕ)e

−S(ϕ)

q(ϕ)
=
〈
e−S(ϕ)−log q(ϕ)

〉
ϕ∼q(ϕ) , (4.14)

it follows that any model giving good agreement to the target distribution necessarily
provides a precise, unbiased estimate of Z through model samples alone.

A common building block for the construction of invertible flow transformations is
the affine coupling layer. In each such layer, the input ξ is split into two equal-sized
subsets ξa, ξb which are transformed according to

ξ′a = ξa

ξ′b = ξb ⊙ es(ξa) + t(ξa) ,
(4.15)

i.e. ξa remains unchanged (“frozen”) while ξb is updated (“active”); see Figure 4.5
for an illustration. Here, the symbol ⊙ denotes element-wise multiplication. Each
affine coupling layer is trivially invertible and has a triangular Jacobian matrix,
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Figure 4.6: Illustration of independence Metropolis sampling for normalizing flows.

thereby making the computation of its determinant and thus the model density q
tractable. The context functions s, t that take the frozen variables as inputs and are
used to update the active ones can be arbitrary functions. As mentioned above, one
may parametrize them with feedforward neural networks, which are then optimized
during training. Importantly, they are not required to be invertible themselves,
thereby providing much freedom in choosing a particular parametrization. Expres-
sive transformations are built by chaining together many such affine coupling layers
with alternating frozen and active subsets.

The simplest and most straightforward approach to utilize a trained flow for sam-
pling from the target distribution is via the aforementioned independence Metropolis
algorithm [168]. Starting from some initial configuration ϕ, the probability to accept
a statistically independent proposal ϕ′ generated by the flow model is defined as

A(ϕ→ ϕ′) = min

(
1,
e−S(ϕ

′)

e−S(ϕ)
q(ϕ)

q(ϕ′)

)
= min

(
1,
e−S(ϕ

′)−log q(ϕ′)

e−S(ϕ)−log q(ϕ)

)
,

(4.16)

see Figure 4.6 for an illustration. It is instructive to compare Equation (4.16) with
Equations (2.2) and (2.3) as well as Figure 4.6 with Figure 2.1.

From the second line of Equation (4.16), one can immediately see why flow-based
sampling has the potential to solve critical slowing down, simply because it allows
large steps to be taken in configuration space. With conventional MCMC algorithms,
the large action differences associated with such steps render transitions to greater
action values extremely unlikely because the associated acceptance probabilities are
strongly suppressed. With flow-based sampling, these differences can be compen-
sated by the model probabilities, provided that the target distribution is modeled
sufficiently well such that S(ϕ)+ log q(ϕ) is approximately constant as a function of
ϕ. Hence, reaching high acceptance rates is not anymore a question of distance in
configuration space, but rather a question of model quality. By investing the bulk
of the computational effort into learning and evaluating a high-quality flow instead
of making small updates to a Markov chain, a significant advantage over traditional
sampling algorithms may be achieved. Furthermore, the flow-based approach allows
embarrassingly parallel sampling of the model distribution. An asymptotically exact
Markov chain can then be constructed in a trivial post-processing step.
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4.3 Gaussian process regression

This section serves as a brief introduction to Gaussian process regression (GPR).
Starting from early developments in the context of geostatistics in the 1950s [200],
today GPR is widely employed in a variety of settings for the probabilistic mod-
eling of functions from a finite number of measurements; see [201, 202] for recent
reviews. For a modern, comprehensive textbook treatment of the topic, see [203].
For a pedagogical introduction with simple code examples, [204] is highly recom-
mended. The notation used in Section 3.3 is adopted for consistency, however, the
general formalism presented here is also applicable outside of the specific context
of spectral reconstruction. In contrast to the topics of the previous sections, the
method described here is not a deep learning algorithm. However, there has been
considerable work in the machine learning community connecting both subjects.

GPR is discussed here for the case where direct observations are available for the
function to be modeled. We assume our knowledge of a function ρ(ω) to be encoded
in a GP with mean and covariance functions µ(ω), C(ω, ω′), denoted by

ρ(ω) ∼ GP (µ(ω), C(ω, ω′)) . (4.17)

The covariance is assumed to be symmetric, i.e. C(ω, ω′) = C(ω′, ω). As per the
definition of a GP, any finite set of function evaluations at N sample points ωi follows
a multivariate normal distribution,ρ(ω1)

...
ρ(ωN)

 ∼ N


µ(ω1)

...
µ(ωN)

 ,

C(ω1, ω1) . . . C(ω1, ωN)
... . . . ...

C(ωN , ω1) . . . C(ωN , ωN)


 . (4.18)

Similarly, we can write down the joint distribution of a set of observations ρ̂i at
points ω̂i and the value of ρ at an arbitrary point ω as(

ρ(ω)

ρ̂

)
∼ N

((
µ(ω)

µ̂

)
,

(
C(ω, ω′) ĈT (ω)

Ĉ(ω′) Ĉ+ σ2
n · 1

))
, (4.19)

where boldface type denotes vector and matrix quantities. Here, we have defined
µ̂ ≡ µ(ω̂i), Ĉi(ω) ≡ C(ω̂i, ω), and Ĉij ≡ C(ω̂i, ω̂j). σ2

n quantifies the point-wise
variance of additional measurement noise which may be present in the observations
ρ̂. Due to the inherent analytic tractability of the normal distribution, one can
derive the posterior distribution of function values conditioned on observations as

ρ(ω)|ρ̂ ∼ N
(
µ(ω) + ĈT (ω)

(
Ĉ+ σ2

n · 1
)−1

(ρ̂− µ̂) ,

C(ω, ω′)− ĈT (ω)
(
Ĉ+ σ2

n · 1
)−1

Ĉ(ω′)

)
.

(4.20)

In order for GPs to be useful for modeling, the covariance C(ω, ω′) is commonly
defined via a so-called kernel function. One may encode any prior beliefs about the
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shape of plausible solutions for a given problem by choosing an appropriate form,
which is then usually parametrized by a small number of hyperparameters. For an
introduction to constructing GP kernels of various types as well as strategies to apply
and combine them, see the kernel cookbook [205]. The mean function µ(ω) is often
set to zero, since its contribution can be fully absorbed by the kernel. Typically,
the latter is the sole focus of the optimization procedure. However, a custom mean
function may still be useful in certain situations in order to incorporate prior beliefs
about the functional form of the expected solution. This can improve the calculation
by providing a better starting point for the prediction.

The mean and covariance of the GP posterior often depend strongly on the par-
ticular values of the kernel’s hyperparameters. An optimal choice for these hyper-
parameters, denoted here by α̂, may be obtained by maximizing the associated
likelihood,

p(ρ̂|α) =
(
(2π)N det

(
Ĉα + σ2

n · 1
))− 1

2 ·

exp

(
−1

2
(ρ̂− µ̂)T

(
Ĉα + σ2

n · 1
)−1

(ρ̂− µ̂)

)
,

(4.21)

where we have written Ĉα̂ to emphasize the dependence on the hyperparameters.
Instead of directly maximizing p(ρ̂|α) as a function of α̂, one conventionally mini-
mizes the negative log likelihood (NLL),

− log p(̂f |α) =
1

2
(ρ̂− µ̂)T

(
Ĉα + σ2

n · 1
)−1

(ρ̂− µ̂)

+
1

2
log det

(
Ĉα + σ2

n · 1
)
+
N

2
log 2π .

(4.22)

However, since simply finding and employing the maximum likelihood configuration
of hyperparameters may ignore relevant additional structures in the posterior distri-
bution, one can also integrate out α̂ using suitable hyperpriors to account for some
variability.

A frequently used kernel parametrization is the radial basis function (RBF) kernel,
also called squared exponential. It is defined as

C(ω, ω′) = σ2
C exp(−(ω − ω′)2

2l2
) , (4.23)

where σC encodes the overall magnitude and l is a generic length scale controlling the
frequency of fluctuations. This kernel has been established as the standard choice
for many applications due to a number of attractive features, such as universality
[206] and every function in its prior being infinitely differentiable. It is suitable
for the prediction of smooth functions without any discontinuities in the first few
derivatives. The RBF kernel is also used for the results on spectral reconstruc-
tion presented in this work. An example for function prediction with GPR using
this kernel is shown in Figure 4.7. Other frequently used parametrizations include
the rational quadratic kernel, locally or globally periodic kernels, and the Matérn
covariance [207].
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Figure 4.7: (a) Flat GP prior with three sample functions. (b) GP posterior mean
and standard deviation for a small number of data points with finite
uncertainty.

Based on the above formulation of GPR for the modeling of direct observations ρ̂
at points ω̂, one can also derive closed-form expressions for inference from indirect
observations Ĝ at points p̂ that are generated from ρ(ω) by a linear forward process.
This is possible because linear transformations preserve Gaussian statistics. Hence,
based on this insight one may predict solutions to linear inverse problems. The
modified procedure involves all terms related to the observations that depend on
the discrete set of points ω̂, which are promoted back to the continuous domain
and subsequently integrated out to yield the nodes p̂ instead. In this work, the
linear forward process under consideration is of course the KL integral defined in
Equation (3.4). The regularized inversion of this integral transformation using GPR
is discussed in further detail and applied to the computation of ghost and gluon
spectral functions in Chapter 8.
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5 AI for lattice field theory: a first look

In this chapter, we take a first look at the use of modern machine learning techniques
in lattice field theory, with some of the computational barriers of Chapter 3 in mind.
The following two applications are presented:

• In Section 5.1, we discuss a first attempt at devising a generative neural sam-
pling algorithm for lattice calculations;

• In Section 5.2, interpretable deep learning is investigated for the extraction of
unknown relevant observables from lattice data.

These works represent some of the earliest applications of machine learning in this
domain. Although many of the associated ideas and components have since been
overhauled and specialized much further, the conceptual developments therein con-
tinue to guide and inspire current research efforts. Hence, it is worthwhile to revisit
these early ideas for harnessing the power of AI to solve the major computational
problems that we face.

5.1 Neural sampling with GANs

Following a brief introduction in Section 5.1.1, generative adversarial networks
(GAN) are discussed in Section 5.1.2. The proposed sampling algorithm is devel-
oped in Section 5.1.3. Numerical results are presented in Section 5.1.5 and a rough
comparison of the computational cost is provided in Section 5.1.6. We conclude
with a summary and outlook in Section 5.1.7. The contents of this section have
been published in [1] together with Jan M. Pawlowski.

5.1.1 Introduction

In order to tackle critical slowing down in lattice calculations, promising new ap-
proaches based on generative machine learning methods are currently being explored.
An interesting candidate for this purpose is the GAN [208], which has received much
attention in the machine learning community. By construction, the generated sam-
ples are statistically independent. Hence, there are in principle no autocorrelations if
they are arranged in a Markov chain. This makes GANs attractive for a first look at
designing a more efficient sampling approach based on machine learning. However,
simply replacing a MCMC algorithm with a GAN is problematic for several reasons.
Most importantly, the learned distribution typically shows non-negligible deviations
from the desired target and the model probabilites cannot be tractably computed.
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Figure 5.1: Schematic of a GAN’s components and data flow. Random numbers
are passed to the generator to produce fake samples. The discrimina-
tor learns to distinguish between real and fake. Training is performed
by backpropagating loss gradients through both networks and updating
weights in an alternating fashion.

This casts some doubt on the reliability of such an approach. Moreover, even if the
approximation by the network exhibits high precision, one cannot simply assume
that sampling from it is sufficiently ergodic. Implementing these key properties in
a conclusive manner is essential for accurate and reliable lattice computations.

In a first attempt to achieve this, a hybrid algorithm is proposed where the GAN
is implemented as an overrelaxation step in combination with conventional HMC.
This approach effectively breaks the Markov chain for observables unrelated to the
action, thereby potentially leading to a significant reduction in the associated au-
tocorrelation times. However, it is unclear whether asymptotic exactness can be
guaranteed with this method. Already at this point, it should be emphasized that
this is not an issue for the more sophisticated flow-based sampling algorithms dis-
cussed in later chapters. For the purpose of this appetizer, we shall simply ignore
these potential problems and just press on.

The approach is demonstrated in the context of real, scalar ϕ4-theory in two
dimensions. Aside from the aforementioned statistical concerns, the results show
that novel sampling algorithms based on machine learning are feasible, and motivate
further research into the matter.

5.1.2 Generative adversarial networks

GANs belong to a class of unsupervised, generative machine learning methods based
on deep neural networks. The characteristic feature that distinguishes them from
many other architectures is the utilization of game theory principles for their train-
ing. They consist of two consecutive feedforward neural networks, namely the gener-
ator G and discriminator D; see Figure 5.1 for a schematic. The generator computes
samples G(ξ) from random inputs ξ drawn from a multi-variate prior distribution
r(ξ). The discriminator receives these generator outputs as well as samples ϕ from



Chapter 5. AI for lattice field theory: a first look 45

a training dataset sampled from the target distribution p(ϕ). D is a binary classifier
that is trained to distinguish between ‘real’ and ‘fake’ samples. Its last layer consists
of a single neuron with a sigmoid activation. The binary cross-entropy defined in
Equation (4.10) is used as the loss function. Training corresponds to minimizing the
loss separately for D and G using opposite ground truth labels, respectively. This is
achieved by computing gradients via backpropagation through both networks and
applying gradient descent in an alternating fashion. In intuitive terms, the optimiza-
tion objective for the discriminator is to maximize its classification accuracy, while
the generator is trained to produce samples that cause false positive predictions in
the discriminator. The two networks play a zero-sum non-cooperative game, and the
model is said to converge when they reach so-called Nash equilibrium. If successful,
the generator approximates the true target distribution p(ϕ).

Since r(ξ) is commonly chosen to be a simple multi-variate uniform or normal
distribution from which one can easily obtain i.i.d. samples, candidate configura-
tions drawn from G are statistically independent by construction. This can provide
a potential advantage over traditional MCMC algorithms. However, in practice
one encounters deviations of varying severity between the model distribution of the
generator and the true target distribution. Furthermore, GANs may not be suffi-
ciently ergodic in order to perform reliable lattice calculations. This is especially
problematic in the case of so-called mode collapse, where the generator learns to
produce only one or a very small number of samples largely independent of its prior.
Insufficient variation among the GAN output is not punished by the discriminator
and can only be checked a posteriori. While a number of improved approaches to
deal with such issues has been proposed in the machine learning literature [209], one
may question whether GANs can indeed satisfy stringent ergodicity requirements.
Interestingly, it was shown that they can act as reliable pseudo-random number
generators, outperforming several standard, non-cryptographic algorithms [210].

5.1.3 Sampling algorithm

Using GANs to perform lattice calculations requires implementing a suitable selec-
tion procedure to generate new samples in the Markov chain. Naively, one could just
try to use the Metropolis accept/reject step defined in Equation (2.3), evaluating
only the action differences ∆S. However—even without worrying about violations of
asymptotic correctness due to ignoring the model probabilities of the samples—this
would not work in practice, simply because candidate configurations are accepted
either automatically if ∆S ≤ 0 or with probability exp(−∆S) if ∆S > 0. Accord-
ingly, such an algorithm only performs well if changes in the action are not too large.
Usually, MCMC updates can be tuned to avoid this problem and achieve reason-
able acceptance rates. For configurations from a GAN, large positive and negative
values for ∆S would be very common, since subsequent samples are uncorrelated.
Hence, this algorithm would effectively freeze at the lower end of the available action
distribution after a short time. Jumping to larger actions would be exponentially
suppressed, leading to a vanishing acceptance rate.
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Figure 5.2: Illustration of the hybrid algorithm using a GAN overrelaxation step.

In order to avoid the aforementioned issues, one possibility is to use the GAN
to implement an overrelaxation step, which can then be combined with any action-
based importance sampling algorithm. Overrelaxation was originally designed for
lattice calculations of SU(2) and SU(3) Yang-Mills theory by exploiting symmetries
of the action [211]. It is based on the fact that a candidate configuration is auto-
matically accepted in the Metropolis step if ∆S = 0, under the condition that the a
priori selection probability A0 is symmetric. This is achieved by performing certain
transformations of the gauge links that leave S unchanged. By itself, overrelaxation
is therefore not ergodic, since it operates on hypersurfaces of constant action. Ergod-
icity is achieved by combining it with a standard MCMC algorithm. In this manner,
autocorrelations can be reduced substantially while still asymptotically approaching
the correct distribution of the theory.

The method employed here for selecting suitable candidate configurations is based
on [212], where GANs are proposed as an ansatz to the more general task of solving
inverse problems. The approach is implemented with the following procedure (see
Figure 5.2 for an illustration):

1. Take a number of HMC steps nHMC to obtain a configuration ϕ;

2. Pre-sampling step: sample from the GAN until a configuration G(ξ) is found
that fulfills |∆S| = |S[G(ξ)] − S[ϕ]| ≤ ϵ. ϵ can be optimized to minimize the
total time required by the procedure;

3. Gradient flow step: perform a gradient descent of the associated latent variable
ξ using ∆S2 as the loss, i.e. ξ′ = argminξ(S[G(ξ)] − S[ϕ])2. ϕ′ = G(ξ′) is the
new configuration after the gradient flow.

In this manner, S[ϕ] and S[ϕ′] can ideally be matched arbitrarily well, down to
the available floating point precision. The action values can then be considered
effectively equal for all intents and purposes. In principle, gradient descent can
be performed for any randomly drawn ξ without the need for the second step. The
additional pre-sampling simply ensures that the distance in the latent space between
the initial ξ and the final ξ′ is already small a priori, which can speed up the gradient
flow and avoids the risk of getting stuck in a local minimum of the loss landscape.
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Figure 5.3: Illustration of the vanilla GAN architecture with fully-connected layers.

The optimal choice of ϵ, the gradient descent step size γ, as well as the sampling
batch size, can be determined through a hyperparameter optimization.

The potential improvement of the proposed hybrid algorithm over standard MCMC
methods is that it can effectively break the Markov chain for observables other than
the action while preserving some essential properties. By implementing the over-
relaxation step in combination with standard HMC, it is also not necessary for
the GAN to approximate the target distribution to an exceedingly high precision.
Another important aspect is the applicability to a much wider variety of theories
compared to conventional overrelaxation, since the algorithm does not depend on
specific symmetries of the action.

5.1.4 Model details

To put these ideas to the test, a GAN with fully-connected layers is trained on field
configurations from real, scalar ϕ4-theory as defined in Section 2.2 on a 32 × 32
lattice, using 1000 samples generated in the symmetric phase at κ = 0.21 and
λ = 0.022. For context, note that the phase transition occurs at roughly κ ≈
0.27 (with fixed λ = 0.022) [213]. The generator has an input layer with 256
neurons and one hidden layer of size 512 is chosen for both the generator and the
discriminator; see Figure 5.3 for an illustration of this architecture. The generator’s
last layer has no activation function, thereby allowing values G(ξ) ∈ R32×32. As
mentioned above, the discriminator’s output neuron features a sigmoid activation
to allow binary classification. For all other layers, the ReLU activation is used.

5.1.5 Results

The distributions of M and S computed with configurations sampled independently
from the GAN are compared to the HMC baseline in Figure 5.4. The distribution of
magnetization values already matches the baseline remarkably well. However, the
distribution of action values is considerably broader, indicating that the GAN has
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Figure 5.4: Comparison of magnetization (a) and action (b) distributions with 105

samples generated using HMC and the GAN.
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Figure 5.5: (a) Field configuration sampled with HMC. (b-d) Samples with the same
value of the action as (a), generated with the GAN overrelaxation step.

not managed to fully capture all relevant features of the theory. This difference is
compensated by the proposed hybrid algorithm, as discussed in the following.

First, the GAN’s ability to reproduce every desired action value is verified with
field configurations which were not part of the training dataset. Here, ϵ = 1 is used
for the pre-sampling step and a step size of γ = 10−5 for the gradient descent. In
the subsequent runs, the GAN is always able to produce samples with matching
actions. Figure 5.5 shows a sample from HMC and three corresponding proposals
generated with the overrelaxation method. The distributions of M and S obtained
with the modified sampling algorithm using nHMC = 3 are consistent with results
from the HMC baseline, see Figure 5.6. In particular, the difference between the
action distributions that was visible in Figure 5.4 has disappeared completely. This
is expected, since in the hybrid algorithm the actions are first generated with HMC,
and the subsequent overrelaxation step leaves S invariant.
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Figure 5.6: Comparison of magnetization (a) and action (b) distributions with 105

samples generated using HMC and the proposed hybrid algorithm.

5.1.6 Computational cost

In order to facilitate a rough comparison of the computational cost, both the HMC
update and the GAN overrelaxation step are implemented using the same software
framework, namely the deep learning library PyTorch [214]. All steps of the com-
putation except for the recording and monitoring functionality are performed on an
Nvidia GeForce GTX 1070. The average time required to accept one HMC trajec-
tory is measured to be 42ms.

For the GAN overrelaxation, the time needed depends strongly on the afore-
mentioned hyperparameters. In the pre-sampling step, one needs to consider the
behavior with respect to the batch size and ϵ. Larger batches require more time,
but are more likely to contain suitable samples for small values of ϵ. On the contrary,
if ϵ is larger, it is increasingly likely for any given sample to satisfy the criterion,
and small batch sizes are sufficient. In contrast, the gradient flow step is always
completed faster for smaller ϵ. It also generally depends on the discrete step size γ,
but different choices of this parameter are found to have only a weak effect on the
overall time. An optimal trade-off determined via a hyperparameter scan is found
to be at ϵ = 10−2 with a batch size of 103 and γ = 10−6. With these values, the
sampling and gradient flow step require on average 53ms and 64ms, respectively,
yielding a combined time of 117ms. While this is almost three times the duration of
evaluating one HMC trajectory, it must be contrasted against the potential advan-
tages by breaking autocorrelations of observables in the Markov chain. An in-depth
study of the achievable gains is beyond the scope of this first attempt, however,
some potential improvements to the proposed hybrid algorithm are discussed in the
following summary.
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5.1.7 Summary and outlook

Deep neural networks were investigated for the purpose of improving lattice calcu-
lations by generating independent field configurations. A simple hybrid algorithm
was constructed based on a combination of standard HMC and an overrelaxation
step implemented with a GAN. Distributions of basic observables generated by this
algorithm were observed to be consistent with the HMC baseline.

The time benchmarks and hyperparameter optimization suggest that the compu-
tational cost of the method could be further reduced by a simple modification to the
pre-sampling step. Here, most configurations are ignored until one with |∆S| < ϵ is
found. This repeated generation of samples which are immediately discarded again is
inefficient. Instead, one should maintain a reservoir of configurations from the GAN,
together with their associated actions. By repopulating this reservoir periodically,
it can be guaranteed that appropriate samples are always available for the gradient
flow step. With a conditional GAN [215], it may also be possible to reduce ∆S a
priori by using the target value of the action as the conditional parameter. Training
a conditional GAN at different action parameters may also allow extrapolation to
other regions of the phase diagram where no training data has been generated [198].

