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Abstract

One major challenge of modern-day theoretical physics concerns the extension of
our standard models for particle physics and cosmology. A motivation therefor
arises from several problems and tensions that these models face and which suggest
their modification. In this thesis we utilise distinct approaches to tackle some of
these issues from different perspectives. In a classical field-theoretic approach, we
first consider an extension to the ΛCDM model called coupled dark energy. Char-
acteristic for this scalar-tensor theory, which has been shown to possess the ability
to alleviate the (in-)famous Hubble tension, is an intrinsic coupling within the dark
sector of the universe. We will demonstrate that under certain conditions this model
can give rise to a novel transient regime of weak gravity. This may help to solve or
at least alleviate the σ8 tension of the ΛCDM model. We then shift to the paradigm
of string theory, which presumably provides the required ultraviolet completion of
gravity including the other fundamental forces, and assess its consequences on two
extensions of standard-model physics. The first is constituted by the postulation of
a new particle, the QCD axion, which arguably represents the most prominent way
to solve the strong CP problem. In string theory, there are many candidates for this
new particle and we investigate phenomenological consequences of such a stringy
realisation of the axion. In particular, we find a novel way to seemingly solve the
notorious issue of too much dark radiation, which is a generic prediction of these
constructions, via a fast decay channel of the internal volume into standard-model
Higgses. Even though we ascertain that eventually the dark radiation problem pre-
sumably re-appears due to the altered cosmological setting, we are confident that
our results will prove to be helpful for future constructions. The second extension
to standard-model physics we consider is a cosmological one, namely quintessence.
With regard to the recently postulated de Sitter-swampland conjecture, we anal-
yse the realisability of such a dynamical form of dark energy in a stringy context.
Taking into account several phenomenological requirements, we identify two major
challenges that need to be overcome: a so-called light-volume problem implying a
very light internal-volume modulus, that would give rise to inadmissible fifth forces,
and a novel F-term problem, which emerges from the fact that the required super-
symmetry breaking scale raises the resulting scalar potential and hence the effective
vacuum energy to a value that is parametrically above the observed one.





Zusammenfassung

Eine große Herausforderung der modernen theoretischen Physik besteht aus der Er-
weiterung der Standardmodelle der Teilchenphysik und Kosmologie. Dies ist motiviert
durch einige Probleme und Spannungen, welchen diese Modelle ausgesetzt sind und
die eine Modifikation Letzterer erfordern. In dieser Dissertation betrachten wir unter-
schiedliche Ansätze, um einige der obigen Herausforderungen aus verschiedenen Blick-
punkten anzugehen. In einem klassischen, feldtheoretischen Ansatz beschäftigen wir
uns zunächst mit einer Erweiterung des ΛCDM-Modells namens gekoppelte, dunkle
Energie. Bezeichnend für diese Skalar-Tensor-Theorie, für welche gezeigt wurde, dass
sie die berüchtigte Hubble-Spannung abmildern kann, ist eine intrinsische Kopplung
innerhalb des dunklen Sektors des Universums. Wir werden demonstrieren, dass dieses
Modell unter gewissen Voraussetzungen zu einem neuartigen, vorübergehenenden Bere-
ich schwacher Gravitation führen kann. Dies könnte dabei helfen, die σ8-Spannung
des ΛCDM-Modells zu lösen oder zumindest abzuschwächen. Anschließend wech-
seln wir unsere Anschauung hin zur Stringtheorie, von welcher vermutet wird, dass sie
die benötigte UV-Vervollständigung der Gravitation inklusive der anderen Grundkräfte
bereitstellt, und untersuchen ihre Folgen für zwei Erweiterungen der Standardmodell-
physik. Erstere besteht aus der Vorhersage eines neuen Teilchens, des QCD-Axions,
welches wohl die bekannteste Möglichkeit das starke CP-Problem zu lösen darstellt. In
der Stringtheorie gibt es viele Kandidaten für dieses neue Teilchen und wir untersuchen
die phänomenologischen Folgen einer solchen, stringtheoretischen Umsetzung des Ax-
ions. Insbesondere finden wir eine neuartige Möglichkeit das berüchtigte Problem von
zu viel dunkler Strahlung, welches eine allgemeine Vorhersage solcher Konstruktionen
ist, mithilfe eines schnellen Zerfalls des inneren Volumens in Standardmodell-Higgse
scheinbar zu lösen. Obwohl wir herausfinden, dass das Dunkle-Strahlungsproblem
aufgrund des veränderten kosmologischen Umfelds letztlich vermutlich wieder auf-
taucht, sind wir zuversichtlich, dass unsere Ergebnisse sich als hilfreich für zukünftige
Konstruktionen herausstellen werden. Die zweite Erweiterung der Standardmodell-
physik, die wir betrachten, ist eine kosmologische, nämlich Quintessenz. Im Hinblick
auf die kürzlich aufgestellte de Sitter-Sumpfland-Vermutung, erforschen wir die Real-
isierbarkeit einer solchen dynamischen Form der dunklen Energie in einem stringth-
eoretischen Kontext. Unter Berücksichtigung einiger phänomenologischer Bedingun-
gen identifizieren wir zwei große Herausforderungen, die überwunden werden müssen:
Ein sogenanntes Leichtes-Volumen-Problem, welches einen leichten Volumenmodulus
vorhersagt, der zu unerlaubten fünften Kräften führen könnte, und ein neuartiges F-
Term-Problem, welches daher auftritt, dass die benötigte SUSY-Brechungsskala das
resultierende Skalarpotenzial und damit die effektive Vakuumsenergie auf einen Wert
erhöht, welcher parametrisch über dem beobachteten liegt.
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Conventions, abbreviations and acronyms

In this dissertation, we will abbreviate typical terms related to the document struc-
ture, namely ‘part’, ‘chapter’, ‘section’, ‘equation’ and ‘table’, by the short versions
‘Pt.’, ‘Chpt.’, ‘Sec.’, ‘Eq.’ and ‘Tab.’, respectively.

Most of the time, we will work in natural units where c ≡ kB ≡ ~ ≡ 1 un-
less stated otherwise. We will mostly spell out explicitly the reduced Planck mass
MP ≡

√
~c/8πG ≈ 2.4× 1018 GeV except in Chpt. 6 and App. A.4, where we set

MP to unity for brevity. For the metric tensor, will typically use the mostly-plus con-
vention, with the Minkowski metric given by ηµν = diag(−1, 1, · · · , 1), although
the terms concerning the large volume scenario in Sec. 4.2.4 and Chpts. 5 and 6 use
the mostly-minus convention. We furthermore denote the imaginary unit by i.

Basic, string-theoretic quantities like the string length and mass are given by
ls = 2π

√
α′ = 2π/Ms, where α′ is the Regge slope. In Pt. II, we typically denote

the original moduli and axion fields as τi and θi and their canonically normalised
versions as φi and ai, respectively. On the other hand, in Pt. I φ will usually denote
a general scalar field, which is not necessarily canonically normalised.

In Pt. I, we will often times abbreviate the partial derivative of a quantity y w.r.t. a
variable x by y,x and the covariant derivative by y;x. However, we will also employ
the operators ∂µ and ∇µ for partial and covariant derivatives, respectively. Further-
more, a dotted quantity usually denotes a derivative w.r.t. cosmic time t and a prime
the derivative w.r.t. the e-folds number N = ln a.

We will also employ the following interpretations of relation operators:

≡ ‘is defined by’
≈ ‘is (numerically) approximate to’
∝ ‘is proportional to’
∼ ‘is in principle similar to’
' ‘is (functionally) approximate to’

Moreover, we will mostly interpret O(y) as the order of magnitude of a quantity y,
where the implied range of values depends on the context. However, an exception
to this interpretation is made in Chpt. 3, where O(y) will explicitly also include
values that can be significantly lower than y.



Abbreviation Meaning

BBN Big Bang Nucleosynthesis

CC Cosmological Constant

CS Chern-Simons

CY Calabi-Yau

CDE Coupled Dark Energy

CDM Cold Dark Matter

CMB Cosmic Microwave Background

DBI Dirac-Born-Infeld

DE Dark Energy

DM Dark Matter

DR Dark Radiation

dS de Sitter

EFT Effective Field Theory

GR General Relativity

GUT Grand Unified Theory

KK Kaluza-Klein

LVS Large Volume Scenario

MG Modified Gravity

NS Neveu-Schwarz

PQ Peccei-Quinn

QCD Quantum Chromodynamics

RR Ramond-Ramond

SM Standard Model

SUGRA Supergravity

SUSY Supersymmetry

UV Ultraviolet

VEV Vacuum Expectation Value

w.l.o.g. without loss of generality

w.r.t. with respect to

Table 1.: List of abbreviations and acronyms.



1. Philosophical motivation
The nature of the universe and the fundamental laws governing it constitute one of
the oldest scientific questions of humankind. In the modern era, this question can be
concretised to a non-exhaustive list of unanswered problems, for instance: What is
the field-theoretical nature of the Cosmological Constant (CC) or some dynamical
form of Dark Energy (DE) and of Dark Matter (DM)? How do these components
interact with each other? How can Einstein’s theory of General Relativity (GR) be
modified? What causes the Hubble tension and how can it be resolved? How can the
Standard Model (SM) of particle physics be extended to solve the strong CP prob-
lem? Is there Supersymmetry (SUSY) and if so, what is its energy scale? Which
consequences would string theory imply on concepts like DE or axions? In this the-
sis, we want to approach some of these questions from two different perspectives:
a classical modified-gravity (MG) approach and a string-phenomenological one.

In the MG approach, we use classical field theory or geometry to extend the con-
cordance model of cosmology, the ΛCDM model, hoping that the newly obtained
model can describe observations better. Such an extension can include a modifica-
tion of the underlying theory of gravity or of the matter content that is considered.
Importantly, at this level of model building often times no underlying, fundamental
theory is assumed to justify the given model. Instead, it is designed to provide an ef-
fective description of the universe on cosmological scales. Here the fields involved
are usually classical and the model does not necessarily possess a UV completion.
Guiding principles for this approach arise mostly from phenomenological consis-
tency and from what are considered reasonable modifications of already established
models. Typical criteria for a ‘reasonable’ cosmological setup include for example
Lorentz invariance, the absence of ghosts and other instabilities, the resemblance
to GR on solar-system scales and last but not least the correct prediction of obser-
vations. There are many facets to finding a good cosmological model and a lot of
freedom in what one can do. This has led to a plethora of different MG theories,
which include scalar-tensor theories, vector-tensor theories, massive and bimetric
gravity, higher-order gravity such as f(R) theories and many more. Here it remains
a future task to further constrain their parameter spaces via observations so that
hopefully some of them can be falsified, even though the vast amount of possibili-
ties will always leave open a fair quantity of theories that will escape such bounds.

In the string-phenomenological approach, we assume an underlying UV comple-
tion of GR and the SM, namely string theory. This is motivated by the successes
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1. Philosophical motivation

of this theory to presumably provide a way to unify all forces of nature while re-
maining UV finite in doing so. In this approach, phenomenological predictions are
considered to result from the low-energy limit of a more fundamental, stringy the-
ory. Within this paradigm, a vast amount of such low-energy effective descriptions
arises from the many geometrical and topological possibilities in which string the-
ory can be implemented in a ten-dimensional spacetime. This allows again for a lot
of freedom for cosmological model building, which however is more restricted than
by only phenomenological requirements since the effective model must stem from
the underlying string theory. It is therefore a current and future task to find crite-
ria to distinguish low-energy Effective Field Theories (EFT) which have a string-
theoretical or Quantum Gravitational (QG) UV completion from those which have
not. The former are said to be part of the ‘landscape’ whereas the latter are said to
‘live in the swampland’. However, it should be mentioned that many results from
this swampland programme possess the status of conjectures and are not vigorously
proven. Nevertheless, there are promising setups of low-energy EFTs that can be
derived from string theory and which might resemble our real world.

It is clear that both approaches have advantages and disadvantages and hence de-
serve attention. Obviously, the MG approach leaves open a much larger playground
for model building and extensions to the concordance model. For instance, consid-
erations like ‘which are the consequences of adding higher-order terms to the GR
action?’ or ‘what does a coupling between DM and DE imply?’ cannot be ruled out
per se and are hence interesting and justified on their own. Furthermore, in the MG
approach one can easily think of scenarios which would stand in apparent contradic-
tion to string theory but are nevertheless worthy of investigation and might represent
a valid description of reality. One example is any theory which leads to a de Sit-
ter (dS) solution and is forbidden by the so-called de Sitter-swampland conjecture
stating that dS solutions belong to the swampland. On the other hand, it is widely
accepted that the unification of forces into a theory of everything is highly desirable,
both from an aesthetic point of view as well as from an experiential one. In the past,
we have learned that electric and magnetic forces can be unified in Maxwell’s theory
of electrodynamics or that quantum electrodynamics and the weak interaction allow
for a unified electroweak description at high enough energies. It seems reasonable
that more forces will be united at higher energies. Therefore, it might be considered
a disadvantage not to consider such unifications or at least take a possible UV com-
pletion as a criterion for a valid effective low-energy theory. Regarding this point, it
is of course absolutely acceptable to argue that the unification of fundamental forces
and the UV completion of gravity is not necessarily the main focus of cosmological
reasearch one does. A cosmological model that can deal with current problems like
the Hubble tension or the σ8 tension is in any case highly valuable where the issue
of a UV completion can be left to future research.
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The advantage of the string-phenomenological approach lies definitely in the fact
that the UV completion is already at hand. String theory provides a powerful frame-
work to create interesting models that include gauge theories of higher rank, which
can be useful for the construction of Grand Unified Theories (GUT), scalar-tensor
theories, which can be used to establish theories for inflation or DE, and super-
symmetry, which allows for physics beyond the SM or yields DM candidates. The
biggest challenge for string theory remains to find a connection to reality. Calcula-
tional control in string theory is only ensured in very specific scenarios and limits
so that a large subset of it remains inaccessible to us till this day. Hence it is is very
difficult to create realistic settings. For example, often times a four-dimensional,
low-energy EFT stemming from string theory is accompanied with a plethora of
light scalar fields which contradict observations and need some handling. Finally, it
is of course also possible that string theory, though being a very elegant UV comple-
tion, is not the true theory of everything but that nature has ‘chosen’ another way.
Thus, no matter if we can find total consistency within this paradigm, the string-
phenomenological approach remains speculative and might turn out wrong. In a
sense, the MG approach can be considered to be the more agnostic one whereas the
string-phenomenological one seems more idealistic albeit this statement should be
taken with a grain of salt since it is a broad generalisation and many MG theories
contain idealistic aspects as well.

In this thesis we do not dare to assess the two approaches against each other but
will pursue them both. In part I, we will focus on the MG approach by considering
a specific model called Coupled Dark Energy (CDE), which falls into the class
of scalar-tensor theories. It is characterised by a non-minimal coupling between
DE and DM, which can be useful in the search for a solution of the H0 and the
σ8 tensions. Of particular interest will be the noteworthy behaviour of this theory
for non-standard choices of the free functions in it. In part II, we will adopt the
language of string theory and assume that this is the correct description of nature at
high energies. We will first address the early universe and explore the consequences
of the stringy paradigm on phenomenological properties of the QCD axion, inflation
and the subsequent reheating of the SM. Finally, we will again consider the late-time
universe and the nature of DE from a stringy perspective. More precisely, we will
be working within the swampland programme of string theory and investigate the
realisability of quintessence within it.
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2. Introduction

2.1. General relativity and the ΛCDM model

The concordance model of cosmology is outstanding from every other known model
which aims at a scientific description of the universe by one aspect: simplicity.
It unites the well known components of the universe, baryonic matter, the lesser
known yet proven to exist component, Cold Dark Matter (CDM), and the most
successful theory for gravity, Einstein’s general relativity, into one remarkably ac-
curate model. Renownedly, these components contribute to today’s energy density
with approximately 4.9% baryonic matter, 26.6% CDM and 68.3% DE [4], where
the latter is given by the famous cosmological constant Λ. The resulting, so-called
ΛCDM model has shown great successes [5], which among others include an ex-
planation for the accelerated late-time expansion of the universe, first measured via
type Ia supernovae. Moreover, it offers a highly accurate description of the Cos-
mic Microwave Background (CMB) TT, TE and EE power spectra, measured for
instance by WMAP and Planck, as well as the correct prediction of a peak in the cor-
relation function of the galaxy distribution in the universe due to Baryonic Acoustic
Oscillations (BAO), which has first been measured by SDSS. Due to its successes
and simplicity – after all it uses only well known and established concepts plus an
effective description of the dark sector – it is not suprising that the ΛCDM model
has been the standard model of cosmology for decades.

Nevertheless, there are several aspects to it, which give reason to modify this
model or to reconsider its validity: First, it goes without saying that the microscopic
nature of DM and DE remain completely unspecified within the ΛCDM model.
DM is typically described and defined as a non-relativistic, non-interacting fluid
whereas the CC is merely given as a geometric object which is compatible with
general covariance and thus remains as a free parameter of GR. Obviously, as an ef-
fective theory for the cosmological evolution of the universe, it is not the ambition
of the ΛCDM model to provide such a particle-physics description. However, not
knowing the microscopic nature of DM and DE is related to two famous, unsolved
problems: the CC problem [6, 7] and the coincidence problem [8, 9]. The former
is one of two fine-tuning problems that afflict our current understanding of the uni-
verse with the hierarchy problem of the Higgs sector being the other one. As is well
known, the effective, measurable CC takes on a very small value in Planck units
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2. Introduction

Λeff ∼ 10−120M2
P where MP ≡

√
~c/8πGN is the reduced Planck mass. The ef-

fective CC is composed of a bare, geometrical contribution Λbare, which represents
an additional term that is allowed by general covariance in GR, and the vacuum
polarisation of all matter fields, which when evaluated at a cutoff of order Planck
scale will contribute ΛUV ∼ O(1)M2

P . It is this discrepancy between the effec-
tive CC and the vacuum polarisation Λeff/ΛUV ∼ 10−120, which requires a precise
cancellation between Λbare and ΛUV – two quantities that are a priori completely
non-related to each other – up to the very small value of Λeff. This is a tremendous
fine-tuning problem. The coincidence problem, on the other hand, describes the
fact that the energy-densities of the two dark components, DM and DE, are both of
the same order of magnitude. Since the energy densities of these two components
evolve very differently, with CDM becoming diluted with time whereas Λ remains
constant, it seems to be a remarkable coincidence that the two values resemble each
other during the epoch of human life. Using the e-folds number N = ln a as a time
scale, such a quantitative similarity of the DM and DE energy densities occurs only
during a very narrow band, which raises the question why we exist inside this band
and not, for instance, very far in the future. The ΛCDM model leaves this question
unanswered. Anthropic reasons, i.e. that human life can only exist during this very
special epoch of cosmic evolution, might be a possible explanation; however, it is
also conceivable that DM and DE are coupled in a way that preserves some O(1)
ratio of their energy densities [5].

Apart from these deeply theoretical issues, at which many models fail, there are
also some very concrete problems with the ΛCDM model, which are related to
increasing discrepancies between its theoretical predictions and the precision data
provided by observations of modern experiments: the σ8 tension [10, 11] and the
famous Hubble tension [4, 12–14]. The latter is arguably one of the most dis-
cussed topics in current cosmology and concerns a discrepancy between model-
independent, local measurements of the Hubble constant H0 and measurements of
CMB anisotropies, which assume the ΛCDM model to calculate H0. This tension
has now reached a value of about 5.0σ at 68 % CL [4, 13–16] and hints at new
physics beyond the cosmological SM. Likewise, the σ8 tension describes a devi-
ation between Large Scale Structure (LSS) measurements, e.g. weak lensing or
reshift surveys, and CMB measurements in the σ8 − Ωm parameter plane where σ8

is the amplitude of the matter power spectrum and Ωm is the amount of matter [17].
We will elaborate on these two tensions in the following sections after a very short
introduction to GR as well as the background and linear perturbation dynamics of
the ΛCDM model.
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2.1.1. General relativity in a nutshell

Although older than a century, Einstein’s theory of general relativity still remains
our most elementary approach to understanding gravity. This is justified by its
simplicity, its elegance and especially by its capability to describe gravitational
phenomena at solar system scales with high accuracy. Since gravity is the only
force relevant on cosmological scales and since GR is well tested and confirmed
by experiments, it is not suprising that it represents the underlying theory of the
ΛCDM model. Let us now briefly introduce the most basic concepts. GR is the
unique, general-covariant theory of a massless spin-2 field. It is formulated on a
four-dimensional, pseudo-Riemannian manifold on which the line element ds2 ≡
gµνdxµdxν is preserved by general, differentiable coordinate transformations: xµ →
x′µ(xν). The so-called Einstein-Hilbert action of the theory reads [18, 19]

SEH =
MP

2

∫
d4x
√
−gR, (2.1)

where g ≡ det gµν and R is the Ricci tensor. The action, and in particular the
integral measure d4x

√
−g, is constructed in such a way that it is invariant under the

same coordinate transformations as well. Furthermore, we can add a CC term and a
matter sector without breaking this general covariance and thus arrive at the generic
action of GR:

SGR =

∫
d4x
√
−g
[
M2

P

2
(R− 2Λ) + Lm

]
, (2.2)

where Lm is the Lagrangian of matter minimally coupled to gravity. In principle,
one could write down the whole Lagrangian of the SM of particle physics for Lm;
however, in the context of cosmology, we will almost always consider an effective
description of matter as a perfect fluid. Varying the above action w.r.t. the metric,
leads to the famous Einstein field equations:

δSGR

δgµν
= 0, (2.3)

⇔ Rµν −
1

2
gµνR + Λgµν =

8πGN

c4
Tµν , (2.4)

where Rµν is the Ricci tensor and

Tµν ≡
−2√
−g

δ(
√
−gL)

δgµν
(2.5)

the energy-momentum tensor. Eq. (2.4) describes the interaction between matter
and spacetime. Of further importance is the fact that the energy-momentum tensor
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is covariantly conserved:
∇µT

µν = 0, (2.6)

where ∇µ is the covariant derivative. This is the GR analogue to energy and mo-
mentum conservation. Before we move to the introduction of the ΛCDM model,
let us for the sake of completeness quote the geodesic equation, which governs the
movement of a free particle inside a curved spacetime:

duµ

dλ
= −Γµαβu

αuβ, (2.7)

where λ is a quantity parametrising the trajectory of the particle, which in the case
of a massive particle could be the proper time τ , uµ ≡ dxµ/dλ is the derivative of
the coordinate, i.e. the four-velocity, and Γµαβ is the Levi-Civita connection.

2.1.2. Background evolution in the ΛCDM model

One obvious application of GR – and the one we will be most interested in – is to
describe the evolution of the universe (for an introduction to cosmology see for ex-
ample [5, 20]). It is well established that the universe becomes continuously more
isotropic and homogeneous when considering increasingly larger length scales. On
scales as large as l & O(100 Mpc), this approximation becomes good enough to
neglect any inhomogeneities and anisotropies, which is also known as the cosmo-
logical principle. This allows to consider a background evolution of the universe
as a whole, whose validity is limited to these length scales. On shorter scales, the
neglected inhomogeneities re-appear, which can be treated as linear perturbations
as long as they are small. The requirement of homogeneity and isotropy leads to
the so-called Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric, whose line
element can be written as

ds2 = −c2dt2 + a2(t)

(
dr2

1−Kr2
+ r2dΩ2

)
, (2.8)

where a(t) is the scale factor, K is the curvature parameter quantifying the spatial
curvature of the universe and dΩ2 ≡ dθ2 + sin2(θ)dϕ2 is the infinitesimal solid-
angle element. To satisfy the cosmological principle also in the matter sector while
retaining simplicity, we treat the different matter species, labelled by i, each as a
perfect fluid in the comoving frame, whose energy-momentum tensor reads

T iµν = diag(ρic
2, pi, pi, pi), (2.9)

where ρic2 is the respective fluid’s energy density and pi its relativistic pressure.
Inserting Eqs. (2.8) and (2.9) into Eq. (2.4), one obtains the famous Friedmann
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equations:

H2 =
8πGN

3

∑
i

ρi −
kc2

a2
+

Λc2

3
, (2.10)

ä

a
= −4πGN

3

(∑
i

(
ρi +

3pi
c2

)
+

Λc2

3

)
, (2.11)

where H ≡ ȧ/a is the Hubble function. For i, we will typically use the labels r, m,
b and c for radiation, matter, baryonic matter and cold dark matter, respectively. We
can obtain another equation by plugging Eqs. (2.8) and (2.9) into Eq. (2.6):

ρ̇i + 3H
(
ρi +

pi
c2

)
= 0, (2.12)

which is called the continuity equation and describes the dilution of energy density
due to the expansion of the universe. Note that only two of the three Eqs. (2.10),
(2.11) and (2.12) are independent so that the acceleration equation (2.11) is typically
omitted. Defining the equation-of-state parameter wi ≡ pi/(ρic

2), we can solve
Eq. (2.12):

ρi = ρi0a
−3(1+w), (2.13)

where ρi0 is an integration constant chosen to be the energy density today. Intro-
ducing the critical density ρcrit ≡ 3H2/(8πGN) as well as the dimensionless density
parameters Ωi ≡ ρi/ρcrit and making the scaling of ρi explicit for matter and radi-
ation via Eq. (2.13), wm = wb = wc = 0 and wr = 1/3, we can rewrite Eq. (2.10)
into its most common form [5],

H2 = H2
0

(
Ωm0a

−3 + Ωr0a
−4 + ΩK0a

−2 + ΩΛ0

)
, (2.14)

where the subscript ‘0’ denotes that a quantity is evaluated today, i.e. at a = a0 ≡ 1,
and we have defined ΩK0 ≡ −Kc2/(H2

0 ) and ΩΛ ≡ Λc2/(3H2). Knowing the free
parameters H0, Ωm0 = Ωb0 + Ωc0, Ωr0 and ΩΛ0 then allows us to calculate the
full background evolution of the universe. Notice that ΩK0 is redundant due to the
relation ΩK0 = 1 − Ωm0 − Ωr0 − ΩΛ0. These parameters can all be measured by
Planck and are given in Tab. 2.1.2.

The radiation density can be easily estimated using Planck’s value for the redshift
at radiation-matter equality zeq = 3407± 31 [4], namely we have:

Ωr0 ≈
Ωm0

1 + zeq
≈ 9.29× 10−5. (2.15)

The density parameter for spatial curvature turns out to be almost zero so that we

29



2. Introduction

Parameter Value at 68 % CL

H0 [ km s−1 Mpc−1] 67.27± 0.60

Ωm0 0.3166± 0.0084

Ωb0h
2 0.02236± 0.00015

Ωc0h
2 0.1202± 0.0014

ΩΛ0 0.6834± 0.0084

Table 2.: Hubble constant and density parameters according to 2018 Planck data [4]
using TT,TE,EE+lowE. Here, h ≡ H0/(100 km s−1 Mpc−1) is the dimen-
sionless Hubble parameter.

can conclude to live in a nearly flat universe, even though there seems to be some
recent indication that Planck data favour a K which is slighty negative thus leading
to a positive curvature and a closed universe [21–23].

Quoting Planck results on the Hubble constant and density parameters, this is
an appropriate moment to elaborate on the issue of the Hubble tension [5]. As
previously mentioned, the Hubble tension describes the discrepancy between lo-
cal measurements of H0 and the value, which is inferred from CMB anisotropy
measurements assuming the ΛCDM model. Let us briefly sketch how the latter
works. The CMB, although being almost isotropic, possesses small temperature
anisotropies of the order δT/T ∼ O(10−5). Several effects come into play, e.g. the
(non-integrated) Sachs-Wolfe effect, silk damping and acoustic oscillations. The
former describes the gravitational redshift of photons due to potential wells at the
surface of last scattering and is dominant at large angular scales. Silk damping oc-
curs at small angular scales, in particular at length scales smaller than the mean free
path of photons. Due to photon diffusion, any anisotropies are diluted leading to
a suppression of the CMB power spectrum at small angular scales. Finally, acous-
tic oscillations are the consequence of two opposing forces: pressure and gravity.
While overdense regions tend to attract more and more matter gravitationally, the
increasing photon pressure therein due to the rising plasma temperature counteracts
gravity and pushes the baryon-photon plasma outside. This results in acoustic waves
traversing the primordial plasma with a sound-speed c2

s ≡ δp/δρ that is of the same
order of magnitude as the speed of light, cs ∼ c. The distance these waves have
travelled until recombination defines the so-called sound horizon, which constitutes
a resonant distance in the CMB. This is the case because said acoustic waves are
generated in all overdense regions of the primordial plasma so that the overall CMB
contains a statistical superposition of these waves, which have on average travelled
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2.1. General relativity and the ΛCDM model

a distance of the sound horizon. This allows us to extract the sound horizon from
measurements of CMB anisotropies by using that acoustic waves enter the CMB
power spectrum in the form of acoustic peaks. From the position of these peaks in
the power spectrum, the observed angular scale of the sound horizon can be inferred
at high precision, θ∗ ≈ 0.6◦ ≈ 10−2 rad [4].

From this, the Hubble parameter H0 can be determined assuming that the under-
lying cosmological model is the ΛCDM model. Let us illustrate this by a (dramat-
ically) simplified version of the analysis by Planck. To this end, we note that the
observed angular scale is given by [4]

θ∗ =
r∗,com

dA,com
, (2.16)

where r∗,com is the comoving sound horizon evaluated at recombination and dA,com

the comoving angular diameter distance to the surface of last scattering. Assum-
ing a specific model, which for this case is taken to be ΛCDM, both of the above
quantities can be calculated,

r∗,com =

∫ trec

0

csdt
a

=

∫ arec

0

csda
a2H

, (2.17)

dA,com =

∫ t0

trec

cdt
a

= c

∫ 1

arec

da
a2H

, (2.18)

where in the second line we assumed that the spatial curvature of the universe is
zero, in which case the comoving angular diameter distance is simply given by the
comoving distance.

To get an estimate for r∗,com, let us disregard the radiation-dominated period and
assume that the universe is dominated by matter for the entire pre-recombination
era. In this case, the Hubble function is given by

H2 ≈ Ωm0h
2

a3

(
100 km
s ·Mpc

)2

. (2.19)

Since the quantity Ωm0h
2 is constrained by other features of the CMB spectrum, the

integral in r∗,com can be easily evaluated if we use that arec ≈ 1/1090 and for the
sake of simplicity assume a constant cs. To evaluate the integral in the comoving
angular diameter distance dA,com, we assume a universe dominated by matter and a
CC, so that

H2 ≈ H2
0

(
Ωm0a

−3 + (1− Ωm0)
)

= Ωm0h
2

(
100 km
s ·Mpc

)2

×
(
a−3 − 1

)
+H2

0 .

(2.20)
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Putting now everything together, the Hubble constant H0 is the only unknown
quantity in the Eq. (2.16) so that its value can be inferred. Within the much more
involved analysis by Planck, this leads to the best-fit value cited in Tab. 2.1.2,
H0 = (67.27 ± 0.60) km s−1 Mpc−1 [4]. This has to be compared to measure-
ments from local observations using cosmic-distance-ladder methods, for instance
by SH0ES [24] or H0LiCOW [25], which respectively find a best-fit value of
H0 = (73.5 ± 1.4) km s−1 Mpc−1 and H0 = 73.3+1.7

−1.8 km s−1 Mpc−1. Note that the
most recent measurement by SH0ES involves a best-fit value with even smaller con-
fidence intervalls, H0 = (73.04 ± 1.04) km s−1 Mpc−1 [14], increasing the tension
further. In general, while local, late-time measurements imply a larger value of the
order H0 ≈ (73 − 74) km s−1 Mpc−1, early-time measurements which assume the
ΛCDM model agree with a lower value of the order H0 ≈ (67− 68) km s−1 Mpc−1.
This discrepancy has by now reached a tension of 5.0σ at 68% CL [4, 13–16],
which is the famous Hubble tension. A recent summary of H0 measurements and
possible solutions to the Hubble tension can be found in [15]. Since local measure-
ments are independent of a cosmological model, whereas early-time measurements
assume a model, an obvious solution to this tension, besides shedding possible sys-
tematic errors, is to modify the ΛCDM model. For instance, models which result
in a smaller comoving sound horizon r∗,com at recombination imply a stronger ex-
pansion of the universe in order to explain the observed angular scale θs, which as a
consequence leads to a larger inferred value for H0. We will later consider a model
called coupled dark energy [26], which can in principle lead to a decreased sound
horizon [27], although our focus will not be on the Hubble tension but rather on
structure formation.

2.1.3. Linear perturbations in the ΛCDM model

The assumption of a homogeneous universe pertains only when applied on large
enough scales l & O(100 Mpc). On smaller scales, inhomogeneities arise, which
constitute the basis of cosmological structure formation resulting in filaments and
voids, galaxy clusters and of course galaxies themselves. The seeds of these inho-
mogeneities, which lead to the phenomenologically rich universe that we observe
today, are assumed to originate ultimately from quantum fluctuations during the in-
flationary period, which will be explained in Sec. (4.3.1). At large enough scales,
the violation of homogeneity is only mild; that is, the relative discrepancy of the
density from mean density (i.e. the spatial average) will be small. This allows for
an analysis in the linear regime, where higher orders of perturbations are neglected.

In this subsection, we will collect the main formulae of linear perturbation theory,
referring to one of the many standard and introductory works in cosmology and
perturbations [5, 20, 28, 29] for derivations and further reading.

The basic idea of perturbation theory is to split all dynamical variables into a
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2.1. General relativity and the ΛCDM model

homogeneous background contribution, which follows the background evolution
equations as illustrated in the previous subsection, and a non-homogeneous pertur-
bation, that generally depends on time and space and whose evolution equations
will be described in this subsection. As mentioned above, on large enough scales
the perturbated quantities will be small compared to their respective background
values, which establishes the validity of linear perturbation theory.

In detail, we will always denote the background part of a quantity with a bar and
its perturbation with a δ in front. Let us start with the metric tensor, which we write
as

gµν = ḡµν + δgµν . (2.21)

The background metric ḡµν may be any spatially homogeneous solution to the Ein-
stein equations, as for example the flat Minkowski or de Sitter space; however, we
will mostly be interested in an FLRW background, as given in Eq. (2.8), which we
write as

ds̄2 = ḡµνdxµdxν = a2(τ)
(
−dτ 2 + δijdxidxj

)
, (2.22)

where we have assumed a spatially flat universe, K = 0, and introduced conformal
time dτ = dt/a. Using Helmholtz’s theorem, the perturbed metric δgµν can be
decomposed into four scalar, four vectorial and two tensorial degrees of freedom.
Since the scalar, vector and tensor components decouple from each other at linear
order and we are mainly interested in the former, we will disregard the latter two.
Moreover, we will always work in the Newtonian gauge, where two of the four
scalar degrees of freedom are eliminated. The resulting, perturbed metric reads [29]

ds2 = gµνdxµdxν = a2(τ)
[
−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdxidxj

]
, (2.23)

where Ψ,Φ � 1. Here Ψ corresponds to the Newtonian potential whereas Φ can
be considered as a perturbation of spatial curvature [5]. In a similar manner, one
decomposes the dynamical variables that describe the matter content of the universe
into background and perturbed contributions,

ρi = ρ̄i(τ) + δρi(τ, ~x) , (2.24)
pi = p̄i(τ) + δpi(τ, ~x) , (2.25)
uµi = ūµi (τ) + δuµi (τ, ~x) , (2.26)

where again the index i denotes the kind of species that is described by the respec-
tive fluid. Here uµ is the fluid four-velocity, which could be transformed away in
the background evolution described in the previous subsection but now needs to be
included. The following steps include a calculation of the perturbed Einstein ten-
sor and a perturbed energy-momentum tensor, which ultimately results in perturbed
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Einstein equations [29]
δGµ

ν = 8πGNδT
µ
ν . (2.27)

We skip a detailed illustration of the above equations in real space and directly jump
to the version in Fourier space, where all of the above perturbed quantities (or some
alterations of these) have been expanded in Fourier modes,

X ∼
∫

d3kei~k·~xXk . (2.28)

Here X represents an arbitrary perturbed field, e.g. Ψ or Φ, while Xk is a corre-
sponding Fourier mode. In what follows, we will drop the subscript ‘k’ and implic-
itly assume that all perturbed quantities represent a Fourier modes.

For a single fluid, the perturbed Einstein equations are then given by [29]

k2Φ + 3H2(Φ′ + Ψ) = 4πGNa
2ρδ , (2.29)

k2H(Φ′ + Ψ) = 4πGNa
2(1 + w)ρθ , (2.30)

Ψ = Φ , (2.31)

Φ′′ + (2 + ξ) Φ′ + Ψ′ + (1 + 2ξ) Ψ =
4πGNa

2c2
sρδ

H2
. (2.32)

Here the following definitions have been made: H ≡ aH is the conformal Hub-
ble function; the prime denotes the derivative w.r.t. the e-folds number N ≡ ln a,
which plays the role of a dimensionless time variable; ξ ≡ H′/H describes the di-
mensionless change of the Hubble function; δ ≡ δρ/ρ is the fluid’s density contrast
and θ ≡ i~k ·~v its velocity divergence in Fourier space with ~v being the three-velocity
of the fluid, i.e. the spatial component of uµ. To arrive at the above equations, we
have again assumed a perfect fluid, for which any heat fluxes, anisotropic stresses or
the bulk viscosity vanish. Eq. (2.29) originates from the 00-component of the Ein-
stein field equations and represents the Poisson equation in an expanding universe.
Eq. (2.30) corresponds to the 0i-components and is called the velocity equation.
The so-called anisotropic-stress equation (2.31) stems from the off-diagonal, spa-
tial ij-components with i 6= j and implies that the two potentials Ψ and Φ are equal
if and only if no anisotropic stresses are present. At last, the diagonal, spatial ii-
components lead to the pressure equation given in Eq. (2.32), whose name arises
because it describes the generation of gravitational effects due to a non-vanishing
pressure perturbation δp = c2

sρδ.
The matter equations are obtained analogously to the background evolution from

the conservation of the energy-momentum tensor, as given by Eq. (2.6), however, by
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using the perturbed version. The 0-component leads to the continuity equation [29],

δ′ + 3
(
c2

s − w
)
δ = −(1 + w)

(
θ

H
− 3Φ′

)
, (2.33)

and the spatial components to the Euler equation,

θ′ +

[
(1− 3w) +

w′

1 + w

]
θ =

k2

H

(
c2

s

1 + w
δ + Ψ

)
, (2.34)

which describe the local conservation of energy and momentum, respectively.
Focusing now on perturbations of pressureless matter at sub-horizon scales, k �
H, one can combine the above equations to derive an evolution equation for the
matter density contrast,

δ′′m + (1 + ξ)δ′m −
3

2

(
Ωmδm +

∑
i 6=m

Ωiδi

)
= 0 , (2.35)

where the sum runs over all other species which are present, in particular radiation
during the radiation-dominated era. Famously, the above equation gives rise to a
solution of growing modes, δm ∝ a, during matter domination (Ωm ≈ 1), whereas
during radiation domination (Ωm ≈ 0, Ωr ≈ 1) the solution is logarithmic, implying
that the growth of perturbations is almost frozen, δ′m ≈ 0. At late times, when
radiation can be disregarded but the CC gives a non-negligible contribution to the
overall energy density, Eq. (2.35) turns into [29]

δ′′m + (1 + ξ)δ′m −
3

2
Ωmδm = 0 , (2.36)

where a Λ-dependent term is missing because the CC is not subject to perturbations.
It is illuminating to re-write the matter-density parameter as

Ωm =
ρm

ρcrit
=

8πGNρma
2

3H2
. (2.37)

We will later see that the inclusion of a scalar field can alter the factor in front of
δm in Eq. (2.35). According to Eq. (2.37), this may be interpreted as an effective
modification of the gravitational constant GN.

Related to the evolution of matter perturbations is the aforementioned σ8 tension,
which we want to briefly illustrate in the following. Let us start by defining the
parameter σ8. We recall that the matter power spectrum is defined by the two-point
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correlation function of the density contrast in Fourier space,〈
δ(~k)δ(~k′)

〉
≡ (2π)3P (k)δD(~k − ~k′) , (2.38)

and corresponds to the Fourier transform of the real-space autocorrelation function.
σ8 is then given by the variance of the density contrast up to scales of 8h−1 Mpc [29],

σ2
8 =

1

2π2

∫
dkk2P (k)W 2

8 (k) , (2.39)

where W8 is a so-called window function, which mods out length scales larger than
8h−1 Mpc. The parameter σ8 is an observable and also serves as a measure for the
amplitude of the matter power spectrum P (k). In general, a stronger clustering of
matter implies an increased σ8 parameter.

