
Dissertation
submitted to the

Combined Faculty of Natural Sciences and Mathematics
of Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by
M.Sc. Dennis Wörthmüller
born in Mannheim, Germany
Oral examination: 27.07.2022





Referees: Prof. Dr. Ulrich Schwarz
Prof. Dr. Heinz Horner

Finite Element Modeling of Optogenetic Control

of Cell Contractility





Finite Element Modeling of Optogenetic Control of Cell Contractility

Biological cells use physical force to interact with their environment, with dramatic
consequences for survival, proliferation, differentiation and migration. Force is generated
mainly by the contractile actomyosin cytoskeleton and propagated through cell-matrix
and cell-cell adhesions. In this thesis, I use finite element methods to model adherent
cells as thin active viscoelastic solids to study the dynamics of active force-generation
in single cells and force propagation in small cell clusters. The theoretical models are
complemented by experiments in which optogenetic activation of the Rho-pathway is
combined with traction force microscopy and adhesive micropatterning. For single cells
on circular micropatterns, we find perfect homeostasis with a setpoint that strongly
depends on cell size and cytoskeletal organization. For epithelial cells, we find that the
responder cells actively respond to generate a similar contractile stress as the sender
cells, and that force generation and propagation again strongly depends on cytoskeletal
organization. Finally, a discontinuous Galerkin method is used to couple the biochemistry
of signaling pathways to cell contractility. Overall, our work shows that the active
mechanics of adherent cells is strongly modulated by their internal organization, which
in turn depends on the adhesive geometry of their environment, thus generating a tightly
integrated mechanochemical feedback loop that allows for high-level control structures.





Finite-Elemente-Modellierung der optogenetischen Steuerung von

Zellkontraktilität

Biologische Zellen nutzen physikalische Kräfte, um mit ihrer Umgebung zu interagieren,
was dramatische Folgen für das Überleben, Proliferation, Differenzierung und Migration
hat. Die Kraft wird hauptsächlich durch das kontraktile Aktomyosin-Zytoskelett erzeugt
und durch Zell-Matrix- und Zell-Zell-Adhäsionen weitergeleitet. In dieser Arbeit verwen-
de ich Finite-Elemente-Methoden, um adhärente Zellen als dünne aktive viskoelastische
Festkörper zu modellieren und die Dynamik der aktiven Krafterzeugung in einzelnen Zel-
len und die Kraftausbreitung in kleinen Zellverbänden zu untersuchen. Die theoretischen
Modelle werden durch Experimente ergänzt, in denen die optogenetische Aktivierung des
Rho-Reaktionswegs mit Zellkraftmikroskopie und adhäsiver Mikromusterung kombiniert
wird. Für einzelne Zellen auf kreisförmigen Mikromustern finden wir eine perfekte Ho-
möostase mit einem Sollwert, der stark von der Zellgröße und der Organisation des
Zytoskeletts abhängt. Bei Epithelzellen stellen wir fest, dass die Antwortzellen aktiv
reagieren, um eine ähnliche kontraktile Spannung zu erzeugen wie die Senderzellen, und
dass die Krafterzeugung und -ausbreitung wiederum stark von der Organisation des Zy-
toskeletts abhängt. Schließlich wird eine diskontinuierliche Galerkin-Methode verwendet,
um die Biochemie der Signalwege mit der Zellkontraktilität zu verbinden. Insgesamt zeigt
unsere Arbeit, dass die aktive Mechanik adhärenter Zellen stark durch ihre interne Or-
ganisation moduliert wird, die wiederum von der adhäsiven Geometrie ihrer Umgebung
abhängt, wodurch eine eng integrierte mechanisch-chemische Rückkopplungsschleife ent-
steht, die Kontrollstrukturen auf hoher Ebene ermöglicht.
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Chapter 1

Introduction

Complex multicellular organisms, such as the human body, consist of billions of cells.
The function and fate of these organisms are highly dependent on the correct in-
terplay of various intra- and intercellular processes, and even the smallest deviations
from expected cell behavior can lead to drastic consequences such as disease and finally
death. Throughout their lives, cells must perform a variety of tasks, including growth,
division, and movement, that are directly related to other tasks such as interpreting
external and internal stimuli and deciding how to respond to them. Although research
has yielded many new insights in recent years, not least through interdisciplinary col-
laboration in fields such as molecular biology, cell biology, biophysics, biochemistry
and others, many questions remain unanswered. In particular, it is still puzzling how
cells integrate information from their environment into their decision-making process.
However, over the course of the last two decades, it became progressively clear that
physical, i.e. mechanical forces play a major role in cellular decision making and aid
in regulating important physiological processes like tissue growth and morphogenesis.
This insight has led to the new field of mechanobiology. In addition to the forces
they are exposed to externally, they also use a highly complex and self-organized con-
tractile structure called the actin cytoskeleton to actively generate forces and explore
the mechanical and geometric properties of their environment. These informations
are then fed back to the cell, and evaluated by means of chemical signals, a process
which is known as mechanotransduction. Therefore, it is important to study how cells
generate forces, how the internal molecular machinery regulates them, and how these
forces transmit information in multicellular systems to understand processes such as
development, organogenesis, homeostasis or diseases like cancer.

In this thesis we focus on the modeling of active force generation in adherent sin-
gle cells and few cell systems. We use a combination of analytical and computational
models accompanied by a series of experiments that were carried out by the group
of Martial Balland at the Université Grenobles Alpes, to study the dynamics of force
generation and force propagation. In particular, we focus on the influences adhesion
geometry and the organization of the actin cytoskeleton have on force generation.
A central part of this work is the numerical implementation of two-dimensional vis-
coelastic continuum models which account for the elastic and viscous properties of
the cytoskeleton. We apply these models to single cells, cell pairs and small cell clus-
ters, and show that these models are capable to adequately capture the contractile
behavior of cells. In addition to the two-dimensional models, we establish a com-
putational framework to describe the cell shape by means of elastic contour models.
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1. Introduction

This approach is validated by analytical calculations and image-based cell shape mea-
surements obtained from experiments. Furthermore, we use a discontinuous Galerkin
method to constrain a model for an interacting pair of cells and use reaction-diffusion
systems to couple cell mechanics and biochemistry to design a blueprint of a model
which allows to study actively sustained force propagation across cells. In the remain-
der of this chapter, we first provide an overview of the biology of the cytoskeleton and
associated regulating mechanisms. Next, we summarize the most important aspects of
the experimental methods mentioned throughout this work and finally conclude with
a comparison of well established models for cell contractility and cell shape.

1.1. The cytoskeleton

To function and thrive in a complex environment, biological cells must be able to sense
their surroundings and interact with other cells. This important ability is provided
by the complex and highly dynamic cytoskeleton (CSK). The CSK is a dense filamen-
tous network that primarily provides the cell with structure and mechanical stability.
Moreover, it also aids in intracellular transport processes, can rapidly rearrange itself
to better suit cellular needs, and is key to cell movement in many cell types.

1.1.1. Cytoskeletal substructures

The cytoskeletal substructure consists of three different filaments: actin filaments, mi-
crotubules and intermediate filaments. Each of these filaments is composed of small
protein subunits that are held together by weak non-covalent bonds. In addition, the
filaments interact with various other proteins such as passive crosslinkers, molecular
motors or proteins that, for example, initiate the assembly or disassembly of filaments
(Howard et al., 2002). Fig. 1.1A depicts the three different filaments and their char-
acteristic organization within the cell. Fig. 1.1B and C show their molecular structure
together with experimental images. In the following, we will take a closer look at each
of the three filament types and discuss their mechanical properties in the context of
the mechanics of the whole cell.

Actin

Actin filaments form the so called actin CSK which, together with the molecular motor
protein myosin II, forms the main contractile structure in all eucaryotic cells. The
filamentous F-actin is formed by assembly of the monomeric globular protein G-actin
into a right-handed double-stranded helix (Fig. 1.1A) with a typical cross-sectional
diameter of ∼ 7 nm and a persistence length1 of ∼ 15 µm (Phillips et al., 2012). The
asymmetry of G-actin makes the composite F-actin a polar filament, with one end

1The persistence length defines the length scale on which semi-flexible polymers in a thermal environ-
ment are approximately straight. It can be calculated from a comparison of the bending rigidity of
the polymer and the thermal energy as lpers = EI/(kBT ), where E denotes the Young’s modulus, I
the geometric moment and kBT the thermal energy.
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1.1. The cytoskeleton

F-actin

IF-dimerG-actin Tubulin dimer

Actin filaments Microtubules Intermediate
filaments

A

C1

B

C2 C3

Figure 1.1: Overview of the three filament systems which make up the cytoskeleton alongside their
molecular structure. Panel A schematically depicts the organization and localization of actin fila-
ments (left), microtubules (middle) and intermediate filaments (right). The actin CSK occurs both
as polymer mesh and highly organized into stress fibers. Microtubules originate from the centrosome
(orange) as rod-like stiff filaments spanning the whole cell. Intermediate filaments are very flexible
and not directly involved in cell movement but provide mechanical strength to the cell. Panel B shows
the molecular structure of the three filament types and the involved spatial dimensions. Both actin
and microtubules are comprised of globular proteins which make them polar filaments. Intermedi-
ate filaments consist of fibrous protein dimers and are nonpolar. Panel C1 shows a dual-objective
STORM microscopy image of the ventral actin layer of a cell with clearly visible ventral stress fibers.
Panel C2 depicts a spindle apparatus (green) pulling apart kinetochores (pink) during mitosis. Panel
C3 shows strained intermediate filaments interconnecting epithelial cells. Figures: A adapted from
(Huber et al., 2015); B adapted from (Purves et al., 2003); C1 taken from (Xu et al., 2012); C2 taken
from (Vukušić et al., 2017); C3 taken from (Latorre et al., 2018).
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1. Introduction

being the barbed end (plus) and the other the pointed end (minus) (Fig. 1.1B).
Single actin filaments organized into larger structures have in principle two crucial

functions. First, they provide mechanical stability to the cell and second, they enable
quick rearrangements of the actin CSK in order to react to external or internal stimuli
or as a part of cell motility. The former is achieved by their flexible yet stable structure,
which allows them to withstand tensile forces of the order of ∼ 100 pN (Rajagopal et
al., 2018) while the latter is possible due to the myosin-driven contraction and the fast
actin assembly rates on time scales of milliseconds (Pollard, 1986). Fig. 1.2 depicts the
various supramolecular actin structures, which result from the interaction of actin and
a variety of other proteins like crosslinkers, nucleation factors or adaptor and capping
proteins. These structures are broadly classified into network-like and bundle-like
(Blanchoin et al., 2014). For the network-like structures, one further distinguishes
branched networks, for example the lamellipodium, and cross-linked networks like the
actin cortex (Fig. 1.2B). The lamellipodium is located at the leading edge of the cell and
exhibits a branched structure. This structure is initiated by the Arp2/3-complex and
regulated by capping proteins which terminate the growth of the network (Fig. 1.2B).
During cell migration this network polymerizes against the plasma membrane, thereby
pushing it forward. The actin cortex is attached to the inner cell membrane via
membrane-anchoring proteins. Passive and active cross-linking proteins, such as α-
actinin and myosin II, provide the network with stability and the ability to actively
deform. In this sense, it allows the cells to change shape during cell migration and
cell division while simultaneously stabilizing the plasma membrane against mechanical
disturbance from outside (Alberts et al., 2003).

Bundle-like structures can also be divided into parallel bundles and anti-parallel
bundles. A prominent example for non-contractile parallel actin bundles are the so-
called filopodia (Fig. 1.2A). These finger-like protrusions typically form at the leading
edge of the cell and play a role in sensing, cell-cell interactions and cell migration
(Mattila, 2008). The bundle-like shape is achieved by crosslinkers like α-actinin, fascin
and fimbrin, whereas growth is mainly regulated by proteins like formins or Ena/VASP
(Blanchoin et al., 2014) (Fig. 1.2B).

In contrast to parallel bundles, anti-parallel bundles are predominantly contractile
structures. Typical examples for anti-parallel bundles are stress fibers which make
up the main contractile structures in animal cells like fibroblast, smooth muscle and
endothelial cells (Pellegrin et al., 2007). They consist of 10 to 30 actin filaments
which are cross-linked by α-actinin and categorized into dorsal stress fibers, ventral
stress fibers, transverse arcs and the perinuclear actin cap as illustrated in (Fig. 1.2A
and B (Heath, 1983; Khatau et al., 2009; Tojkander et al., 2012). The distinction is
made on the basis of characteristics such as location of the stress fiber, coupling to
the extracellular matrix and its specific morphology.

Dorsal stress fibers are anchored to the extracellular matrix only at one end, typ-
ically near the leading edge of the cell. In contrast to the other three types, dorsal
stress fibers are not contractile as they do not contain myosin II (Tojkander et al.,
2011). Although they lack the ability to contract, they are important when it comes to
the assembly of new stress fibers as dorsal stress fibers and transverse arcs may be con-
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1.1. The cytoskeleton
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Ventral stress
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Figure 1.2: The actin cytoskeleton. Panel A depicts the versatile organization of the actin cytoskele-
ton which include the lamellipodium, the filopodium, the actin cortex and different kinds of stress
fibers. Panel B schematically illustrates the structure of the two occurring network and bundle-like
structures together with the involved proteins regulating growth and function. Figures: A adapted
from (Letort et al., 2015); B adpated from (Blanchoin et al., 2014).

verted to ventral stress fibers (Hotulainen et al., 2006; Letort et al., 2015; Tojkander
et al., 2011).

Transverse arcs exhibit a sarcomeric structure with a periodically arranged α-
actinin-myosin pattern and are therefore contractile, in contrast to the dorsal stress
fibers. However, transverse arcs do not attach to the extracellular matrix and their
contractile nature only contributes indirectly through their connections to dorsal stress
fibers. In combination with dorsal stress fibers, the contractility of the transverse arcs
flattens the lamellum. Thereby, the focal adhesions of the dorsal stress fibers act as a
hinge, while their the strut-like composition presses on the lamellum (Burnette et al.,
2014). (Fig. 1.2A).

Ventral stress fibers have a similar sarcomeric morphology as the transverse arcs
but are connected to focal adhesions at both ends (Burridge et al., 2013). From all
of the above discussed linear bundles, ventral stress fibers are the strongest as they
are able to build up forces around 10 nN (Livne et al., 2016). In addition, they are
important for signal transduction and mechanical sensing and provide contraction of
the posterior end of the cell during cell migration. Fig. 1.1C1 shows a super resolution
microscopy image of ventral stress fibers of an adherent cell.

As already mentioned, the motor protein myosin II is responsible for contractility
in non-muscle cells. Briefly said, molecular motors convert chemical energy, that is
stored in molecular bonds, into motion or mechanical work. A prominent example
for this metabolic process is the hydrolysis of adenosine triphosphate (ATP). Dur-
ing this dephosphorylation reaction, a certain class of enzymes, so-called ATPases,
catalyze the decomposition of ATP into adenosine diphosphate (ADP) and inorganic
phosphate, thereby releasing energy. This reaction plays a crucial role in the con-
traction of actin filaments by myosin motors. The structure of non-muscle myosin II
(NM II) is illustrated in Fig. 1.3A and B. NMII is a polar hexamer comprised of two

5



1. Introduction

identical sub-units which in turn consist of a heavy chain, two light chains and a glob-
ular domain (Fig. 1.3). In its inactive state, referred to as 10s assembly-incompetent,
NM II is folded onto itself and thereby inhibiting its ATPase activity and preventing
binding to actin (Yang et al., 2019). The conformational change into the unfolded
6s assembly-competent NM II is achieved by phosphorylation2 of the regulatory light
chain (RLC) (Fig. 1.3A). For simplicity one often refers to this conformation as the NM
II monomer. Subsequent phosphorylation of the heavy chain then allows the assembly
into minifilaments as depicted in Fig. 1.3B (Levayer et al., 2012). These bipolar fila-
ments consist of approximately 30 myosin monomers and are typically around 300 nm
long (Fig. 1.3B). The NM II minifilaments then bind to actin filaments through their
head domain. Bound to actin, NM II may contract actin filaments by “walking” along
them (Fig. 1.3A). The contraction of actin by NM II is known as the crossbridge cycle
(Huxley, 1957) and schematically illustrated in Fig. 1.3C. The crossbridge cycle starts
with binding of ATP to the myosin head and thereby dissociating it from the actin
filament. Next, hydrolysis of ATP to ADP and phosphate at the free myosin head
enforces a conformational change with subsequent actin rebinding of the head. Due
to the conformational change the association takes place at about 11 nm closer to the
barbed end of the actin filament (Finer et al., 1994). After that, dissociation of the
phosphate from the ATP-binding pocket causes a second conformational change of the
myosin head which is known as the power stroke. It brings the myosin head back to its
original conformation. Since myosin and actin are tightly bound, this motion results
in a force that causes the actin filament to move. The release of ADP then completes
the crossbridge cycle as the initial configuration is reached again (Alberts et al., 2003;
Lodish et al., 2008).

Myosin II activity is regulated by complex and diverse signaling pathways. The
main regulators of the actin cytoskeleton are the small GTPases (enzymes) Rac1,
Cdc42 and RhoA. These enzymes can bind guanosine triphosphate (GTP) and me-
diate signal transduction by acting as molecular “switches” through controlled GTP-
loading and hydrolysis of GTP to guanosine diphosphate (GDP) (Lundquist, 2006).
Rac1 is principally contributing to the formation of large protrusive structures such as
the lamellipodium and therefore important in cell spreading processes and migration
while Cdc42 contributes to the formation of filopodia (Fig. 1.4A). RhoA promotes
the assembly of actin-myosin bundles and additionally regulates actomyosin contrac-
tion. A very basic version of the RhoA signaling transduction pathway is depicted
in Fig. 1.4A and B. The membrane bound GTPase RhoA exists in inactive (GDP-
bound) or active (GTP-bound) state. The transition from GTP- to GDP-bound is
mediated by so called GTPase-activating proteins (GAP) which inactivate the GT-
Pase by hydrolysis of GTP to GDP. Conversely, Guanine Exchange Factors (GEF)
may phosphorylate GDP to GTP and hence activating the GTPase. In its active
state, RhoA then activates its downstream effectors Rho-associated protein kinase
(ROCK) and Diaphanous-related formin (Dia). ROCK activity then effectively leads

2In biochemistry, phosphorylation is the chemical attachment of a phosphoryl group to an organic
molecule.
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1.1. The cytoskeleton
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Figure 1.3: Structure and regulation of non-muscle myosin II. Panel A: Two identical protein sub-
units consisting of a globular head domain, two light-chains and a heavy chain form a polar hexamer.
In its assembly-incompetent form, the protein is folded due to head to tail interactions which prevents
further interaction with other NMII dimers. Phosphorylation of the regulatory light chains, for ex-
ample mediated by ROCK or MLCK, unfolds the protein into an assembly-competent form. In this
configuration NMII can self-assemble into NMII minifilaments through interactions of the coiled-coil
rod domain which can further bind to actin filaments through the head-domains. Panel B depicts
the structure and typical dimensions of a NMII minifilament in comparison to an electron microscopy
image of NMII A. The scalebar corresponds to 100 nm. Panel C shows the crossbridge cycle. ATPase
activity of the head domain translates into mechanical forces which slides the actin filaments in an
anti-parallel fashion. Figures: A adapted from (Vicente-Manzanares et al., 2009); B (top) adapted
from (Lodish et al., 2008) and (bottom) taken from (Billington et al., 2013); C adapted from (Lodish
et al., 2008).

to myosin light chain (MLC) activity through two pathways (Fig. 1.4B). On one hand,
it effectively elevates the phosphorylation level of myosin light chain by phosphory-
lating the myosin binding subunit (MBS) of myosin light chain phosphatase (MLCP).
This inhibits the phosphatase activity of MLCP and therefore reduces dephosphory-
lation of MLC and hence increases contractility by NMII motors. On the other hand,
ROCK may directly phosphorylate MLC. Parallel to ROCK activity, activation of
Dia promotes actin polymerization by Arp2/3. A fundamental understanding of these
signaling pathways is crucial for developing techniques to affect cellular contractility.
Optogenetic techniques, as recently developed by Valon et al. (2015) and Wagner et
al. (2016), use this knowledge to trigger myosin activity through the RhoA signaling
cascade by targeting GEFs to the cell membrane. This method is further discussed in
Section 1.2.3.
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Figure 1.4: Main signaling pathways for the regulation of the actin cytoskeleton (here shown for
a macrophage). Panel A shows the GTPase activity of Cdc42, Rac and Rho which is controlled by
the upstream regulators here generically denoted as GEFs and GAPs. Cdc42 and Rac are mainly
involved in the formation of protrusive structures while RhoA, in addition to actin-myosin assembly,
also regulates myosin contractility. Panel B shows the RhoA pathway and its downstream signaling
processes in more detail. By activating ROCK, RhoA effectively increases MLC-P activity through
two distinct pathways. Figures: A adapted from (Pixley, 2012).

Microtubules

Microtubules are rod-like, stiff filaments which can be found in all animal cells. A cross-
sectional diameter of ∼ 25 nm and a persistence length of around 1−3 mm makes them
the least flexible of the three filaments (Alberts et al., 2003; Phillips et al., 2012). As
Fig. 1.1B illustrates, microtubules are polar filaments made of tubulin-dimers, which
in turn are polymerized from α- and β-tubulin, arranged in a helical fashion to form
a hollow cylinder. Microtubules often originate from so-called microtubule-organizing
centers (MTOCs) and grow with their plus end towards the cell membrane. In animal
cells, the two most prominent MTOCs are the basal bodies and the centrosome which
is located near the nucleus (Fig. 1.1A). The former are associated with formation of
cilia and flagella while the latter are associated with formation of the mitotic spindle
during mitosis (Fig. 1.1C2). Further, microtubules not only organize the cell interior by
positioning of organelles through pushing and pulling forces (Tolić-Nørrelykke, 2008)
but also guide and direct intracellular transport processes (Welte, 2004). For example
the two motor proteins dynein and kinesin are responsible for vesicle transport towards
and away from the nucleus (Howard et al., 2002).

Intermediate filaments

In contrast to actin filaments and microtubules, intermediate filaments are not present
in all eucaryotic cells. Structurally, with a cross-sectional diameter of 8− 12 nm, they
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1.1. The cytoskeleton

are in between microtubules and actin filaments (Alberts et al., 2003; Phillips et al.,
2012). They are comprised of fibrous protein dimers (Fig. 1.1B) that form a rope-like
structure which is very resistant to tension despite the very short persistence length
of < 1 µm (Huber et al., 2015). In marked contrast to the other two filament types,
intermediate filaments are non-polar such that they neither actively participate in cell
contraction nor in transport processes by motor proteins (Block et al., 2015). However,
they permeate the whole cell, thereby providing it with mechanical stability. They
also assist in forming connections between cells in epithelial cell sheets as can be seen
in Fig. 1.1C3 which shows an epithelial sheet of Madin- Darby Canine Kidney cells
(MDCK). Here, the intermediate filaments become very stressed and straight when
the cell is stretched to many times its typical area, demonstrating their enormous
resistance to tension (Latorre et al., 2018).

1.1.2. Cell adhesion

Under physiological conditions, cells are either surrounded by the so called extracel-
lular matrix (ECM) or by neighboring cells. The ECM is a large three-dimensional
network consisting of various fibrous proteins such as collagen, fibronectin, vitronectin
or also proteoglycans which are large polysaccharide-protein complexes (Alberts et al.,
2003). Besides providing structural support for surrounding cells by acting as a sub-
strate, it further plays a central role in cellular processes like cell growth, cell migration,
intercellular communication and differentiation (Abedin et al., 2010). The interaction
with the ECM is established by cell-ECM adhesion through structures like podosomes,
fibrillar adhesions and focal adhesions. Fig. 1.5A, for example, shows a fibroblast in
interaction with a three-dimensional collagen matrix.

In addition to cell-ECM connections, cells interact directly via intercellular con-
nections (Fig. 1.5C). These are referred to as cell-cell junctions and can be divided
into desmosomes, tight junctions, gap junctions, and adherens junctions. They play
an important role in collective cell migration by maintaining the integrity of the cell
ensemble and regulating coordinated movement (Etienne-Manneville, 2011; Peglion et
al., 2014), which in turn controls many physiological and pathophysiological processes
such as wound healing, tissue renewal, or even embryonic development and metastasis.
In the following, we briefly discuss the structure and composition of focal adhesions
and adherens junctions, since they occur in a large number of systems and play a
crucial role in mechanosensing.

Focal adhesions

Fig. 1.5B depicts a stress fiber connected to the ECM via a focal adhesion. Adaptor
proteins like talin and vinculin connect the actin CSK to trans-membrane proteins
like integrins. The extracellular domain of the integrins then binds to the proteins
of the ECM like, for example, fibronectin. The stresses focal adhesions exert onto
the ECM are typically around 5 kPa (Balaban et al., 2001) although studies suggest
that this strongly depends on the stiffness of the ECM (Trichet et al., 2012). Focal
adhesions are rather stable in non-motile, sessile cells but can be quickly disassembled
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Figure 1.5: Cell-extracellular matrix and cell-cell adhesions. Panel A depicts an electron-microscopy
image of a fibroblast in interaction with a three-dimensional collagen matrix. The fibroblast forms
dendritic extensions which are hard to distinguish from the matrix. Scale bar corresponds to 10 µm.
Panel B schematically illustrates the hierarchical structure of a focal adhesion connected to the ex-
tracellular matrix. Panel C shows opto-MDCK cells forming a quadruplet on a specifically designed
micropattern (top) and an electron micrograph of an adherens junction (bottom). Scale bar corre-
sponds to 100 nm. Panel D shows the molecular decomposition of an adherens junction. Figures: A
taken from (Jiang et al., 2005); B adapted from (Kanchanawong et al., 2010); C (top) by courtesy of
Artur Ruppel, (bottom) adapted from (T. J. Harris et al., 2010); D adapted from (Broussard et al.,
2020).

and assembled in moving cells in order to break old contacts at the trailing edge and
build new focal adhesions at the leading edge of the cell. In addition, focal adhesions
serve as signal interfaces through which the cell can perceive the physical properties
of the ECM and thus adapt to external influences (Riveline et al., 2001).

Adherens junctions

The principle structure of adherens junctions is similar to cell-ECM adhesions as they
are also established by trans-membrane adhesion proteins. In adhesion junctions, these
proteins are called cadherins, which are almost entirely outside the cell membrane and
form homodimers with cadherins of neighboring cells, as depcited in Fig. 1.5C (for
epithelial cells). Cadherins are connected to the actin CSK via the adaptor proteins
α- and β-catenin as well as vinculin and, beyond their stabilizing function in cell-cell
adhesion, they are important for the regulation of the actin CSK as well as signaling
processes (Hartsock et al., 2008).
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1.1. The cytoskeleton

Mechanotransduction

As mentioned above, signaling processes start at the mechanosensitive interfaces. The
intracellular processes that convert external stimuli into biochemical signals are com-
monly referred to as mechanotransduction. Experimental evidence for mechanotrans-
duction may be difficult to obtain, since the involved processes may happen on several
distinct time scales, ranging from fractions of seconds to seconds for the force sensing,
hours for adaption of gene expression, days for behavioral changes, and weeks for tissue
growth and morphogenesis (Iskratsch et al., 2014). However, for focal adhesions and
adherens junctions, mechanotransduction was directly demonstrated by experiments
in which externally applied forces led to the growth of both structures (Balaban et al.,
2001; Z. Liu et al., 2010). Additionally, several important studies shine light on the
role of mechanotrandsduction in processes such as differentiation, migration and fate
(C. S. Chen et al., 1997; Engler et al., 2006; Kilian et al., 2010; Luciano et al., 2021;
McBeath et al., 2004; Pathak et al., 2012; Shellard et al., 2021; Sunyer et al., 2020;
Wen et al., 2014).

In the context of this work, it is important to take a closer look at mechanotrans-
duction at focal adhesions and adherens junctions. Although the details of many signal
transduction pathways have not been fully elucidated, the starting point of some of
them could be traced back to the mechanosensory properties of integrins (Kong et al.,
2009), vinculin (Yao et al., 2014) and talin (Del Rio et al., 2009). Fig. 1.6 exemplar-
ily shows cell-cell and cell-ECM signaling pathways reduced to the most important
elements. At adherens junctions, triggered by force, E-cadherins activate Tyrosine-
protein kinase ABL1 (ABL1) which in turn phosphorylates vinculin. Vinculin then
sets off the typical RhoA-pathway which eventually results in the activation of myosin
light chain and hence the reinforcement of cell-cell-adhesion. In focal adhesions, the
reinforcement of the cell-ECM adhesion is ultimately also due to the typical RhoA sig-
naling pathway (Fig. 1.6). However here, the RhoA-cascade is triggered by integrins.
Subject to force loads, the integrins activate two distinct signaling branches involving
the two RhoA guanine nucleotide exchange factors GEF-H1 and leukemia-associated
RhoGEF (LARG) (Salvi et al., 2018).
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Figure 1.6: Typical mechanotransduction pathways triggered at cell-cell junctions and focal adhe-
sions. At cell-cell junctions E-cadherins of neighboring cells bind. Forces acting at cell-cell junctions
can trigger the RhoA pathway which in turn leads to a reinforcement of the cell-cell adhesion. Similarly,
forces acting at the cell-matrix interface trigger RhoA signaling events which lead to a reinforcement
of the cell-matrix adhesion. Taken from (Salvi et al., 2018)

1.2. Measuring cell contractility

After introducing the main force-generating structures as well as the most prominent
involved signal transduction pathways of adherent cells we will now provide an overview
of the main experimental tools used by our collaboration partners from the Université
Grenoble Alpes. These tools include Traction force microscopy, micropatterning, and
non-neuronal optogenetics and have been used in Chapter 4 and Chapter 5.

1.2.1. Traction force microscopy

Traction force microscopy (TFM) is a multi-scale force quantification method which
allows to measure cell contractility on more than one spatial scale. In particular,
two-dimensional traction force microscopy is one of the most prominent techniques in
the field of mechanobiology. The first visualization of cell traction forces goes back
to the study by A. K. Harris et al. (1980). Seeded onto a thin soft silicone rubber
substrate, cell tractions buckled the silicon substrate and visible wrinkles appeared.
Since then, several methods have been developed that take the basic principles of
this qualitative observation and exploit them in quantitative methods. One of these
methods is depicted in Fig. 1.7A where the cell is plated on a so called micropillar
array (Tan et al., 2003). It consists of elastomeric posts with known properties such
as width, height and Young’s modulus. Subject to cellular forces, the microposts
get deflected from which the cell forces can be deduced (Fig. 1.7B,C). Although the
discrete nature of the substrate allows a direct computation of the traction forces, the
cell stresses are only obtained at discrete positions. This, the limited variability of the
substrate rigdity and the fact, that it is not a natural environment for cells are clear
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Figure 1.7: Force quantification based on micropillar arrays and traction force microscopy. Panel A
depicts the principle of micropillar based force measurements. Traction forces can be deduced from
the elastic and geometric properties of the pillars and their deflection. Panel B shows an electron
micrograph image of a fibroblast adhered to a micropillar substrate. Scale bar corresponds to 15 µm.
Panel C depicts the forces calculated from pillar deflections (yellow arrows) due to forces exerted by
the cell. (Actin is shown in green, nucleus is shown in blue). Scale bar corresponds to 10 µm and
the scale arrow corresponds to 20 nN. Panel D shows the basic setup of traction force microscopy.
Sub-micron sized fluorescent beads are embedded in a thick elastic gel. Traction forces can then be
calculated from the displacement of the beads. Panel E shows a vector plot of laterally displaced beads
overlaid on an inverted paxilin image of the cell. The scale vector corresponds to 1 µm. Panel F shows
the traction stresses reconstructed from bead images. The white line highlights the cell periphery
while the black line outlines the focal adhesions. Figures: A,D adapted from (Muthinja et al., 2018);
B taken from (Trichet et al., 2012); C taken from (Sniadecki et al., 2007); E,F taken from (Plotnikov
et al., 2014)

disadvantages of this method (Roca-Cusachs et al., 2017).
The classical TFM approach which goes back to the work by Dembo et al. (1999)

is schematically illustrated in Fig. 1.7D. In this approach, cells are plated on top of
a flat, thick elastic hydrogel. These gels are usually made of polyacrylamide (PAA)
or polydimethylsiloxane (PDMS), and the elastic properties (substrate stiffness) can
be controlled by the mesh size of these polymer networks during fabrication. Further,
these substrates are coated with ECM proteins such as fibronectin and collagen. This
enables the cells to spread on the substrate and to establish cell-ECM connections
via focal adhesions. Deformation of the elastic substrate is then visualized by small
fluoresecent microbeads with a diameter of 0.2 µm− 1 µm which are embedded in the
gel close to the surface. In principle, knowing the elastic properties of the gel and the
displacement field of the beads allows to calculate the traction forces (Fig. 1.7E,F).
Although fabrication of the involved elements in the TFM setup is straightforward
and gives rise to independent control of topography and rigidity of the substrate, the
measurement of the substrate deformation and calculation of traction forces is more
complicated than for pillar arrays.

The first difficulty is the tracking of the bead displacement. For this, one typically
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uses sophisticated algorithms which combine two well-established approaches known
as particle tracking velocimetry (PTV) and particle image velocimetry (PIV). The
former approach tracks the movement of individual beads while the latter uses cross-
correlation to statistically derive local displacements (Sabass et al., 2008). Once the
displacement field is obtained, traction forces can be calculated by making use of
the known elastic properties of the substrate. The starting point for traction force
computation on flat elastic substrates is given by the integral equation

u(x) =
∫

G(x,x′)t(x′) dx′ , (1.1)

where u is the displacement vector field, t is the unknown traction field and G is the
Green’s function (Boussinesq solution) for the point loading of a flat isotropic elastic
half-space. This assumption is justified by the fact that dimensions of the substrate
are usually much larger than the lateral extent of the cell. Additionally, one typically
neglects out-of-plane substrate displacements since the, in good approximation, flat
cells exert traction forces mainly parallel to the surface. Hence, the Green’s function
is given by a 2× 2 matrix. Since the analytical Green’s function G is known (Landau
et al., 1986), the traction forces can be finally obtained by inversion of Eq. (1.1).

In their pioneering study, Dembo et al. (1999) solved Eq. (1.1) by means of the
boundary element method (BEM). However, this method involves triangulation of the
cell area and therefore one has to measure the cell periphery. In addition, due to the
long-ranged nature of elastic forces, the matrix G is dense and calculating the inverse of
it is computationally expensive especially if a high-resolution of the estimated traction
forces is desired.

A computationally more efficient approach was introduced by Butler et al. (2002).
The idea of this approach, which goes with the name of Fourier transform traction
cytometry (FTTC), relies on solving the problem in Fourier space where Eq. (1.1)
reads

t̃(k) = G̃−1(k)ũ(k) . (1.2)

Here, the tilde denotes the Fourier transform and k its wave vector. Solving the inverse
problem is simpler in the sense that the the convolution factorizes into a product in
Fourier space. This, in practice, reduces the problem to the calculation of the fast
Fourier transform of the bead displacement field from which the Fourier transform of
the traction field follows by multiplication with the inverse matrix G̃−1. The traction
force field in real space is then obtained by the inverse Fourier transform of t̃. Similar
to the problem in real space, to overcome the omnipresent noise in the displacement
field data, on typically regularizes the FTTC procedure (Reg-TFM) by introduction
of a regularization kernel. The regularized inverse problem reads

t̃ =
(
G̃ᵀG̃ + λ2L

)−1
G̃ᵀũ , (1.3)

for which it has been demonstrated that L = I, with I the identity matrix, yields
the best results (Plotnikov et al., 2014; Sabass et al., 2008). Here, the regularization
parameter λ should be as small as possible such that the reconstructed t is as close
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1.2. Measuring cell contractility

as possible to the real solution. The larger the parameter λ, the more smoothed out
the traction field becomes. For λ = 0 one recovers the un-regularized inverse problem
Eq. (1.2).

1.2.2. Micropatterning

As discussed in Section 1.1 cells are very sensitive to the mechanical and geometrical
properties of its surrounding. To study the interplay between the ECM geometry, cell
shape and cell generated forces, micro-engineering techniques have been developed
which allow to impose geometrical restrictions on the cell. One of these techniques
is referred to as micropatterning. It separates the substrate into regions to which
the cell can adhere (micropatterns) and regions which are designed to prevent the
formation of cell-ECM contacts (passivation layer). A possible procedure to produce
such micropatterned substrates is illustrated in Fig. 1.8A where a photomask is used
to impose the shape of the micropattern. A detailed description of the fabrication
process can be found in the work by Ruppel (2022) and Vignaud et al. (2014).

A selection of different adhesion geometries and their influence on the actin or-
ganization of the cells is shown in Fig. 1.8B. On small disc-shaped patterns (i) cells
predominantly assemble a branched actin network. In contrast, when spreading on
larger disc patterns (ii) cells additionally form directional internal stress fibers, actin
bundles and are more contractile and flatter than on small patterns (Théry, 2010).
Patterns with straight edges and corners (iii) promote the formation of small pro-
trusions and focal adhesions in the corner of the pattern as well as the formation of
stress fibers between them (Brock et al., 2003). If the cell is confronted with larger
non-adhesive gaps (iv), it manages to spread over it by forming large and pronounced
stress fibers which are highly contractile and therefore span over the non-adhesive area
(Théry et al., 2006). An experimental image of this particular situation is depicted on
the right-hand side of Fig. 1.8B (right) with the thick stress fibers stained in green.

We investigate cellular dynamics on disc pattern in more detail in Chapter 4.
In Chapter 5, we further use an H-shaped micropattern (Fig. 1.8A) as it allows the
formation of a stable cell doublet with a clear intercellular junction (Tseng et al.,
2012).

1.2.3. Non-neuronal optogenetics

The term optogenetics refers to a light-based approach which, in combination with ge-
netic engineering, allows to intervene and control biological processes. Among others,
it has been applied in several studies for example to control neural activity (Boyden
et al., 2005), the regulation of gene expression (Konermann et al., 2013; Wang et al.,
2012) or even to regulate engineered metabolic pathways in cells (Zhao et al., 2018).

In the context of the here presented work, we use non-neuronal optogenetics to
induce signaling cascades that lead to cellular contractility. In combination with TFM
and micropatterning, this allows to study the dynamics of the cytoskeleton and force
generation in distinct adhesive environments provided by the ECM or other cells. A
huge advantage of this technique is its minimal invasive and reversible nature which
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Figure 1.8: Micropatterning and its applications in mechanobiology. Panel A schematically depicts
the fabrication process of the micropatterns used to impose geometric constraints on the adherent cell.
With this technique our collaborators from the Université Grenobles Alpes created the micropatterns
used in Chapter 4 and Chapter 5. Panel B depicts the influence of pattern size and shape on the
internal actin organization and spreading process of the cells. Figures: A by courtesy of Artur Ruppel;
B taken and adapted from (Théry, 2010).

additionally allows a precise spatiotemporal control of the cytoskeletal dynamics and
hence makes it superior over other techniques such as chemical treatments using drugs
like blebbistatin (myosin II inhibitor) or Y27632 (ROCK inhibitor).

The central element of optotgentic techniques are photosensitive proteins (Fara-
hani et al., 2021; Tischer et al., 2014). Subjected to light, typically of a certain
wave length, some photosensitive proteins may undergo a conformational change and
uncage a certain protein domain which enables their signaling activity. For others,
a conformational change might increase their affinity towards another protein which
then leads to heterodimerization. Although both components might not have intrin-
sic signaling capabilities, this light-induced binding affinity can be used to localize a
certain target signaling protein to a specific part of the cell by fusing it to the light
sensitive component.

As already discussed at the beginning of this chapter, the membrane bound GT-
Pase RhoA is a major regulator of cellular contractility. We further know that RhoA
activity is controlled by GEFs and GAPs such that RhoA activity can be increased
by targeting GEF to the cell membrane. An optogentic construct which provides this
sort of control is the CRY/CIBN dimerization system as illustrated in Fig. 1.9A. As
depicted, one part of the construct, CIBN, is fused to the plasma membrane via a
CAAX linker and additionally carries a green fluorescent marker (GFP). The cat-
alytic domain of GEF (DHPH) is fused to CRY2, which is the photosensitive part of
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Figure 1.9: Optogentic control of RhoA with the CRY2/CIBN dimerization system. Panel A depicts
the functionality of the CRY2/CIBN system. CIBN, is anchored to the plasma membrane via a CAAX
linker. The GEF DHPH-domain is fused to the photosensitive CRY2 which changes conformation upon
illumination with blue light. Due to this conformation change it can now bind to CIBN and hence
effectively recruit the catalytic domain of GEF to the plasma membrane. Here, GEF can activate
the membrane-bound RhoA which ultimately triggers cell contractility by activation of MLC. Panel
B shows MDCK cells stably expressing CIBN (left) and the activity of ARHGEF11(DHPH)-CRY2-
mCherry at the cell membrane before and after illumination (right). Panel C shows the differential
traction of a non-activated cell cluster (white square) in comparison to an activated cell cluster (blue
square). The activated cell cluster showed a significant increase in traction forces. Figures: A by
courtesy of Artur Ruppel from the Université Grenobles Alpes; B,C taken and adapted from (Valon
et al., 2017).

the opto-construct and further carries a red fluorescent tag (mCherry). The fluores-
cent proteins are used to visualize the recruitment and verify that the system works
as expected (Fig. 1.9B). For example, the left panel of Fig. 1.9B shows the fluorescent
tag of the membrane anchored CIBN. Upon illumination with blue light (wavelength
of ∼ 460 nm), CRY2 changes its conformation and can bind to its optogenetic counter-
part CIBN and effectively recruits GEF to the plasma membrane where it can trigger
the RhoA signaling cascade (Fig. 1.9A). The right panel of Fig. 1.9B visualizes the
GEF increase at the membrane as the fluorescence signal increases in the illuminated
region. The membrane recruitment of target proteins using this system has been
demonstrated by Kennedy et al. (2010) while Valon et al. (2015) studied this system
in great detail with respect to varying light intensity and duration of photoactivation.
In a follow up work, Valon et al. (2017) demonstrated that this system can be used to
control cell contractility in epithelial sheets (Fig. 1.9C).

Some of the main advantages of this approach are its fast reversibility and low
toxicity such that repeated activation cycles can be carried out on the same cell with-
out influencing its viability. The response of the cell is further entirely due to the
endogenous level of RhoA, since the cell is only transfected with the RhoA activator.

Moreover, the activation level of RhoA can be controlled by controlling the dura-
tion of photoactivation and in addition, the specificity of this approach prevents other
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pathways and proteins from being affected by the perturbations. Additionally, the
light induced perturbation can be assumed to be instantaneous as the CRY2 mem-
brane recruitment happens on a much faster time scale than most of the intracellular
signaling cascades (Valon et al., 2015). For completeness, we should mention other
optogenetic constructs which provide a similar level of control. For example, the Light-
Oxygen-Voltage (LOV) construct which has been used by Oakes et al. (2017) to probe
the viscoelastic properties of stress fibers and by Cavanaugh et al. (2020) to investigate
viscoelastic properties of cell-cell junctions.

