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Novel Methods for the Reduction of Systematic and Statistical Measurement
Deviations and Spatial Resolution Optimization in X-Ray Computed Tomography
Systematic and statistical measurement deviations, as well as insufficient spatial resolution of
the image data, can severely degrade the image quality in x-ray computed tomography (CT) and
thus limit the application of CT for medical and industrial purposes. This dissertation therefore
deals with the reduction of such measurement deviations under the aspect of simultaneously
optimal spatial resolution of the CT datasets. The empirical scatter correction (ESC) is
presented as an algorithm that effectively reduces systematic measurement deviations due
to scattered photons without specific prior knowledge about the measured object, the CT
system, or acquisition parameters. Furthermore, this work proposes the frequency split dual
energy computed tomography (FSDECT), a method for CT systems with two x-ray tubes that
reduces systematic measurement deviations due to the polychromatic x-ray spectrum and the
energy-dependent attenuation behavior of matter. Compared to existing dual energy computed
tomography (DECT) methods for reducing systematic measurement deviations, the resulting
fusion volume dataset has an increased spatial resolution. The feasibility of reducing systematic
measurement deviations in CT using novel energy-selective detectors is also reviewed in this
work and possible benefits compared to non-energy-selective detectors are discussed. To reduce
statistical measurement deviations, which negatively affect the reproducibility of measurement
results in addition to a decrease of image quality, a guided bilateral filter is proposed. By
improving the image quality with the correction methods presented in this dissertation, internal
features of a sample workpiece can be measured with high repeatability using CT measurements,
which is not possible without these methods due to excessive measurement deviations.

Neue Verfahren zur Reduktion systematischer und statistischer Messabweichungen
und räumlichen Auflösungsoptimierung in der Röntgencomputertomographie
Systematische und statistische Messabweichungen sowie eine unzureichende räumliche Auflö-
sung der Bilddaten können die Bildqualität in der Röntgencomputertomographie (CT) stark
reduzieren und somit die Anwendung für medizinische und industrielle Zwecke einschränken.
Diese Dissertation behandelt deshalb die Reduktion derartiger Messabweichungen unter dem
Gesichtspunkt gleichzeitig optimaler räumlicher Auflösung der CT-Datensätze. Mit der em-
pirischen Streustrahlkorrektur (ESC) wird ein Algorithmus präsentiert, der ohne spezifisches
Vorwissen über das Messobjekt, das CT-System, oder Aufnahmeparameter, systematische Mess-
abweichungen durch gestreute Photonen effektiv reduziert. Darüber hinaus wird in dieser Arbeit
mit der frequenzteilenden Zweispektren-CT (FSDECT) ein Verfahren für CT-Systeme mit zwei
Röntgenröhren vorgestellt, welches systematische Messabweichungen aufgrund des polychro-
matischen Röntgenspektrums und des nicht-linearen Abschwächungsverhaltens von Materie
reduziert. Verglichen mit bestehenden Zweispektren-CT-Verfahren zur Reduktion systematischer
Abweichungen hat der so gewonnene Fusionsvolumendatensatz eine erhöhte räumliche Auflösung.
Im Rahmen dieser Arbeit wird außerdem die Möglichkeit zur Reduktion systematischer Messab-
weichungen in der CT mittels neuartiger energieselektiver Detektoren überprüft und mögliche
Vorteile gegenüber nicht-energieselektiven Detektoren erörtert. Zur Reduktion von statistischen
Messabweichungen, die neben der Bildqualität die Reproduzierbarkeit von Messergebnissen
negativ beeinflussen, wird das Verfahren des gesteuerten Bilateralfilters vorgeschlagen. Durch
die Erhöhung der Bildqualität mit den in dieser Dissertation vorgestellten Korrekturverfahren
können innenliegende Merkmale eines Testwerkstückes mit hoher Wiederholpräzision mittels
CT gemessen werden, was ohne diese Verfahren aufgrund zu starker Messabweichungen nicht
möglich ist.
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1 | Introduction

When Wilhelm Conrad Röntgen discovered a new type of electromagnetic radiation in
1895, which is absorbed by matter to different extents depending on material, density and
transmission length and which he called x-rays [1], the scientific community immediately
realized the significance of this discovery and, in particular, its usefulness for medical
applications, so that Röntgen was awarded the first Nobel Prize in Physics in 1901.
Sixteen years later, the Austrian mathematician Johann Radon published a method for
solving the inverse problem of reconstructing a function from its line integrals [2], which
corresponds approximately to the problem of reconstructing volume information from
x-ray projections of different acquisition angles. This laid the theoretical foundation
for x-ray CT, which describes a method for computing local attenuation information
in a body from x-ray images taken from different directions. However, since numerous
computational operations must be performed for the reconstruction of CT volume
data, requiring a computer for efficient computation, it took further decades until the
technical realization of a commercially available CT device, which was first developed
in 1972 by Sir Godfrey Hounsfield and distributed by the company Electric and Musical
Industries (EMI). Together with Allan McLeod Cormack, who provided theoretical
foundations for CT, Hounsfield was awarded the Nobel Prize in Physiology or Medicine
in 1979. Unsurprisingly, x-ray CT quickly established itself as one of the most important
imaging modalities in radiology, where it still plays a very important role today due to
its quantitative imaging of the interior of the body, as well as short acquisition times
and very high detail resolutions. In 2018, for example, 145 CT exams were performed
per 1000 inhabitants in Germany alone [3].

The potential of x-ray computed tomography for nondestructive evaluation of work-
pieces was recognized as early as the early 1980s [4]–[6] and CT thus made its way into
quality assurance processes for workpiece inspection and flaw detection. In particular,
the emergence of x-ray flat panel detectors in the late 1990s [7], which together with
specialized reconstruction algorithms [8] allow a much larger measurement volume, led
to an increase in the use of CT in industrial applications. Then, in 2005, the first
commercially available coordinate measuring machine with computed tomography sensor
[6], [9] was released. Due to a fully calibrated measuring volume, dimensions of scanned
workpieces can be determined in this CT application and thus the manufacturing quality
of the workpiece can be checked within certain tolerances. An advantage of the CT
sensor compared to tactile or optical sensors is the high number of features that can
simultaneously be recorded by CT [10] and the possibility to non-destructively deter-
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CHAPTER 1. INTRODUCTION

mine also internal and thus difficult accessible dimensions. Therefore, the metrological
application of CT is already an established method for quality assurance, especially in
the plastic injection molding industry, the automotive industry, as well as the medical
engineering sector and consumer goods industries, and it is expected that the market
share of coordinate measuring machines with CT sensor will continue to grow [11].

A major problem in CT are systematic measurement deviations, which are called
artifacts in CT and which have a strong negative influence on the image quality (cf.
Fig. 1.1) and thus make diagnoses using medical CT data or inspections using industrial
CT data difficult or completely impossible. Moreover, these measurement deviations are
known to distort the dimensions of workpiece features determined by CT measurements
[12]–[14]. Artifacts arise in CT volume data when the linear relationship between
measured projection values and intersection lengths of the measured object, which is
required by typical analytical reconstruction methods, is undermined by physical effects
in the CT measurement, or sampling criteria are not met, or the solution space of the
used reconstruction algorithm is ambiguous [15], [16]. The mentioned physical effects
correspond to systematic measurement deviations caused by the polychromatic x-ray
spectrum, scattered radiation, signal height differences of the detector pixels, or complete
absorption of the x-ray radiation (photon starvation), just to name a few. A good
overview of artifacts in CT is provided by reference [17]. A large part of these systematic
measurement deviations occurs increasingly for measured objects that strongly absorb
x-rays. This is the case for dense matter with high atomic number, which is why artifacts
are especially pronounced for measurements of metal objects, or objects containing
metals. In medical applications, this can be the case, for example, in CT measurements
of patients with metallic implants. Accordingly, established solution approaches for
such systematic measurement deviations exist in medical imaging [18]–[20]. However,
these methods reach their limits when the proportion of metals in the measured object
is very high and are therefore of limited use in industrial CT applications [21], where
metals may make up a large part or even the entire workpiece.

A commonly used option in industrial CT to measure substantial objects that are
difficult to penetrate with x-rays is to use high photon energies for the measurement.
This is advantageous, as it may lead to an increased transmission of x-rays and can
lead to a reduction of systematic measurement deviations (see Fig. 1.1). However, this
method is associated with the problem that x-ray tubes, which allow correspondingly
high photon energies, are often operated with large focal spot sizes in order to be able
to effectively transport any heat generated away from the target and prevent damage to
the CT system. Thus, this negatively affects another feature of image quality, namely
the structural resolution of the volume data obtained by the CT measurement, which is
evident in the close-ups of Fig. 1.1. This may be an exclusion criterion for applications
with strict structural resolution or tolerance requirements.

Existing correction methods for systematic measurement deviations in industrial CT
applications can basically be divided into hardware-based methods [22]–[24], where
modifications are made to the CT device or individual components, and software-based
methods, which in turn can be divided into iterative methods [25], [26] and pre- and
postcorrection methods [21], [27]–[33], depending on whether the correction is iteratively
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incorporated into the CT reconstruction process or is applied before or after the CT
reconstruction on the acquired datasets. One problem in industrial CT is often a lack
of prior knowledge about the workpiece under investigation or the measuring system.
In contrast to medical CT applications, in which the measurement object is always
the human body, the material composition of workpieces is often not known a priori,
especially if the CT quality assurance process is not integrated into the production of
the workpiece. In addition, industrial CT devices often differ greatly from each other
depending on the target application, and the characteristics of individual components,
some of which are not manufactured by the CT manufacturer itself, such as x-ray tubes
or detectors, are not fully known, which makes it difficult to use a correction procedure
that requires precise prior knowledge of the measurement system. The scan trajectories
and acquisition parameters may strongly differ in industrial CT, as well, and there are
usually no fixed scan protocols, such as they are implemented for clinical CT systems.

For the correction of scatter artifacts, methods like Monte Carlo simulations or linear
Boltzmann transport equation solvers, which try to exactly reproduce the physical
process of photon scattering, are considered to be the gold standard [34]–[40] besides
novel learning-based methods, which require a sufficiently trained neural network as a
basis [27], [41]–[51]. Monte Carlo and Boltzman transport equation methods strongly
rely on prior knowledge of the scanned object, such as material and density distribution,
as well as the measurement system and acquisition parameters for accurate correction
results [52], however. Therefore, after discussing the fundamental working principle of
CT and the theoretical background of some of the main characteristics of CT in chapter 2,
a novel method is presented that can reduce systematic measurement deviations due
to scattered photons without specific prior knowledge about the measured object, the
measurement system, or the acquisition parameters in chapter 3 of this thesis. The
method presented here corresponds to a software-based precorrection method that
incorporates an iterative optimization scheme and it reduces scatter artifacts based on
measured projection data and a reconstruction algorithm alone, without prior knowledge,
reference measurements, training data, or hardware modifications that typically increase
measurement effort and can even lead to reduced image quality under unfavorable
measurement conditions [53]–[56].

In chapter 4 of this thesis a novel method for the reduction of systematic measurement
deviations due to the polychromatic x-ray spectrum is presented. This method is based
on the fusion of CT datasets acquired with two x-ray tubes of different designs, which
differ both in the size of the focal spot, i.e., their achievable maximum spatial resolution,
and in the maximum tube voltage and tube power, i.e., their achievable penetration
and artifact content of the CT datasets. The principle of using CT datasets acquired
with different x-ray spectra to reduce beam hardening and metal artifacts has been
known and is well studied in clinical CT for some time [57]–[59]. However, combining
the advantages of different x-ray tube designs in a single process is a novelty. The goal
of the data fusion presented in chapter 4 is therefore to generate a fusion CT data set
with reduced scatter and beam hardening artifacts without having to accept the loss of
spatial resolution typical for high power x-ray tubes with large focal spots (cf. Fig. 1.1).

Novel energy-resolving detectors allow the acquisition of spectral datasets for a single
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CT scan of an object using the same x-ray tube parameters and prefiltration [20],
[60]–[62]. Chapter 5 of this dissertation examines, if spectral data using an energy
resolving detector instead of different tube spectra can reduce the amount of systematic
measurement deviations in a CT measurement, as well, and discusses potential benefits
compared to conventional dual energy CT approaches.

As some of the aforementioned methods for the reduction of systematic measurement
deviations may lead to an increase of statistical measurement deviations, this issue is
addressed in chapter 6 of this dissertation. In this chapter, a novel method is discussed
that uses CT datasets with different properties in terms of artifact content and noise
levels, e.g. different combinations of spectral CT datasets, to produce an artifact-reduced
low-noise CT volume by a guided filter operation. The guidance in this filtering process
by means of another aligned CT volume of the measured object with favourable noise
characteristics thereby guarantees that edges, hence the structural resolution, are
preserved. Compared to existing edge-preserving filter-based noise reduction methods
[63]–[68], the method proposed here is optimized, but not limited, for the use case on
artifact-reduced spectral CT data combinations, which is demonstrated using spectral
CT data acquired with an energy resolving detector and spectral CT data acquired
with different x-ray tubes at different x-ray spectra.

Even though the focus of this thesis is to increase the image quality of industrial CT
measurements, the transfer to medical applicability is often not far, as will be shown in
the individual chapters of this thesis.
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Figure 1.1: CT images for two measurements of an automotive control device and
for a corrected dataset. While the dataset on the left corresponds to a
measurement using an x-ray tube with a small focal spot and moderate
photon energies, the dataset in the middle corresponds to a measurement
using an x-ray tube with a large focal spot and high photon energies. Both
datasets exhibit a high amount of systematic measurement deviations with
measurement one showing even higher deviations. The dataset shown on the
right, which was corrected with the algorithms proposed in this dissertation
that partially use information of both measurements, shows a reduced
amount of systematic measurement deviations. The close-ups furthermore
emphasize the different spatial resolution of the datasets. The corrected data
have a spatial resolution that is comparable to that of the initial dataset
with the higher spatial resolution (measurement one).
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2 | Fundamentals

2.1 X-Ray Imaging and X-Ray Computed Tomography

X-ray computed tomography is based on the idea of taking radiographs under different
angles of view and transferring the obtained information numerically into a three-
dimensional volume dataset. The setup of a typical industrial cone-beam computed
tomography (CBCT) system is depicted in Fig. 2.1. The procedure of a CT measurement
begins with the generation of x-rays in the x-ray tube. Subsequently, the generated x-ray
photons pass through matter (prefilter and object) and impinge on the x-ray detector,
which typically consists of numerous detector elements, so-called detector pixels in
lateral and longitudinal direction. Radiographs are then taken at different rotation
angles α. Devices such as the one shown in Fig. 2.1, where x-rays are emitted and
detected in a pyramid shape, are referred to as cone-beam CTs. Basically, the geometry
of such a CBCT system is unambiguously defined by the vectors s(α), o(α), u(α), and
v(α) for each rotation angle α. Whilst s(α) points from the origin of coordinates, which
typically corresponds to the isocenter of rotation, to the position of the focal spot of
the x-ray tube, o(α) points to the center of the first detector pixel. The vectors u(α)
and v(α) have the same magnitude as the pixel dimension in lateral and longitudinal
direction and define the detector plane. In highly accurate industrial CBCT systems,
the object is usually rotated on a rotary table to obtain radiographs at different angles
α instead of a physical movement of the x-ray tube and the detector. This is done
because the distance of the object to the focal spot and the detector, which determines
the optical magnification (cf. Sec. 2.2), can easily be adjusted by moving the rotary
stage towards or away from the x-ray tube and the typically lead shielded CBCT device
can be designed relatively compact. Thus, the rotation of the souv-vectors is performed
virtually by an object rotation in these setups. In medical CBCT systems, such as
those used for image-guided radiotherapy or interventional CT, the x-ray tube and
the detector are in fact rotated around the patient, who is placed in the isocenter
of this rotation. For ideal circle scan trajectories, the focus-detector distance RFD,
the focus-isocenter distance RF, and the isocenter-detector distance RD stay constant
throughout the entire rotary movement. Clinical diagnostic CT devices show more
differences to the setup in Fig. 2.1. Similar to medical CBCT devices, the x-ray tube
and detector rotate around the patient. This rotation operates at very high velocities,
however, and the ring tunnel in which the tube and detector rotate is called the gantry
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in these CTs. Instead of flat detectors, diagnostic CTs use detectors which are curved
around the focal spot of the x-ray tube with a comparatively small longitudinal coverage.
However, even these curved detectors nowadays consist of multiple detector rows of
up to 320 detector pixels [69], which is why modern diagnostic CT systems are also
referred to as multislice computed tomography (MSCT). When short scan times are
required instead of high measurement accuracies and adjustable magnification settings,
computer tomographs with gantry-based designs are also used in industrial applications
[70].

Figure 2.1: Setup of a typical industrial CBCT scanner. X-rays are generated at the
focal spot in the x-ray tube and pass through matter in the form of a prefilter
and the scanned object before being converted into an electrical signal at
the detector, which results in an x-ray image of the object. The geometry of
the CT is defined by the souv -vectors. The rotary table rotates the object
around the isocenter of rotation by the angle α.

Following the logical flow of a CT measurement from the generation of the x-ray
radiation to the volume reconstruction and the generation of the measurement point
cloud, the technical components of a CT, the associated physical effects of a CT
measurement, and specific algorithms for CT rawdata processing are explained in the
following.

2.1.1 Generation of X-Rays

By definition, x-rays describe electromagnetic radiation with wavelengths of about
10−8 m to 10−12 m [71] (about 100 eV to 1 MeV) produced by the interaction of fast
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charged particles, usually electrons, with matter. As shown in Fig. 2.1, in conventional
CT scanners x-rays are generated in x-ray tubes. The basic working principle is the
same for all common types of x-ray tubes since the discovery of x-rays at the end of
the 19th century. A cathode, usually made of thoriated tungsten with a high melting
point at roughly 3683 K, is heated to approximately 2400 K [16] in order to release
electrons by thermionic emission. The electrons thus released are accelerated in an
electric field generated by applying a voltage between the cathode and an anode, the
so-called tube voltage UB. Due to this acceleration, the electrons acquire the kinetic
energy Ekin = eUB, where e = 1.602176634 · 10−19 C corresponds to the elementary
charge. When these electrons hit a target, they will lose their kinetic energy and this
energy loss results in the release of electromagnetic radiation, the x-rays, for energy
conservation reasons. Such x-rays can be generated by two different physical processes,
and depending on the process of generation, one speaks of characteristic x-rays or
bremsstrahlung.

Characteristic x-rays are caused by inelastic Coulomb interactions between the
accelerated free electrons and the bound electrons of the target material atoms. The
collision process transfers energy from the free electron to the bound electron and
thereby ionizes the atom. The vacancy in the electron orbital is then filled with a
weaker bound electron from the atom and a photon with a discrete energy equal to the
difference in the binding energies of the involved energetic states is released. Relating
to the electron shell model, the released x-ray photons are labeled with the letters of
the ionized shell (K, L, M, etc.) and a Greek index encodes the filling of this electron
hole by an electron from the neighboring shell (α), the shell after next (β), and so on.
Thus, a Kα photon results, for example, from an ionization of a K-shell electron and
a transition of an L-shell electron to the resulting vacancy in the K-shell, while a Kβ

photon is produced by the refilling of the K-shell vacancy with an electron from the
M-shell.

Bremsstrahlung, on the other hand, describes the process of x-ray generation by
deflection of the free high-energy electrons in the electric field of the nucleus of a target
material atom. Following the law of conservation of energy, the associated loss of
energy by this deflection is compensated by the emission of photons. In contrast to
characteristic x-rays, the x-rays generated by bremsstrahlung processes have continuous
energies and the maximum energy obtained by this process is given when the whole
kinetic energy of an electron is transferred into a single x-ray photon:

Eγ,max = Ekin = eUB (2.1)

Characteristic x-rays and bremsstrahlung are always found superimposed in the x-ray
spectrum of an x-ray tube. Even though the fraction of characteristic x-rays increases
for increasing tube voltages, the fraction is still as low as 10% for a relatively high tube
voltage of UB = 250 kV given a target material of tungsten [72] and the continuous
bremsstrahlung typically dominates the x-ray spectrum (cf. Fig. 2.3). According to
Kramers’ law [73], the intensity distribution of the bremsstrahlung in photons per
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second can be approximated by [74]

N(E) ∝ Ie Z

(
Eγ,max
E

− 1
)
, (2.2)

where Ie denotes the electron current in electrons per second and Z the atomic number
of the target material. The electron current in SI units corresponds to the so-called tube
current I of the x-ray tube. Following the above equation, the intensity distribution of
the generated x-ray bremsstrahlung is hence approximately proportional to the tube
current I, the atomic number Z of the target material and the tube voltage UB, which
implicitly controls Eγ,max following Eq. (2.1). The efficiency for converting the kinetic
energy of electrons into x-ray photons is proportional to the atomic number Z and tube
voltage UB, as well, and is only about 1% [75]. The remaining energy is converted to
heat. Therefore, the target material must be very heat resistant. This is why tungsten is
often used as target material, since it has a high melting point at 3695 K [76] combined
with a relatively high atomic number of Z = 74.

Besides the intensity of the x-ray radiation and the maximum energy of the emitted
photons, the size of the focal spot plays a major role in x-ray imaging because it
corresponds to one of the limiting factors of the achievable spatial resolution of the CT
system (cf. Sec. 2.2). Typically x-ray tubes are classified by the size of the focal spot into
minifocus, microfocus and nanofocus tubes with focals spot sizes around one millimeter,
few micrometers, and several hundred nanometers, respectively. To better distinguish
conceptually from microfocus tubes, the less frequently used term macrofocus tube is
used in this work for a type of x-ray tube with a focal spot size of about one millimeter.
The technical differences of these two types of x-ray tubes are discussed in the following.

i.) Macrofocus X-Ray Tubes

A scheme of a macrofocus x-ray tube is given on the left side of Fig. 2.2. The construction
is basically the same as already discussed above: a cathode emits electrons which are
accelerated to the anode by applying a tube voltage UB where x-ray photons are
generated. In addition to the basic setup, the electrons emitted at the cathode pass
through a grid cap, also known as Wehnelt cylinder. This component has a negative
potential with respect to the cathode and is used to focus the electron beam and control
its intensity [75], e.g. by applying a very high bias voltage UG on the grid cap, the x-ray
tube can be switched off almost immediately. Whilst a higher bias voltage may lead to a
more focused electron beam it also leads to a decreased beam current, however, resulting
in a trade-off between focal spot size and electron beam intensity. Often two operating
modes are provided for macrofocus x-ray tubes, which allow different focal spot sizes at
different tube powers P = UB I [15]. For the x-ray tube shown in Fig. 2.2, the anode
itself corresponds to the target, which is tapered with an anode angle φ. Not quite
accurately, one speaks of reflection targets for such tapered targets because the usable
fraction of the x-ray radiation corresponds to more or less perpendicularly emitted
photons. This target construction type allows for a direct cooling and therefore high
tube powers can be achieved. Another benefit of this target design is that depending
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Figure 2.2: On the left side of this figure a scheme of a macrofocus tube with a reflection
target is shown. On the right side, a microfocus tube with a transmission
target is depicted. The figures on the bottom show a close-up of each target
type. For one arbitrary photon emission location in the target, dx1 and
dx2 depict the different intersection lengths a photon has with the target
material depending on its emission angle, which leads to the heel effect in
reflection targets [77].

on the anode angle φ, the optical focal spot size is smaller than the electrical focal spot
size, which can be seen in the close-up of the reflection target in Fig. 2.2. However, the
same illustration shows that the intersection length of generated x-rays within the target
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material differs for different emission angles (dx1 < dx2), which results in unwanted
inhomogeneities of the intensity and energy distributions (cf. Sec. 2.1.2), known as the
heel effect [77]. X-ray tubes with stationary targets, as the one shown in the figure
here, can be operated up to tube powers of 10 kW [78] at focal spot sizes of about one
millimeter [75]. In diagnostic CTs, where tube powers may exceed 100 kW to enable
very short acquisition times, rotating anodes are used to effectively dissipate the heat
[15]. Bipolar reflection tubes1, where the cathode is at a negative high voltage and the
anode is at a positive high voltage, can generate tube voltages of up to 600 kV and thus
photon energies of up to 600 keV [80] are achievable.

Exemplary tube spectra for an x-ray tube with a tungsten reflection target and an
anode angle of φ = 12◦ modelled with the semi-empirical model of Tucker et al. [81] for
tube voltages ranging from 80 to 140 kV are shown in Fig. 2.3.

ii.) Microfocus X-Ray Tubes

On the right side of Fig. 2.2 a sketch of a microfocus x-ray tube is shown. There are
several major differences in this tube design compared to that of the macrofocus tube.
Firstly, the anode is designed as ring anode and is separated from the target. Then
there is a combination of coil components. The centering coils are used to control the
position of the electron beam on the target. Even though it is not explicitly shown on
the left side of Fig. 2.2 for the macrofocus tube, such centering coils are not unique to
microfocus tubes. In fact many diagnostic CT scanners with macrofocus tubes use this
type of electromagnets to rapidly move the focal spot position in a CT acquisition to
improve the sampling rate, a method known as flying focal spot (FFS) technique [82],
[83]. Macrofocus tubes in industrial CT scanners typically do not offer this feature,
though. The focusing coils are typical for microfocus tubes and can not be found in
macrofocus tubes. These coils act as magnetic lenses and focus the electron beam. This
way very small electron beam diameters can be achieved at the target position leading
to focal spot sizes in the micrometer range [75]. However, due to the very high energy
density at the focal spot, the tube power in microfocus tubes is limited for thermal
reasons.

Instead of a reflection target, a transmission target is used in the microfocus tube in
Fig. 2.2. As can be seen in the close-up of the target in this illustration, a transmission
target consists of a very thin layer of a few micrometers of the actual target material,
which is attached to a thicker substrate layer [84]. The substrate must be stable
enough to withstand the pressure difference between the vacuum in the tube and the
surrounding atmosphere and have a high thermal conductivity so that heat can be
dissipated well from the target. In addition, it should have a low density and atomic
number so that it does not contribute significantly to the generation of x-ray radiation
and the previously generated x-ray quanta are absorbed to a lesser extent (cf. Sec. 2.1.2),
which is why crystalline carbon (diamond) is a well-suited substrate material. The
thin target layer ensures that the focal spot size is limited to a few micrometers in

1There are unipolar and bipolar x-ray tube designs. In unipolar x-ray tubes a negative high voltage is
applied to the cathode and the anode is at ground potential [79].
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depth dimension. Even though many microfocus tubes are also equipped with reflection
targets (see [85]), transmission targets provide some advantages. The heel effect is not
a problem for transmission targets because the intersection lengths of the generated
photons with the thin target layer are very small and relatively similar in each spatial
direction. Furthermore, higher geometric magnifications (cf. Sec. 2.2) can be achieved
with transmission targets because the focal spot is located closer to the outer side of the
tube window compared to reflection targets, so that the object can be scanned closer
to the focal spot. Moreover, the very thin target results in a smaller focal spot size at
higher photon fluxes [86]. On the other hand, a disadvantage of transmission targets is
their limited heat dissipation capacity, since cooling can not be integrated into the thin
layer of the target material.
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Figure 2.3: Simulated x-ray spectra emitted by an x-ray tube with a tungsten reflection
target for different tube voltages. Each spectrum is normalized with respect
to the integrated signal of the 140 kV spectrum.