In summary, this work provides a first example of a novel sampling algorithm
for lattice calculations based on machine learning. The results presented in this
section motivate further research into generative neural samplers based on more
sophisticated architectures, which will be the subject of Chapters 6 and 7.
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5.2 Novel insights from interpretable AI

In this section, the extraction of relevant observables from lattice data via inter-
pretable AI is investigated. After a brief introduction in Section 5.2.1, we discuss
interpretable machine learning techniques in general and for this work specifically in
Section 5.2.2. Results are presented in Section 5.2.3 and we conclude in Section 5.2.4.
Further information and implementation details can be found in Appendix A. The
contents of this section have been published in [3] together with Stefan Blücher,
Lukas Kades, Jan M. Pawlowski, and Nils Strodthoff.

5.2.1 Introduction

It is well known that the occurrence of numerical sign problems in lattice calcula-
tions is formulation-dependent. In many cases, expressing the theory with different
degrees of freedom removes the problem completely. However, no such alternative
formulation has been found for lattice QCD at finite chemical potential. In this con-
text, it may be instructive to search for so far unidentified structures in the data.
Finding previously unknown observables that are characteristic for the theory under
study may then inform the construction of a novel formulation.

One ansatz for the identification of relevant observables is through representa-
tion learning, i.e. by training a machine learning architecture with a pretext task.
The rationale behind this approach is that the model learns to recognize patterns
which can be leveraged to construct observables from low-level features. However,
solving a given task does by itself not lead to novel physical insights, since the in-
ner structure of the algorithm typically remains opaque. This issue can at least
partially be resolved by the use of interpretable AI techniques, which have recently
attracted considerable interest in the machine learning community. In this work, we
focus on layer-wise relevance propagation (LRP) [216]. It is one of several popular
post-hoc attribution methods that propagate the prediction back to the input do-
main, thereby highlighting features that influence the algorithm towards/against a
particular classification decision.

This approach is tested in the context of three-dimensional scalar Yukawa theory
with two mass-degenerate flavors of staggered fermions as discussed in Section 2.4,
using the dimensionless formulation of the action for the scalar field as defined in
Equation (2.8). Inference of an action parameter is considered as a pretext task in
order to identify relevant observables. In a first step, it is demonstrated that this
is at least partially possible by training an MLP on a set of standard observables.
Here, it is shown that the relevance of features in different phases, as determined
by LRP, agrees with physical expectations. The results are benchmarked against
a similar method based on random forests. Subsequently, it is demonstrated that
the action parameter can be inferred directly from field configurations using a CNN.
LRP is employed to identify relevant filters and discuss how these align with physical
knowledge. This also allows the construction of a novel observable that appears to
be a distinctive feature of the paramagnetic phase.



52 5.2. Novel insights from interpretable AI

5.2.2 Interpretable AI

Simple methods from statistics and machine learning often lack the capability to
model complex data, whereas sophisticated algorithms typically tend to be less
transparent. A commonly used algorithm is principal component analysis (PCA).
It has been successfully applied to the extraction of several (already known) order
parameters for various systems [217–219]. However, its linearity prohibits the iden-
tification of more complicated quantities, e.g. Wilson loops in gauge theories [220].
Hence, we require tools capable of modeling non-linear features, such as deep neu-
ral networks. They allow for a more comprehensive treatment of complex systems,
which has been demonstrated e.g. for fermionic theories in [221, 222]. The approach
also enables new ways to locate phase transitions in a semi-supervised manner, such
as learning by confusion and similar techniques [223, 224]. For lattice QCD, action
parameters can be extracted from field configurations [225].

Overall, deep learning tools seem particularly well-suited to grasp relevant infor-
mation about lattice field configurations in a completely data-driven approach, by
learning abstract internal representations of relevant features. However, their lack of
transparency is frequently a major drawback of using such methods, which prohibits
access to and comprehension of these representations. A unified understanding of
how and what these architectures learn, and why it seems to work so well in a
wide range of applications, is still pending. To better understand the processes be-
hind phase classification with neural networks in lattice models, multiple proposals
have been made, such as pruning [220, 226, 227], utilizing (kernel) support vector
machines [228, 229], and saliency maps [230].

Moreover, in the broader scope of machine learning research, there has been grow-
ing interest in interpretability approaches, most of them focusing on post-hoc ex-
planations for trained models. So-called attribution methods typically assign a rel-
evance score to each of the input features, thereby showing what the classifier was
particularly sensitive to, or what influenced the algorithm towards/against a clas-
sification decision. In the domain of image recognition, such attribution maps are
typically visualized as heatmaps overlaying the input image. The development of
attribution algorithms is a very active field of research in the machine learning com-
munity. Therefore, the interested reader is referred to dedicated research articles
for more in-depth treatments [231, 232]. Interpretable AI in general is also an im-
portant topic outside of purely academic research, in particular for safety-critical
applications like self-driving cars, medical diagnosis, and crime prevention. In or-
der to promote trust in AI technologies among the general population, an improved
understanding of the inner workings of these machines is essential.

Very broadly, the most important types of such local interpretability methods
can be categorized as: 1. Gradient-based, such as saliency maps [233] obtained
by computing the derivative of a particular class score with respect to the input
features or integrated gradients [234]. 2. Decomposition-based, such as layer-wise
relevance propagation (LRP) [216] or DeepLift [235]. 3. Perturbation-based, as in
[236], investigating the change in class scores when occluding parts of the input.
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Figure 5.7: Illustration of LRP through the last two layers of a classification network
that predicts one-hot vectors. Relevance is indicated by arrow width.
The conservation law requires the sum of widths to remain constant
during backpropagation.

In this work, we focus on LRP, a particular variant of decomposition-based attri-
bution methods, which has been successfully applied to other problems in physics
and chemistry, e.g. in the context of atomistic systems [237]. Nevertheless, it should
be stressed that qualitative findings are expected to agree for all decomposition-
and gradient-based methods [238]. The general idea of LRP is to start from a rel-
evance assignment in the output layer and subsequently propagate this relevance
back to the input using certain propagation rules; see Figure 5.7 for an illustration
and Appendix A.2 for details. The method thereby assigns a relevance score to each
neuron, where positive (negative) entries influence the classifier towards (against) a
particular decision.

5.2.3 Results

In this section, numerical results for three-dimensional Yukawa theory are presented.
A MLP and a CNN are trained to infer the associated hopping parameter κ from a
set of known observables (Approach A), as well as solely from the raw field config-
urations (Approach B), akin to [225]. In the first case, without providing any prior
knowledge of the phase boundaries, LRP manages to reveal the underlying phase
structure and returns a phase-dependent importance hierarchy of the observables
in accordance with physical expert knowledge. In the second case, by calculating
the relevances of the learned filters, one can associate each of them with one of the
physical phases and thereby extract the known order parameters. Moreover, it facil-
itates the construction of a novel observable that characterizes the symmetric phase.
Both variants of this strategy are sketched in Figure 5.8. Since the action parameter
prediction is an ill-conditioned inverse problem, the optimization objective is formu-
lated in terms of maximum likelihood estimation. Assuming a Gaussian distribution
with fixed variance, this objective reduces to minimizing the MSE, which we use as
the loss function in the following. In addition, weight regularization is applied, see
Appendix A.4 for details.
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Figure 5.8: Diagram of the strategy to learn meaningful structures from lattice data
by analyzing networks trained for action parameter inference. Field con-
figurations used for training are either preprocessed into observables for
the MLP (Approach A) or directly used for a CNN (Approach B). Ob-
taining accurate predictions for the parameters indicates approximate
cycle consistency in the above diagram, which supports the notion that
the networks have successfully identified characteristic features. These
can then be extracted in a subsequent interpretation step using LRP.
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Importance hierarchies of known observables

In Section 2.4 a set of standard observables was introduced, consisting of the normal
and staggered magnetization as well as the two-point correlation function.3 It seems
reasonable to assume that much of the relevant information characterizing the phase
structure and dynamics of the theory is encoded in these quantities. To check this,
an ordered dataset of measurements of these quantities is created at various, evenly
spaced values of κ; see Appendix A.1 for details on the dataset. It is used to
perform a regression analysis with a MLP; see Appendix A.4 for details on the
specific architecture. The method is compared against a random forest regressor
as a baseline, which is a standard method based on the optimization of decision
trees [239]; see Appendix A.3 for details. The results for both approaches, shown in
Figures 5.9 and 5.10, are discussed below.

A qualitatively similar accuracy is observed on the training and test data in the
broken ferromagnetic (FM) and antiferromagnetic (AFM) phases. This is expected,
since we know from Figure 2.4 that always one of the two types of magnetizations is
strictly monotonic in the respective phase and can therefore determine κ uniquely.
However, both approaches yield only mediocre performance in the symmetric, para-
magnetic (PM) phase. Here, both magnetizations tend to zero and therefore do
not contain much relevant information. Moreover, the two-point correlator exhibits
approximately symmetric properties around κ = 0. Therefore, it also does not pro-
vide a unique mapping. This issue is resembled in the prediction for both methods.
The random forest yields a symmetric discrepancy around κ = 0. In comparison,
the MLP shows an improved performance for κ < 0, albeit at the price of a larger
variance for κ > 0. At this point, one can already see that the chosen set of observ-
ables suffices to characterize the theory only in the broken phases, whereas in the
symmetric phase, additional information appears to be necessary.

Before we embark on the search for the missing piece, let us first examine the
results further to verify that the learned decision rules conform to the physical
interpretation given above. We begin with the relevances as determined by LRP,
shown in Figure 5.9b, and later compare to the random forest benchmark below. As
expected, M and Ms are relevant in the FM and AFM phases, respectively. There,
considerable relevance is also assigned to the correlator. However, the contribution
appears to diminish when going deeper into the broken phases. Its comparably large
relevance in the PM phase shows that it contains most of the information used for
the noisy prediction. As described above, the mediocre performance here indicates
that although the network seems to find some weak signals to characterize the PM
phase, the chosen set of observables is not optimal.

The interpretation sketched above is further supported by the results obtained
through random forest regression. Analogously to the previously introduced rele-
vance for LRP, one can determine nominal contributions of input features to the
prediction and hence a measure of local feature importance, which is shown in

3A slightly modified definition of the time-sliced correlator is used in order to remove lattice
artifacts from the data, see Appendix A.1.
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Figure 5.9: Results for the MLP: Predictions (a) and normalized LRP relevances of
individual features (b). Error bars here and throughout this section are
obtained with the statistical jackknife method.
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Figure 5.10: Benchmark results for the random forest: Predictions (a) and nominal
contributions of individual features (b).
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Figure 5.10b; see Appendix A.3 for details. In the broken phases, the respective
contributions of M and Ms demonstrate a linear dependence on κ. Again, this
clearly indicates that these quantities characterize the associated phases. For the
PM phase, the situation appears more challenging, since no such clear dependence
is observed for any of the observables. The non-zero contributions of features in
the PM phase imply that they add some valuable information to the decision here.
However, this has to be weighted against the observation that the accuracy in this
region is poor. This further confirms the previous conclusion that relevant infor-
mation to characterize this phase is largely lost in the preprocessing step, assuming
that it was initially present in the raw field configurations. It is worthwhile stressing
that this analysis represents an independent confirmation of the results obtained
above. Both algorithms (MLP vs. random forest) rely on fundamentally different
principles. A model-intrinsic interpretability measure is used for the random forest,
whereas for the MLP one relies on LRP, i.e. a post-hoc attribution method.

Extracting observables from convolutional filters

In the previous section, a dataset of known observables was used to reconstruct
κ. Calculating such quantities corresponds to heavy preprocessing of the high-
dimensional field configurations. The resulting low-dimensional features are far less
noisy, implying distillation of relevant information. This is a common procedure
in the field of data science, and may become unavoidable for large lattices and/or
theories with more degrees of freedom. For instance, in state-of-the-art lattice QCD
calculations, the number of floats in a single field configuration can easily reach
O(1010). Nevertheless, using preprocessed data in the form of standard observables
introduces strong biases towards known structures. If our perception of the problem
or more generally our physical intuition is flawed, machine learning cannot help
us—the relevant information may very well be lost in the preprocessing step. In
the present case specifically, it appears that important features in the PM phase are
neglected by this procedure, assuming that structures characterizing this phase do
in fact exist. Therefore, it is instructive to search for signals of such structures by
training neural networks directly on field configurations.

As a starting point for this search, a PCA is performed on the field configura-
tion dataset. As previously mentioned, this has been done before with promising
results [217–219], albeit not in exactly the same physical setting. PCA immediately
identifies the normal and staggered magnetizations as dominant features, essentially
reproducing the work of [218]. All higher order principal components show a vanish-
ing explained variance ratio, implying that no other relevant, purely linear features
are present in the data. This observation indicates that, if a quantity exists which
parametrizes the symmetric PM phase, it cannot simply be a linear combination of
the field variables.

An improved approach can be implemented based on a CNN. The training pro-
cedure is largely equivalent to that for the MLP in the previous section, with the
observable dataset replaced by the full field configurations. A CNN is trained using
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Figure 5.11: Results for the CNN: Predictions (a) and normalized relevances of in-
dividual filters (b). The dashed curve corresponds to the cumulative
relevance of filter 3 and 4.
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five convolutional filters with a shape of 2 × 2 × 2 and a stride of 1. In order to
support interpretability, weight sparsity is encouraged by adding the L1 norm to the
loss—also known as LASSO regularization—as suggested in [230]; see Appendix A.4
for details. Due to the nature of the convolution operation, learned filters have a
direct interpretation in terms of first-order linear approximations of relevant ob-
servables. Hence, one expects the CNN to reproduce the PCA results at the very
least, and aims for the identification of other quantities which the network can en-
code in subsequent layers. It is important to understand this difference between the
approaches, even though both extract only linear signals in a first approximation.

The model predictions are shown in Figure 5.11a. One can immediately observe a
superior performance in the PM phase compared to the previous results. The CNN
succeeds to consistently infer κ from the field configuration data with high accuracy.
This indicates that it indeed manages to construct internal representations suitable
not only to discern the different phases, which would be sufficient for classification
purposes, but also for an ordering of data points within each phase.

In order to interpret the predictions and extract knowledge about the learned
representations, one has to customize LRP for lattice data. In image recognition,
as previously mentioned, one mostly aims at highlighting important regions in the
input domain, leading to superimposed heatmaps. This is based on the inherent
heterogeneity common to image data, where relevant features are usually localized.
For lattice field configurations, due to the translational symmetry and the resulting
homogeneity, no particularly distinguished, localized region should be apparent in
any given sample. However, each convolutional filter encodes an activation map
that is in fact sensitive to a specific feature present in a field configuration. In
contrast to the usual ansatz, the spatial homogeneity promotes global pooling over
the relevances associated with each filter weight. Hence, instead of assigning rel-
evances to input pixels, one is interested in the cumulative filter relevance which
indicates their individual importance for a particular prediction. Analogously to
the rationale of the previous section, one can use this approach to build importance
hierarchies of filters, thereby facilitating their physical interpretation as signals of
relevant observables.

Figure 5.11b shows each filter relevance as a function of κ. We can recognize
some similarities to the relevances in Figure 5.9, highlighting the underlying phase
structure of the Yukawa theory. It appears that the model can parametrize each
phase individually using one or a small subset of filters, while the others show small
or insignificant relevances in the respective region. The learned weight maps are
shown in Figure 5.12, where we also assign names to the filters depending on the
corresponding associated phase. Only one filter is not shown because it exhibits
completely vanishing weights and relevance. It seems to have been dropped entirely
by the network, indicating that four filters are sufficient to characterize all phases
seen in the data. This reduction is an effect of the weight regularization, and also
appears when more filters are initially used. Since the number of non-trivial filters is
constant in all training runs, this already indicates how many independent quantities
the network needs to learn in order to successfully predict κ.
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Figure 5.12: Learned weights of convolutional filters. Left to right: PM, AFM, FM,
FM. The color map is symmetric around zero. Red (blue) corresponds
to positive (negative) weights.

Figure 5.13: Comparison of PM filters for three independent training runs of the
CNN.

Let us begin by examining the results that directly correspond to known quan-
tities. One can observe that the two FM filters have entries of roughly uniform
magnitude with a globally flipped sign. Accordingly, one can identify them as sig-
nals of the negative and positive branches of the magnetization M , respectively.
This is corroborated by their dominating relevances in the FM phase. The AFM
filter exhibits alternating entries of uniform magnitude and therefore corresponds
to the staggered magnetization Ms, which accordingly dominates the AFM phase.
Hence, both order parameters can be explicitly reconstructed from the CNN. The
appearance of two filters for the magnetization is easily understood by inspection
of the network architecture in Table A.3, the crucial point being the application
of a ReLU activation after the convolution operation. Consider the action of a
positively-valued filter to negatively magnetized field configurations, or vice versa.
The resulting negative activation map is defaulted to zero by the ReLU. Hence, in
order to take both branches of M into account, two equivalent filters with oppos-
ing signs are required. The comparably large error bars in this region stem from
the presence of positively and negatively magnetized samples in the dataset, which
lead to a higher per-filter variance. Therefore, also the cumulative relevance of both
filters is shown.

We now discuss the main object of interest, namely the PM filter. It supplies
the dominant signal for the characterization of this phase. A linear application
of this filter to the configurations, as done for the FM and AFM filters, does not
produce a monotonic quantity, which would be required for a unique ordering. This
further supports the aforementioned evidence gathered by PCA for the absence of
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an additional, purely linear observable. Hence, the simple reconstruction scheme
outlined in the previous paragraphs cannot be applied in this case. Instead, a
heuristic reconstruction of the relevant quantity is attempted. To this end, we note
that the ReLU activation applied to the convolutional layer’s output can effectively
correspond to the absolute value function, albeit with less statistics, if the entries
of the activation map are distributed accordingly. Inspired by this observation, we
define the following observable,

OPM =
1

|Λ|
∑
n∈Λ

∣∣∣ [ϕ(n) + ϕ(n+ µ̂1)
]

−
[
ϕ(n+ µ̂2 + µ̂3) + ϕ(n+ µ̂1 + µ̂2 + µ̂3)

] ∣∣∣ . (5.1)

As with M and Ms, we obtain the corresponding staggered form Os
PM by applying

the transformation given in Equation (2.11). The resulting pair of quantities is
visualized by the following idealized filters.

Figure 5.14: Convolutional filters corresponding to the observable OPM defined in
Equation (5.1) and the staggered counterpart Os

PM.

The observable OPM defined in Equation (5.1) is the sum over all lattice sites of
the lattice derivative in the diagonal µ̂2 + µ̂3 direction of blocks in the µ̂1 direction.
This already explains the necessity of taking the absolute value, as otherwise OPM

would be the sum over all sites of a total derivative, which vanishes identically. It
should also be noted that OPM can be made isotropic by summing over all directions.

We now discuss the properties of the theory that are measured by OPM: In the
continuum limit, OPM naively tends towards the volume integral over |∇ϕ|. Due
to the modulus of the derivative, ⟨OPM⟩ carries the same information as the ex-
pectation value of the kinetic term. The blocking in the µ̂1-direction leads to a
sensitivity of OPM to sign flips of nearest-neighbors. While no continuum observ-
able is sensitive to these sign flips, the continuum limit of ⟨OPM⟩ maintains this
information. Accordingly, ⟨OPM⟩ exhibits a distinct behavior in the presence of lo-
calized, (anti-)magnetized regions, even if the expectation values vanish globally.
Possible local field alignments resulting in different values of OPM, but not of the
standard derivative, are visualized in Figure 5.15.

The construction and discussed sensitivities of ⟨OPM⟩ demonstrate again the use-
fulness of LRP: one can identify the learned representation as a feature of the dataset
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(a) (b)

Figure 5.15: Visualization of local structures in field configurations relevant for the
PM filter. Sign is encoded by arrow orientation/color. Diagonal neigh-
bors tend to share the same sign everywhere in the phase diagram. On
the contrary, nearest neighbors show a preference towards either the
same (a) or the opposite (b) orientation. OPM is particularly sensitive
towards the local presence or absence of such sign flips in the PM phase,
without the need for globally non-zero expectation values of the normal
and staggered magnetizations.

arising from the lattice discretization. ⟨OPM⟩ and ⟨Os
PM⟩ as functions of κ are shown

in Figure 5.16 together with the other reconstructed observables and their respective
analytical counterparts. A monotonic, roughly linear dependence is observed in the
PM phase, indicating that the quantity indeed provides a unique mapping which
aids the κ inference. In fact, if OPM is included in the set of predefined observables
for the inference approach detailed in the previous section, the prediction accuracy
of the MLP accordingly becomes comparable to the CNN in this phase.

In conclusion, we find that the CNN characterizes the PM phase by additionally
measuring kinetic contributions in the described manner, rather than only expec-
tation values of the condensate like in the broken phases. Still, M and Ms are
being utilized as well, judging from the comparably large relevances of the FM fil-
ters in this region. Due to the opacity of the fully-connected layers following the
convolution, some ambiguity remains regarding the precise decision rules that the
network implements based on these quantities. This residual lack of clarity can
likely be resolved by manually enforcing locality in the internal operations, e.g. by
introducing artificial bottlenecks into the network. Of course, the form of OPM is
also not exactly equivalent to the operations of the CNN, even though they share
many important features. In particular, there is a mismatch between the averaging
procedure and the max pooling layer. Effects associated with the choice of different
activation functions and pooling layers, which may be tailored more specifically to-
wards certain types of observables, should be investigated in the future. However,
the present analysis shows that the overlap with the learned internal representation
is significant.
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Figure 5.16: Normalized observables reconstructed from the learned filters. The
quantities associated with the FM and AFM phases are compared to
M and Ms. OPM and Os

PM are related by Equation (2.11) and exhibit
an approximate mirror symmetry around κ = 0.

5.2.4 Summary and outlook

The application of interpretability methods to deep neural network classifiers was
investigated as a general-purpose framework for the identification of relevant fea-
tures from lattice data. The approach facilitates an interpretation of a network’s
predictions, permitting a quantitative understanding of the internal representations
that the network learns in order to solve a pretext task—in this case, inference of
action parameters. This culminated in the extraction of a novel observable, leading
to insights about the phase structure of the studied Yukawa model. With these re-
sults, the value of interpretability methods in deep learning analyses of lattice data
has been conclusively demonstrated.

In the present work, the emphasis was put on the methodological aspects of the
analysis in order to form a comprehensive basis for future efforts. Many interesting
aspects, such as an investigation of the fermionic sector, were barely discussed. In-
stead, we have focused on the inference of the hopping parameter. Including other
action parameters into the labels, such as the Yukawa coupling or a chemical poten-
tial, is a promising endeavor for the future, as it will likely lead to an improvement
in comparison to the current results. This is necessary in order to pave the way to-
wards an application to more interesting scenarios, such as QCD at finite density or
competing order regimes in the Hubbard model. Moreover, the introduced machine
learning pipeline has the potential to provide insight also in various other areas of
computational physics.
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6 Flow-based sampling for dynamical
fermions

In the spirit of our first look at generative neural samplers for lattice field theory in
Section 5.1, the present chapter concerns the development of such models for theories
with dynamical fermions. However, the normalizing flow architectures considered
here exhibit many important differences to the previously used GAN. In the latter
case, the unavailability of model probabilities for the generated configurations forced
us to implement the sampling as an overrelaxation step in combination with standard
HMC. In contrast, as described in Section 4.2, flows provide tractable likelihoods.
This enables direct importance sampling using only the model.

