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1 | Introduction

Figure 1.1: First medical X-
ray of the hand of Röntgen’s
wife Anna Bertha Ludwig.

More than 125 years ago, on November 8, 1895, Wil-
helm Conrad Röntgen discovered the X-rays, which
shortly afterwards were used to X-ray a human being
for the first time. This famous image represents the
first radiography of a human being, which shows the
hand of Röntgen’s wife, Bertha, with all its bones clearly
visible. This fact marks the beginning of modern med-
ical imaging and radiology (see figure 1.1). The field
has been developing rapidly ever since; what back then
required long exposure times of several minutes can
now be acquired in milliseconds. What used to be sim-
ple two dimensional X-rays, has been extended by a
variety of other imaging modalities such as computed
tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET) or ultrasound (US)
and revolutionized modern medical care over the years.
Today, medical imaging plays a central role in medical
care and is used in a wide range of applications - from
the detection and diagnosis of diseases, over the classi-
fication and staging of progression, to the treatment of
a particular condition. Thanks to the technical nature
of radiology, another development was able to emerge
here very early on: The digital revolution.
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14 CHAPTER 1. INTRODUCTION

1.1 The Digital Revolution and Radiology

What still is a dream of the future in many areas of medical care has long been common
practice in radiology and nuclear medicine. Almost all imaging is already digitally
acquired and managed today. Moreover, the internationally widely used standard
for Digital Imaging and Communications in Medicine (DICOM) was published by the
National Electrical Manufacturers Association (NEMA) for the first time as early as
1985, which shows how early this field has dealt with the topics of digitization and
standardization [NEMA, 2021d]. This early and deeply integrated digitization, along
with the application of imaging in daily care, has led to an explosion in the amount of
data, which will become even more pronounced in the future [Dash et al., 2019]. Due
to the variety of modalities and protocols available in today’s scanners, a vast amount
of data can be collected for every single patient and in case of MRI or US this can even
be done without ionizing radiation, and thus presumably without involving any health
risks. This development should accommodate today’s Information Age enabling new
data-driven systems to take radiology to the next level. But does all this data really
already provide a lot of new information?

What at first seems like a major progress of digitization, still involves great challenges
on closer inspection. The huge amounts of existing data do not necessarily offer
additional value - the information it contains must first be extracted from the data
so that its potential can unfold. Although digital imaging has certainly enabled many
useful new tools and better image quality, the core of the interpretation still remains
on the human specialist, who based on expertise and experience derive the conclusions
from the images. This results in two hurdles for the evaluation of large volumes of data.

On the one hand, manual inspection limits the speed and scale at which data analysis
can be performed. Experts are rare, expensive and moreover, the practical tasks
involved with manual screening are often monotonous and repetitive, so the risk of hu-
man error increases [Bercovich and Javitt, 2018]. Furthermore, the findings are often
subjective due to differences in experience or skill and may well differ from expert to
expert. The limit for human interpretation of the data has been reached, resulting in
useful image data being generated but never actually utilized [Bercovich and Javitt,
2018]. On the other hand, a big challenge associated with manual interpretation has
been well summarized by Gillies et al.: "Images Are More than Pictures, They Are
Data" [Gillies et al., 2015]. In other words, besides the visual information accessible
to humans, there might be additional information hidden in images. Because these
connections are often very complex and subtle, human observers may simply not be
able to identify them. These hidden image features could lead to the discovery of even
deeper insights, possibly far beyond the current capabilities of manual interpretation.
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The solution to these hurdles seems obvious - computers could simply be used to
overcome them. Indeed, computers and algorithms have been utilized in medical
imaging for many decades, and most modern modalities would not be possible without
digital post-processing of acquired data or the computer-aided control of such complex
machines. While this has been very successful for the development of new imaging
technologies, analysis tools and the improvement of image quality, the situation is much
more difficult when it comes to the digital interpretation of images. Until recently,
images were analyzed using what are now called traditional image processing methods.
Here, mainly pixel-wise operations are performed which, for example, increase the
contrast, emphasize certain edges or reduce noise. Based on the resulting adjusted
data, which highlights only the important parts, rule-based systems were used to try
to derive new information from the images. Typical tasks of such systems are, for
example, object detection, segmentation, classification or image registration. Due to
the high complexity and variability of most medical image data, the capabilities of these
methods have always remained limited, falling far short of human experts. Generally,
not only in the medical context, it has proven very difficult to "teach computers to see"
and thus to understand the content of images. This has led to the rise of Computer
Vision (CV), an own field of research that addresses these challenges.
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1.2 Medical Image Computing and Machine Learning

For some time now, however, another technique has been in the focus of CV, which
seems to be better suited for the analysis of images than the procedure with the
hand-crafted adjustments and rules - which is machine learning (ML).

Put simply, the difference here is that instead of specifying concrete processing steps
and decision rules, computer models learn from sample data. This applies in particular
to deep learning (DL), a ML method that has revolutionized the field since around
2012. Since then, not only many of the organized international scientific competitions
could be won by DL-based approaches, but also the best results of previous years have
been significantly outperformed.

Most of the prediction models are trained on the basis of training data, which already
includes the solution for the respective problem by annotations (ground truth). In
this process, all available training samples are iteratively cycled through to produce
predictions of the computer model. If this prediction is wrong, the model gets auto-
matically adjusted in such a way that the probability of the next prediction with the
same sample is higher to be correct. This process of repeatedly going through the
data and optimizing the model is called "training" and, optimally, leads to better and
better predictions as the training proceeds.

DL uses models created by concatenating millions of artificial neurons arranged
in layers to form artificial neural networks (ANNs) [Yegnanarayana, 2009]. Such
models have so many parameters that even very complex problems that previous
methods were unable to cope with, can be tackled successfully. Even though some
of the basic techniques of DL had already been known for decades, it was mainly
the transfer of the computations to new hardware in the form of graphics cards
and their Graphics Processing Units (GPUs) that enabled a dramatic acceleration
of the training process and thus initiated the current boom in artificial intelligence (AI).

It didn’t take long for the new techniques to be applied to medical imaging, which
also led to vast advances in image analysis. Especially, tasks like segmentation, object
recognition and classification could be automated much more accurately. Geoffrey
Hinton, a well-known scientists in the field of artificial intelligence, even went so far as
making the following provocative statement in 2017:

„It’s just completely obvious that in five years deep learning is going to do
better than radiologists, it might be ten years.“ [Mukherjee, 2017]
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During a lecture at a hospital, he even recommended: "They should stop training radi-
ologists now." [Mukherjee, 2017] But are algorithms now really better at interpreting
images than radiologists?

Certainly not. However, this technology truly offers great potential to extract hidden
information from images and to make it available to radiologists in a supportive way,
allowing them to better cope with the large amounts of data and using the additional
information to make better medical decisions. For example, it might be possible to
assess straight from the image whether an abnormal finding is a benign or malignant
alteration - which would save patients from psychological and physical health risks
as well as health care systems from costs by avoiding unnecessary biopsies [Jäger
et al., 2017]. This is just one application example among many where new automated
analysis techniques could help improve medical care.
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1.3 Opportunities

In general, the areas of application with the greatest potential can be grouped as
follows [Kleesiek et al., 2020]:

1.3.1 Detection and Diagnosis

ML disciplines, such as classification, detection, segmentation or registration could
be used to automatically identify suspicious areas in images and bring them to the
attention of the specialist. Additionally, they could be used to classify cases and thus
help in making a diagnosis. The larger the data sets become, the more difficult it
will be to sift through them manually. An automatic pre-analysis for anomalies - or a
double-check of the manually identified areas - could become very important here.

1.3.2 Characterization and Personal Medicine

In the future, personalized medicine will become increasingly important for the suc-
cessful treatment of highly individual disease profiles. This involves efforts to find
tailored treatment strategies for very small groups of patients through increasingly
fine-tuned characterization of the medical conditions. For this purpose, along with
genetic markers, imaging-generated biomarkers could also help to enable this fine
subdivision of patient cohorts to facilitate highly individualized therapies.

1.3.3 Monitoring

For many indications, especially for cancer treatment, it is important to monitor the
development of the disease on a regular basis. Medical image analysis can support
this process, for example, by providing more comprehensive and better surveying
tools to evaluate the progression or the effectiveness of a treatment [Kickingereder
et al., 2019]. Consequently, for example, a non-response to therapy could be identified
earlier, and thus adjusted more quickly.

1.3.4 Prognosis and Prediction

Imaging could also contribute to the prediction of appropriate and promising therapies.
Models could be trained to learn from the experience of many previous treatments to
allow an assessment of success for a particular patient even before they are applied.
Predictions could also be made for the likely progression of the disease, like tumor
growth, to provide a better basis for decision-making by physicians [Petersen et al.,
2019].
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1.3.5 Knowledge Transfer, Costs and Standardization

Beyond the benefits that could translate directly to better medical treatment, there are
also opportunities in other sectors. Faster, better, and more preventive medical care
could for example also lead to cost savings for health systems. By providing objective
information based on algorithms, the current state of knowledge and technology could
be transferred much more easily, quickly and cost-effectively to areas of the world
where access to it is currently not so easy. And last but not least, this could lead to a
higher standardization for medicine, and especially the technical management of it,
which again would facilitate the development of new methods and a higher level of
care in general.
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1.4 Open Challenges

Now that the versatile potential of this promising technology has been presented, the
question is if and how this can actually be leveraged. What are currently the biggest
obstacles and hurdles affecting the research and development of these methods?

First, the advancement of the methods themselves - for example, the architecture of
the networks, new layers, or other training approaches - is required to achieve the
necessary safety and interpretability of the predictions for their application in medical
care. The lack of understanding of how these methods finally come to their prediction is
a major problem for medicine, since physicians are ultimately responsible for their pa-
tients and therefore may not simply rely on an automatic prediction, which they cannot
comprehend and from where they cannot rely on the confidence interval. DL models
are often black boxes that deliver reliable results, as statistical analyses show, but the
way in which these decisions are made is extremely hard to track (Black Box Problem).

Second, it has been shown that existing methods can already provide very good
results when adequate data is available. As described earlier, these models require a
huge number of parameters to handle such complex issues. Although this gives the
necessary space to be able to map and learn even very sophisticated relationships,
it also means that there is a lot of space to just learn the training cases "by heart".
This problem, which is called overfitting, means that an algorithm does not learn to
solve the given task, but simply ends up recalling the given training examples. If this
model is now confronted with new cases, it will not be able to process them correctly.
To address this problem, it often takes large amounts of sample data to prevent such
memorization and overfitting effects. Furthermore, the number of available examples
representing the different characteristics of the task to be learned should be about
the same in order to avoid a class imbalance. As a result, even for the rather rare
variants, a considerable number of examples are needed, which are often difficult to
find. At the latest, when it comes to personalized medicine with its tiny sample sizes,
the challenges cumulate with the required data volumes.

So far, the methods and associated models are currently developed and trained mostly
by data scientists working at universities, institutes or private companies. For this
purpose, if the data is not generated and therefore available at the own institution,
collaborations are formed with partners which have at least small volumes of data in
question available. Then, everything is usually pooled from the originating sites in
order to train a model centrally, which means that data owners have to give the data
out of their control, what in turn results in both legal and incentive hurdles.
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Many ML models are still trained "supervised", which means that the ground truth
must be provided. Since the creation of medical annotations can often only be done by
experts, the process is quite expensive and the data is therefore valuable. Moreover,
medical data - especially images - are highly sensitive personal records, which are
subject to strict data protection requirements for good reasons. The sharing of data
can therefore also cause legal challenges, as especially within the European Union (EU)
the General Data Protection Regulation (GDPR) imposes particularly strict guidelines
in this regard. Anonymization cannot be easily achieved with images either, since
many of the image features remain highly individual. While in the past the removal of
personal metadata from images appeared to be an effective way for anonymization,
later techniques have shown that a person can easily be identifiable by the raw image
information alone. The learning from this is that what is considered sufficiently
anonymous today may not be so tomorrow.[Floca, 2014, Rocher et al., 2019, Ravindra
and Grama, 2021]

Training and evaluation of new methods has so far typically been based on scientific
competitions, which are normally organized by international conferences and which
provide the corresponding datasets. The retention of a subset of the total dataset,
which is not made available to the participants, allows the evaluation of submitted
methods and their associated trained models at the end of the competition. Hold-out
testing data ensures that the evaluation is based on previously unpublished data,
which should provide a more realistic picture of the method’s performance. However,
this approach also has disadvantages in terms of the significance of the results.

While such competitions provide a good comparability and overview for evaluating
the alleged state of the art, they do not necessarily reveal a lot about how well these
methods perform in real clinical practice. This is due to small, homogeneous datasets
that often originate from a single source only [Maier-Hein et al., 2018], which does
not reflect the heterogeneity of data in clinical practice. The methods can then be
extremely fine-tuned to work well with the given data, which in turn results in very
good evaluation results, being this typical overfitting problem. At first glance, the
excellent scores achieved at these contests suggest that many of the existing problems
have already been solved - in practice, however, the picture is quite different. This
problem has already been addressed by providing more diverse datasets for more
realistic simulations - at least, the test data used for evaluation should have different
characteristics than the training data in order to allow a better assessment. This is not
possible for many of the given tasks, though, because of the unavailability of matching
public data.
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1.5 Approach

One of the greatest problems in developing predictive and robust models in medical
imaging is the lack of high-quality data and, in particular, its collection in a central
location. This is important because this data does exist - it’s merely not accessible.

1.5.1 How to overcome these challenges?

Many hospitals, and particularly university hospitals, have accumulated a lot of
high-quality data through their daily work with imaging. Consequently, reducing or
eliminating the technical and legal barriers for collaborations between data scientists
and clinicians to make use of this data for research could be a solution to such
challenges. The main research question addressed in this thesis is therefore:

Is it possible to shift both the evaluation and the training of these methods to
the clinics, instead of fetching the data?

In other words, can the algorithms be shared with hospitals instead of collecting the
data at research institutes? By ensuring that data owners never have to disclose
their information and thus always retain control over it, data protection and privacy
requirements are significantly lower. Furthermore, the importance and impact of
this research could be increased through much larger, multi-center studies, which
will be an incentive for the researchers involved. The vision of such a decentralized
data science for medical imaging holds numerous advantages. Besides a realistic
evaluation of research results in everyday clinical life, this could also accelerate the
translation from bench to bedside, as the technology is already established in the
clinical environment. The required strong collaboration of data and medical experts
could also improve both sides’ understanding of the issues and thus lead to more
interdisciplinary knowledge.

What is needed to make this feasible?
The highly sophisticated and specialized technical nature of both medical imaging and
the data-driven analysis of it makes an on-site decentralized technical infrastructure
necessary. This infrastructure should provide the hospitals with the necessary comput-
ing hardware, interfaces to the local data systems and also an execution environment
for algorithms. Also, more standards for data processing, such as defined processing
pipelines, need to be developed.
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Since this is a rather novel topic and there was not much preliminary work to build
on at the time of launch, a step-by-step and iterative approach was taken in order
to be able to assess experience and actual requirements of such a system. This was
achieved by leveraging the existing network of several German university hospitals,
which have joined forces within the German Cancer Consortium (DKTK) [DKTK, 2021].
First, the departments of radiology and nuclear medicine of the DKTK partner sites
have linked together through the Joint Imaging Platform (JIP) project, which aims to
strengthen the collaboration between the various sites and to implement and establish
the idea of such a decentralized and distributed infrastructure for medical imaging.

1.5.2 Objectives

The main goal of this work was the realization of a distributed digital infrastructure
for medical imaging, which allows the evaluation of the latest research findings in
real clinical environments. Here, the high-quality data available at hospitals should
become accessible for scientific research without endangering the privacy of the
individual-related data by always leaving the data in the hands of the owners. Multi-
center radiological studies have a special focus here, as the collaboration of several
centers is challenging but can also have great advantages for research. The resulting
large and heterogeneous datasets should enable more realistic evaluations with data
from real-world clinical practice.

The technical implementation of this infrastructure is supposed to facilitate this pro-
cess by establishing uniform hardware setups, interfaces and processing procedures.
For this purpose, an infrastructure software should be developed, which is open-source
an such available to the whole community. The basic pillars of the targeted system,
such as servers, technology stack and applications, should provide a solution for the
operation of local platform instances and allow new research outcomes to be applied,
evaluated and enhanced directly on-site of hospitals and with access to their local
datasets. So besides the technical implementation, the goal was also to establish and
maintain operational instances of this infrastructure within the German university
clinics and to support concrete research projects.

Since science and the domain in general is evolving rapidly and technical demands
are constantly changing, the goal was not to create a dedicated project specific in-
frastructure, but rather to provide a flexible, extensible, and customizable framework.
Characteristics such as modularity, extensibility, and reusability should ensure that
the software can be used for many future research projects and use cases, paving the
way for collaboration and standardization within the community and also providing
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a realistic basis for federated approaches. In general, it should provide everything
needed to build project-specific software platforms while ensuring that the different
platforms remain compatible with each other. This software framework is called
Kaapana and will be referenced as such in the following.

1.5.3 Requirements

The requirements for such an infrastructure were elaborated in collaboration with
the medical experts of the JIP project. For this purpose, all 21 radiology and nuclear
medicine departments of the clinical DKTK partner sites were involved and asked
[Scherer et al., 2020b]. This resulted in a rather heterogeneous landscape in terms
of patient numbers, primary modalities and local IT systems in the different hospi-
tals. Two main use cases for such a system emerged from the partner consultations.
First, the need to enable and support multicenter imaging studies with access to
larger numbers of cases for retrospective data analysis emerged and to facilitate
collaboration in the field of medical imaging in general. Secondly, the focus was on
improved integration of the existing data processing, annotation and sharing tools into
the clinical environment. In particular, machine learning technologies and federated
data analytics were of interest. These technical, organizational, and legal demands of
our medical partners, along with the expectations and requests of the data-science
community, were translated into the following requirements:

Integrability: The fundamental principle of local execution of analytical methods as
an enhancement of the existing clinical infrastructure is central. Consequently, the
platform should be integrated tightly with the existing local clinical systems and the
user interaction should be as close as possible to the established clinical workflows and
tools. Therefore, communication with the clinical IT systems, especially the Picture
Archiving and Communication System (PACS), is very important. It should be possible
to transfer images directly from the hospital’s imaging archive into the platform.
Running software within protected clinical IT environments requires the servers to be
isolated and no external connections should be necessary during daily operation.

Data accessibility: Data analysis should never interfere with the original image data
of the clinic and should only be executed on redundantly stored copies on the server
located at the respective site. In order to achieve high compatibility between different
hospitals and their systems, the widely established standard DICOM should be utilized
whenever possible. This means that besides the images themselves, also processing
results like segmentations or Radiomics features should be converted and stored as
DICOM files. Since dealing with sensitive data requires strict data access control,
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there should be a user, role and authentication service, which integrates well with
locally established identity providers.

Algorithmic accessibility: The infrastructure should foster and facilitate the spread
and application of cutting-edge methods from research with clinical partners and
within the community. This requires a versatile and efficient integration path for
in-house developments to make them compatible with the framework, supporting
arbitrary processing steps, using different programming languages and input/output
formats etc. Once integrated, these algorithms or extensions should also be easily
shareable between users and instances of Kaapana compatible platforms.

Data sovereignty: Although the infrastructure is intended to be used for the collec-
tive analysis of data from different participating sites, data sovereignty must remain
exclusively with the data owners. The design does not foresee the transmission of any
imaging data for now, but should allow this if it is explicitly desired and needed for a
project. However, for some use cases, for example Federated Learning (FL), it may be
useful and necessary to share certain bits of information. This is less about the sharing
of imaging data, but rather aggregated analysis results or trained machine learning
models. Therefore, the framework should also provide solutions to enable secure and
controlled exchange of those.

Data exploration and cohort specification: Since analysis methods are usually
designed for very specific types of input data, exploration and filtering of an existing
archive is very important. The available data should be presented in a visually struc-
tured way, to quickly get an overview of image properties such as modality, protocol,
examined body parts or patient characteristics. This information should then also
be used to filter the available data according to specific search criteria in order to
pass the resulting cohort to an analysis pipeline for processing. In addition to the
metadata, a way to visually view the medical images and their annotations should also
be provided.

Maintenance and future-proofness: As decentralized systems require multiple
individually operated instances to be maintained, the installation and maintenance
must be possible by non specialized technical staff of each site. Where possible, already
established and standardized processes for server setup and maintenance from other
areas should be utilized. For high reusability, a modular design is desirable. Here,
high scalability should also be considered in order to be able to process large amounts
of data in parallel. Since a future linking of the different instances could be desired,
this should also be technologically possible.
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1.6 Outline

The thesis begins with a review of related work in the field and its approaches, capabili-
ties, and limitations. As decentralized infrastructure for medical imaging is a relatively
new field of research, the preliminary academic groundwork is limited. For this reason,
publications from the separate requirement domains of Integrability, Data Accessibility,
Algorithmic Accessibility, Data Sovereignty, and Data Exploration/Specification are
reviewed individually first. Afterwards, existing solutions for comparable imaging
platforms are also examined and outlined. The following methods chapter first explains
the main concept of the infrastructure, its components and the integration with the
hospital IT landscape. It also discusses the stakeholders and exemplary use cases that
highlight the necessary capabilities of the framework. The realization of this is then
described through the explanation of the technology stack and the implementation and
workings of the components themselves. By introducing the core building blocks, the
various functional sections of the platform are presented. At the end of this chapter,
details on server setup and installation as well as the designed build system and
continuous integration are given. The following chapter of the experiments and results,
first addresses the evaluation of requirements. The DKTK and RACOON consortia
and their respective infrastructure configurations are also described at this point,
since they serve as evaluation environments for the developed software. Then, the
use cases are examined for their feasibility on the basis of concrete applications and
implementations. In the discussion, the results are reviewed critically and deficiencies
or suggestions for improvement are made. Here, particular attention is paid to the
realization of data accessibility and exploration as well as algorithmic accessibility,
server management and security. Finally, the approach and what has been achieved
are briefly summarized and an outlook is given on possible future developments.



2 | Related Work

There are already numerous software projects designed to enable and facilitate re-
search on and with medical images. In fact, many of the sub-requirements of this work
already have a wide range of established prior work that has been considered for the
development of Kaapana. The challenge here was to adapt already established and
successful technologies into the infrastructure in such a way that they work and com-
municate natively with each other, and also to combine tools from different domains
such as imaging and the field of deep learning. Thus, for the required tasks, the wheel
should not be reinvented and everything re-implemented, but rather existing tools
from the community should be reused as much as possible. Since this is currently a
relatively new but also very rapidly advancing field of research, it is very difficult to
give a conclusive overview of all projects and their development status at a given time.
For this review, the various requirement categories are first addressed individually
with related work, followed by an overview of existing infrastructure/platform efforts
that have a similar mission.
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2.1 Integrability

The challenge with integrating data processing into hospitals stems mainly from the
fact that the two communities of everyday clinical practice and data scientists operate
separately from each other.

In the clinical context, DICOM is primarily used for the management and transmission
of imaging data. It is an open standard which has been developed since the 1980s
and, besides the definition for the raw image information, also defines metadata,
e.g. regarding the data acquisition or patient. The great advantage here is that this
standard is internationally widely used and supported by practically every medical
imaging manufacturer. As such, this is the format produced by the scanners and is
also used for storage in the clinical PACS. Consequently, for successful integration
into hospitals, this standard should be supported so that images can be transferred
directly from clinical systems to the processing infrastructure.

In this context, the RSNA MIRC Clinical Trials Processor (CTP) [Erickson et al.,
2014, RSNA MIRC, 2021] was developed as a software project that facilitates typical
requirements for the handling of imaging data in clinical studies. By opening a DICOM
receiver and enabling simple processing pipelines, the CTP allows images to be re-
ceived from clinical systems and to be further processed by forwarding, anonymization
or other processing steps.

The DICOM Toolkit (DCMTK) [Eichelberg et al., 2004, OFFIS, 2021a] also offers a
comprehensive collection of tools, which allow, for example, the sending of DICOM
files, the extraction of metadata or the generation of new DICOM objects. Strict
adherence to the standard ensures that the resulting files are also compatible with
other systems, such as the clinical PACS.
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2.2 Data Accessibility

For redundant data storage of medical images, research PACS are usually used, which
are operated in parallel to the clinical production systems. For this purpose, open
and free software projects such as Orthanc [Jodogne, 2018], ConQuest [Conquest,
2021] or Dcm4che [Gunter Zeilinger, 2021] are often used, which have already been
developed and used for many years. While these projects mainly focus on the storage
and management of DICOM-based data, there are also projects such as XNAT [Herrick
et al., 2016] which, apart from supporting arbitrary file formats, also have some tools
for the automatic processing of data. These projects from the community offer full
support of the DICOM interfaces and enable storing and querying of the datasets.