2.1.2 Photon Matter Interactions

As soon as x-ray radiation penetrates matter, the initial intensity I0 of the radiation is
attenuated. The associated loss of radiation intensity is exponential and the remaining
intensity I(d) after passing an object of thickness d is described by the Lambert-Beer
law:

I(d) = I0 e
−µ d (2.3)

The variable µ in this equation corresponds to the linear attenuation coefficient. This
coefficient includes all interactions of electromagnetic radiation with matter in the
relevant energy range and depends on the chemical composition of the material, its
density ρ and the energy Eγ = E of the radiation. Generalizing the Lambert-Beer law
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with respect to inhomogeneous objects and photon energies E yields

I(E, d) = I0 e
−

∫ d

0 µ(λ,E) dλ. (2.4)

In the energy range of x-ray photons used for medical and industrial CT applications,
which typically varies between O(10 keV) and O(100 keV), there are three interactions of
electromagnetic radiation with matter that are relevant: coherent scattering (Rayleigh
and Thomson scattering), photoelectric absorption, and incoherent scattering due
to the Compton effect. The attenuation coefficient µ(E) therefore corresponds to a
superposition of these effects

µ(E) = µR(E) + µP(E) + µC(E), (2.5)

where each individual linear attenuation coefficient term can also be formulated with
respect to the cross section σ of such an interaction [16]

µR/P/C(E) = ρNA
A

σR/P/C(E) (2.6)

with ρ being the density of the material, NA = 6.02214076 · 1023 mol−1 the Avogadro
constant, and A the atomic weight of the material. The different attenuating effects
and their dependence on the photon energies and the material of the attenuator are
described in more detail the following.

i.) Rayleigh Scattering

Rayleigh scattering describes the process in which electrons bound in the atom or
molecule are excited to dipole oscillations by an incident photon and a photon of the
same energy is emitted at a certain scattering angle. The cross section of this process is
given by [87]

σR(E) ∝ ω4

(ω2
0 − ω2)2 + ω2 γ2 , (2.7)

where ω = 2π E/h describes the photon’s angular frequency, ω0 the eigenfrequency
of the bound electron on which scattering occurs and γ the damping factor of the
oscillation. The eigenfrequency of the bound electrons is typically much lower than the
frequency of x-ray radiation. A corresponding coherent scattering process with ω ≫ ω0,
which is also obtained in the limit of free or weakly bound electrons, is called Thomson
scattering. According to Eq. (2.7), the cross section for such an interaction approaches a
constant value in this case. In reality, the underlying scattering process not only involves
a single electron, but all Z electrons of the atom. Furthermore, interference effects
occur because the wavelength of high energetic radiation, such as x-rays, is not small
compared to the atom size any more. These effects are described by so-called atomic
form factors which can be calculated if the electron density distribution of the atom
is known. It can be observed that due to these effects, the cross section for coherent
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scattering in x-ray imaging decreases for increasing photon energies and grows with
the atomic number Z of the atom [88]. As in clinical and industrial CT applications
the relevant photon energies are relatively high and the energy deposited in the dipole
oscillation in order to be released in a coherently scattered photon is limited by the
fact that ionization or excitation of the atom must be avoided, other photon matter
interactions, namely the photoelectric and Compton effect, are dominating.

ii.) Photoelectric Effect

The photoelectric effect is based on the absorption of an x-ray photon by a bound
electron. This absorption process can only take place if the energy of the photon is
at least as high as the binding energy of the electron E ≥ Eb. If the photon energy
exceeds the binding energy of the electron, this energy difference is transferred to the
now free electron in form of kinetic energy Ekin,e = E − Eb. An exact calculation of
the effective cross section for photoelectric interactions is difficult, since in principle
the quantum mechanical analysis of the wave function of the entire electron shell is
required. However, a formula of the photo effect cross section can be approximated by
only considering the cross section for K-shell electrons, which have the largest part of
the total cross section of this interaction anyway [89], [90]:

σP(E) ∝
{

Z5

E7/2 for E > Eb(K)
Z5

E for E ≫ Eb(K)
(2.8)

Photoelectric absorption is thus especially pronounced in high-Z materials at relatively
low photon energies E.

iii.) Compton Scattering

The Compton effect corresponds to an incoherent scattering process in which a photon
collides with a quasi-free or weakly bound electron and is scattered under an angle ϑ
after this collision. Thereby, the photon transfers part of its energy to the electron.
Assuming a free electron, the energy of the photon after the collision can be calculated
by following energy and momentum conservation laws. As a consequence, the photon
energy after the collision is given by:

E′ = E

1 + E
me c2 (1 − cos(ϑ))

(2.9)

The cross section of scattering interactions of photons with free electrons by means of
the Compton effect can be calculated by integrating the differential cross section given
by the Klein-Nishina formula [91], which yields [92]

σC,KN(E) ∝ 1 + α

α2

(2 (1 + α)
1 + 2α − ln(1 + 2α)

α

)
+ ln(1 + 2α)

2α − 1 + 3α
(1 + 2α)2 , (2.10)

where α = E
me c2 corresponds to the fraction of the photon energy and the rest energy of

the electron. For scattering events at bound electrons in the atom, the Klein-Nishina
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formula requires a modification. This modification is typically accounted for by a
so-called incoherent scattering function. When this incoherent scattering function is
considered, the cross section for Compton scattering is approximately proportional to
the Klein-Nishina cross section multiplied with the atomic number Z [92]:

σC(E) ≈ Z σC,KN(E) (2.11)

According to the above equations the cross section for Compton scattering grows with the
atomic number Z and whilst approaching a constant value for E ≪ me c

2, it decreases
for very large photon energies E ≫ me c

2 according to σC(E) ∝ Z/E. Compared to
the photoelectric effect, the energy limit of me c

2 is much higher than typical binding
energies Eb of attenuator atoms, which is why the Compton effect shows a relatively
small energy dependence for the energy range that is relevant for CT compared to
the photo effect. As a result, the Compton effect cross section exceeds that of the
photoelectric effect for high photon energies. In contrast to Rayleigh scattering, where
the supplied energy must not lead to ionization or excitation of the atom, restraining
this scattering process to rather low energies, this restriction does not play a role for
Compton scattering, which is why Compton scattering corresponds to the dominating
x-ray matter interaction for high photon energies in CT [93]. For the same reason,
Rayleigh scattering is strongly forward directed for photons in the x-ray energy range,
while Compton scattering is more isotropically distributed [93], [94].

Figure 2.4 shows how the total attenuation coefficient is composed of the attenuation
coefficients for the photo effect, Rayleigh and Compton scattering for two exemplary
materials aluminum and tin. Whilst aluminum corresponds to a characteristic workpiece
material in industrial CT measurements, tin corresponds to a typical prefilter material.
The role of the prefilter is discussed in the following.
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Figure 2.4: Left: energy dependent attenuation coefficients due to Rayleigh scattering
(µR), photoelectric effect (µP), Compton scattering (µC), and the resulting
total attenuation (µ, see Eq. (2.5)) in aluminum (Z = 13, ρ = 2.7 g cm−3).
Right: similar depiction for tin (Z = 50, ρ = 7.27 g cm−3) as attenuator.
Data taken from [95].
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2.1.3 Prefiltration and Object Attenuation

As the x-ray photons generated in the x-ray tube are not monochromatic but a poly-
chromatic tube spectrum wt(E) is emitted and the attenuation coefficient depends
on the photon energies (cf. Figs. 2.3 and 2.4), this must be taken into account when
considering x-ray attenuation. It can be seen in Fig. 2.1 that the x-rays usually first
pass a so-called prefilter before any interaction with the scanned object occurs. The
prefilter typically corresponds to a homogeneous material of a constant thickness. Due
to the energy-dependent attenuation behaviour of matter described above, the prefilter
leads to an overall reduction of the photon flux arriving at the object and detector and
also changes the energy distribution of the spectrum.

By adding a prefilter of thickness df with an attenuation of µf(E) to the CT setup,
the energy spectrum of transmitted photons is given by

wp(E) = κ(E)wt(E),
κ(E) = e−µf(E) df

(2.12)

where κ(E) corresponds to the attenuation caused by the prefilter and wt(E) describes
the above mentioned unattenuated x-ray spectrum emitted by the x-ray tube.

Using the 140 kV tube spectrum shown in Fig. 2.3, Fig. 2.5 depicts the impact of
a tin prefilter of different thickness on this emission spectrum. The figure shows that
the prefilter changes the shape of the x-ray spectrum by reducing the photon flux
predominantly in low-energy regions. This results in a reduced width of the spectrum
and a shift of its mean energy towards higher energies. Furthermore, it can be seen
that for a relatively small filter thickness of 0.5 mm there is a peak of the transmitted
spectrum between 20 keV up to almost 30 keV and at slightly higher energies the
transmission is completely suppressed again. This is due to the attenuation peak of
tin at approximately 29 keV (see Fig. 2.4), which corresponds to the binding energy of
K-shell electrons in tin. Beyond this energy, photoelectric absorption can also occur
for K-shell electrons, which is why the attenuation peaks at this energy. One refers to
such an attenuation edge as K-edge of the respective material. For thicker prefilters
the effect of the tin K-edge can not be observed any more for the here considered
spectrum. Besides the influence of the K-edge on the transmitted spectrum, this figure
also illustrates the non-linear attenuation behavior of x-ray radiation with increasing
absorber thickness, as whilst the prefilter thickness is increased linearly, the integrated
intensities of the spectra decrease non-linearly.

The reasons for using a prefilter in a CT system are manifold. As shown above, the
interaction probability of x-ray photons with matter decreases rapidly for increasing
photon energies. Therefore, nearly all low-energy photons would be absorbed in a
patient or object where they would deploy dose2 without transferring any information
to the x-ray detector. Furthermore, prefiltration reduces the polychromaticity of the
spectrum and shifts its center energy towards higher energies. This way systematic

2Dose is defined as the locally absorbed radiation energy per unit mass [96] and is associated with
potential health risks for patients for ionizing x-ray radiation.
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deviations that occur in CT due to the polychromatic nature of the x-ray spectrum,
which are discussed in more detail in section 2.3.2, can be reduced. Moreover, x-ray
detectors have a limited dynamic range and prefilters avoid a saturation of the measured
signals.

Besides the here described prefilters of homogeneous thickness, filters with inhomoge-
neous thicknesses are also used, especially in clinical CT setups. Prominent examples
are bowtie filters, which have this name due to their shape. They are used to produce a
more homogeneous dose for typical patient anatomies. Wedge filters, on the other hand,
counteract the intensity gradient and spectral shift due to the heel effect mentioned in
section 2.1.1 [15].

According to the Lambert-Beer law (Eq. (2.4)) the x-ray intensities after passing
through a prefilter and an inhomogeneous object of size d are thus described by

I(d) =
∫
dE wp(E) e−

∫ d

0 µ(λ,E) dλ. (2.13)
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Figure 2.5: X-ray spectra after having passed different thicknesses of tin for the 140 kV
tube spectrum from Fig. 2.3. Each spectrum is normalized with respect to
the integrated signal of the unattenuated 140 kV spectrum.

2.1.4 Detection of X-Rays

In order to be able to further process the transmission information given by equation
(2.13), the x-rays must be converted into an electrical signal at an x-ray detector and
digitized. Since the energy stored in the x-rays must be deposited in the detector for
this purpose, the detection of the x-rays is also based on the absorption mechanisms
discussed above. In this context, the efficiency of the detection process corresponds to
the fraction of the energy stored in the radiation that is deposited in the detector via
absorption processes. Therefore, similar to the absorption in the prefilter and object,
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the detection efficiency depends primarily on the attenuation coefficient of the detector
material µD, the thickness of the effective detection layer dD, and the radiation energy
E. Assuming that the total energy of the x-ray photons interacting with the detection
layer is completely absorbed, the detection efficiency η can be formulated as follows:

η(E) = 1 − e−µD(E) dD (2.14)

It should be noted that this formula is only an approximation because, as already
explained, the energy of x-rays is not completely absorbed by every kind of photon-
matter interactions. Photons interacting by the Rayleigh or Compton effect do not
deposit any or only a part of their energy in the detector. Therefore, the above formula
generally leads to an overestimation of the detection efficiency. Even if the detection
process can be mapped more precisely [97], for the sake of simplicity, formula (2.14) is
used here.

To calculate the detected signal S, the detector efficiency must be integrated into the
Lambert-Beer law. With formula (2.13) one therefore obtains for the detected signal

S(d) =
∫
dE wp(E) η(E) ϵ e−

∫ d

0 µ(λ,E) dλ, (2.15)

where ϵ corresponds to a scaling factor that depends on the detection technology (see
i.) and ii.)):

ϵ ∝
{
E for indirect converting detectors
1 for direct converting detectors

(2.16)

The transmission τ(d) can now be calculated by normalizing this signal with the signal
which is not attenuated by the object:

τ(d) =
∫
dE wp(E) η(E) ϵ e−

∫ d

0 µ(λ,E) dλ∫
dE wp(E) η(E) ϵ (2.17)

By defining the normalized detected spectrum

w(E) = wp(E) η(E) ϵ∫
dE wp(E) η(E) ϵ ,∫

dE w(E) = 1,
(2.18)

equation (2.17) becomes

τ(d) =
∫
dE w(E) e−

∫ d

0 µ(λ,E) dλ. (2.19)

Besides the detection efficiency, the dynamic range of a detector also plays an
important role. The dynamic range is defined by the range of the largest detectable
signal from which the detector signal saturates and the smallest detectable signal which
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exceeds the background noise of the detector [15]. Accordingly, the dynamic range is
determined by the frame rate and the background noise of the detector.

Nowadays, there are two detection technologies used in CT which differ fundamentally
in the detection mechanisms of x-rays: indirect converting detectors and direct converting
detectors. Both technologies are described in more detail in the following and the
respective detection process is exemplified in Fig. 2.6.

Figure 2.6: Illustrations of an indirect converting detector (left) and a direct converting
detector (right).

i.) Indirect Converting Detectors

In indirect converting detectors, the detector signal is obtained by a two-phase process:
first, x-ray photons are converted into optical photons in a scintillator. The optical
photons thus produced then generate an electrical signal in a photodiode (cf. Fig. 2.6).

As the x-ray quantum passes through the scintillator, it generates a large number of
electron-hole pairs proportional to its energy. These react with the activation centers of
the crystal, which undergo energetic relaxation and thereby emit optical photons [15].
The optical photons must then be directed to the photodiode. The requirements for the
scintillator material are therefore given by a high conversion rate of x-ray photons into
optical light with a good light transmission at the same time. While for flat detectors
used in CBCT often thallium or sodium doped cesium iodide (CsI:Tl or CsI:Na) is used
as scintillator material due to its crystalline microstructure that acts as a light guide
[98], terbium doped gadolinium oxysulfide Gd2O2S : Tb (also GOS:Tb) is typically used
in curved detectors for MSCT due to the fast decay time of the light signal [15]. Each
detector element, or detector pixel, is equipped with a photodiode which converts the
optical photons into an electrical signal [16].

Since the decay time of the signal in this conversion process is up to 10 µs [99], which
is too slow to distinguish individual photons at typical CT photon fluxes, the signal
of the individual photons, which is proportional to their energy, is summed by the
detection process. Therefore, one refers to this type of detector as energy-integrating
detector (EID).
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ii.) Direct Converting Detectors

In contrast to the two-phase conversion process in indirect converting detectors, in a
direct converting detector the x-ray photon is converted into electron-hole pairs in a
semiconductor and thereby induces a measurable electric signal without an intermediate
step. The semiconductor material in direct converting x-ray detectors is usually cadmium
telluride (CdTe) or cadmium zinc telluride (CdZnTe) [62], [100] because these materials
effectively absorb x-rays even at high photon energies due to their comparatively high
density (e.g. ρ = 5.85 g cm−3 for CdTe [101]). A high voltage, called bias voltage
Ubias of about 500 V [102], is applied between the cathode attached to the detector
surface and the pixelated anode located behind the semiconductor layer. Electrons and
holes therefore move along the electric field to the anode and cathode, respectively (cf.
Fig. 2.6). Thereby they generate a measurable current in the pixelated anode. These
pixels are each connected to application-specific integrated circuits (ASICs), in which
the signal is first amplified and shaped. In addition, the ASIC contains digital-to-analog
converters (DAC), N pulse height comparators and N counters, where the number of
thresholds N depends on the manufacturer and ranges from 2 to 8 [62]. If the measured
signal height exceeds any of the N set thresholds, the corresponding counter registers
an event. By subtracting the counts registered in the counter for the adjacent, higher
threshold, the number of detected events in the considered signal height interval is
obtained. The DAC allows fine-tuning of the threshold values. Since the number of
generated electron-hole pairs and the associated signal height in the ASIC is proportional
to the energy of the detected x-ray photon, the adjusted threshold values correspond to
energy thresholds that allow to assign a photon energy to the measured counts. As the
signal pulse duration is only several nanoseconds for direct converting detectors [103],
single impinging photons can be differentiated and ideally each measured photon count
can be assigned with the energy of the photon which induced the signal. This type of
detector is therefore also referred to as photon-counting detector (PCD).

The slow establishment of PCDs for commercial use in CT, besides their high price,
is mainly due to various perturbing effects that play a role in such semiconductor
detectors: impinging x-ray photons may interact with the semiconductor materials via
Compton scattering or photoelectric effect, which can lead to the emission of secondary
fluorescent photons (K-escape). Both of these processes can lead to a transfer of
energies to other neighboring detector pixels. A similar effect is caused by charge
sharing [104]. Charge sharing corresponds to the detection of a charge cloud, which
is generated in the semiconductor by a single photon of a certain energy, by two or
more distinct pixels. Each of these pixels then receives a signal that corresponds to
that generated by photons of lower energies. This effect is caused by diffusion and
Coulomb repulsion of the generated charges within the semiconductor. Some photon-
counting (PC) detectors can mitigate charge sharing and fluorescence effects by using
so-called charge summing circuits [105], in which neighboring pixels detect coincidences
to reconstruct the correct charge at a pixel. Other signal disturbances in PC detectors
are caused by semiconductor impurities (charge trapping), multiplicity of counts for
high photon fluxes (pulse pileup), or the decrease of charge collection efficiency due
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to polarization effects in the semiconductor material. Reference [62] provides a good
overview of the mentioned perturbation effects.

Nevertheless, the direct converting detector technology offers several advantages
compared to indirect converting detection methods that are relevant to CT, such as
energy-resolved measurements, better measurement statistics, and smaller detector
pixels [51], [60], [61]. Therefore, this technology will likely play a larger role in x-ray CT
imaging in the future and the first commercially available MSCT system with direct
converting detector technology has been released in 2021.

2.1.5 X-Ray Computed Tomography Reconstruction

After explaining the setup of a CT and discussing the individual components of the
measurement process including their underlying physical processes, this section deals
with the reconstruction of the acquired transmission signals into a CT volume. The
theoretical background to the reconstruction presented in the following represents a
rough overview rather than a complete elaboration. For a more detailed consideration,
please refer to the relevant literature [15], [16], [106].

To recover object information in form of the attenuation coefficients µ from trans-
mission information, the Lambert-Beer law (Eq. (2.3)) states that the measured x-ray
intensities must be normalized and logarithmized. According to equation (2.19), this
means that the so-called projection value which is to be reconstructed is given by:

q(d) = −ln(τ(d)) = −ln
(∫

dE w(E) e−
∫ d

0 µ(λ,E) dλ
)

(2.20)

It should be noted that the normalization of the measured x-ray intensities in this
formula is implicitly given by the use of the detected spectrum ω(E) normalized with
respect to the unattenuated x-ray spectrum.

i.) Filtered Backprojection

The filtered backprojection (FBP) is the standard method for analytical image recon-
struction. In this section, FBP is derived for parallel beam geometries (cf. Fig. 2.7).
The FBP is based on the assumption that the measured projection values are linearly
related to line integrals over the attenuation coefficients. Thus, for an one-dimensional
linear detector, a projection value at detector position ξ and rotation angle ϑ is given
by:

p(ϑ, ξ) =
∫ ∞

−∞
µ(ξ, η) dη (2.21)

Such a projection of a function along a line integral is mathematically referred to as
an x-ray transform, which in the two-dimensional case presented here corresponds to
the so-called Radon transform. The assumption that the measured projection value
corresponds to a line integral over the linear attenuation coefficients is incorrect for
polychromatic tube spectra as used in CT, where the actual measured projection value
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q is given by equation (2.20). Neglecting the polychromatic x-ray spectrum and the
non-linear energy dependency of the transmission of x-rays in the reconstruction of the
projection data, expressed by the ambiguity of equation (2.21) and (2.20), results in
systematic deviations in the reconstructed CT volume, which are described in more
detail in section 2.3.2.

With the definition of the ray position ξ = x cosϑ + y sinϑ and its normal η =
−x sinϑ+ y cosϑ, equation (2.21) can be expressed as

p(ϑ, ξ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(x cosϑ+ y sinϑ− ξ) dx dy , (2.22)

(see Fig. 2.7), where δ corresponds to the Dirac delta function and f(x, y) = µ(ξ(x, y), η(x, y))
is the object function in the non-moving inertial system.

To convert the above equation according to the object function f(x, y) in spatial
domain, one makes use of the Fourier slice theorem. This theorem states that the one-
dimensional Fourier transform of a projection in parallel beam geometry with respect to
its sampling parameter ξ at an angle ϑ is equal to a radial line of the two-dimensional
Fourier transform of the desired object function in polar coordinates along this angle
[15]

F1, ξ p(ϑ, ρ) = F2 f(ρ cosϑ, ρ sinϑ) . (2.23)

The filtered backprojection can thus be formulated as:

f(x, y) = F−1
2 F2 f(x, y)

=
∫ ∞

−∞

∫ ∞

−∞
F2 f(u, v) e2 π i (x u+y v) du dv

=
∫ π

0

∫ ∞

−∞
F2 f(ρ cosϑ, ρ sinϑ) e2 π i ρ (x cosϑ+y sinϑ) |ρ| dρ dϑ

=
∫ π

0

∫ ∞

−∞
F1, ξ p(ϑ, ρ) e2 π i ρ (x cosϑ+y sinϑ) |ρ| dρ dϑ

=
∫ π

0

∫ ∞

−∞

∫ ∞

−∞
p(ϑ, ξ) e−2 π i ρ ξ dξ e2 π i ρ (x cosϑ+y sinϑ) |ρ| dρ dϑ

=
∫ π

0

∫ ∞

−∞
p(ϑ, ξ)

∫ ∞

−∞
e2 π i ρ (x cosϑ+y sinϑ−ξ) |ρ| dρ dξ dϑ

=
∫ π

0

∫ ∞

−∞
p(ϑ, ξ)k(x cosϑ+ y sinϑ− ξ) dξ dϑ

=
∫ π

0
(p ∗ k)︸ ︷︷ ︸
filtering

(ϑ, x cosϑ+ y sinϑ) dϑ

︸ ︷︷ ︸
backprojection

(2.24)

Here, the reconstruction kernel

k(ξ) =
∫ ∞

−∞
|ρ| e2 π i ρ ξ dρ = − 1

2π2 ξ2 (2.25)
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was used in the second-last step and the convolution definition

(f ∗ g)(x) = f(x) ∗ g(x) =
∫
f(t) g(x− t) dt (2.26)

was used in the last step. The reconstruction kernel from Eq. (2.25) is commonly
known as ramp-filter because of its shape in Fourier space. In the transition to polar
coordinates in the third step it was taken into account that the Fourier transform of
projections in parallel beam geometry in an angular interval of [0, π[ cover the complete
two-dimensional Fourier space of the object function. This means at the same time that
for a reconstruction of the full image information an angular sampling of at least 180◦

must be given in the case of parallel beam geometries. According to equation (2.24), the
filtered backprojection thus corresponds to a two-step process in which the projection
values are first convolved and then integrated along the curve ξ = x cosϑ+ y sinϑ within
a 180 degree interval for the different rotation steps ϑ.

Figure 2.7: Schematic illustration of a parallel beam geometry with a corresponding
projection p parameterized by the distance ξ and the angle ϑ (left) and
illustrations of the fan-beam (top right) and cone-beam geometries (bottom
right) after [107] and [108] with the rotation angle α, the fan angle γ, the
cone angle κ, and the virtual detector coordinates a and b.
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ii.) Cone-Beam Reconstruction using Filtered Backprojection

The parallel beam geometry used to derive the FBP in the previous section simplifies
the analysis of the CT reconstruction but is not relevant for modern CT systems. In
the case of CBCT with flat detectors, which is shown in Fig. 2.1 and which is mainly
treated in this work, some modifications to the FBP for parallel beam geometries have
to be made in order to properly reconstruct this data. A very common reconstruction
scheme for CBCT circle scan projection data is the algorithm by Feldkamp, Davis and
Kress [8], commonly referred to as Feldkamp Davis Kress (FDK) algorithm.

The illustrations on the right side of Fig. 2.7 show the cone-beam geometry and its
parameterization, which is used for the mathematical formulation of the FDK algorithm.
Ray directions are defined by the projection angle α, the fan angle γ and the cone angle
κ. To simplify the mathematical description, the geometry is defined with respect to a
virtual detector in the isocenter of rotation with coordinates given by a and b. To adapt
the FBP to the divergent beam geometries of cone-beam projections, it is necessary to
weight the projections depending on fan and cone angles prior to filtering [107]:

p̃(α, a, b) =
(

RF√
R2

F + a2 + b2︸ ︷︷ ︸
cosγ cosκ

p(α, a, b)
)

∗ k(a) (2.27)

Although the projections are two-dimensional, the convolution in the FDK algorithm is
performed only in the lateral direction, analogous to Eq. (2.24). The backprojection of
the weighted and filtered projections into the three-dimensional object function f(x, y, z)
is then performed as

fFDK(x, y, z) = 1
2

∫ 2 π

0

R2
F

U(x, y, z)2 p̃(α, a(x, y, α), b(x, y, z, α)) dα (2.28)

with the functions

a(x, y, α) = RF
−x sinα+ y cosα

RF + x cosα+ y sinα ,

b(x, y, z, α) = z
RF

RF + x cosα+ y sinα ,

U(x, y, α) = RF + x cosα+ y sinα .

(2.29)

Unlike the FBP for parallel beam (see above) or fan-beam geometries (cf. [15], [16],
[107], [108]) the FDK algorithm corresponds only to an approximate solution for a
three-dimensional filtered backprojection. This is due to the Tuy condition [109], which
states that an exact solution for an object point to be reconstructed only exists if the
source trajectory passes through the plane of this object point at least once. This
condition is fulfilled for a CBCT circle scan only for the central plane (midplane). For
all other planes, the solution space of the FBP is ambiguous, which results in systematic
measurement deviations known as cone-beam artifacts. These deviations increase with
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larger cone angles, which is why this effect must be taken into account in the design of
CBCT devices and the respective measurement task.

The reconstructed object function fFDK(x, y, z) forms an object volume that contains
the linear attenuation coefficients µ(x, y, z) (cf. Fig. 2.7). In CT, both the detection of
x-ray transmission and the reconstruction into an object volume correspond to a discrete
process. Whilst the x-ray intensities are measured at discrete detector elements, the
detector pixels, the volume is sampled on a discrete three-dimensional grid of so-called
voxels (volumetric pixels). Images of two-dimensional slices through this discretized
volume are usually referred to as CT images. Typically, to reconstruct a voxel, the
intersection point of a beam originating from the source and crossing the center of the
voxel is calculated on the detector and the projection value is interpolated from the
discrete detector signal and then filtered backprojected (voxel-driven backprojection)
[15].

iii.) Hounsfield Units

In clinical CT applications, the CT image is typically rescaled to CT values, also called
Hounsfield units (HU), named after the developer of the first CT device, Sir Godfrey
Hounsfield. This unit is defined such that water (H2O), which is the major component
of human body tissue, has a value of 0 HU and air has a value of −1000 HU. Thus,
for the conversion of the attenuation coefficient µ(x, y, z) to CT values, the following
equation is applied:

CT(x, y, z) = µ(x, y, z) − µH2O
µH2O

· 1000 HU (2.30)

Rescaling the gray values using the above equation leads to a better quantitative
comparability of CT images in CT for medical imaging, since the water-equivalent
soft tissue is represented with the same values despite possible differences in the used
spectrum. However, this does not mean that any given material will be represented the
same way for different tube spectra by a rescaling using equation (2.30). In particular,
strongly absorbing materials such as contrast agents, bones, or metals, still show large
differences for different spectra after this two-point calibration due to the non-linear
energy dependency of the attenuation coefficients.

Because of the higher susceptibility to systematic measurement deviations, such as
the above-mentioned inadequacy of the CBCT reconstruction methods or an increased
signal due to scattered x-ray photons, which are explained in more detail in section 2.3.3,
Hounsfield units have a lower importance in CBCT and some manufacturers of CBCT
devices completely omit a rescaling of the CT images. In particular in industrial CT,
due to the large variation of workpiece materials and mostly large differences to the
attenuation of water, the use of Hounsfield units is atypical. However, sometimes a
rescaling of gray values to CT values is useful for industrial CT measurements, as
well. Since there are usually predominant materials other than water in workpieces,
it makes sense to perform this rescaling of gray values for industrial CT applications
with reference to the predominant material in the volume. Therefore, the gray value
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of a reference material µRef is used instead of µH2O in Eq. (2.30) for the gray value
conversion to CT values in industrial CT.

2.1.6 Metrological Evaluation

Often, the reconstruction into a volume described above is not yet the final step of the
CT measurement process. In particular, in the metrological application of industrial
CT, it is necessary to be able to draw conclusions about surface points and surface
transitions on the basis of the volume information in order to be able to determine
dimensions on the workpiece. For the metrological evaluation of a CT measurement,
the reconstructed volume must first be segmented and then the coordinates of surface
points must be determined, based on which measures can be calculated. The individual
steps are explained in more detail below.

i.) Volume Segmentation

Segmentation is used to separate a CT volume into different segments that are semanti-
cally related. While in industrial CT especially the segmentation into different material
or density regions plays a role, in medical CT the segmentation of anatomical and
pathological tissue structures as well as the delineation of pathological substructures is
of particular interest [110]. The three-dimensional classification information obtained by
segmentation can then be used to determine surfaces or plan surgical interventions or
radiation treatments. Methodologically, segmentation approaches can be distinguished
between pixel-oriented, edge-oriented, region-oriented, learning-based, model-based and
texture-based methods [111].

In threshold-based segmentations, which belong to the pixel-oriented methods and
probably correspond to the simplest segmentation approaches, the volume is divided
into N segments M(x, y, z) by N − 1 thresholds Si and each voxel is assigned to exactly
one of these segments depending on its gray value µ(x, y, z):

M(µ(x, y, z), x, y, z) =



0 if µ(x, y, z) < S0

1 if S0 ≤ µ(x, y, z) < S1
...