The primary contributions of the work presented in this chapter are:

1. Identifying four distinct sampling schemes based on generative models that
capture the different tractable decompositions/marginalizations of the target
distribution over boson and pseudofermion fields listed in Table 2.1;

2. Constructing and optimizing efficient, expressive flow models that respect the
symmetries of the pseudofermion action, in particular the translational symme-
try with antiperiodic temporal boundary conditions discussed in Section 2.3;

3. Implementing and numerically benchmarking these sampling approaches in the
context of two-dimensional Yukawa theory with one pair of mass-degenerate
fermions described in Section 2.4;

4. Solving topological freezing at criticality in the Schwinger model described
in Section 2.6, which demonstrates clearly the potential impact of flow-based
sampling in key applications such as lattice QCD at scale.

The study of flow-based sampling algorithms for fermionic theories is briefly mo-
tivated in Section 6.1. In Section 6.2, the four exact generative sampling schemes
for such theories are outlined. Suitable flow architectures as the generative models
for use in these sampling schemes are then developed in Section 6.3. Details and
numerical results of the application of the proposed framework to Yukawa theory are
discussed in Section 6.5. In Section 6.6, the application to the Schwinger model at
criticality is presented. In Section 6.7, some comments are made on the applicability
of these developments to update-based approaches. Finally, Section 6.8 provides a
summary and outlook. The contents of this chapter have been published in [4, 6]
together with Michael S. Albergo, Denis Boyda, Kyle Cranmer, Dan C. Hackett,
Gurtej Kanwar, Sébastien Racanière, Danilo J. Rezende, Fernando Romero-López,
and Phiala E. Shanahan.
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6.1 Introduction

In light of the challenges described in Section 3.1, the development of efficient sam-
pling algorithms for lattice field theory based on machine learning has received
increasing attention over the last few years. Next to other approaches—such as au-
toregressive networks, or adversarial learning techniques as discussed in Section 5.1—
progress has recently been made in substituting the proposal mechanism in MCMC
with a variational ansatz based on normalizing flows, which can be optimized to
approximately sample from the target Boltzmann distribution; see Section 4.2. In
contrast to many other methods generating uncorrelated samples, in this approach
the associated model probabilities can be tractably computed. Therefore, asymp-
totic exactness can be guaranteed by implementing a Markov chain with a Metropolis
accept/reject step or through reweighting.

Though flow-based models have been extended to exactly incorporate gauge sym-
metry, existing applications have focused on purely bosonic theories. For theories
involving fermions, analytically evaluating the associated integrals over Grassmann-
valued field variables results in effectively bosonic theories, described by an effective
action. The dynamics of the fermion fields are incorporated via fermion determi-
nant terms; see Section 2.3. Flow-based methods can in principle be applied to
directly learn this effective action over bosonic fields, which we demonstrate both
for Yukawa theory as well as for the Schwinger model. Such an approach is still
justified at the comparably small lattice volumes considered here. However, the cost
of computing such determinants scales unfavorably with the number of fermionic
degrees of freedom, and their exact evaluation is typically intractable at the scale
of state-of-the-art calculations. Therefore, we also construct approaches based on
the aforementioned pseudofermion method to avoid an explicit computation of these
determinants while guaranteeing asymptotic exactness of the sampling schemes.

6.2 Exact generative sampling schemes for
fermionic theories

Generating importance-weighted field configurations for a lattice field theory in-
volving fermions can proceed via the marginal distribution p(ϕ) defined in Equa-
tion (2.21), the joint distribution p(ϕ, φ) defined in Equation (2.27), or through
other choices of marginalized distributions defined in Table 2.1. In this work, we de-
velop exact sampling schemes based on generative models that directly approximate
these distributions. In defining these sampling schemes, we assume that the model
probability density may be computed for each generative model (this property holds
for the flow-based models defined below). This section details four asymptotically
exact schemes for constructing Markov chains to draw samples of ϕ, as illustrated in
Figure 6.1. It is instructive to compare these illustrations with Figures 2.1 and 2.3.
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(a) ϕ-Marginal (Section 6.2.1) (b) Gibbs (Section 6.2.2)

(c) Autoregressive (Section 6.2.3) (d) Joint (Section 6.2.4)

Figure 6.1: Diagrams illustrating the four types of sampling schemes described in
Section 6.2. The yellow boxes depict the exactly sampleable densities
either produced from generative models or by Equation (6.2). The green
boxes correspond to the Metropolis accept/reject steps using the accep-
tance probabilities defined in the text.
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6.2.1 Modeling and sampling of p(ϕ)

Since we must ultimately sample only the field ϕ, one could directly model the
ϕ-marginal distribution (Row 2 of Table 2.1) by constructing a generative sam-
pler providing a distribution q(ϕ) approximating p(ϕ). Samples drawn from the
model distribution q(ϕ) can be used in asymptotically exact sampling schemes by
either constructing an independence Metropolis Markov chain or applying reweight-
ing/resampling based on reweighting factors p(ϕ)/q(ϕ). A direct application of either
approach requires computing p(ϕ) involving the aforementioned determinant factors.
The acceptance probability for such a Metropolis Markov chain is

AM(ϕ→ ϕ′) = min

(
1,
e−SB(ϕ′) detM(ϕ′)

e−SB(ϕ) detM(ϕ)

q(ϕ)

q(ϕ′)

)
. (6.1)

This sampling scheme is illustrated in Figure 6.1a.
Instead of evaluating the ratio detM(ϕ′)/ detM(ϕ) directly, which becomes pro-

hibitive at scale, it is possible to apply the pseudo-marginal method [240] using
stochastic approximations of both the numerator and denominator of Equation (6.1)
in a way that retains asymptotic exactness. In this stochastic generalization of the
Metropolis algorithm, one computes an estimate of p(ϕ) using an unbiased stochas-
tic estimator when ϕ is initially proposed. This estimate of p(ϕ) is then used in all
subsequent accept/reject tests for the next element in the Markov chain. Applied
to a theory with fermions, this amounts to computing a stochastic estimate of the
fermion determinant for each proposed configuration.4

For example, we can use an unbiased estimator based on pseudofermions. An
(unnormalized) estimate for p(ϕ) can be obtained by generating a pseudofermion
φ from the conditional p(φ|ϕ) and measuring the quantity e−φ

†(M−1(ϕ)−1)φe−SB(ϕ).
The φ-conditional can be directly sampled according to

φ = A(ϕ)χ, where χ ∼ 1

ZN
e−χ

†χ . (6.2)

The matrix A is defined by the identity M(ϕ) ≡ A(ϕ)A†(ϕ) and reduces to the
Dirac matrix D(ϕ) in a two-flavor example. This estimate can be extremely noisy
in practice and may give poor statistical performance. However, it can be improved
upon by using multiple pseudofermion draws; see e.g. [30, 32, 242, 243].

In principle, any unbiased stochastic estimator of the fermion determinant can
be applied (whether based on pseudofermions or entirely distinct). The limit of
taking arbitrarily precise estimators recovers the exact acceptance probability in
Equation (6.1). Acceptance rates obtained by using the exact form can thus be
interpreted as an upper bound on sampling performance.

4Note that the pseudo-marginal algorithm is not equivalent to the sampling scheme based on
stochastic estimates of ratios [241], for which asymptotic exactness has not been demonstrated.
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6.2.2 Gibbs sampling using p(ϕ|φ), p(φ|ϕ)

An alternative to modeling p(ϕ) directly is to construct samplers for both conditional
distributions p(ϕ|φ) and p(φ|ϕ) and build an asymptotically exact Gibbs sampler
that alternatingly samples from these distributions to update ϕ and φ. For such
a Gibbs sampler to satisfy detailed balance, the update to ϕ must satisfy detailed
balance for p(ϕ|φ) and the update to φ must satisfy detailed balance for p(φ|ϕ). The
φ-conditional can be exactly and directly sampled as described in Equation (6.2),
automatically fulfilling this requirement. On the other hand, the ϕ-conditional (Row
5 of Table 2.1) may be approximated by a generative model distribution q(ϕ|φ) ≈
p(ϕ|φ). This model can be incorporated into an exact Markov chain transition
for the ϕ-conditional distribution as follows. Start with a state ϕ, sample φ′ from
p(φ|ϕ) using Equation (6.2), conditionally propose ϕ′ from q(ϕ|φ′), and then apply
a Metropolis-Hastings accept/reject step with the acceptance probability given by

AG(ϕ→ ϕ′|φ′) = min

(
1,
p(ϕ′|φ′)

p(ϕ|φ′)

q(ϕ|φ′)

q(ϕ′|φ′)

)
= min

(
1,
p(ϕ′, φ′)

p(ϕ, φ′)

q(ϕ|φ′)

q(ϕ′|φ′)

)
.

(6.3)

This step satisfies detailed balance for the ϕ-conditional distribution p(ϕ|φ) as re-
quired and guarantees asymptotic exactness. Note that in contrast to the ϕ-marginal
sampler described in Section 6.2.1, computing the acceptance probability at scale
for the sampling scheme described here and in Sections 6.2.3 and 6.2.4 does not rely
on unbiased stochastic determinant estimators.

In this approach, the field φ′ is independently re-sampled conditioned on ϕ at
each step of the Markov chain, and therefore does not need to be stored. This Gibbs
sampler can thus be interpreted as an exact Markov chain over ϕ alone, with the
sampling of φ′ contained inside each Markov chain step as depicted in Figure 6.1b.
The approach closely mirrors the typical sampling strategy employed in HMC, in
which pseudofermions φ′ are sampled according to the exact conditional distribu-
tion p(φ|ϕ) (see also Figure 2.3) and Hamiltonian evolution is used to construct an
update step that satisfies detailed balance for the conditional distribution p(ϕ|φ′).
The generative model proposal and Metropolis-Hastings step for p(ϕ|φ′) can thus be
considered an optimizable replacement of the molecular dynamics trajectory utilized
in HMC, with the difference that the mechanism of generating a proposal configu-
ration ϕ′ does not directly depend on ϕ (as is the case for a symplectic integrator),
but only indirectly through φ′. However, this also means that in contrast to all
other schemes described here, the Gibbs sampler is not an independence sampler.
Drawing configurations from the model and constructing the Markov chain cannot
be done asynchronously, since the generation of a proposal explicitly depends on the
previous element of the chain.



70 6.2. Exact generative sampling schemes for fermionic theories

6.2.3 Autoregressive modeling and sampling of p(ϕ, φ)

The joint distribution p(ϕ, φ) can be autoregressively decomposed as the product
p(ϕ, φ) = p(ϕ)p(φ|ϕ) in terms of the ϕ-marginal and φ-conditional (Rows 2 and 3
of Table 2.1). A generative model for the joint distribution could therefore be pro-
duced by approximating both components independently, i.e., q(ϕ, φ) = q(ϕ)q(φ|ϕ).
This autoregressive decomposition allows the joint distribution to be reproduced
in terms of two potentially simpler distributions. Note that although the exact
sampling procedure described in Equation (6.2) can be applied to draw samples
from p(φ|ϕ), computing the normalizing constant of this φ-conditional distribution
is not tractable. This is not an obstacle when one is only interested in conditionally
sampling φ, as is the case for HMC or the approaches of Sections 6.2.1 and 6.2.2,
but motivates modeling the distribution in the case where an approximation with a
tractable density is required.

Exactness can be straightforwardly enforced in this approach by employing Markov
chain steps in which joint samples (ϕ′, φ′) are proposed independently from q(ϕ, φ),
and a Metropolis-Hastings accept/reject step is applied for the proposed transition
(ϕ, φ) → (ϕ′, φ′) according to the acceptance probability

AA(ϕ, φ→ ϕ′, φ′) = min

(
1,
p(ϕ′, φ′)

p(ϕ, φ)

q(ϕ)q(φ|ϕ)
q(ϕ′)q(φ′|ϕ′)

)
. (6.4)

This sampling scheme is illustrated in Figure 6.1c. Furthermore, unique reweighting
factors can be tractably computed for each configuration ϕ as p(ϕ, φ)/q(ϕ)q(φ|ϕ),
thus reweighting approaches may also be used as alternatives to MCMC in order to
guarantee exactness here.

6.2.4 Fully joint modeling and sampling of p(ϕ, φ)

Rather than modeling the factors p(ϕ) and p(φ|ϕ), one could instead apply genera-
tive models to jointly sample the fields ϕ and φ according to a distribution q(ϕ, φ)
that directly approximates the joint distribution (Row 1 of Table 2.1). This results
in joint samples and density estimates analogous to the autoregressive case above,
but is a qualitatively distinct approach to modeling this distribution. Exactness
can be enforced using a similar Metropolis-Hastings Markov chain transition with
acceptance probability

AJ(ϕ, φ→ ϕ′, φ′) = min

(
1,
p(ϕ′, φ′)

p(ϕ, φ)

q(ϕ, φ)

q(ϕ′, φ′)

)
, (6.5)

or by applying reweighting or direct resampling techniques. This approach is illus-
trated in Figure 6.1d.
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6.3 Fermionic flows via pseudofermions

The sampling approaches discussed above for theories involving fermions can in
principle use any generative models that enable both efficient sampling and density
estimation for the relevant model distributions. In this work, we focus on the normal-
izing flow architecture introduced in Section 4.2. The present section describes how
flow models for each of the distributions required for sampling may be constructed.
First, a common training procedure for all such models is described in Section 6.3.1
based on the idea that each distribution aims to approximate some marginalization
of the same joint distribution p(ϕ, φ). This common training procedure motivates
some of the architectural decisions for the construction of the models described in
Sections 6.3.2 and 6.4. In the following, we label the model densities according to
their corresponding target densities in Table 2.1 as q(ϕ, φ), q(ϕ), q(φ|ϕ), and q(ϕ|φ).
In each sampling approach, using model distributions that better approximate the
associated target will generally result in higher acceptance rates with potentially
lower autocorrelations.

6.3.1 Optimization strategy

We first detail a procedure to optimize the model density q(ϕ, φ) to directly approx-
imate p(ϕ, φ). Following Equation (4.12), the Kullback-Leibler divergence between
these distributions is defined as

DKL(q(ϕ, φ)||p(ϕ, φ))
= Eϕ,φ∼q [log(q(ϕ, φ)/p(ϕ, φ))]

= Eϕ,φ∼q [log q(ϕ, φ) + SB(ϕ) + SPF (ϕ, φ) + logZ] .

(6.6)

In practice, a loss function based on this divergence is computed stochastically as

L =
1

N

N∑
k=1

log q(ϕk, φk) + SB(ϕk) + SPF (ϕk, φk) , (6.7)

in terms of a mini-batch of N samples {(ϕk, φk)}Nk=1 drawn from q(ϕ, φ). As already
explained in Section 4.2, the unknown normalizing constant logZ has been removed
in the definition of Equation (6.7), since it is just an overall constant shift and does
not affect the relevant structure of the loss function.

If the model probability density q(ϕ, φ) can be directly computed, we can eval-
uate the gradient of Equation (6.7) with respect to the model parameters defining
this probability density. Gradient-based optimization methods can then be applied
to minimize L. This training procedure is immediately applicable to the models
required for the joint sampling approaches derived in Sections 6.2.3 and 6.2.4. In
the former, the distribution q(ϕ, φ) is defined by q(ϕ)q(φ|ϕ), and this pair of model
distributions is simultaneously optimized by minimizing the loss function in Equa-
tion (6.7). In the latter, a model for q(ϕ, φ) is directly constructed and optimized.
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The remaining distributions required in Sections 6.2.1 and 6.2.2, namely q(ϕ) and
q(ϕ|φ), do not naturally define a joint model probability density. To optimize these
distributions using the loss function above, we extend the model architectures by
pairing q(ϕ|φ) and q(ϕ) with samplers q(φ) and q(φ|ϕ), respectively. The result-
ing joint models can be optimized as above, and the auxiliary components can be
discarded after training. These auxiliary models are constructed as follows.

We first consider extending the ϕ-conditional model q(ϕ|φ) to a joint model, which
requires a marginal distribution q(φ). None of the sampling approaches presented in
Section 6.2 directly require this marginal distribution; however, as we discuss further
in Section 6.4, we choose to model q(ϕ|φ) by a restricted form of a joint sampler
which simultaneously models a marginal distribution q(φ). In this extended model,
both q(ϕ|φ) and q(φ) are described by parameters that are optimized.

A ϕ-marginal model q(ϕ) can be extended to a joint sampler by pairing it with
a conditional distribution q(φ|ϕ). In principle, such an auxiliary model could be
constructed solely for the purposes of training. However, in this case we are free to
instead use the exact conditional distribution p(φ|ϕ), which can be exactly and effi-
ciently sampled. The result is a joint distribution defined by first sampling ϕ from
the ϕ-marginal model and then sampling the φ-conditional using Equation (6.2),
resulting in the joint density q(ϕ)p(φ|ϕ). Evaluating the joint Kullback-Leibler di-
vergence between this model distribution and the target joint distribution p(ϕ, φ)
requires the evaluation of the normalized density p(φ|ϕ), which unfortunately in-
cludes a normalizing factor of detM(ϕ). Nevertheless, we only require an unbiased
stochastic estimator of the gradients of Equation (6.7) for optimization.

The calculation of loss gradients required for the optimization of the ϕ-marginal
models trained in this work requires the evaluation of gradients

∇ϕ log detM(ϕ) (6.8)

taken with respect to the field ϕ. In general, M(ϕ) is a positive definite matrix either
arising from Dirac matrices of a pair of mass degenerate fermions as M = DD†,
or from one-flavor methods; see also Section 2.3. Since the calculation of the exact
determinant detM(ϕ) may be intractable because of the aforementioned unfavorable
scaling with the number of lattice degrees of freedom, a stochastic estimator is
instead defined in this section to tractably evaluate Equation (6.8).

By assumption, M is a positive-definite matrix and thus the following stochastic
trace estimator is applicable:

∇ log detM(ϕ) = ∇Tr logM(ϕ)

= Tr
[
M(ϕ)−1∇M(ϕ)

]
= E

χ∼e−χ†χ [(M−1(ϕ)χ)†∇M(ϕ)χ] .

(6.9)

Here, the noise vector χ is assumed to be drawn from the unit-variance isotropic
normal distribution with an appropriate number of degrees of freedom to match the
dimensions of M.
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In the case of two degenerate fermionic flavors, an interesting connection can also
be made to the gradient of the negative pseudofermion action (where the sign is
chosen to match the positive sign of log detM(ϕ)). This gradient can be evaluated
to be

∇(−φ†(DD†)−1φ) = φ†(DD†)−1(∇DD†)(DD†)−1φ

= η†(∇DD†)η ,
(6.10)

where η ≡ (DD†)−1φ = (D†)−1χ, in terms of the noise vector χ ∼ e−χ
†χ used to

generate the pseudofermion field. A short derivation shows that this is equivalent
to the stochastic estimator of the two-flavor determinant,

Tr
[
(DD†)−1(∇DD†)

]
= Tr

[
D−1(∇DD†)(D†)−1

]
= E

χ∼e−χ†χ [((D
†)−1χ)†(∇DD†)(D†)−1χ]

= E
χ∼e−χ†χ [η

†(∇DD†)η] .

(6.11)

This relation allows the gradient estimator to be computed using the same tools
utilized for the evaluation of HMC forces with respect to the pseudofermion action.

6.3.2 Building blocks

Flow-based models are generally constructed by composing several simple, invertible
transformation layers, each described by a number of free parameters. This compo-
sition produces an expressive overall transformation that is nevertheless invertible
and has a tractable Jacobian determinant. The affine coupling layers described in
Section 4.2 are one common choice of a simple transformation in which the degrees
of freedom of each sample are divided into two subsets and one subset is updated
conditioned on the other, ‘frozen’ subset, as shown in Figure 6.2. A ‘masking pat-
tern’ describes the division into subsets. Transformations of the updated subset are
parameterized by ‘context functions’ accepting the frozen subset as input, which
are typically implemented using neural networks. For example, a simple coupling
layer for a real scalar field ϕ(x) ∈ R could be constructed based on a checkerboard
division into even/odd sites, where the field at even sites is (invertibly) transformed
by an element-wise rescaling operation plus an additional offset. The scaling factors
and offsets are given by the output of an arbitrary context function, which may be
parametrized by a neural network acting on the odd sites. The transformation is
applied alternatingly between even and odd sites; see [181] for a concrete imple-
mentation of such coupling layers. Symmetries may be incorporated in such models
using appropriate choices of masking patterns, context functions, and transforma-
tions. Other choices of layers are also possible (see Section 6.3.2 below) and are
similarly encoded using generic neural networks.

The target densities defined in Table 2.1 are all invariant under translations with
appropriate boundary conditions, as discussed in Section 2.3. Previous works have
shown that exactly incorporating known symmetries into machine learning models
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...

...

...

Figure 6.2: Illustration of a coupling-layer-based flow model architecture similar to
Figure 4.5. Masks mi and their complements m̄i = 1 − mi split the
degrees of freedom into a subset to be updated and a subset that is
frozen and used as input to the context function (red box), which provide
the parameters for the invertible transformation fi applied within each
coupling layer gi.

can accelerate their training and improve their final quality [244–249]. In the context
of normalizing flows, ensuring that the model density is invariant under a symmetry
group is achieved by choosing an invariant prior distribution and building transfor-
mation layers that are equivariant under the symmetry. Below, we introduce several
‘building blocks’ which are designed to handle these symmetries and are used in the
implementation of the flow-based models constructed in this work.

Translation-equivariant convolutions via P-fields and AP-fields

The joint distribution p(ϕ, φ) given in Equation (2.27) is invariant under simultane-
ous field translations given by

ϕ(x⃗, t) → ϕ′(x⃗, t) = ϕ(x⃗− δx⃗, t− δt) (6.12)

and
φ(x⃗,t) → φ′(x⃗, t)

=

{
φ(x⃗− δx⃗, t− δt) (t−δt)mod 2Lt<Lt

−φ(x⃗− δx⃗, t− δt) Lt≤(t−δt)mod 2Lt

(6.13)

for any translations (δx⃗, δt) in the translational symmetry group of the discretized
theory. In this work, we label fields transforming as Equation (6.12) as P-fields, and
we label fields transforming as Equation (6.13) as AP-fields.5

In previous applications of flow models to sampling configurations in lattice field
theory, translational symmetry has been implemented for bosonic fields by applying
convolutional layers with circular padding (periodic boundary conditions) to gener-
ate parameters for transformations implemented in each flow layer [169, 250, 251];
see Figure 6.3 for an illustration. All input, intermediate, and output fields in these

5The fields ϕ and φ in Equations (6.12) and (6.13), and P-fields and AP-fields in general, may
have multiple components per site.
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Figure 6.3: Illustration of a convolutional layer with periodic boundary conditions.
It is instructive to compare this with Figure 4.2.

applications were P-fields. As a building block for translation-equivariant coupling
layers acting on both bosonic and pseudofermionic fields, we extend this approach
to define translation-equivariant convolutions that act on a generic set of input P-
fields and AP-fields, producing output fields with a desired set of transformation
properties, i.e., a specification of whether each channel of the output should be a
P-field or AP-field.