Although DICOM offers many advantages for clinical use, vendor-specific customiza-
tions and enhancements over the years made handling this data more difficult for
data scientists. This, among other factors, has led to the prevalence of other formats
in medical imaging data science, such as the Neuroimaging Informatics Technology
Initiative (NIfTI) [Initiative, 2011] and the "nearly raw raster data" (Nrrd) [teem, 2021]
file formats. The ability to convert clinical data from DICOM to these formats and
vice versa is therefore essential for data processing. For the conversion of DICOM,
software toolkits and libraries such as the Medical Imaging Interaction Toolkit (MITK)
[Wolf et al., 2005], Pydicom [Darcy Mason, 2021] or NiBabel [nipy.org, 2021] offer
versatile possibilities to transform the data into desired formats.

For more exotic, less image-focused use cases, such as extraction of DICOM metadata,
wrapped Portable Document Format (PDF) or Extensible Markup Language (XML) files,
DCMTK offers many solutions. Existing projects are also available for the opposite
conversion of processing results. DICOM for Quantitative Imaging (dcmqi) [Fedorov
et al., 2016, Quantitative Image Informatics for Cancer Research, 2021] provides
various libraries to facilitate the generation of standard-compliant DICOM Segmenta-
tion Objects (DICOM SEG) [NEMA, 2021a] from NIfTI masks and also the creation of
DICOM Structured Reporting (DICOM SR) [NEMA, 2021e].
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2.3 Algorithmic Accessibility

Standardization is also helpful for the applicability and shareability of new methods.
Existing implementations of analysis methods for medical image processing come
in a wide variety of programming languages and frameworks. This often requires
very specific execution environments that meet the necessary dependencies or even
operating system requirements, which often makes sharing and distribution difficult.
Differing implementations also lead to less comparable results, as for example is
the case with radiomics-based imaging biomarkers. If the corresponding features
were not implemented uniformly across different projects, the characteristics of the
extracted features may also differ. For this case, the image biomarker standardisation
initiative (IBSI) created standards that should avoid these problems and allow uniform
results [Zwanenburg et al., 2020]. These standards have already been adopted, in
projects such as MITK Phenotyping [Götz et al., 2019] or PyRadiomics [van Griethuysen
et al., 2017], which should produce the same results with different implementations
and thus increase accessibility.

Similarly, in the context of DL, certain frameworks have emerged to facilitate build-
ing and working with the complex models. Tensorflow [Developers, 2021], Pytorch
(lightning) [Falcon et al., 2020, Paszke et al., 2019] or Keras [Chollet et al., 2015]
are prominent examples that unify core tasks like model architecture or the training
process for DL. Although the frameworks take different approaches for the implemen-
tation of DL networks, efforts such as the Open Neural Network Exchange (ONNX) [Bai
et al., 2019] attempt to establish interoperability that allows models to be exchanged
between frameworks. This allows, for example, the sharing of trained models of the
latest research findings, and thus also increases the accessibility of them. However,
this interoperability is not yet at a level where support for a single framework is
sufficient, and the fact that the research community uses different ones implies that
support for most of them should be feasible.
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2.4 Data Sovereignty

The idea of sharing the analysis methods and algorithms rather than pooling the
data has been around for several years. Especially in the medical context, where
ethical-legal aspects of the data are of great importance, this approach was considered
early on.

With DataSHIELD [Gaye et al., 2014], an infrastructure was presented in 2014 that was
dedicated to this topic and realized the decentralized statistical analysis of health data.
In this case, the analysis was limited to a statistical analysis of 96 harmonized variables
conducted at several sites. With euroCAT [Deist et al., 2017], an infrastructure was
presented that not only distributes a statistical analysis, but also trains models of a
support vector machine (SVM) for the prediction of post-radiotherapy dyspnea at the
sites. These models were evaluated using a five-fold cross-validation by using data
from four sites for training and data from a fifth for testing. The integration of clinical
data into the infrastructure is problematic here, since the approaches presented so far
have involved manually preparing the input data at each site and making it available
for analyses via prepared spreadsheets, for example.

This has been addressed by KETOS [Gruendner et al., 2019], another infrastructure for
decentralized analysis of statistical data, by integrating the Health Level 7 (HL7) Fast
Healthcare Interoperability Resources (FHIR) [HL7, 2019] to provide a standardized
interface to query patient data. Furthermore, additional options for statistical analysis
were added, such as Python and Jupyter Notebooks [Kluyver et al., 2016], in addition
to DataSHIELD. The underlying technology used here includes Docker containers
[Merkel, 2014], which enable reproducible data analysis and development environ-
ments. This concept has been enhanced in the Personal Health Train (PHT) [van Soest
et al., 2018] by transferring such containers as "trains" from site to site to perform
an analysis or to train a model, which also enables more sophisticated distributed
learning approaches, where a model is continuously trained by passing it on.

The principle of Findable, Accessible, Interoperable and Reusable (FAIR) [Wilkinson
et al., 2016] data is central to this process by preparing the input data accordingly.
The PHT has already been used to perform several analyses [Deist et al., 2020, Deist
et al., 2017, van Soest et al., 2018] in a distributed manner - this also includes an
imaging-focused publication using Radiomics features [Shi et al., 2019]. Important
here is that all of these projects and infrastructure deployments used textual data
only for statistical analysis or the training of ML models. The use of raw data, as is
necessary for medical image processing, is not the focus of any of these approaches so
far.
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2.5 Data Exploration and Cohort Specification

The concepts presented so far have mostly avoided the challenges of data exploration
and selection by involving manual preparation of the experiment and associated
curation and preprocessing of the data. This is suboptimal since it is time-consuming
and requires a good understanding of the available data in order to plan experiments
and develop new ideas. However, support for FHIR in KETOS enables standardized
retrieval of data from clinical systems and the subsequent translation of received
data into the OMOP Common Data Model enables [OHDSI, 2021] consistent access to
information for analytical methods.

Since this thesis addresses imaging, where the DICOM Information Model [NEMA,
2021b] provides a standard with rich meta-information, it should be utilized for
exploration and data selection. For the viewing of images, segmentations and reports,
the Open Health Imaging Foundation (OHIF) [Ziegler et al., 2020] has published an
open web-based viewer [Urban et al., 2017], which is already widely used in the
community. By directly interfacing with a (research) PACS via DICOMweb [Genereaux
et al., 2018], data can be visualized easily and quickly within a browser. However,
data exploration for ML requires not only image visualization but also an overview of
the available datasets providing information about image properties such as modality,
examined body regions, or series descriptions. PACS typically use relational databases
for metadata management and are usually limited to a small subset of the available
information [Rascovsky et al., 2012]. The established open PACS from the community
such as Dcm4chee or Orthanc have very limited user interfaces and offer few options
to export the specified data selection.

To improve the searchability of the data, approaches have been developed to store
the entire metadata in a "Not only SQL" (noSQL) database [Rascovsky et al., 2012],
or even to convert it into an ontology, which can then be searched using the SPARQL
Protocol And RDF Query Language (SPARQL) [Brunnbauer, 2013, VAN SOEST et al.,
2014], for example. Where these solutions provide a better way to manage large
amounts of images by using query languages to specify the desired metadata of a
cohort, they still lack a visual way of data exploration. It must be known in advance
what kind of data is available and how it can be characterized. The National Cancer
Institute (NCI) Imaging Data Commons (IDC) [Fedorov et al., 2021], on the other
hand, developed a portal based on Apache Solr [Apache, 2021c] and Google BigQuery
[Google, 2021] that also enables visual and interactive cohort selection. This portal is
well suited for data access of large online image databases such as the Cancer Imaging
Archive (TCIA), but cannot be used for local on-premise setups due to its dependency
on the Google Cloud Platform (GCP) [Google, 2021]. The preliminary work that was
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ultimately used as the basis for Kaapana was presented by Goch et al. [Goch et al.,
2018] and uses Elasticsearch (ES) as a database in combination with Kibana [Elastic,
2021] as a visualization tool to visualize the data sets. However, the export of the data
defined by the queries has not been addressed here.
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2.6 Existing Imaging Platforms

Projects that aim to combine these features to realize an infrastructure like the one
envisioned in this thesis are rather rare. At the forefront are commercial products
from major vendors such as Philips, Siemens and Nvidia. With Teamplay , Siemens
Healthineers has a hybrid solution that uses a teamplay receiver within the hospital
IT to transfer the relevant images to the "teamplay digital health platform", which is
centrally hosted in a cloud [Healthineers, 2020]. In this central instance, proprietary
so-called AI-Rad Companion Services then enable modern ML-based analysis methods
on the images, followed by transferring the results back to the clinic. In contrast,
Philips IntelliSpace Discovery [Philips, 2019] can be operated locally on-premise and,
in addition to data visualization, also has a development environment, a runtime
environment and a data management system, and thus appears to be very similar
in structure to the infrastructure presented in this thesis. Furthermore, there is the
possibility to share methods and algorithms with the community via the IntelliSpace
Discovery Store. Since these are commercial products, the information is based only
on manufacturers’ brochures and is therefore difficult to verify and compare.

Clara Imaging [NVIDIA, 2019, NVIDIA, 2018] is also a closed-source clinical imaging
framework from Nvidia, but so far it is free and has not been commercialized. Through
the cooperation of several open-source projects from the community, such as the MITK
Nvidia Annotation Plugin [MITK, 2019], the Slicer AI-assisted segmentation extension
[Lasso, 2019] or OHIF [NVIDIA, 2020], the framework is research-oriented, where
it is also active in research consortia such as Monai [MONAI initiative, 2021]. With
“AI-Assisted Image Labeling”, “AI Model Training” and “AI inference”, NVIDIA Clara
Imaging provides annotation, training and inference solutions for medical image data.
Using a receiver, it is also possible to transmit data from the clinical systems for the
training or prediction. Overall, this framework is less integrated, since, for example,
MITK or Slicer are used as desktop software for annotation, and there is also no
universal user interface yet.

QuantMed [Klein et al., 2020], developed by Fraunhofer MEVIS, is also described as an
infrastructure for medical image processing with focus on data annotation and training
/ inference of ML models. The integrated web-based "Segmentation and Annotation
Tool for Radiomics and Deep Learning" (SATORI) also allows the export of annotations
in DICOM SEG. Due to the requirement of an open infrastructure developed and
maintained by the community, these existing platforms have been considered in terms
of concepts, base technologies and architectures (as far as they have been published)
for the design of Kaapana, but not further evaluated due to the non-open source-codes
and licenses.
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RadPlanBio [Skripcak et al., 2016], on the other hand, is an open-source and free
platform for multicenter image-related study management from the field of radiation
therapy, which, like Kaapana, was developed mainly within the context of DKTK. The
focus here is on the collection and management of study data, including electronic
case report forms (eCRFs) linked with medical imaging and treatment planning data.
Particularly noteworthy here is the combination of existing open-source projects,
such as the Conquest [Conquest, 2021] server as PACS, OpenClinica [OpenClinica,
2021] for the entry and management of clinical data, and the Mainzelliste [Lablans
et al., 2015] for data pseudonymization in order to realize the needed requirements.
However, data processing is not addressed by this infrastructure. ePad [Rubin et al.,
2019] is another open platform for medical imaging, specifically designed to simplify
the viewing, annotation and quantitative analysis of cancer lesions. The system also
consists of several modules which communicate with each other. Dcm4chee [Gunter
Zeilinger, 2021] is used as the central data storage and a plug-in architecture also
enables the integration of MATLAB [MATLAB, 2010] server-side modules for data
processing. However, the core of this infrastructure is also more about the annotation
than about processing of data using modern ML methods.

Where these projects were developed with an imaging focus, there are also projects
driven by the data science community. These projects tend to focus less on clinical
integration but more on the implementation of processing pipelines. NiftyNet [Gibson
et al., 2018] is a well-known example of this, which is intended to standardize and
simplify the handling of medical image data for data scientists. This is achieved by
providing modules for various typical medical image processing tasks such as data
loading, data augmentation, network architectures, loss functions, and evaluation
metrics. NiftyNet is built on the Tensorflow framework and also uses this as the
central DL engine. A similar concept is being adopted by Monai, which also aims to
provide annotation, training and deployment of data and algorithms to the clinic. In
contrast to NiftyNet, Monai is based on PyTorch as the core framework for DL tasks.
In contrast to NiftyNet, Monai is based on PyTorch as the core framework for DL
tasks. The MONAI Deploy [MONAI Deploy Working Group, 2021] Workflow Manager
is also intended to enable more complicated processing pipelines and the Informatics
Gateway provides connectivity to clinical systems through FHIR. However, due to the
high dependence on PyTorch, data processing is not very flexible and data exploration
and cohort specification are also not well addressed here.

In summary, there are already many established projects that can be utilized for the
various requirements of the infrastructure envisioned in this work. Similar concepts
with decentralized data processing based on textual statistical datasets have already
been implemented and were able to successfully overcome the hurdles of high data
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protection for medical data. Although some medical imaging platforms already exist,
they are often commercial or closed-source and thus not applicable as an open research
tool for the community. Open projects so far have on the one hand an imaging focus and
offer good data integration, management, annotation, and visualization - but less for
data processing. On the other hand, there are projects specialized in data processing,
but offering little for the other aspects. Therefore, for the work presented here,
existing open and established software projects with a high degree of specialization
were integrated into a modular infrastructure, which allows the bundling of features
and thus enables a comprehensive platform solution.



3 | Methods

Based on the analysis of related work, pre-existing concepts and implementations of
already available software projects for specific tasks were considered for the envisioned
infrastructure. Following these findings, the main concept for Kaapana was developed
and is presented in this methods chapter. Furthermore, stakeholders and typical use
cases to be covered are also listed. The basic technologies and their architecture are
described next, followed by implementation details of the various platform areas. The
chapter concludes with explanations of the build system, the server installation, and
functionality of the developed CI system.
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3.1 Main Concept

The current situation with an increasing demand for high quality data on the one hand,
and strict data protection requirements on the other hand, pose a great challenge
for medical image processing. Since usually the location of data acquisition differs
from the location where the data is finally processed, a data transfer is needed, which
causes most of the described challenges. To address this bottleneck, a different
approach was explored in this thesis:

"Let’s share the algorithms, not the data!"

The main idea is not to collect (and therefore transfer) data from multiple sites, but
rather to share the data processing algorithms with the data owner’s and execute them
locally within their own infrastructure. This reversal of the traditional approach solves
many of the existing data protection concerns, since the data remains at the acquisition
location at all times. A transfer and the associated problems with a distribution of
personal data can be thus avoided.

Collection of  Data vs Distribution of Algorithms

Figure 3.1: Visualization of the "Let’s share the algorithms, not the data!" approach.
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3.1.1 Decentralized Infrastructure

To enable this, a decentralized digital infrastructure must be established, which
allows clinics to install and execute recent research methods within their own IT
infrastructure. This local infrastructure consists of two parts: The platform software,
which enables the sharing and execution of data processing pipelines, and locally
operated hardware servers, which run the platform software and provide the required
computing power. The combination of server and software make up one instance of
the network - the interaction of several such systems makes up the entire distributed
infrastructure.

3.1.2 Integration into the Clinical IT Landscape

For a successful operation, a high acceptance by the clinical partners is crucial. This
is achieved by a good adaptation to the existing IT systems and a seamless integration
into existing clinical routines. Running the hardware right at the local sites allows
physicians to send images to the analytics server straight from their workstations by
providing all the necessary user interfaces (UIs) within the hospital’s local network via
a web browser. Due to the focus on medical imaging, the connection to the clinical
PACS is particularly important and constitutes therefore the focus of this work.

3.1.3 Central Distribution Hub

The infrastructure is designed to run the local servers without any permanent exter-
nal connections. This is important as clinical networks are subject to high security
regulations and isolated systems offer advantages in this regard. However, for some
processes like the initial installation, updates or the adding of new methods, a central
hub for the distribution of the software is needed. This hub acts as an on-demand
contact point and remote systems at the hospitals merely pull data when needed. No
data upload of patient data is anticipated. By offering plugins, such a hub also enables
an "app-store", through which new analysis pipelines can be provided and distributed.

3.1.4 Stakeholders

Various stakeholders are targeted for the application and development of Kaapana and
the platforms that were created with it. Mainly two groups can be identified, each of
them with a different expectation profile:
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Medical / Study Stakeholders

This group includes the study hosts and clinicians (radiologists), whose interests are
centered on making the study process faster and easier. Study hosts expect a widely
available and standardized environment to facilitate study designs, as data provision
and processing are already clarified. Moreover, hardware already optimized for data
analysis can be utilized, which is normally not available in clinical environments. Also
tasks related to data privacy or ethical questions should be straightforward, since only
the data owners are handling the data. Clinicians, on the other hand, expect to have
a more convenient way of using data from clinical routine for challenging research
questions. By processing the data locally, they do not have to worry about tasks such
as anonymization and can therefore collect the research data directly during their
daily work. Here, especially the cohort compilation should be streamlined and the
technical challenges should be abstracted.

Technical Stakeholders

The technical stakeholders are divided into three sub-groups: Data Scientists, technical
staff and platform developers. For the data scientist, the opportunity to gain access
to a broad and realistic pool of data is of great interest. Thanks to the network of
trusted partners, their own methods can be evaluated at a variety of sites. In contrast
to homogeneous, artificially compiled public data sets, the significance of a realistic
clinical evaluation is clearly increased. Federated learning opens up new sources of
data that make it possible to tackle highly specialized problems and to train models
where it was previously difficult, due to a lack of accessible cases.

Since on-site servers have to be maintained by local technicians, efficient maintenance
without a lot of special expertise is desirable. The staff expects similar procedures as
they are already familiar from the other server systems they operate. And finally also
the Kaapana developers are among the technical stakeholders. Such a framework can
only be successful if it is accepted and supported by the Medical Image Computing
(MIC) community in the long run. Here the expectations focus on public source code,
welcoming contribution policies, and a flexible adaptability of the system.

3.1.5 Use Cases

In order to develop a better understanding of common tasks to be covered by such
a framework and the derived platforms, several use cases and scenarios have been
envisioned.
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Use Case 1: Autonomous Execution

For the diagnosis, treatment or monitoring of medical conditions, it is often help-
ful to have additional information available. Since medical imaging can contain a
lot of additional information, it would be helpful for studies to have access to this
data. However, since the extraction of this information is technically challenging
and complex, a system is needed that automatically performs these analyses and
provides the extracted information in a standardized way. For this use case, the
platform is used to autonomously detect the appropriate images for a given analysis
to then automatically start the processing and provide the information acquired to
the study supervisor and the physicians. For autonomous data processing, all images
from a hospital or a group of scanners are automatically forwarded to the analysis
server after acquisition. Using a rule-based decision system, the platform determines
whether the incoming image is suitable for automated processing and if so, triggers
the corresponding processing pipeline. The results of the analysis are then transmitted
back to one of the clinical systems, where they can be accessed by the healthcare
professionals. Typically, this is a research PACS that is used to manage the data, which
is not for clinical use. Alternatively, the data can also be made accessible through the
UIs of the platform itself. The central issue of this use case is the identification of
the corresponding eligible images, since the rule-based decision system only works
if the required information is available. Most algorithms define the accepted input
data by the modality and the body part examined of the images. Where the modality
is practically always accurately recorded in the corresponding DICOM tag of the
metadata, the reliability of the information in other, less standardized metadata entries
is often significantly worse.

Case Scenario 1.1: Existing Metadata
In this scenario, all the information needed for the execution decision is reliably

available within the metadata. The platform extracts it accordingly and checks it
against the decision system.

Case Scenario 1.2: Pre-analysis and Metadata Extraction
In the scenario where this information is not available, the incoming data must first

be pre-analyzed so that the corresponding meta-information can be detected from the
images itself. Furthermore, such an analysis can also be used for the verification of
already existing metadata by comparing them.
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Use Case 2: Integration of Data Analysis Algorithms

For the information extraction described in use case 1, methods are needed that
automatically analyze the images and extract the desired information. For this purpose,
existing and well performing methods from the research community are adopted and
integrated into the platform by processing pipelines so that they can be easily applied.
The challenge here is to offer a concept for the integration of these methods that is
as universally applicable as possible and reflects the many different approaches in
the form of data, programming languages, frameworks or hardware requirements
used in the community. Here, classical central processing unit (CPU)-based processing
techniques should be supported as well as the latest DL techniques, which rely heavily
on GPU computing resources. The platform should remove as much of the integration
effort as possible from the method developer by already providing typical processing
steps such as file format conversion or other pre-processing steps. Provision of
templates should also facilitate this last step of integration, so that any developer can
accomplish this step without much knowledge of how the underlying platform works.

Use Case 3: Integration of Services and Desktop Applications

The goal of providing a genuine infrastructure platform, in the sense of a foundation
that can be used for the provision of all kinds of other services, requires that third-party
software can be integrated easily. Since Kaapana is web-based, services that are
already designed for web browsers together with the use of the client-server model
are the main focus here. However, not all applications to be provided meet this
requirement, so desktop software should also be taken into account as far as this
is possible. The nature of the services to be integrated can be very diverse: From
research applications for the assessment of specific disease profiles to web-based
development environments, all kinds of services are plausible. The following scenarios
can be distinguished for the provisioning of services within Kaapana.

Case Scenario 3.1: Permanent Services
The service will either be installed during the platform installation or as an extension
and will then run permanently. If a UI is needed, it is provided via web interface and
can be accessed within the platform.

Case Scenario 3.2: On-Demand Services and Interactive Processing-Pipelines
The integrated service starts on demand only and provides its features during the exe-

cution of a processing pipeline. This scenario describes an interactive data processing,
where a part of the pipeline is executed fully automatically and then halts temporarily
to wait for a user interaction. Manual user interaction is enabled using an integrated
service as described above, which also provides temporary UI access if required.
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Use Case 4: Interactive Data Annotation

Another application of the platform is the generation of image annotations, which
are useful for studies and the training of new ML-based processing techniques. The
challenge of making these can be categorized into three aspects. The first difficulties
are technical and concern finding, loading and opening the images of interest in
software that allows the creation of annotations. Since this process is mainly used in
research and not for daily clinical procedures, clinical systems such as the PACS often
do not support the creation of such labels. Even if commercial solutions exist, they
are often not available in the clinics due to the costs involved. Consequently, research
software is used for the labeling, which can only be installed locally on a workstation,
and thus the images must be manually selected and retrieved from the PACS.

The second challenge lies in the annotation itself, as often many of the three-
dimensional layers of an image must be manually edited in order to produce the
desired labels. The repetitive and monotonous work also creates the risk of low atten-
tion, which in turn increases the risk of mistakes. Finally, the third challenge involves
the storing and managing of the generated information. Choosing non-standard or
proprietary file formats, which can lead to a loss of information, for example, due to the
lack of metadata inclusion, are not preferable in this context. In contrast, it is better
to use open standardized formats such as DICOM, which allows joint management of
annotations and images in the PACS. All three aspects should be addressed with the
platform, leading to standardized annotations that can be managed along with the
original data.

Use Case 5: Machine Learning Workflows

The last use case involves the training new ML models using the data available in the
platform. This is of interest when there is not yet an automatic prediction method for a
particular task, but sufficient annotated data is available to train a new model. It may
also be the case that a pre-trained model is available, but does not work well using the
locally available data. In this case, the model could be refined using local annotations
and images, so that a specialization of the model to the local conditions is achieved.
Also for training, it is important that annotations can be imported into the platform
or that they can be generated from scratch as described in use case 4. There are two
fundamentally different ways of running the training.
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Case Scenario 5.1: Local Training
On the one hand, there is the strictly local training, which uses only data available

within a single hospital. Here, no external connections are required and everything is
executed on the clinic’s in-house hardware. The model generated can subsequently
be used for predictions and, if desired, can also be shared with other sites running a
Kaapana-compatible platform instance.

Case Scenario 5.2: Federated Learning
If there are not enough training cases available at a single site to train a model, or

if locally trained models do not generalize well, distributed training across multiple
sites may be beneficial. Here, data from multiple sites can be utilized to train a model
without having to share the data itself. There are many different approaches for
federated training, which should in principle also be feasible with Kaapana.

