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1
Introduction

1.1 Motivation

Spinal fusion surgery is the standard technique to treat spinal instabilities. Spinal fixation
typically involves bilateral pedicle screw insertion via a posterior approach, where the
spine is assessed from dorsal. The screw heads serve as anchors for connecting plates or
rods, which form a rigid stabilization of the spine.

Spinal instabilities can result from degenerative diseases, spinal tumors, or spinal frac-
tures (Attar et al., 2001). A spinal fracture affects the vertebrae of the spine. It is typically
caused by high-energy trauma such as motor vehicle accidents or falls from height, or
low-energy osteoporotic trauma (Bhatia and Bowen, 2007). High-energy spinal fractures
account for 3-6% of skeletal fractures and occur most often in humans between 20-50
years, with a four-fold higher increased risk for man (Walthers, 2017). In contrast, females
carry a higher risk for low-energy osteoporotic spinal fractures. Bone fragments resulting
from a fracture or dislocation of a vertebra bear the risk of damaging the spinal nerves or
the spinal cord. Consequently, all trauma patients with suspected spinal injury require
clarification. The initial screening method in most hospitals is conventional radiography
(i.e., the acquisition of anterior-posterior (a.-p.) and lateral standard projections). The
radiologic diagnosis can additionally include computed tomography (CT) or magnetic
resonance imaging (MRI) examinations. The incidence of a secondary injury of the spine
is 20%; thus, for every significant spine injury, all vertebra levels need to be examined
clinically and radiologically (Rüedi et al., 2008).

Due to the spine’s proximity to the spinal cord and the risk of neurological disorders or
paralysis in case of co-injury, spinal surgeries are challenging and of high risk. Traumatic
treatment of spine fractures commonly involves (1) fracture reduction, (2) decompression,
(3) fixation by fusion, (4) reconstruction, (5) inspection and documentation of the result
with X-ray imaging. Pedicle screw placement for spinal fusion is challenging due to
the fracture itself, variations in pedicle morphology and spinal deformities. The major
challenge is the accurate placement of the screws within the pedicle without cortical
breach, which can otherwise result in nerve or spinal cord damage and fixation instability
(Gelalis et al., 2012). Advances in medical imaging enable detailed visualization of the
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Chapter 1. Introduction

Figure 1.1: Clinical workflow: Spinal fusion surgery can be guided by different image-
assisted procedures: fluoroscopy guidance (top row), CT-navigated (bottom row).
Both guidance techniques involve manual intervention steps that are highly expertise-
dependent and time-consuming. The computer-assisted methods proposed in this thesis
offer support for the surgeon and reduce manual interaction, expertise-dependence of re-
sults, radiation exposure, and procedural time. The methods can be seamlessly integrated
into the clinical workflow.

internal anatomy and allow for less invasive surgical approaches and higher surgical
accuracy. Imaging assists the surgeon in monitoring, guidance, and controlling the quality
of interventions. Different image-assisted procedures have been introduced to facili-
tate pedicle screw insertion, e.g., fluoroscopy guidance or CT navigation (Patel et al., 2010).

An overview of both image-assisted procedures is given in Fig. 1.1.

Fluoroscopy is the standard procedure for guiding spinal interventions and evaluating
the surgical result. It is an imaging technique that allows real-time 2D or 3D imaging of the
interior of a patient. Fluoroscopy-guided spinal surgery involves the repeated acquisition
of a.-p. and lateral X-rays with an intraoperative mobile C-arm device. The a.-p. and
lateral X-rays are anatomical standard projections that allow for fracture reduction and
implant positioning assessment in two orthogonal planes. To achieve a standard projec-
tion, a specific individual C-arm pose is required to adjust for the patient’s positioning
on the operating room (OR) table. C-arm positioning is usually performed manually
using a trial-and-error approach involving repeated fluoroscopy (fluoro hunting), at the
cost of radiation exposure and intervention time that largely depends on the experience
of the operator (Blattert et al., 2004). It is challenging to obtain the desired view due to
intraoperative positioning requirements, patient-related factors, and because the internal

2



1.1. Motivation

anatomy is not visible from the outside.

Spinal surgery can also be performed under CT navigation, provided that a costly
navigation system is accessible. The surgeon can assess the positions of surgical in-
struments in 3D images in real-time. CT navigation involves the acquisition of a pre-
or intraoperative CT scan, time-consuming screw trajectory planning prior to surgery,
and registration with the navigation system. The intervention is guided by computer
navigation upon these pre-planned CT scans. The explicit 3D information has shown
to increase screw placement accuracy, which is particularly beneficial in case of difficult
anatomical conditions, e.g., in trauma and revision surgeries, when relevant anatomical
landmarks are distorted or in deformities with altered pedicles (Gelalis et al., 2012; Mason
et al., 2014; Kosmopoulos and Schizas, 2007; Rajasekaran and Shetty, 2021). However,
the necessity of a CT volume comes at the cost of additional radiation for the patient.
Surgeon’s radiation was significantly reduced by navigation, requiring less or even no
fluoroscopic acquisitions during implantation (Villard et al., 2014).

Spinal interventions constitute a multi-stage process in the OR that involves imaging
as a key tool for guidance and quality assurance during the procedure. Both guidance
techniques require manual intervention: For the CT navigation technique, this comprises
the pedicle screw planning and, for fluoroscopy guidance, the positioning of the C-arm
for standard projections. These processes require a high level of expertise and in-depth
knowledge of anatomy and the anatomical orientation of structures. The anatomical
understanding is additionally challenged by intraoperative specific requirements caused
by varying patient positioning, patient-related factors (obesity, fractures, implants, lim-
itations in joint movement, degenerative alterations of anatomy such as spondylosis),
and varying surgical procedures which hinders the establishment of standardization.
Many recently proposed state of the art approaches to replace or assist the manual steps
make specific prior assumptions (Soltow and Rosenhahn, 2015; De Silva et al., 2017) or
require a specific hardware setup (Bott et al., 2011; Gong et al., 2014; Bodart et al., 2018),
that interferes with the clinical workflow. Others rely on manually defined geometric
and structural modeling with explicitly defined constraints (Knez et al., 2016; Xiaozhao
et al., 2016; Li et al., 2019). Methods that rely on modeling techniques that are targeted to
represent the mean anatomical shape were proposed by, e.g., Shao et al. (2014); Goerres
et al. (2017); Vijayan et al. (2019). Those approaches may be limited in application due to
altered, deformed, degenerated, or fractured bones. Due to the mentioned methodological
limitations, state-of-the-art assistance systems exhibit limited clinical applicability until
today.

3



Chapter 1. Introduction

For automatic C-arm positioning, no commercial system is currently available. For
pedicle screw planning, Brainlab (Riem, Germany) released a commercial software based
on atlas registration. While leading to acceptable results in most cases, it suffers from
the atlas-related limitations in case of complicated anatomical conditions (fractured,
degenerated, or deformed vertebrae) since the atlas is targeted to represent the healthy
anatomical shape.

Both techniques offer potential regarding the support of the surgeon. Despite their dif-
ferent setups, a recommended computer-assisted system could improve both techniques in
terms of reducing manual interaction, expertise-dependence of results, radiation exposure,
and procedural time. Specifically, this thesis proposes an image-based pedicle screw
planning method for CT-navigated spinal surgery and an automatic C-arm positioning
method for standard projections for fluoroscopy-guided spinal surgery.

The proposed methods are targeted to facilitate the clinical workflow integration
without requiring additional technical equipment. In contrast to atlas- or model-based
approaches, the anatomical variation is learned implicitly with deep learning techniques
from retrospective CT datasets. Robust deep learning is enabled by developing and
combining various methods that address aspects like data scarcity, intraoperative con-
founding factors, anatomical variation, including learning from simulations, advanced
data augmentation, and integration of task-specific expert knowledge derived from sur-
gical routine. The robust deep learning techniques could replace time-consuming and
radiation-intensive manual processing steps in spinal interventions, thereby reducing the
human intervention and radiation. Using automated deep learning tools could induce
objective and standardized results learned from expert annotations and thus promote
independence of personal training and experience.

1.2 Objectives and Contributions

The main objective of this work was to develop and to evaluate methods for computer-
assisted spinal surgery fulfilling the following requirements:

• Clinical applicability: Seamless integration of the proposed methods into the clinical
workflow, without requiring external tracking hardware, additional equipment, or
additional prior knowledge assumptions.

• Performance requirements: The developed methods should be as precise as possible
and fulfill clinically relevant accuracy bounds.

4
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• Benefits for the patient: The proposed methods should improve the quality of the
procedure by reducing the radiation dose and intervention time.

• Benefits for the surgeon: The developed methods should assist or automate manually
performed steps in spinal surgery techniques that currently require a high level of
expertise. This ensures experience-level and surgeon-independent results. Further,
the methods should reduce the radiation dose and intervention time.

• Representation of anatomical variability: The developed methods are based on deep
learning techniques that are capable of capturing anatomical variations from retro-
spective computed tomography (CT) datasets. Robust learning is further ensured
by utilizing simulations, advanced data augmentation, and integration of domain
knowledge.

• Addressing intraoperative requirements: The proposed methods should tackle
intraoperative requirements i.e., the presence of implants or surgical tools in the
field-of-view (FoV) that may partly overlay the anatomy should be addressed.

• Generalization: The concepts should be transferable across vertebra levels or stan-
dard projections.

Considering the mentioned requirements, this thesis proposes computer-assisted meth-
ods to assist the surgeon during CT-navigated and fluoroscopy-guided spinal surgeries.
The contributions of this work are summarized below, separated for the two spinal surgery
techniques.

1. Pedicle screw planning for CT-navigated spinal surgery

Method development: To automate the time-consuming manual step of screw tra-
jectory planning in preoperative CT scans, an image-based pedicle screw plan-
ning method is proposed and developed (Kausch et al., 2021a) (Sec. 4.1.3). The
anatomical variation was learned implicitly with deep learning techniques
utilizing a sizeable surgical planning dataset. The screw planning task was
interpreted as a segmentation task, resulting in superior performance compared
to direct convolutional neural network (CNN) landmark regression (Sec. 5.1.2).
Screw locations were simulated in retrospective CT datasets, and potential
screw locations were learned based on the context of the images. The pro-
posed method is transferable between different vertebra levels. Automating
the pedicle screw planning can significantly decrease the manual interven-
tion, the expertise-dependence of results, and the preparation time needed for
CT-navigated spinal surgery.

5



Chapter 1. Introduction

Intraoperative clinical evaluation: To evaluate the clinical applicability of the pro-
posed approach for intraoperative planning, a software prototype for automatic
pedicle screw planning was developed (Sec. 4.1.4). Quantitative evaluation of
screw accuracy was performed by comparing automatically planned screws to
corresponding manually planned screws. Additionally, intra- and inter-rater
variance of manual screw planning was assessed, serving as a measure for
clinically acceptable screw deviations (Sec. 5.1.2). Screw planning efficiency is
compared between manual and automatic planning. For qualitative evaluation,
all automatically planned screws were reviewed by experts in spine surgery
and rated according to the Gertzbein-Robbins (GR) classification (Sec. 5.1.3).

Postoperative clinical evaluation: To assess the accuracy of the navigation proce-
dure, post-operative screw trajectories are compared to the corresponding
planned screw trajectories (Sec. 5.1.4).

2. C-arm positioning for fluoroscopy-guided spinal surgery (Sec. 4.2,5.2)

Method development: The problem of C-arm positioning is tackled without requir-
ing patient-individual prior information like preoperative CT scans, without the
need of registration and without additional technical burden, directly working
on the 2D projection images just as the operator. The necessary anatomical hints
for efficient C-arm positioning are learned from in silico simulations, leveraging
3D CTs. The generated dataset uniquely provides ground truth pose labels for
arbitrary many training examples given by the different viewing directions de-
fined during simulation. A baseline approach employing direct intensity-based
CNN regression (Sec. 4.2.5) is proposed (Kausch et al., 2020) and compared
to the proposed sequential approach, which leverages domain knowledge to
guide robust decision-making (Kausch et al., 2021b) (Sec. 4.2.6). The developed
methods were trained specifically for the fourth lumbar vertebra in a.-p. and lat-
eral standard projections, but are generalizable to different anatomical regions
and standard projections. The developed method promises to reduce radiation
dose and time for patients and clinical staff and offer assistance especially
beneficial for inexperienced surgeons.

Domain requirements: Intraoperative X-rays may contain metal implants like k-
wires or screws. The domain gap between training from simulations and
application on intraoperative X-rays was addressed by complementing sim-
ulated images with k-wire and screw simulations (Sec. 4.2.1). To further suc-
cessfully achieve a transfer from synthetic to real X-rays and also to increase
the interpretability of results, the pipeline was designed by mimicking clinical
decision-making processes of spinal neurosurgeons.
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1.3. Outline

Validation: The proposed methods were evaluated on synthetic X-rays not seen
during training (Sec. 5.2.4). To evaluate the developed methods on real X-rays, a
large specimens study with and without implants (i.e., k-wires and screws) was
performed, simulating different stages of a real clinical procedure (Sec. 4.2.2).
C-arm positioning accuracies were assessed separately for the selected standard
projections and specimens (Sec. 5.2.5).

Clinical context: To derive a measure for the clinically relevant accuracy of C-arm
positioning for specific standard projections, an inter-/intra-rater study was
performed. Two experts positioned the C-arm manually to acquire the a.-p. and
lateral standard projections across different vertebra levels for two specimens.
The number of necessary X-rays for positioning, the time, and the dose was
evaluated, as well as the variance in C-arm positioning (Sec. 5.2.3).

1.3 Outline

The thesis is structured as follows: In Chapter 2 the relevant information on the imaging
and medical background is provided. Chapter 3 reviews first the state of the art on
computer-assisted methods for pedicle screw planning for computed tomography (CT)-
navigated spinal surgery. Thereafter, the state of the art techniques for C-arm positioning
for fluoroscopy-guided spinal surgery are summarized, including strategies for data
simulation (sec. 2.2.1), data analysis, i.e. view-independent segmentation and landmark
detection (sec. 3.2.2), and computer-assisted methods for C-arm positioning (sec. 2.2.3).

All acquired datasets and developed methods in the scope of this thesis are presented
in Chapter 4. The chapter is divided into two parts: Section 4.1 focuses on pedicle
screw planning for CT-navigated spinal surgery. First, the retrospective planning data is
introduced (Sec. 4.1.1). Subsequently, the baseline approach based on direct convolutional
neural network (CNN) landmark regression (Sec. 4.1.2) and the proposed approach
based on segmentation (Sec. 4.1.3) are presented. The developed software prototype for
automatic pedicle screw planning used for clinical evaluation is described in Section 4.1.4.
Section 4.2 focuses on C-arm positioning for fluoroscopy-guided spinal surgery. First, the
training data generation (Sec. 4.2.1) and validation data acquisition (Sec. 4.2.2) is described.
In Section 4.2.3 methods to assess the manual C-arm positioning accuracy and efficiency
are introduced. Subsequently, the proposed intensity-based and sequential C-arm pose
regression approaches are presented (Sec. 4.2.4-4.2.6).

Experiments and results are presented in Chapter 5 equally divided into two parts as
before: Section 5.1 focuses on pedicle screw planning for CT-navigated spinal surgery. The
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manual pedicle screw planning accuracy is evaluated in Section 5.2.3. Subsequently, the
results for automatic pedicle screw planning are presented and related to the accuracies
and efficiency of manual planning (Sec. 5.1.2). All automatically planned screws were
reviewed by experts in spine surgery and results are summarized in Section 5.1.3. Section
5.1.4 evaluates the accuracy resulting from navigated screw placement in comparison
to the preoperative planning. Section 5.2 focuses on C-arm positioning for fluoroscopy-
guided spinal surgery. The training and validation data accuracy is evaluated in Section
5.2.1-5.2.2. A measure for the clinical relevant accuracy for specific standard projections
derived from manual C-arm positioning is given in Section 5.2.3. Subsequently, qualitative
and quantitative results for the proposed C-arm positioning methods are presented for
synthetic and real X-rays in Section 5.2.4 and 5.2.5 respectively. Section 5.2.6 analyzes the
influence and importance of design choices for the overall performance.

Chapter 6 discusses the developed methods based on the obtained results in the
context of the current clinical practice and the state of the art and gives directions for
future work.

The contributions and results are summarized in Chapter 7.
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2
Background

The following chapter describes the imaging and medical background. The goal is to
give an insight into the imaging procedures, the anatomy of interest, and the different
techniques for guidance during spinal surgeries. Section 2.1 introduces the imaging
techniques utilized in this thesis. Section 2.2 provides the medical background on the
spine anatomy and different image-based procedures for the assistance of spinal fusion
surgeries.

2.1 Imaging Background

This section introduces the imaging techniques 2D fluoroscopy (sec. 2.1.1) and 3D
computed tomography (CT) (sec. 2.1.2).

2.1.1 Fluoroscopy

The discovery of X-rays by Wilhelm Conrad Röntgen in 1895 and the introduction of the
first intraoperative C-arm in 1955 by Hugo Rost and Lothar Diethelm (Diethelm et al.,
1956) allowed for intraoperative imaging through fluoroscopy. Fluoroscopy is a radiologic
imaging technique that enables real-time visualization of the internal anatomy. It allows
assessing fracture reduction and implant positioning intraoperatively. The increasing
availability of intraoperative image guidance has triggered further developments of
surgical techniques such as minimally invasive surgery (MIS) in trauma and orthopedic
surgery like, e.g., percutaneous pedicle screw placement (Keil et al., 2018). MIS comes
with the benefit of limiting the extent of muscles and healthy tissue disruption compared
to open surgery. In contrast to conventional radiography, where static images are acquired
pre- or post-operatively for diagnosis, fluoroscopy describes interventional radiography
acquired intraoperatively by a C-arm (static or mobile) that delivers real-time images
for monitoring, guidance, and quality control. While the first C-arm system was solely
intended for surgical use, nowadays, the C-arm is used in different disciplines, e.g.,
orthopedics, trauma surgery, vascular surgery, and cardiology.

The mobile X-ray device, called C-arm, is a C-shaped imaging system with an X-ray
source and a detector at its ends (Fig. 2.1a). The X-ray source emits X-rays that pass
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(a) Mobile C-arm: Siemens Cios Spin® (b) CT: Siemens SOMATOM® Emotion

Figure 2.1: Medical imaging devices used in this thesis. While the mobile C-arm 2.1a
(adapted from Siemens AG (2019)) is used for intraoperative guidance and validation,
the CT scanner 2.1b (Siemens AG, 2013) is employed preoperatively for diagnosis and
planning.

through the body and hit the detector, where transmitted photons are converted into
a visible image displayed on the C-arm monitor. X-ray photons are either absorbed,
scattered, or transmitted without interaction while penetrating the patient (Berger et al.,
2018). Assuming a mono-energetic X-ray beam with base intensity p0 and a homogeneous
object with absorption coefficient µ, the observed intensity p(u) at the detector pixel u,
according to Lambert-Beer’s law, is related to the intersection length x of the object and
the ray by

p(u) = p0 · exp (−µx). (2.1)

However, in practical setups, emitted X-ray photons consist of poly-energetic energy
spectra, and rays may pass through inhomogeneous materials. For an X-ray spectral
density p0(E) and an material- and energy-dependent linear attenuation coefficient µ(x, E)
at each point x on the ray path, the formula can be generalized to

p(u) =
∫

p0(E) exp
(
−
∫

µ(x, E)dx
)

dE. (2.2)

The fluoroscopic image is a 2D projection of the attenuating properties of the different
tissues penetrated by the X-rays (Aichinger et al., 2012). It is mainly used for fracture
examination and implant positioning assessment. Since bones have a high absorption
coefficient compared to the surrounding tissue, the bony structures are visualized with
high contrast, making them easily distinguishable from the neighborhood. Very dense
material such as metal is represented as white in the X-ray intensity domain. Soft tissue
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Figure 2.2: C-arm out-of-plane rotations

can absorb a significant amount of radiation in the abdominal region and lead to contrast
reduction. Especially in obese patients, this can impede the examination of bony structures
(Keil et al., 2018). Since the attenuations are summed up along the ray, resulting X-rays
are missing the depth information, and anatomical structures may overlap depending on
the projection direction. For correct interpretation, the acquisition of anatomy-specific
standard projections is essential. The most frequently acquired standard projections for
the spine are the a.-p. and lateral standard projection (Rüedi et al., 2008). A key task of
the surgeon is to position the C-arm to acquire the necessary standard projections for the
operation.

A mobile C-arm has six degrees-of-freedom (dof), three translational, and three
rotational parameters. The primary orbital rotation is denoted by α and describes the
rotation within the plane of the C-arm gantry (Fig. 2.2 (a)). The secondary angular rotation
is denoted by β and describes the rotation perpendicular to the plane of the C-arm gantry
(Fig. 2.2 (b)). The in-plane rotation in the detector plane is denoted by γ. The spatial point
about which the C-arm is rotated is called isocenter. This setup enables the acquisition of
X-rays from arbitrary projection angles, only limited by the patient’s anatomy. A standard
projection corresponds to a specific orientation of the C-arm that depends on the patient’s
position.

The C-arm X-ray source is a point source emitting a cone-beam with X-rays traveling in
straight lines. Structures further away from the detector will be magnified in the detector
plane. Magnification is reduced by moving the source further away from the object. At
the same time, this reduces the radiation dose for the patient’s skin according to the
inverse square law (International Atomic Energy Agency, 2021). For accurate measuring,
structures should be placed as close as possible to the detector.

Flat panel detectors (FPD) became the state of the art technology for X-ray detectors
(Berger et al., 2018). Compared to the previous detector generation of image intensifiers,
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the main advantage of FPD is the direct conversion of X-ray radiation into a digital
signal, which makes data storage and patient handling more efficient and allows for
separate photon detection and image processing. Additional benefits are the production
of distortion-free images, lower patient dose, improved image quality, contrast, and
spatial resolution (Berger et al., 2018; Aichinger et al., 2012; Keil et al., 2018). Further, FPD
facilitates a more compact and lighter design, which benefits the rotational speed of the
C-arm and simplifies the handling in an operating room (OR) with limited space (Berger
et al., 2018). However, the C-arm field-of-view (FoV) is limited by the distance between
both ends of the detector. On the one hand, lager radii facilitate the acquisition of bigger
objects, but on the other hand, they may hamper the integration into the clinical workflow.
FPDs pose higher acquisition costs than image intensifiers.

Intraoperative C-arm systems have a lower power supply than stationary radiography
devices. This implies lower radiation doses, causing lower image contrast and resolution
(Keil et al., 2018). Fluoroscopic devices contain an automatic exposure control (AEC)
mode which regulates the exposure factors such that the X-ray radiation at the detector is
above a certain threshold that allows for the generation of clinically useful X-rays.

Mobile C-arms are mandatory to immediately and continuously control fracture re-
duction and implant position intraoperatively in trauma surgery (Keil et al., 2018). X-ray
imaging allows for non-invasive and painless visualization of the internal anatomy. How-
ever, the potential hazard of radiation needs to be weighed against the benefit of the
examination.

2.1.2 Computed tomography

Computed tomography (CT) is the most widely available and used image modality in
radiology and constitutes a standard procedure for fast 3D imaging in trauma surgery
(Buzug, 2011). While 2D X-rays are summation images with inherent depth ambiguities,
resulting in poor contrast and challenging interpretation, CTs are reconstructed from
a set of X-rays non-invasively acquired from different directions. The reconstructed
cross-sectional views do not suffer from superposition and exhibit higher image contrast
with differentiable soft tissue (Buzug, 2011).

The mathematical theory for 3D image reconstruction dates back to Johann Radon,
who introduced the filtered backprojection in 1917. Due to its computational complexity,
the first commercial scanner for human imaging was only introduced in 1971, after the de-
velopment of computer technology, by Godfrey Newbold Houndsfield and Allan McLeod
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Cormack (Taubmann et al., 2018). The most common methods for image reconstruction
are the analytic filtered backprojection and the algebraic reconstruction (Taubmann et al.,
2018).

After reconstruction, the CT values represent physical attenuation values µ that are
commonly converted to Hounsfield units (HU), defined by

CT − value =
µ− µwater

µwater
· 1000 [HU].

On this scale, air is mapped to the CT value of -1000 HU and water to the CT value of 0 HU.

A conventional CT setup is static, consisting of an X-ray source and a detector hidden
in the rotating gantry and a patient table, as depicted in Fig. 2.1b. Since the introduction of
CT scanners, different scanner generations have emerged driven by the goals of lower
acquisition times, lower radiation exposure, and decreased cost (Buzug, 2011). They differ
in the construction of X-ray tubes (pencil beam, fan beam, cone beam) and detectors and
their movement around the table (Buzug, 2011). The intervention of helical acquisition
paths by Willi Kalender in 1990 allowed the imaging of large objects under continuous
rotation. The helical path is achieved by moving the patient table through the gantry
while the X-ray source rotates in the x-y plane. Standard reconstruction methods can
be applied by interpolating circular acquisition trajectories from neighboring helical
segments (Taubmann et al., 2018).

The image quality is influenced by several factors: the acquisition geometry (tube,
detector, movement), the tube voltage (kV), the tube current (mA), the rotation time, the
beam filtration, the focal sport size, speed of table movement (pitch), number of projec-
tions, detector element spacing, beam collimation, slice increment, and the reconstruction
algorithm. Tube current and tube voltage define the quantity and energy of the X-ray
quanta emitted from the source (Riemer, 2017).

Image quality is additionally influenced by image artifacts that reduce the diagnostic
value. The partial volume effect is caused by limited detector resolutions that result in a
volume averaging across tissue boundaries projecting in the same detector element. It
becomes particularly noticeable at sharply contrasted boundaries that appear blurred in
the projection image. Beam hardening artifacts are caused by energy shifts in the poly-
energetic X-ray spectrum along with the patient penetration. Energy shifts result from
the property that low-energy X-ray beams are more strongly absorbed than high-energy
beams (beam hardening). However, only the integral intensity over all wavelengths is
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measured at the detector. Consequently, inconsistent individual projections are mea-
sured from different directions, which do not complement each other in the filtered
backpropagation and result in streak artifacts. With filtered backpropagation, those 2D
artifacts can spread across the entire image (Buzug, 2011). The energy dependence of the
attenuation can be corrected by filtering the soft radiation before penetration. Motion
artifacts resulting from breathing, patient motion, or contrast medium can lead to blurring
and streak artifacts. It can be tackled by the acceleration of the data acquisition. Compton
scattering can cause X-rays photons to change direction and energy, which is particularly
noticeable if the photon is scattered into detector elements with few photons, e.g., behind
metal objects. Anti-scatter grids in front of the detector can reduce this effect. Metal
artifacts cause beam hardening, scatter, and photon starvation, leading to noisy projections.

With cone-beam computed tomography (CBCT) devices, the conventional static CT
devices have been transferred to the OR setting. In contrast to typical CT scanners with
line-shaped detectors, CBCT systems emit cone-beam shaped X-ray beams to an area
detector. The image sequence for reconstruction is acquired in a single motorized rotation
about the patient. CBCT uses low-power continuous fluoroscopy throughout the scan,
is quicker in motion than traditional spiral motion, and involves less radiation. The
central beam passes through the center of rotation, and patient movement is not required.
Consequently, the acquisition volume is constrained by the detector FoV (30 cm2 flat
detector, 16 cm3 reconstructed 3D volume for the Siemens Cios Spin ®, Fig. 2.1a) and the
C-arm geometry (116.4 cm source-to-detector distance for the Cios Spin).

2.1.3 Conclusion

To sum up, conventional CT is a static 3D imaging modality that is widely used for
preoperative diagnosis and planning and post-operative control. Intraoperative CTs
also exist but are still rarely available due to their expensive acquisition costs. Mobile
systems allow flexible positioning of the device relative to the patient and are suitable
for intraoperative use. The flexibility comes at a cost of an unknown system to device
orientation. Fluoroscopy delivers intraoperative X-rays in real-time that allow assessing
reduction and implant placement. However, interpretation of the summation images
requires expertise to compensate for the missing depth information. In contrast, 3D cross-
sectional CT imaging explicitly delivers this information at the cost of increased radiation
dose and computation time. Both imaging techniques, 2D fluoroscopy and 3D CT, involve
ionizing radiation; thus, the potential risk needs to be weighted against the benefit of the
examination. Particularly, the iterative radiation during manual C-arm positioning for
standard projections affects the patient as well as the clinical staff, while only the final
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Figure 2.3: Medical terminology: Anatomical viewing planes and directional relation-
ships extended from Mrabet (2012).

standard projection is employed for verification and guidance purposes. Therefore, one
aim of this thesis comprises the development of computer-assisted methods for automatic
C-arm positioning.

2.2 Medical background

This section provides information about the spinal anatomy, spinal fractures, and treatment
(sec. 2.2.1). Further, CT-navigated (sec. 2.2.2) and fluoroscopy-guided (sec. 2.2.3) spinal
surgery are introduced. Fig. 2.3 introduces the relevant medical terminology for the
following section.

2.2.1 Spinal anatomy

The spine is the central weight-bearing element of the human skeleton. It supports and
stabilizes the body, enables the upright posture, and facilitates movements in varying
directions. Additionally, it directly or indirectly connects all skeletal bones. At the top, the
spine is connected through the head joint with the skull, and at the bottom, through the
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(a) Spine anatomy with labeled ver-
tebrae for the lumbosacral segment
adapted from Schünke et al. (2005)

(b) Vertebra structure adapted from Schünke et al.
(2005)

(c) Vertebra arrangement adapted from Bühren and
Josten (2012)

Figure 2.4: Anatomy of the spine.
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Os sacrum-Os ilium joint with the pelvis. The spinal canal, formed by the vertebra holes
of the stacked vertebrae, surrounds the spinal cord and protects it against injuries.

Spinal structure: Typically, the spine consists of 24 free vertebrae, which are moveable,
connected via intervertebral discs and various ligaments. From cranial to caudal, the
spine can be divided into four segments (Fig. 2.4a): the cervical spine (C1-C7), the thoracic
spine (Th1-Th12), the lumbar spine (L1-L5), and the sacral spine (Os sacrum, Os coccyges).
Occasionally, vertebrae in the transition areas can be shaped atypically. Most frequently,
this is observed for the transition between the lumbar and sacral segments. For example,
if the first sacral vertebra is not combined with the Os sacrum, resulting in one additional
lumbar vertebra, this is called lumbalisation. In contrast, if the fifth lumbar vertebra is
fused with the Os sacrum, reducing the number of lumbar vertebrae by one, this is called
sacralisation (Schünke et al., 2005). From the sagittal view, the spine resembles a double S
shape (Fig. 2.4a): the cervical and lumbar spine segment have the curvature ventral, while
the thoracic and sacral spine segment bend dorsal. While the kyphosis in the thoracic
segment allows for a good lung extension, the cervical and lumbar lordosis are critical to
ensure an even distribution of bodyweight (Schünke et al., 2005). In addition, the double
S-shaped curvature limits the disruptions generated by walking to a minimum in the
head region containing the brain. In coronal view, the spine is approximately line-shaped.
Lateral curvature indicates scoliosis. The transition areas between the different segments
are predilection sites for spinal injuries, like fractures or ligament injuries (Schünke et al.,
2005).