Analogously to the Hubble tension, the σ8 tension describes a discrepancy be-
tween early-time measurements, for instance by Planck, and late-time observations
like measurements of cosmic shear and galaxy clustering in the σ8 − Ωm0 param-
eter plane. A recent summary of the current experimental status and theoretical
possibilities for a solution can be found in [17]. To quantify the tension within
one parameter, one often defines S8 ≡ σ8

√
Ωm0/0.3, which is especially useful for

weak-lensing probes. While Planck finds a value S8 = 0.834± 0.016 assuming the
ΛCDM model [4], large-scale structure probes imply a value of S8 = 0.766+0.020

−0.014

using a combination of KiDS-1000, BOSS, and 2dFLenS data [30], where both
measurements use 68 % CLs. This corresponds to a tension of more than 3σ, called
the σ8 or S8 tension. As we can see, it is milder than the Hubble tension.

2.2. Scalar-tensor theories and coupled dark
energy

In the previous section, we have explained the accordance model of cosmology,
the ΛCDM model, despite being very successful suffers from several issues, most
notably the H0 and σ8 tensions. In this section, we therefore describe a prominent
way to modify the ΛCDM model by the inclusion of an additional, scalar degree of
freedom. We will focus on some important aspects while referring to [29, 31] for
further reading.

2.2.1. Overview of scalar-tensor theories

A modification of GR, which is the underlying gravitational theory of the ΛCDM
model, is subject to the famous Lovelock’s theorem [32, 33], which states that such
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a modification must involve either a change of the number of dimensions, the in-
clusion of higher-order derivatives, a breaking of the assumption of locality or the
addition of further degrees of freedom. Scalar-tensor theories imply at least the lat-
ter criterion in the form of a new, dynamical scalar field. Arguably, the simplest
and most prominent example of a scalar-tensor theory in the context of the late-time
universe is quintessence [34, 35], which describes a canonical scalar field slowly
rolling down a potential and thus resembling a CC.

While quintessence represents an interesting alternative to the ΛCDM model, it
turns out that it is insufficient to solve the aforementioned tensions consistently
without further ingredients (for a recent review on possible solutions of the Hub-
ble tension see [36]). This motivates the interesting question for the nature of the
most general, viable scalar-tensor theory. Here an important restriction arises from
Ostrogradsky’s theorem, according to which any theory with time derivatives of
higher-than-second order in the Lagrangian implies a so-called Ostrogradsky insta-
bility due to a Hamiltonian that is unbounded from below, unless this Lagrangian
is degenerate [37–40]. Here ‘degeneracy of a Lagrangian’ means that the Hessian
matrix containing all second-order derivatives of this Lagrangian w.r.t. the highest-
order time derivatives of all dynamical fields is not invertible. A prominent way to
avoid Ostrogradsky instabilities is to consider scalar-tensor theories which belong to
the class of Horndeski theories [41–44], constituting the most general scalar-tensor
theory in four dimensions with second-order equations of motion. Even though
there are more general ghostfree scalar-tensor theories, as for example beyond-
Horndeski [45–47] or even more general DHOST theories [48, 49] (see also [50]
for a review of DHOST theories), in this thesis we will stick to the framework of
Horndeski theories and, in fact, only consider a specific example thereof.

The Lagrangian for a general Horndeski theory is given by [31]

LH =
5∑
i=2

Li , (2.40)

where the individual contributions read

L2 = G2(φ,X) , (2.41)
L3 = −G3(φ,X)�φ , (2.42)

L4 = G4(φ,X)R +G4,X

[
(�φ)2 − φ;µνφ;µν

]
, (2.43)

L5 = G5(φ,X)Gµνφ
µν − G5,X

6

[
(�φ)3 − 3�φφ;µνφ;µν + 2φ;µ

;νφ
;ν
;λφ

;λ
;µ

]
, (2.44)

where X ≡ −gµν∂µφ∂νφ/2 is kinetic term of scalar field φ. By choosing a specific
form of the free functions Gi(φ,X), different theories can be constructed. For
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example, the ΛCDM model corresponds to the choice G2 = −ΛM2
P , G4 = M2

P/2
and G3 = G5 = 0, whereas quintessence is obtained by setting G2 = X − V (φ),
G4 = M2

P/2 and G3 = G5 = 0, where V is the quintessence potential. To avoid
instabilities, the functions Gi are subject to further restrictions, which in the case of
quintessence for instance simply read

XG2,X

H2
=

X

H2
> 0 , (2.45)

implying that the kinetic term ∝ φ̇2 enters with a positive sign. For a review of
Horndeski theories, we refer to either [31] with a focus on theoretical aspects or
to [51] with a focus on phenomenological ones, whereas we merely want to mention
a few important aspects here.

First, in [52] it has been shown that the evolution of linear perturbations in a
Horndeski theory is completely determined by four functions αM, αK, αB and αT of
the free Horndeski functions Gi when accompanied with an arbitrary background
evolution H(t) as well as values for the constants Ωm0 and ΩK0. The labels of the
α-functions denote ‘mass’, ‘kineticity’, ‘braiding’ and ‘tensor speed excess’ as they
can be interpreted to respectively quantify a time-dependent change of the effective
Planck mass, direct kinetic energy of scalar perturbations, braiding or mixing be-
tween the scalar field and the metric, and a deviation of the speed of gravitational
waves from the speed of light. In other words, two Horndeski theories with the
same αi, H(t), Ωm0 and ΩK0 are degenerate in a sense and can never be distin-
guished by their background evolution and linear power spectra so that other probes
are necessary for that purpose.

Second, modern-day gravitational-wave experiments like LIGO and Virgo have
imposed tight constraints on a deviation of the gravitational-wave speed cGW from
the speed of light c [53],

− 3× 10−15 ≤ cGW − c
c

≤ 7× 10−16 . (2.46)

This forces αT = c2
GW/c

2 − 1 to be very small either, which on the other hand
implies that a large subclass of Horndeski theories is excluded. In particular, the
quartic and quintic terms are severely constrained by G4,X ≈ 0 and G5 ≈ 0 [54].

Third, one crucial property of Horndeski theories for our purposes is the fact
that they are form-invariant under special disformal transformations [55]. That
is, if one is given a Horndeski scalar-tensor theory A, described by a Lagrangian
LA(φ, gµν) ⊃ LH, and applies a metric transformation

gµν → g̃µν = C(φ)gµν +D(φ)∂µφ∂νφ , (2.47)
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2.2. Scalar-tensor theories and coupled dark energy

where C and D are free functions, the resulting theory B will again be a Horndeski
theory, LB(φ, g̃µν) ⊃ LH. In other words, the second-order nature of the equations
of motions is preserved under a special disformal transformation (2.47).

We are now ready to discuss the scalar-tensor theory, which we will mostly be
interested in in this thesis: coupled dark energy. Due to its specific way of con-
struction, this theory will immediately turn out to be a Horndeski theory so that its
stability is in principle guaranteed.

2.2.2. Coupled dark energy

An interesting approach to a modification of the cosmological concordance model,
which also bears a rich accumulation of phenomenological features, makes use of a
coupling within the dark sector of the universe [26, 56]. To be specific, we consider
dark energy in the form of a scalar field, which possesses a non-vanishing coupling
to the dark matter fluid. In principle, one could also couple the visible, baryonic
sector to DE; however, this would likely result in fifth forces, which are ruled out
by observations, unless some screening mechanism is at work. In this thesis, we
will therefore only consider couplings to DM.

A major effect of such a coupling is a net flow of energy between the DM and
DE sector. Hence, while the energy-momentum tensor for baryons follows the usual
conservation equation,

∇µT b
µν = 0 , (2.48)

dark-sector is conserved only as a whole [57],

∇µ
(
T φµν + T c

µν

)
= 0 , (2.49)

whereas the individual components obey the relation [29]

−∇µT φµν = ∇µT c
µν = QT c∂νφ . (2.50)

Here T φµν is the DE energy-momentum tensor, Q is the so-called coupling function
and T c = gµνT c

µν the trace of the DM energy-momentum tensor.
On the other hand, the Einstein equations are of the usual form [58]

Rµν −
1

2
gµνR =

8πGN

c4

(
T b
µν + T c

µν + T φµν
)
, (2.51)

where the CC term from the ΛCDM model is missing but instead the DE energy-
momentum tensor is present.

From the above (non-)conservation and Einstein field equations, one can now
calculate the background evolution equations for our system in analogy to our dis-
cussion of the ΛCDM model in the previous section. While the Friedmann and
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baryon continuity equation are standard,

3M2
PH2 = a2(ρb + ρc + ρφ) , (2.52)

ρ′b + 3ρb = 0 , (2.53)

the dark sector continuity equations exhibit the expected coupling behaviour

ρ′φ + 3(1 + wφ)ρφ = Qρcφ
′ , (2.54)

ρ′c + 3ρc = −Qρcφ
′ . (2.55)

Clearly, depending on the signs ofQ and φ′, energy will either flow from DE to DM
or vice versa.

The latter behaviour can be used to alleviate the Hubble tension, which we briefly
want to illustrate in the following. To this end, let us assume that Q is a positive
constant and that the DE potential is chosen so that φ rolls from small to large field
values, i.e. φ′ > 0. In this case, Eq. (2.55) can be easily solved by

ρc = eQ(φ0−φ)ρc0a
−3 , (2.56)

where φ0 is the field value of φ today. This corresponds to the usual dilution of
matter in an expanding universe but with an additional, exponential decay due to a
positive net flow of energy from DM to DE. On the other hand, this implies that,
in order to arrive at the measured value of today’s DM density ρc0, there must have
been more DM at earlier times as compared to the ΛCDM model. Since the era of
recombination and a great extent of the previous dynamics in the primordial plasma
occurred during the period of matter domination, this results in an increased early-
time Hubble value,

H2 ≈ 8πGN

3
ρc . (2.57)

According to Eq. (2.17), this will lead to a smaller comoving sound horizon r∗,com

and as a consequence to a largerH0 inferred from CMB measurements, as explained
in Sec. 2.1.2. Thus the Hubble tension may be alleviated. In a recent quantitative
analysis of CDE using a DE potential of Peebles-Ratra type, an increased best-fit
value for the Hubble constant is found, which depending on the precise data set ap-
proximately reads H0 ≈ 69 km s−1 Mpc−1 [27]. This mitigates the tension slightly,
although it does not resolve it. Moreover, from an analysis of Bayesian evidence
ratios, it is found that the ΛCDM model is preferred to this simple version of CDE.
From this we can anticipate that CDE models possess in principle the capability to
alleviate the Hubble tension but that further research and effort is required to do so.

Before we close this section, let us also have a look at an important feature of
linear perturbation theory in CDE models. In particular, via a similar calculation
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as in the previous subsection and for typical CDE settings, in particular a constant
coupling function Q, one arrives at the following evolution equation for the DM
density contrast in the sub-horizon limit k � H [58],

δ′′c + Fδ′c −
3

2
Ωc (1 + Y ) δc = 0 , (2.58)

which should be compared to Eq. (2.36). Here F = 1 + ξ − Qφ′ is the modified
friction term, whereas Y is given by

Y = 2Q2M2
P

k2

k2 +m2
φ

, (2.59)

with mφ being the mass of the DE field φ. Comparing this to Eq. (2.37), Y may be
interpreted as a scale-dependent modification of the gravitational constant, which
effectively becomes

Geff = GN(1 + Y ) . (2.60)

In real space, this leads to a so-called Yukawa correction of the gravitational poten-
tial, which becomes

V (r) = −GNm

r

(
1 + 2Q2M2

P e−mφr
)
, (2.61)

where m is the mass of some gravitating object, for instance a galaxy cluster, and r
the distance of some observer to it. Since Y as given in Eq. (2.59) is strictly positive,
this will generally imply an increase of the gravitational constant on small length
scales [59]. One may hence expect a stronger clustering of cosmological structures,
thus worsening the σ8 tension. This may be avoided in a regime of phantom dark
energy with wφ < −1, which for instance can be achieved via non-standard kinetic
terms; however, the latter results in instabilities in the model [60].
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3. Transient weak gravity in
coupled dark energy

This chapter represents one of the main works in this thesis. The entire content is
based on [1] unless stated otherwise.

3.1. Motivation and outline
In the previous section, we have described the scalar-tensor theory coupled dark
energy, whose characteristic property is a coupling of the DE field φ to DM. While
this theory appears to be promising at alleviating the Hubble tension [27], it typi-
cally comes with an increased effective gravitational coupling constant as a generic
feature due to the positive Yukawa correction Y , as given in Eqs. (2.58) and (2.59).
This fifth-force enhanced, attractive gravity is expected to induce a stronger cluster-
ing of DM (which of course implies a stronger clustering of baryonic matter, which
tends to follow the gravitational pull of DM), thus leading to an increased σ8 and an
exacerbated σ8 tension.

In this work, we try to tackle this issue from a model-building perspective by
investigating non-standard forms of one of the free functions in the model. In de-
tail, we consider a standard kinetic and mass term for the DE scalar field φ and a
DM sector that is conformally coupled to φ via a DM metric with conformal factor
C(φ). In previous constructions, C has been chosen to be an exponential function
of φ, in which case the coupling function Q becomes constant and we arrive at the
scenario described in Sec. 2.2.2 leading to a strengthened gravitational coupling. In
our approach, we consider more general functional forms for C(φ), which allow for
a non-constant Q. We find that, in the regime where φ is close to a minimum of C,
the derivative of the coupling function Q,φ constitutes an additional mass scale be-
sides the scalar field mass. If this new mass scale is non-negligble compared to k2,
this implies some interesting consequences. First, the friction term F , as indicated
in Eq. (2.58), obtains a dependency on the scale k in the quasi-static approximation
(QSA). The latter indicates the limit of considering length scales which are small
compared to the Hubble horizon and the scalar-field sound horizon, i.e. k � H and
k � H/c(φ)

s [51, 61]. In our scenario, the latter two conditions will be approxi-
mately equivalent since the scalar-field sound speed c(φ)

s is approximately unity, so
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that the QSA simply corresponds to the sub-horizon limit. As an additional, ar-
guably more interesting consequence of the new mass scale we find a Yukawa cor-
rection Y to the gravitational coupling which may become negative. Even though
this negativity is only given for a transient period of time, this weakening of grav-
ity may prove to be useful for alleviating the σ8 tension [62–65], although we do
not explore this possibility any further in this work. In general, the duration and
strength of the weak gravity regime will depend on the specific model.

For the sake of simplicity and concreteness we will also illustrate our findings for
a specific choice of the conformal function C(φ) = exp(φ2/m2

C), where mC is a
characteristic mass scale that sets the size of the derivatives of C.

3.2. Specification of the model

Let us start by defining the model explicitly, which will lead to the described cou-
pling within the dark sector as described in Sec. 2.2.2. Following [66], we consider
an action

S =

∫
d4x
√
−g
[
M2

P

2
R + Lφ(gµν , φ) + LSM(gµν , ψSM)

]
+

∫
d4x
√
−g̃L̃c(g̃µν , ψc) .

(3.1)
We have a gravitational sector that is given by the usual Einstein-Hilbert action and
a DE sector represented by a scalar field φ whose dynamics are given by

Lφ = −1

2
gµν∂

µφ∂νφ− V (φ) , (3.2)

where V (φ) is some potential. The SM sector is indicated by LSM, where ψSM

symbolically represents SM fields, in particular a baryonic-matter fluid or radiation.
Both Lφ and LSM are minimally coupled to the Einstein-frame metric gµν . On the
other hand, DM fields ψc are minimally coupled to an effective geometry described
by the metric g̃µν , which is given by a special disformal transformation of gµν , as
given in Eq. (2.47).1 Since baryons are decoupled from the scalar field, they are
not subject to fifth forces and experience a standard gravity so that no screening
mechanism is needed in order to respect local constraints of gravity. Moreover,
observational bounds on the speed of gravitational waves, which we discussed in
Sec. 2.2.1, are not expected to be an issue [53].

1Note that we will usually drop the explicit dependence of C, D and V on φ.
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The energy-momentum tensors of the individual sectors are defined by

T φµν ≡ φ,µφ,ν − gµν
(

1

2
gρσφ,ρφ,σ + V

)
, (3.3)

T SM
µν ≡ −

2√
−g

δ(
√
−gLSM)

δgµν
, (3.4)

T c
µν ≡ −

2√
−g

δ(
√
−g̃L̃c)

δgµν
. (3.5)

As usual, the equations of motion for this model are then constituted of the Einstein
field equations, as given in Eq. (2.51), and the (non-)conservation equations of the
energy-momentum tensors, in accordance to Eqs. (2.48) – (2.50). Here the coupling
function is given by [57]

QT c =
C,φ
2C

T c +
D,φ

2C
T c
µν∇µφ∇νφ−∇µ

(
D

C
T c
µν∇νφ

)
, (3.6)

where the subscript , φ denotes the derivative w.r.t. φ. Additionally, the scalar field
obeys the modified Klein-Gordon equation

�φ = V,φ −QT c . (3.7)

For the rest of this work, we will focus on the evolution of φ and matter. Here
we will generally neglect baryons and radiation, assuming that they contribute only
marginally to the overall energy density, and only consider DM.

3.2.1. Background evolution equations

To obtain the relevant background evolution equations, we will again assume a spa-
tially flat FLRW metric as in Eq. (2.22). Then, without baryonic matter and radia-
tion, the Friedmann equation is simply given by

3M2
PH2 = (ρc + ρφ)a2 , Ωc + Ωφ = 1 . (3.8)

Remember that the density parameters Ωi, as defined in Sec. 2.1.2, are

Ωi =
ρi
ρcrit

=
ρia

2

3H2M2
P
. (3.9)
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For pressureless DM, we have T c = ρc and the coupling function becomes [66]

Q ≡ −a
2C,φ − 2D(3H2φ′ + a2V,φ + C,φH2φ′2/C) +D,φH2φ′2

2[a2C +D(a2ρc −H2φ′2)]
= − B

2A
,

(3.10)
where A and B are defined as

A ≡ a2C +D(a2ρc −H2φ′2) , (3.11)
B ≡ a2C,φ − 2D(3H2φ′ + a2V,φ + C,φH2φ′2/C) +D,φH2φ′2 . (3.12)

While for DM the background evolution is governed by Eq. (2.55), the scalar field
follows the dynamics described by the background Klein-Gordon equation

φ′′ + (2 + ξ)φ′ +
a2V,φ
H2

=
Qρca

2

H2
= 3QM2

P Ωc . (3.13)

At last, let us also note that the scalar-field energy density and pressure are given by
the usual expressions

ρφ =
φ′2H2

2a2
+ V (φ) , pφ =

φ′2H2

2a2
− V (φ) , (3.14)

which generally induces a time-dependent equation-of-state parameter ωφ = pφ/ρφ.

3.2.2. Evolution equations of linear perturbation

The perturbation equations are obtained in analogy to the ΛCDM case described in
Sec. 2.1.2. Again we consider only scalar perturbations and work in the Newtonian
gauge, where the metric is given by Eq. (2.23). While the anisotropic-stress equa-
tion stays the same as in Eq. (2.31), the relativistic Poisson and pressure equations
are respectively given by

k2

H2
Φ + 3(Φ′ + Φ) = −3

2
Ωcδc −

1

2M2
P

(
φ′δφ′ − Φφ′2 +

a2V,φδφ

H2

)
, (3.15)

Φ′′ + (3 + ξ) Φ′ + (1 + 2ξ) Φ =
1

2M2
P

(
φ′δφ′ − Φφ′2 − a2V,φδφ

H2

)
. (3.16)

Comparing the above two equations to Eqs. (2.29) and (2.32), we notice that they
basically differ by a respective, additional contribution on the right-hand side due
to the scalar field φ. Note that the pressure equation (3.16) does not contain a DM
source term since the latter is pressureless. The perturbed continuity and Euler
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equation for DM are given by [66]

δ′c = −θc

H
+ 3Φ′ +Qφ′δc − φ′δQ−Qδφ′ , (3.17)

θ′c = −θc +
k2Φ

H
+Qφ′θc −

Q

H
k2δφ . (3.18)

Finally, perturbations of the scalar field are governed by the perturbed Klein-Gordon
equation,

δφ′′+(2 + ξ) δφ′+
k2 + a2V,φφ
H2

δφ = 4φ′Φ′− 2a2(V,φ − ρcQ)Φ

H2
+
a2ρcδQ

H2
, (3.19)

with the perturbed coupling function

δQ = − 1

A
(B1δc + B2Φ′ + B3Φ + B4δφ

′ + B5δφ) . (3.20)

Here the coefficients Bi are given by [66]

B1 ≡
B

2
+ a2DQρc , (3.21)

B2 ≡ 3H2Dφ′ , (3.22)

B3 ≡ 6H2Dφ′ + 2H2Dφ′2
(
C,φ
C
− D,φ

2D
+Q

)
, (3.23)

B4 ≡ −3H2D − 2H2Dφ′
(
C,φ
C
− D,φ

2D
+Q

)
, (3.24)

B5 ≡
a2C,φφ

2
−D(k2 + a2V,φφ)− a2D,φV,φ − 3H2D,φφ

′

−H2Dφ′2

[
C,φφ
C
−
(
C,φ
C

)2

+
C,φD,φ

CD
− D,φφ

2D

]
+ (a2C,φ + a2D,φρc −H2D,φφ

′2)Q . (3.25)

Before we derive an evolution equation for δc in analogy to Eq. (2.58), in the follow-
ing section we will impose several approximations in order to simplify the system.

3.3. Approximations

It turns out that the following three assumptions suffice to derive a second-order
differential equation in which δc enters as the only perturbed quantity besides other
background quantities.
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• Approximation 1: k/H � 1. This accounts for the fact that we take into
account only sub-horizon scales. As in our case the scalar-field sound speed is
equal to unity, this also corresponds to the sub-sound-horizon limit and hence
the quasi-static approximation.

• Approximation 2: We demand that Φ′′ ∼ Φ′ ∼ Φ and Ψ ∼ Ψ′. Due to the
anisotropic-stress equation, Ψ = Φ, this implies that all these scales are of
the same order. Moreover, we consider δφ′′ ∼ δφ′ ∼ δφ. These requirements
forbid a fast growth of the gravitational potentials or scalar-perturbations, thus
avoiding instabilities.

• Approximation 3: For the background quantities, we require that φ′′ ∼ φ′

and |Q|MP = O(1). Here, in the latter relation it is understood that also small
values of Q are included; in particular, it may also vanish.

Let us now use these approximations to simplify the dynamical system described
by the equations of the previous section.

We start by noting that Eq. (3.8) restricts the DE density parameter (just like the
DM density parameter) to be Ωφ ≤ 1. From Eqs. (3.9) and (3.14), we find the
corresponding expression for Ωφ and, as a result, the constraints

φ′2

M2
P
≤ 1 ,

a2V

H2M2
P
≤ 1 . (3.26)

Due to Approximation 1, both of the above expressions are much smaller than k/H.
Moreover, using the relation

ξ = −1

2
− 3

2
wφΩφ (3.27)

and that |wφ| = O(1), we infer |ξ| = O(1).
Applying now Approximation 2 and 3 on Eq. (3.13), one has

a2V,φ
MPH2

= O(1) , (3.28)

and, using all three approximations on Eqs. (3.16) and (3.15), we find

Φ ∼ δφ/MP ,
k2

H2
Φ = −3

2
Ωmδm . (3.29)

At last, we can use the above approximations and relations that we derived from
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them to simplify the perturbed Klein-Gordon equation (3.19) as

(
k2 +M2

)
δφ = a2ρcQδc −

a2ρc

A

(
a2DQρcδc + B3Φ + B4δφ

′ + B5δφ
)
, (3.30)

where we have defined M2 ≡ a2V,φφ.
In the following section, we will focus on a pure conformal coupling, which will

simplify the dynamical system further.2 As it turns out, together with the above
approximations this still leads to the interesting behaviour of weak gravity. Note
that our claim is only that the three approximations are sufficient to achieve a tran-
sient weak-gravity regime when paired with an appropriate conformal function C,
whereas we do not assess the question whether they are all necessary. In particular,
we do not investigate the question, whether these approximations may possess some
dependencies but instead assume them to be independent.

3.4. The pure conformal coupling case and a
new mass scale

Considering a pure conformal coupling amounts to setting D = 0 in Eq. (2.47).
According to Eq. (3.10), this implies a rather simple expression for the coupling
function

Q = −C,φ
2C

. (3.31)

Moreover, from Eqs. (3.21) – (3.25) we infer that the coefficients Bi simplify dra-
matically, especially that B2 = B3 = B4 = 0. With this, Eq. (3.30) can be written
as (

k2 +M2 − a2ρcQ,φ

)
δφ = a2Qρcδc . (3.32)

Therefrom, we identify a new mass scale besides the scalar-potential mass M2,
which is given by

M2 ≡ −a2ρcQ,φ = −3H2M2
P ΩcQ,φ = 3H2M2

P Ωc

(
C,φφ
2C
−
C2
,φ

2C2

)
. (3.33)

Note that the size of this new mass-scale is essentially set by the derivatives of
the conformal function C up to second order. Due to the factor H2 in Eq. (3.33),
M2 will generally be negligible compared to k2 unless |Q,φM

2
P | is large enough to

2For the inclusion of a disformal coupling, we refer to the appendix of [1], where it was found that
the emergence of a new mass scaleM2 requires a subdominant disformal contribution compared
to the conformal one. In this sense, we can therefore consider the conformal case as sufficiently
general.
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compensate for the suppression of order H2/k2. Naively, such a large Q,φ seems
unnatural because Approximation 3 requires QMP = O(1), implying that C,φ/C
cannot be too large. Hence for a non-negligibleM2, the first derivative of C needs
to be small whereas the second derivative must be large. This condition can be
satisfied if φ is at a locus in the vicinity of an extremum of C.

Before we consider a concrete example for C, let us comment on some aspects of
the new scaleM2. First, we note that, depending on the functional form of C and
V ,Q,φ and henceM2 will be either positive or negative. The latter may even lead to
a cancellation of M2 and result in interesting phenomenological features; however,
we will only regard the case whenM2 is positive in this work. Second, we mention
that the caseM2 is equivalent to a constant coupling function Q, which in turn is
equivalent to an exponential conformal factor C(φ) = exp(φ/mC). That is, in this
standard case, which as been extensively studied in the literature [26, 35, 56, 66,
67], no new mass scale arises. Third, as argued above, a proper condition for a
non-negligible new mass scaleM2 is a locus in field space close to an extremum of
C. Hence, we should check under which circumstances this condition is fulfilled.
An obvious possibility is a dynamical system, which naturally leads φ towards a
minimum of C. In detail, we write the background Klein-Gordon equation (3.13)
as

φ′′ + (2 + ξ)φ′ +
a2

H2
Veff,φ = 0 , (3.34)

where we defined the effective potential as

Veff ≡ V − ρc

∫
dφQ(φ) = V + ρc log

√
C . (3.35)

Clearly, the above equation drives φ to the minimum of Veff. If the latter coincides
with a minimum of C, the condition for large M2 might be fulfilled. However,
one must take into account that, depending on the specific form of C and V , the
condition of being close to the minimum of C may only last for a very short time
so that the effect of the new mass scaleM2 on phenomenology is only marginal.
One may also think about the possibility to achieve a non-negligible mass scale
M2 by an extremely flat potential Veff, where φ′ is so small that the resulting slow-
roll effectively keeps φ close to the minimum of C for a significant period of time.
However, as we will see later, in the limit of slow-roll we return to the standard
scenario, described by Eq. (2.59). In general, in this work we will not bother with
establishing a realistic cosmological background evolution but instead focus on the
consequences of the new mass scale M2 on linear perturbations, while assuming
that it is non-negligible.

To illustrate the above discussion, let us choose a concrete functional form for
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3.4. The pure conformal coupling case and a new mass scale

the conformal factor,
C(φ) = eφ

2/m2
C , (3.36)

whose minimum lies at φ = 0 and where mC provides a typical mass scale for the
derivatives of C. According to the Eqs. (3.31) and (3.33), with the above C we
obtain

Q = − φ

m2
C

, Q,φ = − 1

m2
C

, M2 = 3Ωc
H2M2

P

m2
C

. (3.37)

Note that in this scenario one has Q,φ < 0 and henceM2 > 0, as demanded above.
Now, respecting the requirements |Q|MP = O(1) and |Q,φ|M2

P � 1 implies that

|φ|MP

m2
C

= O(1) ,
M2

P

m2
C

� 1

3Ωc
. (3.38)

The above two relations can easily be fulfilled close to the minimum of C, where
φ ≈ 0. Since Ω ≤ 1, the second relation in Eq. (3.38) then implies

M2 � H2 , (3.39)

so thatM2 is not negligible in the quasi-static approximation.
Finally, let us impose an explicit scalar-field potential of simple, quadratic form

a2V = M2φ2/2. The resulting effective potential, as given in Eq. (3.35), becomes
a2Veff = 1

2
(M2 +M2)φ2, which indeed drives φ to its minimum at φ = 0. We men-

tion again that Veff does not entail a realistic background evolution; in particular, it
lacks a late-time accelerated expansion. We will nevertheless employ it to illustrate
the mechanism leading to the regime of transient weak gravity.

3.4.1. The evolution equation for the DM density contrast

In this section, we derive the perturbation equations for the above scenario. Partic-
ularly, we are interested in the evolution equation for δc, in analogy to Eq. (2.58),
which will show new, interesting behaviour of the friction term F and gravitational
coupling Y . Of special interest will be their respective scaling with k, in particular a
novel quartic k-dependence in Y , which ultimately can lead to a regime of transient
weak gravity.

We start by casting the simplified perturbed Klein-Gordon equation (3.32) into
the form

δφ =
a2Qρc

k2 +M2 +M2
δc . (3.40)

Moreover, due to the above approximations and after some simplifications, the per-
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turbed continuity equation (3.17) becomes

δ′c = −θc

H
−Q′δφ . (3.41)

Here the latter term is in general non-negligible because Q,φ is assumed to be large.
Hence, depending on the size of φ′, Q′ may be large as well. For instance, for the
above, exemplary model given by Eq. (3.36), one has

|Q′|MP =
|φ′|MP

m2
C

. (3.42)

Even though |φ|/MP must be small because we are close to the minimum at φ = 0,
its derivative may be large, |φ′|/MP = O(1), so that |Q′| can indeed be large as
well.

Combining now Eq. (3.40) with Eq. (3.41) and the Euler equation (3.18), yields

δ′c = −θc

H
+

M2

k2 +M2 +M2
Qφ′δc , (3.43)

θ′c
H

= −θc

H
− 3

2
Ωcδc +Qφ′

θc

H
− 3M2

PQ
2Ωm

k2

k2 +M2 +M2
δc . (3.44)

We can than differentiate Eq. (3.43) w.r.t. our time-coordinate N = ln a and use
Eq. (3.44) to eliminate θ′c, whereupon θc can be eliminated using Eq. (3.43) itself.
This results in the evolution equation for the DM density contrast δc,

0 = δ′′c +

(
1 + ξ −Qφ′ −Qφ′ M2

k2 +M2 +M2

)
δ′c (3.45)

− 3

2
Ωc

[
1 +

2M2
PQ

2k2 + (1+ξ−Qφ′)Qφ′+(Qφ′)′

3Ωc/2
M2

k2 +M2 +M2
+

(
M2

k2 +M2 +M2

)′
Qφ′

3Ωc/2

]
δc .

Note that the above equation does not assume a specific functional form of C or V
but results from the above, three approximations and D = 0. Comparing this to
Eq. (2.58), we infer

F = 1 + ξ −Qφ′ −Qφ′ M2

k2 +M2 +M2
, (3.46)

Y = 2M2
PQ

2 k2 + gM2

k2 +M2 +M2
+

(
M2

k2 +M2 +M2

)′
2Qφ′

3Ωc
, (3.47)
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where

g ≡ (1 + ξ −Qφ′)Qφ′ + (Qφ′)′

3ΩmM2
PQ

2
. (3.48)

We can immediately identify the novel scale dependence in the friction term F due
to the new mass scale M2, as mentioned above. Furthermore, we can make the
quartic k-dependence of Y explicit by re-writing it as

Y = 2M2
PQ

2 k4 + α2k
2 + α0

(k2 +M2 +M2)2
= 2M2

PQ
2k

4 + α2k
2 + α0

k4 + β2k2 + β0

, (3.49)

where we have defined

α2 ≡
φ′

3ΩcM2
PQ

(M2)′ + M̄2 + gM2 , (3.50)

α0 ≡
φ′

3ΩcM2
PQ

[
(M2)′M2 − (M2)′M2

]
+M2M̄2g , (3.51)

β2 ≡ 2M̄2 , β0 ≡ M̄4 , (3.52)

and introduced the combined mass scale

M̄2 ≡M2 +M2 . (3.53)

From Eqs. (3.49) – (3.52) and the expression for g, we deduce that both the slow-
roll limit, in which φ′ and φ′′ are small, and the limit of vanishing new mass scale
M2 = 0, which corresponds to a constant Q, take us back to the standard scenario,
where Y is given by Eq. (2.59).

3.4.2. Weak gravity

At last, in this subsection we want to use the above new quartic k-dependence of
Y to establish the anticipated transient-weak-gravity regime. Besides the fact that
Y is now a ratio of fourth-order polynomials in k, we must further examine the
function g, in particular, the term ∝ Q′. As argued in the previous subsection, Q′

can be large without contradicting any of the assumptions we made and we will use
that to obtain the desired behaviour of Y . In detail, since all other quantities in the
numerator of Eq. (3.48) are in general of order O(1), we make the assumption that
g is indeed dominated by this very term proportional to Q so that

g ≈ Q′φ′

3ΩmM2
PQ

2
� 1 . (3.54)
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Moreover, to simplify the functions α2 and α0, we note that the derivative of the
new mass scale squared is readily obtained by differentiating Eq. (3.33),

(M2)′ =

(
2ξ +

Ω′m
Ωm

+
Q,φφφ

′

Q,φ

)
M2 . (3.55)

Since all terms in the brackets are generally ofO(1), we conclude that the derivative
of the new mass scale is of the same order of magnitude as that mass scale itself,
(M2)′ ∼M2. Assuming a similar behaviour for the scalar-field mass, i.e. (M2)′ ∼
M2, and using that g � 1, the above coefficients simplify to

α2 ' M2 + gM2 , (3.56)
α0 ' gM2M̄2 , (3.57)

With that, the effective gravitational coupling becomes

Y ' 2M2
PQ

2k
4 + (M2 + gM2)k2 + gM2M̄2

(k2 + M̄2)2
, (3.58)

which may be further simplified by utilizing that for a large scalar-field derivative
φ′ ≈MP one has gM2k2 � k4 +M2k2. This results in

Y ' 2M2
PQ

2gM2 1

k2 + M̄2
= −2M2

P (Q′)2 1

k2 + M̄2
. (3.59)

Since we imposed a positiveM2, the above Y is strictly negative, implying a weak-
ening of the effective gravitational coupling. Finally, the corresponding expres-
sion in the specific case of a quadratic exponential conformal function, as given in
Eq. (3.36), reads

Y ' −2M2
P
H2(φ′)2

m2
C

1

k2 + M̄2
= −2M2

PQ
2H2(φ′)2

φ2

1

k2 + M̄2
. (3.60)

This implies a real-space gravitational potential

V (r) = −GNm

r

[
1− 2M2

P (Q′)2

M̄2
(1− e−M̄r)

]
, (3.61)

which should be compared to Eq. (2.61). While for small scales, the whole addi-
tional term cancels and one obtains the standard Newton potential, for large scales
the exponential becomes small so that the negative term remains. This results in a
weaker gravity on large scales, which may perhaps even become repulsive.

For a simple numerical treatment of the above scenario, we refer to the appendix
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of [1]. There we solve the background and perturbation equations, finding that the
QSA is indeed valid and that the anticipated weakening of gravity appears when the
appropriate, aforementioned conditions are met. As a reminder, the latter are given
by |Q,φ|M2

P � 1 and |Q′|MP � 1 as well as the approximations from Sec. 3.3.

3.5. Summary and discussion

Summarising this work, we have investigated a CDE model with a canonical gravity,
scalar-field and baryonic sector but with a DM sector whose geometry is constituted
by a disformally transformed metric tensor. This induces a coupling between the DE
scalar φ and the DM fluid, which will generally have an effect on the background
evolution and linear perturbations. Focusing on a pure conformal coupling, we find
a novel behaviour in the case when the coupling function Q is non-constant. The
origin thereof is the emergence of a new mass scale M2, which is associated to
the derivative of the coupling constant in field space, Q,φ, which on the other hand
is given by the derivatives of the conformal function C up to second order. We
find that anM2 which is not negligible in the quasi-static approximation requires
Q,φM

2
P � 1, which can be achieved close to a minimum of C(φ). The new mass

scaleM2 enters the evolution equation for the DM density contrast in such a way
that the friction term F receives a novel k-dependence. Moreover, the effective
gravitational coupling Y becomes a ratio of fourth-order polynomials in k. We
have shown that if |Q′|MP � 1, this implies a weakening of gravity on large scales,
which may help to alleviate the σ8 tension.

An interesting question that arises is how this model will look like in the (dark-
matter) Jordan frame, which would allow to compare it to the class of Horndeski
theories. Such a transformation has been indicated in the appendix of [1] and
exhibits seemingly unnatural requirements; however, a detailed treatment of this
model in the Jordan frame is left to future work. Let us nevertheless recall that, as
explained in Sec. 2.2.1, Horndeski theories are form-invariant under special disfor-
mal transformations (2.47), which is why we can be confident that the above model
is indeed a Horndeski theory so that no Ostrogradsky instabilities are expected.

Future research on the transient-weak-gravity regime should aim at connecting
the above discussion to observations. Most importantly, this requires the inclusion
of a DE sector which can drive the accelerated expansion of the universe. This
may constitute a difficult challenge requiring significant model building, especially,
since φ′ and φ′′ are required to be large during the transient-weak gravity regime.
A next step would be a systematic analysis with observational data and an exami-
nation on how much the σ8 and perhaps also the Hubble tension can be alleviated.
Finally, obvious extensions of the above scenario may include a general disformal
transformation, where C andD depend also on the kinetic termX of the scalar field
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φ. This may result in a beyond-Horndeski or DHOST coupled-dark-energy theory,
and include further phenomenological implications.
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4. Introduction

4.1. String theory and supersymmetry in a
nutshell

Summarising Chpt. 1, string theory comes with two major advantages: providing
a presumably UV-finite candidate for quantum gravity or a theory of everything
and doing so while retaining a certain mathematical beauty in the sense that many
field-theoretical aspects obtain a geometrical meaning. A priori these advantages
come at the only cost of accepting the idea that the fundamental objects in our
world are not zero-dimensional particles but one-dimensional strings. Obviously,
the dynamics of such strings, which possess the ability to vibrate, is much richer
than that of particles. In this section, we want to summarise the basic concepts of
bosonic string theory, supersymmetry and supergravity as well as superstring theory,
which can be studied in more detail in several introductory standard textbooks, for
instance [68–74] for bosonic- and superstring theory and [75–77] for SUSY and
SUGRA (see also [78] for a very brief and focused introduction to the bosonic
string as well as [79] for an introduction to string phenomenology including all of
the aforementioned topics).

4.1.1. The bosonic string

In this section we give a brief summary on the bosonic string, which can be con-
sidered as the simplest string theory, that can nevertheless be utilised to introduce
many important core concepts. Most content in this subsection is based on [70–73,
78–80].

Let us start by considering the action for a free point particle with mass m fol-
lowing a trajectory γ,

S = −mc
∫
γ

ds , (4.1)

where ds ≡
√
−ηµνdXµdXν is the infinitesimal line-element of that particle in its

so-called target space We assume that the latter has D dimensions and is parame-
terised by the coordinatesXµ, with µ ∈ [0, D−1]. Just like this action measures the
length of the one-dimensional worldline of a point particle, the analogous, so-called
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Nambu-Goto action of a string propagating through the target space is obtained via
measuring the surface area of that string’s worldsheet:

SNG = −T
∫

Σ

dA , (4.2)

where T is the string tension and dA is the infinitesimal surface element of the
worldsheet Σ. The string tension T , with [T ] = [mass2], is the only dimensionful
parameter in string theory and is related to the so-called Regge slope α′ as well
as the theory’s fundamental length and mass scale, i.e. the string length and string
mass,

α′ =
1

2πT
, ls = 2π

√
α′ , Ms =

1√
α′
, (4.3)

where the precise prefactors depend on conventions. As it is common, we adopted
the latter from [68, 69].