3.1.6 Unified Execution Environment

A uniform software environment is key to successful multi-organizational collaboration.
Interfaces, such as data provision, job scheduling or metadata access must be identical
across platforms so that developers can rely on them - no matter if they work on a
development or any of the production instances at the hospitals. This primarily affects
the following aspects:

Data Formats

The standard for the communication and management of medical imaging informa-
tion and related data is DICOM, which is used internationally in almost all medical
facilities. Compatibility with this standard enables Kaapana to handle images from
most manufacturers or scanner types. Besides transmission and the storage of images,
DICOM Tags play a central role, since this metadata is used for data exploration and
cohort definition. It is not only used for external communication, but is also the central
medium within the platform and its internal services.

DICOM is mainly important for the medical and study stakeholders of the platform -
but there are also the data scientists, which mainly use formats like NIfTI and Nrrd
for the handling of medical imaging data. Although these formats are often considered
easier to handle and process, they also have the disadvantage that meta information is
often lost during the conversion. This problem is addressed by Kaapana by providing
tools to temporarily convert DICOM to the commonly used formats while keeping
track of all metadata for a later re-conversion. This allows the processing pipelines to
request the format they were designed for, avoiding the need of dealing with DICOM
for the data scientists. Since analysis results should be saved in standard-compliant
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DICOM objects, the framework also provides the corresponding tools to generate such
files. Important formats include DICOM Structured Reporting (DICOM SR), DICOM
Parametric Map (DICOM PM) or DICOM Segmentation Objects (DICOM SEG), which
can be used to store results like segmentations or classifications. The reduction of
effort needed to port methods into the framework should strengthen the acceptance
of the data science community and facilitate the integration of the latest scientific
developments. Other data, such as trained models, are not specified any further due
to the lack of established standards and can be freely chosen.

Data Access

The data of interest should be kept as a duplicate to the clinical records, where they
can be retrieved for analysis from a separate research PACS. This system is the
main storage system of the platform that manages and stores all DICOM compatible
files. This redundant data storage is necessary to ensure unaffected operation of the
clinical infrastructure. Within the platform, the data can be accessed via a DICOMweb-
enabled [Genereaux et al., 2018] Representational State Transfer (REST) application
programming interface (API) of the internal image archive. All non-DICOM data is
managed and stored in an object-based storage (object store) [Factor et al., 2005].
This also provides data access via a REST API, but should only be used in case no other
option is available. The framework already provides modules to simplify the search,
storage and retrieval of data from the various components of the platform.

Data Selection and Cohort Definition

Since most processing techniques are highly specialized, they are dependent on the
correct characteristics of input data. For example, it is not advisable to analyze an
MRI of a brain with a model created for liver segmentation. Therefore, the selection of
data with certain properties is required, before an analysis can be performed. This
selection is realized within Kaapana by filtering metadata obtained from the DICOM
headers. The data contains patient information as well as technical parameters from
the acquisition of the scan. A search engine allows filtering by specific criteria through
search queries defining a cohort, which can also be shared with partners or services
within the platform.

Processing Pipeline Definition and Execution

Performing data analysis is Kaapana’s core mission, which should not be seen as a
single procedure, but rather as a pipeline including multiple processing steps. Starting
from the original images, several pre-processing operations such as data conversion,
normalization or image cropping are often necessary. Likewise, the final resulting



46 CHAPTER 3. METHODS

data often needs to be post-processed or forwarded to other systems. The framework
provides standardized processing by predefining specifications and interfaces for
both the pipeline sequence in the form of Directed Acyclic Graphs (DAGs) and for
the individual processing steps. The fact that only the interfaces and not the way
of implementation itself are specified leads to no restrictions with regard to the
frameworks, libraries, programming languages, etc. to be used.

Within Kaapana, the execution of data analysis roughly follows the Extract, Transform,
Load (ETL) procedure [Denney et al., 2016]. Here, the data to be processed is first
retrieved from the source systems, then it is processed, and finally the results are
uploaded back to the corresponding target systems. The processing of medical image
data, of course, can be very different from the typical database operations, which are
usually performed in ETL processes.

Extract: At the beginning of each processing pipeline, the data to be processed must
be retrieved. This is achieved by using a query (see 3.1.6), which filters the data
available to the desired input data. After the target data is identified, it is fetched
from the internal archive and followed by the retrieval of referenced related images.
This is useful, if the selected DICOM contains derived data, such as segmentations
or image features associated with a base image, the annotations are based on. For
example, the input for a ML is specified by a query targeting the ground truth labels -
the framework then gets the corresponding referenced base images for the training
automatically. Alternatively, also metadata or files from the object store can also be
retrieved.

Transform: The transformation usually takes several parallel or consecutive pro-
cessing steps. Here, pre-processing such as conversions, cropping or normalization
are carried out first, while tools for the most common processing steps are already
available. This is usually followed by the core pipeline task such as classification, object
detection or image segmentation. Then the generated information is post-processed
and, if possible, converted into a standardized form. Again, the framework already
provides many of the typical operations, so that the main analysis method can be easily
placed between the provided processing steps.

Load: The final step distributes the results back to the target systems. For DICOM
compatible data, this is primarily the internal PACS - if desired, they can also be
transferred directly to the clinical PACS due to standardization. In case of extracted
metadata, it is updated and extended in the metadata database. All non-standard
processing results are stored in the object store in a predefined way so that they can
also be retrieved and associated with the source data.
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Pipelines built accordingly can be installed very easily in Kaapana compatible systems.
Special care was taken to balance simplification by abstraction with freedom for
developers. The principle follows the concept that the framework should adapt to the
method more than the other way around.

Data Analysis vs Services

Where the integration of analysis pipelines provides the environment for the inclusion
of new analysis jobs, a second environment is required for the provisioning of services.
The distinction between the two is well defined in the context of Kaapana. Where
processing jobs are always started on demand only and always terminated after
their job is done, services constantly provide their functionality within the platform.
Services are software components that provide a certain range of features and often
include a separate user interface. Thus, for instance, the internal research PACS, the
metadata search engine or the integrated image viewer are all examples of services,
whereas a file conversion, normalization or liver segmentation are all processing jobs
within Kaapana. Also for services, defined interfaces are provided to integrate new
components into the Kaapana infrastructure.

Extensions

For flexible platform design, Kaapana offers the possibility of dynamic expansion of
the feature set thanks to software extensions. Essentially, all software components
within Kaapana, such as processing pipelines or services can be deployed as extensions.
A key point here is that they can be added dynamically at runtime to the platform,
enabling an "app store" for deploying new analytics pipelines or services by and for
the community.

3.1.7 Kaapana

The main vision of Kaapana is the creation of a standardized digital infrastructure,
which is capable of supporting all kinds of projects in the context of medical image
computing. As outlined in the scenarios, such projects can have very diverse require-
ment specifications, which is why not a single rigid platform was built, but rather a
whole framework. Software platforms derived from Kaapana can be seen as instances
of the framework, which do not necessarily have to use all the components offered.
Thus, specific platforms can be generated that are adapted to the respective project
needs. Building a platform with Kaapana involves the following steps:
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1. Deploying the base-platform of the framework.

2. Selection of the necessary software components from the Kaapana software
catalog to meet the project requirements.

3. The integration of new software components for the project requirements not yet
covered.

Functional Units

The JIP, for example, is a concrete software platform generated using the Kaapana
framework. This is achieved by providing many compatible software components that
cover all kinds of tasks needed for the operation of such a platform. These components
can be divided into separate functional units, responsible for a given range of core
tasks:

SYSTEM: This layer contains all components needed to provide basic platform
capabilities, which includes managing platform access, provisioning of services, com-
munication between them or the support of dynamic extensions. The system layer
creates the foundation every platform is built upon, which makes it part of the Kaapana
core. The Kaapana SYSTEM can be considered to be like a runtime environment (RTE)
of the platforms, which is also monitoring the platform’s status by periodically col-
lecting and evaluating status reports from its deployed services. The state of the
host machine is also constantly checked by logging e.g. CPU, GPU, random-access
memory (RAM) or network utilization, to react in the event of unexpected or faulty
conditions by restarting services or triggering alarm messages.

BASE: This unit is designed to serve as a central UI. Although platforms are com-
posed of many separate software components with independent UIs, the BASE allows
them to be combined into a single UI in the form of a website.

STORE: This section is responsible for the management and storage of a variety of
data types within a platform. The main components here are the PACS for DICOM data
and the included object store for other files. Since the image viewer is tied directly to
the data stored here, it is also part of it.

META: This unit is dedicated to the metadata within the framework. Besides storing
and maintaining the information, there is also the possibility of a visual filtering and
examination of the data.
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FLOW: This Is responsible for all components related to data processing, in particu-
lar the pipeline execution environment and the collection of Operators representing
common processing jobs.

Taken together, all of these functional units provide all of the core features needed by
powerful software platforms to cover the wide range of application scenarios. For the
basic implementation of Kaapana presented in this thesis, the JIP project has played a
central role, as this was the initial platform for the framework and thus provided many
of its requirements. The JIP is therefore also meant when the following text refers to a
platform instead of the framework.
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3.2 Technological Foundation

After defining the requirements and the concepts, the technologies for their imple-
mentation have to be selected. Even though the word "platform" is certainly used
inflationarily for all kinds of software nowadays, Kaapana is supposed to be the
basis for actual, genuine platforms in the more narrow sense. Bottcher defined a
digital platform as “an operating environment which teams can build upon to deliver
product features to customers more quickly, supported by reusable capabilities.” [Evan
Bottcher, 2018], which matches the concept of a platform referred to in this thesis.

To build the framework, a suitable base technology had to be identified initially.
Here, the modularity, flexible extensibility and simple maintenance were particularly
important, as these are directly affected by the base technology. Also, the need to
centrally host the platform at the hospital, rather than running one instance on each
workstation, led to the decision to base the framework on current cloud computing
technologies.

A cloud seems contradictory at first, as it is usually associated with services from big
technology companies, which are located in data centers spread across continents and
accessed via the Internet. This appears to be in direct conflict with the requirement of
decentralized, isolated and on site operation of platforms in absence of any external
connection. However, this can be solved by adopting the private cloud deployment
model: “The cloud infrastructure is provisioned for exclusive use by a single organiza-
tion comprising multiple consumers (e.g., business units). It may be owned, managed,
and operated by the organization, a third party, or some combination of them, and it
may exist on or off premises.” [Mell and Grance, 2011]

3.2.1 The Cloud Computing Stack and Architecture of Kaapana

Building a (private) cloud computing setup traditionally requires an infrastructure, a
platform and the application layer [Mell and Grance, 2011]. Kaapana, adds two extra
layers - a container provisioning layer for virtualisation and a function layer (serverless)
for on-demand data processing [CNCF, 2021]. Figure 3.2 shows the arrangement of
the layers and how Kaapana is designed upon them.
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Figure 3.2: Kaapana’s technology stack with its different layers.

Infrastructure-as-a-Service (IaaS) Layer

Kaapana supports on the lowest level both the common IaaS providers such as Open-
Stack [The OpenStack Foundation, 2021], Azure [Microsoft, 2021], GCP [Google, 2021]
or Amazon Web Services (AWS) [Amazon, 2021b], but can also be deployed on-premise
on a blank hardware server without any dependency on IaaS providers. While this
requires considerable extra effort to enable non-experts to be able to set up and
maintain such a plain hardware infrastructure, it also allows the needed private cloud
deployment model. Besides instructions on how to install the operating system (Ubuntu
and CentOS are supported), a custom installation script is offered to set up the basic
infrastructure on top of the operating system (OS).

Containers-as-a-Service (CaaS) Layer

All components of Kaapana are not executed on the host system itself, but in containers
supported by OS-level virtualization. The resulting encapsulation offers several ad-
vantages, as containerized platform and system components can be scaled, monitored
and replaced very easily. Consequently, component updates can be made simply by
replacing the corresponding containers. Since a platform requires a large number of
containers for its operation, it is necessary to be able to monitor and control them
centrally. For this purpose, Kubernetes (K8s) [Rensin, 2015] has been chosen as the
container orchestration engine, which enables such functionalities.
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Platform-as-a-Service (PaaS) Layer

The platform layer, as the name suggests, is where the Kaapana SYSTEM is located.
It is based on the PaaS (or application platform as a service) principle and offers
Interfaces for the provisioning of applications on top of the container infrastructure
provided by the IaaS layer. The reverse proxy and the authentication system are
also part of this layer, which thus provides everything needed for the provisioning of
services. The design follows the principle of service-oriented architecture (SOA) for
the provision of the described features [Perrey and Lycett, 2003]. This layer represents
the base-platform of Kaapana, which is still "empty" and provides only basic platform
functionality. All the basic functional units for service provisioning, job processing
and UIs are in place, but domain adaptation is not yet included. Therefore, the base
platform can be used as a foundation for many other projects - even outside the imaging
domain.

Software-as-a-Service (SaaS) Layer

Initially, there is only the base-platform in Kaapana and this layer is empty. But de-
pending on the project requirements to be addressed, services can be added. These
software components can either be taken from Kaapana’s service catalog or be inte-
grated as custom services. The default configuration of the JIP already contains a set
of applications needed to realize the outlined scenarios (see 3.1.5). At this level, the
BASE, STORE and META units of Kaapana are located since they’re represented by
services on the platform.

Functions-as-a-Service (FaaS) Layer

For on-demand scheduling of processing jobs, another layer based on the FaaS principle
[CNCF, 2021] has been added to the architecture. The difference between services
running on the application layer and jobs (functions) running on the function layer is
described in the "Data Analysis vs Services" section (see 3.1.6). These jobs are started
on demand only and terminate automatically after completion, which enables high
scalability by high parallelization and optimally utilizes the underlying host system.
Kaapana’s FLOW unit is powered by this layer.
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3.3 Implementation of Kaapana

After the requirements, concepts and technology selection, this section focuses on
the implementation of the Kaapana framework. Here, it is important to note that,
as identified in the analysis of related work, many software implementations for
required features were already available. Therefore, the implementation was based
on established and successful open-source projects as far as possible. Many packages
were collected, combined and modified to form new features for Kaapana, which was
also released as open-source code. The goal here was to encourage contributions from
other developers and thereby strive for a joint project and to give back to the MIC
community.

3.3.1 Package Management

Given the demand for modularity and individual, interchangeable software components,
there must be a central way to manage them. This is achieved by using Helm Charts
[The Linux Foundation, 2021] for the package management, which is a widely-used
standard for managing K8s deployments. Here, package collections are hierarchically
structured and each package can contain sub-packages, allowing the construction of
functional groups consisting of several software components. For Kaapana, the various
functional units have been modeled as such packages, that can be added or omitted
as needed. However, much more fine-grained decisions can be made if necessary,
since all functional units are in themselves based on packages that can be chosen
individually.

Each platform is defined by a main package, which defines the project’s respective
sub-package dependencies. This is also used to differentiate multiple platform versions
and such allowing maintenance-routines, since Helm offers options for a standardized
installation, update or removal of deployments. In this context, the ability of templating
is also important, which is used in Kaapana to adapt and configure deployments to given
circumstances and specifications. Helm Charts are stored, managed and distributed
by the support for the Open Container Initiative (OCI) [OCI, 2021] standard, allowing
charts to be wrapped by containers and thus managed with OCI-based registries.

3.3.2 The Base-Platform: SYSTEM

As described in the main concept of Kaapana, the SYSTEM enables it’s base-platform.
This is achieved by using K8s to define interfaces for the standardized provisioning of
services and already including software components for monitoring, administration,
ingress management, and user authentication. A high level of integration has been
achieved by automatic pre-configuration, which ensures all components hosted in
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Kaapana to be compatible with each other and do not require any manual configuration
adjustments.

Integration of Web-Applications as Services

Since Kaapana is implemented as a cloud solution, its services are provided centrally
via a server. Native software components for Kaapana are therefore web applications
that have already been developed according to the client-server model. Even though
this may not necessarily involve a web UI, the software itself should be deployed
as a webserver and be accessible via network interfaces. Almost all services from
Kaapana’s software catalog have been integrated in this predefined way, as well as
the system components also follow this principle. Three components are required to
integrate a new service:

First, the application (if not already available) must be packaged into a container. It
should be possible to configure all settings using environment variables, as this is the
main configuration mechanism within Kaapana, which can be set externally by the
framework if required. By assigning versions in the form of container tags, different
development stages can be mapped. Containers can then be imported into the platform
using K8s deployments, which also define the required configuration environment
variables and storage provisioning in the form of volume mounts. The definition of
expected resource utilization and limits ensure the appropriate allocations on the host
system. Periodic healthiness checks via API requests can detect unresponsive and thus
non-functioning components and restart them respectively. It is also possible to wait
for the availability of other services, such as databases, before starting the application.

The second ingredient specifies network traffic, which involves specifying the appro-
priate ports and all network interfaces that will be available within the platform. K8s
services are used to register these access points with the internal Domain Name
System (DNS) and to handle all corresponding container traffic. An additional Ingress
configuration is only necessary if a web-based user interface is to be offered. The
configuration of the automatically provided reverse proxy, which is responsible for
processing and routing all Hypertext Transfer Protocol Secure (HTTPS) traffic, is done
via K8s Ingress objects.

The last ingredient involves the packaging of components using Helm Charts, which
are wrapping the K8s definitions for all deployments, service and ingress objects into a
complete package. If multiple deployments are required for a component, for example,
due to multiple web servers or additional database servers, they can be bundled
during packaging. Any manual configuration should be available via templating to
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allow for customization during installation. These packages can then be added to the
software catalog and either delivered as a default platform dependency or deployed as
a dynamic extension.

Integration of Desktop Software Components

Web Browser

noVNC-based container

Software 
Installer

Figure 3.3: Schematic representation of desktop application containerization.

Since not all applications of interest for the integration into Kaapana are already
web-based, another method was developed for the integration of desktop applications.
Instead of a conventional container for web applications, a specialized base-container
is provided which hosts a desktop via Virtual Network Computing (VNC) [Joel Martin,
2021]. This way, the desired desktop application can be installed inside the container,
and its UI is then offered by a remote desktop via a web front-end, like a web applica-
tion. Figure 3.3 illustrates the integration of the desktop image processing software
MITK Workbench, which can be accessed via a web browser using the VNC based
method.
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Ingress Routing and Identity/Access Management (IAM)
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Figure 3.4: Schematic of the HTTPS traffic routing of Kaapana.

Since UIs from all hosted services have to be delivered via web interfaces and HTTPS,
they need to be routed in order to deliver multiple interfaces from a single point of
entry. Kaapana addresses this by using a central reverse proxy that connects each
service via Uniform Resource Locator (URL) sub-paths. This will also be used for load-
balancing within the platform, in case of increased load requiring multiple instances of
a single service. The reverse proxy Traefik [Ludovic Fernandez, 2021] was chosen,
which has some advantages over other solutions in the context of Kaapana. First,
there is a dashboard, which provides up-to-date routing metrics, service reachability
and status information via a web UI. This is helpful for managing the platform as
it can quickly identify network traffic routing issues. Most importantly, however, is
Traefik’s ability to dynamically detect and adapt to configuration changes. Kaapana
uses this automatic service detection to dynamically deploy extension UIs, as they can
be integrated and removed at runtime. Traefik is embedded in the platform via K8s
Ingress, allowing all components to be configured via K8s objects.

Some of the services use their own authentication systems, which implies that a
user has to log in multiple times and users are redundantly managed in different
locations. Since this is not ideal, with Keycloak [Keycloak, 2021] a central OpenID
Connect (OIDC) enabled authentication provider has been integrated within Kaapana,
which can be used across all components. This single sign-on (SSO) strategy is not only
more convenient for users, but also facilitates the connection to existing IAMs at the
hospitals by supporting the Lightweight Directory Access Protocol (LDAP) or Kerberos
as widely used standards. Last but not least, central authentication management also
enhances security and enables role-based access control (RBAC) by assigning roles.
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Traefik in its free open -ource version does currently not support direct user authenti-
cation via OIDC, which led to the integration of another component into the HTTPS
processing chain. HTTPS requests to the server are first checked by an authentication
proxy [louketo, 2021] for the presence of a valid authentication token. If this is the
case, the request is forwarded directly to Traefik and thus to the central distribution
system - if not, the user is redirected to the login. Louketo not only verifies a user’s
successful authentication but also their assigned role, which can be used to restrict
access to services. Currently, two user roles are implemented (administrator and user),
but these can be customized and extended at any time.

Monitoring System

Figure 3.5: Screenshot of the server monitoring dashboard based on Grafana.

The design of Kaapana offers a lot of capabilities, but also involves a significant level
of complexity. To streamline platform operations, maintenance and administration, a
centralized monitoring toolchain was integrated, which is used to get an overview of
current of system and component states. The event monitoring and alerting system
consisting of Prometheus, Alertmanager [Prometheus, 2021] and Grafana [Grafana
Labs, 2021] is a common toolchain used in cloud computing. Prometheus regularly
collects metrics from all supported components, which can then be evaluated. The
specification of rules controls the triggering of alarms, so that, for example, notifica-
tions can be issued in the event of a resource shortage. In addition to the platform
components, the host system is also monitored, so that CPU, GPU, RAM or the network
load are logged regularly. Figure 3.5 shows how all this information can be visualized
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and accessed via dashboards in Grafana. For the monitoring of active deployments, a
K8s dashboard [kubernetes, 2021] has been integrated, which allows to view all logs
of the containers or to restart services. Since this provides administrative access to
the platform, this dashboard has been restricted to the administrator role only. The
information gathered is also used for the scheduling control of the data processing.
Before a processing job is started, Prometheus is first checked for the current system
utilization. Since the typical loads of the jobs should be known, it can then be decided
whether a job can be executed on the system or not.

3.3.3 User Interface: BASE

Figure 3.6: Screenshot of the Extensions section from the landing page.

As Kaapana’s concept intends, the BASE provides a unified UI. For this purpose, a
web application based on Vue.js [Evan You, 2021] has been developed, which provides
the body for all independent service UIs. With the help of iFrames, the individual
services, which are actually accessible via URL sub-paths, are merged into single-page
application (SPA). Service presents is dynamically checked and corresponding menu
items are activated or deactivated accordingly. It is structured in such a way that
a common generic base is available from which project-specific landing pages can
be derived. The customizations primarily focus on branding, using project-specific
designs such as texts and logos.
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Extensions

The BASE also includes the extension management (see figure 3.6), which includes a
user interface within the landing page as well as a management backend. In principle,
all components of Kaapana can be provided as optional extensions, which means
that not only services but also processing pipelines can be installed via extensions.
The UI allows searching and filtering by specific package names and distinguishing
between stable and under development packages by labels. In order to announce the
current deployment status, the backend reports updated information periodically. The
extensions mechanism has been realized by the implementation of an API on top of
the integrated package management, which allows dynamic installation or removal of
packages.

3.3.4 Primary Data Management: STORE & META

Kaapana as a versatile processing framework needs a central resource: Data.
The concept, which is fundamentally based on cloud architecture, results in most
of the hosted services being either stateless or use external databases to manage their
data via network interfaces. Here, the great advantage lies in the ability to deploy
services across different host systems, as the data can be retrieved and stored via
interfaces across servers accordingly. In the interests of modularization, all stateful
components are deployed with their own data management systems. That means
that databases used by services are not shared, resulting in increased robustness and
flexibility as components can be more easily replaced and updated. Data managed for
data processing is kept in central data repositories and distribution systems, which
are used by all services to retrieve or store data. Within Kaapana, DICOM, meta- and
other data are distinguished for data management:

DICOM

As described in the Data Format section of the Standardized Environment of chapter
3.1.6, DICOM is the worldwide established standard for the communication and
storage of medical imaging data, especially in hospitals. For this reason, it was
chosen as Kaapana’s central data format, which is used wherever possible for the
storage and communication of data. Besides raw voxel data, DICOM also comes with
valuable metadata, including patient information, technical parameters and even data
lineage information. With the help of dedicated Information Object Definitions (IOD)
[NEMA, 2021b], not only image information but also other data can be represented
with DICOM. The Segmentation IOD, Parametric Map IOD, Encapsulated Document
IOD and DICOM SR IOD [NEMA, 2021d] are particularly important for Kaapana, as
they are used to represent processing results. This not only allows the results to be
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managed together with the images, but also to be shared with other external clinical
systems if desired. The default guideline for the development and application of
Kaapana is: Whatever can be covered by DICOM should also be represented with it.