Vertebra structure: Vertebra shape and size differ across different spinal regions
(Schünke et al., 2005). Since the spine needs to carry most body weight, the verte-
bra size increases from cranial to caudal. Additionally, the shaping of the vertebral arch
and the processes vary (Schünke et al., 2005). However, the vertebra structure is similar
across all vertebra levels (1st and 2nd cervical vertebra excluded) as depicted in the
model view in Fig. 2.4b. It consists of: a vertebral body (corpus vertebrae), a vertebral
arch (arcus vertebrae), a processus spinosus, two transverse processes, and four articular
processes. The processes serve as anchor points for muscles and ligaments and specifically
for the thoracic segment as rip-vertebra-joints. The spinal canal is built by the union of all
vertebra holes. An intervertebral hole is formed bilaterally between the vertebral arches
of two neighboring vertebrae. It is called foramen intervertebrale and is the exit point for
spinal nerves originating from the spinal column.

Incidence of spinal fractures: Approximately 50% of spinal fractures affect the thora-
columbar transition area, 40% are located in the thoracic spine, and 10% in the lumbar
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spine (Tscherne and Blauth, 1998). Several anatomical factors cause the increased fracture
incidence of the thoracolumbar transition area: the thoracolumbar spine is (1) a transition
between kyphosis (Th11-L2) and lordosis (L3-L5), (2) a transition between the relatively
rigid thoracic spine and the mobile lumbar spine (Payer et al., 2020). Spinal fractures
account for 3-6% of skeletal fractures and have a four-fold increased incidence for males,
usually between 20-50 years (Walthers, 2017). High energy traumas are typically caused by
traffic accidents or fall from height (Tscherne and Blauth, 1998). Low energy trauma frac-
tures most often affect older women with osteoporosis (Walthers, 2017). If a spinal injury
is identified, the entire spine requires examination because the incidence of a secondary
vertebra injury is 20% (Rüedi et al., 2008).

Fracture types: Most commonly observed fracture patterns in the thoracolumbar seg-
ment include compression fractures, burst fractures, flexion-distraction injuries, and
fracture-dislocations (Vaccaro et al., 2003). Though numerous classification systems for
thoracolumbar fractures have been presented, spinal injuries’ great variability and com-
plexity still pose a major challenge in spinal fracture assessment. Consensus exists, how-
ever, that the assessment of spinal stability is essential to determine adequate treatment
of spinal fractures. Thereby, stability refers to neurologic as well as mechanical stability
(Patel et al., 2010). Unstable spinal fractures typically require surgical intervention, while
stable fractures without neurologic symptoms can be managed conservatively.

Standard projections: The acquisition of a.-p. and lateral X-rays form the basis of each
radiological examination of the spine (Rüedi et al., 2008). Further, the acquisition of spinal
standard projections is essential for interventional guidance during fluoroscopy-guided
spinal surgery. The standard projections are defined to minimize projection artifacts,
thereby enabling a reliable assessment of the relevant bony structures. Depending on
clinical indications, additional standard projections can be required. The spinal standard
projections are vertebra-level specific. Fluoroscopic projections are summation images, and
incorrect projection poses can result in overlays and ambiguities caused by the projective
simplification. The correct acquisition of anatomy-specific standard projections is essential
to evaluate the surgical results including fracture reduction and implant positioning and to
avoid overlooked errors (Rikli et al., 2018). The most frequently acquired spinal standard
projections are shown in Fig. 2.5. While the a.-p. X-ray allows for the assessment of coronal
and rotational alignment, the lateral X-ray enables the evaluation of the sagittal alignment
and vertebra body height (Patel et al., 2010).
In the following, criteria for the intraoperative acquisition of a.-p. and lateral standard

projections are summarized. During the intervention via the posterior approach, the
patient lies in prone position. For the a.-p. standard projection, the X-rays travel from
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(a) a.-p. standard (b) lateral standard

Figure 2.5: Standard projections of the spine (fourth lumbar vertebra (L4)).

anterior to posterior. For the lateral projection, X-rays travel from side to side. To reduce
radiation dose during a.-p. acquisitions, the detector should be positioned above the
table, and during lateral acquisitions, the clinical staff should be located on the side
of the detector (Keil et al., 2018). According to the quality criteria for X-ray diagnostic
examinations released by the German Medical Organization, spinal standard projections
should fulfill the image criteria given in Tab. 2.1 (Bundesärztekammer, 2007; Harris et al.,
2008). For each standard projection, the vertebra of interest should be centered in the
central beam area.

Treatment: Surgical treatment aims at maximizing neurological recovery, restoring spinal
stability, facilitating fracture healing, enabling early mobilization and rehabilitation (Patel
et al., 2010). Spinal fracture treatment involves (1) reposition, (2) decompression, (3)
stabilization, and (4) reconstruction.

(1) Reposition: Fracture reduction concerns the alignment of bone structures back to their
correct position such that the spinal shape is reconstructed. Exact repositioning is
a requirement for effective stabilization and fracture healing (Bühren and Josten,
2012).

(2) Decompression: Sometimes, repositioning of bone and ligament structures can al-
ready reduce the stress on the spinal cord and nerves. If required, intervertebral
disc or bone fragments are removed from the spinal canal. Further, consideration of
direct surgical decompression techniques may be required, e.g., discectomy, laminec-
tomy, corpectomy. Discectomy includes the removal of intervertebral disc material
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a.-p. standard lateral standard

• contours of vertebrae should ap-
pear sharp without doubled end-
plate shadow

• gaps between vertebrae should be
clearly visible, vertebrae should
project symmetrically

• spinous processes should be cen-
tered between the pedicles

• base and cover plates of vertebrae
should appear line-shaped in the
central beam area

• gaps between vertebrae should be
clearly visible

• the lumbar foramina intervertebral
are maximally extended (Fig. 2.4c)

• pedicles should be superimposed

Table 2.1: Quality criteria for spinal standard projections.

to decompress affected nerves. In laminectomy, the lamina (Fig. 2.4b) is removed to
widen the spinal canal for decompression. Corpectomy refers to removing parts of
the vertebra bodies to release stress on the spinal cord and nerves in case of spinal
canal narrowing due to degenerate vertebra changes like bone spurs (overgrowth).
All named techniques can cause spinal destabilization (Bühren and Josten, 2012).

(3) Stabilization: The gold standard treatment to maintain the stability of unstable spinal
fractures is spinal fusion (Mobbs et al., 2011). Further, spinal fusion surgery is used
to treat spinal deformity such as scoliosis or hyperkyphosis, degenerative conditions
(spondylolisthesis, disc degeneration, spinal stenosis), or spinal instabilities resulting
from tumors (Attar et al., 2001). Regarding thoracolumbar fixation, pedicle screw
instrumentation via a posterior approach, i.e., where the spine is assessed from
dorsal, is the most common technique (Patel et al., 2010). Spinal instrumentation
involves the bilateral placement of screws through the pedicle, which is the strongest
point of the vertebra (Molinari, 2016). The screw heads serve as anchor points
for connecting plates and rods that rigidly stabilize the spine, restore the spinal
alignment and enable successful fusion. Insertion of screw instrumentation into the
pedicle area requires extensive anatomical knowledge. It is of high risk due to its
proximity to the spinal cord or exiting nerve roots and the potential complications,
e.g., neurological disorders or paralysis, in case of co-injury caused by inaccurate
screw placement within the pedicle (Gelalis et al., 2012).

(4) Reconstruction: Destructed bony structures can require anatomical reconstruction. Re-
construction is most commonly performed in the anterior spine column by inserting
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artificial vertebra body implants (cages) or bone grafting.

(5) Inspection and documentation: Imaging is employed to validate individual procedu-
ral steps and to document the correct instrumentation.

Spinal instrumentation can be performed with a standard midline incision posterior
approach or minimally invasive. Percutaneous pedicle screw insertion entails benefits for
the patient like a limited disruption of muscles and healthy tissue, diminished postopera-
tive pain, less blood loss, and improved cosmetic result (Rodts, 2003). In contrast to open
techniques, where important landmarks for optimal screw placement are visible, mini-
mally invasive approaches rely much stronger on intraoperative image guidance. Spinal
fractures that require a fracture reduction or direct decompression of nerve structures can
often not be treated with minimally invasive surgery (MIS). Also, the open technique is
recommended if the distance from the skin to the screw insertion point is larger than 9 cm,
as can be observed in obese patients (Peloza, 2016).

Advances in imaging technologies and computer-assisted methods offer different
guidance techniques to facilitate pedicle screw insertion, e.g., fluoroscopy or CT naviga-
tion. Fluoroscopy is the standard procedure for guiding spinal interventions due to its
widespread availability. However, anatomical distortions or patient’s obesity can compli-
cate the interpretability and reduce the image quality of the 2D fluoroscopic summation
images and thereby compromise fluoroscopic guidance. In complex anatomical scenarios,
CT navigation, which offers explicit 3D information, can foster the accurate placement of
pedicle screws. Both techniques are introduced in the following.

2.2.2 Pedicle screw planning for CT-navigated spinal surgery

In CT-navigated spinal surgery, the intervention is guided by computer navigation upon
pre- or intraoperative planned screw trajectories on a computed tomography (CT) scan.
Additionally, CT-guidance enables the visualization of instrument and implant positioning
in 3D.

The surgical routine in Heidelberg for CT-navigated spinal instrumentation since
2008 is depicted in Fig. 2.6. The process consists of three steps: an intraoperative CT
containing the vertebrae of interest is acquired in prone position with an intraoperative
CT scanner or a cone-beam computed tomography (CBCT) device (A), screw trajectories
and dimensions are planned in the acquired CT using an intraoperative planning tool
(SpineMap 3D software, Stryker) (B), the plans are used for navigation guidance (C). To
transfer the knowledge from CT to the patient, a 3D-3D registration is required. Therefore,
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Figure 2.6: CT-navigated spinal instrumentation workflow. Surgical routine in Heidel-
berg for CT-navigated spinal instrumentation since 2008 consisting of the three steps:
intraoperative CT acquisition (A), manual screw trajectory planning (SpineMap 3D soft-
ware, Stryker) (B), navigation-guided screw placement(C). Image courtesy of Department
of Neurosurgery, Heidelberg University Hospital.

small screw markers are placed on the vertebrae before the CT is acquired. By pointing to
these markers with traceable instruments, the point-to-point registration is automatically
initialized (Ishak et al., 2019).

A systematic literature review by Gelalis et al. (2012) revealed that only 28− 85% of
screws were correctly placed in the pedicle with traditional fluoroscopic guidance. This
has triggered the increasing use of navigation systems in spinal instrumentation, which
has been shown to lead to a significant reduction of misplaced screws (89-100% accuracy
with CT-navigation, 81-92% accuracy with fluoroscopy-based navigation) (Gelalis et al.,
2012). CT-navigation can support implant placement, particularly in anatomically critical
areas, when pedicles are small, disparate, malformed, or variable angulated, and when
anatomical landmarks are distorted in trauma or revision surgeries (Rajasekaran and
Shetty, 2021). Mason et al. (2014) reported an increased screw accuracy of 95.5% across all
spine segments with CT-navigation, compared to 84.3% with 2D fluoroscopic navigation
and 68.1% with conventional fluoroscopy. Other studies, however, reported no difference
between robot-assisted and conventional fluoroscopy-guided pedicle screw placement
(Schatlo et al., 2014).

Navigation guidance has shown to reduce the operative time, especially in compli-
cated scenarios (Sasso and Garrido, 2007). Further, it enables minimally invasive screw
placement because the visibility of anatomical structures is not required. That implies less
blood loss, smaller wounds, less pain, and faster patient recovery.
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CT navigation facilitates precise instrument tracking and consequently requires fewer
verification scans. Thus, the intraoperative X-ray radiation is reduced. Bratschitsch et al.
(2019) compared image-assisted guidance techniques in terms of radiation exposure.
They showed that patient’s radiation dose is approximately increased by 3-fold during
navigation compared to fluoroscopy. The increased patient’s radiation results from the
necessity of a CT scan. In contrast, Villard et al. (2014) reported increased patient’s
radiation, however, without statistical significance. The variable patients’ radiations
reported by different studies can be attributed to different underlying patient groups,
where the strengths of navigation are most notable in cases of trauma, revision surgeries,
and spinal deformities (Rajasekaran and Shetty, 2021). Nonetheless, studies agree that
spinal surgeons’ radiation dose was decreased up to 10-fold by the use of navigation
(Bratschitsch et al., 2019; Villard et al., 2014), which is of high relevance since spinal neu-
rosurgeons exhibit the highest amount of radiation dose among all orthopedic surgeons
(Matityahu et al., 2017).

The integration of navigation systems into the clinical workflow requires surgical
training. If the workflow is not smooth, the intervention time is extended, which reduces
the acceptance among surgeons. The navigation system purchase is expensive, while the
financial returns for navigated and image-guided interventions are the same. However,
costs for surgical correction of potentially misplaced screws have to be balanced against
the initial investment for a navigation system, not to mention the increased patient safety
that can be achieved through CT navigation.

CT-navigated spinal instrumentation can improve safety and accuracy by providing
precise 3D anatomical information, especially in degenerated anatomical conditions and
anatomically critical areas with many superpositioning bone and tissue structures, e.g.,
the upper cervical, upper thoracic region, or pelvic region (Bühren and Josten, 2012).
To gain the full potential of CT navigation, dedicated planning of screw trajectories in
CT volumes is mandatory. However, the process is error-prone, time-consuming, and
expertise-dependent. The manually created plans are used for intraoperative surgical
navigation. Even though no gold standard for pedicle screw placement exists, special
care has to be taken during the positioning of such screws not to perforate the pedicle
wall or vertebra body. The insertion direction of optimally positioned screws should be
aligned to the pedicle angle, and the head should not cross vertebra joints. The screw length
should reach well into the vertebral body while not crossing the anterior wall, and the
screw diameter should fill the pedicle region. Automatic screw planning in CT volumes can
assist the surgeon in screw planning, reduce errors, standardize the quality, significantly
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Figure 2.7: Workflow of percutaneous pedicle screw placement with posterior approach
taken from Vaccaro et al. (2021): (A) incision localization, (B) Needle orientation, (C)
Needle insertion, (D) K-wire insertion, (E) Screw insertion, (F) Repetition for selected
vertebra levels, (G) Rod placement, (H) Wound closure.

improve time efficiency, reduce manual intervention, and facilitate the clinical workflow
when integrated into navigation systems.

2.2.3 C-arm positioning for fluoroscopy-guided spinal surgery

Fluoroscopic images are the most commonly used assisted technique for spine surgeries
because C-arm devices are easily accessible in most operating rooms (Perna et al., 2016).
In contrast to CT-navigated spinal surgery that requires preoperative preparation like CT
scanning, planning, data transfer, pre- to intraoperative registration, and the accessibility
of a navigation system, fluoroscopy guidance delivers intraoperative projection images
in real-time. Fluoroscopic guidance involves the repeated acquisitions of a.-p. and
lateral X-rays with a mobile C-arm. The acquired standard projections allow to assess
reduction and evaluate implant placement intraoperatively. Corrections can be performed
immediately, which reduces surgical revisions.

The percutaneous screw placement procedure consists of several steps as depicted
in Fig. 2.7 that require fluoroscopic confirmation: The correct level of skin incision is
confirmed with fluoroscopy (A). Blunt dissection of the subcutaneous tissue, fascia, and
muscles is performed using scissors. The incision point is more lateral for the lumbar
vertebra than for the middle thoracic spine (B). Cannulated needles (Jamshidi) are inserted
through the pedicle corridor (C). The entry point is confirmed with a.-p. X-ray guidance

24



2.2. Medical background

and the insertion is performed under lateral X-ray guidance. K-wires are inserted through
the cannulated needles, and the needles are removed (D). The cannulated pedicle screw is
inserted via the k-wires (E). Lateral X-ray projections confirm the insertion depth. The
process is repeated for each vertebra level (F). The final instrumentation is verified by
fluoroscopy. The rod is placed percutaneously, connecting the screw heads (G). The
wound is closed (H).

During spinal fusion surgeries, the k-wires must be guided through narrow pedicle
corridors. Thereby, the correct tool trajectories are monitored by X-ray projections from
different poses. For intraoperative monitoring, guidance, and verification, the accurate
acquisition of anatomy-specific standard projections is essential. Otherwise, the spinal
instruments may be placed inaccurately. It is challenging to obtain the desired view due
to variable patient placement and because the internal anatomy is not visible from the
outside. In fluoroscopic-based orthopedic procedures, good reduction, optimal implant
placement, and correct fluoroscopic visualization are closely related (Norris et al., 1999). A
correct fluoroscopic view requires a good reduction, whereas a good reduction is a pre-
requirement for optimal implant placement. Incorrect projections can result in overlays
of anatomical structures and ambiguities due to the effects of projective simplification,
thus increasing the risk of overlooked errors (Rikli et al., 2018). Examples of critical errors
include the malunion of fractures, leading to functional impairment and, in the worst case,
requiring a subsequent intervention at increased rates of complication. Even if correct
standard projections are acquired, the assessment of optimal implant placement is still
limited since fluoroscopic images are summation images. Exact placement control is only
achievable with cross-sectional imaging; however, an experienced surgeon might be able
to compensate for the reduction in spatial information. A study performed by Samdani
et al. (2010) confirmed that fluoroscopy-guided screw placement accuracy is significantly
improved for more experienced spine surgeons, indicating the steep learning curve.

C-arm positioning for standard projections is usually performed manually using a trial-
and-error approach of iterative fluoroscopy, called fluoro hunting, at the cost of radiation
exposure and intervention time that largely depends on the operator’s experience (Blattert
et al., 2004). The radiation exposure is also influenced by additional factors like anatomical
variability, patient size, type of disease, bone density, prior imaging studies, and surgical
approach to the spine (Reiser et al., 2017).

Typically, the C-arm positioning is performed by an operating room (OR) assistant
guided by verbal commands of the surgeon. Pally and Kreder (2013) conducted a survey
of terminology used for the intraoperative direction of C-arm. They discovered that
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Figure 2.8: Variations in terminology for C-arm positioning. Summary of responses to
the survey question: "How would you ask the technician to perform the movement in
the right illustration?" adapted from Pally and Kreder (2013). The survey was performed
among 261 members of the Canadian Orthopedic Association in Dec. 2009.

no standard terminology is employed (Fig. 2.8), which results in longer OR times and
increased radiation exposure. Further, their survey revealed that many radiation technolo-
gists were inexperienced in operating the C-arm.

Reiser et al. (2017) evaluated across 240 thoracolumbar/lumbar minimally invasive
spine procedures that 25% of the total radiation occurs during preoperative surgical
planning and positioning. According to a study by Matthews et al. (2007), only 20% of
all acquired fluoroscopic images are necessary for the procedure, while 80% accumulate
during the iterative positioning process. Consequently, patients and clinical staff are
exposed to unnecessary radiation. A systematic review of literature on radiation exposure
of orthopedic surgeons is given by Matityahu et al. (2017). The highest exposure and sub-
sequent equivalent doses were reported from spinal surgery (up to 4.8 mSv of equivalent
dose to the hand). Radiation dose is harmful, and strategies to reduce exposure need to be
considered.

The positioning radiation can be reduced by assisting the C-arm positioning procedure
with simulations. Simulated guidance involves tacking of the C-arm movement and
registration of a reference CT with the patient for digitally recontructed radiograph (DRR)
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simulation. Touchette et al. (2021) analyzed the effect of artificial X-rays on C-arm position-
ing performance. They found a significant 53% decrease in the number of acquired X-rays
and an improved lateral C-arm positioning procedure of 10− 26% for the pelvic anatomy.
Incorporating the assistance system in the positioning procedure did not increase the
total positioning time. Due to the inherent prior assumption like the availability of a
preoperative CT or external tracking hardware, state-of-the-art assistance systems have so
far limited broad clinical applicability. However, guiding and automating this procedure
can reduce time and radiation exposure for patients and clinical staff and avoid fracture
reduction or implant placement errors.

2.2.4 Conclusion

Different image-based procedures can assist spinal surgeries. Intraoperative C-arms
are accessible in most operating rooms, and fluoroscopic guidance is a routine and fast
procedure for guidance and control. It delivers intraoperative imaging in real-time. In con-
trast, CT-based navigation requires investment in a navigation system and preoperative
preparation like CT scanning, trajectory planning, data transfer, and patient registration.
Particularly in easy anatomical conditions and with experienced surgeons, fluoroscopic
guidance can reduce the patients’ doses, surgical time, and surgical costs. In contrast,
the explicit 3D information provided by CT navigation may be advantageous for heavy
volumes and complex surgical cases with degenerate anatomies where particularly high
accuracy and safety are required, which otherwise would result in long fluoroscopic times.
Despite different available techniques for pedicle screw placement, surgeons should
choose the technique based on their experience and training (Perna et al., 2016).

Spinal surgery constitutes a challenging, multi-stage process that requires image
guidance. Existing image guidance techniques require manual intervention that is highly
expertise-dependent and impedes the clinical workflow. For the CT navigation technique,
this comprises the pedicle screw planning and, for fluoroscopy guidance, the positioning of
the C-arm for standard projections. These processes require a thorough knowledge of the
spine anatomy and the anatomical orientation of structures, particularly the pedicles. The
spatial orientation is additionally challenged by intraoperative requirements, i.e., variable
patient positioning on the operating table, confounding factors resulting from surgical
implants, patient-related factors (fracture types, obesity). Sasso and Garrido (2007) showed
that both spinal surgery techniques require surgical training and are intensely learning
curve dependent. If the workflow is not smooth, the intervention time gets extended.
Therefore, both image guidance techniques offer potential regarding the support for the
surgeon to decrease expertise-dependence of results, radiation exposure, and procedural

27



Chapter 2. Background

time while at the same time facilitating the clinical workflow by requiring less manual
intervention.
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3
State of the Art

This chapter gives an overview of the related state of the art for different image-based
assistance techniques during spinal surgeries. Spinal surgeries can be conducted with
navigation systems or guided by 2D fluoroscopy. The choice of technique depends on
a variety of factors, e.g., the experience of the surgeon, familiarity with the technique,
accessibility of the technique, the complexity of the fracture and anatomy. Navigation
can be performed based on a pre-operative 3D CT scan, where screw trajectories are
determined prior to surgery. The state of the art methods for pedicle screw planning
for CT-navigated spinal surgery are presented in section 3.1. Fluoroscopy-guided spinal
surgeries involve the repeated acquisition of spinal standard projections for monitoring,
guidance, and quality control. Standard projections correspond to a specific pose of the
C-arm relative to the patient’s position. Section 3.2 introduces the state of the art for C-arm
positioning for fluoroscopy-guided spinal surgery. For further details on the presented
methods, one can follow the cited papers.

3.1 Pedicle screw planning for CT-navigated spinal surgery

Various methods for pedicle screw planning have been reported that differ in their model-
ing assumptions (Fig. 3.1). While early methods employed only geometrical properties of
vertebral structures (i.e., shape) to constrain the screw trajectory and dimensions, later
methods combine this with structural properties (i.e., appearance) such as bone mineral
density (BMD), and incorporate additional clinical parameters (e.g., scew diameter, length,
patient age, spine curvature). Recently proposed methods for pedicle screw planning
are mostly based on atlas registration. The approaches are presented individually in the
following.

3.1.1 Pedicle screw planning

The first approach to pedicle screw planning was presented by Wicker and Tedla (2004)
who determined the screw trajectory and dimensions by fitting a line to the pedicle shape.
The alignment is based only on 2D images and geometrical properties of segmented
vertebra slices. Their method was derived in detail; however, it does not consider
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Figure 3.1: Classification overview of state of the art methods for pedicle screw plan-
ning. Deep learning-based methods were only considered for pedicle localization and not
for automatic pedicle screw planning.

spatial characteristics of vertebrae and lacks experimental results, and was not tested
in clinical data. Subsequently, Lee et al. (2012) extended the geometric approach to 3D
vertebra representations. Focusing on the lumbar segment, their approach for pedicle
segmentation was successful in 93.3% of all cases and required a high computational
time of 14− 15 mins. The approach was not further extended to pedicle screw planning.
Daemi et al. (2015) additionally considered the planning requisites of a safety margin
and maximizing the insertion depth, which is correlated with the screw fixation strength
(Azwan and Abd Rahim, 2011). Automatic planning results were only assessed in terms
of safety margin and insertion depths due to a lack of reference screw trajectories.

In contrast to purely geometric modeling, Knez et al. (2016) combined 3D geometrical
with structural properties and additionally constrained screw trajectories by an opera-
tional safety margin. Geometric properties of vertebrae were extracted by 3D parametric
modeling of vertebral bodies and pedicles, which imposes limitations on the pedicle screw
trajectories and dimensions. The shape constraint was combined with appearance proper-
ties by maximizing the screw fixation strength in an image-based concept. Therefore, the
underlying BMD which is directly related to the fixation strength (Lehman Jr et al., 2003)
was measured in Hounsfield units (HU) inspired by (Schreiber et al., 2011). They reported
qualitative results on 81 thoracic pedicles of 11 cases with a mean absolute deviation and
standard deviation (µ± σ) of 0.4± 0.4 mm for screw diameter, 5.8± 4.2 mm for the screw
length, 2.0± 1.4 mm for the pedicle cross point, and 7.6± 5.8 ° for the insertion angle, indi-
cating a relatively high agreement between manual and automatic screw plans. Automatic
planning resulted, on average, in significantly shorter and thinner screws, which indicates
that the fixed manual selected safety margin might not be optimal for all cases. Automatic
planning led to increased screw fastening strength in 99% of all cases. Parametric vertebra
and pedicle modeling has the advantage of not requiring any training data or manual
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annotations; however, the generalized shape description limits the application to local
anatomical deformations. Further, each 3D parametric vertebra model requires manual
initialization, followed by structure modeling at a runtime of 2 mins, and introducing a
3D modeling error of 0.5 mm, which serves as initialization for the subsequent pedicle
screw planning. In additional work, Knez et al. (2018) extended this approach to address
specific clinical aspects by constraining the pedicle screw entry points to follow the spinal
curvature or to follow specific surgical insertion techniques. They reported a statistically
significant improvement in screw planning accuracy compared to the original method
while still suffering from the limitations related to parametric modeling. The parametric
computer-assisted pedicle screw planning was clinically evaluated on 25 patients (204
screws) covering the thoracic and lumbar spine. It achieved a Gertzbein-Robbins (GR)
classification Grade A in 88.7% (Knez et al., 2019).
Similarly, Xiaozhao et al. (2016) combined geometric and structural properties for screw
trajectory planning. At first, vertebra bodies and pedicles were automatically segmented
for screw trajectory initialization. Subsequently, the screw trajectory and dimensions were
optimized so that the overlapped HU are maximized. Due to vertebra shape assumptions,
the method is limited to lumbar vertebrae.

Recently, different atlas-based approaches for screw trajectory planning were intro-
duced. Li et al. (2019) proposed to combine spine landmark detection with multi-atlas
vertebra segmentation. Based on the segmentation, a distance map was created, repre-
senting the minimal distance of each voxel to the vertebral edge. Pedicle regions were
determined based on the distance map, and safety regions within the pedicles were
derived. Additional clinical parameters (screw diameter, length, patient age) can be
incorporated into the optimization algorithm while the screw trajectory was constrained
to pass through the pedicle safety region. However, the large number of mainly qualitative
clinical parameters complicates the planning pipeline, and the importance of different
parameters is difficult to assess and may be surgeon-dependent. A multi-atlas registration
approach was presented by Goerres et al. (2017). An atlas consists of a vertebral surface
with ideal reference trajectory annotations. The reference trajectories were transferred to
the computed tomography (CT) using non-rigid surface registration and probabilistically
aggregated to derive trajectory plans. In a leave-one-out study, their method demonstrated
close agreement with expert reference plans on selected vertebra levels T7, T8, L3, where
the atlas comprised only a limited number of 60 screw trajectories. However, the method
may be limited in application to altered, deformed, degenerated, or fractured bones since
atlas-based approaches are targeted to represent the mean anatomical shape. Vijayan et al.
(2019) built on this approach and replaced the vertebra surface multi-atlas with a vertebra
level-specific statistical shape model. The method was evaluated in a leave-one-out study
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on 200 patients for the lumbar spine; 9 cases were excluded in the analysis because the
initialization of the anatomical atlas failed. On the remaining 191 cases (382 screws), they
reported an accuracy of µ± σ of 2.4± 1.6 mm for the entry point and 3.6± 0.8 ° for the
insertion angle. The statistical shape model registration is sensitive to initialization and
requires separate training for each vertebra level.

So far, deep learning-based methods have not been applied for the task of pedicle screw
planning. For pedicle localization Esfandiari et al. (2018) presented an approach targeted
to initialize the 2D-3D registration of pre- and intraoperative images. The method works
on 2D CT image slices and can handle one vertebra at a time. It was trained and tested on
CT scans acquired from synthetic lumbar bone models. Thus, it lacks real data evaluation
and does not take 3D structural properties into account. Further, the pedicle locations are
automatically identified; however, automatic screw trajectory planning was not addressed.

3.1.2 Conclusion

Many state of the art approaches for pedicle screw planning rely on manually defined
geometric and structural entities with explicitly defined clinical constraints. The insertion
trajectories are optimized with respect to pedicle geometry or bone density employing
parametric modeling and defined assumptions. While parametric modeling is targeted to
represent the general anatomical shape, its generalization to locally deformed vertebrae
may be limited. Further, experience-based assumptions, e.g., that the pedicle center line
determines the optimal screw trajectory or defining a fixed safety margin that might not be
ideal depending on the vertebra shape. Instead of relying on manually defined properties,
subsequently proposed atlas-based techniques derive the geometric constraints statistically
from a set of vertebra shapes with expert annotations. Since the atlas represents normal
anatomical vertebra shapes, its application may be limited in deformed, degenerated,
or fractured vertebrae. Furthermore, the statistical shape model-based atlas is vertebra
level-specific, requires retraining, and is sensible towards the initialization. Deep learning-
based applications have proven success in many medical imaging applications; however,
they were not yet applied in the context of 3D pedicle screw planning. In this work, deep
learning is employed to learn the screw trajectories directly from clinical data, leveraging
a large intraoperative screw planning dataset. The screw placement is implicitly learned
from a diverse surgical planning dataset that takes individual anatomical conditions into
account, as well as the surgeon’s preference for screw placement. The problem of screw
trajectory planning is tackled in a vertebra instance-based approach, implicitly taking
geometrical and structural properties into account.
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3.2 C-arm positioning for fluoroscopy-guided spinal surgery

A general problem related to the task of automatic C-arm positioning is given by the
lack of annotated fluoroscopic data. Therefore, this section introduces state of the art
simulation techniques for X-ray images (Sec. 3.2.1. Specific methods for fluoroscopic image
understanding have been proposed and are revised in Sec. 3.2.2. This includes methods
for view-independent fluoroscopic segmentation and landmark detection. Sec. 3.2.3 gives
an overview of how these methods were applied in the context of C-arm positioning so
far.