1.3. Modelling cell contractility

Each of the existing mathematical models of cellular contractility has its own advan-
tages and disadvantages and therefore in many cases it is necessary to weigh up which
of the models is most suitable for the description of certain aspects of the cellular
dynamics as they are in many cases dictated by the experimental setup. In the fol-
lowing, we discuss the main ideas of the various available models and highlight their
respective strengths and weaknesses. We distinguish three model classes, refered to as
bulk-based, contour and interface-based models, and will decide on a main modeling
approach by considering the experimental restrictions and objectives discussed in this
thesis.

1.3.1. Bulk-based models

Bulk-based models can be broadly classified into discrete models, typically spring and
cable networks and continuum models. Both of the models focus on the internal me-
chanical properties of the cell like, for example, the actin cytoskeleton which, together
with myosin II activity, is the main contractile structure in the cell (Svitkina, 2018).
Besides that, these models can also account for other important building blocks like
directed internal stresses and localized adhesive islands. Both models naturally allow
to include coupling of the cell to its surrounding such as adhesion on elastic substrates
or cell-cell adhesion in tissues and under certain conditions the continuum models can
be deduced from the discrete models through homogenization techniques.

Spring and cable networks

Within this approach the actin cytoskeleton is modeled as a network of elastic links
as illustrated in Fig. 1.10A (inset) and B. Thereby, the links can be either spring-
like or cable-like. In the framework of traditional spring-networks and the limit of
small deformations the links are approximated by a Hookean force-extension curve
(Fig. 1.10A) (Boal, 2002). In the limit of a very fine network, homogenization tech-
niques (Caillerie et al., 2010) can be used to derive the continuum limit of these
networks which for Hookean spring networks lead to a linear elastic constitutive rela-
tion. However, a contractile spring-network cannot properly represent the mechanical
attributes of the cytoskeleton which motivates the invention of cable networks. The
cable-like description incorporates the experimental findings that actin filaments ex-
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Figure 1.10: Cellular contractility modeled with discrete cable networks. Panel A shows the force-
extension behavior for the single network links of the three common network models. Panel B depicts
the equilibrium shape of an active cable network with a certain adhesion geometry. Panel C displays
the network representation of a real cell’s actin cytoskeleton with embedded stress fibers (red, blue
and green lines) and segmented focal adhesions (red dots) constructed from a raw actin fluorescence
(C1) and paxillin (C2) images. Figures: B taken from (Bischofs et al., 2008); C created with the
SOFAST ImageJ plugin which contained the images.

hibit a spring-like behavior upon extension but start to buckle, slide or depolymerize
if compressed (Broedersz et al., 2014; Gittes et al., 1993; Kojima et al., 1994). In
case of passive cable networks, contractility is modeled by reducing the rest length of
the links and hence pre-tensing the network, while for active cable networks each link
actively contracts with constant force resembling contraction by molecular motors.
Mathematically speaking, the equilibrium shape of the cell is obtained by solving

Fij =


FaL0 + EA

Lij−L0
L0

, L0 < Lij

FaL0 , Lc ≤ Lij ≤ L0

FaL0
Lij
Lc

, Lij < Lc

, (1.4)

where Fij denotes the total force that the nodes i and j exert onto each other, EA
is the one-dimensional elastic stiffness of the links, Fa is the active link tension and
L0 the rest length. Further, Lc describes a critical length below which the active link
force approaches zero (Fig. 1.10A red curve). Equilibrium is reached if∑

j

Fij = 0 , ∀ non-adherent nodes i . (1.5)

It has been shown by Bischofs et al. (2008), and further confirmed by Brand et al.
(2017) (for cells in three-dimensional scaffolds) that active cable network simulations
can explain experimentally observed cell shapes and furthermore, that they predict
circular shaped contours between adhesion points (Fig. 1.10)B. In addition, Guthardt
Torres et al. (2012) showed that the global adhesion geometry of passive networks
is sensitive to local changes in adhesion geometry, which is not the case for active
networks, where only the boundary is affected, since changing the spanning distance
between adhesion sites greatly alters the stress in the contour. Moreover, Kassian-
idou et al. (2017) made use of the above mentioned possibility to include internal
stress fibers in order to study the influence they have on the force loads of peripheral
stress fibers. An example of embedded stress fibers and segmented focal adhesions
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based on actin fluorescence and paxillin images is shown in Fig. 1.10C3. By changing
the connectivity properties of the network from elastic to viscoelastic, Oakes et al.
(2017) showed that the contractility of stress fibers upon optogenetic activation is
dominant over the contractility of the background actin network in which they are
embedded. Moreover, that stress fibers are completely embedded in a contractile net-
work of cortical actin filaments has been recently demonstrated by Vignaud et al.
(2021) by comparing the energy release during laser photoablation of “shaved”3 and
“unshaved” peripheral stress fibers. Although network models have been proven to
be very versatile when it comes to studying different mechanical aspects of the actin
cytoskeleton a huge drawback are their computationally expensive nature since for N
non-adherent nodes one has to solve 2N coupled nonlinear equations (Eqs. 1.4, 1.5).

Continuum model

The continuum approach aims at modeling the cell as a continuous elastic material.
Thereby, an appropriate constitutive relation of the form

σij = Cijklεkl + σaij (1.6)

relates internal stress σij and strain εij through a stiffness tensor Cijkl while the
contractility of the actin cortex is introduced as an active contractile stress σaij . The
equation for mechanical equilibrium is given by

∂jσij = bi , (1.7)

where bi is the so called external body-force i.e. the sum of all forces acting on the
elastic bulk. For strongly spreaded (flattened) cells on elastic substrates, for which a
two-dimensional representation is in most cases sufficient, one typically chooses

bi = Y ui (1.8)

relating the body forces to the restoring forces (traction forces), arising due to cellular
deformation ui and adhesion to the elastic foundation with spring stiffness density Y
(Fig. 1.11A). The quantity Y turns out to be the key parameter used to enforce certain
adhesion geometries on the cell as, e.g. shown in Fig. 1.11C.

In the past, this model has been used to show analytically that the strong localiza-
tion of traction forces at the periphery of cell layers naturally follows from the above
stated elastic problem and not necessarily as a result of local activity in the cell (Ed-
wards et al., 2011). In addition, more focused on dynamic processes, similar continuum
models have been used, for example by Kruse et al. (2005), to model the actin CSK
as a viscoelastic material comprised of polar filaments and motors, nowadays widely
known as active gels. However, in many situations it is not possible to calculate an
analytical solution such that finite element simulations are used to obtain numerical

3“Shaving” is the process of disconnecting the peripheral stress fiber from the actin mesh.
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Figure 1.11: Continuum model for cellular contractility on elastic substrates.
Panel A schematically illustrates a cell layer adhered at discrete positions which e.g. represent a
pillar array. Panel B shows the main idea of monolayer stress microscopy. Stress gradients in the
cell layer have to be balanced in the substrate for non-migrating cells. Panel C depicts the case
of continuous adhesion on a micropatterned substrate together with the associated internal stress
distribution obtained by means of a finite element simulation. Scale bar corresponds to 5 µm. Panel
D depicts a three dimensional continuum model of a contractile tissue. The model was used to predict
the internal stress distribution before and after surgical intervention with a cut as indicated by the
black line in the upper panel. Scale bar corresponds to ≈ 200 µm. Figures: A taken from (Edwards
et al., 2011); B taken from (Gov, 2011); C own simulation according to Chapter 5; D taken from (Kim
et al., 2021).

solutions of Eq. 1.7 (see e.g. Fig. 1.11C,D). Before we discuss continuum models in the
context of computational modeling, we should mention one of the most famous appli-
cations of the above introduced equations, the so-called monolayer stress microscopy
(MSM) which is schematically illustrated in Fig. 1.11B. MSM uses Eq. (1.7) together
with a linear elastic material law to deduce internal cell stresses in a monolayer based
on the forces it exerts on the substrate. A detailed explanation and review of this
method can be found in the publications by Gov (2011) and D. T. Tambe et al. (2011;
2013).

Especially in computational modeling of the actin cytoskeleton, the versatility
and adaptability of continuum models has often been demonstrated: For example,
Mertz et al., 2012 used a similar model to the one proposed by Edwards et al. (2011)
to quantify the influence of cell colony size on the scaling and spatial distribution
of traction forces. Almost concurrent, Banerjee et al. (2013) exploited a very similar
continuum model to theoretically investigate the effect of the adhesion geometry on the
internal distribution of cell stresses and traction forces. Further, Hanke et al. (2018)
applied this model to spreading blood platelets in order to study the force generation
dynamics on substrates of variable stiffness, while Vishwakarma et al. (2018) utilized
it to investigate the formation of leader cells at epithelial wound margins. In very
recent advances, Kim et al. (2021) developed a three-dimensional continuum-based
approach to model the shape and internal stress changes of microtissues in response of
surgical intervention (Fig. 1.11D). Here, the authors make use of a nonlinear material
law together with active surface and bulk contractility.

In summary, continuum models are applicable on a variety of scales, ranging from
single cells (5 µm − 50 µm) to microtissues (≈ 800 µm). They allow to couple cells to
their environment in a mathematically natural way through force balance equations
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and boundary conditions and give the opportunity to consider anisotropy and inho-
mogeneity in the cell properties. A further advance is that the parameters describing
these cell properties, like e.g. Young’s modulus, viscous modulus and Poisson’s ra-
tio, are accessible through experiments, which makes it easier to parametrize such
models. However, the purely “meso/macroscopic” parameterization makes it more
complicated to account for microscopic features of the actin cytoskeleton. Among
others, those include density changes of actin and myosin filaments across the cell or,
for example, the discrete nature of focal adhesions. In addition, the repelling forces
upon compression of the elastic cell layer prevent the formation of the experimentally
observed circular shaped peripheral arcs. Instead, the cell periphery is comparable
to the shape obtained by Hookean spring networks with flattening of the arc for long
spanning distances. Further, we note that discrete structures such as stress fibers can
be incorporated by asymptotic homogenization techniques by relating global and local
material parameters (Probst, 2018).

1.3.2. Contour models

Contour models of cellular adhesion are motivated by the experimental observation
that in flat adherent cells, the cell edge between two adhesion points has a characteristic
invaginated arc. Zand et al. (1989) found that those cell edges are mainly supported
by a dominant cytoskeletal structure which they called the actin edge-bundle. A
schematic illustration of the cell edge of a flat adherent cell is depicted in Fig. 1.12A.
The plasma membrane of the cell is wrapped around the actin edge-bundle that is
pulled towards the interior of the cell. The inward pull is associated with an isotropic
constant surface tension σ stemming from actomyosin contractility of the cell and is
balanced by a constant tension λ within the edge fiber. The counterplay of those
two quantities defines a circular shaped edge (see Fig. 1.12B) with radius of curvature
given by

R = λ

σ
, (1.9)

known as the simple tension model (STM) (Bar-Ziv et al., 1999; Bischofs et al., 2008).
However, the radius of curvature of the free spanning arcs is not independent of the
spanning distance d between two adhesion sites as can be seen in Fig. 1.12B for the case
of a cell plated on a dot-like micropattern. The measured increasing R-d-dependency
can be explained by postulating an elastic origin of the line tension, leading to the
so-called tension elasticity model (TEM) (Bischofs et al., 2008; Bischofs et al., 2009)
Very recently, Weißenbruch et al. (2021) introduced an extension of the classical STM
and TEM to study how knockout of non muscle myosin II isoforms influences the cell
shape. Here, in the so-called dynamic tension elasticity model (dTEM) a dynamical
equation for the length of the circular arc is derived based on a linear force velocity
relationship.

However, in the presence of strong internal stress fibers, the assumption of an
isotropic surface tension certainly does not hold anymore as the directed forces stem-
ming from these internal stress fibers lead to a clearly non-circular shaped contour,
especially for long arcs (see Fig. 1.12C). The varying curvature along the contour can
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degree of anisotropy of the bulk stress. With this stress
tensor the force balance Eq. (1) becomes

dλ
ds

T þ ðλκ þ σÞN þ αðn · NÞn ¼ 0; ð2Þ

where we use dT=ds ¼ κN, with κ the curvature of the cell
edge. This implies that, in the presence of an anisotropic
cytoskeleton, the cortical tension λ is no longer constant
along the cell cortex, as long as the directed stress has a
nonvanishing tangential component (i.e., n · T ≠ 0). As
shown by Kassianidou et al. [35], isolated stress fibers
can also exert localized contractile forces on the cell
contour, leading to kinks and piecewise constant curvature.
Consistent with our experiments, here we consider the case
in which the density of the stress fibers is sufficiently high
and uniform to approximate their mechanical effect in
terms of a continuous anisotropic stress.
In the following, we introduce a number of simplifica-

tions. As the orientation of the stress fibers varies only
slightly along a single cellular arc [Fig. 2(a), and Figs. S2
and S3 in the Supplemental Material [31] ], we assume θSF
to be constant along each arc, but different, in general, from
arc to arc. Furthermore, as all the arcs share the same bulk,
we assume the bulk stresses σ and α uniform throughout
the cell. Under these assumptions a general solution of

Eq. (2) can be readily obtained. Taking T ¼ ðcosφ; sinφÞ,
N ¼ ð− sinφ; cosφÞ, with φ the orientation of the tangent
vector T with respect to an axis perpendicular to the stress
fibers [Fig. 2(a)], and tanφ ¼ dy=dx, with ðx; yÞ the
position of the cell contour, yields

σ2

γλ2min
½ðx − xcÞ sin θSF − ðy − ycÞ cos θSF&2

þ σ2

λ2min
½ðx − xcÞ cos θSF þ ðy − ycÞ sin θSF&2 ¼ 1; ð3Þ

where γ ¼ σ=ðσ þ αÞ and λmin is an integration constant
related with cortical tension and whose physical interpreta-
tion will become clear later. Equation (3) describes an ellipse
of semiaxes a ¼ ffiffiffi

γ
p

λmin=σ and b ¼ λmin=σ, centered at the
point ðxc; ycÞ and whose major axis is parallel to the stress
fibers, hence tilted by an angle θSF with respect to the x axis
(Fig. 2). The dimensionless quantity γ highlights the
anisotropy of the forces acting on the cell contour. Thus,
γ ¼ 0 corresponds to the case in which the directed forces
outweigh the isotropic ones, whereas γ ¼ 1 reflects the
purely isotropic case. Further details can be found in [31].
The key prediction of our model is illustrated in Fig. 2(b),

where we have fitted the contour of the same cell shown in
Fig. 1(a) with ellipses. More examples are shown in Figs. S2

(a)

(c)

(b)

FIG. 2. (a) Schematic representation of our model for θSF ¼ π=2. All cellular arcs are part of a unique ellipse of aspect ratio a=b ¼ ffiffiffi
γ

p
.

The cell exerts forces F0 and F1 on the adhesion sites (blue) with magnitude λðφ0Þ and λðφ1Þ. (b) An epithelioid cell [GEβ3; same cell as
in Fig. 1(a)] with a unique ellipse (yellow) fitted to its edges (green). The end points of the arcs (cyan) are identified based on the forces
exerted on the pillars [31]. The fitted values of the ellipses’ major and minor axes are, respectively, 13.38 ' 0.04 μm and
9.65 ' 0.02 μm. The major axes (yellow lines) are parallel to the stress fibers. Their orientations are found to be, in counterclockwise
order from the nearly vertical ellipse in the bottom right corner, θSF ¼ 93 ' 4°, 28 ' 5°, 110 ' 2°, 139 ' 6°, 127 ' 3°, 125 ' 2°,
133 ' 2°, 130 ' 3° with respect to the horizontal axis of the image. Scale bar is 10 μm. (c) Histogram of θellipse − θSF, with θellipse the
orientation of the major axis of the fitted ellipse and θSF the measured orientation of the stress fibers. The mean of this distribution is 0°
and the standard deviation is 36°.
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cell contour as a sequence of circular arcs, circles were fitted using a custom-

made program (CellMicroPat) written in Matlab (Mathworks, Natick, MA).

Routines based on the Matlab DIPimage toolbox (http://www.ph.tn.

tudelft.nl/DIPlib/) were used for image processing, and the nonlinear least
square fitting routine based on the Marquardt method from the Matlab im-

moptibox toolbox (http://www2.imm.dtu.dk/; hbn/Software/) was used for

fitting the arc radii. In CellMicroPat, arc endpoints are identified as focal

adhesion from vinculin or paxillin staining, and their distance d is recorded.
After supplying the two endpoints and four to five points along the cell

contour by user clicks, CellMicroPat fits a preliminary circle to these points.

It next generates 60 equally spaced radial actin intensity profiles across the
arc and identifies the location of the intensity maxima along these rays. The

final arc with radius R then follows by fitting a circle to these 60 points.

Because it is hardly possible to measure the thickness of the peripheral stress

fibers due to the limits of optical resolution, we defined arc strength S¼ (Ia"
Ibg)/(Ic " Ibg) as obtained from three different actin intensities. Ia is the arc

intensity, defined as the average of the maxima of the 60 intensity profiles

used to determine the arc. Ibg is the background intensity of the overall image

determined with the function background offset from DIPimage. Ic is the
average actin intensity inside the cell obtained after thresholding the cell from

the background. The normalization with respect to actin intensity both inside

and outside the cell ensures that S is a good measure for fiber strength for
experiments with different cells and different staining conditions.

Statistical data analysis

Statistical data analysis was performed using algorithms provided by the

statistical toolbox in Matlab (Mathworks). Correlation coefficients C denote

Pearson correlation coefficients. Bootstrapping was used for estimating

confidence intervals for fitting parameters. A bootstrap analysis is based on
data resampling and does not require any a priori hypothesis. In each case, it

involved 100 to 1000 random sets sampled from the original data sets with

repetition. Bootstrapping was also used to analyze the statistical significance

of differences between experiments. In this context, statistical significance
was assigned when the distribution for the parameters obtained from boot-

strapping were not overlapping.

RESULTS

Cell and tissue shape for discrete sites
of adhesion

To study in a quantitative way how adhesion geometry af-
fects cell shape, we used regular arrangements of microme-
ter-sized fibronectin dots produced by microcontact printing
(4). By varying dot size and dot distance, we mimicked the
spatial distribution of extracellular matrix ligands occurring
in vivo. Buffalo rat liver (BRL) cells and a mouse melanoma
cell line (B16) were cultured on patterned substrates for 1 h in
serum-free medium and then fixed and stained for fibronec-
tin, actin, and focal adhesion markers. Under these culture
conditions, cell migration is largely reduced, and cell
spreading is completed in such a way that the cells have es-
tablished an almost stationary cell shape at the time of fixa-
tion (Fig. S1 in Supplementary Material, Data S1). In all
cases, mature adhesion sites developed overlying the fibro-
nectin dots and were connected by actin fibers, which mainly
outline the cellular periphery in a sequence of inward-curved
circular arcs (Fig. 1, A–C). Arc-like cell borders have also
been observed for cells growing on homogeneously coated

substrates (15,16) or on large adhesive islands with concave
contours (17). For our dot patterns, we observed typical arc
morphologies for a wide variety of dot sizes (0.5–3 mm) and
lattice constants (5, 10, 15, 20, and 25 mm), and we thus
conclude that it is a robust feature of cell adhesion on spa-
tially separated ligand patches.

Strikingly, similar arc morphologies have been observed
before in simple tissue models, namely for fibroblast-popu-
lated gels of collagen from bovine dermis (bd-collagen) (9).
If embryonic fibroblasts are mixed with rat tail collagen (rt-
collagen), it takes several days until the fluid mixture starts to
condense into a gel-like structure. The shape of this structure
is essentially determined by the spatial positioning of steel
needles fixed to the bottom of the culture dish and indeed
resembles a sequence of inward-curved circular arcs. The
tissue model established after 1 week is shown in Fig. 2 A
(full-time series illustrated in Fig. S2 in Data S1). As has been
described previously (9), cellular traction is strong enough to
lead to gel rupture next to the pinning needles, as can be seen
from the inward-directed holes in the gel in Fig. 2 A.

Quantitative image analysis of cell and
tissue shape

To quantitatively evaluate cell and tissue shape, we devel-
oped a computerized procedure to fit circular arcs to cell and
tissue contours (Figs. 1, A9–C9, and 2 B). For each fit, we
recorded arc radius R and spanning distance d (Fig. 3 A). We
analyzed 91 BRL and 38 B16 cells on different dot patterns as
well as fibroblast-populated collagen gels. The tissue models
were made of collagen, either from rt-collagen (22 data
points) or bd-collagen (24 data points). For both cell types, as

FIGURE 1 Cell shape on micropatterned substrates. (A–C) Arc-like
contours composed of actin fibers characterize the shape of BRL (A and

B) and B16 cells (C) cultured on substrates of micropatterned fibronectin

dots. Cultures were labeled for actin (green), paxillin (red), and fibronectin
(blue). Scale bars 10 mm. (A9–C9) For all cases, arc-like contours fit well to

circles determined by custom-made software. (B and C) The circles spanning

diagonal distances show larger radii than the circles spanning the shorter

distances between neighboring adhesions.

3490 Bischofs et al.
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free spanning
stress fiber

cell edge
adhesion site

A B C

Figure 1.12: Contour model of cellular adhesion. Panel A highlights the main ideas of a contour-
based description of cellular contractility. Panel B illustrates the circular shaped peripheral actin
bundles as predicted by contour models for cells on dot-like micropatterned fibronectin substrates.
Panel C shows the predicted elliptical arcs for contour models which include local anisotropy of the
actin cytoskeleton near the peripheral actin due to internal stress fibers. Figures: A adapted from
(Zand et al., 1989); B taken from (Bischofs et al., 2008); C taken from (Pomp et al., 2018).

be explained by the anisotropic tension model (ATM) in which the anisotropy of the
actin cortex is incorporated by extending the isotropic surface tension by a directed
component (Giomi, 2019; Pomp et al., 2018). This extension predicts elliptical con-
tours, where the orientation of the resulting ellipse determines the direction of the
internal stress fibers (Fig. 1.12).

Beyond being successful in predicting cell shapes, the contour model also allows to
calculate traction forces purely based on the equilibrium cell shape, for both, continu-
ous and discrete adhesion of the peripheral fiber (Bischofs et al., 2009). The simplicity
and versatility of the contour model and its rather small parameter space make it a
great tool to estimate basic cellular properties such as surface and line tension of
the cell. It can be used as an analysis tool or in the context of predictive numerical
simulations.

1.3.3. Interface-based models

Interface based models focus on the dynamics of the cell’s interface while connecting
the cell shape to generated traction stresses. The three most important approaches
are the cellular Potts model, the phase-field model and the vertex model.

Cellular Potts Model

The cellular Potts model (CPM), also known as the Glazier-Graner-Hogeweg model
(Graner et al., 1992), is essentially based on the Ising-model and designed to model cell
and tissue dynamics. As illustrated in Fig. 1.13A1, the cell is represented by discrete
lattice sites which are either occupied or unoccupied, corresponding to values 1 and 0,
respectively. Occupied lattice sites correspond to the cell and unoccupied lattice sites
represent the surrounding medium. Cellular dynamics is then driven by a Hamiltonian
which is usually comprised of terms involving cellular tension and cell-ECM adhesions.
In multi-cellular Potts models, one extends the Hamiltonian by energy contributions
stemming from cell-cell adhesions. Once the Hamiltonian is defined, the cell shape/cell
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Figure 1.13: Cellular Potts model, phase field model and vertex model. Panel A shows the shapes
of adherent cells modeled with the cellular Potts model. Sub-panel A1 illustrates the two-dimensional
cellular and multicellular Potts model. The extracellular environment is represented by zeros while
cells are labeled positive numbers. Sub-panel A2 shows a three-dimensional cell attached to a two-
dimensional substrate calculated with a three-dimensional version of the cellular Potts model. Panel
B depicts the shape of an adherent cell simulated with an elastic phase field model. The cell is pinned
at four corners representing focal adhesions. The upper panel shows the displacement field represented
by arrows while the lower panel shows the normalized von Mises stress, a scalar quantity to visualize
the stress level (Chojowski et al., 2020). The cell contour is shown in red and takes on the typical
invaginated shape. Panel C shows the central element of vertex models. Here, cells are represented
by hexagons which are stacked together to build a whole cell layer. Figures: A1 taken from (Albert
et al., 2014; Albert et al., 2016b), A2 by courtesy of Rabea Link, B adapted from (Chojowski et al.,
2020), C adapted from (Farhadifar et al., 2007).

cluster dynamics are computed by means of probabilistic algorihtms which minimize
the total energy and hence propagate the system by randomly inverting lattice sites
until the counteracting contributions in the Hamiltonian are balanced.

The CPM has been successfully applied to various problems in the context of cell
mechanics. For example Marée et al. (2006) used a CPM approach to model the
dynamics of epidermal fish keratocytes by combining the CPM and regulatory bio-
chemical processes of Rho, Rac and Cdc42. Käfer et al. (2007) exploited the CPM to
study the packing of cells in a drosophila retina by introducing adhesion-dependent
surface increase, which is balanced by cell contraction. Further, Albert et al. (2014;
2016) demonstrated that the CPM reproduces experimentally observed cell shapes in
strongly adherent cells on micropatterns. Moreover, by combining the cell shape of the
CPM with analytical results of the TEM, they were able to successfully predict traction
force patterns for different adhesion geometries. Very recently Hino et al. (2020) com-
bined the CPM with a mechano-chemical feedback mediated by extracellular signal-
regulated kinases (ERKs) to describe the sustained propagation of contraction waves
in epithelial cell layers. Beyond the original two-dimensional CPM, generalizations to
three dimensions can be used to describe cell sorting (Iber et al., 2015) or to study
three-dimensional cells adhered to two dimensional substrates (Fig. 1.13A2). Although
being very effective in describing dynamical processes such as cell migration, division
and signalling a huge drawback of the CPM is the difficulty to account for a detailed
structure of the actin CSK which, however, plays a central role in cell spreading and
mechanosensing.
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Phase field model

The phase field model (PFM) is a model particularly developed to describe interfacial
dynamics typically based on a free energy functional in terms of the so-called phase
field. The phase field ρ(x, t) assigns a constant value to each of two distinct phases,
which for example in the context of cell mechanics are the cell interior (ρ = 1) and
exterior (ρ = 0). The interface is then represented by a smooth transition between the
two phases where its equation of motion is obtained by the functional derivative of
the free energy. Although originally developed for problems like solidification (Langer
et al., 1975), it nowadays finds application in the mathematical description of fractures
(Aranson et al., 2000), the dynamics of vesicles in shear flow (Biben et al., 2003) or
cell motility (Ziebert et al., 2012). Very recently, Chojowski et al. (2020) proposed
an approach to couple the phase field method to linear elasticity by accounting for
reversibility. This method allowed them to model the mechanics of adherent cells
(Fig. 1.13B) although the diffusive nature of the cellular interface makes it complicated
to directly connect it to contour models or other discrete cell-ECM interactions.

Vertex model

The spirit of vertex models is to model larger cell ensembles like epithelial sheets in
a coarse grained fashion. Instead of a detailed three-dimensional model for each cell,
only the relevant horizontal packing topology is considered. The whole epithelial layer
is therefore approximated by a collection of vertices and edges building a polygonal
network (Fig. 1.13C). Force- and motion-driving cell features such as actomyosin con-
tractility, cell adhesion but also elastic properties are usually collected in an energy
function which is minimized to obtain the equilibrium state of the tissue by which force
balance at each vertex is satisfied. Typical areas of application include cell packing
in epithelial sheets (Farhadifar et al., 2007), tissue growth and other morphogenetic
processes (Hufnagel et al., 2007). Just recently Cavanaugh et al. (2020) used a vertex
model approach to explain rheological properties of epithelial cell junctions subject to
optogenetic activation. However, vertex models are not designed to model adherent
single cells and additionally, based on their mathematical structure, suffer from the
same computational difficulties as the network models.

1.4. Summary

In this chapter we provided an overview over the fundamental working principle of
the cytoskeleton of the cell. We additionally introduced traction force microscopy,
micropatterning and non-neuronal optogenetics as the main experimental techniques
in the context of the here presented work. Finally, we discussed models of cellular
contractility and compared their weaknesses and strengths. Being aware of all recent
theoretical and computational approaches to modeling the mechanical properties of
adherent cells, we have chosen continuum models and contour models. Continuum
models allow adherent cells to be simulated with results closely resembling experi-
ments. They are versatile, allow the introduction of optogenetic activation, and are
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computationally efficient. However, as mentioned earlier, they do not explicitly include
the mechanical properties of the cell contour which, however, is a concise structure in
certain adhesion geometries. Therefore, in situations where cell shape is an essential
element of the analysis, we will rely on contour models as an analysis tool and further
use it in the context of predictive numerical simulations.

1.5. Outline

Chapter 2 lays down the theoretical concepts providing the basis for continuum and
contour models. The central elements of continuum mechanics are introduced and
used to review the important model of an isotropically contracting cell connected to
an elastic foundation. Following a similar strategy, a mathematically rigorous notion
of contour models for adhering cells is introduced, followed by a recapitulation of the
tension elasticity model.
Chapter 3 focuses on the numerical treatment of the two used model classes by means
of finite element simulations. At first, the general work flow of finite element methods
is briefly introduced. After deriving the weak formulation for the equations of mechan-
ical equilibrium for both, continuum models and contour models, the implementation
is validated by a detailed comparison to the analytical counterparts discussed in Chap-
ter 2.
Chapter 4 presents the results that were obtained in a first collaborative work with
experimentalists. There, we investigate how cell size and actin architecture influence
the dynamics of force generation in adherent fibroblasts. By combining finite element
simulations and experimental techniques, we are able to study how the internal struc-
ture of the actin cytoskeleton, which, to some extent can be controlled by the adhesive
geometry, influences the cellular contractile energy.
Chapter 5 is structured similarly to Chapter 4 and describes the results of another
collaboration with experimentalists, which focuses on the quantification of force prop-
agation and active coupling in epithelial cells. By extending the models used in Chap-
ter 4 by incorporating local photo-activation we are able to show that cells are actively
coupled and further, that the coupling strength is influenced by the mechanical and
structural polarization of the cytoskeleton. In addition, we introduce the contour
model as a tool to analyze the cell shape and exploit it to demonstrate that cortices
of cells are stronger coupled than stress fibers.
Finally, Chapter 6 deals with the numerical treatment of a cell doublet and pays
particular attention to its most important features. These include, for example, that
the cells are characterized by an intercellular connection which keeps the cytosols of the
two cells isolated from each other. This property is accounted for by a discontinuous
Galerkin method. By introducing a minimal model for a typical signaling pathway
leading to cell contraction, this approach allows us to show that strain-dependent
feedback can explain the active coupling in cell doublets which in turn leads to a
symmetric response of an asymmetrically stimulated cell doublet.
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Chapter 2

Theory

Following the general introduction provided in the previous chapter, we will now ex-
amine continuum models and contour models in more detail. We will present the
central mathematical foundations of both models and, building on this, discuss the
main analytical results for each model class. For the continuum model we recapitulate
the example problem of the isotropic contractile disk connected to an elastic founda-
tion and for the contour models we recapitulate the tension-elasticity model using a
mathematically rigorous formalism.

2.1. Continuum model

2.1.1. Continuum mechanics in a nutshell

It is well known that matter, irrespective of the phase, consists of discrete particles.
Physical properties of matter can therefore be traced back to the molecular structure,
the intermolecular distance and intermolecular forces. However, on sufficiently large
length scales (≥ 100 nm) these microscopic structures can be disregarded for many ap-
plications. In such cases, the effective properties of the matter can be represented well
by a continuous density distribution. This branch of physics is known as continuum
mechanics and deals with the movement and deformation of matter under the action of
forces. Within this framework, physical properties are described by continuous fields
such as, e.g.

ρ(x, t) mass density , u(x, t) deformation field ,
v(x, t) velocity field , T (x, t) temperature field ,

which, from a mathematically standpoint, makes continuum mechanics a classical
field theory. In real life applications and interdisciplinary science like engineering,
astrophysics, material sciences, biophysics and more, it is often combined with other
important branches of physics like electrodynamics or thermodynamics. The two main
branches of continuum mechanics are fluid dynamics and solid mechanics which again
split up into various sub-disciplines ranging from gas dynamics to imperfections. The
substructure of continuum mechanics is depicted in Fig. 2.1 where the models used
in this work are located at the interface between fluid mechanics and solid mechanics
known as rheology (blue shading). Our mathematical formulation of the most im-
portant aspects of continuum mechanics is based on the work by Abeyaratne (1988),
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Figure 2.1: Different branches of continuum mechanics. The blue region highlights the sub-disciplines
which will be important in this thesis. Based on (Schwarz, 2018)

Holzapfel (2000), Howell et al. (2009), and T. Richter (2017).

Coordinate systems

Closely following the literature and textbooks cited above, we distinguish between
three different representations of a continuum body as depicted in Fig. 2.2A. B denotes
the abstract representation of a continuum body which is a collection of material
particles labeled by m. In contrast, the remaining two representations correspond
to specific configurations of the body where each particle m has a position in three-
(two-) dimensional space. One of these representations is denoted by R and describes
the reference (initial) configuration of the body at time t0 ∈ R. In the absence of
external macroscopic forces, R refers to the undeformed state or stress free state. The
volume of the undeformed configuration is denoted by Ω0 ⊂ Rd, with d = 2, 3, and
the spatial positions are represented by x̂ ∈ Ω0. At some later time t > t0 and under
the influence of external forces and moments, the body will be displaced and deformed
i.e. arrive in its current (deformed) configuration C. The volume of the deformed
configuration is denoted by Ωt ⊂ Rd with position vectors x ∈ Ωt. Although it is
possible to construct mappings between each of the three representations we want to
focus on the so called motion function X (t) : Ω0 → Ωt which maps the undeformed to
the deformed configuration by relating the position vectors at any given time through

x = X (t)(x̂) := X (x̂, t) . (2.1)

Further, we assume the motion function to be invertible X−1(x, t) = x̂ and continu-
ously differentiable in space and time. Following the trajectories of material particles
over time is known as the Lagrangian description and is the most common choice for
problems in solid mechanics. Within this view point all quantities are expressed in
terms of the Lagrangian coordinates x̂ which are fixed in the material. An alternative
view point is the so called Eulerian description which is common to use for problems
in fluid dynamics since it is more natural to formulate mass and momentum conserva-
tion. Here, all quantities are described with respect to the spatially fixed coordinates
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MOTION

A B

Figure 2.2: Lagrangian and Eulerian description of continuum mechanics. Panel A depicts the
Lagrangian view point in which the paths of material particles are traced over time. A deformable
object is mathematically represented by a so called body B which is a set of material points m without
any particular geometrical shape. The reference configuration (initial configuration) R is obtained by
choosing a frame of reference and assigning a specific position X = X0(m) ∈ Rd to each particle
label m at a given initial time t0. The region in space which the body B occupies at any given time
t > t0 is called current configuration C which is obtained by the motion function Xt. The resulting
displacement vector û(x̂, t) for a material particle is drawn in blue. Panel B schematically illustrates
the equivalent Eulerian approach in which an arbitrary quantity q(x, t) is evaluated at a fixed position
in space at a given time t. As the body moves the value of q(x, t) changes as different material particles
are passing through position x.

x as illustrated in Fig. 2.2B. For example, the value of an arbitrary quantity q(x, t)
is given by the properties of a particle x̂ that happens to be at position x at time t.
If not stated otherwise, we will use the symbol “∧” to denote quantities defined in a
Lagrangian frame of reference.

Displacement and deformation gradient

Next, we introduce the displacement field û : Ω0 → Rd which connects the initial
position x̂ and the current position x of a particle by

û(x̂, t) = x(x̂, t)− x̂ . (2.2)

The Eulerian equivalent of Eq. (2.2) is given by u(x, t) = x− x̂(x, t) highlighting the
equivalence of the two descriptions, since û(x̂, t) = û(X−1(x, t), t) = u(x, t).

Another fundamental quantity in structure dynamics is the so called deformation
gradient tensor which is defined as the Jacobian matrix of the motion function. Thus,
for a differentiable displacement field û(x̂, t) we have

F̂(x̂, t) = ∂

∂x̂X (x̂, t) = ∂x
∂x̂ = I + ∇̂û(x̂, t) , (2.3)

or in index notation
F̂ij(x̂, t) = ∂xi

∂x̂j
, (2.4)

where I denotes the unit tensor, i, j = 1, . . . , d with d = 2, 3 as usual, and ∇v =
∂i(vjej) ⊗ ei defines the vector gradient of a vector field v. The tensor F̂ measures
the local change of relative position of two points at the transition from undeformed
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to deformed configuration and plays a central role in mappings between the two con-
figurations. In addition, the local change of volume under deformation is given by the
determinant Ĵ := det(F̂) of the deformation gradient tensor which can be easily seen
from

|Ω(t)| =
∫

Ω(t)
1 dx =

∫
Ω0

det
(
I + ∇̂û

)
dx̂ =

∫
Ω0

Ĵ dx̂ , (2.5)

where Ω(t) and Ω0 are the current and initial volume, respectively.

Strain

Strain is a dimensionless quantity measuring the change of relative distances between
material elements under deformation. The most prominent example is Hooke’s law for
a simple spring which can be formulated as

K = k̃
L− L0
L0

, (2.6)

where K describes the tensile force resulting from stretching a spring with rest length
L0 to new length L. k̃ is the elastic modulus and (L−L0)/L the strain. The general-
ization to higher dimensions can be achieved by exploiting the relationship

δx = F̂ δx̂ + O(δl̂ 2) , (2.7)

i.e. relating the vectors of two infinitesimal line segments δx = eδl and δx̂ = êδl̂ in
deformed and undeformed configurations, respectively. The length of the line segment
in the deformed configuration is given by

δl =
√

(F̂ δx̂) · (F̂ δx̂) + O(δl̂ 2) = δl̂

√
êᵀ
(
F̂ᵀF̂

)
ê + O(δl̂ 2) , (2.8)

with Ĉ := F̂ᵀF̂ being the symmetric and positive definite right Cauchy-Green defor-
mation tensor. A convenient choice for a strain measure is the Green-Lagrange strain
tensor

Ê := 1
2(Ĉ− I) , (2.9)

measuring the squared length change of a line-element under deformation. It holds
that Ê = 0 in case of vanishing deformation, which is consistent with the idea, that
in the absence of strain no stress is induced within the material. Further, it can be
shown that Ê is invariant under rigid body transformations (Howell et al., 2009).

Stress

In simple terms, (internal) stress quantifies the resisting force across material cross-
sections that arise when a material body is subjected to external surface and body
forces. Additionally, in active materials internal stresses can arise due to active force
producing mechanisms leading to deformations. Stress is measured in units of force
per area. According to Cauchy’s stress theorem, the stress state of a body can be
uniquely described by a second order tensor field σ(x, t) such that the traction vector
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t on an arbitrary surface element dA with surface normal n is given by

t(x, t,n) = σ(x, t)n . (2.10)

Since the symmetric Cauchy stress tensor σ(x, t) gives the stress state in the cur-
rent configuration, it is useful to introduce another important stress measure, which
relates the stress in the current configuration to surface elements in the reference con-
figuration. Therefore, one introduces the first Piola-Kirchhoff stress tensor P̂(x̂, t), for
which, in analogy to Eq. (2.10), the first Piola-Kirchhoff traction vector is defined as

t̂(x̂, t, n̂) = P̂(x̂, t)n̂ , (2.11)

where n̂ denotes the surface normal to the surface element dA0 in the reference con-
figuration. The two stress tensors are related by

P̂ = Ĵσ(F̂ᵀ)−1 , (2.12)

which immediately follows from t dA = t̂ dA0 and Nanson’s formula, relating the
surface elements in the current and reference configuration by dAn = Ĵ dA0(F̂ᵀ)−1n̂ .

Momentum Conservation

Following Newton’s second law for an arbitrary small volume element that moves with
the deforming solid, momentum conservation can be formulated as1

d
dt

∫
Ωt

∂u
∂t
ρ(x, t) dx =

∫
Ωt

gρ(x, t) dx +
∫

Γt
σ(x, t)n dA , (2.13)

where the first term gives the change in momentum of the mass density ρ(x, t), the sec-
ond term describes the action of an external body force like gravity and the third term
accounts for the traction forces acting on the boundary ∂Ωt = Γt of the volume element
Ωt. Further, exploiting that ρ(x, t) dx = ρ(x̂, 0)Ĵ dx̂ = ρ̂(x̂) dx̂ is time independent,
we can interchange time derivative and integration in the first term of Eq. (2.13). By
additionally applying the divergence theorem to the last term of Eq. (2.13) we obtain
Cauchy’s momentum equation

ρ
∂2u
∂t2

= ρg +∇ · σ . (2.14)

For biological tissue the inertial term can be usually neglected such that Eq. (2.14)
can be simplified to

∇ · σ(x, t) = b , (2.15)

with an arbitrary body force b.