Data Collection: For the integration into the local IT environment, an easy data
transfer from clinical workflows into the platform is key. For this purpose, Kaapana
offers both a C-STORE [NEMA, 2021b] and a DICOMweb-based DICOM receiver
[Genereaux et al., 2018] that can be defined as targets within the clinical PACS. This
should enable clinicians to forward images to the platform from their daily workflow
while using the PACS. Images can also be automatically and rule-based forwarded
from the scanners to the server. This allows, for example, all images with a specific
study description to be forwarded to the analysis. The Called Application Entity (AE)
Title plays a special role here, as it can be selected freely and serves as a data identifier
within the platform. If, for example, the AE-title "Study 1" has been selected, the
corresponding data can be found and selected within the platform by this dataset
name. The setup of the DICOM receiver has been realized on the basis of CTP by
the Radiological Society of North America (RSNA). Two import pipelines accepting
C-STORE or DICOMweb, respectively, were established, exporting the files to the
server’s file system.

The next step in the CTP pipeline involves a custom plugin that notifies the FLOW
system of an image’s arrival by triggering the incoming DICOM pipeline, which takes
care of the distribution of files within the platform. All destinations to receive the
DICOM files can be configured within this pipeline - the default configuration specifies
the internal PACS only, but this can be extended to include any additional targets.
Afterwards the processing is taken over by the FLOW system. Besides this direct
transmission via the PACS, compressed DICOM files can also be uploaded as a ZIP file
via the UI of the landing page.

Data Storage: As in clinical systems, Kaapana also hosts a PACS for the manage-
ment of DICOM data. With dcm4che [Gunter Zeilinger, 2021], the default platform
configuration contains a mature and comprehensive image archive. The high level
of standardization of these systems allows an easy replacement of this component
if a different implementation is desired. The interfaces expected in Kaapana for the
platform integration are limited to C-STORE for sending images to the archive and
DICOMweb for retrieving data for processing, which also enables the integration of
externally already existing research PACS within the hospitals.

Data Retrieval: Kaapana identifies and manages data using the typical DICOM
properties of patient, study, series and object. According to DICOM, studies are not



3.3. IMPLEMENTATION OF KAAPANA 61

meant in the sense of clinical trials, but rather examination sessions, which can contain
various individual examinations. Studies contain series which correspond to what
is usually called a single data record, or more commonly "image", in the context of
medical imaging. A series, in turn, contains one or more objects, which correspond, for
example, to the individual layers in a three-dimensional image. Since series are mostly
used for data processing, and the individual subcomponents (such as individual layers)
are processed rather rarely, Kaapana’s data model is centrally based on the series as a
unit. The request of a single data record is characterized by the unique identifier (UID)
of the corresponding DICOM series, which results in fetching the complete image
including all layers. This concept is also going to be very important in the next chapter
when defining metadata and cohorts.

Since within a distributed system the processing can theoretically be executed on a
different machine than the server running the archive, Kaapana never processes the
original data of the PACS, but always creates temporary duplicates created via network
transmission. This is achieved by giving all components access to the DICOMweb
interface, by which specific series can be queried and downloaded. Typically, data
exploration and the associated cohort definition are used to identify the desired
series, which are then loaded directly from the infernal archive via Hypertext Transfer
Protocol (HTTP) requests.

Visualisation: The integration of the OHIF Viewer [Urban et al., 2017, Ziegler
et al., 2020] allows Kaapana to visualize stored DICOM data right in the browser
(see figure 3.7). The display of a series can be initiated either by selecting it in a
study overview of the viewer or from META dashboards. This has been achieved by
implementing the Integrating the Healthcare Enterprise (IHE) Radiology Technical
Framework Supplement Invoke Image Display (IID) [Committee, 2016] in the OHIF
Viewer, which allows a specific DICOM Study to be accessed by a standardized URL.
The HTTP-based connection of the internal PACS via DICOMweb allows the viewer to
be treated as any other service within Kaapana, since the UI can just fetch the data
from the web browser. Apart from displaying three-dimensional scans such as CT or
MRI, annotations like segmentations can also be displayed as an overlay, which allows
this viewer to be used to inspect and present processing results. This viewer even
handles more exotic formats like Encapsulated Document IOD [NEMA, 2021c], which
can be used to display DICOM compatible PDF documents.
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Figure 3.7: Screenshot of the integrated OHIF Viewer.

Metadata

The second main category of data in Kaapana is metadata, which is characterized
by providing additional information about existing data entries. Kaapana’s DICOM-
centric data model indicates that the metadata model is also centrally based on DICOM
headers and built on a series basis. The metadata system was designed as a different
view of the data, which means that it should not contain any additional information
about the data stored in the PACS, but only visualize the textual data it contains
and make the entries filterable. The metadata is mainly used to explore the existing
datasets and find out if there is suitable data for a given analysis or the training of a
new model. This is achieved by feeding the data into a search engine, which allows
full-text searching in the tags.

Data Collection: The metadata system contains the header information contained in
the DICOM data, which gets extracted after the arrival of a new series. As described in
the DICOM - Data Collection section, after the arrival of a new series, data processing
will be initiated via FLOW. Here, first of all, a pipeline for the extraction of the metadata
gets automatically triggered, which consists of three processing steps:

1. Using DCMTK’s dcm2json [OFFIS, 2021b], the DICOM files are converted into
a JSON file according to the DICOM JavaScript Object Notation (JSON) model
[NEMA, 2021c]. This file contains not only the raw image binary data but also
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deeply nested DICOM header information, which cannot be processed this way
by the search engine and therefore has to be cleaned.

2. Cleaning up the JSON and adaption to the search engine. Here, the data is
prepared by first removing the binary information and private DICOM tags. Then,
for readability, the hexadecimal-based tag identifiers are extended by their clear
names. Although the standard specifies data types of different tags by DICOM
Value Representation (VR), data in the real world often does not adhere to the
specifications. Especially pseudonymization or anonymization procedures often
result in incorrect data, which will be identified and solved here.

Dates and times take on a special role, as a variety of different formats are
permitted and common. During import, the existing format is initially identified
and then transferred into a uniform format. Due to different time zones dur-
ing data acquisition, the time shift is also eliminated by converting the data to
Coordinated Universal Time (UTC). Elasticsearch (ES) [Elastic, 2021], which is
the Apache Lucene [Apache, 2021b] based NoSQL search engine used, allows
full-text searches, however, they become more and more time-consuming with
high nesting, so that this should be avoided. In the last step, the nesting will be
reduced by transferring the data types from a nested style of the DICOM JSON
model into a key extension. The result is a JSON file where the keys contain
the DICOM tag, the clear names and the data type - data types are verified to
be correct and all dates, times and datetimes are in the same format and time
zone. For instance, the entry for the DICOM tag (0008,002A) - AcquisitionDate-
Time looks like this: "0008002A AcquisitionDateTime_datetime": "2020-08-13
12:16:56.000000".

3. Transfer of the metadata to ES. The last processing step involves uploading the
JSON file to the database. Before a new file is uploaded, it is checked whether
data already exists for the corresponding series - and if so, the data is expanded
and updated.

Data Storage and Initialization: For an efficient search, ES builds an internal index,
which is based on all occurring keys, each defining fixed data types. For a flexible
initialization and extension of the index, a dynamic indexing was implemented, which
extracts the corresponding data type from the key name and includes it accordingly in
the index. Since the system is series-based, the series UID is used as the Primary Key
of the database and the acquisition time of the series is set as the time of data capture.
Since the index dynamically adapts to new entries, initialization is not mandatory, as it
would build up piece by piece over time. However, this would lead to an initial faulty
presentation for the dashboards, since the referenced index entries do not exist after
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installation. Therefore, an initialization job was introduced, which initializes the ES
index and also checks the DICOM processing pipeline by sending a custom DICOM
file internally to the receiver. This file contains dummy header information for most
of the existing tags, which leads to the initialization of the ES index and performing
a self-test at the same time, ensuring that all components of the DICOM processing
pipeline are operational.

Visualisation, Cohort Definition and Data Retrieval: As described in the require-
ments, data exploration and cohort specification are key features for the framework.
The visualization of metadata has two goals: First, it should give an overview of the
data available on the server, which is important to quickly develop new ideas for
potential analyses, or to evaluate whether an existing analysis or training on the given
data would be reasonable. For visualization, Kibana [Elastic, 2021] has been deployed,
which supports the creation of dashboards including tables and graphs on top of ES.
Along with the graphical summarization of the available series, customizable dash-
boards also allow for click-based filtering of data by including or excluding fields in
the corresponding graphs. Filters created that way are jointly translated into a search
query, which is then used to define the desired cohort, which represents the input data
for a processing pipeline. So DICOM metadata is used to select data that fits to a given
analysis or training. A typical example would be an algorithm that predicts certain
anatomies within CT images of the abdomen. In this case, the DICOM tag (0018,0015)
- "BodyPartExamined" would be looked at to filter just those images that indicate the
abdomen as a body part here. The second DICOM tag of interest would be (0008,0060)
- "Modality", as it specifies the modality of the scans. Adding the filter "Modality is
equal to CT" results in the desired data consisting of abdominal CT images. Kaapana’s
default configuration includes three dashboards, each with a distinct focus:

1. General Purpose Dashboard: This view is intended to provide a general view
of the data, by including both patient and technical related information. Here,
for example, the distribution of genders, age or weight of patients of the data on
the system can be identified. In addition, all DICOM specific information such
as study or series names is available as well as technical parameters such as
when the scan was acquired or which scanner was used. Even the application of
contrast agents can be displayed and filtered in diagrams, if the data is available.

2. Segmentation Dashboard: This view has a focus on segmentations, as they are
one of the most common annotations of image data. Here, the data is already pre-
filtered to DICOM SEG, and specific properties such as the segmentation labels
present or the algorithm names and versions used to create the segmentation
are shown. This dashboard serves primarily for selecting ground truth data for
the training of new models.
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3. Model Dashboard: The final default dashboard focuses on machine learning
models represented as DICOM. The tasks of this view are related to installing,
uninstalling and forwarding of models available on the platform. The information
presented refers to algorithms, versions or parameters used for training the
models.

Thanks to Kibana’s flexible customization capabilities, users can develop, add and
share their own dashboards at any time, which allows new custom views of the data
with other focuses. Now that the filters needed to define a cohort can be created, they
need to be transformed into a Lucene-style search request to be passed to the FLOW
system to be used as input data. Here, it is important to note that in the context of
Kaapana, a search query defines a cohort at a given time. Since the data on the system
can change over time, the result of the query may also change. This is desirable
because it theoretically allows input data to be defined across systems and sites, which
would not work if explicit series UIDs were used. Furthermore, in the future, the
available data for any analysis or a training can be constantly monitored in order to
be able to notify the platform user in case of a changed situation (for example, the
availability of sufficient data for a training).

For the extraction of the Lucene search query and the triggering of a processing
pipeline including the transmission of the cohort, a new plugin for Kibana was devel-
oped, which can be integrated as visualization in dashboards. The visualization consists
of a simple dropdown list, which lists all pipelines installed on the platform, and a
button to start the corresponding selected pipeline. List entries are always fetched
from the FLOW system via an API request when the dashboard is loaded, and therefore
automatically adapted to changing system configurations. Furthermore, once the start
button has been activated, it is possible to adjust parameters that are accepted by the
pipeline. This is realized via a popup dialog, which contains a dynamically generated
form based on JSON Schema [Pezoa et al., 2016]. This allows the relevant parameters
to be defined by the processing pipeline, which is then automatically displayed when
the process gets triggered. The extracted cohort query together with the parameters
are then transmitted to the FLOW system and the triggering is finally completed
with a status notification. Within the pipeline, the query is evaluated using ES. The
response includes all series UID matching the given criteria and will automatically be
downloaded from the internal PACS via the DICOMweb interface. Further details of
this mechanism can be found in the following chapter: “Data Processing and Pipeline
Execution”.
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Other Data

So far, the data described could be standardized and assigned to a specific category -
but there are also cases that do not fit any of the existing categories, which are then
classified as "other data". This applies, for example, to image data that is not available
as DICOM, but rather as NIfTI or Nrrd, as well as to all kinds of processing results
which are neither suitable for metadata due to their volume or structure, nor does
DICOM conversion appear to make sense. Due to the unspecified properties of this
data pool, it is simply managed as files located in an object storage. However, the
great flexibility of this data category has the disadvantage that hardly any standardized
interfaces can be offered to simplify management, searching or visualization.

Data Storage: To store and manage this category of data, MinIO [MinIO, 2021] as a
high performance, K8s-native object storage has been integrated into the framework.
The flexible management of files up to a size of 5 terabytes (TB) and compatibility
with the widely used Amazon Simple Storage Service (S3) API [Amazon, 2021a] are
particularly interesting features which facilitate interaction with other components. A
user interface is also provided, which also allows manual uploading or downloading of
data via a browser. Links can be generated to access files with limited validity, which
facilitates data sharing. The interconnection to Kaapana’s SSO service allows the
adoption of users and roles for specific permissions within the file management.

Data Collection and Retrieval: The data import can be realized in two ways.
First, they can simply be uploaded via the web interface so that they are available
to the system when requested. The second way is more common, as the data is
automatically uploaded by the FLOW system during a processing pipeline. For sending
new data and receiving existing data, FLOW offers jobs that utilize the S3 API. The
caching system implemented in FLOW is also based on MinIO, as results to be cached
are automatically stored in corresponding buckets within the object storage. Again,
integration via network interfaces allows easy replacement of the service if desired, or
linkage to existing systems in the respective clinical infrastructure.

3.3.5 Data Processing and Pipeline Execution: FLOW

The main idea behind the implementation of the data processing was to enable the in-
tegration of new methods as easily and with as few adjustments as possible. Therefore
the top layer of Kaapana’s technology stack supports FaaS, or serverless computing.
Why is such a layer necessary and what distinguishes it from the underlying SaaS
layer? As described in the "Data Analysis vs Services" section (see 3.1.6) of the ain
concept, the distinction between services and processing jobs is the reason why this
extension is necessary. Where the SaaS layer enables all services that run permanently
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as an application within the platform, FaaS provides the ability to launch on-demand
jobs. The FLOW section of Kaapana allows the definition and execution of data pro-
cessing pipelines and associated jobs, the basic principles of which have already
been explained in the Pipeline Definition and Execution section of the Standardized
Environment. Here, the actual implementation of these concepts is presented.

Workflow Management System

In order to make data processing possible, a workflow management system is required
to handle the mentioned tasks. Due to the great flexibility, a complete workflow
management system was chosen for the underlying framework instead of relying on
existing FaaS frameworks, as these already impose great limitations on job implemen-
tation and design. Furthermore, these systems are usually not designed to handle
large amounts of data, which simply overwhelms their concepts given the file sizes
and computational demands that are typical in medical data processing. For example,
often the input data is submitted via a single HTTP request, which works for a small
text snippet as input, but just won’t work for medical images. Kaapana therefore uses
Apache Airflow [Apache, 2021a] as workflow management platform, which has been
extended by APIs to offer the corresponding FaaS functionality. Especially the REST
interface for the interaction with META and the extension for the communication with
the K8s cluster described within the Operators section are important here. For easy
integration of all customizations added for Kaapana a dedicated Airflow plugin has
been developed. Airflow also provides a web-based user interface to view and manage
the installed pipelines. By displaying running processes in real time, analyses can
be tracked and corresponding logs of the individual processing steps can be easily
inspected.

Processing Pipelines: Directed Acyclic Graphs (DAGs)

Since Kaapana’s workflow system is based on Airflow, its terminologies are adopted
here for the description of the components. In this context, processing pipelines are
synonymously referred to as workflows and are realized with the help of DAGs. A
DAG is characterized by the step-by-step processing of individual jobs, which are
called Operators in Airflow. Practically, a workflow consists of a simple Python script,
which imports the corresponding Operators as objects and orders them in the desired
sequence. They are not only used for scientific data analysis in Kaapana but also for
platform tasks such as metadata extraction or deletion of data records. This has led to
a distinction between service and data processing workflows, which are both managed
within the same system. DAGs can be started either time-based as a cronjob, event-
based or by manual triggering, which offers flexible application for various scenarios.
Most data processing jobs are triggered manually whereas service workflows tend to
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be more event or time based. DAGs usually follow the ETL procedure, consisting of
three parts: Data import, data transformation and data export. Compared to other
FaaS systems, FLOW does not have a fixed specification of how these tasks have to be
executed, as they are all handled by Operators and can therefore be easily replaced,
adapted or omitted entirely. However, for common operations, such as downloading
or uploading images to the PACS, Operators are already provided with the plugin.
This also enables the integration of new data sources or simultaneous retrieval from
multiple systems. For complex workflows it is also possible to create nested workflows
by using so-called SubDAGs or by dynamically triggering DAGs during runtime.

The step-by-step sequential processing requires the data to be passed on accordingly.
To keep the principle comprehensible, a file-based approach was chosen, where the
output data of a given Operator serves as input data for the following one. In this way,
the only interfaces to an Operator’s DAG are a directory containing the input data and
a directory to which the results of the processing should be saved. The corresponding
folders are then automatically provided to the Operator at runtime and treated as
temporary files through the filesystem. Since files can be used to represent arbitrary
data structures, the system should be able to be used for all kinds of scenarios. The
disadvantage of this is that Operators do not receive a uniform input, which could
ensure compatibility across all Operators. Since this is unrealistic anyway due to the
large variety of processing schemes, this point can be neglected. Consequently, the
developer of a DAG needs to ensure the compatibility of the selected Operators.

Since workflows are simple Python scripts which are dynamically loaded into Airflow
at runtime, new pipelines can be installed by simply copying the relevant files into
the platform’s DAG directory. For a comfortable and uncomplicated installation and
removal of DAGs via the UI, the files are also wrapped into a container, which can
be handled by the extension mechanism, which also provides the regular versioning
capabilities due to the utilization of the general package management. For each
platform, the DAGs to be added to the system during installation and the DAGs to be
available via optional extensions can be defined individually.

Processing Jobs: Operators

The breakdown of the analysis procedures into separable stages leads to individual
processing steps, which are referred to as Operators in Airflow. The advantages of
this approach in contrast to the implementation of all stages in one large process are
manifold. Most important is reusability and the accompanying provision of processing
steps for other workflows. A task that has been implemented once can thus be easily
used as a module in other workflows in the future. As a result, a large collection
of Operators can be created in the long run, which offer solutions for all kinds of
tasks. The second benefit is the traceability of the execution, since it can always be
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determined at a glance which processing step is currently running, or which part of the
analysis has failed. The provision of Operator-specific logs can significantly simplify
troubleshooting. Another important point is the enhanced scalability of this approach.
By dividing large tasks into small subtasks, they can be executed more efficiently on
the host system. Because of the dedicated subtasks, the resource utilization can be
estimated better and thus the system utilization can be estimated more accurately. By
parallelizing many small subtasks, which can even be distributed to different servers if
necessary, the system can be easily adapted to growing demands by adding new nodes.

An important factor for the free distribution of workload is the encapsulation of
Operators. Just as with the platform’s services, this is realized by using container
technology. Thanks to their flexibility, almost all algorithms based on a wide variety of
frameworks can be packaged, which also avoids the complexity that normally arises
from the use of countless software dependencies such as libraries, etc. in this domain.
Containers can be considered as standalone execution environments for the algorithms
which can be exported and shared as complete packages. This prevents, for instance,
two methods using different versions of the same library from interfering with each
other, which in practice often leads to unreliability of algorithm behavior. Every
processing step in workflows leads to the launch of a container within the platform. To
enable these containers to be monitored and managed within the K8s-cluster as well,
Airflow was connected to the CaaS cluster using the K8s API. The implementation
of a KaapanaBaseOperator gives developers easy access for the development of new
Operators, since the associated complexity is hidden by abstraction. The BaseOperator
serves as a base class from which new Operators inherit, and thus automatically gain
access to the interfaces to Airflow, which are outlined below:

Airflow interaction: In order to control an Operator within a DAG, lifecycle pa-
rameters can be specified, e.g., linking execution to conditions (such as successful
completion of all previous jobs, etc.) or forcing termination by specifying timeouts and
workload limits. Furthermore, specifying the expected workload also enables control
of the scheduling system. Data coming in and out of the Operators is also managed at
the BaseOperator by assigning specific targets in the temporary file system to each
Operator in each DAG instance (also called DAG-run).

Container-based Operators: In order for Airflow to use containers to run Opera-
tors, the CaaS layer was tied in with the K8s Python Client [Kubernetes, 2021] and
associated API. Besides controlling, this also enables monitoring of the corresponding
container by periodically retrieving the execution logs, which are then automatically
passed on to Airflow’s own logging system, providing a central UI with access to the
logs of all Operators in a workflow. The connection to the K8s administration also
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has the benefit of being able to view and analyze all running containers in the K8s
dashboard as well. The specified resources are not only used within Airflow, but
also anchored to the container itself. This way, consumption is also registered at the
platform level, which ensures that sufficient resources are left over for the operation
of the core services.

Processing tools often include configuration options which can affect how the process
is executed. In order to pass on these parameters, they must also be passed into
the container, where they can be picked up by the algorithms. The specification of
these parameters can be done in two ways. Either they are specified during DAG
development, or at the start of processing, as described in the metadata visualization.
These parameters are then passed via the trigger REST API to the DAG and thus to
the included Operators. The BaseOperator then takes care of passing them into the
containers by ensuring that the parameters set are available as environment variables
within the container at runtime, so parameters can simply be retrieved and evaluated
by the algorithms at startup. Besides the parameters, the input and output data are
crucial for the data processing within the container. The access is granted by mounting
the temporary files into the filesystem of the container. Again, environment variables
are automatically defined, which tell the algorithm where exactly to find the input
data and where to store the results within its environment. Typically, an algorithm
then scans the input folder for specific data first and starts processing afterwards.
Apart from the automatic provision of input and output folders, stored models for the
inference of machine learning algorithms can also be automatically mounted, which
allows the code within the container to be separated from the actual model and thus
enables more flexible handling of differently trained models. For an easy and efficient
integration of new methods, several templates are offered, which cover the typical
container procedures for the processing of the data input, output and parameters.

It is also possible to provide multiple input Operators if more than one data sources
are needed. In case a GPU is needed, it can also be provided via the BaseOperator. If
several GPUs are available in the system, the scheduling system selects a suitable unit
automatically and assigns it to the corresponding container. In the simplest scenario,
all that is required for the integration of a processing container is to specify the
container image and assign the corresponding credentials for the registry it is stored
on. Once the template was used, everything else should be organized automatically.

Local Operators: Container-based Operators are well suited to accomplish large
computations, but processing tasks are not always so sophisticated. Basic text process-
ing such as extracting metadata from DICOM files is not demanding and the runtime of
the operation takes only a few milliseconds. In these scenarios, starting the containers
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within the infrastructure takes longer than the computation itself, so another category
of Operators has been introduced to execute such small workloads right in the Airflow
container. By providing another base class in the form of the KaapanaPythonBaseOp-
erator, simple Python-based scripts can be executed immediately within the Airflow
scheduler. This is very useful, for example, for a very large import where a great
number of images need to be processed quickly to extract the metadata. However,
the described advantages of the containers do not apply here. These small jobs must
be programmed in Python and all dependencies must be pre-installed in the Airflow
container. The biggest disadvantage lies in the lack of scalability, since the entire
computational load of all local jobs is handled in a single container.

Application Operators: The last category of base Operators are the application
Operators, which are used to implement workflows involving a manual element during
execution. A common scenario is described in the "Interactive Data Annotation" use
case, where an automatic pre-segmentation of an image is checked and corrected
with the help of a manual processing step. Here, the behavior differs by halting the
execution of the pipeline until the manual interaction of a user has been finished. To
interact with intermediate pipeline results, a UI is typically needed to provide the user
with access to the data. For this purpose, a new service is temporarily started in the
platform, which offers the desired features, and is terminated again after the work is
done. The user gets a new list entry within the “pending application” section of the
landing page, which allows access to the waiting service via the web-browser. For
the integration, a special KaapanaApplicationOperator has been developed, which,
in addition to the normal container Operator features, also provides the ability to
create K8s Services and Ingress objects that allow access to the UIs. Dynamic instance
addressing can be enabled, which allows the simultaneous execution of multiple such
services instances and life-cycle management ensures that all created containers and
services are removed from the system even in case something goes wrong.

Important Default Workflow Processing Tools

Since most workflows follow a similar procedure, standard Operators have been
developed to enable the core ETL functions. The Operators presented here are the
most important default processing steps provided by the framework.

Input data preparation: In most cases, processing starts by fetching the requested
image data. To provide a universal entry point, the so-called LocalGetInputDataOpera-
tor was developed, which supports all available input data definitions and provides the
corresponding images as DICOM files. Input data can be requested in two ways:
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1. Elasticsearch Lucene query: Here, the cohort is defined via Lucene queries,
which result in concrete series through the request to ES, which are subsequently
downloaded from the archive. They are typically defined via META dashboards
and passed directly to the DAGs - but can also be hard-coded for specific DAGs
so that, for example, all available CT images on the platform are always fetched
during execution.