3.2.1 Data simulation

Deep learning methods showed excellent performance for various medical image pro-
cessing tasks (Maier et al., 2019). However, their success strongly depends on the amount
and quality of the training data, which limits their application in interventional imaging,
particularly 2D fluoroscopy-guided procedures, due to several factors:

• Lack of archiving: Many intraoperative X-rays are acquired for monitoring, guid-
ance, and quality control. However, only very few X-rays that document the proce-
dural outcome are archived.

• Lack of annotations: Learning targets are not well established or defined, and
manual annotation is associated with a high workload given the high amount of
data.

• Multiple view points: The patient to C-arm alignment is arbitrary, resulting in
varying 2D views onto the anatomy.

• Individual variability: Confounding factors caused by surgical implants or instru-
ments, pathologies, or operating table present in the projection images increase the
data variability, which is challenging to address with augmentation strategies.

An alternative to using real clinical X-rays is in silico fluoroscopy simulation from 3D
diagnostic CT scans (Fig. 3.2). The synthetic X-ray is referred to as digitally recontructed
radiograph (DRR). In silico simulation has the advantage that it uniquely provides ground
truth labels for arbitrary many training examples. Since the reference system is known, it
enables the annotation of pose labels. Moreover, the annotation process is simplified and
accelerated because it can be performed directly in 3D.

The DRR simulation task requires determining detector responses for a given imaging
geometry according to Lambert-Beer’s law. Approaches can be classified into analytic
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Figure 3.2: Data simulation: Synthetic X-rays (Digitally reconstructed radiographs) can
be simulated from a computed tomography (CT) scan for arbitrary poses.

ray tracing and statistical Monte Carlo (MC) methods. Analytic approaches compute the
detector responses by applying attenuations that are summed up along a 3D line to all
photons emitted in that direction (Ghafurian et al., 2016; Russakoff et al., 2005). Traditional
ray tracing models assume mono-energetic X-ray sources that pass through single-material
objects, which is violated by clinical X-ray imaging. Consequently, synthetic images do
not reflect typical artifacts such as beam hardening and scattering noise. In contrast,
MC simulations determine single-photon attenuations from a sequence of probabilistic
material- and energy-dependent photon-matter interactions (Badal and Badano, 2009).
Though the simulations are very realistic, MC simulations are not suitable to generate
large machine learning training sets due to the long computation times (Unberath et al.,
2018b).

An issue related to learning from simulations is the effect of the so-called domain
shift, i.e., a shift between training (synthetic DRRs) and testing (clinical X-rays) data
distributions. Machine learning methods trained on traditional ray-tracing simulations
often restrict their evaluations to synthetic images generated by the same simulation
technique (Albarqouni et al., 2017; Kügler et al., 2020; Terunuma et al., 2018; Würfl et al.,
2018). Generalization to clinical X-rays is limited due to inaccurate X-ray image formation
simulation assumptions (Zhang et al., 2018). One approach to tackle this problem was
introduced by Zhu et al. (2017) who proposed unsupervised domain adaptation by
unpaired conditional image-to-image style transfer networks. They addressed the issue of
translating an image from a source domain to a target domain in the absence of aligned
image pairs for both domains. Zhang et al. (2018) showed that machine learning methods
trained with traditional ray tracing simulations can be applied to clinical X-rays if those are
preprocessed with a style transfer network to mimic the appearance of DRRs. However,
compared to supervised training on labeled clinical X-rays, performance degradation can
still be observed. Dhont et al. (2020) proposed a DRR simulation framework that combines
a forward projector with a conditional generative adversarial network (cGAN) to translate
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Figure 3.3: Schematic overview of DeepDRR realistic simulation pipeline taken from
Unberath et al. (2019).

the synthetic forward projection to a realistic DRR. However, this approach requires
sufficient data of the target domain. If the samples do not represent the target domain,
the method will not generalize. This poses a significant challenge to medical imaging,
especially intraoperative imaging, where available clinical data is scarce. Kazeminia et al.
(2020) identified several drawbacks of generative adversarial network (GAN) for medical
imaging. Firstly, the trustability of the generated data is limited since the generation
process is based on deep neural networks, which are still not sufficiently understood,
and image intensities are not directly associated with a specific material characteristic.
Secondly, GAN training is unstable, and evaluation with unlabeled data is challenging.
Thirdly, GAN suffer from the uninterpretability, which impedes their application in
medical environments.

Recently, Unberath et al. (2018b, 2019) proposed a framework for fast and realistic
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forward projection and noise injection combined with 3D material decomposition and
2D scatter estimation. Fig. 3.3 gives a schematic overview of the simulation pipeline. It
consists of four steps:

1. CT volumes are decomposed into materials M = {air, soft tissue, bone} using
thresholding or a U-Net model for segmentation (Ronneberger et al., 2015).

2. Forward projections are generated by a material- and energy-dependent ray-tracing
projector.

3. A neural network-based Rayleigh scatter estimation is added.

4. Quantum and electronic readout noise is injected.

Given the X-ray spectral density p0(E) and a projection matrix P ∈ R3×4, the total X-ray
attenuation in detector pixel u can be computed by

p(u) =
∫

p(E, u)dE

=
∫

p0(E) exp

(
∑

m∈M
δ(m, M(x)) (µ/ρ)m (E)

∫
ρ(x)dlu

)
dE,

with δ(·, ·) denoting the Kronecker delta, (µ/ρ)m (E) denoting the material- and energy-
dependent mass attenuation coefficient (Hubbell and Seltzer, 1995), ρ(x) denoting the
material density derived from Hounsfield units (HU), dlu representing the ray passing
from the source to the detector pixel u, specified by the projection matrix P. Given the
projection domain image p(u), the Rayleigh scatter is estimated using a convolutional
neural network (CNN) trained on MC simulations. Subsequently, quantum noise is mod-
eled analytically by a Poisson noise model, and electronic noise is modeled as additive
Gaussian noise, resulting in a realistic DRR simulation. Unberath et al. (2019) extended
the original framework to enable the integration of tools or surgical implants. At positions
where the 3D CT is overlapping with the surgical object, HU were omitted to model
insertion.

Unberath et al. (2019) validated in an ablation study that more accurate DRR simula-
tion models improved the performance of CNNs on real data. The performance boost can
mainly be attributed to the energy- and material-dependent ray-tracing modeling, while
the addition of scatter did not significantly improve the performance. Bier et al. (2018b)
demonstrated generalization to real X-rays without re-training or domain adaptation
for the task of pelvic landmark detection. In contrast, Unberath et al. (2019) observed
compromised performance on real data for the task of landmark detection and robotic
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end-effector localization. They argued that the degradation results from several factors
such as inaccurate reference annotations, vendor-specific preprocessing of the clinical
X-rays, or simulation from low-resolution CTs.

Learning from simulations leads to the challenge of transferring to real-world appli-
cations. Already presented approaches were based on transfer learning (Zhang et al.,
2018) or realistic tool modeling (Kügler et al., 2020; Unberath et al., 2019). In contrast,
Kordon et al. (2020) proposed a novel data augmentation approach for simulation of
surgical instruments, tools, and implants that is based on augmentations with transformed
characters, numerals, and abstract symbols from open-source fonts. Additionally, they
introduced coarse random pixel dropout and showed it increases robustness towards
superimposed surgical objects. Toth et al. (2019) proposed another approach for domain
adaptation based on domain randomization (DR) which does not require data of the target
domain. DR adds simulated random perturbations to the training data, e.g., collimation
on X-rays or random HU before projection. The transformations create such a large variety
of simulated training data that real images become just another variation. They observed
more consistent results on the task of cardiac image registration.

To sum up, learning in 2D fluoroscopy-guided procedures highly depends on sim-
ulated data. Due to the long computation times of MC simulations, most models are
trained on ray-tracing simulations. Learning from simulation leads to the effect of the
so-called domain shift. Approaches that address this limitation can be classified into those
that aim for a more realistic ray-tracing simulation and those that combine traditional
ray-tracing with transfer learning to address the domain shift. Furthermore, DR can
address the domain gap without requiring data of the target domain. The high variation
of intraoperative X-rays caused by confounding factors like superimposed surgical tools
poses an additional challenge. Realistic and random tool modeling techniques have been
proposed to represent the variety in the training data for specific applications.

3.2.2 Data analysis

Fluoroscopy images are summation images that result from the projection of the 3D
anatomy on the detector plane. Specific challenges can be attributed to the imaging device
and the intraoperative environment:

• Overlapping anatomical structures: Due to the projective imaging, anatomical
structures overlap in fluoroscopy images, and the depth information is missing.

• Confounding factors: Surgical tools or equipment can superimpose the projection
images.
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(a) View-independent landmark detection (b) View-independent segmentation

Figure 3.4: Data analysis: View-independent landmark detection and segmentation.

• Changing viewing directions: Different C-arm to patient poses lead to varying
appearances of anatomical structures.

Overlaps of the anatomy, superimposed surgical objects, and varying viewing di-
rections complicate the understanding of fluoroscopic images. Providing implicit 3D
information through annotations in the projection domain can support the 2D-3D mental
mapping and benefit intraoperative decision-making. Additional contextual information
can be provided through segmentation masks or anatomical landmarks extracted from the
X-ray. While labeling 2D annotations in X-rays is challenging and time-consuming due to
large overlaps in the anatomy and the vast amount of data, 3D annotations are easier to
annotate due to sharper boundaries and non-overlapping structures. Thus, combining the
DRR simulation with automatic 3D annotations reduces the labeling effort drastically and,
at the same time, leads to consistent annotations in the projection domain. Most methods
presented in the literature restrict their representation to a specific viewing direction.
Recently, some approaches that generalize to arbitrary views were introduced and are
revised in the following.

View-independent landmark detection: View-independent landmark detection is
particularly challenging in X-ray images because landmarks may appear differently
depending on the viewing direction (Fig. 3.4a). Among others, Laina et al. (2017) proposed
to model landmark locations as heatmaps where every pixel represents confidence pro-
portional to its proximity to the landmark location. Heatmap representation was shown
to increase performance compared to explicit regression of 2D landmark coordinates. By
modeling the landmark locations spatially, global context was exploited for localization.
In contrast to direct regression, the heatmap modeling can handle an arbitrary number of
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landmarks resulting from occlusion or field-of-view (FoV) variation. Further, heatmaps
can represent annotation and prediction uncertainties.

Bier et al. (2019) presented the first approach to detect anatomical landmarks of the
knee anatomy in X-ray images independent of their viewing direction. The method is
based on CNN prediction consisting of multiple stages Wei et al. (2016). The network
architecture was initially developed for human joint pose estimation in RGB images. They
showed the accuracy is sufficient for global initialization of 2D-3D registration tasks.
Training data was simulated from 20 CTs, and evaluation was performed on synthetic
DRRs generated from one CT and real X-rays from five specimens. For the synthetic
evaluation, an average landmark error of 9.1± 7.4 mm in the detector plane was reported,
while for the real X-rays, the error was in the range of 12− 24 mm in the detector plane.
Partly this can be attributed to unrepresented scenarios such as tools and fractures during
training. Also, they observed that the accuracy from views at the viewport border is
slightly inferior compared to frontal views. This can result from a higher amount of
anatomical overlaps from these directions and can potentially be addressed by increasing
the viewport during training. Further, the sequential CNN architecture yields downsam-
pled predictions, which limits the accuracy of detection. To preserve the input resolution,
the network could be replaced by encoder-decoder architectures with skip connections.
Esteban et al. (2019) extended this work by incorporating a patient-specific refinement
scheme generated by back-projecting predicted landmarks that are used for network
re-training after refinement. No analysis on real X-rays was conducted.

Bier et al. (2018a) transferred the CNN-based sequential prediction framework for
landmark detection to X-rays from arbitrary viewing directions from the knee anatomy.
Leave-one-out training was based on simulations from 16 CTs. On synthetic data, a mean
landmark error of 8.4± 8.2 pixel was achieved at a resolution of 0.6 mm. In contrast,
validation on real clinical data was limited due to practical issues like a second leg in the
FoV and was not evaluated quantitatively. Further, the authors attribute limited accuracy
to the downsampling inherited by the network architecture, resulting in a factor of around
eight times.

Liao et al. (2019) perform 2D-3D registration via landmark detection. They randomly
sampled points in the 3D pre-intervention volume to train a set of view-specific 2D
descriptors that learn to establish 2D point-to-point correspondences between DRRs and
X-rays that are particularly robust to translation offsets. The 2D tracked points were
subsequently triangulated in an end-to-end fashion. The method showed promising
pose estimation results for the task of 2D-3D registration. However, the capture range
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was limited to 10 ° rotation offset. Due to the use of triangulation, the method requires
X-rays from at least two views. Since this approach is designed for 2D-3D registration, a
preoperative CT scan is required.

Liu et al. (2020) proposed a CNN-based landmark prediction, which additionally
models relationships among the anatomical landmarks by incorporating an extra relation
loss in a multi-task learning strategy. The relationships were defined by edges according
to the clinical significance to model their relationships. The method was evaluated on
anterior-posterior (a.-p.) hip X-rays under changing hip appearances and showed the
highest accuracy boost when combined with the Hourglass network architecture (Newell
et al., 2016).

To reflect uncertainties in landmark annotations, Payer et al. (2020) proposed to learn
the Gaussian covariances of target heatmaps. Landmark location distributions were
obtained by fitting Gaussian functions to predicted heatmaps.

View-independent segmentation: Segmentation algorithms for fluoroscopic images
have to deal with overlapping classes since multiple anatomical structures can overlap in
one pixel (Fig. 3.4b).

Viewport independent segmentation for fluoroscopic images was first proposed by
Thomas et al. (2019) for the ankle anatomy. They addressed the problem of segmenting
overlapping bones in fluoroscopic images using a U-Net approach. Training was con-
ducted on clinical fluoroscopic images of the ankle joint. Incorporating the predicted
segmentation masks as additional statistical shape model refinement information led to
more robust and accurate model representations.

Concurrent segmentation and landmark localization was first introduced by Laina
et al. (2017) for tracking of surgical instruments. They reformulated the 2D instrument
pose estimation as a heatmap regression and simultaneously optimized the two tasks
in one deep learning architecture. The approach was evaluated on retinal microsurgery
data and endoscopic data. The interdependent modeling led to significantly improved
performance compared to direct landmark regression. Gao et al. (2019) built on this
to perform concurrent segmentation and landmark detection of continuum dexterous
manipulators in X-ray images of the femoral head. It was employed for the robust ini-
tialization of 2D-3D registration. Training was based on synthetic X-rays generated from
four CTs complemented with 2D segmentation masks and key landmarks represented as
Gaussian distributions. Their architecture is based on a U-Net, where the final feature

40



3.2. C-arm positioning for fluoroscopy-guided spinal surgery

maps are shared across the segmentation and landmark detection path. The final predicted
segmentation was concatenated with the shared feature maps to boost landmark detection.
Evaluation was performed on synthetic X-rays generated from one CT resulting in a mean
DICE score of 0.996± 0.001 and a mean landmark error of 0.365± 0.345 mm. Evaluation
on 87 real X-rays result in a mean DICE score of 0.915± 0.063 and 2.54± 0.95 mm. The
performance drop was caused by tool configurations never seen during training.

Grupp et al. (2020) proposed a method for iterative intensity-based 2D-3D registration
regularized by anatomical annotations of the hip anatomy. Annotations were automati-
cally produced by a CNN, which was trained for simultaneous anatomy segmentation and
landmark detection. Therefore, an image was processed by a U-Net, and the segmentation
was computed subsequently. Simultaneously, the segmentation features concatenated
with the feature map output of the U-Net were used to estimate the landmark heatmaps.
Predicted segmentation maps were employed to restrict candidate landmark locations,
avoiding false alarms. Training was conducted on clinical data resulting from six speci-
mens in a leave-one-out study. A unique class of anatomy was assigned for each 2D pixel
during training data generation according to a precedence ranking. On real X-rays of the
intact hip anatomy, they reported an average landmark localization error of 5.0± 5.2 mm
in the detector plane. Further, semantic labeling of fluoroscopy can be used to restrict the
FoV during 3D-2D registration and limit the DRR simulation to the relevant range.

To sum up, many recent approaches address the scarcity problem of fluoroscopic X-
rays with semantic annotations by training on synthetic X-rays. 3D annotations are easier
to establish, reduce the labeling effort, and increase 2D consistency. However, the domain
shift often results in a performance drop when applying algorithms trained on synthetic
X-rays to clinical X-rays. These performance drops can primarily be attributed to scenarios
not seen during training. This issue can be addressed by increasing the for the most
approaches limited number of CT volumes during training, thereby representing more
anatomical variation. Further, a crucial factor for generalization to intraoperative X-rays
is suitable modeling of confounding factors like surgical tools, implants, or operating table.

For the task of view-independent landmark detection, the heatmap representation
has shown to be superior to direct coordinate regression. Different architectures were
proposed, revealing that the encoder-decoder design is superior to a multi-stage sequential
CNN since the input resolution is preserved, enabling more accurate localization. Liu
et al. (2020) compared different encoder-decoder architectures like U-Net (Ronneberger
et al., 2015), Hourglass (Newell et al., 2016), and HRNet (Sun et al., 2019) indicating no
significant performance difference. Recently, different approaches were presented that
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Figure 3.5: Classification overview of state of the art methods for C-arm positioning.

combine segmentation with localization and learn shared feature maps in order to exploit
contextual information. This is shown to benefit training, especially for scarce datasets
like annotated real fluoroscopic X-rays.

Semantic information extracted from X-ray images has shown to benefit computer-
assistance systems in fluoroscopy-guided procedures across various tasks.

3.2.3 C-arm positioning

Many state of the art assistance systems for C-arm positioning either require preoperative
CT scans, external tracking hardware, or manual landmark selection, which so far limited
broad clinical applicability (Fig. 3.5).

Fluoroscopy simulation methods that generate virtual fluoroscopy for pose guidance
rely on a preoperative CT scan or an anatomical atlas. In addition, they require an
external tracking system to estimate the alignment between C-arm and CT each time
the patient position is varied (Bott et al., 2011; Gong et al., 2014). Integrating tracking
systems in the clinical workflow is challenging, mainly due to the related line-of-sight
requirements and the additional hardware setup, which severely interferes with the
surgical workflow. Consequently, the application of these approaches is currently focused
on surgical training purposes. Otake et al. (2011); Bodart et al. (2018) proposed the use of
X-ray visible fiducial markers placed intraoperatively to register different images. The
placement of fiducial markers is a tedious and time-consuming procedure. Recently, a
3D-2D registration between a preoperative CT scan and initially acquired radiographs
was shown to allow the generation of virtual fluoroscopy images in real-time (De Silva
et al., 2017; Fallavollita et al., 2014). Since the 3D-2D registration is purely image-based,
the registration performance is influenced by anatomical changes during the orthopedic
procedure or metallic objects in the FoV. Further, a preoperative scan is still required. All
previously mentioned approaches are designed to support the surgeon but not directly
deliver the optimal pose.
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Without the use of markers, Haiderbhai et al. (2019) presented a user interface for
automatic C-arm positioning. The surgeon can define an optimal view based on simulated
X-rays from a preoperative CT. This was converted to a C-arm position using inverse
kinematics (Matthäus et al., 2007; Wang et al., 2012). To align the patient position during
the surgery with the CT scan, a point cloud of the patient’s body taken with a Kinect was
registered to the point cloud generated from the surface body of the CT scan. It requires a
registration of the preoperative CT and the patient each time either is moved. Since the
registration is based on surface point cloud registration, the alignment of bones can be
inaccurate, especially in case of fractures or unstable anatomical conditions. Maier et al.
showed the potential of using inertial measurement units for object motion correction in
C-arm imaging (Maier et al., 2018).

Shao et al. (2014) proposed a virtual reality aided positioning method. A 3D surface
appearance model was reconstructed from multiple RGB images acquired by a camera
augmented mobile C-arm. Subsequently, the preoperative CT was aligned with the
appearance model so that a reference pose is determined in regard to the appearance. All
mentioned approaches require a preoperative CT, which availability cannot be assumed
for every procedure. Registration is required each time the patient or C-arm is moved.
Pre- to intraoperative registration is additionally complicated by altered patient anatomy
in the intervention or intraoperative presence of tools.

Given the model of the object of interest and at least one projection, Soltow and
Rosenhahn (2015) presented a method for X-ray pose estimation based on contour
matching. Given the segmented contour of the object in the images, the registration
was initialized by matching computed Fourier descriptors to a database of pre-defined,
simulated projections. The pose estimation was further refined by employing global and
local optimization strategies to minimize the distance between the given contour and
the model’s projection given the current pose estimate. The approach was evaluated for
pose estimation of radiopaque implants with clearly visible boundaries and not for bones
where lower contrast differences with the surroundings hinder contour segmentation.

Without the use of maker or additional prior assumption like preoperative CT, Schaller
et al. (2009) used a time-of-flight sensor to achieve automatic inverse C-arm positioning.
Employing body part localization on the computed 3D surface point cloud, the required
body part can be centered automatically within the isocenter of the C-arm. The method
automatizes the initial patient to C-arm alignment; however, C-arm orientation is not
considered in this work.
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Other approaches do not estimate an optimal pose but address the problem of re-
aligning the scanner with intraoperatively recorded C-arm views employing augmented
reality (Fotouhi et al., 2019; Unberath et al., 2018a). The former requires a preoperative CT
scan for initialization via 2D-3D registration, while the latter requires a technician with a
head-mounted augmented reality display in the loop. Both methods do not automatically
deliver the optimal pose but were designed to reproduce already defined C-arm positions.

In addition to the correct anatomical representation of X-ray projection generated
from optimal poses, other factors can also be taken into account. Rodas et al. (2017)
presented a MC approach to optimize the pose of a C-arm in a defined neighborhood
around the known standard direction while reducing the radiation exposure. However,
this so-called standard direction depends on the positioning of the patient relative to
the C-arm and on the patient-specific anatomy, which is unknown in general. Zaech
et al. (2019) presented an approach for task-aware trajectory recommendation to improve
image quality for reconstruction in order to reduce metal artifacts in cone-beam computed
tomography (CBCT). A VGG regression network (Simonyan and Zisserman, 2014) was
trained to regress the optimal out-of-plane rotation offset in a defined neighborhood
around the current pose. View optimality was assessed in terms of detectability measure,
which is estimated only based on the current X-ray projection. The model was trained
and evaluated on synthetic X-rays generated from five chest CTs. Thies et al. (2020)
extended the evaluation to different noise levels and initialization angles and performed
a retrospective phantom study with real X-rays. Reconstruction results indicate that
task-aware trajectories reduce metal artifacts. Since each prediction is only based on one
preceding X-ray, trajectory increments tend to jump for the out-of-plane rotation angle.
Sequential modeling needs to be addressed to assure real-time trajectory scanning.

An alternative approach for image-guided positioning of C-arms based on landmark
registration was presented by Binder et al. (2006). Therefore, the surgeon needs to
manually define selected vertebra landmarks in two X-rays from different views. The
a.-p. direction was automatically derived using triangulation methods. It comes with the
limitation of requiring two distinct projection images with known pose offset and corre-
sponding visible landmarks, manually depicted by the surgeon during the intervention.

One of the earliest deep learning-based pose regression approaches was presented
by Miao et al. (2016) for 2D-3D registration. They divided the pose space into zones
and trained zone-specific CNNs to iteratively refine the current pose estimate given the
difference between the X-ray and the rendered DRR from the current pose estimate. Later,
Miao et al. (2018) formulated the task as a Markov decision process and proposed a
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multi-agent system to handle various artifacts in 2D X-ray images.

Pose regression without a preoperative scan has been proposed for slice transformation
prediction with respect to a canonical atlas coordinate frame by Hou et al. (2017). On
DRR computed from preprocessed CTs (identical intensity ranges, spacing, translation),
they achieved sufficiently accurate performance (average translation error of 106 mm and
5.6 ° plane rotation for healthy patients) for the task of robust initialization of X-ray to CT
registration. The method was not evaluated on real X-rays. Bui et al. (2017) presented
a machine learning-based pose estimation for mobile X-ray imaging. They focused on
industrial applications where the existence of a precise 3D CAD model can be assumed
as prior knowledge, serving as an additional reprojection constraint. The experiments
indicate that neural networks outperform other regression approaches in the prediction
of object poses from simulated X-ray projections, with high pose prediction accuracy for
object-specific models and decreasing accuracy for more generic CNN models trained on
sets of different objects. The object-specific network was trained from one single CAD
object and tested on unseen poses of the same object. In contrast, medical C-arm devices
considered in this thesis need to handle data scarcity, inter-patient anatomical variation,
and intraoperative requirements.

3.2.4 Conclusion

This work aims at developing an approach for automatic C-arm positioning that considers
the aforementioned challenges and limitations:

(1) To tackle the problem of automatic C-arm positioning in a deep learning-based
approach requires annotated training data. Due to the lack of a constant reference frame
in interventional fluoroscopy, X-rays with annotated pose labels do not exist. State of the
art DRR simulation strategies can address the interventional data scarcity problem and
facilitate robust deep learning.

(2) Fluoroscopic images involve specific challenges for image understanding due
to overlapping anatomical structures, the presence of surgical implants, and changing
viewing directions. Extracting semantic information from X-ray images, including seg-
mentations and landmarks, can benefit fluoroscopic image understanding.

(3) Many state of the art C-arm positioning approaches rely on a preoperative CT
scan to estimate the pose of an X-ray via 2D-3D registration. However, the availability
of a CT scan cannot always be assumed and comes at the cost of additional radiation. In
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addition to this requirement, the registration performance is limited by the fact that the
patient’s anatomy is altered during the orthopedic procedure, and surgical tools may be
present in the intraoperative X-ray. Moreover, the application of assistance systems in the
clinic is often limited due to the necessary hardware requirements that impede the clinical
workflow. Thus, C-arm positioning is often performed manually, where the dose and time
consumption depends on surgical expertise.

This work aims at tackling the C-arm positioning task without requiring a preoper-
ative CT or other technical equipment to facilitate seamless integration into the clinical
workflow. Further, the proposed approach should decrease the positioning radiation
caused by the current manual procedure and reduce the overall positioning time. Deep
learning-based pose estimation approaches have demonstrated superior performance on
industrial objects. Regarding a medical C-arm device, the method has to learn variable
anatomical representations to handle inter-subject anatomical variation that does not occur
for industrial objects and to deal with data scarcity and confounding factors resulting
from the intraoperative setting.
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4
Materials and Methods

This chapter presents the proposed methods for computer-assisted spinal surgery. Spinal
instrumentation can be guided by different image-assisted procedures, e.g., CT-navigation
or fluoroscopy-guidance. The following chapter is divided into two parts: Section 4.1
presents assistance methods for CT-navigated spinal surgery, focusing on automating
the pedicle screw planning, and in Section 4.2 assistance methods for C-arm positioning
during fluoroscopy-guidance are proposed.

4.1 Pedicle screw planning for CT-navigated spinal surgery

Disclosures to this work:

Part of this work has been published in the SPIE Medical Imaging Conference on
Image-Guided Procedures, Robotic Interventions, and Modeling and is submitted
for publication to the Journal of Neurosurgery - Spine (Kausch et al., 2021a;
Scherer et al., in submission).

Pedicle screw planning under CT navigation has been shown to significantly increase
accuracy and safety by providing explicit 3D information (Mason et al., 2014; Kosmopou-
los and Schizas, 2007). A necessary task in this process is the screw trajectory planning
before surgery, which is often performed manually by the surgeon. Manual planning
requires a high level of expertise and in-depth knowledge of the vertebra anatomy and
pedicle orientation and comes at the cost of extended procedural time.

A computer-assisted method for automatic pedicle screw planning that tackles the
challenges mentioned above is proposed in this thesis. For automatic image-based pedicle
screw planning, a sizeable intraoperative planning dataset is leveraged. In contrast to the
state of the art, the proposed approach does not rely on manually defined geometric and
structural properties or atlas-based modeling, which is by design biased towards the mean
anatomical shape, limiting its application to altered, deformed, degenerated, or fractured
bones. Instead, the screw placement is implicitly learned from expert annotations that
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(a) Train dataset:
155 cases, 1052 screws

(b) Test dataset (all):
45 cases, 328 screws

(c) Test dataset (inter-rater):
24 cases, 130 screws

Figure 4.1: Vertebra level-specific screw planning dataset distribution.

take patient-specific anatomical conditions and the surgeon’s preference into account. In
addition, the patch-based design considers individual vertebrae at a time that benefits
generalization towards spinal deformities.

The analysis focuses on the lumbar spine (first lumbar vertebra (L1)-first sacral verte-
bra (S1)) because fusion is most commonly performed in the lumbar region (Rajaee et al.,
2012). However, with available training data, the method can be extended to the cervical
and thoracic level.

This chapter presents the retrospective screw planning data (Sec. 4.1.1), the baseline
approach based on direct convolutional neural network (CNN) landmark regression
(Sec. 4.1.2) and the proposed approach where the screw planning task is interpreted as a
segmentation task (Sec. 4.1.3). The chapter is concluded in Sec. 4.1.4 with an overview of
the developed software prototype for automatic screw planning that was employed for a
clinical applicability evaluation.

4.1.1 Retrospective planning data

This section presents the anonymized retrospective planning datasets used for training
and evaluation. All recordings were acquired at the university hospital Heidelberg with a
Siemens SOMATOM® Emotion CT Scanner. The data was derived retrospectively from a
registry of navigated spinal instrumentations (n=1660) performed from 01/2010 - 12/2018.
The Institutional Review Board of Heidelberg University Medical School approved
scientific evaluation of this retrospective data and the requirement for patient informed
consent was waived (No. S-723/2017). The intraoperative computed tomography (CT)
scans for screw planning were acquired in patients’ prone position, covering the desired
spinal levels. Pedicle screws were manually planned by the operating surgeon in the
acquired CT on a navigation workstation (Stryker Spinemap 3D). The planning process
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(a) Screw parameters (b) Preprocessing of screw planning data

Figure 4.2: Screw parameters and data preprocessing: (a) Definition of screw parameters
taken from Kausch et al. (2021a). (b) Preprocessing steps of screw planning data adapted
from Kausch et al. (2021a).

involves manual interaction to position the 3D screw model at desired screw locations,
correctly orientate the screw trajectory, and adjust screw length and dimension. The
dataset considered in this thesis consists of 200 cases with 1380 screw plans created on the
day of surgery that were randomly selected from the registry. The retrospective planning
cohort consisted of spinal construct length of 1-5 vertebra levels. Screw parameters were
extracted from the planning results and served as ground-truth reference (rater A). Screw
parameters included: the screw head point, the screw axis point, the screw length, and the
screw diameter as depicted in Fig. 4.2a.

The training dataset consisted of 155 cases (1052 screws) and the external test dataset
of 45 cases (328 screws). A randomly selected subset of the test dataset (24 cases, 130
screws) was additionally annotated by a second specialized spinal neurosurgeon (rater B)
who performed the screw planning twice at an interval of 8 weeks without considering
previous planning results. This allowed for intra- and inter-rater variance assessment
(rater B vs. rater B, rater A vs. rater B) of manual pedicle screw planning. Fig. 4.1 shows
an overview of the training datasets, the test dataset (all), and the test dataset (inter-rater)
along with the vertebra level-specific cohort distribution.