To implement such convolutional neural networks, we exploit the fact that P-fields
and AP-fields form an algebra under pointwise addition and multiplication and
restrict the operations appropriately to satisfy the desired output transformation
properties. This can be seen as follows. The set of P-fields is stable under linear
combinations and pointwise multiplications. On the other hand, the set of AP-fields
is only stable under linear combinations as the product of two AP-fields is a P-field,
while the product of a P-field with an AP-field is an AP-field. In other words, the
set of P-fields and AP-fields forms a superalgebra [252] under pointwise addition
and multiplication. Pointwise application of a function to a P-field results in a new
P-field. For AP-fields, more care is required as not all functions can be applied
pointwise. Application of an odd function to an AP-field results in another AP-
field, while pointwise application of an even function results in a P-field. Below, we
explore in more detail how properties of those fields allow one to build expressive
neural networks which are equivariant under translations: if T ∈ Zd is an arbitrary
space-time translation and f(ϕ, φ) = ϕ′, φ′ is one of these neural networks, then we
demand f(T ·ϕ, T ·φ) = T ·ϕ′, T ·φ′. This discussion is not specific to two-dimensional
fields, but applies for any dimension d.

First, convolutions can be built for both types of fields. For P-fields, this is
achieved by first padding the field using periodic padding, then applying a normal
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convolution. For a convolution with kernel shape 2k + 1, all fields must be padded
by k sites in each direction. As a concrete example, assume a 1-dimensional lattice
of size 5, a P-field with values [1, 2, 3, 4, 5] and a convolution kernel [1, 1, 1]. The
padded P-field would be [5, 1, 2, 3, 4, 5, 1]. Applying the convolution would result in
a new P-field with values [8, 6, 9, 12, 10]. For AP-fields, the only necessary change is
to use antiperiodic padding along the time dimension, and periodic along the space
dimension. Consider the 2-dimensional example1 2 3

4 5 6
7 8 9

 (6.14)

and a 3× 3 kernel with all weights equal to 1. The AP-field should be padded by 1
site in each direction with signs applied to the temporal padding, giving

−9 7 8 9 −7
−3 1 2 3 −1
−6 4 5 6 −4
−9 7 8 9 −7
−3 1 2 3 −1

 . (6.15)

Applying the convolution gives the transformed AP-field9 45 21
9 45 21
9 45 21

 . (6.16)

The above construction of P and AP-convolutions was illustrated with only one
channel, but the extension to multiple channels is straightforward.

Any non-linearity can be applied between convolutions for a P-field without spoil-
ing translational equivariance; throughout this work, the LeakyReLU [253] activa-
tion function is used. For convolutions applied to an AP-field, non-linearities used
as activation functions must be restricted to odd functions, for which we choose

sign(φ) log(1 + |φ|) . (6.17)

With a P-convolution, a bias can be applied along with a convolution at each step,
since a bias is constant across all sites and thus transforms as a P-field. However, a
traditional bias cannot be applied to the convolution of an AP-field without spoiling
translational equivariance. For an AP-field φ, a bias-like operation φ→ φ+bsign(φ)
in terms of a constant b can be applied instead. To avoid potential issues with the
non-differentiability of the sign function, we used a differentiable approximation
given by applying φ→ φ+ b tanh(φ/4).

All of the above constructions (P- and AP-convolutions, non-linearities and biases)
are equivariant with respect to translations on the lattice. By stacking them, we
create expressive translation-equivariant neural networks. These networks can also
jointly transform pairs of P and AP-fields. For example, the following transformation
works well:
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Input: P-field P and AP-field A
P’ = conv(P)
A’ = conv(A)
P" = concatenate(P’, |A’|)
A" = concatenate(A’, P’A’)
Output: P-field P" and AP-field A"

The group of translational symmetries of a staggered action described in Sec-
tion 2.3 only includes translations by even numbers of lattice sites. Implementing
symmetries in a network that are not symmetries of the target function restricts
the expressivity and may make it difficult or impossible to represent an effective
approximation of the target function by the network. For the models targeting the
staggered fermion action in the study described in the main text, encoding trans-
lational symmetry by an odd number of sites can be avoided by explicitly breaking
equivariance with respect to odd translations. For example, to break the symmetry
by odd translations along the first dimension of a field x, we can fold its even and
odd indices along the channel dimension; this doubles its number of channels while
halving the number of points along the first dimension. We then apply a convolution
with stride 1 and kernel size 1, which mixes all the channels. Finally, we split the
channels in two and fold them back along the first dimension to get a new field with
the same lattice size as x. This approach mirrors the ‘squeezing’ operation applied
in Real NVP flows [166].

Translation-equivariant convolutions via group averages

As an alternative to defining equivariant convolutional neural networks, one can
symmetrize a non-equivariant architecture by explicitly averaging over the whole
symmetry group [244]. Convolutional layers with periodic padding in all dimensions
are already equivariant under translations of P-fields and under all spatial trans-
lations of AP-fields, thus only the subgroup of temporal translations needs to be
averaged over to ensure equivariance for AP-fields. The result is a generic method
to produce convolutional neural networks with prescribed P-field and AP-field trans-
formation properties of each output channel. Compared with standard convolutions
or the restricted equivariant architecture given in Section 6.3.2, this method requires
a greater computational effort by a factor proportional to the temporal extent of the
lattice, Lt. However, it allows the use of unrestricted convolutional architectures,
including arbitrary activation functions and learned biases.

Let T a
x⃗,t ∈ Zd denote a translation by (x⃗, t) where antiperiodic boundary conditions

are applied in time and periodic boundary conditions are applied in space, and let
T p
x⃗,t denote a translation by (x⃗, t) with periodic boundary conditions for all directions.

The action of T a and T p is the same along all spatial dimensions, and we define
Tx⃗ = T p

x⃗,0 = T a
x⃗,0. For simplicity, we consider a two-dimensional L × L lattice with

coordinates (x⃗, t), but the following construction immediately generalizes to higher
dimensions and non-symmetric lattices. Both P-fields and AP-fields are maps from
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ZL ×ZL to Rc, where c is a number of channels. Under lattice translations, P-fields
are acted upon by T p, while AP-fields are acted upon by T a.

Consider a function f that maps the pair (ϕ, φ) of a P-field and an AP-field to
another field f(ϕ, φ). Assume that the output f(ϕ, φ) transforms with periodic
boundary conditions along the space dimension, that is:

f(Tx⃗ϕ, Tx⃗φ) = Tx⃗f(ϕ, φ) . (6.18)

Using averaging, we will now construct two maps u and v with the transformation
properties:

u(T p
x⃗,tϕ, T a

x⃗,tφ) = T p
x⃗,tu(ϕ, φ) (6.19)

v(T p
x⃗,tϕ, T a

x⃗,tφ) = T a
x⃗,tv(ϕ, φ) . (6.20)

We define6

u(ϕ, φ) =
1

2L

2L−1∑
n=0

T p
0,−nf(T p

0,nϕ, T a
0,nφ) (6.21)

and

v(ϕ, φ) =
1

2L

2L−1∑
n=0

T a
0,−nf(T p

0,nϕ, T a
0,nφ) . (6.22)

We now wish to prove that the transformation properties in Equation (6.19) and
Equation (6.20) apply to these definitions. The proof is roughly the same for both
cases,7 so we will only write it for Equation (6.19):

u(T p
x⃗,tϕ, T a

x⃗,tφ) =
1

2L

2L−1∑
n=0

T p
0,−nf(T p

0,nT p
x⃗,tϕ, T a

0,nT a
x⃗,tφ)

=
1

2L

2L−1∑
n=0

T p
0,−nf(Tx⃗T p

0,n+tϕ, Tx⃗T a
0,n+tφ)

=
1

2L

2L−1∑
n=0

T p
0,−n+tTx⃗f(T p

0,nϕ, T a
0,nφ)

= T p
x⃗,tu(ϕ, φ) .

(6.23)

Equation (6.23) was obtained using the change of variables n → n − t and the
equivariance property given in Equation (6.18).

The functions u and v may be used to define equivariant affine coupling layers
for the construction of equivariant flows. To achieve equivariance, the underlying
function f needs to be evaluated 2L times instead of once, hence the aforementioned

6Note that if f is odd, then u below will be forced to be independent of φ. This can be avoided
by either using non-odd non-linearities, or by having non-zero biases.

7The proof is actually a particular instance of a more general property: if π1 and π2 are represen-
tations of a finite group G on vector spaces V and W , and if f : V → W is any map between
these spaces, then 1

|G|
∑

g∈G π2(g)
−1f(π1(g)) is an equivariant map from V to W .
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increase in computational cost. Since the masked affine couplings employed in this
work already restrict the translational equivariance to multiples of two, one may
also consistently use only every second term in the sums defining u and v without
breaking the symmetry further, implying a factor L increase of the cost instead of
2L. Still, the additional computational requirements are significant compared to
the approach detailed in Section 6.3.2, and for large-scale implementations one may
have to partially trade equivariance against efficiency by excluding more terms from
the sums.

Affine coupling layers

Translation-equivariant networks constructed by either of the methods discussed
in Section 6.3.2 can immediately be applied in the construction of translation-
equivariant affine coupling layers suitable for transforming real-valued scalar fields.
To reiterate, an affine coupling layer transforms a field x to ax+b (multiplication and
addition are applied pointwise), where a and b are fields produced by context func-
tions acting on the frozen components of the field x; see also Section 4.2. Coupling
layers, context functions, and masking patterns are illustrated in Figure 6.2. Using
translation-equivariant convolutional neural networks to produce a and b, either a
bosonic field or pseudofermionic field can be updated in a translation-equivariant
manner as long as:

• The parameters a and b are both P-fields if x is a bosonic field; or

• The parameter a is a P-field and b is an AP-field if x is a pseudofermionic
field.

Such coupling layers can be composed to produce translation-equivariant flows.

Equivariant linear operators

The conditional distribution p(φ|ϕ) is exactly Gaussian, suggesting that it may be
efficiently modeled by flows based on architectures other than coupling layers. For
example, one may define a linear operator W = W(ϕ) to transform the pseud-
ofermion fields. The model distribution q(φ|ϕ) may then be defined by computing
φ = Wχ, where χ is drawn from the Gaussian distribution 1

ZN
e−χ

†χ, such that

q(φ|ϕ) = 1

ZN
e−φ

†(WW†)−1φ(detWW†)−1

=
1

ZN
e−χ

†χ(detWW†)−1 .
(6.24)

To effectively use this flow model, det(WW†) must be tractable to compute. In the
case of a degenerate pair of fermion flavors, the target distribution is defined by

p(φ|ϕ) = 1

ZN detDD† e
−φ†[D(ϕ)D†(ϕ)]−1φ . (6.25)
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While it is clearly sufficient for W to approximate D in this case, it is in fact
only necessary that WW† approximates DD†, allowing some freedom in the learned
matrix W .

The operator W is built as a composition of simple linear operators W = Wn ◦
. . . ◦ W1, where each Wk has only local interactions along a fixed dimension, in a
fixed direction (that is, with only positive or negative offsets, but not both), allowing
the determinant of each matrix to be efficiently computed. The components of each
operator Wk are parametrized by two P-fields, produced from learned translation-
equivariant functions of ϕ. More specifically, we consider 2d types of operators,
where each type is defined by a sign s = ±1 and a choice of one of the d lattice
directions. For the two-dimensional application described below, there are thus four
distinct operator types. The different types of operators are applied alternatingly
in the composition, but the specific order can be chosen arbitrarily. The operator
type with couplings in the spatial direction and sign s thus updates a field χ by

(W χ)ij = aijχij + bijχi+s,j (6.26)

with periodic boundary conditions along the space dimension: χL+1,j = χ1,j and
χ0,j = χL,j. An operator with temporal couplings updates a field χ by

(W χ)ij = aijχij + bijχi,j+s (6.27)

with antiperiodic boundary conditions along the time dimension: χi,L+1 = −χi,1
and χi,0 = −χi,L. This construction may be understood as a convolutional layer
with appropriate boundary conditions and an additional constraint on the kernel to
have non-zero entries only in the center and at one of the 2d adjacent sites.

With these definitions, each operator Wk is block diagonal (for a suitable choice
of basis). Each block is of the form

a1 ±b1
b2 a2 0

. . . . . .
0

bL aL

 , (6.28)

where we have dropped a (spatial or time) index to simplify the notation. The
determinant of each block is simply Πhah ± Πhbh, indicating that the Jacobian
determinant associated with the full composition can be tractably computed.

Convex potential flows

Because of the non-local nature of the effective action, we consider an alternative
flow architecture to produce a model distribution q(ϕ) approximating p(ϕ). Convex
Potential Flows (CPF) are normalizing flows defined via the gradients of a potential
that is strongly convex and twice differentiable almost everywhere [254, 255]. Strong
convexity of the potential on a convex support X guarantees the flow to be invertible
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on X . It can be shown that this family of normalizing flows is a universal density
approximator and optimal in the optimal transport theory sense [255]. We can
parametrize strongly convex functions by neural networks with mild constraints on
their architecture and weights [256]. Specifically, using L(x) to denote a linear layer
and L+(x) a linear layer with positive weights, an input-convex neural network can
be defined as

u(z) = L+
k+1(A(xk)) + Lk+1(z) xk = L+

k (A(xk−1)) + Lk(z) x1 = L1(z) ,
(6.29)

where A is a non-decreasing, convex activation function.
Given a convex potential function u : X → R, we define the map

[f(z)]i =
∂

∂zi
u(z) , (6.30)

where the index i specifies how each degree of freedom of z is mapped. Starting from
a base density r(z), the resulting probability density produced by mapping through
f follows as

q(x) = r(z) detHu(z)
−1 , (6.31)

where x = f(z) and Hu(z) = ∂2

∂zi∂zj
u(z) is the Hessian matrix of u(z). Training

by minimizing DKL(q||p) between the model q and a target density p only requires
the gradients ∇θ log detHu(x) with respect to the model’s parameters θ. Since the
Hessian is symmetric and positive-definite for strongly convex potentials, we can
directly employ a stochastic trace estimator [255, 257],

∇ log detHu(x) = ∇Tr logHu(x)

= Tr
[
Hu(x)

−1∇Hu(x)
]

= E
χ∼e−χ†χ [(H

−1
u (x)χ)†∇Hu(x)χ] .

(6.32)

The sample mean over noise vectors χ can be used to estimate this quantity in
practice, and the inverse Hessian applied in Hu(x)

−1χ can be efficiently computed
by the application of the conjugate-gradient method. Note that this estimator only
requires the computation of Hessian-vector products Hχ, which is particularly con-
venient when the Hessian is sparse.

CPFs can be straightforwardly applied to construct flows that sample bosonic
fields ϕ. They can also be constrained to be translation-equivariant by using the
aforementioned convolutional layers with periodic padding. In contrast to coupling
layers, the CPF potential is a scalar function based on global information, which
may result in transformations of the field ϕ that can in general be quite non-local.
Evaluating the model probability density for use in asymptotically exact Markov
chains requires a precise approximation of the log-det Hessian to avoid systematic
errors. An exact calculation of the determinant is feasible only for small lattice
volumes. For larger field configurations, one could apply a more scalable estimator,
such as the one based on Lanczos tridiagonalization and the quadrature method
described in [258].
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  ...  

(a) ϕ-Marginal architecture based on convex potential flows (Section 6.4.1).

  ...  

  ...  

(b) Fully joint architecture for q(ϕ, φ) based on coupling layers (Section 6.4.4).

  ...  

  ...  

(c) ϕ-Conditional model q(ϕ|φ) defined via a restricted joint architecture (Section 6.4.2).

  ...  

  ...  

(d) Autoregressive model q(ϕ)q(φ|ϕ) defined via coupling layers and linear flows (Section 6.4.3).

Figure 6.4: Architectures for the flow-based models defined in Section 6.4 for each
sampling approach. Note that each coupling layer gpk or gapk employs
masking of the updated field as shown in Figure 6.2, such that the
frozen components of the field are included as input to context functions.
Superscripts on coupling layers indicate the translational equivariance
structure of coupling layer inputs and outputs (either consistently trans-
forming as P-fields or AP-fields).
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6.4 Flow architectures

We next define particular architectures for modeling each of the distributions re-
quired for the four sampling approaches introduced in Section 6.2. While the space
of possible architectures that may be defined from the building blocks of Section 6.3.2
is large and the present discussion is not exhaustive, the use of each sampling method
and each building block is demonstrated at least once. The architectures for each
approach detailed in this section are illustrated in Figure 6.4.

6.4.1 Modeling p(ϕ) for ϕ-marginal sampling

The ϕ-marginal sampler defined in Section 6.2.1 requires a flow whose model distri-
bution q(ϕ) approximates p(ϕ). Such a flow only needs to manipulate P-fields. We
build this ϕ-marginal model using a composition of CPF layers, where the output
of each layer is defined by computing the gradient of a potential ui(·) (see Sec-
tion 6.3.2). These layers act on samples ζ drawn from some base distribution rp(ζ).
Figure 6.4a depicts this type of ϕ-marginal architecture defined by a composition
of CPFs acting on ζ. Each ui contributes a determinant factor detH−1

ui
to q(ϕ) in

terms of the Hessian Hab
ui

= ∂2ui(z)
∂za∂zb

, such that

q(ϕ) = rp(ζ)
∏
i

detH−1
ui

. (6.33)

As discussed in Section 6.3.1, this marginal model is extended to the joint density
q(ϕ, φ) = q(ϕ)p(φ|ϕ) for training. The density cannot be computed efficiently due
to the determinants involved in the definition of q(ϕ) as well as in the normalizing
constant of p(φ|ϕ), but the flow is nevertheless trainable using stochastic estimates
of the gradients. For sampling, the joint density itself may also be estimated using
stochastic approximations of the determinant factors.

The architecture of the convex potential network u(ϕ) is based on Equation (6.29)
and is modified appropriately to account for the periodic boundary conditions. It
consists of K layers of convolutions of the form

h1 = L1(ϕ)

hk+1 = L+
k (SoftPlus(ActNorm(hk))) + Lk(ϕ)

u(ϕ) = w1Sum(hK) + w2
∥ϕ∥2
2

,

(6.34)

where Lj is a convolution layer with periodic boundary conditions and unconstrained
weights; L+

j is a convolution layer with periodic boundary conditions and positive-
only weights; ActNorm(x) = (x − µ)/σ is layer that normalizes its inputs using
a learnable offset µ and scale σ, where µ and σ are initialized as the mean and
standard deviation of the inputs of an initialization batch [259]; w1, w2 are learnable
weights used to control closeness of the flow to the identity map at initialization.
The use of periodic boundary conditions for Lj and L+

j and the final Sum operation
ensures that u(ϕ) is invariant to translations.
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6.4.2 Modeling p(ϕ|φ) for Gibbs sampling

The Gibbs sampling scheme described in Section 6.2.2 utilizes the exact condi-
tional p(φ|ϕ) and a modeled conditional density q(ϕ|φ). A φ-marginal model q(φ)
is required to extend q(ϕ|φ) to the joint distribution q(ϕ|φ)q(φ) for training. This
simultaneous modeling of q(ϕ|φ) and q(φ) can be achieved by using a fully joint
architecture with restricted information flow, as shown in Figure 6.4c.

The model consists of a prior distribution over the base configurations ζ, χ denoted
by rp(ζ) and rap(χ), followed by the application of two types of affine coupling layers.
First, the layers gpk(·;χk) update the P-field configuration conditioned on the AP-
field, along with the frozen components of ζk, to produce q(ϕ|φ) as:

q(ϕ|φ) = rp(ζ)
∏
k

det J−1
gpk
, (6.35)

where Jgpk is the Jacobian for coupling gpk . Second, the couplings gapk (·) transform
the AP-field χ conditioned solely on its frozen components to obtain q(φ):

q(φ) = rap(χ)
∏
k

det J−1
gapk

(6.36)

To conditionally re-sample ϕ from q(ϕ|φ) while leaving φ unchanged, the bosonic
prior variable is re-sampled and the output of the flow is re-evaluated while holding
the pseudofermionic prior variable χ fixed. When φ is re-sampled from p(φ|ϕ) in
the alternate step of the Gibbs sampler, it is important to update the value of
χ by passing φ through the inverse of the bottom branch of the flow depicted in
the figure. This allows future re-sampling of ϕ as well as the calculation of the
conditional probability density defined by the model.

6.4.3 Autoregressive modeling of p(ϕ, φ) = p(ϕ)p(φ|ϕ)
Section 6.2.3 defined an independence sampler based on an autoregressive joint
model with the probability density given by q(ϕ, φ) = q(ϕ)q(φ|ϕ). We implement
q(ϕ) using masked affine coupling layers whose parameters are given by convolutional
networks satisfying translational equivariance through standard periodic boundaries,
as described above. On the other hand, q(φ|ϕ) is implemented using a deep linear
flow consisting of learned linear operators Wk(ϕ), as detailed in Section 6.3.2. The
parameters of these linear operators are all P-fields obtained by similar periodic
convolutional networks. The full joint model is given by the autoregressive combi-
nation of these two models, i.e. drawing ϕ from the affine model with distribution
q(ϕ), then drawing φ from the conditional deep linear flow with distribution q(φ|ϕ),
as shown in Figure 6.4d. The marginal model is defined by sampling ζ from the
prior distribution rp(ζ), then applying the sequence of coupling layers gpk(·) such
that the marginal model probability density q(ϕ) is given by:

q(ϕ) = rp(ζ)
∏
k

det J−1
gpk

. (6.37)
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The conditional linear flow is defined by sampling χ from the prior distribution
rap(χ) and applying the linear operators Wk(ϕ) to obtain the model density

q(φ|ϕ) = rap(χ)
∏
k

1

detWkW†
k

. (6.38)

We define rap(χ) = 1
ZN
e−χ

†χ to match the choice for the linear operator flow in
Equation (6.24).

Note that the learned components in this approach may also be combined in novel
ways. For example, it is possible to discard the conditional flow with distribution
q(φ|ϕ) after training and simply use q(ϕ) for ϕ-marginal sampling as described in
Sections 6.2.1 and 6.4.1. This may be advantageous in situations where gradients
from an exactly sampleable distribution are not available and training must be fully
variational. On the other hand, the conditional deep linear flow may be used by
itself as a determinant estimator for given configurations ϕ.