N − 1 if µ(x, y, z) ≥ SN−2

(2.31)

Of great importance in threshold-based segmentation are the exact values of the
thresholds and, consequently, their calculation rules. In general, for segmenting a CT
volume, globally, locally or dynamically determined threshold values can be used. A
simple but error-prone method for the threshold determination of two-material volume
data identifies the average of the difference of the highest and lowest gray values as
the segmentation threshold (cf. Fig. 2.8). The same principle can be applied to a
histogram-based calculation method by defining the threshold by the mean between two
local maxima of the gray value distribution. A more sophisticated way for determining
segmentation thresholds is given by Otsu’s method [112]. This method sets the N − 1
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thresholds such that the gray values within a segment have a minimum variance, while
the variance between the different segments is maximal, however.

For edge-oriented segmentations, edge detection operators are typically applied to
the volume data [111]. An example of an edge-oriented segmentation is represented
by the watershed transformation algorithm [113]. A somewhat outdated discussion of
other segmentation algorithms and methods can be found in [110]. Current research is
mainly focusing on learning-based segmentation methods [114]–[117].

ii.) Determination of Boundary Surface Points

Figure 2.8: Determination of a surface point without subvoxeling (left) and with sub-
voxeling (right).

In principle, a fully segmented CT volume can already directly be used to determine
surface points at a boundary surface between different materials to generate a measuring
point cloud. However, the accuracy of the measuring point cloud determined this way
is limited by the size of the sampling elements, i.e. the segmented voxels. In coordinate
metrology, subvoxel-accurate algorithms, or subpixel-accurate algorithms in the two-
dimensional case, are therefore preferred for determining the measurement points [118],
[119]. These algorithms are applied directly on a gray-scale image or volume and provide
the location of the edge transition based on a previously determined threshold value
with an accuracy smaller than the size of the sampling elements. A simple example
for subvoxel-accurate computation of boundary surface points is shown in Fig. 2.8. In
this case, the edge location is obtained by linearly interpolating the voxel positions for
the voxels enclosing the threshold. The marching cubes algorithm [120] corresponds to
the most common method for generating isosurfaces for individual material transitions
for three-dimensional CT volume data. The surface points are thereby represented in
the form of a polygonal mesh. By using material probability maps, surface points for
different materials in multi-material CT volume data can be generated with subvoxel
precision [121]. Compared to voxel- or pixel-accurate surface point determinations,
such subvoxel or subpixel methods can improve the accuracy of the acquired measuring
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points by a factor of about ten [122]. Based on the coordinates of the boundary surface
points, dimensions can be determined or features of the measured workpiece can be
extracted, which is described below.

iii.) Geometry Elements

Geometry elements of a measured workpiece can be determined on the basis of the
computed measuring point cloud or a subset of these points. These geometry elements
represent mathematical regular geometries on the workpiece surface or at material
transitions. Two-dimensional examples of geometry elements would be circles or ellipses
and three-dimensional examples would be spheres or cylinders. A workpiece can
be composed of a variety of different geometry elements and each workpiece can
metrologically be fully described by the set of all geometry elements it contains. The
mathematical formulation for the calculation of a geometry element as a fitting curve
for the measuring points t := (ti)i=1,...,N is:

||t− ψ(x)|| = min
y∈R

||t− ψ(y)|| (2.32)

Here ψ(x) := ψ(xj)j=1,...,M describes the model function for the geometry element to
be calculated with the parameters xj ∈ R. According to the above equation, depending
on the norm that is used, different methods exist to calculate a geometry element as a
fitting curve for the measuring points. Common fitting curves represent for example
least squares fitting curves (||.||2), minimum zone fitting curves (||.||∞), or minimum
inscribed or enveloping curves [123]. The choice of the right fitting curve used for
the calculation of the geometry element depends on the specification of the workpiece
component and can therefore differ for different measurement tasks. For calculations of
form deviations, the fitting curves to be used are determined by the respective ISO or
DIN standard [123], [124].

2.2 Spatial Resolution in X-Ray Computed Tomography
The achievable spatial resolution of the image data corresponds to one of the key
characteristics of a CT system. It determines both the size of the smallest structures
that can be resolved and the precision of dimensional measurements, thus limiting the
measurement tasks that can be solved using CT.

2.2.1 Structural Resolution

The term structural resolution refers to the smallest distance between two object points
that can still be distinguished in an image. This distance does not automatically
correspond to the smallest object point distance, since the mapping of an object point
f(x, y) into an image point b(x, y) is distorted in a certain way by the impulse response
of the imaging system. The impulse response of an imaging system for point objects is
referred to as the point spread function (PSF). In the case of two-dimensional spatial

29



CHAPTER 2. FUNDAMENTALS

signals, such as those represented by x-ray projections or CT images, the following
formula describes the relation between object and image point:

b(x, y) = (f ∗ PSF)(x, y) = (f ∗ PSFSource ∗ PSFDetector ∗ PSFAlgorithm)(x, y) (2.33)

Thus, the PSF of an image acquired with x-ray optics can be described by the
combination of the impulse responses of x-ray tube and x-ray detector and algorithmic
modifications of the signal, such as filtering. One way to quantify the structural
resolution of a CT system is given by the full width at half maximum (FWHM) of its
PSF.

An alternative definition of structural resolution can be obtained using transfer
functions. A transfer function describes how a certain property of an input signal is
transferred by the system into the output signal. The modulation transfer function
(MTF) plays a special role for imaging systems. It describes the transfer of contrasts
by the imaging system and is defined by the quotient of image contrast CI and object
contrast CO depending on the spatial frequencies kx and ky:

MTF(kx, ky) = CI
CO

(2.34)

It can be shown that the MTF corresponds to the absolute value of the two-dimensional
Fourier transform of the PSF [125]:

MTF(kx, ky) =
∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
PSF(x, y)e−2 π i (x kx+y ky)dx dy

∣∣∣∣= |(F2 PSF(x, y))| (2.35)

In this representation, the MTF resembles a two-dimensional function. Practically,
however, the MTF is often represented by an one-dimensional profile of this distribution,
which passes through the origin of the frequency space. Such an one-dimensional MTF
profile can be obtained using the line spread function (LSF), which describes the imaging
of an infinitesimally thin slit through the system. If a slit along the y-axis is considered,
the LSF is defined by

LSF(x) =
∫ ∞

−∞
PSF(x, y) dy (2.36)

and the profile of the MTF is then obtained by computing the absolute value of the
Fourier transform of the LSF:

MTF(kx) = |(F1 LSF(x))| (2.37)

Since the measurement of an infinitesimally thin slit is practically not feasible, use
is made of the edge spread function (ESF) and its relation to the LSF. The ESF
corresponds to the impulse response of the system for an object edge. Such an edge
transition can be found at a certain position in almost any sample. A differentiation of
the ESF yields the LSF:

LSF(x) = d

dx
ESF(x) (2.38)
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Thus, the typical procedure for determining an MTF curve consists of measuring a
line profile orthogonal to an edge (ESF) in an image, differentiating this line profile
to obtain the LSF, and then performing a Fourier transform, which, expressed as a
formula, yields

ESF(x)
d

dx−−→ LSF(x) F1−→ MTF(kx) . (2.39)

For a rotationally symmetric PSF, i.e.

PSF(r, ϑ) = PSF(x, y) ∀ϑ
r2 = x2 + y2 (2.40)

the LSF is equal to the Abel transform of the PSF [126] and is the same for any angle
ϑ of the line input. Thus, the ESF is also the same for an arbitrary edge orientation
and an MTF profile MTF(k) can be determined using

ESF(r, ϑ)
d

dr−→ LSF(r, ϑ) F1−→ MTF(k) . (2.41)

for any orientation of the edge under consideration.
Usually, the structural resolution of a CT system is defined using a scalar value from

the MTF instead of the whole curve, e.g., the MTF at 10% contrast transfer [15], [127].
Analogous to the PSF, the MTF can also be divided into different parts corresponding

to different elements of the x-ray optics and algorithmic modifications. Unlike in
equation (2.33), however, the MTF of the total system corresponds to a multiplication
of the individual contributions and not to a convolution, since the MTF corresponds to
the Fourier transform of the PSF. Thus, the MTF of the CT system is given by:

MTF(k)CT = MTF (k)Source · MTF (k)Detector︸ ︷︷ ︸
Imaging hardware

·MTF(k)Algorithm (2.42)

The algorithmically determined part of the MTF in the above equation is defined,
potentially among other algorithmic modifications of the signal, by the convolution kernel
and interpolation method used for filtered backprojection. Using a linear interpolation
scheme between the sampling values of the detector pixels and the Ramachandran and
Lakshminarayanan [128] filter, which corresponds to a discrete form of the ramp filter
from section 2.1.5, this term gives [16]

MTF(k)Algorithm = |sinc(du k)|2, (2.43)

where du corresponds to the pixel size. If additional image filters are used, they have to
be considered accordingly in the term MTF(k)Algorithm.

The factors of the MTF in Eq. (2.42) given by the x-ray tube and x-ray detector
are strongly depending on the CT geometry that is being used [129]. The geometric
magnification describes the optical magnification of an x-ray projection by the use of
divergent beams as they occur in fan- or cone-beam geometries and is given by

M = RFD
RF

, (2.44)
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where RFD and RF correspond to the focus-detector and focus-isocenter distance (cf.
Fig. 2.1). In general, the spatial resolution of a CT measurement is essentially limited
by the used hardware and, depending on the geometric magnification, the limitations of
the spatial resolution are more likely to be on the detector side, the x-ray tube side, or
evenly distributed. Therefore, it makes sense to adapt the MTF of the x-ray source to
that of the detector, for example by using higher tube powers or a reduced focusing
current, in order to increase the photon flux and thus the measurement signal or to
spare the target [129]. Conversely, it is of course also possible to adjust the MTF of the
detector to that of the x-ray source by binning the pixels in order to increase the signal
on the respective pixels without having to accept losses in spatial resolution.

2.2.2 Metrological Resolution

In addition to the structural resolution, another parameter is considered to be a
core parameter for spatial resolution, especially in the metrological application of x-ray
computed tomography, as well as other optics in general: the metrological resolution. The
metrological resolution defines the possible step size when determining the position of a
structure in the image. Consequently, there is a high correlation between the metrological
resolution and the structural resolution. However, the metrological resolution is often
significantly higher than the structural resolution of a system due to the subpixeling
or subvoxeling techniques mentioned previously (see Sec. 2.1.6). Since the focus of
this work is to increase the image quality of CT volume data and not, for example,
on improving subvoxeling algorithms, in the following the structural resolution will be
used as a measure for the spatial resolution of a CT dataset and the terms resolution,
spatial resolution and structural resolution will be used as synonyms for the structural
resolution of the image data.

2.3 Measurement Deviations in X-Ray Computed Tomog-
raphy

The spatial resolution discussed above corresponds to an important feature of image
quality in x-ray computed tomography. Another important factor for an optimal quality
of a CT dataset is to keep disturbances due to various measurement deviations as
low as possible. In addition to statistical measurement deviations, which occur as a
random deviation of the measured value from the expectation in every measurement,
there are a number of systematic measurement deviations in CT measurements, which
sometimes significantly degrade the image quality. In CT imaging, these measurement
deviations are also referred to as artifacts. Statistical and systematic measurement
deviations depend on the measurement system, the properties of the measured object,
and the acquisition parameters and they can greatly reduce the diagnostic value of CT
image data and can severely falsify volume segmentations and associated dimensional
determinations or make them completely impossible.

Statistical and some of the most prominent systematic measurement deviations
occurring in CT measurements are described below. Among the systematic measurement
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deviations, beam hardening and scatter artifacts are discussed with a particular focus,
as methods to reduce these artifacts are presented within the scope of this work.

2.3.1 Statistical Measurement Deviations

Statistical measurement deviations occur in every measurement and thus each CT scan
and the signal measured in each detector pixel deviates from the expectation value of
the signal due to such statistical deviations, resulting in noisy measurement data. This
noise can be divided into two effects: Quantum noise and electronic noise. While the
quantum noise, which occurs due to the stochastic interactions in the emission and
absorption or scattering processes of the x-ray quanta, is characterized by a correlation
with the used amount of x-ray quanta and thus the x-ray intensities, the electronic noise,
which results from thermal noise of the electrical signal in the detection process, is
independent of the irradiated x-ray intensity. In CT, however, one usually only considers
quantum noise, since even for measurements with extremely low x-ray intensities the
electronic noise plays a rather minor role compared to the quantum noise of the detected
photons [130].

The number of detected x-ray photons follows a Poisson distribution [15], [16]. Thus,
the variance of the number of detected x-ray photons is equal to its expectation value
⟨N⟩:

σ2
N = ⟨N⟩ (2.45)

In order to determine the noise in the reconstructed CT volume from this, the influence
of logarithmizing, as well as filtering and backprojection, must be taken into account.
Since the noise of the x-ray intensities in the detector pixel depends on the number of
transmitted photons, which in turn is defined in particular by the shape and composition
of the scanned object, the derivation of an analytical expression for the noise in the
CT image is not trivial. Using a ramp filter and using the simplifying assumption of a
homogeneous cylindrical object, the noise of the central image pixel is [16]

σ2
f ∝ 1

Na ⟨N0⟩ du3 , (2.46)

where Na corresponds to the number of projections in the CT scan, ⟨N0⟩ represents the
average number of transmitted x-ray photons of the central beam, and du describes the
detector pixel size. Consequently, the image noise decreases with more projections, a
higher photon count, and larger detector pixels, which is quite intuitive, since all these
parameters improve the statistics of the cumulative signal.

An important measure for quantifying image quality with regard to statistical mea-
surement deviations is given by the signal-to-noise-ratio (SNR). The SNR is defined by
the quotient of the mean value and standard deviation of a signal:

SNR = µ

σ
(2.47)

With the above equations it can be easily understood that the SNR for CT measurements
increases proportionally to the square root of the transmitted photons. Therefore,
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doubling the SNR can be achieved by quadrupling the number of x-ray quanta, which
can be achieved, for example, by increasing the measurement time by a factor of four.
In CT volume data, the SNR is usually evaluated in a homogeneous region of interest
(ROI) of the material or tissue of interest.

In order to distinguish anatomical structures from different tissue types or to accurately
determine interfaces between materials, a high contrast is required in addition to a high
SNR. Therefore, the contrast-to-noise-ratio (CNR) is often specified in CT datasets,
which puts contrast and noise in different material areas in relation to each other:

CNR = |µ1 − µ2|√
σ2

1 + σ2
2

(2.48)

The CNR can be calculated similarly to the SNR using ROIs in the CT image, where
instead of one ROI, two ROIs are needed in two different material regions.

2.3.2 Systematic Measurement Deviations due to Polychromatic X-
Ray Radiation

One source of systematic deviations in CT is the combination of the polychromatic x-ray
spectrum and the energy-dependent attenuation of x-rays in matter. While low-energy
photons have a high interaction probability with matter, this interaction probability
decreases for increasing photon energies (see Sec. 2.1.2). As a result, the mean energy of
the polychromatic x-ray spectrum shifts toward higher energies as it passes through the
measured object (cf. Fig. 2.5), which has the effect of a reduced attenuation of x-rays at
greater penetration depths in the object. Compared to the monochromatic projection
values p, which correspond to the line integral of the linear attenuation coefficients
µ (Eq. (2.21)) and can theoretically be transferred error-free into an object image by
the filtered backprojection according to equation (2.24), the actually reconstructed
polychromatic projection values q (Eq. (2.20)) thus show systematic deviations towards
lower values. The exact size of these deviations depends on the x-ray spectrum as well
as on the penetration lengths and material composition of the measured object. In CT
imaging, the image artifacts generated by these systematic deviations are referred to as
beam hardening artifacts, which is terminologically based on the increase of the mean
energy of the x-ray spectrum, which is also referred to as hardening of the spectrum.

Figure 2.9 shows a graphical illustration of the effect of beam hardening and the result-
ing artifacts in the reconstructed volume using simulated tomography of a compressor
wheel. The high-energy portion of the x-rays is shown in this figure as a blue bar whose
strength barely decreases, while the red bar, representing the low-energy x-ray portion,
almost completely disappears when the object is penetrated. As can be seen in the
figure, beam hardening artifacts lead to brighter peripheral areas with simultaneously
dark interior areas in the reconstructed volume. This type of image artifact is referred
to as cupping. Another typical appearance of beam hardening artifacts consists of dark
streaks connecting strongly absorbing structures in the transmission direction. This type
of image artifact is referred to as streak artifact. The deviations due to beam hardening
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artifacts can lead to severe discrepancies of the gray values and can significantly reduce
the image contrast in certain areas, which may partially make structures in the CT
images unrecognizable. In addition, surface information calculated from the volume
data is distorted, which is expressed, for example, by incorrect surface positions [13] or
holes in the surface model, as can be seen in Figure 2.9.

Figure 2.9: Schematic illustration of measurement deviations due to the polychromatic
x-ray spectrum for a tomography of a compressor wheel. The upper row
shows on an exemplary axial volume slice how high (blue) and low energetic
components (red) of the x-ray beam are attenuated differently within the
object and how this affects the reconstructed volume. In the lower part of
this figure the surface models are shown from volume data without these
deviations (left) and data with beam hardening artifacts (right).

2.3.3 Systematic Measurement Deviations due to Scattered Radiation

Another systematic deviation that may strongly reduce the image quality in CT,
is caused by scattered and subsequently detected x-ray photons in a measurement.
According to section 2.1.2, two photon matter interactions lead to scattering events
of x-ray photons: Rayleigh and Compton scattering. In particular, scattering plays a
major role for high-energy x-ray photons, since Compton scattering corresponds to the
dominant photon matter interaction for high photon energies in the x-ray energy range
used for CT. Although the cross-section of Rayleigh scattering for the photon energies
relevant in CT is comparatively small (cf. Fig. 2.4), the fact that Rayleigh scattering is
strongly forward directed means that the probability of the scattered photon hitting
the detector is relatively high. Therefore, Rayleigh scattering should not be disregarded
when considering scattered radiation in CT [94]. After all, a problem due to scattered
x-ray photons arises in CT imaging only when the scattered photon hits a detector pixel
and generates a disturbance signal there. If scattered photons hit detector pixels that
are used to reconstruct image areas other than the photons original beam path, this
results in a non-linear distortion of the intensity profile of the transmitted x-rays. Due
to the scatter-induced signal IS the reconstructed projection value is no longer given by
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equation (2.20), but is described by

q = −ln( IP︸︷︷︸
Primary

+ IS︸︷︷︸
Scatter

) = −ln
(∫

dE w(E) e−
∫

µ(s+λ t,E) dλ + IS

)
(2.49)

where IP is used here for the transmitted unscattered x-ray intensities instead of τ
from equation (2.20), since one generally classifies the measured x-ray intensities into
primary and scatter components. This deviation of the measured projection values
results in image artifacts in the reconstructed volume, which are commonly known as
scatter artifacts in CT. According to the above equation, scattered radiation leads to
an increase of the measured x-ray intensities similar to beam hardening, although the
underlying physical effects are completely different. In contrast to beam hardening,
however, scattered radiation corresponds to a low-frequency signal in intensity domain3.

Using the same object on which the effect of beam hardening was shown before,
Fig. 2.10 schematically shows a scattering process. Furthermore, simulated primary
and scatter intensities are demonstrated for a flat detector, and a CT image and surface
model of the reconstructed volume with scatter artifacts are shown. Qualitatively, the
resulting image artifacts due to scattered radiation are similar to those due to beam
hardening, although there are differences in detail. As can be seen in the figure, cupping
also occurs due to scattered radiation. Streak artifacts can be observed, as well. Similar
to beam hardening, scattered radiation can also lead to such a strong reduction of the
image contrast that structures in the image become unrecognizable. It should be noted,
however, that in the case of scatter artifacts, it is not so much the absolute value of the
measurement deviation IS that is decisive for the strength of the image artifacts, but
rather the relative proportion of scatter intensities, the so-called scatter-to-primary-ratio
(SPR):

SPR = IS
IP

(2.50)

In local areas of high attenuation the SPR may easily yield values larger than one.
Even though scatter artifacts may occur in any CT scan and geometry, CBCT is

particularly prone to this type of artifacts because scattered radiation from two spatial
directions affects the measurement result.

Besides scattered radiation induced by the object, which is referred to as object scatter,
there are other sources of scatter signals in a CT system, such as the tube housing
and collimator [131], the prefilter [132], or the x-ray detector itself or its enclosure
[133]. Even though these types of scatter may have different intensities or distributions
compared to object scatter, they are conceptually equivalent to the artifacts described
above.

3It should be noted that the scattered radiation signal has a low spatial frequency only in intensity
domain, thus before the logarithmization of the projection.
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Figure 2.10: Schematic illustration of measurement deviations due to scattered x-ray
photons for a tomography of a compressor wheel. Whilst in the upper
part of this figure the process of scattering, resulting scatter and primary
intensities on a flat detector, and the effects of scattered radiation on CT
volume data are exemplarily shown, the lower part of this figure shows
the effects of scatter artifacts on the surface models generated from such
volume data.

2.3.4 Other Systematic Measurement Deviations

i.) Partial Volume Effect

Systematic measurement deviations may also arise due to the sampling of a continuous
signal function with discrete x-ray detector elements. Such deviations may occur if the
object structure changes within the width of the discrete detector element. Due to the
logarithmization of the measured x-ray intensities, the projection value for a detector
pixel covering an object edge is not linearly related to the part of the edge that the
projection of the edge covers on the detector pixel. As such a linearity of the projection
value is assumed in the reconstruction, this results in systematic measurement deviations
in the reconstructed image, which are expressed by streaks along the reconstruction
path of such an inconsistent projection value. One refers to this kind of systematic
measurement deviation as linear or non-linear partial volume artifacts. The strength of
these artifacts depends on the change in the projection signal due to the object edge
and is therefore more pronounced for highly attenuating object edges.

ii.) Metal Artifacts

Especially in clinical CT the term metal artifacts is often used to refer to measurement
deviations in the CT images caused by metals in the examined patient. Metal artifacts
are, however, not an independent source of measurement deviations but rather reflect
a combination of the aforementioned beam hardening, scatter, and partial volume
artifacts and noise. These deviations are very distinct for highly attenuating objects
in a measurement, such as metals, because such objects induce considerable spectral

37



CHAPTER 2. FUNDAMENTALS

shifts, cause a low photon statistics at high SPRs, and typically consist of sharp, highly
attenuating edges. Sometimes the attenuation by metallic objects can be so high that
no radiation reaches the detector at all. In this case one speaks of photon starvation.
The missing projection data must then be interpolated, which also results in image
artifacts.

iii.) Further Systematic Measurement Deviations

Other systematic measurement deviations can be caused by the distinct components
of a CT system. For example, electrons scattered in the target material of the x-ray
tube provide radiation components emitted outside the focal spot of the tube, so-called
off-focal radiation, which produces further deviations from ideal x-ray imaging. Also the
x-ray detector can cause systematic measurement deviations. If not properly corrected,
transmission errors of the detector pixels generate ring-shaped sham structures in the
reconstructed image, so-called ring artifacts. Furthermore, if the decay time of the light
signal in indirect converting detectors is too large, this detector afterglow effect causes
artifacts, as well. Even an imprecise rotary stage causes artifacts in CT imaging, since
the motion during acquisition blurs x-ray projections and reconstructed volume data.

For further systematic measurement deviations references [15], [16] and [17] provide a
good overview.

2.4 Dual Energy X-Ray Computed Tomography
Having discussed the setup of a CT system and the physical interactions associated
with a CT measurement, as well as the various influences on image quality, a special
measurement method, dual energy computed tomography (DECT), will be introduced
and motivated at this point.

As described in the previous chapters, CT is used to reconstruct linear attenuation
coefficients µ of an object. The attenuation coefficient depends on the material and
density of the object in the respective image region (cf. Eq. (2.6)). For example, different
materials with different densities may have the same gray value in a CT image. The
primary goal of DECT is to resolve this ambiguity and obtain information about
the exact material distributions and concentrations in a volume. However, as will
be shown below, DECT can also be used to reduce systematic measurement errors
due to the polychromatic x-ray spectrum. To achieve this, DECT takes advantage of
the different energy dependence of the photon-matter interactions mainly involved in
CT, the photoelectric effect and the Compton effect. The mass attenuation coefficient
µ(E)/ρ can be decomposed into Compton and photoelectric interactions according
to equations (2.5) and (2.6) neglecting Rayleigh scattering, which hardly contributes
to the total attenuation [134]. Analogously, the mass attenuation coefficient of any
material can be formulated as a linear combination of two so-called basis materials [135]
assuming that the energy lies above the K-edge of the material

µ(E)
ρ

= a1
µ1(E)
ρ1

+ a2
µ2(E)
ρ2

, (2.51)
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where a1/2 describe weighting coefficients of the basis materials. Since DECT intends
to compute two unknowns, the corresponding proportions of the basis materials in a
respective voxel, two independent pieces of information must be available for each data
point. Therefore, in DECT the same sample is measured twice with two different tube
spectra, allowing equation (2.51) to be resolved according to the respective proportions
of the basis materials.

For projection values of a sample consisting of two materials with the respective
intersection lengths l1 and l2 and which otherwise differ only in their recording spectra,
the following formulas hold true when scattered radiation is neglected:

qL = −ln
(∫

dE wL(E) e−
∫

µ(s+λ t,E) dλ
)

= −ln
(∫

dE wL(E) e−µ1(E) l1−µ2(E) l2

)
qH = −ln

(∫
dE wH(E) e−

∫
µ(s+λ t,E) dλ

)
= −ln

(∫
dE wH(E) e−µ1(E) l1−µ2(E) l2

)
(2.52)

In these equations, wL(E) represents a normalized low-energy spectrum and wH(E)
represents a normalized high-energy spectrum. To obtain the material intersection
lengths l1 and l2 from the measured projection values qL and qH, Eq. (2.52) can be
inverted by the polynomial representation [59]

li(qL, qH) =
∑
m,n

cimn q
m
L qn

H . (2.53)

The coefficients cimn of this polynomial may be determined, for example, by calibration
measurements [136].

Analogously, the projection values qH,L can be mapped by a polynomial via the
material intersection lengths l1 and l2

qj(l1, l2) =
∑
m,n

kjmn l
m
1 ln2 , (2.54)

where the linear terms of this series expansion correspond to beam hardening artifact-
free data and the nonlinear terms are responsible for beam hardening artifacts [58]. By
reconstructing the monochromatic projection value

p = µ1(E0) l1 + µ2(E0) l2 (2.55)

calculated from the material intersection lengths l1 and l2 for the basis materials µ1
and µ2 at a certain energy E0, one obtains volume data which are per se free of
beam hardening artifacts. CT images generated in this way are referred to as virtual
monochromatic images. Alternatively, any linear combination of the two summands
from Eq. (2.55) or each individual basis material projection value can be reconstructed
to obtain artifact-free basis material images.
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2.4.1 Image-Based Dual Energy X-Ray Computed Tomography

The combination of two spectral CT datasets for generating virtual monochromatic
images or material decomposition is also possible in image domain. However, in image
domain combinations typically correspond to linear operations of the volume data
acquired with a low-energy spectrum fL and a high-energy spectrum fH. Therefore, for
the mixed image holds [137]

fDECT(x, y, z) = α fL(x, y, z) + (1 − α) fH(x, y, z) , (2.56)

where α corresponds to the linear weighting factor, also called blending factor, which can
be determined for material decomposition, for example, by calibration measurements.
Hence, combinations of spectral data as proposed by Eq. (2.56) are also known as alpha
blending.

Besides material decomposition, Eq. (2.56) can be used for image quality improve-
ments, as well. Depending on the choice of the linear blending factor α the fusion volume
fDECT(x, y, z) may have different properties regarding image quality. For α ∈ (0, 1)
it is possible to create noise-reduced or CNR-maximized fusion volumes and setting
α < 0 can lead to a reduction of beam hardening artifacts in the fusion volume, which
is described below.

i.) Pseudo-Monochromatic Imaging

Since image reconstruction corresponds to a linear process, the linear combination
according to Eq. (2.56) is equivalent to a linear combination of the dual-energy projection
data qL and qH with a subsequent reconstruction. According to equation (2.54), qL and
qH can be expressed by a polynomial series expansion of the material intersection lengths
li, where the nonlinear terms of this series are responsible for beam hardening. By a
suitable choice of the blending factor α it is therefore possible to minimize the influence
of these terms and thus to reduce beam hardening artifacts in the image [59]. With
this technique, also known as alpha blending, not only beam hardening artifacts but
also scatter artifacts can be partially concealed. Thus, linear blending using Eq. (2.56)
can also be used to reduce metal artifacts [58]. However, this method provides artifact-
reduced data only for a certain value of α, which, as mentioned above, is at values
less than zero, and beam hardening-free CT images cannot be generated at arbitrary
monochromatic energies, as is the case with rawdata-based virtual monochromatic
imaging. Therefore, this method is also referred to as pseudo-monochromatic imaging
[58]. The optimal choice of the blending factor for pseudo-monochromatic imaging cannot
be described analytically. Since it is only one optimization parameter, optimization can
relatively simply be done by visual inspection. Alternatively, optimization algorithms in
combination with properly chosen cost functions, such as a locally defined total variation
[58] or the mean squared error (MSE) with respect to a homogeneous segmentation,
can allow an automatic determination of the optimization parameter α.