1Momentum conservation is naturally formulated in the current configuration.
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Linear elasticity

Linear elasticity theory is the limit of infinitesimal deformations and strains. In a
regime of infinitesimal displacements we have x ≈ x̂ and hence, the mass density in
the current configuration can be approximated by the mass density in the reference
state since F̂ = ∂x/∂x̂ ≈ I and therefore Ĵ ≈ 1. Moreover, for |∇̂û| � 1 we can
neglect the second order term in Ĉ = I + ∇̂û + ∇̂ûᵀ + ∇̂ûᵀ∇̂û which, consequently,
leads to the linearized version of the Green-Lagrange strain tensor given by

ε̂ = 1
2(F̂ + F̂ᵀ − 2I) . (2.16)

As a conclusion from the above assumptions, we do not have to distinguish between
the Lagrangian and Eulerian description and can simply substitute x̂ by x and ∂/∂x̂i
by ∂/∂xi i.e. omitting the “∧”-symbol whenever we are dealing with linear elasticity.
Finally, the linear strain tensor can be written as

ε = 1
2(∇u +∇uᵀ) . (2.17)

The constitutive relation is formulated as a multidimensional generalization of Hooke’s
law

σ(x, t) = C(x) : ε(x, t) . (2.18)

Here, C denotes the stiffness tensor,“:” denotes the double contraction of two indices
Cijklεkl and, if not stated otherwise, we use the Einstein summation convention which
implies summation over equal indices. In case of an isotropic material, C must be an
isotropic tensor and thus its components can be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk) , (2.19)

in which λ and µ are the two Lamé coefficients. Together with Eq. (2.18) the consti-
tutive relation of an isotropic linear elastic material yields

σ = λ tr(ε)I + 2µε , (2.20)

and the Lamé parameters in terms of Young’s modulus E and Poisson’s ratio ν are
given by

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (2.21)

2D systems- thin layer and plane stress approximation

In a regime where one spatial dimension (without loss of generality the z-direction) is
much smaller compared to the others, as is the case for adherent cells where the cell
height hc ≈ 1 µm−5 µm is much smaller than the lateral extent Lc ≈ 30 µm−50 µm, the
stress tensor components associated with this small spatial dimension are set to zero.
Further, variations of the remaining stress tensor components along the z-direction
are assumed to be small and thus, it is sufficient to look at the thickness-averaged
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2.1. Continuum model

quantities. Conclusively, the plane-stress approximation translates to σzz = σxz =
σzx = σyz = σzy = 0 yielding the stress-strain relationship in Voigt notation

σxx

σyy

σxy

 = Ec
1− ν2

c


1 νc 0
νc 1 0
0 0 1−νc

2



εxx

εyy

εxy

 , (2.22)

where we neglect out of plane strains εzz. Integrating Eq. (2.15) along the z-direction
gives

1
hc

∫ hc

0
dz ∂jσij = 1

hc

∫ hc

0
dz bi (2.23)

⇐⇒ hc∂j σ̃ij =
∫ hc

0
dz bi (2.24)

⇐⇒ ∂jσ
2D
ij = ti(x, y) , (2.25)

where σ̃ij(x, y) is the thickness averaged stress tensor, σ2D
ij = hcσ̃ij denotes the two

dimensional stress tensor with physical units of surface tension
[
σ2D
ij

]
= N m−1 and

ti(x, y) is the two-dimensional equivalent of a body force and has physical units of
a traction [ti] = N m−2. Hence, in a two-dimensional system surface tractions enter
the equations of mechanical equilibrium as a body force. Moreover, comparing the
thickness-averaged version of Eq. (2.22) with the general version of Hooke’s law

σij = λεkkδij + 2µεij , (2.26)

allows to determine the two dimensional Lamé parameters as

λ2D = νchcEc
1− ν2

c

, µ2D = hcEc
2(1 + νc)

. (2.27)

Linear viscoelasticity

In order to account for the viscoelastic nature of the actin cytoskeleton (Clément et al.,
2017; Saha et al., 2016) we briefly introduce two fundamental rheological models, the
Kelvin-Voigt model and the Maxwell model. As depicted in Fig. 2.3A, the Kelvin-Voigt
model consists of a dashpot and spring connected in parallel, while for the Maxwell
model, shown in Fig. 2.3B, these elements are connected in series. The one-dimensional
constitutive relations for the two elements are given by

σ(t) = Eε(t) spring , (2.28)

σ(t) = η
∂ε

∂t
(t) dashpot . (2.29)

Eq. (2.29) is the constitutive relation for a linear viscous fluid, where the stress σ
is proportional to the strain rate ∂ε

∂t . Thereby, the constant of proportionality is the
viscosity (viscous modulus) η. In case of the Kelvin-Voigt model, an externally applied
stress is distributed onto the two subelements and hence, can be written as σ = σE+ση.
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Figure 2.3: Basic viscoelastic models. Panel A depicts a Kelvin-Voigt element which consists of
a parallel connection of a linear elastic spring E and a dashpot η. Applied stress σ is distributed
onto both elements. Panel B shows a Maxwell element which consists of a spring E and a dashpot η
connected in series. Upon loading, both elements experience equal stresses but different strain. Panel
C shows the time course of both models under sudden stress and strain load, respectively. Image idea
adapted from (Gutierrez-Lemini, 2014)

The strain, however, is the same for both subelements and thus ε = εE = εη. Together
with Eqs. (2.28) and (2.29), this yields the constitutive relation for the Kelvin-Voigt
model

σ = Eε+ η
∂ε

∂t
. (2.30)

In contrast, for the Maxwell model strains are additive ε = εE + εη and stresses are
equal σ = σE = ση such that here, the constitutive relation reads

η
∂σ

∂t
+ Eσ = Eη

∂ε

∂t
. (2.31)

The solutions of the above ordinary differential equations in the special case of a
sudden stress or strain loading are illustrated in Fig. 2.3C, highlighting the solid- and
fluid-like Kelvin-Voigt and Maxwell model, respectively. In most cases, experimental
data will indicate which of the two models is a better fit for describing certain aspects
of the dynamics of the actin cytoskeleton. And further, these two models can easily
be extended to describe more complicated rheological behavior.

2.1.2. Isotropically contracting disc

Using the basic concepts of continuum mechanics as introduced above, we solve the
important system of a disc-shaped active contractile cell layer coupled to an elastic
foundation2 analytically. Those models have served as the basis of various more com-
plicated models used to study mechanotransduction of cells on pillar arrays or gel
substrates (Edwards et al., 2011; Solowiej-Wedderburn et al., 2022) and provide an
important theoretical counterpart to experiments.

2The terms “elastic foundation”, “substrate” and “(micro)pattern” are used interchangeably.
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Fig. 2.4A depicts the basic system setup in which the disc shaped cell layer (black)
is attached to the substrate (blue). The key parameters to describe the elastic layer
are Young’s modulus Ec, Poisson’s ratio νc, disc radius r0 and active contractile stress
σa. The effective cell-substrate coupling is here represented by the spring stiffness
density Y , i.e. a layer of equally distributed springs, which describe the combined
elastic properties of focal adhesions and substrate.

For a radially symmetric system with isotropic contraction, we can conclude that
the resulting displacement field u is pointing along the radial direction and therefore
only the radial component

u = urer , (2.32)

is non-zero. The stress - strain relationship for a plane stress setup in polar coordinates
reads (Slaughter, 2012)

σrr = (2µ+ λ)εrr + λεθθ + σa , (2.33)
σθθ = (2µ+ λ)εθθ + λεrr + σa , (2.34)

with the strain displacement relations εrr = ∂rur and εθθ = ur/r and the two-
dimensional Lamé parameters µ and λ. The force balance equation is given by

∇ · σ = Y (x)u , (2.35)

in which the term T = Y u describes the traction force which takes on the role of a
body force in case of a purely two-dimensional system. Transforming the force balance
equation into polar coordinates yields

∂

∂r
σrr + 1

r
(σrr − σθθ) = Y (x)ur . (2.36)

Inserting Eqs. 2.33 and 2.34 together with

∂

∂r
σrr = (2µ+ λ) ∂

2

∂r2ur + λ

r

∂

∂r
ur −

λ

r2ur + ∂

∂r
σa , (2.37)

into the force balance Eq. 2.36 leads to the second order ordinary differential equa-
tion for the displacement field ur(r) of the isotropically contracting disc with elastic
foundation

r2 ∂
2

∂r2ur + r
∂

∂r
ur −

(
r2

l2p
+ 1

)
ur = − r2

2µ+ λ

∂

∂r
σa . (2.38)

Thereby, lp denotes the so-called localization length

lp =
√

2µ+ λ

Y
=
√

hcEc
Y (1− ν2

c ) , (2.39)

which can be interpreted as the typical length scale on which the substrate deforma-
tions decay.
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A B

Figure 2.4: Illustration of an isotropically contracting disc of radius r0, Young’s modulus Ec, Pois-
son’s ratio νc and active contractile stress σa. The parameter Y is the effective spring stiffness density
which defines the rigidity of the elastic foundation. Panel A depicts the case of a full disc-shaped
adhesion pattern. Panel B shows a ring-shaped adhesion pattern. In this, case the cell can only adhere
to the area between ri and r0, i.e where Y 6= 0.

Adhesion on disc pattern

In case of a constant active stress σa and a circular shaped adhesion pattern the
equilibrium solution fulfills the following boundary value problem: For a given interval
[0, r0] ⊂ R find the function ur : [0, r0]→ R, ur ∈ C2((0, r0)) ∩ C0([0, r0]) such that

r2 ∂
2

∂r2ur + r
∂

∂r
ur −

(
r2

l2p
+ 1

)
ur = 0 , (2.40)

together with the boundary conditions

ur(0) = 0 Dirichlet BC (i) , σrr(r0) = 0 zero-stress BC (ii) . (2.41)

Rewriting Eq. 2.40 by introducing the non dimensional parameter ξ = r/lp leads to

ξ2 ∂
2

∂ξ2ur + ξ
∂

∂ξ
ur −

(
ξ2 + 1

)
ur = 0 , (2.42)

whose solution can be written in terms of the modified Bessel functions of the first
and second kind3

ur(ξ) = c1I1(ξ) + c2K1(ξ) , (2.43)

with two constants c1 and c2. In order to fulfill boundary condition 2.41(i) it follows
that c2 = 0 since limξ→0K1(ξ) = ∞. Writing out the zero-stress boundary condition
2.41(ii) yields

∂

∂ξ
ur

∣∣∣∣
ξ=ξ0

+ λ

2µ+ λ

ur
ξ0

= − lp
2µ+ λ

σa , (2.44)

where we set ξ0 = lpr0. Inserting Eq. 2.43 into Eq. 2.44 and solving for c1 leads to

c1 = −lp
σa

2µ+ λ

1
I0(ξ0)− 2µ

2µ+λ
I1(ξ0)
ξ0

, (2.45)

3The general form of Eq. 2.42 is given by ξ2 ∂2

∂ξ2 f + ξ ∂
∂ξ
f −

(
ξ2 + n

)
f = 0. The solutions are a linear

combination of Bessel functions of the first and second kinds f = αIn(ξ) + βKn(ξ).
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from which we obtain the full solution to Eq. (2.40)

ur(r) = −lp
σa

2µ+ λ

I1
(
r
lp

)
I0
(
r0
lp

)
− 2µ

2µ+λ
lp
r0
I1
(
r0
lp

) . (2.46)

Adhesion on ring pattern

In case of a ring shaped adhesion pattern as depicted in Fig. 2.4B we can obtain the
ODE for the non-adhesive inner circle by exploiting the fact that the spring stiffness
density is zero and thus limY→0 lp(Y ) =∞ such that r2/l2p = 0. Hence, Eq. 2.40 turns
into the well known Euler-Cauchy equation. The problem of solving the isotropically
contracting disc on the ring pattern can be stated as: For a given interval [0, r0] ⊂ R
with ri ∈ [0, r0] find the function ur : [0, r0] → R, ur ∈ C2((0, r0)) ∩ C0([0, r0]) such
that

r2 ∂
2

∂r2ur + r
∂

∂r
ur − ur = 0 , for r ∈ [0, ri) (2.47)

r2 ∂
2

∂r2ur + r
∂

∂r
ur −

(
r2

l2p
+ 1

)
ur = 0 , for r ∈ [ri, r0] (2.48)

together with the boundary conditions

(i) uinr (0) = 0 , (ii) uinr (ri) = uoutr (ri) ,
(iii) σinrr(ri) = σoutrr (ri) , (iv) σoutrr (r0) = 0 , (2.49)

where the superscripts (.)in and (.)out highlight the solutions on the intervals given in
Eqs 2.47 and 2.48. The general solution of the Euler-Cauchy Eq. 2.47, i.e. the inner
part of the ring pattern, is given by

uin(ξ) = c1
ξ

+ c2ξ , (2.50)

where we again introduce the non-dimensional variable ξ = r/lp. The solution of Eq.
2.48, i.e the adhesive outer part of the pattern, is as before

uout(ξ) = c3I1(ξ) + c4K1(ξ) . (2.51)

We omit the details of the lengthy calculation for determining the constants c1 - c4

which can be directly obtained through the boundary conditions of the problem. Our
calculation yields

c1 = 0 , c3 = −σa
lp

2µ+ λ

M(ξi)
Q(ξ0)M(ξi)− S(ξ0)N(ξi)

, (2.52)

c2 = c3
I1(ξi)
ξi

+ c4
K1(ξi)
ξi

, c4 = −σa
lp

2µ+ λ

N(ξi)
Q(ξ0)M(ξi)− S(ξ0)N(ξi)

, (2.53)
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A B

Figure 2.5: Radial displacement and stress field for contractile disc. Panel A shows the radial profile
of displacement field ur(r) for different adhesive ring areas. Panel B depicts the radial component of
the stress tensor σrr(r) for different adhesive ring areas. Darker line colors correspond to larger ring
areas with the limiting case of a fully adhesive disc-pattern.

where ξi = ri/lp and

M(ξi) = 2K1(ξi)
ξi

+K0(ξi) , N(ξi) = I0(ξi)− 2I1(ξi)
ξi

, (2.54)

Q(ξ0) = I0(ξ0)− 2µ
2µ+ λ

I1(ξ0)
ξ0

, S(ξ0) = K0(ξ0) + 2µ
2µ+ λ

K1(ξ0)
ξ0

. (2.55)

The solution is illustrated in Fig. 2.5A together with the radial component of the total
stress tensor σrr for four different adhesion areas ranging from a fully adherent disc
(ri/r0 ≈ 0) to an almost non-adherent freely contracting disc (ri/r0 ≈ 1). Fig.2.5A
shows that the absolute displacement |ur(r)| at the cell edge increases with decreasing
adhesion area. The cross over from linear to non-linear scaling is more pronounced
for smaller adhesion areas as well. Fig.2.5B depicts that the total stress stays con-
stant in the non-adhesive domain r < ri and exhibits a steep decrease for r ≥ ri

with σrr(r0) = 0 at the cell edge in order to fulfill the zero-stress boundary condition.
The results of this section serve as important minimal examples which we will use
throughout the thesis as a reference in order to understand and interpret more com-
plicated situations, especially situations with changes in the adhesive area, for which
no analytical solutions exist.

2.2. Contour model

In this section we will focus on the mathematical foundation of contour models. Al-
though the equations for mechanical equilibrium can be derived by geometric consider-
ations (Schwarz et al., 2013), we follow the concept of the book on nonlinear structural
mechanics by Lacarbonara (2013) and discuss the derivation in a more rigorous way.
This is especially useful when it comes to calculating the equilibrium configuration of
fibers under specified loading conditions and in more complicated situations which go
beyond the already mentioned TEM, dTEM or ATM. Further, a stringent formalism
facilitates a numerical treatment of such problems.
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2.2.1. Derivation of the equilibrium equation

Motivated by the introductory discussion on cable networks and the characteristic
feature of actin filaments and stress fibers we define an elastic fiber to be resisting to
tension only and in this sense, we neglect torsion, shear and bending of the fiber. The
fiber is supposed to start and end at localized adhesion sites such that both ends of the
fiber are constrained and cannot move. Since adherent cells are very flat, we restrict
ourselves to a two-dimensional description, but generalizations to three dimensions are
possible using the same formalism.

In analogy to the coordinate systems introduced in Section 2.1.1 we distinguish
between an undeformed (stress free) reference state R and a deformed current state
C. Quantities referring to the reference state carry a “∧”-symbol. The length of
the fiber in the reference configuration is denoted by L̂ with arc length parameter
ŝ ∈

[
0, L̂

]
⊂ R while for the current configuration the respective quantities are given

by L with s ∈ [0, L] ⊂ R. Without loss of generality, we fix a coordinate system in one
of the adhesion sites as shown in Fig. 2.6A in which the position vectors describing
the shape of R and C are denoted by x̂(ŝ),x(ŝ) ∈ R2, respectively. We note that the
natural parameter for the shape in the current configuration is s.

The position vector x(ŝ) is assumed to be sufficiently often continuously differ-
entiable with respect to ŝ and the derivatives are assumed to be non-zero on

[
0, L̂

]
.

Using the differentiability of x(ŝ) we can relate the length element in the current state
to its undeformed reference length by

ds = |x(ŝ+ dŝ)− x(ŝ)| = |∂ŝx(ŝ)| dŝ , (2.56)

and hence, the arc length along the curve in the current configuration follows as

s(ŝ) =
∫ ŝ

0

∣∣∣∂x
∂q

∣∣∣ dq . (2.57)

The stretch of the curve at position ŝ is then defined by the non-linear strain-displacement
relationship

ν(ŝ) :=
∣∣∣∂x
∂ŝ

∣∣∣ = ds
dŝ =

√
(∂ŝx)2 + (∂ŝy)2 . (2.58)

For a profound geometrical description of the equilibrium shape we introduce a
co-moving set of basis vectors given by the two-dimensional Frenet-Serret formulas as
depicted in Fig. 2.6B

dx
ds = T = 1

ν

dx
dŝ , (2.59)

dT
ds = κN , (2.60)

where T denotes the local unit tangent vector to the curve, N the local unit normal
vector (outward directed as shown in Fig. 2.6A) and κ =

∣∣∣dT
ds

∣∣∣ the local curvature.
The fiber attains its equilibrium shape if the contact forces F(ŝ) within the material
balance the externally applied force load f(ŝ) per unit reference length ŝ. For an
arbitrary line element [ŝ0, ŝ] ⊂ (0, L̂) as depicted in Fig. 2.6C the balance of linear
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A CB

Actin
cytoskeleton

Figure 2.6: Basic notions for the description of a slender fiber. Panel A schematically illustrates
an adherent cell as a two-dimensional continuum separated by a one-dimensional interface from its
environment with stress tensors Σin for the interior and Σout for the exterior of the cell. For closed
curves an always outward pointing normal is defined. Panel B shows the reference (unstretched)
and current (stretched) configuration of a suspended fiber. Panel C depicts the force balance between
internal forces F and external force loads f for an infinitesimal line element in the current configuration.

momentum is therefore given by

− F(ŝ0) + F(ŝ) +
∫ ŝ

ŝ0
f(ζ) dζ = 0 , ∀ [ŝ0, ŝ] ⊂ (0, L̂) . (2.61)

Moreover, assuming that the contact force is differentiable along the entire line element
leads to F(ŝ) = F(ŝ0)−

∫ ŝ
ŝ0
∂ζF(ζ) dζ. By comparison of the two integrands we arrive

at the local force balance statement given by

∂ŝF + f = 0 . (2.62)

Demanding local torque balance with respect to the origin of the coordinate system
yields

x(ŝ)×F(ŝ)−x(ŝ0)×F(ŝ0)+
∫ ŝ

ŝ0
x(ζ)×f(ζ) dζ =

∫ ŝ

ŝ0
∂ζ [x(ζ)× F(ζ)]+x(ζ)×f(ζ) dζ = 0 ,

(2.63)
which together with Eq. 2.62 simplifies to

∂ŝx(ŝ)× F(ŝ) = 0 . (2.64)

Using the fact that ∂ŝx ∼ T (Eq. (2.59)) we can conclude that the internal tensile
forces always point in tangential direction F ∼ T in order to fulfill Eq. 2.64. Therefore
we generally express the internal forces as

F = λ(ŝ)T(ŝ) (2.65)

and refer to the parameter λ as the line tension of the fiber.
The formalism for the planar problem as introduced above can be applied to a huge

variety of different problems. Moreover, stating the equations of motion as a function
of the material coordinate ŝ allows to easily exploit numerical solution techniques as
we will briefly discuss in Chapter 3.
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2.2.2. The tension elasticity model revisited

In case of adherent cells, as depicted in Fig. 2.6A, the force load acting on the fiber is
very generally determined by the stress difference Σin −Σout across the cell contour
(Giomi, 2019). Therefore, the force load can be expressed as the product of a stress
tensor and the outward pointing normal to the cell periphery

f = (Σin −Σout) N . (2.66)

Under the assumption that the cell interior contracts isotropically it is reasonable to
describe the force load by means of an isotropic tensor given by

(Σin −Σout) = −σ(s(ŝ))ν(ŝ)I , (2.67)

where σ is an isotropic surface tension, which denotes the force per actual reference
length s, and I is the two dimensional unit tensor. Hence, together with Eq. (2.65)
the force balance equation is given by

dλ
dsT + (λκ− σ)N = 0 . (2.68)

Since T and N are orthogonal vectors both terms in Eq. (2.68) must equate to zero.
Consequently, the equilibrium shape is characterized by a constant line tension λ and
a Laplace law, which in this context is better known as the simple tension model

R = λ

σ
, (2.69)

which relates line and surface tension to the radius of curvature R = 1/κ of the fiber
for a given constant surface tension σ (Fig. 2.7). In consequence, a constant isotropic
surface tension leads to circular peripheral arcs independently of the specific adhesion
geometry. However, as already discussed in Section 1.3.2, experiments on cells on
pillar arrays revealed a dependency of the arc radius on the adhesion geometry, i.e.
the distance of the two adhesion sites (Bischofs et al., 2009). In order to account
for this dependency, one assumes an elastic origin of the line tension λel which, in its
simplest form, can be described by a linear constitutive relation

λel = EA

(ds− dŝ
dŝ

)
= EA(ν − 1) , (2.70)

Figure 2.7: Interplay between surface and line
tension for a free spanning fiber between two ad-
hesion points. The surface tension σ pulls the
fiber inwards. The tangentially acting line ten-
sion λ counteracts the inward pull until equilib-
rium is reached. For an isotropic surface tension
the contour is described by a Laplace law relating
the radius of curvature directly to surface and line
tension.
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where EA is the product of the cross-sectional area A and Young’s modulus E of
the fiber. Very generally, expressing the tangent vector in terms of the turning angle
T = (∂sx)ex + (∂sy)ey = cos θex + sin θey (Fig. 2.6B) the shape of the curve is
determined by

x(s) = x(0) +
∫ s

0
[cos θ(ζ)ex + sin θ(ζ)ey] dζ . (2.71)

Considering Eq. (2.60), curvature κ(s) and turning angle θ(s) are related by ∂sθ(s) =
κ(s) such that θ(s) = θ(0) + σ

λs for constant λ and σ and thus, the second term in
Eq. (2.71) yields

x(s) = λ

σ
sin
(
θ(0) + σ

λ
s

)
+ Cx , (2.72)

y(s) = −λ
σ

cos
(
θ(0) + σ

λ
s

)
+ Cy . (2.73)

The four unknowns Cx, Cy, θ(0), λ are yet to be determined by the boundary conditions
which are dictated by the adhesion geometry. According to our specific choice of the
coordinate system as shown in Fig. 2.7 these boundary conditions can be expressed as

x(0) = 0 , y(0) = 0 , y(L) = 0 , x(L) = d , (2.74)

where the reference shape corresponds to a straight fiber of length L̂ = d connecting
the two adhesion sites. The first three boundary conditions yield

Cx = −λ
σ

sin θ(0) , (2.75)

Cy = λ

σ
cos θ(0) , (2.76)

Cy = λ

σ
cos

(
θ(0) + σ

λ
L

)
, (2.77)

and by demanding equality of Eqs. (2.76) and (2.77), while only considering solutions
with θ ∈ [0, 2π), it follows for the turning angle at the origin

θ(0) = − σ

2λL . (2.78)

Hence, the equilibrium shape of a cable under isotropic surface tension is given by

x(s) = λ

σ
sin
(
σ

λ

(
s− L

2

))
+ λ

σ
sin
(
σ

λ

L

2

)
, (2.79)

y(s) = −λ
σ

cos
(
σ

λ

(
s− L

2

))
+ λ

σ
cos

(
σ

λ

L

2

)
, (2.80)

θ(s) = σ

λ

(
s− L

2

)
. (2.81)

The line tension λ, as the remaining unknown, follows from the last boundary condition
in Eq. (2.74) and leads to the transcendental equation

1
2
σ

λ
d = sin

(
1
2
σ

λ

∫ d

0
ν(λ, ŝ) dŝ

)
, (2.82)
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where we used Eq. (2.57) to write L =
∫ d
0 ν(λ, ŝ) dŝ. Solving the constitutive relation

Eq. (2.70) for the stretch ν leads to
∫ d

0 ν(λ, ŝ) dŝ =
(
1 + λ

EA

)
d which in turn yields a

closed solution for the line tension

λ(d) = EA

d

(
2R arcsin

(
d

2R

)
− d

)
. (2.83)

Eq. (2.83) is the result obtained by Bischofs et al. (2009) and implies a dependency
of the radius of curvature on the distance between the adhesion points and is known
as the tension elasticity model.

2.3. Summary

In this chapter, we have provided the mathematical basis for the continuum-based
description of contractile elastic sheets. We have also analytically calculated the radial
displacement field of an isotropic contractile disc adhering to a disc and a ring pattern.
In this scenario, the absolute displacement field is largest at the cell edge. For a ring-
shaped adhesion pattern, the cell stresses remain constant on the non-adhesive parts
of the pattern and decrease steeply to zero over the adhesive parts toward the cell
periphery. In addition, we introduced the mathematical foundation of contour models
and applied it to elastic fibers under isotropic loading conditions to recapitulate the
tension elasticity model.
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Chapter 3

Implementation

After having introduced the theoretical concepts of continuum and contour models,
we dedicate this chapter to the numerical implementation. Section 3.1 introduces the
finite element method as a numerical treatment of PDEs. Next, in Section 3.2 we
derive the weak form of the equation of mechanical equilibrium for a contractile sheet
with elastic foundation and solve it numerically in case of isotropic contraction. This
allows us to validate the implementation by comparing it to the analytical solution
from Chapter 2. Subsequently, we derive the weak form of the boundary value problem
of a freely spanning elastic fiber subject to an external load. Here, we compare the
numerical results to two analytical cases, namely the TEM and the elastic catenary.

3.1. The finite element method - divide and conquer

Almost all physical processes are formulated in terms of partial differential equations
(PDEs) which, dependent on the complexity of the system, cannot be solved ana-
lytically. Therefore, numerical methods in combination with computer software are
necessary to obtain numerical solutions. One of these methods is the finite element
method (FEM) , which has its origin mainly in structural analysis where it is often
applied as a tool to solve problems in the car and aerospace industry. Nowadays, it
is applied to a whole range of different problems, ranging from electromagentism to
fluid mechanics to bio-mechanics and much more. In addition to very advanced com-
mercial software, many useful open source software packages have been developed to
help solve complicated partial differential equations efficiently. Although these soft-
ware packages are very user-friendly and in most cases do much of the work in the
background, a basic understanding of the FEM is still required to efficiently implement
complex mathematical systems.

In particular, FEM-simulations follow a typical workflow independent of the spe-
cific problem, which is illustrated schematically in Fig. 3.1. At first one has to setup
the geometry of the underlying physical problem and specify the boundary conditions
(Fig. 3.1A). Next, the simulation domain is divided into smaller finite elements mostly
of triangular or quadrilateral shape for which one typically exploits mesh generating
algorithms (Fig. 3.1B). Once the weak form of the PDE has been derived it can be
discretized on these finite elements such that the initial PDE is converted into an
algebraic equation that can be solved by standard numerical methods (Fig. 3.1C1,2).
After finding the solution of the algebraic equation, post-processing routines may be
utilized to convert the discrete solution into a continuous solution by interpolation
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FEM-meshSimulation domain

obtain solution
at all nodes

element

node

Elementwise calculations

obtain field solution
through interpolation

A B C1

C2
DE

Figure 3.1: Basic FEM workflow. From A to D: The FEM workflow starts with the definition
of the simulation domain and the respective boundary conditions (A). Subsequently, the simulation
domain is discretized, usually by triangulation (in 2D) (B). Once suitable basis functions (polynomials
of certain degree) are specified, the weak form can be converted to a linear system of equations for
each element (C1,C2). These systems are then assembled into a global system of equations which can
be solved to obtain the solution at all nodes of the FEM mesh (D). Panel E shows the post-processing
step in which a field solution can be obtained by interpolation in between the nodes using the finite
element basis functions.

(Fig. 3.1D,E).
In this section we follow more or less the standard literature (Langtangen et al.,

2017; J. Reddy, 1993; Seshu, 2003; Zienkiewicz et al., 2005) to briefly discuss and
summarize the main mathematical concepts of FEM with focus on the construction
of the weak form and the discretization.

3.1.1. Weak form and function spaces

For the sake of simplicity we will use the Poisson equation to demonstrate the FEM-
workflow. In our example we are interested in solving

−∇2ϕ = f , in Ω (3.1)
ϕ = 0 , on ΓD (3.2)

∇ϕ ·N = g , on ΓN , (3.3)

where Ω ⊂ R2 is the simulation domain, ∂Ω denotes the boundary of the domain
with outward pointing unit normal vector N. Further, ΓD and ΓN denote the portions
of the boundary on which Dirichlet and Neumann boundary conditions are imposed.
The solution ϕ, source term f and boundary data g are scalar valued functions with
ϕ, f : Ω → R and g : Ω → R. Based on the formulation of the PDE we search for
a strong soultion ϕ ∈ C2(Ω) ∩ C0(Ω̄) which is twice continuously differentiable and
continuous on the boundary. The source term further fulfills f ∈ C0(Ω).

In order to solve Eq. (3.1) by means of a finite element simulation one has to
re-formulate the PDE as an integral equation, which is also known as the weak formu-
lation of the PDE. This is obtained by multiplication of the PDE by a test function
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w ∈ V and subsequent integratation over the whole simulation domain Ω. Application
of appropriate integral theorems further reduces the order of the involved derivatives
to a minimum.

Before we derive the weak form, we introduce the so called Hilbert-Sobolev space

Hp :=
{
ϕ ∈ L2(Ω) | ∂|α|ϕ

∂xα1
1 . . . ∂x

αp
p
∈ L2(Ω) ∀|α| ≤ p

}
, (3.4)

which contains all functions whose partial derivatives up to order p are square-integrable.
This is the natural choice for test and trial functions such that the existence of the
integrals in the weak form is ensured. The space of test functions is defined as

V := {w ∈ H1(Ω) | w = 0 on ΓD} ≡ H1
0 , (3.5)

and functions w ∈ V vanish on the Dirichlet part ΓD of ∂Ω. The trial function space
S is a translation of the test function space V in the sense, that it contains functions
in H1 which fulfill the Dirichlet boundary condition ϕ = ϕD on ΓD

S := {ϕ ∈ H1(Ω) | ϕ = ϕD on ΓD} . (3.6)

Following the recipe discussed above, the integral form of Eq. (3.1) is given by

−
∫

Ω
w∇2ϕdx =

∫
Ω
wf dx . (3.7)

At this stage, it is clear that the integral form of Eq. (3.1) ”weakens“ the regularity
requirements of the solution ϕ and second derivatives do not have to be in C2(Ω)
anymore since square-integrability is sufficient. Integration by parts further yields

−
∫

Γ
w(∇ϕ ·N) ds+

∫
Ω
∇w · ∇ϕdx =

∫
Ω
wf dx , (3.8)

such that the solution only has to fulfill ϕ ∈ H1(Ω). Because w = 0 on ΓD we can
write the final weak form of Eq. (3.1) as∫

Ω
∇w · ∇ϕ dx =

∫
Ω
wf dx+

∫
ΓN
wg ds . (3.9)

A solution ϕ of the strong form is by construction a solution of the weak form. The
existence and uniqueness of a solution to the weak form can be shown by utilizing the
Lax-Milgram lemma (Donea et al., 2003).

3.1.2. Discretization

The weak form as stated in Eq. (3.9) can now be discretized. The main idea is to
find an approximate solution in finite-dimensional subspaces of V and S. In these
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subspaces one may define approximate solution and test functions as

ϕh =
N∑
i=0

αiψi , (3.10)

wh =
N∑
i=0

βiψi , (3.11)

with coefficients αi, βi, basis functions ψi and dimension of the subspace N . Note that
choosing the same basis functions for the solution and the test functions is referred
to as the Galerkin method (Bubanov-Galerkin) and is the most prominent approach
(Ahmed et al., 2020). In many cases this choice leads to symmetric matrices. Inserting
the approximate functions into Eq. (3.9) and setting g = 0 for simplicity, we find

N∑
i=0

βi

 N∑
j=0

∫
Ω
∇ψi · ∇ψjαj dx−

∫
Ω
ψif dx

 =
N∑
i=0

βi

 N∑
j=0

Kijαj − Fi

 = 0 , (3.12)

in which Kij =
∫

Ω∇ψi · ∇ψj dx is the so called stiffness matrix and Fi =
∫

Ω ψif dx
the load vector. Since the coefficients βi are arbitrary, finding a solution to the weak
form is now reduced to solving

N∑
j=0

Kijαj − Fi = 0 . (3.13)

In practice, the partition of the original domain into finite elements Ωe is typically
achieved by a triangulation T (Ω) i.e. by creating a finite element mesh which is a
set of elements and nodal points (vertices) and a characteristic mesh size defined as
h = diam(Ωe). The (discrete) finite-dimensional function spaces (interpolation spaces)
are defined through

Vh :=
{
w ∈ H1(Ω) | w|Ωe ∈ Pm(Ωe) ∀ e and w = 0 on ΓD

}
, (3.14)

Sh :=
{
ϕ ∈ H1(Ω) | ϕ|Ωe ∈ Pm(Ωe) ∀ e and ϕ = ϕD on ΓD

}
, (3.15)

where Pm defines the finite element interpolation space which denotes a set of poly-
nomials of total degree ≤ m. Any function belonging to Vh or Sh is a piecewise-
polynomial function defined on the domain Ω. The notation ϕ

∣∣
Ωe highlights the piece-

wise nature of the solution and emphasizes that the function is interpolated over each
element Ωe by a polynomial of degree m. Although, FEM is not limited to piecewise-
linear basis functions, one often choses Lagrange polynomials as finite element basis
functions in the context of the continuous Galerkin method. In one dimension they
are defined by

ψi =



0 , if x < xi−1
x−xi−1
xi−xi−1

, if xi−1 ≤ x ≤ xi
xi+1−x
xi+1−xi , if xi < x ≤ xi+1

0 , if x > xi+1 ,

(3.16)
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N2

x i−2 x i−1 x i xi+1 xi+2 xi+3

N1

element
A B

Figure 3.2: Linear Lagrange polynomials as FEM basis functions in one and two dimensions. Panel
A depicts the Lagrange polynomials on a one dimensional discretized space. Two consecutive hat-
functions form the shape functions N1, N2 which are the same for each element. Panel B shows the
two dimensional version of the Lagrange polynomials. Each shape function attains the value 1 at a
specific node and is 0 at all other nodes of the element. In between the nodes the linear combination
of the shape functions linearly interpolates the FEM solution. Figures: A inspired by (Zienkiewicz
et al., 2005); B adapted from (Theisen, 2019).

and illustrated in Fig. 3.2A. For completeness, Fig. 3.2B shows a generalization to two
dimensions.

As the basis functions are only defined for each element, the integrals appearing
in the stiffness matrix Kij and the load vector Fi can now be evaluated individually
over each element ∫

Ω
(.) dx ≡

∑
e

∫
Ωe

(.) dx . (3.17)

Hence, this choice of basis functions finally allows to express the solution and test
function for each element in terms of known shape functions Nn(x) which purely
depend on the shape of the element

ϕe =
∑
n

Nn(x)ϕe,n , (3.18)

we =
∑
n

Nn(x)we,n , (3.19)

where n denotes the number of nodes of a single element and ϕe,n the value of ϕe
at node n. Since the shape functions are known, the integrals in Kij and Fi can be
carried out and the result is a system of linear equations in the unknown nodal values
ϕe,n. The contribution from all the elements can be assembled into a global linear
system of equations [

K
]
{ϕ} = {F} , (3.20)

with global stiffness matrix K and global load vector F. Here, [.] and {.} indicate that
this vector-matrix product is the fully assembled system consisting of the contributions
of all finite elements. At this point, we want to note that over the course of this thesis
all finite element simulations were carried out using the open source FE software
FEniCS (Alnæs et al., 2015) together with the programming languages Python 2 (Van
Rossum et al., 1995) and Python 3 (Van Rossum et al., 2009). For solving a PDE
in FEniCS, it is sufficient to provide the continuous version of the weak form and
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the boundary conditions together with a suitable choice for the interpolation space.
The discretization is then performed in the backend of the solver. In the following
chapters, whenever we derive the weak form of our PDE, we omit the specification
of the function spaces. For all PDEs considered in this thesis well-posedness of the
problems can be found in the respective literature.

3.1.3. Error estimate and convergence rates

Under the assumptions of the Lax-Milgram lemma, Cea’s lemma (Quarteroni et al.,
2008) can be used to prove that the error of an FEM approximation is bounded and
thus the approximation converges to the exact solution of the weak form as the mesh
size h decreases. From a practical point of view, error estimates and convergence rates
can be used to verify the finite element implementation, if an exact solution to the
problem is known. It can be shown, that the L2-error

eL2 := ||ϕ− ϕh||L2 ≤ chr (3.21)

is bounded by the mesh size to the power r. The convergence rate r of the method
for the L2-norm is typically expected to be r = m + 1 for a polynomial degree m of
the finite element basis functions. By varying the mesh size h and polynomial degree
m the convergence rate can be empirically verified.

3.2. Simulating the isotropicially contraction disc

All two-dimensional finite element simulations presented in this thesis are based on
the force balance equation for an adhesive cell layer. The problem we want to solve
numerically reads: Find the displacement vector u(x) such that

∇ · σ = Y u , in Ω (3.22)
σ = 0 , on Γ = ∂Ω , (3.23)

where the stress-strain relationship follows that of a linear elastic material in the plane
stress approximation

σ(x) = λ tr(ε)I + 2µε+ σa(x) , (3.24)

with two-dimensional Lamé parameters (Eq. (2.27)) and linearized strain tensor ε(x).
The deformation of the cell layer is achieved by introduction of an active contractile
stress σa which in general can depend on space and time and resembles the forces
generated by myosin II motors. A first simulation is carried out on a circular shaped
pattern with an isotropic active stress tensor σa = σaI. In this way, the simulation
results can be directly compared to the analytical solution of an isotropic contractile
disc of initial radius r0 which we derived in the previous chapter, given by

ur(r) = −lp
σa

2µ+ λ

I1
(
r
lp

)
I0
(
r0
lp

)
− 2µ

2µ+λ
lp
r0
I1
(
r0
lp

) , (3.25)
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together with the force-localization length

lp =
√

2µ+ λ

Y
=
√

hcEc
Y (1− ν2

c ) . (3.26)

To derive the weak formulation of Eq. (3.22) we multiply with a vector valued test
function v ∈ V(Ω) and integrate over the domain Ω of the un-contracted disc∫

Ω
(∇ · σ) · v dx =

∫
Ω
Y (x)u(x) · v dx . (3.27)

The left hand side can be integrated using integration by parts i.e. using the following
identity

∇ · (σᵀ · v) = (∇ · σ) · v + σ : ∇v . (3.28)

This allows to simplify Eq. (3.27) to∫
Ω
σ : ∇v dx−

∫
Γ
(σ ·N) · v ds+

∫
Ω
Y u · v dx = 0 . (3.29)

Here, σ ·N is the traction vector at the boundary Γ = ∂Ω which is set to zero in case
of stress free boundaries. We further use that σ is symmetric and thus, the double
contraction with the antisymmetric part a(v) = 1

2(∇v − ∇vT) of ∇v is zero i.e.
σ : a(v) = 0. This allows us to replace ∇v by its symmetric part s(v) = 1

2(∇v+∇vᵀ)
and leads to the final weak form statement∫

Ω
σ : s(v) dx+

∫
Ω
Y u · v dx = 0 . (3.30)

The trial simulations were carried out with a disc radius r0 = 17.8 µm which corre-
sponds to a cell area of 1000 µm2. The mesh size was varied from a minimal value of
h = 0.5 µm to a maximum mesh size of h = 20 µm which was the upper limit for the
triangulation of our cell domain. Further, we simulated each mesh size for different
Lagrangian finite elements P1,P2 and P3, ranging from linear to cubic polynomials.
To calculate the error between the analytical solution ua and the approximated so-
lution uh one has to interpolate the analytical solution into a finite element function
space. In detail, we followed the procedure explained in (Langtangen et al., 2017)
and interpolated both the analytical solution and the numerical solution into a higher
order function space, typically of polynomial order m′ = m + 3 in order to obtain a
reliable error estimate. The final error is then calculated by

eL2 = ||u′a − u′h||L2 =
√∫

Ω
|u′a − u′h|2 dx . (3.31)

The convergence rate r can be obtained by exploiting Eq. (3.21) and assuming eL2,i =
chri such that for consecutive mesh sizes hi > hi+1, r is given by

r =
log(eL2,i+1/eL2,i)

log(hi+1/hi)
. (3.32)
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Figure 3.3: Simulation results for the isotropic contractile disc with elastic foundation. Panel A
shows a log-log-plot of the L2-error as a function of the mesh size for linear (P1), quadratic (P2)
and cubic (P3) polynomials. The dashed lines indicate the convergence rates r = 1 and r = 2.
For all polynomial degrees the error converges to zero for decreasing mesh size. However, the optimal
convergence rate for the respective polynomial is not obtained due to the fact that the circular domain
cannot be fully represented by a polygonal mesh. Panel B shows the radial displacement field for
three different active contractile stresses. Dots represent simulation results and solid lines depict the
analytical counterpart. Simulation parameters are σa,1 = 7 kPa, σa,2 = 4 kPa and σa,3 = 1 kPa.
Panel C shows the numerically obtained displacement field, traction stresses and internal cell stresses
(Frobenius norm). Maximal color bar values correspond to umax = 1.2 µm (displacement), tmax =
1.0 kPa (traction) and σmax = 5.4 kPa (Frobenius norm of the stress tensor). Active stress is set to
σa = 4 kPa. All other cell parameters are fixed according to Table A.1.

The result of our error analysis is shown in Fig. 3.3A. For all simulated polynomial
degrees the numerical solution improves with decreasing mesh size. However, the
convergence rate does not improve with increasing polynomial degree as one would
expect. The reason for this is that our exact simulation domain Ω is a circle and hence
not polyhedral. In other words, since Ω has a curved boundary, a piece-wise linear
mesh cannot exactly represent the underlying geometry of Ω and thus Cea’s lemma
fails. In FEM theory this problem is known as “committing a variational crime”
and for further information on this topic we refer the reader to the work of Brenner
et al. (2008), Holst et al. (2012), and Strang (1973)1. Fig. 3.3B shows the radial
component of the displacement field as a function of the radial position for different

1In case of a circular domain, this problem can be solved by introduction of curved elements which
exactly represent the boundary of Ω.
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active stresses. Our finite element simulation approximates the analytical solution
well. Additionally, together with our FEM implementation we established a post-
processing routine for the typical output data of our interest. The typical simulation
output is the deformation field from which the traction field and the total internal cell
stresses can be deduced (Fig. 3.3C).

3.3. Contour simulations with FEM

FEM contour simulations follow the same procedure as described in Section 3.1. How-
ever, the elastic fiber is a one dimensional object embedded in a two-dimensional space.
Therefore, we exploit a mixed variational approach that allows us to approximate two
variables simultaneously2.