6.4.4 Fully joint modeling of p(ϕ, φ)

Finally, we construct a model that simultaneously samples ϕ and φ in a fully joint
approach, which can be employed in the exact sampler defined in Section 6.2.4.
The joint model implemented here is constructed from affine coupling layers that
alternatingly transform the bosonic fields conditioned on the pseudofermionic fields,
and vice versa, as shown in Figure 6.4b. The model is defined to sample ζ and χ
from the prior distributions rp(ζ), rap(χ) and subsequently apply alternating layers.
Coupling layers gpk(·, χk) transform the P-field base configuration ζ conditioned on
its frozen components and the AP-field configuration χk, while couplings gapk (·, ζk)
update the AP-field base configuration χk conditioned on its frozen components and
ζk. This gives rise to the joint density

q(ϕ, φ) = rp(ζ)rap(χ)
∏
k

det J−1
gpk

det J−1
gapk

. (6.39)

6.5 Application to Yukawa theory

In this section, we present the application of the flow-based sampling schemes in-
troduced in Sections 6.2 to 6.4 to the scalar Yukawa model described in Section 2.4.
Here, we use the dimensionful formulation of the action for the scalar field, but from
now on employ the following conventional form for notational simplicity:

SB(ϕ) =
∑
x∈Λ

[
− 2

d∑
µ=1

ϕ(x)ϕ(x+ µ̂) + (m2 + 2d)ϕ(x)2 + λϕ(x)4
]
, (6.40)

where Λ again denotes the set of lattice sites, m the bare scalar mass parameter, λ
the coupling, and d the dimension. All results reported in this work are computed
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on a 16 × 16 lattice geometry using the two choices of action parameters in the
symmetric phase given in Table 6.1. For this theory and lattice discretization, there
is no additive renormalization to the bare fermion mass mf . Accordingly, we directly
probe the case of vanishing mass by setting mf = 0. The first set of parameters, for
which the Yukawa coupling is chosen to be g = 0.1, already provides a realistic test
scenario in the sense that the average ratio of fermionic to scalar force magnitudes
is around 3%, which is similar to the ratio of fermionic to gauge forces reported in
the literature for some lattice QCD computations; see e.g. [260, 261]. The second
choice with g = 0.3 features a much larger force ratio amounting to about 39%,
which thus provides a testbed for theories with more prominent fermionic effects.
For simplicity, we will refer to these two parameter choices by the associated value
of the Yukawa coupling g.

6.5.1 Even-odd preconditioning

We employ an even-odd preconditioning scheme for the Dirac operator for all mod-
els except for the autoregressive model using linear operators. In contrast to the
default lexicographic ordering, sorting lattice sites into even and odd allows to bring
the matrix into a form that is amenable to an explicit block factorization of the
determinant, which leads to improvements in the conditioning and solver perfor-
mance. This reduces the variance and cost of computing the pseudofermion action
required for optimizing models and sampling. Most previous work on improved
orderings has focused on techniques for Wilson fermions in the context of gauge
theory [27, 29, 262], but the same insights can be applied to the staggered fermion
formulation used here.

Ordering lattice sites into even and odd subsets allows writing the Dirac matrix
D as a 2× 2 block matrix of the form

D =

(
mf + gϕo Doe

Deo mf + gϕe

)
≡
(
A B
C D

)
, (6.41)

where we denote the blocks as A,B, C,D for simplicity. The constant blocks B = Doe

and C = Deo couple odd to even sites and vice versa, and ϕo and ϕe indicate the
components of ϕ respectively associated with odd and even sites of the lattice.
This form allows a more efficient stochastic approximation of the determinant by
decomposing it into the determinant of either diagonal block and the associated
Schur complement as

detD = det(A) det(D − CA−1B)
= det(AC−1D − B) det(C) , (6.42)

or, equivalently,
detD = det(D) det(A− BD−1C)

= det(DB−1A− C) det(B) . (6.43)
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V m2 λ g mf ⟨|M |⟩ ⟨|ψ̄ψ|⟩ Force ratio
162 −4.00 6.0 0.1 0 0.0733(1) 0.0159(1) 3%
162 −1.55 2.4 0.3 0 0.0791(1) 0.0490(1) 39%

Table 6.1: The two parameter choices for the reported numerical studies and the as-
sociated average absolute magnetization and chiral condensate computed
with HMC. All uncertainties reported in this work are obtained using
data blocking to account for autocorrelations and applying the statistical
jackknife method. Force ratios are determined by dividing the average
L2-norms of fermionic and bosonic force vectors.

Rewriting from the first to the second form in Equations (6.42) and (6.43) ensures
that the resulting expression does not involve terms that mix A and D with their
respective inverses. This may lead to numerical instabilities if mf = 0, which can re-
sult in ill-conditioned A and D. Since B and C are constant, the terms det(B), det(C)
drop out of the path integral and thus do not affect acceptance probabilities or gra-
dients for optimization. Hence, they can be ignored for the purpose of training and
sampling flow models.8

The reduced V/2 × V/2 form of the Dirac operator makes determinant estimation
significantly cheaper while keeping the additional computational overhead minimal.
Half of the pseudofermion degrees of freedom completely decouple from the scalar
field and can be discarded. The reduced operator partially retains the original
periodic and antiperiodic boundary conditions when applied to the even or odd
sub-lattices, respectively, reducing to a translation symmetry for even shifts. When
utilizing affine coupling layers with a checkerboard mask, it is exactly this subset of
the translational symmetry group that is preserved, and the translationally equiv-
ariant architecture is directly applicable to learning a distribution over the reduced
subset of pseudofermions.

The improvement can be pushed to higher order by noting that the diagonal
matrix elements of the preconditioned Dirac operator are close to unity, which makes
it possible to employ an ILU preconditioning scheme [27, 29]. It relies on the fact that
the preconditioning matrices for the even-odd ordering step described above can be
computed explicitly, which is not generally true for other ordering schemes. Though
also originally designed for the Wilson Dirac operator, the same procedure can again
be applied to the staggered fermion formulation. Since ILU preconditioning breaks
the translation symmetry of the pseudofermion action completely, it is not directly
compatible with any of our equivariant flow constructions that target the distribution
of φ. However, in an experiment modeling the even-odd preconditioned ϕ-marginal
distribution using an affine coupling layer model, additional ILU preconditioning for
the same architecture led to a moderately improved acceptance rate.

8If one is interested in overall estimates of logZ, the constant contributions from these terms
must then be included.
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6.5.2 Model architectures

For each of the four sampling approaches outlined in Section 6.2 and corresponding
model architectures detailed in Section 6.4, specific models are created for both
choices of target action parameters given in Table 6.1:

• For the sampling scheme described in Section 6.2.1, a CPF model is con-
structed defining a ϕ-marginal distribution q(ϕ) approximating the correspond-
ing p(ϕ). The model architecture and training follow the generic procedure
outlined in Section 6.4.1;

• To build a conditional model q(ϕ|φ) for the Gibbs sampler described in Sec-
tion 6.2.2, a restricted affine coupling layer flow is implemented as described
in Section 6.4.2. To achieve translational equivariance, the method of group
averages described in Section 6.3.2 is employed for each individual context
function;

• To produce an autoregressive joint model density q(ϕ, φ) = q(ϕ)q(φ|ϕ) for
the sampling scheme described in Section 6.2.3,a model consisting of affine
coupling layers followed by learned equivariant linear transformations is con-
structed as described in Section 6.4.3;

• For the fully joint sampling scheme described in Section 6.2.4, a model with
unrestricted affine coupling layers acting on both ϕ and φ is implemented,
using translation-equivariant convolutions as described in Section 6.3.2. This
results in a fully joint model distribution q(ϕ, φ) as detailed in Section 6.4.4.

The models are optimized for each approach based on the joint Kullback-Leibler
divergence discussed in Section 6.3.1. Prior distributions for the initial P-field ζ and
AP-field χ, where they are used according to Figure 6.4, are Gaussians of the form

rp(ζ) =
1

Zζ

e−ζ
†ζ/(σζ)2

and rap(χ) =
1

Zχ

e−χ
†χ/(σχ)2 ,

(6.44)

with specific values of σζ and σχ for each model chosen to enhance the training
stability and convergence.

Further details about the hyperparameters and training procedure for each of the
the models can be found in Appendix B. The chosen settings were found to work
well empirically, and an exhaustive search over the available parameter space is
beyond the scope of this proof-of-principle study. Nevertheless, it can be expected
that tuning the various model hyperparameters may further improve the reported
performance metrics, which will be the subject of future work.
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MCMC Approach Modeled targets Flow model Acc. rate
ϕ-Marginal (Section 6.2.1) p(ϕ) Section 6.4.1 92%

92%

Gibbs (Section 6.2.2) p(ϕ|φ) Section 6.4.2 60%
44%

Autoregressive (Section 6.2.3) p(ϕ), p(φ|ϕ) Section 6.4.3 53%
43%

Fully Joint (Section 6.2.4) p(ϕ, φ) Section 6.4.4 37%
31%

⟨|M |⟩ ⟨|ψ̄ψ|⟩ τ int
M τ int

ψ̄ψ

0.0734(1) 0.0159(1) 0.72(1) 0.71(1)
0.0792(1) 0.0491(1) 0.67(1) 0.67(1)

0.0735(1) 0.0160(1) 2.02(4) 2.02(3)
0.0792(1) 0.0490(1) 2.74(4) 2.73(4)

0.0731(1) 0.0159(1) 2.16(3) 2.16(3)
0.0790(1) 0.0489(1) 3.62(7) 3.60(7)

0.0733(1) 0.0159(1) 4.98(11) 4.98(11)
0.0791(1) 0.0490(1) 8.73(30) 8.67(30)

Table 6.2: Sampling performance metrics and observables for all approaches, com-
puted from 100 Markov chains with 10k proposals each, where the first
1k are discarded for thermalization. For each model, the first row shows
results obtained for g = 0.1 and the second row for g = 0.3, respec-
tively. For comparison, the values obtained with HMC listed in Table 6.1
are consistent with the measurements from our models. Autocorrelation
times τ int are computed for each of the 100 chains and then averaged, and
errors are obtained with statistical jackknife. The results are discussed in
more detail in Section 6.5.3. All models except the autoregressive make
use of even-odd preconditioning of the action.
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6.5.3 Discussion and comparison of sampling schemes

After optimization, each of the models is used to construct asymptotically exact
samplers for their respective target distributions according to the four schemes given
in Section 6.2. For each case, 100 distinct Markov chains are produced consisting of
10k steps each, of which the first 1k steps are discarded for thermalization. These
Markov chains are used for observable measurements and to investigate and compare
metrics of the efficiency of sampling via each of these methods.

First, we confirm that each of the observables described above are measured to be
consistent across sampling schemes and with HMC baseline results. Calculations of
⟨|M |⟩ and ⟨|ψ̄ψ|⟩ using each of the generated ensembles are detailed in Table 6.2 and
are all consistent with the results obtained through HMC. The scalar and fermionic
two-point correlators produced by the four exact Monte Carlo sampling schemes
models are also consistent with the HMC baseline, as shown in Figures 6.5 and 6.6.

For the various sampling approaches, Table 6.2 compares the autocorrelations of
the magnetization and chiral condensate, as well as the Markov chain acceptance
rates. Based on the autocorrelation function ΓX(τ) of an observable X defined in
Equation (2.4), the integrated autocorrelation is

τ intX =
1

2
+ lim

τmax→∞

τmax∑
τ=1

ΓX(τ)

ΓX(0)
. (6.45)

The sum can be truncated at a sufficiently large τmax due to the exponential sup-
pression of ΓX(τ); 1 ≪ τmax ≪ N should be satisfied to ensure that the values of
ΓX(τ) are reliable. For the τ int values reported in this work, we use the Madras-Sokal
windowing procedure [264] to choose a suitable τmax by identifying the earliest point
where cτ int ≤ τmax, with c = 10. The integrated autocorrelation times τ int

M and τ int
ψ̄ψ

are given in Table 6.2 together with acceptance rates for all sampling schemes.
To understand the relative performance of the four sampling approaches, we note

that the dependence of the acceptance rate and autocorrelations on model quality
is quite distinct in several of these approaches. For one, the ϕ-marginal sampler
involves an exact determinant measurement in the sampling step used for the nu-
merical study above, which is not expected to scale efficiently. If replaced with
the pseudo-marginal estimator discussed in Section 6.2.1, the variance of the noisy
estimates of each determinant would degrade the statistical performance achieved
by even an optimally trained model and improved estimators, in particular when
encountering large condition numbers. This is an obstacle to working with light
fermion masses or field configuration geometries with many lattice sites (e.g. near
the thermodynamic limit) independent of the challenge of training accurate model
approximations to the target distribution. Thus, the relatively higher acceptance
rates and lower autocorrelation times achieved by the ϕ-marginal sampler must be
contrasted against the potentially difficult scaling challenges or requirements for
more precise stochastic estimators. By comparison, there is no non-trivial upper
bound on the acceptance rate of the other sampling approaches, and they would
achieve 100% if perfect model distributions were constructed.
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Figure 6.5: Connected two-point correlation functions of the scalar field (projected
to zero spatial momentum in each time slice t) for each model and choice
of action parameters, computed from 100 Markov chains with 9k config-
urations each. Error estimates are obtained using data blocking with a
bin size of 100 and applying statistical jackknife. Left: g = 0.1, right:
g = 0.3. Bottom panels show the ratio of each data point to the HMC
baseline, where the shaded regions correspond to the 1σ and 2σ uncer-
tainty bands of the HMC results. For both the scalar correlators here
and the fermionic ones in Figure 6.6, Hotelling’s t-squared statistic [263]
comparing each flow model result to the HMC baseline finds results to
be consistent with correlated statistical fluctuations.
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Figure 6.6: Average fermionic two-point correlation in the time direction for each
model and choice of action parameters using the same configurations
and data blocking as for Figure 6.5. Left: g = 0.1, right: g = 0.3. The
choice of odd t selects staggered spinor components at the sinks that
give a non-zero average correlation with the source at x = 0. Shaded
regions in the bottom panel again depict the 1σ and 2σ uncertainties of
the HMC baseline results.
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Among these three approaches, the Gibbs sampler must also be further contrasted
against the autoregressive and fully joint samplers. In particular, the remaining
conditional structure of updates to ϕ and φ in the Gibbs sampler results in auto-
correlations even if the acceptance rate is 100%. The magnitude of these residual
autocorrelations may be small, but nevertheless puts a bound on the performance
that is theoretically achievable by a Gibbs sampler, even in the asymptotic limit
of perfect models of the involved distributions. Thus only joint models (either au-
toregressive or fully joint) can completely eliminate autocorrelations in the ideal
limit of perfect models. In practice, however, the distinctions between joint models
and Gibbs sampling may be minor. For example, the results presented in Table 6.2
demonstrate that at the similar acceptance rates of roughly 40%–50% for the Gibbs
and autoregressive samplers, the integrated autocorrelation times for the magnetiza-
tion and condensate are similar, despite the additional autocorrelations introduced
by the particular conditional structure of the Gibbs sampling scheme. The fully
joint sampler shows a lower acceptance rate and greater autocorrelations, indicating
that the differences are largely based on the model approximation qualities and the
effect of the conditional structure on autocorrelations is largely negligible.

The particular flow-based models implemented to approximate the various distri-
butions used for the four sampling approaches also have distinct scaling prospects.
It has been found in previous work [175] that flows based on coupling layers using
convolutional networks may be easily transferred between different lattice volumes
and thereby trained efficiently. This generalizability applies to the affine coupling
layer implementations used for the Gibbs, autoregressive, and fully joint samplers
described in this work. The CPF implementation for ϕ-marginal sampling is also
based on convolutional networks for the construction of the convex potentials, thus
enabling efficient measurements of these potentials at all lattice volumes. How-
ever, in this case computing the Jacobian of the transformation to calculate q(ϕ)
is potentially expensive, because it requires the evaluation of the Hessian of each
ui. Stochastic estimation of these Hessian factors may introduce additional noise in
exact sampling schemes based on these particular flow architectures, which could be
prohibitive in scaling this approach to large lattices.

In summary, these results numerically demonstrate the effectiveness of the pro-
posed flow models and sampling schemes. The observed performance differences
cannot immediately be attributed to inherent advantages of the chosen building
blocks, but may also depend strongly on the model implementation details and
theory-specific characteristics. The situation may also be quite different for larger
volumes and dimensions as well as other types of fields and interactions, and dis-
entangling the effects of implementation details from asymptotic scaling properties
will be the subject of future research. Furthermore, there is a large space of possible
combinations of the building blocks introduced here that could be explored in fu-
ture work to determine models that may have more efficient training, sampling, and
scaling prospects. While an exhaustive search over this space is beyond the scope of
this exploratory work, the present results serve as a guide for the design of custom
flows for lattice simulations with dynamical fermions in other applications.
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6.6 Unfreezing the Schwinger model

Following the above algorithmic developments, in this section flow-based sampling is
used to solve topological freezing in a fermionic gauge theory at criticality. Specif-
ically, a numerical demonstration in the Schwinger model at the critical value of
the fermion mass is provided, illustrating that the flow-based approach is robust at
sample sizes where HMC fails.

6.6.1 Flow architecture

As discussed above, in order to achieve efficient sampling via a flow-based approach,
it is critical to incorporate the symmetry properties of the target distribution. For
the Schwinger model specifically, gauge invariance imposes strong constraints. These
are built into the model using the framework of gauge-equivariant flows on compact
manifolds developed in [174, 175, 265]. The other challenge of course is the sam-
pling of theories with fermionic degrees of freedom. Out of the four treatments in
Section 6.2, here we simply consider a marginal sampler using an exact evaluation
of the fermion determinant, which poses no computational problem at the scale of
the present study. This means that the model describes only gauge degrees of free-
dom, and the effective action defined in Equation (2.41) is computed exactly during
training and for MCMC sampling. However, it should be emphasized that there are
no conceptual barriers to employing any of the more scalable approaches based on
the pseudofermion formulation.

Following [174] and the in-depth discussion of equivariance in Section 6.3.2, gauge-
equivariant flows are constructed by composing a sequence of equivariant coupling
layers. In each layer, gauge-invariant closed Wilson loops are computed from the
frozen gauge links and used as inputs for the context functions. The outputs of
these functions are used to parametrize the transformation of the active gauge links,
which is constrained to commute with gauge transformations. Specifically, each
gauge-equivariant coupling layer updates the active subset of the links,

Mk
µν = {Uµ

(
(4n+ k)µ̂+ 2mν̂

)∣∣ ∀n,m ∈ Z}
∪ {Uµ

(
(4n+ 2 + k)µ̂+ (2m+ 1)ν̂

)∣∣ ∀n,m ∈ Z} ,
(6.46)

where k, µ, ν change for each layer. The flow is constructed by iterating through
k ∈ {0, 1, 2, 3} in order, first with µ = 0, ν = 1, then for µ = 1, ν = 0. In this way,
all links are updated within 8 layers. Here, a model with 48 layers is constructed,
so each link is updated a total of 6 times. For active loops, the plaquettes that
project forwards from their corresponding active links (“active plaquettes”) are used.
Combined with a gauge-invariant base distribution, this yields an overall gauge-
invariant model. The base distribution r(U) for the flow model is an independent
uniform distribution over the U(1) Haar measure on each link. Specifically, random
variables A are sampled uniformly over [0, 2π) and then used to construct gauge
links via U = eiA.
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Unlike in the limit of pure-gauge theory where the hopping parameter κ of the
Wilson fermion formulation is taken to zero—corresponding to an infinite fermion
mass—the Schwinger model at finite mass exhibits long-range correlations, with
the correlation length defined by the inverse of the mass of the lightest particle.
This demands new architectural features over those employed for the pure-gauge
models considered in [174]. First, a subset of active links is used that is locally more
sparse, with each active link completely surrounded by frozen ones. This allows
for a better propagation of information over longer distances. Second, larger 2 × 1
Wilson loops along with 1 × 1 plaquettes are provided as inputs for the context
functions. Third, the architecture considered here includes dilated convolutions,
which retain translational equivariance, but feature better context aggregation, i.e.
an exponential expansion of the receptive field without loss of resolution or coverage
[266]. Fourth, we parametrize our transformations using highly expressive neural
splines [267].

Specifically, each layer has its own convolutional neural network that outputs the
parameters defining the transformation of active plaquettes. These neural networks
each take six input channels corresponding to

cos θP , sin θP , cos θ2×1, sin θ2×1, cos θ1×2, sin θ1×2 , (6.47)

where θP is the plaquette angle defined in Equation (2.44), and θ2×1, θ1×2 are the
arguments of the 2 × 1, 1 × 2 Wilson loops, respectively. The sin and cos transfor-
mations are applied to ensure that the input is a continuous function of the gauge
fields in order to avoid numerical instabilities at the boundary. Each neural network
is built from three convolutions with kernel size 3 and dilation factors 1, 2, 3 in order
(where 1 is a standard undilated convolution). Between each intermediate convo-
lution, there are 64 hidden channels, and the final output has 10 channels. After
each intermediate convolution we use LeakyReLU activations, but no activation is
applied to the final output. The 10 output channels are used to parametrize the
positions and slopes of the 3 knots of a circular rational quadratic spline s(θP ), as
well as an overall offset t. These are used to transform the active plaquettes θPA as
θ′PA = s(θPA) + t. The active links are updated by inferring a link transformation
that induces a transformation of the active loops.

We again consider the aforementioned self-training scheme where the loss function
is a stochastic estimate of the Kullback-Leibler divergence made with q-distributed
samples generated by the model,

DKL(q||p) =
∫
dU q(U) log

q(U)

p(U)
≈
〈
log q(U) + S(U)

〉
ϕ∼q(U)

+ logZ . (6.48)

The performance of flow-based MCMC using the trained model is compared against
that of HMC. At finite lattice spacing, a diverging correlation length is realized by
tuning κ to its critical value, resulting in a vanishing renormalized fermion mass. To
achieve this, for a square lattice of extent L = 16, one sets β = 2.0 and κ = 0.276
[60]. The acceptance rate for sampling from the trained model at these parameters
is ∼ 17%.
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Figure 6.7: Monte Carlo history of the topological charge, Q (top), and the sign
of the real part of the determinant of the Dirac operator, σ (bottom),
computed with augmented HMC.

6.6.2 HMC details

The HMC results presented here also use the exact determinant action defined in
Equation (2.41), with molecular dynamics forces computed from exact derivatives.
Trajectories of length tHMC = 1 divided into 10 steps are used, yielding an acceptance
rate of 94%. The HMC data are taken from streams 2× 105 trajectories long, with
no trajectories discarded between measurements. Each stream is initialized from a
hot start, i.e. all links are drawn from independent uniform distributions.

For the Schwinger model, it is possible to implement an augmentation step for
HMC that proposes hops to other topological sectors [40–42] by generating configu-
rations U ′ such that 0 ̸= Q(U ′)−Q(U) ≡ ∆Q ∈ Z. This is achieved by distributing
the proposed change across links according to

U ′
0(x) = exp

(
−2πi

∆Q

V
x1

)
U0(x)

U ′
1(x) = exp

(
2πi

∆Q

L
x0δx1,L−1

)
U1(x) .

(6.49)

Here, coordinates are understood in lattice units, i.e. xi ∈ {0, . . . , L− 1}. For sim-
plicity, we restrict ∆Q ∈ {−2,−1, 0, 1, 2} and propose each ∆Q with equal proba-
bility. The proposal is accepted or rejected with a standard Metropolis step, with
an acceptance rate of 34% for the above parameters.