2. DICOM series UIDs: The alternative uses a list of predefined series UIDs,
which are also downloaded from the PACS. This is used, for instance, if automatic
processing needs to be started for a specific series, or if another DAG needs to
follow for particular series during an analysis.

This Operator is used as a starting point for the following processing steps. The commu-
nication with the PACS was developed using the DICOMweb Client [Herrmann et al.,
2018]. In case multiple related input files are needed, the LocalGetRefseriesOpera-
tor has been developed. DICOM references origin series, which derived annotations
are based on, in the metadata. A typical application are DICOM Segmentation Ob-
jects (SEG) objects, which only contain the segmentation, but not the image information
itself. However, since processing usually requires both, this Operator can be used to
identify and download the image associated with the segmentation. Another use case
would be to identify multiple related MRI protocols to be used as a combined input for
processing. Similarly, PET also requires finding the source images. It is also important
that expected but not found images are reported.

File format converters: Since most algorithms and tools in data science do not
handle DICOM as an input format, providing robust conversion capabilities is important.
The most widely used formats for non-clinical medical image computing are NIfTI
and Nrrd. The DcmConverterOperator offers the possibility to convert DICOM files
into one of these two formats. This has been implemented by utilizing the MITK file
converter, which through years of development can very reliably convert all sorts
of vendor specific formats. Integrated heuristics can also be used to reliably detect
and discard faulty series, which is for instance the case for missing layers in a three-
dimensional volume. Similarly the DcmSeg2ItkOperator serves to convert DICOM SEG
objects into the NIfTI format. If a multilabel segmentation is present, it is also split into
individual files so that these can be processed independently. The setting of filters also
allows the extraction of specific labels from multi-label files. For the reverse conversion
from NIfTI to DICOM SEG the Itk2DcmSegOperator is available. The implementation
was realized using the dcmqi library [Andrey Fedorov, 2021], which is part of the
Quantitative Image Informatics for Cancer Research (QIICR) project [Fedorov et al.,
2016].
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Textual processing results: For the conversion of text based processing results,
which are available as JSON, there is the Json2DcmSROperator, which creates a
DICOM Structured Report according to template TID1500 [NEMA, 2021e]. This
functionality was also implemented using dcmqi. Another method to store and present
textual or graphical results in a DICOM compatible way is to provide them as PDF
files. DCMTK’s dcm2pdf tool is used to create Encapsulated Document IOD compatible
DICOM files, which can be managed in the PACS as well as displayed in the OHIF
viewer.

DICOM wrapping for binary files: In case no other conversion is available, but the
result should still be DICOM compatible, the Bin2DcmOperator has been developed.
DCMTK’s xml2dcm tool has been used to encode arbitrary binary files into DICOM.
This Operator also provides the reverse functionality, by extracting the files again.
However, since it is a custom encoding, these files can only be transferred, stored, and
managed via DICOM, and other external tools do not have access to the included files.

Transfer of DICOM files: For the storage of the results, the DICOM files must be
transferable to the target systems. The DcmSendOperator can be used to transfer
these files via network connection to the internal PACS or even external clinical
systems. It is also possible to exchange files between two platform instances using this
method. This Operator is based on DCTK’s dcmsend utility [OFFIS, 2021c].

Object storage support: For all results that cannot or should not be stored in the
PACS, the LocalMinioOperator is available, which can store and query files of all
formats in the internal object storage MinIo [MinIO, 2021].

Cleanup of temporary files: Since after the successful completion of workflows all
relevant data should be stored in the associated target systems, the LocalWorkflow-
CleanerOperator ensures that all temporary intermediate processing data is removed
from the file system.

Integration Procedure for New Analysis Methods

The integration of a new analysis method follows three steps:

1. Development of the algorithm: First, the new method needs to be developed.
For this it is advisable to work on the normal workstation of the developer.
Normally, no special requirements have to be met during the development,
except that the algorithm should be executable on UNIX-based OS and, if a UI
is desired, it should be provided via web interfaces based on the client-server
model.
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2. Containerization of the code using the templates provided: In the second
step, the developed code is packaged in containers. This is a common practice
and already widely practiced. Adjustments are required for reading of input data
and the writing of the result files - however, the provided template scripts should
streamline this process.

3. Integration into Kaapana by creation of a new DAG and Operators: The
last step consists of the actual integration into the framework. First, a dedicated
Operator for the container has to be developed, for which templates are also
available and which should be done with just a few lines of Python code. After
that, the desired workflow must be defined by creating a new DAG. This involves
selecting the appropriate Operators from the catalog that enable the provision of
the desired file formats. Then the new Operator is included in the processing.
Then the Operators for result handling are selected, which completes the integra-
tion process. Optionally, a DAG Helm Chart can be created to make the pipeline
available as an extension.

Of course, this procedure describes only the most basic use case. Other, more complex
workflows can also be implemented - but may then require several new Operators or
adaptations to existing processes. As described in the results, this approach has been
used several times both internally and by external partners to successfully integrate
analytics into the framework.

Scheduler

One property of Operators is the varying computational demands. To run them
efficiently on the host system(s), a scheduler is needed to coordinate the execution
of jobs and ensure that there are still enough resources available for the platform’s
services.

For this purpose, a scheduler has been implemented, which monitors the consumption
of the CPU, RAM, GPU and disk space for container-based jobs. The estimation takes
place on three levels: First, the mechanisms provided by Airflow are used to make an
initial estimation. These are mainly based on the idea of pools that provide slots and
jobs consuming them. So Operators will be scheduled as long as the assigned pool still
has enough available slots for the task. Since these pools are arbitrary, and initially do
not represent any real resources, they are repurposed within Kaapana. Here, three
standard pools are created, which correspond to the real resources of the host system.
First, the CPU cores are identified, and each core is assigned a slot in the CPU pool.
The second pool represents the RAM of the system, where each slot corresponds to
one megabyte of RAM, which is not already used by the deployed services. And finally,
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each existing GPU gets its own pool as well with the corresponding megabytes of RAM
as slots. This way an Operator can be assigned to a pool, which consumes a specified
number of slots. Unfortunately, it is only possible to specify one pool per Operator,
which limits this specification to the most important resource of the job. Typically,
these bottlenecks are the GPU or, if this is not needed, the RAM utilization. Airflow
therefore estimates utilization by the pools and takes care of the basic scheduling itself.
However, since not all kinds of resources can be considered in this process, and this
estimation is based strictly on given estimates of developers, further steps are needed.

In the second step, which is executed after the approval by Airflow, all expected
resource consumptions are compared with the states in the K8s cluster. Prometheus
provides the actual system state and real readings as opposed to airflow estimates.
Both layers are needed because of the delay between the triggering of a job and the
actual load in the system during job execution. Consequently, if only the measured
loads would be relied on, far too many jobs would be triggered due to the delay. K8s
monitoring warnings, such as disk pressure, are also monitored at this level, and
if warnings are present, execution of the job is prevented. In case multiple GPUs
are available, the decision on which card the job should be executed is also made
here. Several jobs can also be executed on a single GPU, which leads to significantly
increased efficiency and allows large cards to be kept available for cases with high
GPU demands.

The last level of surveillance involves the assignment of limits, which immediately
terminates the job in the event that the specified requirements are exceeded. The K8s
resource management takes all jobs and services running on the platform into account
and prioritizes them if necessary. This prioritizes the operation of services so that the
entire platform does not fail due to too many jobs being started.
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3.4 Build System, Setup and Continuous Integration (CI)

At the time of writing, the framework contains about ninety containers and almost
as many packages. This makes it very complex and cumbersome to build all the
components and keep them up to date. To facilitate this process, a build system was
developed, which can then also be used for the CI to regularly check changes to the
code base, and to provide the current state of development. At the end of this section,
the installation of the platforms will also be described.

3.4.1 Build System

The build system serves to collect all components of the framework, check them for
formal errors, build them and finally transfer them to the target registry. The process
begins by collecting all Helm Charts in the repository, which are checked by linting
for formal issues related to the construction of Helm Charts as well as for compliance
with the K8s standards.

All dependencies are then resolved and verified that all defined packages and versions
actually exist within the repository. This also determines the order of the build process
by building the packages with the least dependencies first. Thus, all Charts are built
one by one until the final platform packages, containing all dependencies, are built.
By using the OCI standard, the Helm Charts can also be packaged as containers
and managed in registries. For each platform, a container is generated that defines
the entire structure, all components and versions. During this process, all container
images used in the packages are also registered in order to later match them with the
containers present in the repository. In case images or versions are used which are
not part of the current branch, an error is issued. This is important because, given the
great complexity with so many components and versions, troubleshooting misbehavior
quickly becomes unmanageable. In this way, it can be ensured that the components
used in platforms also correspond to the versions that are currently available in the
repository. At the end of package handling, all platform containers get pushed to the
defined target system in the form of a container registry.

The second stage takes care of the containers. First, all containers in the repository
are collected and checked for formal issues. Since containers inherit from each other,
it needs to be assured that containers which are used as base images are built first.
This also results in a build order, where it is also verified that base images are also
present in the repository if not specified otherwise. The introduction of so-called
local containers, which are only used as base images and are therefore not used
by components, prevents them from being pushed to the registry. During the build
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process of the containers, the output is checked for issues and the corresponding logs
get extracted. At the end, all generated containers are pushed into the registry and a
summary of all events is presented. Using multi-stage containers and uniform base-
images keeps the memory footprint small and speeds up execution. Comprehensive
caching during the container build-process ensures that once the framework has been
built, only the adjusted parts will be rebuilt, which reduces build-time dramatically.

3.4.2 Server Installation

In order to establish a decentralized infrastructure, the software stack must be
installable locally on dedicated servers. Since clinics do not always have experts for
cloud computing software available to set up the servers, the installation process must
be streamlined as much as possible.

Two separate stages are required to get a server up and running. First, all base
dependencies for hosting K8s must be installed. Microk8s [Konstantinos Tsakalozos,
2021] is used here because it is very easy to install and maintain. As operating
systems Ubuntu Server and CentOS are supported, since Ubuntu is often favored by
developers and CentOS by clinical IT. For this purpose, a script has been developed
which supports both operating systems simultaneously and installs and configures
the required software. After this server installation step a single node K8s cluster
is running on the server and Helm is ready to start deployment. This foundation is
independent of the platform deployments and only needs to be set up once.

The second stage takes care of the deployment of the platform. Here, the first steps
of streamlining were already accomplished by introducing package management,
which automates the deployment and update of a platform, including all dependencies.
Templating in the Charts enables all components to be configured centrally during
deployment. When combined with the initialization jobs, this allows the provision of
an out-of-the-box operational platform where components are already configured to
interact well with each other. For deployment management on the server, another
OS-independent script is provided. This allows the specification of the basic server
settings like the file system location for storing data and ports to be used for the UI
and DICOM receiver. Likewise, platform-related settings such as container registry,
the platform’s Chart name or the registry credentials can be made.

When the script is executed, the system first checks whether a deployment of this
platform already exists. If this is the case, options for an upgrade, re-installation
or uninstallation are offered. Otherwise, the deployment process is initiated, which
prompts whether GPU support is desired, the target domain of the system, and
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which version to install. After this is completed, the corresponding platform chart is
downloaded via the container registry and deployed on the K8s cluster. It instructs the
system which containers are needed and to download them from the source registry.
For the monitoring of the platform startup, a command is displayed, which lists an
overview of all components and their current conditions. Depending on the connection
of the server to the registry, this process is completed in a few minutes and the user
interface of the platform can be visited using a web browser.

The script also supports the integration of valid SSL certificates and the pre-fetching
of the containers needed for the platform extensions. This ensures that they are
immediately available instead of having to be downloaded during installation. It is also
possible to set up the machine to launch offline without any connection to external
systems. This is especially useful for isolated environments where the platform can be
installed using connectivity once and then run in isolation without connectivity.

3.4.3 Continuous Integration (CI)

Figure 3.8: Screenshot of the CI Dashboard.

To constantly check the current code base, the entire framework needs to be built,
installed, and tested regularly. This is achieved by continuous integration, which
automatically executes and reports these procedures. Similar to the build system,
there was no software available yet that could be used to perform these tasks for the
way Kaapana is built, so it had to be designed and developed first.
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The following tasks need to be addressed by the CI:

1. The repository should be checked out and built regularly.

2. Dedicated servers running various versions of Ubuntu Server and CentOS should
be commissioned and the basic server requirements installed.

3. Different platforms (built in step 1) should be deployed on these servers.

4. Basic functions should be tested to verify the availability of the services.

5. Logs of all activities should be captured and visualized in a Dashboard.

For the execution and control of the CI processes, an independent server is used. Each
night, the repository is fetched from the mirror, all cached containers are deleted and
the build process for the framework gets started. If an error occurs during the build,
the supposedly responsible developer is identified via Git and informed about the issue
via email. For the automation of these processes Ansible [Ansible, 2021] was used,
including playbooks for both the tasks to be executed locally on the CI server as well
as those to be executed on the remote servers. Afterwards, all necessary servers with
relevant operating systems will be launched. Since this involves frequently setting
up and dismantling several servers, the system was implemented on the basis of
OpenStack, which was already available as a IaaS provider at the German Cancer
Research Center (DKFZ). After the servers are up, they are prepared for Kaapana by
running the provided script for the installation of the server dependencies. Here, the
quiet-mode is selected, which uses all default settings and does not require any user
input. After the script is successfully completed, the servers are rebooted and ready
for the deployment of a platform. For testing different platforms, the deployment
servers are kept, since the operating systems and the setup to be tested is the same.

In the next step, the first of the defined platforms is deployed to all remote servers.
During startup, all containers must first be downloaded from the registry. Since it
consequently takes some time for the platform to boot up, the CI server monitors and
logs this process on all servers in parallel. After the system reports all containers
running and all initialization jobs completed, it proceeds with testing. These currently
consist mainly of UI tests, opening the user interface on all servers, testing logins,
and verifying the accessibility of all included components. Since the platform already
includes self-tests such as sending sample images at startup, this is already verified
when successfully completed. All reports are forwarded to a dashboard implemented
using ReportPortal [Andrei Varabyeu, 2021] so that events and issues can be conve-
niently reviewed (see figure 3.8). For manual on-demand triggering of the process,
a small web server was also developed that allows to select specific branches of the
repository via a HTTP API and have them executed by the CI pipeline.
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4 | Results

For the evaluation of the concepts and the resulting implementation of the Kaapana
framework, both the requirements and the scenarios are reviewed and evaluated
based on actual projects. Furthermore, the partner sites participating in the projects
are essential for the evaluation of an infrastructure. The JIP has been developed as
a practical implementation of a platform utilizing the Kaapana framework. It has
been distributed and utilized across two major consortia of university hospitals in
Germany. Through real-world execution of clinical use cases, both the advantages and
disadvantages of the current implementation are analyzed and as a result, possible
future improvements were derived. Since Kaapana is an open source framework
[Scherer et al., 2020a], it has already been considered by other groups and projects as
a basis for their projects.

81
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4.1 Evaluation of Requirements

First, the core areas of the requirements were evaluated. Here, the integrability, data
and algorithmic accessibility, data exploration and cohort specification and finally the
maintainability are presented. This involves analyzing and evaluating the coverage
of these requirements by presenting concrete features that are used to realize the
specific scenarios and use cases.

4.1.1 Integrability, Maintenance and Future-Proofness

The core of the main concept is based on the establishment of decentralized servers,
which are operated locally at the sites. This means that local operation and integration
into the existing IT environment is crucial. The first advantage here is that only
one server needs to be operated per site. Due to the central on-site provisioning of
all features and browser-based user interfaces, no additional software needs to be
installed and maintained on the staff’s workstations. With the support of CentOS, an
operating system is supported, which is considered as stable and maintenance-friendly
by many clinical IT departments, which allows the servers to be managed similarly to
other Linux-powered servers in the clinics IT environment. The provisioning of scripts
for the server setup and updates facilitates a quick start-up, which does not require any
technology-specific prior knowledge of cloud infrastructure. By integrating package
management with Helm, deployments can be handled very efficiently by installing,
uninstalling and updating complete packages and the use of stand-alone containers
enables easy replacement of components. By only requiring an external connection
during installation, the server can be operated in isolation, which is important for
applications within clinical networks.

By choosing out-of-domain, industrial technologies as the base layers, future-proofing
is also increased, since these technologies have a very large user base and receive
support from the large tech companies. This increases the likelihood that the open
source projects utilized will continue to be developed and maintained in the future.
Additionally, the advantages of modern cloud technology, such as scalability or modu-
larity, can be used to deploy it in medical scenarios without relying on external servers.
This would even make it possible to combine all clinical servers into one large cluster,
if this becomes desirable in the future. Data and computing resources could thus be
shared and utilized together on demand in a controlled environment.
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4.1.2 Data Accessibility

Two factors are critical to data management within Kaapana. First, all processing must
be done on redundant copies of the clinical data to avoid any interruption to the clinical
operation and to ensure that no relevant patient diagnostic and treatment information
can be altered. This is achieved by ensuring that all data to be analyzed needs to
be copied from the clinical systems to the Kaapana server before any processing
takes place. By integrating a DICOM receiver, the platform supports the clinical
standard for the transmission of imaging data, so that it can be directly attached to the
clinical systems. Physicians can therefore transmit the images for analysis via the user
interface of the on-site clinical PACS, in the same way as they are used to from other
clinical workflows. By providing an in-platform research PACS, such as dcm4chee,
all images are redundantly stored internally and delivered to the analysis pipelines
when needed. Since data scientists are often rather inexperienced with the DICOM
file format, the included converter allows easy data supply in formats such as NIfTI or
Nrrd. The same applies to the provisioning of annotations, which are also supported in
the typical clinical and data science formats.

The second factor addresses the generation of hospital-compatible results that can
also be transferred back into clinical systems if needed. The fact that DICOM is not
only consumed by the platform, but also produced, means that most of the processing
results can also be managed in the internal PACS together with the source data.
A uniform conversion of results to DICOM will promote standardization within the
community. Offering tools that automate and simplify these conversions as much as
possible can significantly reduce the obstacles of method integration for developers.
Operators such as the Json2DcmSROperator, Pdf2DcmOperator, Bin2DcmOperator or
the Itk2DcmSegOperator already support simple DICOM generation for many analysis
result types. In this context, DICOM also has the advantage of providing more infor-
mation about analysis procedures through its metadata. Consequently, segmentations
represented by DICOM not only contain a reference to the source image they have
been created on, but also information about the algorithm used, which improves the
follow-up analysis and management of analysis results. This standardized reference
handling within the annotations serves also to automatically provide required data
during the processing. For example, if radiomics features are to be calculated for an
existing mask, only the relevant masks need to be selected. The workflow automatically
retrieves the corresponding source images from the internal PACS and provides them
for the analysis. In case the annotations should be available within the clinical PACS,
they can also be automatically assigned to the correct patients and studies thanks to
their references. Unfortunately, there is not a standardized DICOM representation
for every kind of output category. For example, the local training of methods results
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in models in form of large binary files, which currently cannot be represented by any
DICOM extension. The supplied Bin2DcmOperator allows binary files to be encoded in
DICOM, which allows standardized management and transfer of data, but the content
can only be used in the context of Kaapana.

To restrict access to the platform and its data, a central SSO system has been inte-
grated. By being connected to the clinical LDAP, the hospital’s existing user and role
management can be used for controlling access to the platform. All components of
the framework have been successfully covered with the central authentication system,
which strengthens the user experience as well as improves overall security. Besides
general access to the platform, role-specific access to specific components can also
be configured, so that, for example, the K8s dashboard is only available to system
administrators. However, role-specific access to certain study datasets is currently not
possible. As soon as a user gains access to the internal PACS, all data stored in the
platform can also be accessed.

4.1.3 Algorithmic Accessibility

For successful data processing, not only the data but also the corresponding algo-
rithms must be available within the framework. Two concepts facilitate and streamline
the integration of methods into the framework. First, containers provides a way to
package the algorithms independently so that individual algorithms can use their own
programming languages, ML frameworks or software dependencies in general without
any interference with other system components.

The second part here is the introduction of a FaaS layer, which enables pipeline
processing of individual processing steps. This modularity enables a high degree of
reusability of individual processing tasks, so that the developer only needs to take
care of the actual method integration while other tasks, such as conversions or data
organization, are handled by existing components. The platform’s job scheduler takes
care of distributing and scheduling job execution on its own, so the developers don’t
have to worry about hardware utilization and also ensures that resources are utilized
as efficiently as possible to leave enough left over for the operation of the platform
itself. The methods can then be offered by the extension system, which uses a container
registry to provide both the pipelines as DAGs as well as the containers for processing.
For the JIP, an independent central hub was established at DKFZ, which provides an
OCI compatible container registry through Harbor [Harbor Authors, 2021] to deliver
the platform and processing containers as well as the installation packages.
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4.1.4 Data Exploration and Cohort Specification

Figure 4.1: Screenshot of the General Purpose Dashboard of META.

The execution of any analysis requires a data selection first, so that the correct input
data can be filtered out of the existing data collections. In Kaapana, various metadata
dashboards have been introduced to provide an overview of the current inventory
and furthermore to filter cohorts based on specific application requirements. The
dashboards shown here have been populated with several collections from TCIA so
that an impression of the various capabilities can be obtained. It is important to note
that the data is anonymized, which means that some of the metadata entries have
missing fields. In the case of real clinical records, it would also be possible to present
more patient-specific insights, which has been omitted here due to privacy concerns.

Figure 4.1 shows the initial section of the META General Purpose Dashboard (MGPD),
which provides a broad view based on the number of patients, studies and series of
DICOM data currently stored on the platform. A pie chart here shows the distribution
of DICOM modalities in the system, which allows narrowing down the data by a
click-based selection of the target variable. Below are exemplary curves of gender-
specific age, height, and weight distributions. The following technical data can provide
information about which scanners produced certain data and at which time. Therefore,
for example, it can be quickly analyzed on which days of the week and at which
times specific machines are particularly utilized. It is also interesting that contrast
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agent dosage can be included in the metadata, which when plotted along with patient
weight, quickly reveals outliers and thus possible issues. The primary purpose of this
dashboard is the demonstration of the potential of DICOM metadata. For a concrete
application or for a medical as well as technical analysis, specific dashboards can
subsequently be constructed. The click-based filtering applies to all visualizations
shown, it is always possible to include or exclude the desired fields within the lists
and graphs for the cohort by selecting the "plus" or "minus" presented. Each of these
actions results in the creation of a corresponding filter, which is displayed as a box at
the top and can also be adjusted or disabled. It is also possible to create more complex
search queries by manually adding specific filters.

Figure 4.2: The filtering of DICOM metadata in META.

Figure 4.2 shows how the cohort for an algorithm, which uses CT images of the head
and neck area as input data, can be defined. Here, by applying a filter on both the
modality "CT" and the body part examined "Head and Neck", the data is reduced
from initially over 2200 to 606 suitable images. Once all filters have been set and
consequently the cohort defined, the desired analysis pipeline can be started.
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This is done via the drop-down menu located at the top of the dashboard. Here, each
entry of the list represents an installed pipeline, which are automatically fetched,
so they always represent the current state of the platform. After the selection is
done, a click on "start" opens the corresponding input dialog, which can be freely
defined by the pipeline developers. Figure 4.32 shows an example of such a popup
dialog, which, besides referencing the relevant publication, also provides information
about the required input data or application areas. It is also possible to set the
parameters, which should be considered during the processing. In this case, the
model and architecture to be applied for the prediction can be chosen. Since these
forms are always dynamically generated based on JSON schema, developers can
define the layout themselves, and freely define check-boxes, text fields or drop-down
menus as needed. Finally, the cohort can be limited to a specified amount of series,
in case it is not necessary to handle all possible sequences. By pressing the button,
all entries are validated and it is ensured that all required information has been
entered. If this is the case, the form and the cohort query are sent to the FLOW
section along with a status message, which is confirming the triggering of the pipeline.

The default configuration includes two additional META dashboards. The "Segmen-
tation Dashboard" presents primarily information related to annotations. For this
purpose, a filter is preset to the DICOM modality SEG, so that only series containing
segmentations are displayed. Since they are often used as ground truth for the training
of new models, this view is intended to provide detailed insights into the available
annotations. Of particular interest in this context is how the segmentations were
generated and which annotations are included in each case. Several visualizations list
the underlying generator algorithms and also list each label that can be filtered indi-
vidually. The number of available samples is crucial, since training is only reasonable
above a certain amount of available samples.