The starting point of the finite element implementation of the contour model is
the static force balance equation as a function of the reference arc length

∂ŝF + f = 0 , (3.33)

where, analog to Section 2.2, F denotes the contact forces within the material (line
tension) and f is the load acting on the fiber (surface tension). The simulation domain
is defined by the arc length parameter of the undeformed fiber configuration ŝ ∈[
0, L̂

]
⊂ R. Using F(ŝ) = λ(ŝ)T(ŝ) and assuming a very general load in terms a

surface tension tensor Σ and normal vector N as f = Σ(ŝ)ν(ŝ)N(ŝ) yields

d
dŝ

(
λ(ŝ) 1

ν(ŝ)
dx
dŝ

)
+ Σ(ŝ)

(dx
dŝ

)
⊥

= 0 , (3.34)

where we used that T(ŝ) = ν(ŝ)−1 (dx/ dŝ) and N(ŝ) = ν(ŝ)−1 (dx/ dŝ)⊥. The nor-
mal vector is constructed by multiplication with a matrix M for a counter-clockwise
rotation by 90° such that (dx/ dŝ)⊥ = M(dx/ dŝ). Let w = (w1, w2) ∈ Wh([0, L̂]) =
Vh × Vh be the test function vector in the mixed function space Wh defined over the
interval [0, L̂]. Multiplying Eq. (3.34) with the test function w and integration over
the simulation domain yields

−
∫ L̂

0

λ(ŝ)
ν(ŝ)

dxi
dŝ

dwi
dŝ dŝ+

∫ L̂

0

1
ν(ŝ)ΣijMjl

dxl
dŝ wi dŝ = 0 , (3.35)

for indices i = 1, 2 and where we used integration by parts to reduce the order of
appearing derivatives

∫ L̂

0

d
dŝ(.)wi dŝ = (.)wi

∣∣L̂
0 −

∫ L̂

0
(.)dwidŝ dŝ . (3.36)

The boundary terms vanish, since by construction, the test functions equate to zero

2A standard example for this approach is the stokes problem to obtain velocity and pressure field
simultaneously.
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on the boundary. The finite element solution can be validated by a direct comparison
to analytical solutions. We decided to test the case of isotropic surface tension and a
directed load as in the case of the TEM and the elastic catenary, respectively. For the
latter case, the load acting on the contour is always perpendicular to the unstretched
configuration which is realized in simulations by setting the load vector f in Eq. (3.33)
to

f = −fyey = const. , (3.37)

where fy is a constant force per unit reference length. The analytically obtained shape
of the elastic catenary is shifted to Appendix A.5. Further, at the endpoints of the fiber
we imposed Dirichlet boundary conditions to fix the position of the focal adhesions.

Fig. 3.4 shows the comparison of the numerical (circles and squares) and the analyt-
ical solution (solid lines) for increasing loading strength. For both simulated scenarios
we find perfect agreement between the simulated and analytical solutions. The solution
for the TEM is, according to Eqs. (2.79) to (2.80), described by a circular shape while
the elastic catenary takes on a shape in between the ordinary catenary and a parabola
(Fig. 3.4A,B and Eqs. (A.47) and (A.48)). The tangent angle θ(ŝ) = arctan(∂ŝy/∂ŝx)
additionally illustrates the difference of the two computed shapes with a linear and
non-linear variation along the unstretched fiber (Fig. 3.4C). Further, we numerically
obtained the line tension by computing λ(ŝ) = EA

(√
(∂ŝx)2 + ∂ŝy)2)− 1

)
. Fig. 3.4D

shows the numerical solution for TEM and elastic catenary represented by circles and
squares, respectively. The analytical counterpart was obtained by evaluating Eq. (2.83)
for the TEM and Eqs. (A.49) and (A.50) for the elastic catenary. Again, the numerical
and analytical solutions perfectly agree (Fig. 3.4D).

3.4. Concluding remarks

In this chapter we discussed the most important aspects of finite element simulations.
We further demonstrated that our FEM implementation for the two-dimensional con-
tractile cell layer with elastic foundation and the contour model reproduce the analyt-
ical solutions.

While FEM approaches are widely used to model adherent cells as thin elastic
sheets, contour models have been regarded as a tool to predict and analyze cell shapes
and traction forces based on very few assumptions. However, the numerical treatment
of contour models is a very promising approach which enables to increase the level
of complexity and may aid in predicting cell shapes also beyond the very restrictive
assumptions of an isotropic surface tension and a linear elastic fiber. For example in
Chapter 5 we exploit this numerical framework to compute cell shapes under spatially
dependent loading profiles for which analytical solutions do either not exist or are very
difficult to obtain. Besides the position dependent loading profiles, it is also possible
to account for defects in the fiber. This could be incorporated by a position dependent
elastic modulus of the fiber for example representing fluctuations in actin or myosin
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Figure 3.4: Sanity check for contour simulations with FEM. In all simulations the spanning dis-
tance between the adhesion points corresponds to L̂ = 35 µm. The one-dimensional mesh contains
401 nodes, of which only every tenth is shown. Further, the one-dimensional elastic modulus was
set to EA = 200 nN. Those parameters correspond to the typical order of magnitude measured for
adherent cells. Circles and squares correspond to simulation data and solid lines depict the corre-
sponding analytical solution. Darker blues correspond to larger loading forces. Panel A shows the
contour shape of a linear elastic fiber subject to an isotropic load. The strength of the isotropic loads
corresponds to 0.1 nN µm−1, 0.5 nN µm−1, 1 nN µm−1,1.5 nN µm−1 and 2 nN µm−1 (from light blue to
dark blue). Panel B shows the contour shape of the elastic catenary. The strength of the isotropic
loads corresponds to 1 nN µm−1, 2 nN µm−1, 4 nN µm−1 and 6 nN µm−1 (from light blue to dark blue).
Panel C illustrates that the turning angle of the tangent vector θ varies linearly along the arc in the
case of an isotropic load showing that the contour attains a circular shape. This does not hold true
for a directional load in the case of the elastic catenary. Panel D compares the line tension along the
fiber as a function of the reference arc length parameter ŝ. As expected, the line tension is constant
in the case of an isotropic load and varies along the contour in the elastic catenary.
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density along the fiber3. Moreover, in future works, one may step away from a purely
static description of the cells contour and turn to dynamic simulations by making
the force balance equation time dependent. Then, the dynamic version of Eq. (2.62)
would read ∂ŝF + f = fext. The standard choice would be fext(ŝ, t) = ρA∂ttx(ŝ, t)
where ρA is the mass per unit reference length. For biological applications inertia is
usually negligible and thus in the over-damped limit one would choose an external force
fext(ŝ, t) ∝ ∂tx(ŝ, t) which resembles a velocity dependent friction force. An example
for this dynamic approach can be found in the publication by Schakenraad et al. (2020)
where the authors couple the contour model to the nematic order parameter of a liquid
crystal to simulate the interaction of the actin cytoskeleton and the peripheral stress
fiber.

As a tool, the numerical approach to contour models can be exploited to directly
fit cell shapes to actin images by simply segmenting the position of the focal adhesions.
Fig. 3.5 exemplarily shows a full cell contour simulated with the FEM contour model
approach. Here each arc experiences a different surface tension depending on its
orientation. With this method one could gain insight into the local anisotropy of
the actin cortex in the vicinity of the cell periphery. In conclusion, a finite element
treatment of contour models opens up a variety of new applications that go beyond
the examples presented in this thesis. The CPU time for FEM contour simulations is
in the order of seconds while for example network models, dependent on the mesh size,
have a CPU time in the order of minutes to several hours. Therefore, the simplicity of
the force balance equation and the one dimensional FEM setup render it a numerically
cheap alternative to network models.

Figure 3.5: A whole cell contour simulated
with the numerical contour model FEM. An
anisotropic surface tension tensor acts differ-
ently on each arc, depending on its specific ori-
entation. Here the cell adheres to a rigid sub-
strate but elastic substrates can be treated as
well by balancing the combined pull of the arcs
in the deformed substrate.

3An example can be found in the work by Lepidi et al. (2007) where the authors exploit this idea to
study the influence of damages in cable-stayed structures.
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Chapter 4

Optogenetic control of single
cells

The two main factors influencing cellular contractility are the underlying biochemistry
of actomyosin contractility and the organization of the highly dynamic actin cytoskele-
ton. Their interplay enables the cell to change its shape and mechanically sense the
physical properties of its environment. In this study, we especially focus on the main
output of the contractile actin cytoskeleton, which is the force cells apply to the phys-
ical environment. The results presented in this chapter were obtained in collaboration
with Tomas Andersen and Martial Balland from the Université Grenoble Alpes, who
performed the optogenetic experiments and the traction force analysis and Dimitri
Probst from the Group of Ulrich Schwarz, who contributed to the design of the finite
element simulations. The results are documented in detail in the preprint “Cell size
and actin architecture determine force generation in optogenetically activated adherent
cells” (Andersen et al., 2022).

4.1. Introduction

As already known from the work of Balaban et al. (2001), Butler et al. (2002), and
Dembo et al. (1999), the traction forces generated by the cells are of the order of ∼ kPa
and thus, correspond to the elastic stiffness of the ECM (Discher et al., 2017; Schwarz
et al., 2013). However, in a physiological context, cells are permanently subject to
external mechanical perturbations. For instance, on a tissue-level, cells respond to
external mechanical perturbations by effectively working towards a setpoint stress, a
concept which is known as tensional homeostasis (Boudou et al., 2019; Brown et al.,
1998). In recent years, several studies showed that this concept even translates to the
level of single cells which suggests that cells use regulatory mechanisms to control their
tensional state (Hippler et al., 2020; Webster et al., 2014; Weng et al., 2016). Home-
ostatic processes are essential for the morphology and function of organs and tissues,
and an imbalance of these processes is closely related to various types of diseases. For
example, recent studies have linked the dysregulation of RhoA activity, an important
element of the force generating actomyosin contractility, to the progression of cancer
(Gulhati et al., 2011; Paszek et al., 2005). In this context, it is still unclear to what ex-
tent the RhoA system itself produces homeostasis, on which time scales this response
operates and how this is related to physical processes such as force generation.
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To address these relevant questions, we used non-neuronal optogenetics in com-
bination with traction force microscopy on soft elastic substrates which allows us to
directly quantify the input-output relation between activation of the small GTPase
RhoA and force generation in the context of varying cell size and differing acting or-
ganization. The experimental measurements are complemented by a mathematical
model based on the results of Chapters 2 and 3. This model enables us to decouple
biochemistry and mechanics and gain insight to the dynamic evolution of the internal
cellular stresses and the strain energy invested by the cells during and after optogenetic
perturbation.

In Section 4.2 we briefly explain the experimental setup. Further, in Section 4.3 we
make use of the basic experimental observation to constrain a mechanical model in the
spirit of the work by Banerjee et al. (2013) and Edwards et al. (2011). However, we
extend this modeling approach by considering viscoelastic material properties and by
incorporating the anisotropy of the actin CSK. Additionally, we introduce optogenetic
stimulation by a time-dependent active stress. By this, in Section 4.4, we are able
to apply our versatile model to different experimental data. Our results reveal ten-
sional homeostasis of the RhoA-system with a varying setpoint dependent on cell size
and actin architecture, both of which are determined by the adhesive environment.
Further, we test the limits of the CRY2/CIBN-system by increasing the duration of
photoactivation pulses, which revealed saturation of the cellular stress response above
a certain activation duration.

4.2. Experimental setup

All experiments in this chapter have been performed on stable cell line NIH 3T3 fi-
broblasts with a CIBN-GFP-CAAX and optoGEF-RhoA construct. Cell shape and
internal actin organization was controlled by the shape and size of the micropatterns
deposited over polyacrylamide hydrogels with a Young’s modulus of Es = 4.47 kPa.
Prior to photoactivation, the cells were allowed to completely spread on the micropat-
tern and adopt a stable contractile baseline level. Fig. 4.1 depicts the cells in a state
of mature adhesion. Cells on the disc pattern (Fig. 4.1A) spontaneously polarized
and developed approximately parallel neighboring stress fibers. In marked contrast,
the hazard pattern with its three T-shaped branches induces three domains with each
containing a family of parallel stress fibers (Fig. 4.1B).

Next, the cells were globally illuminated with light pulses of 460 nm wavelength
and duration of 10 ms − 200 ms, depending on the experiment. This light pulse re-
cruits ArhGEF11 to the cell membrane, where it phosphorylates RhoA-GDP, thereby
activating it. The increase in active RhoA concentration subsequently leads to en-
hanced myosin activity through the typical RhoA signaling pathways (Section 1.1.1
and Fig. 1.4). After photoactivation cells return to baseline. Given enough time be-
tween light pulses, several activation episodes could be carried out on the same cell
without altering the baseline level. Additional experimental details can be found in
the thesis of Tomas Andersen (Tomas Andersen, 2018) and the preprint (Andersen
et al., 2022).
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Figure 4.1: Stress fiber architecture of cells plated on a fibronectin disc and hazard pattern. Cells
on the disc pattern show a polarized actin architecture while cells on the hazard pattern develop three
families of stress fibers arranged in a triangular shape.

4.3. Modelling

Based on the experimental setup, our model has to fulfill certain basic requirements in
order to be applicable. It has to represent the geometry and stiffness of the adhesive
environment of the cell, the internal actin organization as well as the active mechan-
ical properties of the cytoskeleton, including the effect of photoactivation. To tune
our model parameters, we also need a quantity that we have access to in both the
model and the experiment. The most suitable quantity is the substrate strain energy
which shows a characteristic time course after photoactivation. We made use of the
results of the previous chapter, in which we demonstrated the basic finite element
implementation of the isotropically contracting disc and validated our implementation
by comparing it to the analytically obtained result. Here, we used this analytical so-
lution to calculate the strain energy of a fully adherent isotropic contractile disc and
subsequently exploited this result to parametrize our model. Overall, we followed a
mixed strategy by fixing a subset of the free parameters from general considerations
and literature values while the remaining parameters were determined by fitting the
FEM model to the experimental data.

4.3.1. Active Kelvin-Voigt model

Instead of a purely elastic model as used in the previous chapter, we decided to use
a viscoelastic constitutive relation of the Kelvin-Voigt type to account for the viscous
nature of the actin cytoskeleton. A purely viscous and fluid-like viscoelastic model such
as the Maxwell model was disregarded, since it cannot maintain a stable stress baseline
without a constant rate of deformation as can be seen from the constitutive relation
(Eq. (2.31), Fig. 2.3C). However, fluid-like viscoelastic models are typically used in
active gel theory (Prost et al., 2015). The constitutive relation of the two-dimensional
active Kelvin-Voigt model reads

σij(x, t) =
(

1 + τc
∂

∂t

)
(λεkk(x, t)δij + 2µεij(x, t)) + σaij(x, t) , (4.1)
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Figure 4.2: Viscoelastic continuum model of an
adherent cell. The actin cytoskeleton described by
a Kelvin-Voigt model i.e. an active serial connec-
tion of spring Ec and dashpot ηc. Active contrac-
tion is introduced through a constant background
stress σbck and a time dependent photoactivation
stress σPA. Cellular adhesion is modeled as a se-
rial connection of adhesion bonds and gel elasticity
represented by Ya and Ys, respectively.

Adhesion bonds

Elastic substrate

Cell

where εij = (∂iuj + ∂jui)/2 is the linearized strain tensor and σa describes an active
contractile stress. σa is split into background stress σbck(x) describing the homeostatic
baseline contractility and a time dependent photoactivation stress tensor σPA(x, t)
accounting for the additional stress generated during and after photoactivation. The
information of the elastic properties of the cell, Young’s modulus and Poisson’s ratio,
Ec and νs respectively, are contained in the two-dimensional Lamé parameters

λ = νchcEc
1− ν2

c

, µ = hcEc
2(1 + νc)

, (4.2)

where hc is the effective thickness of the contractile unit (effective cell height), which
is similar to but smaller than the actual cell height. The quantity τc = ηc/Ec is the
relaxation time scale defined by the ratio of the effective cell viscosity ηc and the
Young’s modulus of the cell. In case of vanishing viscosity we have τc = 0 which
corresponds to the purely elastic model.

4.3.2. Substrate strain energy

The force balance between the contractile cell and the elastic foundation is given by

∂jσij(x, t) = Y (x, t)ui(x, t) , (4.3)

and allows to predict the substrate strain energy by relating the cellular deformation
to the deformation of the substrate. In particular, we split the elastic properties of
the foundation into the rigidity of the elastic gel Ys and the stiffness Ya of the layer
of adhesion molecules which connect the cell to the substrate. This serial connection
of elastic elements leads to an overall effective stiffness given by 1/Y = 1/Ya + 1/Ys.
The substrate stiffness can be estimated by (Banerjee et al., 2012)

Ys = πEs
heff

, (4.4)
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where the effective substrate thickness heff is a function of substrate thickness hs, the
Poisson’s ratio of the substrate and the lateral extent of the cell layer Lc

h−1
eff = 1

2πhs(1 + νs)
+ 1
Lc

. (4.5)

The equation for the effective height can be understood as an interpolation between
the limits of infinitely thick and thin substrates. In the case of thin substrates hs � Lc

the second term in Eq. (4.5) can be neglected and the substrate stiffness is given by
the ratio of the shear modulus µs = Es/(2(1 + νs)) and the substrate thickness. In
contrast, if hs � Lc, as it is the case for infinitely thick substrates, the first term is
negligible. As a consequence, the cell experiences an elastic foundation only up to the
thickness comparable to its size. The stiffness of the adhesion layer is approximated
by

Ya = ka
d2 , (4.6)

where ka describes the molecular stiffness of the adhesion bonds and d the distance
between them. Demanding force balance at the cell-substrate interface T = Y u =
Ysus, where us denotes the substrate deformation field, the total exerted force Ftot
and the substrate strain energy Es may be expressed directly in terms of the cellular
deformation field u

Ftot =
∫

Ω
|T| dΩ =

∫
Ω
Y |ur(r)| dΩ , (4.7)

Es = 1
2

∫
Ω

Tus dΩ = 1
2

∫
Ω

Y 2

Ys
u2 dΩ . (4.8)

In the limiting case of Ya � Ys the cell effectively only “feels” the softer component and
we simply have dEs = Ysus/2 dΩ. For our academic example, the isotropic contractile
disc, analytical solutions of Eqs. (4.7) and (4.8) exist, which is helpful when it comes to
estimating force and energy values for given parameter estimates. Since the analytical
solution Eq. (2.46) for the displacement field is radially symmetric, we express the
integral measure dΩ = r dr dφ in polar coordinates

Es = Y 2

2Ys

∫ 2π

0
dφ
∫ r0

0
rur(r)2 dr , (4.9)

where r0 is the initial disc radius. By simply inserting the solution ur(r)

ur(r) = −lp
σa

2µ+ λ

I1
(
r
lp

)
I0
(
r0
lp

)
− 2µ

2µ+λ
lp
r0
I1
(
r0
lp

) , (4.10)

into Eqs. (4.7) and (4.8) we obtain for the force

Ftot = 2πY lpσa
λ+ 2µ

∫ r0
0 rI1

(
r
lp

)
dr

I0
(
r0
lp

)
− (1− νc) lpr0

I1
(
r0
lp

) = 2πσa
lp

β

(
r0
lp

)
, (4.11)
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in which we introduced the function

β (x) = π

2x
L0(x)I1(x)− L1(x)I0(x)
I0 (x)− (1− νc) 1

xI1 (x)
, (4.12)

where L0 and L1 denote the modified Struve functions. For more details see Ap-
pendix A.5. Similarly we find for the substrate strain energy

Es = π

Ys
·
(
Y lpσa

(
1− ν2

c

)
Echc

)2

·
∫ r0
0 dr rI1

(
r
lp

)2

(
I0
(
r0
lp

)
− (1− νc) lp

r0
I1
(
r0
lp

))2 = πσ2
a

2Ys
ζ

(
r0
lp

)
, (4.13)

where we introduced the function

ζ (x) = x2 I1(x)2 + 2
xI0(x)I1(x)− I0(x)2(

I0(x)− (1− νc) 1
xI1(x)

)2 . (4.14)

We can determine the two asymptotic limits r0 � lp and r0 � lp by investigating the
scaling behavior of β and ζ in the limits x � 1 and x � 1, respectively. In the limit
x� 1, the nominator of Eq. (4.12) can be approximated as

∫ x

0
x̃I1(x̃) dx̃ ≈ x3

6 + x5

80 + x7

2688 + O(x9) , (4.15)

and generally it holds for the modified Bessel functions of the first kind

In (x) −−−→
x�1

1
n!

(
x

2

)n
, (4.16)

such that

β (x) −−−→
x�1

x3

3 (1 + νc)
+ O

(
x4
)
, (4.17)

ζ (x) −−−→
x�1

x4

2 (1 + νc)2 + O
(
x5
)
, (4.18)

and finally

Ftot −−−−→
r0�lp

2πlpσa
3(1 + νc)

(
r0
lp

)3

, (4.19)

Es −−−−→
r0�lp

π (σa)2

4Ys (1 + νc)2

(
r0
lp

)4

. (4.20)

For the limit x� 1 we use the approximations∫ x

0
x̃I1(x̃) dx̃ ≈ ex√

2πx

(
x− 7

8

)
, (4.21)
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and further, that any modified Bessel function of the first kind can be approximated
as

In ≈
expx√

2πx

[
1− 4n2 − 12

1(8x)

(
1− 4n2 − 32

2(8x)

(
1− 4n2 − 52

3(8x) (1− . . . )
))]

, (4.22)

in the case of x� 1 such that the approximations yield

I0 ≈
expx√

2πx

[
1 + 1

8x

]
, (4.23)

I1 ≈
expx√

2πx

[
1− 3

8x

]
. (4.24)

Given these approximations, the scaling of β and ζ follows from

β (x) ≈ x
1− 7

8x
1 + 1

8x − (1− νc) 1
x −

3
8x2
−−−→
x�1

x+ O
(
x2
)
, (4.25)

ζ (x) ≈ x
64− 24

x −
6
x2

64− 48
x + 3

x2 − 9
x3 + 9

4x4
−−−→
x�1

x+ O
(
x2
)
, (4.26)

and consequently

Ftot −−−−→
r0�lp

2πσar0 , (4.27)

Es −−−−→
r0�lp

πσ2
a

2Ys
· r0
lp
. (4.28)

The result of this detailed asymptotic analysis is summarized in Fig. 4.3. This figure
shows the scaling behavior for the total force and substrate strain energy, together
with the limiting cases of large and small disc radii. For large disc radii r0 � lp, both
the total force and the substrate strain energy scale linearly with r0, corresponding to
a tension-dominated regime. However, for the elastic-dominated regime r0 � lp total
force and substrate strain energy have distinct scaling behavior Ftot ∼ r3

0 and Es ∼ r4
0.

In our experiments, the system size is always much larger than lp so we are always
operating in the tension-dominated regime. Therefore, we conclude that the relevant
scaling of the total force and the substrate strain energy is best captured by the linear
regime.

4.3.3. Time course of the photoactivation stress

The exact time behavior of the photoactivation stress cannot be measured directly and
is therefore a degree of freedom in our modeling. Based on the overall time evolution of
the substrate strain energy, we considered multiple functions which could qualitatively
represent the active stress as a function of time. The simplest form of an activation
profile, usually exploited to describe the creep behavior of viscoelastic models, is a
rectangular profile as depicted in Fig. 4.4A and mathematically realized as

σrecPA (t) =
{
σ0 for t0 ≤ t ≤ t1
0 else

, (4.29)
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Figure 4.3: Analytical solution for the scaling of the total force β and the substrate strain energy ζ.
The dashed lines indicate the scaling for r0 � lp (blue) and r0 � lp (red). For large disc radii, both
total force and substrate strain energy scale linearly with r0.

with activation time t0, pulse duration ∆t = t1 − t0 and peak activation stress σ0.
However, the infinitely steep stress increase/release upon activation/relaxation are
unphysical and lead to a kink in the strain energy profile at t = t1 (Fig. 2.3C and
Fig. 4.4A). A delayed response upon activation and during relaxation can be achieved
by an exponential profile of the form

σexpPA (t) =

 σ0
(
1− exp

(
− t−t0

τact

))
for t0 ≤ t ≤ t1

σ0
(
1− exp

(
− tact−t0

τact

))
exp

(
− t−(t0+t1)

τrel

)
else

, (4.30)

which is depicted in Fig. 4.4B. It produces much better fits to the strain energy data
but still leads to an asymmetric strain energy curve. We choose a double sigmoidal as
activation profile, given by

σsigPA (t) = σ0

1 + exp
(
− t−tact

τact

) ·
1− 1

1 + exp
(
− t−trel

τrel

)
 , (4.31)

an depicted in Fig. 4.4C. It is realized by the product of two sigmoids, an ascending
and a descending sigmoid, both of which saturate at a stress level σ0. Their centers
tact and trel describe the respective onsets of stress activation and relaxation, while the
two time constants τact and τrel define the time scales on which stress is generated and
relaxed. The physically relevant peak stress is given by σmax which in principle may
be lower than σ0. This activation profile leads to excellent fits of the time course of
the substrate strain energy (Fig. 4.4C). Nonetheless, the quality of the fits is not the
only justification for this specific choice of stress profile. The stress generation upon
photoactivation can be regarded as the end of a long signaling cascade that starts
with membrane recruitment of CRY2 (Valon et al., 2015; Valon et al., 2017) and
terminates with phosphorylation of myosin light chain (MLC), which in turn leads to
actomyosin contraction. The underlying reaction kinetics is complicated but simplified
coarse grained models for the GEF-RhoA-MLC cascade describe the activation and
inactivation of the involved species by means of Michaelis-Menten kinetics (Besser
et al., 2007; Kamps et al., 2020; Michaelis et al., 1913; Staddon et al., 2022). In those
studies, the observed increase in active RhoA and myosin concentration during single
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Figure 4.4: Time course of the substrate strain energy response for different profiles for the photo
activation stress σPA(t) combined with the active Kelvin-Voigt model. The activation profiles in the
left column are generic illustrations while the black lines in the right column correspond to actual
model fits where the free parameters of each activation profile where optimized. For illustrational
purposes we used the mean strain energy data for the cell plated on 1500 µm2 pattern. The shaded
regions correspond to the standard deviation. Cell parameters are the same as used throughout all
simulations in this chapter and which are gathered in Table A.1. The double-sigmoidal shape of the
photoactivation stress fits best to the experimental data.
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contraction pulses exhibits the same smooth ascending and descending time course as
provided by the double sigmoid. In addition, it has also been shown theoretically, that
weakly activated linear signaling cascades lead to signal-outputs that are comparable to
a double sigmoid (Beguerisse-Díaz et al., 2016). It is even possible to obtain analytical
solutions for the time evolution of all signaling molecules for certain input signals. A
typical example would be the signal of the CRY2 membrane recruitement with its
very steep increase of only a few seconds upon photoactivation that is followed by and
exponential decrease (Valon et al., 2015).

4.3.4. Adhesion geometry of the hazard pattern

An important aspect of this experiment is the geometry of the fibronectin pattern as
it allows to influence the organization of the actin cortex and the embedded stress
fibers. As can be seen in Fig. 4.1B, the hazard pattern covers the same projected
area as the disc pattern but the spreading area amounts to only 570 µm2 which is
approximately half of the adhesive area of the disc pattern (1000 µm2). Within the
FEM-simulations, the adhesive geometry can be accounted for by specifying the region
in space in which the spring stiffness density is non-zero. On the disc pattern, the cell
could in principle form connections throughout the whole area. Consequently, the
spring stiffness density Y is constant, non-zero and independent of position and no
geometric constraint has to be specified. However for the hazard pattern Y = Y (x, y)
is position dependent and we have to geometrically define the set of points (x, y)Y 6=0

with non-zero spring stiffness density corresponding to the fibronectin-coated area
on which the cell can adhere to the substrate. For a better understanding, Fig. 4.5
illustrates the hazard pattern geometry along with all relevant parameters. The arm
width of the T-shaped branches is set to w = 5 µm, the inner radius to Rin = R − w,
where R =

√
1000 µm2/π ≈ 17.8 µm is the radius of the convex hull of the hazard

pattern, and αout = π/2 is the angular range of each of the branches. Given those
parameters we define the hazard-pattern as (Probst, 2018)

(x, y)Y 6=0 =
{
x, y

∣∣∣[
Rin ≤

√
x2 + y2 ≤ R ∧

(π
2 −

αout
2 ≤ arctan2 (x, y) ≤ π

2 + αout
2

∨ −π6 −
αout

2 ≤ arctan2 (x, y) ≤ −π6 + αout
2

∨ −5π
6 −

αout
2 ≤ arctan2 (x, y) ≤ −5π

6 + αout
2

∨ π − αoverhang ≤ arctan2 (x, y) ≤ π
)]
∨[√

x2 + y2 ≤ Rin ∧
((
−w2 ≤ x1 ≤

w

2 ∧ y1 ≥ 0
)

∨
(
−w2 ≤ x2 ≤

w

2 ∧ y2 ≥ 0
)

∨
(
−w2 ≤ x3 ≤

w

2 ∧ y3 ≥ 0
))]}

,
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Figure 4.5: Illustration of the adhesive geom-
etry of the hazard pattern. The parameters are
chosen such that the dimensions of the pattern
and the adhesive area match the experiment.
The T-shaped branches span a pre-defined an-
gular range of αout = π

2 . The radius is set to
R ≈ 17.8 µm and the with of the branches is
set to w = 5 µm. The three hashed regions are
mathematically defined in the main text.

where the remaining parameters, that define the orientation of the branches relative
to the x-axis, are given by

(x1, y1) = (x, y)

(x2, y2) =
(
x · cos

(2π
3

)
− y · sin

(2π
3

)
, x · sin

(2π
3

)
+ y · cos

(2π
3

))
(x3, y3) =

(
x · cos

(2π
3

)
+ y · sin

(2π
3

)
, −x · sin

(2π
3

)
+ y · cos

(2π
3

))
.

The quantity αoverhang is defined as

αoverhang = 5π
6 + αout

2 − π if 5π
6 + αout

2 > π, otherwise 0 , (4.32)

and is introduced to account for the discontinuity of the arctan2-function at the values
−π and π. The overhang-region is marked in yellow (Fig. 4.5) where the T-branch
intersects the x-axis at φ = π.

4.3.5. Anisotropic contractile stress

As introduced before, the active stress is divided into two contributions σbck and σPA.
For cells plated on the disc pattern, actin images (Fig. 4.1) show a polarized actin
network with stress fibers having a dominant direction of alignment. This observa-
tion was further quantified (Tomas Andersen, 2018; Probst, 2018) by analyzing the
distribution of traction forces and determining the dipole moment according to

Mij =
∫
xiTj(x) dx , (4.33)

in which Tj denotes the j-th component of the traction force vector (Butler et al.,
2002). Since the net torque exerted by the cell should be zero, M is expected to be
symmetrical and the major and minor dipole axis can be determined from the largest
and lowest eigenvalue of M , respectively. For cells plated on the hazard pattern with

67



4. Optogenetic control of single cells

their three families of aligned stress fibers (Fig. 4.1), Eq. (4.33) yields a much lower
value for the ratio of major and minor dipole moment consistent with the image based
observation that cells on hazard patterns are less polarized (Probst, 2018). Based on
those experimental observations the active stress tensor σa is assumed to be anisotropic
and directed along the axis of stress fiber orientation. We further assume that this is
still valid upon photoactivation since it has been shown that focal adhesion distribution
and morphology is not affected by light stimulation and further, it does not induce
formation of new stress fibers (Oakes et al., 2017; Valon et al., 2017). This is consistent
with our experiments as we do not observe changes to the cytoskeletal organization
during and after photoactivation.

Mathematically, we define the direction of the anisotropic active stress tensor by
means of the angle ϕ with respect to the x-axis of the coordinate system

σa (ϕ) =
(

cosϕ − sinϕ
sinϕ cosϕ

)(
σbck + σPA(t) 0

0 0

)(
cosϕ sinϕ
− sinϕ cosϕ

)

= (σbck + σPA(t)) ·
(

cos2 ϕ 1
2 sin (2ϕ)

1
2 sin (2ϕ) sin2 ϕ

)
. (4.34)

In the case of the disc pattern we set ϕDP = π/2 such that the stress tensor is given
by

σDP
a (ϕ) =

(
0 0
0 σbck + σPA(t)

)
. (4.35)

For the hazard pattern we define three regions Ω1,Ω2 and Ω3 (Figs. 4.5 and 4.10) with
stress fiber orientations defined by the angles ϕHP

1 = −π/3, ϕHP
2 = π/3 and ϕHP

3 = 0,
respectively. This yields for the stress tensors

σHP
a,Ω1 = (σbck + σPA(t))

 cos2 (π
3
)

−1
2 sin

(
2π
3

)
−1

2 sin
(

2π
3

)
sin2 (π

3
)
 , (4.36)

σHP
a,Ω2 = (σbck + σPA(t))

 cos2 (π
3
) 1

2 sin
(

2π
3

)
1
2 sin

(
2π
3

)
sin2 (π

3
)
 , (4.37)

σHP
a,Ω3 = (σbck + σPA(t))

(
1 0
0 0

)
. (4.38)

4.3.6. Parametrization and scaling considerations from analytical
solution

As can be seen from the model introduction in the previous sections, the parameter
space of our model is high dimensional. Hence, a direct optimization of all free pa-
rameters by fitting the model to the experimental readout (substrate strain energy as
function of time) is not feasible. We therefore decide to fix those parameters that are
well established in the literature and only optimize those, that are specific to our ex-
perimental setup. The known parameter include the substrate properties with Young’s
modulus Es = 4.47 kPa, Poisson’s ratio νs = 0.5, and a substrate thickness of approx-
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imately hs = 50 µm. Considering a lateral cell size of about Lc = 50 µm, the spring
stiffness density is Ys = 3× 108 N m3. For the adhesion bond we choose a standard
value of ka = 2.5 pN nm−1 (Balaban et al., 2001) which together with d = 1 µm (Hu
et al., 2017) yields Ya ≈ 2× 109 N m−3. We conclude that the adhesion layer is the
stiffer contribution and the cell mainly perceives the stiffness of the elastic gel. The
Young’s modulus of the cell is set to Ec = 10 kPa which corresponds to the typical
value for strongly adherent cells and the Poisson’s ratio to νc = 0.5 according to typical
values reported in the literature (Banerjee et al., 2013; Edwards et al., 2011; Oakes
et al., 2014; Solowiej-Wedderburn et al., 2022). Fixing the cell viscosity at a value
of 100 kPa s yields a relaxation time constant of τc = 10 s. Further we estimate an
effective cell height of hc ≈ 1 µm.

The typical cell force is of the order of Ftot = µN (Tomas Andersen, 2018). Given
this value, we can estimate the expected order of magnitude of the remaining quanti-
ties, and will later see that they are in good agreement with our model fits. The total
background traction stress can be approximated by Eq. (4.27), and yields

σ3Dbck = σbck
hc

= Ftot
2πr0hc

≈ 10 kPa , (4.39)

where we additionally divided by hc to achieve units of kPa since σbck is the two-
dimensional stress as discussed in the plane-stress and thin-layer approximation. For
the localization length we find

lp ≈ 1 µm , (4.40)

and exploiting the linear scaling for large disc radii we find for the substrate strain
energy

Es ≈ 1 pJ . (4.41)

4.3.7. Finite element implementation and time discretization

The weak form of the active Kelvin-Voigt model can be derived in exactly the same way
as the one for the elastic solid. However, this time the stress-strain relationship is time-
dependent since the stress is additionally proportional to the strain rate (Eq. (4.1)).
Explicitly writing Eq. (4.1) in terms of the deformation field gives

σ =
(

1 + τc
∂

∂t

)
(λ tr(ε)I + 2µε) + σa

= λ(∇ · u)I + µ(∇u +∇uᵀ) + τcλ(∇ · u̇)I + τcµ(∇u̇ +∇u̇ᵀ) + σa
= ΣE(u) + Ση(u̇) + σa , (4.42)

where we split the stress up in an elastic contribution ΣE(u), which contains all terms
involving u, and a viscous contribution Ση(u̇), which contains all terms involving the
time derivative u̇. In order to use Eq. (4.42) in our weak form statement we discretize

69



4. Optogenetic control of single cells

the time derivatives of u by means of a backward Euler1 scheme of time step ∆t, in
which the time derivative at the (n+ 1)-th time step is approximated by

u̇(n+1) = u(n+1) − u(n)

∆t . (4.43)

Due to the linearity of the stress-strain relationship the time discretization directly
translates to

Σ̇(n+1)
η =

Σ(n+1)
η −Σ(n)

η

∆t , (4.44)

and we find for the weak form

a(u(n+1),v) =
∫

Ω
Σ(n+1)
E : s(v)∆t dΩ +

∫
Ω

Σ(n+1)
η : s(v) dΩ +

∫
Ω
Y u(n+1) · v∆t dΩ

(4.45)
and

L(n+1)(v) =
∫

Ω
Σ(n)
η : s(v) dΩ−

∫
Ω
σa : s(v)∆t dΩ , (4.46)

such that we directly hand

a(u(n+1),v) = L(n+1)(v) ∀v ∈ V(Ω) . (4.47)

to the FEniCS solver (Alnæs et al., 2015). The solver then automatically handles the
implicit time discretization. For the hazard pattern, Eqs. (4.45) and (4.46) can be
easily modified by using

∫
Ω
σa : s(v)∆t dΩ =

3∑
i=1

∫
Ωi
σHP
a,Ωi : s(v)∆t dΩi . (4.48)

Meshing was performed with the open source software GMSH (Geuzaine et al., 2009).
All parameter optimizations are carried out with a downhill simplex method as de-
veloped by Nelder et al. (1965) and implemented within the scientific python library
SciPy (Virtanen et al., 2020).

4.4. Results

Since our simulation results are only meaningful in the context of the experimental
data, we present and discuss both together. The results section is divided into three
parts. We first discuss the influence of pattern size on actin ordering and strain energy
for the same pattern geometry and then the influence of actin architecture for the same
projected area but different pattern geometry. Finally we investigate the influence of
photoactivation duration on strain energy and strain energy gain.

1In contrast to the very common and easy to implement explicit forward Euler scheme, the implicit
backward scheme is numerically more expensive but by contrast much more stable with respect to
the size of the time step
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4.4.1. Influence of pattern size on actin ordering and strain en-
ergy

If not stated otherwise we refer to the three pattern sizes 500 µm2, 1000 µm2 and
1500 µm2 as small, medium and large pattern, respectively. In Fig. 4.6 we provide an
overview of all important experimentally obtained quantities. Fig. 4.6A exemplarily
depicts the three different fibronectin patterns together with actin and vinculin stained
cells and the respective traction force maps as obtained by a TFM analysis. We
further used a customized software from the Balland group which determines the
actin orientation map by means of the so called structure tensor J. The definition of
J is provided in Appendix A.4. In good agreement with similar experiments on well-
adhered cells (Mertz et al., 2012; Oakes et al., 2014), the traction forces are located
at the cell periphery and increase with increasing cell size. This is consistent with the
quantification of the substrate displacement in Fig. 4.6B showing that increasing cell
size leads to larger substrate displacements. Additionally, those examples emphasize
the strong dipolar character of the cells in agreement with the study by Mandal et al.
(2014). Measuring the decay of the substrate displacement towards the cell center, i.e.
along the white lines in Fig. 4.6B allows us to quantify the force-localization length
lp as the distance from the edge at which the displacement field attains half of its
maximal value. The statistical results of this measurement are shown in Fig. 4.6C1
and C2 and show a positive correlation between force-loacalization length and cell
size. The results of the actin orientation analysis are further summarized in the so
called actin order parameter S as depicted in Fig. 4.6D. A value of S = 1 corresponds
to a perfectly ordered system in which the local actin orientation is parallel to the
average orientation, whereas a value of S = 0 corresponds to orthogonality between
local and average actin orientation i.e. an unordered cytoskeleton. We find that cell
size and order parameter are positively correlated although saturation occurs towards
the large pattern size around a value of S = 0.5 (Fig. 4.6D). As expected from other
experimental studies (Gupta et al., 2015) a higher degree of ordering results in higher
substrate strain energies consistent with our strain energy measurement summarized
in Fig. 4.6E which shows the baseline strain energy as a function of cell size. This
correlation between cell size and strain energy was previously reported by (Oakes et
al., 2014; Reinhart-King et al., 2005; Tan et al., 2003; Tseng et al., 2011). As an
interim conclusion we find that force-localization length, actin ordering and substrate
strain energy increase with cell size.

Fig. 4.7A shows the mean strain energy as a function of time for all three pattern
sizes. At this point, we note that the analysis of the photoactivation experiments was
performed on a reduced data set containing 8 cells for the small and large pattern
sizes and 14 cells for the medium size. Photoactivation of all three pattern sizes with
a 100 ms long light pulse leads to a strain energy increase which lasts for about 2 min
and then relaxes for another 6 to 8 min back to its baseline level. The average baseline
energy for the reduced data sets are 0.08 pJ, 0.26 pJ and 0.45 pJ on small, medium
and large patterns, respectively, reflecting the trend of the full data set. Next, we
quantify the strain energy gain by calculating the difference between the peak energy
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Figure 4.6: Panel A depicts the cells on disc-shaped fibronectin patterns on polyacrylamide hydro-
gels. Columns from left to right show: (i) Micro patterns of varying sizes (500−1000−1500 µm2). (ii)
Actin-stained cells. (iii) Actin-stained cells with actin orientation map. (iv) Visualization of adhesion
pattern from vinculin-staining. (v) Traction force map resulting from traction force microscopy. Panel
B exemplarily shows the substrate deformation map and bright-field images of the cells. Panel C1
shows the quantification of the displacement decay with respect to the distance from the cell periph-
ery (measured along the white lines as shown in B). Panel C2 shows the measured force localization
length for different pattern sizes taken has the distance from the periphery at which the displacement
dropped to half of its maximal value. Panel D shows the actin order parameter as obtained from
measurement of the global cellular actin alignment. Panel E depicts the baseline strain energy level
of the cells plated on different pattern sizes before photoactivation. A 1-way ANOVA significance test
yields a significant difference between the 500 µm2 pattern size and the two larger patterns.
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A B

D1 D2 D3
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Figure 4.7: Cell size influences strain energy and strain energy gain after photoactivation. Panel
A shows the dynamics of the strain energy during and after photoactivation with a 100 ms long light
pulse (blue vertical line). Circles represent experimental mean data and shaded regions depict the
standard deviation. The numerically computed strain energy is represented by the solid lines. The
averages correspond to a reduced data set containing 8 (500 µm2), 14 (1000 µm2) and 8 (1500 µm2)
cells. Panel B denotes the statistical evaluation of the strain energy gain which is calculated as the
difference between the peak energy value after photoactivation and the strain energy value right before
photoactivation. Panel C shows the time course of the internal active stresses of the contractile cell
layer, determined by fitting the FEM model to the strain energy curve. Panel D shows the FEM-setup
of a dipolar contracting cell on a disc pattern as well as the numerically and experimentally obtained
traction maps.

value after photoactivation and the strain energy value right before photoactivation
(Fig. 4.7B). The strain energy gain after photoactivation, as illustrated in Fig. 4.7B,
is 0.09 pJ for small, 0.30 pJ for medium and 0.42 pJ for large patterns thus optogentic
activation leads to a relative strain energy increase of approximately 100 % irrespective
of cell size. The absolute strain energy gain, however, increases in proportion to the
strain energy baseline. Moreover, attention needs to be drawn to the observation that
the pre-photoactivation baseline level is almost perfectly recovered after perturbation
which hints at a steady-state in the reaction-diffusion system of the membrane bound
Rho-system and, further, that the cytoskeleton is not altered by the light-induced
perturbation.