Even though the pseudo-monochromatic imaging described above is only an approx-
imate solution for the theoretically exact rawdata-based polynomial combination in
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Eq. (2.53) and therefore theoretically worse performance for the reduction of beam
hardening artifacts is to be expected, it is nevertheless frequently used in DECT. One
reason for this is that theoretically accurate rawdata-based data fusion is not necessarily
superior in practical applications after all [138] and the calibration with respect to mul-
tiple parameters and their optimization poses a more difficult problem than the single
parameter calibration and optimization performed in pseudo-monochromatic imaging.
Another reason is that for some measurement methods for obtaining dual-energy data,
the rawdata coverage required for Eq. (2.53) is not provided. In particular, this is the
case for dual source systems in which a pair of tubes and detectors simultaneously
acquires approximately orthogonal projection data in a gantry setup. Dual source
systems offer the advantage that the spectral separation in such systems is usually very
good due to the possible use of different voltages and prefiltration at both x-ray tubes,
and a good spectral separation of the data is advantageous for the methods described
above [139]. In industrial DECT one therefore usually performs sequential scans of the
workpiece with different spectra.

However, as mentioned above, pseudo-monochromatic imaging has the disadvantage
that beam hardening artifacts are reduced only for a certain value of the blending factor
α < 0. This leads to the fact that the statistical measurement deviations in the volume
data, thus the noise in the CT images, are increased for the fusion volume fDECT(x, y, z)
compared to both input images, which also implies decreased CNRs. The reason for
this is the negative value of the artifact minimizing linear factor α, given that the noise
of the fusion volume σ(fDECT(x, y, z)) = σ(fDECT) results from:

σ(fDECT) = σ(α fL + (1 − α) fH) =
√
α2 σ(fL)2 + (1 − α)2 σ(fH)2 (2.57)

This equation holds true if the noise in the images fL and fH is not correlated, which is
the case for most DECT techniques, especially for sequential scan operation modes.

ii.) Reduction of Statistical Measurement Deviations

From equation (2.57) it is clear that linear blending using Eq. (2.56) can also be used to
reduce noise in the combination volume. By minimizing the variance of the combination
image σ(fDECT)2 with respect to α one obtains:

∂

∂α
σ(fDECT)2 = 2ασ(fL)2 + 2ασ(fH)2 − 2σ(fH)2 != 0

→ α = σ(fH)2

σ(fL)2 + σ(fH)2

(2.58)

The variance in the high and low energy volume data needed to solve for α can be
obtained by evaluating the noise in a homogeneous ROI, as described in section 2.3.1.

Similarly, an analytical expression can be found for the blending factor that maximizes
the CNR in the combination image

α = CL/σ(fL)2

CL/σ(fL)2 + CH/σ(fH)2 , (2.59)
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where CH/L = |µH/L,1 − µH/L,2| denotes the contrast between two materials of high and
low energy volumes, respectively. By considering the two equations above, it is also
clear that for the blending factor 0 < α < 1 must hold, so that the DECT volume has a
reduced noise level or a maximized CNR.

In summary, DECT allows both, the quantitative analysis of the material composition
of the measured object and the optimization of image quality in terms of beam hardening
or noise artifacts.
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3 | Novel Method for the
Reduction of Systematic
Measurement Deviations in
X-Ray Computed
Tomography due to
Scattered X-Rays using the
Empirical Scatter Correction

Scattered radiation induced by Compton or Rayleigh scattering generates a non-linear
perturbation signal on the measured primary intensities. This perturbation signal is
superimposed by other physical processes that affect the measured intensities, such
as beam hardening for instance. In contrast to beam hardening, scattered radiation
is a low-frequency artifact in intensity domain, which means that, apart from noise
effects, the scatter intensities correspond to a smooth distribution. If, in addition to
scattered radiation, beam hardening is to be corrected in a measurement by using
spectral information, e.g. by virtual monochromatic or pseudo-monochromatic imaging,
it is useful to have already removed the scattered radiation as far as possible from the
underlying datasets. Otherwise, the distortion of the measured intensity values induced
by scattered photons may interfere with the estimation of the optimization parameters
(Eqs. (2.53) and (2.56)) and thus produce a bias on their value. For this reason, the
reduction of systematic deviations due to scattered radiation is treated first in this work
and takes place before further artifact corrections such as beam hardening correction
(Sec. 4 and 5) or noise reduction (Sec. 6).

Because a wide range of measurement objects and acquisition parameters must be
covered for industrial CT, the scatter correction method proposed here is intended to
provide straightforward and universal applicability. For this purpose, it should fulfill
the following conditions:

– No hardware modification of the CT device or additional measurements should
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be required; the method should correspond to a software-based post-processing
correction method.

– Prior knowledge about the measured object should not be required, i.e. no exact
knowledge about material or density shall be necessary. Thus, the correction
of the CT measurement is independent of the manufacturing information of the
workpiece.

– Prior knowledge about the spectrum and CT system used for the measurement
should not be required. This way the correction can universally be used and
transferred to less well known CT systems, even if significant information about
the measurement like the tube voltage, prefiltration, used detector, etc. are not
accessible.

– The method should be usable even in the presence of strong artifacts.

– Preferably, it should be possible to correct not only object scatter but also other
artifacts that can be approximated as low-frequency perturbations of the measured
intensities. In particular, backscatter from the detector and the detector housing
as well as scattered radiation from the collimator or prefilter, if present, should
be reduced in addition to object scatter.

Therefore, the empirical scatter correction (ESC) was developed for the reduction of
systematic deviations due to scattered radiation. ESC offers a method to efficiently
remove low-frequency perturbations, such as scattered radiation, from CBCT scans
without prior knowledge and was tested on simulated data, as well as measured CBCT
data from various CT systems for clinical and industrial applications. The functional
principle of ESC is described in more detail below.

3.1 Material and Methods

3.1.1 Functional Principle of the Empirical Scatter Correction

i.) Basic Idea of the Correction Procedure

The empirical scatter correction approximates the intensities induced by scattered
photons within a measured intensity projection I(u, v, α) by a linear combination of
different scatter estimates, so-called basis images. To obtain scatter-reduced intensity
projections Icor(u, v, α), this linear combination of basis images ∑

i ci · Bi(u, v, α) is
subtracted from the measured scatter-affected intensities:

I(u, v, α)cor = I(u, v, α) − kα

∑
i

ci ·Bi(u, v, α) (3.1)

with

kα =

min I(u,v,α)∑
i

ci·Bi(u,v,α) (1 − δ) if min (I(u, v, α) −
∑

i ci ·Bi(u, v, α)) < 0

1 else
(3.2)
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The pixel indices of the flat detector are given by u, v in these equations and α denotes
the rotation angle of the respective projection. The factor kα is used to constrain
the scatter estimate to be smaller than the measured intensities for each pixel in
each projection for the empirically chosen value of δ = 10−5. Thereby kα avoids the
occurrence of negative intensity values in the corrected data, which would be unphysical.
In principle, ESC does not impose any particular restrictions on the the basis images
besides that they must be constrained to smooth, low-frequency signals such that they
are able to model the low-frequency scatter artifacts that need to be removed sufficiently
well. They can either be calculated from the projection data or represented by more or
less arbitrary low-frequency signals, such as constant projections. A detailed description
on the generation of the basis images, which are used for the ESC results shown here
(Sec. 3.2), is given in the following subsection.

The empirical scatter correction algorithm optimizes the the coefficients ci for a given
set of basis images such that the corrected data contain as few scatter artifacts as possible.
In contrast to the subtraction of scatter signals, which is physically correctly performed
in intensity domain by the equation above, this optimization process takes place in the
reconstructed volume, thus in image domain where the artifacts can severely deteriorate
the image quality and may inhibit diagnosis, inspections and correct segmentations
of CT volumes in medical and industrial CT applications. To do so, the corrected
intensities from Eq. (3.1) need to be logarithmized and filtered backprojected. This
procedure has the disadvantage to be quite time consuming, especially if an algorithm
needs to optimize various parameters in an iterative manner, which involves repeated
reconstructions. In order to avoid these long computation times, ESC uses a known
trait about the scatter artifacts it needs to model: As the subtraction in Eq. (3.1) is
performed in intensity domain, the empirical scatter correction process can be performed
on subsampled projections. This is possible because, as mentioned above, scatter is a
low-frequency signal in intensity domain and can therefore be estimated on subsampled
projections with almost no loss of information.

The first step of the ESC algorithm is therefore given by a bilinear downsampling
of the measured projection data. Besides this bilinear downsampling, the number of
projections is also reduced to cover only every 2◦ because the scatter signal is smooth
in angular direction, as well. After this, an initial reconstruction of the downsampled
projection data is performed. This reconstruction, as well as all reconstructions in the
following parameter optimization step are performed using the filtered backprojection
algorithm with a smooth reconstruction kernel on a smaller voxel grid, which was done
to avoid sampling artifacts and impacts of image noise on the optimization process,
and to reduce computation time. This initial reconstruction is then segmented with
the algorithm of Otsu [112] to obtain a binary air mask and another binary mask that
contains a segmentation of the main material of the scanned object, e.g. soft tissue for
a patient or the material of interest in a scanned workpiece. These masks are necessary
for the following parameter optimization step.

The parameter optimization corresponds to the actual core process of ESC. In order to
find the optimal coefficients ci to represent the scatter signal with the linear combination
of the basis images, a Nelder-Mead algorithm [140] is used. After the coefficients ci are
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initialized at small positive values, the Nelder-Mead downhill simplex algorithm searches
for those coefficients that yield the minimal cost function value. For each iteration a
reconstruction of the downsampled projection data on the small reconstruction grid
is performed. The cost function of the optimization process corresponds to the MSE
between the volume, which is linearly weighted with another optimization parameter
cI, and a reference CT value within the previously segmented air and material regions.
This reference CT value corresponds to −1000 HU per definition for the segmented air
regions and to a reasonable CT value for the selected material, e.g. 0 HU for water-
equivalent matter, 55 HU for muscle tissue [141], or another value that can for instance
be determined by a human observer in a relatively artifact free region of the material
of interest within the initially reconstructed volume. The volume weighting factor cI
guarantees that in case of faulty calibration of the data or, to be more general, in cases
where the CT values are off for some reason, the algorithm automatically accounts
for such an offset and does not try to incorporate it in the scatter estimate. This
coefficient is initialized near the value of one. ESC thus optimizes the coefficients ci

and cI such that the reconstruction of the corrected intensities from Eq. (3.1) yields a
CT volume with a homogeneous gray value distribution in the previously segmented air
and material areas of this volume. To avoid unphysical negative scatter estimates, the
coefficients are limited to positive values during the optimization. It was observed that
200 iterations of the Nelder-Mead algorithm with typical inherent parameter values
(reflection=1, expansion=2, contraction=compression=1/2) yield sufficient results.

Once the optimization process is finished and the optimal coefficients are found, the
final scatter estimate is bilinearly upsampled to the original projection size and missing
projections in angular direction are linearly interpolated. Then this ESC scatter estimate
is subtracted from the measured intensities as proposed in Eq. (3.1). A reconstruction
of the corrected logarithmized intensities yields a scatter artifact-reduced volume.

An overview of the ESC process is given by the pseudocode in algorithm 1. Further-
more, Fig. 3.1 depicts the optimization process schematically.

In principle, the entire ESC process can be performed multiple times. This option
provides the benefit that the initial segmentations that are used during the optimization
process are improved after the data is scatter-corrected by a first iteration of ESC. One
may also consider to perform subsequent iterations with less sparse data, meaning larger
projection sizes and voxel grids, in order to target scatter artifacts that lead to spatially
rather small distortions in image domain and are therefore missed on a sparser grid. As
an approximate solution for the optimization parameters is already found at this point,
the number of iterations for the parameter optimization can be reduced accordingly.
However, performing ESC more than once negatively affects the computation times, of
course. The results shown in section 3.2 are all acquired using a single iteration of the
algorithm proposed here.
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Algorithm 1 Pseudocode for the empirical scatter correction.
1: select subset of measured intensities and bilinear downsampling Iu,v,α → I ′

u′,v′,α′

2: initial reconstruction X−1′(−ln(I ′
u′,v′,α′)) on a small grid

3: generate binary soft tissue and air masks M ′
st and M ′

air from this reconstruction
4: compute basis images B′

u′,v′,α′,i = f(I ′
u′,v′,α′)i

5: for n = 1 to 200 do
6: kα′ = min(1, min

I′
u′,v′,α′∑

i
ci·B′

u′,v′,α′,i

(1 − δ))
7: p′

u′,v′,α′ = −ln(I ′
u′,v′,α′ − kα′

∑
i ci ·B′

u′,v′,α′,i)
8: C = (cIX

−1′(p′) ·M ′
st − µtarget, st)2 + (cIX

−1′(p′) ·M ′
air − µtarget, air)2

9: optimize C w.r.t. ci and cI
10: end for
11: upsample basis images and interpolate missing projections B′

u′,v′,α′,i → Bu,v,α,i

12: correct original measured intensities using Eq. ((3.1))
13: reconstruction X−1(−ln(Icor,u,v,α))

Figure 3.1: Workflow of the ESC scatter estimation on the example of a head phantom
scan. Low frequency basis images (see Fig. 3.2) are linearly combined with
the coefficients ci and subtracted from the measured intensities. A cost
function value, which is based on an MSE between the weighted air and
material regions (here water-equivalent soft tissue) of the reconstructed
corrected data and a respective reference gray value, is minimized iteratively
by adjusting the coefficients ci and cI (cf. Alg. 1).
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ii.) Scatter Model

As described in the previous section, the empirical scatter correction models the estimate
of scatter artifacts and other signals that appear as low-frequency artifacts by a linear
superposition of low-frequency basis images. Therefore, it is essential to use basis images
which are able to jointly model the disturbing low-frequency intensity perturbations at
least to an extent that the quality of the reconstructed data is sufficient.

Because one of the main goals of ESC is to have a scatter correction algorithm that
can be used without specific prior knowledge, the basis images can not depend on such
information. This excludes for instance sparse Monte Carlo simulations or forward
projections of the segmented volumes using spectral information of the measurement.
Of course such data can be added to the ESC basis images if sufficient prior information
is available but this may not always be the case. This also includes novel learning-based
approaches [27], [41] that require a trained model to be available.

Kernel-based scatter estimation approaches [94], [142]–[149] are well established in
the field of CT and offer a method to model scatter solely based on the measured
projections and mathematical operations on them such as convolutions. Typically
these methods require detailed knowledge about the CT system and scan acquisition
parameters in order to carefully set various empirical parameters. However, this is not
a big problem for ESC. Different kernel-based scatter estimates with different sets of
empirical parameters can be used as basis images and the ESC algorithm automatically
determines optimal weightings of those to model the scatter in the measurement to be
corrected.

The kernel-based model that was chosen to approximate the scatter intensities for
ESC is a modification of the so-called pep-model, which was developed by Ohnesorge et
al. several years ago [144]. Even though this model was initially proposed for clinical
CT scanners with a single detector row, it was shown that it can effectively be used for
scatter reduction in CBCT, as well [150]. The basic idea of this model is quite simple
and will be briefly explained below.

As explained in section 2.1.2, the attenuation coefficient µ results from three types
of interactions of x-ray photons with matter: the photoelectric effect, Rayleigh and
Compton scattering. Only the latter two lead to scattering events and are therefore
of importance for the scatter estimation. If a discretized volume is considered, the
intensity of scattered radiation that emerges from a voxel i of size dl at position li in
forward direction is therefore proportional to the intensity of x-ray photons at this
voxel multiplied with the voxel’s attenuation coefficient µi, which corresponds to the
interaction probability of the photon and matter in this voxel. Expressed in an equation,
the forward scatter intensity dIS, f, i emerging from voxel i can be written as

dIS, f, i = KS, f µi I0 e
−

∫ li
0 µ(λ) dλ dl, (3.3)

where KS, f corresponds to a proportionality factor that here describes the differential
scatter cross section for small scatter angles. With no loss of generality, the photoelectric
effect and scatter interactions with large diffraction angles, which are included in the
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attenuation coefficient µi, are compensated for with this proportionality factor KS, f.
Furthermore, the energy dependence of the scatter interactions is disregarded in this
equation. It therefore corresponds to a monochromatic approximation of the scatter
intensities, e.g. at the spectrum’s center energy. The scatter intensity emerging from
voxel i that can be detected at an detector element corresponding to the considered ray
behind an object of size L is subsequently given by

dIS, f, i = KS, f µi I0 e
−

∫ li
0 µ(λ) dλ e

−
∫ L

li
µ(λ) dλ

dl. (3.4)

Small scattering angles are assumed for the forward scatter here, so that the beam path
between scattered and non-scattered photons does not differ in a first approximation.
Therefore, this formula facilitates to

dIS, f, i = KS, f µi I0 e
−

∫ L

0 µ(λ) dλ dl. (3.5)

Integrating Eq. (3.5) over all voxels along the beam path where scatter events may
take place results in the forward scatter intensity for this specific beam path:

IS, f = KS, f I0

∫ L

0
µ(λ) dλ e−

∫ L

0 µ(λ) dλ (3.6)

This equation describes the weighted product of the measured intensity and the line
integral for the considered ray. For a flat detector with pixel indices u, v this equation
can thus be rewritten as

I(u, v)S, f = KS, f I(u, v)P (−ln(I(u, v)P)) (3.7)

where I(u, v)P depicts the primary intensity, which is approximated by the measured
total intensity I(u, v) in this model because the scatter intensity I(u, v)S, f is considered
to be negligible compared to the primary intensity. If −ln(I(u, v)) is now identified
with the projection value p(u, v), the formula above reads p(u, v) e−p(u,v), which is the
reason why this model is referred to as pep-model.

When instead of a single ray all rays that reach the detector are incorporated in
the model, the total scatter distribution at a pixel must be obtained by a convolution
operation on the forward scatter signals at each pixel with a specific scatter kernel. For
ESC the total scatter signal is therefore modelled by

I(u, v)S = K(u, v)S ∗W (I(u, v))m (−ln(I(u, v)))n (3.8)

with

W (I(u, v)) =
{
I(u, v) if I(u, v) < ϵ

0 else
(3.9)

where m,n, and ϵ are empirical parameters that are already proposed in the original
model by Ohnesorge et al. [144] for a higher correction accuracy and KS corresponds
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to the scatter convolution kernel. ESC simplifies the original model by choosing this
kernel to be of truncated, symmetric Gaussian shape with different standard deviations
σ. Thus, it reads:

KS(r − r′) = e− (r−r′)2

2 σ2 (3.10)

For the results presented in section 3.2, nine different pep basis images were used
with a different set of parameters m, n, ϵ, and σ. An overview of these basis images
is given in Fig. 3.2 for an exemplary projection of a head phantom scan. All nine pep
basis image parameter sets were consistently used for the correction of the clinical and
industrial datasets in the results section 3.2 without an additional fine-tuning of the
parameters m, n, ϵ, and σ. Additionally to those pep basis images, a constant projection
is used for the correction of each dataset to model constant offsets of the intensities over
the whole detector image. For the correction of patient data that were measured with
a shifted detector in a system employing a bowtie filter (see Fig. 3.9), an additional
ramp-like basis image is used, which could approximate changes in the scatter signal
due to this type of filter. Such a basis image can in principle also be used for the other
corrections without bowtie filter but it would not be of any particular help there, which
is why it was neglected for these datasets in the following.
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Figure 3.2: For an example projection of a head phantom scan l), the different basis im-
ages that were used for the empirical scatter corrections shown in section 3.2
are depicted by the images a)-k). Note that basis image k) is asterisked as
it is only used for the correction of the patient data where a bowtie filter is
used (see Fig. 3.9). Window a)-k): C = 0.2, W = 0.4. Window l): C = 0.5,
W = 1.
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3.1.2 Reference Method: Image-Based Empirical Scatter Correction

The empirical scatter correction proposed here is a further development of the empirical
scatter correction, which was published by Meyer et al. [151]. This method also aims
to reduce scatter artifacts based on basis images without precise prior knowledge of
the CT scan or the scanned object, and is therefore suitable as a reference to the
method presented here. In contrast to the ESC algorithm described above, however,
the scatter estimate in Meyer’s method is not physically correctly subtracted from the
scatter-affected measured intensities in intensity domain. In this method the scatter
artifacts are rather approximated by a reconstruction and subsequent linear combination
of these scatter estimates in image domain

Si = X−1(si) = X−1(−ln(Bi + I) + ln(I)), (3.11)

where I denotes the measured intensities, i the scatter estimate index, Bi the scatter
basis image in intensity domain, and X−1 the filtered backprojection operator. By
subtracting a linear combination of different scatter estimates Si from the uncorrected
reconstructed volume X−1(−ln(I)), a scatter-corrected volume is generated. This
procedure allows an optimization process that takes place purely in image domain.
By avoiding iterative reconstructions, this method has an advantageous runtime over
the ESC presented here. However, due to the physically incorrect approximation of
correcting measurement data only after logarithmization and reconstruction, a lower
correction quality is expected, which is also confirmed by the results in section 3.2.

In order to achieve the best possible comparability of the methods, the same basis
images Bi and the same cost function were used for corrections with this reference
method as for ESC. To avoid confusion with the here proposed ESC, the method from
Meyer et al. is from now on referred to as image-based empirical scatter correction
(ibESC) in this work.

3.1.3 Simulation Study

To verify how well ESC is suited to correct object scatter artifacts in CBCT, a simulation
study was carried out. For this purpose, nearly scatter artifact-free clinical CT volume
data1 of a head, thorax and abdomen CT were forward projected in cone-beam geometry
and a Monte Carlo simulation was used to generate realistic scatter signals for the
simulated CBCT dataset. The Monte Carlo simulation used for this study came from
an in-house library from the division of x-ray imaging and computed tomography at
the German Cancer Research Center (DKFZ) [97], [150]. It uses an interpolation of
the tabulated values from the evaluated photon data library (EPDL) [95] database to
calculate the differential cross sections for scatter interactions and the overall attenuation
of the x-ray photons. For the different body regions different anatomy-typical simulation

1Clinical CT acquisitions from multi-slice CT scanners typically exhibit a very low amount of scatter
artifacts due to a smaller longitudinal coverage of the detectors compared to CBCT and large
one- or even two-dimensional anti-scatter grids, which are installed on the detector to avoid the
measurement of scattered radiation.
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Head Thorax Thorax Abdomen Abdomen
(shifted detector) (truncated) (shifted detector) (truncated)

RFD 1080 mm 1080 mm 1080 mm 1080 mm 1080 mm

RF 855 mm 620 mm 620 mm 620 mm 620 mm

FOM 227 mm 414 mm 216 mm 414 mm 216 mm
Number of

detector pixels 10242 10242 10242 10242 10242

Pixel size 0.388 mm 0.388 mm 0.388 mm 0.388 mm 0.388 mm

Number of
voxels 414×414×542 5123 5123 5123 5123

Voxel size 0.6 mm 0.82 mm 0.82 mm 0.82 mm 0.82 mm

Steps (360◦) 720 720 720 720 720
Scintillator
thickness 0.6 mm 0.6 mm 0.6 mm 0.6 mm 0.6 mm

Tube voltage 80 kV 100 kV 100 kV 120 kV 120 kV
Prefilter
thickness 6 mm 6 mm 6 mm 6 mm 6 mm

Table 3.1: Parameters for the simulations shown in section 3.2.1. The simulated scintil-
lator material was caesium iodide and the prefilter material aluminum.

parameters and partly different acquisition geometries were used, which are shown in
table 3.1. As is clear from this table, different scan trajectories were tested for the
thorax and abdomen: In each case, one simulation was performed for a shifted detector
scan in which the field of measurement (FOM) covers the complete patient and one
simulation was performed with a centered detector which has a reduced FOM and thus
results in truncated data. For the CT measurement of the head, only the centered
detector acquisition geometry was simulated, since the FOM is sufficiently large to
completely cover the head.

The simulation of the head measurement was additionally used for other experiments:
It was tested, how well a Monte Carlo simulation is able to correct this dataset on
the basis of the uncorrected volume data. This uncorrected volume contains distorted
CT values due to the artifacts and therefore the material segmentation and density
information needed for the Monte Carlo simulation is negatively affected. Furthermore,
another Monte Carlo simulation is performed in which it was deliberately assumed that
the tube voltage was 100 kV instead of the actual 80 kV. This experiment thus emulates
a Monte Carlo simulation with non-exact parameters, as they could occur, for example,
if there was no or incorrect prior knowledge about the actual measurement parameters.
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3.1.4 Measured Data

In addition to simulations, ESC was also tested on various measurements from different
CT scanners. Both, clinically relevant CBCT scans as well as industrial CBCT data
were corrected using the empirical scatter correction. The capabilities of ESC were
tested on two datasets for each of the different CT application fields, which are further
specified below.

i.) Medical Cone-Beam Computed Tomography Data

A measurement of a semi-anthropomorphic head phantom that was performed on a
table-top CBCT device, equipped with a Varian 4030 flat detector and a Hamamatsu
microfocus x-ray tube, was used to evaluate the correction capability of ESC for
measured medical CBCT data. Table 3.2 provides an overview of the scan parameters.
A slit scan of this phantom, measured with the same scan parameters and in the same
clamping, serves as almost scatter-free reference data for comparison. Furthermore,
another reference dataset was acquired by measuring the phantom on a SOMATOM
Definition Flash (Siemens Healthineers, Forchheim, Germany) clinical MSCT device,
which similarly to the slit scan is less affected by scatter due to a narrower collimation
compared to the CBCT scan and additionally employs large anti-scatter grids to avoid
scatter artifacts. The latter measurement was performed using a radiation planning
protocol at a tube voltage of 120 kV and a tube current-time product of 215 mAs. The
projection data were reconstructed using filtered backprojection.

In order to test ESC on real patient data, CBCT data of a pelvis scan from a Varian
Edge radiosurgery system (Varian, Palo Alto, USA) were corrected with ESC. For
this patient data, ESC is compared to the built-in scatter correction algorithm from
the iTools image reconstruciton toolkit, which corresponds to another kernel-based
scatter correction algorithm according to reference [148]. Information regarding the
scan parameters for this patient acquisition can be found in table 3.2.

Similarly to the simulations, the ibESC algorithm was tested on these datasets, as
well, in order to compare the scatter reduction capability of ESC.

ii.) Industrial Cone-Beam Computed Tomography Data

The two corrections of industrial CBCT measurements that were performed concern
on the one hand a measurement of a zinc die-cast plug housing at a TomoScope® L
(Werth Messtechnik, Gießen, Germany) industrial CT device equipped with a 300 kV
microfocus x-ray tube and on the other hand a measurement of an automotive controller
measured at the Werth MultiSpek CBCT system with a 450 kV macrofocus tube. The
latter CT device is described in more detail in chapter 4. While the zinc die-cast plug
housing is mainly made of a single material zinc with a small plastic insert inside the
connector, the automotive controller is a multi-material workpiece consisting of several
metals and plastics, which makes it a challenging workpiece for CT measurements.
However, the main component of the automotive controller is aluminum. Therefore,
in this case, aluminum is the material that is segmented in the ESC process and on
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Head phantom Pelvis (patient)
CBCT device table-top Varian Edge

RFD 1035 mm 1500 mm
RF 895 mm 1000 mm

FOM 238 mm 464 mm
Number of detector pixels 720 × 512 1020 × 764

Pixel size 0.388 mm 0.388 mm
Number of voxels 384 × 384 × 384 512 × 512 × 210

Voxel size 0.6 mm 1 mm
Steps (360◦) 362 884
Tube voltage 120 kV 125 kV
Tube current 3 mA 80 mA
Tube power 360 W 10 000 W

Integration time 180 ms 68 ms
Prefilter thickness 6 mm unknown
Measurement time 65 s 60 s

Table 3.2: Scan parameters of the head phantom measurement and the pelvis patient
scan. The prefilter material for the head phantom scan was aluminum.

which the algorithm optimizes its scatter estimates. Photographs of both workpieces
are shown in figure 3.3 and table 3.3 summarizes the scan parameters.
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Zinc die-cast plug housing automotive controller
CBCT device Werth TomoScope® L Werth MultiSpek CT

RFD 1095 mm 1828 mm
RF 276 mm 920 mm

FOM 100 mm 200 mm
Number of detector pixels 19842 19842

Pixel size 0.2 mm 0.2 mm
Number of voxels 1387 × 1387 × 1811 1873 × 1873 × 1842

Voxel size 0.05 mm 0.1 mm
Steps (360◦) 1200 3500
Tube voltage 300 kV 450 kV
Tube current 266 µA 1903 µA
Tube power 80 W 855 W

Integration time 500 ms 1000 ms
Prefilter thickness 1 mm 6 mm
Measurement time 600 s 3500 s

Table 3.3: Summary of the acquisition parameters of the CBCT measurements of the
industrial workpieces. The prefilter material was tin in both cases.