The third "Trained Models Dashboard" has a focus on machine learning models encap-
sulated in DICOM. Besides the preselection of the data, it only lists some information
about the creation of the model, such as the algorithm or the site ID of the creator. This
view is especially valuable for installing and uninstalling models and for transferring
them to other Kaapana-compatible instances. All dashboards also provide the ability to
invoke "service pipelines" which allow, for example, deletion or downloading of the
selected data.
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4.2 Evaluation Environments

For the evaluation of a distributed infrastructure, it is essential to apply it in real
scenarios. For this purpose, a platform instance was put into operation at each of
the partner sites of two large German research consortia. Since these alliances
are long-term efforts and are still evolving at the time of writing, they were mainly
used to evaluate the establishment of the infrastructure as well as the conception of
concrete projects. A complete federated analysis could not yet be carried out across
the consortia, as the relevant local datasets were not yet ready. However, the necessary
analysis pipelines for the specific project scenarios have already been developed and
evaluated on public datasets using local servers at the DKFZ. The consortia and their
background, members, missions and objectives are briefly described below.

4.2.1 The German Cancer Consortium (DKTK)

First, there is DKTK, which, as the initiator and funder of the initial JIP project, has a
very important role in the overall development of this work. Since 2012, this initiative
has been established by the German government to promote medical cancer research
in Germany and acts as one of the six "German Centers of Health Research" with
the participation of the Federal Ministry of Education and Research, the German
federal states and the DKFZ. The consortium combines a total of more than 20
research institutions and university hospitals at seven locations. As the core center, the
DKFZ serves as a coordinator between the sites and projects. DKTK aims to discover,
develop, test and apply new personalized oncology strategies, with a focus on the fast
translation of new, promising research outcomes into clinical application. The focus
here is on promoting expertise in clinically oriented cancer research by building new
long-term research infrastructures at the sites and attracting new talent by funding
new professorships. Furthermore, multicenter collaboration and the implementation
of clinical trials and projects, which have great potential due to the large number of
scientists involved in the consortium, is a central mission. The DKTK’s "Joint Funding
Program" also enables the funding of such distributed projects like the JIP, of which
more than 20 have already been launched since 2012 [DKTK, 2021].
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The Joint Imaging Platform (JIP)

As already explained, medical imaging is a key part of cancer diagnosis, monitoring,
and treatment, and that is why the JIP strategic initiative was launched in 2017.

Figure 4.3: A map of Germany
indicating all DKTK partner sites.

The mission of the project is to improve the
collaborative utilization of medical imaging
in cancer research in Germany by establish-
ing a platform where experts of the field can
meet and pursue new joint endeavours. Figure
4.3 illustrates the JIP partner sites and how
they are distributed across Germany. The 11
cooperation partners include the university
hospitals of Dresden, Düsseldorf, Essen, Frank-
furt, Freiburg, Heidelberg, Mainz, Tübingen,
LMU Munich, TU Munich and the Charité
Berlin. Next to the networking of experts
and promotion of joint projects in the field of
medical image computing, the JIP also aims
to push forward the technical implementation
of such a decentralized infrastructure that en-
ables cutting-edge medical imaging research
within the consortium, which was the starting
point for this work. The project should enable
standardized image analysis for clinical studies
by allowing image-based patient stratification,
therapy monitoring as well as radiomics anal-
ysis. Likewise, early detection and progression
assessment will be accelerated and simplified by the consistent application and evalu-
ation of the algorithms within the hospitals. Increasing incentives for collaboration
through equal partners, maintaining data sovereignty, and sharing expertise are also
important aspects in this context. Other IT platforms, which were already established
within the DKTK as part of the CCP-IT [Lablans et al., 2015] should be connected to
the JIP, so that both imaging information can be provided and information from other
clinical systems can be retrieved.

In the corresponding publication the JIP is described as follows:" The JIP is designed
to facilitate collaborative imaging projects across institutions by addressing the typical
technical, organizational, and legal challenges associated with the sharing of imaging
data, acquisition parameters, analysis algorithms, or processing results. By enabling
training, evaluation, and application of algorithms in large-scale federated clinical
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settings, the platform builds a solid and extensible foundation for federated learning
scenarios. Leveraging open-source technologies, the JIP has the potential to serve as a
promoter of prospective cross-center radiologic studies at unprecedented cohort sizes,
not only within the DKTK but also beyond.” [Scherer et al., 2020b] The "beyond" in
this description proved to be true, as it has become apparent in the meantime that
many other projects could benefit from a similar infrastructure, which ultimately led
to the Kaapana project. For this purpose, the functionality of the original JIP platform
has been transformed into individually configurable components, which have been
combined in a framework to be used for the configuration of project-specific platforms
with customized features. Thus, most of the concepts and implementations described
in this thesis originated in the JIP, which was taken as the basis for Kaapana.

Technical Infrastructure

Method
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JIP Server
STORE

PACS

DICOM

User

FLOW

DKTK Hospital

Model
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User 

Interface

Supply of 
Processing Methods
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Figure 4.4: Schematic representation of the JIP server within the clinical IT landscape.

Figure 4.4 shows how the JIP is integrated at the hospitals of DKTK. The figure includes
both the decentralized components of the JIP server at the hospital and the central
hub operated at the DKFZ. The platform can only be accessed via the hospital’s local
network. Users interact with the UI via a web browser or send images to the system
by transferring them from their local clinical PACS. Once the images arrive, they are
located in the consistent environment, which provides all the features for standardized
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processing. A central hub is provided to centrally provide platform updates, new
processing methods or tools, which is operated as a Harbor [Harbor Authors, 2021]
based container registry at DKFZ. Besides the provisioning of new features, it also
serves as a central exchange channel for federated scenarios. However, the connection
to the hub will only be opened for maintenance and installation of the platform software.

Server Hardware

CPU: 2x Intel Xeon Processor

RAM: 128 GB

GPU 2x NVIDIA TITAN Xp 12 GB GDDR5X

Storage: 2TB SSD + 10TB HDD in a RAID 1 configuration

Table 4.1: Hardware specifications of the JIP servers for the hospitals.

Besides the shared software, a uniform hardware is also important, as this ensures
a standardized environment with comparable resources and runtimes. With a few
exceptions, identical server configurations were chosen, which were delivered to the
clinics. On the machines, CentOS was used as the OS, on which the JIP was installed.
The servers have the specifications shown in table 4.1.

Project Milestones

2017 2018 2019 2020

JULY 2017 
Joint Imaging Platform

 Kick-Off Meeting

MAY 2018 
First RöKo JIP Meeting

and prototype presentation

MARCH 2019
Joint Imaging Platform

 v1.0 Release

OCTOBER 2020
Kaapana Open-Source

 Release

DECEMBER 2019
Joint Imaging Platform

 v1.1 Release

NOVEMBER 2020
JIP Publication +

 v1.2 Release

Figure 4.5: Schematic timeline of the JIP project.

The project started in July 2017 with a kick-off meeting in Heidelberg. In May of
the following year, the first JIP meeting of the involved sites was held during the



92 CHAPTER 4. RESULTS

Röntgenkongress (RöKo) in Leipzig, where also the first prototype of the platform
software was presented. The meetings at the RöKo were continued in 2018 and 2019.

In March 2019, the first version of the JIP software was released, which could be
put into operation by ten of the eleven sites. One site initially had organizational
difficulties with the installation, which have since been resolved. The first update of
the platform in December of the same year was also successfully completed by most
sites and provided the first analysis methods with an automatic organ segmentation for
abdominal CTs and a pipeline for Radiomics feature extraction. In 2020, the concepts
of the prototype were refined and the JIP was transferred into the framework Kaapana,
which was also published as an open source project together with a new JIP version.
Furthermore, the publication "Joint Imaging Platform for Federated Clinical Data
Analytics" could be published at the JCO Clinical Cancer Informatics [Scherer et al.,
2020b]. Within the DKTK, the JIP is already utilized to support some trials, which are
briefly outlined below:

ARMANI: A prospective trial to compare anatomic v wedge resection of liver metas-
tases in patients with RAS-mutated colorectal cancer.

MEMORI: (ClinicalTrials.gov identifier: NCT02287129) Correlation of pre- and post-
treatment PET/CT imaging biomarkers with histopathologic and molecular features in
esophagogastric adenocarcinomas.

NEOLAP: (German Clinical Trials Register identifier: DRKS00019011) Development
and application of machine learning algorithms for noninvasive image-based subtyping
of locally advanced pancreatic adenocarcinoma.

PROACTIVE: (German Clinical Trials Register identifier: DRKS00013915) A prospec-
tive longitudinal examination of patients with low-risk prostate cancer aiming at
investigating the benefits of multiparametric MRI for active surveillance.

qPSMA-JIP: Retrospective evaluation of the prognostic value of PSMA-targeted
PET/CT for clinical outcome in patients with metastatic hormone-sensitive and
castration-resistant prostate cancer.

DKTK Radiation Oncology Group (DKTK ROG): Explorative study to predict
locoregional control after postoperative chemoradiotherapy of locally advanced
oropharyngeal carcinoma based on HPV-16 DNA status.
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4.2.2 The Radiological Cooperative Network (RACOON)

In response to the COVID-19 pandemic, in 2020 the Network of University Medicine
(NUM), a network of all university hospitals of Germany, has been established.

Figure 4.6: A map of Germany indi-
cating all RACOON partner sites.

The mission of NUM is to bundle and
strengthen the activities of all 36 German
university hospitals in order to improve the
handling and control of the pandemic. It is
funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) and received
150 million euros funding for the first year. A
total of 13 projects were initially supported,
all of which investigate different aspects of
pandemic response. Since the majority of se-
vere SARS-CoV-2 infections have pulmonary
involvement, and the disease progress can be
well differentiated and monitored by radio-
logical findings, the Radiological Cooperative
Network (RACOON) was launched within NUM
to specifically address the radiological aspects
of the pandemic. For a quantitative and system-
atic evaluation of the radiological data using
automated methods, however, a standardized
acquisition of the findings must be achieved.
For several years, so-called structured report-
ing has been established, linking each finding
and measurement with meta-information that precisely and reproduceably defines how
a finding was collected, quantified, and derived from other data.

The RACOON network aims to establish such structured reporting by establishing a
Germany-wide infrastructure for the standardized collection of radiological data, and
to utilize this for pandemic response [NUM, 2021]. This infrastructure will not only
enable structured and uniform reporting, but also enable automatic data processing,
which should generate new insights through the application and training of state of
the art analytical methods. The project is led by the university hospitals Charité Berlin
and Frankfurt, which together with the DKFZ, the Technical University of Darmstadt
(TUDa), the Fraunhofer Institute for Digital Medicine (MEVIS) and the Mint Medical
GmbH build the infrastructure needed. Figure 4.6 illustrates the geographical locations
of all 36 participating university hospitals distributed across Germany.
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Technical Infrastructure
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Figure 4.7: Schematic representation of the RACOON infrastructure.

Figure 4.7 illustrates the hybrid technical infrastructure as it is deployed for RACOON.
It is hybrid because the architecture provides central components as well as decentral-
ized instances at the respective sites. For both aspects, different tasks are anticipated,
which are presented as follows.

RACOON NODE
The RACOON NODEs form the backbone of the decentralized infrastructure where
each participating hospital operates a dedicated server as individual instance, where
each of them provides the three sections: RACOON REPORTING, RACOON JIP and
RACOON SATORI.

RACOON REPORTING: Serves as a local assesment station, which is used at every
hospital to enable structured reporting for COVID-19 patients and to provide a con-
sistent data basis. The software used is a certified medical product, which meets
all requirements for clinical use. A custom RACOON reporting-template has been
provided to ensure that all relevant information is captured. During local assessments,
non-anonymized patient data is available, which can be enhanced by information
from other data sources, such as the Radiological Information System (RIS) or the
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Hospital Information System (HIS). Furthermore, the software allows the upload of
data to the central infrastructure of RACOON CENTRAL. Here, it is important that
this is only possible on explicit request and manual triggering of the corresponding
staff of the respective clinic. Before each upload, the data is anonymized according
to the "Attribute Confidentiality profile" [NEMA, 2021a] as defined by the DICOM
standard. Additionally, the anonymized data can also be forwarded to the two other
local instruments, SATORI and JIP. All of them are running on the same server and
communicate via DICOM with REPORTING.

RACOON SATORI: Is a research tool developed and provided by MEVIS for the
efficient annotation of three-dimensional images. It offers dedicated tools which
facilitate manual segmentation or the revision of already existing annotations. Besides
segmentation, it is also possible to automatically analyze the images for certain quality
properties regarding signal intensity, homogeneity and image artifacts. Similarly to the
other components, data is received via a DICOM receiver and results are also provided
accordingly, which ensures interoperability as well as allowing communication between
all the tools.

RACOON JIP: The platform created as part of the DKTK JIP project was also integrated
as a component in all RACOON NODES. Similar to the initial project, it is used here
for the exploration and analysis of imaging data within the consortium. Segmentation
workflows and Radiomics feature extraction are of particular interest, as this could
assist in the assessment of SARS-CoV-2 infections. Furthermore, the JIP also aims to
enable federated learning between the RACOON partner sites.

To ensure a high level of data privacy, the JIP only receives anonymized data via
RACOON REPORTING, which is feasible since many of the algorithms do not necessar-
ily require personal metadata. This instance of JIP has no external communication - in
fact, not even with RACOON CENTRAL and as such the only communication channel
is within the NODE via REPORTING.

During the project two third-party analysis pipelines were developed by TUDa and
the University Hospital Frankfurt which were integrated into the platform. Here,
COVID-19-specific tissue alterations are detected, segmented, and associated volumes
are determined. The analysis results are then kept as DICOM SEG and DICOM SR
within the internal storage. The second pipeline aggregates the COVID-19 specific
image features across the site cohort and transfers them to RACOON CENTRAL via
DICOM SR, where they are finally visualized in a dashboard provided by RACOON JIP
CENTRAL. More integration and implementation details follow in the section of the
scenario evaluation.
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RACOON CENTRAL
In this infrastructure there is also a cloud-based central component called RACOON
CENTRAL, which is primarily used to enable data exchange and central data collection
for the association. Two scenarios are particularly relevant here: First, anonymized
images from the local sites can be uploaded to the cloud instance for joint evaluations as
part of multicenter studies. The second use case allows re-evaluation and consultation
between medical professionals for specific cases. As described, the RACOON NODEs
are responsible for the transfer of anonymized data between the decentralized and
centralized subsystems. In contrast to the decentralized instances, the central instance
is designed for cross-site workflows and clinical trial reporting.

RACOON JIP CENTRAL
Similar to the local instances, next to the reporting and data administration capabil-
ities, also RACOON JIP CENTRAL is deployed as a central processing instance. It’s
mainly responsible for cross-site data analysis, which processes the anonymized data
uploaded by the sites. Like within the local instances, data is transferred between the
JIP and RACOON CENTRAL via DICOM.

Since all sites can contribute images, a valuable broad database can be established
by providing real datasets representing all of Germany. In addition to the large
amount of high quality images that can be collected, the heterogeneity of the data
is also significantly increased by the numerous acquisition locations, machines, and
settings. These centrally executed analyses should allow for a significantly more
realistic evaluation of method performance, as they are based on data from real
hospitals in real world scenarios. Also, for the training of new models the broad
database offers advantages, as it should allow to generate more robust predictions,
which perform well on data from most hospitals. For the execution of federated use
cases, JIP CENTRAL represents the intermediate layer, which handles the cross-linking
of the different sites.

Server Hardware
Since instances of the RACOON infrastructure, unlike the DKTK JIP, consist of several
components, a different deployment model has been chosen. For the local RACOON
NODEs, three software components must be operated on each hospital server: Mint
Medical GmbH’s product for RACOON REPORTING, SATORI and the JIP. Since they
have different system requirements in terms of operating system, software depen-
dencies and network connectivity, a different approach was taken, providing each
component with its own virtual machine (VM) on the server. Since all three components
communicate via network only, they can be easily operated and maintained in their
own isolated environments. This also allows the UIs of the individual systems to be
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configured separately via port forwarding on the server. The server hardware of most
hospitals (some have made customizations) has the following specifications:

CPU: AMD EPYC™ ROME 7702P, 64-Core

RAM: 256GB DDR4

GPU NVIDIA Quadro RTX 6000 - 24 GB GDDR6

Storage: 14TB SSD

Table 4.2: Hardware specifications of the RACOON NODE servers for the hospitals.

Based on this, Windows Server 2019 was selected as OS, which offers HyperV as a
VM solution and enables GPU passthrough. Thus, each server runs three separate
VMs, allocating the components corresponding resources as disk space, CPU, RAM
and GPU. For installation, the full JIP VM has been provided as a package, which was
transferred and launched at the sites.

4.2.3 Local Development Infrastructure

For the local development of the JIP and evaluation of processing pipelines, also at
DKFZ development servers have been established and populated with public datasets
(see table 4.5). Even though such a local setup cannot provide realistic results for the
medical evaluations due to the lack of the corresponding patient data, tests can still
help to optimize and verify the functioning of the methods as well as the tuning to the
hardware components.

The purpose of the local evaluation is less focused on the investigation of specific
medical questions, but rather on verifying the effectiveness of the infrastructure and
its concepts. The server hardware used for the local evaluations is similar to the
hardware deployed within the consortia, which allows comparable workloads and
runtimes of the tests and the real execution at the local sites.

DKFZ JIP server:
For the evaluation on the JIP server, CentOS 7 as OS was installed on a bare-metal
server and the platform was set up with the default installation scripts.

CPU: 2x Intel Xeon Processor

RAM: 128 GB

GPU 2x NVIDIA TITAN Xp 12 GB GDDR5X

Storage: 2TB SSD + 10TB HDD in a RAID 1 configuration

Table 4.3: Hardware specifications of the JIP development server at DKFZ
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DKFZ RACOON Server:
The test setup for RACOON also runs Windows Server 2019 as OS and provides
RACOON REPORTING, SATORI and JIP within independent VMs. Despite the develop-
ment server’s hardware being better equipped than the RACOON NODEs, an identical
setup can be reproduced by allocating the resources to the VMs.

CPU: AMD EPYC™ ROME 7702P, 64-Core

RAM: 1TB DDR4

GPU 4x NVIDIA Quadro RTX 6000 a 24 GB GDDR6

Storage: 14TB NVME-SSD

Table 4.4: Hardware specifications of the RACOON development server at DKFZ

Datasets Utilized:
For the local tests during the development of the RACOON infrastructure, the test
server was populated with approximately 25000 series from the TCIA, which are listed
in table 4.5.

Full Title Data Citation

Stony Brook University COVID-19 Positive Cases [Saltz et al., 2021]

Breast-MRI-NACT-Pilot [Newitt and Hylton, 2016]

The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma [Akin et al., 2016]

The Cancer Genome Atlas Liver Hepatocellular Carcinoma [Erickson et al., 2016]

head and neck squamous cell carcinoma [Grossberg et al., 2020]

Quantitative Imaging Network head and neck cancer [Beichel et al., 2015]

Table 4.5: Table of datasets used for the development of the RACOON infrastructure
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4.3 Use Case Evaluations

For the evaluation of the use cases and their scenarios (see 3.1.5), real-world examples
were collected and implemented. These integrations have been implemented by both
internal Kaapana developers as well as external partners, which is important as the
requirements imply usability by non-specialists from within the community.

4.3.1 Use Case 1: Autonomous Execution

This use case addresses the enabling of autonomous processing decisions, which,
as described in the main concept of the methods chapter, should allow autonomous
decision making by the platform to trigger pipelines in case defined conditions are met.
For each incoming DICOM-series it is checked if trigger automatic processing rules
are present. If so, the rules are applied to the image to initiate processing if necessary.

Case Scenario 1.1: Existing Metadata

For this case scenario, the RACOON task from case scenario 1.4 is also used, since it
deals with the analysis of incoming CTs, which should be triggered automatically if a
corresponding image arrives at the platform. The associated DICOM-tag "Modality"
represents a standardized and thus very reliable entry which is usually set automati-
cally by the scanner. As a consequence, a rather basic auto-trigger configuration is
sufficient in this case - dag_racoon_ukf_presegmentation_trigger_rule.json:

1 {"search_tags" : {
2 "0x0008,0x0060" : "CT"
3 },
4 "dag_ids" : {
5 "racoon−ukf−presegmentation" : {
6 " rest_call " : {
7 "global " : {
8 "single_execution" : true
9 }

10 }
11 }
12 }
13 }

The important element here is the requirement of the DICOM Header (0008,0060)
Modality corresponding to the entry "CT". Since within RACOON all data is forwarded
via RACOON REPORTING, and thus the pre-selection of relevant images is already
made there, the scenario is already fulfilled with this configuration. However, it is also
evident that more complex requirements could also be realized by adding additional
DICOM header entries, which are then all checked for compliance. The other settings
indicate which DAG is to be triggered and it is also possible to define parameters for
the processing pipline for automatic triggering.
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Case Scenario 1.2: Pre-analysis and Metadata Extraction
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Figure 4.8: Processing pipeline for the body part prediction.

In contrast to the first scenario, an autonomous trigger decision is much more chal-
lenging when the metadata is incomplete, non-standardized or hospital-specific. As
described in the use case "Autonomous Execution" of the methods chapter (see 3.1.5),
the modality and the body part examined are the crucial input data parameters for
most algorithms. Since the modality generally is reliable DICOM information, the
body part examined was of greatest interest for the evaluation of the second scenario.

Figure 4.9: Dashboard visualiza-
tion for the predicted body parts.

For this purpose, a body part regression model
for CT volumes has been developed, which was
trained in a self-supervised fashion, and pre-
dicts the desired information as a pre-processing
step, instead of relying on the information pro-
vided. Figure 4.8 illustrates the related processing
pipeline, which after conversion from DICOM to
NIfTI is predicting the corresponding body region.
In the last step, the prediction is added to the
META system so that this information is also avail-
able for cohort selection within the dashboards
as shown in figure 4.9. This prediction results
in defined body sections instead of the usual non
standardized entries, which allows precise defini-
tion from where to where the body was captured
on each series. For this purpose, the regions
HEAD,NECK,CHEST,ABDOMEN and PELVIS were

chosen, which are added to the body part predicted tag according to their occurrence.

If the lung analysis from scenario 1 should be performed on non-RACOON data, the
applicable images can be selected by filtering for modality CT and a Body Part Predicted
including the CHEST. For the data on the test system, this translates to instead of the
2106 series that can be identified by the included DICOM tags Modaily CT and Body
Part Examined equals CHEST or LUNG, the standardized prediction identifies 2936
matching series including the CHEST area. It is also likely that the selection will be
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more accurate as well, since all images are reviewed equally. Examples in the datasets,
on the other hand, frequently show that despite identical descriptions of the body part
or series descriptions, the series can still contain varying scans. Due to the lack of
ground truth, a quantitative assessment of this accuracy is not possible and can only
be verified by random sampling.

4.3.2 Use Case 2: Integration of Data Analysis Algorithms

This use case addresses the integration of new processing steps, and is therefore of
great importance for the accomplishment of Kaapana’s main goals. It is particularly
important that the concepts developed are on the one hand simple and straightforward
enough to be implemented by non-Kaapana experts, but on the other hand still offer
enough flexibility and freedom for the integration of complex processes that have not
yet been considered during the development of the framework. For the evaluation of
this use case, three processing pipelines developed internally at DKFZ representing
different styles of data processing were examined, as well as a third-party pipeline to
evaluate off-site applicability.

Case Scenario 2.1: CPU-based ML Model Inference
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Figure 4.10: Processing pipeline for the 3D-SSM based organ segmentation.

For the initial integration of an analysis method, a 3D Statistical Shape Models (3D-
SSM) [Norajitra and Maier-Hein, 2017] based organ segmentation has been chosen,
which generates segmentation masks for the liver and spleen, as well as the left and
right kidney from abdominal CT imaging. Figure 4.10 shows the complex structure
of this processing pipeline, consisting of many individual prediction steps. The key
characteristic of this workflow is that everything can be executed on the CPU only,
which means that, unlike most newer DL-based approaches, hardware without a GPU
is also usable.
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Input Data Selection

Figure 4.11: Trigger dialog for the 3D-SSM organ
segmentation DAG.

The pre-trained model of this
method expects abdominal CT
images, which are available in
the Nrrd file format. Thus, data
selection can be easily achieved
using two filters with modality
equals CT and Body Part Ex-
amined equals abdomen on the
META dashboards. The trig-
gering dialog shown in Figure
4.11 includes information about
the corresponding publication,
the expected input data and the
target segmentations of liver,
spleen, left and right kidney.