In order to gain additional insight into the strain energy dynamics as a function of
cell size we fit our FEM-model as presented in the previous section to the experimental
strain energy curve. The global results of the fits are depicted in Fig. 4.7A (solid lines)
and are determined by the time course of the active stress as the main fit-result which
is shown in Fig. 4.7C. The fact that the strain energy closely follows the active stress
means that there is no significant delay between input (stress) and output (strain
energy) and additionally reflects that the elastic modulus of the cell is dominant over
its viscosity. Moreover it highlights that cells are well connected to the substrate. A
comparison of the traction force maps as obtained by simulations (Fig. 4.7D1 and D2)
and the experimentally measured TFM-map (Fig. 4.7D3) shows that our simulation
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approach qualitatively captures a similar dipolar traction force field with peak-values
in the same order of magnitude (∼ 1.4 kPa) although the regions of larger tractions in
the experimental map are smeared out compared to the simulations.

In detail, the fits are performed in two steps: First, the baseline energy is fitted
by optimizing the force localization length lp and the background stress σbck, and
second, the model dynamics is fitted by optimizing the photoactivation stress σ0 and
the four time scales tact, trel, τact and τrel according to the definition in Eq. (4.31).
All fitting results can be found in Table A.2 and are visualized in Fig. 4.8A and B for
baseline fit and photoactivation fit, respectively. Fig. 4.8A depicts that all numerically
obtained counterparts to the experimental measurements show the same increase with
cell size. Here, the most important quantity is the the background stress σbck as it
cannot be directly measured and therefore only extracted by means of our model. The
obtained order of magnitude ∼ 4 kPa is in good agreement with other results from
tissue stretching experiments (Wyatt et al., 2020) and monolayer stress microscopy
(Trepat et al., 2009) as well as our scaling considerations in the previous section. An
increase of baseline stress level with increasing cell size could be possibly traced back
to the fact that the larger cells show a better developed actin cytoskeleton which may
lead to larger local stresses.

As mentioned before, the dynamics of the force generation are described by the free
parameters of the double sigmoid profile. The maximal photoactivation stress σmax, as
defined in Fig. 4.4C, is significantly lower for the small pattern size and approximately
equal for the medium and large pattern (Fig. 4.8B). However, the total value of the
stresses vary strongly as they are given by the sum σa = σbck + σmax. We find that,
irrespective of cell size, activation happens on a time scale of around τact ∼ 20 s and
thus much faster than the relaxation process with a time scale of τrel ∼ 50 s. Those
time scales must be directly linked to the time scales of the reaction-diffusion system
of GEF and RhoA (Valon et al., 2015). The onset, offset and duration of active force
generation are defined by the centroids tact,trel and the difference ∆t = trel − tact.
The onset of stress generation stays approximately constant at t = 60 s after PA-
perturbation but the force generation duration ∆t varies with cell size and shows
that the medium pattern size remains activated for a longer time than the other two
pattern sizes (Fig. 4.8B). The surprising result that all four time scales show a peak
value at the medium pattern size might be linked to the observation that the cell size
of 1000 µm2 is a typical spreading area for unconstrained cells on soft elastic substrates
(Nisenholz et al., 2014).

4.4.2. Influence of actin architecture on strain energy and force
generation dynamics

We follow exactly the same strategy as before but this time we study the role of varying
actin architecture on the strain energy and the force generation dynamics. As already
mentioned several times, the hazard pattern induces an actin architecture which is
significantly different compared to the one for cells plated on the disc pattern as can
be seen by comparing the actin and vinculin images in Fig. 4.9A. Further, we observe
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Baseline
Photo-activation

Activation Relaxation

A B

Figure 4.8: Result of the strain energy fit. Panel A illustrates the results of the baseline energy fits
as a function of cell size. Panel B shows the optimized parameter set for the double sigmoid activation
profile obtained from fits of the strain energy response upon photoactivation.

that the different actin organization and focal adhesion distribution drastically influ-
ence the exerted traction force pattern. Although they are still located at the cell
periphery, they show clear peaks at the transitions of the three domains of distinct
stress fiber orientation. Interestingly, although the actin order parameter is much lower
for cells plated on the hazard pattern, the substrate strain energy of both conditions
is approximately the same (Fig. 4.9B). The activation protocol for this experiment is
identical to the one discussed before. We measure the strain energy response after
illumination of the cells with a 100 ms long light pulse. The result of this experiment,
again carried out on a reduced data set, is depicted in Fig. 4.10. The time course
of the strain energy of the hazard pattern is similar to the disc pattern (Fig. 4.10A).
Cells on hazard pattern reach their peak strain energy value at 2.71± 1.02 min after
photoactivation while cells on the disc pattern have a time to peak of 3.43± 0.83 min.
The strain energy gain was significantly higher for the dipolar cells on the disc pat-
tern with a median value of 0.35 ± 0.05 pJ compared to the strain energy gain on
the hazard pattern which only yields 0.18 ± 0.02 pJ (Fig. 4.10B). Fitting our math-
ematical model to the measured strain energy of the hazard pattern yields almost
perfect fit results as shown by the solid lines in Fig. 4.10A and again allows to extract
the internal active stress as a function of time (Fig. 4.10C). The FEM-model and a
direct comparison of the simulated traction maps and an experimental example map
are shown in Fig. 4.10D. As for the disc pattern, the FEM model captures the basic
features of the experimental measurement. The order of magnitude (∼ 1.6 kPa) as well
as the topology of the experimental TFM field is reproduced by our simulations. All
important quantities obtained by our model are gathered in Fig. 4.10E which shows
that both, σbck and σmax are smaller for the hazard pattern which demonstrates that
the force production in the less ordered hazard pattern is smaller. Further, we ob-
serve that the asymmetry (τrel − τact) between activation and relaxation time scale
is larger for the hazard pattern which suggests that the actin organization influences
the reaction-diffusion system of the underlying RhoA signaling cascade. Additionally,
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Figure 4.9: Panel A depicts the cells on disc- and hazard-shaped fibronectin patterns on poly-
acrylamide hydrogels. Columns from left to right show: (i) 1000 µm2 disc- and hazard-shaped micro
patterns. (ii) Actin-stained cells. (iii) Actin-stained cells with actin orientation map. (iv) Visualiza-
tion of adhesion pattern from vinculin-staining. (v) Traction force map resulting from traction force
microscopy. Panel B shows the actin order parameter and baseline energy level for the two condi-
tions. A 1-way ANOVA test yields a significant difference for the order parameter and no significant
differences for the baseline strain energy levels.

stress relaxation seems to set in earlier for the hazard pattern. At this point we want
to draw the attention to two interesting obeservations: First, although the background
stress σbck is slightly lower for the hazard pattern (compare Fig. 4.10C and E) it leads
to a higher strain energy baseline than in the disc pattern with a higher background
stress (Fig. 4.10A). Second, upon photoactivation the hazard pattern needs much less
active stress increase to generate the corresponding strain energy response. We there-
fore conclude that the differently distributed and organized focal adhesions provide an
increased force transmission to the substrate. In fact, the force localization length as
obtained from simulations is smaller for the hazard pattern (Table A.2).

From a purely geometric perspective, cells plated on a hazard pattern would be
expected to have less efficient force generation because the stress fibers enclose an
angle and therefore may be working against each other. In the following, we consider
two identical stress fibers which extert the same traction f on the substrate. Hence,
in this minimalist framework, cells on the disc pattern are represented by two parallel
stress fibers while cells on the hazard pattern are represented by two stress fibers
which enclose an angle of γ = 60°. A simple geometric consideration as depicted in
Fig. 4.11A (inset) yields the total traction force as a function of γ

Ftot = f
√

2(1 + cos(γ)) , (4.49)

which in turn leads to FDP
tot = 2f for the disc pattern and FHP

tot =
√

3f for the hazard
pattern and therefore FHP

tot < FDP
tot . This shows that in case of the hazard pattern

stress fibers have to pull stronger in order to generate the same net traction force
which could be a possible explanation for their reduced force production capacity
upon photoactivation.
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Figure 4.10: Actin organization influences strain energy and strain energy gain after photoactivation.
Panel A shows the dynamics of the strain energy during and after photoactivation with a 100 ms
long light pulse (blue vertical line). Dots represent experimental mean data and shaded regions
depict the standard deviation. The numerically computed strain energy is represented by the solid
lines. The averages correspond to a reduced data set containing 14 cells for disc and hazard pattern,
repsectively. Panel B denotes the statistical evaluation of the strain energy gain which is calculated as
the difference between the peak energy value after photoactivation and the strain energy value right
before photoactivation.The blue marker indicates the strain energy gain as predicted by the model
fits in A. Panel C shows the time course of the internal active stresses of the contractile cell layer,
determined by fitting the FEM model to the strain energy curve. Panel D shows the FEM-setup
for cells on hazard pattern with three domains for the active stress as well as the numerically and
experimentally obtained traction maps. Panel E shows the obtained background stress together with
the optimized parameter set for the double sigmoid activation profile obtained from fits of the strain
energy response upon photoactivation.
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To better understand how actin polarization influences the baseline strain energy
we simulated three different actin organizations on four different pattern geometries
of varying adhesive area. Thereby all conditions have the same value for lp and σbck.
The result of the simulations is summarized in Fig. 4.11B where the symbol indicates
the actin organization and the color refers to the adhesion pattern. We additionally
compare the simulations to the analytical solution for the strain energy of an isotropic
contracting disc on a ring pattern as a function of the adhesion area. This analyt-
ical solution is represented by the black solid line and was calculated according to
Eq. (A.37) in Appendix A.5. The dashed line corresponds to the strain energy in the
limiting case of a disc shaped adhesion pattern. From the analytical solution it is clear
that the adhesion area has a non-trivial influence on the strain energy such that it
increases for decreasing adhesion area. This is consistent with the results presented in
(Solowiej-Wedderburn et al., 2022) where the authors obtain the same dependency in
case of larger substrate stiffnesses. On all pattern geometries the isotropic contraction
results in the largest strain energy while the dipolar actin architecture yields the low-
est values. Since all cell parameters are identical, we conclude that the strain energy
is strongly influenced by the internal stress fiber organization. From a mathematical
point of view one may conclude that Es ∼ |T|2 dA ∼ |∇·σ|2 dA and thus the area over
which stress gradients act determines the strain energy. In practice, high tractions are
located near the cell periphery, however when considering the substrate displacement
field of the hazard pattern (Fig. 4.11C) we additionally observe larger displacements
along the T-shaped branches towards the cell center. This can be regarded as an
effective increase of the cell periphery. In total, we conclude that the combination of
adhesion geometry and actin architecture for the hazard pattern effectively provides a
larger area of higher stress gradients than the combination of dipolar actin architecture
on the disc pattern (Fig. 4.11C) such that for the same background stress one may
expect higher strain energy values.

Circle

Analytical solution ring

Adhesion geometry Internal stress orientation

Ring
Hazard

HazardRing

A B C

Figure 4.11: Influence of stress fiber arrangement and adhesive area on traction forces and substrate
strain energy in FEM simulations. Panel A depicts the exerted traction force of two identical stress
fibers which pull under an angle γ at a common adhesion site. Panel B depicts the substrate strain
energy as a function of the adhesive area. In all cases values for active stress and substrate stiffness
are identical. Symbols depict the internal stress anisotropy (cytoskeletal organization) while colors
highlight the underlying adhesion geometry. The solid line corresponds to the substrate strain energy
of an isotropically contracting disc on a ring pattern. A fully adhesive disc is represented by the
dashed line. Panel C illustrates the substrate displacement field for the directional contraction on a
disc pattern and the “triangular” contraction on a hazard pattern.
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4.4.3. Influence of varying pulse duration on force generation

In the final series of experiments cells on disc and hazard pattern were photoactivated
by a series of light pulses of increasing duration. In between those pulses cells were
given enough time to go back to their homeostatic energy level. We followed the
same fitting procedure as before and once fitted to the strain energy baseline level
and subsequently all six photoactivation peaks separately. The basic observations
of the single pulse activation from the previous analysis still hold true. The strain
energy is higher for cells plated on the hazard pattern and their force generation upon
photoactivation is lower than for the disc pattern (Fig. 4.12A). The time course of the
active stress is again very similar to the time course of the strain energy (Fig. A.1).
By means of our mathematical model we extract the peak photoactivation stress as
a function of the pulse duration. We find that active stress generation and pulse
duration are positively correlated up to a pulse duration of 50 ms beyond which the
active stress saturates as depicted in Fig. 4.12B. Exponential fits yield a maximal
active stress of 1.81 kPa for the disc pattern and 0.84 kPa for the hazard pattern. The
larger stress value for the disc pattern is not surprising as their actin cortex has a
higher order parameter. Despite the clearly distinct saturation levels, both conditions
saturate around a pulse duration of 25 ms. The time scales of the double sigmoid
profile are shown in Fig. 4.12C and reveal a very surprising and complex internal
dynamics. The onset tact of stress generation is little influenced by pulse duration
and stays approximately constant around values of 80 s for disc and 50 s for hazard
pattern similar to the values obtained in the single pulse experiment (Fig. 4.10E).
However, the relaxation centroids trel at first slightly increase with increasing pulse
duration but then saturate around a value of 460 s for disc and 270 s for the hazard
pattern. This highlights that cells on disc pattern stay longer activated as they have a
larger stress plateau. In contrast, we observe strongly pronounced asymmetry between
activation and relaxation time for the hazard pattern which decreases with increasing
pulse duration. Hereby, the activation time scale stays approximately constant around
a value of 15 s. In contrast, both activation and relaxation time scale slightly increase
with increasing pulse duration for the disc pattern. Together our results suggest that
the internal actin organization especially influences the way stress decreases back to its
homeostatic setpoint. Further we conclude that the local dynamics of the actomyosin
system are highly non-trivial and strongly depend on the local actin orgainzation.

4.5. Conclusion

In this chapter, we combined traction force microscopy, non-neuronal optogenetics and
a two-dimensional finite element model to study the influence of adhesion geometry on
the force generation in cells. The standard continuum modeling approach, in the spirit
of Edwards et al. (2011) and Banerjee et al. (2013), was extended in two ways: First,
we introduced an anisotropic stress tensor to account for the architecture of the actin
CSK. Second, we introduced viscoelasticity, similar to (Prost et al., 2015), but with a
viscoelastic solid (Kelvin-Voigt model). A Kelvin-Voigt model was chosen because of
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Activation Relaxation
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Figure 4.12: Panel A shows the dynamics of the strain energy during a series of light pulses of
increased duration. The duration is highlighted by the width of the blue vertical lines. Dotted curves
represent experimental mean data and shaded regions depict the standard deviation. The numerically
computed strain energy is represented by the solid lines. The averages correspond to a reduced data
set containing 7 cells. Panel B shows the maximal photoactivation stress as extracted by the model
fits (circles). Lines correspond to exponential fits. Panel C shows the time constants of the double-
sigmoid activation profile.

the homeostatic response of cells upon photoactivation with a clear setpoint.
In this sense our model was able to explain the influence of actin architecture and

cell size on traction forces. We found that the homeostatic internal cell stresses and
force transmission to the substrate are positively correlated with cell size. In contrast,
changes in actin geometry had little influence on homeostatic stress and strain en-
ergy levels. Nevertheless, purely theoretical considerations could identify geometrical
aspects which explain the tendency to higher strain energies for the disorganized in
comparison to the polarized actin architecture. Therefore, this result highlights that
it is indispensable to consider the internal actin organization of cells when it comes to
designing a predictive mathematical model.

Optogenetic activation was introduced by phenomenological activation functions
which could possibly describe the time course of the stress induced by the light per-
turbation. In this way we could partly decouple the optogenetic activation (input)
and the resulting strain energy response as a function of time (output). Empirically,
we found that the double-sigmoid best fits our experimental data as it respects the
smooth shape of the experimental curve. Furthermore, its time course is very simi-
lar to the time course of myosin light chain activity during local RhoA perturbations
(Kamps et al., 2020; Staddon et al., 2022). The amplitude and time constants of the
double-sigmoid allowed us to quantify the differences between the two pattern geome-
tries in the context of the distinct actin organization they induce. We found that the
dynamics of internal force generation are remarkably distinct. Cells on hazard pattern
are less responsive to photoactivation compared to cells on disc pattern. However, the
strain energy response is not as distinct as the stress response which suggest that the
reduced force generation in the hazard pattern is compensated by stronger focal ad-
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hesions which better couple to the fibronectin pattern. By means of a minimal model
we identified a possible reason for the reduced stress generation for cells plated on the
hazard pattern. The triangular arrangement of stress fibers suggests that they partly
work against each other. Therefore, stress fibers have to be stronger in order to exert
the same net traction forces as stress fibers that pull in the same direction. Hence,
this simple consideration may explain the lower force generation capabilities for cells
on the hazard pattern but we note that this consideration completely disregards the
influence of the reaction diffusion system. In the future, the latter could be investi-
gated by modeling the interplay between actomyosin system and photoactivation on
a microscopic level for example by means of agent based methods (Belmonte et al.,
2017; Stam et al., 2017).

From the resulting time scales we deduce that for cells on hazard pattern stress
builds up earlier and increases on a faster time scale. This is different for cells on
the disc pattern for which stress builds up much later but remains elevated for a
longer time span. Furthermore, we found that stress relaxation in cells on the hazard
pattern was strongly influenced by the duration of photoactivation as stress relaxation
becomes faster with increasing pulse duration. This could not be observed for the more
polarized cells on the disk pattern. In addition, on both pattern, stresses saturate for
a pulse duration of approximately 25 ms. However, the stress saturation level for the
disc pattern is more than twice that of the hazard pattern and in addition remains
high for a longer time.

Since our results indicate highly versatile dynamics associated with actin archi-
tecture, we expect even greater dynamic variability when cells are optogenetically
activated during their spreading process. This could possibly even make it possible to
control the spreading process by directing the formation of the actin CSK in a specific
direction.

In suammary, we found that actin architecture of adherent cells plays a major
role in terms of force generation and regulation of the underlying biochemistry of the
RhoA signaling pathway. Moreover, our results suggest that the spreading process,
particularly evident in actin architecture, influences the way the cell later perceives
its environment.
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Chapter 5

Optogenetic control of cell pairs

Motivated by the results of Chapter 4, where we successfully combined theoretical
modeling and experimental techniques to gain insight into the dynamics of force gen-
eration from optogenetically activated single cells, we now turn to a similar study of
cell pairs. While the focus in the previous chapter was on the dynamics of force gener-
ation, in this study we apply similar computational and experimental techniques but
in the context of a multicellular system. In particular, we focus on the force transmis-
sion across cells. The results presented in this chapter are based on the manuscript
with the working title “Force propagation between epithelial cells depends on active
coupling and mechano-structural polarization” (not yet published) and were obtained
in close collaboration with Artur Ruppel, Vladimir Misiak and Martial Balland from
the Université Grenoble Alpes, who conducted the optogenetic experiments and TFM.

5.1. Introduction

Force generation of adherent cells is an essential mechanism by which cells probe their
environment. Processing these external mechanical and geometric influences affects
the future behavior of the cell which in turn may have drastic effects on survival,
proliferation, differentiation, migration and fate (C. S. Chen et al., 1997; Geiger et al.,
2009; Janmey et al., 2009). Transferring this to the multicellular level, the interplay of
these processes is essential for tissue growth and morphogenesis as it controls position,
shape, size and cell number. Therefore, investigating mechanisms by which force
generation is regulated and further how these forces are propagated across tissues is
key to understanding the large-scale behavior of cells particularly during development
or other physiological and pathological processes (Heisenberg et al., 2013). Recent
studies addressed some of these important questions and could show that mechanical
signals can propagate on length scales much larger than the typical cell size (Peyret
et al., 2019; Serra-Picamal et al., 2012). For confined epithelial cell sheets, Peyret et
al. (2019) could even provide evidence for oscillatory states suggesting an underlying
active mechanism of cell contractility in combination with F-actin polymerization. In
addition, Ng et al. (2014) demnonstrated that passive cells may act as attenuators
for wave propagation in epithelial tissues. In summary, these studies suggest that
cells actively sustain the strength of mechanical signals and thereby propagating it
across tissues. However, many questions still remain unanswered and little is known
about certain aspects such as the distance that force signals may travel and how tissue
polarization influences signal propagation.
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Therefore, we introduce a minimal tissue which aids in deepening the understand-
ing of how mechanical signals are transmitted across intercellular junctions and thereby
addressing some of the above mentioned questions. This system is comprised of two
interacting epithelial cells on an H-shaped micropattern (doublet). The minimalist
design allows spatio-temporal control of active force generation while monitoring force
propagation across the cell-cell junction. The active force generation is controlled
by non-neuronal optogenetics based on the CRY2/CIBN system (Valon et al., 2015;
Valon et al., 2017) while force propagation within the substrate and within the cell is
quantified by means of TFM and MSM, respectively.

To give a general overview, we explain some of the experimental detail in Sec-
tion 5.2.

Further, in Section 5.3 we introduce the anisotropic contour model as an analysis
tool to link cell shape and traction forces. The model-based analysis allows us to
characterize the homeostatic state of the cell doublet which is further compared to a
single cell on the same pattern. We find that the presence of a cell-cell junction induces
changes in the mechanostructural polarization of the system and a redistribution of
traction forces.

In Section 5.4 we use a similar finite element model as introduced in Chapter 4,
however, this time for the adhesion geometry of the H-pattern. Further, we use a finite
element formulation of the contour model as presented in Section 3.3. By photoactiva-
tion of the full doublet and full singlet we are able to parametrize both of our models
in order to naturally extend them to local photoactivation. Next, we use both, the
two track modeling approach and a combination of TFM and MSM to demonstrate
that cells in a cell doublet are actively coupled. We then show that the propagation
of the active force depends on system parameters such as the length of the intercellu-
lar junction and the mechanical polarization, and that the force propagation is most
efficient perpendicular to the direction of mechano-structural polarization.

Finally, in Section 5.5 we verify that our findings translate to larger systems. By
following the same procedure as for the minimal system, we show that in small cell
clusters stress propagation is amplified perpendicular to the axis of mechano-structural
polarization.

5.2. Experimental setup

All experiments were carried out on opto-MDCK and opto-MDCK LifeAct cells which
have been kindly provided by Manasi Kelkar and Guillaume Charras. The cells were
then plated on micropatterned polyacrylamide hydrogels with a Young’s modulus of
20 kPa which were fabricated by the method briefly outlined in Section 1.2.2. After
seeding the cells onto the sample they were left untouched for 16 h to 28 h. This
was enough time to allow formation of cell doublets as initial single cells (singlets)
divided on the pattern. E-cadherin, vinculin and actin images exemplarily highlight
the location of the cell-cell junction, focal adhesions as well as internal stress and
peripheral stress fibers. The vertical stress fibers at the left and right cell rim are in
very good approximation straight. However, the horizontal peripheral stress fibers,
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Figure 5.1: Panel A and B show immunostaining of the opto-MDCK cells with E-Cadherin Vinculin
and Actin labeled in green, violet and black, resepctively. Nucleus is is shown in orange. Panel C
exemplarily shows life act images of cell doublets and single cell highlighting their internal actin
organization and stress fiber orientation. Panel D schematically illustrates the two main activation
setups stimulation on the whole pattern (left) and on the left half of the pattern (right). Panel E
shows the intensity profile of the light pulse and its distance from the cell cell junction when activating
only the left cell in a cell doublet.

which span between the vertical bars of the H-pattern, exhibit the typical invaginated
shape known from cells on pillar arrays (Fig. 5.1A,B).

Cell doublets and single cells can be distinguished on the basis of the cell-cell
junction and the number of nuclei (Fig. 5.1A,B). Another striking difference between
doublets and singlets is the internal actin architecture most visible in the stress fiber
orientation. As can be seen in Fig. 5.1C the singlet exhibits strong internal stress
fibers in vertical alignment while the stress fibers in the doublet are less pronounced
and rather pointing from the corner towards the cell center. More examples can be
found in Fig. A.2A and B.

RhoA activation is controlled analogously to the experiments in Chapter 4 by the
CRY2/CIBN system (for details we refer to Section 1.2.3 and Chapter 4). However, the
activation protocol differs in two points: First, additionally to global photoactivation,
singlets and doublets were also locally activated by illumination of only the left half
of the pattern as depicted in the cartoon in Fig. 5.1D. And secondly, this time we
activated the cells not with a single light pulse, but with one pulse per minute for
10 min where each pulse had a duration of 200 ms. The intensity profile of the light
pulse of 470 nm wavelength is depicted in Fig. 5.1E and we note that the center of the
intensity profile was adjusted such that activation of the right half was prevented. For
further experimental details as well as information concerning the TFM and the MSM
we refer the reader to Artur Ruppel’s PhD thesis (Ruppel, 2022).
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5.3. Characterization of the homeostatic state of dou-
blets and singlets

In this section we provide a detailed description of how we combine cell shape image
analysis i.e. automated tracking of peripheral actin fibers, TFM and contour models
of cellular adhesion to quantify basic cell properties. First we briefly introduce the
ATM and explain how we connect it to traction force measurements. Then we discuss
the application to our data.

5.3.1. Contour model based cell shape analysis

The main concept of contour models have been intensively discussed in Section 1.3.2
and Section 2.2 and are in the following applied to infer basic cell properties based on
measurements of the shape of the free spanning actin fiber (Fig. 5.1). The polarized
nature of the actin CSK is incorporated through an anisotropic surface tension tensor.
The whole contour shape analysis is a composite of several different steps. At first
one has to define the mathematical frame work, which in our case is defined by the
analytical expression of the contour shape. Next, one has to connect the contour
shape to experimentally measured traction force patterns. Once these two steps are
accomplished, several numerical steps have to be carried out. These include an image
based tracking procedure (fiber tracking) to segment the shape of the fiber and an
automated fitting procedure to obtain the cell parameters that define the contour
shape. The central quantities of this analysis are surface and line tension of the cell.

Anisotropic Tension Model

Like the TEM, the ATM is based on the force balance equation

d
ds (λT) + (Σin −Σout) N = 0 , (5.1)

where λ denotes the line tension of the fiber, Σin−Σout the surface tension difference
across the fiber and T and N the two-dimensional Frenet-Serret frame (Section 2.2).
The main difference between the STM/TEM and the ATM is that the assumption
of a homogeneous isotropic cortex fails in the presence of strongly embedded internal
stress fibers. In this scenario, the isotropic surface tension is modified by a directional
component aligned with the direction of the internal stress fibers as demonstrated
by (Giomi, 2019; Pomp et al., 2018). Since the H-shaped micropattern in all our
experiments has two axes of symmetry, we assume an anisotropic surface tension tensor
of the form

Σout − Σin =
(
σx 0
0 σy

)
. (5.2)

An essential consequence of this assumption is that, in contrast to the STM and
TEM, the line tension varies along the fiber as the second term in Eq. (5.1) has a
non-vanishing tangential component for σx 6= σy. Exploiting the relation between the
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tangent vector and the turning angle T = (cos θ, sin θ) (Eq. (2.71)) and writing the
normal vector as N = (−∂sy(s), ∂sx(s)) allows us to integrate Eq. (5.1) with respect
to the arc length parameter s to obtain

λ cos θ − σxy = Cx1 (5.3)
λ sin θ + σyx = Cy1 , (5.4)

where Cx1 and Cy1 denote arbitrary integration constants. Dividing Eq. (5.4) by
Eq. (5.3), using tan θ = dy/dx and subsequently integrating with respect to x yields

2yCx1
σxσy

− 2yCy1
σxσy

+ y2

σy
+ x2

σx
= C , (5.5)

with C being an additional integration constant. Eq. (5.5) describes an ellipse which,
wihtout loss of generality, can be centered around the origin of the coordinate system
by setting Cx1 = Cy1 = 0 such that

x2

a
+ y2

b
= 1 . (5.6)

The semi-axes are given by a =
√
Cσx and b =

√
Cσy. In the case of σx = σy the

ellipse attains a circular shape which is consistent with the results of the STM and
TEM. Having identified the shape of the contour, we are now interested in finding an
analytical expression for the line tension. From Eqs. (5.3) and (5.4) we have

tan θ = −xσy
yσx

. (5.7)

By solving once for x and once for y and inserting the result into Eq. (5.6) we obtain

x2 = σ2
xC tan2 θ

σy + σx tan2 θ
, (5.8)

y2 =
Cσ2

y

σy + σx tan2 θ
. (5.9)

The square of Eq. (5.1) additionally yields

λ2 = σ2
xy

2 + σ2
yx

2 , (5.10)

and hence we obtain a closed analytical expression for the line tension as a function
of the turning angle θ and the parameters σx, σy and C

λ(θ) = σx
√
σyC

√√√√ 1 + tan2 θ

1 + σx
σy

tan2 θ
. (5.11)

For completeness we note that by decomposing the anisotropic surface tension into an
isotropic and a directional contribution it can be shown that the integration constant
C is connected to a minimal value for the line tension. This minimal value is attained
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Figure 5.2: Graphical representation of the line tension λ as a function of the turning angle for
different ratios of σx and σy. For our choice of reference frame θ = 0 corresponds to the middle of the
fiber. At this point the line tension is either maximal (σx > σy) or minimal (σy > σx). In the case of
isotropy (σx = σy) the line tension λ remains constant.

where the tangent vector is orthogonal to the directional contribution, identifying
it as a material parameter (Giomi, 2019; Pomp et al., 2018). However, within our
description cells are always oriented such that the distance vector d between the
adhesion points of the free spanning arc points along the x-direction of the coordinate
system. As a consequence, the prefactor limθ→0 λ(θ) ≡ λ0 = σx

√
σyC only represents

an extremal value of the line tension. Depending on the ratio of the surface tension
components, this extremum is either a maximum for σx/σy > 1 or a minimum for
σx/σy < 1. In case of σx = σy we obtain a constant line tension independent of the
turning angle. Plots of the line tension as a function of the turning angle and two
exemplarily (exaggerated) cell shapes are shown in Fig. 5.2.

The adhesion force

The equilibrium shape of the ATM is a result of the local force balance at every point
along the fiber in between the two endpoints. However, for adherent cells, stress fibers
(especially peripheral stress fibers) typically start and end at adhesion sites through
which the cell establishes a connection to the underlying substrate. In case of point
like adhesion, the additional force balance at the two ends is enforced by an additional
adhesion force (Bischofs et al., 2009)

fad = −
∑
k

Ftrac(x)δ (x− xk) , (5.12)

where the index k runs over all adhesion sites, δ is the Dirac delta distribution and
Ftrac is the traction force exerted onto the substrate. For simplicity, we use the force
balance equation for the isotropic case where σx = σy and thus the arc exhibits a
constant curvature κ. In this case the full force balance equation reads

(λκ− σ)N = −fad =
∑
k

Ftrac(x)δ (x− xk) . (5.13)
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Figure 5.3: Geometrical description of a circular adhesion site (orange) of radius ε. The adherent fiber
connects the two free spanning arcs which pull with the same line tension λ in tangential direction at
the transition form adherent to non-adherent. N is the outward directed normal on the circle segment
going from β = −ϑ/2 to β = ϑ/2. The limit of an infinitesimal adhesion patch (point-like) leads to a
kink at the connection point with opening angle α.

At the adhesion points xk, both sides of Eq. (5.13) diverge as |κ| → ∞ in case of a kink.
Nevertheless, it it possible to determine the adhesion/traction force as the limit of a
continuous circular adhesion patch as depicted in Fig. 5.3. For the sake of simplicity,
we assume the line tension of the adherent portion of the fiber to be equal to the line
tension of the two free arcs which are smoothly attached on each side. Then, the force
balance equation for the continuous adherent fiber reads

(λκ− σ)N = −fad . (5.14)

Using N = − sin θex + cos θey and θ = −β, we obtain

Fad =
∫ ϑ/2

−ϑ/2
fad εdβ = −

∫ ϑ/2

−ϑ/2
(λ− σε) N(β) dβ = −2 (λ− σε) sin

(
ϑ

2

)
N(0) .

(5.15)
Next, by taking the limit ε→ 0, the traction force on a point like adhesion site reduces
to

Ftrac = − lim
ε→0

Fad = 2λ sin
(
ϑ

2

)
N(0) . (5.16)

The opening angle of the kink is given by α = π − ϑ. In conclusion we find that
the total traction force exerted at a point like adhesion site is given by the vector
sum of the line tensions of the two attached free spanning arcs. We also see, that
in this limit the surface tension does not contribute to the traction force directly but
indirectly through the radius of curvature of the arc. We conclude that the above
findings should also hold in case of arcs with distinct line tensions such that for a
point like adhesion we generally propose

Ftrac = λiTi + λjTj . (5.17)

Eq. (5.17) forms the basis of the cell shape analysis. The traction force measurement
defines the left-hand side while the shape of the free spanning arc enters through the
tangent vectors on the right-hand side.
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Fiber tracking

For the quantification of the cell shape based on actin images like the ones shown
in Fig. 5.1C, we used a semi-automatic algorithm developed in the research group of
Martial Balland at Université Grenoble Alpes which was implemented in MATLAB
(MATLAB, 2018). As the peripheral fiber moves during contraction we had to fit all
60 consecutive time frames for each cell in order to capture its motion, whereby our
data sets include 10 to 40 cells per condition. In total we used this approach to track
the contour in several thousand images1. For each cell, tracking starts by defining the
start and end point of the fiber at the first time frame. Next, equally spaced parallel
lines perpendicular to the overall fiber direction are drawn, bounded by the endpoints
of the fiber. Based on intensity variations the intersections of these lines and the fiber
are detected. Intensity fluctuations that may lead to badly detected points are taken
care of by a consistency check including a temporal median filter which removed points
distant from the mean value by more than two times the standard deviation within
a moving time window of ten frames. Additional spatial filtering included removal of
outliers that exceeded the range of three times the standard deviation of the average
spatial position. Further we imposed and additional constraint that the angles between
connecting lines of two adjacent points should stay below 15°. The vertical fibers stay
in good approximation straight and static and are therefore not tracked. Drawing of
straight lines along the vertical fiber complement the fiber tracking and result in a
complete contour of the cell.

Force decomposition

Analysing the cell shape is equivalent to quantifying the minimal number of key pa-
rameters like line and surface tension based on the shape of the free spanning fiber
and other quantities accessible through experiments. A basic sketch of the relevant
parameters is given in Fig. 5.4A. By means of our analysis we assume that all traction
contribution stems from the combined action of the free spanning arc and the vertical
“adherent” fiber of length L such that it can be written as

Ftrac = Fadey + λT(θfa) + σx
L

2 ex , (5.18)

where Ftrac is the traction force measured in the substrate, θfa denotes the tangent
angle at the focal adhesion and λT(θfa) is the line tension at the focal adhesion. The
last term in Eq. (5.18) is a correction term stemming from the surface tension which
acts perpendicular to the vertical fiber. We note that a force decomposition like this
assumes a point like adhesion at the intersection of the two fibers for which the force
vectors add up (Eq. (5.17))

The right image of Fig. 5.4B schematically illustrates the procedure of determining

1Alternatively we tried the ImageJ plugin JFilament (Li et al., 2009; Smith et al., 2010) which failed
(only) because of too long computing time in view of the large amount of image data. Nevertheless,
JFilament is a great tool to automatically track linear objects in an image sequence if the performance
is not important.
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BA

Figure 5.4: Parametrization and result of the shape analysis procedure. Panel A shows the pa-
rameters which are involved in the shape analysis of the cell according to the contour model. The
traction force in the corner is decomposed into contributions stemming from the action of the line
tension of the free fiber, the adherent fiber and the x-component of the surface tension tensor. Panel
B exemplarily depicts the result of the cell shape analysis for doublets (left) and singlets (right) with
the fiber tracking data (blue circles), the traction force maps (colored arrows), the tangent vectors
at the adhesion points (white dashed lines) and the elliptical arc fitted to the free fiber (green line).
Black circles denote the area over which traction forces were integrated and then projected onto the
tangent of the free fiber to obtain its line tension and the y-axis to obtain the force of the adherent
fiber. The white box schematically illustrates the procedure for estimating the x-component of the
surface tension (additional information can be found in the main text). The scale bar corresponds to
10 µm.

Ftrac and the correction term. The total traction force Ftrac was computed by splitting
the traction force map into four quadrants around the symmetry center of the cell.
Then, we integrated the traction forces within a radius of 12 µm around the maximal
traction peak in each quadrant. This procedure overestimates the traction force in x-
direction resulting in the necessity for the correction term. Therefore, the overall force
contribution originating from the x-component of the surface tension was estimated
by defining a small region (Fig. 5.4B white square) around the center of the adherent
fiber. Since the vertical dimension δL was chosen to be very small and very distant
from the corners we may assume that the traction stresses integrated over the box
are the contribution from the surface tension. This allowed us to estimate the x-
component of the surface tension σx = δF/δL directly from the TFM maps, where δF
corresponds to the integral of the traction stresses over the small window. Finally, by
solving Eq. (5.18) for λ and Fad we obtain

λ = 1
Tx

(
Ftrac,x − σx

L

2

)
, (5.19)

Fad = Ftrac,y −
Ty
Tx

(
Ftrac,x − σx

L

2

)
, (5.20)

where the tangent of the free arc at the focal adhesions are the remaining unknowns
and determined by the fit.

Circle and ellipse fitting procedure

It turned out, that fitting ellipses directly to “short” arcs is very unstable and highly
depends on the initialization of the fit parameters. This is because one can find a
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wide range of ellipses that fit equally well. Due to our large data sets it was not
feasible to fit ellipses by hand. Therefore, we decided to use a very stable and fast
circle fitting algorithm to obtain an estimate for the tangent vector at the adhesion
point2. For the circle fitting we exploited a Hyper least squares algorithm presented
in (Kanatani et al., 2011) based on algebraic distance minimization. Together with
already determined parameters from TFM data and circle fitting which include σx ,
θfa, T(θfa) and λ(θfa), the remaining unknowns are the y-component of the surface
tension σy as well as the center of the ellipse xc. Using Eq. (5.11) evaluated at θfa
yields

a = λ(θfa)√
σxσy

√√√√1 + σx
σy

tan2(θfa)
1 + tan2(θfa)

(5.21)

b = λ(θfa)
σx

√√√√1 + σx
σy

tan2(θfa)
1 + tan2(θfa)

, (5.22)

such that the shape of the ellipse purely depends on σy and its position is defined by
its center xc

(x− xc)2

a
+ (y − yc)2

b
= 1 . (5.23)

We then minimized the squared distance of all tracking points along the fiber to the
ellipse (Eq. (5.23)) and optimized the values for σy and the center of the ellipse.
Exemplarily, a graphical result of the whole shape analysis procedure is depicted in
Fig. 5.4B which, additionally to actin and TFM data, shows the result of fiber tracking
(circles) together with the resulting ellipse fit for a single time frame. Supplementary,
we compare the standard deviations for circle fits and ellipse fits in Fig. A.3A. In all
cases, the ellipse fit yields a smaller standard deviation, although the differences vary
for the different aspect ratios of the pattern. Based on the visual impression together
with the standard deviation of the contour fits, we conclude that the ATM is a suitable
description for the shape of the free arc and in our case better suited than the standard
TEM model.

5.3.2. Results

We will now compare the result of the cell shape analysis to TFM and MSM measure-
ments to gain insight into the fundamental differences between singlets and doublets.
In particular, we focus on the influence of the intercellular junction on fundamental
properties such as actin organization, strain energy, internal cell stresses, and cell
shape-influencing parameters such as line tension and surface tension.

As a result of the traction force analysis (Fig. 5.5A) we found that the traction
pattern of singlets and doublets on average look very alike. Although the traction
force magnitude in both conditions is very similar, the quantification of the substrate

2Although it is also possible to obtain the tangent vector directly from the fiber tracking data, we
found through trial and error that this method is prone to large fluctuations.
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Figure 5.5: Results of the traction force analysis and monolayer stress microscopy in comparison
to the contour shape analysis. Panel A shows the traction force maps of doublets and singlets.
Individual samples are shown on the left side and averages are shown on the right side. Panel B
depicts the result of the monolayer stress microscopy applied to the traction force maps in panel A.
Individual samples are shown on the left side and averages are shown on the right side. Panel C
shows boxplots of: Spreading size, representing the cell area within the cell periphery. Strain energy
in the substrate, deduced from traction force map and bead displacements. Average xx- and yy-stress
calculated from the stress maps shown in panel B. Mechanical polarization defined as the difference
of xx- and yy-stress divided by their sum. Panel D shows correlation plots of the average xx- and
yy-stresses from monolayer stress microscopy and the surface tensions from the cell shape analysis.
Yellow dots correspond to doublets and green crosses correspond to singlets. The black line represents
the linear regression of the data and the 95 % confidence interval is shown as a grey shaded area. The
R-value denotes the Pearson correlation coefficient. Panel E summarizes the result of the cell shape
analysis represented by boxplots of the line tension of the free fiber and the force of the adherent
vertical fiber. Doublets and singlets are shown in yellow and green, respectively. All plots show data
from n = 106 doublets from N = 10 samples and n = 72 singlets from N = 12 samples. Scale bars
correspond to 10 µm.
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strain energy yielded a slightly lower value for doublets than for singlets (Fig. 5.5B),
in spite of the equal spreading area (Fig. 5.5C). However, singlets have to spread a
much smaller volume over the same area. As a consequence this may result in a higher
tension. Further, singlets do not have to establish any cell-cell junction and thus could
be better coupled to the substrate.

Next, we performed a MSM analysis by exploiting the python based software
pyTFM (Bauer et al., 2021) providing our TFM data as input. The results of this
analysis are shown in Fig. 5.5B and C. Since the thin-layer approximation is essential
for the MSM, the obtained stresses have the physical unit of a surface tension given
by [σMSM

ii ] = mN m−1. We found that the internal stresses in σMSM
xx (x-direction) and

σMSM
yy (y-direction) are similar on average, indicating a more isotropic internal actin

structure. In contrast, for singlets the stress in x-direction yielded a significantly larger
value (Fig. 5.5B,C). Based on this observation we defined the mechanical polarization
as

MP =
σMSM
xx − σMSM

yy

σMSM
xx + σMSM

yy

, (5.24)

which allows to quantify and compare the internal cellular stress distribution of these
systems. This quantity assigns a value of 1 to a horizontally polarized system (σMSM

yy =
0), a value of 0 to an isotropic system (σMSM

xx = σMSM
yy ) and a value of −1 to a vertically

polarized system (σMSM
xx = 0). Indeed, we found a mean value of MP ≈ 0 for dou-

blets and MP ≈ 0.4 for singlets which means that σMSM
xx is approximately three times

larger than σMSM
yy . Analogously to Chapter 4, we quantified the structural polarization

i.e. the internal stress fiber orientation by computing the structure tensor J for the
actin images (Appendix A.4). We found a strong correlation between structural and
mechanical polarization (Fig. A.2C). This confirms that singlets have predominantly
horizontally oriented stress fibers, while doublets have mostly diagonal orientations
(from corner to center). Our findings suggest that intercellular junctions may prevent
horizontal stress fiber organization by acting as a barrier. Hence, the cell-cell junction
may strongly alter the mechanical polarization of cell-cell systems.