It has to be noted that the reference data was derived from surgical planning data
and does not represent classic ground truth. The surgical planning data takes individ-
ual anatomical conditions into account, as well as the surgeon’s preference for screw
placement.
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Figure 4.3: Instance-based screw planning based on direct CNN landmark regression
serves as baseline approach taken from Kausch et al. (2021a). A 3D vertebra patch serves as
input for the CNN regression model. The screw diameter, head and axis point are predicted
for the left and right screw.

Preprocessing: Since screws are only positioned in a selected subset of vertebrae, the
screw planning task is tackled in a patch-based approach. Besides, screw planning was
interpreted as a segmentation task. Therefore, the planned screw trajectories were con-
verted to segmentation masks by performing a preprocessing consisting of the following
steps (Fig. 4.2b): Given the screw parameters, a cylindrical mesh model was derived
(A). The shape representation was modeled as cylindrical because it resembles the screw
shape the best. The volume was resampled isotropically to balance the physical receptive
field in terms of mm. Subsequently, binary masks were generated from the screw mesh
models (B), and vertebra patches were extracted, cropped around the vertebra centroids
(C). Thereby, the centroid c was computed from the screw parameters (Fig. 4.2a) by
c = 1/2(axisR + headR + axisL + headL). The lower indices R, L indicate the left and
right screw parameters. For the training set, this resulted in 526 distinct vertebra patches
covering vertebra levels L1-S1.

The following sections present the baseline approach for automatic pedicle screw
planning based on direct CNN landmark regression (Sec. 4.1.2) and the proposed approach
via an auxiliary segmentation task (Sec. 4.1.3).

4.1.2 Baseline approach

The baseline approach used for comparison is based on direct vertebra instance-based
screw landmark regression with a CNN. The 3D CNN, shown in Fig. 4.3, is loosely
adapted from the 2D network for facial landmark coordinate regression (Zhang et al.,
2014). For training, vertebra-centered patches of size 80× 80× 80 voxels were created.
The patch size was chosen large enough to contain a single vertebra of interest, and the
random crops of 72× 72× 72 within these patches help to gain robustness towards varying
vertebra patch initializations. The screw head and axis point were considered as coordinate
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landmarks for the left and right screw, respectively.

Training procedure: The baseline approach was trained on the preprocessed vertebra
patch training set resulting from surgical planning data (526 patches). The network was
trained to predict the coordinate landmark locations relative to the patch center and the
screw diameters, resulting in an 8-channel output. The other screw parameters, screw
length and screw direction can be derived subsequently. One network configuration was
trained across all lumbar vertebra levels (L1-S1).

The model was implemented using PyTorch v1.6.0 and trained with an 11 GB GeForce
RTX 2080 Ti. The weight parameters were optimized using the adaptive moment esti-
mation algorithm (Adam) optimizer (Kingma and Ba, 2014) with a base learning rate of
η = 10−4 and batchsize of 64 until convergence. The baseline CNN regression model was
trained in a 5-fold cross-validation on the training set.

Objective function: Let the screw parameters head, axis, diameter be abbreviated as
h, a, d. Then, the model weights were optimized employing the L2 Loss function on
the predicted and ground truth screw landmark coordinates ĥ, â, h, a ∈ R3 and screw
diameters d̂, d ∈ R according to

LCNN(ĥ, â, d̂, h, a, d) = min
W

∑
L,R

(
‖ĥ− h‖2 + ‖â− a‖2 + ‖d̂− d‖2

)
,

where R, L indicate the left and right screw parameters of one vertebra.

4.1.3 Proposed approach

In the proposed approach the pedicle screw planning was interpreted as a segmentation
task. The complete workflow is shown in Fig. 4.4 and consists of the following three main
steps:

1) Patch initialization: Vertebra-instance patch initialization can be performed manual
or automatic resulting in a semi-automated or fully-automated screw planning pipeline. The
manual patch initialization requires a user input in an interactive graphical user interface
(Medical Imaging Interaction Toolkit (MITK)) as illustrated in Fig. 4.4, top left. The automatic
patch initialization was based on a 3D U-Net (Isensee et al., 2021) trained on the large
scale vertebrae segmentation challenge (VerSe) dataset for vertebra instance segmentation
(Löffler et al., 2020) as illustrated in Fig. 4.4, bottom left. The vertebra centroids can be
derived from the vertebra instance segmentation masks through connected component
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Figure 4.4: Workflow for automatic pedicle screw placement can be divided into verte-
bra instance patch initialization and instance-based pedicle screw planning. The pedicle
screw planning consists of two steps: the instance-based screw pair segmentation and the
derivation of screw parameters from the predicted screw masks.

bounding box computation. Given the automatically computed centroids and a set of
selected vertebra levels, vertebra patches can be initialized without manual interaction.
However, one limitation is inherited from the VerSe training dataset, where only vertebrae
that are fully contained in the field-of-view (FoV) were labeled. In consequence, vertebrae
close to the image boundary cannot be detected automatically.

2) Patch-based pedicle screw placement: Given a set of vertebra patches, it was hypoth-
esized that a 3D U-Net could be exploited for pedicle screw placement though the 3D CT
patches do not contain the actual screws. The network learns to predict a binary mask
representing the position of pedicle screws based on the spatial context information of
the input vertebra patch. The nnU-Net framework (Isensee et al., 2021) that automatically
configures itself was employed for training. The instance-based screw segmentation was
trained in a 5-fold cross-validation on the training set, similar to the baseline approach.

3) Derivation of screw parameters from screw masks: The derivation of screw param-
eters from the predicted screw masks is depicted in Fig. 4.4, bottom middle. At first,
the screw pairs were separated into left and right single screw instances employing a
connected component filter on the segmentation mask. The two largest connected compo-
nents can be assigned to the left and right screw trajectory considering their coordinates.
Subsequently, principal component analysis (PCA) was performed separately on the spa-
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Figure 4.5: MITK Screw Planning Plugin for semi- and fully-automatic pedicle screw
planning. It offers a manual and automatic patch initialization. The computed screw
plans are displayed in a medical viewer. Functionalities for screw parameter import and
export are provided.

tial coordinates of the left and right screw instance. While the first eigenvalue represents
the length l of the corresponding screw, the second eigenvalue determines the maximal
diameter d of the predicted cylindrical mask. Finally, a least-square circle fit along the sec-
ond principal component was performed to derive the screw diameter. The first principal
component determines the screw direction. Consequently, with µ indicating the mean of
all coordinates, the screw head, and axis point can be computed by a = µ + 1/2 · l · d and
h = µ− 1/2 · l · d.

4.1.4 Prototype implementation

The complete semi- and fully-automated pipeline for pedicle screw planning was developed
and integrated as a plugin into the open-source framework MITK, which enables direct
visualization of planning results in a medical viewer (Nolden et al., 2013) (Fig. 4.5). The
developed MITK Screw Planning Plugin requires a selection of vertebra levels for screw
planning and offers either manual or automatic patch initialization. Whereas the manual
initialization requires that the user indicates the vertebra centroids in the interactive
graphical user interface, the automatic initialization does not require any additional user
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interaction. After initialization, the screw parameters are computed fully automatic by
calling a python script in the background that initiates the deep learning prediction. After
computation, the patch-based screw planning results are fused in the CT scan (Fig. 4.4,
Fusion), and the predicted screws are displayed in the medical viewer. Additionally, the
plugin offers functionalities for screw parameter loading and export. This allows for direct
comparison of manually generated screw plans and automatically generated screw plans.

4.2 C-arm positioning for fluoroscopy-guided spinal surgery

Disclosures to this work:

Part of this work has been published in the International Journal for Computer
Assisted Radiology and Surgery (IJCARS) and in the International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI)
(Kausch et al., 2020, 2021b).

Guidance and quality control in orthopedic surgery increasingly relies on intraop-
erative fluoroscopy using a mobile C-arm. In this process, a key task of the surgeon
involves the accurate acquisition of standardized and anatomy-specific projections. The
corresponding manual positioning of the C-arm under repeated acquisitions or continuous
fluoroscopy is error-prone, time-consuming, and strongly expertise-dependent. To reduce
positioning time and radiation exposure for patients and clinical staff, standardize results,
and avoid errors in fracture reduction or implant placement, in this thesis, computer-
assisted methods for guiding – and in the long run automating – this procedure are
developed.

The approaches developed in this thesis for automatic C-arm positioning are based on
deep learning techniques. In contrast to the state of the art, the proposed methods do not
require patient-individual prior knowledge like preoperative computed tomography (CT)
scans or 2D-3D registration. Without requiring additional technical equipment, the
necessary pose update for C-arm repositioning is directly predicted from the projection
images themselves.

The analysis focuses on the spine’s a.-p. and lateral standard projection because they
are the most frequently acquired. The proposed methods are exemplarily evaluated for
the fourth lumbar vertebra (L4). However, the methods are designed such that they are
directly transferable to other standard projections, vertebra levels, and anatomical regions.
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To tackle the lack of annotated intraoperative X-rays, a training data generation frame-
work is introduced in Sec. 4.2.1. In Sec. 4.2.2 the specimens study for validation data
acquisition is introduced. Sec. 4.2.3 derives different measures for manual C-arm position-
ing accuracy that can serve as a measure for acceptable automatic positioning deviations.
In addition, the manual C-arm positioning efficiency was assessed. Subsequently, the
baseline approach for automatic C-arm pose estimation and the proposed intensity-based
and sequential C-arm pose regression approaches are presented (Sec. 4.2.4-4.2.6).

4.2.1 Training data generation

The mobile C-arm allows the acquisition of intraoperative images from arbitrary positions
and orientations. The flexible positioning of the mobile C-arm relative to the patient im-
plies the absence of a constant reference frame in interventional fluoroscopy. Consequently,
X-rays with annotated pose labels do not exist in clinical routine. Thus, the necessary
anatomical hints for efficient C-arm positioning were learned from in silico simulations
leveraging retrospective CT scans. For training data generation, synthetic X-rays were
derived from 47 full-body CTs acquired at different institutions and scanners. Prior to sim-
ulation, the CTs were cropped to an region-of-interest (ROI) around the L4 vertebra using
the Medical Imaging Interaction Toolkit (MITK) Image Cropper Plugin which prevents other
extremities from superimposing the simulated X-ray. Similarly, this is guaranteed in real
intraoperative X-rays by the patient placement. For training and evaluating the following
methods, the CTs were randomly divided into 60% training (28 CTs), 20% validation
(10 CTs), 20% test (9 CTs), assuring that images of one patient are not shared between folds.

Definition of ground truth reference: To produce high-quality arbitrary view synthetic
X-rays, a set of high-resolution CTs was provided by the university hospital Marburg.
Independently, two clinical experts defined the two reference standard projection planes,
corresponding to the a.-p. and lateral standard projection, for the L4 vertebra of the
spine in each 3D volume. The 3D reference planes were defined using interactive plane
translation and rotation of the interactive medical image viewer MITK (Nolden et al.,
2013). The a.-p. standard was defined via the coronal plane and the lateral standard via
the sagittal plane, respectively. The intersection point defines the center of the projection.
It was placed in the centroid of the L4 vertebra body to assure that the vertebra of interest
was centered in the synthetic X-ray. The reference plane orientations were defined, taking
the requirements for a.-p. and lateral standard projection defined in Sec. 2.2.1 into account.
To increase robustness of the defined reference standards, the planes were defined under
the additional prior of pairwise plane orthogonality. The axial plane was aligned with
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Figure 4.6: MITK Standard Plane Plugin with DRR Preview. The coronal plane defines
the a.-p. standard and the sagittal plane defines the lateral standard. The plugin offers load
and export functionalities for defined reference standard planes, as well as a corresponding
digitally recontructed radiograph (DRR) preview.

the vertebra endplates in the sagittal and coronal view. The sagittal plane was aligned
with the symmetry axis of the vertebra in the axial view. For validation of the 3D-defined
reference standard planes, a DRR Preview Plugin was developed and integrated into
MITK (Fig. 4.6, left bottom). It allows to choose a reference standard plane and visualizes
the corresponding DRR in real-time in a side preview. In addition, the plugin offers
functionalities for loading and exporting standard plane parameters (Fig. 4.6, left top).

Simulation framework: To generate arbitrary view DRRs for training, the source and
detector pose were varied around the reference C-arm pose (Fig. 2.2B), defined by the stan-
dard reference planes. The simulation framework DeepDRR was employed for a realistic
forward projection of the 3D CT anatomy (Unberath et al., 2018b). In contrast to traditional
ray-tracing algorithms, DeepDRR computes energy- and material-dependent attenuation
images that are converted to synthetic X-rays. The choice of DeepDRR simulation was mo-
tivated by its generalization capabilities towards clinically acquired X-rays, as shown by
Gao et al. (2019); Bier et al. (2018b). The C-arm system parameters were defined according
to a Siemens Cios Spin® robotized C-arm. It has a 300× 300 mm2 detector at 1952× 1952
pixel resolution and a source-detector-distance of 1164 mm. DRRs are simulated for a
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(a) DRR simulation from CT (b) Pose sampling strategies

Figure 4.7: DRR simulation framework. Synthetic X-rays with ground truth reference
poses are generated from CT scans 4.7a. Different sampling strategies (coarse, fine) around
the reference beam direction are employed 4.7b. Figures taken from Kausch et al. (2020).

reduced resolution of 512× 512 pixels, which decreases the computation time. Ground
truth pose labels were established by labeling DRRs according to their pose distance to
the optimal view defined by the reference standard planes (dα, dβ, dγ, t).

Sampling strategies: For training data generation, angular and orbital rotation were
sampled from dα, dβ ∈ [−40°, 40°] in steps of 3 ° centered around the standard beam
direction. The resultant uniform sampled training set, denoted by X , has a size of 729
synthetic X-rays per CT volume. Validation was limited to a range of dα, dβ ∈ [−30°, 30°].
This assures that training examples equally cover the outer pose limits of the validation
range as the inner poses. For training the proposed 2-step coarse to fine positioning
approach, as introduced in Sec. 4.2.5, projections were sampled on two spherical segments:
The coarse network was trained on the generated dataset with uniformly sampled pose
offsets X . The training set for subsequent fine positioning was simulated with pose
parameters sampled from a Gaussian distribution so that the validation range was covered
with 99 % confidence. The resultant Gaussian sampled training set is denoted by X ′. The
two different sampling strategies are visualized for comparison in Fig. 4.7b.

Preprocessing: The simulations’ gray value intensity range was normalized to a range
[0, 1] and converted from intensity to line integral domain by applying the negative
Log transform (Fig. 4.8). The transformation decreases the dynamic range of the image
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Figure 4.8: Preprocessing of X-ray images. The X-rays are converted from intensity to
line integral domain to decrease the dynamic range.

intensities and increases the contrast for structures of interest, i.e. bone. Subsequently, the
intensity range was normalized to [−1, 1].

Augmentation: All proposed methods are trained with the same augmentation strate-
gies introduced in the following to allow for cross-experiment comparison. The in-plane
rotation γ was fixed during the simulation and was augmented online during train-
ing on the simulated dataset to limit the number of necessary simulations and hence
computation time. At a reduced image resolution, detector rotation can be approx-
imated by image rotation. For the uniform sampled training set X , image rotation
was augmented with rotation angles randomly sampled from a uniform distribution
γ ∈ U (−180, 180) and for the Gaussian sampled training set X ′

, from a Gaussian distri-
bution γ ∈ N (µ = 0, σ2 = (30/2.576)2) respectively. Modeling the in-plane rotation γ in
addition to the out-of-plane rotations α, β allows representing variable initial C-arm to pa-
tient orientations, that depends on the angle the C-arm is moved towards the patient table.
Translation in the detector plane was simulated by augmenting random crop transforms
with a translation of the image center t ∈ U (−50 mm, 50 mm)2 at a resolution of 256× 256
pixels. Simultaneously, the random crop eliminates order interpolation effects resulting
from the image rotation. The labeled training set is given by S = {(x1, p1), . . . , (xN , pN)}
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Figure 4.9: Generation of ground truth 3D vertebra segmentations and landmarks
adapted from Kausch et al. (2021b). The selected landmarks relevant for standard pro-
jections are shown on the left (endpoints of processes, pedicles, and vertebra endplates).
The global vertebra segmentation stage automatically locates the vertebrae for vertebra
patch initialization. The local stage operates on the derived patches and outputs a 7
output channel feature map which contains 2 segmentation masks indicating the vertebra
endplate locations and 5 heatmaps corresponding to the 5 point landmarks.

with pi = [αi, βi, γi, tx, ty] ∈ R5 and synthetic X-rays xi. Additional online augmenta-
tions were applied during training to increase the variety of training data: Image scaling
with s ∈ U (0.8, 1) was used, which approximates variation of the source-to-isocenter dis-
tance or bone sizes. Larger scale coefficients, which resemble moving the source closer to
the anatomy, were excluded. This results in a smaller field-of-view (FoV) and a higher pa-
tient dose, which is not clinical practice. Moreover, contrast augmentation was performed
by modifying each pixel p according to p = (p− µ) ∗ c + µ for image-wide c ∈ U (0.5, 1.5),
where µ denotes the mean of the image. Random additive Gaussian noise, Gaussian
blur with σ ∈ U (1, 2), and non-linear gamma transform p = pγ with γ ∈ U (0.5, 2) were
applied (Isensee et al., 2020). All augmentations were applied with a probability 0.5.

Generation of ground truth 3D segmentation and landmarks: The simulated images
were complemented with automatically generated segmentations and landmarks to mimic
approaches used by spinal neurosurgeons in identifying correct standard projections.
Annotating the landmarks in 3D and establishing 2D annotations by projection implies
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2D consistency and reduces the labeling effort compared to manual 2D annotations. To
automate the 3D annotation process, two networks were trained (Fig. 4.9): one for the task
of vertebra segmentation (Fig. 4.9, Global), the other for the task of landmark detection
(Fig. 4.9, Local).

3D vertebra segmentation: For 3D vertebra segmentation of CT volumes, a state of the
art U-Net segmentation framework (Isensee et al., 2021) was employed that was trained on
the large scale vertebrae segmentation challenge (VerSe) dataset for 3D vertebra instance
segmentation (Löffler et al., 2020). The model was applied on all CT volumes, resulting in
3D multi-label segmentation masks.

3D landmark detection: Clinically meaningful landmarks to identify correct standard
projections were selected in consultation with a spinal neurosurgeon: (1) endpoints of
transverse and spinous processes, (2) pedicles, (3) vertebra endplates (Fig. 4.9, Fusion).
The selected vertebra landmarks were manually annotated on a subset of 10 CTs chosen
randomly from the training set. As shown in Fig. 4.9 on the right, the landmarks were
defined for vertebra levels second lumbar vertebra (L2)-fifth lumbar vertebra (L5), taking
also neighboring vertebrae of the considered vertebra level of interest L4 into account.
For annotations, those vertebrae were selected that are usually contained in the FoV
considering the L4 standard projection.

To automatically derive the landmark annotations for the remaining CTs (37), an
automatic patch-based approach for landmark prediction was trained on the 40 annotated
vertebra patches resulting from the ten annotated CTs. The complete pipeline is shown in
Fig 4.9.

Training procedure: The 3D vertebra instance segmentation was employed to derive lo-
cal vertebra patches from the 3D CTs. Local square patches of pixel size 128 were cropped
around the vertebra centroid of the bounding box defined by the instance-based vertebra
segmentation. The crop size was selected as small as possible to exclude neighboring
vertebrae but large enough to contain the whole vertebra. The vertebra patch was comple-
mented with its vertebra-of-interest segmentation and used as 2-channel input to train a
3D U-Net (Klein et al., 2019) for patch-based landmark prediction. The model predicts a
7-channel output where the vertebra endplates were represented as segmentation masks
and the point landmarks were represented as heatmaps. The heatmaps were defined as
symmetric 2D normal distribution with a mean equal to the spatial landmark location and
standard deviation σ = 3 mm in each direction. The value of σ was subjectively selected
to represent the variation of manual landmark annotation. Subsequently, the heatmaps
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were normalized to the range [0, 1].

The models were implemented using PyTorch v1.6.0 and trained with an 11 GB
GeForce RTX 2080 Ti. For experiment organization the trixi package was used (Zimmerer
et al., 2017). The networks were optimized using the adaptive moment estimation algo-
rithm (Adam) optimizer (Kingma and Ba, 2014) with a base learning rate of η = 0.0002
and batchsize of 16 until convergence.

The training procedure is described in detail in the following:

Objective function: Let
p : x ∈ Ω ⊂ R3 7→ R

be the CT volume patch and

ŷ : x ∈ Ω ⊂ R3 7→ [0, 1]7

y : x ∈ Ω ⊂ R3 7→ R7

be the ground truth annotation and the network output, respectively. The network output
y can be derived from the model architecture with mapping function f by

f (·, ·) : p×W 7→ y,

given the network weight configuration W.

Then weight parameters W of the model were optimized jointly for the segmentation
and landmark detection task by solving the objective function

Ltotal(ŷ, y) = min
W

5
7
LNCC(ŷ, y) +

2
7
LDice(ŷ, y).

For the segmentation task, the binary Dice Loss was employed for optimizing the
network weights such that the criterion

LDice(ŷ, y) = −2

(
∑
x

ŷ(x)σ(y(x))

)/(
∑
x

y(x) + ∑
x

σ(y(x))

)
∈ [−1, 0]

was maximized with sigmoid activation function

σ(·) : y 7→ exp (y)/(1 + exp (y)) ∈ [0, 1].
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(a) vertebra segmentation

(b) landmark detection

Figure 4.10: Generation of ground truth 2D annotations for arbitrary poses. The projec-
tion of automatically generated 3D annotations from CTs assures consistent annotations
and reduces the labelling effort.

For the heatmap task, the averaged normalized cross-correlation (NCC) was employed
for optimizing the network weights such that the criterion

LNCC(ŷ, y) = − 1
N
· ∑x (y(x)−mean(y)) · (ŷ(x)−mean(ŷ))(√

var(y)− var(ŷ)
) ∈ [−1, 1]

was maximized with N denoting the number of voxels per volume. For simultaneous
optimization of segmentation masks and heatmaps, the NCC Loss was rescaled and
shifted to [−1, 0] (Grupp et al., 2020).

Augmentation: To regularize training and decrease overfitting, the training data was
augmented with different image transformations using the batchgenerators framework
(Isensee et al., 2020). Augmentations included rotation αrot ∈ U (−5°, 5°), scaling s ∈
U (0.8, 1.2), translation t ∈ U (0mm, 22mm), elastic transform (α, σ) ∈ (U (0, 10000),U (40, 60)),
contrast augmentation c ∈ U (0.75, 1.5), and subsequent range normalization to [−1, 1].
All augmentation were applied with probability 1.

The automatically generated 3D annotations were inspected visually for validation.
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Algorithm 1: K-wire augmentation
Input : x (input image, range [-1,1]), y (spine or pedicle mask)
Sample number of k-wire: k = randint(0, 7);
N := batchsize;
for i← 0 to k do

Sample contrast augmentation: k← random.uni f orm(−0.25, 0);
Sample length of k-wire: l ← randint(0.2 ∗ n, 0.6n);
Sample direction of k-wire: α← randint(−180, 180);
Compute direction: d← [cos α, sin α];
Sample start control point: a uniformly sampled from inside y;
Compute end control point: c← a + l · d;
Compute and distort middle control point: b←

a + rand(0.01, 0.99) ∗ l ∗ d + [randint(−0.5 · l, 0.5 · l), randint(−0.5 · l, 0.5 · l)];
Render k− th bezier curve with control points a, b, c r; Replace non-zero
values with samples from random.normal(−0.85, 0.05);

Image blending with contrast augmentation: xaug ← x + r + k
end
Output : xaug

Generation of ground truth 2D segmentations and landmarks: The generated 3D an-
notations were projected for varying directions, thereby establishing 2D ground truth
vertebra segmentations and landmark locations (Fig.4.17(C), (D)). In the projection domain,
endpoints, pedicles and plates were represented in distinct image channels (Fig. 4.10).
Landmarks were represented as heatmaps by convolution with a Gaussian kernel with
σ = 3. Every pixel value represents the confidence proportion to its proximity to the
exact landmark location. This reflects uncertainty, since 3D manual annotation can differ
between several experts.

K-wire and screw augmentation: To address the domain gap between training DRRs
and intraoperative X-rays with present confounding factors like metal implants, synthetic
X-rays were additionally complemented with k-wire and screw simulation. K-wires were
modeled with quadratic Bézier curves. The pseudocode of the k-wire simulation method
is given in Alg. 1 and was integrated as an additional augmentation strategy into the
training pipeline. For screw simulation, a realistic screw modeling pipeline was developed,
consisting of the following steps: (1) Screw trajectories were automatically planned in
CT volumes for vertebra levels L2-first sacral vertebra (S1) using the automatic pedicle
screw planning prototype developed in Sec. 4.1.3 (Kausch et al., 2021a). (2) Pedicle screw
computer-aided design (CAD) models (Marathakis, 2013) were aligned with the derived
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(a) a.-p. positioning (b) lateral positioning (c) k-wire placement (d) screw placement

Figure 4.11: Preparation for specimens study. The patient positioning for validation
data acquisition differs for both standard projection to enable the automatic derivation of
ground truth pose labels (a), (b). The placement of surgical implants is exemplary shown
(c), (d).

Figure 4.12: Workflow for validation data acquisition in specimens study exemplary
for the a.-p. standard.

screw parameters. (3) CAD models were converted to screw segmentation masks. Derived
masks were projected in the detector plane using the DeepDRR framework (Unberath et al.,
2019). The DeepDRR framework was extended to allow for an arbitrary number of tools.
During simulation, the number of implants was selected randomly in the interval [1, 10].
Synthetic DRRs were complemented with k-wire and screw simulations at probability 1/3
for each case (no metal, with k-wire, with screws).

4.2.2 Acquisition of validation data

To validate the proposed pose regression approaches and implant simulation strategies
on real X-rays, a specimen study was performed. The ethics committee Rheinland-Pfalz
approved the specimen study (No. 2020-15423). To simulate different stages of a real
clinical procedure, k-wires and screws were inserted in selected pedicles of torso specimens
(Fig. 4.11c, 4.11d). For acquisition, a Siemens Cios Spin® mobile C-arm was employed. The
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study workflow is depicted in Fig. 4.12. The torso specimens were initially aligned with the
C-arm such that the C-arm’s isocenter aligns with L4 and its base position at α = 0°, β = 0°
corresponds to the standard pose (a.-p., lateral, respectively). For the anterior-posterior
(a.-p.) standard the torso lies in prone position (Fig. 4.11a) and for the lateral standard a
lateral positioning in which the torso was placed sideways on the operating room (OR)
table was required (Fig. 4.11b). The described initial positioning enables the establishment
of ground truth poses for the acquired datasets directly from the internal recorded C-arm
poses. The Cios Spin® stores the α/β angles in the metadata of every single acquisition
which served as the ground truth labels after correction (Sec. 5.2.2). A dataset consists of
orbital projection sequences acquired at different angulations (β ∈ [−15°, 15°]) in steps
of 3° and corresponding 3D reconstructions. Per specimen and standard projection, this
implies 11 3D scans for the different angulations. Projections resulting from poses not
covered by the scope of the algorithms were neglected during validation. Specifically,
all projections with α ∈ [−30°, 30°] were sampled from the orbital sequence and were
considered for validation. The resultant validation set contains 1364 projection images per
specimen covering a pose range of α ∈ [−30°, 30°], β ∈ [−15°, 15°]. In total, 16 datasets
were acquired: 7 specimens without metal, 5 specimens with k-wires, 4 specimens with
screws.

4.2.3 Assessment of manual C-arm positioning accuracy and efficiency

So far, no study has been performed to assess the variability of standard projections after
manual C-arm positioning. The inter- and intra-rater variability are difficult to assess due
to two main reasons: (1) fluoroscopic imaging of patients requires clinical indication since
it involves harmful X-ray radiation and thus a variance study in clinical routine is not
feasible, (2) a constant reference frame does not exist in interventional fluoroscopy which
hinders retrospective evaluation. To overcome this limitation, an inter- and intra-rater
specimens study was performed in the scope of this thesis to assess the accuracy and
efficiency of manual C-arm positioning for standard projections of the spine.

Four different accuracy measures for standard projections were assessed in this thesis.
An overview is given in Fig. 4.13. They are introduced in the following regarding their
definition, purpose, and interpretation:

(a) 3D-3D deviation (retrospective): The inter-rater accuracy of the reference standard
planes, retrospectively defined in the CT volumes independently by two experts, was
assessed. For evaluation, all CT volumes were considered. Specifically, the variance of
the coronal plane orientation was assessed for the a.-p. standard, and the variance of the
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(a) 3D-3D deviation
(retrospective)

(b) 2D-3D deviation
(retrospective)

(c) 2D-2D deviation
(retrospective)

(d) 2D-2D deviation
(intraoperative)

Figure 4.13: Accuracy measures for standard projections.

sagittal plane was assessed for the lateral standard. The measure reflects the accuracy of
the training data and consequently forms an upper limit for the reachable accuracy of the
trained algorithms. Standard planes were defined in the 3D volume under the additional
prior of pairwise plane orthogonality. Thus, the inter-rater variances are by no means
representative of the precision achieved in real clinical scenarios, where the variance is
much higher due to the missing depth information. Results are reported in Sec. 5.2.1.

(b) 2D-3D deviation (retrospective): The variability of an intraoperatively acquired stan-
dard projection and a retrospectively defined standard plane in CT shows how much the
pose varies in the respective standard projection. Assessment of this variance requires the
availability of intraoperative standard projections and corresponding 3D reconstructions
with a known spatial relationship. For evaluation, the acquired validation data (Sec. 4.2.2)
was considered. Therefore, the standard planes (coronal for a.-p. standard, sagittal for
lateral standard) were defined in all reconstructed 3D volumes, and the deviation to the
intraoperative standard poses after manual C-arm positioning was computed. Results are
summarized in Sec. 5.2.2.

(c) 2D-2D deviation (retrospective): To derive a measure for the variability of the stan-
dard projections, a standard plane clinical accuracy tool, called Swipe App, was developed,
inspired by Bosco (2015) (Fig. 4.14). The Swipe App was implemented as a web applica-
tion using Flask. It randomly presents X-ray projections that were labeled with the pose
offset to the reference standard. The tool allows swiping left or right to accept or reject a
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(a) rater login and dof selection (b) main window of Swipe App web interface

Figure 4.14: Swipe App: standard plane clinical accuracy web tool. After login and dof
selection (α, β), X-rays with known pose offset to a desired standard projection were pre-
sented randomly. The expert can accept or reject a presented X-ray as standard projection
by swiping right or left. The orbital and angular dofs were assessed independently to
simplify the decision space.

presented projection as standard projection. The ground truth angulation of all accepted
projections serves as a baseline for the acceptable errors in clinical practice. Results are
presented in Sec. 5.2.3.