Introducing worldsheet coordinates ξa = (τ, σ), where τ ∈ R parameterises the
time-like and σ ∈ [0, l] the space-like direction of the worldsheet with l setting the
length of the string1 and the induced metric:

Gab ≡ ηµν
∂Xµ

∂ξa
∂Xν

∂ξb
, (4.4)

we can write the infinitesimal surface element as

dA = d2ξ
√
−G , (4.5)

with G ≡ detGab and thus obtain

SNG = −T
∫

Σ

d2ξ
√
−G . (4.6)

As is known, the Nambu-Goto action is classically equivalent to the Polyakov
action:

SP = −T
2

∫
Σ

d2ξ
√
−hhabGab , (4.7)

where the worldsheet metric hab is a new degree of freedom and h ≡ dethab. Upon
using the equations of motion, hab and Gab are proportional. Rendering the induced

1One should not confuse ls, which represents the physical length of the string and sets its mass
scale, with l, that merely parameterises the endpoint of the string in the σ coordinate and is often
chosen as π or 2π for an open or closed string, respectively.
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metric explicit, the Polyakov action becomes

SP = −T
2

∫
Σ

d2ξ
√
−hhabηµν

∂Xµ

∂ξa
∂Xν

∂ξb
, (4.8)

which is just the theory of D free scalar fields Xµ which live on a two-dimensional
space Σ with a cylindrical topology.

The above action possesses three symmetries:

1) diffeomorphism invariance of the worldsheet coordinates ξa → ξ̃a(ξ),

2) Poincare invariance of the target-space fields Xµ → Λµ
νX

ν + Aµ with Λ ∈
SO(1, D − 1),

3) Weyl symmetry of the worldsheet metric hab(ξ)→ e2Ω(ξ)hab(ξ).

By using the first and third symmetry, the worldsheet metric can be gauge fixed into
the form

hab = ηab =

−1 0

0 1

 , (4.9)

which is called the flat gauge. Since this promotes the dynamical field hab to a static
object ηab, in order not to lose any information, we impose the equation of motion
for hab manually,

Tab ≡
4π√
−h

δSP

δhab
= 0 , (4.10)

which is also called the Virasoro constraint. In flat gauge and using light-cone
coordinates, defined by

ξ± ≡ τ ± σ , ∂± ≡
1

2
(∂τ ± ∂σ) , (4.11)

the Polyakov action then becomes

SP = T

∫
Σ

dξ+dξ−∂+X
µ∂−Xµ . (4.12)

The resulting equation of motion, which is given by

∂+∂−X
µ = 0 , (4.13)

implies that the fields, which represent the target-space coordinates, can be decom-
posed into a ξ+-dependent and a ξ−-dependent part, which correspond to left- and
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right-moving waves, respectively:

Xµ = Xµ
L (ξ+) +Xµ

R(ξ−) . (4.14)

For the sake of brevity and simplicity, let us only quote the solution for closed
strings here, which will be our main focus, and refer the interested reader to the
aforementioned textbooks for the treatment of open strings. Closed strings fulfill
periodic boundary conditions:

Xµ(τ, σ) = Xµ(τ, σ + l) , (4.15)

which, together with Eq. (4.13), implies that the general solution for Xµ is given
by a Fourier series in ξ+ and ξ− plus integration constants. This so-called mode
decomposition reads:

Xµ
L (ξ+) =

1

2
xµ +

1

2

2πα′

l
pµξ+ + i

√
α′

2

∑
n∈Z\{0}

1

n
α̃µne−

2π
l
inξ+

, (4.16)

Xµ
R(ξ−) =

1

2
xµ +

1

2

2πα′

l
pµξ− + i

√
α′

2

∑
n∈Z\{0}

1

n
αµne−

2π
l
inξ− . (4.17)

Here, the first terms in both mode decompositions enter via integration constants
and describe the center-of-mass position of the string xµ at time τ = 0 whereas
the second terms correspond to the zero modes of the Fourier series and describe
the string’s motion with center-of-mass momentum pµ ≡

√
2/α′α̃µ0 =

√
2/α′αµ0 .

Finally, the last terms describe left- and right-moving waves with mode number n,
respectively. Note that reality of the target-space coordinates Xµ implies (α̃µn)∗ =
α̃µ−n and (αµn)∗ = αµ−n.

Quantisation

To quantise the theory, we follow [78] and perform a so-called light-cone quanti-
sation, in which we implement the Virasoro constraint (4.10) at the classical level
before quantisation. First, we transform two target-space coordinates, the time-
direction and one arbitrary spatial direction, into light-cone coordinates:

X± ≡ 1√
2

(
X0 ±XD−1

)
, (4.18)

whereas the other D − 2 spatial directions remain unchanged. We then use the
crucial fact that the flat gauge (4.9) does not completely fix ξ but leaves a residual
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gauge freedom of the form
ξ± → ξ̃±(ξ±) . (4.19)

With the freedom to transform ξ+ and ξ− into arbitrary functions that again depend
only on ξ+ or ξ−, respectively, we can eliminate all oscillator modes of X+, which
then simplifies to

X+ = x+ + α′p+τ . (4.20)

Moreover, the Virasoro constraints (4.10) imply a dependency between the oscilla-
tor modes of X− and of the other X i:

α̃−n =
1√

2α′p+

∞∑
m=−∞

α̃in−mα̃
i
m , (4.21)

α−n =
1√

2α′p+

∞∑
m=−∞

αin−mα
i
m . (4.22)

That is, the directions X+ and X− do not carry any physical, oscillatory degrees
of freedom. Thus in flat gauge and light-cone coordinates (4.18), the action (4.8)
becomes

SP =
1

4πα′

∫
Σ

dτdσ
[
(∂τX

i)2 − (∂σX
i)2 − 2α′p+∂τX

−] ≡ ∫ dτLP . (4.23)

Defining now the quantity

q− ≡ 1

l

∫ l

0

dσX− , (4.24)

the canonical variables and their conjugate momenta are given by

X i , Πi ≡
∂LP

∂(∂τX i)
=
∂τXi

2πα′
, (4.25)

q− , p− ≡
∂LP

∂(∂τq−)
= − l

2π
p+ . (4.26)

The quantisation of this theory can now be performed by promoting these fields
and their corresponding conjugate momenta to operators which fulfill some com-
mutation relations. Crucially, the oscillator modes α̃in and αin are also promoted to
operators with the commutation relations

[αim, α
j
n] = [α̃im, α̃

j
n] = mδm+n,0δij . (4.27)

Thus, the oscillator modes become creation and annihilation operators for the wave
modes of the string where αin creates a wave mode for n < 0 and annihilates one
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for n > 0 and likewise for α̃in. As a Hilbert space, on which these operators can
act, we consider only the subspace for a fixed momentum pµ. The corresponding
groundstate is then labelled and defined as

αµn|0; p〉 = α̃µn|0; p〉 = 0 ∀n > 0 . (4.28)

The overall Fock space consists of the span of an arbitrary number of creation op-
erators αµ−|n| or α̃µ−|n| acting on this groundstate.

Criticality

Before we continue by constructing physical, closed-string states, we want to men-
tion the topic of criticality. By the choice of light-cone coordinates, we have singled
out a certain direction in the target space. While the choice of specific a coordinate
system is unproblematic classically, we have to make sure that Lorentz invariance
is also satisfied at the quantum level; that is, we have to avoid the appearance of
an anomaly. A cumbersome calculation then implies that the absence of such an
anomaly requires the target space dimension to be D = 26. Such theories, which
fulfill this requirement, are called critical and will be the only interest in this part.

In order to analyse the physical states of closed strings, we notice that the mass
of a state is given by [78]

M2 = −p2 = 2p+p− − pipi =
4

α′
(N⊥ − 1) . (4.29)

To arrive at the last expression, we have used the Virasoro constraint (4.10), which
also implies a level matching condition N⊥ = Ñ⊥, as well as the fact that a so-
called normal-ordering constant, which is needed due to the ambiguity of normal
ordering of the zero mode αi0, is forced to a = 1 by criticality. Here we have defined
the number operator

N⊥ ≡
∞∑
n=1

: αi−nα
i
n : , (4.30)

which measures the level of excitement of right-moving, transverse waves. Here,
the normal-ordering symbol is defined by

: αimα
i
n :≡

{
αimα

i
n for m ≤ n ,

αinα
i
m for m > n ,

(4.31)

that is, large-mode creation operators are sorted to the most left and large-mode an-
nihilation operators to the most right. Small-mode operators are sorted inbetween.
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Physical States

We can now simply sort the physical states by their level of excitement [78]:

N = 0: The mass shell condition (4.29) yields M2 = −4/α′. This state is tachyonic
and therefore very likely renders bosonic string theory unstable. This is one
of the motivations to consider superstring theory where this state is projected
out.

N = 1: The mass of these states is M2 = 0. They are constructed via

ξijα̃
i
−1α

j
−1|0; p〉 , (4.32)

where ξij is the so-called polarisation tensor, which is an arbitrary (D− 2)×
(D − 2) matrix. We can decompose it into a symmetric traceless, antisym-
metric and trace part:

ξij = ξ(ij) + ξ[ij] + ξ0 . (4.33)

The symmetric traceless part contains (D − 2) · (D − 1)/2 − 1 degrees of
freedom, which gives two degrees of freedom for D = 4. These states cor-
respond to one-particle graviton states gµν in the D-dimensional target space.
The states built from the antisymmetric part give rise to a new two-form field,
called Kalb-Ramond field B[µν]. It plays a crucial role in the fixing of some
degrees of freedom of the extra-dimensional space. Finally, the trace part cor-
responds to a single scalar field Φ, which is called the dilaton and determines
the strength of string coupling via the important relation gs = exp(〈Φ〉).

N > 1: These states are very massive withM2 > 4/α′ ∝ 4M2
s and are thus integrated

out in the low-energy EFT.

Low Energy Action

For the sake of completeness, let us quote the low-energy action for the massless
modes. This is achieved in the limit of small-curvature backgrounds, i.e. in spaces
with a curvature radius much larger than the string length ls ∝

√
α′, via an expan-

sion in α′. The leading-order result reads [68]

Seff =
1

2κ2
0

∫
dDx
√
−ge−2Φ

(
R− 1

12
HµνλH

µνλ + 4∂µΦ∂µΦ +O(α′)

)
,

(4.34)
where H ≡ dB is the exterior derivative of the Kalb-Ramond field, i.e. its field
strength tensor, and the constant κ0 is unspecified because it can be absorbed into
a shift of Φ. Importantly, the same action arises later in the case of superstring
theory in the closed-string bosonic sector with the only differences being another
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value than 26 for the number of dimensions D and further terms present. The above
action is in the so-called string frame and can be brought into the Einstein frame via
a Weyl transformation of the target space metric

gµν = e−
4φ
D−2 g̃µν , (4.35)

so that it becomes

Seff =
1

2κ2

∫
dDx

√
−g̃
(
R̃− 1

12
e−

8Φ
D−2HµνλH

µνλ − 4

D − 2
∂µΦ∂µΦ +O(α′)

)
,

(4.36)
where indices are now raised and lowered with the Einstein-frame metric g̃µν . This
is completely analogous to a transformation between the Jordan and Einstein frame
as it is common in MG theories. In the Einstein frame, the parameter κ is fixed by
the choice of the dilaton background and represents theD-dimensional gravitational
coupling constant.

In conclusion, bosonic string theory contains Einstein gravity in the closed-string
sector as well as gauge theories, which arise from open string modes living on
branes, which is well known even though we did not show it here explicitly. The
obvious drawbacks are a tachyonic zero mode, which likely renders the theory un-
stable, and the absence of fermions. The inclusion of supersymmetry gives rise to
superstring theory, which remedies both of these problems.

4.1.2. Supersymmetry

The main focus of this section is to introduce the most important concepts and the
language of supersymmetry at a level which is needed for the following chapters.
A customary standard reference for formulae in SUSY and SUGRA is Ref. [76] but
we also want to refer to [75, 77] for further reading. Most parts in this subsection
are based on [76, 79, 81]. Supersymmetry is a symmetry which assigns a bosonic
partner to each fermion and vice versa. On the practical and phenomenological side,
SUSY can be motivated as a tool that has the potential to solve or at least alleviate
the hierarchy problem of the Higgs sector and the CC problem. This is achieved
through the cancellation of many loop contributions as long as SUSY is present. On
the theoretical and aesthetic side, SUSY represents a promising candidate towards
unification and a theory of everything. This is especially the case since SUSY
represents the unique way to generalise the spacetime symmetry of a relativistic
QFT. To be more specific: According to the Coleman-Mandula theorem [82], the
only way to combine the Poincaré symmetry with an internal symmetry of a field, is
the trivial one, i.e. by a direct sum. This restriction can be softened by the inclusion
of fermionic spacetime generators, which satisfy anticommutator relations. These
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form a so-called supersymmetry algebra, which is a non-trivial, and according to the
Haag-Lopuszański-Sohnius theorem [83] unique, extension of the Poincaré algebra.

The Supersymmetry Algebra

The total superalgebra is given by three sets of generators Pµ, Mµν and Qα where
µ and ν are spacetime indices whereas α is a spinorial index that runs from 1 to
2. Pµ and Mµν correspond to the spacetime momentum and the Lorentz generators,
which generate spacetime translations and rotations, respectively, and together build
the Poincaré algebra [79],

[Pµ, Pν ] = 0 , (4.37)
[Mµν , Pλ] = i (ηµλPν − ηνλPµ) , (4.38)

[Mµν ,Mρσ] = i (ηµρMνσ − ηνρMµσ − ηµσMνρ + ηνσMµρ) . (4.39)

This is now extended by the inclusion of the fermionic generatorsQα, which satisfy
the following commutator and anticommutator relations:

[Pµ, Qα] = 0 , (4.40)

[Mµν , Qα] = i(σµν)
β
α Qβ , (4.41){

Qα, Q̄α̇

}
= 2(σµ)αα̇Pµ , (4.42)

{Qα, Qβ} = 0 , (4.43){
Q̄α̇, Q̄β̇

}
= 0 , (4.44)

with σµ ≡ (−12, ~σ) where 12 is the two-dimensional unity matrix and ~σ contains
the three Pauli matrices as entries and σµν ≡ − (σµσ̄ν − σν σ̄µ) /4. We see that the
superalgebra extends the Poincaré algebra in a non-trivial way.

Superspace

We can now introduce the notion of so-called superspace, which generalises the
familiar Minkowski space by the inclusion of some extra fermionic dimensions.
This superspace is parameterised by the coordinates (xµ, θα, θ̄α̇) with α, α̇ = 1, 2.
The additional coordinates are Grassmann valued, that is they satisfy the relations

θ2
1 = θ2

2 = 0 , θ1θ2 = −θ2θ1 ,

∫
dθα = 0 ,

∫
dθαθα =

∂

∂θα
θα = 1 ,

(4.45)
where in the last equation no sum is intended and analogous relations hold for the
complex conjugate coordinates θ̄α̇. Just like the Pµ generate translations along
spacetime, the Qα and Q̄α̇ generate translations along the superspace where the
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explicit forms

Qα = ∂α − i (σµ)αα̇ θ̄
α̇∂µ , Q̄α̇ = −∂̄α̇ + iθα (σµ)αα̇ ∂µ , (4.46)

contain terms ∝ ∂µ in order to satisfy Eq. (4.42). In order to construct SUSY in-
variant actions, we make use of so-called superfields, which are fields that depend
on the position in superspace. They correspond to supermultiplets, i.e. a representa-
tion of the supersymmetry algebra whose components are familiar quantum fields.
These components are merely the prefactors in an expansion of the superfield in the
coordinates θα and θ̄α̇. The number of components is finite due to Eqs. (4.45) and
they correspond to fields that are superpartners w.r.t. each other or auxiliary fields.
The application of a SUSY transformation on a superfield is therefore equivalent
to a rotation of its individual components into each other, thus transforming bosons
into their fermionic superpartners and vice versa.

Chiral Superfields

The simplest and most prominent example are chiral superfields, which are a sub-
representation of a general superfield. They are constructed by imposing the condi-
tion D̄α̇Φ = 0 for chiral or DαΦ̄ = 0 for antichiral superfields where [81]

Dα ≡
∂

∂θα
+ i (σµ)αα̇ θ̄

α̇∂µ , D̄α̇ ≡ −
∂

∂θ̄α̇
− iθα (σµ)αα̇ ∂µ (4.47)

are the SUSY covariant derivatives. Hence in terms of their components, chiral
superfields are given by

Φ = φ(y) +
√

2θψ(y) + θ2F (y) , (4.48)

where yµ ≡ xµ+ iθσµθ̄ and an analogous expression holds for Φ̄, which depends on
θ̄ but not on θ. Here φ is the superfield’s scalar component, ψ its fermionic super-
partner and F a complex-valued scalar auxiliary field. Constructing SUSY invariant
actions, it is crucial that the highest component of a chiral superfield, the so-called
F-Term, only changes by a total derivative. This motivates the idea to construct such
actions as the F-terms of chiral superfields. Generically, holomorphic functions of
chiral superfields are again superfields. Furthermore, the highest components of
general superfields, which are ∝ θ2θ̄2 and called D-terms, are SUSY invariant up
to a total derivative as well. For that reason, the most general, second-derivative
Lagrangian that depends on a collection of chiral superfields Φi is given by

L =

∫
d2θd2θ̄K

(
Φi, Φ̄ī

)
+

∫
d2θW (Φi) +

∫
d2θ̄ W

(
Φ̄ī

)
. (4.49)
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Here K is a general superfield called the Kähler potential and W a holomorphic
function of the Φi, which is also a chiral superfield and is called the superpotential.
The integrations over the fermionic coordinates θ and θ̄ project out the highest com-
ponents of K and W , i.e. the D-term and F-term, respectively, thus rendering this
Lagrangian SUSY invariant. Typically, K contains kinetic terms for the fermions
and bosons whereasW contains fermionic mass terms as well as Yukawa-like inter-
action terms. Furthermore, as already mentioned, the F-terms Fi of the individual
chiral fields Φi are auxiliary fields, that is they have no kinetic terms. Hence these
fields can be integrated out and thus give rise to a potential for the scalar components
φi, the so-called F-term potential

VF (φi) =
∑
i

|Fi|2 , (4.50)

where the Fi are eliminated by inserting their respective equations of motion.

Vector Superfields

Another possibility to obtain an irreducible piece from a reducible, general super-
field is via the reality constraint V = V̄ . This gives rise to real superfields or vector
superfields. In the so-called Wess-Zumino gauge, they can be written in component
form as [81]

V = −θσµθ̄Aµ(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) +
1

2
θ2θ̄2D(x) . (4.51)

Here Aµ represents a familiar gauge field, λα is a spinorial field called gaugino and
D is another auxiliary field, which is just the D-term. To obtain a Lagrangian that
is SUSY and gauge invariant, one defines a field-strength superfield, which is given
by

Wα = −1

4
D̄2DαV , W̄α̇ = −1

4
D2D̄α̇V (4.52)

for an abelian gauge symmetry and by

Wα = −1

4
D̄2e−VDαeV , W̄α̇ = −1

4
D2e−V D̄α̇eV (4.53)

for a non-abelian gauge symmetry. Wα is again a chiral superfield so that a SUSY
invariant Lagrangian can be constructed as [81]

Lgauge =
1

4
tr
(∫

d2θWαWα +

∫
d2θ̄W̄ α̇W̄α̇

)
= tr

(
−1

4
FµνF

µν − iλσµDµλ̄+
1

2
D2

)
,

(4.54)
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which are just the canonical kinetic terms of the gauge field Aµ and the fermionic
gaugino λ plus the auxiliary field D. Just like in the case of the F-term, integrating
out the D field gives rise to a so-called D-term potential VD(φi). In the case of a
U(1) gauge field, it is also possible to include the D-term of the vector superfield
V itself to the SUSY invariant Lagrangian, which is the so-called Fayet-Iliopoulos
(FI) term:

LFI = ξ

∫
d2θd2θ̄V , (4.55)

which also contributes to the D-term scalar potential. Interactions between vector
and chiral superfields can be realised by modifying the Kähler potential, e.g. as

K = Φ̄eV Φ , (4.56)

or by multiplying the gauge kinetic terms Lgauge with a holomorphic gauge kinetic
function f(Φi):

Lgauge =
1

4

[∫
d2θf(Φi)tr (WαWα) +

∫
d2θ̄f̄(Φ̄ī)tr

(
W̄ α̇W̄α̇

)]
. (4.57)

SUSY Breaking

Finally, it is important to discuss the issue of SUSY breaking. Since modern particle-
accelerator experiments have not found any evidence for supersymmetry up to an
energy scale of ∼ O(TeV), it is clear that a realistic scenario must have broken su-
persymmetry at the low-energy limit. Favourable are models which restore SUSY
above the so-called SUSY scale MSUSY > O(TeV) and are subject to spontaneous
symmetry breaking below that scale, very much like in the case of electroweak
symmetry breaking.

On the technical level, this means that the action of a theory with spontaneous
SUSY breaking should retain SUSY invariance but its ground state should break it:

Qα|0〉 6= 0 . (4.58)

From Eq. (4.42), we can write down the Hamiltonian of the theory, which is just the
zero-component of the four-momentum [81],

H = P0 =
1

4

(
Q̄1Q1 +Q1Q̄1 + Q̄2Q2 +Q2Q̄2

)
. (4.59)

Crucially, SUSY invariance of the vacuum state Qα|0〉 = 0 is equivalent to a van-
ishing vacuum energy 〈0|H|0〉 = 0. The latter is simply given by the vacuum
expectation value of the scalar potential generated by all F-terms and D-terms (and,
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if present, FI terms),

〈0|H|0〉 = 〈0|V |0〉 = 〈0|VF + VD|0〉 =
∑
i

|Fi|2 +
∑
a

|Da|2 . (4.60)

Depending on whether some of the F-terms or D-terms acquire a non-vanishing
vacuum expectation value, one speaks of F-term or D-term breaking of the theory
where it is obviously also possible that a combination of F- or D-terms leads to
SUSY breaking. We conclude that for globally supersymmetric models, a vacuum
state that retains SUSY corresponds to a vanishing cosmological constant, i.e. a
Minkowski space.

Supergravity

Until now, supersymmetry has been treated as a global symmetry on a flat space.
The generalisation to a local symmetry on a curved space is called supergravity.
Here the spacetime graviton gµν is the component of another supermultiplet, which
besides some auxiliary fields contains another physical field: the gravitino ψµα,
which carries spin 3/2 and represents the graviton’s superpartner. The total, four-
dimensional SUGRA action has been derived in [76], in the superspace approach
as well as in component form, and is rather involved, which is why we only quote
some important terms and features of it.

A supergravity theory is completely specified by the three functions K, W and
fab, which are the Kähler potential, the superpotential and the gauge kinetic func-
tion, respectively. It is invariant under so-called Kähler transformations

K(Φi, Φ̄ı̄)→ K(Φi, Φ̄ı̄) + F (Φi) + F̄ (Φ̄ı̄) , (4.61)

where F is an arbitrary holomorphic function of the chiral superfields Φi. In com-
ponent form, the action of a four-dimensional, N = 1 SUGRA, where N denotes
the number of SUSY generators, gives rise to the following terms [76, 79, 81]:

• An Einstein-Hilbert term for gµν :

LSUGRA ⊃
√
−g
2

R . (4.62)

• A so-called Rarita-Schwinger Lagrangian; that is, a kinetic and mass term
for the gravitino ψµα:

LSUGRA ⊃
√
−g
[
εµνρσψ̄µσ̄νDρψσ − eK/2

(
W̄ψµσ

µνψν +Wψ̄µσ̄
µνψ̄ν

)]
,

(4.63)

71



4. Introduction

where Dρ is a covariant derivative w.r.t. the underlying gauge group, diffeo-
morphisms and Kähler transformations (4.61).

• Kinetic terms for the scalars φi and their fermionic superpartners χi:

LSUGRA ⊃
√
−gKij̄

[
(Dµφi)(Dµφ̄j̄) + iχ̄j̄σ̄µDµχi

]
, (4.64)

where the so-called Kähler metric Kij̄ ≡ ∂2K/(∂Φi∂Φ̄j̄) acts as a kinetic
mixing matrix.

• Kinetic terms for the gauge bosonsA(a)
µ and their fermionic superpartners λ(a)

called gauginos as well as axionic couplings of the gauge bosons

LSUGRA√
−g

⊃ Re(fab)

[
−1

4
F (a)
µν F

(b)µν − iλ̄(a)σ̄µDµλ(b)

]
− 1

4
Im(fab)F

(a)
µν F̃

(b)
µν .

(4.65)

• A scalar potential for the φi, consisting of an F-term and a D-term potential:

LSUGRA√
−g

⊃ VF = eK
[(
K−1

)ij̄
(DiW )(D̄j̄W̄ )− 3|W |2

]
, (4.66)

LSUGRA√
−g

⊃ VD =
1

2

[
Re(f−1)

]ab
DaDb , (4.67)

where (K−1)
ij̄ is the inverse of the Kähler metric Kij̄ . Here one needs to

take care not to confuse the Di in VF , which is a Kähler covariant derivative
DiW = ∂iW +W∂iK, with the Da in VD, which are the D-terms.

Besides the above terms, there are many other ones in LSUGRA, which induce cou-
plings between the scalars φi and fermions χi from the chiral multiplets Φi, the
gauge bosons A(a)

µ and gauginos λ(a) as well as the gravitino ψµα.
As in the case of global supersymmetry, spontaneous SUSY breaking in SUGRA

occurs by F- or D-terms which acquire a non-vanishing vacuum expectation value.
In SUGRA, the F-terms are given by [79]

Fi = eK/2
(
K−1

)ij̄
D̄j̄W̄ . (4.68)

Comparing Eqs. (4.50) with (4.66) and (4.68), we notice that, analogously to global
SUSY, the SUGRA F-term potential is again given by the F-terms but with an addi-
tional term−3 exp(K)|W |2, which is inherent in SUGRA and has no counterpart in
global SUSY. This term is responsible for the crucial fact that in SUGRA a super-
symmetric vacuum state does not necessarily represent a Minkowski space but can
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also and often will be anti-de Sitter. Another interesting feature becomes apparent
by inspecting Eq. (4.63), from which we can read off that the gravitino mass is given
by

m2
3/2 =

〈
eK|W |2

〉
, (4.69)

where the brackets 〈 · 〉 denote the vacuum expectation value. With that, we can
write the vacuum expectation value of the F-term potential as

〈VF 〉 =
∑
i

| 〈Fi〉 |2 − 3m2
3/2 . (4.70)

Since the observed vacuum energy density in the late-time universe is very small
compared to the natural values of F and m3/2, this implies a precise cancellation
between the two terms so that the SUSY breaking scale is F ∼ m3/2. As we
will see later, this represents a huge challenge for string phenomenology and the
implementation of a stringy dark energy, which is one of the main findings of this
work.

4.1.3. Superstring theory

As mentioned before, bosonic string theory has two major drawbacks: the absence
of fermions and a tachyonic zero mode. We take this as a motivation to quote
the basic concepts of superstring theory, which solves both of these drawbacks by
implementing SUGRA into string theory. Our main references for this subsection
are [71, 72, 79]. There are two approaches to do so: In the so-called Ramond-
Neveu-Schwarz formalism, SUSY is manifest on the two-dimensional worldsheet
theory, whereas in the Green-Schwarz formalism it is so in the target space. It is a
non-trivial but nevertheless true statement that both formalisms are equivalent and
we will only quote the former in here.

We start by promoting the two-dimensional worldsheet to a superspace, which
besides the worldsheet coordinates ξa = (τ, σ) is parameterised by two Grassman
coordinates θα. Likewise, the target-space coordinates Xµ, which as we remember
are merely a collection of D massless scalar fields living on the worldsheet, are
promoted to the scalar components of superfields:

Y µ(ξ, θ) = Xµ(ξ) + θ̄ψµ(ξ) +
1

2
θ̄θBµ(ξ) , (4.71)

where the ψµ are the fermionic superpartners and Bµ is an auxiliary field. Note that
Y µ are not chiral superfields but depend on θ as well as θ̄ and that the ψµ fields also
carry a spinorial index, which is suppressed and is contracted with θ̄. The generator
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of SUSY transformations is given by [72]

Qα =
∂

∂θ̄α
+ i(ρaθ)α

∂

∂ξa
, (4.72)

where ρa are the two dimensional dirac matrices defined by the anticommutator
relations {

ρa, ρb
}

= −2ηab , (4.73)

with ηab the two-dimensional Minkowski metric. A possible representation is

ρ0 =

0 −i

i 0

 , ρ1 =

0 i

i 0

 . (4.74)

A SUSY transformation then corresponds to an infinitesimal translation in the su-
perspace, which is generated by the Qα:

δξa = [ε̄Q, ξa] = iε̄ρaθ , (4.75)
δθα = [ε̄Q, θα] = εα , (4.76)

where εα is a constant, anticommuting, spinorial infinitesimal parameter. Likewise,
the superfields are subject to the transformation [72]

δY µ = [ε̄Q, Y µ] = ε̄QY µ , (4.77)

which implies that the components transform as

δXµ = ε̄ψµ , (4.78)
δψµ = −iρaε∂aXµ +Bµε , (4.79)
δBµ = −iε̄ρa∂aψµ . (4.80)

In order to write down the SUSY equivalent of the Polyakov action (4.8), we must
be able to construct supersymmetric kinetic terms, which is why we need a SUSY-
covariant derivative:

Dα =
∂

∂θ̄α
− i(ρaθ)α

∂

∂ξa
. (4.81)

Acting this derivative on a superfield will again yield a superfield. Thus we can give
the action of a superstring in flat space [71]:

S =
i

4π

∫
d2ξd2θ

(
D̄αY µ

)
(DαYµ) , (4.82)
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which expanded into component form reads

S = − 1

2π

∫
d2ξ
(
∂aX

µ∂aXµ − iψ̄µρa∂aψµ −BµBµ

)
. (4.83)

As we can see, the auxiliary fields Bµ have no dynamics and can be integrated out
as Bµ = 0.

Until now we have treated SUSY as a global worldsheet symmetry on a flat space.
In order to promote it to a local symmetry, ε is turned from a constant parameter to a
general function on the worldsheet ε(ξ). As in the case of SUGRA, this requires the
incorporation of the worldsheet metric hab and its SUSY partner χaα, the gravitino,
where a is a vectorial index parameterising the worldsheet and α is a spinorial one.
Note that in contrast to Section 4.1.2, here we have adopted the notation of Ref. [72]
where χ denotes the gravitino and ψ other fermionic felds. Furthermore, it is com-
mon not to work with the metric hab directly but with zweibein fields, defined by

hab = emae
n
aηmn . (4.84)

As a first ansatz, we can now generalise Eq. (4.83) to a curved space by replacing
ηab by the general worldsheet metric hab and the partial derivative ∂a by a covariant
one ∇a. The latter is built from the usual Levi-Civita connection Γ and a spin
connection ω and is defined to vanish when applied to the zweibein [79],

∇ae
m
b = ∂ae

m
b + (ωa)

m
ne
n
b − Γcabe

m
c ≡ 0 . (4.85)

As it is mentioned in Ref. [72], in the case of two-dimensional Majorana spinors,
the connection does not contribute to the action so that we can simply write

S2 = − 1

2π

∫
d2ξe

(
hab∂aX

µ∂bXµ − iψ̄µρa∂aψµ
)
, (4.86)

where e ≡ det(ema) and we have integrated out Bµ. The subscript ‘2’ denotes the
second-order nature of this action in the fields. This specificity is appropriate due
to the fact that Eq. (4.86) is not the only contribution to the total superstring action.
Namely, under the SUSY transformations (4.78) – (4.80) but with ε a function of ξ,
the action is not invariant but receives a term [72, 79]

δεS2 =
2

π

∫
d2ξ
√
−h (∇aε̄J

a) , (4.87)

due to the derivative of ε̄ where

Ja =
1

2
ρbρaψµ∂bXµ (4.88)
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is the so-called supercurrent, which is conserved under global SUSY transforma-
tions. This variation of the action can be cancelled by the addition of a third-order
counter term

S3 = − 1

π

∫
d2ξeχ̄aρ

bρaψµ∂bXµ , (4.89)

where the gravitino transforms as

δχa = ∇aε . (4.90)

Although with the term S3 the variation δεS2 can be compensated, another contribu-
tion ∝ ∇ε is induced by this due to the variation of Xµ in S3. The latter is balanced
by an additional, fourth-order counter term:

S4 = − 1

4π

∫
d2ξeψ̄µψ

µχ̄aρ
aρbχb. (4.91)

The total superstring action is then given by [72, 79]

Sstring = S2 + S3 + S4 , (4.92)

and is invariant under local SUSY transformations [72]

δXµ = ε̄ψµ , (4.93)

δψµ = −iρaε
(
∂aX

µ − ψ̄µχa
)
, (4.94)

δema = −2iε̄ρaχa , (4.95)
δχa = ∇aε , (4.96)

with ε = ε(ξ). Here it is noteworthy that δψ has undergone a further modification as
compared to Eq. (4.79) in order to ensure local SUSY invariance. Moreover, Sstring

possesses, analogously to the bosonic Polyakov action (4.8), a local Weyl symmetry

δXµ = 0 , (4.97)

δψµ = −1

2
Ω(ξ)ψµ , (4.98)

δema = Ω(ξ)ema , (4.99)

δχa =
1

2
Ω(ξ)χa , (4.100)
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as well as a local fermionic symmetry

δχa = iρaη , (4.101)
δXµ = δψµ = δema = 0 (4.102)

where η is an arbitrary Majorana spinor, i.e. it fulfills the reality condition η = η∗.
With the three symmetries (4.93) – (4.102) together, this theory is called supercon-
formal.

As in the case of bosonic string theory, we can now use the diffeomorphism in-
variance of the worldsheet together with the local Weyl symmetry (4.97) – (4.100)
to go to the flat-gauge worldsheet metric hab = ηab. This corresponds to the elimi-
nation of the zweibein field ema = 0. Additionally, the local SUSY (4.93) – (4.96)
together with the local fermionic symmetry (4.101) and (4.102) allow us to elimi-
nate the gravitino χa. Thus, the superstring action simplifies again to [79]

Sstring = − 1

2π

∫
d2ξ
(
∂aX

µ∂aXµ − iψ̄µρa∂aψµ
)
, (4.103)

which, as in the case of bosonic string theory, has to be accompanied with the
equations of motion for ema and χa [72]

Tab = ∂aX
µ∂bXµ +

i

2
ψ̄µρ(a∂b)ψµ −

1

2
ηab

(
∂cXµ∂

cXµ +
i

2
ψ̄µρc∂cψµ

)
= 0 ,

(4.104)

Ja ≡ −
π

2e

δS

δχa
=

1

2
ρbρaψ

µ∂bXµ = 0 , (4.105)

which are the so-called super-Virasoro constraints. For this simplified action, we
can then again perform a mode decomposition, however, this time not only for the
bosonic coordinatesXµ but also for the fermionic ones ψµ. Since the bosonic sector
behaves just as before, let us focus on the fermionic one. Writing the components
of the spinor explicitly

ψµ =

ψµ−
ψµ+

 , (4.106)

and changing to worldsheet light-cone coordinates (4.11), the fermionic sector of
Eq. (4.103) can be written as [79]

Sstring ⊃ SF =
i

π

∫
dξ+dξ− (ψµ−∂+ψ

µ
− + ψµ+∂−ψ

µ
+) . (4.107)
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The equations of motion
∂∓ψ

µ
± = 0 , (4.108)

imply that ψµ+(ξ+) and ψµ−(ξ−) are left- and right-moving waves, respectively. Since
Lorentz invariance requires that fermions appear quadratically in any observable, a
change of sign in the ψµ is not detectable so that their boundary conditions allow
for a for a factor +1 or −1 after one string length l:

ψµ−(τ, σ) = ±ψµ−(τ, σ + l) , ψµ+(τ, σ) = ±ψµ+(τ, σ + l) , (4.109)

which should be compared to Eq. (4.15). Note that the sign for the left- and right-
moving waves can be chosen indepedently where boundary conditions with no sign
change represent the so-called Ramond (R) sector and those with a sign change
represent the Neveu-Schwarz (NS) sector. The corresponding mode expansions are
given by [80]

ψµ−(ξ−) =

√
2π

l

∑
n∈Z

βµne−
2π
l
inξ− , (4.110)

ψµ+(ξ+) =

√
2π

l

∑
n∈Z

β̃µne−
2π
l
inξ+

, (4.111)

for the R sector and by

ψµ−(ξ−) =

√
2π

l

∑
r∈Z+1/2

βµr e−
2π
l
irξ− , (4.112)

ψµ+(ξ+) =

√
2π

l

∑
r∈Z+1/2

β̃µr e−
2π
l
irξ+

, (4.113)

for the NS sector. Due to the independent sign choice of left- and right-moving
waves, there are four possible combinations for closed strings, representing different
sectors: NS–NS, R–NS, NS–R and R–R. For reasons that we will explain further
below, the NS–NS and R–R sectors contain bosonic physical states whereas the
R–NS and NS–R sectors contain fermionic ones.

Let us now again perform a light-cone quantisation by rotating the temporal and
one spatial direction of the fermionic fields

ψ± ≡ 1√
2

(ψ0 ± ψD−1) . (4.114)

It is important not to confuse ψ+ and ψ−, where the target-space directions µ have
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been rotated to + and −, with ψ− and ψ+, which are the spinorial components of
ψµα as given in Eq. (4.106).

In the bosonic case, a residual gauge freedom on the worldsheet coordinates ξ
allowed us to eliminate the oscillatory modes of X+ (cf. Eq. (4.20)). Furthermore,
the Virasoro constraint Tab = 0 has been used to relate the modes of X− to the
transverse ones (cf. Eqs. (4.21) and (4.22)). In a similar manner, there is a residual
freedom of local SUSY transformations which do not spoil the chosen flat gauge.
With this residual gauge freedom, we can completely eliminate the component

ψ+ = 0 . (4.115)

Moreover, with the super-Virasoro constraints (4.104) and (4.105), we can again ex-
press the oscillatory modes ofX− and ψ− in terms of the transversal ones; however,
in contrast to the bosonic case, there is now a mixing of target-space and fermionic
modes [72]

α−n =
1√

2α′p+

(
∞∑

m=−∞

αin−mα
i
m +

∞∑
r=−∞

(
r − n

2

)
bin−rb

i
r

)
, (4.116)

b−r =

√
2

α′
1

p+

∞∑
s=−∞

αir−sb
i
s . (4.117)

This should be compared to Eq. (4.22). Of course, there are analogous relations
for the left-moving wave modes α̃−n and β̃−r . We see that, as in the bosonic case,
only the transverse modes are physical degrees of freedom. In order to quantise the
theory, we promote these modes to operators. Their corresponding anticommutator
relations read

{βir, βjs} = {β̃ir, β̃js} = δr+s,0δij , (4.118)

which have to be complemented with the commutator relations (4.27) for the αin
and α̃in. Obviously, due to the (anti-)commutator relations, the order of the operator
products in Eqs. (4.116) and (4.117) becomes relevant, which is taken care of via
normal ordering and the introduction of a normal ordering constant.

Again, it is important to ensure the criticality of the theory, that is the absence of
a quantum anomaly of the Lorentz algebra. This can be achieved by choosing the
target-space dimensionality to be D = 10.

In order to construct physical states, we need to define a ground state and let the
operators αin and βir with |n| < 0 and |r| < 0, representing creation operators, act
on it. The left- and right moving waves of a closed string individually behave like
those of an open string. Except for a level-matching condition that ensures the same
mode number of left and right movers, they are independent from each other [71].
Hence, the states of a closed string correspond to a tensor multiplication of open-
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string states for which we will analyse the spectrum separately in the NS and R
sector.