Interleaving this augmentation with HMC steps produces an algorithm with dif-
ferent properties than HMC alone, which we call augmented HMC from now on. No
equivalent construction is known for many theories, including QCD, which is part of
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the motivation to consider flow-based samplers in the first place. This augmented
method is used solely to obtain baseline results for the chiral condensate and the
topological susceptibility defined in Equations (2.32) and (2.45), respectively. To
do so, an ensemble of 1.2 × 107 configurations is produced using these augmen-
tation hits alternated with HMC steps. The baseline results are estimated to be
⟨ψ̄ψ⟩ = 1.50918(9), ⟨χQ⟩ = 0.003875(4).

In Figure 6.7, part of the Monte Carlo history of Q and σ is shown for the baseline
run with augmented HMC. As can be seen, rapid fluctuations occur at a scale
comparable to the flow model results discussed below. In particular, σ exhibits an
asymmetric distribution along positive and negative values, as expected from the
higher total weight of even topological sectors.

6.6.3 Advantages of flow-based sampling

A clear illustration of the advantages of flow-based sampling for the Schwinger model
at criticality is given in Figure 6.8, which compares estimates of the chiral conden-
sate as well as the topological susceptibility from HMC with those from flow-based
MCMC and the augmented HMC baseline described above. Uncertainties are quan-
tified using the integrated autocorrelation time with the “gamma method” [268].
Clearly, the single frozen HMC stream yields estimates that are manifestly incon-
sistent with the baseline result. This strongly indicates severely underestimated
uncertainties even at the very large sample size of N ≈ 105. One may hope to rem-
edy this illness by using a dataset of samples from six independent HMC streams,
since then information from multiple topological sectors can be incorporated even in
the presence of freezing in the individual streams. However, as the figure shows, this
estimate is still biased for N ≈ 105 samples, with incorrect uncertainties deceptively
scaling as 1/

√
N . The estimate becomes consistent with the ground truth only when

N ≳ 106. The uncertainty, however, catastrophically increases—a clear indication of
an ergodicity problem. This analysis suggests that affordable HMC stream lengths
may not be sufficient to diagnose bias. By contrast, flow-based results converge
smoothly to the baseline value, with errors scaling as 1/

√
N .

Figure 6.9 provides a more direct illustration of freezing in the Monte Carlo his-
tories of topological quantities. The topological sectors of the Schwinger model are
distinguished by the integer-valued topological charge defined in Equation (2.43).
Due to lattice artifacts, this observable fluctuates even when the topological sector is
fixed. A better-suited observable to identify true tunneling events—the sign σ of the
real part of the fermion determinant factor—was defined in Equation (2.46). In the
first HMC stream, Q appears to fluctuate without any evidence of freezing. How-
ever, σ is completely frozen for all samples shown, implying that these fluctuations
arise from discretization effects and do not correspond to tunneling events between
topological sectors. In the second HMC stream, we see an abrupt change in the
behavior of Q. This coincides with a change in σ, confirming that a true tunneling
event has occurred. By contrast, flow-based sampling exhibits rapid fluctuation in
both Q and σ, demonstrating sampling which rapidly mixes topological sectors.
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Figure 6.8: Demonstration of underestimated uncertainties when using HMC for the
chiral condensate (a) and topological susceptibility (b).
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Figure 6.9: Monte Carlo history of the topological charge (top) and the sign of the
real part of the determinant of the Dirac operator (bottom).

A fair and comprehensive comparison of the costs of HMC and flow-based MCMC
requires quantifying three factors for each: setup costs, the raw computational cost
of a sampling step, and the sampling efficiency (i.e. the degree of autocorrelation).
Setup costs—predominantly, equilibration for HMC and training for flows—are par-
ticularly difficult to compare in this case. On the one hand, fully equilibrating HMC
requires observing and discarding many tunneling events, which occur stochastically.
On the other hand, training costs for the flow-based approach may vary over many
orders of magnitude depending on the training scheme. Raw computational costs
can be measured directly, but depend strongly on implementation details. With that
being said, flow-based MCMC steps are found to be ∼ 10 times less expensive than
HMC trajectories on the same hardware, due to the frequently required inversions of
the Dirac operator in HMC. However, there is room for optimization in both cases,
and the results should be taken with a grain of salt.

Nevertheless, an approximate comparison of sampling efficiency is sufficient to
show the advantage of flow-based sampling over HMC. Each algorithm exhibits
some characteristic time between tunneling events and a chain with many times
that number of steps is required in order to incorporate information from all topo-
logical sectors. For HMC, tunneling events are observed to be separated by ∼ 20k
trajectories on average. In contrast, the sector changes much more rapidly with
flow-based sampling, namely every ∼ 6 steps. Hence, for this model, the advantage
in sampling efficiency of flow-based MCMC over HMC is estimated to be more than
three orders of magnitude.
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6.7 Applicability to update-based approaches

While the sampling schemes presented in this chapter are based on the proposal
of statistically independent field configurations (except for the Gibbs sampler; see
Section 6.5.3 for further discussion), the flow-based models defined here may also be
used in methods that instead propose configuration updates, rather than completely
new samples. Importantly, the described flow models may serve as an “engine” for a
much broader class of sampling algorithms. A simple way to construct an update-
based algorithm with these models would be to formulate stochastic processes in
the flow prior that guarantee asymptotic exactness under the target distribution,
such as partial heatbath resampling, HMC, or Langevin-type algorithms, rather
than independently drawing a completely new prior sample in every update step.
Such partial updates have previously been studied in the context of other generative
models [254, 269, 270] as well as trivializing map approaches [271, 272]. Moreover,
flow-based updates may be interleaved with steps of HMC [170] or other MCMC
methods [273]. Such composite algorithms may provide improved sampling over
either method alone. Other possible improvements include using the flow models
developed here inside a hierarchical multilevel MCMC scheme, as proposed by [44],
or as components of stochastic normalizing flows [173, 274, 275].

In contrast to these update-based methods where autocorrelations are always in-
duced by construction—similar to the diffusion-based algorithms we initially set out
to replace—direct sampling approaches have the advantage that autocorrelations in
the flow-based Markov chain are in principle eliminated for an ideal model. Imper-
fect models, however, can still result in residual correlations caused by rejections in
the Metropolis step. Whether these residual correlations from an imperfect model
can outweigh the autocorrelations in corresponding update-based methods is an
open question. Since this may depend strongly on the model details and the specific
problem under consideration, it is likely impossible to give a general answer here.
Instead, which combination of sampling scheme and model architecture yields the
best performance must be determined empirically on a case-by-case basis.

Apart from devising modified sampling schemes for the types of flows presented
in this work, one may also consider defining flows that directly transform configu-
rations in order to produce proposals for Markov chain updates. Related work on
learning improved HMC-like updates includes A-NICE-MC [276], its recent applica-
tion to the lattice simulation of scalar ϕ4-theory [251], L2HMC [277], and DLHMC
[176, 178], which was demonstrated to successfully mitigate topological freezing in
the context of U(1) lattice gauge theory in two dimensions. These approaches require
the implementation of flows suitable for transforming the primary fields and conju-
gate momenta conditioned on each other. The flows over pseudofermion variables
developed in this work can therefore be used to extend such methods to the setting
of lattice field theory involving dynamical fermion fields. These insights may also
inform the design of novel building blocks for the self-learning Monte Carlo method
mentioned previously, which was recently applied to non-Abelian gauge theory with
dynamical fermions [195].
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6.8 Summary and outlook

In this chapter, four asymptotically exact approaches to generative neural sampling
for fermionic lattice field theories have been introduced, based on different decom-
positions of the joint action over bosonic and pseudofermionic fields. Furthermore,
several techniques were developed to model the associated distributions via the con-
struction of flow-based models. All sampling methods have been demonstrated to
successfully produce asymptotically exact samplers in a proof-of-principle applica-
tion to a two-dimensional Yukawa theory. Nevertheless, the discussed architectures
represent merely a selection from a large class of possible ways to model the afore-
mentioned distributions. Their observed relative performance provides a starting
point for understanding the distinctions between different sampling schemes and ar-
chitectures, but should not be considered a definitive indicator of their performance
in the context of other theories or at larger scales.

Importantly, investigating the continuum limit of flow-based samplers is relevant
to determine their potential to mitigate critical slowing down at scale. This question
arises with or without fermions, and empirical studies are required to understand the
scaling of these methods for different theories. Nonetheless, the “building blocks”
of flows suitable for fields including pseudofermions, and the sampling strategies
outlined in this work, provide a basis for developing efficient flow-based samplers for
fermionic theories. In the spirit of this endeavor, an architecture was developed that
can successfully model long-range correlations in the Schwinger model at vanishing
renormalized fermion mass. The resulting algorithm does not suffer from topological
freezing and thus outperforms HMC by orders of magnitude. These results represent
an important milestone in first-principles calculations for gauge field theories coupled
to fermions using provably exact machine learning.

Nevertheless, challenges remain on the road to large-scale applications, such as
state-of-the-art QCD calculations. The sampling approach for the Schwinger model
discussed here relied on an exact evaluation of the fermion determinant. For larger
volumes and theories in higher dimensions, employing one of the more scalable al-
gorithms based on the pseudofermion method will become necessary. Continued
work into improved stochastic approximations of determinants [243, 278–283] com-
plements the flow-based approach presented here and may be combined with the
proposed framework to yield further performance improvements.

If the success in the Schwinger model can be extended to QCD calculations at
scale, this will have significant impact across nuclear and particle physics. The
immediate next steps in this endeavor are the transfer of insights gained from the
Yukawa and Schwinger models considered in this work to SU(3) gauge fields coupled
to fermions in four dimensions, as well as studying the scalability of the method.
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7 Flow-based density of states for
complex actions

In Chapter 6, it was demonstrated that sampling algorithms based on flows have the
potential to solve ergodicity problems in lattice calculations. Recent work regarding
the computation of thermodynamic quantities with flows suggests that they are also
applicable to the DoS approach to complex action problems mentioned in Section 3.2.
The present chapter is dedicated to the development of this idea.

After a brief introduction in Section 7.1, the DoS approach pertinent to the type
of complex action problem considered here is reviewed in Section 7.2. The proposed
method is explained in Section 7.3 and numerical results are presented in Section 7.4.
The contributions are summarized and an outlook is provided in Section 7.5. The
contents of this chapter have been published in [7] together with Jan M. Pawlowski.

7.1 Introduction

As described in Section 3.2, for many physically interesting theories, the associated
Euclidean lattice action is complex-valued, which prohibits the application of stan-
dard importance sampling. In this context, it has been shown that with the DoS
approach [110, 284–293], certain complex action problems can be successfully treated
[111, 294–299]. However, directly computing the DoS is generally not possible due
to the intrinsically high variance of the associated observables. Instead, the usual
strategy is to measure its derivative via restricted MCMC calculations followed by
numerical reconstruction. The high precision required to control the accumulation
of errors from the approximation of the integral can be computationally expensive.

Recently, it has been noted that similar thermodynamic quantities in lattice field
theory can be computed directly using generative neural sampling [185, 250, 300],
thereby completely avoiding the aforementioned numerical reconstruction of the
quantity of interest. Hence, flow-based sampling may also be applied to the direct
computation of the DoS for lattice field theories with complex actions. This approach
is developed here in the context of scalar ϕ4-theory with an imaginary external
field. First, the exactly solvable, zero-dimensional case is investigated as a toy
model for a proof-of-principle demonstration, showing that the DoS as well as the
partition function and magnetization as functions of the external field are computed
correctly. In particular, the Lee-Yang zeroes [301] of the partition function together
with the associated discontinuities in the magnetization can be successfully located.
The approach is then applied to actual lattice models in one and two dimensions,
accurately reproducing the densities obtained with conventional MCMC methods.
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7.2 Density of states

We consider lattice field theories with complex-valued actions where the imaginary
part is generated by a constant, homogeneous external field, i.e.

S(ϕ) = Sr(ϕ) + ihX(ϕ) , (7.1)

where Sr, X, h ∈ R. The partition function and expectation values of observables
are defined as

Z =

∫
Dϕ e−Sr(ϕ)−ihX(ϕ) , (7.2)

⟨O⟩ = 1

Z

∫
Dϕ e−Sr(ϕ)−ihX(ϕ)O(ϕ) . (7.3)

Since the action is complex, standard importance sampling is not directly applicable
and reweighting often becomes prohibitively expensive when increasing h due to the
average phase factor being close to zero, as discussed in Section 3.2.

One ansatz to make the computation more tractable is to consider the DoS as a
function of the quantity that generates the imaginary part of the action, i.e.

ρ(c) =

∫
Dϕ e−Sr(ϕ)δ(X(ϕ)− c) . (7.4)

Essentially, ρ(c) corresponds to slices of the partition function for the real part
of the action, with the configuration space restricted to hypersurfaces of constant
X(ϕ) = c. In MCMC calculations, this restriction can be achieved e.g. by confining
the dynamics through additional rejections, or by replacing the δ-distribution with
a Gaussian of finite width, which is the approach used in the present work; see
Section 7.3 for details.

If ρ(c) is known, the partition function for the full action as well as expectation
values of observables (that are functions of c only) can be computed in terms of
one-dimensional integrals with a residual phase,

Z =

∫
dc ρ(c) e−ihc , (7.5)

⟨O⟩ = 1

Z

∫
dc ρ(c) e−ihcO(c) . (7.6)

However, similar to partition functions themselves and thermodynamic quantities in
general, direct computation of ρ(c) is often infeasible with conventional MCMC al-
gorithms due to the high variance associated with the required observables. Instead,
it is usually reconstructed from measurements of ∂c log ρ(c), as detailed below.
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7.3 Flow-based density of states

As already mentioned in Section 7.2, we consider a formulation of the DoS approach
where the δ-distribution in Equation (7.4) is replaced by a Gaussian of finite width,
following e.g. [290, 293]. This enables the straightforward application of both stan-
dard sampling algorithms like Hybrid/Hamiltonian Monte Carlo (HMC) as well as
the flow-based approach. Exactness of all expressions can be retained at the cost
of a residual sign problem (which is tractable for sufficiently small width) or by
extrapolating to the limit of vanishing width.

First, we note that the result of the Gaussian integral∫
dc e−

P
2
(c−a)2 =

√
2π

P
≡ N (7.7)

is independent of a. Hence, we can rewrite Equation (7.2) as

Z =

∫
Dϕ
∫

dc e−
P
2
(c−X(ϕ))2−logN e−Sr(ϕ)−ihX(ϕ) . (7.8)

We then define the P -dependent DoS as

ρP (c) =

∫
Dϕ e−Sc,P (ϕ) , (7.9)

where
Sc,P (ϕ) = Sr(ϕ) +

P

2
(c−X(ϕ))2 + logN . (7.10)

The “true” DoS as defined in Equation (7.4) is recovered in the limit P −→ ∞.
Using ρP , the partition function can be expressed as

Z =

∫
dc

∫
Dϕ e−Sc,P (ϕ)e−ihX(ϕ)

=

∫
dc ρP (c)

∫
Dϕ e−Sc,P (ϕ)e−ihX(ϕ)∫

Dϕ e−Sc,P (ϕ)

=

∫
dc ρP (c)

〈
e−ihX(ϕ)

〉
ϕ∼e−Sc,P (ϕ) .

(7.11)

Hence, in this formulation, the partition function is still a one-dimensional integral
over the P -dependent DoS, but with an additional average phase factor computed on
ensembles sampled with Sc,P (ϕ). The fluctuations of this phase factor are tractable
as long as the parameter P is large enough, such that X(ϕ) does not deviate too
strongly from c. Accordingly, expectation values of observables can be written as

⟨O⟩ =
∫
dc ρP (c)

〈
e−ihX(ϕ)O(ϕ)

〉
ϕ∼e−Sc,P (ϕ)∫

dc ρP (c)
〈
e−ihX(ϕ)

〉
ϕ∼e−Sc,P (ϕ)

. (7.12)
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As mentioned previously, a direct computation of ρP (c) with traditional MCMC
methods is often infeasible for problems of interest. Instead, the usual strategy is to
compute

∂ log ρP (c)

∂c
=

1

ρP (c)

∂ρP (c)

∂c

=

∫
Dϕ e−Sc,P (ϕ)(−P (c−X(ϕ)))∫

Dϕ e−Sc,P (ϕ)

=
〈
− P (c−X(ϕ))

〉
ϕ∼e−Sc,P (ϕ) ,

(7.13)

and then to reconstruct log(ρP (c)/ρP (0)) by numerical integration, e.g. with the
trapezoidal rule. In contrast, normalizing flows trained with Sc,P (ϕ) as the target
action allow for a direct computation of ρP (c) (including the overall factor ρP (0))
using configurations sampled from q(ϕ), as long as the overlap of the target and
model distributions is sufficient. This can be seen by rewriting Equation (7.9) as

ρP (c) =

∫
Dϕ q(ϕ)e

−Sc,P (ϕ)

q(ϕ)

=
〈
e−Sc,P (ϕ)−log q(ϕ)

〉
ϕ∼q(ϕ) ,

(7.14)

similar to Equation (4.14). A successfully trained flow minimizes the fluctuations of
the exponent in the last expression, such that the variance of the expectation value
remains tractable. This is precisely the crucial advantage of flow-based sampling
over conventional MCMC methods that allows the computation of thermodynamic
quantities via variationally optimized reweighting [250, 300].

In order to compute ρP across a wide range, one could train independent flows for
each value of c. Alternatively, a more efficient approach would be to start by training
one flow at some given point (e.g. c = 0) and then perform retraining for each
additional point. However, since high precision in c is desired, these strategies seem
impractical. Apart from such a training procedure already being computationally
expensive, a large number of different parameter sets for all the individual flow
transformations would then have to be stored and loaded into memory for evaluation.
Instead, the full information about ρP for all c can be encoded in a single flow
model. This is achieved by promoting the transport map f(ξ) to a conditional
transformation fc(ξ), which additionally depends on c. In particular, the context
functions s, t of all affine couplings as defined in Equation (4.15) are modified to take
c as an additional input. This only marginally increases the computational effort of
evaluating the transformation, although it may be necessary to make the flow more
expressive overall in order to properly model the dependence on c.

Furthermore, an additional c-dependent offset is introduced at the last layer, such
that the conditional generation of field configurations ϕ from prior samples ξ takes
the form

ϕ(ξ|c) = fc(ξ) + ϕ̄(c) , (7.15)

with ϕ̄(c) chosen such that X(ϕ̄(c)) = c. This offset already provides the correct
mean field configuration for each c and thereby greatly simplifies training from the
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start, because the flow only has to model the distribution around the given ϕ̄(c).
Since this amounts to just a constant shift, the Jacobian of the transformation
remains unchanged.

Taken together, the full transformation defined in Equation (7.15) consisting of
a conditional transport map and an additional offset induces a conditional model
distribution qc for each c, such that the P -dependent DoS may finally be computed
as

ρP (c) =
〈
e−Sc,P (ϕ)−log qc(ϕ)

〉
ϕ∼qc(ϕ) . (7.16)

For training, similar to the optimization strategy in Chapter 6, one may estimate
gradients of DKL(qc||e−Sc,P ) (i.e. the conditional Kullback-Leibler divergence) at ran-
domly sampled points c, distributed uniformly across a sufficiently large interval in
order to enforce optimal generalization for arbitrary c.

At this point it should be emphasized again that in order to evaluate the above
expression for ρP , only samples from the model are required. Importantly, this
implies that once the flow has been trained, the remaining computations can be
performed extremely efficiently by embarrassingly parallel sampling of the model
distribution. In particular, field configurations do not need to be arranged in a
Markov chain and no Mteropolis accept/reject steps are necessary. This constitutes
a further potential advantage of the proposed approach over conventional MCMC
calculations.

7.4 Results

7.4.1 Zero-dimensional model

For a first demonstration of the flow-based approach, we consider a zero-dimensional
model of a single two-component scalar field with quartic self-interaction in an imag-
inary external field. The simplicity of this model facilitates a comparison to exact
results. The action is similar to the one for the single-component scalar field theory
considered in Section 2.2, but with two components and an additional linear term:

S(ϕ) =
m2

2

(
ϕ2
1 + ϕ2

2

)
+
λ

4

(
ϕ2
1 + ϕ2

2

)2
+ ihϕ1 , (7.17)

where ϕ1, ϕ2,m
2, λ, h ∈ R. Note that for the zero-dimensional model, there is no

kinetic term. We can identify X(ϕ) ≡ ϕ1 and

Sc,P (ϕ) ≡
m2

2

(
ϕ2
1 + ϕ2

2

)
+
λ

4

(
ϕ2
1 + ϕ2

2

)2
+
P

2
(c− ϕ1)

2 + logN .

(7.18)

A normalizing flow composed of 16 affine coupling layers is trained using this
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Figure 7.1: Comparison of the DoS computed with flow-based sampling to the exact
solution for the zero-dimensional model.

target action withm2 = 1, λ = 1, P = 1000.9 The context functions are implemented
as fully-connected networks featuring three hidden layers with 64 neurons each.
As activation functions between layers, LeakyReLU is used again, together with
a Tanh activation after the final layer. Each network has two input neurons, one
for the frozen variable (either ϕ1 or ϕ2 depending on the layer) and the other one
for the condition c, as well as two output neurons providing the values for s, t in
Equation (4.15). The offset in this case is simply ϕ̄(c) = (c, 0) such that X(ϕ̄(c)) ≡
ϕ̄1(c) = c, as required by the construction of Section 7.3. For the training, the Adam
optimizer is applied with a learning rate of 10−3 and a batch size of 10k, with a total
of 5k gradient updates. In order to compute ρ(c), 10k samples are drawn for each
value of c, with a spacing of ∆c = 0.01.

The DoS computed with flow-based sampling is compared against the exact result
in Figure 7.1, conclusively demonstrating the correctness of the flow-based approach
across several orders of magnitude. Furthermore, the partition function Z(h) is ac-
curately reproduced, as shown in Figure 7.2a. In particular, the locations of the first
two Lee-Yang zeroes can be clearly identified. They are associated with discontinu-
ities in the average imaginary part of ϕ1, which is also accurately determined with
the proposed method as shown in Figure 7.2b.

9For the purpose of this proof-of-principle study, it is simply assumed here that ρP ≈ ρ for suffi-
ciently large P and use Equations (7.5) and (7.6) instead of Equations (7.11) and (7.12). While
the accuracy in reproducing the exact results in this case completely justifies this assumption,
it should be emphasized that this is an approximation and one needs to generally extrapolate
P −→ ∞ more carefully.
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Figure 7.2: Comparison of the flow results to the exact solution for the zero-
dimensional model: partition function (a) and average imaginary part
of ϕ1 (b) as functions of h. The locations of the Lee-Yang zeroes in (a)
are associated with the discontinuities of the observable in (b).
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7.4.2 One- and two-dimensional models

In order to verify that the flow-based approach also works in a less trivial setting,
we consider actual lattice models of the two-component scalar field theory described
above. The associated action in d dimensions is defined as

S(ϕ) =
∑
n∈Λ

(
1

2

d∑
µ=1

|ϕ(n)− ϕ(n+ µ̂)|2

+
m2

2
|ϕ(n)|2 + λ

4
|ϕ(n)|4 + ihϕ1(n)

)
,

(7.19)

where ϕ(n) =
(
ϕ1(n), ϕ2(n)

)
, Λ is the set of all lattice sites, µ̂ denotes a unit vector,

and we assume periodic boundary conditions. The action for each individual site is
essentially equivalent to the zero-dimensional model, differing only in the additional
kinetic term. Accordingly, we can identify

X(ϕ) ≡
∑
n∈Λ

ϕ1(n) (7.20)

as well as

Sc,P (ϕ) ≡
∑
n∈Λ

(
1

2

d∑
µ=1

|ϕ(n)− ϕ(n+ µ̂)|2

+
m2

2
|ϕ(n)|2 + λ

4
|ϕ(n)|4

)
+
P

2

(
c−

∑
n∈Λ

ϕ1(n)
)2

+ logN .