Figure 3.3: Photographs of the industrial workpieces whose tomographies were used to
test ESC. Left: controller from the automotive sector. Right: zinc die-cast
plug housing.
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3.2 Results

3.2.1 Simulation Study

The simulation results in figures 3.4 to 3.7 generally show that ESC can effectively
reduce scatter artifacts and improve the image quality for all CT simulations tested
here.

For the simulated measurement of the head, the mean absolute error (MAE) to
the scatter-free reconstruction can be reduced from 119 HU (uncorrected) to 15 HU
in the CT image by applying ESC (cf. Fig. 3.4). This correction quality is close to
the Monte Carlo simulation (13 HU) and exceeds the correction capability of both, a
distorted (off-kV) Monte Carlo simulation (52 HU), which assumes a tube voltage of
100 kV instead of the actual 80 kV, and an image-based empirical scatter correction
(31 HU) according to Meyer et al. [151]. Looking at the mean deviation in volume
regions severely distorted by artifacts, this impression is confirmed: The uncorrected
volume shows a deviation of more than 200 HU at this position, while ESC reduces this
deviation to 12 HU. The correction using an exact Monte Carlo simulation is again
closest to the scatter-free values at this location (9 HU), while ibESC has a deviation
of 16 HU and the correction using a distorted off-kV Monte Carlo simulation has the
largest deviation from the artifact-free volume with 98 HU. Figure 3.5 shows a line
profile through the soft tissue region of each of the CT images shown in Fig. 3.4. Again,
the observation is confirmed that an ESC correction, as well as a correction by a Monte
Carlo simulation with perfect prior knowledge, comes closest to the artifact-free gray
value distribution, and the ibESC, as well as the correction by an off-kV Monte Carlo
simulation, give inferior results.

Corrections of the thorax and abdomen datasets using ESC and ibESC are shown in
Figs. 3.6 and 3.7. Again, it can be seen that the quality of the volume is increased by
using ESC and the diagnostic value of the data increases. Anatomical regions, which are
not or only with difficulty recognizable without correction, become visible by applying
ESC. Corrections using image-based ESC cannot increase the quality of the volume data
to the same extent as those using rawdata-based ESC proposed here. Truncated data
can also be effectively corrected using ESC. For these data, Monte Carlo simulations
generally cannot provide a useful correction because of insufficient information about
the total volume [52]. Since the data shown here are all simulated, which means that
they can be easily extended over a virtually larger detector, no additional artifacts due
to truncation are visible in the reconstructed volumes of the truncated projections.

Compared to the uncorrected data, the MAE with respect to the scatter-free reference
CT images can be reduced by a factor of 3.7 to 6.2 by using ESC. At the same time, ibESC
only achieves a reduction of the deviations by a factor of 1.3 to 5. Both qualitatively and
quantitatively, the correction quality through ESC for the body datasets (abdomen and
thorax) is below that for the head CT. This is due to the increased scatter-to-primary
ratio in the different acquisitions. While this ratio averages to 0.6 for the head CT, it
is much higher for the thorax (0.9 and 1.2, respectively) and abdomen CTs (1.6 and
2.1, respectively). This makes the correction difficult because small differences in the
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Figure 3.4: Resulting reconstructions for the simulated head CT (C = 50 HU, W =
400 HU). The left column shows data where no scatter artifacts are simulated
and besides that the uncorrected data are given. The following columns
correspond to different scatter corrections being applied: a correction using
a Monte Carlo simulation with correct parameter settings, a correction
using a distorted Monte Carlo simulation (off-kV), an ibESC, and the here
proposed ESC. For each axial slice a dotted line is given, which corresponds
to the the area from which the line profile shown in Fig. 3.5 is sampled. The
second row shows difference images with respect to the scatter-free data
(C = 0 HU, W = 400 HU). In these difference images the mean absolute
error in soft-tissue regions is depicted in yellow, whilst the mean deviation
in a region of interest (red circle) is given in red. Rows three and four show
sagittal and coronal reformations of the volume (C = 50 HU, W = 400 HU).

scatter estimates to the actual scatter distribution tend to have a large impact on the
correction result. In addition, this results in a poorer quality of the initial uncorrected
volume and thus the initial segmentation of the soft tissue, in whose area the empirical
scatter correction tries to optimize the CT values, becomes less accurate. Nevertheless,
the correction results are satisfactory even in these cases.
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Figure 3.5: Line profiles of the different axial volume slices shown in Fig. 3.4. The
abbreviation SF stands for scatter-free data and no SC means no scatter
correction.
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Figure 3.6: CT images (top, C = 50 HU, W = 700 HU) and difference images (bottom,
C = 0 HU, W = 700 HU) for the thorax scans. The upper images show the
datasets for the shifted detector scan and the lower images show those of
the truncated scans. From left to right scatter-free, uncorrected, ibESC-
corrected and ESC-corrected data are shown.

60



3.2. RESULTS

Figure 3.7: Results for the simulated abdomen CTs. For each CT image (C =
50 HU, W = 700 HU), a corresponding difference image (C = 0 HU, W =
700 HU) with respect to the scatter-free data is given below it. The upper
images display the results of the shifted detector scan and the lower images
those of the truncated scan. As in Fig. 3.6, scatter-free data, uncorrected
data, ibESC, and ESC data are shown.
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3.2.2 Measured Data

i.) Medical Cone-Beam Computed Tomography Data

The corrections of measured medical CBCT data using ESC are shown in Figs. 3.8
and 3.9 and as can be seen, ESC leads to a visible improvement in image quality for
measurements, as well.

For the head phantom scan shown in Fig. 3.8, the mean absolute error to the slit
scan in soft tissue areas can be reduced from 208 HU in the uncorrected case to 47 HU
by ESC. A correction with ibESC reduces this deviation only to 55 HU. The evaluation
of the MAE was performed here on a volume slightly smoothed with a Gaussian filter
with standard deviation σ = 1.2 mm. This is to minimize the effect of image noise on
this evaluation, which is very pronounced for the slit scan at more than 100 HU, and to
make the effect of the scatter artifact correction more apparent. In highly distorted
regions, the mean difference of CT values after using ESC is even only 35 HU with
respect to the slit scan, instead of 289 HU in the uncorrected case. These deviations
were evaluated within the circular ROI in the difference images from Fig. 3.8. Here, too,
the advantage of the empirical scatter correction method presented here compared to
the ibESC of Meyer et al. becomes clear, which shows a much higher deviation in this
region (-70 HU). Nevertheless, both corrections, ESC and ibESC, increase the image
quality considerably. This can be seen, for example, in the structures marked with
yellow arrows in Fig. 3.8, which are barely visible in the uncorrected volume and become
clearly visible by the corrections. Qualitatively, the corrected volumes agree well with
the reference volume of the phantom measured on the clinical MSCT scanner, which
has nearly no scatter artifacts as well as a high signal-to-noise ratio due to the use of a
high-power x-ray tube and a curved detector with large anti-scatter grids. Because of
larger detector pixels of 600 µm × 600 µm in this scanner, the spatial resolution of the
MSCT volume is lower than that of the CBCT measurements, however.

At this point, it should be noted that there is a steel rod in the head phantom, which
is clearly visible in the sagittal volume slice in Fig. 3.8. This experiment thus shows that
ESC can also be used in the presence of highly absorbing materials such as metals and
associated local low intensity values and high scatter-to-primary ratios, as will be shown
again in the following for the industrial CBCT data and is of particular importance in
this context.

The results for a scatter correction of measured patient data are shown in Fig. 3.9.
Both ESC and ibESC can achieve a good correction result and improve the image
quality compared to the uncorrected data. However, also on the patient data ESC
provides better correction results than ibESC, which is especially noticeable by more
homogeneous gray values in the same tissue structures. Regions both in the center
of the patient and in the outer areas are strongly affected by scatter artifacts, which
is noticeable by strong cupping in the uncorrected volume. These artifacts can be
corrected, particularly by ESC and the reference correction method of Star-Lack et al.
[148] to a large extent. The reference correction method [148] optimized for this CT
device provides the most homogeneous gray value distribution here and thus the best
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Figure 3.8: Here, CT images of the head phantom are given for a slit scan on a table-
top CBCT, an uncorrected CBCT scan, the CBCT scan corrected with
ibESC and ESC, and a MSCT scan of this phantom. The top row shows
an axial slice of the volume and the second row a difference image for this
slice with respect to the almost scatter-free slit scan. In the difference
images information regarding the MAE and mean deviations in the ROI
depicted by the red circle are given. Rows three and four show sagittal and
coronal slices of the volume with yellow arrows highlighting some structures
that are only visible by applying a scatter correction on the CBCT data.
C = 0 HU, W = 700 HU.

results. In the coronal and sagittal volume slices, it can be seen that tumor markers
are embedded in the area of the seminal vesicles. While in the uncorrected CT image
the anatomical structures near the tumor markers are barely visible in a typical soft
tissue window setting, the corrections can guarantee the visibility of these areas and
thus simplify or enable diagnosis. The dashed lines in Fig. 3.9 run along the prostate in
the axial and along the bladder and seminal vesicle in the sagittal volume slice. Line
profiles for these areas are shown in Fig. 3.10. It can be seen that the CT values by
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a correction using ESC are close to the optimized solution used by the manufacturer
according to reference [148].

Figure 3.9: This figure shows CT images of the pelvis patient data. From left to right
different scatter corrections were applied: a reference scatter correction
according to reference [148], no scatter correction, ibESC, and ESC. The top
row displays an axial slice, the middle row a sagittal slice, and the bottom
row a coronal slice of the respective CT volume. The dashed lines in the
axial and sagittal slices correspond to regions along which the line profiles
shown in Fig. 3.10 are evaluated. C = 50 HU, W = 500 HU.

Figure 3.10: Line profiles of the axial and sagittal volume slices shown in Fig. 3.9. The
colors of the line profiles match those of the dashed lines in Fig. 3.9 for
the respective dataset.
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ii.) Industrial Cone-Beam Computed Tomography Data

Also for industrial CBCT datasets, ESC provides improved image quality for the same
scatter model as it was used for the medical datasets before. Figure 3.11 shows the
correction results for the automotive controller using an example axial volume slice at
z = 71 mm. It can be seen that the gray value distribution within the drilled aluminum
block in the center of the object becomes more homogeneous by using ESC. Remaining
artifacts, which are visible as dark streaks near strongly absorbing metals, can be caused
by beam hardening, for example, and do not necessarily indicate an insufficient ESC
correction. Due to the scatter correction, the homogeneity of the gray values increases
not only in the aluminum areas but also in areas of other materials. This is particularly
evident in the two regions of interest shown by yellow boxes. Transitions between plastic
and air can hardly be detected in the uncorrected image due to strong artifacts (cf.
red arrows in the figure). With ESC, these transitions are clearly defined and can be
evaluated. The volume processed by ESC exhibits an increased noise level, which is
also evident in the ROIs. Since in CT mainly the CNR is important, which is increased
by ESC in relevant regions of the volume, this increase in noise is acceptable, though.

Figure 3.11: CT images (C = 0.05/mm, W = 0.1/mm) of the automotive controller
showing the uncorrected volume (left) and a volume corrected with ESC
(right). The yellow boxes on the bottom of the figure show ROIs of
the respective CT image. Red arrows mark problematic regions of the
uncorrected data.
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The correction of the zinc die-cast plug housing is shown in Fig. 3.12. In addition to
an axial volume slice at z = 41.5 mm for the uncorrected volume and the ESC-corrected
volume, a surface model of the workpiece calculated from each volume is also shown in
this figure. The calculation of the surface models in stereolithography (STL) format
from the volume data was done using the marching cubes algorithm [120]. In addition
to an increase in image quality in the volume achieved by ESC, which is visible, for
instance, in reduced cupping artifacts, various improvements to the surface model
become apparent, which are marked in Fig. 3.12 by red arrows with numbering. The
reduction of artifacts results in a better segmentability of the volume and thus a more
precise localization of the workpiece surface, which in some cases makes structures more
clearly visible (1). In addition, faulty segmentations that lead to bulges (2) or even
holes (3) in the surface model and thus severely corrupt the surface information, are
corrected by ESC.

Figure 3.12: This figure shows volume slices (top, C = 0.09/mm, W = 0.18/mm) of the
uncorrected zinc die-cast plug measurement (left) and the measurement
corrected with the empirical scatter correction (right). Furthermore, surface
models of these datasets are given (bottom). Regions where ESC leads to
a significant improvement of the surface are marked with numbered red
arrows.
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3.3 Discussion
The empirical scatter correction represents an useful algorithm for the reduction of
systematic measurement deviations due to scattered radiation without the use of prior
knowledge. For corrections using ESC, only rawdata and the ability to reconstruct these
rawdata are required. The rawdata itself may also be obtained by forward projection
of the measured volume, of course. Such a method, which can reduce scatter artifacts
without prior knowledge, is particularly advantageous when data from an unknown
measurement system or with unknown acquisition parameters must be corrected, the
measured object contains unknown materials, or the acquisition geometry provides
only reduced information about the measured object, as is the case with truncated
measurements (cf. Figs. 3.6 and 3.7). In such cases, analytical methods for scatter
corrections, such as Monte Carlo simulations, reach their limits [52].

As the results show, ESC generally increases the image quality for CBCT measure-
ments. This in turn increases the diagnostic value of the volume data in medical
applications and can improve the nondestructive testing abilities and metrological
evaluability of workpiece analyses using CT. In addition, the accuracy of CT numbers
is increased by ESC. However, as the deviation of CT numbers is still comparatively
high, ESC cannot be used in clinical routine for dose calculations for radiotherapy. Nev-
ertheless, the improvement of image quality due to ESC can be used for interventional
CT and to improve the segmentability of volumes, which is relevant for both, clinical
and industrial CT applications. The accuracy of measuring points on the workpiece
surface, which is particularly relevant for industrial metrology, can also be increased
by ESC (cf. Fig. 3.12). Such an increase in the accuracy of measuring points will most
likely also gain importance for the medical application of computed tomography in
the future, since accurate surface determinations by means of CT in combination with
precise additive manufacturing processes enables the generation of individual prostheses
[152].

A comparison of the empirical scatter correction proposed here with the method of
Meyer et al. [151] shows that ESC provides better correction results. This indicates
that it makes sense to reduce scatter artifacts already in the measured intensities, i.e.
the place where they have their physical origin.

Scatter correction algorithms that are optimized for the sample, measurement system,
and acquisition parameters still provide the best correction results (cf. Fig. 3.9), so the
use of ESC should not be advised if such a solution and adequate prior knowledge is
available. However, the ESC algorithm has distinct advantages in the absence of prior
knowledge, as is evident from the experiment with the intentionally incorrectly assumed
tube voltage for a correction using a Monte Carlo simulation in Fig. 3.4, which leads to
inferior correction results.

As ESC aims to optimize the reconstructed volume by subtracting low-frequency
basis images from the measured intensities, it is in principle capable of correcting not
only scattered radiation caused by the scanned object but also other artifacts that
correspond to low-frequency disturbances on the intensities, such as backscatter from
the detector or its housing or scatter signals caused by the collimator [131] or prefilter
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[132]. For this purpose, the basis images should be able to model these scatter signals
accordingly. The scatter model chosen for the ESC basis functions here works well for
all considered datasets but may not yet be the optimum. The use of adaptive filters
[153] may be an option to further improve the scatter model and hence the correction
efficiency of ESC in the future.

A drawback of ESC is that even though the optimization process is performed on
a reduced voxel grid with a reduced number of subsampled projections, the runtime
is in the order of few minutes and therefore relatively long compared to state of the
art learning-based approaches [27], [41] that require a trained model to be available.
Furthermore, noise, which is induced by scattered radiation cannot be corrected by
ESC, as it is the case for any post-correction approach. This may result in an increase
of image noise in the corrected data (cf. Fig. 3.11). In section 6, a method is proposed
to counteract such increased noise levels. Another limitation of the empirical scatter
correction is that the uncorrected volume needs to be segmentable in order to have a
well-defined optimization criterion for the algorithm. If artifacts are very severe, this
may not always be the case. However, the segmentation does not need to be very precise
from the start. ESC may be used iteratively to improve the segmentation and scatter
basis images and therefore the correction efficiency. Even though the artifacts are quite
severe in the cases considered in section 3.2, the results shown here are all obtained by
a single iteration of ESC and the algorithm is still able to remove most of the scatter
artifacts.

Future opportunities for an empirical reduction of systematic measurement deviations
in CT and CBCT measurements without specific prior knowledge may be provided
by a combination of the ESC algorithm and algorithms for empirical beam hardening
corrections [154], [155].
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4 | Novel Method for the
Reduction of Systematic
Measurement Deviations
and Optimization of the
Spatial Resolution by Fusing
Measurements Acquired
with Two X-Ray Tubes

Having presented a method for reducing systematic measurement deviations due to
scattered radiation in the previous chapter, this chapter will focus on the combination
of datasets from measurements with different x-ray tube types at different x-ray spectra
to an artifact-reduced and spatial resolution-optimized dataset, combining or even
improving the advantages of the individual datasets. The method presented in the
following will be denoted the frequency split dual energy CT (FSDECT) combination. It
resembles established dual energy CT (DECT) data combinations for artifact reduction
(see Sec. 2.4.1) and may be considered as an extension to CT systems that employ
two x-ray tubes with strongly varying focal spot sizes. In addition to a DECT artifact
reduction, the FSDECT method extends this existing approach by a spatial resolution
optimization step, where the spatial frequencies of the underlying datasets are changed
at different stages of the algorithm, which serves as the motivation for the designation
frequency split.
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4.1 Material and Methods

4.1.1 MultiSpek: Industrial Cone-Beam Computed Tomography Sys-
tem with Two X-Ray Tubes

Figure 2.1 in chapter 2 shows an exemplary setup for an industrial CBCT system. The
MultiSpek CBCT system discussed in this chapter differs from this setup in the following
way: instead of a single x-ray source, two x-ray sources, which are mounted horizontally
on top of each other, are installed in this CT system (see Fig. 4.1). One of these sources
is a 300 kV microfocus x-ray tube with a transmission target whereas the other x-ray
source corresponds to a 450 kV macrofocus x-ray tube with a reflection target. As
described in section 2.1.1, these tube types significantly differ in their construction type,
leading to different maximum tube voltages, maximum tube powers and, related to
these traits, different focal spot sizes. Whilst measurements with the macrofocus tube,
which allows for high tube powers, tube voltages and strong prefiltration, can be used
to obtain CT volumes with a low amount of statistical and systematic measurement
deviations, measurements with the microfocus tube have a higher structural resolution
and allow for inspections and measurements of smaller structures.

Figure 4.1: Photography of the MultiSpek CBCT system. Left: view of the detector
and turntable. Right: view of both x-ray tubes: macrofocus tube (top) and
microfocus tube (bottom).

In order to use spectral information for artifact reduction as it was described in
section 2.4, the MultiSpek CBCT system offers the opportunity to scan workpieces
with different spectra using two different tube designs, which in principle enables high
spectral separations even at high photon energies of up to 450 keV. Different spectral
datasets using both x-ray tubes are acquired sequentially at the MultiSpek CBCT
system, as depicted in Fig. 4.2. The tubes are moved between both measurements such
that the focal spot position is at approximately the same position with a sensor offset of
only O(1 µm). It can therefore be assumed that the beam path and scan geometry are
approximately the same for each data acquisition. After the sequential measurement
with both tubes at different voltages, both rawdatasets are either first corrected for
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scatter artifacts with the empirical scatter correction and then reconstructed on the
same voxel grid or directly reconstructed on the same voxel grid resulting in the aligned
voxel volumes fMicro(x, y, z) and fMacro(x, y, z) for the measurements with micro- and
macrofocus tube, respectively. Measurements with the micro- or macrofocus tube will
from now on be denoted Micro or Macro measurements and the term Micro or Macro
volume is used for the resulting volume data fMicro/Macro(x, y, z).

Figure 4.2: Scheme of a sequential measurement at the MultiSpek CBCT system. Left:
measurement with the microfocus tube. Right: measurement with the
macrofocus tube.

Macro Micro
RFD 1828 mm 1828 mm
RF 920 mm 920 mm
FOM 200 mm 200 mm
Number of detector pixels 19842 19842

Pixel size 0.2 mm 0.2 mm
Number of voxels 1933 × 1933 × 1926 1933 × 1933 × 1926
Voxel size 0.1 mm 0.1 mm
Steps (360◦) 3500 3500
Tube voltage 450 kV 300 kV
Tube current 1622 µA 266 µA
Tube power 730 W 80 W
Integration time 1000 ms 1000 ms
Prefilter thickness 6 mm 1 mm
Measurement time 3500 s 3500 s

Table 4.1: Scan parameters for the Micro and Macro measurements of the automotive
controller shown in section 4.2. The prefilter material was tin in both cases.

The FSDECT algorithm, which is explained in the following section, was tested using
measurements of the automotive controller workpiece, which was already introduced in
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the previous chapter (see Fig. 3.3). The scan parameters for the measurements of the
automotive controller are given in table 4.1 for the Micro and Macro measurements.
It can be seen that the Macro measurement employs a very high energetic, hardened
spectrum with a tube voltage of 450 kV and a prefiltration of 6 mm of tin. Compared
to the Micro measurement, which only has a tube voltage of 300 kV with a prefiltration
of 1 mm of tin, the artifacts are expected to be much less pronounced in the Macro
volume and the spectra are well separated between both scans.

4.1.2 Data Combination Process

The workflow of the FSDECT data fusion algorithm is depicted in Fig. 4.3. As a
first step of the data fusion, the spatial resolution of both volume datasets must be
aligned. This step is necessary to avoid a superposition of different frequencies at edges,
which would inevitably lead to double edge structures in the merged volume. Once
both volumes have the same spatial resolution, they are linearly combined to obtain a
artifact-reduced DECT volume using pseudo-monochromatic imaging (cf. Sec. 2.4.1).
In the final step, spatial resolution enhancement of the artifact-reduced DECT volume
is performed. This is done by selectively transferring high-pass information from the
Micro volume to the DECT volume. The frequency split dual energy CT (FSDECT)
volume, which is finally obtained by the method presented here, has an increased image
quality in terms of artifact content and spatial resolution. Each single step of this data
combination process is explained in more detail in the following subsections.

i.) Adjustment of the Spatial Resolution of the Initial Volume Data

Since the MTF of image data is a quantitative measure of the spatial resolution of the
data (see Sec. 2.2.1), the spatial resolution of the two volumes obtained by the two
measurements using different x-ray tubes is adjusted by matching the MTFs of both
volumes.

For this purpose, the MTFs of both volumes are first determined along an edge within
an axial volume slice using Eq. (2.41). For the correction of the automotive controller
measurements, a straight edge at the outside of the aluminum block component was
used for the position to calculate the MTF (cf. Fig. 4.4). Perpendicular line profiles
are drawn and averaged along this edge transition. This leads to a low noise ESF. By
differentiation and Fourier transformation, the MTF of the volume is obtained for the
area under investigation, which serves as a benchmark for the spatial resolution of the
entire volume data of the respective measurement.

To equalize the MTF, the spatial frequency of the Micro measurement is reduced in
order to match the MTF of the Macro volume. The reduction of the spatial frequencies of
the Micro measurement is done by a three-dimensional isotropic Gaussian low-pass filter.
The optimal strength of the Gaussian filter (i.e. its standard deviation) is determined
using a Nelder-Mead algorithm. In each iteration step of this parameter optimization
process, the Micro volume is smoothed in a sufficiently large area around the object
edge under investigation and the MTF of the smoothed volume is evaluated. The cost
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Figure 4.3: Workflow of the FSDECT data fusion process. The abbreviations LP and
HP correspond to low- and high-pass filter operations, AM denotes the
artifact mask (see Alg. 2) and α is the linear blending variable for the
generation of the pseudo-monochromatic DECT volume (cf. Eq. (2.56)).

function corresponds to the absolute deviation of the MTF of the Macro volume to the
MTF of the smoothed Micro volume. The optimization problem for determining the
standard deviation of the Gaussian low-pass filter σ is hence of the form:

σ = argmin
σ′

(
∑

k

|MTF(k)N (0, σ′2)∗fMicro(x,y,z) − MTF(k)fMacro(x,y,z)|) (4.1)

Fig. 4.4 shows the MTF of the Macro, Micro and smoothed Micro volumes. It can be
seen that the MTF adjustment works well with the here proposed method. In principle,
dividing the MTF of the Micro volume by that of the Macro volume would yield the
desired convolution kernel in frequency space. However, care must be taken with this
method, since the MTF of both datasets may have zeros in the high frequency range or
may differ only slightly from zero, which leads to an undefined behavior for the thus
determined convolution kernel in this frequency band. In such an approach, therefore,
another parameter must be inserted to define a cut-off frequency for the division.

Since the same detector and the same generic image processing filters and filtered
backprojection algorithms were used on the Micro and Macro datasets, the difference in
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Figure 4.4: Left: Macro volume slice (C = 0.03/mm,W = 0.07/mm). The yellow box
depicts the edge position at which the MTFs are determined. Right: MTF
curves of the Macro, Micro and smoothed Micro volumes.

the MTF of the two volume datasets that needs to be adjusted is mainly due to the
different size and, potentially, intensity profiles of the focal spots. A different size and
intensity profile of the focal spot generally leads to a different blurring of the measured
x-ray intensities. Even though this modulation of the x-ray intensities may be modeled
quite accurately by a Gaussian [127], it is known that focal spot shapes may differ
from a Gaussian [156]–[158] which may lead to anisotropic behaviours in reconstructed
volumes [159]. Also the size of the focal spot and the wear on the target can change the
size and shape of the focal spot. Thus, a physically correct modeling of the resolution
adjustment of both datasets would use a convolution of the x-ray intensities of the
Micro dataset with a non-predefined convolution kernel to address possible differences in
focal spot size and shape. The here proposed use of an isotropic 3D Gaussian low-pass
filter on the reconstructed volume, therefore, corresponds to an approximation for the
resolution adjustment. Nevertheless, the volumes processed with the here proposed
method do not exhibit any noticeable problems such as double edges, and the MTF
of the Macro and processed Micro volumes strongly resemble each other. Therefore,
and due to the possibility of a performant implementation of the separable isotropic
Gaussian filter and the associated simplified optimization criterion (see Eq. (4.1)), this
approximation method is used here.

ii.) Dual Energy Computed Tomography Combination

If two spectral volume datasets are available at the same spatial resolution on the same
voxel grid, pseudo-monochromatic images (cf. Sec. 2.4.1) with a reduced amount of
systematic measurement deviations can be calculated. Given the processed Micro volume,
the DECT data combination here is obtained by a modification of equation (2.56):

74



4.1. MATERIAL AND METHODS

fDECT(x, y, z) = α (N (0, σ′2) ∗ fMicro(x, y, z)) + (1 − α) fMacro(x, y, z) (4.2)

In order to receive a fusion volume fDECT(x, y, z) with the lowest possible artifact
content, the blending factor α must be chosen accordingly. One possibility to quantify
the artifact content is to calculate the mean squared deviation of the voxels of a specific
material from a reference gray value, similarly to what is done for the parameter
optimization in ESC. A high deviation of the gray values with respect to that reference
value indicates a high amount of artifacts. The reference gray value corresponds to
the mean gray value of the material of interest or the main material in the workpiece.
This gray value is here obtained by segmenting the volume using Otsu’s method (cf.
Sec. 2.1.6) and evaluating the mean gray value of the segmented voxels. To keep this
reference gray value in the fusion volume independent of the blending factor and to
simplify following processing steps, a conversion of the attenuation values from the
Micro and Macro volume to generalized Hounsfield units is performed. As described in
section 2.1.5, the Hounsfield unit is the predominant unit of CT attenuation coefficients
in clinical applications and usually describes a rescaling of the attenuation coefficients
such that water is at a value of 0 HU and air is at a value of −1000 HU. Since aluminum
corresponds to the main material in the example workpiece under consideration, the
automotive controller, the gray values are here rescaled on the basis of the aluminum
gray values. For other workpieces, the gray values can of course be rescaled with respect
to other materials. According to Eq. (2.30), the rescaling of fMicro and fMacro is thus
done in such a way that both volumes contain 0 HU for the average gray value of the
reference material µRef and −1000 HU for the gray value of air.

It is now easy to see that Eq. (4.2) for the fusion volume also produces an average
gray value of 0 HU in the reference material and −1000 HU in air, independent of the
choice of α. The parameter optimization for α then reads

α = argmin
α

(
∑
x,y,z

M(x, y, z) (αCTMicro(x, y, z)+(1−α) CTMacro(x, y, z)−CTRef(x, y, z))2) ,

(4.3)

where M(x, y, z) corresponds to a binary mask obtained by the previous segmentation of
the main material, which equals one for voxels within the thresholds determined by this
segmentation and zero elsewhere, and CTRef(x, y, z) = 0 HU. This equation can then
easily and precisely be solved for α. Descriptively explained, the volume combination
is thus performed in such a way that the CT values of the DECT volume within the
reference material segmentation are as close as possible around the target value 0 HU
because this then corresponds to a volume where artifact-related CT value deviations
within the same material are reduced.