The mass of an NS state is given by [71]

M2
NS =

1

α′

(
N

(X)
⊥ +N

(ψ,NS)
⊥ − 1

2

)
, (4.119)

where

N
(X)
⊥ =

∞∑
n=1

αi−nα
i
n , (4.120)

N
(ψ,NS)
⊥ =

∞∑
r=1/2

rβi−rβ
i
r , (4.121)

are the number operators that count the level of excitation of transverse X and ψ
modes, respectively. The ground state, defined by

αin|0; p〉NS = βir|0; p〉NS = 0 ∀n, r > 0 , (4.122)

has excitation level zero and therefore a mass

M2
NS = − 1

α′2
. (4.123)

It is therefore again tachyonic, which in contrast to bosonic string theory how-
ever, can be remedied as explained below. The first excited level, N (X)

⊥ = 0 and
N

(ψ,NS)
⊥ = 1/2, is obtained by acting the operator bi−1/2 on the ground state:

βi−1/2|0; p〉NS . (4.124)

The ground state does not carry any target-space indices and is therefore a spacetime
scalar whereas the operaor βin carries one index i. Hence, the state (4.124) is a
spacetime vector with mass α′M2

NS = 1/2− 1/2 = 0.
In the R sector, the mass of a state is given by [71]

M2
R =

1

α′

(
N

(X)
⊥ +N

(ψ,R)
⊥

)
, (4.125)

with

N
(ψ,R)
⊥ =

∞∑
n=1

nβi−nβ
i
n . (4.126)
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The ground state is again defined by

αin|0; p〉R = βin|0; p〉R = 0 ∀n > 0 , (4.127)

however, since the zero modes βi0 do not appear in the number operator N (ψ,R)
⊥ , we

can act them on the ground state

βi0|0; p〉R (4.128)

without changing its mass. Therefore the Ramond-sector ground state is degenerate.
According to Eq. (4.118), the zero modes fulfill the Clifford algebra

{βµ0 , βν0} = ηµν , (4.129)

so that the ground state becomes a target-space spinor that carries a spinorial index

|0; p;α〉R , (4.130)

with α ranging from 1 to 32. Excited states can now be constructed by acting the
bosonic or fermionic creation operators αi−|n| and βi−|n| on this state. However,
according to Eq. (4.125), already the first excited level, which is obtained by acting
either αi−1 or βi−1 on |0; p;α〉R, is heavy. It is worth mentioning that all states in
the Ramond sector represent spacetime spinors. This is the case because the ground
state is a spacetime spinor whereas the creation operators are spacetime vectors
(βi only carries a worldsheet-spinor index but not a target-space one) so that the
spinorial structure remains unaffected.

The GSO Projection

The key ingredient to discard the tachyonic NS ground state is the so-called Gliozzi-
Scherk-Olive (GSO) projection, which maps the set of allowed physical states to a
subset, in which the tachyon is absent. Crucial is the observation that |0; p〉NS has
an even number of fermionic excitation modes, namely zero. The operator [71]

GNS ≡ (−1)FNS+1 , (4.131)

where FNS =
∑∞

r=1/2 β
i
−rβ

i
r is the fermion number, assigns a positive sign to NS

states with an odd number of fermionic oscillatory modes and a negative sign to
states with an even one. The respective operator for the R sector is defined as

GR ≡

(
9∏
i=0

Γi

)
(−1)FR , (4.132)
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where FR =
∑∞

n=1 β
i
−nβ

i
n and Γi are the ten-dimensional Dirac matrices. Keep-

ing now only states with positive GNS, i.e. odd fermion number in the NS sec-
tor, the tachyonic NS ground state is projected out whereas the first excited level
βi−1/2|0; p〉NS and the R ground state |0; p;α〉R are retained. In fact, to get rid of
the tachyon, it is indeed only necessary to project to positive G states in the NS
sector whereas the R sector can be projected to either positive or negative states.
For closed strings, this projection can now be performed independently for left- and
right-moving states. Together with some other consistency conditions, this gives
rise to only two possible, tachyon-free theories: type IIA and type IIB string the-
ory [71]. In the former, left- and right-moving R states are projected to different
signs under the GR operator whereas in the latter the signs are the same. That is,
the four closed-string sectors of type IIA string theory are NS+–NS+, R−–NS+,
NS+–R+ and R−–R+ and of type IIB string theory NS+–NS+, R+–NS+, NS+–R+

and R+–R+ where the subscript denotes the sign under action of the G operator.
Both theories are subject to a so-called extended supersymmetry withN = 2 SUSY
generators, which explains the number ‘II’ in their name. However, since in the
low-energy effective theories we will be studying this extended SUSY is broken
down to the usual N = 1, we will not bother to elaborate on this topic. The main
difference between the two theories is that type IIB is a chiral theory while type IIA
is a non-chiral one. The reason for this is that in type IIA the different signs for
left and right movers in the R sectors imply an opposite chirality of these fermionic
states whereas in type IIB the equal signs imply the same chirality.

We will from now on only be dealing with type IIB theory because it is arguably
the theory that allows for the most calculational control for phenomenological stud-
ies. To close this section, let us list the massless states of the type IIB closed-string
sectors:

• NS–NS: This sector contains the states that we already know from bosonic
string theory: a target-space graviton gµν , an antisymmetric Kalb-Ramond
p-form field B[µν] and a scalar field Φ called dilaton.

• R–NS and NS–R: The fermionic states in this sector consist of one spin 3/2
gravitino and one spin 1/2 dilatino per sector. The existence of two gravitini
in total corresponds to the extended N = 2 SUSY.

• R–R: In this sector there are novel p-form fields where p is even valued: C0,
C2 and C4.
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4.2. String phenomenology

In the last section, we have introduced the most important basics of superstring
theory, which led us to the definition of type IIB string theory. The latter constitutes
the most extensively studied sector of string theory, which is why we will only be
dealing with this theory in what follows. The goal is now to make contact with
our four-dimensional world. In this procedure, we will start by quoting the low-
energy limit of type IIB string theory, which is a ten-dimensional N = 2 SUGRA
theory. Then a Kaluza-Klein compactification of the internal, six-dimensional space
is applied, which results in an effective four-dimensional N = 2 SUGRA, where
many degrees of freedom from the internal space arise in the form of a plethora of
massless scalar fields called moduli. Here in a so-called orientifold projection, the
extended, four-dimensional N = 2 SUSY is broken down to N = 1. For reasons
of consistency, that is in order to fulfill a so-called tadpole cancellation, this also
requires the inclusion of D-branes as will be explained later. Since a large amount of
massless scalar fields would imply a significant violation of observations, it will be
of special interest to stabilise the moduli fields, i.e. to generate a scalar potential for
them. This will ultimately lead us to the so-called Large Volume Scenario (LVS),
which makes use of a large internal volume to achieve some level of calculational
control by expanding in the inverse of the volume, that represents a small parameter.
The LVS constitutes the overall setting of the work presented in this part.

4.2.1. Type IIB ten-dimensional supergravity

We begin the path to our four-dimensional world with a formulation of the low-
energy limit of type IIB string theory in action form where we will focus on the
bosonic sector. Our main references for this section are [68, 69, 71, 79]. As men-
tioned before, the massless spectrum consists of the ten-dimensional metric gµν , the
antisymmetric Kalb-Ramond field B[µν] and the dilaton Φ in the NS–NS sector, of
the p-form fields C0, C2 and C4 in the R–R sector, and of fermions in the mixed
sectors R–NS and NS–R. These degrees of freedom also constitute the field content
of the resulting ten-dimensional SUGRA that represents the low-energy limit. The
bosonic sector of the action can be classified into three parts [68, 69, 71]

SIIB = SNS + SR + SCS . (4.133)

The Neveu-Schwarz part is given by [69]

SNS =
1

2κ2
10

∫
d10x
√
−ge−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H3|2

)
, (4.134)
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where κ10 is the ten-dimensional gravitational coupling, given by 2κ2
10 = (2π)7α′4 =

l8s /(2π) = (2π)7M−8
s , and H3 ≡ dB2 is the exterior derivative of the 2-form Kalb-

Ramond field B2, i.e. its field-strength tensor, and can be written as

|H3|2 =
1

3!
HµνρH

µνρ. (4.135)

This part of the action corresponds to the massless states of the bosonic string and
should be compared to Eq. (4.34). Additionally, there is the Ramond part, which
has no counterpart in bosonic string theory and is given by [69]

SR = − 1

4κ2
10

∫
d10x
√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (4.136)

where

F̃3 = F3 − C0H3 , (4.137)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 , (4.138)

with ∧ being the totally antisymmetric tensor product. Here the Fp+1 are the exte-
rior derivatives of the p-form fields Cp, respectively, i.e. their field-strength tensors,
which are given by

|Fn|2 =
1

n!
Fµ1···µnF

µ1···µn . (4.139)

The composition via the tilde field strengths is required to retain gauge invariance.
Furthermore, the 5-form field strength fulfills a self-duality condition that has to be
imposed on the equations of motion by hand:

F̃5 = ?F̃5 , (4.140)

where ? is the Hodge star operator, which maps a p-form on a D-dimensional mani-
fold to a D−p-form. Finally, the so-called Chern-Simons (CS) term corresponds to
the integral of a p-form over a whole D-dimensional manifold with p = D, which
does not depend on the metric and, in the case of type IIB theory, is given by [69]

SCS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3 . (4.141)

Note that due to the nilpotency of the exterior derivative, that is d(dωp) = 0 for
any p-form ωp, and the antisymmetry of the wedge product ∧, there is no other
combination to construct a 10-form from B2, the Cp and their field strengths H3

and Fp+1 other than the one in Eq. (4.141).
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Additionally to the bosonic sector SIIB, the theory can contain local objects,
which are so-called Dp-branes.2 Here the letter ‘D’ stands for ‘Dirichlet’ because
these branes act as hypersurfaces to which open strings with Dirichlet boundary
conditions are attached to whereas the p denotes the spatial dimensionality of the
brane. Importantly, Dp-branes are not only abstract solutions for the trajectories of
the endpoints of open strings but rather represent dynamical objects that traverse
the ten-dimensional spacetime.

One crucial insight about brane phenomenology is the fact that open strings with
both ends attached to a brane give rise to a U(1) gauge theory living on this brane
in the low-energy limit. Furthermore, one can consider a whole stack of N parallel
Dp-branes of equal dimensionality. There will then be a degeneracy at the endpoints
of open strings resulting from the circumstance that each endpoint can be attached
to a separate brane of the stack, respectively. This degeneracy leads to an extension
of the corresponding gauge group from U(1) to U(N). If one now adds a second
stack of M branes which intersects the first one, open strings that start on one stack
and end on the other are confined to the intersection space and behave as fermions
that are charged under the combined gauge group U(N)×U(M) in the low-energy
limit. This is a key ingredient in many attempts to construct GUT-like theories or
the SM gauge group in string phenomenology. Generally, the dynamics of a stack
of p-branes in an ambient space and the corresponding gauge theory living on it is
described by the so-called Dirac-Born-Infeld (DBI) action [69]:

SDBI = −Tp
∫
R1,p

dp+1ξ Tr
[
e−Φ
√
− det (Gab +Bab + 2πα′Fab)

]
, (4.142)

where ξ are brane coordinates, the integral goes over the brane worldvolume R1,p,
Tp = 2π/lp+1

s is the brane tension, the trace runs over the generators of the gauge
group, Fab is the field strength of the gauge group, andGab andBab are the pullbacks
of the spacetime metric and the Kalb-Ramond field to the brane worldvolume:

Gab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν , (4.143)

Bab =
∂Xµ

∂ξa
∂Xν

∂ξb
Bµν . (4.144)

Expanding the square root in Eq. (4.142) gives rise to the effective action of the
Yang-Mills theory living on the brane stack, which at quadratic order in α′ reads [84]

SDBI ⊃ SYM = − 1

4(2π)gsl
5+p
s

∫
dp+1ξ

√
−g TrFabFab , (4.145)

2Depending on the context, one often also speaks of ‘D-branes’, ‘p-branes’ or simply ‘branes’.
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where Fab ≡ Fab + Bab/(2πα
′) and we used that the string coupling is determined

by the dilaton: gs = exp (〈Φ〉).
Besides the DBI action, Dp-branes also allow for CS terms where p + 1-form

fields are integrated over the brane. The corresponding, general action reads [68,
69]

Sbrane,CS = iµp

∫
R1,p

Tr

[
exp (2πα′F2 +B2) ∧

∑
q

Cq

]
, (4.146)

where µp = 2π/lp+1
s describes the charge of the p-brane under Cp+1. Here the sum

runs formally over all R–R p-form fields where through the integral the fitting terms
are picked out. This action contains the simple integral of the p+ 1-form field Cp+1

over the total worldvolume R1,p of the p-brane:

Sbrane,CS ⊃ µp

∫
R1,p

Cp+1 , (4.147)

This constitutes a natural coupling between any p-brane and a p+1-form field Cp+1,
which can be understood as a generalisation of an electron-photon coupling where
a 0-brane (particle) is charged under a 1-form field. Moreover, Sbrane,CS induces the
integral [84]

Sbrane,CS ⊃ 2π

∫
R1,q+3

Cq ∧
1

8π2
TrF2 ∧ F2 . (4.148)

over the q+ 3-brane, which represents the instanton action for axions as we will see
later.

In summary, the total action of the type IIB theory is given by

Stot,IIB = SIIB + SDBI + Sbrane,CS (4.149)

plus further fermionic terms stemming from the R–NS and NS–R sectors and with
the self-duality condition (4.140) imposed by hand.

4.2.2. Kaluza-Klein compactification, Calabi-Yau
manifolds and moduli spaces

The action (4.149) describes a ten-dimensional SUGRA with localised objects,
namely Dp-branes. However, as a matter of fact, on macroscopic scales the universe
is effectively four-dimensional. The most evident proof for this are the experiences
in our everyday life but this has also been tested by measurements of Newton’s
inverse-square law for gravity [85]. The latter imply that our universe remains ef-
fectively four-dimensional down to O(mm) length scales, which naively seems to
be a surprisingly large bound. This can be understood by keeping in mind that grav-
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ity, being a very weak force, is rather difficult to measure at small length scales.
In contrast, the other known forces due to SM gauge bosons are much stronger but
are typically constituted by open strings, as explained above, which are attached to
branes. and hence do not ‘feel’ the higher-dimensional bulk space [70].

As a consequence of our macroscopically four-dimensional universe, an imple-
mentation of a ten-dimensional SUGRA as a UV completion of the SM requires
that six of nine spatial directions must be compact and small enough to evade the
aforementioned bounds. In this subsection, we will mostly use the references [71,
79]. We also recommend [86] for a detailed, mathematical treatment of the fol-
lowing discussion about complex manifolds as well as homology and cohomology
groups.

Kaluza-Klein theory

The original idea of a compactified internal space stems from the Kaluza-Klein
(KK) theory [87–89], which describes general relativity on a 4 + 1-dimensional
spacetime with one of the spatial directions being compactified to a circle; that is
the theory lives on the manifoldM = R

1,3 × S1. For illustrative reasons, let us add
a scalar field to the five-dimensional Einstein-Hilbert action [79],

SKK =

∫
d5x
√
−g(5)

(
M3

P,(5)

2
R(5) +

1

2
∂Mφ∂

Mφ

)
, (4.150)

where the subscript ‘(5)’ indicates five-dimensional quantities and the capital-letter
index takes on the valuesM = 0 · · · 4. In order to find the effective, four-dimensional
theory, we have to integrate out the internal dimension, i.e. we have to replace∫

M
d5x→

∫
R1,3

d4x

∫
S1

dy , (4.151)

and perform the integral over y ≡ x4. Parameterising the internal direction by
y ∈ [0, 2πR], where R is the typical length-scale of the internal dimension or the
‘radius’ of the circle S1, it is clear that the scalar field – just like any other quantity
– must be periodic in the internal coordinate:

φ(x, y) = φ(x, y + 2πR) . (4.152)

As such, we can expand φ in sines and cosines of y [79]:

φ(x, y) =
∞∑
n=0

φcn(x) cos(ny/R) +
∞∑
n=1

φsn(x) sin(ny/R) . (4.153)
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We see that the zero-mode φc0 does not come with a factor that depends on y whereas
the other modes are multiplied by trigonometric functions. For this reason, when
one inserts the above expansion into Eq. (4.150) and integrates out y, φc0 is just
multiplied with 2πR and will act as a massless scalar field whereas the higher modes
obtain mass terms withm2

n = n2/R2 and build a so-called Kaluza-Klein tower. That
is, from a four-dimensional perspective below the KK scale mKK = 1/R, the five-
dimensional theory for φ appears as one four-dimensional, massless scalar mode
accompanied by an infinite tower of massive scalars. On the other hand, above the
KK scale the theory becomes effectively five-dimensional.

Furthermore, the five-dimensional Einstein-Hilbert action can be brought to a
low-energy 4D effective theory. Then the five-dimensional metric g(5)µν splits up
into the usual 4D metric gµν , a U(1) gauge field Aµ, whose symmetry is a con-
sequence of 5D diffeomorphism invariance and which is associated with the com-
ponents g(5)µ4, and a scalar field ϕ, which is associated with the component g(5)44.
The latter is also called a radion and parameterises the size of the internal dimension
ϕ ∼ R with the exact prefactor depending on conventions.

Calabi-Yau manifolds

Now we want to generalise the above ideas in order to compactify six out of nine
spatial dimensions in type IIB superstring theory. Obviously, moving from one
compactified dimension to six complicates things tremendously. One important
aspect to consider is that the 10D spacetime should allow for vacuum solutions of
the Einstein equations. The latter implies 10D Ricci flatness, which on the other
hand implies that the 6D internal space should be Ricci flat as well. Moreover,
when compactifying to four dimensions, we ask for a certain amount of SUSY
breaking. While retaining too many SUSY generators contradicts observations, a
total breaking of all SUSY would imply a loss of calculational control over loop and
α′ corrections, which will be further explained later. These requirements justify the
choice of Calabi-Yau (CY) manifolds as the internal space, which are by definition
Ricci flat and break 3/4 of the ten-dimensional SUSY [79].

To define a CY manifold, let us start with defining a complex manifold of complex
dimension n as a real manifold of real dimension 2n, whose transition functions be-
tween charts as well as their inverses are holomorphic [71]. This motivates to use
complex coordinates za and corresponding complex conjugates z̄ā, which do not
mix with each other by a change of coordinates. Moreover, a complex manifold im-
plies the existence of a globally defined, mixed tensor, the so-called complex struc-
ture, which fulfills J2 = −1 and whose components in the complex coordinates are
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given by3

J b
a = iδ b

a , J b̄
ā = −iδ b̄

ā , J b̄
a = J b

ā = 0 . (4.154)

Equipping a complex manifold with a metric, yields a complex Riemannian mani-
fold and if that metric can be locally written as the second derivative of a function

gab̄ =
∂

∂za
∂

∂z̄b̄
K(z, z̄) , (4.155)

one speaks of a Kähler manifold where the function K is called the Kähler poten-
tial.4 The general line element of a complex manifold can be written as [71]

ds2 = gabdzadzb + gab̄dz
adz̄b̄ + gābdz̄ādzb + gāb̄dz̄

ādz̄b̄ , (4.156)

but for a Kähler manifold, due to hermiticity of the metric as is implied by Eq. (4.155),
the elements gab = gāb̄ = 0 vanish. Moreover, in order for the metric to be real, gab̄
must be the complex conjugate of gāb. The hermiticity condition also allows us to
define the so-called Kähler form

J = igab̄dz
a ∧ dz̄b̄ , (4.157)

which is obtained by lowering one index of the complex structure with gab̄ and will
become important later. Crucially, we see that the Kähler metric gab̄ and Kähler
form J are closely related and in fact imply each other, once a specific complex
structure is given. Finally, one way to define a Calabi-Yau manifold is to identify it
as a compact Kähler manifold that is Ricci flat.

Since type IIB string theory and its corresponding low-energy N = 2 SUGRA
lives in ten dimensions, we need to compactify a total of six thereof. We are there-
fore especially interested in the properties of CY 3-folds. While there are only very
few examples of compact CY manifolds in one or two complex dimensions, namely
the two-torus T 2 for n = 1 and the four-torus T 4 and the K3 surface for n = 2, there
is a plethora of CY 3-folds and it remains an unsolved problem whether their num-
ber is even finite [71]. We will not elaborate deeply on the construction of CY
n-folds for n > 2 but merely mention that such a construction is possible as sub-

3Note that the existence on a complex structure on a real manifold is just a necessary but not a
sufficient condition for it to be a complex manifold. Only if additionally the so-called Nijenhuis
tensor vanishes, is it given that the transition functions are holomorphic and that the manifold is
complex.

4Note that the equality of the name ‘Kähler potential’ compared to the context of supergravity is
not accidental: The first term in Eq. (4.49) induces non-canonical kinetic terms for the chiral
superfields Φi of the form Kij̄∂µΦi∂µΦ̄j̄ where Kij̄ ≡ ∂Φi∂Φ̄j̄K. Thus the field space of the Φi

can be interpreted as a Kähler manifold with Kähler metricKij̄ derived from the Kähler potential
K.
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manifolds of so-called complex projective spaces. Basically, an n + 1-dimensional
complex projective space CP n+1 is a compact manifold defined as Cn+1/{0} with
the identification

(z1, . . . , zn+1) ∼ (λz1, . . . , λzn+1) , λ ∈ C/{0} . (4.158)

If we now constrain CP n+1 via a polynomial equation

Pol(z1, . . . , zn+1) = 0 , (4.159)

where Pol is a homogeneous polynomial of degree n+ 2, i.e.

Pol(λz1, . . . , λzn+1) = λn+2Pol(z1, . . . , zn+1) , (4.160)

then the resulting submanifold of CP n+1 is a CY n-fold. Several generalisations
are possible, for instance by starting with a so-called weighted complex projective
space instead, for which the identification in Eq. (4.158) is weighted with different
powers of λ for the individual zi [71, 79].

The topological structure of a CY n-fold can be characterised by its homology
and cohomology groups, which we will quickly summarise here. On a real manifold
M we can define p-forms Ap, which are antisymmetric rank-p tensors, and their
corresponding exterior derivatives dAp, which are p + 1-forms. A p-form Ap is
called closed if its exterior derivative vanishes dAp = 0 and is called exact if it
constitutes the exterior derivative of a p − 1-form Ap = dBp−1. Crucially, the
exterior derivative is nilpotent, i.e. d(dAp) = 0 for any p-form. We can then define
the p-th de Rham cohomology group of M as the quotient space of all closed p-
forms divided by all exact p-forms [79, 86],

Hp(M) =
{Ap|dAp = 0}

{Ap|Ap = dBp−1 for some Bp−1}
. (4.161)

In other words, Hp(M) consists of equivalence classes of all closed p-forms onM
with those p-forms which differ only by an exact p-form lying in the same class.

In a similar fashion, we can analyse submanifolds ofM. A linear superposition
of p-dimensional submanifolds is called p-chain. The boundary of a p-chain is again
a chain but of reduced dimensionality p − 1. A p-chain which has no boundary
is called a p-cycle. Noting that every boundary does not have a boundary itself,
i.e. is a cycle, one can now in analogy to the above treatment of p-forms define the
quotient space of p-cycles and p-chains which are a boundary. This is called the
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p-th simplicial homology group:

Hp(M) =
{p-cycles}

{p-dimensional boundaries}
. (4.162)

Intuitively,Hp(M) contains all p-cycles ofMwhere those p-cycles which differ by
a boundary are identified with each other. One can show that the cohomology and
homology groups of a given manifold have the same dimension for each p. These
dimensionalities are called the Betti numbers:

bp ≡ dimHp(M) = dimHp(M) , (4.163)

and they represent important topological data to characterise a manifoldM.
One important result, that we briefly want to mention here, is the fact that there

exists an isomorphism Hp(M) ' Hd−p(M) with d the dimensionality ofM. This
is known as Poincaré duality [79, 86].

In order to generalise the above discussion to the case of a complex manifold X ,
we first note that differential forms can now carry holomorphic and antiholomorphic
indices so that we may speak of (p, q)-forms [90],

Ap,q =
1

p!q!
Ai1···ipj̄1···j̄qdz

i1 ∧ · · · ∧ dzip ∧ dz̄ j̄1 ∧ · · · ∧ dz̄ j̄q . (4.164)

The complex analogue to the exterior derivative are the Dolbeault operators

∂ = dzi
∂

∂zi
, ∂̄ = dz̄ j̄

∂

∂z̄ j̄
, (4.165)

which add up to the exterior derivative, d = ∂+ ∂̄, but individually either act on the
holomorphic indices of Ap,q or on the antiholomorphic ones, respectively. Thus, ∂
maps Ap,q to a (p+ 1, q)-form and ∂̄ to a (p, q+ 1)-form. Both Dolbeault operators
are nilpotent like the exterior derivative. Therefore, we can define a separate coho-
mology group for each Dolbeault operator in analogy to the de Rham cohomology
group. For instance, for the antiholomorphic operator ∂̄, we have [79]

Hp,q

∂̄
(X)

{Ap,q|∂̄Ap,q = 0}
{Ap,q|Ap,q = ∂̄Bp,q−1 for some Bp,q−1}

. (4.166)

It turns out that in the case of Kähler manifolds and hence also CY n-folds, the
Dolbeault cohomology groups are identical for the respective operators ∂ and ∂̄ so
that a distinction between the two is superfluous. The complex analogue to the Betti
numbers are the so-called Hodge numbers, which count the dimensionality of the
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Dolbeault cohomology group

hp,q ≡ dimHp,q(X) , (4.167)

and provide a finer distinction w.r.t. the complex structure than the Betti numbers.
In fact, the two are related by

bk =
k∑
p=0

hp,k−p . (4.168)

Just like the Betti numbers provide important topological data for real manifolds,
so do the Hodge numbers in the case of complex ones. In order to provide a well-
structured depiction, they are often arranged in a so-called Hodge diamond, which
for even complex dimension n is given by

hn,n

hn,0 hn/2,n/2 h0,n

h0,0
(4.169)
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and for odd n by

hn,n

h(n+1)/2,(n+1)/2

hn,0 h(n+1)/2,(n−1)/2 h(n−1)/2,(n+1)/2 h0,n

h(n−1)/2,(n−1)/2

h0,0

(4.170)
Here the dotted lines represent other Hodge numbers hp,q inbetween.

In the case of CY manifolds, the topological structure is highly constrained so
that the Hodge diamond takes on a very specific form. For complex dimension
n = 3, which we will be mostly interested in, it is given by [71, 79]

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

From this, we can see that there are only two independent Hodge numbers, h1,1 and
h2,1, which are not fixed in a CY 3-fold. We furthermore note that h0,0 = 1, which
describes closed zero-forms, i.e. constant functions. This a universal property of
every compact connected Kähler manifold [90]. Finally, h3,0 and h0,3 corresponds
to a unique, harmonic three-form Ω and its antiholomorphic counterpart Ω̄ with

Ω =
1

6
Ωijk(z)dzi ∧ dzj ∧ dzk , (4.171)
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which plays an important role for the stabilisation of moduli fields as will be ex-
plained below. By harmonic we mean that

∆Ω = 0 , (4.172)

where ∆ ≡ dδ + δd is the Laplace-de Rham operator with δ ≡ (−1)p ?−1 d? being
the co-differential. The latter maps a p-form to a p− 1-form.

Metric moduli

We are now in the position to discuss deformations of the CY metric, which will
lead us to the introduction of metric moduli and their associated moduli space. In an
effective 4D description, these moduli will represent a priori massless scalar fields,
which gain a potential by including fluxes or perturbative and non-perturbative ef-
fects and which will be the main players for the dynamical systems that we consider
in the rest of this thesis.

To start from the beginning, we want to consider deformations of the metric
gmn → gmn + δgmn so that Ricci flatness is retained, Rmn(g) = Rmn(g + δg) = 0,
where the indices m and n can take on either holomorphic or anti-holomorphic
values. As an additional requirement to Ricci flatness of the perturbed metric, we
want to make sure that these deformations are ‘physical’ and not merely a change
of coordinates, so that we fix the gauge via [90]

∇mδgmn =
1

2
∇ng

mpδgmp . (4.173)

We can then perturb the metric by either δgab̄ or δgab and their respective hermitian
conjugates. Solving the vacuum Einstein equations for the perturbed metric together
with the gauge-fixing condition (4.173), it turns out that the above two sorts of
deformations decouple.

The former ones, δgab̄, are clearly related to a change of the Kähler form

δJab̄ = iδgab̄ . (4.174)

From Eq. (4.173) it also follows that the deformations and hence the Kähler form are
harmonic, which motivates to expand them in a basis of harmonic (1, 1)-forms [79],

J = tiωi , i ∈ {1, · · · , h1,1} . (4.175)

The prefactors ti of the expansion are the volumes of 2-cycles Σi
2 and are called

Kähler moduli. They are measured by integrating the Kähler form over their corre-
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sponding 2-cycle,

ti =

∫
Σi2

J , (4.176)

and their number corresponds to the number of the cohomologically distinct (1, 1)-
forms ωi, which is given by h1,1. We can also integrate the square of the Kähler
form over the 4-cycle Σi

4 that is Poncaré dual to ωi to obtain its volume [79]

τi =
1

2

∫
Σi4

J ∧ J =
1

2
κijkt

jtk , (4.177)

where κijk are the so-called triple intersection numbers

κijk ≡
∫
X

ωi ∧ ωj ∧ ωk . (4.178)

Finally, by integrating the cube of the Kähler form over the whole manifold X , we
obtain the overall internal volume in string units in the Einstein frame,

V =
1

6

∫
X

J ∧ J ∧ J =
1

6
κijkt

itjtk , (4.179)

from which we also infer the useful relation τi = ∂V/∂ti. Since the metric is
positive-definite, the quantities ti, τi and V are positive as well [90]. Instead of
the ti, we will most of the time use the τi to analyse and describe the resulting
dynamics, which contain the same information as the ti and to which we will also
refer as ‘Kähler moduli’.

One important aspect is the fact that when we compactify ten-dimensional type
IIB string theory on a CY 3-fold, the 4-cycle moduli τi combine with the integrals
of the R–R 4-form C4 over the respective 4-cycles into supermultiplets [79],

Ti = τi + iθi , θi =

∫
Σi4

C4 , (4.180)

which is called complexification of the moduli. The θi are intrinsically periodic and
represent axions with the above defined Kähler moduli τi being their corresponding
saxions. In a similar manner, the R-R 0-form field C0 and the dilaton combine into
the so-called axio-dilaton

S = C0 + ie−Φ , (4.181)

which is generically present in type IIB string theory. To recapitulate, the Ti and S
constitute superfields in the effective low-energy, four-dimensional SUGRA, which
is why their dynamics are governed by the respective terms described in Sec. 4.1.2.

95



4. Introduction

The other kind of metric deformation, δgab and its hermitian conjugate, violates
the hermiticity of the metric (4.156), which implies that gab and gāb̄ are zero. For
this reason, these deformations involve a change of the complex structure. Again the
gauge-fixing condition (4.173) implies harmonicity of these deformations; however,
unlike the Kähler deformations δgab̄, the δgab cannot be expanded in (2, 0)-forms.
The reason is simply that h2,0 = h0,2 = 0 for a CY 3-fold, which is why there are
none present. Nevertheless, one can use the unique 3-form Ω in order to expand in
(1, 2)-forms χ̄α [79, 90],

δgab =
i

||Ω||2
Ūα(χ̄α)ac̄d̄Ωbmng

mc̄gnd̄ , (4.182)

where the norm of Ω is given by

||Ω||2 =
1

3!
ΩabcΩ̄m̄n̄p̄g

am̄gbn̄gcp̄ . (4.183)

The parameters Ūα (or Uα for deformations δgāb̄) are called complex-structure mod-
uli and there are in total h2,1 of them. Analogously to the ti, they measure the rela-
tive sizes of 3-cycles, whose volumes are given by integrating Ω over the respective
cycles.

Before we conclude this subsection, let us briefly mention another subtlety on
the journey to a four-dimensional EFT. The natural brane content in type IIB string
theory are odd-dimensional p-branes that couple to the even-rank R–R p + 1-form
fields according to Eq. (4.147). The latter coupling, however, implies that these
branes are charged under Cp+1, which in a compact space, must be accompanied by
another contribution so that the overall charge cancels to zero. This is also called
tadpole cancellation [79]. Moreover, the compactification on a CY 3-fold still pre-
serves too much four-dimensional SUSY, namely N = 2 even though we would
require N = 1 in order to make contact with phenomenology (for instance, there
would be no scalar potential in N = 2 SUGRA). Both issues are remedied by the
inclusion of so-called orientifold planes (O-planes). Those are higher dynamical
objects; however, as opposed to branes they do not possess any dynamics. Instead
they are the product of a so-called orientifold projection, which mods out a discrete
group from the internal space as well as worldsheet parity, i.e. the orientability of
the strings. For further details and an introduction on orientifold projections we
refer to [91], whereas we only collect their most important implications here. As
already mentioned, the inclusion of O-planes allows us to break SUSY further to a
phenomenologically viable level. To be specific, in type IIB string theory compact-
ified on a CY manifold, an N = 1 SUSY is retained if either O3 and O7-planes
or O5 and O9-planes are included, whereas other combinations will break SUSY
completely [79]. Due to the resulting lack of calculational control, the latter are
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less favourable and we will disregard them. Moreover, we will also not consider
the combination of O5 and O9-planes but merely the case with only O3 and O7-
planes. The reason for that will become clear shortly. Importantly, let us note that
an O7-plane carries an R–R charge of opposite sign than a D7-brane. Therefore,
by placing stacks of O7-planes and D7-branes parallel to each other, we can al-
ways ensure that the corresponding R–R charges are locally cancelled. On the other
hand, a cancellation of D3 R–R charges appears more difficult and is currently de-
bated [92]. Generally, we infer that due to the tadpole cancellation Op-planes are
typically accompanied by Dp-branes. Consequently, in the scenarios we consider
there will only be D3 and D7-branes, which allow for a relatively simple embedding
of the SM sector, which either lives on a non-compact spacetime filling D3-brane
or a D7-brane, which wraps one or several internal 4-cycles while also filling the
residual non-compact dimensions. This justifies our choice of O3 and O7-planes.

To conclude this subsection, we summarise its most important aspects and try to
provide some further intuition. In order to make contact with our four-dimensional
world, we must compactify six spatial dimensions, which turns the ten-dimensional
low-energy type IIB SUGRA into a four-dimensional SUGRA. Reasonable criteria
on the internal space, as for instance Ricci flatness, suggest that CY 3-folds are good
candidates to this end. The latter also break the ten-dimensional N = 2 SUSY to
four-dimensional N = 2. The topology of a CY 3-fold X can be characterised by
the two Hodge numbers h1,1 and h2,1, which count the numbers of homologically
distinct (1, 1) and (2, 1)-cycles, respectively, i.e. lower-dimensional, boundary-less
submanifolds ofX . The sizes of these submanifolds are the so-called moduli, which
span a moduli space. The latter encompasses a family of many geometrically dis-
tinct CY 3-folds, which are continuously parameterised by besaid moduli. They can
be classified into Kähler moduli, ti, which measure the sizes of (1, 1)-cycles, and
complex-structure moduli, Uα, measuring the sizes of (2, 1)-cycles. Instead of the
former, we will often use τi, which are the sizes of 4-cycles and which are complex-
ified to include axionic superpartners θi. After compactification to four dimensions,
the moduli correspond to massless scalar fields, which require stabilisation due to
phenomenological reasons and whose dynamics we want to analyse in what follows.

4.2.3. Flux compactifications and moduli stabilisation

In the last subsection we have learned that compactification of the ten-dimensional
type IIB low-energy N = 2 SUGRA on a CY 3-fold X combined with an orien-
tifold projection yields a four-dimensionalN = 1 SUGRA. Here the moduli fields,
i.e. the sizes of boundary-less submanifolds of X become four-dimensional scalar
fields and are complexified into supermultiplets with their axionic partners. Let us
start by defining this resulting SUGRA, i.e. by giving expressions for the Kähler
potential, superpotential and gauge-kinetic function. The formulae presented in this
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subsection are based on [79], although we also recommend [93] for a detailed in-
troduction to flux compactifications.

The Kähler potential for the Kähler moduli simply reads

KK = −2 lnV , (4.184)

with the volume V given by Eq. (4.179). Note that the ti-moduli dependence of
V can straightforwardly be translated into a dependence of the τi-moduli so that
generically V is a function of the latter. Since τi = (Ti + T̄i)/2, the volume can also
be taken as a function of the complexified moduli, V = V(Ti, T̄i).

For the complex-structure moduli, the Kähler potential is of the form

Kcs = − ln

(
i

∫
X

Ω ∧ Ω̄

)
. (4.185)

An explicit expression in terms of the complex-structure moduli Uα can be obtained
by expanding Ω in a symplectic basis of H3(X) where the Uα appear inside holo-
morphic functions, which appear as prefactors in this expansion. Since we will
mainly be interested in the dynamics of the Kähler moduli, we refer the interested
reader to [90, 93, 94] for further details on the complex-structure moduli.

At last, there is also a term for the axio-dilaton, which is given by [79]

KS = − ln
(
−i(S − S̄)

)
(4.186)

and is often absorbed into the definition of Kcs. The total Kähler potential is then
given as the sum of the individual contributions

Ktot = KK +Kcs +KS . (4.187)

Before we discuss the form of the superpotential, we need to address the effect
that generates it, namely the presence of so-called fluxes. To be specific, we speak
of turning on the fluxes if the integral of the 3-form field strengths, F3 and H3 (the
latter should not be confused with the 3-form cohomology group H3(X)), of the
2-form R–R and NS–NS fields C2 and B2 over a 3-cycle Σi

3 do not vanish. That is,
the expressions [79]

FA,i =

∫
Σi3

F3 , FB,i =

∫
Σi3

H3 , (4.188)

are non-zero. These fluxes are quantised and take on discrete values, which is
why FA,i and FB,i are, up to their normalisation, given by an integer number. The
amount of choices of these integer numbers for all the individual fluxes, the many
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possibilities of different CY manifolds, and the specific setting of D-branes and O-
planes give rise to a vast number of theories, estimated to be larger than 10500, so
that one also speaks of the flux landscape of string vacua [93]. Clearly, the pres-
ence of non-vanishing FA,i and FB,i will induce an interaction of C2 and B2 with
the complex-structure moduli Uα that measure the sizes of the 3-cycles Σi

3. This
interaction leads to a potential for the Uα and S that fixes them. Specifically, these
fluxes result in the generation of a so-called Gukov-Vafa-Witten (GVW) superpoten-
tial, which is given by [95]

WGVW =

∫
X

G3 ∧ Ω , (4.189)

where G3 ≡ F3 − SH3. For the explicit expression, we again refer to the original
works or [79]. This superpotential has been used in the renowned paper by Gid-
dings, Kachru and Polchinski (GKP) [96] to show the possibility of the aforemen-
tioned stabilisation of complex-structure moduli via a proper choice of fluxes. With
the above Kähler potential and WGVW the relevant terms that determine the dynam-
ics of the moduli and the axio-dilaton are given by the usual SUGRA Lagrangian.
In particular, the kinetic terms and F-term scalar potential are the corresponding
expressions in Eqs. (4.64) and (4.66).

Crucially, we note that the GVW superpotential does not depend on the Kähler
moduli. Furthermore, the volume V is a homogeneous function of the Ti of degree
3/2. One can show that, as a consequence of these two facts, in the F-term scalar
potential

VF = eK
[∑
S,U

(K−1)αβ̄(DαW )(D̄β̄W̄ ) +
∑
T

(K−1)ij̄(DiW )(D̄j̄W̄ )− 3|W |2
]
,

(4.190)
the latter two expressions cancel exactly [97]. HereK−1 is the inverse of the Kähler
metric K, which for the Kähler moduli reads Kij̄ ≡ ∂2KK/(∂Ti∂T̄j̄), and the first
sum runs over S and all the complex-structure moduli, whereas the second sum
includes all Kähler moduli. This cancellation is called the no-scale property of
the F-term potential and implies that the Kähler moduli are massless without in-
cluding additional effects. Obviously, this is inconsistent from a phenomenological
point of view. First, in string theory the vacuum expectation values of these moduli
fields determine the parameters of the resulting, low-energy EFT as for example its
gauge-coupling constants. Unstabilised Kähler moduli would therefore imply that
these parameters would rapidly vary in time, which contradicts observations. Sec-
ond, the absence of measurable fifth forces on solar system scales forbids a plethora
of massless scalar fields, as long as we assume that not all of them underly some
screening mechanism. The latter assumption seems reasonable since the dynam-
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ics of the field space, defined by the Kähler metric Kij̄ , will generically be very
complicated so that such a screening would require a tremendous conspiracy. It is
therefore clear that a mechanism is required which can provide a potential for the
Kähler moduli and thus stabilise them.

Two prominent examples for Kähler moduli stabilisation are the so-called KKLT
scenario [98] and the large volume scenario (LVS) [99, 100]. We will almost exclu-
sively focus on the latter and therefore dedicate the next subsection to it; however,
even though we will not pursue it further, we want to stress that the KKLT scenario
represents important progress in string phenomenology.

Before we conclude this subsection, let us write down the gauge-kinetic function
of the gauge theory that lives on a stack of D7-branes wrapping a 4-cycle τgauge.
In a (semi-)realistic scenario such a configuration could be used to establish the
SM or a GUT model on these D7-branes with the corresponding gauge group. The
relevant Lagrangian, corresponding to Eq. (4.57) in the superfield formalism and to
Eq. (4.65) in component form, is given by [101]

Lgauge =
1

4

∫
d2θTgaugeW

αWα +
1

4

∫
d2θ̄T̄gaugeW̄

α̇W̄α̇ , (4.191)

= −1

4
τgaugeFµνF

µν − 1

4
θgaugeFµνF̃

µν . (4.192)

From this, we can read off that the gauge kinetic function is fab = Tgauge. In the
presence of gauge fluxes, this can be shifted to fab = Tgauge+hS with h a function of
the fluxes; however, we will ignore such a shift most of the time when it is irrelevant
for our analysis. Crucially, from the above expressions we see that the size of the
4-cycle at the minimum, i.e. its vacuum expectation value, determines the coupling
constant of the respective gauge theory in the UV, 〈τgauge〉 ∝ α−1

UV ∝ g−2
UV. Moreover,

a direct coupling between τgauge and the gauge fields as well as an axionic coupling
term are induced.