Processing Pipeline
After the provisioning of DICOM images from the PACS, all images are converted by
the DcmConverterOperator into the Nrrd format. The original implementation of the
algorithm first normalized all images, then sequentially segmented one organ at a time,
which has negative consequences for the execution time. Since Kaapana allows parallel
execution of Operators, this procedure was modified during the integration-process
and changed into five individual processing steps, partially parallelized where possible.
After normalization, parallel inference with the liver and spleen models is performed.
The prediction of the left and right kidney cannot be done at the same time, as it
depends on the resulting liver and spleen positions, and thus have to wait for the
outcome of these predictions. However, once the initial predictions are completed, the
kidneys are also segmented in parallel.

The models produce four Nrrd files each containing the respective organ mask. The
files are subsequently converted to DICOM SEG using the Itk2DcmSegOperator and
sent to the internal PACS as the final result using the default DcmSendOperator. On
arrival, similar to other incoming images, the metadata is extracted and presented
in the META dashboards for data exploration. All processing steps, related to the
actual method to be integrated, were realized using a single container, performing
the individual tasks by specifying distinctive arguments. It is based on MITK, which
has been used to implement the respective normalization and organ predictions. All
other tasks were realized by default Operators from the Kaapana software catalog.
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For CPU-based processing jobs, RAM is usually the resource bottleneck since image
processing is usually very memory-intensive and CPU cores can be better distributed
among different workloads. In this case, a consumption of 6 GB RAM per prediction is
specified for the scheduling system, which schedules the execution depending on the
current hardware load.

Results

Figure 4.12: OHIF showing the segmentations produced by the 3D-SSM organ
segmentation.

As shown in figure 4.12, the outcome of the image analysis can be viewed in OHIF,
where each organ is shown as a single-label DICOM SEG, and its mask presented as
an overlay on top of the CT scan. Furthermore, they also appear on META’s specialized
segmentation dashboard, where they can be selected for follow-up analysis.
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Case Scenario 2.2: GPU-based ML Model Inference
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Figure 4.13: Processing pipeline for the nnUNet inference.

The second case scenario addresses the integration of DL-based algorithms requiring
intensive GPU allocation due to the underlying technology. Given the successful partic-
ipation in many scientific challenges, the versatile applicability, and the availability
of several pre-trained models, the nnUnet inference [Isensee et al., 2021] has been
selected for integration for this scenario. The processing steps shown in Figure 4.13
illustrate the implementation of the nnUNet-prediction DAG in Kaapana. In contrast to
scenario one, it is much more straightforward in design, since all segmentations can
be generated during a single model inference.
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Input Data Selection
The selection of the input data is handled via META, where depending on the selected
task, varying input data is required, which is shown in the corresponding dialog.

Figure 4.14: Trigger dialog of the nnUNet DAG.

However, this time there are no
general image properties that
apply for the DAG overall - each
supported task has its own re-
quirements. The information,
which data is required for the re-
spective model (or task), is also
provided via the triggering dia-
log, where the corresponding en-
tries are adjusted according to
the selected task. Figure 4.14
shows the layout of the dialog
with all the information and the
adjustable parameters, such as
the task selection. Here, tasks
and models are distinguished, as
the task specifies the function
(e.g., input data and target struc-
tures), whereas the model explic-
itly sets the architecture for the
model of the inference. Most pre-
trained tasks provide models for
2d, 3d-lowres, and 3d-fullres ar-
chitectures. The model list in-
cludes models installed on the
server as well as those available
for download and supported by
the current implementation. Af-

ter the launch, along with the usual preparation of relevant DICOM series, the avail-
ability of the selected model is checked in parallel and if unavailable, the download is
automatically triggered.

Processing Pipeline
The implementation of the nnUNet Operator has been realized using a single container,
which not only supports inference with various models, but also data pre-processing
and the training of new models, which is described in use case 5.
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The container is based on a special base-image provided by NVIDIA [NVIDIA NGC,
2021], which allows GPU access and also provides Pytorch [Paszke et al., 2019] as a
DL framework. By specifying the required GPU resources to the nnUNet Operator,
the scheduling system manages the execution of the containers to ensure sufficient
GPU RAM is always available for the job. In this case, it is expected that this is the
bottleneck for the execution of the inference on the system, since the GPU memory
is usually very limited. However, the other checks of the scheduler prevent the
system from being overloaded by the other demands as well. The resulting NIfTI
files may contain multiple segmentations and are therefore subsequently converted
into multi-label DICOM SEG using the Itk2DcmSegOperator and finally sent with the
DcmSendOperator to the internal PACS.

Results

Figure 4.15: OHIF showing the multi-label segmentations produced by the the
nnUNet inference DAG using the task17 pre-trained model.

Screenshot 4.15 illustrates OHIF showing the segmentations generated by the nnUNet
"Task017_AbdominalOrganSegmentation" model, which segments the spleen,left and
right kidney, gallbladder, esophagus, liver, stomach, aorta, inferior-vena-cava,
portal-vein, splenic-vein, pancreas and the left and right adrenal-gland within
abdominal CT Series. Since multi-label segmentations are used, only one DICOM SEG
is stored in the PACS and presented here.
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Case Scenario 2.3: Radiomics Feature Extraction
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Figure 4.16: Processing pipeline for the Radiomics feature extraction.

For the evaluation of the integration of non-ML based approaches, a Radiomics feature
extraction pipeline has been implemented in this case scenario. Besides the different
type of analysis, this DAG also differs in the output format, as no voxel-based result is
generated here, but rather textual statistical features.

Input Data Selection

Figure 4.17: Trigger dialog for the Radiomics DAG.

The selection of input data is facilitated by the specialized META segmentation dash-
board, which exclusively presents relevant data and its detailed properties. The
associated trigger dialog shown in Figure 4.17 also allows the specification of parame-
ters for the execution of the Radiomics application, which specify what features to be
calculated.
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Processing Pipeline
The DAG, as shown in Figure 4.16, first retrieves the selected DICOM SEG objects
from the PACS and converts them into Nrrd files using the DcmSeg2ItkOperator. In
parallel, the LocalGetRefSeriesOperator is used to identify the corresponding CT or
MRI images where the segmentations were generated from. Once these have also
been downloaded and converted to NIfTI, both the masks and the associated images
are fed into the Radiomics Operator. In this case, the results of two processing steps
are supplied to an Operator, which can then evaluate them together. The Radiomics
Operator is based on a container including MITK Phenotyping [Götz et al., 2019] and
its MitkCLGlobalImageFeatures application, which uses the segmentation mask to
calculate the requested features on the image and provides them as a XML file.

Results
Since there is currently no practical solution in Kaapana for the storage of these
characteristics as DICOM, the results are not saved in the PACS as usual, but instead
stored directly as a XML file in the integrated Object Storage MinIO using the Lo-
calMinioOperator, where they can be downloaded and analyzed onwards via the REST
API or UI referenced by the corresponding SeriesUID of the DICOM SEG. Figure 4.18
shows parts of the XML representation containing the first order statistic obtained
from a Radiomics analysis using a liver segmentation mask.

Figure 4.18: Sample set of the extracted Radiomics features from case scenario 1.3.
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Case Scenario 2.4: Third-Party Workflow Development

Fetch
DICOM

From PACS

Analysis Of
Pathologies

Convert
NIfTI to

DICOM SEG

Send
DICOM SEG

to PACS

Clean
Temporary

Data

Convert
JSON to

DICOM SR

Send
DICOM SR

to PACS

Figure 4.19: Processing pipeline for the extraction of lung pathologies.

For the evaluation of the integrability of methods by external community members,
a task from the RACOON consortium has been selected. This analysis segments
the typical lung pathologies associated with SARS-CoV-2 infections such as Ground-
glass opacity (GGO), non-malignant lung consolidations, and pleural effusions from a
patient’s CT image and also extracts the respective volumes of the detected structures.

Input Data Selection
Even though this DAG can still be started via the dashboard as usual, for RACOON it
should run automatically when suitable images arrive on the platform, as it is described
in the first use case. In general the DAG expects CT scans of the chest area as input
images.

Processing Pipeline
The figure 4.19 illustrates the workflow design, which was developed in collaboration
between the TU Darmstadt and the University Hospital Frankfurt. The prediction is
enabled by a container developed by the RACOON partners, which directly processes
the DICOM files and produces both a NIfTI file containing the segmentations and a
JSON file including the extracted volumes of extracted tissues. The segmentation is
converted into a multi-label DICOM SEG using the Itk2DcmSegOperator and sent to
the internal PACS using the DcmSendOperator. The JSON gets converted to DICOM SR
using the Json2DcmSROperator and is also finally sent to the internal PACS.

Results
As usual, the DICOM results can be inspected via OHIF. Figure 4.20 illustrates that
aside from the CT with the segmentation overlays, also the DICOM SR documents can
be visualized in the browser.
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Figure 4.20: OHIF showing the results of case scenario 2.4 with the DICOM SR on
the left and the CT & DICOM SEG on the right.

Although other processing pipelines have been developed externally, they will not be
discussed in detail here due to the lack of variety of the processing steps besides the
newly integrated method containers.

4.3.3 Use Case 3: Integration of Services and Desktop Applications

Beyond the integration of new algorithms, the possibility of additional or alternative
services is also important for a platform. This includes both services that permanently
offer additional features and software that can be started on demand to offer the service
as part of a processing step within a pipeline. Since the platform’s basic features
are also implemented as such services, they could theoretically also be used for the
evaluation of this use case. However, as these have already been examined several
times elsewhere, the focus here was particularly on the integration of extensions,
as this is also the most common way for partners to add new functionality to the
framework.

Case Scenario 3.1: Permanent Services

The first case scenario addresses permanently running applications that are installed
via the extensions mechanism and offer a web UI for user interaction. If the application
has already been implemented as a web service following the client-server model, it
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can be integrated very easily and quickly, as described in the "Integration of Services
and Desktop Applications" section of the methods chapter (see 3.1.5).

Code-Server
For the evaluation, code-server [Coder, 2021], an integrated development environment
(IDE) based on Visual Studio Code [Microsoft, 2021], has been examined first, since
allows Operators and DAGs to be developed from within the browser and such directly
on the platform server. Given that a container already exists for code server, it was
just integrated into a K8s deployment and made accessible via a K8s service, which is
accessible with the subpath "/code" within the platform. To make the folders containing
the DAGs and Operators for FLOW available within the IDE, they are mounted into
the container. Finally, a minimal Helm Chart had to be created as a package for the
extensions.

Figure 4.21: Screenshot of the installation process for code-server

After that, the extension is ready for installation and is listed in the corresponding
section of the landing page, as shown in figure 4.21. After launching the installation
process, the corresponding container is deployed and current process status is shown
within the UI. Finally, the status "running" appears and the service can be accessed via
the corresponding URL, which will open another browser-tab containing the services
UI as seen in figure 4.22.
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Figure 4.22: Screenshot of Code-Server running in the browser.

Tensorboard

Figure 4.23: Screenshot of the extensions with multiple instances running.

As a second example, Tensorboard [TensorFlow, 2021] was integrated into the platform
as a training monitoring tool, which is also already available as a web service and could
be integrated just as easily as the IDE and installed via the extensions. The difference,
however, is that this is a multi-launchable application that allows multiple instances of
the service to run in parallel on the platform, accessible via automatically generated
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subpaths. Figure 4.23 shows three running instances of the same Tensorboard applica-
tion, which can be accessed individually via the link button. This is important if several
instances of an application should be run in parallel, e.g. for the parallel creation of
annotations or, as in this case, for the monitoring of various training processes. Figure
4.24 shows a screenshot of one of the running Tensorboard instances, which illustrates
the current progress of a training session.

Figure 4.24: Screenshot of Tensorboard visualizing a training of the nnUNet.

MITK-Workbench
Finally, the MITK workbench has been used to also verify the integrability of desktop
applications, as described in the "Integration of Services and Desktop Applications"
section of the methods chapter (see 3.1.5). By using the provided VNC enabled base-
container, the workbench UI could be made accessible via browser by installing a
MITK binary release within the container. Data can be opened as usual through the
"open-file" dialog of MITK, which allows access to the data stored in the object storage,
which is mounted into the container.
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Figure 4.25 shows the browser-based MITK Workbench showing a loaded CT scan and
its corresponding segmentations from case scenario 2.2 in section 4.3.2.

Figure 4.25: Screenshot of the MITK-Workbench running in the browser.

Case Scenario 3.2: On-Demand Services and Interactive Processing-Pipelines
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Figure 4.26: Processing pipeline for the qPSMA pre-processing.
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Figure 4.27: Processing pipeline for the qPSMA interactive annotation.
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In this scenario, qPSMA, a semiautomatic software developed at the Department of
Nuclear Medicine of the Technical University of Munich, which is used for whole-body
tumor burden assessment in prostate cancer based on Prostate-specific membrane
antigen (PSMA) using PET/CT imaging, was integrated into Kaapana.

The tool consists of a custom Python application, which uses its own UI to simplify the
manual parts of analysis for the user. This involves time-consuming pre-processing
of the data, that normally have to be triggered manually before the human interac-
tion. During the integration, this step could be extracted so that it is automatically
performed by the platform before the user starts the manual work, thus not having to
wait for the results. Consequently, the analysis of the images involves both automatic
and manual processing steps, which led to two challenges:

First, the custom Python application including the desktop UI had to be transferred
via the provided VNC base-container, and furthermore, the extracted automatic pre-
processing had to take place before it was actually deployed. Thus, as described in use
case 2, for all incoming matching PET images the corresponding DAG can be triggered,
which then automatically performs the pre-processing. After this is completed, a
predefined number of qPSMA instances get started and wait for the user to manually
annotate and process the data. On the landing page, the waiting instances are listed
under pending applications as shown in the figure 4.28, and can be accessed via a link.

Figure 4.28: Screenshot of the pending interactive processing steps.

After the user has finished the work, pressing the button "Finished manual interaction"
shuts down the respective instance, the results get saved in the object storage by the
LocalMinioOperator and the next qPSMA instance gets launched and added to the list.
Figure 4.29 shows the UI of qPSMA, which is used to perform the manual annotation.
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Figure 4.29: Screenshot of the qPSMA application with its desktop UI in the browser.

4.3.4 Use Case 4: Interactive Data Annotation

The fourth use case outlines the platform’s capability for generating image annota-
tions, which can then be used for the training of new models, or to generate data
for studies. Here, the focus was again on segmentations, since these are central
annotations in the field of MIC. The challenges mentioned in the use case description in
section 3.1.5 have been addressed and implemented on multiple levels of the platform.

The problem of loading and saving the annotations and associated images had already
been solved by the Operators provided. Here, the standardized conversion to DICOM
guarantees that all relevant metadata is kept. Automatic predictions as described
in case scenario 1.2 can be used here as pre-segmentation, with the result that the
annotations only need to be manually verified or fine-tuned. For this manual step
a customized version of MITK-Workbench has been developed, which focuses on
segmentation and seamlessly integrates into the infrastructure. The workflow was
implemented similarly to case scenario 3.2. Here, either an automatically generated
segmentation or simply an image series is selected as input data for the DAG, which
automatically downloads the data and also provides referenced series if necessary.

Then, the customized MITK workbench is launched as a manual interaction step and
placed on the pending applications list available on the landing page. Figure 4.30
shows the customized MITK UI for segmentations, which automatically loads and
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visualizes the corresponding image and pre-segmentation, if one exists. After the user
has completed the review/refinement, a new DICOM SEG is generated and sent to
the internal PACS afterwards the instance can be terminated via "Finished manual
interaction" button.

Figure 4.30: Screenshot of the interactive MITK refinement application.

4.3.5 Use Case 5: Machine Learning Workflows

The last use case deals with the training of methods using site-specific data in order
to be able to generate new models. As in case scenario 1.2, nnUNet has been chosen
for this task, as due to its automatic adaptation to the given data it is particularly well
suited to offer a universal segmentation training method within the framework. Both
local training but also federated scenarios are considered here, as is planned within
the context of RACOON.

Case Scenario 5.1: Local Training

Local training uses data available locally on the platform to train a new model. This
model can then be installed locally and used for inference on new data. It can also
be shared with other partners so that they can make their own inferences using the
model.
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Input Data Selection

Figure 4.31: Screenshot of the Segmentation Dashboard of META.

Since nnUNet is specialized on segmentations, DICOM SEG or RT-STRUCT annotations
are expected as input. To facilitate the data selection, a specialized segmentation
dashboard has been added to META that pre-selects fitting modalities and provides
detailed insights into the existing labels present.

Figure 4.31 shows a screenshot of this dashboard filled with sample data. For example,
it is possible to retrieve all existing records that contain a particular label, even if they
are both single-label and multi-label files that may contain different combinations of
segmentation labels.
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Figure 4.32: Trigger dialog for the nnUNet-
training DAG.

Figure 4.32 shows the trigger dialog
with all available parameters. For this
training, a 3D full-resolution archi-
tecture was chosen, which should be
well suited for learning the specified
labels. Furthermore, the segmenta-
tion filters have been set, since only
these structures should be learned,
and thus all other labels occurring in
the files should be excluded from the
training. This allows white-listing of
all labels to be included in the process.
The site ID enables the subsequent
mapping of models in the system to
their corresponding sites - initially
this ID is randomly generated, but
can also be manually overwritten as
in this case with "uni_heidelberg".
Finally, the training can also be lim-
ited to a certain amount of epochs.
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Figure 4.33: Processing pipeline for the nnUNet training.

The training-DAG mainly involves data retrieval and pre-processing to provide the data
according to the specifications of the nnUNet. The first step fetches all RT-STRUCT and
SEG series including its referenced source images from the PACS. Then all DICOMs
are converted to NIfTI - Where during the conversion of multi-label segmentations are
also separated as single files. Subsequently, by applying the segmentation filters, all
non-whitelisted annotations are removed. After all DICOMs have been converted, the
input data is ordered, verified and merged by the SegCheckOperator, which is used to
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prepare the annotations for the training process. This pre-processing takes multiple
steps, which are briefly described in the following:

1. Data Organization: Here, all annotations that are based on the same source
series get collected and sorted. This is necessary since several segmentations
based on the same source image may have been selected during the data selection
process which could contain differing labels. Without this pre-processing, it would
lead to issues in the training process, as for a single base image there would be
multiple ground truths, each containing different labels.

2. Alignment of the Label-Encodings: Since different DICOM files may encode
the same label differently, they have to be unified. After this step, it is ensured
that labels are uniformly and incrementally encoded.

3. Label Merging: In this step, all existing label masks for a given source image
are merged to create a single ground truth label map containing all associated
annotations.

4. Overlap Protection: Since the nnUNet used in this example cannot handle
multiple class labels for each voxel, it must be verified that there is no overlap
between the different labels. In this processing step, this is inspected and, if
necessary, corresponding annotations are rejected.

The result is a single NIfTI file for each source image, all of which use consistent
label encodings without any mask overlaps. In the next step of the DAG, the nnUNet
pre-processing is applied, which is based on batchgenerators [Isensee et al., 2020]
and provides the final nnUNet specific training and test datasets.

Once these are ready, the actual training is launched, which automatically sets all
necessary network parameters and runs as many epochs as specified during trigger-
ing. The progress of the training can be monitored using the Tensorboard extension
described in case scenario 3.1. As shown in Figure 4.24, the progress of the individual
estimated label DICE scores as well as the progression of the training loss can be
tracked.
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Results

Figure 4.34: Screenshot of the training re-
port DICOM shown in OHIF

After all epochs have been passed, a
PDF report containing the training
progress graphs of the training is gen-
erated and converted into a DICOM
using the Encapsulated Document
IOD. The result gets listed as DOC
type within OHIF and the included
PDF document can also be visualized
in the viewer as it is shown in figure
4.34. In parallel, the trained model is
extracted, while file whitelisting and
pseudonymizing the included logs en-
sures that no potentially personal data
such as concrete series UIDs of the
images used for training is included in

the model. The resulting ZIP-file contains the full DL-model and can be used for the
prediction of images.

Since results should be managed as DICOM in Kaapana, the model is finally converted
using the Bin2DcmOperator into a customized OT modality, which is then sent to
the internal PACS. The META Trained Models Dashboard shown in Figure 4.38 lists
all models available on the platform, where the "nnunet-model-install" DAG can be
used for installation. Subsequently, the model is available for inference of upcoming
acquisitions within the normal nnUNet-inference DAG. Since such models are DICOM
objects, they can also be used with the other service DAGs, which allows, for example,
the transmission to other Kaapana compatible instances or for model download via the
integrated object storage.

Case Scenario 5.2: Federated Learning

The last scenario explores cross-site learning, which is intended to use the local data
of all participants to potentially enable better predictions. The federated learning
approach examined and implemented for this thesis addresses a training designed
for RACOON, which, due to very limited external connectivity, utilizes an ensemble
of multiple models. This procedure for training and subsequently combining multiple
models involves two stages:
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Model Training
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Figure 4.35: Schematic representation of the RACOON segmentation workflow.

The local training at the acracoon sites first requires the necessary annotations.
The process established to accomplish this task is shown in figure 4.35. Here, the
corresponding CT scans are first forwarded from the hospital PACS to RACOON
REPORTING and then segmented with the help of SATORI. The annotations are
conducted by the medical experts using a standardized diagnostic template, resulting
in DICOM SEGs that include both anatomical structures and pathologically altered
lung tissues that are commonly observed in the context of SARS-CoV-2 infections.

After the ground truth information is generated with SATORI, it is sent back to
RACOON REPORTING where it is provided to the local JIP instance. Here, it is
then used to train a new model, which is illustrated in figure 4.36. The basic procedure
is similar to the approach of case scenario 5.1, using the nnUNet as well.
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Figure 4.36: Processing pipeline for the nnUNet-training for the RACOON use case.
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The result of the training is a site-specific model wrapped by DICOM, which is trans-
mitted back to RACOON REPORTING. In order to combine and evaluate models from
multiple sites into an ensemble, they must first be collected in RACOON CENTRAL.

For this transfer, a tunnel between REPORTING and CENTRAL must be established,
which is the only external communication option available and therefore the only way
of sending data out of the hospitals. Since this transfer imposes a size limitation, the
model is not only converted into a single DICOM file, but rather split into several
parts, which are related by a common series UID. This ensures that the transmission
of data is feasible and the maximum chunk-size of the tunnel-transfer is not exceeded.
This asynchronous execution of the training and model transmission to CENTRAL also
allows the sites to operate independently of each other.

Model Ensemble
The second step of the distributed evaluation is performed on RACOON CENTRAL.
After the DICOM models of multiple sites have arrived, a processing pipeline can be
launched as shown in Figure 4.37, which evaluates and compares each of the models
individually and as an ensemble. For a robust evaluation of model performance, it
is important that a representative dataset of the hospitals is available on RACOON
CENTRAL. This allows for a review of the performance of site-specific models on a
dataset containing foreign data from other sites.

Models

nnUNet-
predict

nnUNet-
ensemble

Results

Test Data
RACOON
CENTRAL

Figure 4.37: Processing pipeline for the ensemble prediction of multiple models.

Input Data Selection
The models to be combined and compared for the ensemble evaluation serve as input
data. The data selection is also done using META by selecting the corresponding
models on the Trained Models Dashboard shown in Figure 4.38.
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Figure 4.38: Screenshot of the Trained Models Dashboard of META.

After triggering the "nnunet-ensemble" DAG, the usual dialog is shown, which, in
addition to setting the nnUNet parameters, also offers the possibility to whitelist labels
to be considered for the evaluation. The test cohort is defined in advance using a fixed
query in the pipeline.

Processing Pipeline
The DAG enabling this evaluation is complex, as it consists of many parallel operating
processing steps as shown in Figure 4.39. It can be roughly divided into two sections,
one responsible for extracting, assembling, and providing the models for the nnUNet,
and the other obtaining and preparing the cohort data for analysis from the PACS.
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Figure 4.39: Processing pipeline for the ensembling of models.
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First, the chunks that were originally generated from the binary models need to be
extracted from the selected DICOM files and re-assembled so that the complete models
are available for predictions of the nnUNet. In parallel, a predefined test-cohort
dataset is fetched from the PACS, which includes the ground truth segmentations as
well as the CT scans.

For the comparison of all models, a prediction is generated from each source image
using each of the selected models. Besides the predictions of the individual models,
a combined prediction of the ensemble is also produced by majority voting, which is
also included in the comparison. Finally, all generated predictions are compared to the
ground truth to determine the corresponding DICE scores for each label, model, and
ensemble.

Results
As a result, this evaluation generates various graphs and tables that produce a per-
formance comparison of the different models and the ensemble on all test data.