It should be noted here that for the algorithm to be applied automatically, the
automatic segmentation of the reference material must work sufficiently well. This may
be difficult, for example, if strong artifacts are present in the data. For this reason, the
segmentation is performed on the Macro volume, which already has a lower artifact
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content than the Micro volume and superior spatial resolution is not needed at this
point. Furthermore, the algorithm can in principle be used iteratively to recalculate the
segmentation after each iteration on the fusion volume and thus improve it. Another
possibility is to adjust the blending factor by visual inspection. Since it is only one
optimization parameter, the optimal choice of α can easily be chosen on a reference CT
image of the fusion volume. For the results shown in section 4.2, visual inspection was
used to optimize the automatically determined parameters.

iii.) Optimization of the Spatial Resolution of the Fusion Volume

As a final step of the FSDECT data combination, the spatial resolution of the DECT
volume is optimized (cf. Fig. 4.3). This is done by a partial transfer of high frequencies
from the high-resolution Micro volume to the fusion volume. Such and similar procedures
in CT, in which frequency information of different images is selectively transferred to
another image, are often referred to as a frequency split techniques. The high frequencies
from the Micro volume are obtained by a high-pass filtering operation HPMicro, which
here corresponds to the residual of the previously performed low-pass operation LPMicro:

HPMicro = 1 − LPMicro

fMicro, HP(x, y, z) = fMicro(x, y, z) − N (0, σ′2) ∗ fMicro(x, y, z)
(4.4)

The high-pass filtered Micro volume fMicro, HP(x, y, z) contains information about
its edge sharpness and structural details, which are intended to be preserved in the
FSDECT volume. However, in addition to this useful image information, which improves
the structural resolution, both the noise of the Micro volume, as well as high-frequency
artifacts of the Micro volume, are located in these high spatial frequencies. This on the
one hand leads to a noise increase in the combination volume, and on the other hand
allows a carryover of artifacts already removed in the DECT volume.

At this point, nothing can be done about the increased noise without losing structural
resolution at the same time and, similar to the noise increase due to the DECT
combination (cf. Eq. (2.57)), it must be accepted for the time being as a negative side
effect of the fusion. However, the transfer of high-frequency artifacts can be at least
partially prevented: It is possible to determine a portion of these artifacts and suppress
it in the high-passed volume fMicro, HP(x, y, z) before its transfer to the fusion volume.

For this purpose, an artifact mask (AM) is calculated from the unfiltered Micro
volume, which has values close to or equal to zero at positions with high-frequency
artifacts and values close to or equal to one otherwise. Determining an artifact mask is
generally not a trivial operation. In this work, the AM shall be restricted to suppress
those artifacts that, due to a combination of scattered radiation, beam hardening, and
nonlinear partial volume effects, result in attenuation values that become lower than
zero and are thus unphysical. Such artifacts are often found in CT between strong
absorbers (e.g. metals), where they show up as high-frequency dark streak artifacts in
the volume. With this assumption, a generation rule for this mask is relatively easy to
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define and was performed here as described in algorithm 2 and is summarized in the
following:

First, a threshold CTA is set, below which a gray value is considered artifact-induced,
and all voxels with CT values CT ≤ CTA are deposited in a binary image in which
they have the value zero and all other voxels have the value one. The artifact threshold
was set here at CTA = −1315 HU, which excludes air (−1000 HU) and contains most
of the artifact-induced streaking. To remove noise-induced misallocations of voxels
from the mask as well as to force smooth transitions, the binary image is smoothed.
This is done here with a three-dimensional isotropic Gaussian filter whose standard
deviation corresponds to that of the filter found via Eq. (4.1). Next, by logarithmization,
clipping and taking the square root, non-linear operations are performed on the artifact
mask to steepen it and give more weight to the artifact edges. The artifact mask
thus generated is multiplied onto the high-pass filtered Micro volume and reduces the
carryover of high frequencies in image regions with high-frequency artifacts (see Fig. 4.3).
However, it should be noted again at this point that this is a simplification to filter out
high-frequency artifacts. High-frequency artifacts that are not adequately suppressed in
the mask, e.g. those with CT values greater than CTA, could still be transmitted.

Algorithm 2 Pseudocode for the artifact mask generation.
1: if(CTMicro(x, y, z) ≤ CTA) AMbinary(x, y, z) = 0, else AMbinary(x, y, z) = 1
2: AM(x, y, z) = N (0, σ2) ∗ AMbinary(x, y, z)
3: if(AM(x, y, z) > 0) AM(x, y, z) = −ln(AM(x, y, z)), else AM(x, y, z) = 1
4: if(AM(x, y, z) > 1) AM(x, y, z) = 1
5: AM(x, y, z) =

√
AM(x, y, z)

6: invert artifact mask: AM(x, y, z) = −AM(x, y, z) + 1

The spatial resolution-optimized and artifact-reduced FSDECT volume is finally
obtained by adding the high-pass information from Eq. (4.4) to the DECT volume,
weighted by the artifact mask and a linear factor:

fFSDECT(x, y, z) = fDECT(x, y, z) + γAM(x, y, z) fMicro, HP(x, y, z) (4.5)

The parameter γ corresponds here to a linear weighting factor that prevents overshoots
at edges due to the contrast differences of Micro and DECT volumes. When volumes are
rescaled to Housfield units, transitions from reference material to air are at one contrast
level anyway, allowing a factor γ = 1. If other material transitions are of interest, the
factor must be adjusted to the corresponding contrast levels C between the considered
materials:

γ = CDECT/CMicro (4.6)
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4.2 Results

The results for the FSDECT data combination of the automotive controller measure-
ments are shown in Fig. 4.5. Beam hardening and scatter artifacts are particularly
visible as gray value inhomogeneities in areas of the same material, which should actually
have similar densities, as well (e.g. the aluminum block of the automotive controller).
On three exemplary volume slices it can be seen that the artifact content is the highest
in the Micro volume and is already significantly decreased for the Macro volume, as it
was expected. The DECT data fusion reduces the artifact content of the CT images even
further. The artifacts are not completely vanished, as some very dense structures still
lead to a certain shading of the gray values but the overall image quality is significantly
improved compared to the Micro and Macro volumes. By applying the frequency
split technique, small details from the Micro volume, which cannot be detected in the
Macro and DECT volumes, can be restored in the FSDECT volume. Furthermore, the
sharpness of edges is increased in the FSDECT volume, resembling the sharpness of
the Micro volume. This improvement of spatial resolution is especially apparent in the
small ROIs which are given for each CT image in boxes besides the full-slice overview
image. In terms of artifact content, the FSDECT volume is in no way inferior to the
DECT volume.

For each of the CT images shown in Fig. 4.5, a respective CT image is shown where
ESC was used to remove scatter artifacts. DECT and FSDECT volumes with ESC
correspond in this case to combinations of Micro and Macro volumes where each of
the two volumes is scatter-corrected by ESC prior to the combination. It can be seen
that by applying the empirical scatter correction to the Macro volume, most of the
artifacts can already be eliminated. However, beam hardening artifacts, such as those
occurring in regions with metal pins in Fig. 4.7, for instance, are still present and require
correction with DECT or FSDECT. In general the FSDECT volume with ESC provides
the least systematic measurement deviations and thus the best image quality regarding
scatter and beam hardening artifacts and spatial resolution.

The improved spatial resolution in the FSDECT volume can also be measured.
Figure 4.6 shows an evaluation of the MTF of the DECT and FSDECT volumes in
addition to those shown in Fig. 4.4. As expected, the DECT MTF curve aligns well with
those of the Macro and smoothed Micro volumes whilst the FSDECT MTF curve closely
resembles that one of the Micro volume. The MTF = 10 % values are at 2.59 lp/mm,
1.55 lp/mm, 1.55 lp/mm, 1.85 lp/mm, and 2.63 lp/mm for the Micro, Macro, smoothed
Micro, DECT, and FSDECT volumes, respectively.

One obvious drawback of the methods presented here is the accumulation of image
noise, which can be observed in the corrected volumes from Fig. 4.5. The empirical
scatter correction approximates the scatter signal by low frequency basis images. Noise
induced by scattered radiation cannot be eliminated by ESC, which is also the case for
all other state of the art software-based scatter correction methods [27], [34]–[41]. One
would need to prevent scatter artifacts in first place, e.g. by one- or two-dimensional
antiscatter grids (ASGs) [53]–[56], [160], [161], in order to avoid the noise induced by
scatter in the data and to achieve higher signal-to-noise-ratios. By subtracting a smooth
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image noise image noise CNR CNR
without ESC with ESC without ESC with ESC

Micro 45 HU 76 HU 7.3 8.1
Macro 30 HU 43 HU 10.7 14.7
DECT 62 HU 76 HU 7.5 8.5
FSDECT 63 HU 79 HU 7.4 8.1

Table 4.2: Image noise evaluated in an ROI in the aluminum block of the automotive
controller volumes shown in Fig. 4.5 and CNR evaluated between aluminum
and air in the same data.

scatter estimate from the rawdata, the noise level therefore automatically increases.
This is why ESC and other software-based scatter corrections lead to a noise increase,
which can be observed in Fig. 4.5. On the other hand, contrasts are generally increased
by effective scatter corrections, which leads to favorable contrast-to-noise-ratios, after
all. However, along line integrals of high attenuation with large scatter-to-primary
ratios one may find directed noise artifacts that are particularly noticeable and may
lead to biases when measures are taken (cf. ROI 2 of the ESC-corrected Micro volume
in the bottom row of Fig. 4.5). As shown in Eq. (2.57), the DECT combination of the
data increases image noise, as well. Unlike ESC, this method also results in reduced
CNRs. Since the noise resides in the high spatial frequencies of an image, the frequency
split further increases image noise by transferring these high frequencies to the DECT
volume (cf. Fig. 4.3). In summary, an increase in image noise is obtained at every step of
the correction (scatter correction, DECT combination, and frequency split). Table 4.2
shows a quantitative evaluation of the image noise and CNR between aluminum and
air, which confirms this theoretical consideration and the qualitative impression from
Fig. 4.5. The image noise in this table was evaluated in a homogeneous ROI within the
aluminum block of the automotive controller at z-position z = 96 mm (cf. Fig. 4.5) and
an air region close to the workpiece surface was analyzed to calculate the aluminum-air
CNR. In order to exclude the influences of artifacts or other CT value inhomogeneities in
this noise quantification, an adjacent axial slice (+0.5 mm = +5 slices) was subtracted
from the considered axial slice and the noise in the difference image was rescaled by the
factor 1/

√
2.

Fig. 4.7 emphasizes the necessity of the artifact mask: in a region of an electronic
connector, where the automotive controller has dense metal pins and low-density
Polybutylenterephthalat (PBT) plastic parts, beam hardening artifacts lead to high
frequency streak artifacts. These artifacts can be eliminated by DECT but they reappear
in FSDECT, when no artifact mask is used. If an artifact mask is used, however, a
transfer of these high frequency artifacts is strongly reduced. All data shown in this
figure are scatter corrected using ESC.

The blending factor for the volume combinations shown in Figs. 4.5 to 4.7 was set to
α = −0.74 for the combinations without prior scatter correction and to α = −0.6 for
those with ESC.
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Figure 4.5: Three exemplary volume slices (C = 0 HU, W = 1500 HU) for the Micro,
Macro, DECT, and FSDECT data for a measurement of an automotive
controller at the MultiSpek CBCT system with the scan parameters from
table 4.1. The yellow boxes depict regions of interests, which are shown in
a close-up beside each volume slice. Each slice is given for two scenarios:
once without any prior scatter correction and once with ESC.

80



4.2. RESULTS

Figure 4.6: Left: FSDECT volume slice (C = 150 HU, W = 1700 HU). The yellow box
depicts the edge position at which the MTFs are determined. Right: MTF
curves of the Macro, Micro, smoothed Micro, DECT and FSDECT volumes.

Figure 4.7: Top: exemplary axial volumes slice at z = 54 mm of the Micro, Macro,
DECT, FSDECT without artifact mask, and FSDECT with artifact mask
volumes (left to right). Bottom: ROIs of the connector area in this slice
for the different volumes. The yellow arrows mark areas of interest. C =
0 HU, W = 2000 HU.
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4.3 Discussion

The results show that by using ESC and an FSDECT data combination even severe
scatter and beam hardening artifacts can be corrected. Furthermore, the frequency split
technique increases the spatial resolution of the corrected fusion volume up to a level
of that of the Micro volume (cf. Fig. 4.6). As a result, the methods presented in this
work for reducing systematic measurement deviations in CT systems that employ two
x-ray tubes of different designs offer a way to inspect previously inadequate workpieces,
such as the automotive controller, by CT scans and to determine precise dimensions
on them. This is particularly evident in Fig. 6.6 in chapter 6 of this work, where it is
shown that automatic surface determinations and measurements of inner drilling holes
of the automotive controller, which are of particular interest to the manufacturer from
a metrological point of view, are only possible using the image quality improvement
procedures described here.

A limitation of the FSDECT approach shown here is that a CT system with two
x-ray tubes of different designs, such as the MultiSpek CBCT, is required to fully
exploit the benefits of each measurement with a different x-ray tube. Such a CT
system is therefore associated with higher costs. However, for the correction of non-
aligned volume data, one can imagine an alternative variant of the presented FSDECT
algorithm, in which a rigid volume registration takes place before the actual FSDECT
data combination. This allows a workpiece to be measured on two different CT devices
with micro- and macrofocus x-ray tubes at different spectra, and these measurements
can then be combined after the rigid registration of the volume data using the methods
described here to reduce systematic measurement deviations whilst maintaining the
spatial resolution of the high-resolution dataset. The advantage of this method is that
while CT devices with two x-ray tubes, such as the MultiSpek CBCT device, correspond
to rather exotic industrial CT setups, different CT devices with different x-ray tube
types and tube voltages may already be available in some production halls. Furthermore,
the here proposed algorithm may be useful for dual energy CT measurements at a
single source CT system, as well. DECT measurements in industrial CT setups are
typically performed by sequential measurements of the same workpiece at different tube
voltages and prefiltration. Until now, it has been the responsibility of the user to ensure
that there is little difference in the resolution of the datasets acquired in this way, to
allow artifact-reducing combinations of the spectral datasets. This is typically achieved
by adjusting the tube power for both measurements, or explicitly increasing the focal
spot size by increasing the defocus current at the x-ray tube [129] of the measurement
with smaller focal spot, so that the focal spot size is approximately the same for both
measurements. With the FSDECT algorithm, neither an adjustment of the tube power
nor the defocusing of the focal spot of a measurement is necessary. The advantages
of this method are therefore on the one hand that the tube power of a measurement,
mostly the measurement with high photon energies and strong prefiltration, does not
have to be reduced, which results in a shorter measurement time at the same SNR, or
that the resolution of the measurement is not degraded by a focal spot defocusing, but
is determined by the measurement with the smaller focal spot size.
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The algorithm proposed here to improve the structural resolution due to different focal
spot sizes of two CT measurements cannot be directly applied to medical applications,
since high power x-ray tubes with constant focal spot size are typically used in clinical
CT and interventional CBCT. However, it is conceivable to use the FSDECT algorithm
to adjust the structural resolution of volume data where a dataset has reduced spatial
resolution due to increased detector binning. The methodology from section 4.1.2 can
be used analogously for this purpose. This plays a particular role for novel dual source
MSCT systems that include a photon counting as well as an energy integrating detector,
or two photon counting detectors that have greatly reduced pixel sizes compared to
energy integrating detectors (cf. Sec. 5.3.1). For a dual source MSCT with one photon
counting detector and one energy integrating detector, FSDECT can be used to obtain
an artifact-reduced combination volume with the spatial resolution of the PCD. In
systems with two PCDs, one of the detectors may take unbinned data to obtain the
maximum spatial resolution, while the other detector takes binned data to be able to
use a higher number of energy thresholds, for example. FSDECT then makes it possible
to combine the spectral data recorded in this way to a volume with a reduced amount
of artifacts that has a spatial resolution similar to that of the unbinned data. The
further spectral information obtained at the binned detector can then be used for noise
reduction, for example.

The above mentioned benefits of reduced systematic measurement deviations at high
spatial resolution come at a cost of lowered signal-to-noise ratios and an associated
loss of contrast-to-noise ratios, however. One simple way to improve the signal-to-noise
ratio in the artifact corrected volumes without changing the experimental setup would
be to increase scan times. However, this is unwanted for obvious reasons. Also other
scan parameters might be chosen to increase the SNR. For instance increasing the
tube power or reducing the prefilter thickness would result in higher photon fluxes
and therefore improve the statistics. However, these are no viable options, as well.
Taking a look at table 4.1, one sees that the microfocus tube already operates at a tube
power of 80 W, which corresponds to the maximum power of the used microfocus x-ray
tube. A reduction of the prefilter thickness or choosing a less dense prefilter material
would have a negative impact on the amount of artifacts. As all signals have to be
within the dynamic range of the detector, meaning that x-rays exposed to a strong
attenuation must yield a sufficient signal whilst x-rays which only pass air must still
yield a measureable signal, an optimal choice of scan parameters is often not obvious
and should be determined by simulations [162], [163] or experiments. Therefore, another
post-processing solution to reduce the image noise in the artifact reduced datasets is
pursued in this work. Such a method and the corresponding results are discussed in
chapter 6 in further detail.

Another possibility to reduce the statistical measurement deviations could be the use
of a direct converting detector. It is known from clinical CT applications that photon-
counting computed tomography (PCCT) may have favourable properties concerning
signal-to-noise and contrast-to-noise ratios [60], [61]. The feasibility of using spectral
data from a PCD for the reduction of systematic measurement deviations and potential
benefits compared to energy integrating DECT are explored in the next chapter.
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5 | Potential Benefits for the
Reduction of Systematic
Measurement Deviations in
X-Ray Computed
Tomography by using
Photon Counting Detectors

The previous chapter showed how DECT and FSDECT can be used for image quality
improvement of spectral CT datasets. In industrial CT applications, workpieces are
usually scanned sequentially with different tube voltages and prefilters to obtain such
spectral CT datasets. In clinical CT, where dual energy CT has a longer history for
material decomposition among other things, other techniques, such as simultaneous
dual source operation, tube voltage switching, sandwich detectors, and most recently
the development of CT systems equipped with photon counting (PC) detectors are
known for dual or multi energy CT acquisitions [164].

The most obvious advantage of using an energy-selective detector to obtain spectral
data in industrial CT applications is that the workpiece would not have to be scanned
twice with different spectra. This reduces the measurement effort and positioning times
of the workpiece can be reduced.

As described in section 2.1.4, PC or direct converting detectors allow measurements
of single photons and charge thresholds allow to count photons above a desired energy.
Photons with energies between two distinct energy thresholds are assigned to so-
called energy bins. The reconstructions of these bin data are called bin images. This
chapter addresses the applicability of PCCT data for artifact reduction in industrial
applications, which has recently become a growing field of interest [23], [24]. For this
purpose, the use of energy thresholds to reduce systematic measurement deviations in the
reconstructed volume is investigated through simulations and experiments. In addition,
the combination of bin images using pseudo-monochromatic imaging techniques for
artifact reduction will be examined.
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5.1 Basic Idea
As is known from section 2.3.2, beam hardening artifacts are related to the energy-
dependent, nonlinear behavior of the attenuation coefficients, as well as the polychro-
matic nature of the x-ray spectrum. A reduction of the spectral width of the x-ray
spectrum, as well as a shift of the center energy of the spectrum towards higher energies,
where the energy-dependent variation of the attenuation coefficients is relatively small,
thus lead to a reduction of beam hardening artifacts. This effect is usually achieved by
filtering the spectrum with physical prefilters (cf. Fig. 2.5). Energy-selective detectors
provide an alternative possibility: by setting energy thresholds, high energy photons
can be selectively reconstructed to shift the center energy of the detected spectrum
and reduce its energy range. Accordingly, for PCCT measurements, one could imagine
using energy thresholds instead of physical prefilters, which also absorb a portion of
the high-energy photons and thus negatively affect the signal-to-noise ratios. The
potential benefits of such an approach over strong prefiltration are therefore evaluated
in a simulation study, which is explained in the following section in more detail.

In CBCT setups with broad collimation and without anti-scatter grids, setting
an energy threshold can additionally be useful to reduce the number of detected
scattered photons. In theory photons lose energy in the process of Compton scattering
(cf. Sec. 2.1.2), so that fewer photons from scattering interactions feature in the high-
threshold data. Studies have shown that the reduction of scatter signals may be as
high as 20% in CBCT scans with a PC dector compared to an energy-integrating (EI)
detector by simply using a threshold for the data acquisition [24]. Since prefilters
are usually placed in front of the object in CT scans, they cannot reduce the scatter
intensities and may even lead to scatter signals themselves [132]. Therefore, this simple
approach of setting an energy threshold to selectively measure high-energy photons
targets two distinct types of artifacts.

In principle, narrow energy bins at the PC detector could also lead to a substantial
reduction of beam hardening artifacts. This approach for beam hardening reduction
is rather impractical, though, as only few photons would fall into a narrow energy
bin. Moreover, due to the limited spectral separation of the PC detector, which will
be discussed in the following section in more detail, photons contributing to a narrow
energy bin are not as monochromatic as one would naively assume.

Since the data in different energy bins have different spectral characteristics, it is
expected that by a DECT combination (Eq. (2.56)) of two bin images, a reduction of
artifacts can also be achieved for PCCT. An experimental verification of this is shown
in section 5.3.3.

5.2 Simulation Study
To evaluate the potential benefits of direct converting detectors for reducing systematic
and statistical measurement deviations, detector signals are simulated for PC and EI
detectors and are evaluated in terms of beam hardening artifacts and signal-to-noise
ratios.
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In order to model the spectral separation of the photon counting detector, the
semirealistic detector model (SRDM) of Faby et al. [102] was used to simulate the bin
sensitivity of the detector. The bin sensitivity one obtains from this model describes the
fraction of the original spectrum that is detected in an energy bin of the PC detector.
The spectrum that is detected by a PC detector in energy bin i is therefore given by

wi(E) = wt(E)κ(E) bi(E) (5.1)

where wt(E) denotes the emitted tube spectrum, which was simulated with the model
of Tucker et al. [81] in the following, bi(E) is the bin sensitivity of energy bin i at
a given energy E and κ(E) the prefiltration known from Eq. (2.12). Compared to
equation (2.18), the detector efficiency η(E) is missing here. The reason for this is that
the detector efficiency is included in the bin sensitivities of the SRDM.

The SRDM takes into account several effects that degrade the spectral properties
of a PC detector (cf. Sec. 2.1.4), in particular charge sharing, K-escape, and Compton
scattering. These effects lead to disturbances of the spectral information and as a
consequence may reduce the amount of photon flux observed in the high energy bin,
which corresponds to the data of interest for the here proposed artifact correction
method. Counting rate dependent effects (pulse pileup) are not accounted for by this
model, however.

Figure 5.1 shows the bin sensitivities and a 140 kV spectrum for such a PC detector
model. These bin sensitivities and the corresponding realistic bin spectra are obtained
for a 1.6 mm CdTe sensor, a pixel size of 225 µm, a bias voltage of 500 V, and with
energy thresholds at 20 and 90 keV, respectively. It should be noted that due to charge
sharing the bin sensitivity may exceed unity. The resulting realistic bin spectra from
the SRDM are compared to idealized bin spectra in which all spectral distortions are
neglected. It can be seen that the low-energy bin for the realistic spectrum also contains
a large fraction of high-energy photons beyond the energy threshold of 90 keV. In the
high-energy bin, the realistic simulation produces a lower photon intensity compared to
an ideally energy-resolving detector, but the covered spectral range is nearly the same
for the realistic and ideal detector. The investigated 140 kV spectrum corresponds to
that of an x-ray tube with reflection target with an anode angle of seven degrees. It is
prefiltered only by inherent tube components (1 mm aluminum, 0.89 mm titanium, and
0.008 mm tungsten) and a bowtie filter, which is modeled with 1 mm carbon1. These
values are consistent with those of the experimental CT system that is used for the
experimental investigations (see Sec. 5.3) and are therefore used for the simulation
study in the following.

1This corresponds to the thickness of a typical bowtie filter at its center, which is a good approximation
for the spectrum of the measurement in section 5.3, since the investigated object only covers the
center of the FOM.
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Figure 5.1: Left: Energy-dependent bin sensitivities of a PC detector simulated with
the SRDM from reference [102]. The energy bins range from 20 to 90 keV
and 90 to 140 keV in this simulation. Right: Four spectra showing the ideal
x-ray spectra as recorded by the two bins of the PC detector (red and green),
and the spectra recorded by bin 1 and bin 2 of a realistically modelled PC
detector (blue and yellow) as calculated with the SRDM bin sensitivities on
the left. The inlay shows a close-up of the 80 keV to 140 keV range.

To quantify the expected amount of beam hardening artifacts for simulated spectra
such as those from figure 5.1, a measure needs to be defined that indicates the mea-
surement deviations obtained due to the polychromatic x-ray spectrum. A well-suited
measure for the monochromaticity of a spectrum and thus the severity of beam hard-
ening artifacts in CT scans is the homogeneity factor (HF). The HF is defined as the
division of the first and second half-value layer (HVL1,2) for a certain attenuator a.

HF = HVL1
HVL2

(5.2)

The HVL defines the thickness of the material that reduces the measured signal by 50%:

∫
dE w(E) e−µa(E)

∑
i

HVLi = 1
2i

(5.3)

In this equation w(E) corresponds to the normalized detected spectrum from equations
(2.18) or (5.1). For monochromatic spectra the HF yields one whereas for polychromatic
spectra this quantity yields values smaller than one. The smaller the HF, the more
beam hardening is present.

In principle, high HF values can, for instance, be achieved by strong prefiltration
of the spectrum, or by high energy thresholds. But in practice this is only useful up
to a certain degree, because a large part of the emitted x-ray radiation then remains
undetected or is already absorbed by the prefilter, which results in poor signal-to-noise
ratios in the measurement. Therefore, when considering the HF for a CT measurement,
the corresponding SNR must also be taken into account. As the number of detected
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photons follows Poisson statistics for PC detectors the variance of measured counts
equals the expectation value. The resulting SNR is then given by

SNRPC =
√
N0AQ,PC (5.4)

with N0 denoting the total number of photons and AQ,PC the quantum efficiency of
the PC detector. If the photon signal is integrated rather than counted, as it is the case
for EI detectors, an additional factor, the so-called Swank factor S [165], [166] needs to
be taken into account:

SNREI =
√
N0AQ,EI S =

√
N0AQ,EI

∫
E w(E) dE√∫
E2w(E) dE

(5.5)

The Swank factor, which yields one for PC detectors (see Eq. (5.4)), is smaller than
one for EI detectors and therefore indicates a reduced SNR for EI detectors compared
to PC detectors for the same effective spectra and quantum efficiencies. A proof of this
is shown in the appendix 8.1.

In order to calculate the SNR for EI and PC detectors in the simulation study here,
the same 140 kV spectrum as mentioned above with only inherent prefiltration is used as
a basis. A photon number of N0 = 50, 000 emitted photons per detector pixel is assumed
for the unattenuated spectrum. Signal losses due to a limited detector efficiency or bin
sensitivity and optional additional prefiltration are included in the factors AQ,PC, and
AQ,EI, respectively.

Figure 5.2 shows plots of SNRs against HFs for different detector types, where for EI
detectors additional tin prefiltration of varying thickness was used to increase the HF,
whilst for PC detectors energy thresholds are used for this purpose. Similar image quality
with respect to beam hardening artifacts are expected at similar HF values and higher
SNRs depict a better image quality regarding noise in the respective data. Two detector
materials are investigated for EI detectors: a 1.4 mm layer of gadolinium oxysulfide
(GOS), which corresponds to a typical material and thickness of an EI detector in
MSCT, and a 0.55 mm layer of cesium iodide (CsI), which is a common detector material
and thickness for EI flat detectors used for CBCT [167]. Furthermore, a PC detector
was simulated with a cadmium telluride (CdTe) semiconductor of 1.6 mm thickness
with a pixel size of 225 µm. As mentioned previously, this corresponds to the detector
used in the experimental investigations in the following section. In order to generalize
the results with respect to different semiconductor thicknesses, data points for sensor
thicknesses of 0.75 mm and 2 mm were added for energy thresholds of 70, 80, and 90 keV.
This roughly corresponds to the range of CdTe thicknesses used for PC flat detectors
[168]. Four different sample materials, iron, copper, aluminium, and water are examined
in this simulation. The prefilter thicknesses were adjusted such that the HF of the
EI detector data points (CsI and GOS) correspond to those of the PC detector data
points (1.6 mm CdTe) at the different energy thresholds for iron as the sample material
under investigation and the thus-obtained prefilter thicknesses are then consistently
used also for the other materials. The plots in Fig. 5.2 show that even though the
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prefilter thicknesses are adjusted for iron samples, the HF values are similar for EI
and PC simulations with these prefilter thicknesses and energy thresholds for the other
sample materials, as well.
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Figure 5.2: The four different plots in this figure show simulated comparisons of signal-
to-noise ratios (SNR) and the homogeneity factor (HF) for different detectors
and energy thresholds or prefilters. Four different attenuators are considered:
iron (10 mm), copper (10 mm), aluminum (100 mm), and water (100 mm).
The orange curves correspond to simulations with an EI detector with a
1.4 mm layer of GOS and the green curves depict the results for an EI detector
with a 0.55 mm CsI scintillator. Tin prefilters of different thicknesses, which
are given besides each datapoint, are applied to the spectra. The blue curves
correspond to simulations with a PC detector with a CdTe semiconductor
of different thicknesses (see legend). Instead of physical prefilters, energy
thresholds are used to increase the HF for the PC data.