4.2.4. The large volume scenario

The core idea of the LVS [99, 100] is the inclusion of certain corrections to the scalar
potential that will remove its flatness in the Kähler moduli directions. To this end,
one assumes that the complex-structure moduli have already been fixed as explained
in the previous subsection and integrated out, which is possible because they are
typically heavier than the Kähler moduli. In particular,Kcs together withKS as well
as the GVW superpotential are now fixed at their respective vacuum expectation
values und hence treated as constants. For convenience, we define W0 ≡ 〈WGVW〉.
The corrections to VF can be classified into perturbative and non-perturbative ones.
The former include
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• α′-corrections: They stem from the fact that in the derivation of the ten-
dimensional low-energy SUGRA action (4.149) only the massless string modes
were used. α′-corrections account for the respective higher-dimensional op-
erators that have been neglected there and which are suppressed by powers of
M−1

s =
√
α′. In the effective, four-dimensional SUGRA they manifest as an

alteration of the Kähler potential for the moduli fields (4.184), which at cubic
order in α′ becomes [90, 99]

KK = −2 ln

(
V +

ξ

2

)
, with ξ ≡ χ(X)ζ(3)

2(2π)3g
3/2
s

, (4.193)

where χ(X) is the Euler characteristic of X , i.e. a topological invariant, and
ζ(3) ≈ 1.2 is the Riemann zeta function.

• string loop corrections: They have been explicitly calculated on the torus
T 6/(Z2 × Z2) [102] and, based on this calculation, their expected effect has
been investigated on more general CY spaces [92, 103, 104]. In summary, the
Kähler potential is modified by two contributions

δK(gs) = δKKK
(gs) + δKW

(gs)
. (4.194)

Here the former results from loops of closed strings with Kaluza-Klein mo-
mentum between different branes and the latter from winding-mode contri-
butions at the intersection of branes wrapped around different cycles.

The non-perturbative corrections include instanton corrections and gaugino con-
densation. The former result from D3-branes which are wrapped around an internal
4-cycle in a closed loop. They can be considered as tunneling events at a fixed
position xµ in the non-compact spacetime. On the other hand, the corrections due
to gaugino condensation are a non-perturbative confinement effect in the N = 1
super-Yang Mills theory living on the stack of D7-branes that wraps a correspond-
ing 4-cycle. On a technical level, they both modify the superpotential by

W = W0 +
∑
i

Aie−aiTi . (4.195)

Here Ai is a complex constant whose value depends on the fixed complex-structure
moduli and ai = 2π/N where the integer N is unity for D3-brane instantons and
N > 1 for gaugino condensation. In the latter case, N corresponds to the number
of branes in the stack which wraps the 4-cycle τi and determines the gauge group
that lives on these branes, which is U(N) as elaborated in Sec. 4.2.1.

In order to realise the LVS, one makes use of non-perturbative corrections with
the above superpotential and leading α′-correction where the total Kähler potential
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is given by5 [79]

K = −2 ln

(
V +

ξ

2

)
− ln

(
−i(S − S̄)

)
+Kcs . (4.196)

At this point we have to explicitly state the form of the volume (4.179) in terms of
the complexified Kähler moduli Ti. A typical scenario includes one so-called big
cycle with volume τb and one or several small cycles of size τs,i, whose labelling
is chosen because τb � τs,i as it will become clear later in this subsection. The
volume is then given by

V = τ
3/2
b −

∑
i

γiτ
3/2
s,i =

[
1

2

(
Tb + T̄b

)]3/2

−
∑
i

γi

[
1

2

(
Ts,i + T̄s,i

)]3/2

, (4.197)

where the γi are positive O(1) constants that parameterise the structure of the in-
ternal manifold and depend on the intersection numbers κijk.6 The above form for
the volume is also called swiss-cheese scenario because in a sense it compares to
a cheese of size τb with holes of sizes τs,i. For illustrative reasons, we will now
consider a setting with only one small cycle τs and a volume given by

V = τ
3/2
b − γsτ

3/2
s . (4.198)

Using Eq. (4.66) together with the above expressions for W and K to calculate the
Kähler moduli F-term potential, one obtains [99, 100]

VF =
8a2

s|As|2
√
τse−2asτs

3γsV
− 4|AsW0|asτse−asτs

V2
+

3ξ|W0|2

4V3
. (4.199)

In order to arrive at this expression, we have absorbed the constant Kcs and KS into
a re-definition of AI and W0, absorbed the complex phases of AI and W0 into a
re-definition of the axion θs and integrated out the θs. One can now calculate the
minimum of this potential, which provides us the values at which the two moduli
are fixed,

〈τs〉 =

(
ξ

2γs

)2/3

, 〈V〉 =
3γs|W0|

√
〈τs〉eas〈τs〉

4asAs
, (4.200)

5Note on convention: We will typically count the Kähler moduli with numerical indices i ∈
{1, · · · , h1,1} and identify these numbers with labels. For instance, in a two-moduli case we
would have τ1 = τb and τ2 = τs. In that sense, the numerical indices are interchangable with the
alphabetical labels and it will be clear from the context which cycle is meant.

6Note that τ3/2
b may also be multiplied with a prefactor, which after a redefinition of the γi cor-

responds to an additive constant coming with lnV . This constant can then be absorbed into
Kcs.
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where the limit asτs � 1 has been taken, which is required for calculational con-
trol. From the latter of the above two equations, we see that at the minimum
V ≈ exp(asτs) � τs. This also implies that the big cycle de facto determines the
size of the volume and is indeed much bigger than the small one, τb ≈ V2/3 � τs.
For this reason, the big cycle is often times simply called the volume cycle and its
size denoted by τV .

Let us stress one crucial point: Since the size of τs is at least unity in terms of
string units – otherwise the description as an effective low-energy SUGRA would
break down – we have found that the volume of the internal manifold measured
in l6s must be exponentially large. This constitutes the name of the LVS and pro-
vides a very small quantity, V−1, which is an excellent parameter to control further
calculations.

To analyse the potential for the volume further, one can integrate out τs from
Eq. (4.199), which leads to [79]

VF '
3ξ|W0|2

4V3
− 3γs|W0|2

2V3a
3/2
s

log3/2

(
4as|As|V
3γs|W0|

)
. (4.201)

Crucially, the above potential possesses a global minimum at a large value for V
and a negative one for VF. The resulting spacetime is therefore an anti-de Sitter
one with a negative cosmological constant. In order to obtain a Minkowski or a
de Sitter space with vanishing or positive CC, respectively, we therefore need to
uplift the potential. In the literature, several mechanisms for such an uplift have
been discussed. We merely name two prominent possibilities and describe their ef-
fect on VF , referring to the original works for further details. One possibility is the
inclusion of anti-D3-branes in a strongly warped region, i.e. a so-called Klebanov-
Strassler throat [105]. Due to their negative tension, this leads to an uplift of the
potential where the warping allows for downscaling the uplift, which would be to
strong otherwise. In doing so, one also has to ensure that the total charge of D3- and
anti-D3-branes, O3-planes and 3-form fluxes cancel, which constitutes the afore-
mentioned tadpole cancellation. The other possibility is the generation of a D-term
potential through fluxes of gauge fields on D7-branes [106, 107]. Technically, both
proposals will add another contribution to the potential (4.201)

δVuplift =
C

Vα
, (4.202)

where C is a constant that includes the warp factor, which is tuned so that the
minimum corresponds to Minkowski (or de Sitter), and α is 4/3 or 2 for an uplift
with anti-D3-branes or D-terms, respectively. In other words, after the uplift there
will still be a minimum at large V but it can be at a zero or positive value for
VF + δVuplift. There is one major difference to the original AdS minimum, however:

103



4. Introduction

the new minimum is not a global one. For very large values of V , a potential barrier
will be exceeded and the potential leads to a runaway of V to infinity resulting in a
de-compactification of the internal space. In what follows, we will always implicitly
assume that a proper uplift mechanism can and will be established even though we
want to mention that this is a critical and controversial aspect [108, 109].

Before we conclude this section, let us provide the kinetic terms and the typical
volume scaling of the masses for the Kähler moduli and their respective axions. The
former, in correspondence to Eq. (4.64), are given by

Lkin =
∑
i,j̄

Kij̄∂µTi∂
µT̄j̄ =

∑
i,j

1

4

∂2KK

∂τi∂τj
(∂µτi∂

µτj + ∂µθi∂
µθj) . (4.203)

The masses of the volume modulus and of small-cycle moduli that are stabilised
non-perturbatively as well as their respective axions are qualitatively given by the
simplistic formulae [100]

mτb ∼
|W0|MP

V3/2
, mθb ∼ e−abV2/3

MP ∼ 0 , mτs,i ∼ mθs,i ∼
|W0|MP

V
, (4.204)

where we ignored prefactors that cannot be parametrically small or large compared
to V and even possible logarithmic factors of V . The exponential suppression of
the volume-axion mass originates from the fact that its potential is created by non-
perturbative effects on the big cycle, which scale like ∼ exp(−abτb). For all rel-
evant purposes, we can therefore consider θb to be exactly massless. We want to
stress that the small-cycle-moduli masses are modified if they are not stabilised
non-perturbatively but instead via, e.g., loop effects. With Lkin and the generalisa-
tion of VF to more than one small cycle before integrating out the θs,i given, the
dynamics of the Kähler moduli fields and axions in this most simplistic scenario are
determined, although other effects can have important influences beyond it.

The LVS will be the basic setting for what follows, which is why we want to sum-
marise its most important aspects: An interplay of the α′-correction to the Kähler
potential and non-perturbative corrections to the superpotential on a small cycle re-
sult in Kähler moduli stabilisation with an exponentially large volume. Its inverse
is very small and can be used as an expansion parameter in order to obtain cal-
culational control. The resulting minimum is an AdS vacuum but can be lifted to
Minkowski or dS by an uplift mechanism.
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4.3. Physics beyond the standard model in
string theory

We want to dedicate this section to some selected, theoretical basics of two specific
beyond the SM scenarios and their stringy realisations. One is inflation, which
modifies the ΛCDM model and the other are axion-like particles, especially the
QCD axion, which modify the SM of particle physics but also have cosmological
implications. In the following, we merely want to provide a quick summary of the
most important concepts and key formulae of these topics that are importent for this
work. By no means do we aim at completeness or usability as a comprehensive
introduction. For the latter purposes, we refer to the appropriate literature.

4.3.1. Inflation and reheating – overview

Despite a plethora of successes of the ΛCDM model, there are aspects where it
struggles to explain the observed universe. Two of those, which among others rep-
resent standard examples in the literature, are related to the early times of the uni-
verse: the horizon problem and the flatness problem. A prominent way to solve
them both is inflation, of which some important concepts will be introduced in this
subsection. For further reading, we refer to [5, 110–114], which are also the main
references for this subsection.

The horizon problem

This problem describes the issue that observations of the CMB imply correlations
between patches in the universe that are too far away from each other to have ever
been in causal contact. For an illustration, let us borrow an example from [5] and
consider the proper particle horizon of a point in the universe during recombination,
i.e. the proper distance that light could have travelled from this point between the
big bang and the time of recombination trec:

dp(0, trec) =

∫ trec

0

c dt = c

∫ arec

0

da
ȧ

= c

∫ arec

0

da
aH(a)

. (4.205)

Inserting for H(a) the Friedmann equation for a radiation- and matter-dominated
universe, this becomes

dp(0, trec) = c

∫ arec

0

da
aH0

√
Ωm0a−3 + Ωr0a−4

,

=
2c

3H0Ω2
m0

[
(Ωm0arec − 2Ωr0)

√
Ωm0arec + Ωr0 + 2Ω

3/2
r0

]
. (4.206)
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To translate this ‘physical size’ of patches, within which there has been causal con-
tact, into the angle θ under which they appear on the sky, we should divide by the
angular diameter distance between us and the decoupling of CMB photons. For a
flat universe (ΩK = 0), this distance is given by

dA(trec, t0) = arec

∫ t0

trec

c dt
a

= arecc

∫ 1

arec

da
aȧ

= arecc

∫ 1

arec

da
a2H(a)

. (4.207)

Since during recombination the universe was dominated by matter, inserting the
respective Friedmann equation leads to

dA(trec, t0) = arecc

∫ 1

arec

da

a2H0

√
a−3

,

=
2c

H0

arec(1−
√
arec) . (4.208)

In the latter calculation we made the simplificication of turning off the CC so that
the late time universe is purely dominated by matter. This does not change the result
significantly, however. The angle under which causally connected patches appear is
now given by

θ =
dp(0, trec)

dA(trec, t0)
≈ 0.017 rad ≈ 0.97◦ . (4.209)

Here we have used the values Ωm0 = 0.27, Ωr0 = 4.7 · 10−5 and arec = 1/1100.
We conclude that according to the standard ΛCDM model, areas in the CMB far-
ther apart than approximately 1◦ should never have been in causal contact. This
contradicts with observations showing an almost isotropic temperature distribution
with fluctuations being only of the order δT/T ∼ O(10−5) and correlated structures
spanning over much larger areas.

The flatness problem

Another issue of standard cosmology is the fact that the observed flatness of today’s
universe would require an immense fine-tuning of flatness at early times. To see
this, let us look at the curvature parameter ΩK , which measures the deviation of the
content of the universe from the critical density [5]

ΩK ≡ 1− Ωtot = 1− Ωm − Ωr − ΩΛ =
−Kc2

a2H2
. (4.210)

The curvature today is measured to be rather small ΩK0 = −Kc2/H2
0 . O(10−3−

10−2), although there is a trend to small-magnitude negative values [21], indicating
a closed universe. Since during radiation- and matter-domination ΩK scales like
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∼ a2 and ∼ a, respectively, this implies that ΩK had to be uncomfortably small at
the beginning of the universe when a → 0. If there had been a tiny deviation from
the fine-tuned flatness in the early times, we would observe a drastically different,
non-zero value for ΩK0 today. Since there is no a priori reason why the universe has
to be flat, these circumstances ask for a deeper explanation.

Inflation as a solution

Both, the horizon and the flatness problem, can be elegantly explained through the
postulation of a so-called inflationary period. During that, the universe underwent
a de Sitter-like expansion with constant Hubble factor HI whereby the scale factor
increased exponentially

a ∝ eHIt . (4.211)

Such an expansion could solve the horizon problem because the constant Hub-
ble horizon c/HI during inflation implies a shrinking comoving Hubble horizon
c/(aHI). Conversely, however, this means that the comoving Hubble horizon grows
bigger if we go further into the past when a → 0 so that at the beginning of infla-
tion, structures could have had causal contact which now seem to be too far away
from each other for that to be the case. In other words, at the beginning of inflation,
structures were small enough to have causal contact and where then enlarged by the
expansion so that they look too big now to have been in causal contact.

Furthermore, inflation provides us an explanation for the flatness problem since
during the de Sitter expansion the curvature parameter scales like ∼ a−2. Thus any
potential deviation of the curvature from zero will be strongly suppressed by the
end of inflation.

Apart from the horizon and flatness problem, inflation can explain the origins
of structure formation, which are given by early quantum fluctuations that grow to
macroscopic scales during the inflationary period and represent the seeds of inho-
mogeneities in the Universe.

Inflationary models and reheating

In typical models, the exponential expansion is achieved by a scalar field which
slowly rolls down a very flat potential, thus resembling a CC. One may distinguish
large-field models, where the distance in field space that the inflaton traverses is
larger than unity in Planck units, from small-field models, where the same distance
is smaller than unity [113]. The inflationary period ends, when the inflaton field
does not resemble a CC anymore but instead begins to decay into SM degrees of
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freedom – and possibly other exotic particles – in a process that is called reheating.7

To quantify the end of inflation, we define the slow-roll parameters

ε ≡ 1

2

(
V,φ
V

)2

M2
P , η ≡ V,φφ

V
M2

P , (4.212)

where V (φ) is the potential of the inflaton φ and V,φ and V,φφ are its first and sec-
ond derivatives, respectively. Thus the inflationary period is characterised by both
slow-roll parameters being ε, |η| � 1 and ends when this condition does not hold
anymore. During inflation, the scale factor increases according to Eq. (4.211) by
several e-folds, whose number is given by [112]

Ne ≡ log

(
a(tend)

a(tinit)

)
= − 1

M2
P

∫ φ(tend)

φ(tinit)

V

Vφ
dφ , (4.213)

where tinit and tend are the times of the onset and end of inflation, respectively.
The background evolution of the inflaton is typically described by the equation

of motion
φ̈+ 3Hφ̇+ Γφφ̇+ V,φ = 0 , (4.214)

where Γφ describes a small coupling of the inflaton to another matter species result-
ing in the decay of the inflaton. During inflation, the friction term 3Hφ̇ dominates
over φ̈ and H � Γφ, which leads to the above slow-roll conditions. At the end of
inflation, the decay rate becomes comparable to the Hubble function, Γφ ∼ H , and
the inflaton fulfills damped oscillations about the minimum of the potential. Assum-
ing that the inflaton decays into relativistic degrees of freedom, the energy density
after reheating is given by the typical formula for a radiation-dominated Universe

ρr =
π2g∗(Tr)

30
T 4

r = 3H2M2
P , (4.215)

where g∗(T ) is the number of relativistic degrees of freedom at temperature T ,
which is typically of order g∗ ' O(10− 100). This can be solved for the Tr, which
leads to the standard formula for the reheating temperature [114]

Tr =

(
90

π2g∗(Tr)

)1/4√
ΓφMP . (4.216)

The value of Tr is highly model dependent but is forced to fulfill the bound Tr &

7In some scenarios, reheating does not occur directly after inflation and by the inflaton itself but is
preceded by the excitation of intermediate species of matter, which will then be responsible for
the reheating of the SM. We will consider such a scenario in the work of this thesis.
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O(MeV) in order not to spoil a successful Big Bang Nucleosynthesis (BBN).
The investigation of inhomogeneities during inflation can be done in an anal-

ogous way as for structure formation in the late-time universe, namely via linear
perturbation theory. We take the perturbed metric in Newtonian gauge as given in
Eq. (2.23) and also perturb the inflaton as

φ = φ0(τ) + δφ(τ, ~x) . (4.217)

One can then define the gauge-invariant comoving curvature perturbation [5],

R = −Φ− H
φ′0
δφ , (4.218)

where ′ represents the derivative w.r.t. conformal time τ . The inflaton perturbations
δφ are quantum fluctuations about the background value φ0 and will be pushed
outside the Hubble horizon due to the rapid expansion. Clearly, these quantum
fluctuations will lead to fluctuations of the curvature R, whose power spectrum is
given by [5]

∆2
R =

H2

8π2M2
P ε

∣∣∣∣
k=aH

. (4.219)

When these curvature fluctuations re-enter the horizon at a later time, that is af-
ter the inflationary period and reheating, they imprint their characteristic structure
on the current matter distribution at that time thus representing the seeds for any
inhomogeneities [114].

Likewise, the power spectrum of tensor modes reads

∆2
h =

H2

π2M2
P

∣∣∣∣
k=aH

, (4.220)

whose existence depends on the specific model, however. We can also extract the
powerlike k-dependence and benchmark the power spectra on a selected pivot scale
k∗, which is typically chosen as 0.002 Mpc−1 or 0.05 Mpc−1, so that we obtain [5]

∆2
R = As

(
k

k∗

)ns−1

, ∆2
h =

At

2

(
k

k∗

)nt

, (4.221)

where As and At are the spectral amplitudes, whereas ns and nt are the scalar and
tensor spectral indices, respectively. The latter characterise the scale dependence of
the two power spectra with ns = 1 implying that the curvature power spectrum is
scale-invariant. One can show that the spectral indices are related to the slow-roll
parameters,

ns = 1− 4ε+ 2η , nt = −2ε . (4.222)
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Since during inflation both ε and η are very small, one can infer from the above
formulae that the scalar and tensor power spectrum are both indeed almost scale-
invariant.

An important quantity is the tensor-to-scalar ratio, which relates the two power
spectra at the chosen pivot scale [5],

r ≡ 2∆2
h

∆2
R

∣∣∣∣
k=k∗

=
At

As
= 16ε , (4.223)

where the factor 2 stems from the two possible polarisation states of the graviton.
The scalar power spectrum is observationally constrained, for instance by Planck [115],

ns = 0.9649± 0.0042 , (4.224)

ln
(
1010As

)
= 3.044± 0.014 , (4.225)

at 68 % CL and pivot scale k∗ = 0.05 Mpc−1, respectively. In particular, note that
a scalar-spectral index ns = 1 is practically ruled out. From Planck, we also obtain
an upper bound on the tensor-to-scalar ratio,

r < 0.10 , (4.226)

at 95 % CL and pivot scale k∗ = 0.002 Mpc−1.
Let us also mention that the curvature power spectrum is measured as well [4],

∆2
R = (2.101+0.031

−0.034)× 10−9 , (4.227)

at 68 % CL and pivot scale k∗ = 0.05 Mpc−1. Thus for any given inflation model,
∆2
R is basically fixed up to small corrections and needs to be consistently predicted

by that model. If one then compares two such models that predict the correct value
for ∆2

R, the tensor-to-scalar ratio depends only on the inflation scale HI. This can
be easily seen from Eq. (4.223) after inserting the expression for ∆2

h und using that
during inflation, the Hubble parameter takes on an almost constant value HI,

r =
2H2

I

π2M2
P ∆2
R
. (4.228)

To provide a bit more intuition about the relation between r ∝ ε ∝ H2
I for a fixed

scalar amplitude, we notice that ε by definition parameterises the relative steep-
ness of the the inflaton potential normalised to the absolute value of the potential.
Through the Friedmann equations, the latter is simply given by the inflation scale
V ∝ H2

I . The size of a scalar mode after it has been enhanced by inflation will gen-
erally depend on the number of e-foldsNe before inflation ends. Writing Eq. (4.213)
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as

Ne =
1√
2MP

∫ φend

φinit

ε−1/2dφ , (4.229)

where we have cancelled the overall minus sign with the minus sign from V,φ, and
using that ε is almost constant during inflation, the above equation can be cast into
the form

∆Ne =
1√
2ε

∆φ

MP
, (4.230)

where ∆φ = φend − φinit, although this equation will also yield the number of e-
folds between arbitrary field values. This tells us that if we want to retain the same
amount of e-folds, a larger slow-roll parameter must be compensated by a larger
distance in field space that the inflaton has to traverse. Naively speaking, this makes
sense because a larger ε implies a steeper potential and thus a faster rolling field.
In order to obtain the same amount of inflation, the distance in field space should
hence be larger.

One other important aspect during reheating is the generation of so-called Dark
Radiation (DR). This refers to the production of any relativistic degrees of free-
dom which are not photons. In the SM, DR consists solely of the three neutrino
generations, which is why one uses the effective number of neutrino species Neff

to parameterise the amount of DR. It is defined by the contribution of DR to the
current energy density of radiation [116]

ρrad =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ , (4.231)

with ργ being the density of CMB photons at temperature T ≈ 2.7 K. The SM value
is given by Neff,SM = 3 during BBN and is slightly higher during CMB due to neu-
trino production from electron-positron annihilation. Crucially, the parameter Neff

does also account for any other additional relativistic particles besides neutrinos. Of
special interest is therefore the excess of DR, given by

∆Neff ≡ Neff −Neff,SM . (4.232)

This parameter is constrained by several measurements, e.g. Planck [4], to be
∆Neff . 0.3. To predict this value for a given model, we have to consider the
decays during reheating. In particular, we have [116–120]

∆Neff =
43

7

(
10.75

g4
∗g
−3
∗,S

)1/3
ρDR

ρSM

∣∣∣∣∣∣
T=Tr

=
43

7

(
10.75

g4
∗g
−3
∗,S

)1/3
Γφ→DR
Γφ→SM

∣∣∣∣∣∣
T=Tr

, (4.233)
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where g∗ and g∗,S are the number of relativistic degrees of freedom defined via
energy density and entropy density, respectively.

4.3.2. Stringy inflation models

In Sec. 4.2 we explained that the four-dimensional low-energy SUGRA derived
from type IIB string theory involves a plethora of scalar fields in the form of metric
moduli. One might ask the natural question whether one or several of these can play
the role of a stringy inflaton. There are many candidates of models with exactly this
intention; however, we want to have a closer look at only two of those, namely
blow-up inflation [121] and fibre inflation [122], which will be our main concern
in this work and both of which are established within the LVS. For other stringy
constructions of inflation or a review, we refer the interested reader to [123–125].

Blow-up inflation

In this setup, first suggested in [121], the inflaton field corresponds to the size of
one small blow-up cycle.8 In detail, the volume is taken as

V = τ
3/2
b −

Ns∑
i=1

γiτ
3/2
s,i − γIτ

3/2
I , (4.234)

where τI is the size of the inflaton cycle. The other Ns small cycles τs,i are needed
in order to establish the LVS as described in Sec. 4.2.4 and to stabilise the dynamics
during inflation as will be explained below. The inflaton cycle does not intersect
with any other cycle, i.e. its only non-vanishing intersection number is κIII. More-
over, τI can be considered as a usual small cycle that only differs from the τs,i in the
fact that it is displaced from its vacuum expectation value to a small size, whereas
the other cycles are stabilised at the LVS minimum. The generalisation of the F-
term potential (4.199) to more than one small cycle reads

VF =
Ns+1∑
i

(
8a2

i |Ai|2
√
τs,ie−2aiτs,i

3γiV
− 4|AiW0|aiτs,ie−aiτs,i

V2

)
+

3ξ|W0|2

4V3
, (4.235)

where we included τI in the sum as the Ns + 1-th small cycle, i.e. τs,Ns+1 ≡ τI. If all
these small cycles, including τI, sat at their respective vacuum expectation values,

8The original name for this setting was ‘Kähler inflation’; however, it is customary to call it ‘blow-
up inflation’ to distinguish it from other inflationary scenarios that make use of a Kähler modulus
as well which is not a blow-up cycle.
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the resulting generalisation for the volume potential (4.201) would be given by

VF (V) =
3ξW 2

0

4V3
− 3W 2

0 log3/2 (V/W0)

2V3

Ns+1∑
i=1

γi

a
3/2
i

, (4.236)

where we neglected some O(1)-factors inside the logarithm. If we now consider
the case that τI is displaced to a large value, its contribution to the overall poten-
tial (4.235) will be suppressed due to the exponential functions. Hence also in
Eq. (4.236) its contribution γI/a

3/2
I inside the sum will not be present. However,

if ns is large enough, this missing contribution will be negligible compared to the
overall sum so that the potential for V is practically unaffected from this displace-
ment. Thus the volume remains stable even during inflation, which is the reason
why many small cycles have been included instead of only one.

The potential for the τI during inflation is also given through the F-term poten-
tial (4.235) by [121]

VI(τI) =
βW 2

0

〈V〉3
− 4|AIW0|aIτIe−aIτI

〈V〉2
. (4.237)

To arrive at this expression, the term ∝ exp(−2aIτI) in Eq. (4.235) has been ne-
glected because it is suppressed for large τI, whereas all the the other terms that do
not depend on τI have been summarised into the term∝ β 〈V〉−3 taking into account
their correct volume scaling.

The canonically normalised inflaton field is given by

φI =

√
4γI

3 〈V〉
τ

3/4
I . (4.238)

Writing VI in terms of the canonical field, this leads to the appearance of a volume
factor inside the exponential function,

exp (−aIτI) = exp

(
−aI

(
3 〈V〉
4γI

)2/3

φ
4/3
I

)
, (4.239)

which results in an extremely flat potential. Indeed, the first slow-roll parameter
during inflation is given by [121]

ε =
32 〈V〉3

3β2|W0|2
a2

I |AI|2
√
τI(1− aIτI)

2e−2aIτI , (4.240)

and since τI is displaced to a large value, one has that exp(−aI) � 〈V〉−2 so that
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ε � 1. In the numerical analysis performed in [121] taking into account the mea-
sured value for the amplitude of the scalar power spectrum, it has been shown that
ε < 10−12 in blow-up inflation, rendering it a typical small-field model with low
inflation scale HI according to the discussion above.

Before closing this subsection, we want to discuss the dynamics at the end of
inflation. Even though the volume modulus is rather unaffected during inflation,
effects from the rolling inflaton become important when it reaches a low field value
that is close to its vacuum expectation value. In [126] it has been argued that an
effect called vacuum misalignment will lead to a violent and non-perturbative pro-
duction of volume-modulus particles. The reason is that the at the end of inflation,
τI sits at the edge of a potential well. This induces a quasi-stable vacuum expecta-
tion value for the volume which is shifted from the true vacuum expectation value,
that corresponds to the inflaton being stabilised at the bottem of the potential well.
When the inflaton finally falls into the well and begins to oscillate in it, the vol-
ume modulus will still have a value corresponding to the shifted vacuum expecta-
tion value, whereas its potential is now equipped with the true vacuum expectation
value [127]. Additionally, the oscillations of τI will imply that the mass of τb os-
cillates leading to parametric resonances. All in all, this results in an excitation
of the volume modulus as well as other moduli and coherent oscillations thereof.
These coherent oscillations of τI, τb et cetera quickly become decoherent after a few
oscillations and represent quanta of the respective moduli, i.e. particles. Once all
oscillations have ceased and the moduli have reached a plateau at their respective
vacuum expectation values together with the decoherent quanta δτi, the system can
be considered perturbatively as it has been done in [128]. The volume modulus,
which is the longest-lived modulus and behaves like matter, quickly comes to dom-
inate the universe. Finally, after this early-matter-dominated period, reheating into
the SM occurs when the τb decays.

Fibre inflation

Another approach to stringy inflation has been suggested in [122]. Since the major
work of the relevant chapter in this thesis will be performed in the setting of blow-
up inflation, we will only quickly outline the most important ideas and properties of
fibre inflation referring to the original paper or [129–132] for further details.

The setting of fibre inflation is still the LVS but the volume is not given by a
single volume modulus yet instead exhibits the structure of a fibre bundle. That is,
the volume locally looks like the product space of two Kähler moduli and is given
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by

V = t1τ1 − γsτ
3/2
s , (4.241)

=
1

2

√
τ1τ2 − γsτ

3/2
s , (4.242)

where t1 is the two-dimensional base and τ1 the four-dimensional fibre. In accord
with the usual LVS procedure, a potential is generated for V ≈ √τ1τ2/2 and τs;
however, one combination of τ1 and τ2 remains unfixed and completely massless.
This massless direction in field space is taken to be the inflaton and its potential
is generated by the inclusion of additional loop effects to the Kähler potential as
outlined in Eq. (4.194). The resulting inflaton potential during the slow-roll phase
reads [122]

VI =
C

〈V〉10/3

(
3− 4e−φ/(

√
3MP)

)
, (4.243)

where C is an O(1) constant and φ is the canonically normalised inflaton field.
Crucially, we see that in contrast to blow-up inflation, no volume factor appears
in the exponential function, implying that the potential is much steeper in fibre
inflation. It therefore represents a large-field inflation model with a high inflation
scale HI and a large tensor-to-scalar ratio r ∼ O(10−3)−O(10−2).

4.3.3. Axions

One famous issue of the SM of particle physics is the so-called strong CP prob-
lem, which describes the fact that Quantum Chromodynamics (QCD) for some a
priori miraculous reason is invariant under a simultaneous charge conjugation and
parity transformation, i.e. it is CP symmetric. Arguably the most prominent solu-
tion to this problem is the introduction of beyond-the-SM physics in the form of
a new scalar field, the axion. Besides solving the strong CP problem, the axion
turns out to represent a viable DM candidate in cosmology, thus promising to re-
solve two major problems of modern-day physics at the cost of only one additional
degree of freedom. In this subsection we first elaborate on the QCD axion and the
historic Peccei-Quinn (PQ) mechanism before we consider some important cosmo-
logical properties and at last recapitulate the origin of axion-like particles in type
IIB string theory. This subsection is based on [133–135] for the discussions of the
field-theoretic axion as well as axion cosmology and on [84, 136, 137]. We also
recommend [138, 139] for further reading.
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The strong CP problem and the QCD axion

A promising route to field-theoretical model building is to take a given gauge sym-
metry and consider all renormalisable operators that are allowed by this symmetry.
Doing so in QCD, whose gauge symmetry is SU(3), the gauge-kinetic sector con-
sists of two terms, the standard kinetic term for gluons and the so-called topological
term [135],

LQCD,gauge = −1

4
Tr (FµνF

µν) +
αs

8π
θeff Tr

(
FµνF̃

µν
)
, (4.244)

where αs is the strong coupling constant, the trace runs over all generators of the
gauge symmetry and F̃ µν ≡ εµναβFαβ/2 is the dual field-strength tensor. As is
well-known, the θeff term is a possible source of CP violation and generates an
electric dipole moment for the neutron. Measurements of the latter have shown that
it must be vanishingly small, |dn| < 1.8× 10−26 e cm [140], indicating that the θeff

parameter has to be very small as well,

|θeff| . 10−10 . (4.245)

So far, we have treated θeff as a free parameter, which has been measured to be
zero, which is not necessarily an issue. However, in a similar manner as for the
CC problem described in Sec. 2.1, things become problematic when we consider
the fact that θeff is an effective, physical parameter which is composed of two non-
related contributions. One is the bare value θbare for the topological term and the
other is a shift of this bare value resulting from the complex phase of the quark
mixing matrix M after rendering the quark masses real via a chiral transformation.
That is, the physical θeff parameter is given by

θeff = θbare + arg detM , (4.246)

where both of these terms have to cancel to zero, which reveals that the strong CP
problem is actually a fine-tuning problem.

An elegant solution has been proposed in [141, 142]. The key ingredient is a new
complex, scalar field that is charged under a global, anomalous U(1)PQ symmetry,
the so-called Peccei-Quinn symmetry, and which possesses a potential very similar
to the Higgs field with vacuum expectation value fa/

√
2, where fa is called the ax-

ion decay constant. Below an energy scale fa, the U(1)PQ symmetry spontaneously
breaks and the axion θ̃ appears as the pseudo-Nambu-Goldstone boson associated
with this symmetry. Its relevant terms read

Laxion = −f
2
a

2
∂µθ̃∂

µθ̃ +
αs

8π
θ̃ Tr

(
FµνF̃

µν
)
. (4.247)
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θ̃ is periodic and is defined to take on values θ̃ ∈ [0, 2π}. The canonically nor-
malised axion is given by ã = faθ̃, which can take on values ã ∈ [0, 2πfa} and
whose relevant terms are

Laxion = −1

2
∂µã∂

µã+
αs

8π

ã

fa
Tr
(
FµνF̃

µν
)
. (4.248)

Combining the gauge-kinetic QCD with the axion Lagrangian, we can combine the
two topological terms into one,

LQCD,gauge +Laxion = −1

4
Tr (FµνF

µν)− 1

2
∂µa∂

µa+
αs

8π

a

fa
Tr
(
FµνF̃

µν
)
, (4.249)

where we defined a ≡ faθ ≡ faθeff + ã, which from now on will be the field
we consider as ‘the axion’. Stemming from a Goldstone boson together with a
constant shift, one would expect this axion to be massless and possess a continuous
shift symmetry; however, since the U(1)PQ symmetry is anomalous, a potential is
created due to the coupling between a and QCD instantons, which is induced via
the last term of Eq. (4.249). This potential can schematically be given by

Vaxion ' m2
a(T )f 2

a

[
1− cos

(
a

fa

)]
, (4.250)

although the detailed expression is more complicated (see e.g. [143]). Here ma

is the axion mass generated by this potential, which generically depends on the
temperature T ,

ma(T < TQCD) ≈ ma,0 , ma(T & TQCD) ∝
(
TQCD

T

)4

ma,0 , (4.251)

where TQCD ' 150 MeV is the QCD temperature and [143]

ma,0 = 5.7 meV
(

109 GeV
fa

)
(4.252)

the zero-temperature mass of the axion.
Due to the potential Vaxion, the continuous shift symmetry breaks to a discrete

one and the field a, which now determines the physical θ parameter that can be
measured by experiments, is dynamically driven to its zero vacuum expectation
value, 〈a〉 = 0. This constitutes a solution to the strong CP problem that does not
involve any fine-tuning.

In the original Peccei-Quinn mechanism, fa was chosen to be at the electroweak
scale, which has been ruled out by particle accelerator experiments. Modern exper-
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iments constrain the axion decay constant to lie in the window fa ∼ O(109 GeV)−
O(1012 GeV), where the lower bound is an astrophysical one related for example
to the cooling of supernovae [138, 144], whereas the upper one is of cosmologi-
cal nature and accounts for abidance of bounds on the DM abundance [133, 145].
While the former one is rather hard, the latter can be somewhat relaxed if one al-
lows for some tuning of the so-called initial misalignment angle θi, which will be
introduced shortly. The lower bound on fa also implies that the axion mass is very
small, ma,0 . O(meV).

Axions in cosmology

The QCD axion, or more generally speaking axion-like particles, have often times
shown to constitute good DM candidates. By axion-like particles we mean other
particles than the QCD axion which share typical properties like periodicity, i.e. a
discrete shift symmetry, but for which the relation (4.252) stemming from QCD
does generally not hold. We have already encountered axion-like particles in the
low-energy limit of type IIB string theory, which were given in Eq. (4.180) as the
integral of the R-R 4-form field C4 over 4-cycles. This kind of axion-like particles
will be a major focus of the work in this thesis – indeed we will also identify the
QCD axion with such a stringy axion – so that we will simply call them ‘axions’
instead of ‘axion-like particles’.

To understand how axions can represent DM, we will now outline the so-called
misalignment mechanism. Immediately after the PQ symmetry has broken, the ax-
ion field θ takes on a random value in the interval [0, 2π} and remains massless
at first.9 However, when the temperature reaches a value close to TQCD, the axion
potential Vaxion is generated, which implies that θ is initially displaced from the van-
ishing vacuum expectation value. This value of this displaced is called the initial
misalignment angle θi has important phenomenological consequences.

It is important to differentiate between two scenarios: In the post-inflationary
scenario, the PQ symmetry is never broken during inflation or is restored after-
wards, whereas in the pre-inflationary scenario it is broken during inflation and not
restored afterwards [133]. The condition that determines which of the two scenar-
ios takes place is basically given by the relation between the PQ breaking scale fa
and the Gibbons-Hawking temperature associated to the inflation scale, TGH ∝ HI,
or the maximal temperature which the universe will reach after inflation. If fa is

9This is intuitively clear in analogy to the Higgs field, which after electroweak symmetry breaking
can fall down into any direction of the Mexican-hat potential and thus take on any value in
the flat directions of the degenerate vacuum. Obviously, in the Higgs mechanism the three flat
directions, which correspond to the Goldstone bosons of the spontaneous symmetry breaking
SU(2)×U(1)Y → U(1)em, are eaten by the massive gauge bosons, which is where this analogy
ceases to work.
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higher than TGH and this maximal temperature, we will be in the pre-inflationary
scenario and otherwise in the post-inflationary one. In the latter scenario, θi will
take on a different, random value in different small regions of the universe so that
on large scales θi will be the statistical average over these regions. Hence, the over-
all initial misalignment angle cannot be tuned so that this scenario is less suitable to
establish axionic DM. In this thesis we will exclusively work in the pre-inflationary
scenario where fa is large enough that the PQ symmetry is broken during and not
restored after inflation. In this case, the region with a given initial value for θi will
be stretched and smoothened out by inflation and thus be everywhere the same in
our Hubble patch. We can hence treat it as a free parameter.