(d) 2D-2D deviation (intraoperative): To assess the manual C-arm positioning accuracy,
an inter- and intra-rater specimen study was performed. Therefore, two experts indepen-
dently positioned the C-arm manually for the a.-p. and lateral standard, respectively. The
standard projections were acquired for two specimens for the vertebra levels first thoracic
vertebra (Th1)-L5. Additionally, a 3D scan was acquired corresponding to each acquired
standard projection. Two standard projections of different experts can be assessed with
respect to their pose agreement by registering the related 3D volumes. Results are reported
in Sec. 5.2.3.

Manual C-arm positioning efficiency: In addition to the manual C-arm positioning
accuracy, also the efficiency of manual C-arm positioning for standard projections was
assessed. Therefore, for each expert, the time, the dose, and the number of X-rays required
for iterative positioning were recorded separately for the two standard projections. Results
are reported in Sec. 5.2.3.

In the following, the deep learning-based methods for automatic C-arm positioning
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(a) baseline approach (b) network architecture f (·, ·) inspired by Bui et al. (2017)

Figure 4.15: Baseline approach for automatic C-arm positioning for standard projections.
Network architecture taken from Kausch et al. (2020).

developed in the scope of the thesis are introduced.

4.2.4 Baseline approach

The baseline approach is based on a convolutional neural network (CNN) regression
model that predicts five degrees-of-freedom (dof) pose updates directly from a first X-
ray image. The setup and the model architecture are shown in Fig. 4.15. The network
architecture is a modified version of PoseNet (Bui et al., 2017) with larger input size, batch
normalization after each convolutional layer, and additional rectified linear unit (ReLU)
activation after each 2nd convolutional layer, which showed to improve the convergence
during training. The five dof represent the positioning dof of the C-arm, namely the
orbital rotation α, the angular rotation β, the image rotation in the detector plane γ and
the translation parallel to the detector plane tx, ty (Fig. 2.1a). The translation along the
beam direction was omitted because this translation only influences the image scale
of the projection and thus does not alter the quality of standard projection. Since the
scale also depends on the anatomy’s size, this parameter cannot be optimized without
a 3D reference model. The underlying modeling assumes that the structure of interest
was initially located approximately midway between source and detector for the initial
projection.

Training procedure: The baseline approach was trained on the synthetic training dataset
X generated from retrospective CT scans and uniform pose sampling. The DRRs were
complemented with k-wire and screw simulations and augmentation strategies, as pre-
sented in Sec. 4.2.1. For a given initial X-ray, the model estimates the necessary pose
update p̂ = [α̂, β̂, γ̂, t̂x, t̂y] to acquire a desired standard projection. For each standard
projection (a.-p., lateral), individual network weights were derived.
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Figure 4.16: 2-step intensity-based C-arm pose regression taken from Kausch et al. (2020).
In subsequent stages, the 5-dof relative pose update to reposition the C-arm for a desired
standard projection was estimated, directly from an initial X-ray.

The model was implemented using PyTorch v1.6.0 and trained using an 11 GB GeForce
RTX 2080 Ti. The weight parameters were optimized using the Adam optimizer (Kingma
and Ba, 2014) with a base learning rate of η = 10−4 and batchsize of 32 until convergence.

Objective function: The model weights were optimized employing the L2 Loss function
on the predicted and ground truth pose parameters p̂ ∈ R6, p ∈ R5. Simultaneously,
the loss was computed for the out-of-plane rotation α, β, the in-plane rotation γ and the
detector translation tx, ty by

Lpose(p̂, p) = min
W
Lout−o f−plane(p̂, p) + Lin−plane(p̂, p) + wLdetector−t(p̂, p)

= min
W
‖α̂− α‖2 + ‖β̂− β‖2 + ‖ĉγ − cos γ‖2 + ‖ŝγ − sin γ‖2+

w2(‖d̂x − dx‖2+‖d̂y − dy‖2), (4.1)

where w = π(180)−1 is a weighting factor to equally penalize orientation (°) and transla-
tion (mm) error. The in-plane rotation γ was converted to sin/cos-space and two values
were regressed, which results in a continuous loss function, which can handle the circular-
ity. This results in one additional output neuron. The parameters α̂, β̂, ĉγ, ŝγ, d̂x, d̂y were
predicted by the pose net. The in-plane rotation can be derived by

γ̂ = atan2

(
ŝγ

(
ŝ2

γ + ĉ2
γ

)− 1
2 , ĉγ

(
ŝ2

γ + ĉ2
γ

)− 1
2

)
.
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4.2.5 2-step intensity-based C-arm pose regression

Based on the baseline approach, a 2-step coarse and fine positioning approach (Fig. 4.16)
was developed, which iteratively adjusts the C-arm pose to the desired standard projection.
Both stages share the same network architecture shown in Fig. 4.15b. The first stage
regressor covers a broader capture range, which makes the approach more robust toward
higher initial deviations. It complies to the task of coarse alignment, while the second
stage fine-tunes the prediction and thereby improves the accuracy. In clinical practice, this
would reduce the iterative radiation to only two necessary X-rays.

Training procedure: The networks were trained separately on differently sampled syn-
thetic training sets. The first stage resembled the baseline approach and was trained
accordingly. The second stage for fine positioning was trained on the Gaussian sampled
training set X ′

. It was optimized accordingly, with the difference being that the γ-rotation
was estimated directly and that a weighted L1 Loss was employed, which penalizes pose
errors linearly. One individual network was trained for each of the anatomy-specific
standard projections. The implementation and optimizer strategies were the same as for
the baseline approach.

Objective function: Given the 2-stage predictions p̂(1) ∈ R6, p̂(2) ∈ R5 the model
weights were optimized by minimizing the objective function

L2−step(p̂(1), p̂(2), p) = min
W
Lcoarse(p̂(1), p) + min

W ′
L f ine(p̂(2), p)

= min
W
Lpose(p̂(1), p) + min

W ′
‖p̂(2) − p‖1.

4.2.6 1-step sequential C-arm pose regression

Instead of direct intensity-based pose regression, a 1-step sequential automatic C-arm
pose regression approach was proposed (Fig.4.17). Building upon ideas of Bier et al.
(2019); Grupp et al. (2020), domain knowledge was leveraged to guide robust decision-
making. Specifically, the pipeline was designed to reflect and automate the decision
approaches used by spinal neurosurgeons for identifying correct standard projections. It
explicitly incorporates steps like ROI localization, detection of relevant view-independent
landmarks, and subsequent pose regression. The design enables a successful transfer from
simulated to real X-rays and also increases the interpretability of results. In developing
the proposed pipeline, good surgical practice was followed:
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Figure 4.17: 1-step pose regression pipeline taken from Kausch et al. (2021b). The top
row summarizes the steps for training data generation, which are connected to specific
pipeline steps in the bottom row.

ROI localization module: Surgeons adjust the standard projection only based on the
bone structures. This was reflected by constraining the input only to the bone region,
employing a vertebra segmentation mask. Therefore, a U-Net model (Klein et al., 2019)
for view-independent vertebra segmentation of spinal X-rays was trained on synthetic
data. The 2D segmentations were derived from automatically generated 3D segmentations
as described in Sec. 4.2.1. The model weights were optimized using a combination of
binary cross-entropy and Dice Loss (Isensee et al., 2021). A rotating bounding box was
computed from the predicted vertebra segmentation. The X-ray was masked by the
estimated rotated bounding box, followed by range normalization to [−1, 1]. That reflects
the use of collimators during surgery to increase image contrast. Besides, it restricts the
focus to anatomical regions and prevents irrelevant regions, such as background, from
distorting the pose estimation.

Landmark detection module: In the clinic, correct standard projections are typically
evaluated based on 2D anatomy-specific landmarks. This provides implicit additional
3D information based on anatomical prior knowledge. The landmark detection module
mimics human decision-making to identify correct standard projections. A U-Net model
(Klein et al., 2019) was trained for view-independent landmark detection of spinal X-rays
on simulated data after ROI localization. The 2D landmark annotations were derived from
automatically generated 3D landmarks by forward projection as described in Sec. 4.2.1.
The model weights were optimized using L2 Loss on the difference between target and
predicted heatmaps.
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Pose regression module: The predicted heatmaps were used as input for the pose re-
gression network. Landmark prediction uncertainties were covered by training the pose
regressor on the predicted landmarks instead of the ground truth.

Training procedure: The models were implemented using PyTorch v1.6.0 and trained
with an 11 GB GeForce RTX 2080 Ti. Optimization was performed with the Adam opti-
mizer (Kingma and Ba, 2014), a base learning rate of η = 10−4 and a batchsize of 32.

Objective function: Given the ROI localization model with weight parameters WROI ,
the landmark detection module with weight parameters WLM and the pose regression
model with weight parameters Wpose, the models were trained by optimizing the objective
function

Ltotal = min
WROI
LROI + min

WLM
LLM + min

Wpose
Lpose

with

LROI = LDice + LCE

LLM = L2

Lpose (4.1).

During inference, test time ensembling was employed for all proposed C-arm position-
ing methods: The initial X-ray was augmented with different in-plane rotations, and the
median of all derived pose predictions was computed to increase robustness.

The different proposed approaches for C-arm pose estimation for standard projections
were solely trained on simulated X-rays since they uniquely provide ground truth labels
for arbitrary training examples. The transfer from simulated training to real X-rays is
additionally challenged by intraoperative confounding factors, e.g., surgical implants. In
Sec. 5.2.4,5.2.5 the proposed methods are compared with respect to their performance on
synthetic and real X-rays. The performance was assessed in terms of accuracy, robustness,
and generalization capabilities.
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5
Experiments and Results

The proposed computer-assisted methods for CT-navigated and fluoroscopy-guided spinal
instrumentation were carefully evaluated. The experiments and results presented in this
chapter are structurally aligned with the previous chapter: The first part presents the
results for pedicle screw planning for CT-navigated spinal surgery (Section 5.1) and the
second part summarizes the results for C-arm positioning for fluoroscopy-guided spinal
surgery (Section 5.2).

5.1 Pedicle screw planning for CT-navigated spinal surgery

This section presents results on manual and automatic screw planning accuracy and
efficiency (Sec. 5.1.1, 5.1.2). Therefore, an intra- and inter-rater study on manual screw
planning was performed. Results were compared to automatic plans obtained with
the proposed screw planning methods via the auxiliary task of segmentation. Auto-
matic positioning results were clinically evaluated by a spinal neurosurgeon using the
Gertzbein-Robbins (GR) classification (Sec. 5.1.3). Additionally, the proposed approach
was compared to a baseline approach based on direct convolutional neural network (CNN)
landmark regression. In Sec. 5.1.4 a study is presented assessing how accurately the pre-
planned screw trajectories were transferred to the patient using CT navigation. The
structure of the section is guided by research questions (RQ).

Evaluation metrics: For accuracy evaluation of screw planning, the Euclidean dis-
tance of head, axis point, the absolute error of length, diameter, and the angular
deviation of screw trajectories were reported. The deviation of screw trajectories
AEdirection, given by the angle formed by the intersection of the vectors represent-
ing the predicted and reference screw direction (dp, dr ∈ R3), was computed by
AEdirection(dp, dr) := arccos ((〈dp, dr〉)/(‖dp‖ · ‖dr‖)). Besides the screw parameter devia-
tions, also the geometric overlap of corresponding screw plans (Si, Sj) was measured by
the Sørensen-Dice coefficient, a commonly used evaluation metric for image segmentation.
It is given by Dice(Si, Sj) := 2 · |Si ∩ Sj|/

(
|Si|+ |Sj|

)
∈ [0, 1], where | · | indicates the

volumes of the sets (Dice, 1945).
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(a) Screw deviation (b) Example case

Figure 5.1: Manual pedicle screw planning accuracy. Accuracy was assessed in an intra-
and inter-rater study on a subset of 24 cases with 130 screws (a). Outliers can be related
to the S1 vertebra level where the screw trajectory has more degrees-of-freedom (dof) as
visualized for one exemplary case (b).

5.1.1 Manual pedicle screw planning accuracy

RQ 1.1: How much variation results from manual planning?

The manual pedicle screw planning accuracy was assessed in an intra- / inter-rater
study. Screw plans from the day of surgery, extracted from the registry, served as ground
truth reference (rater A). A randomly selected subset (24 cases, 130 screws) covering
vertebra levels second lumbar vertebra (L2) (2 screws), third lumbar vertebra (L3) (20
screws), fourth lumbar vertebra (L4) (38 screws), fifth lumbar vertebra (L5) (42 screws),
first sacral vertebra (S1) (28 screws) (Fig. 4.1c). The subset was additionally complemented
with retrospective screw annotations by a second rater B, who assessed the computed
tomography (CT) twice, as described in Sec. 4.1.1. Fig. 5.1b, top shows the planning results
of rater A (blue) and rater B (green) exemplary for one CT scan. Results of the manual
pedicle screw planning deviations assessed in an intra-rater (rater B vs. rater B) and
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5.1. Pedicle screw planning for CT-navigated spinal surgery

inter-rater (rater A vs. rater B) evaluation on the whole subset are shown in Fig. 5.1a across
all vertebra levels. For the different screw parameters the inter-rater analysis (rater A vs.
rater B) resulted in deviations (µ± σ) of direction = 6.1°± 4.6°, head = 4.8mm± 1.9mm,
axis = 4.6mm± 2.6mm, length = 2.7mm± 2.9mm, diameter = 0.4mm± 0.5mm and the intra-
rater analysis (rater B vs. rater B) resulted in direction = 4.1°± 2.7°, head = 2.9mm± 1.7mm,
axis = 3.3mm± 1.6mm, length = 1.5mm± 2.5mm, diameter = 0.2mm± 0.4mm. The intra-
rater variations between repeated manual planning of a single expert was significantly
lower than inter-rater variations across all screw parameters (p� 0.01). The outliers in
screw direction result from the S1 vertebra level as shown exemplary for the inter-rater
screw planning results with the highest deviation in Fig. 5.1b, bottom.

5.1.2 Automatic pedicle screw planning accuracy

RQ 1.2: Do the automatic screw plans agree with the manual plans?

Automatic screw planning results were compared to manually planned screws serving
as the ground truth. The computed deviations were additionally set into context to inter-
and intra-rater differences of manual screw planning, and the planning time was compared.
Further, the proposed approach via the auxiliary segmentation task was compared to the
baseline approach based on:) direct CNN landmark regression.

Quantitative results: The proposed methods for automatic pedicle screw planning,
trained in a 5-fold cross validation, was compared on an external test set (55 cases, 328
screws) not seen during training, thereby testing its ability to handle inter-anatomical
variation. The complete test set covered the vertebra levels L2 (20 screws), L3 (62 screws),
L4 (90 screws), L5 (92 screws), S1 (64 screws) (Fig. 4.1b). Quantitative results of automatic
pedicle screw planning with the proposed approach via segmentation (Sec. 4.1.3) are
shown in Fig. 5.2, where the colors indicate the screw deviations for the different dof
separated into vertebra levels. The label all indicates the results for the whole test set
independent of the corresponding vertebra level. Across all vertebra levels mean screw
deviations and corresponding standard deviations of direction = 5.9° ± 3.8°, head =

4.1mm± 2.0mm, axis = 4.2mm± 2.2mm, length = 4.1mm± 3.1mm, diameter = 0.5mm±
0.3mm were computed. To evaluate the agreement of screw plans with regard to the spinal
level, a vertebra level-specific evaluation was performed. It illustrates that the deviations
increase the more caudal spinal instrumentation was performed. The highest individual
errors were observed for the S1 vertebra level.
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Figure 5.2: Quantitative results of automatic pedicle screw planning extended for larger
test dataset from Kausch et al. (2021a). The predictions were obtained after ensembling
of the models trained in a 5-fold cross-validation. It is shown the absolute error for the
different screw parameters: direction, head, axis, length, diameter.

Qualitative results: Qualitative results of the proposed approach are shown in Fig. 5.3
for four exemplary cases (column-wise) and selected axial, sagittal and coronal slices
(row-wise) for visualization. A high agreement between automatically generated screw
plans (highlighted in blue) and manually created screw plans (highlighted in green) can
be observed. The cases were selected to visualize a range of clinical scenarios: A and B
show standard anatomical cases with short and long-range instrumentation, C shows a
scoliosis patient, and D shows different planning results for the S1 level in the sagittal
view.

RQ 1.3: Does the proposed approach via an auxiliary segmentation task benefit
performance compared to direct CNN landmark regression?

Comparison to baseline approach: The performance of the proposed automatic pedicle
screw planning via an auxiliary segmentation task was compared to the baseline approach
based on direct CNN landmark regression (Sec. 4.1.2). While the head, axis and diameter
parameter were directly regressed, the direction and length was subsequently computed.
The performance comparison on the whole test set (55 cases, 328 screws) is visualized in
Fig. 5.4. The proposed approach significantly outperforms the baseline approach across all
screw parameters (p� 0.01) except for the direction where the difference is not statistically
significant.
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5.1. Pedicle screw planning for CT-navigated spinal surgery

Figure 5.3: Visual results of automatic pedicle screw planning taken from Kausch et al.
(2021a). Visual comparison of automatically obtained (blue) and manually defined (green)
pedicle screws for three different illustrative cases, one with scoliosis (middle column).
Each column visualizes one case in selected axial, sagittal and coronal planes.
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Figure 5.4: Performance comparison: direct regression (dark blue) vs. segmentation
(light blue) extended for larger test dataset from Kausch et al. (2021a).

RQ 1.4: Do the manual vs. automatic planning deviations comply with the acceptable
variation observed in manual planning?

Inter- / Intra-rater study: To further evaluate the performance of the proposed method,
the automatic pedicle screw planning accuracy was compared to the inter- and intra-rater
manual planning accuracy on a randomly selected subset of retrospective CTs (24 cases,
130 screws) (Sec. 5.1.1). Agreement between manual and automatic plans was assessed by
computing the screw parameter deviations and the Sørensen-Dice coefficient. Further-
more, the value distributions of screw length and diameter parameters were compared
between manual and automatic plans, respectively. An overview of the qualitative results
for the different parameters is given in Fig. 5.5, along with a statistical significance evalua-
tion in Tab. 5.1. For significance testing, the non-parametric Wilcoxon-signed-rank-test
was employed after Shapiro-Wilk-test for normality distribution.

The screw direction varied between automatic and manual plans with 5.51± 3.64°. This
difference is comparable to the observed inter-rater difference of 6.14± 4.58° (p = 0.04) be-
tween two screw plans manually performed by rater A and B but significantly greater than
the intra-rater difference of 4.15± 2.71° (p� 0.01) between two consecutive screw plans
performed by rater B. Similarly, the deviations of the screw head points with 4.61± 2.27mm
between automatic and manual plans were comparable to the inter-rater difference
of 4.77± 1.95mm (p = 0.30) but significantly greater than the intra-rater difference of
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5.1. Pedicle screw planning for CT-navigated spinal surgery

Figure 5.5: Comparison of automatic vs. manual screw planning accuracy adapted from
Scherer et al. (in submission). Manually planned screws serve as the ground truth and
differences were additionally set into context by comparison to inter-rater and intra-rater
differences of manual screw planning, respectively.
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difference
manual vs.
automatic
planning

inter-rater
difference

manual
planning

intra-rater
difference

manual
planning

µ± σ µ± σ p-value µ± σ p-value
direction [°] 5.51± 3.64 6.14± 4.58 0.04 4.15± 2.71 � 0.01
head [mm] 4.61± 2.27 4.77± 1.95 0.30 2.94± 1.70 � 0.01
axis [mm] 3.96± 2.19 4.64± 2.63 � 0.01 3.30± 1.65 � 0.01
overlap [Dice] 0.61± 0.16 0.56± 0.18 � 0.01 0.69± 0.14 � 0.01

automatic
planning

rater A
manual

rater B
manual

µ± σ µ± σ p-value µ± σ p-value
length [mm] 46.18± 3.63 49.08± 4.48 � 0.01 49.73± 3.87 � 0.01
diameter [mm] 6.18± 0.33 6.42± 0.63 � 0.01 6.53± 0.69 � 0.01

Table 5.1: Statistical significance evaluation of automatic vs. manual screw planning
adapted from Scherer et al. (in submission). On the top, the difference of automatic vs.
manual screw plans is compared against inter- and intra-rater variations for different
screw parameters (direction, head, axis, overlap). On the bottom, the distribution of screw pa-
rameters length, diameter is compared across automatic and manual plans. For significance
testing, the Wilcoxon-signed-rank-test was employed.

2.95± 1.70mm (p � 0.01). For the screw axis points, a deviation of 3.96± 2.19mm was
measured between automatic and manual plans, which was significantly lower than
the observed inter-rater variation of 4.64 ± 2.63mm (p � 0.01) and intra-rater differ-
ences with 3.30± 1.65mm (p � 0.01). The Dice coefficient measuring the proportional
overlap between corresponding screw plans was 0.61 ± 0.16 between automatic and
manual plans showing a significantly higher agreement than for the inter-rater study with
0.56± 0.18 (p� 0.01). The greatest overlap was achieved by the intra-rater study with
0.69± 0.14 with significant difference to both groups (p� 0.01).

Comparing the distribution of screw length and diameter between automatic and
manual planning, screw length was 46.2 ± 3.6mm in automatic and 49.5 ± 4.1mm in
manual planning which indicates that automatically screws were planned significantly
shorter (p � 0.01). Similarly, the screw diameter resulting from automatic planning
was significantly thinner compared to manually planning (6.2± 0.3mm vs. 6.5± 0.7mm,
p� 0.01). Between the manual planning performed by rater A and rater B no significant
difference could be measured for screw length and diameter.
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Figure 5.6: Vertebra-level specific Dice evaluation for manual/automatic screw plan-
ning adapted from Scherer et al. (in submission). The bars indicate the mean Dice and
the error bars represent the standard deviation. The Dice is visualized separately for the
different groups (inter-rater, automatic vs. manual, intra-rater).

To analyze the vertebra-level dependence of screw planning, the Dice coefficient
is visualized separately for the vertebra levels L2-S1 (Fig. 5.6). According to ANOVA
followed by Dunn’s multiple comparison test, Dice values were comparable across all
levels, except the S1 vertebra level. Across all groups (inter-rater, automatic vs. manual,
intra-rater), Dice coefficients were significantly higher for the lumbar levels than for the
S1 level (p � 0.01) . This indicates higher planning variability, resulting from the S1
anatomy. However, within the S1 vertebra level, the observed automatic vs. manual
planning deviations were comparable to the inter-rater variances (p = 0.07).

The time consumption for manual screw planning of one CT scan was reported
across the experiments and was compared to the time required by the proposed planning
algorithm (Fig. 5.7). The automatic planning for one CT scan, including manual patch ini-
tialization, patch-based screw planning, and visualization, took on average 41.8± 20.2sec
and was significantly faster than manual screw planning with 338.7± 186.3 s (5 min 38 s,
p� 0.01) by 8-fold. Screw plans for one vertebra patch were automatically computed in
4.9± 0.1 s on average. Automatic patch initialization via vertebra-instance segmentation
took on average 31.2± 6.4 s.
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Figure 5.7: Comparison of automatic vs. manual screw planning efficiency adapted
from Scherer et al. (in submission). The necessary time for planning one CT scan is
compared.

5.1.3 Clinical acceptability

RQ 1.5: Are the automatic screw plans clinically acceptable?

The clinical acceptability of the automatically planned screws (24 cases, 130 screws)
was evaluated by a spinal neurosurgeon using the GR classification introduced in the
following. Further, proximal facet violations and overall clinical acceptability on a binary
scale were assessed.

Gertzbein-Robbins classification: To determine the screw placement accuracy, the GR
classification is most commonly utilized (Aoude et al., 2015). It rates screws according
to their positioning within cortical bone limits and scores the extent of possible cortical
breach based on 2 mm increments (Fig 5.8). The grading system includes the following
levels: The screw is entirely within the pedicle (GR Grade A), the screw breaches the
pedicle’s cortex by < 2 mm (GR Grade B), pedicle cortical breach < 4 mm (GR Grade C),
pedicle cortical breach < 6 mm (GR Grade D) and pedicle cortical breach > 6 mm (Grade E).

For the evaluation, it has to be considered that the reference data consisted of surgical
planning data and therefore does not represent classic ground truth. 125/130 (96.2%) were
classified as GR Grade A and 5/130 (3.8%) as GR Grade B, indicating that the automatically
planned screws either showed no or only minor (< 2mm) cortical breach. Proximal facet
violations were observed in 5/130 automatically planned screws resulting from 4 different
patients affecting the L5 level. Despite the qualitative differences, 125/130 planned screws
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Figure 5.8: Gertzbein-Robbins classification scores for pedicle screw accuracy are visual-
ized on CT scans, taken from Fan et al. (2018). The deviation of the screw from the optimal
trajectory is indicated, and screws are classified according to their extent of cortical breach
into five levels A-E.

were classified as clinically acceptable for implantation (96.2%). All revisions were caused
by proximal facet violations.

5.1.4 Post-operative screw accuracy

RQ 1.6: How accurate are the screw plans transferred to the patient using CT naviga-
tion?

A study was performed to assess how accurately the preplanned screw trajectories
were transferred to the patient using CT navigation.

Retrospective planning data: For validation, 24 cases with post-operative control CT for
screw placement verification were collected from the registry of the university hospital
Heidelberg. The CT-navigated spinal instrumentations were performed between 02/2014
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Figure 5.9: Example visualization of navi and control screws using MITK (Nolden et al.,
2013). A variation between the navi screws (colored) and the control screws (white) is easily
seen.

and 06/2016. Prior to surgery, 3D screw trajectories were planned in an intraoperative CT
on a navigation workstation (Stryker Spinemap 3D). In total, the collected dataset contained
140 screws, the length of spinal instrumentation constructs ranged from 2-5 vertebra levels
per patient. The complete test set covered the following vertebra levels: first lumbar
vertebra (L1) (2 screws), L2 (8 screws), L3 (24 screws), L4 (40 screws), L5 (44 screws), S1
(22 screws).

Experiment: A spinal neurosurgeon retrospectively aligned screw trajectories with the
screw locations in the post-operative control CTs using the commercial system Styker
Spinemap 3D. In the following, the screw trajectories obtained by navigation are called
control screw trajectories, whereas the screw trajectories created prior to surgery on the
intraoperative CT volume are denoted by navi screw trajectories. To assess the positioning
difference between navi and control screws, the intraoperative and control CT were regis-
tered. Rigid registration was performed with the Medical Imaging Interaction Toolkit (MITK)
Registration Plugin. Subsequently, the resultant rigid transformation was applied to the navi
screw parameters, such that implanted screws can be compared to navi screw trajectories
in the control CT using MITK.

Results: Fig. 5.9 shows the agreement between registered navi screws (colored) and
control screws (white) in the control CT for one exemplary case. Variations in screw
direction, head, axis point were derived and are shown in Fig. 5.10. Across all spinal level,
a mean deviation of 6.3± 3.6° was obtained for the screw direction, 5.2± 2.4mm for the
screw head point and 5.5± 2.7mm for the screw axis point, respectively. To evaluate the
results, the registration error of the navigation system, has to be considered which was on
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(a) Overall screw place-
ment deviation

(b) Screw placement deviation grouped by spinal level

Figure 5.10: Comparison of post-operative screw placement to intraoperative planning.

average 1.9 mm (range 1-7mm).

5.2 C-arm positioning for fluoroscopy-guided spinal surgery

The proposed pipeline for automatic C-arm positioning solely trained on simulated data
was carefully evaluated on synthetic digitally recontructed radiograph (DRR) generated
from computed tomography (CT) not seen during training and on real X-rays acquired
in a large specimens study, covering different stages of a realistic clinical procedure, e.g.,
inserted k-wires and screws. At first, in Sec. 5.2.1 the accuracy of the training data is
evaluated, serving as an upper bound for the reachable accuracy limit. The accuracy of
the acquired validation data, consisting of real X-rays with pose labels, is analyzed in
Sec. 5.2.2 and the pose annotations serving as ground truth were corrected accordingly.
In Sec. 5.2.3 the two studies for assessing the manual C-arm positioning accuracy are
presented, namely the Swipe App and the inter- / intra-rater specimens study of manual
C-arm positioning. The first three sections collect the results of different approaches to
derive relevant standard projection accuracy bounds, which were introduced in Sec. 4.2.3.
Results are presented for the different approaches by referring to Fig. 4.13. Finally, Sec. 5.2.4
and 5.2.5 compare the performance of the baseline approach for C-arm positioning, the
proposed 2-step direct intensity-based pose regression, and the 1-step sequential pose
regression on synthetic and real X-rays, respectively. Influencing factors of specific design
choices of the sequential approach on the overall performance were evaluated in Sec. 5.2.6.
The structure of the section is guided by research questions (RQ).

Evaluation metrics: The pose accuracy was evaluated based on the angle θ :=
arccos (〈vpred, vgt〉) between the principal rays of the ground truth vgt and predicted pose
vpred. In addition, the mean absolute error (µ) and standard deviation (σ) of rotation along
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Figure 5.11: Training data accuracy for standard projections, i.e.
inter-rater variance between 3D volume vs. 3D volume (assessed
on 47 CTs).

3D-3D deviation
(retrospective)

individual axes denoted by dα, dβ, dγ are reported. Further, dc := ‖cpred − cgt‖ denotes
the isocenter distance between the predicted and ground truth isocenter cpred, cgt ∈ R3.
The translation of the projection in the detector plane is denoted by tx, ty ∈ R.

5.2.1 Training data accuracy

RQ 2.1: How accurate is the reference data used as ground truth?

As described in Sec. 4.2.3 (a), the inter-rater variability of the 3D reference standard
planes independently defined by rater A and B is computed. The a.-p. and lateral
standards are in the vast majority of anatomical regions orthogonal to each other, including
the lumbar spine. Thus, the a.-p. and lateral standard planes were defined for the fourth
lumbar vertebra (L4) level under the additional prior of pairwise plane orthogonality.
The two raters assessed the 47 retrospective CT volumes considered for DRR simulation.
Let xi, nstandard

i ∈ R3, i ∈ {A, B}, standard ∈ {a.-p., lateral} denote the intersection point
and the unit normal of the defined reference planes for the a.-p. and lateral standard
by rater A and B. Then, the inter-rater variance of the defined reference standard planes
was assessed in terms of orientation differences dθ = arccos (〈nstandard

A , nstandard
B 〉) and 3D

translational differences dc = ‖xA − xB‖. Additionally, the orientation variation was
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assessed specifically for the different rotational axis by taking rater A as reference. The
rotational offset along the axis defined by the intersection of the coronal and sagittal plane
is denoted by dα (corresponds to the orbital C-arm rotation), the offset along the axis
defined by the coronal (resp. sagittal) and axial plane is denoted by dβ (corresponds to
the angular C-arm rotation), and the in-plane rotation for the a.-p. (resp. lateral) standard.
Fig. 5.11 visualizes the results separately for the a.-p. and lateral standard projection. For
the a.-p. standard, µ± σ inter-rater deviations of dθ = 2.50± 1.57°, dα = 1.05± 0.91°,
dβ = 2.09± 1.55°, dγ = 1.32± 1.17°, dc = 2.02± 0.91mm were computed and for the
lateral standard dθ = 1.85± 1.24°, dα = 1.05± 0.91°, dβ = 1.32± 1.17°, dγ = 2.09± 1.55°,
dc = 2.02± 0.91mm, respectively.