Qualitatively this simulation study shows that it is favorable to use an energy threshold
at a PC detector instead of strong prefiltration at EI detectors to reduce beam hardening
artifacts because of higher SNRs at similar HFs. This is true for all of the considered
materials, even though quantitatively there are small differences. Especially at high
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HF values, thus a low amount of beam hardening artifacts, a PC acquisition with
energy thresholds outperforms conventional EI acquisitions with strong prefiltration
regarding resulting SNRs. For the iron dataset the 1.6 mm CdTe PC detector with
a 90 keV energy threshold yields an SNR improvement factor of 2.8 compared to a
1.4 mm GOS detector with 3.23 mm tin prefiltration and 5.8 compared to a 0.55 mm
CsI detector with 3.67 mm tin prefiltration. Even though this benefit is reduced for
thinner semiconductors, an advantage is still observed for thresholds beyond 70 keV and
CdTe layers thicker than 0.75 mm for all materials. Detectors with GOS as scintillator
material need less prefiltration to obtain a certain HF value compared to those with CsI
scintillators. This is mainly due to higher absorption efficiency of GOS at high photon
energies, which is depicted in Fig. 8.1 in the appendix 8.1. For this very reason, GOS
detectors generally yield a higher SNR compared to CsI detectors in Fig. 5.2.

The results shown in Fig. 5.2 are based on a consideration of the detected x-ray
intensities. To test how the different approaches for beam hardening artifact reduction
affect CT volumes, a full CT dataset was simulated for a virtual phantom. The virtual
phantom consists of a water cylinder with a diameter of 100 mm in which two iron
cylinders with a diameter of 5 mm each are embedded.

For the simulation of the CT measurement, a fan-beam geometry with a focus to
detector distance of one meter and a focus to isocenter distance of 750 mm was used.
A total of 1200 projections were simulated equidistantly for a circular scan. The size
of the detector in lateral direction was simulated as 1024 pixels with a dimension of
0.2 mm each and the voxel size of the reconstructed volume is 0.1 mm.

Polychromatic projection values were computed using equation (2.20) for different
spectra and Poisson noise was added to the projection values. The spectra used here
correspond to individual selected spectra from Fig. 5.2, again assuming a photon number
of N0 = 50, 000 photons per detector pixel for the unattenuated emitted spectrum.
Figure 5.3 shows the results for the reconstructions of the simulated data. For the EI
detectors with 0.55 mm CsI and 1.4 mm GOS scintillator, respectively, results without
prefiltering (full spectrum) and results with two different thicknesses of a tin prefilter
(hardened spectrum) are shown. For the PC detector with 1.6 mm CdTe, results without
energy threshold, as well as results with an energy threshold at 90 keV are shown. The
prefilter size of the simulated measurements with EI detectors is chosen so that one
time the noise within an ROI in the water cylinder corresponds to that of the scan
with the PC detector at a threshold of 90 keV (0.62 and 1 mm tin, respectively) and
one time the HF for iron (cf. Fig. 5.2) for the energy-integrating data is aligned with
that of the photon-counting data at an energy threshold of 90 keV (3.67 and 3.23 mm
tin, respectively). For the difference images, a monochromatic spectrum with a photon
energy of 108 keV was used as reference. The noise-free and beam hardening-reduced
volume data in the bottom rows of Fig. 5.3 are used to better illustrate remaining beam
hardening artifacts for the hardened spectra, which are heavily obscured by noise in the
middle row images.

The results in Fig. 5.3 show that CT images with a PC detector and a high energy
threshold are superior to those with an EI detector and a thick prefilter, which confirms
the theoretical consideration from figure 5.2. Beam hardening artifacts are weaker for
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the threshold-based method using PCCT for volume data at similar noise levels. When
PC and EI data are matched regarding beam hardening artifacts, the noise is stronger
for the images with EI detector and prefilter-based beam hardening reduction. The
results predict an increase in image noise by a factor of 3.2 and 6.8 in the water cylinder
for the phantom simulated here. Since the signal-to-noise ratio increases with the root of
the detected photons (cf. Eq. (5.4)), this corresponds to a measurement time reduction
of more than 90% and 97% if the advantage of higher SNR with threshold-based PCCT
is exchanged for reduced measurement times.
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Figure 5.3: Simulated CT images for a water cylinder with two iron inserts and differ-
ence images with respect to the monochromatic ground truth. The first
four columns depict simulations with EI detectors with different detector
materials and prefilters. The last column shows the results for a PC detector.
Results with no additional prefiltration or usage of an energy threshold are
shown in the first row and results for spectra hardened by prefiltration or an
energy threshold are shown in the second row. Image noise is evaluated in a
homogeneous water region (red circle) and is displayed in each of these CT
images. The CT images in the bottom row depict the same scenario as those
in the middle row without simulating noise. C = 0 HU, W = 1000 HU.
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5.3 Experimental Validation
As the simulation results and theoretical considerations show, energy thresholds on
PC detectors can be used in order to efficiently reduce beam hardening artifacts. To
verify this experimentally, a household electrical plug was measured at the Siemens
SOMATOM CounT experimental PCCT (Siemens Healthineers, Forchheim, Germany).
This experimental PCCT will be specified in the following and results for the threshold-
based reduction of beam hardening and scatter artifacts are shown in section 5.3.2.
Furthermore, spectral information of two energy bin images are used to further reduce
artifacts, which is shown in section 5.3.3.

5.3.1 Material and Methods

All measurements shown in the following were performed using a tube voltage of
140 kV. This corresponds to the maximum selectable voltage on the PCCT device. Only
inherent prefiltration (1 mm Al, 0.9 mm Ti, 0.008 mm W), a bowtie filter (1 mm C
at the center) and a tube current-time product of 200 mAs were used in the following
measurements. The rotation time of the gantry was always set to 1 s. As the SOMATOM
CounT PCCT is a dual source CT employing one PC detector with a 1.6 mm CdTe
semiconductor and one EI detector with a 1.4 mm GOS scintillator, direct comparisons
between the technologies are possible. However, the PC detector has a smaller pixel-size
(225 µm) compared to the EI detector (600 µm). A more detailed characterization of the
SOMATOM CounT photon counting CT used for this study can be found in reference
[103].

Every experiment here uses the so-called ultra high resolution (UHR) mode for data
acquisition which benefits from the full spatial resolution of the PC detector and allows
two energy thresholds to be set. Reconstructions of the EI detector data were performed
with filtered backprojection using a B60 kernel, whereas reconstructions of PC detector
UHR data were performed with filtered backprojection using a sharper U70 kernel, to
take advantage of the smaller pixel size and better spatial resolution. The voxel size is
0.195 × 0.195 × 0.25 mm3 for each reconstruction.

The workpiece used in this experimental study is a standard household electrical
plug, which corresponds to a complex multi-material object consisting of steel, copper
and plastic elements, among others. To prevent truncation of attenuation coefficients
that are significantly lower than air due to strong artifacts, which would negatively
affect the effectiveness of the DECT combination of the bin images in section 5.3.3, the
plug was measured in a water bath. Figure 5.4 shows photographs of the experimental
PCCT system and the workpiece used for the experiments.
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Figure 5.4: Left: Siemens SOMATOM CounT photon counting experimental CT sys-
tem. Right: household electrical plug used for the experiments in sections
5.3.2 and 5.3.3.

5.3.2 Reduction of Systematic Measurement Deviations by Applying
Energy Thresholds

Figure 5.5 shows that the reconstruction of PC detector data contains fewer streak
artifacts for higher energy thresholds compared both to lower thresholds and to the
reconstruction from an EI detector, which detects photons of all energies. Especially a
comparison of the reconstruction with a threshold at 90 keV to the EI detector data
shows the effectiveness of this rather simple approach for artifact reduction. On the
contrary, the noise level is higher for the individual bins in a PC detector, which is
obvious and was expected on the basis of the simulation study, as in total less photons
are detected once an energy threshold for the detection is set, assuming that prefiltration
is constant in both cases. Unfortunately, experimental verification of the prediction that
the SNR for a threshold-based reduction of beam hardening using PCCT is advantageous
over physical pre-filtering for EI detector measurements cannot be performed at this
point because the experimental CT system does not allow for additional pre-filtering
of data acquired with the EI detector. The lower spatial resolution of the EI detector
apparent in figure 5.5 is a result of the larger pixel size and the correspondingly chosen
smoother reconstruction kernel.

The detector considered in this study is optimized for the clinical use. Hence, anti-
scatter grids prevent the detection of most of the scattered photons and a narrow
collimation is used. Therefore, the advantage of the lower fraction of measured scattered
photons due to higher energy thresholds is probably very small.
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Figure 5.5: Reconstructed volumes of the household electrical plug measurement with
an EI detector (left) and a PC detector with different energy thresholds. Top
and bottom images correspond to axial slices of the volume at z = 5.75 mm
(top) and z = 37.25 mm (bottom). C = 1000 HU, W = 4000 HU.

5.3.3 Reduction of Systematic Measurement Deviations by Dual En-
ergy Combinations of Bin Images

In order to further reduce the beam hardening and scatter artifacts the spectral
information of both energy bins provided by a single PCCT scan is used. Similarly to
the spectral data of the MultiSpek CBCT system with two x-ray tubes from chapter 4,
this can be done by a linear combination of two bin images for PC detector data. In
contrast to the MultiSpek CBCT data, an adjustment of the spatial resolution of the
spectral datasets is not needed here, since the bin images from the CounT system have
a very similar spatial resolution.

A linear combination as given by Eq. (2.56) was performed on the data of the
household plug from Fig. 5.5 with the highest spectral separation, which corresponds
to energy bins at T1 ∈ [20, 90] keV and T2 ∈ [90, 140] keV. The results are shown in
Fig. 5.6, where a blending factor of α = −0.26 was used to obtain the DECT images.
The yellow boxes in this figure mark a region of interest for which a close up is shown
for each image. It can be observed that besides using high energy thresholds, a linear
combination of the acquired bin images results in an additional decrease of beam
hardening and scatter-induced streak artifacts.

Again the drawback of pseudo-monochromatic imaging for artifact reduction becomes
apparent: the image noise is increased for the combined image compared to both input
images. Equation (2.57) for the noise increase approximately holds true here because
photon counting CT bin data show only minor correlations [102].
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Figure 5.6: The two axial volume slices from Fig. 5.5 (top and bottom) of a low energy
bin image (left) and high energy bin image (middle) for the measurement
of the household electrical plug for energy thresholds at 20 keV and 90 keV.
The CT images on the right show the DECT volume for a blending factor
α = −0.26. The yellow boxes show enlarged regions of interest. C =
1000 HU, W = 4000 HU.
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5.4 Discussion

The results from the simulations as well as the measurements generally show the
possibility of using energy thresholds at PC detectors to reduce beam hardening
artifacts. This could be used in the future to scan workpieces with a reduced amount of
systematic measurement deviations without having to resort to strong prefilters. Such
a method offers advantages in terms of the expected signal-to-noise ratio at similar
artifact levels, as shown by the simulation results. Increased signal-to-noise ratios can
then be used either to increase image quality or to reduce measurement times.

The spectral data of the high energy bin can be flawed by pile-up effects, which are not
modelled in the here-performed simulations. This could lead to worsened performances
regarding beam hardening and scatter artifact reduction of the proposed method in real
experiments. However, this is not too much of a problem, as this issue can be reduced
by using small pixels as well as by a reduction of the photon flux. Since the tube powers
and the associated photon flux for highly accurate industrial CT applications is many
times lower than for clinical applications (O(100 W) vs. O(100 kW)), and the pixel sizes
for PC flat detectors typically even smaller than those of the experimental CT system
considered here, the probability of pile-up effects is correspondingly low.

Effects such as charge sharing or fluorescence, which reduce the spectral resolution of
a PC detector and were also included in the simulations, lead to a reduced count rate in
high energy bins compared to an ideal scenario. If such effects can be reduced, the count
rate in high energy bins would therefore increase, leading to an additional advantage of
the here proposed energy threshold-based method for artifact reduction regarding the
SNR. Some PC detectors already provide a correction of charge sharing by detecting
signal coincidences for neighboring pixels and redistributing the charges accordingly to
a single count [105]. This method works well, as long as the photon flux is relatively low,
which typically is the case for highly accurate industrial CT applications, as described
above.

One question left unanswered by the simulation results is how the spatial resolution
behaves for measurements with a PC flat detector compared to measurements with an
EI flat detector. Indeed, an increased image quality in terms of reduced systematic
or statistical measurement deviations can only be evaluated as an actual advantage if
the spatial resolution of the volume information obtained by the CT measurements is
comparable. The measurement results on the experimental clinical PCCT device show
that due to the smaller pixel size of the PC detector, measurements of CT volumes with
higher spatial resolution are possible than it is the case for measurements using the
EI detector at this computer tomograph. Flat detectors, as used in CBCT, often have
smaller pixel sizes than the curved detectors used in MSCT. In addition, the crystalline
structure of the CsI scintillator used in many EI flat detectors acts as a light guide
(cf. Sec. 2.1.4), resulting in low crosstalk probabilities of signals onto adjacent pixels.
Future investigations should therefore verify the simulation results from the previous
section for measurements on PC and EI flat detectors and also test both technologies
with respect to the PSF of the obtained signals.
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At this point, it must be mentioned that the method of using energy thresholds
instead of prefilters is only suitable for industrial CT applications where the radiation
dose to the workpiece is irrelevant, which is the case for most workpieces. For patient
scans, this method cannot be used because the high proportion of unfiltered low-energy
photons would lead to an unacceptable dose increase. A clinically relevant application
is given by a combination of prefilters and energy thresholds. It has been shown in
reference [169] that an increased metal artifact reduction capability can be achieved at
the same dose and with comparable noise levels.

PCCT also offers the possibility to use the obtained spectral data for further artifact
reduction. It was experimentally confirmed for the measurement of the household
electrical plug that such an artifact reduction can also be achieved for PCCT data using
combinations of two energy bin images by pseudo-monochromatic imaging, similar to the
procedure in chapter 4. In contrast to the previous chapter, where the fusion volume was
corrected almost perfectly (cf. Fig. 4.7), some very strong artifacts cannot be corrected
in the data shown in Fig. 5.6. A significant difference from the results in section 4.2 is
that the photon energies in this measurement are very low for a measurement task of
an industrial workpiece with metal parts. The remaining artifacts observed here may
therefore be caused by factors other than beam hardening, such as photon starvation.
However, this could not be changed in the experiments since the maximum voltage
and maximum energy threshold of the experimental PCCT device were already used.
Another problem may be the poorer spectral separation obtained with the PC detector
compared to two subsequent measurements at different tube voltages and with different
prefilters, which is also known to negatively affect material decomposition in PCCT
[164].

As already known, the reduction of systematic measurement deviations by pseudo-
monochromatic imaging has a negative effect on the signal-to-noise-ratio of the corrected
volume dataset. The next chapter therefore deals with a procedure that counteracts
the reduction of the SNR for artifact-reduced DECT combination volumes.
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6 | Novel Method for the
Reduction of Statistical
Measurement Deviations in
X-Ray Computed
Tomography by Guided
Bilateral Filtering

As shown in the previous chapters, the reduction of systematic measurement deviations
with the proposed methods may be accompanied by a reduction of the signal- and
contrast-to-noise ratios in the corrected CT volume data and thus an increase in
statistical deviations. In particular, the DECT data fusion proposed in chapters 4
and 5 using pseudo-monochromatic imaging to reduce beam hardening and scatter
artifacts leads to an undesirable noise increase in the fusion volume due to that method
(cf. Eq. (2.57)). The frequency split technique for improving the spatial resolution
of the fusion dataset as proposed in chapter 4 additionally transfers noise that is
present in the high frequencies of the high-resolution volume to the fusion volume.
Furthermore, software-based post-processing scatter corrections lead to increased image
noise (cf. Ch. 3), since unlike the mean scatter signals, the scatter induced noise cannot
be removed from the data once measured.

This chapter describes a method to counteract the degraded CNR by the correction
methods mentioned above and thus to reduce statistical measurement errors. To solve
this problem, the use of a guided bilateral filter (gBF) is proposed here. The function
principle of such a guided bilateral filter is described in the following section.

6.1 Material and Methods

6.1.1 Principle of Guided Bilateral Filtering

The guided bilateral filter proposed here is based on the same principle as an usual
bilateral filter (BF) (cf. Eq. (6.1)). Such a bilateral filter corresponds to a low-pass filter,
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but it consists of two filter kernels and can be used for edge-preserving noise reduction.
One of the filter kernels, the so-called domain kernel D, weights the contribution of
individual voxels to the filtering result depending on the respective spatial distance to
the target voxel and therefore acts like a low-pass filter in the proper sense. The other
filter kernel, the so-called range kernel R1, on the other hand, acts in intensity domain,
i.e. on the gray values of the volume, and suppresses the contribution of individual
voxels to the filter result in case of large differences in the gray values. This way the
range kernel ensures the edge-preserving properties of the bilateral filter.

fBF(r) = 1
W (r)

∑
ρ

fα1(ρ)R1(|fα1(ρ) − fα1(r)|)D(|ρ − r|)

W (r) =
∑

ρ

R1(|fα1(ρ) − fα1(r)|)D(|ρ − r|)
(6.1)

The volume to be filtered is denoted fα1(ρ) in the above equation. The reason for this
notation is that in the following the bilateral filter and guided bilateral filter are applied
to volumes obtained by alpha blending (cf. Eq. (2.56)).

It is straightforward to understand that the possibilities of using the bilateral filter
as an edge-preserving low-pass filter are limited by the CNR of the considered initial
volume: the bilateral filter can only effectively suppress noise if the range kernel allows
filtering of the peaks of the noise signals. On the other hand, the range kernel must not
allow filtering of material transitions. A sufficient distinction between noise peaks and
edges is therefore only given for data with relatively high CNR, i.e. relatively low noise
peaks with simultaneously relatively high contrast levels.

Volume data, as they result from pseudo-monochromatic volume combinations, show
a reduced amount of systematic deviations, caused for example by beam hardening and
scattered radiation, but have a deficit regarding their CNR. Therefore, the application
of a bilateral filter to such a dataset alone would not provide large improvements with
respect to the reduction of statistical, noise-induced measurement deviations at constant
structural resolution. Because of this, the use of a guided bilateral filter, defined in the
following equation, is proposed here for the correction of such volume data:

fgBF(r) = 1
W (r)

∑
ρ

fα1(ρ)R1(|fα1(ρ) − fα1(r)|)R2(|fα2(ρ) − fα2(r)|)D(|ρ − r|)

W (r) =
∑

ρ

R1(|fα1(ρ) − fα1(r)|)R2(|fα2(ρ) − fα2(r)|)D(|ρ − r|)

(6.2)

Compared to the unguided bilateral filter in equation (6.1), it is noticeable that the
guided bilateral filter in the above equation includes an additional range kernel R2 that
acts on a different volume data set, called the guiding volume fα2(ρ). The idea of the
guided bilateral filter is that the constraint on low-pass filtering at edges or material
transitions by the range kernel is mainly determined based on the guiding volume. For
this purpose, the guiding volume dataset must be aligned with the dataset to be filtered
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and must represent the same measurement object with the same or increased spatial
resolution and an increased CNR for the method to be advantageous. Therefore, a CNR
optimizing DECT combination of the spectral data is suitable for a guiding volume
dataset (cf. Eq. (2.59)). Because such a DECT combination is generated by the same
principle as the pseudo-monochromatic volume fα1(ρ) only with a different linear factor,
fα2(ρ) is used for the notation of this volume in the guided bilateral filter.

The form of the low-pass filtering performed in Eqs. (6.1) and (6.2) is not fixed for
this method. For the results shown in section 6.2, isotropic Gaussian filter kernels were
used in each case. Thus, the exact expression of the range and domain kernels of the
bilateral filter and guided bilateral filter are given by:

R1(|fα1(ρ) − fα1(r)|) = e
− (fα1 (ρ)−fα1 (r))2

2 σ2
r,1

R2(|fα2(ρ) − fα2(r)|) = e
− (fα2 (ρ)−fα2 (r))2

2 σ2
r,2

D(|ρ − r|) = e
− (ρ−r)2

2 σ2
d

(6.3)

The normalization terms of the Gaussian filters can be neglected here, since they cancel
out when the bilateral filter is normalized via 1/W . A possible alternative to Gaussian
filter kernels, which could reduce the computation time of the filtering process, would
be an averaging filter for instance.

The choice of the filter parameters σr,1, σr,2 and σd generally depends on the CNR of
the initial or guiding volume and the desired noise reduction. The domain parameter
σd must be chosen large enough to achieve the desired noise level. For the parameters
σr,1 for the bilateral filter or σr,2 for the guided bilateral filter, the value in each case
must allow maximum noise suppression with simultaneous edge preservation. It is
important to note that the range kernel R1, that evaluates gray value differences on
the data to be filtered, is still present in the guided bilateral filter in equation (6.2).
This is necessary because the CNR optimizing DECT combination fα2(ρ), unlike the
pseudo-monochromatic DECT volume with minimal artifacts fα1(ρ), generally has
stronger artifacts and thus contains no or defective edge information in areas strongly
affected by artifacts. The range kernel R1 ensures that edges which are unrecognizable
in the guiding volume due to artifacts are not smoothed. However, compared to the
range kernel R1 in Eq. (6.1), a lower constraint criterion, i.e., a higher σr,1, can be
chosen for the same parameter in Eq. (6.2). This is because the parameter is not
being used for edge preservation in the complete volume, which is mainly done by the
range kernel of the guiding volume R2, but has to preserve edges only at locations of
strong artifacts of the guiding volume. The implied loss of spatial resolution in such
artifact-contaminated areas for low-contrast material transitions in the filtered volume
must be accepted here.

Figure 6.1 explains the concept of the bilateral filter and the guided bilateral filter
exemplarily by filtering two three-dimensionally represented surfaces. Both surfaces
were created from a gray-scale image containing attenuation values in which a sharp
object edge was represented with different levels of contrast (0.04/mm high CNR, and
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0.02/mm low CNR) and different levels of white noise (σ = 0.005/mm high CNR, and
σ = 0.015/mm low CNR). This surface is filtered in Fig. 6.1 using a Gaussian low-pass
filter, two different bilateral filters, and a guided bilateral filter. The size of the domain
kernel was σd = 5 px in each case. The two filterings using bilateral filters differed in
the size of the range kernel for the low CNR surface. While σr1 = 0.01/mm was chosen
for the first variant, this value was increased to σr1 = 0.045/mm for the second bilateral
filter. It can be seen that when the bilateral filter is used, appreciable edge-preserving
noise reduction can be achieved only for the surface with high CNR. Whilst a low choice
of σr1 does not help to substantially reduce the noise in the low CNR surface, as can
be seen for the first bilateral filtering result, a higher choice of σr1 (bilateral filter 2)
does result in noise reduction, but also in smoothing of the edge, similar to the use of
a simple Gaussian low-pass filter. Only the use of a guided bilateral filter leads to a
significant noise reduction with simultaneous edge preservation for the low CNR surface.
When using the guided bilateral filter for the high CNR surface, the surface itself is
used as a guide and not the other one with a poor CNR, which is self-explanatory.

Figure 6.1: Example for the effects of different filters on a surface with a high CNR
(top row) and one with a low CNR (bottom row). From left to right the
filters used are a Gaussian, bilateral filters with two different σr1 settings
for the low CNR surface and a guided bilateral filter.

In summary, the guided bilateral filter represents a possibility to combine the different
advantages of two volume datasets regarding artifact content, CNR as well as structural
resolution in one volume dataset: The volume resulting from the filtering has a much
better CNR at the same artifact content as the artifact-reduced DECT volume. In
addition, the edge sharpness of the filtered volume is aligned with that of the guiding
volume. Advantages of the edge sharpness of the guiding volume compared to the initial
volume can accordingly be transferred to the filtered volume. These traits are shown by
the results in the following sections.
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6.1.2 Experimental Investigations on Clinical Photon Counting X-Ray
Computed Tomography Data

The utilization of a guided bilateral filter for the reduction of statistical measurement
deviations was experimentally tested on different datasets and will first be evaluated
using spectral data from the Siemens Somatom CounT PCCT. This CT system is
already known from chapter 5.

The datasets examined were a head scan from a human postmortem study, which par-
tially shows strong metal artifacts due to dental implants. This postmortem experiment
was approved by the local ethics committee (S-021/2020). Furthermore, a pig cadaver
with manually inserted hip total endoprostheses (TEPs) was measured. Both datasets
were acquired in the UHR mode of the PC detector, just like the workpiece discussed in
chapter 5. This mode allows setting two energy thresholds, so two bin images can be
generated. A tube voltage of 140 kV was used for both scans and the thresholds of the
PC detector were at 20 keV and 90 keV, respectively. The tube current-time product
was 300 mAs for both scans. Data were reconstructed using filtered backprojection with
a B40f kernel. The voxel sizes of the reconstructed volumes were dx = dy = 0.54 mm for
each dataset at a slice thickness of dz = 0.5 mm for the head dataset and dz = 0.3 mm
for the pig data. For each of these datasets, a volume with minimum artifact content
(cf. Sec. 5.3.3) and one with maximum CNR (cf. Eq. (2.59)) between water-equivalent
soft tissue and fat were created by linear blending of the two bin images and the guided
bilateral filter was applied as described in the previous section to the volume with
minimum artifact content by guidance through the volume with maximum CNR.

As a comparison method for increasing the CNR in the artifact-reduced data, two
bilateral filters without guidance were used in each case on the artifact-reduced bin
combination, each differing in the magnitude of the range kernel parameter σr,1. For
one filter, σr,1 corresponded to the standard deviation of gray values in soft tissue, i.e.,
the noise of gray values in that tissue type. For the other filter, σr,1 was chosen so that
the CNR between soft tissue and fat corresponds to that of the guided bilateral filter.
For the guided bilateral filter, σr,2 corresponded to the noise of the gray values in soft
tissue of the guiding volume and σr,1 was chosen depending on the dataset so that no
high-contrast material transitions were smoothed. Exact values for the range kernel
parameters are given in section 6.2.1. The domain parameter σd = 2.16 mm was the
same for all datasets.

6.1.3 Experimental Investigations on Industrial MultiSpek Cone-Beam
Computed Tomography Data

To counteract the increased noise level due to the scatter artifact correction via ESC and
FSDECT data combination in the MultiSpek CBCT data of the automotive controller
workpiece (cf. Fig 4.5), a similar procedure was pursued for this dataset to increase the
aluminum-air CNR using a guided bilateral filter.

Because the datasets used here correspond to those in chapter 4, one may refer to
sections 4.1.1 and 4.2, respectively, for the acquisition parameters and generation rules
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of the FSDECT volume. However, unlike the clinical PCCT datasets, in this case the
Micro volume (i.e., α2 = 1) was used as guiding volume instead of a CNR-optimizing
volume combination because the Micro volume has a better structural resolution than
the Macro volume or a volume generated from both volumes by linear blending after
MTF adjustment. The filter parameters of the guided bilateral filtering process for this
dataset were σr,1 = 83 HU, σr,2 = 63 HU, and σd = 0.3 mm.