When the temperature of the universe reaches a value Tosc such that H(Tosc) ∼
ma(Tosc), the gradient of the potential overcomes the expansion and θ begins to
roll down the potential starting from θi and fulfills damped oscillations. Since the
potential is almost harmonic, the oscillating axion field has an equation of state like
matter and represents a coherent state of axionic DM particles. The resulting axion
relic density today depends on the axion decay constant fa and the initial alignment
angle θi and is given by [133, 145, 146]

Ωah
2 ≈ 0.2

(
fa

1012 GeV

)7/6

θ2
i . (4.253)

To arrive at this equation, the relation (4.252) has been used as well as the two
assumptions that the cosmological history is a standard one, where the onset of os-
cillations occurs during radiation domination, and that the comoving axion number
density is conserved. Obviously, the axion relic density must not exceed observa-
tional constraints on the DM density [115],

Ωah
2 ≤ Ωc0h

2 ≈ 0.12 . (4.254)

We will come back to the above formula later in order to constrain the stringy axion.
It will also become important to consider the case where the assumption of

a standard cosmological history is abandoned. Indeed, as we have explained in
Sec. (4.3.2), blow-up inflation as well as many other stringy realisations come with
a period of early matter domination [137, 147]. If the onset of the axion oscillations
occurs during this period, the scenario is significantly changed [145–148]. Let us
assume that some modulus field φ is responsible for the early matter domination and
that the same modulus is responsible for reheating the SM when it decays with de-
cay rate Γφ. Then the modified axion relic density is approximately given by [145,
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146]10

Ωah
2 = 6× 10−5

(
fa

1012 GeV

)3/2(
Tend

10 MeV

)2

θ2
i , (4.255)

where Tend is the temperature at which φ-domination breaks off, defined by Γφ =
H(Tend). It is customary to refer to Tend as the reheating temperature, Tr ≡ Tend.

Another important constraint, that is exclusive to the pre-inflationary scenario,
comes from the generation of isocurvature modes [133, 134, 149, 150]. These are
small perturbations of the otherwise homogeneous axion field that are generated
during inflation due to quantum fluctuations

〈
|δa(k)|2

〉
=

(
HI

2π

)2
2π2

k3
, (4.256)

with k the mode number. Since the energy contribution of the axion is negligible
compared to the inflaton, these perturbations are uncorrelated with the curvature
spectrum ∆2

R. Their power spectrum is given by

∆2
a =

〈(
δρa
ρa

)〉∣∣∣∣
tCMB

≈
(
γHI

πfaθi

)2

, (4.257)

where γ is a factor that takes into account dispersive effects, which is typically taken
as γ = 2 [149]. Crucially, isocurvature modes are constrained by Planck in terms
of the so-called isocurvature fraction [115]

βiso =
∆2
a(k∗)

∆2
a(k∗) + ∆2

R(k∗)
< 0.038 , (4.258)

at 95 % CL and pivot scale k∗ = 0.050 Mpc−1.

Stringy axions

Let us briefly collect the relevant terms of type IIB string theory which represent
the origin of stringy axions. We have argued that axions are the integrals of the R-R
4-form C4 over 4-cycles, as given in Eq. (4.180). More generally, axions arise as the
KK modes of an R-R p-form wrapping an internal p-cycle. Due to the compactness
of these cycles, these closed-moduli axions are inherently shift symmetric. To arrive
at the four-dimensional EFT, one starts with the ansatz [84]

Cp(x, y) = θ(x)ωp(y) , (4.259)

10Note that in order to arrive at this formula, the number of degrees of freedom at the oscillation
temperature has been set to g∗(Tosc) = 70.
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where ωp is a harmonic p-form and x and y represent the coordinates of the four-
dimensional spacetime R1,3 and six-dimensional internal spaceX , respectively. The
relevant four-dimensional terms in the Lagrangian can now easily be produced via
by integrating the corresponding ten-dimensional terms given in Sec. 4.2.1 over the
internal manifold. We give a quick outline for the most important terms. Kinetic
terms for the axion are obtained from the dimensional reduction of the Cp kinetic
terms [84],

SR ⊃ −
1

4κ2
10

∫
d10x
√
−g|dCp|2 ∼ −

1

κ2
10

∫
X

ωp ∧ ?ωp
∫

d4x
√
−g4∂µθ∂

µθ .

(4.260)
Comparing the right-hand side to

Laxion ⊃ −
f 2
a

2
∂µθ∂

µθ , (4.261)

we notice that
f 2
a ∝

1

l8s

∫
X

ωp ∧ ?ωp , (4.262)

which can be further simplified as shown in App. A.1.
Finally, axionic couplings to gauge instantons on a p+3-brane (or a stack of p+3-

branes) wrapping a p-cycle Σp are obtained from the brane CS term (4.148) [84],

Sbrane,CS ⊃ 2π

∫
R1,p+3

Cp ∧
1

8π2
TrF2 ∧ F2 ∼

∫
Σp

ωp

∫
R1,3

d4xθ Tr
(
FµνF̃

µν
)
.

(4.263)
Together with the gauge-kinetic terms (4.145) for the gauge theory living on the
brane(s), Eqs. (4.260) and (4.263) represent the corresponding four-dimensional
terms (4.249) of the field-theoretical axion.
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5. Axions in string theory and the
Hydra of dark radiation

This chapter is dedicated to one of the major works in this thesis. Every statement
is based on [3] unless stated otherwise.

5.1. Motivation and outline of approach

In Sec. 4.3.3 we have explained how the strong CP problem is resolved by a field-
theoretic axion [141, 142, 151, 152]. By ‘field-theoretic’ we mean that the axion
represents the angular component of a complex scalar field with a spontaneously
broken U(1) symmetry of sufficiently high quality and featuring the right couplings
to the SM. ‘High quality’ in essence refers to the property that the resulting axion
potential should not be spoiled by other contributions than QCD instantons.

In usual field theory, axions come with the downside of adding complexity and
one more degree of freedom to the SM. In string theory, on the other hand, gauge
couplings are determined by the vacuum expectation values of moduli fields; fur-
thermore, the presence of axions, which inherently possess many wanted properties
like a shift symmetry or high quality, is a necessary fact. It used to be difficult to
obtain a viable phenomenology [84]; however, the appearance of the type IIB land-
scape [96, 98] and the LVS [99, 100] has supported the realisability of a realistic
QCD axion in a broad class of string compactifications [136, 137, 153–159].

One important aspect of many stringy realisations of cosmology is the generic
presence of a significant amount of DR [101, 116–118, 130, 160–167]. This repre-
sents one of the major issues that we aim to tackle in this work. To be more specific,
we try to establish a QCD axion together with a realistic cosmology, in particular
an inflationary sector, in the setting of string theory. The goal to avoid too much DR
in doing so will turn out to be a conandrum. That is, we have found a novel way
to ameliorate the original DR problem that is caused by volume axions – this rep-
resents severring the Hydra’s first head. However, as a consequence a new source
of DR via the inflaton is created – the Hydra’s second, regrown head. The key in-
gredient to solve the original DR problem are couplings of the volume axion to the
SM Higgs. While the Higgs mass is fine-tuned in SUSY constructions, the relevant
coupling terms turn out to be much larger than naively suspected. This allows us to
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boost the decay of the volume modulus into the SM, which avoids DR due to the
volume axion. However, the original assumption of a long-lived volume modulus
is broken, resulting in a new setting where the inflaton itself reheats the SM while
re-introducing the DR problem.

5.2. General properties of stringy QCD axions

5.2.1. Achieving a small axion decay constant

A small axion decay constant, fa � MP, is needed for several reasons. One is the
aforementioned high quality of the U(1) symmetry, which refers to the avoidance
of non-QCD-related corrections to the axion potential, ∆V ∼ exp(−MP/fa) [159,
168–174]. Another, more important reason is the adherence of observational bounds
on the DM density. According to Eqs. (4.253) and (4.255), the axion relic density
increases for larger fa, which implies an upper bound fa . 1013 GeV. We will
elaborate on these kinds of bounds in Sec. 5.3. The most straightforward way to
obtain such a small axion decay constant is achieved via a large volume of the
internal space [136] where the axion is given by the integral of a p-form over a
small cycle that determines the SM gauge coupling.

Alternative approaches to realising small fa make use of strongly warped re-
gions [175–178], heterotic string theory [84], heterotic M-theory [178–180] or field-
theoretic axions from open strings [181–183]. We will not pursue these approaches
since they come with several, different caveats as explained in [3].

To understand how a large volume leads to, and in fact is needed for, a small fa
[136], we consider such a large internal CY manifold together with a small p-cycle.
On this cycle, a stack of D(p + 3)-branes is wrapped, on which the SM is located.
In particular, we assume that QCD lives on this stack of branes and we identify the
axion that arises from integrating Cp over this cycle with the QCD axion. Let us
suppose that the string coupling is gs ∼ O(1) and the small cycle has a typical size
τs ∼ O(10) in string units l4s to produce the correct gauge coupling. Then the axion
decay rate will be of the same order of magnitude as the only dimensionful quantity
in this geometric region: the string scale Ms ∝ 2π/ls. Thus we have

fa ∼Ms ∼
MP√
Vs

, (5.1)

where Vs is the internal volume in the string frame measured in string units l6s .
A more careful analysis of this in the context of general type IIB string theory can

be found in App. A.1 where we explicitly incorporate the parametric dependence
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on gs and the size τs of the SM cycle. The result reads

f 2
a,min

M2
P

∼ gsαs,UV

Vs
∼ αs,UV√

gs

1

V
, (5.2)

where V = Vs/g
3/2
s is the CY volume in the ten-dimensional Einstein frame and

αs,UV ∝ τ−1
s is the high-scale value of the strong coupling parameter αs. We as-

certain that an optimal suppression of fa is achieved for gs ∼ 11 and a small αs,UV.
The latter, however, cannot be used for an arbitrarily strong suppression since αs,UV

needs to be consistent with the low-scale αs. Since both of the above ways of sup-
pression are limited, we reassert that a small axion decay constant is necessarily
correlated to a large compactification volume.

This strongly points towards the LVS [99] as described in Sec. 4.2.4 as the opti-
mal setting to study phenomenologically consistent stringy axions, which represents
the only class of models with large internal volume that is understood well enough.
Let us hence re-derive the result (5.2) in the LVS context. To this end, we consider
a setting where one of the small blow-up cycles τs,i is wrapped by a stack of branes
on which QCD lives. We will later see that we are driven to stabilise this SM cycle
by loop effects, which is why we label it by τL for ‘Loop’.

The size of this cycle will determine the SU(3) gauge coupling, α−1
s,UV = 2τL.2

We take a volume as given in Eq. (4.197) and a Kähler potential given by Eq. (4.193)
excluding the parameter ξ,

K = −2 logV , V = τ
3/2
b − γsτ

3/2
s − γLτ

3/2
L , (5.3)

where we included one more small cycle τs for illustrative reasons. The kinetic
terms for the axions, according to Eq. (4.203), are given by

L/M2
P ⊃ Kij̄∂µθi∂

µθj̄ , (5.4)

where a sum over i, j̄ ∈ {b, s,L} is implied and the axions’ periodicity is set by
θi = θi + 1. After a rotation to a diagonal basis θ′i, we obtain for the QCD axion θ′L

L/M2
P ⊃ λL∂µθ

′
L∂

µθ′L , (5.5)

where λL is the adequate eigenvalue of Kij̄ . The canonically normalised axion
aL/MP =

√
2λLθ

′
L then adheres to aL = aL +

√
2λLMP.3 Demanding that aL has a

1Note that values of gs larger than unity endanger the calculational control due to string-loop cor-
rections or can be brought back to values smaller than unity by considering a dual theory.

2Due to gauge fluxes, this may be corrected by someO(1) factor depending on the details of model
building

3Remember that we denominate the canonically normalised moduli and axion fields as φi and ai,
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periodicity of 2πfaL , we can read off the axion decay constant (see also [184] and
references therein)

faL =

√
2λLMP

2π
. (5.6)

To obtain the eigenvalue λL, we make use of the fact that in the large-volume limit
V ≈ τ

3/2
b � τ

3/2
s ∼ τ

3/2
L , the Kähler metric is approximately diagonal. To see this,

we note that

Kij̄ =
1

4

∂2K
∂τi∂τj̄

= −1

2

∂2 logV
∂τi∂τj̄

∼


τ−2

b ≈ V−4/3 for i = j̄ = b
V−1τ−1

b ≈ V−5/3 for i = b, j̄ 6= b or i 6= b, j̄ = b
V−2 for i 6= b, j̄ 6= b, i 6= j̄

V−1 for i = j̄ 6= b

.

(5.7)
Clearly, the diagonal components, i = j̄, have the least suppression by volume
factors so that the eigenvalue can be approximated by (cf. Eq. (A.32))

λL ≈ KLL =
3γL

8
√
τLV

. (5.8)

We then obtain for the QCD axion decay constant4

f 2
aL

M2
P
≈ 3γL

16π2
√
τLV
' O(1)

2π2
√
τLV

, (5.9)

where in the last step we have absorbed the numerical factors in λL into the O(1)
prefactor. This is consistent with the estimated lower-bound (5.2) except for the
factor τ−1/2

L ∝ √αs,UV in Eq. (5.9) compared to αs,UV in Eq. (5.2). This minor
difference does not come as a surprise because the latter factor assumes a very
optimistic structure of the harmonic form in App. A.1 to suppress fa as much as
possible.

5.2.2. Embedding of stringy axions into inflation

In Sec. (4.3.3) we have explained that there is a crucial difference between the
post- and pre-inflationary setting relating to the question whether the PQ symmetry
is unbroken at some point after inflation or not. The former case implies several
important consequences like the absence of isocurvature fluctuations [133, 149, 150,

respectively.
4Note that models of fibre inflation, which have been explained in Sec. 4.3.2 and where τL is a factor

in the overall volume V , will generally imply a decay constant of the same order of magnitude
or larger.
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185], the impossibility to tune the initial misalignment angle θi [149, 150, 186],
axion miniclusters [187–190] or topological defects like axion strings and domain
walls [191–195].

In the case of stringy axions that originate from the integral of p-form fields
over internal cycles of the CY space, the situation is slightly different from a field-
theoretic axion that results from the breaking of the PQ symmetry. As explained in
Sec. (4.3.3), such stringy axions are inherently shift symmetric at the fundamental
level so that there is no PQ symmetry that has to be broken first. Accordingly, this
kind of axions will automatically be present during inflation and hence always es-
tablish a pre-inflationary scenario. Especially and most important for our purposes,
stringy axions are bound to isocurvature constraints and allow for the tuning of θi.

One caveat to this is the fact that, for typical inflationary scenarios that make
use of moduli fields, one or several of the latter are displaced from their respective
vacuum expectation values. For instance, this is also exactly the case in blow-up
inflation as explained in Sec. 4.3.2. Such a displacement dramatically changes the
geometry of the internal space, which could, at least in principle, have effects on
the properties of the axion, e.g. a decay constant that evolves during inflation. Ob-
viously, this would imply important phenomenological consequences for the axion,
e.g. regarding its initial conditions or isocurvature fluctuations. We believe that
such modifications in a quantitative analysis cannot be ruled out per se and deserve
further study; however, we do not expect them to be relevant for our analysis and
conclusions. In particular, as argued in Sec. 4.3.2 in the setting of blow-up inflation,
which we will mostly be dealing with, all cycles other than the inflaton cycle remain
practically stable during inflation so that an evolution of fa seems unlikely.

Other complications might arise from higher-temperature effects, on which we
elaborate in [3] and which we expect to be irrelevant in this work as well.

5.3. Cosmological constraints

In Sec. 4.3.3 we have argued that axions have important cosmological consequences.
Especially noteworthy are their contribution to the overall DM density and the pro-
duction of primordial isocurvature fluctuations. In this section, we use correspond-
ing cosmological constraints (for detailed studies cf. [133, 134, 145, 146, 148]) to
restrict the parameter space of the axion and inflation, which will impose crucial
implications on the required setting for a realistic scenario. Since there are some
analytical approximations and dropped O(1) factors involved, the results of this
section should be taken as order-of-magnitude estimates and an indication of the
different qualitative regimes.

127



5. Axions in string theory and the Hydra of dark radiation

5.3.1. Assuming a standard cosmology for the expansion
history

Dark matter abundance

In the previous section we have argued that stringy axions are established in a pre-
inflationary scenario. This implies that the whole discussion in Sec. 4.3.3 applies,
especially the facts that θi can be tuned and that isocurvature perturbations are gen-
erated. Moreover, axionic dark matter is produced via the usual misalignment mech-
anism [196–198], which under the assumption of a standard cosmological history,
i.e. an onset of axion oscillations during radiation domination, results in an axion
relic density as given in Eq. (4.253). The requirement that this does not lead to an
overproduction of DM, i.e. that the inequality in Eq. (4.254) is respected, imposes
a bound on the initial misalignment angle in terms of the axion decay constant,

Ωa ≤ Ωc0 ⇒ θi ≤ 0.8

(
1012 GeV

fa

)7/12

. (5.10)

Saturating the observed dark matter abundance

Since axions represent a viable DM candidate, it is obviously tempting to have
them not only contribute to but instead account for all of DM. This requires that
the bound (5.10) is saturated. Since the initial misalignment angle cannot take on
arbitrarily large values, θi ≤ π (this corresponds to the maximum of the axion po-
tential), this suggests that fa cannot be too small and has a lower limit that can yield
the required DM abundance. For example, we notice that according to Eq. (5.10),
an initial angle θi ∼ 1 already requires fa ∼ 1012 GeV. If we take θi ≤ 3 as an
upper limit for the initial angle that does not require significant tuning, one obtains

fa & 1× 1011 GeV (5.11)

to saturate the DM density. Allowing for tuning and including corrections due to the
anharmonicity of the potential at large values of θ [134], the axion decay constant
can become as low as

fa & 1010.3 GeV for HI & 104 GeV , (5.12)

where the dependence on HI arises due to fluctuations during inflation that might
interfer with the tuning. In the following, we will mostly assume that the QCD
axion constitutes all of dark matter, i.e. that the bound (5.10) is saturated; however,
we will avoid tuning the misalignment angle but instead take the bound θi ≤ 3
seriously.
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Isocurvature constraints

Another observational bound relevant for axions in the pre-inflationary scenario
is the one on isocurvature perturbations [133, 134, 149, 150], which have been
introduced in Sec. (4.3.3). Combining Eq. (4.257) with Eq. (4.258) and inserting
the measured value of the curvature power spectrum ∆2

R as given in Eq. (4.227),
one finds an upper bound on the inflation scale in terms of the axion parameters,

HI . 1.4× 10−5faθi . (5.13)

Implications for the string scenario

We are now in the position that we have three parameters (fa, θi and HI) and two
relations (Eqs. (5.10) and (5.13)), both of which also apply to a field-theoretic axion
in the pre-inflationary setting. Let us now add the fact that we are considering
stringy axions, i.e. that the axion decay constant scales with the volume V as given
in Eq. (5.9). Combining these three relations and assuming that the bound from the
DM abundance, i.e. Eq. (5.10) is saturated, we arrive at

HI <
2× 109 GeV
V5/25

. (5.14)

Considering that the volume is a very large parameter in the LVS, V � 1, this
implies a very low inflation scale and, according to Eq. (4.228), also a very low
tensor-to-scalar ratio.5

While the above bound is independent of any assumption about the inflationary
potential, we can also derive an explicit bound by using knowledge about the infla-
tion scale in typical string-theoretic constructions. In general, HI should be compa-
rable to the natural magnitude of the scalar potential. For higher values, there is the
danger of moduli de-stabilisation, whereas lower values generally necessitate more
tuning. The natural scale of the LVS scalar potential, as given in Eq. (4.199), is
given by VF ∼ M4

P/V3 so that we expect the inflation scale in a typical LVS setting
to be

H2
I ' β

W 2
0M

2
P

V3
, (5.15)

5One might argue, that the bound (5.13) from isocurvature constraints can be loosened or even
evaded by considering a scenario where the QCD axion constitutes only a minor fraction of the
total DM density. This would indeed allow for a relaxation of the isocurvature bounds; however,
achieving such a small axion relic density requires that either θi or fa are very small. The former
cannot be tuned to arbitrarily low values because the emergence of quantum fluctuations would
spoil such a tuning, whereas a smaller fa in the LVS context is only achieved by an even larger
volume, which would again imply a smaller inflation scale. We therefore believe that a small HI

is a general und hardly circumvented feature of a stringy axion.
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where β is a model-dependent parameter of orderO(1). Comparing this to Eq. (4.237),
we see that for blow-up inflation this estimate indeed accurate.

We can now use Eq. (5.15) to solve Eq. (5.14) explicitly for V , thus obtaining an
estimate for a lower bound on V , which translates into upper bounds on HI and fa.
In order to also estimate opposite bounds, we demand that the axion relic density
satiates the DM density without a fine-tuned θi ≈ π. That is, we saturate the bound
given by Eq. (5.10) for θi ≤ 3, which leads to a lower bound on fa that can again be
translated into corresponding bounds on V and HI. We obtain

(κ24/31) 1× 107 . V . 9× 1012 , (5.16)

(κ−5/31) 7× 107 GeV & HI & 0.1 GeVκ , (5.17)

(κ−12/31) 9× 1013 GeV & fa & 1× 1011 GeV , (5.18)

(κ7/31) 0.1 . θi . 3 , (5.19)

where we defined κ2 ≡ βW 2
0 and in the penultimate line used Eq. (5.9) with the

O(1) factor taken to be equal to unity and τL = 1/(2αs,UV) = 25/2. Here, the left-
hand side represents the bounds from isocurvature constraints and the right-hand
side those from a non-fine-tuned DM saturation.

5.3.2. Assuming an early matter domination for the
expansion history

As we have argued in Sec. 4.3.3, stringy early-universe constructions often times
entail a period of early matter domination due to a late-decaying modulus, which
is typically but not necessarily the volume modulus. This modifies the axion relic
density so that in an analogous analysis to above we have to replace Eq. (4.253) by
Eq. (4.255).

Isocurvature constraints

On the other hand, we expect the bound (5.13) from isocurvature constraints to still
be valid because the respective CMB modes that we observe had left the horizon
already before the early-matter-domination phase and re-entered it only close to
DM-radiation equality. They have thus never experienced the period of early matter
domination and are hence unaffected by it. Therefore, we can again derive an up-
per bound for the inflation scale in terms of the volume by combining the formula
for axionic DM abundance Eq. (4.255) with the isocurvature constraints Eq. (5.13)
and the volume scaling of a stringy axion decay constant Eq. (5.9) while using the
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saturation condition, Ωah
2 = Ωc0h

2 = 0.12. This yields

HI <
1× 1010 GeV
V1/8

(
10 MeV
Tend

)
, (5.20)

which as before represents a comparatively low value for HI and r. Note that
Tend is bounded from below, Tend & O(1 MeV), in order to guarantee a success-
ful BBN [199–210].

Implications in the string scenario

To eliminate the volume from the above formula, we use again that the inflation
scale in the LVS is typically given by Eq. (5.15). As before, this implies a lower
bound on V and, equivalently, upper bounds on HI and fa. Moreover, as above we
estimate opposing bounds by imposing a non-fine-tuned initial misalignment angle,
θi ≤ 3. We obtain(

κTend

10 MeV

)8/11

9× 105 . V . 6× 107

(
Tend

10 MeV

)8/3

,

(5.21)

κ−1/11

(
10 MeV
Tend

)12/11

3× 109 GeV & HI & 5× 106 GeV
(

10 MeV
Tend

)4

κ ,

(5.22)(
10 MeV
κTend

)4/11

3× 1014 GeV & fa & 4× 1013 GeV
(

10 MeV
Tend

)4/3

,

(5.23)

where again the left-hand side represents bounds from isocurvature constraints and
the right-hand side from DM saturation without fine-tuning. Note that the window
which is spanned by the above bounds becomes narrower for smaller Tend and might
even close if κ is large enough.

Let us eliminate Tend = Tr and make the above bounds more explicit. For that
purpose we use the fact that, according to Eq. (4.216), the decay of the longest-
lived modulus determines the reheating temperature. In typical scenarios, this is the
volume modulus, whose decay rate is qualitatively given by

Γτb ∼
m3
τb

M2
P
, (5.24)

where mτb is given in Eq. (4.204) and we again ignored prefactors that are not rele-
vant for the qualitative volume scaling. We can then use this to obtain an expression
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for the reheating temperature with an explicit volume dependence,

Tr =

(
90

g∗π2

)1/4 |W0|3/2MP

V9/4
. (5.25)

With that we can eliminate Tr from the above bounds. As it turns out, the resulting
bounds due to isocurvature describe a regime with very high reheating temperature,
which violates the assumption that the axion oscillations begin during the early-
matter-dominated period. Instead, this regime belongs to the standard, radiation-
dominated case discussed above, which is why we only give the bounds due to DM
saturation,

V . 7× 108
(
W

4/7
0

)
, (5.26)

HI & 1× 105 GeV
(
β1/2W

1/7
0

)
, (5.27)

fa & 1× 1013 GeV
(
W
−2/7
0

)
, (5.28)

Tr & 30 MeV
(
W

3/14
0

)
. (5.29)

Bounds from BBN

As already mentioned, the reheating temperature is bounded from below, Tr &
O(1 MeV), in order to not spoil a succesful BBN [199–210]. Imposing this on
Eq. (5.25) provides another upper bound on V , which can be translated into bounds
on HI and fa,

V . 3× 109
(
|W0|2/3

)
, (5.30)

HI & 1× 104 GeV (β1/2) , (5.31)

fa & 5× 1012 GeV (|W0|−1/3) . (5.32)

Since the only assumption used to derive these bounds is that the volume mod-
ulus reheats the SM, they are independent of the exact time when the axion be-
gins to oscillate. Hence these bounds are valid for both the standard scenario and
the early-matter-domination scenario. While for the latter of the two scenarios the
bounds from DM saturation are stronger, Eqs. (5.30) – (5.32) provide more restric-
tive bounds for the former scenario. Moreover, the BBN bounds are harder than
those from DM saturation in the sense that their violation would immediately imply
a phenomenologically unviable theory, although this should be taken with a grain
of salt due to the ignored prefactors in their derivation.

We want to stress that the bounds in Eqs. (5.26) – (5.29) and (5.30) – (5.32) are
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based on the assumption that the volume modulus reheats the SM, which will be
challenged in this work. In the next section, we will see that the volume modulus
can possibly decay into SM degrees of freedom via another, very fast decay chan-
nel. This not only increases the reheating temperature and thus resembles more the
standard scenario than the early-matter-domination one but also modifies the cos-
mological setting. That is, not the volume modulus but the inflaton cycle will be
the longest-lived modulus and hence responsible for reheating. Obviously, this also
dramatically changes the above bounds.

5.4. The old dark radiation problem and its new
resolution by Higgs-mass-mediated
decays

A ubiquitous prediction of many cosmological LVS constructions is the production
of DR [101, 116–118, 130, 160–167]. As explained in Sec. 4.3.1, the amount of
DR ∆Neff is observationally constrained, which imposes a major challenge for the
phenomenological viability of such models. The main reason for this so-called dark
radiation problem is the volume modulus, which represents the longest-lived mod-
ulus and decays into its own axion with a branching fraction of O(1) [116, 117].
Since the volume axion is practically massless, as can be seen from Eq. (4.204),
and its production occurs thermally, this constitutes a major contribution to DR.
There are proposals to ameliorate the problem by either boosting the decays to light
superpartners [161] or using a large flux on the cycle that carries the SM [130];
however, both of them are not compatible with the establishment of a stringy QCD
axion. The former uses a so-called sequestered setting; that is, the SM does not live
on a stack of 7-branes that wrap a 4-cycle but instead on a stack of 3-branes which
represent a singular point in the internal space. In this case there is no candidate
for a QCD axion present. The latter of the two proposals is based on fibre infla-
tion, which as explained in Sec. 4.3.2 predicts a rather large tensor-to-scalar ratio
and inflation scale and is therefore incompatible with our derived bounds from the
previous section.

In the rest of this section, we will summarise the usual DR problem and explain
a novel mechanism that seemingly solves it.

5.4.1. Decays of taub into its axion ab and the SM

Following [116, 117], in order to explain the DR problem, we first need to calculate
the decay of τb into its own axion θb. The relevant operators originate from the
kinetic term (4.203) for Tb = τb + iθb. Starting from the usual, leading order Kähler
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potential (4.184), we can calculate the component Kbb of the Kähler metric and
expand it up to leading order in the small parameter ε ≡ τ

−1/2
b ≈ V−1/3. This yields

for the kinetic term

L/M2
P ⊃ Kbb∂µTb∂

µT̄b =
3

4τ 2
b
∂µτb∂

µτb +
3

4τ 2
b
∂µθb∂

µθb . (5.33)

The canonically normalised volume modulus field is given by φb/MP ≡
√

3/2 ln τb,
leading to

L ⊃ 1

2
∂µφb∂

µφb +
3

4
exp

(
−2

√
2

3

φb

MP

)
∂µθb∂

µθbM
2
P . (5.34)

Linearly expanding about the vacuum expectation value, φb = 〈φb〉+δφb, we obtain

L ⊃ 1

2
∂µφb∂

µφb +
1

2
exp

(
−2

√
2

3

〈φb〉
MP

)(
3

2
−
√

6
δφb

MP

)
∂µθb∂

µθbM
2
P , (5.35)

=
1

2
∂µφb∂

µφb +
1

2
∂µab∂

µab −
√

2

3

δφb

MP
∂µab∂

µab , (5.36)

where the canonical volume axion is defined as

ab/MP ≡
√

3

2
exp

(
−
√

2

3
〈φb〉

)
θb =

√
3

2

θb

〈τb〉
. (5.37)

The last term in Eq. (5.36) induces a trilinear coupling between one volume modulus
and two volume axion particles, leading to the decay rate [116, 117]

Γφb→abab =
1

48π

m3
τb

M2
P
. (5.38)

To obtain the amount of DR, ∆Neff, we have to relate Γφb→abab to the decay rate
of τb into the SM. Depending on the specific setting, different channels are possible;
however, one major contribution is typically the decay into Higgs fields. In many
supersymmetric extensions of the SM, including most prominently the so-called
Minimal Supersymmetric Standard Model (MSSM), the Higgs sector is constituted
by two chiral superfields,Hu andHd. After SUSY breaking, one linear combination
of these superfields and their hermitian conjugates represents the SM SU(2) Higgs
doublet. The coupling terms are obtained by extending the Kähler potential as [101,
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211]

K = −3 ln

[
Tb + T b −

1

3

(
HuHu +HdHd + zHuHd + zHuHd

)]
, (5.39)

where the small cycles have been omitted and z is an O(1) constant. Note that if
z is exactly unity, the Kähler potential and thus the theory is shift-symmetric in the
Higgs sector [212, 213]. Defining the small parameter

x ≡ −HuHu +HdHd + zHuHd + zHuHd

3
(
Tb + T b

) (5.40)

and expanding according to ln(1 + x) ≈ x, we obtain

K ≈ −3 ln
(
Tb + T b

)
+
HuHu +HdHd + zHuHd + zHuHd

Tb + T b
(5.41)

≈ −2 lnV +
HuHu +HdHd + zHuHd + zHuHd

2τb
. (5.42)

The resulting Lagrangian for the canonically normalised fields reads [116, 117]

L ⊃ 1

2
∂µφb∂

µφb + ∂µHu∂
µHu + ∂µHd∂

µHd

+
1√
6

[
φb
(
Hu�Hu +Hd�Hd

)
+ z�φb

(
HuHd +HuHd

)]
, (5.43)

which induces a trilinear coupling leading to a decay rate [116, 117]

ΓSM ∼ Γφb→HuHd =
z2

24π

m3
τb

M2
P
. (5.44)

It is uncertain whether a z � 1 is possible so that the decay rate into the SM can
be enhanced. Although the above decay rate applies most straightforwardly to the
sequestered setting and low-scale SUSY, its qualitative implications generalise to
other cases [101], e.g. to SUSY breaking at a higher scale or the non-sequestered
case, which we are considering and which includes additional decays to SM gauge
bosons.

Since ΓDR ∼ ΓSM, there will be a significant amount of DR, as can be seen from
Eq. (4.233). In conclusion, the DR problem is a generic issue of cosmological LVS
constructions whose solution is widely accepted to be non-trivial.

In what follows, we will argue that there is an additional decay channel of the
volume modulus into the SM Higgs in the regime of high-scale SUSY breaking,
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whose decay rate is parametrically larger than the one into volume axions, and thus
the DR problem is seemingly solved.

5.4.2. Mass-term-induced, rapid decays of the volume
modulus into Higgses

The underlying idea of this novel mechanism is based on the fact that the mass of the
Higgs field depends on the volume modulus τb. Due to this term, small perturbations
δτb about the vacuum expectation value will induce a trilinear coupling that leads
to the decay of a volume-modulus particle into two Higgs particles. Since the latter
have a mass at the electroweak scale, which is usually much smaller than mτb , one
would naively expect that this coupling is suppressed by a factor |m2

H |/m2
τb

w.r.t.
ΓDR. Nevertheless, this expectation becomes disproven once we take into account
that the small Higgs mass in high-scale SUSY models is not at its natural scale but
instead the result of fine-tuning. This fine-tuning, which is adjusted such that the
vacuum expectation value of the τb-dependent Higgs-mass parameter corresponds
to the SM Higgs mass, is easily broken once we consider fluctuations δτb. The
resulting trilinear coupling is therefore at the natural scale of the supersymmetric
Higgs mass, which is essentially given by the SUSY breaking scale, resulting in a
much larger decay rate.

In detail, we take the KK scale mKK of the stack of SM branes as a UV cut-
off. Above this scale, the four-dimensional supersymmetric EFT breaks down and
becomes higher dimensional, whereas below it we can run down the Higgs mass
matrix of Hu and Hd to the SUSY breaking scale, which is given by the grav-
itino mass m3/2. The latter is determined by the F-terms of the Kähler moduli,
m3/2/MP ∼ FT/T . Since the natural value of the Higgs mass is set by the SUSY
breaking scale, there will be entries in the Higgs mass matrix at the order of m2

3/2.
Moreover, further contributions to this mass are present, for instance due to loop
corrections of virtual gauginos, which add a term ∼ cloopm

2
1/2 ln(mKK/m3/2) [211–

215]. Here the logarithm originates from running from the KK scale down to the
SUSY breaking scale, while cloop ∼ 1/(16π2)� 1 is a loop factor andm1/2 ∼ m3/2

is the gaugino mass. The latter relation is a well known fact that we illustrate by a
short calculation in App. A.2.6

Below the scale m3/2, SUSY breaks and one linear combination of the scalar

6In fact, if a cycle that is wrapped by a stack of branes is stabilised non-perturbatively, the resulting
gauge theory that lives on this stack is characterised by gauginos with a mass that is suppressed
w.r.t. the gravitino mass by a factor m3/2/m1/2 ∼ ln(MP/m3/2) ∼ lnV . This is due to a
leading-order cancellation of the F-terms [216]. However, in the next section we will argue that
the relevant cycle that carries the SM should not be stabilised non-perturbatively but rather by
loop corrections. In this case, such a suppression of the gaugino mass does not occur so that the
latter is indeed comparable to the gravitino mass [153, 217].
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components in the chiral superfields Hu and Hd is removed. The remaining com-
bination constitutes the SM Higgs doublet and its mass is fine-tuned between all
contributions, which are naturally of the order O(m3/2) as we explained, down to
the electroweak scale. Schematically, this can be written as

m2
H ∼ m2

3/2

[
c0 + cloop ln

(
mKK

m3/2

)]
, (5.45)

where c0 is anO(1) constant that entails the uncorrected, natural value of the Higgs.
Since |m2

H | � m2
3/2, the two terms in brackets have to cancel with high precision.

Let us now insert concrete expressions for the relevant mass scales. The SM lives
on one (or several intersecting) stacks of D7 branes that wrap the small cycle τL. To
produce a correct gauge coupling (cf. Eq. (4.192)), the size of this stack is rather
constrained to a value of O(1− 10) in string units. The resulting KK scale is there-
fore mKK ∼ Ms ∼ MPV−1/2. According to Eq. (4.69), together with Eq. (4.184),
the gravitino mass is given by m3/2/MP ∼ W0/V , so that we obtain

m2
H ∼

(
W0

V

)2 [
c0 + cloop ln

(
V1/2

W0

)]
M2

P . (5.46)

Now we want to perturb the volume by small values about its vacuum expectation
value. More precisely, we insert V ≈ τ

3/2
b as well as the corresponding canonical

field
√

3/2 ln τb = φb/MP and write the latter as φb = 〈φb〉+ δφb. Expanding then
m2
H up to linear order in δφb yields

L ⊃ ∼ W 2
0 exp

(
−
√

6
φb

MP

)[
c0 +

cloop

2

(√
3

2

φb

MP
− 2 lnW0

)]
h2M2

P (5.47)

≈ W 2
0 exp

(
−
√

6
〈φb〉
MP

)[
cfine(1−

√
6
δφb

MP
) +

cloop

2

√
3

2

δφb

MP

]
h2M2

P (5.48)

≈ W 2
0

〈V〉2

[
cfine(1−

√
6
δφb

MP
) +

cloop

2

√
3

2

δφb

MP

]
h2M2

P , (5.49)

where h is the Higgs scalar and we have defined

cfine ≡ c0 +
cloop

2

(√
3

2

〈φb〉
MP
− 2 lnW0

)
, (5.50)

which is fine-tuned to a very small value. From Eq. (5.49) we see that the result-
ing Higgs mass as well as a contribution ∝

√
6δφb/MP to the trilinear coupling is
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proportional to cfine and hence very small. Crucially, there is another contribution to
the trilinear coupling,

L ⊃ ∼ m2
3/2

cloop

2

√
3

2
h2 δφb

MP
, (5.51)

which originates from the expansion of the logarithmic function and is therefore not
subject to the fine-tuning of the mass parameter. That is, this term is not multiplied
with cfine and therefore remains at the natural scale of the Higgs mass matrix aside
from the minor suppression by cloop. This induces a decay of one volume modulus
into two SM Higgs particles, whose decay rate is parametrically given by

Γφb→hh ∼
m4

3/2

mτb

c2
loop

M2
P
∼ (cloopV)2

m3
τb

MP
� Γφb→abab . (5.52)

Here we used Eqs. (4.204) and (5.38) and assumed V � 1/cloop ∼ 16π2.
In summary, we have found a new decay channel of τb into the SM, which is

much stronger than into volume axions. This implies that the produced amount of
DR, ∆Neff ∼ Γτb→abab/Γφb→hh is neglible so that the standard DR problem seems to
be solved. We have thus severred the Hydra’s first head. There is one major issue,
however, that we have not considered so far. The original discussion about the DR
problem is based on the assumption that the volume modulus is the longest-lived
modulus so that it is responsible for reheating the SM. This has been reasonable
because the typical decay rate of a modulus scales as

Γτi ∼
m3
τi

M2
P
, (5.53)

which is lowest for the lightest modulus τb. However, in light of the above discus-
sion about an increased decay into Higgses, this assumption needs re-evaluation. In
particular, we need to investigate other moduli, which may have longer lifetimes,
and their respective decay channels into DR, especially axions. Since such moduli
could be related to the specific inflationary mechanism, we will dedicate the next
section to the concrete establishment of the latter before resuming the analysis of
DR in Sec. 5.6.
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5.5. Combining the QCD axion with a suitable
inflation model

So far, we have argued that the LVS constitutes a promising setting for the realisa-
tion of a stringy QCD axion and now we want to equip this with a proper and con-
crete mechanism for inflation and reheating. The two most prominent LVS based
examples of inflationary models are blow-up [121] and fibre [122] inflation, which
both have already been discussed in Sec. 4.3.2. As we have argued in Sec. 5.3, a
stringy QCD axion requires a very small inflation scale HI due to isocurvature con-
straints, which is why fibre inflation does not qualify for our needs. For the rest of
this work, we will hence focus on blow-up inflation, whose volume is typically of
the form given in Eq. (4.234).

As a quick reminder, in blow-up inflation the inflaton cycle τI corresponds to
an ordinary blow-up cycle, just like the other small cycles τs,i needed for the LVS
mechanism, which is only distinguished by its initial displacement to a large value.
Both the inflaton and the small cycles are stabilised by non-perturbative effects,
which modify the superpotential by a term ∝ exp(−aiτi). During inflation, the
corresponding correction for the inflaton is very small due to the displacement and
the potential is very flat allowing for a slow-roll phase. After inflation, τI rolls to its
minimum and is stabilised in the usual LVS manner.

Obviously, we also have to discuss which non-perturbative effects are used to
stabilise the inflaton and small cycles. Possible candidates are D3-brane instantons
that wrap the respective cycles or gaugino condensation on stacks of N D7-branes
wrapping the cycles. As explained below Eq. (4.195), the former imply aI = 2π and
the latter aI = 2π/N . Gaugino condensation is disfavoured because of two reasons:
First, additional branes that wrap a cycle other than the SM cycle would imply a
dark sector due to the gauge theory on these branes, thus representing a potential
danger of DR. Second, it has been argued in [121, 128] that loop effects, which have
not yet been included into the analysis and which scale as

δVinflaton,loop ∼
M4

P√
τIV3

, (5.54)

have a tendency to spoil the flatness of the slow-roll potential. We will therefore
focus on D3-brane instantons as the non-perturbative effect that stabilises τI and
the other τs,i. Unfortunately, this comes with a caveat as well because according to
Eq. (4.200), the volume is stabilised at a value

〈V〉 ∼ exp

(
O(1)aI

gs

)
, (5.55)
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where the explicit dependence on gs originates from the factor g−3/2
s that has been

absorbed into ξ in Eq. (4.193). For small values of gs, the volume can become very
large leading to a de-compactification of the internal space. While this is not neces-
sarily harmless and deserves further investigation, we believe that the hypothetical
danger of de-compactification per se is not reason enough to rule out a stabilisation
via D3-brane instantons a priori and that large enough values for gs in the range
O(0.1− 1) can be achieved, as is common in F-theory models.