Figure 4.40: Box-plot of the results for the
model ensemble.

Figure 4.40 outlines an example plot
where three separate models, which
were trained with the NSCLC Ra-
diomics dataset [Aerts et al., 2019].
The first model on the left was trained
with 100 epochs , the second with
10 epochs and the last with only one
epoch. As expected, the graph indi-
cates decreasing performance of the
models with decreasing epoch count
and the still solid performance of the
ensemble on the right. All results are
provided both as images as well as raw
data in JSON files. The pipeline de-
scribed here already shows the com-
plete implementation to be used in
RACOON. At the time of writing, it
was unfortunately not yet feasible to
run experiments across the consor-
tium, as not all the necessary data had
been annotated and CENTRAL, includ-
ing the test data, was not yet available.
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5 | Discussion

Clinical evaluation, training, and application of new data-driven image analysis meth-
ods requires a sophisticated digital infrastructure that allows new techniques to be
deployed within real-world clinical environments. For this purpose, technical concepts
have been developed that address the various challenges involved in the development
and establishment of such an infrastructure. Since projects in the context of medical
imaging are very diverse, the aim was not to have a single platform covering all
potential applications, but rather to provide a flexible and modular framework for the
construction of project-specific platforms that can then be tailored to meet specific
project requirements. A high degree of modularity and extensibility should also enable
usability for future use cases that have not been considered in so far. The evaluation
has shown that, overall, the concepts were effective and the use cases could be
implemented using the framework tools outlined.

The real practicality of the implementations, on the other hand, was difficult to verify,
since this thesis includes the initial design and first implementation of the software,
and thus most of the real world deployments have just started at the time of writing.
Although it could be shown that the servers in the clinics could be put into operation
and also updated with the developed solutions, long-term operation and stability of the
platforms cannot yet be conclusively assessed. Even though the projects have not been
on going for very long, some conclusions can already be drawn for the main sections
of the system:
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5.1 Data Accessibility, Exploration and Cohort Selection

In this context, the primary focus was on DICOM for the storage and communication
of image information, as this was chosen as one of the central features of the platform.
This choice has also proven to be successful in the hospitals, as overall only few
problems have occurred in practice during interaction with clinical images and PACS.
As far as is known, all of the participating university hospitals were able to transmit
their data from the hospital PACS to the platform via the usual local transmission
mechanisms. Problems only occurred in the context of preceding anonymization of the
data, as this occasionally hindered the referencing of the data with the corresponding
annotations. In the case of pseudonymization or anonymization procedures, it is
important to ensure that the references are adopted and changed in a uniform manner.
However, it also became clear that annotations in DICOM are not yet widely used, and
some of the collaborators needed to implement the functionality first to be compatible
with the platform. This also implies that many of the already existing annotations
cannot currently be used in the platform, as they are only available in scientific data
formats such as NIfTI or Nrrd, which do not include the required reference metadata.
In the future, an additional upload option will allow such data to be used in the platform
by manually providing the required metadata so that the platform can generate the
appropriate DICOM-compatible files. This is also particularly interesting to be able to
utilize existing challenge datasets within the platforms.

On the other side is the metadata, which is responsible for data exploration and
selection within META. In this regard, the utilization of the technology stack with
ES and Kibana provided a fast and pragmatic way to meet the basic requirements
of the metadata system. Especially the visually attractive dashboards, which can be
dynamically customized and created by the user, offer great benefits. Yet it is also
apparent that the technology was originally developed for processing logging data and
thus will not meet the requirements of this system in the midterm. The limitations
here come mainly from the way ES manages and stores the data, as it does not handle
nested data structures well. However, the DICOM JSON model, which enables the
standardized conversion of metadata into JSON, contains a lot of deep nesting, which
has led to a flattening of the metadata representation in Kaapana. Furthermore, it has
been shown that large ES indexes are associated with performance losses, so that it
was chosen not to index the metadata of each individual DICOM objects, but rather to
prefer a series-based indexing.

Given that META in the current data model is merely an additional view of the data
stored in the PACS, it is also not suitable for storing textual processing results, which
would often be convenient in practice to have this additional information available for
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data exploration and selection. In the future, the implementation of META should be
replaced by a system that retains the core concept of DICOM metadata, dashboards,
and visual cohort filtering, but with a different technological foundation that allows
object-based indexing and extensibility with supplemental information. Furthermore,
by linking other hospital systems such as the HIS, RIS or Laboratory Information Man-
agement System (LIMS), it would also be conceivable to expand META by laboratory
findings, medical reports or insurance information. It would also be interesting to be
able to collect imaging metadata from the hospital PACS so that the information is
available within META, but without the need to actually keep the image data on the
analysis servers. Which would allow the data to be downloaded from the corresponding
systems on demand only, which, thanks to the already existing DICOM-based data
fetching, would only need to change the source system for the data. However, this
would also require the analytics server to have access to the central clinical image
archive, which would also raise security and privacy challenges.

Another major problem in the context of metadata is the already described non-
standardized content of some header entries. This applies to both images with e.g.
series, study or protocol descriptions and annotations such as label identifiers. Kaa-
pana includes initial steps to improve this, for example by predicting the body part
examined of the images, or by determining the labels of the generated annotations
based on SNOMED CT. However, these problems can only be properly solved by either
introducing standardized values, as has been accomplished in context of the RACOON
project for lung specific imaging, or through progress in predicting metadata based
on the raw image information. Kaapana offers the possibility to apply such methods
automatically and to make the obtained information accessible. Moreover, there is also
the possibility to cross-check the existing metadata with the predicted information.

Another known limitation of the current data concept is related to data separation for
projects or user groups, which is currently inadequate. The platform’s access restric-
tion currently only applies to entire areas or specific services of the infrastructure,
but not to individual data records within them. During the work in the projects and
consortia, however, it quickly became apparent that a deeper separation of data, as
well as access control, is desirable, since not every user of the platform should have
access rights to all project data for data privacy reasons. To circumvent this problem,
it is possible to set up a separate platform instance for each project, which is then only
accessible to certain groups of people. This can also be achieved by simply swapping
the underlying file system for each project, with the limitation that only one project at
a time can work with the platform. But this is only a workaround and should be solved
in the future by adequate internal data separation.
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5.2 Algorithmic Accessibility and Data Processing

The concept of data processing has overall proven to be efficient and so far, all
requested methods could be successfully integrated into the framework. This applies
both to the provisioning of the resources required by the methods in the form of
computing power and compatible input data, as well as on the flexible adaptability of
the concepts to suit existing implementations as far as possible. It is also important to
note that community partners who are not part of the core development team have
managed to integrate their own methods independently, indicating that the concepts
are feasible for non-infrastructure experts. This is at least true for typical use cases
where images serve as input - however, experience with other applications that work
with other media such as text or lab information is very limited. Here, more testing and
experience in the future will have to show whether the mechanisms also work for other
types of data processing. Certainly, the more complicated the processing pipeline
becomes, the less likely it is that it can be implemented with simple abstractions such
as those offered in Kaapana. For these cases, however, there is always the possibility
to omit the offered simplifications and to implement a custom solution. An unresolved
problem remains when multiple non-standardized input modalities (such as multiple
MRI research protocols) are used for each case to be processed, as identification
of these related series is difficult without a reliable label. This could be solved by
manually configuring a mapping between local and standardized labels.

The concept of data processing consisting of the interaction of META with data
selection and parameter specification together with FLOW for the management of
the actual execution of the jobs, is quite basic but functional. The introduction of
pipeline-specific dynamic parameter dialogs has proven to be very powerful, as it
allows many options to be set before the processing pipeline is triggered. For the
visualization and control of FLOW, the standard UI of Airflow has been used for the
most part, which is very technical and requires a lot of expertise to comprehend.
Frequent request and feedback from many partners who used the platform for the first
time revealed that it is too complex and non-intuitive for many users. To improve this,
an additional user interface would be useful, providing experiment management and
abstracting the underlying processes in terms of DAGs. A simple view of the running
processes with basic functions like start, stop or reset of an experiment, would already
be an improvement. Additionally, separating cohort management from experiment
setup would be desirable, as it would allow multiple experiments to be conducted with
the same dataset or better tracking of the data used for each experiment. In principle,
this is already possible, but there is no easy access to these functions and information.

Training of new segmentation models integrated with nnUNet shows how powerful
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such method integration can be. Almost any segmentation annotation on the platform
can be selected to train a new state-of-the-art model without having to understand
anything about the technology or the need to make any specific adjustments to data.
Fully automated data pre-processing, sorting and merging allows for the first time
a one-click creation of models for segmentation tasks. The wrapping in DICOM
allows these models to be easily transmitted, downloaded and distributed between
the participating partner sites. The next level of clinical image processing is the
distributed training of models with real data from clinical routine. So far, research
in this area has mainly relied on simulations, as it has not been possible to conduct
such experiments in the real world due to the high technical and organizational
hurdles. Kaapana can now help to overcome these difficulties by providing a unified
processing environment for distributed scenarios. The approach evaluated in this work
represents one of the simplest flavors of distributed learning that uses an ensemble
of several separately trained models. It was chosen because it does not require a
constant connection between the clinical instances of the platform and training can be
performed in an isolated and asynchronous manner. Within RACOON, for which this
method was implemented, there also exists a central instance, JIP CENTRAL, which
can be used for the collection and combination of the different models. The models can
be transmitted from the clinics to the central instance via the existing DICOM route.
This also highlights the current greatest challenge associated with true distributed
learning between clinics: Connectivity.

While isolation offers great advantages for data protection, it creates challenges for
training approaches that require constant communication between partners. Currently,
there is no way in the German consortia to enable such real-time communication
between the main instances - an alternative would be additional platform instances
that are operated in the demilitarized zone with the purpose of enabling such scenarios.
Initial collaborative efforts indicate that both trust and willingness to enable such
practices are clearly increasing. The commitment to enable such a connection has
already been signaled by several partners, so it is probably only a matter of time until
the first synchronously distributed models will be trained.
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5.3 Server Installation and Integrability

The establishment and setup of the servers at the hospitals has generally worked
quite well. Challenging was the fact that the entire installation procedure had to
be handled by local technicians who did not necessarily have expertise in the given
technologies. This resulted in the need to optimize, automate and simplify the whole
process from the installation and configuration of the operating system up to the
running platform. Since scalability is a key characteristic of the entire initiative, this
time-consuming process was worthwhile as it enabled the platform to be installed
and deployed independently. Furthermore, such automations as the build system and
installation scripts facilitate developers’ work with the platform.

One issue that was frequently encountered during installation was the need for exter-
nal registry access, which is required for the installation process. It turned out that
even temporary Internet access during the installation posed challenges for the local
IT teams at the hospitals, as the local proxy servers had to be explicitly configured
to provide access for every single external resource that was requested during the
installation. However, until now, processes have not been optimized to minimize
these sources, resulting in significant additional overhead for local technicians. In the
future, this could be facilitated by providing central mirrors not only for the container
registry, but also for other system software, such as the CentOS or Ubuntu package
repositories, so that only one target server is required for the entire installation
process. An alternative approach, as taken with RACOON, is the distribution of entire
VMs to hospitals, which already contain all the necessary components. However, this
has other drawbacks in terms of fast upgradability and extensibility or virtualization
overhead, which makes a case-specific consideration necessary.

The integration of the servers into the clinical IT landscape itself is currently limited
to the ability to send images from the local PACS to the platform. For the transfer
of images, this approach has proven to be very effective, simple and pragmatic, as it
eliminates the need for access from the analysis server to the clinical systems. For the
future, it would also be desirable to have the information from the other clinical data
systems such as HIS, RIS or LIMS available for data processing in Kaapana. Here, HL7
would be a good choice to implement as an additional interface into the framework, as
it is offered by many other clinical systems.
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5.4 Security and Data Sovereignty

Due to the isolated operation of the servers in strictly controlled IT environments,
security was not a central topic of this thesis. So intended malicious attacks from
the inside, such as those that could be caused by malicious third-party processing
steps, are currently not well shielded by the framework and the platforms based on it.
This work is based on the assumption of cooperating, known partners sharing their
methods, which are received, integrated, and deployed centrally by trusted parties.
The collaboration within the consortia described are based on mutual trust. For a
future opening of the extension catalog and the associated acceptance of foreign
add-ons from possibly unknown third parties, an extended security concept is required
that identifies and ultimately eliminates all possible data processing attack vectors.
This can be achieved, for example, by isolating the third-party applications in a
sandbox, which by design would automatically prevent access to all data that is not
required. Furthermore, some kind of access control policy with explicit permissions,
such as those used by modern smartphone operating systems and their apps, would
be a potential approach to reduce the risks. Sophisticated new techniques such as
Network Behavior Anomaly Detection (NBAD) could also help to detect misbehaving
systems. However, since this would have exceeded the scope of this thesis, this subject
is explicitly addressed in specialized projects, such as Trustworthy Federated Data
Analytics (TFDA) [CISPA, 2021] and the achievements of them will be incorporated
into Kaapana’s code base in the future to also enable secure and trustworthy execution
of third-party analyses in the framework as well.

Nevertheless, at least the basics and best practices for implementing a container-based
infrastructure were followed, and the concepts were carefully chosen to ensure secure
operation. Thus, the isolated server operation prevents any data from leaking out. With
CentOS and Ubuntu, two modern operating systems are supported that are already
used in many data centers and can be kept up to date with regular security updates.
Likewise, the containers being used and their base images should regularly be scanned
and reviewed for known security vulnerabilities. For the JIP and its dedicated container
registry, this process has already been implemented by automatically scanning all
containers for vulnerabilities every night.

Another critical question is how secure container technology is in general, since it is
ultimately based on the host’s kernel and therefore does not provide the level of isola-
tion that VMs do, for example. Given the widespread and broad industrial application
of this technology, however, it can be assumed that these, albeit rather theoretical,
issues will also be solved in the future. With virtualized containers, execution in the
user namespace, and the use of non-root users within the containers, there are already
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ways to minimize the risks associated with a container escape. Likewise, using the
established OCI standard for containers ensures that new developments, such as more
secure container runtimes like Kata [Kata, 2021] or CRI-O [Cloud Native Computing
Foundation, 2021], can be easily adopted and substituted in the future.



6 | Summary

The emergence of new data- and algorithm-driven analysis methods is revolutionizing
many areas of research and enabling solutions to problems that were previously
considered intractable. But does this also apply to medicine?

Improving diagnosis, fine characterization of patients for personalized medicine,
monitoring disease progression and its prognosis, or predicting the outcomes of
various therapies are just some of the areas that could potentially benefit from such
new analysis techniques based on Deep Learning, which has enabled major advances
in computer vision and related fields. Such algorithms now enable machines to
better understand and interpret visual image data, which on the one hand offers
promising perspectives for medical image processing, but on the other hand also poses
challenges. As such, large amounts of annotated data are needed to prevent overfitting
and to generate robust, generalizing and reliable models. Multicenter imaging studies
could greatly improve the availability of such data and also enhance heterogeneity
by obtaining training data from various sites. However, sharing data across multiple
sites has proven to be difficult due to the high level of data protection associated
with medical records and technical challenges such as interoperability. Consequently,
this thesis attempts to avoid the necessity of data exchange by following a different
approach:

"Let’s share the algorithms, not the data!"
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The objective and central research question here is whether it is possible to shift
the evaluation and training of modern image analysis methods to the clinical data
owners and how this can be accomplished. Although this approach helps to circumvent
the data export and the associated data protection challenges, the participating
partners must still be enabled to execute the algorithms from a technical and or-
ganizational perspective. For this purpose, this dissertation investigated concepts,
the development and establishment of a decentralized infrastructure for clinical
medical image analysis that enables standardized data access and uniform execution
of analysis methods for joint data analysis in the context of multicenter imaging studies.

The technical realization of this infrastructure was achieved by developing a software
framework called Kaapana, which enables the building of imaging platforms. The
resulting software can be hosted on dedicated servers within the clinical IT environ-
ment to be operated isolated from any external connectivity and to be interconnected
with other local clinical systems. By leveraging modern cloud technologies such as
containers and Kubernetes, the local deployment provides a private cloud for image
processing that can be accessed from any locally connected workstations via the web
browser. Standardized linkage to the clinical PACS via DICOM and the integration
of a research imaging archive enables redundant data management and consistent
data access for the execution of analysis methods. Dashboards enable efficient data
exploration and filtering by visually presenting DICOM metadata of the platform’s data
and allowing it to be selected via search queries. A uniform execution environment
for data processing allows algorithms to be applied to such selected data and to be
uniformly packaged and shared with partners. High-performance server hardware
including Graphics Processing Units enables a variety of analysis techniques such as
Deep Learning-based model inference, as well as the training of new models to be
shared with partners. Within the infrastructure, the standardized and widely adopted
DICOM format has been prioritized so that also many analysis results can be provided
in a standard-compliant way. Using formats such as DICOM SEG, SR or Encapsu-
lated PDF, data annotations become compatible with clinical workflows and IT systems.

With support of the Radiological Cooperative Network and the German Cancer Consor-
tium, the resulting infrastructure could be deployed and evaluated within two German
research consortia. To this end, all 36 German university hospitals have commissioned
their own server on which the platform has been installed and tested. This involved
evaluating the commissioning, integration, operation and maintenance of such a
decentralized network, as well as various use cases designed to cover the typical tasks
of such a system. As a result, these use cases and the corresponding varying demands
could be realized with the developed concept and the implemented framework. A
flexible extension mechanism also allows the integration of additional services such as
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the MITK workbench or processing algorithms such as the nnUNet into the framework.
Furthermore, first analysis pipelines developed by external partners could also be
integrated and delivered to the partners already.

Within the scope of this work, clinics were enabled to apply up-to-date research
methods to their own data through the development, distribution and support of
the developed infrastructure. Since the research consortia, which already include
all German university hospitals, have only just started their activities, there are
great opportunities to make the high-quality data from the partner sites accessible
and usable for research in the future. Because of Kaapana’s open source code, its
architecture based on common industry standards, and its already broad deployment,
this framework could also serve as a foundation for areas other than medical imaging,
and thus offer the potential for tighter data integration for clinical computing in
general.
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7 | Zusammenfassung

Das Aufkommen neuer daten- und algorithmengestützter Analysemethoden revolu-
tioniert derzeit viele Forschungsbereiche und ermöglicht Lösungen für Probleme, die
früher als unlösbar galten. Aber gilt dies auch für die Medizin?

Die Verbesserung der Diagnose, die Feincharakterisierung von Patienten für die
personalisierte Medizin, die Überwachung des Krankheitsverlaufs und seiner Prognose
oder die Vorhersage der besten Therapie sind nur einige Beispiele, die potenziell von
solchen neuen Analysetechniken profitieren könnten. Algorithmen ermöglichen es
Maschinen nun, visuelle Bilddaten besser zu verstehen und zu interpretieren, was
einerseits vielversprechende Perspektiven für die medizinische Bildverarbeitung bietet.

Andererseits aber auch Herausforderungen mit sich bringt, da große Mengen an
annotierten Daten benötigt werden, um ein Overfitting zu verhindern und somit
robuste, generalisierende und zuverlässige Modelle zu ermöglichen. Multizentrische
Bildgebungsstudien könnten die Verfügbarkeit solcher Daten erheblich verbessern und
auch die Heterogenität durch die Zugänglichkeit von Trainingsdaten aus verschiedenen
Standorten erhöhen. Die gemeinsame Nutzung von Daten über mehrere Standorte
hinweg hat sich jedoch aufgrund des hohen Datenschutzniveaus, das mit medizinischen
Daten einher geht und technischer Herausforderungen, wie der Interoperabilität, als
schwierig erwiesen. In dieser Dissertation wird daher versucht, die Notwendigkeit
eines Datenaustauschs zu vermeiden, indem ein anderer Ansatz verfolgt wird:
"Lasst uns die Algorithmen teilen, nicht die Daten!"
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Ziel und zentrale Forschungsfrage ist dabei, ob die Evaluation und das Training
moderner Bildanalyseverfahren in die Kliniken verlagert werden kann. Dieser Ansatz
kann zwar den Datenexport und die damit verbundenen datenschutzrechtlichen He-
rausforderungen umgehen, allerdings müssen die beteiligten Partner auch technisch
und organisatorisch dazu in der Lage sein, diese Aufgaben zu erfüllen. Zu diesem
Zweck wurden in dieser Dissertation Konzepte, sowie die Entwicklung und Etablierung
einer dezentralen Infrastruktur für die klinische medizinische Bildanalyse untersucht,
die einen standardisierten Datenzugriff und eine einheitliche Umgebung für die Aus-
führung von Analysemethoden im Rahmen von multizentrischen Bildgebungsstudien
ermöglichen.

Die technische Realisierung dieser Infrastruktur wurde durch die Entwicklung eines
Software-Frameworks namens Kaapana erreicht, welches den Aufbau von technischen
Plattformen für die Bildanalyse ermöglicht. Die resultierende Software kann auf dedi-
zierten Servern innerhalb der klinischen IT-Umgebung betrieben werden, um isoliert
von jeglicher externer Konnektivität betrieben und mit anderen lokalen klinischen
Systemen verbunden zu werden. Durch die Nutzung moderner Cloud-Technologien
wie Containern und Kubernetes bietet die lokale Bereitstellung eine private Cloud,
auf die von den klinischen Arbeitsstationen über den Webbrowser zugegriffen werden
kann. Die standardisierte Anbindung an das klinische PACS über DICOM und die
Integration eines Forschungs-PACS ermöglichen eine redundante Datenhaltung und
einen konsistenten Datenzugriff für die Durchführung von Analyseverfahren. Dash-
boards ermöglichen eine effiziente Datenexploration und -filterung, indem sie die
DICOM-Metadaten visuell darstellen und über Suchanfragen selektierbar machen.
Eine einheitliche Ausführungsumgebung für die Datenverarbeitung ermöglicht es,
Algorithmen anzuwenden und sie einheitlich zu verpacken und mit Partnern zu
teilen. Leistungsstarke Server-Hardware, einschließlich Grafikkarten, ermöglicht eine
Vielzahl von Analyseverfahren wie Deep Learning-basierte Modellinferenz sowie das
Training neuer Modelle. Innerhalb der Infrastruktur ist DICOM das grundlegende
Datenformat, so dass auch viele Analyseergebnisse standardkonform bereitgestellt
werden können. Durch die Verwendung von Formaten wie DICOM SEG, SR oder
Encapsulated PDF werden auch Annotationen mit klinischen Arbeitsabläufen und
IT-Systemen kompatibel gemacht.

Mit Unterstützung des Radiological Cooperative Network (RACOON) und des
Deutschen Konsortiums für Translationale Krebsforschung (DKTK), konnten zwei
große deutsche Forschungskonsortien für die Evaluierung gewonnen werden. Dabei
haben inzwischen alle 36 Universitätskliniken in Deutschland einen eigenen Server
in Betrieb genommen, auf dem die Plattform installiert und getestet wurde. Hierbei
wurden die Inbetriebnahme, die Integration, der Betrieb und die Wartung eines
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solchen dezentralen Netzwerks sowie verschiedene Anwendungsfälle evaluiert, die die
typischen Aufgaben eines solchen Systems abdecken. Im Ergebnis konnten diese An-
wendungsfälle und die damit verbundenen unterschiedlichen Anforderungen mit dem
entwickelten Konzept gut realisiert werden. Ein flexibler Erweiterungsmechanismus
erlaubt zudem die Integration von zusätzlichen Diensten wie der MITK-Workbench
oder Algorithmen wie dem nnUNet. Darüber hinaus konnten auch bereits erste von
externen Partnern entwickelte Analysepipelines integriert und ausgeliefert werden.

Im Rahmen dieser Arbeit wurden die Kliniken durch die Entwicklung, Etablierung
und Unterstützung der entwickelten Infrastruktur in die Lage versetzt, aktuelle
Forschungsmethoden auf ihre eigenen Datenbestände anzuwenden. Da die Forschungskon-
sortien, an denen bereits alle deutschen Universitätskliniken beteiligt sind, ihre
Tätigkeit gerade erst aufgenommen haben, ergeben sich vielfältige Möglichkeiten, die
hochwertigen Daten der Partnerstandorte für die Forschung in Zukunft zugänglich
und nutzbar zu machen. Aufgrund des offenen Quellcodes von Kaapana, seiner
auf gängigen Industriestandards basierenden Architektur und der bereits weiten
Verbreitung könnte dieses Framework auch als Basis für die Datenverarbeitung in
anderen Forschungsbereichen Anwendung finden. Somit könnte auch eine verbesserte
Datenintegration für klinische Datenverarbeitung im Allgemeinen unterstützt werden.
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