5.2.2 Validation data accuracy

RQ 2.2: How accurate are standard projections positioned during the validation data
acquisition?

2D-3D deviation
(retrospective)

To evaluate the proposed methods for automatic C-arm posi-
tioning, validation data was acquired in a specimens study. The
experimental setup described in Sec. 4.2.2 enables direct pose la-
beling of the acquired dataset based on the metadata information
of the C-arm. The pose labels denote the pose offset to a desired
standard projection. However, if the manual positioned C-arm
was not ideally aligned with the standard projections, the derived
pose labels are distorted, leading to faulty ground truth. There-
fore, pose labels were corrected by retrospectively defining the
standard projections in the 3D reconstruction. The derivation be-
tween retrospectively defined 3D standard planes and 2D manual
positioned standard projection is a more realistic measure for the
clinical observed and acceptable variance of standard projections,
as described in Sec. 4.2.3 (b). It was assessed on the 18 validation
specimens. Fig. 5.12 illustrates the results for both standard projec-
tions, separated for the specimens without metal and those with metal. The specimens
with metal were opened for instrumentation, such that the bone landmarks were visible
and simplified the manual C-arm positioning. For the specimens without metal, a varia-
tion µ± σ of dθ = 5.96± 3.98°, dα = 3.67± 4.12°, dβ = 3.34± 3.32°, dγ = 0.59± 0.82°,
dc = 13.33 ± 5.83 mm was computed for the a.-p. standard and dθ = 4.70 ± 2.18°,
dα = 2.87± 2.06°, dβ = 3.36± 1.83°, dγ = 3.13± 1.17°, dc = 9.97± 4.29 mm for the lateral
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(a) a.-p. standard (b) lateral standard

Figure 5.12: Validation data accuracy after manual C-arm positioning, i.e. 3D volume
vs. intraoperative projection. Variance of standard beam direction between the standard
projection obtained with manual C-arm positioning and the standard plane retrospectively
defined in the reconstructed volume. Evaluation is performed separately for specimens
without metal and with metal (open reduction). The variance serves as a measure for
clinical acceptable deviations.

standard, respectively.

The corrected a.-p. and lateral standard projections are visualized in Fig. 5.13 for all 18
validation specimens.

5.2.3 Manual C-arm positioning accuracy and efficiency

Two studies performed to assess the clinical accuracy of standard projections retrospec-
tively and intraoperatively, as described in Sec. 4.2.3 (c), (d).

RQ 2.3: Which pose deviations are observed among clinically accepted standard
projections?

Retrospective assessment of standard projection accuracy (Swipe App): To measure
the angular variation of accepted standard projections (a.-p., lateral), a standard plane
clinical accuracy tool (Swipe App) was developed that allows swiping to left or right to
accept or reject a presented projection as standard projection (Sec. 4.2.3 (c)). Utilizing this,
the generated DRR dataset with pose labels (Sec. 4.2.1) was presented to experts separately
for varying angular (β) and orbital rotation (α) for the a.-p. and lateral standard projection.
This significantly reduces the amount of projection images and simplifies the decision for
the expert. Three independent clinical experts carried out this study, who evaluated 2271
projection images in total for the a.-p. standard and 2191 images for the lateral standard,
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(a) a.-p. standard

(b) lateral standard

Figure 5.13: Reference standard projections of 18 acquired validation specimens case 0
- case 12. Thereby, k and s indicate the presence of k-wires or screws.

respectively.

2D-2D deviation
(retrospective)

Tab. 5.2 details how many examples each expert assessed sep-
arated into angular degrees-of-freedom (dof), standard projection.

Fig. 5.14 visualizes the results of the rating for each expert and
standard projection dof separately. The blue bars indicate the ac-
ceptance rate of presented projections as standard projection for
different ground truth offsets from the reference standard projec-
tion (x-axis). The black triangles indicate how many examples were
considered for each ground truth offset pose. The number varies
since examples were presented randomly by the Swipe app.

To evaluate the angular variation of the a.-p. and lateral
standards quantitatively, the ground truth angulations of all ac-
cepted projections (indicated by the blue bars in Fig. 4.14) were
averaged, resulting in a deviation µ ± σµ of dα = 2.90 ± 0.20°,
dβ = 5.17± 0.22° for the a.-p. standard and dα = 7.59± 1.77°, dβ = 2.63± 0.75° for the
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Figure 5.14: Swipe App: Measuring clinically acceptable deviations of standard projec-
tions. Three raters assessed the acceptability of synthetic X-rays with varying pose offsets
to the reference standard plane (a.-p. and lateral standard). Pose offsets were varied
independently for the orbital rotation α and the angular rotation β. Synthetic X-rays were
simulated from 47 CTs, and experts performed the study for a fixed time frame of 15 mins
per standard and dof. The raters have an increasing level of experience from top-bottom
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a.-p. standard lateral standard
# examples rotational dof rotational dof

α β ∑ α β ∑
rater A 551 318 869 457 298 755
rater B 289 270 559 198 302 500
rater C 473 370 843 354 582 936
∑ 2271 2191

Table 5.2: Swipe App: Number of examples assessed for each standard projection. The
number of examples N assessed by each expert for each separate dof (α, β) is additionally
indicated.

a.-p. standard lateral standard
µ± σ rotational dof rotational dof

dα [°] dβ, [°] dα, [°] dβ, [°]
rater A 3.17± 2.50 4.89± 4.61 5.43± 4.23 1.59± 2.15
rater B 2.82± 2.22 5.42± 4.29 7.57± 5.17 2.93± 2.89
rater C 2.70± 2.19 5.20± 4.14 9.76± 7.54 3.36± 2.56
global mean 2.90± 0.20 5.17± 0.22 7.59± 1.77 2.63± 0.75

Table 5.3: Swipe App: Angular deviations (dα, dβ) for each standard projection. In
addition, the angular deviation is reported separately for each expert.

lateral standard, averaged across all raters. Rater-individual evaluations are summarized
in Tab. 5.3.

The derived retrospective measure serves as a baseline for the acceptable errors in
clinical practice.

RQ 2.4: How accurate and efficient is the manual C-arm positioning?

Intraoperative assessment of standard projection accuracy and efficiency (Inter-rater
study): The standard projection accuracy and efficiency under manual C-arm position-
ing were assessed in an inter- / intra-rater specimens study. Therefore, two experts
independently positioned the C-arm to acquire a.-p. and lateral standard projections of
vertebral levels first thoracic vertebra (Th1)-fifth lumbar vertebra (L5) on two specimens.
This results in 17 standard projections, defined by each expert for each specimen. To allow
for intra-rater variance assessment, one expert positioned the C-arm for one specimen
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a second time. For manual C-arm positioning efficiency assessment, the number of X-
rays, the total dose, and the time for manual C-arm positioning were reported additionally.

2D-2D deviation
(intraoperative)

Manual C-arm positioning accuracy: To assess the intra- and
inter-rater pose difference, the 3D reconstruction corresponding
to the respective vertebra-level specific standard projection were
registered. Results are visualized in Fig. 5.15. In the inter-rater
study, mean positioning differences of dθ = 8.89 ± 5.77°, dα =

3.06± 3.65°, dβ = 7.71± 6.15°, tx = 12.24± 5.80mm, ty = 18.85±
15.11mm were obtained for the a.-p. standard and dθ = 6.36± 3.71°,
dα = 4.58± 4.46°, dβ = 3.08± 2.09°, tx = 11.83± 4.88mm, ty =

19.24± 16.98mm for the lateral standard, respectively. Specimen-
specific inter-rater pose differences are given in the Chapter A,
Tab. A.1. In the intra-rater study, mean positioning differences of
dθ = 8.89 ± 5.77°, dα = 3.06 ± 3.65°, dβ = 7.71 ± 6.15°, tx =

12.24± 5.80mm, ty = 18.85± 15.11mm were obtained for the a.-p.
standard and dθ = 6.36± 3.71°, dα = 4.58± 4.46°, dβ = 3.08±
2.09°, tx = 11.83± 4.88mm, ty = 19.24± 16.98mm for the lateral
standard, respectively.

Manual C-arm positioning efficiency: The number of X-rays, time, and dose re-
quirements of manual C-arm positioning for the two standard projections are reported
in Fig. 5.16, separated for each specimen and the two experts. Expert 1 assessed 51
vertebrae (1 round for case 1, 2 rounds for case 2), and expert 2 assessed 34 verte-
brae (1 round for case 1 and case 2). Averaged across the specimens and rounds,
expert 1/expert 2 required a median number of 5/8 (range 2-15/range 3-29) X-rays
for a.-p. standard positioning and 4/6 (range 1-30/range 1-28) for lateral standard
positioning. Expert 2 required significantly more X-rays for manual C-arm position-
ing (p � 0.01, t-test). The number of required positioning X-rays correlates with
the experience level of the surgeon. Regarding the time for manual positioning, ex-
pert 1/expert 2 required on average 74/80.5 s (range 22-193 s/range 26-292 s) for the
a.-p. standard and 44/76.5 s (range 5-474 s/range 5-306 s) for the lateral standard. For
the first acquired vertebra (Th1), positioning acquisitions were significantly increased,
which can be attributed to the localization task. After initial positioning to Th1, the
remaining vertebrae are easier to locate along the spinal curvature. Median doses of
25/42.5µGy · cm2 (range 6-205µGy · cm2/range 9-144µGy · cm2) for the a.-p. standard and
53/85.5µGy · cm2 (range 3-836µGy · cm2/range 12-606µGy · cm2) for the lateral standard
were computed. Expert 2 requires significantly more dose than expert 1 for both stan-
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Figure 5.15: Inter-/Intra-rater study to assess manual C-arm positioning accuracy. Two
experts defined the a.-p. and lateral standard for vertebra levels Th1-L5 for two specimens.
The pose differences were assessed in an inter- and intra-rater evaluation.

dards. The dose required for the lateral projection is significantly higher than for the a.-p.
projection (p < 0.015), which reflects the different body transmission depths. Case 2 was
anatomical more challenging than case 1 due to severe lumbar scoliosis, which is reflected
by a higher number of X-rays and time for lateral standard positioning of vertebra levels
Th12-L5. A vertebra-level specific evaluation is shown in Fig. A.1. The number of X-rays
and the time are correlated, while the dose also depends on the tissue penetration depth.

Tab. 5.4 summarizes the results for the different accuracy measures for standard projec-
tions and compares them to the obtained results in automatic C-arm positioning presented
in the following sections.
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Figure 5.16: Efficiency of manual C-arm positioning involving the number of X-rays,
time, and dose requirement. Two experts manually positioned the C-arm for two speci-
mens across vertebra level Th1-L5 in the a.-p. and lateral standard.
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Table 5.4: Comparison of mean positioning accuracies across different studies. The
measures are evaluated on different datasets. The inter-rater 3D deviation was assessed
on the 47 retrospective CT volumes (L4 level). The 2D-3D deviation was assessed on the
18 validation specimens (L4 level). The retrospective 2D-2D positioning variance was
assessed on a randomly selected subset from the simulated DRR set (20727 DRRs from 47
CTs). The intraoperative 2D-2D manual C-arm positioning differences were assessed on 2
specimens in vertebra levels Th1-L5.

(a) a.-p. standard

dθ[°] dα[°] dβ[°] dγ[°]
3D deviation 2.50± 1.57 1.05± 0.91 2.09± 1.55 1.32± 1.17
2D-3D deviation 5.96± 3.98 3.67± 4.12 3.34± 3.32 0.59± 0.82
Swipe App n/a 2.90± 2.30 5.17± 4.35 n/a
Inter-rater study 8.89± 5.77 3.06± 3.65 7.71± 6.15 n/a
Intra-rater study 4.79± 4.74 1.68± 1.15 4.12± 4.99 n/a
Simulated experiments 3.48± 2.48 2.21± 1.97 2.33± 2.24 1.65± 1.31

(b) lateral standard

dθ[°] dα[°] dβ[°] dγ[°]
3D deviation 1.85± 1.24 1.05± 0.91 1.32± 1.17 2.09± 1.55
2D-3D deviation 4.70± 2.18 2.87± 2.06 3.36± 1.83 3.13± 1.17
Swipe App n/a 7.56± 5.65 2.63± 2.53 n/a
Inter-rater study 6.36± 3.71 4.58± 4.46 3.08± 2.09 n/a
Intra-rater study 3.51± 4.20 2.17± 3.88 1.97± 2.62 n/a
Simulated experiments 4.83± 6.00 3.53± 5.16 2.69± 3.78 2.28± 7.31

5.2.4 Simulated experiments

RQ 2.5: Can the 2-stage intensity-based pose regression (Kausch et al., 2020) be re-
placed by a sequential 1-stage approach without decreasing robustness and accuracy?

The accuracy and robustness of the baseline, 2-step and 1-step approach (Sec. 4.2.4,
4.2.5, 4.2.6) for automatic C-arm positioning from one initial X-ray were compared on syn-
thetic X-rays. In total, 3969 DRRs simulated from the 9 CTs previously assigned to the test
set were employed for evaluation. The performances of the different approaches are com-
pared in Fig. 5.17 separately for the a.-p. and lateral standard. The test examples covered
an initial pose offset distribution of dθ = 23.8°± 8.8° around the a.-p. standard and lateral
standard, respectively. The baseline approach corresponds to the first step of the 2-step
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(a) a.-p. standard (b) lateral standard

Figure 5.17: Quantitative evaluation of proposed pose regression approach on simu-
lated data. Comparison of the proposed method to the baseline approach and the 2-step
direct intensity-based pose regression evaluated on 3969 DRRs of 9 CTs. The proposed
method outperforms Kausch et al. (2020) already in a single prediction step. Fig. 5.17a
adapted and extended from Kausch et al. (2021b).

(a) a.-p. standard (b) lateral standard

Figure 5.18: Qualitative evaluation of proposed pose regression approach on simulated
data. The initial X-ray is shown along with the predicted ROI and landmark detection
for examples with best, average, and worst performance (top-to-bottom). The predicted
pose update is verified by forward projection and shown side-by-side with the reference
standard.

approach. Starting from one initial projection, the mean absolute pose error to the desired
standard pose is iteratively reduced across both anatomy-specific standard projections
(dθ

(1)
a.−p. = 7.2°± 4.6°, dθ

(2)
a.−p. = 5.0°± 4.0°, dθ

(1)
lateral = 9.9°± 8.7°, dθ

(2)
lateral = 9.6°± 8.7°).

The proposed 1-step approach performed even more accurate and robust, while only
requiring one prediction step (dθa.−p. = 3.5°± 2.5°, dθlateral = 4.8°± 6.0°). Significant
accuracy improvement in beam direction of the proposed approach (1-step) compared
to the 2-step approach was confirmed by a t-test on dθ, dα, dβ, dγ with p� 0.01. Visual
examples for best, average and worst accuracy in terms of dθ are shown in Fig. 5.18.

In addition to the rotational dof the translation in the detector plane was esti-
mated, resulting in a MAE of dtxa.−p. = 2.56 ± 1.85mm, dtya.−p. = 3.59 ± 7.95mm
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(a) a.-p. standard

(b) lateral standard

Figure 5.19: Quantitative evaluation of proposed pose regression approach on real X-
rays without metal. The generalization capabilities from synthetic training to validation
on real X-rays without metal is assessed. The proposed approach is compared to direct
intensity-based pose regression with AEdθ and AEdγ distribution given separately for each
specimen case 0 - case 8. The proposed method shows improved generalization capabilities
compared to direct pose regression. Fig. 5.19a adapted and extended from Kausch et al.
(2021b).

and dtxlateral = 3.56± 2.75mm, dtya.−p. = 3.32± 7.28mm.

The runtime per X-ray was 0.12 s on average.

5.2.5 Specimens experiments

RQ 2.6: How does the proposed method solely trained on simulated DRRs generalize
to real X-rays without metal acquired in a specimen study?

To assess the transfer capabilities from simulation-based training to real X-rays, valida-
tion was performed on 9 specimens without metal for two distinct standard projections
(a.-p., lateral). For each specimens and standard, 1364 X-rays were sampled from different
poses around the corresponding standard reference pose. An initial pose offset distribution
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(a) a.-p. standard

(b) lateral standard

Figure 5.20: Exemplary standard DRRs complemented with proposed random k-wire
augmentation and realistic screw simulation.

of dθ = 18.3± 7.6° was computed. Fig. 5.19 shows that the proposed method outperforms
direct intensity-based pose regression (Kausch et al., 2020) across all validation specimens
and both standard projections. For the a.-p. standard, 6/9 (case 0, case 1, case 4, case 5,
case 6, case 7) showed comparable mean performance as the test DRRs, indicating that
there is no intrinsic domain gap between synthetic and real X-rays. 2 Specimens (case 2,
case 3) showed lower performance due to superimposing air pockets resulting in blurred
bone boundaries (cf. Fig. 5.13 (a)). Case 8 showed severe lumbar scoliosis. For the lateral
standard without metal, case 3 and case 6 show decreased performance, resulting from
lateral arm overlays and superposition of air pockets (Fig. 5.13). Fig. 5.22 (top row) gives
visual results of initial X-rays, along with their predicted region-of-interest (ROI) and
landmarks, and the output X-ray after employing the predicted pose offset for C-arm
repositioning. For comparison, the corresponding reference standard is shown on the
right. From top to bottom, the selected cases represent good, mean and bad performance
examples.

A more detailed performance visualization including all rotational dof is provided in
Fig. A.2.

RQ 2.7: Does the proposed k-wire and screw simulation techniques improve general-
ization towards surgical instrumentation?

The proposed implant simulation strategies were used to complement the synthetic
training data with k-wire and screw. Visual results for the a.-p. and lateral standard
projection are given in Fig. 5.20.
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(a) a.-p. standard

(b) lateral standard

Figure 5.21: Quantitative evaluation of proposed pose regression approach on real X-
rays with metal. The domain adaptation capabilities from synthetic training to validation
on real X-rays with spinal implants is assessed. The proposed approach is compared to
direct intensity-based pose regression with AEdθ and AEdγ distribution given separately
for each specimen case 0, case 9 - case 12, k and s indicating the presence of k-wires or
screws. The proposed implant simulation strategies combined with the sequential pose
regression shows to improve generalization towards spinal instrumentation.

To investigate if the proposed k-wire augmentation and realistic screw simulation
address the domain gap, another specimens study was conducted, including 5 specimens
with screws and 4 specimens with k-wires (Sec. 4.2.2). For each specimen, 1364 X-rays
were acquired for each standard projection. The validation data was annotated with
ground truth pose offsets to the respective standard projection. Applying the proposed
approach trained without the suggested implant simulation strategies did not improve
upon the initial error distributions. However, the proposed approach with simulated
metal augmentation outperforms direct intensity-based pose regression in all specimens
for the a.-p. standard and in all except one specimen for the lateral standard (Fig. 5.21).
Evaluation on specimens case 9, case 11, case 12 with k-wires and screws indicate that the
proposed 1-step approach combined with the implant simulation strategies successfully
address the domain gap regarding the a.-p. standard. Specimens case 0, case 10 show
reduced accuracy, which can be explained by projection artifacts resulting from the body
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Figure 5.22: Qualitative evaluation of proposed pose regression approach on real X-
rays. The initial X-ray is shown along with the predicted ROI and landmark detection
for cases with good, mean, and bad performance (top-to-bottom). The predicted output
is sampled from the acquisition sequence and shown side-by-side with the reference
standard.

bag (case 0) and edge overlays resulting from corpse decay air pockets (case 10) (Fig. 5.13).
For the lateral standard, the strongest performance is shown for the case 9 with k-wire and
screws. The other cases show limited performance that can be related to specific scenarios
not represented during training, including cadaver bag artifacts (case 0), corpse decay air
pockets (case 10), lateral arm superpositions (case 11). In most cases, the in-plane rotation
γ was accurately estimated. For specific cases, outliers corresponding to a 180° shift were
observed, which can be explained by the anatomical ambiguity within the spine height
axis if the hip is not inside the field-of-view (FoV).

For both spinal standard projections and both validations without metal vs. with
spinal implants, projections resulting from the predicted pose updates are visualized
in Fig. 5.22. Exemplary cases were selected for good, mean, and bad performance. The
method showed robust performance even for challenging anatomical deformations (case
6). Bad performance was observed for low contrast X-rays due to shadowing by intra-
abdominal air (case 3) or strike artifacts from the corpse bag (case 0), leading to inaccurate
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Figure 5.23: Overview of analyzed influencing factors on simulated and specimens
experiments.

ROI localization and landmark detection.

5.2.6 Systematic evaluation of influencing factors

Several factors can influence the final performance of pose estimation. To determine these
factors, a variety of different experiments was conducted. For the simulated experiments,
this included

Exp 1.1 Patient-specific evaluation: The proposed method for automatic C-arm position-
ing was evaluated separately for all DRRs simulated from one CT to determine
whether the outlier cases can be attributed to specific patients.

Exp 1.2 View dependence: To analyze the behavior of the algorithm in different offset
regimes, i.e., far from and close to the desired standard view.

Exp 1.3 Importance of landmark channels: The importance of the three different land-
mark channels (endplates, pedicles, endplates) was assessed by removing one chan-
nel successively during inference and comparing the overall performance in terms
of pose accuracy.

Exp 1.4 Performance under ideal conditions: To determine the influence of individual se-
quential processing steps, the ROI detection module and the view-independent
landmark detection module were subsequently replaced with ground truth annota-
tions.
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Exp 1.5 Influence of different modules on overall performance: Different variants of the
proposed pipeline were compared with respect to their pose regression performance.
Thereby, the effect of each design step on the overall performance was assessed.
Results on synthetic X-rays are presented along with real X-rays in Exp. 2.2.

For the specimens experiments, the following experiments were conducted

Exp 2.1 Performance under ideal conditions: To assess the performance in case of ideal
landmark predictions, the selected landmarks were manually annotated in all speci-
mens, and 2D annotations corresponding to the acquired X-rays were automatically
derived by forward projection. The derived annotations were used for subsequent
pose regression.

Exp 2.2 Influence of different modules on overall performance: The effect of modular de-
sign choices on the pose regression performance was assessed.

Exp 2.3 Training with real X-rays: Training was resumed on a subset of real X-rays cov-
ering all validation specimens to derive an upper upper bound accuracy bound.
A leave-one-out study on the validation specimens was conducted to determine
if a domain gap between simulated X-ray and real X-ray training influences the
performance.

Exp. 2.4 Importance of proposed implant simulation strategies: The proposed 2D k-wire
augmentation and 3D screw simulation strategies were omitted to measure their
generalization effect toward real X-rays with spinal implants.

Exp. 1.1 Patient-specific evaluation The patient-specific evaluation in Fig. 5.24 illus-
trates that outliers can be attributed DRRs simulated from specific CT volumes. For the
a.-p. standard this affects the case 6 CT, where intra-abdominal air shadows the vertebrae
in projection domain (cf. Fig. 5.25). For the lateral standard case 5 and case 6 show an
increased amount of outliers. For the test CT volume case 6 part of the arm and fingers are
present at the lateral front, and for case 5 lateral intra-abdominal air was observed.

Exp. 1.2 View dependence Fig. 5.26 illustrates that the residual pose error is not propor-
tional to the initial offset from the desired standard pose, neither for the angular rotational
offset dα, nor for the orbital rotational offset dβ. This indicates that an iterative prediction
would not improve upon the 1-step predictions, which was experimentally confirmed.

Exp. 1.3 Importance of landmark channels Fig. 5.27 visualizes the contribution of each
landmark channel (pedicle, endplates, endpoints) on the overall performance. Removing
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(a) a.-p. standard

(b) lateral standard

Figure 5.24: Patient-specific evaluation of proposed approach on test DRRs. For each
patient, 1394 DRRs were generated with poses equidistantly sampled from α, β ∈
[−30°, 30°]. Outliers can be attributed to specific CTs.

Figure 5.25: Simulated reference standards for all test CTs. A.-p. and lateral standard
are shown top-to-bottom.
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(a) a.-p. standard

(b) lateral standard

Figure 5.26: View dependence of proposed 1-step approach on test DRRs. From each
CT, 441 DRRs were generated with pose offsets equidistantly sampled from α, β ∈
[−30°, 30°] around the desired standard.

(a) a.-p. standard (b) lateral standard

Figure 5.27: Importance of landmark channels for pose regression performance on test
DRRs. One landmark channel is removed at a time during inference to analyze its
contribution.

the endplates results in the highest performance drop, followed by the pedicles, whereas
the endpoints of the vertebrae processes have the least influence. Best results are obtained
by a combination of all three proposed landmark channels.

Exp 1.4: Performance under ideal conditions The effect of the performance of individual
pipeline steps on the overall pose regression performance was analyzed. Individual
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(a) a.-p. standard (b) lateral standard

Figure 5.28: Performance under ideal conditions evaluated on simulated data. Compar-
ison of fully automatic proposed approach to performance with ground truth landmarks.

pipeline steps (ROI localization, landmark detection) were replaced with ground truth
annotations. Fig. 5.28 shows a performance comparison on simulated data. The fully
automatic pipeline with predicted landmarks (dθa.−p. = 3.48± 2.48°, dθlateral = 4.83±
6.00°) almost reaches the upper accuracy bound given by the pose regression from ground
truth landmark annotations (dθa.−p. = 3.26± 1.83°, dθlateral = 4.36± 6.27°). The ROI
detection module can replace ground truth annotations without performance degradation.
After excluding the two outlier cases (Exp. 1.1) both standard projections show similar
accuracy and robustness (dθa.−p. = 2.96± 1.89°, dθlateral = 3.74± 2.63°) with the automatic
approach.

Exp 2.1: Performance under ideal conditions Fig. 5.29 illustrates the pose regression
accuracy with ground truth landmark annotations which defines an upper limit for the
reachable accuracy using the proposed approach. Under ideal conditions, the proposed
method reaches acceptable accuracies in line with the derived clinical accuracy bound
(dθ = 8.89± 5.77°) for all specimens with and without metal regarding the a.-p. standard.
For the lateral standard, the derived clinical accuracy bound (dθ = 6.36± 3.71°) was
reached by all specimens except case 8, which showed severe lumbar scoliosis.

Exp. 2.2: Influence of different modules on overall performance Five C-arm pose regres-
sion pipeline variants integrating different modules of task-specific prior knowledge
derived from clinical experience into the pipeline were compared to justify the design of
the proposed method. The modules were designed to reflect and automate approaches
used by spinal neurosurgeons for identifying correct standard projections. An overview is
given in Fig. 5.30. The variant Image (img) correponds to the direct pose regression and the
variant Bounding box + Landmark (bb+lm) to the proposed approach. The other variants are
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(a) a.-p. standard

(b) lateral standard

Figure 5.29: Performance under ideal conditions evaluated on real X-rays. 1-step pose
regression. Pose regression is computed based on manual reference landmark annotations.
For each specimen, AEdθ ± SDdθ , AEdγ ± SDdγ are indicated, k and s indicating the
presences of k-wires or screws. Given ground truth landmarks, the pose regressor shows
robust performance across different specimens and standard projections.

Figure 5.30: Variants of the pose regression pipeline integrating different stages of task-
specific expert knowledge derived from clinical routine: (1) img, (2) seg, (3) bb, (4) lm, (4)
bb+lm.
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outlined in the following:

(2) Segmentation (seg): The variant (seg) masks the initial X-rays with a vertebra segmenta-
tion mask to restrict the focus on bone structures.
(3) Bounding box (bb): The previous approach was generalized in the variant (bb) by
predicting a bounding box mask instead of a segmentation mask. This reflects the use of
collimators employed in real clinical procedures to increase image contrast. The rotating
bounding box can be computed from the predicted vertebra segmentation. The initial
X-ray was multiplied pixel-wise by the estimated rotating bounding box and passed as
input to the pose regression network.
(4) Landmark (lm): Anatomy-specific relevant landmarks were directly derived from the
initial X-ray by a view-independent U-Net detection module (Klein et al., 2019) and
predicted heatmaps were used for subsequent pose regression.

On the example of the a.-p. standard, the models were trained without implant
simulation strategies and compared with respect to their performance on the simulated
test set and real X-rays derived from two exemplary validation specimens. Quantitative
results compared across the different variants are shown in Fig. 5.31. The MAE is reduced
by the landmark-based variants compared to the other purely image-based variants in all
pose parameters across all validation data. Best results were observed for the proposed
method (bb+lm). A systematic robustness analysis using the ChallengeR tool developed by
Wiesenfarth et al. (2021) confirms this finding; it can be seen in Fig. 5.32 that the proposed
method (bb+lm) achieves the first rank across all datasets.

Exp. 2.3: Training with real X-rays It was analyzed if retraining of the derived model
on real X-rays benefits the performance. Therefore, training was resumed on a subset of
137 X-rays equidistantly sampled from the acquired validation (1379 X-rays per specimen).
The model was evaluated on the views not seen during training. Results are shown in
Fig. 5.33 and can serve as an upper upper bound. Similar accuracies are achieved for both
standard projections, indicating that the selected landmarks are equally suitable. However,
the anatomy and close by views were present during training, consequently memorizing
cannot be excluded. To verify if training on real X-rays improves performance compared to
simulated training, a leave-one-out experiment was performed on the acquired validation
data. One specimen used for testing was excluded during training, while the annotated
X-rays of the remaining specimens were integrated into the training pipeline besides the
synthetic X-rays. The observed results did not improve performance on individual test
cases upon simulated training (Fig. 5.19).
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Figure 5.31: Quantitative comparison of C-arm pose regression pipeline variants
trained on simulated X-rays and evaluated on different test sets: (a) test DRRs, (b) real
X-rays.

Figure 5.32: Ranking stability of proposed variants when applied on different validation
datasets (test DRRs, real X-rays). Here the rank of each variant on each dataset (1: best,
5: worse) is measured with respect to the accuracy in viewing direction θ and in-plane
rotation γ generated by Wiesenfarth et al. (2021). Each variant is color-coded and the area
of each blob (Ai; rj) is proportional to the relative frequency each variant Ai achieved rank
j for 1000 bootstrap samples across the different validation datasets. The median rank of
each variant is indicated by a black cross and 95% bootstrap confidence intervals across
bootstrap samples are indicated by black lines.
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(a) a.-p. standard

(b) lateral standard

Figure 5.33: Performance of 1-step pose regression after training on validation speci-
mens. The simulated training data was complemented with 137 X-rays equidistantly
sampled from each validation specimen. The model was evaluated on views not seen
during training. However, the anatomy and close by views were present during training.