After we have discussed the inflationary setting and the LVS stabilisation, we still
need to implement the SM sector together with a QCD axion. The naive setting of
wrapping a stack of D7-branes on a small cycle that is stabilised by non-perturbative
effects is ruled out because the axion, which is the SUSY partner of the correspond-
ing Kähler modulus, would obtain the same mass, mθs ∼ mτs ∼ |W0|MP/V , as is
given in Eq. (4.204). This is parametrically of the same order as the SUSY break-
ing scale m3/2 and hence incompatible with the QCD axion, which according to
Eq. (4.252) is very light, ma,0 . O(meV). For that reason, we adapt an idea from
Sec. 4.3 of [137] to our case. Here the SM sector is realised with the help of two
intersecting small cycles. Via D-terms, one combination of the two corresponding
Kähler moduli is stabilised, which can than be integrated out at a high mass. The
other combination is stabilised by loop effects [102, 103, 218, 219] and acts as an
effective, single modulus that carries the SM on intersecting stacks of branes that
wrap the two moduli. Effectively, the volume can be written as

V = τ
3/2
b − γsτ

3/2
s − γIτ

3/2
I − γLτ

3/2
L , (5.56)

where the index ‘L’ refers to ‘Loop’. This constitutes the given form of the vol-
ume that we will consider for the rest of this work and from which we derive the
relevant dynamics. Note that the term ∝ τ

3/2
s represents a sum over many small

cycles that are needed for the stability of the volume during inflation, as explained
in Sec. (4.3.2), although for most future purposes we can treat it as a single modulus
or even ignore it. We also assign the numbers ‘1’, ‘2’, ‘3’ to the labels ‘b’, ‘I’, ‘L’,
respectively.

As argued in [137], the resulting loop potential for τL plausibly reads

Vloop =

(
µ1√
τL
− µ2√

τL − µ3

)
W 2

0M
4
P

V3
, (5.57)

where the µi are positive constants. In detail, µ1 and µ2 are determined by the
vacuum expectation values of the complex-structure moduli, whereas µ3 is related
to the size of a small cycle τs. That is, we suppose that the internal geometry will
generate a loop correction as given above with µ3 = c

√
〈τs〉 at a low enough energy

at which τs has been integrated out. If µ1 and µ2 take on similar values and c is a
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constant in the rangeO(1−10), the resulting loop cycle will be fixed at a value that
is compatible with the SM gauge coupling,

〈τL〉 =
µ1µ

2
3

(
√
µ1 +

√
µ2)2

∼ O(10) . (5.58)

One important aspect that we want to stress is that the potential generated by the
perturbative effects does not depend on the axionic partner θL. The latter remains
therefore light until its potential is finally generated by QCD effects at a much lower
energy. For that reason, θL constitutes a suitable candidate for the QCD axion.

Having established a concrete inflationary scenario and identified our QCD axion,
we want to return to the dynamics at the end of inflation, reheating and the issue of
DR in the following section.

5.6. The new dark radiation problem due to
problematic contributions from early
decays

We have argued in Sec. 5.4 that the decay of the volume modulus φb is greatly
enhanced due to an additional channel into SM Higgses via the volume-dependent
mass term. The resulting decay rate, as given by Eq. (5.52) scales like

Γφb ∼ c2
loop

MP

V5/2
. (5.59)

Such a fast decay rate implies that the lifetime of the volume modulus is dramati-
cally decreased, which challenges the standard assumption that this modulus comes
to dominate the universe before it decays and reheats the SM. We therefore have
to re-evaluate the dynamics at the end of inflation taking into account other mod-
uli fields, in particular the inflaton modulus, and examine whether they decay more
slowly than φb. In the latter case, one can consider any decay of such a longer-lived
modulus into the volume modulus to be followed by a practically instantaneous de-
cay of φb into the SM; that is, decays into φb may be treated as direct decays into the
SM. The resulting reheating dynamics, especially w.r.t. the question about DR, are
therefore determined by the branching fractions of the longest-lived modulus into
φb, other moduli, SM particles and DR, specifically axions.

As we explained in the last section, we consider the scenario of blow-up infla-
tion, with a volume given by Eq. (5.56), and want to focus on the dynamics after
inflation. Therefore, the relevant fields that participate in the dynamics are the in-
flaton φI, the volume modulus φb, the loop-stabilised SM-cycle modulus φL and the
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small-cycle moduli φs, which are needed for stability during inflation, as well as
the axionic partners of all the respective moduli, aI, ab, aL and as. In Sec. 4.3.2,
it is described that after inflation, due to vacuum misalignment and parametric res-
onances, the volume modulus is excited in a violent process causing it to perform
coherent oscillations [126]. We do not have anything new to add regarding this
mechanism but instead consider the period afterwards, when the coherent oscilla-
tions have been damped after a few oscillations and can be considered as small,
decoherent fluctuations about the minimum, i.e. particles, so that perturbation the-
ory can be applied [128].

It is conceivable and perhaps even likely that the inflaton axion aI is excited in
this very process as well [126, 127, 220]; however, we will not take it into account
in our dynamical analysis for two reasons: First, since its mass is the same as of
the inflaton, as indicated in Eq. (4.204), a perturbative decay into it is kinematically
forbidden. Second, if there is any energy stored in aI due to the aforementioned
coherent oscillations, aI will tend to decay into lighter axions ab and aL at least as
fast as φb because axionic decays always involve another axion as decay product,
as we will argue below. Hence, an inclusion of aI into the analysis would only
strengthen our final results, which state that too much DR is produced.

We will also exclude the small-cycle moduli φs and their respective axions as

from the dynamical analysis because in the perturbative regime their treatment and
decay rates are identical to those of φI. Moreover, since their mass is comparable to
the inflaton mass mτI , it is questionable whether a decay φI → φsφs is kinematically
allowed.

This leaves us with the fields φI, φb, φL, ab and aL. It will turn out that the
inflaton is the longest-lived particle, which decays into the SM via φb and φL and
in equal parts into DR in the form of ab and aL. In the following, we will illustrate
the derivation of the relevant decay rates and present the most important findings,
whereas we refer to Apps. A.3 and A.4 for more detailed calculations.

5.6.1. Decay rates

The underlying mass hierarchy

Let us first elaborate on the mass hierarchy of the relevant fields. The Kähler poten-
tial is given by Eq. (4.193) with V given in Eq. (5.56), where we ignore the small
cycles τs as argued above. Without considering these small cycles, the superpo-
tential is only corrected by non-perturbative corrections on the inflaton cycle, thus
taking on the form

W = W0 + AIe−aITI . (5.60)

The resulting scalar potential is the combination of the usual LVS F-term potential
for the inflaton, V (I)

LVS, as given by Eq. (4.199), and the loop potential, Vloop, given in
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Eq. (5.57), so that we have

V = V (I)
LVS(τI, θI,V) + Vloop(τL,V) . (5.61)

The former term explicitly reads

V (I)
LVS/M

4
P = V−2

[
8τ

3/2
b
√
τI

3γI
a2

I |AI|2e−2aIτI + 4aIτIe−aIτI |AIW0| cos (aIθI)

]
+

3|W0|2ξ
4V3

,

(5.62)
where at the minimum, the inflaton axion fulfills

cos(aI 〈θI〉) = −1 . (5.63)

With the Kähler potential and the scalar potential given, we can calculate the masses
of all the relevant fields, which can be also found in the literature [99, 100]. In
Tab. 3, all the explicit expressions as well as the volume scalings are summarised.

Field m2
i scaling m2

i explicit

φb ∼ V−3M2
P

−m13m22m31−m12m21m33+m11m22m33

m22m33
V−3M2

P

φI ∼ a2
I τ

2
I V−2M2

P
4|W0|2a2

I τ
2
I

V2 M2
P

φL ∼ τ−2
L V−2M2

P

W 2
0 (3µ̃3µ1+µ2τL(−µ3+3

√
τL))

3γLµ̃3τ2
LV2 M2

P

ab 0 0

aI ∼ a2
I τ

2
I V−2M2

P
4|W0|2a2

I τ
2
I

V2 M2
P

aL 0 0

Table 3.: Masses of canonical moduli and axion fields. The parameters µ̃ and mij

are defined below Eq. (A.45) and in Eqs. (A.54) − (A.62).

For the resulting hierarchy, we have

mτI ≈ maI � mτL � mτb � maL ∼ mab ∼ 0 . (5.64)

In particular, the volume and loop-cycle axions, ab and aL are essentially massless
and hence constitute DR. Note that this is not in contradiction with the general dis-
cussion in Secs. 4.3.3 and 5.3, where we considered the QCD axion aL to represent
a DM candidate. Namely, when discussing reheating dynamics, aL-particles are
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created thermally, mostly via decays of the inflaton, and at a very high temperature
at which the axion mass is basically zero (cf. Eq. (4.251)). On the other hand,
when discussing axionic DM, aL-particles are produced non-thermally due to the
misalignment mechanism and originate from a coherent state that behaves like mat-
ter. Moreover, this happens at a much lower temperature when QCD effects create
a potential for aL.

Decay rate of the loop-cycle modulus

Knowing the relevant mass hierarchy, we are ready to consider decays. Due to
mixing effects, the corresponding calculations are rather involved and we will focus
on qualitative derivations of the major results in the following subsections, referring
to the Apps. A.3 and A.4 for details.

Since the inflaton is the heaviest particle and we assume that a large portion of the
energy after inflation is stored in the form φI-particles, we are specifically interested
in its decays. Its natural decay products are the respective lighter fields and axions.
We have already argued that φb dominantly decays into the SM, whereas the two
axions ab and aL, which are practically stable since they are massless, constitute
DR. Let us therefore focus on the decays of φL before we consider φI in the next
subsections.

The decay rates of τL, which determines the SM gauge couplings, are derived in
a detailed calculation in App. A.3. One could also think about an even more exact
calculation analogous to that presented in App. A.4 for the decays of τI. In this
subsection, we give a very short, intuitive argument that the loop-cycle modulus
decays predominantly into SM degrees of freedom. Since τL is given by a ‘largish’
O(1) number in string units, we can make the assumption that the volume decou-
ples, i.e. that V1/6 is larger than all local length scales. In that case, the relevant
operator that is responsible for the decay into SM gauge bosons, φLFµνF

µν , will be
suppressed by a factor M−1

s due to reasons of dimensionality, which characterises
the local length scale. This implies that the decay rate into SM gauge bosons Aµ is
given by

ΓφL→AA ∼
m3
τL

M2
s
∼ MP

V2
, (5.65)

where the factor m3
τL

arises so that the mass dimensions match and it has been used
that mτL ∼ MP/V , as given in Tab. 3, and Ms ∼ MP/V . The above decay rate
implies that the loop-cycle modulus decays much faster than the inflaton, which
as we will see has a decay rate ΓφI ∼ MP/V4, so that we can already identify the
inflaton as the longest-lived particle that will reheat the SM.

Now we must investigate the respective decay products of φL; in particular, we
must check how much DR due to decays into its own axion aL is created. Both the
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decay into SM gauge bosons and into loop-cycle axions originate from the respec-
tive kinetic terms and their dependence on τL (cf. Eqs. (4.192) and (4.203)),

L ⊃ ∼ τLTrFµνF µν , L ⊃ ∼ 1
√
τLV

∂µθL∂
µθL . (5.66)

The trilinear coupling terms are then obtained by perturbing the loop-cycle modulus
about its vacuum expectation value, τL = 〈τL〉 + δτL. The terms proportional to
〈τL〉 constitute the free kinetic terms and must be canonically normalised, whereas
those proportional to δτL lead to the couplings and resulting decays. Since the τL-
dependence in the axionic kinetic term comes inside a square-root, the resulting
amplitude for the decay rate is suppressed by a factor 1/2 compared to the one into
gauge-bosons,

|AφL→AA|
|AφL→aLaL |

= 2 . (5.67)

Moreover, since the resulting gauge bosons can have one of two possible polarisa-
tions and there are at least Ng = 1 + 3 + 8 = 12 gauge bosons, we obtain

ΓφL→AA

ΓφL→aLaL

= 2× 22Ng = 8Ng � 1 . (5.68)

In App. A.3 we perform the above calculation in more detail and also take into ac-
count a possible enhancement of decays to the SM sector due to the τL-dependence
in the Higgs mass, in analogy to the discussion in Sec. 5.4.2. We conclude that
φL decays very fast, i.e. instantaneously when compared to the decay rate of the
inflaton, into the SM without exacerbating the DR problem.

Decay rate of the inflaton to the volume modulus

In the previous subsections, we have illustrated that the inflaton modulus is the
longest-lived particle after inflation and that any decay into φb or φL is followed
by a quasi-immediate decay into SM degrees of freedom, whereas decays into the
axions ab and aL manifest as DR. The next goal is therefore to analyse the branching
ratios of φI into the respective particles. It will turn out that decays due to kinetic
terms will dominate over potential-induced decays and that the former lead to an
equal decay rate into moduli fields and their respective axions. This will indicate
the re-emergence of a DR problem due to inflaton decays. As before, we refer to
App. A.4 for detailed calculations.

We benchmark all of the following relevant decay rates to the decay of one in-
flaton into two volume-modulus particles, which is arguably the simplest one to
analyse. Let us start with a simplified form of the Kähler potential that ignores the

145



5. Axions in string theory and the Hydra of dark radiation

loop-cycle modulus,
K = −2 ln

(
τ

3/2
b − γIτ

3/2
I

)
. (5.69)

The resulting diagonal part of the kinetic terms, as given in Eq. (4.203), reads

L/M2
P ⊃ ∼

τb

V2
(∂τb)

2 +
1
√
τIV

(∂τI)
2 , (5.70)

where we have ignored O(1) factors for brevity.
Perturbing the inflaton modulus about its vacuum expectation value, τI = 〈τI〉 +

δτI, and expanding the first of the above terms in leading order in δτI, one findes the
trilinear coupling term

L/M2
P ⊃ ∼

τb
√
τI

V3
δτI(∂τb)

2 . (5.71)

After inserting appropriate factors due to canonical normalisation and replacing the
derivatives ∂2 by m2

τI
using the free Klein-Gordon equation (cf. Eq. (A.94)), the

decay amplitude can approximately given by

|AφI→φbφb|MP ∼
τb
√
τI

V3

V2

τb

√
Vτ 1/4

I m2
τI
∼ τ

3/4
I√
V
m2
τI
, (5.72)

which results in the decay rate

ΓφI→φbφb ∼
|AφI→φbφb|2

mτI

∼ τ
3/2
I

V
m3
τI

M2
P
∼ τ

9/2
I

V4
MP , (5.73)

wheremτI ∼ τIMP/V has been used. A more precise derivation is given in App. A.4
where we not only include all the ignored O(1) factors but also diagonalise the
system, thus taking care of mixing effects that lead to a modification of many results
by O(1) factors. For that purpose, we follow the procedure explained in [128];
however, we extend the analysis by the inclusion of trilinear couplings that originate
from the kinetic Lagrangian. Finally, let us mention that we always work at leading
order in the large quantity τI ∼ lnV . A more precise treatment might be appropriate
for better quantitative statements; however, we do not expect any different outcome
concerning our qualitative conclusions.

Dominance of kinetic over potential terms in the decay of the
inflaton to the volume modulus

While the decay rate of the previous subsection originated from an expansion of the
kinetic Lagrangian, in a full analysis we need to take into account trilinear terms
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stemming from an expansion of both the kinetic Lagrangian and the potential. A
natural question to ask is which of the two results in a stronger contribution. It turns
out that the answer is clearly the former, i.e., the kinetic terms provide the dominant
contributions. To provide some intuition for this, let us compare the two kinds of
terms disregarding mixing effects and suppressing O(1) factors.

The kinetic trilinear coupling terms are obtained by a linear expansion of the
Kähler metric, i.e. a small shift of a modulus field δτi away from its vacuum expec-
tation value, in the kinetic terms (4.203). This leads to

L/M2
P ⊃ ∼ (∂τiKjk)δτi∂µδτj∂

µδτk . (5.74)

One of the above fields represents the inflaton modulus τI and the other two are the
respective decay products. It turns out that the precise choice will change the result
by only a possible O(1) factor and minus sign so that we w.l.o.g. assign the index
i = I to the inflaton, which gives us

L/M2
P ⊃ ∼ (∂τIKjk)δτI∂µδτj∂

µδτk ∼ m2
τI

(∂τIKjk)δτIδτjδτk , (5.75)

where in the last relation we again replaced the derivatives by the masses using
the free Klein-Gordon equation. Ignoring mixing effects, the mass is given by the
second derivative of the potential w.r.t. the canonical inflaton field evaluated at the
minimum,

m2
τI
∼ 1

M2
P

∂2V

(∂φI)2

∣∣∣∣
φI=〈φI〉

=
1

M2
P

(
∂V

∂τI

∂2τI

(∂φI)2
+

∂2V

∂τI∂φI

∂τI

∂φI

)∣∣∣∣
φI=〈φI〉

=
1

M2
P

(
∂V

∂τI

∂2τI

(∂φI)2
+

∂2V

(∂τI)2

(
∂τI

∂φI

)2
)∣∣∣∣∣

φI=〈φI〉

∼ ∂τI∂τIV

KIIM2
P
, (5.76)

where in the last line we used that ∂V/∂τI = 0 at the minimum and that the canon-
ically normalised inflaton field is approximately given by φI ∼

√
KIIτI.

In analogy to Eq. (5.75), the potential trilinear coupling terms are obtained by
expanding the potential to third order in the moduli fields,

L ⊃ ∼ (∂τI∂τj∂τkV )δτIδτjδτk . (5.77)

To compare the decay rates of the inflaton into two volume-modulus particles re-
sulting from Eqs. (5.75) and (5.77) to each other, we set τj, τk → τb and use the
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easily derived, approximate relations

∂τI∂τIV ∼ a2
I V , ∂τI∂τb∂τbV ∼

aI

τ 2
b
V , ∂τIKbb ∼

√
τI

τ
7/2
b

, KII ∼
1

τ
3/2
b
√
τI

.

(5.78)
The first two relations can be understood from the functional form of the potential,
given in Eq. (5.62), which depends primarily exponentially on τI but power-like on
τb. With the above relations and Eq. (5.76), we obtain for the estimated ratio of the
decay amplitudes due to kinetic and potential coupling terms

|Akin
τI→τbτb

|
|Apot

τI→τbτb|
∼

m2
τI
M2

P (∂τIKbb)

(∂τI∂τb∂τbV )
∼ (∂τI∂τIV )(∂τIKbb)

KII(∂τI∂τb∂τbV )
∼ aIτI � 1 . (5.79)

Dominance of the kinetic over the potential term in the decay of the
inflaton to the loop modulus

Having discussed the ratio of kinetic versus potential decays into the volume mod-
ulus, we want to perform an analogous analysis for the decay δτI → δτLδτL into the
loop-cycle modulus. To this end, we will now include τL in the Kähler potential,

K = −2 ln
(
τ

3/2
b − γIτ

3/2
I − γLτ

3/2
L

)
. (5.80)

The corresponding kinetic trilinear coupling terms are simply given by Eq. (5.75)
after assigning τj, τk → τL. In doing so, we need to estimate the expression

∂τIKLL ∼
√
τI

τ 3
b
√
τL
. (5.81)

Likewise, the potential coupling terms are obtained from the corresponding ex-
pression in Eq. (5.77) after the same assignment of fields. Crucially, we now have
to take into consideration both contributions, V (I)

LVS and Vloop, to the scalar potential.
In order to compare their respective effects, we will analyse them separately.

Regarding the contribution from V
(I)

LVS, there is a minor issue that slightly com-
plicates things: While V (I)

LVS depends explicitly on τI, the moduli fields τb and τL

enter the potential only inside the expression for the overall volume, V(τb, τI, τL).7

This implies that there is in fact a flat direction, which corresponds to fluctuations
of the loop-cycle modulus τL after the system has been diagonalised. Excitations
in this flat direction represent particles of the loop-stabilised modulus and naively
one might expect that the potential would not yield any contribution due to this very

7Note that the seemingly explicit dependence on τb in Eq. (5.62) is merely the result of a leading
order expansion and disappears for the full expression.
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flatness. As a consequence, any potential coupling to loop-cycle particles would
vanish. To scrutinise this further, note that an excitation in the exactly flat direction
is specified by the two conditions δV = 0 and δτI = 0, which simply imply that the
excitation is not directed in the non-flat directions of V and τI. At linear level, the
conditions are given by

δV = (∂τbV)δτb + (∂τIV)δτI + (∂τLV)δτL = (∂τbV)δτb + (∂τLV)δτL = 0 , (5.82)

where in the second step we used δτI = 0.
That is, in order to be aligned with the flat direction, an excitation of δτL must

always go together with a small excitation of δτb,

δτb = δτb(δτL) =
γL
√
τL√
τb

δτL . (5.83)

Even though this ensures that the direction V is not excited at linear order, a non-
vanishing, second-order fluctuation will nevertheless emerge,

δV(δτL) =
1

2

∂2V
∂τ 2

b
δτ 2

b +
∂2V
∂τb∂τL

δτbδτL +
1

2

∂2V
∂τ 2

L
δτ 2

L (5.84)

=

(
3γ2

LτL

8τ
3/2
b

− 3γL

8τ
1/2
L

)
δτ 2

L . (5.85)

Since τb � τL, the former term is negligible and the second-order fluctuation in
V-direction takes on the same form that we would naively expect from an excitation
in the non-diagonal τL-direction,

δV =
1

2

∂2V
∂τ 2

L
δτ 2

L = − 3γL

8τ
1/2
L

δτ 2
L . (5.86)

Hence, despite the presence of a flat direction at linear level, the potential yields
a non-vanishing contribution at the quadratic level so that the resulting potential
coupling to loop-cycle particles is non-zero.

We may therefore proceed analogously to the decay into the volume modulus and
use Eq. (5.77) with τI → τLτL. Naively, one would expect that

∂τI∂τL∂τLV
(I)

LVS ∼
aI

τ
3/2
b
√
τL

V
(I)

LVS ; (5.87)

however, it turns out that those terms where the τI-derivative acts directly on the
two exponential functions, ∼ ∂τI exp(−2aIτI) and ∼ ∂τI exp(−aIτI), cancel exactly.
For that reason, the resulting leading-order contribution from the LVS potential is
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further suppressed and reads

∂τI∂τL∂τLV
(I)

LVS ∼
1

τ
3/2
b τI
√
τL

V
(I)

LVS . (5.88)

Since the loop potential Vloop depends explicitly on τL, a resulting coupling term
due to fluctuations of the loop-cycle modulus are apparent and the corresponding
expression is readily obtained as

∂τI∂τL∂τLVloop ∼
√
τI

τ
3/2
b τ 2

L

Vloop . (5.89)

We can now compare the two contributions. From Eqs. (5.62) and (5.57), we ascer-
tain that V (I)

LVS ∼ τ
3/2
I
√
τLVloop, which together with Eqs. (5.88) and (5.89) implies

∂τI∂τL∂τLV
(I)

LVS

∂τI∂τL∂τLVloop
∼ τ 2

L � 1 . (5.90)

We see that even though Vloop generates the mass for τL and hence stabilises it,
the dominant contribution to potential-induced decays into the loop-cycle modulus
originates from V

(I)
LVS.

With this, let us now compare the decay amplitudes due to kinetic terms and
potential terms. We find that the former are dominant,

|Akin
τI→τLτL

|
|Apot

τI→τLτL|
∼ (∂τI∂τIV )(∂τIKLL)

KII(∂τI∂τL∂τLV )
∼ a2

I τ
2
I � 1 . (5.91)

Before closing this subsection, we also compare the decay amplitudes into the
loop-cycle modulus to those into the volume modulus. From Eqs. (5.75) and (5.77),
one easily obtains

|Akin
τI→τbτb

|
|Akin

τI→τLτL
|
∼ (∂τIKbb)δτIδτbδτb

(∂τIKLL)δτIδτLδτL
∼ KLL(∂τIKbb)

Kbb(∂τIKLL)
∼ O(1) , (5.92)

|Apot
τI→τbτb

|
|Apot

τI→τLτL|
∼ (∂τI∂τb∂τbV )δτIδτbδτb

(∂τI∂τL∂τLV )δτIδτLδτL
∼ KLL(∂τI∂τb∂τbV )

Kbb(∂τI∂τI∂τIV )
∼ aIτI � 1 , (5.93)

where the factor KLL/Kbb ∼
√
τb/τL arises from the transformation of δτb and

δτL into canonically normalised fields. In summary, we find that the decays of the
inflaton-cycle modulus into lighter moduli fields are characterised by the following

150



5.6. The new dark radiation problem due to problematic contributions from early
decays

hierarchy of decay amplitudes:

|Akin
τI→τbτb

| ∼ |Akin
τI→τLτL

| � |Apot
τI→τbτb

| ∼
|Akin

τI→τbτb
|

aIτI
� |Apot

τI→τLτL
| ∼
|Akin

τI→τbτb
|

a2
I τ

2
I

.

(5.94)
From this, we conclude that the corresponding decay rates due to kinetic and poten-
tial terms obey

Γkin
τI

Γpot
τI

∼ a2
I τ

2
I ∼ (lnV)2 � 1 . (5.95)

A more careful and accurate analysis can be found in App. A.4 where we take into
account mixing effects and show that decays of the inflaton into two different decay
products are suppressed by powers of τ−1

b and therefore negligible.

Equality of the decay rates into axions and saxions

After we have argued in the previous subsection that kinetic-term-induced decay
rates are much stronger than the potential-term-induced ones, we now focus on the
former. Another crucial observation is the fact that the decays of the inflaton via
the kinetic terms have an equal branching ratio into moduli fields and their corre-
sponding axions, respectively. This appears natural given the fact that moduli fields
and their axions are superpartners; however, we want to dedicate this subsection to
provide some intuition on the technical aspect of this result. We will again neglect
mixing effects for the moment and consider the decays τI → τiτi and τI → θiθi
where i ∈ {b,L}. The relevant trilinear coupling terms are

Lkin
τI→τiτi/M

2
P = ∂τIKiiδτI∂µτi∂

µτi + ∂τiKIiδτi∂µτI∂
µτi + ∂τiKiIδτi∂µτi∂

µτI ,
(5.96)

Lkin
τI→θiθi/M

2
P = ∂τIKiiδτI∂µθi∂

µθi , (5.97)

where no sum over i is implied. As we can see, the coupling terms of the inflaton to
the light moduli fields consist of three contributions because the Kähler metric de-
pends on the τi. On the other hand, the coupling terms to light axion fields comprise
only a single contribution because Kij̄ does not depend on the θi in order to respect
their shift symmetry. A priori, it is therefore surprising that both decay amplitudes
turn ot to be equal in magnitude.

To verify that this is indeed the case, we again use Eq. (A.94) to replace the
derivatives ∂2 by the inflaton mass squared m2

τI
where we neglect the masses of the
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other moduli fields. Thus we obtain

Lkin
τI→τiτi/M

2
P =

m2
τI

2
(∂τIKiiδτIδτiδτi − ∂τiKIiδτiδτIδτi − ∂τiKiIδτiδτiδτI)

= −
m2
τI

2
∂τIKiiδτIδτiδτi , (5.98)

Lkin
τI→θiθi/M

2
P =

m2
τI

2
∂τIKiiδτIδθiδθi . (5.99)

Here we also used that ∂τiKjk = ∂τi∂τj∂τkK/4 is invariant under permutations of
i, j and k. We see that the trilinear coupling terms for both the moduli fields and
axions have the same prefactors in front of the non-canonical fields, respectively, up
to a minus sign. From Eq. (4.203) we observe that the standard kinetic terms for δτi
and δθi are both multiplied by the same field metric so that the respective canonical
fields follow fron an identical rescaling, δφi ∼

√
Kiiδτi and δai ∼

√
Kiiδθi. Hence,

the overall decay amplitudes are the same in magnitude leading to identical decay
rates for light moduli fields and axions.

The question whether this result is robust after we include mixing between the
moduli and axion fields and their respective canonically normalised fields is of
course a non-trivial one since naively one would at least expect O(1) corrections
to the decay rates. Let us summarise some intuition gained from the detailed
analysis of the mixed system in App. A.4. All moduli and axion fields will be
a superposition of the respective canonical fields which diagonalise the system,
i.e. δτi = δτi(δφj) and δθi = δθi(δaj). Since the system is approximately diag-
onal, i.e. δτi ≈ δφi/

√
2Kii and δθi ≈ δai/

√
2Kii with contributions from other

canonical fields suppressed, we can always identify a specific canonical field with
a corresponding modulus or axion. Hence, when speaking of decays of the infla-
ton, we actually mean the decays of the canonical field δφI which gives the largest
contribution to δτI. Such a decay in the canonical frame, e.g. δφI → δφiδφi, will
gain contributions from all possible combinations of trilinear ∼ δτiδτjδτk vertices,
which will be of different strength. A crucial insight is given by the fact that the
dominant contributions to a decay of the inflaton are those terms for which the
canonical inflaton δφI gets contributions from all moduli δτi, whereas the canoni-
cal decay products δφi only get a contribution from the one respective modulus δτi
that is associated to them. In other words, we can schematically write the dominant
contributions to an inflaton decay as

L ⊃ ∼ c1δφI︸ ︷︷ ︸
∼
∑
j δτj

c2δφi︸ ︷︷ ︸
∼δτi

c2δφi︸ ︷︷ ︸
∼δτi

, (5.100)

where c1 and c2 are constants which contain the information about which moduli
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contribute to the respective canonical field. An analogous conclusion can be drawn
for the decay of the inflaton into canonical axion fields δai with dominant contribu-
tions

L ⊃ ∼ d1δφI︸ ︷︷ ︸
∼
∑
j δτj

d2δai︸ ︷︷ ︸
∼δθi

d2δai︸ ︷︷ ︸
∼δθi

. (5.101)

With this, the precise equality of the decay rates into moduli fields and axions can
easily be understood: We have c1 = d1 because the decaying field δφI is the same
and we have c2 = d2 because only the one associated field contributes and mod-
uli and axion fields have the same normalisation constant c2δφi ∼ δφi/

√
Kii and

d2δai ∼ δai/
√
Kii.

Finally, we want to comment on the question whether potential terms can enhance
the decays to axions. The answer is generally negative because for both light axions
the natural scale of the potential is much lower. For the volume axion θb a potential
is generated by non-perturbative effects on the volume cycle, which modify the
superpotential by a term ∼ exp(−abTb), leading to a negligibly small contribution.
The potential of the QCD axion θL is by construction ∼ T 4

QCD, which is again very
small in the present context. Furthermore, decays of the inflaton into its own axion
are kinematically forbidden as argued before. At last, decays into axions θs of
the other small-cycle moduli τs are technically possible, depending on the model-
dependent parameters γI, AI,γs and As. Nevertheless, in our minimalist setting,
w.l.o.g. we can assume that the inflaton is light enough so that such a decay is also
kinematically forbidden.

Summary of decay rates

Let us recapitulate our main results of this section. We have ascertained that the
decays of the inflaton are dominated by kinetic-term-induced couplings and that
these very couplings result in equal branching ratios into light moduli fields and
their respective axions. We summarise all relevant decay rates in Tab. 4 where we
normalise them to two benchmark channels for the sake of clarity,

Γ1 ≡ Γkin
φI→φbφb

≈ 3γI|W0|3a3
I τ

9/2
I

64πV4
MP , (5.102)

Γ2 ≡ Γpot
φI→φLφL

≈
3γI
√
τI
[
−3|W0|2γLµ̃

4τ 2
L +W 2

0

(
−4µ1µ̃

4 + µ2(µ2
3 − 4µ3

√
τL + 4τL)τL

)]2
64πγ2

L|W0|µ̃8aIτ 4
LV4

MP .

(5.103)

Note that Γ1/Γ2 ∼ a4
I τ

4
I ∼ (lnV)4 � 1.
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Decay rate scaling explicit

Γkin
φI→φbφb

∼ (lnV)9/2V−4MP Γ1

Γpot
φI→φbφb

∼ (lnV)5/2V−4MP 4Γ1/(aIτI)
2

Γkin
φI→φLφL

∼ (lnV)9/2V−4MP 4Γ1

Γpot
φI→φLφL

∼ (lnV)1/2V−4MP Γ2

Γkin
φI→abab

∼ (lnV)9/2V−4MP Γ1

Γkin
φI→aLaL

∼ (lnV)9/2V−4MP 4Γ1

Γkin
aI→φbab

∼ (lnV)9/2V−4MP 2Γ1

Γkin
aI→φLaL

∼ (lnV)9/2V−4MP 8Γ1

Table 4.: Decay rates of inflaton into moduli and axion fields. The explicit decay
rates are defined as Γ1 ≡ Γkin

φI→φbφb
and Γ2 ≡ Γpot

φI→φLφL
where Γ1 � Γ2.

5.6.2. The dark radiation problem re-emerges

From Tab. 4 we see that the inflaton decays with a total decay rate Γtot
φI
≈ 10Γ1 ∼

(lnV)9/2V−4MP, which is much slower than the decay rate of the volume modulus
φb into Higgses, as given by Eq. (5.52), or of the loop-cycle modulus into SM gauge
bosons, given in Eq. (5.65). This confirms our initial claim that the inflaton itself
is the longest-lived modulus so that its decay channels dictate the amount of the
energy density which after reheating is transferred into the SM sector and DR.

Based on Tab. 4 and considering the fact that decays into φb and φL result in an
immediate, subsequent decay into SM degrees of freedom, we find

ΓφI→DR

ΓφI→SM
≈ 1 . (5.104)

According to Eq. (4.233), this leads to an excessive effective number of neutrino
species

∆Neff ≈ 1.5

(
100

g4
∗g
−3
∗,S

)1/3

, (5.105)

which is in tension with observational bounds, ∆Neff ≤ 0.3 [4]. Thus the DR
problem re-emerges.

154



5.7. Resulting axion dark matter cosmology

A potential solution one may think of is a direct coupling of τI to the Higgs in
order to boost the branching ratio into the SM sector, very much in analogy to our
discussion in Sec. 5.4.2 about enhancing the decay rate of τb into Higgses. The
latter was realised through a fluctuation of the canonical volume field φb, which
again induced a fluctuation of the logarithmic term in Eq. (5.46),

δ lnV ∼ δφb/MP . (5.106)

Similarly, since V also depends on the inflaton cycle, a fluctuation of φI will result
in a fluctuation of the same logarithmic term, which is given by

δ lnV ∼ δ ln(τ
3/2
b − γIτ

3/2
I ) ∼ (

√
τI/V) δτI ∼ (τ

3/4
I /
√
V) δφI/MP . (5.107)

Comparing Eqs. (5.106) and (5.107), we can infer that the decay amplitudes be-
tween the decay of the volume modulus to two Higgses and the inflaton into two
Higgses differ by a factor

|Aφb→hh|
|AφI→hh|

∼
√
V

τ
3/4
I

. (5.108)

Moreover, the resulting decay rates differ by an additional factor mτI/mτb ∼ τI
√
V ,

leading to
Γφb→hh

ΓφI→hh
∼ |Aφb→hh|2

|AφI→hh|2
mτI

mτb

∼ V
3/2

√
τI
. (5.109)

Combined with Eq. (5.59), we find that

ΓφI→hh ∼ c2
loop

√
τI

V4
MP , (5.110)

which is suppressed w.r.t. the decay rate of the inflaton into axions by a factor
∼ c2

loop/τ
4
I � 1 so that the DR problem is not avoided. We also want to mention

that the idea of a drastically enhanced decay rate of φI to the SM is limited a priori
because if the inflaton decays too fast, we expect the inflaton axion to become the
longest-lived particle, which naturally tends to decay into DR. This is due to the
fact that axionic coupling terms exclusively originate from kinetic terms, which
necessarily involve exactly two axions so that decays of the inflaton axion always
have one light axion as a decay product.

5.7. Resulting axion dark matter cosmology

After the discussion of the previous sections, it is clear that the cosmological sce-
nario has been significantly altered – mostly due to the fast decays of the volume
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modulus, which render the inflaton φI the longest-lived particle. Therefore, we
dedicate this section to a re-evaluation of our main findings from Sec. 5.3. regard-
ing axion phenomenology and cosmology. In doing so, we will once more utilise
the approximate analytical formulae from [145, 146] in order to derive qualitative
order-of-magnitude estimates for most relevant quantities.

As explained in Sec. 5.3, the axion relic density is strongly dependent on the
onset of the axion oscillations, in particular if this occurs before reheating in an
early-matter-dominated phase or after. One of the key quantities of interest for that
matter is the reheating temperature Tr, which is determined by the decay rate of the
longest-lived modulus, which as we argued is the inflaton φI. From Tab. 4 we see
that its total decay rate is

Γtot
φI
≈ 10Γ1 =

15α

64
√

2π5/2
V−4 (log[V/W0])9/2MP , (5.111)

where we defined

α ≡ (2π)3/2 γI |W0|3a3
Iτ

9/2
I

(log[V/W0])9/2
. (5.112)

The latter is chosen so that in the large-volume limit V � 1, where according
to Eq. (4.200) one has aIτI ≈ ln(V/W0), and for aI = 2π one simply obtains
α ≈ γI|W0|3; that is, α naturally takes on values of order unity.

For the axion decay constant and inflation scale, we use the expressions

fa = σ
MP√

2πτ
1/4
L

√
V
, HI = κ

MP

V3/2
, (5.113)

respectively, which are obtained from Eqs. (5.9) and (5.15) after defining σ ≡√
3γL/8 and κ2 ≡ βW 2

0 . In the following, we will set τL = 1/(2αs,UV) = 25/2.
Moreover, in order to obtain explicit numerical estimates for the relevant cosmo-
logical quantities, we will at first set all model-dependent parameters to unity,
α = σ = κ = W0 = 1. Afterwards, to illustrate the approximate influence of
these parameters, we restore the dependence on them while neglecting all logarith-
mic effects.

In detail, after setting the model-dependent parameters to unity, the reheating
temperature due to inflaton decays as given by Eq. (4.216) reads

Tr ∼
(

90

g?π2

)1/4√
Γtot
φI
MP ∼ 1 GeV

(
80

g?

)1/4(
1.3× 1010

V

)2(
log(V)

log(1.3× 1010)

)9/4

,

(5.114)
which we have benchmarked to a value of the volume that corresponds to Tr =
1 GeV. This is the formula that we use to derive the numerical values for our
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bounds. Now to obtain the power-like scalings of the model-dependent parame-
ters, we disregard the logarithmic dependence in Eq. (5.114), thus finding that the
reheating temperature scales as

Tr ∼
√
α/V2 . (5.115)

Together with the relations fa ∼ σ/V1/2 and HI ∼ κ/V3/2 from Eq. (5.113), we
can use this to equip the resulting, numerical bounds in the following subsections
with approximate scalings in the parameters α, σ and κ.

Depending on the reheating temperature, we want to distinguish now the two sce-
narios where the axion starts its oscillations either after reheating during a standard,
radiation-dominated universe or before reheating during a period of early matter
domination. Here the former scenario is characterised by a high and the latter by a
low reheating temperature. The corresponding calculations in the next two subsec-
tions are essentially analogous to the respective subsections in Sec. 5.3.