In order to evaluate and quantify the corrections applied so far, the workpiece was
measured thirteen times at the MultiSpek CT with the same acquisition parameters and
the corrections (ESC, FSDECT data fusion, and guided bilateral filter) were applied
on each dataset. Then the inner diameter of two drilling holes within the aluminum
block of the workpiece were measured. This was done by an automatic segmentation
of the drilling hole at three different section planes in the volume and evaluation of
the corresponding surface contour via the volume image processing pipeline of the
WinWerth® software. Subsequently, a Gaussian best fit cylinder (cf. Sec. 2.1.6) was
measured for each drilling hole with the WinWerth® software using the contours at the
different section planes and the drilling hole diameters were evaluated. Subsequently, the
statistics of the drilling hole diameter measurements were determined for the thirteen
repetition measurements. Of particular interest here, in addition to the mean value
as well as the standard deviation, is the maximum span of the measured values, the
so-called repeatability of that measure. A small value of the repeatability is desirable
because this implies small statistical measurement deviations and no strong outliers in
the data, e.g. due to systematic errors such as image artifacts, and therefore benchmarks
the precision of the measurement. The corresponding volume sections, section plane
positions and drilling holes are shown in the results section of this chapter (6.2.2).
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6.2 Results

6.2.1 Results for Clinical Photon Counting X-Ray Computed Tomog-
raphy Data

Figure 6.2 shows for an exemplary axial volume slice the bin images of the two datasets
measured at the PCCT, as well as the results of the pseudo-monochromatic volume
combination, and the linear blending of the datasets for an optimal soft tissue-fat CNR.
It can be seen that in both measurements the high energy bin image already shows a
strong reduction of metal artifacts compared to the low energy bin image. Residual metal
artifacts can be reduced by pseudo-monochromatic imaging. The CNR maximizing
volume, on the other hand, has a very high level of such systematic measurement
deviations, as expected. The CNR was determined using ROIs in regions of low artifact
levels in the soft and fat tissue of the volume data. A red and yellow circle schematically
represent these ROIs in the figure. To reduce the influence of systematic deviations
when evaluating image noise in the different ROIs, noise was determined based on the
difference of two axial volume slices as it was done in section 4.2. The CNR for the
dataset is shown below the respective volume slice, as is the blending factor for the
fusion volumes. It can be seen that the CNR between the artifact reducing and the
CNR maximizing fusion volumes differs very much. For the head dataset they differ by
a factor of about 3 and for the pig dataset even by a factor of about 4.

Figure 6.2: Axial volume slices of both PCCT datasets investigated in this chapter (two
rows). The first and second column show the two bin images, and columns
three and four show DECT data combinations for artifact reduction and
CNR optimization, respectively. The red and yellow circles depict ROIs for
CNR calculations. CNR and blending factors are given beneath the images.
C = 0 HU, W = 300 HU.
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The results for bilateral and guided bilateral filtering of these datasets are shown in
Figs. 6.3 and 6.4. Both of these figures show two distinct axial slices of the volumes, as
well as coronal and sagittal reformations of the volume. For the axial slices certain ROIs
are shown in detail in order to highlight the advantages of guided bilateral filtering.

From the first axial slice from Fig. 6.3 it can be concluded that the proposed guided
bilateral filter (gBF) that uses the CNR-maximizing volume as guiding volume is
able to significantly reduce image noise without reintroducing artifacts from the CNR-
maximized volume, e.g. by blurring along the streaking artifact caused by the metallic
dental implants. A critical region where this could occur is highlighted by a red arrow
in the ROI of that specific CT image. This observation is also confirmed by the coronal
and sagittal volume slices. Whilst the artifact-reduced bin combination that is filtered
with a bilateral filter with a small range parameter of σr,1 = 25 HU (BF 1) only shows
a limited noise reduction, the same volume filtered with a bilateral filter with a large
range parameter σr,1 = 55 HU (BF 2) does feature a significant decrease of the noise
level. However, structural details are lost by this filtering process, as can be seen at the
structures highlighted with red arrows in the ROI of the second axial slice. Furthermore,
transitions of soft tissue and fat tissue appear rugged and unrealistic in these images.
This is due to the high image noise in the artifact reduced bin combination volume.
Only if the artifact-reduced bin combination is smoothed with the guided bilateral filter
(σr,1 = 100 HU, σr,2 = 10 HU) the resulting volume yields low noise levels at a high
spatial resolution with a low artifact content.

Similar observations as for the head data can be made for the pig dataset. In this
measurement, the hip TEPs lead to stronger metal artifacts than the dental implants
from the human corpse. Furthermore, the CNR of the volumes is lower than in the
previous case. Nevertheless, the axial slices and the corresponding ROIs in Fig. 6.4
show that using a guided bilateral filter (σr,1 = 200 HU, σr,2 = 20 HU) leads to the
best image quality in terms of CNR, amount of metal artifacts, and spatial resolution.
Findings for the bilateral filters without guide (σr,1 = 45 HU (BF 1) and σr,1 = 130 HU
(BF 2)) resemble those observed for Fig. 6.3.

In order to quantify these results, the CNR between soft tissue and fat tissue is
calculated for each of the volumes shown in Figs. 6.3 and 6.4 and the results are given
in table 6.1. The quantitative results show that while the CNR is increased by a factor
of roughly five for the head dataset and seven for the pig dataset when using a guided
bilateral filter, it can only be increased by a factor of less than two for the unguided
bilateral filter that does not smooth structural information (bilateral filter 1). The
unguided bilateral filter with stronger range parameter settings (bilateral filter 2) leads
to the same CNR improvements as the guided bilateral filter, as it was tuned to do so,
but also blurs details, which is shown in the CT images.
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Figure 6.3: Five different CT volumes (C = 0 HU, W = 300 HU) of the head CT are
shown in five columns: the artifact-reduced pseudo-monochromatic volume
(left), the CNR-maximizing DECT volume (middle left), the artifact-reduced
pseudo-monochromatic volume filtered with a bilateral filter with a low range
parameter (BF 1, middle) and with a high range parameter (BF 2, middle
right), and the artifact-reduced pseudo-monochromatic volume filtered with
a guided bilateral filter (gBF, right) with the CNR-maximizing DECT
volume serving as guiding volume. The different rows show two distinct
axial slices and corresponding ROIs of the areas marked by the yellow boxes
and coronal as well as sagittal reformations of the volumes. Structures of
special interest are marked with red arrows in the different ROIs.
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Figure 6.4: In a similar arrangement to Fig. 6.3, the results for the processed pig CT
are shown in this figure. C = 0 HU, W = 300 HU.

CNR in head data CNR in pig data
Low energy bin image 10.1 4.8
High energy bin image 4.5 1.7
Artifact-reduced DECT 3.9 1.2
CNR-maximized DECT 10.7 4.9
Bilateral filter 1 7.6 2.2
Bilateral filter 2 18.3 8.7
Guided bilateral filter 18.3 8.8

Table 6.1: Evaluation of the CNR between soft tissue and fat tissue for the different
volumes shown in Figs. 6.3 and 6.4 for the two PCCT datasets.
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6.2.2 Results for Industrial MultiSpek Cone-Beam Computed Tomog-
raphy Data

For the analysis of the automotive controller, which was measured at the MultiSpek
CBCT system, the scatter-corrected (ESC) FSDECT data (cf. Fig. 4.5) was specifically
chosen for noise reduction with guided bilateral filtering here and further evaluation in
the next section because it has a high spatial resolution and contains the lowest amount
of systematic measurement deviations due to the applied artifact corrections but also a
high amount of statistical deviations, i.e. a high level of noise (cf. table 4.2). Results for
applying a guided bilateral filter to this data, using the high-resolution Micro volume
as guiding volume, are shown in Fig. 6.5.

It can be observed that by applying the guided bilateral filter the image noise
is significantly decreased at constant contrast levels between the different materials,
resulting in an increase of the CNR. The close-ups of small structures and edge transitions
furthermore show that the structural resolution of the volume remains unaffected and
is not smoothed by this filtering process. Evaluating the image noise in the same
aluminum region that was used for the analysis in table 4.2, yields a noise level of 28 HU
after guided bilateral filtering, which corresponds to a decrease by a factor of roughly 3
compared to the unfiltered data (noise = 79 HU). As the noise reduction in air regions
is almost the same, the same factor is found for the improvement of aluminium-air CNR.
This can be exploited for measurements at such aluminium-air transitions, which will
be discussed in the following.

i.) Measurement of Drilling Holes: Repeatability Study

It was shown that the correction algorithms applied to the Micro and Macro mea-
surements in section 4.2 reduce systematic errors appearing as image artifacts and
qualitatively improve the image quality, which may be useful for inspection tasks of
such CT volumes. Furthermore, statistical deviations of these data can be reduced and
CNRs maximized using a guided bilateral filter, as proposed in this chapter. If a CT
measurement is to be used for metrological purposes, it must first be possible to auto-
matically segment geometry elements within the measured CT volume. To what extent
the proposed reduction methods of systematic and statistical measurement deviations
have an influence on this will now be investigated on the basis of diameter measurements
of internal drilling holes in the aluminum block of the automotive controller workpiece.

Figure 6.6 displays the volumes of a Micro and Macro measurement, the resulting
FSDECT combination volume, and the FSDECT combination volume with prior scatter
correction (ESC) with and without post-processing it with a guided bilateral filter
(gBF). For each of the volumes three axial slices are shown, corresponding to the slices
at which the drilling hole measurements are taken. Other than the volumes shown in
Figs. 6.5 and 4.5, the volumes in Fig. 6.6 were first aligned in the WinWerth® software
before evaluating axial slices in order to have circular geometry elements for the drilling
holes in each analyzed volume slice. This is why the z-positions are here denoted as z′

in contrast to z in Fig. 6.5, for instance. As the images are directly generated with the
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Figure 6.5: Three exemplary axial volume slices (C = 0 HU, W = 2000 HU) of the
ESC-corrected FSDECT volume of the automotive controller from the
MultiSpek-CT measurements (left) and the same data processed with a
guided bilateral filter (right). Analogously to Fig. 4.5, two close-ups of
certain ROIs marked by yellow boxes are given for each axial slice besides
the respective image.

WinWerth® software, the display window in this figure also differs from those known
from Figs. 6.5 and 4.5. Instead of a conversion to Hounsfield units (cf. Eq. (2.30)), the
software automatically displays the gray values such that the minimal attenuation value
of the entire volume is displayed completely black and the maximum one completely
white (min./max. window). Even though this displaying style does not allow for a
direct quantitative comparison e.g. of the aluminum region, it provides an additional
impression of the superior image quality of the processed volume data compared to
Micro and Macro volumes regarding the homogeneity of the gray values. The two
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drilling holes whose diameters are evaluated in the following are highlighted with yellow
boxes in the volume slices and additionally displayed in a separate close-up image. The
blue lines in these close-up images show the resulting aluminum surface contour for
an automated evaluation with the volume image processing pipeline of the WinWerth®

software. Whenever artifacts induce an interruption of that contour, which prevents an
automated measurement of a circle geometry element for this contour and therefore
precludes an automatic measurement of the drilling hole’s diameter, such a position is
marked with a red arrow. Contours which are not interrupted and allow an automatic
evaluation are marked with green arrows. It can be seen that for the Micro volume not
a single contour fulfils the image quality requirements for an automated measurement
of the drilling holes. Because the Macro volume contains less artifacts than the Micro
volume, three out of six contours are evaluable. By using FSDECT all contours can
automatically be evaluated for both drilling holes at each z-Position. However, some
remaining artifacts still affect the contour location negatively by predominantly shifting
it towards the inside of the drilling hole. When a cylinder is evaluated by a Gaussian fit
on such contours, as it was done in the following, this must result in systematic deviations
towards smaller diameters. The problem is solved for the FSDECT volume with prior
empirical scatter correction. These volumes contain the least amount of systematic
deviations due to artifacts and therefore the automated segmentation of the drilling
holes no longer poses any particular challenge. By post-processing the FSDECT+ESC
volume with a guided bilateral filter the image quality is further improved compared to
the unfiltered data by reducing the noise level.

In Fig. 6.7 the results for the drilling hole diameter evaluations are plotted for the
thirteen measurements of the automotive controller. The plot on the top left shows an
evaluation of the FSDECT volume data. Obviously image artifacts are insufficiently
corrected for this data because two outliers severely distort the results for the left drilling
hole. The measures for the data that are scatter-corrected with the empirical scatter
correction prior to the FSDECT fusion (FSDECT+ESC), as well as those for these
volumes that are post-processed by a guided bilateral filter (FSDECT+ESC+gBF),
do not show such outliers (cf. top right and bottom left plot in Fig. 6.7). A boxplot
for the data points is shown in the lower right plot in Fig. 6.7. For this plot the two
outlier data points of the FSDECT data were neglected. This plot emphasizes the
differences of the evaluation results: The FSDECT data without scatter correction and
noise reduction yield much smaller results for the drilling hole diameters with a median
value of 11.07 mm for the left hole and 11.206 mm for the right hole than the data
with scatter correction which yield 11.409 mm for the left, and 11.412 mm for the right
hole, respectively, and the data with scatter correction and guided bilateral filtering
which give 11.412 mm and 11.422 mm (cf. table 6.2). Also the range of the measures is
evidently much larger. Comparing FSDECT+ESC volumes with and without guided
bilateral filtering a slight trend towards larger diameters and a smaller range of the
data can be observed for the case when filtering is performed. These effects are rather
small (O(1 µm)), however. All analyses show a positive offset for the drilling hole
diameter of the right drilling hole compared to the left. This offset is most pronounced
for the FSDECT data. Table 6.2 shows characteristics of the statistical analysis for
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Figure 6.6: CT volumes of the automotive controller workpiece measured at the Mul-
tiSpek CBCT system. From left to right the Micro, Macro, FSDECT,
FSDECT with prior ESC, and FSDECT with prior ESC and subsequent
guided bilateral filtering volumes are displayed. Three axial slices are shown
for each dataset and close-ups show ROIs of the evaluated drilling holes
marked with yellow boxes in the overview CT image. The blue lines in these
ROIs depict automatically generated surface contours. Red arrows are used
to indicate disruptions in those contours and green arrows point out that
the contours are continuous and thus automatically evaluable. The display
window corresponds to a min./max. window.

all datasets without any removal of outliers. The observations that could be made
through the plots are confirmed. For the FSDECT data, the sample mean and standard

114



6.2. RESULTS

deviation for the diameter of the left drilling hole is (11.078 ± 0.284) mm and that
of the right drilling hole is (11.212 ± 0.030) mm. The repeatability is 912 µm for the
left hole and 99 µm for the right hole. A drastic improvement of the repeatability
can be obtained, when ESC is performed prior to the FSDECT fusion. Then the
repeatability amounts to only 21 µm for the left hole and 19 µm for the right hole at a
diameter of (11.408 ± 0.006) mm (left) and (11.414 ± 0.006) mm (right), respectively. If
a guided bilateral filter is additionally used, similar drilling hole diameters are measured
(11.411±0.006) mm (left) and (11.419±0.005) mm (right) with slightly reduced variances
and with a small improvement of the repeatability at now 21 µm (left) and 15 µm (right).
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Figure 6.7: The two upper plots and the plot at the bottom left show the measured
diameters of the two drilling holes (cf. Fig. 6.6) for the thirteen repeatability
study measurements, with data for FSDECT volumes shown in the top left,
data for FSDECT with ESC (FSDECT+ESC) shown to the right, and data
for FSDECT with ESC and guided bilateral filter (FSDECT+ESC+gBF)
shown at the bottom left. The bottom right plot shows the statistics for each
dataset as a boxplot. A rescaling of the y-axis shows the FSDECT+ESC
and FSDECT+ESC+gBF boxplots in more detail within the orange box
that is depicted in this figure.
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FSDECT left hole diameter right hole diameter
mean 11.078 mm 11.212 mm
standard deviation 0.284 mm 0.030 mm
median 11.070 mm 11.206 mm
minimum 10.245 mm 11.153 mm
maximum 11.157 mm 11.252 mm
repeatability (max-min) 0.912 mm 0.099 mm

FSDECT+ESC left hole diameter right hole diameter
mean 11.408 mm 11.414 mm
standard deviation 0.006 mm 0.006 mm
median 11.409 mm 11.412 mm
minimum 11.395 mm 11.404 mm
maximum 11.416 mm 11.423 mm
repeatability (max-min) 0.021 mm 0.019 mm

FSDECT+ESC+gBF left hole diameter right hole diameter
mean 11.411 mm 11.419 mm
standard deviation 0.006 mm 0.005 mm
median 11.412 mm 11.422 mm
minimum 11.400 mm 11.411 mm
maximum 11.421 mm 11.426 mm
repeatability (max-min) 0.021 mm 0.015 mm

Table 6.2: Statistical characteristics of the data from the repeatability study from
Fig. 6.7.
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6.3 Discussion

The results show that a guided bilateral filter is an effective method to counteract
the noise increase observed in artifact reduction algorithms that are based on spectral
volume combinations. For the datasets analyzed here, the guided bilateral filter leads
to a CNR improvement of up to a factor of seven.

Regardless if the spectral data are acquired in a PCCT setup or by sequential scans
with different spectra, such as in the MultiSpek CBCT measurements, the method can
be used to reduce the impact of noise while edges and the low amount of systematic
measurement deviations, e.g. beam hardening and scatter artifacts, are conserved. Due
to a lower level of noise or a higher structural resolution, a guiding volume may also be
richer in small structural details than the noisy data. This advantage is transferred to
the volume processed with the proposed filter algorithm, as well (cf. Fig. 6.3).

Besides the image quality improvements, the reduction of statistical measurement
deviations with a guided bilateral filter also influences the evaluation of measurements,
as it was shown for the analysis of the drilling hole diameters of the automotive controller.
Neither the Micro, nor the Macro measurements can themselves be used to take these
measures due to severe artifacts. Using the FSDECT combination proposed in chapter
4, the drilling hole diameters can be analyzed. Nevertheless, some artifacts are still
remaining in this volume and lead to a distortion of the contour location compared to
the real material transition position. The artifacts can be almost completely corrected
by performing ESC before FSDECT data fusion. The guided bilateral filter can be
used to improve the CNR and therefore reduce the statistical deviations, which are
relatively high for this volume. It can be seen in Fig. 6.6 that the remaining artifacts in
the FSDECT volume predominantly move the contour location to the interior. This
systematic deviation must then lead to smaller measures for the diameter of the drilling
hole, which is also observed when comparing the resulting drilling hole diameters of the
FSDECT volumes to those of the FSDECT+ESC(+gBF) volumes. One could reduce
such measurement errors by post-processing the contour with special filters. This is not
done here, though, as the primary goal of this work is to optimize the quality of the CT
volume such that it can be analyzed automatically without the necessity to optimize the
automatic segmentations in the aftermath. The difference in the drilling hole diameters
for the left and right drilling hole, which can mainly be observed in the FSDECT data,
is probably due to the same effect that the remaining artifacts cause. It can be seen
in Fig. 6.6 that the artifacts are more pronounced at the left drilling hole than at the
right one. This could be due to less favorable transmission lengths or line integrals
in this region. Even though the difference in drilling hole diameters is much smaller
for the scatter-corrected FSDECT data with or without guided bilateral filtering, it
is still present. However, a statement about an actual difference of the drilling hole
diameters cannot be made on this basis. Indeed, the difference of the mean values
of both boreholes is only 6 µm (FSDECT+ESC) and 8 µm (FSDECT+ESC+gBF).
Compared to the voxel size of 100 µm, this difference is less than one tenth of the voxel
size, which is at the resolution limit even for accurate subvoxel evaluation algorithms.
It could also be that possibly not all systematic measurement deviations have been
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reduced to a sufficient extent. Some CT artifacts (off-focal radiation, detector afterglow,
etc.) remained uncorrected in this measurement. Of course, an incomplete correction
of the already targeted artifacts cannot fully be excluded, since both the ESC for
scatter artifact reduction and the FSDECT combination for the reduction of beam
hardening artifacts are only approximate solutions and do not reproduce the exact
physical effects realistically. As expected, applying a guided bilateral filter to the data
results in improvements regarding the repeatability and the variance of the measured
diameters, at least partially. However, the effects are not particularly strong for the
right drilling hole and barely measureable for the left drilling hole. The reason for
this is that the area of the drilling holes is severely deteriorated by artifacts in the
Micro volume, which acts as the guiding volume here. This leads to drastically reduced
contrasts in this area. Therefore, the guided bilateral filter only benefits marginally
from the guiding volume in this region. Such a situation corresponds to a limitation of
the here proposed method. As the amount of artifacts in the guiding volume is lower
for the right drilling hole, small improvements of the measurements performed there
are observed, nevertheless. Interestingly, the drilling hole diameters are slightly larger
on average when using a guided bilateral filter, which indicates another reduction of
systematic deviations towards smaller diameters that were already observed for the
FSDECT volume. This happens most likely due to averaging effects in these remaining
problematic areas and is not an unwanted effect from low-pass filtering these areas.
If one would naively apply a simple low-pass filter to the data, this would result in a
systematic deviation towards smaller diameters instead of larger diameters as observed
with the guided bilateral filter here. Again, it must be said that these effects are small
compared to the voxel size.

Another limitation of the guided bilateral filter, similar to the one discussed above, is
that edges which are not clearly outlined in neither the source volume nor the guiding
volume cannot be preserved. This implies that for instance noisy low contrast structures
in the source volume, which are not detectable in the guiding volume, e.g. due to strong
artifacts, may be blurred by the filtering process.

Nevertheless, with the proposed correction from chapters 3, 4, and the guided bilateral
filter previously inaccessible measures such as the diameters of the inner drilling holes
of the automotive controller can now be measured precisely with a repeatability of
≤ 21 µm.

At this point it should be mentioned that this method is not limited to CNR
optimization in pseudo-monochromatic images, however. In principle any CT volume
with high levels of image noise may be improved if a guiding volume with a favorable
CNR is available. Therefore, the proposed method could for example be used to directly
denoise the high energy bin image in a PCCT measurement or a CT volume that
was measured using strong prefiltration, given another dataset with higher CNR can
be used as guiding volume, e.g. the low energy bin image, another volume measured
without strong prefiltration or a CNR optimizing combination of this spectral data
as it was proposed here. Analogously, PCCT data, which were corrected for metal
artifacts with a more specialized algorithm, such as the photon-counting normalized
metal artifact reduction (PCNMAR) [20], may be denoised with the method proposed

118



6.3. DISCUSSION

here. Alternatively, the guided bilateral filter can be used to reduce statistical deviations
caused by a post-processing software-based scatter artifact correction method, such as
ESC. In this case, the non-scatter corrected volume dataset could be used as the guide
volume for the filter applied to the scatter corrected dataset to reduce its noise level.
When using the guided bilateral filter in this way, however, special attention must be
paid to the choice of the range kernel parameters, since the non-scatter corrected volume
may well have a worse CNR in critical regions than the scatter corrected volume.

In addition, attention should be drawn here to the other advantages of PCCT for the
application of the guided bilateral filter: many photon-counting detectors allow setting
more than just two energy thresholds. This makes more spectral bin images available.
This can be used in addition to noise reduction, as the CNR of the guiding volume can
be further increased by the additional spectral information [170].
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7 | Summary and Conclusions

This dissertation demonstrates different methods for the reduction of systematic mea-
surement deviations in CT measurements. The increase of statistical measurement
deviations caused by these methods can in turn be reduced in a spatial resolution-
preserving way by another developed method. Although the focus of this dissertation is
on industrial CT, i.e. CT for coordinate metrology or inspection of workpieces, most of
the methods developed can also be applied to medical CT applications, as has been
shown in many cases.

The empirical scatter correction shown in chapter 3 represents a method to reduce
scatter induced systematic measurement deviations without requiring specific prior
knowledge about the CT device, the measurement parameters or the investigated object.
Although the idea of an empirical scatter correction is not new per se, the approach
chosen here to correct the projection data physically correctly in intensity domain
and to determine the correction quality in the reconstructed volume corresponds to a
novelty that provides better correction quality compared to a reference empirical scatter
correction method that performs the correction purely in image domain. Comparisons
to physically exact methods, such as Monte Carlo simulations, show that corrections
by means of ESC yield only slightly worse results when prior knowledge is available
and significantly better results when the prior knowledge used for the Monte Carlo
simulation is faulty or incomplete. ESC is particularly advantageous in industrial CT,
since for separate manufacturing and quality assurance processes, workpiece-specific
information, such as the exact material properties, are not necessarily readily available
for the correction of the CT measurement. Therefore, especially for measurement service
providers, ESC is a useful tool for CT scatter corrections.

Particularly noteworthy is a method developed in the context of this dissertation
that allows volume data to be fused from a CT device that has two x-ray tubes of
different designs. The volume data combined using the FSDECT algorithm presented
in chapter 4 show less systematic measurement deviations than both initial volume
datasets while the spatial resolution of the FSDECT volume matches that of the initial
volume dataset with better spatial resolution. While frequency split techniques are
already known and used in CT imaging, for example to improve the CNR of virtual
monoenergetic volume datasets [171], the combination of several advantages of datasets
acquired with different types of x-ray tubes, namely the better spatial resolution or
the lower amount of systematic measurement deviations, using an artifact-reducing
combination of spectral data and a subsequent frequency split, has been successfully

121



CHAPTER 7. SUMMARY AND CONCLUSIONS

demonstrated for the first time in this work. In principle, the method developed here
can also be extended to dual source MSCT systems with two identical x-ray tubes
and two x-ray detectors with different spatial resolution properties or dual energy CT
measurements where the spatial resolution of the spectral datasets differ due to different
scan parameters.

In chapter 5 it was shown that spectral data acquired by photon counting detec-
tors are also suitable for reducing systematic measurement deviations using pseudo-
monochromatic imaging. Accordingly, the spectral separation of the data is sufficiently
good to be able to reduce image artifacts. In addition, it was shown that energy
thresholds on energy-selective detectors are suitable for reducing beam hardening ar-
tifacts. Simulations suggest that for measurements with an energy-selective detector,
where an energy threshold is used to harden the detected spectrum, an advantage
over measurements with energy integrating detector and physical prefiltering can be
expected with respect to the SNR. This advantage is particularly pronounced for very
hard spectra, i.e., high energy thresholds or strong prefilters. Accordingly, an improved
SNR of FSDECT fusion data can be expected when photon-counting flat detectors are
used instead of the energy integrating flat detectors used in the CBCT system from
chapter 4. This SNR improvement for hardened spectra could be a key advantage of
photon counting detectors over energy integrating detectors, especially in industrial
inline CT measurements, where there are strict requirements for low measurement times
and the increased SNR of the proposed method can be traded off for measurement time
reduction. Experimental validations of the simulation results for photon-counting flat
detectors in terms of measurement time reduction and spatial resolution of the data
compared to energy-integrating flat detectors are subject of future investigations.

Both a scatter correction by means of ESC and the FSDECT data fusion methodically
may lead to an unintentional increase of statistical measurement deviations. The guided
bilateral filter presented in chapter 6 counteracts this disadvantage. With this filter,
information from CT datasets with different properties, i.e. a low degree of systematic
measurement deviations with a simultaneously high degree of statistical measurement
deviations and vice versa, are combined to generate a volume dataset with fused optimal
properties. Even though the guided bilateral filter has long been known in image
processing [172], [173], this work is the first to exploit the potential of this filter with
different combinations of spectral CT data to obtain artifact-reduced, low-noise CT
volumes. The CNR in clinically relevant metal artifact-reduced PCCT data could be
increased by a factor of up to 7.3 using this method.

With the correction methods developed in this dissertation, uncooperative workpieces
such as the automotive controller that could previously not or not fully be evaluated by
CT become accessible for CT measurements and associated dimensional inspection and
flaw detection. The repeatability for drilling hole measurements on this workpiece could
be reduced to ≤ 21 µm without the use of contour filters for thirteen CT measurements
at the MultiSpek CBCT system. Although ultimately the problem of scatter, beam
hardening, or noise artifacts cannot be considered solved with this work, this dissertation
expands the broad field of artifact correction methods in CT and provides useful
contributions through the presented methods.
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8.1 Supplements to Chapter 5

8.1.1 Signal-to-Noise-Ratio for Energy-Integrating Detectors

It can be shown that if x-ray pulses are integrated rather than counted, as it is the case
for EI detectors, the SNR yields [165]:

SNREI =
√
N0AQ,EI

M2
1

M0M2
=

√
N0AQ,EI S . (8.1)

In this equation, Mn describes the n-th momentum of the absorbed energy distribution
and S corresponds to the Swank factor that was introduced in Eq. (5.5). When assuming
a normalized spectrum w(E), this equation can be formulated as

SNREI =
√
N0AQ,EI

(
∫
ϵ(E)w(E) dE)2∫

w(E) dE
∫
ϵ(E)2w(E) dE =

√
N0AQ,EI

∫
E w(E) dE√∫
E2w(E) dE

. (8.2)

The function ϵ(E) corresponds to the energy weighting function defined in Eq. (2.16),
which is ϵ(E) = E for EI detectors. Using the Cauchy-Schwarz inequality, it can easily
be shown with the substitution f(E) =

√
w(E) ϵ(E) and g(E) =

√
w(E) that the

Swank factor S is smaller than one for energy-integrating detectors:

∣∣∣∣∫ f(E) · g(E) dE
∣∣∣∣2 ≤

(∫
|f(E)|2 dE

)
·
(∫

|g(x)|2 dE
)

⇔
(∫

ϵ(E)w(E) dE
)2

≤
(∫

ϵ(E)2w(E) dE
)

·
(∫

w(E) dE
) (8.3)

Therefore, the Swank factor indicates a reduced SNR for EI detectors (ϵ(E) = E)
compared to PC detectors (ϵ(E) = 1) for the same effective spectra and quantum
efficiencies.
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8.1.2 Simulated Detector Responses
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Figure 8.1: This figure shows the detection efficiency η(E) for two scintillator materials
used in EI detectors (CsI and GOS) and CdTe semiconductors. The detection
efficiency was calculated with Eq. 2.14 using data from [95]. The solid lines
correspond to detection efficiencies for 1 mm of the respective material and
the dashed lines correspond to detection efficiencies for material thicknesses,
which are typically used in respective detectors (cf. Sec. 5.2).
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