Exp. 2.3: Importance of proposed implant simulation strategies The proposed ap-
proach was trained without and with the proposed implant simulation strategies (k-
wire/screw simulation). Quantitative results are shown in Fig. 5.34 for the a.-p. and lateral
standard. The performance on real X-rays without metal is not largely affected for the
majority of cases by the integration of implant simulation strategies. In contrast, for the
real X-rays with metal accuracy and robustness is significantly improved for most cases.
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(a) a.-p. standard

(b) lateral standard

Figure 5.34: Importance of proposed implant simulation strategies. The pipeline was
trained without and with the proposed k-wire and screw simulation.

110



6
Discussion

The discussion is structurally aligned with the previous chapters: The first part discusses
the results concerning pedicle screw planning for CT-navigated spinal surgery (Section
6.1) and the second part discusses the results regarding C-arm positioning for fluoroscopy-
guided spinal surgery (Section 6.2).

6.1 Pedicle screw planning for CT-navigated spinal surgery

This chapter discusses the proposed method for automatic pedicle screw planning with
respect to the performed experiments and results (Sec. 5.1). Sec. 6.1.1 interprets the plan-
ning variabilities observed with the current manual screw planning procedure. Sec. 6.1.2
discusses the proposed automatic pedicle screw planning approach. It is divided into
five discussion topics: (1) training data discusses the influence of learning from surgical
planning data, (2) quantitative results discusses the automatic planning results in relation
to computed manual screw planning variations, qualitative results discusses the clinical
acceptability of the automatic planning results in comparison to the state of the art, (4)
comparison to related work places the proposed deep learning-based approach in the state
of the art, (5) postoperative screw accuracy discusses the observed deviations between
intraoperative screw plans and actual postoperative screw locations. Sec. 6.1.3 assesses the
proposed approach with respect to the requirements stated in the objectives. Limitations
and future work directions are discussed in Sec. 6.1.4.

A deep learning-based approach for automated pedicle screw planning in intraopera-
tive computed tomography (CT) was proposed and evaluated for navigated lumbosacral
instrumentation. Instead of relying on manual defined geometric and structural compo-
nents (Knez et al., 2016; Xiaozhao et al., 2016), explicitly defined constraints (Knez et al.,
2018; Li et al., 2019), or atlas-based modeling (Goerres et al., 2017; Vijayan et al., 2019),
deep learning techniques were employed to implicitly learn the screw placement from
a diverse surgical planning dataset (155 cases, 1052 screws) in a patch-based approach;
thereby introducing robustness to structural variations frequently observed in degenera-
tive spine or scoliosis. Building upon the current successes of the U-Net architecture for
segmentation tasks (Ronneberger et al., 2015), the screw planning task was interpreted
as a segmentation task, assuming that although the intraoperative CT does not contain
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the screws yet, their potential location can be deduced based on the spatial context. The
proposed instance-based screw segmentation combined with a manual or automatic verte-
bra localization results in a semi- or fully automatic pipeline for pedicle screw planning.
Evaluated on 24 CT covering the lumbosacral levels, the proposed method demonstrated
clinically acceptable screw plans in 96.2% of screw trajectories (125/130 screws) that were
entirely positioned within the pedicle (Gertzbein-Robbins Grade A). The 5 revisions were
caused by proximal facet violations affecting the fifth lumbar vertebra (L5). In comparison
to manual planning, time efficiency was improved by 8-fold on average.

6.1.1 Manual pedicle screw planning

The use of navigation systems and robotic assistant devices in spinal surgery is increas-
ing (Rawicki et al., 2021) due to the improved accuracies and reduced revision rates of
navigated pedicle screw placement compared to fluoroscopy, which makes the technique
particularly valuable for complex surgical cases (Luther et al., 2015). Pedicle screw plan-
ning is a prerequired necessary task to achieve the full potential of computer-assisted
navigation. The planning with available software tools on the navigation workstations
involves manual interaction, is time-consuming, and is expert-dependent. A gold standard
for screw placement does not exist, and every surgeon develops their preferences within
the anatomical constraints and screw placement criteria. The expert-dependence of plan-
ning results was confirmed by the inter-/intra-rater analysis of manual screw planning
variability (Sec. 5.1.1), where significantly higher inter-rater than intra-rater deviations
were observed across all screw parameters. The highest manual screw planning deviations
were observed for the first sacral vertebra (S1) level. This reflects the increased freedom
for screw positioning in the sacral segment caused by the increased vertebral space and
reduced anatomical constraint compared to the lumbar segment (Vijayan et al., 2019).
Manual screw planning for one CT took on average 5 min 38 s.

6.1.2 Automatic pedicle screw planning

The proposed automatic pedicle screw planning method was evaluated on an external
test set (45 cases, 328 screws). Since a gold standard for pedicle screw placement does
not exist, manual and automatic screw plans were additionally set into context to inter-
and intra-rater variabilities observed after manual planning. Regarding the lumbosacral
vertebra level, a high agreement between manual and automatic planning results was
demonstrated quantitatively and qualitatively, indicating clinically acceptable results for a
large majority of cases comparable to the human error rate. The inter-/intra-rater variabil-
ity study confirmed that automatically generated plans were non-inferior to manual plans.
Furthermore, the proposed automation led to a significant speed-up of 8-fold compared
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to manual pedicle screw planning (4.9 s per vertebra level). Integration of the proposed
approach into navigation systems can assist operators, facilitate screw planning, reduce
errors, standardize the quality, and reduce the procedural time.

Training data The training data resulted from real-world surgical planning data. The
data was retrospectively derived from a registry of CT-guided lumbosacral instrumen-
tations. The screw plans were created intraoperatively during the respective procedure.
Using existing clinical annotations made a large, heterogeneous dataset available. How-
ever, screw plans did not represent classic ground truth. Instead, it took individual
anatomical conditions into account, as well as the surgeon’s preference. The proposed ap-
proach was trained on 155 CTs containing 1052 intraoperatively manually labeled screws.
As shown in Fig. 4.1a the training dataset was not balanced across different vertebra levels.
Unbalanced training data may lead to non-optimal results for underrepresented classes
(L1: 1.1%, L2: 8.4%, L3: 20.0%, L4: 26.6%, L5: 27.4%, S1: 16.5%). Test data for the first
lumbar vertebra (L1) level was not available. Regarding the lumbar segment, increased
deviations were observed from cranial to caudal (Fig. 5.2) while available training data
increased. This contrary effect indicates that unbalanced training data does not bias the
performance within the lumbar segment, where vertebra shapes are very similar. How-
ever, training data balancing becomes more relevant when extending the approach to
other vertebra segments, e.g., thoracic or cervical. There, a higher inter-segment than
intralumbar vertebra shape variation (Schünke et al., 2005) can bias the performance. For
the S1 level, increased quantitative deviations were observed compared to the lumbar
segment, but those differences were still comparable to inter-rater variances. The observed
increased deviations can be attributed to the anatomical underrepresentation of the S1
level compared to third lumbar vertebra (L3)-L5 and increased anatomical freedoms for
trajectory planning in the sacrum. Its clinical acceptability is discussed in more detail in
the qualitative results.

Quantitative results First, the automatic screw planning peformance will be discussed
based on the whole test set covering the lumbosacral segment (45 cases, 328 screws). Then,
the computed automatic variances are additionally set into context to observed variations
after manual screw planning based on a randomly selected subset of 24 cases, 130 screws.

For evaluation of the qualitative results, it has to be considered that reference data
resulted from surgical planning data and a gold standard for pedicle screw placement
does not exist. Of clinical interest were the screw head and axis point along with the
screw direction where a high agreement of manual and automatic plans was demonstrated
quantitatively (Fig. 5.2). Robust performance was observed on a variety of different
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patient anatomies (head=4.1± 2.0 mm, axis=4.2± 2.2 mm, direction=5.9± 3.8°). Deviations
of 4.1± 3.1 mm, 0.5± 0.3 mm were computed for the screw length and diameter. In clinical
practice, these parameters are additionally constrained by the screw sizes provided by the
implant manufacturers. 5 mm in screw length and 1 mm in screw diameter reflect common
implant increments. Setting the observed deviations of length and diameter into context,
observed mean deviations fall below this threshold and would not have caused a different
implant selection in terms of diameter. The suitable implant length can be chosen at the
discretion of the surgeon within these bounds without clinical relevance. The vertebra
level-specific evaluation illustrates higher variabilities for the S1 vertebra, reflecting more
options for screw placement regarding screw convergence and cranial/caudal angulation.

While analyzing the quantitative screw positioning differences between manual
and automatic planning, the acceptable planning variability of pedicle screw has to be
considered. For quantitative analysis of the clinical impact of deviations, automatic vs.
manual screw plan deviations were compared to intra- and inter-rater manual screw
plan variations. Due to different surgical planning preferences within the guidelines
for pedicle screw planning, intra-rater variability is lower than inter-rater variability
in clinical practice. Since training data contained the screw planning preferences of
several experts, intra-rater deviations are expected to be lower than automatic vs. manual
deviations. This was confirmed by our experiments across all screw parameters (Tab. 5.1).
The deviations of automatic vs. manual plans were comparable to manual inter-rater
variances, indicating non-inferiority of automatic planning compared to manual planning.
The variations of screw parameters head and direction were comparable to manual planning
and axis and overlap significantly less than manual planning. The results suggest that
automatic planning shows sufficient accuracy and could replace the current manual
procedure performed by an expert while drastically improving the time efficiency by 8-
fold (Fig. 5.7). The clinical acceptability is further discussed below in the qualitative results.

The proposed automatic screw planning took on average 41.8± 20.2 s per CT compris-
ing 2-10 trajectories per patient, in contrast to 338.7± 186.3 s by manual expert planning.
Screw planning for one vertebra level took 4.91± 0.11 s with the proposed approach. In
comparison, state of the art approaches based on 3D geometrical and structural properties
reported computations times of 2 mins for vertebral structure modeling plus 20 s planning
time for each screw trajectory (Knez et al., 2016). Atlas-based approaches (Vijayan et al.,
2019) reported runtimes of 312.1± 104.0 s for planning five-level bilateral screws and
49.4± 39.9 s per vertebra-level, where the greatest proportion can be attributed to the
shape model registration (41.2± 39.9 s). This comparison indicates significantly speed-up
benefits of the proposed patch-based deep learning approach. The proposed approach
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shows robust performance towards poor image quality and anatomical variations like
scoliosis (Fig. 5.3 (C)) indicating that the patch-based design choice combined with the col-
lected training data and augmentation strategies is able to cover the necessary anatomical
and image quality variations.

The screw length and diameter were predicted significantly shorter and thinner by the
automatic approach compared to manual expert annotations, resulting in an average
offset of 3.3 mm in length and 0.3 mm in width. Since these offsets are below the threshold
of commonly used implant increments, the clinical impact is insignificant.

The vertebra-level specific Dice evaluation revealed significantly increased screw
variations for the S1 level compared to the lumbar segment for manual planning and
automatic planning, while overlaps within the lumbar segments were similar. More
significant screw placement variations for S1 result from fewer anatomical constraints
within the sacrum. Nonetheless, observed automatic vs. manual planning deviations for
S1 agreed with inter-rater variations, indicating clinically acceptable performance also for
the sacrum.

Qualitative results On the randomly selected subset of 24 cases, 130 screws, the accept-
ability of the automatically planned screws was clinically assessed by a spinal neurosur-
geon using the Gertzbein-Robbins (GR) classification. The GR classification grades the
screw placement according to the extent of cortical pedicle breach. 96.2% of the automati-
cally planned screw were classified as GR Grade A and the remaining 3.8% as GR Grade
B with minor clinically acceptable breaches. In comparison, state of the art approaches
reported GR Grade A in 88.7% with geometrical and structural modeling (Knez et al., 2019)
and 86.7% with atlas-based modeling (Vijayan et al., 2019). Though the methods were not
evaluated on identical datasets, the results indicate improved robustness of the proposed
deep learning-based approach, which directly learns from clinical planning data.

Comparison to related work The proposed approach via instance-based screw segmen-
tation was shown to outperform direct convolutional neural network (CNN) landmark
regression, indicating that the 3D mask representation contains valuable spatial infor-
mation for the model. A comparison to other state of the art approaches is challenged
by different validation datasets or missing quantitative evaluations. Compared to the
approach by Knez et al. (2016), the proposed approach is on average 1 mm more accurate
in length and 1° more accurate in direction, while both approaches differ in vertebra level
and test size. Its parametric modeling assumption may limit the application to locally
deformed vertebrae. The atlas-based approach (Vijayan et al., 2019) resulted on average
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on increased accuracies, which could be attributed to the underlying ideal reference an-
notation specifically defined by a spinal neurosurgeon. In contrast, the proposed deep
learning-based approach relied on intraoperative planning data, which can include vari-
able surgical preferences, case-specific planning adjustments, and might be influenced by
time restrictions. In addition, atlas-based approaches are targeted to represent the healthy
anatomical shape. They may be limited in performance in altered, deformed, degenerated,
or fractured bones, as commonly observed in patients treated with spinal instrumentation.
Similarly, Vijayan et al. (2019) reported 9 outlier cases caused by shape model initializa-
tion collapsing, which is sensitive towards the initialization. In contrast, the proposed
approach showed robust performance in a diverse test set, including anatomical variation,
e.g., scoliosis and poor image contrast. Further, a shape model needs to be initialized and
trained separately for each vertebra level.

Postoperative screw accuracy The postoperative screw accuracy after CT navigation
was evaluated by comparing lumbosacral screw trajectories in the postoperative control
CT to intraoperative screw plans, including 24 cases, 140 screws. Computed deviations
(head=5.2± 2.4 mm, axis=5.5± 2.7 mm, direction=6.3± 3.6 mm) are in the same range as
automatic vs. manual deviations and surpass the mean registration error of the navigation
system. Additionally, the measured screw deviations can be influenced by inaccuracies in
the rigid registration between control and navi CT. Successful registration was verified by
manual inspection; however, small offsets can remain caused by anatomical alternations
between the intraoperative CT with fractures and without screws and the postoperative
CT with repositioned fractures and inserted implants. Due to missing ground truth navi
to control registrations, the rigid registration error could not be assessed.

6.1.3 Conclusion

In the current clinical routine, pedicle screw planning is performed manually, which
requires a high level of expertise and in-depth knowledge of the anatomy and pedicle
orientation. The screw planning task was interpreted as a segmentation task that repre-
sents valuable knowledge for the training process, leading to more accurate and robust
performance than direct CNN landmark regression. The deep learning-based proposed
approach for pedicle screw planning fulfills all the requirements that were stated in the
objectives.
Clinical applicability: The proposed automatic screw planning tool can be easily inte-
grated into the clinical routine.
Performance requirements: The approach was evaluated for the lumbosacral level on an
unseen test set, showing robust performance on various different patient anatomies and
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leading to clinically acceptable results in 96.2% of screw trajectories.
Benefits for the patient: The proposed automatic screw planning led to a significant
speed-up of 8-fold compared to manual expert planning, which can decrease the overall
procedural time. Further, automatic planning would lead to standardized results indepen-
dent of the surgical experience.
Benefits for the surgeon: The proposed approach can assist the surgeon in pedicle screw
planning and thereby standardize the quality and reduce the expertise dependence while
significantly reducing the procedural time.
Representation of anatomical variability: The approach directly learns from surgical
planning data of the lumbosacral segment, representing a variety of patient anatomies
and surgical planning preferences.
Addressing intraoperative requirements: Intraoperative requirements are implicitly ad-
dressed by learning from surgical planning data.
Generalization: With available training data, the method can be extended to other verte-
bra levels.

6.1.4 Limitations and future work

The proposed approach was trained and evaluated for the lumbosacral segment. With
available training data, the approach could be transferred to the thoracic and cervical seg-
ments. As already mentioned in the training data section, the influence of inter-segment
unbalanced training data should be considered. Different techniques for addressing
imbalanced training data in deep learning have been proposed and can be clustered into
data-driven, algorithm-driven, and hybrid techniques (Krawczyk, 2016). Data-driven
approaches address the class imbalance by data sampling strategies, whereas algorithm-
driven methods employ class weight balancing and directly modify the learning algorithm,
and hybrid approaches combine both. Furthermore, the effect of the fixed patch window
size needs to be analyzed for different vertebra segments with significantly smaller
vertebra shapes (Schünke et al., 2005).

Further analysis of the proposed approach for automatic screw planning in pathologi-
cal and degenerated scenarios, e.g., dislocated fractures and severe scoliosis, is required.
If necessary, the representation of these challenging anatomical conditions needs to be
reinforced in the training data.

Overall, 96.2% of automatically planned screws were rated as clinically acceptable.
All revisions (5 screws, 3.8%) were caused by proximal facet violations that constitute
a significant risk factor for adjacent segment destabilization (Sakaura et al., 2019). All
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facet violations affected the L5 level, which is likely caused by case-specific trajectory
modifications present in intraoperative training data. The L5 vertebra level requires
steeper insertion trajectories (Fig. 2.4a) which might be compromised at the discretion of
the surgeon to facilitate screw insertion. If data-driven learning algorithms are trained on
noisy labels, this can result in deteriorated performance. Strategies to address this issue
could be investigated in future work. Song et al. (2020) present a survey on robust training
techniques, including low-quality annotations. Nevertheless, the rate of facet violations
was still in line with those reported in the literature after navigated screw placement
(Ohba et al., 2016).

The significant underestimation of length and width could be addressed by adapting
the post-processing step of the screw mask to parameter conversion. However, the clinical
impact is potentially neglectable since absolute differences fall below standard implant
increments.

The proposed automatic patch initialization based on vertebra-instance localization
has the drawback that it does not detect vertebrae at the image boundaries because the
large scale vertebrae segmentation challenge (VerSe) training data (Löffler et al., 2020) only
contained annotations for vertebrae fully contained inside the field-of-view (FoV). Further,
nnU-Net inference is not optimized to speed but to accuracy, which is not decisive for the
task of vertebra centroid initialization. For speeding up the automatic patch initialization,
the instance-based segmentation could be trained at reduced resolution. Alternatively,
detection algorithms can increase the speed of the automatic patch initialization. Levine
et al. (2019) compared different detection approaches for vertebra centroid localization
and reported best performance with Faster R-CNN (Ren et al., 2016) with a runtime of
8.72 s per detection.

In future work, the proposed automatic screw planning tool can be seamlessly inte-
grated into navigation systems. The automatic screw planning tool provides assistance by
suggesting automatically derived screw trajectories to the surgeon for final verification.
Integration into the clinical workflow allows investigation of its clinical usability and
performance further. Observed failure cases can be reported, and manual corrections can
be included in the training process to improve the robustness further (Ramadan et al.,
2020). In case of performance difficulties, additional geometric constraints could be in-
tegrated into the segmentation task by restricting the screw masks to cylindrical shapes
(Bohlender et al., 2021). In the proposed approach, the combined Dice and cross-entropy
loss (Isensee et al., 2021) has been used for weight optimization. However, the Dice Loss
may not be optimal for small structures, where a single pixel difference can already have a
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significant influence on the metric (Reinke et al., 2021). Analyzing the effect of different
metrics, e.g., focal loss, on the performance can be considered. Furthermore, a systematic
comparative study of the proposed approach with commercially available atlas-based
software released by Brainlab (Riem, Germany) is in progress. Screw navigation accuracies
should be evaluated further to assure the agreement of implanted screws with CT-based
screw plans.

6.2 C-arm positioning for fluoroscopy-guided spinal surgery

This chapter discusses the proposed method for automatic C-arm positioning with respect
to the performed experiments and results (Sec. 5.2). Sec. 6.2.1 interprets and discusses the
derived measures for manual C-arm positioning accuracy assessment, along with manual
C-arm positioning efficiency. Sec. 6.2.2 discusses the proposed automatic C-arm posi-
tioning approach. It is divided into five discussion topics: (1) training data discusses the
design choices during simulation, (2) simulated experiments discusses the results obtained
on simulated test data, validation data discusses the setup for validation data acuqisition,
(4) specimens experiment discusses the results obtained on real X-rays, (5) pipeline design
discusses the influence of individual pipeline steps on the overall performance. Sec. 6.2.3
assesses the proposed approach with respect to the requirements stated in the objectives.
Limitations and future work directions are discussed in Sec. 6.2.4.

A novel approach for automatic C-arm positioning for spinal standard projections was
proposed that seamlessly integrate into the clinical workflow. It estimates the required
pose update for C-arm repositioning from one initial X-ray. In contrast to many state of
the art approaches, no preoperative computed tomography (CT) scan or other technical
equipment is required. Instead of atlas- or model-based representation, deep learning is
employed, and robust learning is enabled by the development and combination of vari-
ous methods that address aspects like data scarcity, intraoperative confounding factors,
anatomical variation, including learning from simulations, advanced data augmentation,
and integration of task-specific expert knowledge derived from surgical routine. The
proposed automatic C-arm positioning method was evaluated for the a.-p. and lateral
standard for the fourth lumbar vertebra (L4). It significantly increased accuracy, robust-
ness, and generalization properties compared to direct intensity-based pose regression. A
large specimens study was performed to validate the approach on real X-rays covering
different intraoperative settings. The method can handle inter-patient anatomical variation
and was capable of generalizing from in silico data to ex vivo human cadaver data.
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6.2.1 Manual C-arm positioning

Currently, the C-arm is positioned manually, involving repeated X-ray acquisitions, to
derive the desired view onto the anatomy for medical verification. The manual positioning
process is time-consuming, expert-dependent, and increases the radiation exposure of
patients and surgeons. Though guidelines for correct anatomical standard projections exist
(Sec. 2.2.1), inherent positioning variations depend on the surgical experience, surgical
preference, anatomical conditions. Furthermore, manual positioning requires correct
spatial interpretation of 2D projection images with superimposed anatomical structures
and missing depth information. The variability of standard projections has not been
assessed in a clinical study yet. In Sec. 5.2.1, 5.2.2, 5.2.3 four different accuracy measures
were introduced and assessed to measure the acceptable variability of standard projections
for setting the automatic positioning results into context. All accuracy measures were
assessed on different data sources, which limits the direct comparison. The obtained
results are discussed separately in the following:

Training data accuracy: 3D-3D deviation (retrospective)
The inter-rater deviations in viewing direction derived from the 3D training annotations
(47 CTs, L4) (Sec. 5.2.1) were comparable for the a.-p. and lateral standard, since the
standard planes were defined under the orthogonality constraint. The orthogonality
constraint was introduced to increase the accuracy of the training data. Comparing the
out-of-plane rotations, lower deviations were observed for the orbital rotation α than
for the angular rotation β. The orbital rotation was strictly constrained by the spinal
symmetry axis, while the angular rotation, constraint by the parallelism condition on the
vertebra endplates, allowed for more variation, e.g., if the ground and cover plate are not
parallel, observed in an osteoporotic or degenerated vertebra. The derived measure can be
interpreted as an upper bound for the reachable accuracy (θa.−p. = 2.50°, θlateral = 1.85°).
However, due to the orthogonality constraint and the available 3D image information, the
measure is not representable for manual C-arm positioning accuracies, where the optimal
orientation must be deduced from 2D summation images with much higher expected
variance.

Validation data accuracy: 2D-3D deviation (retrospectively)
The retrospectively assessed 2D-3D deviations on the validation dataset (Sec. 5.2.2) served
as a more realistic measure for manual C-arm positioning accuracies. Variances were
significantly decreased for the specimens with spinal implants because vertebrae were
visible after soft tissue dissection, which facilitated orientation. Consequently, only the 7
specimens without metal were considered as references. The a.-p. and lateral deviations
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(dθa.−p. = 5.96°, dθlateral = 4.7°) are in a similar range and exceed the 3D-3D deviations.
The 2D-3D deviation was used as clinical accuracy bound. The retrospective assessment
of 2D-3D deviations after manual standard projection acquisition required the acquisition
of a corresponding 3D volume. Since 3D acquisitions involve additional radiation, they
are only performed in complicated anatomical scenarios requiring 3D verification. Conse-
quently, the study could only be performed in a specimens experiment, explaining the
limited number of cases.

Standard projection accuracy: 2D-2D deviations via Swipe App
The Swipe App experiment was performed to assess the clinical pose variability of accepted
standard projections on a random subset of the simulated training data (Sec. 5.2.3). The
rotational degrees-of-freedom (dof) α, β were assessed separately. The decision if the
presented image is accepted or rejected as standard projection was based on a single
image, the same input used by the proposed automatic pipeline for C-arm positioning.
Thus, it allowed a direct comparison of human vs. algorithm performance on simulated
data under identical conditions. Regarding the a.-p. standard, higher variations were
observed in angular rotation β than orbital rotation α, which was stronger constrained by
the spinal coronal symmetry axis. This observation was reversed for the lateral standard
due to the lack of a sagittal symmetry axis. The proposed method performed as well
as a human or even more accurately and estimated all rotational and translational dof
simultaneously (Tab. 5.4). Sometimes the Swipe App decisions were challenged by poor
simulation quality, which impeded the bone assessment. Further, the surgeons expressed
the lack of a continuous sequence to determine correct views, which hindered their
decisions. However, the single-frame 2D input and image quality are the same information
the proposed automatic method received. That indicates that the network is able to learn
visual clues for pose estimation from a single image, which are difficult to deduce for a
human expert.

C-arm positioning accuracy: 2D-2D deviation (inter-/intra-rater)
The inter-/intra-rater 2D-2D manual C-arm positioning deviations were assessed on 2
specimens across all vertebra levels (Th1-L5) The results in Sec. 5.2.3, Fig. 5.15 indicate that
intra-rater manual positioning variation is lower than inter-rater, reflecting the effect of
surgical preference and missing standardization. Fig. 5.15 confirms the 2D-2D retrospec-
tive results in terms of rotation-specific deviation contributions. The computed deviations
are higher for the a.-p. standard than for the lateral standard as observed in the previous
measures (cp. Tab. 5.4). The manual C-arm positioning variances are much higher than
retrospective 3D deviations due to the prior orthogonality assumption and additional spa-
tial information in the 3D standard plane definition in contrast to 2D standard projections.
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The derived inter-rater 2D-2D variances can serve as a threshold for acceptable deviations
in clinical practice. However, it needs to be considered that the evaluation is only based
on 2 specimens and averaged across all vertebra levels (Th1-L5). The measure delivers
a rough estimate of expected variations in manual C-arm positioning. Repetition of the
performed study on additional specimens would be required to ensure its generalization.

Manual C-arm positioning efficiency: Besides the manual C-arm positioning accuracy,
also the positioning efficiency was assessed on the 2 specimens across all vertebra levels
(Th1-L5) (Sec. 5.2.3, Fig. 5.16). The efficiency was measured in terms of the number of
X-rays acquisitions, dose, and time. All assessed parameters correlated with the level
of experience of the surgeon. The positioning for lateral standard projections required
more dose due to the automatic exposure control (AEC), which increases the exposure
factors (kV, mA) when the X-ray beam passes through thicker, stronger attenuating tissue.
Regarding the a.-p. standard 6.5 X-rays were acquired on average for positioning (min/-
max: 2-29) and for the lateral standard 5 X-rays (min/max: 1-30). The a.-p. positioning
also includes the localization, whereas the lateral positioning was initialized from the
a.-p. standard and only involves the orientation. With the proposed automatic approach,
the number of positioning X-rays can be reduced to only 1 initial X-ray, assuming it is
acquired in the capture range of the algorithm.

6.2.2 Automatic C-arm positioning

Due to the flexible acquisition setup with the mobile C-arm, intraoperative X-rays with
annotated pose labels do not exist, and learning was based on simulations from retrospec-
tive CT scans. Real X-rays with k-wire and screws were acquired in a specimens study to
validate the transferability from simulated training to intraoperative X-rays.

Training data: The training data was simulated from 47 CT scans with spatial dimen-
sions of 256× 256 pixel. With a detector resolution of 30× 30 cm, this resulted in a squared
resolution of 1.17 mm. Detector rotation and translation were approximated by image
transformations, and translation along the beam direction was modeled by image scal-
ing. Thereby, it was assumed that at reduced image resolutions, non-isotropic radiation
patterns due to collimation and cone-beam radiation could be neglected. The proposed
pipeline was trained for 5 dof, including the three rotational parameters and the 2 trans-
lations in the detector plane. The network was trained to be invariant towards image
scaling for two reasons: 1) Translation along the beam direction is irrelevant since it does
not influence the projection plane. In clinical practice, the detector is positioned as close
to the patient as practical, constrained by patient anatomy or patient positioning. 2) The
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scale is influenced by the patient size and can only be measured concerning a reference
when a preoperative CT is available. However, a 3D scan is only acquired for complicated
scenarios that require additional 3D verification. To acquire accurate standard projections,
prediction of orientation and translation parallel to the detector plane is sufficient. To
ensure sufficient quality of the simulations, CT volumes with a spatial resolution of up to
1 mm were collected and preprocessed to prevent extremities from superposition.

Simulated experiments: On simulated data, not seen during training, the proposed
approach (dθa.−p. = 3.48± 2.48°, dθlateral = 4.83± 6.00°) was significantly more accurate
in beam direction than the 2-step direct intensity-based pose regression (dθa.−p. = 5.03±
3.97°, dθlateral = 9.60± 8.68°), while only requiring a single prediction step, which further
decreases the necessary radiation. The quantitative accuracies obtained with the fully
automatic pipeline almost reached the upper baseline of ground truth landmark-based
pose regression (dθa.−p. = 3.26± 1.83°, dθlateral = 4.36± 6.27°), indicating that the 28 CT
volumes underlying the training data simulation covered sufficient anatomical variation
to generalize to new unseen cases (Fig. 5.28). The translational offset with dtxa.−p. =

2.56 ± 1.85mm, dtya.−p. = 3.59 ± 7.95mm and dtxlateral = 3.56 ± 2.75mm, dtylateral =

3.32± 7.28mm was below the average vertebra height of 21.2− 31.1 mm (Kim et al., 2013),
so that the correct vertebra of interest was always centered in the projection. The patient-
specific evaluation revealed that the outliers resulted from specific patients (cf. Sec. 5.2.6,
Fig. 5.24). This concerned the case 6; for the a.-p. standard the image quality was decreased
due to intraabdominal shadowing air, and for the lateral standard, the bones of the
upper extremities superimposed the projection. Further, case 5 showed superposition
of abdominal air pockets in lateral projections, decreasing the performance. Excluding
these cases from the evaluation decreased the computed standard deviations to dθa.−p. =

2.96± 1.89°, dθlateral = 3.74± 2.63°. The out-of-distribution scenario with the overlaid
extremities is of little clinical relevance since the extremities are positioned outside the
field-of-view (FoV) before image acquisition. The outliers resulting from decreased image
contrast caused by superimposed air pockets can probably be addressed by increasing the
representation of these challenging conditions in the training data. The pose regression
performance was shown to be independent of the initial offset to the desired standard pose
(cf. Fig. 5.26), indicating that the vertebra segmentation and landmark detection modules
are not biased toward specific views. It was experimentally confirmed that an iterative
procedure does not decrease the deviations on average. Nonetheless, a 2-step procedure
with separate coarse and fine positioning, like proposed for the intensity-based pose
regression, could be transferred to the proposed approach and correct small pose offsets.
However, the computed performance with the 1-step approach already complies with the
derived clinical accuracy bound of dθ2D−3D

a.−p. = 5.96± 3.98°, dθ2D−3D
lateral = 4.70± 2.18°.
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Validation data: Validation data was acquired in a specimens study which allowed C-
arm acquisitions from arbitrary many poses. However, the cadaveric X-rays may include
scenarios not resembled in clinical data, e.g., intraabdominal air caused by cadaver decay,
projection artifacts caused by the cadaver bag, or extremities in the FoV caused by cadaver
placement.