(7.21)

Flows are trained using this target action with m2 = 1, λ = 1, P = 1000 for
one- and two-dimensional lattices of size 8 and 4× 4, respectively. The flows also
consist of 16 affine coupling layers as in the zero-dimensional case. In order to
enforce equivariance under translations, the context functions are implemented as
convolutional networks featuring two hidden layers with eight channels each, with
intermediate LeakyReLU activations and a final Tanh activation as well. Each
network has three input channels, two for the frozen subsets of ϕ1, ϕ2 (determined
by alternating checkerboard masking) and one for the condition c; as well as two
output channels providing the values for s, t in Equation (4.15). The conditional
input is constructed with the same dimensions as a single component of ϕ with c
evenly distributed across all sites, i.e. with values of c/|Λ| on each site where |Λ| is
the total number of lattice points. For the training, the Adam optimizer is applied
again with a learning rate of 10−3 and a batch size of 1k, using a total of 50k gradient
updates. In order to compute ρP (c), 107 samples are drawn for each value of c, again
with a spacing of ∆c = 0.01. The offset in this case is ϕ̄(c) = (c/|Λ|, 0), where |Λ|
denotes the total number of lattice sites, such that X(ϕ̄(c)) = c.
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Figure 7.3: Comparison of the flow results for the normalized DoS to the reconstruc-
tions from MCMC calculations for the one- (a) and two-dimensional (b)
models with P = 1000.
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In order to provide conventional baseline results, HMC streams are generated with
the same target action and value for P , using a step size of 0.02 and 50 steps per
trajectory for the one-dimensional as well as a step size of 0.01 and 100 steps for
the two-dimensional case. This results in acceptance rates of roughly 60–90%, with
the highest values generally observed around c = 0 and decreasing rates for larger
c. For each c, 10k Markov chains are evaluated in parallel, where in each chain the
first 1k steps are discarded for equilibration. Subsequently, the chains are evaluated
for 100k steps and every 10th configuration is recorded, resulting in a total of 108
configurations for each value of c, using a spacing of ∆c = 0.01 as well. As described
in the Section 7.3, ρP is reconstructed from ∂c log ρP using the trapezoidal rule and
exponentiating the resulting values for log ρP .

Figure 7.3 compares ρP (c)/ρP (0) (i.e. normalized to 1 at c = 0) obtained with
flow-based sampling to the MCMC baseline. Similar to the zero-dimensional case,
the results accurately reproduce the conventional computation, thereby confirming
that the proposed approach also works here as intended. It should be emphasized
again that for the MCMC baseline, the reconstruction of the DoS at some point
c ̸= 0 by numerical integration necessarily requires precise knowledge of ∂c log ρP (c)
in the interval (0, c). In contrast, with the flow-based approach, the DoS can be
independently probed at arbitrary points because it is computed directly.

7.5 Summary and outlook

In this chapter, flow-based sampling has been applied to the DoS approach to com-
plex action problems. Specifically, it was shown that flows can be used to compute
the DoS directly, thereby disposing of the need to reconstruct it from measurements
of a derivative quantity through MCMC calculations. The method was demon-
strated in the context of simple models with imaginary external fields, confirming
the correctness and accuracy of the proposed approach.

Due to the conceptual and practical differences between the flow-based and con-
ventional strategies, an in-depth comparison of the computational cost is not straight-
forward and beyond the scope of this proof-of-principle study. However, it should be
noted that reaching the same level of accuracy in the final result using the flow-based
approach was significantly cheaper in practice on the same hardware. This is likely
due to the embarrassingly parallel sampling instead of the sequential evaluation of
Markov chains. Furthermore, because of the numerical integration, the conventional
ansatz may generally require higher precision in order to achieve an accurate recon-
struction, whereas with the flow-based method the DoS can be directly probed at
arbitrary points. However, it is unclear a priori how the upfront cost of training the
flow compares against thermalizing the Markov chains. Nevertheless, independently
of how the cost actually scales in practice, the intrinsic advantages of the flow-based
approach described in this work motivate further exploration in this direction.

In the future, the present approach should be extended to higher dimensions,
larger volumes, and fields with more components. This may be informative for the
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study of an approximate model of QCD near the second order phase transition where
the external field plays the role of the quark mass [302]. In particular, computing
the DoS could help to constrain the location of the Lee-Yang edge singularity. In
this context, it may also be worthwhile to implement equivariance of the flow under
the residual O(N − 1) symmetry in order to better match the symmetries of the
target distribution. Further interesting avenues include the relativistic Bose gas at
finite chemical potential [303–305] as well as the application to gauge theories via
gauge-equivariant flows [174, 175], such as e.g. U(1) gauge theory with a topological
term [296] or QCD in the heavy-dense limit [297].

Apart from the aim to solve complex action problems, the DoS method can of
course also be employed to compute observables for theories with purely real actions.
This may be useful in the treatment of ergodicity problems, since the target distribu-
tion can be mapped out explicitly in regions that are pathologically under-sampled
with standard MCMC. Hence, the approach presented in this work also constitutes
a promising ansatz for circumventing critical slowing down via flow-based methods,
complementary to the more commonly investigated independence sampling strategy
of Chapter 6.
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8 Spectral reconstruction with GPR

We now turn our attention to the problem of extracting real-time physics from
imaginary-time data outlined in Section 3.3, using the GPR method introduced in
Section 4.3. As such, the developments here are quite distinct from the deep learning
approaches of the previous chapters. Nevertheless, potential bridges between the two
frameworks are mentioned, and will be the subject of future work.

Section 8.1 provides a brief introduction and overview of the main ingredients
and results. Section 8.2 contains a general description of probabilistic inversion
with GPR. Information about the input data used for the computation can be
found in Section 8.3. The results are discussed in detail in Section 8.4, with further
implementation details given in Section 8.5. The chapter concludes with a summary
and outlook in Section 8.6. The contents of this chapter have been published in
[5] together with Jan Horak, Jan M. Pawlowski, José Rodríguez-Quintero, Jonas
Turnwald, Nicolas Wink, and Savvas Zafeiropoulos.

8.1 Introduction

As long as direct, ab-initio computations are prohibited by the real-time sign prob-
lem, spectral reconstruction represents the most promising route towards an under-
standing of non-equilibrium processes in strongly correlated systems. In this chapter,
the subject is approached from the perspective of probabilistic inverse theory with
Gaussian processes. The key insights that allow GPR to be applied to spectral re-
construction and related linear inverse problems have previously been formulated in
[306] and are discussed in detail below. Most importantly, the derivation exploits
the inherent analytic tractability associated with Gaussian statistics, which makes
it possible to write down the posterior distribution of predictions conditioned on
indirect observations in closed form.

The approach is applied to the computation of ghost and gluon spectral functions
based on recent results from 2+1 flavor lattice QCD with domain wall fermions at
a pion mass of 139 MeV [307, 308]; further details and references are provided in
Section 8.3.1. These lattice data for the ghost dressing function and gluon propaga-
tor are shown in Figure 8.1. Furthermore, the systematic error control is improved
by incorporating additional data in the infrared (IR) and ultraviolet (UV) regimes
from functional renormalization group (fRG) and Dyson-Schwinger (DSE) compu-
tations in Yang-Mills theory and QCD [117, 119, 309–313], mostly obtained within
the fQCD collaboration. These additional input data and benchmarks provided by
one-parameter families of solutions from functional computations are matched to
the continuum-extrapolated lattice data; see Section 8.3.2 for details.
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Figure 8.1: Plots showing the ghost dressing function (a) and gluon propagator (b)
from 2+1 flavor lattice QCD simulations, extended by functional com-
putations in Yang-Mills theory and QCD and compared against the cor-
relators obtained from the spectral functions shown in Figure 8.2.
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Figure 8.2: Plots showing the continuous part of the ghost (a) and the gluon (b)
spectral functions computed from the QCD correlators shown in Fig-
ure 8.1 using GPR. Shaded areas represent the 1σ-bands of plausible
solutions around the mean prediction based on the available observa-
tions and precision.
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An important property of both the ghost and gluon spectral functions, ρc and ρA,
is that the total spectral weight vanishes,∫ ∞

0

dω
π
ωρc/A(ω) = 0 . (8.1)

For the gluon, this is the well-known Oehme-Zimmermann superconvergence (OZS)
condition [314, 315]; for more recent discussions with general fields, see [117–119]. In
this work, it is assumed that the gluon spectral function only consists of a continuous
part ρA = ρ̃A satisfying Equation (8.1). This is the generic structure suggested
by all functional equations describing the gluon propagator due to the ghost being
massless. While derivatives of δ-functions are formally also allowed, these structures
are excluded due to the absence of a generic mechanism generating the required roots
of the inverse gluon propagator on the real momentum axis. In turn, due to the
1/p2 behavior of the Euclidean lattice ghost propagator in the IR, the associated
spectral function exhibits a particle peak at vanishing frequency in addition to its
continuous part, i.e.

ρc(ω) =
π

Zc

δ(ω)

ω
+ ρ̃c(ω) ,

∫ ∞

0

dω
π
ω ρ̃c(ω) = − 1

Zc
, (8.2)

where δ(ω)/ω has to be understood as a limiting process δ(ω−m)/ω with m→ 0+.
Evidently, for Zc = 1 and ρ̃c = 0 the ghost propagator reduces to the classical one.

The spectral function predictions resulting from the application of GPR are al-
ready shown in Figure 8.2. An in-depth discussion of these results takes place in
Section 8.4. The associated correlators agree with the input data within the given
statistical uncertainties as shown in the bottom panels of Figure 8.1, where the pos-
terior GPs for the correlators are evaluated at the fixed momenta provided by the
lattice data, which is then subtracted leaving the error bars intact. The total mean
squared errors amount to ∼ 5 · 10−6 for the ghost and ∼ 4 · 10−5 for the gluon.

8.2 Probabilistic inversion with GPR

In this section, the main ingredients for spectral reconstruction with GPR are pre-
sented, based primarily on Section 4.3 and the developments reported in [306]. In
the general context of inverse theory, [316] provides a recent review.

We assume our knowledge of the spectral function ρ(ω) to be described by a GP,
written as

ρ(ω) ∼ GP(µ(ω), C(ω, ω′)) , (8.3)

where µ(ω), C(ω, ω′) denote the mean and covariance functions. Importantly, in this
approach we do not restrict the space of possible solutions by choosing a specific
functional basis, which often leads to spurious artifacts in the reconstruction in order
to compensate for unrepresentable features. Instead, the GP defines a distribution
over families of functions with rather generic properties, specified via the kernel
parametrization described below.
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The KL integral in Equation (3.4) is a linear transformation that preserves Gaus-
sian statistics. Hence, given Equation (8.3) one may obtain statistical predictions
Gi at NG specified momenta pi as

Gi ∼ N
(∫

dω K(pi, ω)µ(ω),∫
dω dω′K(pi, ω)C(ω, ω

′)K(pj, ω
′)

)
≡ N

(
µ̃i, C̃ij

)
.

(8.4)

Here, N denotes a multivariate normal distribution, to be distinguished from distri-
butions over function space denoted by GP . Statistical uncertainties associated with
individual prediction points µ̃i may be computed from the diagonal of the covariance
matrix as σ̃i =

√
C̃ii.

Conversely, the framework also enables inference in the opposite direction. The
inherent analytic tractability associated with Gaussian statistics allows formulating
the conditional distribution for ρ(ω) given observations Gi in closed form. The full
expression may then be derived as

ρ(ω) |Gi ∼ GP
(
µ(ω) +

NG∑
i,j=1

∫
dη K(pi, η)C(η, ω)

(
C̃ + σ2

n · 1
)−1

ij
(Gj − µ̃j) ,

C(ω, ω′)−
NG∑
i,j=1

∫
dηdη′K(pi, η)C(η, ω)(

C̃ + σ2
n · 1

)−1

ij
K(pj, η

′)C(η′, ω′)
)
.

(8.5)

The GP in Equation (8.5) encodes our knowledge of the spectral function after
making observations of the propagator and accounting for observational noise with
variance σ2

n. The corresponding expressions for the dressing function instead of the
propagator can be immediately obtained by inserting an additional factor of p2i at
every occurrence of the KL kernel K(pi, ω) in Equations (8.4) and (8.5).

The flexibility of the approach makes it possible to also incorporate further avail-
able prior information in various forms into the predictive distribution in the same
manner, yielding similar though somewhat more complicated expressions. This
may include e.g. direct observations of ρ and its derivatives, assumptions about
the asymptotic behavior, or global normalization constraints.

In this work, the standard RBF kernel defined in Equation (4.23) is used. Nev-
ertheless, designing custom kernels for specific problems has been shown to greatly
increase the usefulness of the approach in various settings and is also promising
here. In particular, it may be interesting to construct kernel functions that can be
integrated analytically against the KL kernel, such that the frequency integrals in
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Equations (8.4) and (8.5) may be carried out analytically instead of numerically.
To this end, one could potentially employ functions of Breit-Wigner type as done
for the spectral function itself in [117]. In contradistinction, one may use them to
instead define a suitable GP kernel, thereby still avoiding the restriction to a specific
functional basis as previously mentioned. We touch upon on this and other possible
improvements to the present approach in Section 8.6.

Furthermore, it should be emphasized that the GPR method in principle does
not require us to choose a specific set of nodes ωi. In fact, instead of computing
a discrete set of point predictions or coefficients of a predefined functional basis,
the prediction for ρ is obtained as a function of ω, albeit only implicitly via the
kernel formulation. In particular, the GP also allows computing all of the deriva-
tives of the prediction analytically at any point—including the associated statistical
uncertainties—by differentiating the expressions in Equation (8.5) with respect to ω
(as well as ω′ for the covariance). A finite set of nodes ωi is chosen only at inference
time in order to evaluate the GP, however, the choice is completely arbitrary within
the given domain. This property is one of the most attractive features of GPR for
spectral reconstruction and probabilistic function prediction in general.

8.3 Input data

8.3.1 Lattice calculations

In the past two decades, increasing interest in the momentum behavior of the fun-
damental two-point Green’s functions in QCD as well as further correlation func-
tions of higher order has triggered respective lattice calculations of Yang-Mills and
QCD propagators; see e.g. [317–331]. The lattice data employed in this work were
obtained from configurations generated by the RBC/UKQCD collaboration—first
introduced in [332–336]—with 2+1 dynamical quark flavors using the Iwasaki [337]
and domain wall fermion [338, 339] actions, respectively for the gauge and quark
sectors, at the physical point (a pion mass amounting to 139 MeV) by the particular
implementation of the Möbius kernel [340]. These developments were then exploited
in [307, 308] in order to calculate the gluon and ghost propagators as well as the
strong coupling in a particular scheme [341–343], and an effective charge stemming
from it [344]. A description of this calculation is given, for instance, in [326].

In computing propagators that properly feature the physical running with mo-
menta, the data should be thoroughly cured from regularization artifacts. In partic-
ular, as explained in [307], the lattice results are obtained after a careful scrutiny of
discretization effects, thereby accounting for the continuum-limit extrapolation, fol-
lowing [345]. As a noteworthy remark, a recent work [331] has revealed the key role
played by the procedure of [345] for an adequate removal of discretization artifacts
in achieving a consistent description of Yang-Mills two- and three-point correlators,
involving both lattice and DSE results.
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Figure 8.3: Plots showing ghost (a) and gluon (b) dressing functions in 2+1 flavor
QCD and Yang-Mills (YM) theory, obtained from the lattice and func-
tional methods computations discussed in Section 8.3.
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Figure 8.4: Plots comparing the continuous part of the ghost (a) and the gluon
spectral function (b) from different approaches in 2+1 flavor QCD and
Yang-Mills (YM) theory, as discussed in Sections 8.3 and 8.4. The ghost
spectral function ρc features an additional massless particle pole in the
origin; see Equation (8.2).
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8.3.2 Functional methods

This section briefly summarizes the results from functional computations in Yang-
Mills theory and QCD that are employed in this work to provide additional prior
information for the reconstruction. For reviews on the application of functional
methods in this context, see e.g. [346–349].

We use the real-time Yang-Mills results from [119] to extend the lattice data of the
ghost dressing into the deep IR, as shown in Figure 8.3a. The approach also provides
direct access to the associated spectral function, which we employ to fix the low-
frequency asymptotic behavior. It is obtained via the spectral ghost DSE, building
upon the technique of spectral renormalization [350]. Making use of Equation (3.4)
for the ghost and gluon propagator, the momentum integrals appearing in the loop
diagrams of the ghost propagator DSE can be solved analytically. This preserves
the full analytic momentum dependence and allows evaluating the equation on the
real momentum axis. The spectral function can then be directly extracted from
the real-time propagator DSE via Equation (3.5); see Figure 8.4a for a comparison
to the result of the reconstruction. As input gluon spectral function, the result of
[117] based on the scaling solution obtained via the fRG in [309] is used. Assuming
a spectral representation for the gluon propagator, in both scaling and decoupling
scenario the IR behavior of the gluon spectral function follows directly from the
propagator [117]. This is utilized to modify the given scaling spectral function such
that we obtain a decoupling-type gluon propagator matching the value of the given
lattice propagator well within the given uncertainties.

The lattice QCD data for the gluon propagator are extended towards the UV using
earlier results from functional computations in Yang-Mills theory [309]. Differences
to the 2+1 flavor QCD result for the gluon propagator reported in [313], being based
on [310], are comparably small in the relevant momentum range. A stronger devi-
ation can be observed in the dressing functions, as shown in Figure 8.3b. Despite
these differences, the reconstruction still produces remarkably reliable results; see
Figure 8.1b. Nevertheless, at some point the Yang-Mills UV extension should be
replaced by the 2+1 flavor QCD data from [313] in order to improve the accuracy of
the result and mitigate any potential issues. For related results and further correla-
tion functions see [311, 312, 351, 352]. More specifically, the fRG results in [309] are
derived within an advanced approximation where the momentum dependence of all
vertices is approximated at the symmetric point, for respective DSE results see [353].
For our purposes, this dataset provides the optimal trade-off for momentum range
versus accuracy. Due to the high numerical precision, the results are particularly
well-suited as an input for spectral reconstruction. The Yang-Mills data have al-
ready been employed for this purpose in [117] and we use this earlier reconstruction
for comparison; see Figure 8.4b. In summary, the extension of the 2+1 flavor lattice
data with the high precision Yang-Mills data up to momenta p2 = 102 GeV2 allows
a more direct comparison (in terms of scales) with the Yang-Mills reconstruction in
[117], while only modifying the large frequency tail of the gluon spectral function
for frequencies ω ≳ 5GeV, see Figure 8.4.
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8.4 Discussion of results

The computation of the ghost spectral function is performed using the aforemen-
tioned standard RBF kernel. Extending the lattice input data for the dressing func-
tion into the deep IR and simultaneously fixing the low-frequency asymptotics of
the spectral function using the direct real-time computation in Yang-Mills theory is
achieved by treating the spectral DSE result as an additional observation. This pro-
cedure uniquely determines the non-zero value of ρc for ω → 0+, but also increases
the reliability of the solution in the most interesting central region with respect to
the kernel hyperparameters. Using just the lattice data without the extension by
the spectral DSE result leads to a much higher variance in the solution space, with
widely different asymptotic behaviors of solution candidates in the IR. The kernel
hyperparameters are chosen by optimizing the associated likelihood of observations
with an additional Gaussian hyperprior, which we achieve through a fine-grained
grid scan; see Section 8.5 for details. The resulting spectral function in Figure 8.2a
accurately reproduces the dressing function data within the uncertainties displayed
in Figure 8.1a, with a total mean squared error of ∼ 5 · 10−6.

The features of the prediction are strikingly similar to the aforementioned Yang-
Mills result shown in Figure 8.4a in Section 8.3, even though only the IR limit is
incorporated into the reconstruction. This is expected heuristically, since the ghost
only interacts with the quarks indirectly via the gluon vertices, and the effects of
introducing dynamical quarks must hence be of higher order. The similarity is
particularly notable considering that the methods are conceptually very different.

For the reconstruction of the gluon spectral function, the extension of the lattice
input data into the UV using the earlier fRG computation leads to greatly enhanced
stability of the reconstruction with respect to the kernel hyperparameters, similar
to the ghost. In particular, it ensures convergence to zero for ω → ∞, whereas with
just the lattice data we often observe convergence to a non-zero constant and in
some cases even pathological divergences. A modified frequency scale is used in the
RBF kernel in order to suppress spurious oscillations in the IR and UV tails. The
hyperparameters are again obtained via optimization of the likelihood with Gaussian
hyperpriors while approximately enforcing the OZS condition; see Section 8.5 for
details. The reconstruction shown in Figure 8.2b accurately reproduces the lattice
data within the given uncertainties, as shown in Figure 8.1b, with a total mean
squared error of ∼ 4 · 10−5. While also being fully consistent, deviations from the
lattice propagator are somewhat stronger than for the ghost dressing function and
seem to become more pronounced in the IR. This is likely caused by the comparably
large uncertainties of the lattice data at small momenta.

The peak structure of the spectral function appears similar to an earlier recon-
struction of the Yang-Mills propagator in the fRG framework [117], shown in Fig-
ure 8.4b. We emphasize that the UV extension is done with the Yang-Mills data
of [309] instead of the full 2+1 flavor results from [313], which facilitates the com-
parison with the Yang-Mills reconstruction [117]. In particular, the positions of the
leading positive peaks approximately coincide, with ω ≈ 0.818 for the present result
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and ω ≈ 0.835 for the fRG computation. This reflects the approximate coincidence
of the peaks of the Euclidean gluon dressing functions shown in Figure 8.3a. We also
note that a small peak to the right of the second local minimum is present in both
spectral functions. This feature may be a generic reconstruction artifact since it is
not necessitated by theoretical considerations, but is observed in both results from
conceptually very distinct methods. However, the comparably large uncertainties in
this region also include plausible solutions without additional zero-crossings.