Through the MSM analysis we could estimate the internal cell stresses purely based
on the traction force measurement. However, this approach ignores the mechanical
properties of the cell periphery and the action of the internal actin structure onto the
peripheral stress fibers. Therefore, we applied the contour model which allows us to
extract values for the surface tension of the actin cortex and the line tension of the free
spanning fiber. As can be seen in Fig. 5.5D, the results of the contour analysis are in
good agreement with the MSM. The surface tension components as predicted by the
cell shape analysis are well-correlated with the cell stresses obtained by the MSM. In
particular, we found that in doublets the y-component of the surface tension dominates
over the x-component, while in singlets it is the reverse (Fig. 5.5D), which again agrees
with the MSM measurement. Following the trend of the structural and mechanical
polarization singlets exhibit strong peripheral stress fibers with a higher line tension
(≈ 180 nN) than in doublets (≈ 120 nN) (Fig. 5.5E). Interestingly, the force of the
adherent fiber is larger in doublets than in singlets, which again, is consistent with the
trend of mechanical and structural polarization of doublets (Fig. 5.5E). Our values
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for the line tension in the free fiber are, moreover, also consistent with previously
reported values for the line tension. For example, for fibroblasts adhered to X-shaped
pattern Labouesse et al. (2015) find a line tension of approximately 60 nN for traction
force magnitudes in the order of 500 Pa. Taken together, we interpret our results as a
cell-cell junction induced redistribution of forces from the free to the adherent fiber.

5.4. Photoactivation- doublets vs. singlets

Following on from the previous section we decided to aim for a two-track simulation
approach including two-dimensional FEM simulations (2D FEM) and contour model
finite element simulations (contour FEM) for the optogenetic experiments. The former
allow to directly control the internal active stresses on the activated and non-activated
side which consequently are directly comparable to the MSM stresses upon photoac-
tivation. The latter allow to quantify curvature changes of the free peripheral fiber as
a result of global and local photoactivation and provide insight to the mechanics of
the peripheral stress fiber. We make use of the global photoactivation experiments to
parameterize both of our FEM approaches. After parametrization we simulate local
photoactivation in order to quantify the effect of active coupling between the activated
and non-activated side.

5.4.1. Modeling

Two dimensional FEM on H-pattern

The approach for the two-dimensional simulation is very similar to Chapter 4. The
cell is described as a thin viscoelastic contractile sheet adhered to the H-shaped mi-
cropattern. By exploiting the results of the static MSM quantification of the previous
section, we may directly incorporate the mechanical polarization into our model

σbck =
(
σbckxx 0

0 σbckyy

)
= σbckxx

(
1 0
0 1−MP

1+MP

)
. (5.25)

In contrast to Chapter 4 the time course of the measured substrate strain energy
exhibits an overall concave shaped rising edge (Fig. 5.7). This is most likely a conse-
quence of the altered activation protocol. Instead of a single light pulse we activated
the cells ten times with a 200 ms long light pulse every minute. Data points were taken
every 60 s. Therefore, instead of a double-sigmoidal activation profile we decided to
use the combination of an increasing saturating exponential and a sigmoidal shaped
decrease (Fig. 5.6A)

σPA(t) = σ0

(
1− e−

t−tact
τact

)1− 1

1 + e
− t−t̃
τrel

 , (5.26)

as it leads to almost perfect fits (Fig. 5.7A). The parameter tact was, according to
the experimental activation time point, set to tact = 20 min. The stress increase upon
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activation relaxation

A B C

0

Figure 5.6: Active stress profile, parametrization of the H-pattern and spatial intensity profile
of the light-pulse during photoactivation. Panel A shows the active stress profile used to model
stress generation upon photoactivation. It is constructed by combination of an increasing saturating
exponential and a sigmoidal shaped decrease. tact denotes the time point of photoactivation (left
vertical grey line), τact, τrel and t̃ resemble the activation and relaxation time scale and the onset of
stress relaxation (right vertical grey line), respectively. Panel B illustrates the parametrization of the
H-pattern. Panel C shows the spatial intensity profile of the light pulse during illumination of the
left half of the pattern. Circles denote experimental data and the black solid line depicts a sigmoidal
fit. The vertical blue line shows the center of the sigmoid and the grey line depicts the center of the
pattern. The inset shows the intensity profile for a varying degree of active coupling which was used
to account for an active feedback on the non-activated portion of the pattern.

photoactivation is defined by the activation time scale τact. The stress relaxation is
characterized by two time scales t̃ and τrel describing the onset of stress relaxation
and the time scale of relaxation, respectively. σ0 is the common saturation level. The
fibronectin-coated pattern is illustrated in Fig. 5.6B and mathematically implemented
by

(x, y)Y 6=0 =
{
x, y

∣∣∣x ≤ w − D

2 ∨ x ≥
D

2 − w ∨ −
w

2 ≤ y ≤
w

2
}
, (5.27)

where we, according to the experiments, set w = 5 µm and D = 45 µm.
The effect of local photoactivation was introduced by the intensity profile of the

light pulse. The intensity profile was approximated by a sigmoid

I(x) = 1− 1
1 + e−a(x−b) , (5.28)

and the free parameters a = 0.65 and b = 13.19 were obtained by fitting Eq. (5.28)
to the measured curve (Fig. 5.6C). In order to account for an active response on the
non-stimulated side of the pattern, we modify the intensity profile such that it reaches
a constant level f as x→∞

Ĩ(x) = (1− f)
(

1− 1
1 + e−a(x−b)

)
+ f . (5.29)

The parameter f ∈ [−1, 1] controls an active stress level on the non-activated side
and is referred to as the degree of active coupling. Positive and negative values for f
correspond to active contraction and active relaxation, respectively. A value of f = 1
is equivalent to the case of global photoactivation. The intensity profile as a function
of f is shown in Fig. 5.6C (inset). The time-dependent opto-stress tensor is modified
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by the spatial distribution of the intensity profile by multiplication3

σ̃PA(x, t) = σPA(t)Ĩ(x) . (5.30)

Contour based FEM

The modeling procedure for the contour simulation is very similar to the two-dimensional
version explained above. The aim was to quantify the active coupling between acti-
vated and non-activated side. The contour FEM is implemented analogously to Sec-
tion 3.3 with a weak form as presented in Eq. (3.35). Yet, in order to use our contour
FEM to complement the experimental measurements, we need to increase the level of
detail for the mechanical properties of the free fiber.

In the spirit of the TEM we split the line tension into an active and elastic contri-
bution where the first accounts for the elastic properties of the cross-linking proteins
within the actin bundle and the latter is an active contribution stemming from myosin
II motors. Therefore, we assume

λ = λel + λact . (5.31)

This specific choice corresponds to the case of a parallel connection of active and elastic
elements. In a serial connection the total line tension would be fully determined by the
active motors. Labouesse et al. (2015), however, showed that a purely serial linkage of
active and elastic elements cannot explain the observed shape changes of free spanning
arcs during drug induced inhibition of myosin II activity, which motivates our choice
for a parallel connection of active and passive elements.

We further assumed a linear constitutive relation between stress and strain for the
elastic component

λel = EAε = EA(ν(ŝ)− 1) , (5.32)

which is directly connected to the stretch of the fiber ν(ŝ) as defined in Eq. (2.58). The
rest length of the fiber is set to the spanning distance L̂ = d but in principle a value
of d < L̂ is possible. Here, EA denotes the one-dimensional modulus of the fiber as a
product of Young’s modulus E and the cross-sectional area A of the fiber. Consensus
values for single actin filaments are for example Afil = 18.8 nm2 and Efil = 2.8 GPa
(Gittes et al., 1993). Hence, single actin filaments have a one-dimensional modulus
of EfilAfil = 52.6 nN. Interestingly, the one dimensional modulus for stress fibers
is in the same order of magnitude EfibAfib = 45.6 nN with Efib = 1.45 MPa and
Afib = 31 416 nm2 (Deguchi et al., 2006) despite having a three orders of magnitude
smaller Young’s modulus. From this one may conclude that not actin itself but rather
the cross-linking proteins, such as α-actinin and myosin II, mainly dictate the elastic
properties of stress fibers (Guthardt Torres et al., 2012). The above calculation should

3To keep the activation profile static in the lab-frame (Eulerian frame) we incorporate the, although
in many cases negligible, deformation by shifting the activation profile according to the displacement
field of the previous time step such that I(x) = Î(X + ux). Here, the coordinate X is fixed in the
material.
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only be regarded as a rough estimate. Based on the reported value by (Labouesse
et al., 2015) we conclude that reasonable values are around EA = 50 nN− 350 nN and
set this value to EA = 300 nN throughout our contour simulations. All other fixed
values for this simulation can be found in Table A.8.

In the context of the contour model we define global activation by an overall
increase in surface tension

σPA,max
i = σi + σi · RSImax

i , (5.33)

where σPA,max
i denotes the respective surface tension component at maximum strain

energy, RSImax
i is the maximal relative surface tension increase and i = x, y. Further,

we assume the active line tension to remain unchanged during photoactivation. We
motivate this by the observation, that the arc is pulled towards the cell interior upon
photoactivation and hence the average radius of curvature of the arc decreases. This
indicates that photoactivation has a stronger influence on the contractility of the cortex
than on the peripheral arc as can be expected from the Laplace law with R = λ/σ. In
this sense, we prevent the ambiguity by keeping λact fixed throughout, knowing that
this might underestimate the surface tension.

Local photoactivation is obviously introduced in exactly the same way as for the
2D FEM simulations by multiplying the photoactivation contribution with the spatial
profile (Fig. 5.6C)

σPA,max
i (ŝ) = σi + σi · RSImax

i · Ĩ(ŝ) , (5.34)

this time as a function of the arc-length parameter of the unstretched fiber4.

Parametrization of the 2D FEM through global photoactivation

All model parameters were obtained by fitting the 2D FEM model to the experimental
strain energy curve from the global photoactivation of singlets and doublets. We first
determined the active background stress by fitting our model to the baseline of the
strain energy curve from which we obtain σbckxx . In a second step we then fitted the
temporal evolution of the strain energy by optimizing the free parameters σ0, τact and
t̃ in Eq. (5.26). The results of the strain energy fits along the Frobenius norm of
the total internal stress of the cell layer and the simulated traction force maps are
gathered in Fig. 5.7. The optimized parameters are summarized in Table A.6. For
both conditions, our model perfectly captures the time course of the relative strain
energy (Fig. 5.7A). Cells contract throughout the period of the repeated light pulses,
but begin to relax almost immediately after photoactivation terminates. However, the
overall strain energy response in doublets is almost twice as large as for singlets. This
may be a consequence of the high level of background stress in singlets. Interestingly,

4Keeping the activation profile fixed in the laboratory (Eulerian) frame can be achieved by the mapping
between the arc length parameters s(ŝ) =

∫ ŝ
0

∣∣∣ ∂x
∂q

∣∣∣ dq. Then, the intensity profile has to be shifted
to the position ŝ at which x(s) = ŝ/2. For this one has to implement the finite element simulations
by an updated Lagrangian approach and shift the intensity profile in each iteration step.
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Figure 5.7: Parametrization of the two-dimensional finite element simulations based on the substrate
strain energy obtained from global photoactivation of doublets (top row) and singlets (bottom row)
on H-patterns. Panel A shows the relative substrate strain energy for doublets and singlets as a
function of time. The first 20 time frames denote the baseline. The vertical blue lines indicate the
time points of photoactivation with a 200 ms long light pulse every minute for 10 min. The strain
energy curves were normalized by first substracting the individual baseline energies (average of the
first 20 time frames) and then dividing by the average baseline energy of cell doublets/singlets in the
corresponding data set. The data is shown as circles and error bars denote the s.e.m. The fit of the
simulated substrate strain energy is depicted by the solid line. Panel B shows the Frobenius norm
of the total internal cell stress before photoactivation resulting from the finite element simulation.
Panel C shows the simulated traction force maps. Scale bars correspond to 10 µm. Additional maps
comparing singlets and doublets during global photoactivation are shown in Figs. A.4 and A.5.

after photoactivation singlets relax further below their initial level of contractility,
whereas doublets recover their homeostatic baseline level (Fig. 5.7A). Moreover, in
Fig. 5.7B we show the Frobenius norm of the total baseline stress tensor for doublets
and singlets in the deformed configuration as obtained from simulations. As expected,
the cell contour of the doublets is stronger invaginated than for singlets as σbckyy is
much larger in doublets (Table A.6). Further, the stresses in singlets are larger in
the non-adhesive parts of the simulation domain. In addition, the resulting traction
maps resemble the essential features of the experimentally obtained traction maps
(Fig. 5.5A). For doublets, the traction maps in Fig. 5.7C show peaks in the corners of
the pattern consistent with the experiments. However, here it has to be noted that the
very localized large peaks are an artifact of the discrete nature of FEM in combination
with the sharp corners of the pattern. For singlets, the large stresses in x-direction
result in traction forces all along the vertical bars of the H-shaped pattern (Fig. 5.7C).
Besides the absence of clear traction peaks in the corners we point out that the TFM
maps show a non-negligible traction force along the vertical bars too (Fig. 5.5A).

Parametrization of the contour FEM by global photoactivation

The starting point for the parametrization of the contour FEM simulations were the
(experimental) results obtained from the cell shape analysis i.e. the motion of the
free spanning stress fibers. In particular, we obtained average values for a, b, σx and
σy as well as the relative stress increase (RSIexpi ) during photoactivation. From the
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Figure 5.8: Parametrization of the contour FEM through global photoactivation. Panel A shows the
average cell contour obtained as the average fitting ellipse for a spanning distance of d = 35 µm (full
circles). The black line shows the fit of the contour FEM to the average ellipse to obtain the active
line tension λact in the peripheral fiber. The blues line depicts the cell contour at maximal surface
tension for a globally stimulated cell. Panel B shows the contour strain measurement of the free stress
fiber. The inter-stress fiber distance after (Lmax

PA ) and before (Lbck) photoactivation is measured along
the x-axis for each tracking point (circles) which defines a contour strain. Panel C shows the fit of
the contour FEM (solid line) to the experimentally measured contour strain (hollow circles). Panel D
shows the line tension along the fiber, obtained by the contour FEM, before photoactivation (black
circles) and at maximal surface tension (blue hollow circles). The shown line tensions correspond
to the cases depicted in panel A and the parameters listed in Table A.8. The solid line shows the
analytically predicted line tension according to Eq. (5.11).

values of the homeostatic state we defined an average contour by fixing the surface
tension components σx and σy as well as the semi-axis a. Subsequently, we computed
b = a

√
σy/σx. This was necessary since we averaged all those quantities independently

of each other such that the averages of the single quantities not necessarily belong to
the same elliptical arc as they are connected through the undetermined parameter C.
Based on actin images the spanning distance of the fiber was estimated to an average
value of d = 35 µm (corresponding to the inner edge of the vertical bars of the H-
pattern). The average cell periphery was then obtained by the portion of the average
ellipse for which the endpoints have a spanning distance d (Fig. 5.8A). First, we fitted
the simulated contour to the average contour by treating λact as a free parameter
(Fig. 5.8A (black line)). For this we again used a simplex algorithm (Nelder et al.,
1965).

After that we optimized the values for the relative stress increase in x- and y-
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direction (RSImax
x and RSImax

y in Eq. (5.34)) to fit the measured contour strain to the
one computed with the contour FEM at maximum strain energy. Fig. 5.8B illustrates
the contour strain measurement on image data, but is performed in the same way in
the simulation. We measure the vertical inter-stress fiber distance after (Lmax

PA ) and
before (Lbck) photoactivation along the x-axis for each tracking point (circles). This
procedure defines a contour strain

εyy = Lmax
PA
Lbck

− 1 . (5.35)

The negative values for the contour strain (Fig. 5.8C) indicate that the free arcs are
towards the cell interior during photoactivation. During minimization we made sure
that the optimized RSImax

i lie within the standard deviation of the experimental (cell
shape analysis) values RSIexpi . This was achieved by using a sequential least squares
programming algorithm (SLSQP) (Kraft et al., 1988) implemented in SciPy (Virtanen
et al., 2020) which, in contrast to the simplex algorithm, allows constrained mini-
mization. The result of this optimization is depicted in (Fig. 5.8C). The optimized
parameters are listed in Table A.8. The parameter estimation based on the global
photoactivation data was then completed by a consistency check. We numerically
calculated the line tension once by Eq. (5.31) and compared it to the analytical for-
mula in Eq. (5.11) with the input parameters of the simulation. The two approaches
perfectly agree (Fig. 5.8D (black line and circles)). Moreover, the additional contour
strain upon photoactivation increases the overall line tension (Fig. 5.8D). However,
relative to the endpoints of the fiber, the line tension in the center remains minimal
as the anisotropy of the actin CSK is not changed during activation.

5.4.2. Results

In order to quantify stress propagation in doublets and singlets we activated the left
half of the pattern according to the protocol described in Section 5.2 and determined
how this localized stress increase propagates to the non-activated side of the system.

Qualitative study of local photactivation - force propagation

In analogy to the global photoactivation, we quantified the substrate strain energy
based on the TFM measurement. However, this time we separately computed the
strain energy for the left and right half of the pattern. Based on this quantification
we found a striking difference between doublets and singlets (Fig. 5.9A).

In doublets, the strain energy increased on both sides of the pattern, while for sin-
glets only a very slight global increase was notable. In addition, the strain energy of
singlets decreases below the initial baseline level without recovery while doublets show
a homeostatic response to local RhoA perturbation. Fig. 5.9B additionally shows the
corresponding traction force differences between the time point of peak strain energy
and the baseline. Red color indicates a traction force increase and blue color depicts a
traction force decrease. The FEM simulations showed that simple activation of the left
half of the pattern cannot reproduce either case, since the increase in traction force on
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Figure 5.9: Comparison of local optogenetic activation in doublets and singlets. Panel A shows the
relative strain energy response in doublets (top) and singlets (bottom) for local photoactivation of
the left half of the pattern. Strain energy is shown separately for the left half (bright) and right half
(dark) of the pattern. The first 20 time frames denote the baseline. The vertical blue lines indicate
the time points of photoactivation with a 200 ms long light pulse every minute for 10 min. The strain
energy curves were normalized by first substracting the individual baseline energies (average of the
first 20 time frames) and then dividing by the average baseline energy of cell doublets/singlets in the
corresponding data set. The data is shown as circles and error bars denote the s.e.m. The left column
of panel B shows the difference of the average traction force maps after and before photactivation of
doublets (top) and singlets (bottom). The middle column shows corresponding FEM simulations where
the left cell was activated corresponding to a purely passive right cell (traction increase indicated by
arrows). The right column shows FEM simulations with an active response of the right cell denoted by
the degree of active coupling f . Panel C compares the lifeact intensity measurement of the activated
(bright) and non-activated side (dark) in doublets and singlets. The left sub-panel shows a LifeAct
intensity measurement over time. The sub-panel on the right depicts the relative actin intensity value
two minutes after photoactivation for the activated and non-activated side. Panel D (top) shows
the basic elements of the FEM simulation for a qualitative model for fluidization. The dynamics
of the singlet can be reproduced by a switch from a Kelvin-Voigt model to a Maxwell model upon
photoactivation. Panel D (bottom) shows the comparison of the simulated and measured strain
energies in the left (bright) and right (dark) half of the pattern during local photoactivation of the left
half of the singlet. The experimental relative strain energy curves were calculated in the same way as
in A. Further details can be found in Appendix A.2. All experimental plots show data from n = 17
doublets from N = 2 samples and n = 24 singlets from N = 6 samples.
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the non-activated part of the pattern is too low for doublets and too high for singlets.
The strain energy curves of the FEM simulations corresponding to the middle column
of Fig. 5.9B are shown in Fig. A.3B, emphasizing that a purely passive reaction cannot
reproduce and explain the experimental data for both, doublets and singlets. To test
whether the observations could be described by active coupling between the activated
and non-activated side we made use of the degree of active coupling f as defined in
Eq. (5.29). Treating f as a fit parameter allowed to qualitatively reproduce the TFM
measurements as can be seen by comparing the first and last column of Fig. 5.9B.
These qualitative simulations revealed a positive coupling f > 0 for doublets and a
negative coupling f < 0 for singlets. This implies that in doublets, a contraction on
the left side induces an active contraction on the right side i.e. a contraction of the
non-activated cell. A negative value for singlets implies that the non-stimulated side
actively relaxes as a consequence of contraction on the left side. To study this even
further, we tracked the behavior of the actin cytoskeleton during light-stimulation
by means of actin fluorescence imaging (F-actin reporter LifeAct). We found that
in doublets, the relative actin intensity remains in good approximation constant as
can be seen in Fig. 5.9C. Conversely, for the singlets, our data indicates that local
RhoA activation on one side is compensated by a stress and F-actin decrease in the
non-activated domain. Further, the transient RhoA activation destabilizes the homeo-
static state of the singlet as the total traction stresses keep decreasing long after light
perturbation. Motivated by other studies (Andreu et al., 2021; Krishnan et al., 2009)
we hypothesize that our observations might be a result of acute fluidization of the
cytoskeleton upon local stress increase. In contrast to doublets, there is no junctional
barrier in singlets and hence F-actin may flow from the non-activated to the acti-
vated side during PA. This would also explain the observation that the actin increase
and decrease approximately add up to zero (Fig. 5.9C). In Fig. 5.9D we show that
a quasi one-dimensional model for fluidization qualitatively captures the time course
of the strain energy. Here we introduce fluidization by a model switch from a solid
like Kelvin-Voigt-model to a fluid-like Maxwell model. Due to to this spontaneous
model switch the viscous element provides a strain energy increase in response of the
sudden switch. By introducing a viscoelastic coupling to the substrate, analogously to
(Oakes et al., 2017), we allow flow-like behavior leading to a strain energy decrease.
The finite element implementation as well as the parameterization can be found in
Appendix A.2. These results suggest active coupling between cells in cell doublets,
with contraction of the left cell inducing contraction in the right cell, consistent with
previous qualitative findings (Hino et al., 2020; Z. Liu et al., 2010).

In summary, our results suggests that the intercellular junction supports force
propagation across the pattern presumably due to mechanotransductory mechanisms
and by preventing fluidization.

Quantification of active coupling in cell doublets

In order to quantify the magnitude of the active response of the non-activated cell
we directly compared a series of FEM simulations to the stress distributions obtained

103



5. Optogenetic control of cell pairs

by MSM (Fig. 5.10A). For this, we varied the degree of active coupling f as a free
parameter ranging from −1 to 1 in steps of ∆f = 0.1, in other words, we increased
the active response on the non-activated side in steps of 10%. For each value of f ,
the stress difference ∆σxx(x, y) and ∆σyy(x, y) between baseline and maximum strain
energy were computed. Subsequently, we averaged the resulting stress difference maps
over the y-axis. In this way, we obtain a stress profile as a function of x for each
value of f . In Fig. 5.10B we show that the resulting stress profiles for MSM and
FEM qualitatively agree but hint towards a distinct coupling strength for stresses in
x and y-direction, repsectively. In order to consistently compare the experimental to
the simulated profiles, the stress increase was normalized by integrating the right half
of the curves and dividing that by the integral of the whole curve. This procedure
allowed us to translate the family of curves (Fig. 5.10B) into a relationship between
the normalized stress response for σxx and σyy and the degree of active coupling f
as depicted in Fig. 5.10C. Separately for σxx and σyy we determined the degree of
active coupling which best matches the normalized response of the right half of the
experimental profile. The respective results are shown as yellow squares in Fig. 5.10C.
As could be expected from the shape of the stress profiles in Fig. 5.10B, our results
yield different coupling strengths for σxx and σyy. For the y-direction we found a
positive active coupling of f = 0.2 but a negative active coupling of f = −0.05 for the
x-direction. This is most likely a due to the fact that forces in x-direction always have
to be balanced between the cells. In contrast, y-directed forces are predominantly
balanced between cell and substrate and not across the cell-cell junction. Therefore,
the cells may contract independently of each other in y-direction.

Following the ideas of the contour model one might expect that partially activating
a cell leads to a local increase in surface tension which in turn has to result in a non-
symmetrical contour. On the right hand side of Fig. 5.10D we show the typical contour
of a partially activated cell as predicted by the contour FEM (Fig. 5.10D). Within the
assumptions of our model, local photoactivation leads to a skewed contour which is
dragged into the activation region. The degree of skewness depends on the strength
of the surface tension. Additionally, the line tension along the contour drastically
changes. Obviously, Eq. (5.11) no longer holds as the line tension attains its maximal
value at the focal adhesion in the activated half. This again demonstrates that the
contour model may predict the traction force increase during local photoactivation
as well as the directional change of those forces as the tangent angle changes. In
marked contrast to the contour FEM without feedback (Fig. 5.10D (right sub-panel)),
our experimental data show a very symmetric deformation of the contour in a large
majority of all locally activated cell doublets. The conservation of symmetry supports
the result previously demonstrated with the MSM that the non-activated cell actively
contracts in the y-direction.

To estimate the degree of active coupling purely based on the shape of the cell, we
followed the same procedure as for the 2D FEM and successively increased the degree
of active coupling for the surface tension in steps of ∆f = 0.1 from f = 0 to f = 1.
For each value of f we then calculated the contour strain (Eq. (5.35)) in the same
way as for the parameterization through global photoactivation. The resulting family
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Figure 5.10: Active coupling in cell doublets. Panel A shows the difference of average cell stresses
in x-direction (left) and y-direction (right) after and before photoactivation. The top row corresponds
to the MSM quantification and the bottom row shows the FEM simulations. Panel B (top row) shows
the MSM stress maps in A averaged over the y-axis. The data is shown as circles and error bars denote
the s.e.m. The bottom row shows the FEM simulations for different active stresses (different values
for the degree of active coupling) in the right half leading to a family of curves. Panel C (grey line)
shows the normalized response of the right half obtained from the FEM simulations as a function of
the degree of active coupling. The data point corresponds to the normalized response obtained from
the experimental curves in B and was placed on top of the grey line to obtain the degree of active
coupling. Panel D shows the contour strain measurement of the free stress fiber. On the experimental
images (left sub-panel), the inter-stress fiber distance after and before photoactivation is measured
along the x-axis which defines a contour strain. The right sub-panel exemplarily shows a contour
simulation of a fiber where the left half of the cell has been activated. It is clearly skewed and exhibits
an asymmetric distribution of the line tension along the fiber. Panel E shows the result of the contour
strain measurement (left sub-panel). The right sub-panel shows the same contour strain quantification
for simulated contours where the right half of the contour has been progressively activated similar to
B. This leads to the depicted family of curves. Panel F (grey line) shows the normalized response
of the right half obtained from the contour FEM simulations as a function of the degree of active
coupling. The data point corresponds to the normalized response obtained from the experimental
curves in E and was placed on top of the grey line to obtain the degree of active coupling. Panel G
summarizes the results of the previous panels. The TFM and MSM analysis only measure the forces
that are transmitted to the substrate. These forces are dominated by the activity of internal stress
fibers. The contour shape of the free fiber is determined by the contractility of the cortex and the free
fiber itself. The stronger active coupling in the contour suggests a better coupling of the cortices and
a comparatively weaker active coupling of the stress fibers. All experimental plots show data from
n = 17 doublets from N = 2 samples. Scale bars correspond to 10 µm.
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of curves, together with the contour strain measurement, is depicted in Fig. 5.10E.
Asymmetry in the contour strain is high for low values of f and low for high values
of f with a limiting case of symmetrical response for f = 1. Further, we normalize
the response by integrating the right half of the curve and normalizing that by the
integral of the whole curve.

By this procedure we again translate the family of curves into a single curve which
measures the normalized response of the right half as a function of the degree of active
coupling. In agreement with the results from MSM and the 2D FEM simulations we
found a positive degree of active coupling. However, the value of f = 0.8 (Fig. 5.10F
(yellow box)) is much larger than the one from the previous quantification. Hence, the
contour strain measurement indicates an almost global response of the cell doublet to
local stimulation.

Taken together, the traction forces are mainly dominated by the strong internal
stress fibers supplemented by a contribution from the peripheral stress fiber. This
assumption is based on the observation that the traction peaks are mostly located in
the corners of the pattern. The actin cortex itself must play subordinate role, since it
has little direct influence on traction forces and can transmit forces to the substrate
only along the vertically adherent fiber. As no significant constant horizontal force
is present in the TFM, we assume that the TFM measurement mostly represents the
action of the stress fibers. In contrast, the shape of the free spanning arc is strongly
influenced by the cortex and the properties of the free stress fiber. Since the internal
stress fibers are directly coupled to the substrate and therefore most likely transmit
little force across the intercellular junction (Fig. 5.10G, left), this could explain the
weaker level of active coupling revealed by the MSM measurements. Based on the
quantification of the contour strain, the cortices therefore exhibit much stronger active
coupling (Fig. 5.10G, right).

Stress propagation and structural polarization

Our results indicate that stress propagation in doublets is much more efficient in the
y-direction than in the x-direction. In order to test if this observation is connected
to the structural and mechanical polarizations, we manipulated the internal actin
organization by changing the pattern geometry. The overall H-shape of the pattern
remains but the aspect ratio was varied once to a y : x = 1 : 2 (1to2) and y : x = 2 : 1
(2to1). In this way the spreading area stays constant. The basic quantification pipeline
as developed in the previous sections could be directly applied to the experiments for
the different aspect ratios. Fig. 5.11 A,B and C show the results of the experimental
quantification before photoactivation. The average traction force maps hint at distinct
internal stress fiber organization as the angle of traction forces changes as a function of
the aspect ratio. For the 1to2-pattern, forces have a larger x-component while for the
2to1-pattern, the y-component dominates. The MSM results in Fig. 5.11B show how
the different TFM inputs affect the internal cell stresses. The stresses in the y-direction
are largest for the 2to1 pattern and smallest for the 1to2 pattern, and the reverse is
true for the x-direction. Cells on the 1to1-pattern show almost isotropic internal
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Figure 5.11: Influence of micropattern aspec ratio on the mechanical and structural polarization
of doublets. Panel A depicts actin images (left) and average TFM maps (right) of cell doublets on
H-pattern with aspect ratios 1to2 (top), 1to1 (middle) and 2to1 (bottom). Panel B shows the average
internal cell stresses obtained by application of MSM to the TFM maps. Panel C shows the correlation
of mechanical and structural polarization. The black line corresponds to a linear regression of the data
and the shaded region denotes the 95 % confidence interval for this regression. The R-value shown is
the Pearson correlation coefficient. All experimental plots show data from n = 43 1to2 doublets from
N = 6 samples, n = 29 1to1 doublets from N = 2 samples and n = 18 2to1 doublets from N = 3
samples. Scale bars correspond to 10 µm.

stresses. As before, mechanical and structural polarization are strongly correlated and
both, the internal stresses and the actin organization vary drastically in between the
different aspect ratios (Fig. 5.11C).

By repeating the local photoactivation experiment, the measurement and the FEM
modeling procedure, we could investigate the influence of structural polarization on
force propagation (Fig. 5.12A-C). Since we had no data for global photoactivation this
time, our model was calibrated by the baseline fit and the results of the mechani-
cal polarization alone. As we determined stresses in a normalized fashion in x- and
y-direction separately, the absolute values had little influence on the relative stress
profiles and the resulting normalized response of the right half (Fig. 5.12C). Parame-
ters as used for the simulations are gathered in Table A.7. In the following we refer
to the activated cell as the sender cell and the non-activated cell as the receiver cell.
As before, we always activated the left cell.

A comparison of the three aspect ratios shows that the stress response of the
receiver cell depends strongly on the aspect ratio. On 1to2-patterns cells are polarized
mainly into the direction of possible stress propagation i.e. along the x-axis. Here,
the receiver cell relaxes upon activation of the sender cell. Conversely, for doublets on
2to1-pattern, cells are mainly polarized perpendicular to the axis of stress propagation
(x-axis) and the receiver cell actively contracts upon stimulation of the sender cell.
A quantification of the degree of active coupling by means of our FEM procedure
confirms the strong active coupling for cells on 2to1-pattern. In general we find that
an increasing mechanical and structural polarization induces a stronger active coupling
as can be seen in Fig. 5.12D.

Analogously to the previous section we then repeated the same quantification for
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Figure 5.12: Efficiency of force transmission for differing mechanical and structural polarization in
doublets. Panel A shows the difference of average cell stresses in x-direction (left) and y-direction
(right) after and before photoactivation for aspect ratios 1to2 (top), 1to1 (middle) and 2to1 (bottom).
The illuminated region is highlighted by the blue rectangle. Panel B shows the MSM stress maps in
A averaged over the y-axis. The data is shown as circles and error bars denote the s.e.m. Panel C
shows the normalized response of the right half for all aspect ratios, obtained by the FEM simulation,
as a function of the degree of active coupling. The data point corresponds to the normalized response
obtained from the experimental curves in B and was placed on top of the grey line to obtain the degree
of active coupling. Panel D shows the degree of active coupling plotted against the average mechanical
and structural polarization of the doublets. Panel E summarizes the findings of the previous panels.
The relative response of the non-activated cell varies drastically in the different aspect ratios. In the
1to2 doublet, where the transmission direction and axis of polarization are aligned, the non-activated
cell relaxes upon stimulation of the left cell. In contrast, for the doublets on 2to1 patterns, where the
transmission direction is perpendicular to the average direction of polarization the non-activated cell
contracts almost as strongly as the activated cell. All experimental plots show data from n = 43 1to2
doublets from N = 6 samples,n = 29 1to1 doublets from N = 2 samples and n = 18 2to1 doublets
from N = 3 samples. Doublets with unstable stress behavior before photoactivation were excluded
before the analysis of the optogenetic data. Scale bars correspond to 10 µm.
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the coupling of the cortices. The results are shown in Fig. A.3E-G. Qualitatively, we
found that the contour strain is symmetric for the 1to1 and 2to1 doublets, but shows
a very strong asymmetry for the elongated 1to2 doublets. This agrees with the results
of Fig. 5.12C, which shows the lowest degree of active coupling for 1to2 doublets. A
quantitative analysis reveals stronger active coupling for 1to1 doublets than for 2to1
doublets. To put these results into perspective, one should note that the contour strain
measurement for the 2to1 doublets was subject to large fluctuations as the contour
strain is very small.

In summary, we found that the degree of active coupling increases with increasing
mechanostructural polarization and thus stresses transmit most efficiently perpendic-
ular to the polarization axis (Fig. 5.12E).

5.5. Stress propagation in small tissues

Finally, we concluded our study by investigating to what extent the results presented
above translate to larger systems such as small cell clusters. The small cell monolayers
were experimentally realized by plating 10−20 cells on a rectangular shaped micropat-
tern with an area of 150 µm× 40 µm. The results of the TFM, MSM and the analysis
of the internal actin structure for the small cell clusters are shown in Fig. 5.13A-C. As
can be seen from Fig. 5.13C, the tissues exhibit a strong mechanostructural polariza-
tion in direction of the long axis of the pattern. F-actin images further reveal strong
peripheral actin cables along the borders of the pattern but a less dominant internal
actin structure (Fig. A.6).

Subsequently, photoactivation of either the left or the top half of the pattern then
allowed to study stress propagation along and perpendicular to the axis of mechanos-
tructural polarization. Purely qualitatively, Fig. 5.13D shows that in both cases local
photoactivation is accompanied by a stress increase in the non-activated part of the
tissue. By using our 2D-FEM approach and following the same quantification strategy
as before, we find that the degree of active coupling attains a higher value if the axis
of polarization and the direction of stress propagation are perpendicular to each other
(Fig. 5.13E,F). In addition, we estimated the distance stress propagates by measuring
the distance at which the stress decreases to 20 % of its maximal value. This distance is
on average three times larger if the direction of stress propagation is perpendicular to
the axis of mechanostructural polarization (Fig. 5.13E) The results of this analysis are
placed in the context of the previous results in Fig. 5.13G. Here, the active coupling in
x- and y-direction is plotted as a function of both, the mechanical polarization and the
structural polarization. Consistent with the previous results for doublets on different
H-patterns, mechanostructural polarization and active coupling are correlated also in
larger cell clusters. Overall, our results suggest that the correlation between mechan-
ical polarization, structural polarization, and active coupling is typical for epithelia,
regardless of system size.
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Figure 5.13: Stress propagation in small monolayers. Panel A shows a representative (top) and the
average (bottom) TFM maps of a small monolayer on a rectangular micropattern. Panel B shows
the corresponding cell stresses obtained by application of MSM to the TFM maps. Panel C shows
the correlation of mechanical and structural polarization across all considered conditions. The black
line corresponds to a linear regression of the data and the shaded region denotes the 95 % confidence
interval for this regression. The R-value shown is the Pearson correlation coefficient. Panel D shows
the difference of average cell stresses in x-direction (left) and y-direction (right) after and before
photoactivation. The illuminated region is highlighted by the blue rectangle. Panel E shows the
MSM stress maps in A averaged over the y-axis. Here, the coordinate system corresponds to the
tissue orientation as depicted in the small cartoon on the left side. The data is shown as circles and
error bars denote the s.e.m. Panel F shows the normalized response of the right half (non-activated
half), obtained by the FEM simulation, as a function of the degree of active coupling. The data
point corresponds to the normalized response obtained from the experimental curves in E and was
placed on top of the grey line to obtain the degree of active coupling. Panel G shows the degree of
active coupling plotted against the average mechanical and structural polarization for all considered
conditions. The experimental plots in A, B, D, E and F show data from n = 13 tissues from N = 2
samples. photoactivated on the left and from n = 60 tissues from N = 3 samples photoactivated on
the top. Scale bars correspond to 10 µm.
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5.6. Summary and discussion

In this chapter we studied how cell-generated forces propagate from one cell to another
across the intercellular junction. Further, we investigated how this process is influenced
by mechanical and structural polarization of the system. A combination of several
experimental techniques such as micropatterning, TFM, MSM and optogenetics with
finite element modeling of thin elastic sheets and contour models of cell adhesion
allowed to quantify the observations in greater detail.

We started in Section 5.3 by exploiting anisotropic contour models in combination
with image analysis to characterize the differences between singlets and doublets. This
approach allowed us to obtain characteristics like line and surface tension of the two
conditions. The analysis showed that an intercellular junction not only influences the
mechanical polarization of the system but also alters the line tension of actin bundles
in the cell periphery.

Next, in Section 5.4 we parametrized a two-dimensional FEM model similar to
Chapter 4 with respect to global photoactivation of singlets and doublets. Moreover,
we introduced an FEM description for contour models which treats the free peripheral
stress fiber as an active linear elastic material. For both approaches we introduced local
photoactivation by incorporating the spatial profile of the experimental light pulse.
A comparison of the computational methods with the experimental measurements
revealed that cells in a cell doublet are actively coupled. We verified this by local
photoactivation of only one cell in the doublet which led to an active contractile
response of the non-activated cell. Using the 2D FEM simulations, we were able to
show that a purely passive, non-activated cell cannot explain the experimental traction
force maps and the corresponding increase in substrate strain energy. In addition, the
results of the cell shape analysis show an almost symmetrical shape deformation in
response to asymmetrical stimulation. The cell shape deformation is mainly dictated
by the activity of the actin cortex, and a comparison of the cell shape measurements
and the contour FEM suggests that active coupling is stronger for the cortices than
for the internal stress fibers. However, it is plausible that this is strongly influenced
by the mechanical properties of the cells and tissue, as well as the geometric and
mechanical characteristics of the substrate. According to our data, the mechanical
signals are propagated up to two cell lengths due to the active coupling mechanism.
Yet, we only considered transient activation signals and it would be interesting to
study if the signals may travel farther by maintaining signal strength over a longer
period of time. Additionally, the mechanical signals can travel very fast compared
to biochemical signals. This is clearly demonstrated by the fact that we did not
notice any delay between the force signals of sender and receiver cell with a temporal
resolution of one frame per minute. In marked contrast to the cell doublets, the non-
activated region in single cells showed acute fluidization of the actin structure. Hence,
the absence of a cell-cell junction prevents local stress increase and instead leads to
F-actin flow. This finding emphasizes the importance of cellularisation of tissue as it
allows for compartmentalization and efficient transmission of stress.

Moreover, we demonstrated that the efficiency of the force propagation, i.e. the
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strength of intercellular coupling, strongly depends on the anisotropy of the actin or-
ganization and force distribution. In detail, we were able to quantify that force signals
propagate most efficiently perpendicular to the axis of mechanostructural polarization.
Future work will be essential to determine the precise influence subcellular structures
have on the mechanochemical feedback loops and further it will be necessary to better
decipher which molecular mechanisms are involved in signal detection, transduction
and amplification. At present, it remains puzzling which stimulus is detected by the
receiver cell. Possible mechanisms could be either strain-induced, e.g., by changing the
concentration and spatial localization of the involved signaling molecules during defor-
mation, or stress-induced, e.g., by opening cryptic binding sites of certain molecules
and/or increasing dissociation constants. From the modeling side, it would be neces-
sary to create a computational framework which incorporates the biochemistry of the
RhoA pathway and couple this directly to active stress generation. This would allow
active force generation to be modeled in terms of intrinsic mechanochemical feedback,
rather than introducing active mechanisms through a heuristic approach as presented
in this chapter. From the experimental side it would be interesting to study the emer-
gence and time evolution of RhoA/ROCK and MLC activity in the passive cell. This
could help to identify whether the signal of the sender cell is predominantly processed
in the vicinity of the intercellular junction or at focal adhesions.

Finally, we investigated how active coupling and force propagation translates to
small tissues. In agreement with previous findings for cell doublets, we found that
force transmission is more efficient perpendicular to the axis of mechanostructural
polarization even in small monolayers. This suggests that the underlying mechanisms
operate across scales. We therefore conclude that our results support the findings of
other studies that have investigated the importance of intercellular forces and force
transmission for collective cell behavior (Sunyer et al., 2016; D. T. Tambe et al., 2011;
Vedula et al., 2014).
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Chapter 6

Coupling Biochemistry to Cell
Mechanics

In the previous chapter we investigated force generation and subsequent force prop-
agation in a cell pair, where one cell acts as the sender cell and the other as the
receiver cell. Active force generation upon photoactivation of the sender cell was
introduced by means of a predefined active stress profile. The active feedback was
modeled phenomenologically by elevating the level of active stress in the receiver cell.
This procedure could be successfully exploited to analyze experimental data and hence
verify that the receiver cell actively responds to contraction of the sender cell. How-
ever, this heuristic approach reaches its limits when it comes to investigating the
molecular mechanisms behind active force generation and the mechanotransduction
in the receiver cell. In this chapter, we want to extend our finite element models by
directly coupling active force generation to biochemical signaling pathways. We fur-
ther demand that the model for the reaction kinetics allows optogenetic perturbation,
preferably with a clear setpoint and reversibility.