The validation data consisted of acquisitions from the orbital projection sequence ac-
quired at high quality (30 s scan with 400 images). The benefit of the conducted acquisition
setup is that the pose annotations could be directly derived from the metadata of the
C-arm because the orbital and angular positioning angles are stored for each sequence. In
contrast, during manual C-arm positioning, iterative single images are acquired which
do not contain any pose reference and thus could not serve as validation data without an
external tracking system. The single images result from higher doses than the acquisitions
of the orbital projection sequence, improving the image contrast. Moreover, the single
images are internally post-processed for contrast enhancement. Integrating these internal
processing steps in the proposed pipeline and evaluation on single projection inputs could
improve the robustness further.

Specimens experiments: The proposed sequential framework for C-arm pose estima-
tion for standard projections was solely trained on simulated data, which uniquely
provides ground truth pose annotations. The domain gap to real X-rays containing
superimposed spinal implants was addressed by the proposed k-wire augmentation and
realistic screw simulation technique. It was demonstrated for the a.-p. and lateral standard
projection that the proposed sequential approach combined with the implant simulation
strategies increases accuracy, robustness, and generalization properties compared to direct
intensity-based pose regression. For validation, a large specimens study was performed
covering different stages of a real clinical procedure. Overall, the approach was capable
of generalizing from in silico data to ex vivo human cadaver data and was applicable to
different patient anatomies. Failure cases could be attributed to scenarios not seen during
training (cadaveric bags, air pocket superpositions caused by cadaveric decay, lateral arm
placement) and low image contrast. Out-of-distribution failure cases can be addressed by
further increasing the variety of the CT volumes used for training data generation. Further,
the simulated training data can be complemented in future work with real X-rays from
clinical routine to represent intraoperative artifacts additionally. In general, the lateral
standard projections showed lower image contrast than a.-p. standard projection, which
could be explained by the increased attenuation in lateral projections due to higher tissue
penetration depths (cf. Fig. 5.13). These failure cases could be addressed by acquiring
higher quality initial X-rays in the form of single projections with the help of collimation
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windows. Validation data acquisition with single images would require a different setup
for pose tracking, e.g., integrating an external tracking system.

Under ideal conditions, pose regression from manual reference annotations resulted
in performances that were in agreement with the derived clinical accuracy bound for
all specimens, except case 8 in the lateral standard (Fig. 5.29). The failure case could
be attributed to severe lumbar scoliosis that was not covered in the training data. The
performances for the a.-p. and lateral standard were comparable under ideal conditions,
indicating that the selected landmarks are equally suitable for both standards and in
between specimens without and with metal. This suggests that if the landmarks are
correctly detected, this enables successful subsequent pose regression.

Training on a pose subset of the real X-rays led to superior performances than with
ground truth landmarks. Since all validation specimens were present during training,
it was not ensured that the network only memorized from close-by examples. A leave-
one-out training on real X-rays did not improve the performance, indicating that failure
cases were not caused by the domain gap between simulated and real X-rays but rather
results from patient-specific anatomical conditions or artifacts that were not covered in
the training data (Fig. 5.19).

The visual intermediate landmark detection adds transparency to the decision process.
Since spinal neurosurgeons also use the detected features to identify correct standard
projections, clinical interpretability of the predictions is explicitly promoted, which
can improve the acceptability of deep learning algorithms in the medical environment.
Further, wrong region-of-interest (ROI) localization and landmark detection can indicate
potential failure cases of subsequent pose regression (cf. Fig. 5.22). This suggests that the
intermediate steps of landmark detection can be employed to estimate the confidence of
the final pose regression.

The proposed approach was designed to be seamlessly integrated into the clinical
workflow and has the potential to decrease the number of necessary acquisitions and
consequently the radiation dose for patients and clinical staff drastically. Furthermore,
automation can help to improve and standardize the quality of standard projections in
clinical practice.

Pipeline design: Different factors that influence the final performance of the pose
estimation were analyzed and are discussed in the following.
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Implant simulation: K-wires were augmented randomly in 2D and screws were
forward projected after realisitic modeling in 3D. Since k-wires are flexible and can occur
at arbitrary poses during the insertion process, a random 2D augmentation strategy was
selected instead of a realistic 3D modeling technique. Although the proposed 2D structure
augmentation method does not model divergent beam effects, it shows to increase the
robustness to highly attenuated, elongated structures effectively.
The proposed k-wire and implant simulation strategies were each applied to 1/3 of
the data such that 1/3 of the training data did not contain metal. Consequently, the
performance of the method with implant simulations performed at least as good as the
one without implant simulations on the real X-rays without metal (cf. Fig. 5.34). Some
cases without metal benefited from the metal simulation, especially case 0 and case 6 in the
lateral standard. These cases are out-of-distribution due to projection artifacts resulting
from the cadaver bag and upper extremity superposition. The metal augmentation shows
to increase the robustness for these cases. This was confirmed by the evaluation on real
X-rays with metal. Across all specimens, an increased pose offset was observed for the
approach without implant simulations that was significantly decreased by incorporating
the proposed k-wire and screw simulation into the training pipeline. The results highlight
the importance of the proposed implant simulation strategies to bridge the domain gap
from simulation-based training to intraoperative X-rays with spinal implants. Further, it
suggests that additional augmentation strategies, e.g., collimation windows, surgical tool
simulations, or random pixel dropout, can improve the performance for challenging cases
even further.

ROI localization: The ROI detection module reflects that standard projections are only
defined by the bone structures and not by the surrounding. By removing and replacing
individual modules of the proposed pipeline, it was experimentally confirmed on simu-
lated and real X-rays that the ROI detection module improves the overall performance
(Fig. 5.32). The ROI localization prevents confounding factors present in the surrounding
tissue or external surgical equipment from falsifying the prediction. It reflects the use of
collimators in real clinical procedures, and further range normalization within such ROIs
leads to better image contrast that benefits the subsequent task of landmark detection.
The experiments showed that a bounding box ROI detection performed superior to a
segmentation mask ROI detection for the real X-rays. The ROI detection via segmentation
masks depends on accurate vertebra segmentation to ensure that the relevant image
information for subsequent landmark detection still exists. In contrast, the bounding box
ROI detection tolerates minor segmentation inaccuracies without eliminating relevant
image features.
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Landmark detection: In consultation with a spinal neurosurgeon, the following
clinically meaningful anatomy-specific landmarks were selected: (1) endpoints of the
transverse and spinous processes, (2) pedicles, (3) vertebra base and cover plate. Ac-
cording to the importance analysis of the single landmark channel on simulated data
(Fig. 5.27), the endplates have the strongest influence on the accuracy because the 2D plates
should ideally project to a line that poses the strongest orientation constraint. This was
followed by the pedicles, which should project symmetrically for the a.-p. standard and
superimpose for the lateral standard. The low influence of the endpoints landmarks was
clinically expected since the transverse processes generally do not serve as a strict clinical
reference for standard projections. However, the analysis showed that they still have a
small beneficial effect, and the best overall performances were observed by combining all
proposed landmark types.

The landmark detection module clearly improved the performance compared to direct
intensity-based pose regression on simulated and real X-rays (Fig. 5.32). The results
suggest that guiding the decision process by explicit anatomical landmarks that spinal
neurosurgeons consider in diagnosis improves the generalization capabilities and the
reliability of the model, especially in challenging intraoperative settings.

6.2.3 Conclusion

The current manual C-arm positioning procedure under repeated acquisitions or even
continuous fluoroscopy is time-consuming and radiation-intense. In this thesis, a novel
automatic C-arm positioning pipeline was proposed which fulfills all the requirements
that were stated in the objectives.
Clinical applicability: The proposed approach directly works on the initial 2D projection,
it does not require any additional technical equipment or 3D image information, enabling
seamless clinical workflow integration.
Performance requirements: A large specimens study was performed to investigate the
performance of the proposed method in different intraoperative settings. To set the com-
puted performances into clinical context, different experiments were designed to assess
the acceptable variability of standard projections under manual positioning. The approach
showed strong performance that met the derived clinical accuracy bound for many cases.
Failure cases could be attributed to out-of-distribution scenarios and can be addressed in
the future by increasing the training data variation.
Benefits for the patient: Manual C-arm positioning can involve 1-30 X-ray acquisitions
(6 on average), whereas the proposed automatic approach improved the positioning
efficiency by only requiring a single initial X-ray in the capture range of the algorithm.
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Additionally, the positioning time can be decreased from 5− 474 s (68.8 s on average)
under iterative radiation to a runtime of 0.12 s with the automatic approach.
Benefits for the surgeon: Spinal neurosurgeons are exposed to the highest amount of
radiation among all trauma surgeons, which could be drastically decreased by the pro-
posed computer-assisted positioning support. The average execution time of 0.12 s would
drastically decrease the C-arm positioning and thereby the intervention time. Further,
automatic C-arm positioning can standardize the quality of acquired standard projections
and decrease the expertise dependence of results.
Representation of anatomical variability: The proposed approach is solely trained on
simulations from CT scans. Anatomical variation can be easily increased during training
by incorporating additional CT scans.
Addressing intraoperative requirements: Standard projections are used to monitor the
implant or wire position. This means that bone fragments are already relocated to their
initial position by inserting wires or implants. K-wire augmentation and realistic screw
simulation techniques were proposed to bridge the domain gap from simulations to intra-
operative X-rays with spinal implants.
Generalization: The developed pipeline is transferrable to other standard projections,
vertebra levels, or anatomies, as further discussed in future work.

6.2.4 Limitations and future work

The proposed pipeline for automatic C-arm positioning was evaluated in a specimens
study including 16 specimens. Observed failure cases can be addressed in future work
by increasing the anatomical variation during training by (1) collecting more high-
resolution isotropic CT volumes for training data simulation, (2) introducing additional
augmentation strategies, e.g., collimation window or random pixel dropout for improved
generalization properties, or (3) generalizing the proposed implant simulation strategies
to also model other surgical instruments present during spinal interventions.

Clinical translation of the proposed method would require further validation in differ-
ent scenarios and on different patient anatomies. Besides specimens studies, the collection
of intraoperative datasets for validation and training would be necessary to evaluate the
approach in real clinical conditions. This would require datasets with consistent projection
sequence and reconstructed volume. An intraoperative validation dataset would have
the advantage of only including clinically relevant artifacts. However, clinical datasets
will represent only a limited angular range which could be used for validation but will
introduce a bias in training. Integration of intraoperative datasets during training has the
potential to improve the landmark prediction in challenging scenarios.
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Further, it would be interesting to extend the approach for application on (1) other
vertebra levels and (2) other spinal standard projections, e.g., bull’s eye or oblique views,
(3) other anatomies. Application of the approach to arbitrary vertebra levels would
require localizing and classifying the respective vertebra in the initial X-ray. This could
be performed either automatically (Manbachi et al., 2018; Cina et al., 2021) or by manual
user input. Transfer to other anatomies would require the definition of corresponding
anatomy-specific relevant landmarks.

The intermediate step of visual landmark detection could be employed for confidence
estimation of pose regression for automatic outlier identification and warning. Further, it
can be analyzed if a multi-step approach that takes the predictions of the failed cases as
input can improve upon the initial performance.

Device integration of the proposed automatic positioning method would require a
robotic C-arm that is ideally designed to rotate around the isocenter for all rotational
degrees of freedom. Current C-arm devices require a C-arm base movement to achieve
pure gantry rotation perpendicular to the beam direction for the a.-p. projection and to
vary angulation for the lateral projection. Additionally, for the Cios Spin ® only the up
translation is motorized, and forward and side motion can only be performed manually.
Further, clinical integration of a robotized C-arm with automatic positioning would
require environmental collision handling, which was not in the scope of this thesis.

The proposed method can be integrated into the clinical workflow without additional
external hardware while reducing the time and dose consumption compared to the current
manual positioning procedure.
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7
Summary

Spinal fusion using pedicle screws is the gold standard technique to treat spinal insta-
bilities. Accurate screw placement is essential due to the proximity of the pedicle to the
spinal cord and the related complications in case of co-injury. However, a high level of
anatomical knowledge and expertise is required. Different image-assisted techniques
enable the visualization of the internal anatomy and facilitate pedicle screw insertion, e.g.,
fluoroscopy guidance or computed tomography (CT) navigation. This thesis proposes
two computer-assisted methods to support the surgeon during both techniques.
During fluoroscopy guidance, repeated anatomy-specific standard projections are ac-
quired. Standard projections are X-rays acquired from patient-specific C-arm poses and
allow assessing the fracture reduction and implant placement. In the current clinical
routine, the C-arm is positioned manually under iterative or continuous fluoroscopy,
involving a high radiation dose and time consumption. CT navigation gives an alternative
approach for image guidance of spinal interventions. It involves the acquisition of an
intraoperative CT in which screw trajectories are manually planned for subsequent 3D
navigation. Both image guidance techniques require manual interventions, which are
highly expert-dependent, require in-depth knowledge of the anatomy, understanding of
anatomical orientation, and increase the procedural time.
The methods developed in this thesis should support the surgeon with C-arm positioning
during fluoroscopy guidance and in pedicle screw planning during CT-navigation. Many
state of the art approaches that propose computer assistance for the manually performed
steps make restrictive prior assumptions about modeling or acquisition settings or require
external hardware that impedes clinical workflow integration and limits clinical appli-
cability until today. In this thesis, deep learning techniques are employed that learn the
anatomical variation from retrospective CT datasets and additional simulations comple-
mented with expert annotations without requiring any other technical equipment.
Specifically, for automatic screw planning, a method was developed that simulates screw
positions using surgical planning data in retrospective CT datasets and learns them in a
patch-based approach based on the image context; instead of relying on manually defined
geometric and structural properties or atlas-based modeling. The proposed approach via
an auxiliary segmentation task outperformed direct convolutional neural network-based
landmark regression. Further, it was integrated as a plugin into the open-source frame-
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work Medical Imaging Interaction Toolkit. The prototype implementation demonstrated
clinically acceptable screw plans in 96.2% of screw trajectories. The automatic planning
performance complied with the manual inter-rater variances, suggesting that the pro-
posed method can replace the current manual expert planning. In addition, the proposed
automatic planning method drastically increased the time efficiency by 8-fold (4.9 s per
vertebra level), which improved upon state of the art computing times.
For automatic C-arm positioning for standard projections, anatomical variations were
learned likewise from a retrospective diverse CT dataset using deep learning techniques.
The C-arm pose update was estimated directly from a first X-ray without the need for a
pre-operative CT or additional technical equipment, in contrast to many state of the art
approaches. Compared to the current manual, iterative positioning method, the proposed
approach would dramatically reduce radiation dose and time. Three different challenges
were addressed. Firstly, real X-rays with annotated pose labels do not exist due to the lack
of a constant reference frame in intraoperative fluoroscopy. Therefore, learning was based
on simulations generated from CT scans. The second challenge is related to the intraopera-
tive requirements, where surgical implants can be present and partly overlay the anatomy.
This was addressed by complementing the synthetic X-rays with simulated k-wires and
screws. To further achieve a transfer from simulated to real X-rays, the pipeline was
designed by mimicking the clinical decision-making processes of spinal neurosurgeons.
The inclusion of visible anatomical landmarks within the pipeline provides insights into
the decision process. It increases clinical interpretability, which addresses the third chal-
lenge of deep learning algorithms, often being considered as black boxes. Evaluated on a
large specimens study covering different steps of a real clinical procedure, the proposed
extensions increased accuracy and robustness compared to direct intensity-based pose
regression. The method can handle inter-patient anatomical variation and generalizes
from in silico to ex vivo human cadaver data. Failure cases could be related to specific
scenarios like the cadaver bag, cadaver decay, lateral arm superpositions, which could be
addressed by increasing the training data variety. Further clinical evaluation is necessary
to investigate the robustness and usability in an intraoperative setting. The presented
approach was evaluated for the fourth lumbar vertebra level and the anterior-posterior
and lateral standard projection. It can be transferred to other vertebra levels, standard
projections, or anatomies with available training data.
In conclusion, the two proposed computer-assistance systems for spinal surgery offer sup-
port for the surgeon during two distinct image-guided techniques. Seamless integration of
the proposed methods in the clinical workflow is facilitated. It can significantly decrease
the manual interaction and expertise-dependence of results, which is especially beneficial
for inexperienced surgeons, and also reduce the radiation exposure, and procedural time,
both for patients and clinical staff.
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8
Zusammenfassung

Die Wirbelfusion über Pedikelverschraubung ist der Goldstandard für die Behandlung
instabiler Wirbelsäulenerkrankungen. Durch die Nähe der Pedikel zum Rückenmark
und der damit verbundenen Komplikationen im Falle von Verletzungen ist eine genaue
Schraubenplatzierung essenziell, erfordert jedoch ein hohes Maß an anatomischem Wissen
und Erfahrung. Verschiedene bildgestützte Verfahren ermöglichen die Visualisierung
der inneren Anatomie und erleichtern die Schraubenplatzierung, z. B. Durchleuchtung
oder CT-Navigation. In dieser Arbeit werden zwei computergestützte Methoden zur
Unterstützung des Chirurgen bei beiden Verfahren vorgeschlagen.
Bei der Durchleuchtung werden wiederholt anatomiespezifische Standardprojektionen
aufgenommen. Standardprojektionen sind Röntgenbilder, die aus patientenspezifischen
C-Bogen Posen aufgenommen werden und die Beurteilung der Frakturreposition und
der Implantatplatzierung ermöglichen. In der derzeitigen klinischen Routine wird der
C-Bogen unter iterativer oder kontinuierlicher Durchleuchtung manuell positioniert, was
eine hohe Strahlendosis und einen hohen Zeitaufwand mit sich bringt. Die CT-Navigation
bietet einen alternativen Ansatz für die bildgestützte Navigation von Wirbelsäuleneingrif-
fen. Dabei wird intraoperativ ein CT aufgenommen, in dem die Schraubentrajektorien
für die anschließende 3D-Navigation manuell geplant werden. Beide bildgestützten Ver-
fahren erfordern manuelle Interventionen, die in hohem Maße expertenabhängig sind,
tiefe Kenntnisse der Anatomie und der anatomischen Ausrichtung erfordern und die
Verfahrensdauer verlängern.
Die in dieser Arbeit entwickelten Methoden sollen den Chirurgen bei der C-Bogen-
Positionierung während der Durchleuchtungsführung und bei der Pedikelschrauben-
planung während der CT-Navigation unterstützen. Viele aktuelle Ansätze, die eine
Computerunterstützung für die manuell ausgeführten Schritte vorschlagen, gehen von
restriktiven Annahmen bezüglich der Modellierung oder der Aufnahmetechnik aus oder
erfordern externe Hardware, was die Integration in den klinischen Arbeitsablauf erschw-
ert und die klinische Anwendbarkeit bis heute einschränkt. In dieser Arbeit werden
Deep Learning Techniken verwendet, die die anatomische Variation aus retrospektiven
CT Datensätzen und zusätzlichen Simulationen lernen, die durch Expertenannotationen
ergänzt werden, ohne dass weitere technische Geräte erforderlich sind.
Konkret wurde für die automatische Schraubenplanung eine Methode entwickelt, die
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die Schraubenpositionen anhand von chirurgischen Planungsdaten in retrospektiven
CT Datensätzen simuliert und in einem patchbasierten Ansatz auf der Grundlage des
Bildkontextes erlernt, anstelle von manuell definierten geometrischen und strukturellen
Eigenschaften oder atlasbasierter Modellierung. Der vorgeschlagene Ansatz über eine
zusätzliche Segmentierungsaufgabe zeigte genauere und robustere Performance als die di-
rekte convolutional neural network-basierte Landmarkenregression. Die Methode wurde
als Prototyp Plugin in das Open-Source-Framework Medical Imaging Interaction Toolkit
integriert und führte in 96.2% der Fälle zu klinisch akzeptablen Schraubenplänen. Die au-
tomatische Planungsleistung war vergleichbar mit der inter-rater Varianz unter manueller
Planung, sodass die vorgeschlagene Methode die derzeitige manuelle Expertenplanung er-
setzen kann. Darüber hinaus erhöhte die vorgeschlagene automatische Planungsmethode
die Zeiteffizienz drastisch um das 8-fache (4.9 s pro Wirbelebene), was eine Verbesserung
gegenüber dem Stand der Technik darstellt.
Für die automatische C-Bogen Positionierung für Standardprojektionen wurde eine Meth-
ode entwickelt, die anatomische Variationen ebenfalls aus einem retrospektiven diversen
CT-Datensatz mit Deep Learning Techniken lernt. Die gewünschte Positionierung des
C-Bogens wurde direkt aus einem ersten Röntgenbild geschätzt, ohne die Notwendigkeit
eines präoperatives CT oder zusätzlichen technischen Equipments, im Gegensatz zu vielen
anderen state of the art Ansätzen. Im Vergleich zum derzeitigen manuellen, iterativen Posi-
tionierungsverfahren würde der Ansatz die Strahlendosis und den Zeitaufwand drastisch
reduzieren. Dabei wurden drei verschiedene Herausforderungen angegangen. Erstens
gibt es keine echten Röntgenbilder mit annotierten Pose Labels, da es in der intraopera-
tiven Fluoroskopie keinen konstanten Referenzrahmen gibt. Daher basierte das Lernen
auf Simulationen, die anhand von CT Scans erstellt wurden. Die zweite Herausforderung
bezieht sich auf die intraoperativen Anforderungen, wo vorhandene chirurgische Im-
plantate die Anatomie teilweise überlagern können. Dieses Problem wurde durch die
Ergänzung der synthetischen Röntgenbilder mit simulierten K-Drähten und Schrauben
adressiert. Um einen Transfer von simulierten zu realen Röntgenbildern zu erreichen,
wurde die Pipeline so konzipiert, dass sie die klinischen Entscheidungsprozesse von Neu-
rochirurgen nachahmt. Die Einbeziehung sichtbarer anatomischer Orientierungspunkte
in die Pipeline bietet Einblicke in den Entscheidungsprozess. Sie erhöht die klinische
Interpretierbarkeit, was die dritte Herausforderung von Deep Learning Algorithmen
adressiert, die oft als Blackboxen betrachtet werden. Die erweiterte Methode wurde in
einer großen Studie evaluiert, wobei verschiedene Schritte eines realen klinischen Eingriffs
simuliert wurden. Im Vergleich zur direkten intensitätsbasierten Posenregression konnte
die Genauigkeit und Robustheit erhöht werden. Die Methode kann mit anatomischer
Variation umgehen und lässt sich von in silico auf ex vivo Daten menschlicher Kadaver über-
tragen. Fehler konnten auf spezifische Szenarien wie den Leichensack, den Leichenzerfall
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oder seitliche Armüberlagerungen zurückgeführt werden, was durch eine größere Vielfalt
an Trainingsdaten behoben werden könnte. Weitere klinische Evaluation ist erforderlich,
um die Robustheit und Anwendbarkeit in einem intraoperativen Umfeld zu untersuchen.
Der vorgestellte Ansatz wurde für den vierten Lendenwirbel und die anterior-posteriore
und laterale Standardprojektion evaluiert. Er kann auf andere Wirbelniveaus, Standard-
projektionen oder Anatomien übertragen werden, wenn entsprechende Trainingsdaten
zur Verfügung stehen.
Zusammenfassend bieten die beiden vorgeschlagenen Computer-Assistenzsysteme für
die Wirbelsäulenchirurgie eine Unterstützung für den Chirurgen während zwei unter-
schiedlicher bildgebender Verfahren. Die vorgeschlagenen Methoden können nahtlos in
den klinischen Arbeitsablauf integriert werden. Dadurch kann die manuelle Interaktion
und die Abhängigkeit von Expertenwissen erheblich verringert werden, was insbesondere
für unerfahrene Chirurgen von Vorteil ist. Auch die Strahlenbelastung und die Eingriffs-
dauer kann sowohl für Patienten als auch für das Klinikpersonal reduziert werden.
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(a) a.-p. standard

(b) lateral standard

Figure A.1: Vertebra-level specific evaluation of manual C-arm positioning efficiency.
The number of X-rays, time and required doses are shown for each specimen and standard
projection assessed for each rater separately.

138



Figure A.2: Quantitative evaluation of proposed pose regression approach on real X-
rays. Evaluation of the proposed pose regression method for the a.-p. standard and
lateral standard on real X-rays without / with metal with MAEdθ ± SDdθ indicated for
each specimen case 0 - case 12, k and s indicating the presences of k-wires or screws.
The proposed method shows improved generalization capabilities compared to direct
intensity-based regression. A.-p. figures taken and extended from Kausch et al. (2021b).
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(a) inter-rater

a.-p. standard lateral standard

µ± σ dθ
[°]

dα
[°]

dβ
[°]

tx
[mm]

tx
[mm]

dθ
[°]

dα
[°]

dβ
[°]

tx
[mm]

tx
[mm]

case 1
9.21
±

5.63

3.69
±

4.45

7.56
±

5.90

9.69
±

5.85

21.69
±

17.31

8.55
±

2.88

7.45
±

3.53

3.10
±

2.15

8.81
±

4.23

20.49
±

17.99

case 2
8.57
±

6.05

2.44
±

2.60

7.86
±

5.90

14.80
±

4.60

16.01
±

12.41

4.17
±

3.15

1.71
±

3.31

3.07
±

2.09

14.85
±

3.45

17.99
±

16.36

(b) intra-rater

a.-p. standard lateral standard

µ± σ dθ
[°]

dα
[°]

dβ
[°]

tx
[mm]

tx
[mm]

dθ
[°]

dα
[°]

dβ
[°]

tx
[mm]

tx
[mm]

case 2
4.79
±

4.74

1.68
±

1.15

4.12
±

4.99

13.38
±

11.25

20.49
±

14.62

3.51
±

4.20

2.17
±

3.88

1.97
±

2.62

11.30
±

10.15

18.81
±

12.56

Table A.1: Specimen-specific quantitative evaluation of inter-/intra-rater study for
manual C-arm positioning accuracy: (a) inter-rater, (b) intra-rater. Angular deviations
(dθ, dα, dβ) and detector plane translations (tx, ty) are reported for each specimen and
standard projection.
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Own Contributions

This chapter gives an overview of my contributions in distinction to team efforts.

Own share in data acquisition and data analysis

This thesis was written in the division of Medical Image Computing (MIC) headed by
Prof. Dr. Klaus Maier-Hein, who is the primary supervisor for this thesis. Throughout
the entire time of my thesis, I was closely collaborating with members of Prof. Dr. Klaus
Maier-Hein’s group, medical, as well as industrial partners.

The thesis is divided into two parts: 1. Pedicle screw planning for CT-navigated
spinal surgery, 2. C-arm positioning for fluoroscopy-guided spinal surgery. Part 1 was
conducted in close cooperation with the Neurosurgical Clinic in Heidelberg, whereas part
2 was funded by a Siemens cooperation project (L-18563, L-23577) and was carried out
in cooperation with Siemens Healthineers, the BG trauma center Ludwigshafen, and the
university hospital Marburg.

Own share in Data Acquisition.

1. Pedicle screw planning for CT-navigated spinal surgery: The surgical planning
data for training and evaluating the proposed method was gathered at the university
hospital Heidelberg (Sec. 4.1.1). The data was derived from a consecutive registry
of navigated spinal instrumentations (n=1660) performed from 01/2010-12/1018.
The dataset was retrospectively collected by PD Dr. med. Moritz Scherer. Expert
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annotations were obtained from the surgical planning data, which contained screw
planning preferences of several experts, depending on the surgeon who performed
the respective intervention. A randomly selected subset of the test dataset (24 cases,
130 screws) was additionally annotated by a second specialized spine surgeon, PD
Dr. med. Moritz Scherer, who performed manual screw planning twice at intervals
of 8 weeks without considering previous planning results. The screw masks that
were derived from the surgical planning data were created by myself, as described
in the corresponding chapter. Data preprocessing was performed by myself.
The surgical planning data for the post-operative screw accuracy experiment was col-
lected from the registry of post-operative contol CT for screw placement verification
between 02/2014 and 06/2016 by Arthur Gubian, who also retrospectively manually
aligned screw trajectories with the screw locations in the post-operative control
CTs using the commercial system Stryker Spinemap 3D (Sec. 5.1.4). Automatic rigid
registrations between navi and control CT were performed by Arthur Gubian using
Medical Imaging Interaction Toolkit (MITK). The data was prepared for evaluation by
myself.

2. C-arm positioning for fluoroscopy-guided spinal surgery: The high-resolution CTs
were collected by Prof. Dr. med. Andreas H. Mahnken from the university hospital
Marburg (Sec. 4.2.1). Reference standard projection planes were annotated by myself
and Dr. med. Maxim Privalov, validated by PD Dr. med. Sven Vetter from the
BG trauma center Ludwigshafen using the MITK Standard Plane Plugin with DRR
Preview developed by myself. All simulated data was generated by myself, relying
on the state of the art DRR simulation framework DeepDRR (Unberath et al., 2018b).
Reference 3D landmark annotations on a randomly selected subset of the CTs were
generated by myself in consultation with PD Dr. med. Sven Vetter and Jan Siad El
Barbari from the BG trauma center Ludwigshafen. Implant simulations and data
preprocessing was performed by myself.
The specimens studies for validation data acquisition were facilitated by Siemens
Healthineers, Erlangen and Rimasys, Köln (Sec. 4.2.2). The acquisitions without
metal were performed by Dr.-Ing. Holger Kunze, Dr. sc. hum. Sarina Thomas and
myself. The acquisitions with spinal implants, including the vertebra instrumenta-
tion, were performed by Dr. Björn Kreher and myself.
The Swipe App to measure the clinically acceptable deviations of standard projections
was developed by myself (Sec. 5.2.3). The study was conducted by PD Dr. med.
Sven Vetter, Dr. med. Maxim Privalov, and Jan Siad El Barbari from the BG trauma
center Ludwigshafen. The data was prepared for evaluation by myself.
The inter-/intra-rater study to assess the manual C-arm positioning accuracy and
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efficiency was designed by myself in consultation with Eric Mandelka from the
BG trauma center Ludwigshafen (Sec. 5.2.3). The specimens study was facilitated
by the BG trauma center Ludwigshafen and Rimasys, Köln. The manual C-arm
positioning was and conducted by PD Dr. med. Sven Vetter and Jan Siad El Barbari
and protocolled by Eric Mandelka and myself.

Own share in Data Analysis. All methods presented in this thesis were developed and
implemented by myself with regular input from the MIC group, in particular Prof. Dr.
Klaus Maier-Hein, Dr. sc. hum. Sarina Thomas and my external supervisor Dr.-Ing. Holger
Kunze. Regarding part (2), the automatic screw planning and evaluation was performed
by myself, whereas the qualitative assessment from a medical view was performed by PD
Dr. med. Moritz Scherer.
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