Significant differences between the two results are observed mainly in the overall
peak height and width. Generally, the QCD result for the gluon is expected to
differ more strongly from the pure gauge theory than the ghost due to the direct
coupling to quarks. However, differences may also be attributed in part to the
limited availability and precision of data and the resulting difficulty in resolving
highly peaked structures. Generating narrower peaks with greater amplitudes by
allowing the kernel’s magnitude parameter σC to increase and the length scale l to
decrease leads to stronger oscillations in the solution. This is a common feature
of conceptually similar reconstruction approaches, such as linear regression with a
Tikhonov regularizer (also called ridge regression), which has been applied e.g. in
[132]. Introducing such a regularization scheme, which is equivalent to assuming a
Gaussian prior, leads to a favoring of solutions that are closer to zero. This additional
bias can introduce the unwanted oscillations. Within the GPR approach, the kernel
hyperparameters provide more detailed control over the regularization and can be
tuned to deliberately suppress such unphysical features. However, this may result in
spectral functions that are naturally flatter, which must be taken into account when
interpreting and utilizing the result. This demonstrates one of the key advantages of
GPR, namely the possibility to dynamically adjust the resolution depending on the
available input data, while still matching the observations as accurately as possible.

Although the obtained spectral functions reproduce the lattice data to high accu-
racy, the asymptotic behaviors of the mean predictions in the deep IR and UV differ
from the analytic results derived in [117]. In particular, different scaling exponents
are observed and the gluon spectral function shows the opposite sign in the UV.
Nevertheless, the analytically expected behavior is still plausibly contained within
the computed errors, which are comparably large in these regimes. This indicates
that not enough prior information is available to the GP from just the data in order
to accurately resolve the tails of the spectral functions, which may come as no sur-
prise. While this issue does not affect the results in the regions of interest, it may be
problematic for precision computations that use these spectral functions as inputs.
In order to directly enforce the correct asymptotics, potential approaches are the
incorporation of the analytically known behaviors into the prior means of the GPs
or constructing specialized kernel functions. Furthermore, exploiting the available
analytic results to provide additional prior information about the derivative struc-
ture may be particularly helpful in stabilizing the tail behavior. To achieve this,
one may again write down the joint distribution of the predicted spectral function
at any frequency and its associated derivatives to arbitrary order in closed form and
derive the conditional posterior distribution similar to Equation (8.5).
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8.5 Implementation

In this section, certain aspects of the implementation are explored in more detail.
We first consider some details of the hyperparameter optimization procedure and
the required computational effort. Subsequently, further information is provided
about data usage and the incorporation of additional information, as well as specific
kernel design choices. We also discuss the implementation of additional theoretical
constraints for the reconstructions reported in this work, in particular regarding the
OZS condition for the gluon defined in Equation (8.1).

8.5.1 Hyperparameter optimization and computational cost

To find optimal values for the kernel’s hyperparameters, a fine-grained grid scan of
the NLL is performed, with additional hyperpriors where necessary. Alternatively,
the NLL may also be minimized with a gradient-based ansatz using a standard
optimizer such as L-BFGS [354]. However, mapping out the posterior distribution
in more detail tends to be highly instructive for the problem at hand. It is also less
prone to numerical problems such as unstable directions and violation of positive
definiteness of the covariance, as these can be identified early on, and should hence be
preferred when feasible. This is also where the bulk of the computational effort goes,
as it involves calculating for each individual grid point the comparably expensive
inverse and determinant of the covariance matrix. For a matrix of size N ×N , this
scales naively like O(N3), as discussed already in Section 2.3.2 in the context of
the pseudofermion method. For very large datasets where their direct evaluation
becomes infeasible, one may resort to cheaper linear solvers for the computation
of the inverse, as well as stochastic approximations for the determinant. However,
this is unlikely to become necessary in this particular context, since the size of
the datasets and the required number of points to achieve a sufficient resolution in
the prediction are typically very limited. Cost may also be mitigated by scanning
the parameter space hierarchically, starting at low resolution and zooming into the
interesting regions. For higher-dimensional parameter spaces—which may result
from more sophisticated kernel formulations—a MCMC approach for the exploration
of the posterior distribution may be more appropriate, such as provided by the STAN
library [355]. This could also lead to an improved estimate of the prediction error.

The hyperparameter scan is trivially parallelizable, as each grid point can be
treated independently. At the scale of the present work, each instance was handled
by a standard CPU node with low performance requirements. Some first tests were
also conducted on a single machine, where mapping out the parameter space for each
reconstruction with medium resolution took a few hours at most. In comparison to
finding the optimal hyperparameters, the subsequent inference step is negligibly
cheap. Of course, the total computational effort for the reconstruction is dwarfed
by the requirements of the large-scale lattice simulations described in Section 8.3.1,
which are orders of magnitude more expensive.
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Figure 8.5: Heatmap of the NLL as a function of the RBF kernel hyperparameters
σC , l for the reconstruction of the ghost spectral function, with an addi-
tional zero-mean Gaussian hyperprior for σC . A unique minimum can be
identified, which provides the optimal values used for the results shown
in Figures 8.1a and 8.2a.

8.5.2 Reconstruction details

Ghost

As mentioned previously, in the case of the ghost spectral function, we treat the
low-frequency asymptotics extracted from the direct DSE computation in Yang-
Mills theory as an additional observation for the GP. This is only possible for the
ghost, as a similarly direct determination of the Yang-Mills gluon spectral function
is currently not available. The procedure is implemented by including the value of ρ
at ω = 0 in the construction of the joint distribution of observations and predictions
discussed in Section 8.2, which makes the derivation slightly more complicated.
In particular, one needs to compute additional expressions for the covariances of
the point ρ(0) and the correlator data. This mainly requires some programming
headache, but carries no further conceptual difficulty.

In the identification of optimal hyperparameters for the RBF kernel via the high-
resolution grid scan described in the previous section, an unstable direction in the
magnitude parameter σC was noted, which was cured by subjecting it to a zero-mean
Gaussian hyperprior. As an illustrative example, the heatmap for the NLL including
this additional regularization term for σC is shown in Figure 8.5. By introducing the
hyperprior, a unique set of parameters maximizing the likelihood can be determined,
which is used to compute the mean prediction for the ghost spectral function.
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Gluon

In the case of the gluon spectral function, no real-time result in Yang-Mills theory is
available to fix the asymptotics. However, as an additional theoretical constraint, we
require the solution to respect the aforementioned OZS condition defined in Equa-
tion (8.1). While one might expect this to further complicate the reconstruction,
it actually helps in narrowing down the space of plausible solutions. The condition
can simply be enforced approximately by treating it as an additional indirect obser-
vation and checking it a posteriori, similar to the low-frequency asymptotics of the
ghost spectral function. The associated transformation is here just the convolution
with ω instead of the KL integral. We confirm that the OZS condition is fulfilled
with a relative accuracy of ∼1%, computed by evaluating the ratio of the left-hand
side of Equation (8.1) and the same expression using the modulus of the integrand,
i.e.
∫∞
0

dω |ωρA(ω)|.
As already mentioned in Section 8.4, the standard RBF kernel is modified by

non-linearly rescaling the frequency as ω → ω̃ = ω4(1 + ω4)−1 before computing
the squared distance. This leads to a strongly improved asymptotic stability of the
spectral function, in particular at large frequencies, compared to just using ω itself.
The procedure may be interpreted either as a non-stationary modification of the
kernel or as a preprocessing step for the data to the same effect. However, similar
improvements may be achieved more consistently by constructing suitable kernels
that enforce the correct asymptotic behavior a priori.

8.6 Summary and outlook

In this chapter, GPR was applied to the computation of ghost and gluon spectral
functions in 2+1 flavor QCD at the physical point. These spectral functions are the
pivotal building blocks of diagrammatic representations for bound state equations
such as Bethe-Salpeter and Faddeev equations, see e.g. [356–358], as well as trans-
port coefficients, see e.g. [124, 359]. Importantly, the gluon spectral function has a
pronounced quasi-particle peak, the position of which is related to the mass gap in
QCD. This extends previous vacuum and finite-temperature results in Yang-Mills
theory [117, 124] to physical QCD. Our findings provide non-trivial QCD support
to the phenomenological use of quasi-particle gluon spectral functions for transport
computations; see [360] for a recent review. Moreover, the computed spectral func-
tions can be directly employed as first-principle QCD inputs in order to systemati-
cally improve the respective phenomenological approaches towards a first-principle
treatment of QCD transport processes.

These promising phenomenological applications of the present results also high-
light the necessity of further improving the reconstruction approach itself, for which
a number of potential directions can be envisaged. This includes the aforementioned
possibility of designing custom kernels for the problem at hand, potentially with an-
alytic integrability against the KL kernel. Constructing suitable, expressive kernels
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may also be automated and improved through the use of hyperkernels [361] or tech-
niques such as deep kernel learning [362]. To account for some variability in the
kernel hyperparameters, one may replace the maximum likelihood approach by an
integral over parameter space using a suitable hyperprior which encodes any prior
assumptions. Alternatively, optimal hyperparameters may also be selected based
on a data-driven machine learning approach, using datasets consisting of pairs of
correlators and associated spectral functions.

Furthermore, the flexibility of the GPR framework allows the incorporation of
various supplementary constraints derived from theoretical arguments, such as infor-
mation about derivatives, known asymptotic behaviors, or normalization conditions.
This is expected to further improve the accuracy and reliability of the reconstruc-
tion, in particular for the IR and UV tails of the spectral functions that are otherwise
difficult to resolve. This will be the subject of future work, accompanied by direct
functional computations of further spectral properties along the lines of [119, 350].

The immediate next steps in the endeavor towards unveiling real-time physics of
QCD are the application and extension of the present numerical framework to quark
propagators as well as correlation functions computed at finite temperature. This
will enable quantitative studies of hitherto theoretically inaccessible non-equilibrium
properties of QCD in the transport phase of heavy-ion collisions within a first-
principle approach.
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9 Summary and outlook

In this thesis, I have investigated the applicability of modern AI algorithms to three
longstanding computational barriers in lattice QCD and provided several successful
proof-of-principle demonstrations. The development of normalizing flow architec-
tures for the generative neural sampling of theories with dynamical fermions—aiming
at the treatment of critical slowing down in lattice calculations at scale—may be
viewed as the main contribution. With this approach, topological freezing was solved
in the Schwinger model at criticality, in a situation where traditional algorithms fail
to achieve sufficient ergodicity required for reliable results. Further, normalizing
flows were applied to the density-of-states approach to complex action problems.
In contrast to conventional strategies relying on restricted MCMC calculations of
a derivative quantity, the density can be computed directly within this framework.
Using the flow-based method, it was demonstrated that the Lee-Yang zeroes of the
partition function of a scalar field theory with an imaginary external field can be
successfully located. In the context of real-time properties of QCD, the spectral
reconstruction problem was approached from the perspective of probabilistic in-
verse theory. Specifically, ghost and gluon spectral functions were calculated using
Gaussian process regression on combined Euclidean correlation function data from
state-of-the-art lattice and functional computations.

The next step in the endeavor to apply normalizing flows to lattice QCD at scale
is the construction of suitable architectures capable of modeling SU(3) gauge fields
coupled to fermions in four spacetime dimensions. If successful, this line of research
may usher in a new era of precision QCD calculations at hitherto inaccessible phys-
ical volumes, thereby unlocking novel insights from first principles in nuclear and
high energy physics. Furthermore, the present work on solving complex action prob-
lems may be useful for the gargantuan task of mapping out the QCD phase diagram
at finite temperature and chemical potential. However, the approach will require
considerable development efforts before it can be applied in this context. Finally,
apart from making further improvements to the proposed spectral reconstruction
approach, it will be exciting to apply the method to the study of spectral repre-
sentations of quarks as well as other interesting objects, such as glueballs and the
strong coupling constant. The results of this work will provide important inputs
to phenomenological descriptions of non-equilibrium processes, such as heavy-ion
collisions at particle colliders. In summary, these research directions may help to
complete our understanding of the standard model of particle physics in some of
its most notoriously difficult aspects. Furthermore, I hope that the insights gained
along the way will also have applications in the study of quantum gravity, such that
we may eventually achieve a unifying picture of fundamental physics.
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Apart from our ambitions to further elucidate the nature of fundamental interac-
tions, the hard computational challenges described in this thesis are also extremely
fascinating in their own right. Solving such problems should not be viewed as merely
a means to an end, but would constitute a major intellectual achievement of our
civilization. The observation that—even though we seem to be more or less intel-
ligent beings inhabiting this universe—some of nature’s deepest secrets currently
appear to be inaccessible to us, is as insulting as it is incentivizing. Instead of losing
ourselves in the philosophical aspects of this conundrum, the development of AI
technologies powerful enough to answer our questions and illuminate some of the
most interesting aspects of the physical world is a much more practical approach.
While it may be the case that our primate brains by themselves are too limited, we
should follow in the footsteps of what human beings have done since the stone age,
namely use our given smarts to fashion increasingly sophisticated tools that help us
overcome our evolutionary limitations. Furthermore, as physicists in particular, we
are in a prime position to go beyond the mere application of these novel methods
to problems in our own field, and also push the current boundaries of AI to help
build the next generation of transformative technologies. Already today, researchers
are discovering exciting parallels between the dynamics of deep neural networks and
interacting quantum field theories. This may ultimately contribute to an improved
understanding not only of artificial, but also human intelligence. Hence, this won-
derful emerging synergy of AI and physics will not only help us grasp the nature of
reality and hopefully transform the world into a better place, but may also lead us
to magnificent new insights about ourselves.
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A Novel insights from interpretable AI

A.1 Lattice datasets

All field configurations composing the datasets used in Section 5.2 are generated
with the parameters listed in Table A.1. A single, labeled sample is given by the
mapping

(ϕ, κ) : {ϕn} = {ϕn | n ∈ Λ} −→ κ . (A.1)

In order to approximately encode the Z2 symmetry in the trained neural networks,
we use the same configurations twice in the dataset, just with a globally flipped
sign. This raw data is directly used to train the CNN. For the MLP, the samples
are preprocessed by computing the chosen set of observables for each configuration,

(O, κ) : {|M |, |Ms|, Gc(t)} −→ κ . (A.2)

In this case, we can simply take the modulus of the magnetizations without losing
information, since only two branches with exactly opposite signs are present in the
phase diagram. Due to the finite expectation value of the staggered magnetization,
the AFM phase contains unphysical negative correlations. In order to remove these
lattice artifacts, we adapt the usual time-sliced two-point correlator to

Gc(t) =

∣∣∣∣⟨ϕ(t)ϕ(0)⟩ −M2 − (−1)tM2
s

∣∣∣∣ . (A.3)

Generally speaking, LRP is designed for classification problems. Therefore, we
discretize κ to facilitate the formulation of the inference objective as a classification
task. All values of κ are transformed into individual bins and the networks are tasked
to predict the correct bin. In order to retain a notion of locality, the true bins are
additionally smeared out with a Gaussian distribution, resulting in the target labels

κ −→ yb = e−
(κb−κTrue)

2

2σ2 . (A.4)

Here, b denotes the bin number, and the variance was set to σ = 3∆κ. In combi-
nation with a MSE loss, we obtain qualitatively similar prediction results compared
to a standard regression approach.

N λ M g ∆κ #samples per κ

16 1.1 20 0.25 0.005 200 - Training set
100 - Test set

Table A.1: Action/simulation parameters used for training and test dataset.
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A.2 Propagation rules

This section contains a summary of the mathematical background of LRP, in par-
ticular regarding the propagation rules. Generally, the relevance Rj depends on the
activation of the previous layer xi. Given some input to the network, its predicted
class f is identified by the output neuron with the largest response. This neuron’s
activation Rout

f , along with Rout
i = 0 for all other classes i ̸= f , defines the relevance

vector. This output layer relevance can then be backpropagated through the whole
network, which results in the aforementioned heatmap on the input. Importantly,
the propagation rules are designed such that the total relevance is conserved,∑

i

Rn
i =

∑
i

Rout
i ≡ Rout

f , (A.5)

where the index n can indicate any layer. This conservation law ensures that ex-
planations from all layers are closely related and prohibits additional sources of
relevance during the backpropagation. A Taylor expansion of this conservation law
yields ∑

j

Rj(xi) =
∑
j

Rj(x̃i)︸ ︷︷ ︸
=0

+
∑
i

∑
j

∂Rj

∂xi

∣∣∣∣∣
{x̃i}

(xi − x̃i)︸ ︷︷ ︸
Ri

. (A.6)

Here, we choose x̃i to be a so-called root point, which corresponds to an activation
with vanishing consecutive layer relevance Rj(x̃i) = 0. By definition, it is localized
on the layer’s decision boundary, which constitutes a hypersurface in the activation
space. Hence, the root point is not uniquely defined and we need to impose an addi-
tional criterion. However, given such a point, we can identify the first order term as
the relevance propagation rule Rj 7→ Ri. The remaining root point dependence gives
rise to a variety of possible propagation rules. For instance, the w2 rule minimizes
the Euclidean distance between neuron activation xi and the decision boundary in
order to single out a root point. Visualizations of root points, as well as essential
derivations and analytical expressions for propagation rules, can be found in [232].

A.3 Random forest details

Random forests [239] denote a predictive ML approach based on ensembles of deci-
sion trees. They utilize the majority vote of multiple randomized trees in order to
arrive at a prediction. This greatly improves the generalization performance com-
pared to using a single tree. The elementary building block is a node performing
binary decisions based on a single feature criterion. New nodes are connected se-
quentially with so-called branches. A single decision tree is grown iteratively from
a root node to multiple leaf nodes. A concrete prediction corresponds to a unique
path from the root to a single leaf. Each node on the path is associated with a
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specific feature. Hence, we can sum up the contributions to the decision separately
for each feature by moving along the path,

prediction = bias +
∑
i

(feature_contribution)i . (A.7)

Here, the bias corresponds to the average prediction at the root node.
We employ the scikit-learn implementation [363] in combination with the TreeIn-

terpreter extension [364]. The latter reference also provides an excellent introduction
to the concept of feature contributions.

The random forest is initialized with 10 trees and a maximum tree depth of 10.
This parameter is essential for regularization, since an unconstrained depth causes
overfitting and thus results in poor generalization performance. In order to fix this
parameter, we start at a large value and successively reduce it until the training
and test accuracy reach a similar level. This way we can retain as much expressive
power as possible in the random forest while simultaneously eliminating systematic
errors resulting from overfitting. However, we emphasize that the specific choice of
this parameter not relevant to our argument.

A.4 Network architectures and implementation
details

We use the PyTorch framework. The machinery of LRP is included by defining
a custom torch.nn.Module and equipping all layers with a relevance propagation
rule. Furthermore, all biases are restricted to negative values in order to ensure the
existence of a root point. For training, we employ the Adam optimizer with default
hyperparameters and an initial learning rate of 0.001, using a batch size of 16.

For both networks, the first layer undergoes least absolute shrinkage and selection
operator (LASSO) regularization during training, which encourages sparsity and
thereby enhances interpretability. This corresponds to simply adding the L1 norm
of the respective weights wij to the MSE loss, which accordingly takes the form

L =
1

d

d∑
f=1

(yf − ŷf )
2 + λLasso

∑
ij

|wij| . (A.8)

Here, yf , ŷf denote the prediction and ground truth labels, and i, j the input and
output nodes of the first layer. The quantity λLasso parametrizes the strength of the
regularization.

The network architectures used in this work are given in Tables A.2 and A.3.
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Layer Specification Propagation rule
Linear in=18, out=256 w2– rule
ReLU Ri = Rj

Linear in=256, out=128 z+– rule
ReLU Ri = Rj

Linear in=128, out=140 z+– rule
LeakyReLU negative slope=0.01 Ri = Rj

Table A.2: Network architecture of the MLP. The first layer undergoes L1 regular-
ization with λLasso = 5.

Layer Specification Propagation rule
Conv3d #filter = 5, kernel=B, strides=A w2– rule
ReLU Ri = Rj

MaxPool3d kernel=B, strides=B z+– rule
Linear in=1715, out=256 z+– rule
ReLU Ri = Rj

Linear in=256, out=140 z+– rule
ReLU Ri = Rj

Table A.3: Network architecture of the CNN, with A = (1× 1× 1), B = (2× 2× 2).
The first layer undergoes L1 regularization with λLasso = 10.
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Model parameters ϕ-Marginal Gibbs Autoregressive Fully Joint
flow layers 3 16 12 12

convs. per layer 4 3 10 6

number conv channels 16 32 64 64

σζ 0.34 0.1 0.34 0.34

σχ - 0.1 0.15 0.15

kernel size 3 3 3 3
activations
(inner / final) SoftPlus/- LeakyReLU/Tanh LeakyReLU/- LeakyReLU/Tanh

Training parameters
gradient steps 500k 30k 200k 50k

batch size 3072 2000 3072 3072

learning rate schedule 10−3, 10−4

after 80k
10−3, 10−5

after 20k

10−4, 2× 10−5

after 60k, 10−5

after 120k

3× 10−4, 6× 10−5

after 30k

gradient clipping
(value / norm) 10/32 -/- 10/32 10/1000

Table A.4: Model and training hyperparameters for all architectures discussed in
Section 6.5.2. Further details and references are provided in Appendix B,
in particular the specifics of the linear operators for the joint autoregres-
sive model that are not listed here.
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B Model and training details for
fermionic flows

This section lists all necessary details to reproduce the flow architectures discussed
in Section 6.5.2. In particular, all relevant model and training hyperparameters are
given in Table A.4. Additional peculiarities of the linear operator and fully joint
model implementations not listed in the table are discussed below.

All models are trained using the Adam optimizer with default settings. In some
cases, clipping of the gradient value and norm was employed to stabilize training
[365]. The deep neural networks providing the context functions and convex poten-
tials in the flow architectures are implemented exclusively in terms of convolutional
networks with several hidden layers and channels. We employ ReLU as the non-
linear activation function employed in these networks, in particular the LeakyReLU
variant, as well as the SoftPlus function in the case of the CPF layers, as detailed in
Section 6.4.1. In some cases, an additional Tanh activation is applied to the output
of each network, as specified in Table A.4. For all calculations in this work using
the CPF architecture, at initialization we set w1 = 5× 10−3 and w2 = 1 required for
the layers defined in Equation (6.34). All convolutional layers use a stride of 1.

As mentioned in Section 6.5.1, even-odd preconditioning is not applied for the au-
toregressive architecture with linear operators, as we observe that the model gives a
better approximation to the non-preconditioned action with standard lexicographic
ordering. The space of possible model adjustments to make the even-odd decompo-
sition compatible with linear operators is large, and modifications could be explored
to improve the results. The conditional density q(φ|ϕ) is implemented using the
composition of 128 equivariant linear operators {Wk}128k=1. The 128 linear operators
are jointly defined by the stacking of a single squeezing layer breaking invariance
under odd translations as explained in Section 6.3.2, followed by a convolutional
network with periodic boundary conditions. This network features 10 hidden layers
with 64 channels each and uses intermediate LeakyReLU activations. In total, the
network has 256 output channels, with each pair of output channels providing the
values of a and b in the definition of one of the 128 linear operators. The a output
is additionally transformed using a normalized SoftPlus function. We also find it
useful to add an L2 regularization loss for both outputs, with a weight of 10−5.

For the fully joint model, active components of the scalar field are transformed
using its frozen components as well as the pseudofermion field. The updated scalar
field together with the frozen pseudofermion components are then used to update
the active pseudofermion sites.
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