6.1. Introduction

The combination of biochemistry and mechanics is a common approach in the field
of mechanochemistry and is used to study the emergence of mechanical and chemical
patterns associated with tissue formation and embryogenesis. Theoretical modeling
of such systems involves the use of so-called "morphogens" whose concentration fields
cause changes in cell and/or tissue shape which then feed back onto the dynamics
of the morphogens. The details of these concepts are, for example, discussed in the
work by Allena et al. (2013) where the authors provide a method that couples cell
mechanics and morphogen transport to describe Drosophila embryogenesis. Mercker
et al. (2016) extended this approach and further investigated the role of several possible
mechanochemical feedback loops and their connection to distinct emerging equilibrium
patterns.

The idea of relating the generation of active stresses in viscoelastic fluids to the
concentrations of their molecular regulators, such as myosin II motors, is a central
idea in active gel physics, used for example to model the active behavior of the actin
CSK (Juelicher et al., 2007; Prost et al., 2015). More related to the discussions of
the previous chapters, Besser et al. (2007) introduced a mathematical model which
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combines a one-dimensional viscoelastic model of stress fibers and NMII-contractility
through a reaction diffusion system of the Rho pathway. They additionally introduced
a positive biochemical–mechanical feedback loop by accounting for signaling at focal
adhesions. This positive feedback could explain spatial gradients in the periodic MLC-
α-actinin pattern in stress fibers stimulated with calyculin A. Just recently, Zmurchok
et al. (2018) demonstrated by means of a minimalist model for Rho GTPase activity
that positive tension dependent feedbacks from coupling to a one-dimensional Kelvin-
Voigt model lead to non-trivial cell behavior. By performing a bifurcation analysis they
show that their proposed system gives rise to bistability where the two states represent
permanently contracted or relaxed cells, respectively, but also that oscillatory states
are possible. Additionally they consider a system of small cell clusters by including
their model into CPM simulations.

In addition, local pulsatile contractions of the actin cortex play an important role
in cell and tissue morphogenesis. For example Bement et al. (2015) identified an
activator-inhibitor relationship between RhoA and F-actin which leads to the emer-
gence of spiral contraction waves during cytokinesis in embryonic cells of Xenopus.
Very similar surface contraction waves have been observed for starfish oocytes dur-
ing maturation and could be modeled by coupled reaction kinetics of actin and NMII
(Bischof et al., 2017). Kamps et al. (2020) designed a very detailed model for the
reaction kinetics of GEF, RhoA and MLC which exhibits three types of states: stable,
excitable and oscillatory ones. Accompanied by experimental measurements which
include optogenetic perturbations of GEF, they provide a fully parametrized model.
Very recently, Staddon et al. (2022) coupled a basic activator-inhibitor reaction diffu-
sion system comprised of RhoA, as the activator, and myosin II, as the inhibitor, to
the mechanics of Kelvin-Voigt and Maxwell models. By introducing mechanochemical
feedback the authors demonstrate the emergence of propagating pulsatile contractions
as well as topological turbulence in RhoA flows.

Following along the lines of this recent progress made in the area, with this chapter
we aim at designing a model that includes the stiffness and geometry of the adhesive
environment (i), allows to introduce elastic interaction with neighboring cells (ii) and
accounts for active stress generation and possible mechanotransduction in terms of a
reaction-diffusion system (iii).

We start in Section 6.2 with the finite element formulation of a cell pair model.
First, we discuss the mathematical treatment of diffusion in a deformable domain.
Second, we exploit a discontinuous Galerkin method to introduce the non-permeable
cell-cell junction which is a crucial feature of an interacting cell pair. Then we complete
the cell pair model by discussing how we connect MLC concentration and active stress
generation.

Subsequently, in Section 6.3 we start with a review of the model by Kamps et al.
(2020) and based on this, extract the main features of a linear signaling cascade in
order to qualitatively reproduce optogenetic activation.

Finally, in Section 6.4 we test the implementation of the cell pair model. For this
we will combine it with the RD-system by Kamps et al. (2020) to demonstrate that
traveling RhoA and myosin waves cannot pass the intercellular junction. Subsequently
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we will use our linearized reaction-diffusion system to demonstrate that a strain depen-
dent feedback can qualitatively reproduce the symmetric response of the cell doublet
upon stimulation of the left cell (Section 5.4.2).

We close with an outlook where we will discuss how this model can be used in
future studies and how one would generalize it to model propagation of mechanical
waves for example in epithelial sheets.

6.2. Blueprint for a cell pair model

Before we discuss the details of the underlying reaction diffusion system which we use
to model cellular contractility, we first want to discuss the arising difficulties of the
numerical treatment in a general way. Within this modeling approach the cell is rep-
resented by an elastic contractile sheet analogously to the previously introduced FEM
models. However here, we aim at modeling active contractility not by a predefined
time dependent active stress profile but by resolving the underlying reaction-diffusion
system for GEF, RhoA and myosin. The involved reactants are assumed to diffuse
within the contractile sheet and additionally obey certain reaction kinetics, typically
described by a well-defined activator inhibitor scheme. The homeostatic contractile
state of an adherent cell is given by the steady state solution of the reaction diffusion
system. Without having specified an appropriate RD system yet, we note that active
stresses are effectively generated by active MLC at the end of the signaling pathway.
The spatio-temporal distribution of actively generated stresses is therefore determined
by both, the reaction kinetics and diffusive properties of MLC. Further, active gener-
ated stresses may lead to global and local contractions which directly feed back to the
RD-system.

Qualitatively, shrinkage of the contractile sheet is expected to result in advection
terms and locally/globally elevated concentrations. Hence, a fundamental difficulty
in the treatment such systems is that diffusion processes are naturally treated in the
Eulerian frame while the mechanics of the elastic domain is better described in the
Lagrangian frame. In this sense, we begin with a very general description of RD-
equations on time dependent domains and subsequently use methods from continuum
mechanics to transform it to the Lagrangian coordinate system. Once we derived the
RD-equations in the Lagrangian reference frame we will generally discuss the numerical
implementation by means of a discontinuous Galerkin (DG) approach. This will be
a crucial step when it comes to an adequate, closed and computationally efficient
description of an interacting pair of cells.

6.2.1. Reaction diffusion on deformable domain

Let c(x, t) be the concentration of a signaling protein in the deformed configuration at
time t. The time evolution of c(x, t) can be deduced by imposing mass conservation
i.e.

d
dt

∫
Ω(t)

c(x, t) dx =
∫

Ω(t)
[−∇ · j +Rc(t)] dx , (6.1)
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where j = −D∇c(x, t) is, according to Fick’s first law, the diffusion flux, D the
diffusion tensor and Rc a source or sink term accounting for the reaction kinetics. The
left-hand side of Eq. (6.1) can be evaluated using Reynolds transport theorem which
eventually yields

d
dt

∫
Ω(t)

c(x, t) dx =
∫

Ω(t)

∂

∂t
c(x, t) +∇ · (v(x, t)c(x, t)) dx . (6.2)

Using Eq. (6.2) and the fact that both integrands in Eq. (6.1) have to be equal we
obtain the diffusion equation on the time dependent domain

∂

∂t
c(x, t) +∇ · (v(x, t)c(x, t)) = ∇ · (D∇c(x, t)) +Rc(t) , (6.3)

where v(x, t) corresponds to the velocity of the deforming material. Hence, the time
dependency of the domain leads to two additional terms, an advection term v ·∇c(x, t)
due to growth and dilution induced flows and an enrichment/dilution term c(x, t)∇·v
due to local volume changes. The pull back of Eq. (6.3) to the reference configuration
is done by means of the deformation gradient tensor F̂, its determinant Ĵ = det(F̂)
and the transformation dx = Ĵ dx̂ (Section 2.1.1). Expressing the left-hand side of
Eq. (6.3) in terms of material coordinates gives

d
dt

∫
Ω(t)

c(x, t) dx = lim
∆t→0

1
∆t

(∫
Ω(t+∆t)

c(x, t+ ∆t) dx−
∫

Ω(t)
c(x, t) dx

)
(6.4)

= lim
∆t→0

1
∆t

(∫
Ω(0)

ĉ(x̂, t+ ∆t)Ĵ(x̂, t+ ∆t) dx̂−
∫

Ω(0)
ĉ(x̂, t)Ĵ(x̂, t) dx̂

)
(6.5)

=
∫

Ω(0)

∂

∂t
(ĉ(x̂, t)Ĵ) dx̂ , (6.6)

where we used that c(x, t) = ĉ(x̂, t). The same procedure applied to the right-hand
side of Eq. (6.3) and recalling Piola’s identity Ĵ∇ · a = ∇̂ · (ĴF−1a) for any given
vector field a, one finds∫

Ω(t)
[∇ · (D∇c(x, t)) +Rc(t)] dx =

∫
Ω(0)

[∇ · (D∇c(x, t)) +Rc(t)] Ĵ dx̂

=
∫

Ω(0)

[
∇̂ · (ĴF̂−1DF̂−ᵀ∇̂ĉ) + ĴRc(t)

]
dx̂ , (6.7)

where ∇̂ denotes derivative with respect to material coordinates. Finally, the reac-
tion diffusion equation on a time dependent domain expressed in coordinates of the
reference configuration is given by

∂

∂t
(Ĵ ĉ)− ∇̂ ·

(
ĴDĈ−1∇̂ĉ

)
− ĴRc(t) = 0 , (6.8)

where Ĉ = F̂ᵀF̂ denotes the Cauchy-Green deformation tensor and we further assumed
an isotropic diffusion tensor D = DI with scalar diffusivity D. From the Lagrangian
point of view there are now two terms arising due to the time dependence of the
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domain. On the one hand, expansion of the time derivative in the first term Eq. (6.8)
allows to rewrite it as

Ĵ
∂

∂t
ĉ− ∇̂ ·

(
ĴDĈ−1∇̂ĉ

)
− (ĴRc(t)− ĉ∂tĴ) = 0 , (6.9)

which shows that compression (∂tĴ < 0) and dilation (∂tĴ > 0) of the elastic domain
effectively alters the reaction kinetics. On the other hand, diffusivity transitions from
isotropic to anisotropic ĴDĈ−1 during deformation i.e. decreases along the principal
axis of deformation. Additionally, we note that in case of a static domain we recover
the standard reaction diffusion equation as Ĵ = 1 and Ĉ = I.

6.2.2. Diffusion with hindrance - membrane

The presented methods can be generalized to a variety of different problems which aim
at modeling diffusive transport also across interfaces. Hence, we start the discussion
as before in a very general sense and later discuss the necessary restrictions which
characterize the cell doublet. For the presentation of the method we follow the work
by Hansen et al. (2018) who used a similar DG implementation to model fluorescence
loss in photobleaching.

Let Ωl and Ωr be two domains separated by a semi-permeable membrane ΓM as
depicted in Fig. 6.1A. Further, let ĉl and ĉr be the concentrations of a species in the
left and right subdomain right at the membrane, respectively. According to Fick’s
law, the flux is generally given by j = −α∇̂ĉ where we set α ≡ ĴDĈ−1 (Eq. (6.8)).
Integration across the membrane ΓM allows to rewrite the flux as

j = p(ĉl − ĉr)Nl , (6.10)

where Nl is the normal vector on the membrane pointing from Ωl to Ωr and p measures
the permeability of ΓM in units of µm s−1 (Fig. 6.1A).

Approximating the permeability p by dividing the flux by the jump in concentration
is common practice in experiments (Friedman, 2008; Hansen et al., 2018). If the
concentration in the subdomain Ωr is greater than in Ωl solutes flow back into Ωl in
agreement with Fick’s law. Therefore, the problem that needs to be solved is given
by:

∂

∂t
(Ĵ ĉ)− ∇̂ ·

(
α∇̂ĉ

)
− ĴRc(t) = 0 , x̂ ∈ Ω , t ≥ 0 , (6.11)

such that the interface condition at the membrane and the assumed zero-flux boundary
conditions are fulfilled. The interface and boundary conditions read

j ·Nl = −α∇ĉl ·Nl = p[[ĉ]] ·Nl , x ∈ ΓM , (6.12)
∇ĉ ·N = 0 , x ∈ ∂Ω , (6.13)

where N denotes the outward pointing normal vector on ∂Ω and [[ĉ]] ≡ ĉrNr + ĉlNl =
(ĉr − ĉl)Nl is the short-hand notation for a jump.
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A B C

left cell right cell left cell right cell

Figure 6.1: Illustration of the relevant quantities for the discontinuous Galerkin formulation of the
cell pair model with intercellular junction (membrane). Panel A depicts the simulation domain which
is split into left cell Ωl and right cell Ωr with overall boundary ∂Ω. The two domains are separated
by an internal interface ΓM which models the intercellular junction. For Ωl the outward pointing
normal vector points into Ωr and vice versa for Ωr. Panel B shows the fundamental feature of the DG
implementation. Adjacent elements are labelled by ± and function values (blue and red) may jump
across element facets. Panel C is a schematic illustration of a meshed domain. For the construction
of the DG weak form it is crucial to distinguish between external Fext (black), internal Fint (orange)
and membrane facets FM (green). A stabilizing term enforces continuity of the solution across the
internal facets only. Jumps across the membrane facets are necessary to account for discontinuous
transition of the solution from the left cell to the right cell.

6.2.3. Weak form for discontinuous Galerkin approach

The interface condition in Eq. (6.12) prevents a naive FEM-implementation as de-
scribed in the previous chapters. In order to account for abrupt concentration changes
from one subdomain to the other we need a method which allows discontinuous func-
tions across the membrane. The standard choice for such a problem is the discontin-
uous Galerkin method. In contrast to the continuous Galerkin methods, continuity
and smoothness of the involved DG-functions is only enforced element-wise such that
the solution may be discontinuous across element boundaries (compare blue and red
functions in Fig. 6.1B). However, continuity across elements can be enforced by in-
troducing penalty terms. These methods are known as interior penalty discontinuous
Galerkin methods (IPDG) (Arnold, 1982; Babuška, 1973; Wheeler, 1978).

At this point it is necessary to introduce some additional notation. Let T (Ω) be the
triangulation of the domain Ω into finite elements e ∈ T (Ω). Further, let F denote the
union of the boundary facets of all elements e. We distinguish between external facets
Fext, internal facets Fint and membrane facets FM such that F = Fext ∪ Fint ∪ FM

with Fint = F \ (Fext ∪ FM) (Fig. 6.1C). Next, by ĉ− and ĉ+ we denote scalar valued
functions on two neighboring elements e− and e+. The normal vectors on a common
facet of e± are given by N±. For example, N− defines the outward directed normal on
e− pointing into e+. Following the standard DG notations we introduce the jump and
the average of a quantity as [[ĉ]] ≡ ĉ+N+ + ĉ−N− and {ĉ} ≡ (ĉ+ + ĉ−)/2, respectively.
Analogously, for piecewise vector valued functions q̂ one defines jump and average as
[[q̂]] ≡ q̂+N+ + q̂−N− and {q̂} ≡ (q̂+ + q̂−)/2, respectively. Moreover, one may use
these definitions to prove the identity

[[q̂ĉ]] = [[q̂]]{ĉ}+ {q̂}[[ĉ]] . (6.14)

In the first step of the derivation of the DG weak form we multiply Eq. (6.11)

118



6.2. Blueprint for a cell pair model

with a suitable test function w ∈ V and integrate over the whole simulation domain Ω
which gives ∫

Ω

∂

∂t
(Ĵ ĉ)w dx̂−

∫
Ω
∇̂ ·

(
α∇̂ĉ

)
w dx̂−

∫
Ω
ĴRc(t)w dx̂ = 0 . (6.15)

Instead of directly using partial integration on the middle term of Eq. (6.15) we first
split it into a sum over element integrals and then apply Green’s first theorem to
obtain∫

Ω
∇̂ ·

(
α∇̂ĉ

)
w dx̂ =

∑
e∈T (Ω)

∫
e
∇̂ ·

(
α∇̂ĉ

)
w dx̂

=
∑

fe∈F(Ω)

∫
fe
α∇̂ĉ · Ñew ds−

∑
e∈T (Ω)

∫
e
α∇̂ĉ · ∇̂w dx̂ . (6.16)

Here, fe denotes the facets of element e and Ñe describes the outward directed normal
vector on the facets of the element. The first term in Eq. (6.16) is split again into the
exterior, interior and membrane facets

∑
fe∈F(Ω)

∫
fe
α∇̂ĉ · Ñew ds =

∑
fe∈Fext(Ω)

∫
fe
α∇̂ĉ · Ñew ds

+
∑

fe∈Fint(Ω)

∫
fe
α∇̂ĉ · Ñew ds

+
∑

fe∈FM(Ω)

∫
fe
α∇̂ĉ · Ñew ds . (6.17)

Note that each internal facet and each membrane facet is shared by two adjacent
elements e− and e+ such that integrals along the common facets add up to a jump∫

f±
α∇̂ĉ · Ñ±w ds =

∫
f
(α+∇̂ĉ+w+ − α−∇̂ĉ−w−) · Ñ+ ds =

∫
f
[[α∇̂ĉw]] ds . (6.18)

Summing up over all elements e in Eq. (6.16) and Eq. (6.17) while respecting the
interface and zero-flux boundary conditions yields∫

Ω
∇̂ ·

(
α∇̂ĉ

)
w dx̂ = −

∫
Ω
α∇̂ĉ · ∇̂w dx̂−

∫
FM

p[[ĉ]] · [[w]] ds+
∫
Fint

[[α∇̂ĉw]] ds .

(6.19)

The middle term on the right hand side of Eq. (6.19) is the term which controls the
boundary condition at the interface. It is obtained by inserting the interface condition
Eq. (6.12) in the integral over the membrane facets in Eq. (6.17). The last term in
Eq. (6.19) is further expanded using the identity in Eq. (6.14) which yields∫

Fint
[[α∇̂ĉw]] ds =

∫
Fint

[[α∇̂ĉ]] · {w} ds+
∫
Fint
{α∇̂ĉ} · [[w]] ds . (6.20)

Since the exact solution of the diffusion equation is expected to be smooth we enforce
continuity of the fluxes by setting [[α∇̂ĉ]] = 0. To further enforce continuity of the
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solution we exploit [[ĉ]] = 0 and add a term to symmetrize the problem. Additionally,
we ensure stability of the problem by adding a stabilizing term according to Douglas
et al. (1976) which finally leads to∫

Fint
[[α∇̂ĉw]] ds =

∫
Fint
{α∇̂ĉ} · [[w]] ds+

∫
Fint
{α∇̂w} · [[ĉ]] ds︸ ︷︷ ︸
symmetry

−
∫
Fint

sN
h

[[ĉ]] · [[w]] ds︸ ︷︷ ︸
stability

.

(6.21)
In Eq. (6.21), sN denotes the so-called Nitsche paramater, which must be chosen
sufficiently large to ensure continuity across internal facets (Nitsche, 1971), and h the
average element diameter. Next, we define

D(ĉ, w, α) :=
∫

Ω
α∇̂ĉ · ∇̂w dx̂−

∫
Fint
{α∇̂ĉ} · [[w]] ds

−
∫
Fint
{α∇̂w} · [[ĉ]] ds+

∫
Fint

sN
h

[[ĉ]] · [[w]] ds , (6.22)

and hence arrive at the final weak form statement of Eq. (6.11) which reads∫
Ω

∂

∂t
(Ĵ ĉ)w dx̂ + D(ĉ, w, α)−

∫
Ω
ĴRc(t)w dx̂ +

∫
FM

p[[ĉ]] · [[w]] ds = 0 . (6.23)

We note that an integral part of our model design is that continuity is only enforced
on the internal edges thus jumps are possible only across the interface of the two sub-
domains i.e. across the membrane. The cell doublet is characterized by the choice of
the permeability p. A non-zero value can be used to model various kinds of trans-
port processes such as the transport of small molecules and ions in and out of the
cell through its plasma membrane. Setting p = 0 corresponds to a non-permeable
membrane. In our case this means that the reactants in each cell cannot pass the
intercellular junction. This leads to a variety of possibilities in the description of a
cell doublet. Cellular contractility in principle can be described by distinct reaction-
diffusion systems in each cell. The RD-systems within the cells can then be coupled by
appropriate mechano-chemical coupling terms to account for mechanosensing at the
intercellular junction.

6.2.4. Coupling to mechanics

In order to couple the aforementioned reaction-reaction diffusion system to mechanics
we again chose a linear viscoelastic constitutive equation of the Kelvin-Voigt type.
Therefore, the weak form for the mechanics of the adherent cell stays unchanged and
is given by (Eq. (3.30) in Section 3.2)∫

Ω
σ : 1

2(∇v +∇vᵀ) dx+
∫

Ω
Y u · v dx = 0 , (6.24)

where Y denotes the substrate rigidity, v ∈ V(Ω) is a suitable vector valued test
function, u denotes the deformation field and σ describes the stress tensor given by
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(Eq. (4.1))
σ =

(
1 + τc

∂

∂t

)
(λ tr(ε)I + 2µε) + σa . (6.25)

The mechanics naturally couples to the RD-system through the deformation gradient
tensor F̂ and its determinant Ĵ . The coupling of the RD system to mechanics is now
introduced through the active stress tensor σa. We assume that the active stress
is proportional to the concentration of active MLC. In principle one could assume a
linear relationship according to Brand (2016) but for reasons of numerical stability we
chose a Hill-type function according to Bois et al. (2011) and Nishikawa et al. (2017)
which limits the active stress. We generally propose

σa(cm(t)) = σ0
cm(t)

c̃+ cm(t) , (6.26)

where cm denotes the concentration of MLC, σ0 is a characteristic active stress and c̃
controls the concentration above which σa becomes independent of cm.

At this point we close the discussion on the numerical treatment. As before, the
coupled system of PDEs is implemented in the automated finite element package
FEniCs (Alnæs et al., 2015). Meshing of the cell pair domain was done with the
open source software GMSH (Geuzaine et al., 2009) with an average element size
of h ≈ 1 µm (much smaller than the mesh presented in Fig. 6.1C). The physical
dimensions of the cell doublet are chosen according to the cell doublet in Chapter 5.
The uncontracted cell doublet is thereby represented by a triangulated square domain
with area A = (45 × 45)µm2. It should be noted that for the cell doublet, the mesh
should be constructed such that it is completely represented by facets of the mesh.
Otherwise, the interface condition cannot be interpreted correctly by the solver. At
this point we will turn to the discussion of a suitable test system for the reaction-
diffusion based description of cellular contractility.

6.3. RhoA-pathway

Having reviewed the literature mentioned in the introduction of this chapter, we found
that the model as presented by Kamps et al. (2020) contains all important components
which are necessary for a profound description of the RhoA pathway. In contrast to the
RhoA-actomyosin system as introduced by Staddon et al. (2022) it explicitly contains
GEF as a downstream effector of RhoA, and thus provides an important interface for
light-induced contraction as GEF activity can be controlled by optogenetic constructs
like the CRY2/CIBN system. In combination with experimental measurements Kamps
et al. (2020) designed a reaction scheme (Fig. 6.2A) for the active reactants GEF (G),
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stable excitable

oscillatory

A B

Figure 6.2: Overview of the RhoA-pathway as presented by Kamps et al. (2020). Panel A (top) is
an illustration of the reaction scheme. Cytosol associated signaling components denote the inactive
forms while membrane associated components refer to the active forms. Transition between active
and passive is modeled by mass action kinetics (MA) and Michaelis-Menten kinetics. Further, the
model includes a positive and negative feedback loop which leads to a non-trivial dynamics. Panel A
(bottom) shows that GEF concentration strongly influences the stability of the system and controls
the cross-over from stable to oscillatory states. Panel B shows the mathematical analysis of the
system presented in panel A. Parameters may be found in Table A.10 and the model equations in
Appendix A.3.

RhoA (R) and myosin (M) which reads

dG
dt = k3R(GT −G)− k4GM (6.27)

dR
dt = k1G(RT −R)

Km1 +RT −R
− k2

R

Km2 +R
(6.28)

dM
dt = k5R(MT −M)

Km5 +MT −M
− k6

M

Km6 +M
. (6.29)

GT , RT and MT denote the total concentrations of the species which the authors
assume to be constant. The rate constants are denoted by ki and the Michaelis-Menten
constants are given by the Kmi.

The reaction scheme is visualized in Fig. 6.2A, where the membrane and cytosol
associated species represent the active and passive states, respectively. This termi-
nology stems from experimental studies which show that the active forms of RhoA
and myosin are predominantly found in the vicinity of the plasma membrane and the
submembraneous actin cortex. In contrast, the inactive forms are associated with the
cytosol (Citi et al., 1987; Garcia-Mata et al., 2011). The RhoA protein for example
exhibits a lipophilic end which enables it to bind to lipid membranes (Seabra, 1998).
However, so-called guanosine dissociation inhibitors (GDIs) may bind to Rho-GDPs,
not only keeping them in a permanently inactive state but also preventing its mem-
brane localization by shielding the hydrophilic end and additionally making it soluble
in the cytoplasm (Somlyo et al., 2000). The reaction scheme also highlights the two
feedback loops which are important to describe the excitable and oscillatory dynamics
that are observed in experiments. The positive feedback loop stems from the observa-
tion that RhoA activity at the membrane further induces GEF membrane recruitment.
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Due to Rho activation by GEFs, this closes a positive feedback loop (Kamps et al.,
2020). The negative feedback loop can be traced back to the ability of myosin to
inhibit the nucleotide exchange activity of GEFs by binding to their Dbl-homology
domain (DH) (C.-S. Lee et al., 2010). Essentially, the authors could identify the total
concentration of active GEF as the main bifurcation parameter for the switch from
stable to oscillatory states at intermediate GEF concentrations (Fig. 6.2A (bottom)).
In experiments, they vary this bifurcation parameter by treating cells with nocodazole,
which leads to depolymerization of microtubules from which GEFs are then released.
The crossover from stable to osciallatory dynamics as a function of the total GEF
concentration is illustrated in Fig. 6.2A (bottom).

The three regimes of their proposed acitvator-inhibitor scheme are presented in
the phase-portraits in Fig. 6.2B. We reproduced these plots when attempting to find a
suitable parameter space which could resemble our experimental findings of Chapter 4
and Chapter 5 but used a generalized parameter set taken from (Tyson et al., 2003)
where various different activator-inhibitor schemes are analyzed.

6.3.1. Linear RhoA - pathway

In contrast to the work presented by Kamps et al. (2020) and Staddon et al. (2022)
the focus in our work lies on the optogenetic perturbation of cells and not the pul-
satile nature of the actin cortex. Based on the experimental findings of Chapter 4
and Chapter 5, we see optogenetic activation as a reversible process such that after
activation cells eventually go back to their homeostatic contractility level. Further, in
the experiments carried out by Tomas Andersen and Artur Ruppel at the Université
Grenoble Alpes, we did not notice any oscillations or excitable behavior upon photoac-
tivation, which suggests that we operate around a stable fixed point of the Rho system.
There might be several reasons for this: On the one hand, the strain energy output
in our experiments is dominated by stress fiber contractility and little influenced by
the cortex itself. Since stress fibers are highly organized structures it is plausible to
assume a differently organized reaction-diffusion system as for the rather unorganized
actin cortex. The results of Chapter 4 support this assumption based on the differ-
ent obtained activation and relaxation times for cells on disc and hazard patterns.
On the other hand, the results of Kamps et al. (2020) show strong dependence on
the total GEF concentration which suggests that the total GEF expression levels also
influence the dynamics of the underlying Rho-response. Since cells transfected with
the CRY2/CIBN system show a significantly higher baseline contractility we assume
that this might correspond to the stable branch of high GEF concentrations (Fig. 6.2).
Excitability is therefore completely controlled by the membrane recruitment of GEF
and is according to Valon et al. (2015; 2017) scalable. Longer pulses lead to more
GEF membrane recruitment until the system reaches saturation.

Strikingly, even very complex signaling cascades may effectively behave as lin-
ear transmitters which has been verified numerically and analytically for the Wnt-
pathway, the ERK-pathway and the TGFβ-pathway (Nunns et al., 2018). Motivated
by this, and to reduce the parameter space we assume a linear input-output rela-
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Figure 6.3: A simplified view on the RhoA-pathway. An exponentially decaying input signal with
a steep initial increase is turned into a smooth output-signal. Based on the results of Chapter 4 and
Chapter 5, optogenetic activation using the CRY2/CIBN construct seems to produce a homeostatic
response of the activated cell. The simplest model which provides this specific input-output relation-
ship is a weakly activated linear signaling cascade. Figures: Left plot adapted from (Valon et al.,
2015).

tionship between GEF plasma membrane recruitment and NMII induced contractility.
This assumption not only reduces the number of unknown parameters it also allows an
analytical solution. Our proposed RhoA-myosin reaction scheme is shown in Fig. 6.3.
In our proposed model, GEF activity enters implicitly through a predefined input
signal with a constant baseline and a time dependent contribution upon photoactiva-
tion. This input signal consequently triggers a reaction cascade by activating RhoA
which in turn activates MLC. All reactions are modeled by a law of mass action with
positive valued activation rate constants a and k̃. Further we assume that all active
components deactivate spontaneously described by the positive valued rate constants
b and s. Additionally, we postulate that the total amount of each signaling component
is conserved such that the active components are given by the difference of the total
concentration and the concentration of the inactive species Ri and Mi. Hence, we
denote the active species by R = RT − Ri and M = MT −Mi which allows to write
the reaction kinetics as

dR
dt = ag̃(t)(RT −R)− bR (6.30)

dM
dt = k̃R(MT −M)− sM . (6.31)

The function g̃(t) accounts for a time dependent activation rate for RhoA mediated
by light induced membrane recruitment of GEF. Another simplification is made by
considering the limit of a weakly activated signaling cascade (Beguerisse-Díaz et al.,
2016) for which RT −R ≈ RT andMT −M ≈MT such that the system can be written
as

dr
dt = ag̃(t)− br , dm

dt = kr − sm , (6.32)

where we divided by the total concentration and hence set r = R/RT , m = M/MT

and k = k̃RT . The function g̃(t) := 1+g(t) is split into a constant baseline and a time
dependent activation function

g(t) = H(t− tact)αe−λ(t−tact) , (6.33)
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where H(t) is the Heaviside function and α denotes the relative GEF increase at the
membrane upon a single light pulse of a few hundred milliseconds which then decays
according to a typical time constant λ around τ = 1/λ = 80 s − 200 s (Valon et al.,
2015). In case of no perturbation g(t) = 0 the steady states of r and m are fully
determined by the rate constants

rss = a

b
, mss = ak

bs
. (6.34)

W.l.o.g. we perturb the steady state of the system at tact = 0 with a light-pulse
(g(t) 6= 0) and express the time evolution of the relative concentrations as

r(t) = rss + δr(t) , m(t) = mss + δm(t) , (6.35)

where δr(t) and δm(t) denote the time-dependent perturbations of the steady state.
Together with Eq. (6.36) we end up with the time evolution of the perturbation which
is given by

dδr
dt = aI(t)− bδr , dδm

dt = kδr − sδm . (6.36)

With our choice for g(t) this system can be solved analytically which yields

δr(t) = aα

b− λ

(
e−λt − e−bt

)
, (6.37)

δm(t) = akα

b− λ

(
e−bt

b− s
− e−st

b− s
+ e−λt

s− λ
− e−st

s− λ

)
. (6.38)

In experiments one usually quantifies the relative activity increase with respect to the
activity baseline. We therefore normalize the perturbation with respect to the steady
states as given in Eq. (6.34)

δr̃(t) = δr

rss
= bα

b− λ

(
e−λt − e−bt

)
, (6.39)

δm̃(t) = δm

mss
= bαs

b− λ

(
e−bt

b− s
− e−st

b− s
+ e−λt

s− λ
− e−st

s− λ

)
. (6.40)

The strength and time course of the relative RhoA and myosin perturbations is con-
trolled by the the two deactivation rates b and s as well as the strength of the input
signal α and its decay rate λ. For the later performed two dimensional simulations we
further add diffusion to the model.

6.3.2. Parametrization

For the parametrization of the proposed linear signaling cascade we rely on the order of
magnitudes found in the respective literature. Within the limits of our simplified model
the total concentrations of RhoA and myosin are irrelevant since they do not explicitly
enter the reaction kinetics in the weakly activated regime. The parameters are chosen
such that the steady state concentrations of RhoA and myosin are roughly 10 % of the
total concentration (Besser et al., 2007; Staddon et al., 2022). Further, time scales are

125



6. Coupling Biochemistry to Cell Mechanics

Abbreviation Used value Ref. value Reference

λ 0.01 s−1 0.008 s−1 − 0.018 s−1 (Valon et al., 2015)
α 200 % 130 %− 220 % (Valon et al., 2015)
b 0.0165 s−1 2 s−1 (Kamps et al., 2020)
k 0.1 s−1 0.1408 s−1 (Staddon et al., 2022)

0.147 s−1 (Kamps et al., 2020)
s 0.083 s−1 0.0051 s−1 (Kamps et al., 2020)

0.082 s−1 (Staddon et al., 2022)
mss 0.1 0.1− 0.3 (Staddon et al., 2022)

(Besser et al., 2007)
DR, DG 0.28 µm2 s−1 0.28 µm2 s−1 (Kamps et al., 2020)

0.1 µm2 s−1 (Nishikawa et al., 2017)
DM 0.03 µm2 s−1 0.03 µm2 s−1 (Kamps et al., 2020)

0.01 µm2 s−1 (Nishikawa et al., 2017)

Deduced

rss 0.083
a 0.0014 s−1 < 0.002 s−1 (Staddon et al., 2022)

Table 6.1: Parameter values for the linearized RhoA signaling cascade. We set most of the parameters
in accordance with the reported ranges. The parameters taken from (Kamps et al., 2020) where
obtained by taking the corresponding activation and deactivation rates in a weakly activated regime
for which the Michaelis Menten terms can be linearly approximated. However, their model does not
provide a basal activation rate. The reported rate constants as stated in the work of Staddon et al.
(2022) were deduced from Michaux et al. (2018). The parameters rss and a where not independent
and consequently deduced from the fixed parameters.

chosen such that the time course of the myosin concentration approximates the time
course of the active stress in Chapter 4 and/or other reported measurements (Kamps
et al., 2020; Kowalczyk et al., 2022; Staddon et al., 2022; Valon et al., 2017). The time
course of the input signal was adapted to the measured CRY2 membrane recruitment
and is described by a relaxation time of λ ≈ 10−2 s (Valon et al., 2015). All other
relevant parameters are summarized in Table 6.1.

Fig. 6.4 shows the time evolution of the linear signaling cascade for the provided
parameter estimates. In particular, Fig. 6.4A shows the relaxation into the steady
state which is reached at mss = 0.1 and rss = 0.083, while in Fig. 6.4B one can see the
time evolution of the RhoA perturbation and the myosin perturbation upon an input
signal which resembles a two-fold increase of GEF concentration at the membrane.
The time delay between input signal and the peak value of RhoA activity is given by

tdelay = ln(λ/b)
λ− b

, (6.41)

and fully determined by the decay rate of RhoA and the input signal. Given this
parametrization, myosin activity closely follows the RhoA activity similar to the ex-
citable regime discussed by Staddon et al. (2022). The whole system as later used to
qualitatively simulate the cell doublet is summarized in the phase portrait in Fig. 6.4C.
However, the here presented graphs purely represent the reaction kinetics which be-

126



6.4. Photoactivation with feedback

A B C

Figure 6.4: Reaction kinetics of the linearized RhoA-pathway. Panel A shows the evolution into
the normalized steady state concentrations. Panel B depicts the time course of the RhoA and myosin
perturbations normalized to the steady state. The time evolution is triggered by an exponentially
decaying input signal g(t). Panel C summarizes the full dynamics of the system in one phase portrait.
In addition to the RhoA and myosin nullclines, it shows the relaxation into the steady state (yellow
line) as well as the time evolution of the perturbation (black line). Parameters are chosen according
to Table 6.1.

come affected (albeit slightly) by the coupling to mechanics due to changes in domain
size. Further we performed a sanity check, shown in Fig. A.9, which demonstrates that
rapid changes in domain size speed up reactions but do not change the overall steady
state of the system. Additional information is given in Appendix A.3. Moreover, in
Fig. A.9B we exploited the system by Kamps et al. (2020) to test the interface con-
dition by verifying that traveling wave peaks cannot pass the intercellular junction.
More details on this simulation are provided in Appendix A.3.

6.4. Photoactivation with feedback

In this section we combine the methods introduced above to simulate local photoac-
tivation in the cell pair model and introduce a strain dependent feedback in the
non-activated cell upon photoactivation. We therefore solve the coupled equations
Eqs. (6.23) and (6.24) together with Eqs. (6.25) and (6.26) and use the reaction ki-
netics of the linearized RhoA-pathway stated in Eq. (6.36).

6.4.1. Baseline contractility

The baseline contractility is given by the steady state concentration of myosin. The
active stress generated in the steady state is chosen to be in the same order of mag-
nitude as the stresses in Chapter 5 and set to σa(mss) = σ0mss/(c̃ + mss) = 5 kPa.
Moreover, for simplicity we use an isotropic contractile stress. All parameters for the
cell substrate coupling are summarized in Table A.5. The results of the equilibrium
state before photoactivation are shown in Fig. 6.5. The constant myosin concentra-
tion (Fig. 6.5A) leads to a constant isotropic background stress which results in a total
stress which is largest over the adhesive regions (Fig. 6.5).
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myosin concentration stress normA B

Figure 6.5: Baseline contractility in the cell pair model. Panel A shows the steady state myosin
concentration in both cells. Panel B depicts the resulting internal cell stress for a cell pair adhered to
a H-pattern. The constant myosin concentration leads per design to an isotropic constant contractile
background stress.

6.4.2. Photoactivation

This equilibrium state (Fig. 6.5) is the starting point for the photoactivation simu-
lations. Upon photoactivation at t = 300 s we increase the GEF concentration by
200 % in the left cell. This leads to an increase in myosin concentration and conse-
quently to contraction of the left cell. The contraction of the left cell then leads to a
purely passive deformation in the right cell as the signaling components cannot pass
the intercellular junction (see Fig. 6.6A).

At this point one has to specify how to couple the reaction diffusion system in the
non-activated cell to the mechanical perturbation it experiences during contraction
of the activated cell. The two obvious choices are either a force/stress-dependent
or strain-dependent trigger. Motivated by experimental studies that cells directly
react to stretching (Hippler et al., 2020) we decide to introduce a strain dependent
feedback. For this we measure the strain difference in the passive cell with respect to
the equilibrium configuration before photoactivation δεij = εij(t > tact)−εij(t = tact).
Further, we only consider positive strain differences δε+,ij := max (0, δεij) such that
the RD-system in the right cell is only triggered in regions where the cell is stretched.
Our measure of choice is

|δε+(t, x, y)| :=
√
δε2

+,xx + δε2
+,yy , (6.42)

where εxx and εyy correspond to the diagonal components of the stress tensor. The
RD-system in the right cell is then triggered by altering the basal activation rate of
RhoA according to the measured passive strain difference

dδr
dt = aξ|δε+| − bδr , (6.43)

where ξ controls the strength of active coupling and has to be adjusted according to
the typical strain differences. We heuristically found that a value of ξ ≈ 100 leads to a
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Figure 6.6: Influence of strain dependent active coupling on cell periphery. Panel A depicts the
myosin concentration in the left cell. The right cell is passive and not activated. Hence the myosin
concentration remains at its baseline level. Panel B shows the positive strain arising in the passive
cell upon contraction of the left cell in the doublet. Regions of positive strain trigger RhoA activation
within our model. Panel C depicts the case of global photoactivation. Myosin concentrations are
equally elevated in both cells which leads to a symmetric cell shape. Panel D shows the cell shape if left
and right cell are actively coupled. A strain dependent active coupling may explain an approximately
symmetric response of the whole cell doublet even when only the left cell is activated. The symmetry
of the symmetry between left and right is quantified by tracking the position of the symmetry center
of the invaginated arc (black circle).

similar contraction in the right cell compared to the left cell. However, the magnitude
of the value depends on several properties and is different for other cell and substrate
parameters. In addition, other measures for the deformation of the passive cell may
lead to different values of ξ. We then simulated photoactivation for 5 different values
of ξ between ξ = 0 and ξ = 100. A graphical representation of the simulation is shown
in Fig. 6.6. All images correspond to the same time step t = 410 s which is the time
point of maximal strain energy. In case of ξ = 0 we obtain the purely passive response
of the right cell and its concentration of active myosin remains at the baseline level
throughout the contraction of the left cell. The regions where the right cell is stretched
are shown in Fig. 6.6B. Clearly visible, high positive strains occur in the non-adherent
parts of the right cell and are largest in the vicinity of the intercellular junction. In
the purely passive case, the periphery is skewed and shows a clear asymmetry between
left and right. As a cross-check, the contour of a symmetrically activated cell doublet
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remains symmetric (Fig. 6.6C). For a value ξ = 100, i.e. strong active coupling, an
initially asymmetric contour as in Fig. 6.6A turns into an almost symmetrical contour
as the increase of active myosin along the cell periphery counteracts the deformation
that is caused by the left cell.

To quantify the time course of the deformation, we track the strain energy and the x
position of the symmetry center of the invaginated arc as a function of time for varying
active coupling strengths (Fig. 6.6D). Fig. 6.7 displays the results of this simulation.
In particular, Fig. 6.7A shows that, upon photoactivation, the strain energy increases
with increasing coupling strength as one would expect. Further, Fig. 6.7B shows the
influence of the coupling strength on the symmetry center of the invaginated arc.
Thereby a negative value corresponds to the symmetry center being shifted towards
the activated cell. For small values of ξ the asymmetry remains until the myosin
concentration in the activated cell is back to its baseline level. This effect becomes
weaker with increasing coupling strength. For a value of ξ = 100 the symmetry is
recovered approximately 200 s after PA. Additionally, the motion of the symmetry
center is non-trivial as it moves back and forth during the interaction of the two cells
like in a “tug-of-war”.

Next, for Fig. 6.7C and D we investigate the time course of the relative strain
energy on the left and right half of the pattern separately. Comparing the strain
energies for no active coupling and strong active coupling highlights that the active
response of the right cell also increases the substrate strain energy on the left side
(compare blue curves in Fig. 6.7C and D). In case of a purely passive right cell the
strain energy on the right half shows a very weak instantaneous increase. In case of
active coupling the maximal strain energy in the right cell is delayed.

Taken together, a strain dependent feed back onto the RD-system may produce
a symmetric response of the cell doublet upon photoactivation of the left cell only.
However, the right cell responds with a delay which is defined by the activation rates
of the cascade.

6.5. Conclusion

In this chapter we introduced a discontinuous Galerkin model to describe an interacting
pair of cells. The discontinuous nature of the approach allowed us to introduce an
internal zero-flux boundary condition which accounts for the non-permeable character
of the intercellular junction. To adequately couple a biochemical reaction-diffusion
system and cell mechanics, we derived the diffusion equation on a deformable domain
and introduced a concentration dependent active contractility. As a model system
we proposed a linearized version of the RhoA-pathway and connected active force
generation to the concentration of active myosin which is given by the output of the
signaling cascade. The optogenetic control was introduced by an input signal which
perturbs the signaling cascade.

We then exploited the linearized RhoA-pathway to simulate the local photoac-
tivation experiments as discussed in Chapter 5. We could successfully demonstrate
that photoactivation, and thus contraction of one cell, leads to an active response in

130



6.5. Conclusion
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Figure 6.7: Quantification of the substrate strain energy and cell shape as a function of the active
coupling strength. Panel A shows the time course of the substrate strain energy for varying parameters
of the coupling strength ξ. Stronger coupling leads to larger strain energies. Panel B shows the x-
position of the symmetry center of the invaginated arc as a function of time. Negative values indicate
that this point is shifted towards the left cell. Active coupling weakens the symmetry break upon
photoactivation and leads to a more symmetric response with increasing coupling strength. Panel C
and D show the time course of the strain energy calculated over the left and right half of the pattern,
respectively.
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the non-activated cell by introducing a coupling parameter which triggers the RhoA
cascade in the non-activated cell.

However, the results presented in this chapter only serve as a qualitative study and
focused on the numerical implementation of the cell doublet. We are aware that the
RhoA-pathway can, at all, only be linearized under very specific conditions and further
studies should aim at testing the limits of this linear input-output relation which the
results of Chapter 4 and Chapter 5 suggest. We would also like to point out that the
approach discussed here can be combined with any type of reaction diffusion system
and is not limited to the proposed reaction kinetics. Although Staddon et al. (2022)
discussed an RD-system in combination with viscoelastic solids and fluids, they do not
incorporate possible influences stemming from the geometry and rigidity of the ECM.
If mechanical deformations trigger pulsatile contractions, non-trivial spatial patterns
and pulsatory flows of RhoA and active myosin, it would be interesting to connect
their emergence to properties of the ECM and interaction with other cells.

In future studies our proposed model could be exploited to study force transmis-
sion in larger cell clusters by means of FEM simulations. A model sketch is shown in
Fig. 6.8. Similar to vertex models, one could represent an epithelial sheet of cells by
compartmentalization of the simulation domain. However, each of the compartments
represents a full cell, obeying a viscoelastic material law with connection to an elastic
foundation. The intercellular junctions are then introduced as zero-flux boundary con-
ditions, which is computationally much cheaper than defining a distinct biochemical
RD-system in each cell. Within our approach the biochemical model can be repre-
sented by a single set of equations representing concentrations of signaling components
which jump across the interfaces as illustrated in Fig. 6.8. Hence, for a system of N
cells and a RD-system with k signaling components one would only have to solve k
equations instead of N × k equations. Further, the active coupling between the cells
is then again introduced by biochemical-mechanical coupling terms. In this way one
can treat the cell layer as a whole elastic medium, keep the full complexity of the
mechanical model and study local force production and subsequent force propagation
in terms of the reaction kinetics, the mechanics of the cell, and the ECM. Additionally,
mechanical polarization can be introduced analogously to Chapter 4 and Chapter 5.

Figure 6.8: Full discontinuous Galerkin
FEM model of an adherent epithelial layer,
where cellular contractility is modeled by
a reaction-diffusion system (orange). The
concentration of a signaling component is
described by a single concentration field
across the entire domain and is allowed
to jump across cellular interfaces (colored
lines). By coupling biochemistry and me-
chanics using appropriate coupling terms,
cells can interact and contraction of a sin-
gle cell can trigger contraction of other cells
(black arrows). The cell layer is further
treated as a whole elastic continuum con-
nected to an elastic foundation (springs).
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Chapter 7

Summary and outlook

Biological cells probe the physical properties of their environment by actively gener-
ating forces. This ability is provided by the highly dynamic actin cytoskeleton. For
this work, I developed, parameterized, and applied finite element models of active
viscoelastic thin films in combination with a numerical treatment of contour models
to describe the mechanical properties of the actin cytoskeleton in strongly adherent
single cells, cell pairs, and small cell clusters. These models have been applied in two
collaborations with experimentalists to quantitatively study force generation and force
propagation. Below, we provide a brief summary of our results and discuss suggestions
for future theoretical and experimental studies.

In Chapter 2 we laid down the mathematical foundation of both of the above men-
tioned models and recapitulated central analytical examples for each model class. This
was an important step because the numerical implementation of the models could be
validated by direct comparison with their analytical counterparts in Chapter 3.

Chapter 4 discusses the results of a first collaboration with experimentalists, where we
studied fibroblasts, transfected with the optogenetic CRY2/CIBN system, on flat elas-
tic substrates. In this context, we extended the basic simulation setup introduced in
Chapter 3, in order to account for anisotropic internal cell stresses, viscoelastic prop-
erties of the cytoskeleton and position-dependent cell-substrate coupling. Based on
experimental data of the optogenetically stimulated cells, we were able to parametrize
our model and further use it to gain insight into the force generation dynamics provided
by the light-induced perturbations of the RhoA pathway. Our computational results
reveal a positive correlation between internal cell stresses and spread area, whereby
the active generated stresses are in the order of ∼ kPa. Beyond that, we were able
to quantify the dynamics of tensional homeostasis after transient RhoA activation. In
doing so, we identified the organization of the actin cytoskeleton as a crucial factor
influencing the cellular response. Our results further showed a saturation behavior of
the RhoA system for pulse durations larger than 25 ms that is independent of actin
organization, in marked contrast to the dynamics of force generation.
In the future it would be interesting from an experimental point of view not only
to study cells in a state of mature adhesion, but also to use optogenetic perturbations
to directly interfere with the cells’ spreading process. During spreading, the actin
cytoskeleton is much more dynamic, and controlled light stimulation could possibly
allow to guide it into a certain direction. On the theoretical side, one could extend
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the model by introducing the precise distribution of focal adhesions as, in the current
simulation approach, the cell fully adheres to all fibronectin coated regions equally
strongly. This approach, however, would rely on precise image processing routines
to properly segment the focal adhesions and most likely involve meshing algorithms
to properly construct an FEM mesh which includes the segmented position of focal
adhesions similar to the work by Soiné et al. (2015). Another improvement could be
to describe the substrate as an elastic half-space and use traction force reconstruction
methods known from TFM instead of estimating the effective spring stiffness density
Y . Moreover, a three-dimensional treatment, similar to the model proposed by Kim
et al. (2021) could be used to model three-dimensional cells in contact with planar
substrates. Further, approaches like these would allow to incorporate the mechanical
properties of the nucleus and, for example, enable the study of its influence on focal
adhesion distribution and the associated traction force patterns.

Chapter 5 presented the results of a second collaboration with an experimental group
where we investigated active coupling and force transmission between epithelial cells.
A combination of traction force measurements, monolayer stress microscopy, image
processing and contour models allowed us to characterize the influence of intercellular
junctions on the mechanical and structural properties of cell pairs. By comparing
single cells and interacting cell pairs under the same external conditions, we found
that the cell-cell junction reduces the mechanostructural polarization of the system
and additionally leads to a redistribution of forces in the peripheral stress fibers of a
cell. In addition, we extended the continuum model by including local photoactivation,
and developed a finite element description for the mechanics of the free spanning stress
fiber to account for spatially varying loading conditions during optogenetic activation.
The two-dimensional continuum approach allowed us to show that transient local
photoactivation leads to a destabilization of tensional homeostasis in single cells most
likely connected to cytoskeletal fluidization. In marked contrast, cell pairs showed a
homeostatic response independent of the internal actin organization. Together with the
experimental data, we quantified stress propagation across the intercellular junction
by only activating one of the cells in the cell pair. In particular, a comparison of
cell shape dynamics and force generation within this setup revealed a stronger active
coupling of the cellular cortices than internal stress fibers. Furthermore, we identified
the mechanostructural polarization of the cells as a major factor determining the
efficiency of stress propagation which turned out to be most effective perpendicular to
the polarization axis. This observation could even be verified for small epithelial cell
collectives.
In the future it would be interesting from an experimental point of view to look at
ways to realize a “passive” cell pair, for example, by suppressing the signaling abilities
at the cell-cell interface while maintaining a stable mechanical connection between the
cells. Further, it could be interesting to additionally test the effects that the duration
of photoactivation has on the distance that mechanical signals can propagate. On the
theoretical side, a natural starting point for future work would be a unified framework
that combines finite element modeling of two dimensional elastic sheets and contour
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models. This could be achieved by a combination of bulk and surface elasticity, in
form of a line tension, similar to the approach presented by Mailand et al. (2019)
in two dimensions. This is, however, not straight forward to implement, as the line
tension is not independent of the curvature of the cell periphery. One way to solve this
could be a finite element treatment of mixed dimensional coupled partial differential
equations. Besides that, our numerical treatment of active coupling remained purely
heuristic and does not incorporate cell signaling and mechanochemical feedbacks such
that future work could focus on the computational design of such mechanisms in a
finite element framework.

Chapter 6 addressed the emerging question of how to model a cell pair in terms of
its key features, such as the presence of an intercellular connection. We presented a
discontinuous Galerkin method to combine the biochemistry of the RhoA pathway,
photoactivation, active force generation and the topological features of a cell pair.
In particular, we coupled reaction-diffusion equations on deformable domains to the
equations of mechanical equilibrium and modeled the intercellular junction as a non-
permeable membrane which separates the two cells. This allowed us to introduce
a strain-depenent coupling term which, depending on the degree of active coupling,
could explain the (to a good approximation) global response of the cell doublet upon
local photoactivation.
In the future it would be interesting to numerically investigate several different
mechanochemical feedbacks. Both cell-cell junctions and focal adhesions are crucial
signaling hubs of cells. The stress applied to these structures feeds back to the force-
generating signaling pathways. Hence, due to their different localization within the cell
this could affect the dynamics of the feedback in different ways depending on param-
eters such as substrate stiffness, substrate geometry, and internal actin organization.
The simulated “feedback” patterns could then be compared to experimental measure-
ments in which, for example, the spatiotemporal evolution of RhoA or MLC is tracked.
Another application of the discontinuous Galerkin method would be the application of
the above described scenario in the context of larger multicellular systems. One could
think of quantifying force propagation in a tissue by photoactivation of a whole cell in
an epithelial sheet as a function of distinct mechanochemical feedback terms.

In summary, this work contributes to a better understanding of force generation and
force propagation in adherent cells and identifies the organization of the actin cy-
toskeleton as an essential component of these processes.
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Statistical analysis

To test the significance in between data, we performed both two-tailed Student’s T-
tests in the case of 2 data sets and non parametric Kruskal-Wallis test in the case of
3 data sets. For this we used the software GraphPad Prism (Swift, 1997). Error bars
on graphs and boxplots correspond to the standard deviation. (Andersen et al., 2022)
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Figure A.1: Panel A depicts the time course of the active stress corresponding to the time course
of the strain energy as shown in Fig. 4.12A. Panel B shows: from left to right: disc, hazard and ring
fibronectin pattern on PAA hydrogels (i). Actin-labelled cells (ii). Vinculin staining (iii). Panel C
compares the total adhesion area for all three patterns measured as the integrated vinculin signal.
Panel D shows the actin order parameter. Panel E shows the time course of the average substrate
strain energy normalized with respect to the baseline level. Panel E compares the mean strain energy
gain during PA.
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Tables Chapter 4

Fixed parameter Value

Young’s modulus of the substrate Es 4.47 kPa
Poisson’s ration of the substrate νs 0.5
Substrate thickness hs 50 µm
Lateral cell size Lc 50 µm
Young’s modulus of the cell Ec 10 kPa
Viscosity of the cell ηc 100 kPa s
Poisson’s ratio of the cell νc 0.5
Cell layer thickness hc 1 µm

Table A.1: Globally fixed cell and substrate parameters. Fixed across all simulations in Chapter 4.

Fit parameter Disc 500 µm Disc 1000 µm Disc 1500 µm Hazard

Force localization length lp 2.65 µm 3.75 µm 4.62 µm 2.97 µm
Contractile background stress σback 2.23 kPa 3.91 kPa 5.30 kPa 3.58 kPa

Table A.2: Fit results as obtained from optimization of the strain energy baseline levels for all disc
sizes and the hazard pattern.
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Fit parameter Disc 500 µm Disc 1000 µm Disc 1500 µm Hazard

σ0 1.2 kPa 1.8 kPa 1.8 kPa 0.8 kPa
σmax 1.2 kPa 1.7 kPa 1.7 kPa 0.7 kPa
tact 46 s 79 s 66 s 59 s
trel 291 s 416 s 343 s 335 s
τact 13 s 33 s 19 s 20 s
τrel 42 s 60 s 52 s 78 s

Table A.3: Fit parameters of the strain energy gain for all disc sizes and the hazard pattern for
100 ms PA-duration. Amplitude and time scales correspond to the free parameters of the double
sigmoid activation profile.

PA duration 10 ms 20 ms 50 ms 100 ms 150 ms 200 ms

Fit parameter Values

Disc

σ0 0.6 kPa 1.1 kPa 1.5 kPa 1.7 kPa 1.9 kPa 1.9 kPa
σmax 0.6 kPa 1.1 kPa 1.4 kPa 1.6 kPa 1.9 kPa 1.8 kPa
tact 72 s 71 s 89 s 105 s 96 s 105 s
trel 255 s 324 s 382 s 453 s 462 s 465 s
τact 10 s 21 s 30 s 33 s 49 s 48 s
τrel 34 s 35 s 48 s 53 s 39 s 67 s

Hazard

σ0 0.9 kPa 1.0 kPa 0.9 kPa 0.9 kPa 0.9 kPa 0.9 kPa
σmax 0.3 kPa 0.5 kPa 0.7 kPa 0.8 kPa 0.9 kPa 0.8 kPa
tact 34 s 49 s 50 s 63 s 62 s 77 s
trel 130 s 186 s 267 s 278 s 350 s 275 s
τact 16 s 27 s 16 s 15 s 12 s 14 s
τrel 141 s 102 s 74 s 54 s 45 s 57 s

Table A.4: Fit parameters for the activation with repeated pulses of increasing pulse duration for
disc and hazard pattern. All pulses were fitted separately by using a double sigmoid activation profile.
Stresses rounded to one digit after comma.
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Statistical analysis and boxplots

All boxplots show the inner quartile range as boxes and the whiskers extend to 1.5
times the inner quartile range. The notches show the 95 % confidence interval for
the median and the white dot shows the sample mean. The Mann-Whitney-Wilcoxon
U test was used to test for differences between singlets and doublets, with ns: p >
0.05, *: p < 0.05, **: p < 0.01,***: p < 0.001 and ****: p < 0.0001. Note: This
paragraph has been taken from the unpublished manuscript with the working title
“Force propagation between epithelial cells depends on active coupling and mechano-
structural polarization”.

Data exclusion for optogenetic experiments

Many cells showed an unstable baseline energy level, which made it difficult to evaluate
the impact of photoactivation. Thus, we quantified the baseline stability of each cell by
applying a linear regression to the relative strain energy curve before photoactivation
and excluded all cells with a slope larger in absolute value than a threshold value.
For Fig. 5.9, this process excluded 16 globally activated doublets, 7 globally activated
singlets, 12 locally activated doublets and 17 locally activated singlets. For Fig. 5.12
A to C, this process excluded 22 1to2 doublets, 7 1to1 doublets and 2 2to1 doublets.
Note: This paragraph has been taken from the unpublished manuscript with the
working title “Force propagation between epithelial cells depends on active coupling
and mechano-structural polarization”.
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Actin images doublets Actin images singlets

Forces

Actin fibers

A

C

B

Figure A.2: Panel A and B show LifeAct images of opto-MDCK cell doublets (left) and singlets
(right) spread on the H-pattern. Panel B shows the correlation of mechanical and structural polariza-
tion. The black line corresponds to a linear regression of the data and the shaded region denotes the
95 % confidence interval for this regression. The R-value shown is the Pearson correlation coefficient.
Scale bars correspond to 10 µm.
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Figure A.3: Panel A shows the comparison of circle and ellipse fit of the shape of the free contour
for singlets and doublets. For doublets all three pattern aspect ratios are shown. The black horizontal
line corresponds to the median value of the circle fit. Panel B shows the relative strain energy response
in doublets (left) and singlets (right) for local photoactivation of the left half of the pattern. Strain
energy is shown separately for the left half (bright) and right half (dark) of the pattern. The first 20
time frames denote the baseline. The vertical blue lines indicate the time points of photo-activation
with a 200 ms long light pulse every minute for 10 min. The strain energy curves were normalized
by first substracting the individual baseline energies (average of the first 20 time frames) and then
dividing by the average baseline energy of cell doublets/singlets in the corresponding data set. The
data is shown as circles and error bars denote the s.e.m. The solid lines represent FEM simulations
were the non-activated half of the pattern remains completely passive. Panel C shows the difference
of actin intensity after and before photactivation for doublets (top) and singlets (bottom) Panel D
shows the LifeAct intensity measurement for the peripheral stress fiber as a function of time of the left
half (bright) and right half (dark) fo doublets (top) and singlets (bottom) after local photoactivation.
Boxplots on the right depict the relative actin intensity value two minutes after photoactivation for
the activated and non-activated side. Panel E shows the contour strain measurement of the free stress
fiber. On the experimental images, the inter-stress fiber distance after and before photoactivation is
measured along the x-axis which defines a contour strain. Panel F shows the result of the contour strain
measurement based on the method depicted in F. Panel G (grey line) shows the normalized response
of the right half obtained from the contour FEM simulations as a function of the degree of active
coupling. The data points corresponds to the normalized response obtained from the experimental
curves in F and was placed on top of the grey line to obtain the degree of active coupling for each
pattern aspect ratio. Scale bars correspond to 10 µm.
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A B

D E

C

Figure A.4: Panel A compares the average TFM maps obtained by experiments (left) to the FEM
simulations (right) for doublets (top) and singlets (bottom). Panels B and D compare the average
internal cell stresses in x- and y-direction obtained by experiments (left) and FEM simulations (right)
for doublets (top) and singlets (bottom). Panels C and E show the internal cell stresses from B and
D averaged over the y-axis. The data is shown as circles and error bars denote the s.e.m. and the
solid line corresponds to the FEM simulations. Scale bars correspond to 10 µm.
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E

A B

D E

C

Figure A.5: Panel A compares the difference of the average TFM maps after and before photoacti-
vation obtained by experiments (left) to the FEM simulations (right) for doublets (top) and singlets
(bottom). Panels B and D compare the difference of the average internal cell stresses in x- and y-
direction obtained by experiments (left) and FEM simulations (right) for doublets (top) and singlets
(bottom). Panels C and E show the difference of the internal cell stresses from B and D averaged over
the y-axis. The data is shown as circles and error bars denote the s.e.m. and the solid line corresponds
to the FEM simulations. Scale bars correspond to 10 µm.

Figure A.6: Phalloidin stainings of actin structures of small tissues. Scale bar corresponds to 10 µm.
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Minimal model for fluidization

The minimal model for fluidization which we used to characterize the local photoac-
tivation of the singlet is depicted in Fig. A.7. Within this approach we model the
response of the singlet by simply switching from the contractile equilibrium state
(KV-model) to a Maxwell fluid with viscoelastic coupling to the substrate (coupling
Stokes’ elements γ and coupling springs Y in series). For simplicity we chose to use a
quasi one-dimensional such that flow and contraction is assumed to happen only along
the x-direction of a cell layer of length L. This type of Maxwell model (Fig. A.7A
(right)) has been used before to study the flow dynamics of stress fibers (Oakes et al.,
2017). Further, we allow the viscous coupling γ to be different in the activation re-
gion. This is assumed to artificially introduce a symmetry break between activated and
non-activated region (dotted line in Fig. A.7B)) as could be observed in experiments
(Fig. 5.9D (right)). At this point it should be noted that, although we use the terms
“activated” and “non-activated” we do not introduce active stresses but simply switch
the model. We note that qualitatively similar results can be obtained by variation of
the elastic modulus Ec between activated and non-activated region. Physically, this
rather heuristic approach allows material flow towards the activation region. With
regards to the actin intensity measurements in Fig. 5.9C, we identify this as the net
flow of actin.

In the following we will only derive the weak form of the quasi one-dimensional
Maxwell model. The corresponding weak form for the Kelvin-Voigt model can be
derived analogously. For simplicity we further introduce the short-hand notation for
the time derivative of a quantity u as u̇ ≡ ∂tu. The constitutive relation of the active
Maxwell model is given by Eq. (2.31)

σ − σbck + τc(σ̇ − σ̇bck) = Ecτcε̇ , (A.1)

where τc = Ec/η
MW
c is the relaxation constant for the Maxwell fluid, ε = ∂xu(x, t) is

the one-dimensional strain expressed in terms of the displacement field u and σbck is the
active background stress which is assumed to be constant (σ̇bck = 0). Additionally, we
assume stress free boundaries σ(x = (0, L), t) = 0 which corresponds to the assumption
that flow of material is sustained by creation of new actin at the ends of the cell layer.
According to Fig. A.7B, Stokes’ friction and elastic foundation are in serial connection.
Hence, the forces acting on these elements are equal which yields two dependent force
balance equations coupled through the realtion u = uY + uγ .

hc
∂σ

∂x
(x, t) = Y uY (x, t) , (A.2)

hc
∂σ

∂x
(x, t) = γu̇γ(x, t) , (A.3)

where we again use the thin-layer approximation by multplication with the effective
height of the cell layer hc and further, by uY and uγ denote the displacement of the
Stokes’ and spring element, respectively.
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switch
A

B

Figure A.7: Minimial model for fluidization. Panel A depicts the sudden model switch from a
contracted KV-type model with elastic substrate coupling and stable energy baseline to a MW-type
model with viscoelastic substrate coupling and a flow-like behavior. Panel B shows the quasi one-
dimensional setup with a contraction and flow only along the x-direction but an additional spatial
extent in y-direction. To account for the asymmetry between activated and non-activated side, we
alter the viscous coupling γ in the activation region. However, other parameters such as the Young’s
modulus of the cell can also account for the symmetry break. We do not make any claims on what
causes the symmetry break in the experimental observations.

Next, we take the derivative of Eq. (A.1) with respect to x which yields

∂xσ + τc∂xσ̇ = ηc∂
2
xu̇ . (A.4)

Using the time derivative of Eq. (A.2) and Eq. (A.3) gives the final system of equations

Y uY + τcY u̇Y = ηc∂
2
xu̇ (A.5)

γu̇γ + τcγüγ = γ(u̇− u̇Y ) + τcγ(ü− üY ) = ηc∂
2
xu̇ . (A.6)

In addition, the stress free boundaries yield

− σbck = ηc∂xu̇ . (A.7)

Following the recipe in Chapter 3 we multiply Eq. (A.5) and Eq. (A.6) with test
functions w1 ∈ V([0, L]) and w2 ∈ V([0, L]), respectively, and obtain

∫ L

0
Y uY w1 dx+

∫ L

0
τcY

uY − un,Y
∆t w1 dx

+
∫ L

0
ηc∂x

u− un
∆t ∂xw1 dx+ σbckw1

∣∣∣∣∣
L

0

= 0 , (A.8)
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and ∫ L

0
γ
uγ − un,γ

∆t w2 dx+
∫ L

0
τcγ

uγ + un−1,γ − 2un,Y
∆t2 w2 dx

+
∫ L

0
ηc∂x

u− un
∆t ∂xw2 dx+ σbckw2

∣∣∣∣∣
L

0

= 0 , (A.9)

where we did not replace uγ by u − uY for notational simplicity. For the time dis-
cretization we use a backward Euler scheme and second derivatives with respect to
time are approximated by

∂2
t u = u+ un−1 − 2un

∆t2 , (A.10)

where the indices n and n− 1 denote the two previous time steps.
The qualitative results of the implementation are shown in Fig. A.8. We first

equilibrated the cell layer using a KV model and then subsequently at t = tact (grey
vertical line) switched to an active Maxwell model. In the left panel of Fig. A.8A we
show the time evolution of the substrate strain energy for different viscous substrate
coupling strength (Stokes’ elements) γ. For the quasi one-dimensional model, the
substrate strain energy was calculated according to

Es = 1
2

∫ Lx

0
Y Lyu

2
Y dx , (A.11)

where Ly is the extent of the cell layer in y-direction. A large value of γ leads to
a steep increase in strain energy, since in this case the cell mainly feels and deforms
the springs. Conversely, a very small for γ leads to almost frictionless coupling and
the springs get barely deformed. Hence, the substrate strain energy decreases. For
intermediate values of γ, with an order of magnitude as reported in the work by Oakes
et al. (2014), the model switch leads to a transient behavior of the strain energy. Before
the model switch, all elastic energy is stored in the spring of the substrate. Right after
the model switch, the system starts to deform. At first, a high rate of deformation
leads to a „stiff“ Stokes’ element which in turn leads to larger deformations of the
substrate spring which is followed by an increase in the substrate strain energy. Over
time, the deformation rate slows down and the system starts to „flow“ such that the
strain energy drops below the baseline level as the substrate deformation decreases. In
Fig. A.8B we further show the flow velocity, i.e. the time derivative of the displacement
field v = ∂tu.

The same principle can be observed in the right panel of Fig. A.8A where the
only difference to the left panel is a position dependent Stokes’ element. Here, we set
γp = 0.5γa, where γp gives the value in the region marked as dark grey (Fig. A.8C)
while γa denotes the friction in the region marked as light grey (activation region). Here
we respected the shape of the activation profile used in the experiments in Chapter 5
such that the activation region ends approximately 10 µm before the symmetry center
of the cell layer. The strain energy was calculated by separately integrating the left
and right half of the cell layer (light and dark green). As can be seen in Fig. A.8C, the
distinct values of γ lead to and asymmetric flow profile with a larger flow towards the
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“activation” region. The order of magnitude ∼ µm h−1 is consistent with the values
found in (Oakes et al., 2014). All other parameters used in this qualitative simulation
are gathered in Table A.9
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flow velocity

left

right

Model switch Model switch

left right

A

B

C

KV MW KV MW

Figure A.8: Panel A (left) shows the time course of the relative substrate strain energy after a
sudden switch from a KV to a MW model. For three different regimes. For very large values of γ, i.e.
strong viscoelastic substrate coupling the strain energy increases. For very small values of γ the strain
energy releases. For intermediate values of γ the strain energy exhibits a transient behavior with a
small increase followed by a decrease below the baseline level. Panel A (right) shows the substrate
strain energy on the left and the right half of the pattern for different values of γ spatially oreinted as
depicted by the grey bars in Panel C. Panel B shows the flow velocity of the cell material for different
values of γ. Panel C shows the flow velocity corresponding the transient strain energy behavior (right
sub-panel in A). The parameters used for the simulation are gathered in Table A.9.
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Tables Chapter 5

Fixed parameter Value

Substrate

Young’s modulus of the substrate Es 20 kPa
Poisson’s ratio of the substrate νs 0.5
Thickness of the substrate hs 50 µm

Cell

Young’s modulus of cell Ec 10 kPa
Viscosity of the cell ηc 100 kPa s
Thickness of the cell hc 1 µm
Poisson’s ratio of the cell νc 0.5
Length of the cell Lc 50 µm

Table A.5: Fixed parameters for the two-dimensional finite element simulation.

Fit parameter Singlet Doublet

Baseline

Background stress component σbck
xx 6.59 kPa 5.73 kPa

Background stress component σbck
yy 2.78 kPa 5.73 kPa

Full opto-stimulation

Active stress σact 0.287 kPa 0.618 kPa
Activation time scale τact 133 s 227 s
Relaxation time scale τrel 113 s 236 s
Centroid t̃ 1057 s 1117 s

Table A.6: Fit parameter as obtained by the two-dimensional finite element simulation.
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Fit parameter AR1to2 AR2to1

Baseline

Background stress component σbck
xx 6.4 kPa 2.2 kPa

Background stress component σbck
yy 2.4 kPa 4.1 kPa

Opto-stimulation estimate

Active stress σact 0.55 kPa 0.06 kPa

Table A.7: Fit parameter and parameter estimates for the AR1to2 and AR2to1 doublets. The
background stress was obtained from a fit of the model to the strain energy baseline. Since no global
photoactivation data was available, we estimated σbck

xx such that the maximal strain energy in the
left half of the pattern matched the experimental value. σbck

yy was then obtained by means of the
mechanical polarization.

Parameter Value

Fixed

Surface tension component σx 0.92 nN µm−1

Surface tension component σy 1.12 nN µm−1

Semi-axis a 61.94 µm
Semi-axis b 68.34 µm
One-dimensional elastic modulus EA 300 nN

Contour fit

Active line tension λact 58.1 nN

Strain fit

Relative surface tension increase RSImax
x 0.11 nN µm−1

Relative surface tension increase RSImax
y 0.24 nN µm−1

Table A.8: Fixed and opitimized parameter for the contour shape analysis by means of the contour
finite element simulation.

Fixed parameter Value

Young’s modulus of the substrate Es 20 kPa
Poisson’s ration of the substrate νs 0.5
Effective substrate thickness hs 50 µm
Lateral cell size in x- and y-direct. Lc 45 µm
Young’s modulus of the cell Ec 10 kPa
Viscosity of the cell ηMW

c 10 MPa s
Cell layer thickness hc 1 µm
Background stress σbck 5 kPa
Spring stiffness density Y 1.26 mN m−1 µm

Table A.9: Fixed paramters used in the qualitative study of fluidization.
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Reaction scheme alternative (Victor Juma)

The reaction scheme used for Fig. 6.2B is given by

dGa
dt

= k3Ra(GT −Ga)− k4MaGa (A.12)

dRa
dt

= k0Ga(RT −Ra)
Kr0 + (RT −Ra)

+ k1(RT −Ra)
Kr1 + (RT −Ra)

− k2Ra
Kr2 +Ra

(A.13)

dMa

dt
= k5Ra(MT −Ma)
Km5 + (MT −Ma)

+ k7(MT −Ma)
Km7 + (MT −Ma)

− k6Ma

Km6 +Ma
, (A.14)

and the parameters are chosen according to Table A.10.

Contraction speeds up reactions

In a homogeneous one-dimensional setup Eq. (6.9) can be simplified to

∂tĉ = Rc(t)− ĉ
∂tĴ

1 + Ĵ
, (A.15)

as ∂xĉ = 0. Hence, the deformation of the domain, i.e. a fast compression speeds up the
reaction process. This scenario is shown in Fig. A.9A for the case of an exponentially
shrinking domain given by

Ĵ(t) = A+Be−αt . (A.16)

Sanity test discontinuous Galerkin internal no-flux boundary con-
dition

The internal no-flux boundary condition at the intercellular junction was, for illustra-
tional purposes, tested with the model by Juma (2019) and Kamps et al. (2020). In
an oscillatory regime of the system, traveling RhoA and myosin waves form as a result
of diffusion driven instabilities. We exploited this behavior to test wether an activity
wave passes the intercellular junction or not. These simulations did not involve defor-
mations of the simulation domain and we only simulated 6 coupled reaction-diffusion
equations (three for active species and three for passive species). Thereby, the ac-
tive species (membrane bound) are associated with a lower diffusivity compared to
the inactive (cytosol associated) species. The total concentration of each species is
assumed to be conserved. In general we have two equations for each species (GEF,
RhoA, myosin)

∂tca = Rc(t) +Dc,a∇2ca , (A.17)
∂tci = −Rc(t) +Dc,i∇2ci , (A.18)
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where the subscripts a and i denote the active and inactive states, respectively. To
drive the instabilities, we initialized a homogenous concentration field with noise

ca,0(x) = c̃0 + δc (0.5− U[0,1](x)) , (A.19)

where U[0,1] is the probability density function of the continuous uniform distribution,
c̃0 the homogenous concentration field and δc the noise. The reaction terms Rc are set
according to Eqs. (6.27) to (6.29) and the parameters according to Table A.11.
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RhoA active Myosin
normalized active concentration

with deformation rateA

B

Figure A.9: Sanity check for the RD-system and the interface condition. Panel A shows that
the a fast shrinking domain increases the temporarily increases the reaction rates. Plot on the right
corresponds to a zoomed in version of the left plot. The reaction kinetics correspond to the linear RhoA
pathway and parameters are chosen according to Table 6.1. The shrinking domain was parametrized
by A = 0.1, B = 0.9 and α = 0.5. Panel B depicts traveling wave peaks of RhoA and myosin, simulated
with the reaction diffusion model by Kamps et al. (2020). The intercellular junction prevents the wave
peaks from passing and hence decouples the two domains. However, concentrations on the left and
right hand side of the domain are mathematically described by a single scalar field.
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Tables Chapter 6

Value Unit Source

GT NS M Tyson et al. (2003)
k3 1 M−1s−1 ”
k4 0.65 M−1s−1 ”

MT 1 M ”
k5 0.15 s−1 ”
k6 0.1 Ms−1 ”
k7 0.025 s−1 ”
Km5 0.5 M ”
Km6 0.75 M ”
Km7 0.75 M ”

RT 1 M ”
k0 1 s−1 ”
k1 0.1 s−1 ”
k2 0.5 Ms−1 ”
Kr0 0.051 M ”
Kr1 0.051 M ”
Kr2 0.05 M ”

Table A.10: Parameters as used in Fig. 6.2B based on Tyson et al. (2003) and Juma (2019).
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Value Unit Source

GT 0.2 M Kamps et al. (2020)
k3 1.19 M−1s−1 ”
k4 3.98 M−1s−1 ”
DGa 0.28 µm2s−1 ”
DGi 9.28 µm2s−1 ”

MT 1.24 M ”
k5 0.005838 s−1 ”
k6 0.00039906 Ms−1 ”
k7 0.0 s−1 ”
Km5 0.014 M ”
Km6 0.0784 M ”
Km7 0.0 M ”
DMa 0.03 µm2s−1 ”
DMi 0.9 µm2s−1 ”

RT 0.443 M ”
k0 9.3896 s−1 ”
k1 0.0 s−1 ”
k2 0.15198 Ms−1 ”
Kr0 2.42 M ”
Kr1 0.0 M ”
Kr2 0.0745 M ”
DRa 0.28 µm2s−1 ”
DGi 9.28 µm2s−1 ”

Table A.11: Parameters as used in Fig. A.9B together with Eqs. (6.27) to (6.29).
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A.4. Actin polarization analysis (Structure Tensor)

This procedure has been used in Chapter 4 and Chapter 5 to quantify the polarization
of the actin cytoskeleton. Here we note that in Chapter 4 the polarization of the
actin cytoskeleton was called actin order parameter and in Chapter 5 referred to as
structural polarization. Both expressions refer to the same quantity. The structure
tensor of an image is given by the tensor components

J11 =
∫∫

w(x, y)
(
∂I(x, y)
∂x

)2
dx dy

J22 =
∫∫

w(x, y)
(
∂I(x, y)
∂y

)2
dx dy

J12 = J21 =
∫∫

w(x, y)
(
∂I(x, y)
∂x

)(
∂I(x, y)
∂y

)
dx dy ,

(A.20)

where I(x, y) is the intensity value of each pixel and w(x, y) denotes a Gaussian local
neighborhood with a waist of three pixels. On this local neighborhood one may define
the orientation angle as

tan(2θ) = 2J12
J22 − J11

, (A.21)

which is only meaningful if the image contains oriented structures in this local neigh-
borhood. One further defines coherency

Coherency =

√
(J22 − J11)2 + 4J2

12

J11 + J22
, (A.22)

which quantifies the degree of anisotropy. An average orientation angle can be obtained
by averaging θ over all pixels for which the coherency is above a certain predefined
threshold value Cthresh

θm = 〈θ〉>Cthresh (A.23)

from which the structural polarization (order parameter) is obtained by

Polarization = S = 〈cos (2(θ − θm))〉 . (A.24)

A value of S = 0 means that the local orientation is orthogonal to the average orien-
tation and conversely, a value of S = 1 means that they are aligned.
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Function definitions

Modified Bessel functions of the first and second kind

Modified Bessel function of the first kind (Abramowitz et al., 1988):

In(x) =
∞∑
k=0

(x/2)n+2k

k!Γ(n+ k + 1) , I−n(x) =
∞∑
k=0

(x/2)2k−n

k!Γ(k + 1− n) , (A.25)

where Γ(x) denotes the gamma function Recurrence formulas:

In+1(x) = In−1(x)− 2n
x
In(x) (A.26)

d
dxIn(x) = In−1(x)− n

x
In(x) (A.27)

Series expansion for x� 1:

In(x) = (x/2)n
Γ(n+ 1)

[
1 + (x/2)2

1(1 + n)

(
1 + (x/2)2

2(2 + n)

(
1 + (x/2)2

3(3 + n) (1 + . . .)
))]

(A.28)

Series expansion for x� 1:

In ≈
expx√

2πx

[
1− 4n2 − 12

1(8x)

(
1− 4n2 − 32

2(8x)

(
1− 4n2 − 52

3(8x) (1− . . . )
))]

, (A.29)

Modified Bessel function of the second kind (Abramowitz et al., 1988):

Kn(x) = π (I−n(x)− In(x))
2 sin(nπ) (A.30)

Modified Struve function

Series expansion:

Ln(x) =
∞∑
k=0

1
Γ(k + 3/2)Γ(k + n+ 3/2)

(
x

2

)2k+n+1
(A.31)

Further identities: ∫ x

0
dξI1(ξ)ξ = 1

2 (L0(x)I1(x)− L1(x)I0(x)) (A.32)

Limit x� 1: ∫ x

0
dξI1(ξ)ξ ≈ x3

6 + x5

80 + x7

2688 + O(x9) (A.33)

Limit x� 1: ∫ x

0
dξI1(ξ)ξ ≈ ex√

2πx

(
x− 7

8

)
(A.34)
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A.5. Analytical Calculations

Strain energy of isotropic contractile disc on ring pattern

According to Eq. (4.8) and for Y = Ys the substrate strain energy is given by

Es = Y

2

∫ 2π

0
dφ
∫ r0

ri

ru2
r(r) dr (A.35)

= πl2p
Y

2

∫ x0

xi

xu2
r(x) dx (A.36)

were we used the substitution r = xlp and that in the rescaled version x0 and xi

corresponds to the outer and inner ring radius, repsectively (Fig. 2.4B). The relevant
displacement field is given by Eq. (2.51) which describes the displacement field of the
adherent portion of the cell layer. c3 and c4 are constants as defined in Section 2.1.2.
It then follows

Es = πl2p
Y

2

∫ x0

xi

x (c3I1(x) + c4K1(x))2 dx

= πl2p
Y

2

∫ x0

xi

x
(
c2

3I
2
1 (x) + c2

4K
2
1 (x) + 2c3c4I1(x)K1(x)

)
dx

= πl2p
Y

2

c2
3

∫ x0

xi

xI2
1 (x) dx︸ ︷︷ ︸

=I1

+ c2
4

∫ x0

xi

xK2
1 (x) dx︸ ︷︷ ︸

=I2

+ 2c3c4

∫ x0

xi

xI1(x)K1(x) dx︸ ︷︷ ︸
=I3

 .

The integrals I1 to I3 the yield

I1 = c2
3
x2

2
(
I2

1 (x)− I0(x)I2(x)
) ∣∣∣∣∣

x0

xi

I2 = c2
3
x2

2
(
K2

1 (x)−K0(x)K2(x)
) ∣∣∣∣∣

x0

xi

I3 = c3c4
2
√
π
G2,4

2,2

(
x,

1
2

∣∣∣∣∣ 1, 3
2

1, 2, 0, 0

) ∣∣∣∣∣
x0

xi

. (A.37)

here, G denotes the so-called Meijer G-function which in this specific notation is defined
as

Gp,qm,n

(
x, r

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
≡ 1

2πi

∫
γL

Πm
j=1Γ(pj + s)Πn

j=1Γ(1− aj − s)
Πp
j=n+1Γ(aj + s)Πq

j=m+1Γ(1− bj − s)
x−s/r ds .

(A.38)

Elastic Catenary

In analogy to the analytical derivation of the TEM in Section 2.2.2 we provide the
analytical solution of the elastic catenary which exhibits a position-dependent line
tension along the fiber. The basis of the calculation is the force balance equation as a
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function of the unit reference length ŝ

∂ŝF(ŝ) + f(ŝ) = 0 , (A.39)

where F denotes the contact force within the fiber and f the externally applied load.
Using that for the elastic catenary the load is normal to the reference configuration
f = fyey = const. we obtain

∂ŝ(λ(ŝ)Tŝ)− fyey = 0 . (A.40)

Here, we used that the contact force is always tangential to the fiber. This further
leads to

λTx = const. ≡ λc
λTy = fy ŝ ,

where we introduced λc as the constant x-component of the line tension. At this point
we express the components of the tangent vector in terms of the turning angle θ(ŝ)
which leads to

λ cos θ = λc

λ
√

1− cos2 θ = fy ŝ .

From this we deduce the line tension as a function of the reference arc length as

λ =
√
f2
y ŝ

2 + λ2
c . (A.41)

The shape can be calculated by exploiting that the stretch of a linear elastic fiber with
one dimensional modulus is given by ν = (λ+ EA)/EA and

dx
dŝ = ds

dŝ
dx
ds = ν cos θ = ν

λc
λ

= λc

( 1
EA

+ 1
λ

)
(A.42)

dy
dŝ = ds

dŝ
dy
ds = ν sin θ = ν

fy ŝ

λ
= fy ŝ

( 1
EA

+ 1
λ

)
. (A.43)

Expressing λ in terms of the reference arc length parameter by means of Eq. (A.41)
allows to integrate Eqs. (A.42) and (A.43) which gives

x(ŝ) = λc
fy

arsinh(ŝ/(λc/fy)) + λc
EA

ŝ+ x0 (A.44)

y(ŝ) =
√

(λc/fy)2 + ŝ2 + λc
2(λc/fy)EA

ŝ2 + y0 . (A.45)

The integration constants x0 and y0 can be solved by using the boundary conditions

x(0) = 0 , y(0) = 0 , y(L̂) = 0 , x(L̂) = L̂ , (A.46)
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where L̂ is the length of the unstretched fiber. This finally yields the contour of the
elastic catenary which is given by

x(ŝ) = λc
fy

arsinh
(
λc
fy

(
ŝ− L̂

2

))
+ λc
EA

(
ŝ− L̂

2

)
+ λc
fy

arsinh
(
λc
fy

L̂

2

)
+ λc
EA

L̂

2
(A.47)

y(ŝ) =

√√√√(λc
fy

)2

+
(
ŝ− L̂

2

)2

+ λc
2(λc/fy)EA

(
ŝ− L̂

2

)2

−

√√√√(λc
fy

)2

+
(
L̂

2

)2

+ λc
2(λc/fy)EA

(
L̂

2

)2

. (A.48)

Finally, the last boundary condition in Eq. (A.46) gives an implicit equation which
has to be solved to obtain λc

L̂

2 = λc
fy

arsinh
(
fy
λc

L̂

2

)
+ λc
EA

L̂

2 . (A.49)

The line tension then yields

λ =

√√√√f2
y

(
ŝ− L̂

2

)2

+ λ2
c . (A.50)

The results of this analytical calculation are depicted in Fig. 3.4B-D and where used
to validate the numerical implementation of the counter model.
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