5.7.1. High reheating temperatures and a standard
radiation-dominated cosmology

For a reheating temperature Tr � 1 GeV the onset of axion oscillations occurs
during a standard, radiation-dominated phase [145, 146]. From Eq. (5.114) we see
that the above condition of high reheating temperature in order to be in the standard
regime implies an upper boundary for V . Moreover as argued in Sec. 5.3, if axions
constitute all of DM, isocurvature constraints imply a small inflation scale, which
again imposes a lower bound on V . Using the appropriate equations of Sec. 5.3.1,
we can translate the two bounds on the volume into corresponding bounds for the
other relevant parameters, which yields

(σ−10/31κ24/31) 1× 107 . V . 1× 1010 (α1/4) (5.116)

(σ36/31κ−12/31) 9× 1013 GeV & fa & 3× 1012 GeV (α−1/8σ) (5.117)

(σ−36/31κ12/31) 6× 10−8 eV . ma,0 . 2× 10−6 eV (α1/8σ−1) (5.118)

(α1/2σ20/31κ−48/31) 6× 105 GeV & Tr & 1 GeV (5.119)

(σ15/31κ−5/31) 7× 107 GeV & HI & 2× 103 GeV (α−3/8κ), (5.120)

(σ−21/31κ7/31) 0.1 . θi . 0.4 (α7/96σ−7/12). (5.121)

Here the left-hand side represents constraints due to isocurvature fluctuations, whereas
the right-hand side gives the requirement for a high reheating temperature and hence
does not constitute an actual, observational limit. Remember that a natural choice
is to set α, σ and κ to order unity, although other values may also be plausible.
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5.7.2. Low reheating temperatures and axion oscillations
during a matter-dominated phase

We proceed in analogy to the previous subsection. Since a small reheating temper-
ature is required in order to be in a regime where the onset of axion oscillations
occurs after reheating during an early-matter-dominated phase [145, 146], we as-
sume Tr � 300 MeV. This implies a lower boundary on the volume, whereas we
obtain an upper bound by requiring that the axion relic density saturates the DM
density for an initial misalignment angle that is not tuned large, θi ≤ 3. Using the
proper equations from Sec. 5.3.2, we obtain

(α1/4) 2× 1010 . V . 5× 1010 (α4/19σ6/19) (5.122)

(α−1/8σ) 2× 1012 GeV & fa & 1× 1012 GeV (α−2/19σ16/19) (5.123)

(α1/8σ−1) 3× 10−6 eV . ma,0 . 4× 10−6 eV (α2/19σ−16/19) (5.124)

300 MeV & Tr & 100 MeV (α3/38σ−12/19) (5.125)

(α−3/8κ) 600 GeV & HI & 200 GeV (α−6/19σ−9/19κ), (5.126)

(α3/32σ−3/4) 0.9 . θi . 3 , (5.127)

where the left-hand side corresponds to the requirement of being in the regime of
low Tr, whereas the right-hand side gives the limits for DM saturation without fine-
tuning θi.

5.8. Discussion

In this work we tried to establish a stringy QCD axion together with a phenonemo-
logically viable cosmology, in particular including a concrete construction of in-
flationary dynamics, and failed. Our logic has led us to consider LVS compacti-
fications and to identify the QCD axion with the axionic superpartner of a small
cycle which carries the SM sector on D7-branes wrapped around it. This allows
for a small axion decay constant in the observationally favourable window. As in
such a simple stringy scenario the axion is typically already present during inflation,
the satisfaction of isocurvature constraints requires that the inflation scale is rather
low, which directs us towards the setting of blow-up inflation. As many other LVS
early-universe constructions, the latter is generally plagued by a DR problem due to
decays of the volume modulus, being the longest-lived modulus, into its own axion.
We have found a novel way to sever this head of the DR Hydra via an enhanced
decay rate of the volume modulus into SM Higgses, which is induced by fluctua-
tions of the respective, fine-tuned Higgs mass term. However, this led to an altered
scenario where the inflaton itself represents the longest-lived modulus, which even-
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tually comes to dominate the universe and reheats the SM. We have shown that this
is accompanied with a significant branching ratio into light axions, which result in
too much DR, thus re-growing the Hydra’s second head.

At this point, two caveats are due concerning the validity of our conclusions.
First, as discussed in more detail in [3], if the volume is stabilised at a very large
value, especially at the upper bound of the low-temperature case described in
Sec. 5.7.2, the volume-modulus mass might be so small that the decay into two
Higgses is kinematically forbidden. Instead a mixing effect between the Higgs and
volume modulus takes over (see also [221, 222]), which depending on the exact
value of the volume-modulus mass may endanger a successful BBN. This deserves
further investigation to determine the precise limits at which our conclusions of a
fast decaying volume modulus fail and the scenario falls back to the standard case
where the latter one is the longest-lived modulus.

Second, we want to mention that the phenomenologically viable range for the
volume that we found is only marginally consistent with constraints due to the nor-
malisation of CMB scalar perturbations in blow-up inflation [121], which we do
not consider a major problem, however. On the one hand the lower volume regions,
where the inflation scale is not as low and the potential not as flat as for higher
volumes, still appear to be easily accessible by a mild adjustment of the model-
dependent parameters. On the other hand, the higher volume regions may also be
realised by invoking more severe fine-tuning, possibly by including more than one
instanton or an interplay with loop effects. A detailed analysis including constraints
from CMB scalar perturbations is appropriate for future work in order to understand
this better. Nevertheless, we want to stress that our conclusions about the viability
of a QCD axion in blow-up inflation without too much DR are negative in their
nature anyway, which constitutes a more serious problem. All in all, our other im-
plications should be taken with a grain of salt in the higher volume regime, which
may suffer from other issues besides too much DR.

To put our findings into perspective, though being negative, they nevertheless
represent progress towards a solution of the DR conundrum. While previously DR
has been the result of the omnipresent volume modulus and its seemingly inevitable,
large branching ratio into light axions, the new DR problem arises directly due to
the inflationary sector. Therefore, it appears promising to pursue further inflation-
ary model building in order to find a more suitable implementation of inflation. We
believe that any scenario where the inflationary sector is sequestered from the SM
will tend to suffer from too much DR. This is because any particle that is responsi-
ble for reheating and has only feeble interactions with the SM is likely to produce
a significant amount of DR due to kinetic-term-induced, O(1) couplings to light
axions, as we explicitly showed for the case of blow-up inflation.

Hence, it appears to be favourable to consider settings where the inflationary
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sector is directly coupled to the SM, for instance through some form of hybrid in-
flation [223–226] (for stringy attempts, see also [227–230]). Due to the inherently
strong decays of the inflaton into the SM in such scenarios, branching ratios into
DR are usually small. Obviously, this again involves the danger of a longest-lived
volume modulus that leads to the usual DR problem; however, the channel of rapid
decay into Higgses that we found in this work will greatly help to remedy this prob-
lem and to bring such a scenario to work. Here it is of course important to consider
possible decays of other long-lived particles into DR, especially of the inflaton ax-
ion, as well. We leave the details of such an implementation to future work, which
may finally lead to a permanent death of the DR Hydra. Moreover, having a concrete
implementation of a stringy QCD axion together with a viable inflationary setting
will likely provide us with rather predictive constraints on axionic and cosmological
phenomenology, thus putting experimental searches into the focus of attention and
allowing for some level of falsifiability in this specific area of string theory.

Finally, we want to mention that very recently some indications emerged8 that
there may probably be another decay channel of the inflaton into SM degrees of
freedom. This might represent a solution to the DR problem even within the very
model that we considered in this work. The idea is to utilise the coupling of the
inflaton-cycle modulus into SM gauge bosons through the coupling term (A.19).
Naively, only the loop-cycle modulus couples to the gauge bosons living on it but
taking into account mixing effects between the inflaton and loop modulus may lead
to a direct coupling of the inflaton to these gauge bosons. By a naive estimate, this
results in a decay rate ΓφI→AA = 8NgΓ1, where Ng is the number of gauge bosons.
This may be just enough to avoid the DR problem due to the decay ΓφI→DR =
5Γ1. We will leave this possibility for future investigations, which may result in the
severing of another head of the DR hydra. Nevertheless, the next head is perhaps
already waiting to regrow in the form of the inflaton axion, which may become
the new longest-lived particle due to the faster decay rate of the inflaton and which
could re-introduce the DR problem via its decays to light axions.

8These involve personal communication with Michele Cicoli.
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6. Quintessence in string theory
and the F-term problem

The entire content of this chapter represents one of the major works in this thesis
and is based on [2] unless stated otherwise.

6.1. Motivation and outline

In the previous chapter, we considered early-universe models in the context of string
theory and used one of the Kähler moduli fields, which are abundantly present in
string compactifications, to represent a slow-rolling inflaton field. It appears to be
obvious and natural to transfer the same logic to the late-time universe by identi-
fying the corresponding late-time expansion as a result of underlying moduli dy-
namics. At the same time, we already elaborated in Chpt. 1 on the swampland
programme of string theory, which tries to identify criteria for low-energy EFTs
to separate those theories that possess a stringy UV completion from those that do
not. Finally, in Sec. 4.2.3 we discussed the important topic of moduli stabilisation,
which is an essential part of any string compactification. In particular, the stabili-
sation of Kähler moduli represents a crucial issue and the arguably most prominent
constructions are the aforementioned KKLT scenario [98] and the LVS [99], which
constitutes the main setting of the previous and the current chapter. In the following
work, the above three aspects, namely stringy dark energy, moduli stabilisation as
well as the swampland programme, and their interplay with each other are to be
studied.

More precisely, we investigate the viability of a positive cosmological (quasi)
constant in the context of moduli stabilisation and the swampland programme. One
may distinguish two possible realisations of the late-time, de Sitter-like expansion of
the universe: a non-dynamic, ‘true’ CC and a dynamic, ‘quasi’ CC, which actually
results from a scalar field that slowly rolls down a flat potential resembling a CC. As
a matter of fact, in string theory all free parameters except for the fundamental string
scale ls arise dynamically from the vacuum expectation values of effective fields. As
such, also a ‘true’ CC can be considered to be merely the vacuum expectation value
of the overall scalar potential. For instance, ignoring possible contributions from
D-terms, Eq. (4.66) may imply a positive CC arising from the F-term potential if
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the corresponding terms cancel in the right way when evaluated at the minimum.
Despite several attempts, it has turned out to be notoriously difficult to find

stringy constructions in which all moduli fields are stabilised and which allow for
a ‘true’ CC, especially if SUSY is to be broken in an acceptable manner. Even
in KKLT and the LVS, stable de Sitter vacua1 can only be achieved with the help
of fine-tuning and controversial mechanisms so that their realisability is highly de-
bated in the literature [231–261]. In the context of the swampland programme, this
has resulted in the so-called de Sitter-swampland conjecture, which suggests that de
Sitter vacua are generically not achievable in string-derived scenarios. Technically,
in the case of only one modulus, the conjecture claims that in order to belong to the
landscape the scalar potential must obey one of the relations [262–264]

|V ′| ≥ c · V or V ′′ ≤ −c′V , (6.1)

where c and c′ are O(1) numbers.2

As pointed out in [262, 265], if we take the conjecture and the assumption of a
string-theoretic UV completion seriously, this suggests that the late-time expansion
of the universe originates from some stringy implementation of dynamic DE, e.g.
quintessence [35, 269, 270]. Even though the latter has been proven to be difficult
to establish as well [242, 271–278], in this work we want focus on this very idea
of stringy quintessence. Natural candidates are the many moduli [279–281] and
axion [242, 272, 282–286] fields that arise as scalar degrees of freedom in the ef-
fective four-dimensional theory after compactification, where we turn our attention
especially to the former.

In detail, in this work we will argue that a stringy version of quintessence is not
necessarily on a stronger footing than a de Sitter vacuum. Especially, two effects
are worth mentioning, which turn out to be problematic. First, there is an enormous
hierarchy between different mass scales due to observational constraints, in particu-
lar between the very light quintessence modulus and the comparatively heavy scales
related to beyond-the-SM physics, that is the volume-modulus mass, the KK mass
scale and the mass of superpartners. Since all these scales are controlled by the
volume parameter V , inconsistencies arise from the fact that a very large volume is
needed in order to achieve such a light quintessence mass [279, 287], which ren-
ders the volume modulus inadmissibly light. We call this the light-volume problem.
Second, in order to achieve SM-superpartner masses at an acceptably high scale, a

1When we speak of ‘stable vacua’, we also include quasi-stable ones, which are false vacua whose
tunnelling probability into the true vacuum is so small that their lifetime is large compared to the
age of the universe.

2Note that theO(1) magnitude of c and c′ is not definitely specified and may also include ‘smallish’
O(1) numbers, in order to satisfy observational restrictions [265–268]. Moreover, we set MP ≡
1 here and in most of the other equations in this chapter.
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dedicated SUSY breaking sector needs to be introduced, whose F-term constitutes
a very large contribution to the scalar potential, which is many orders of magni-
tude larger than the observed CC. We refer to this as the F-term problem, which
represents our main finding in this work. Bringing the potential back down to a
phenomenologically allowed value would require a new, negative contribution of
unknown origin and involve severe fine-tuning.

6.2. Preliminaries and phenomenological
requirements

In this section we set the scene and introduce requirements on the different, relevant
mass scales, which will establish the aforementioned hierarchy.

We will again work in the setting of type IIB string-theoretic compactifications
on CY orientifolds with O3- and O7-planes. This setting is advantageous because
it allows for a considerable amount of calculational control [93, 96, 98, 99] and is
subject to the leading-order no-scale cancellation of the scalar potential as discussed
in Sec. 4.2.3. As a result, a potential for the Kähler moduli is only generated at a
much lower scale through the same quantum corrections that have been discussed
in Sec. 4.2.4. In particular, we have

V = δVnp + δVα′ + δVloop 6= 0 , (6.2)

where δVnp are non-perturbative corrections due to D3-instantons or gaugino con-
densation on D7-branes, δVα′ results from α′ corrections on the Kähler potential
and δVloop are loop corrections, which are subdominant to the other two due to an
extended no-scale cancellation [102, 103, 218, 288]. The combination of the for-
mer two corrections leads us again to the LVS. With the help of a large volume,
the resulting potential can be made parametrically small. Indeed, while the no-
scale cancellation eliminates all terms that scale like ∼ V−2, the remaining terms
generated by the above quantum corrections are suppressed by a factor ∼ V−3 or
an even smaller one. In principle, if the volume is large enough, this can yield a
small enough potential and, associated to that, moduli masses in order to obtain the
desired properties of the quintessence field.

Let us now specify and justify the phenomenological requirements for a stringy
quintessence scenario.

1. Light quintessence modulus φ with mφ . 10−60MP. This requirement
originates from the cosmological premise that the quintessence scalar is sub-
ject to the conditions of slow-roll (cf. Eq. (4.212)). Defining the quintes-
sence mass as the second derivative of the potential w.r.t. the canonical field,
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mφ =
√
V ′′, cosmology imposes the constraint |mφ| . H0 ≈ 10−33 eV ∼

O(10−60)MP [289].

2. Heavy superpartners with mS & 10−15MP. As discussed in Chpt. 5, the SM
can be included to the scenario either via D3-branes, which constitute a sin-
gular point in the internal space, or via D7-branes wrapping a 4-cycle [100].
Typically, this yields a supersymmetric extension of the SM where the SUSY
breaking scale is constrained by collider experiments to be & O(TeV) ∼
10−15MP.

3. Heavy KK scale with mKK & 10−30MP. A heavy KK scale is needed so
that our universe remains effectively four-dimensional at low energies. While
a gauge theory resulting from open strings attached to D-branes is generally
not sensitive to large extra dimensions, gravity, which effectively arises from
closed strings that are not bound to branes, certainly is. Hence the above re-
quirement on the KK scale results from tests of the standard, four-dimensional
Newtonian gravity down to length scales of the order O(mm), corresponding
to an energy ∼ 0.2 meV ∼ O(10−30)MP [85].

4. Heavy volume modulus with mV & 10−30MP. This requirement is obtained
from the fact that the volume modulus couples to all matter fields with ap-
proximately gravitational strength. This coupling results from the factor V
in the Einstein-Hilbert action after compactifying to four dimensions. After a
conformal transformation into the Einstein frame, the corresponding coupling
between V , or the canonical field associated to it, and the matter fields arises.
This would induce fifth-force effects, which are ruled out [85, 275, 290], thus
requiring the volume modulus to be sufficiently heavy.

Combining requirement 1 and 4, it follows directly that the quintessence modulus
φ cannot be the volume modulus. In the next section, we will therefore assume that
φ is instead given by the relative size of different 4-cycles, which can be much
lighter. While fifth-force constraints are still an issue for such Kähler moduli due
to violations of the equivalence principle [275, 290], they are less severe as for the
volume modulus and we will focus on other, more problematic aspects in the rest of
this work.

6.3. Mass hierarchies and the light-volume
problem

As explained before, the Kähler moduli are stabilised by the quantum corrections
given in Eq. (6.2). Let us therefore sketch their overall volume scaling suppressing
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potential O(1) and lnV factors (cf. Sec. 4.2.4 and [291] for example):

δVnp ∼
e−2asτs

V
+
|W0|e−asτs

V2
∼ |W0|2

V3
, δVα′ ∼

|W0|2

V3
, δVloop ∼

W 2
0

V10/3
. (6.3)

The former two are responsible for the stabilisation of small cycles that are subject
to non-perturbative effects as well as the overall volume in the usual LVS man-
ner. On the other hand, δVloop may be used to stabilise the residual directions in
moduli space that remain flat after the usual LVS stabilisation. The quintessence
field is assumed to correspond to such a residual direction, which can be any com-
bination of Kähler moduli which is not the overall volume and not so small that
non-perturbative effects ∼ exp(−aτ) might give a non-negligible contribution. To
provide some intuition about said flat directions, let us mention that we have al-
ready introduced a comparable scenario in our discussion about fibre inflation in
Sec. 4.3.2. Here the overall volume modulus has been effectively a fibration of a
four-dimensional fibre over a two-dimensional base. While the overall volume was
fixed in the LVS manner, some combination of the base and fibre remained flat,
which was only stabilised by loop effects and represented the inflaton.

We are especially interested in the respective masses that arise due to the above
potential terms. From Eq. (4.204), we know that the small-cycle moduli are heavy,
mτs ∼ |W0|/V , and that one of the remaining ‘large cycles’, which corresponds
to the overall-volume modulus, has a mass mV ∼ |W0|/V3/2. All the other cycles
obtain their masses from δVloop.3 As shown in the appendix of [2], after integrating
out the small cycles τs and the axions, the masses of the remaining moduli can
be estimated to be equal to the square root of the respective potential term that
generates it. This is a consequence of the specific structure of the Kähler metric
Kij . Hence, using Eq. (6.3), we arrive parametrically at (cf. [100])

mV ∼
√
δVα′ ∼

|W0|
V3/2

, mτi ∼ mφ ∼
√
δVloop ∼

W0

V5/3
, (6.4)

where we identified one of the remaining large-cycle volumes with the quintessence
field φ.

We are now ready to use our phenomenological requirements of Sec. 6.2 in com-
bination with the above volume-scalings of the masses to derive further bounds.
Using requirements 1 and 4 together with Eq. (6.4), one finds

O(1030) .
mV
mφ

∼ V1/6 ⇒ V & O(10180) . (6.5)

3Actually, other contributions to the potential, for instance through poly-instanton correc-
tions [287], are also possible; however, we will only focus on loop corrections because they
are always present and hence can be considered to provide a lower limit on moduli masses.
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Clearly, such a large internal volume will imply a decompactification and result in
a very small KK scale. In detail, assuming that the internal space is isotropic with a
typical radius R in string units ls, the volume is given by V ∼ R6. The KK scale is
then the mass scale associated to the inverse radius R−1, i.e.

mKK ∼
Ms

R
∼ MP

V1/2+1/6
. O(10−120)MP , (6.6)

where the string scale Ms arises because R is given in string units and in the last
step we used the above bound (6.5) on the volume. Such a low KK scale is in severe
conflict with requirement 3, which leads us to the conclusion that the above setting
of an isotropic compactification and loop corrections that scale as δVloop ∼ V−10/3

is not viable.
Let us therefore now turn to a suggestion from [279, 287], according to which

the above loop corrections can be further suppressed by assuming an anisotropic
compactification of the internal space. To this end, we first need to understand how
δVloop is generated [287, 291]: From the perspective of a four-dimensional EFT,
one identifies a cutoff Λ at which the EFT breaks down, and which we assume to
be equal to the lowest KK scale. The latter assumption is indeed a non-trivial one
as we further explain in Sec. 6.5. The loop corrections then correspond to all loop
contributions up to this cutoff. The resulting potential is given by the SUSY version
of the Coleman-Weinberg potential [292, 293],

V = Vtree + Vloop , (6.7)

with

Vloop =
1

64π2
STrM0 ·Λ4 log

Λ2

µ2
+

1

32π2
STrM2 ·Λ2 +

1

64π2
STrM4 log

M2

Λ2
+ · · · .

(6.8)
Using that the first term in Vloop vanishes due to SUSY and ignoring numeric pref-
actors and logarithmic factors, the loop correction becomes

δVloop ∼ Am2
KKm

2
3/2 +Bm4

3/2 , (6.9)

where A and B are O(1) constants. To arrive at the above expression, we utilised
that in four-dimensional N = 1 SUGRA the supertrace is given by STrM2 =
2Qm2

3/2 with Q being a model-dependent O(1) constant. Inserting the well-known
expression for the gravitino mass, given in Eq. (4.69), we find

δVloop ∼ Am2
KK
W 2

0

V2
+B

W 4
0

V4
, (6.10)
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where we took the approximate expression for the Kähler potential given in Eq. (4.184).
One now easily ascertains that for the isotropic case, where the KK scale is given

by Eq. (6.6), the loop contribution to the potential scales as δVloop ∼ V−10/3. Let
us now assume an anisotropic compactification with l dimensions of size R1 and
6 − l dimensions of size R2 in string units ls, respectively. The overall volume
is then given by V ∼ Rl

1R
6−l
2 . This results in the fact that we have two different

KK scales associated to the overall volume: one corresponds to the inverse of R1

and the other to the inverse of R2. The lower of the two KK scales represents the
aforementioned cutoff Λ at which our four-dimensional theory becomes effectively
higher dimensional. To reduce the cutoff and hence the KK scale in Eq. (6.10) as
much as possible, one set of dimensions should be as large as possible, implying
that the other set is very small for a given volume V . Concretely and w.l.o.g., we
set the 6− l dimensions to the string length, R2 ∼ 1, which implies that the volume
is essentially given by the other l large dimensions of size R ∼ V1/l. The two KK
scales are thus hierarchically different, where the heavy KK modes correspond to
the small dimensions of size R2 and have a mass at the string scale Ms, whereas the
lighter KK modes related to the large dimensions of size R1 have masses of order

mKK ∼
Ms

R1

∼ MP

V1/2+1/l
. (6.11)

We see that a lower l implies a stronger suppression of mKK and hence of δVloop;
however, below a value l = 2 the second term in Eq. (6.10), which is independent
of l, becomes parametrically larger and prohibits a further suppression by reducing
l. We will therefore for the moment consider the case where l = 2 to yield the the
smallest δVloop and hence to be optimal for our purposes.

The corresponding loop corrections are then of the order δVloop ∼ V−4 so that the
mass of the quintessence field can be estimated as

mφ ∼
√
δVloop ∼

W0

V2
, (6.12)

where we again used the formula from [2] to approximate moduli masses by the
square-root of the potential. Considering only requirement 3, which constrains the
volume to V . O(1030) to avoid decompactification, the quintessence mass given
by the above formula can marginally fit lightness imposed by requirement 1. How-
ever, including requirement 4 of a light volume modulus, we obtain

O(10−30) &
mφ

mV
∼ V−1/2 ∼ m

1/2
KK ⇒ O(10−60) & mKK , (6.13)

where we used Eq. (6.4) for mV . The latter relation contradicts with requirement 3.
We hence conclude, while the anisotropic case helps ameliorating the incompatibil-
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ity of the requirements 1, 3 and 4, there is still a tremendous discrepancy between
them all by many orders of magnitude. The required hierarchy between the relevant
mass scales cannot be achieved via the standard LVS approach.

One may have the idea to suppress δVloop further by fine-tuning W0 to small
values. Due to the quartic dependency on W0 of the second term in Eq. (6.10),
this very term may become neglibile compared to the first one for values of l even
smaller than 2. The latter may be realised by choosing one large and five small
dimensions, corresponding to l = 1, or through a more complex geometry with
large, small and intermediate dimensions, which could be treated an effective non-
integer scaling 1 < l < 2. Nevertheless, this also does not help to resolve the
contradictions. To illustrate this, let us simply ignore the second term and only use
the first one for a general l. With Eq. (6.11), we then have

δVloop ∼
W 2

0

V3+2/l
⇒ mφ ∼

√
δVloop ∼

W0

V3/2+1/l
. (6.14)

Combining requirements 1 and 4, this leads to

O(10−30) &
mφ

mV
∼ V−1/l ⇒ O(10−30−15l) & mKK . (6.15)

Therefore, requirement 3 will always be violated and our conclusions above appear
to be inevitable.

The problem discussed above has already been noted in [279, 287] and we refer
to it as the ‘light-volume problem’. A possible way to resolve it is to increase the
volume modulus mass mV by another contribution to the scalar potential, which is
however questionable.

6.4. The F-term problem

So far, we have not taken into account our second requirement of heavy supertpart-
ner masses. In this section, which can be considered to be the major finding of this
work, we will argue that providing the SM superpartners with a heavy mass will
turn out to be difficult because the fine-tuned value of the CC tends to get spoilt.
We will call this issue the ‘F-term problem’. Let us start by considering gaugino
masses, which are given by [294]

m1/2 =
1

2

Fm∂mf

Ref
, (6.16)

where f is the gauge-kinetic function and Fm the appropriate F-term of the SM
modulus. If the SM lives on a stack of D7-branes, the gaugino mass scales paramet-
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rically like the gravitino mass (cf. Sec. A.2), m1/2 ∼ m3/2 ∼ |W |/V , whereas if
the SM is realised on D3-branes, the gaugino mass will be lighter [100]. We hence
focus on the former case. Combining the requirements 1 and 2, one finds

mφ

m1/2

. O(10−45) . (6.17)

Moreover, from Eq. (6.9) we deduce that mφ ∼
√
δVloop & mKKm3/2. Since in our

context the gravitino mass scales like the gaugino mass, the above ratio must fulfill
mφ/m1/2 & mKK, which is again in conflict with requirement 3. This implies that
the standard procedure of spontaneous SUSY breaking via Kähler moduli F-terms
is not enough to generate large enough gaugino masses.

In lieu thereof, one is advised to establish an additional source of SUSY breaking
via a hidden sector where SUSY is spontaneously broken through the non-vanishing
F-term of a spurion field X . This breaking is then mediated to the SM sector by one
of the usual mechanisms (see [81] for an introduction to SUSY mediation).

If the hidden sector is realised in the form of D3 branes, the corresponding moduli
Xα, which represent the position of the D3 branes in the internal CY manifold,
modify the usual Kähler potential K(T + T ) in the form of the replacement [100]

2τi = Ti + T̄ī → 2τ ′i ≡ Ti + T̄ī + ki(Xα, X̄ᾱ) , (6.18)

where the ki(Xα, X̄ᾱ) are real-valued functions, which depend quadratically or by a
higher order on the Xα because any linear dependence may be either absorbed into
a re-definition of the Ti or removed through a Kähler transformation (4.61). We will
label the new Kähler potential, where the τi have been replaced by τ ′i , by K′. One
can then calculate the F-term potential via the usual SUGRA formula (4.66) using
this new Kähler potential and summing over the Kähler moduli Ti as well as the D3
moduli Xα. It turns out that, due to the no-scale property, the F-terms of the Kähler
moduli Ti cancel again with the term ∝ |W |2 so that only a corresponding F-term
contribution due to the Xα variables remains. In detail, assuming that 〈Xα〉 = 0,
this remaining contribution reads

V ⊃ δVX = K ′αβ̄F
α
XF̄

β̄
X ; , (6.19)

with

K ′αβ̄ =
∂2K′

∂Xα∂X̄β̄

= Ki∂α∂β̄ki and Fα
X = eK

′/2(K−1)′αβ̄∂β̄W , (6.20)

where a summation over the index i is implied. One may easily verify these findings
in the case where Xα is only given by a single field X and for the concrete choice
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k ∼ XX̄ − a(XX̄)2 and W = bX with a and b being constants. We conclude that
the above term δVX yields an additional, positive contribution to the scalar potential,
which raises its zero-value due to the no-scale cancellation to an effective, positive
CC. The crucial question is now what magnitude this CC takes on.4

To answer it, we consider a simple toy model with only one spurion field X ,
whose F-term is FX ≡ F . SUSY breaking is mediated to the SM sector via higher-
dimensional operators, which are suppressed by a mass scale M defined as the
mediation scale in the limit of flat SUSY. As is usual for models with mediation of
SUSY breaking [79], the masses of the superpartners are then given by the F-term
and mediation scale, e.g. for the gaugino one obtains m1/2 ∼ F/M so that

δVX ∼ F 2 ∼M2m2
1/2 . (6.21)

Generally speaking, bothm1/2 andM should be of the orderO(TeV) ∼ O(10−15)MP

or higher. The former is constrained by collider experiments whereas the latter can-
not be too small lest the SUSY breaking sector is not hidden anymore. We thus
obtain a contribution δVX ∼ O(10−60)M4

P . This is of the same order as the terms
that cancel due to the no-scale property and hence much larger than the quantum
corrections (6.2) which establish the LVS potential. This can be seen by using the
aforementioned relation mφ & mKKm3/2 together with requirements 1 and 3, so
that we arrive at Vno-scale ∼ m2

3/2 . m2
φ/m

2
KK . 10−60M4

P . Therefore, the quantum
corrections (6.2) cannot be used to cancel δVX .

6.4.1. Limits on the F-term contribution

Now we want to answer the question whether δVX , which we identified as a major
issue in the previous subsection, can be made significantly smaller in more detail.
From Eq. (6.21) and due to the fact that m1/2 cannot be smaller than O(10−15)MP,
we infer that the only option for a smaller δVX is a simultaneous reduction of F and
M . This is not easy to achieve in general and even for the case of five-dimensional
constructions involves problems [295–297].

As we explained in Sec. 4.1.2, the SUSY-breaking scale is strongly correlated to
the gravitino mass so that a reduction of F implies a reduction on m3/2. The lat-
ter has been constrained by many experiments, for instance by electroweak collid-
ers [298–305] like LEP or hadronic ones like the Tevatron [306–310]. In summary,

4Note that in the case where the hidden SUSY breaking sector is realised in the form of D7-branes,
the axio-dilaton experiences an analogous replacement in the Kähler potential as the Kähler
moduli in the D3 case, namely S+ S̄ → S+ S̄+ k(X, X̄) [100]. However, since S is stabilised
by fluxes and integrated out, one can consider it as a constant. The resulting contribution to the
scalar potential therefore reads V ⊃ |DXW |2, which represents the analogous expression to
Eq. (6.19).
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these bounds on the gravitino mass imply lower limits on the SUSY-breaking scale
of the order

√
F & O(100− 1000) GeV.

The most recent and stringent bounds arise from the LHC in the form of missing-
momentum signatures in proton-proton collisions. In order to provide some insight
into the emergence of such bounds, let us consider an exemplary toy model where
SUSY is spontaneously broken in a hidden sector via a non-vanishing F-term in the
vacuum. This SUSY breaking is mediated to the SM sector through the interaction
terms (cf. Eqs. (4.49) and (4.57))

L ⊃=
a

M2

∫
d4θX†XΦ†Φ +

b

M

∫
d2θXWαWα + h.c. , (6.22)

where X is the chiral superfield responsible for SUSY breaking, Φ is another chi-
ral superfield representing quarks q and squarks q̃ and Wα is the supersymmetric
field-strength tensor of a vector superfield V representing gluons g and gluinos g̃.
The SM superpartners, i.e. squarks and gluinos, have their soft masses generated by
a non-vanishing vacuum F-term, resulting in m2

q̃ = aF 2/M2 and mg̃ ∼ bF/M , re-
spectively. Moreover, after SUSY breaking, the gravitino obtains its mass in the so-
called super-Higgs mechanism [81]. Here the goldstino G̃, which is the fermionic
component of the SUSY-breaking field X , gets eaten by the a priori massless grav-
itino and provides two additional degrees of freedom resulting in the massive, spin-
3/2 gravitino. This is analogous to the standard Higgs mechanism, with SUSY
breaking corresponding to EW symmetry breaking, the goldstino corresponding to
the Goldstone bosons, the gravitino corresponding to the massive gauge bosons
and the non-vanishing Higgs vacuum expectation value corresponding to the non-
vanishing F-term [81]. One can show that in the limit

√
s/m3/2 � 1, the helicity-

1/2 modes of the gravitino dominate over its helicity-3/2 modes and that, according
to the gravitino-goldstino equivalence theorem [311, 312], the resulting S-matrix el-
ements for them are equal to those for the goldstinos. In this simplified discussion,
we can therefore identify the gravitino with the goldstino. The relevant processes
in the LHC involve two hadrons, which turn into a hadronic shower plus gravitinos,
where the latter are not detected and hence induce a missing-momentum signature.
To be explicit, let us consider the process of two quarks in the initial state and two
gravitinos in the final state with a gluon being eradiated from one of the initial
quarks. The latter results in a hadronic shower. The vertex associated to the gluon
radiation will give a factor

√
αs. The important qq-G̃G̃-amplitude results from sev-

eral contributions of beyond-SM processes, one of which is the direct 4-particle
coupling due to Eq. (6.22),

∼ a

M2

¯̃GG̃q̄q ⊂ a

M2

∫
d4θX†XΦ†Φ . (6.23)
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Due to the above expression for the squark masses m2
q̃ , the prefactor a/M2 in the 4-

particle vertex contributes a factor 1/F 2 to the amplitude, leading to a cross section
∝ αs/F

4. The corresponding measurements at the LHC then provide upper limits
for this cross section, which translate into lower bounds on F .

Several, different analyses with ATLAS data that make use of the above or similar
processes [310, 313, 314] come to the result that the gravitino mass has a lower
bound around m3/2 & O(10−4) eV and the SUSY-breaking scale at about

√
F &

O(100−1000) GeV (see [2] for further details). We conclude that, according to the
current experimental status, δVX can at most be a few orders of magnitude below
O(10−60)M4

P . A contribution so high to the scalar potential cannot be cancelled by
any known term in our scenario.

6.4.2. Need for a new contribution

The additional contribution δVX to the scalar potential is many orders of magni-
tude higher than the observed energy density ρΛ ∼ O(10−120)M4

P and hence indeed
requires some mechanism of cancellation in order for this whole scenario to be vi-
able. Since, as argued above, there is no known term in the usual LVS setting that
can achieve such a cancellation, we now want to explore some more exotic possi-
bilities. Essentially, we need a new, negative contribution to the scalar potential,
which is of the order δVnew ∼ V−2 and which cancels with δVX precisely to a very
small, fine-tuned value. Such a contribution would not only be helpful to solve
the F-term problem but may also provide a larger mass to the volume modulus. If
our above formula for estimating moduli masses is applicable, one would obtain
mV ∼

√
δVnew ∼ V−1, which could indeed ameliorate or even solve the light-

volume problem. However, let us emphasize that such a negative contribution is of
hypothetical nature and its generation not understood. As suggested in [279, 287],
possible effects that might give rise to δVnew are loop corrections from open strings
attached to the SM brane(s) as well as the back-reaction of the bulk to the brane ten-
sion along the lines of models with super-large extra dimensions [315]. However,
as further elaborated in [2], both effects are problematic so that their applicability
remains questionable (see also [279, 287, 316–318] for related discussions).

6.5. Summary and discussion

In this work, we have investigated the realisability of stringy quintessence motivated
by the conjecture that true de Sitter-vacua belong to the swampland. To this end
we have imposed several phenomenological requirements associated to the hierar-
chies between the relevant mass scales, i.e. the quintessence mass, SM-superpartner
masses, the KK scale and the volume-modulus mass. Working in the setting of
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type IIB string theory, the scenario of [279] seems favoured, where the quintes-
sence field corresponds to a combination of large Kähler moduli rolling down a
potential at fixed volume. Two major problems regarding the aforementioned hi-
erarchies arise: Combining the requirements of a light quintessence modulus and
heavy KK scales implies first an unacceptably light volume modulus and second
a weak SUSY-breaking by the F-terms of Kähler moduli, i.e. SM-superpartner
masses which are too small. We called the former the light-volume problem and
it requires some new ingredient to raise the volume-modulus mass, as suggested
in [287]. The latter, which we refer to as the F-term problem, requires an additional
SUSY-breaking sector, which induces a significant uplift contribution to the scalar
potential. To be consistent with observations, this contribution must be cancelled by
a further, negative contribution; however, since this cancellation must appear at the
level of the LVS no-scale cancellation, there is no obvious effect that can achieve
it. Hence, some less-known and speculative effect is required to produce the nega-
tive term of the order δVnew ∼ V−2. Such a term might also provide a mass to the
volume modulus, thus solving the light-volume problem.

However, such a term is nevertheless problematic because the fine-tuning is gen-
erally not robust against small changes in the SM or SUSY-breaking parameters.
That is, according to the above discussion the observed vacuum energy density re-
quires a precise cancellation of two terms with a very large magnitude, namely δVX
and δVnew. One can now imagine models where the aforementioned SM or SUSY-
breaking parameters are slightly shifted, inducing a small change of δVX . However,
such a small change will appear gigantic compared to the tiny fine-tuned vacuum
energy density, thus leading to its de-tuning. This may raise the residual scalar po-
tential to a very large value while retaining a tiny slope and thereby violate the de
Sitter-swampland conjecture (6.1). The fact that a miniscule change in the SM pa-
rameters can decide whether a model lies in the swampland or not seems unnatural
and deserves further scrutiny.

Concerning the light-volume problem, two possible loopholes to evade it deserve
further attention. First, one may think of a quintessence mass that is not light at its
natural scale but due to fine-tuning, e.g. by cancelling the two terms in Eq. (6.9)
against each other. Thus requirement 1 may be fulfilled at a much smaller vol-
ume V so that the KK scale and volume-modulus mass can remain large enough.
However, this is problematic as well. In general, the flatness of the quintessence
potential must be maintained for a time scale of the order of the age of the universe,
i.e. O(H−1

0 ). If we respect the de Sitter conjecture (6.1), this flatness cannot be
arbitrarily small so that the distance in field space which the quintessence field tra-
verses needs to be sufficiently far. This can be easily seen from the Klein-Gordon
equation in an FRW background together with the condition |V ′|/V . 1, which
implies that this very distance must be ∆φ ∼ O(1) in one Hubble time. It is hence
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not enough to fine-tune the potential δVloop at only a specific point in time and field
space but instead one needs to consider the whole range which is covered during
the slow-roll phase. Since this range is of order unity, one has to take into account
all orders of ∆φ in a Taylor expansion, which implies that an infinite number of
derivatives must be tuned to small values. It seems implausible that such a decou-
pling of the quintessence modulus from the loop potential occurs in our scenario by
coincidence; however, in other settings there may be a mechanism that can result in
the required sequestering [275, 319].

Second, the choice of the lowest KK scalemKK as cutoff in the Coleman-Weinberg
potential (6.8) is a non-trivial one and needs to be scrutinised. According to require-
ment 3, the bulk KK scale is rather low, i.e. even much lower than the electroweak
scale. Therefore, when applying the Coleman-Weinberg potential, we assume that
the SM brane has already been integrated out, which involves the danger of stronger
corrections at a higher scale. Moreover, due to bulk fluxes, which are fluxes on the
large cycles that constitute the bulk of the internal space, SUSY may still be bro-
ken at a scale above mKK even in the bulk itself. In this case, once more stronger
contributions to the loop potential are expected. Nevertheless, the assumption of
mKK as cutoff can be considered to yield a lower bound on δVloop whereby other
contributions would just require an even larger V and hence amplify the severity of
the light-volume problem. In this sense, our conclusions are inevitable.

Let us also mention some other approaches to stringy quintessence, where we
refer to [2] for more detailed discussions.

One possibility is to identify the quintessence field with one of the many axions,
that are abundantly present in type IIB compactifications (see e.g. [242] for a dis-
cussion of stringy axion quintessence). The slow-roll regime is then established
close to the hilltop of the typical, cosine-like axion potential. However, it turns out
that in the most naive constructions, the trans-Planckian axion decay constant [284],
which is needed to fulfill the slow-roll conditions, is in conflict with another pro-
posed requirement to avoid the swampland, the so-called weak gravity conjecture
for axions [172, 320]. More sophisticated scenarios like axion monodromy [284] or
models with a highly suppressed axion potential [282, 286, 321–324] may respect
the weak gravity conjecture but achieving heavy SM-superpartners while retaining
a flat and low enough quintessence potential remains a delicate issue due to the
large F-terms that are needed for SUSY breaking. This requires further scrutiny
and intricate model building.

Another approach is constructed along the lines of the KKLT scenario [281] and
identifies the quintessence field with the real part of a complexified Kähler modulus.
The latter is trapped inside a valley of local axionic minima and forced to roll down
in the real direction. Problematically, in order to account for the smallness of the
observed CC, the superpotential must be tuned to very small values, which implies
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a very light gravitino. Hence, we again face the problem of the requirement for an
additional SUSY-breaking sector, which re-introduces the F-term problem.

At last, an interesting alternative proposal [325] establishes a scenario where the
de Sitter conjecture is satisfied at zero temperature, whereas a thermally excited
hidden sector generates a stable locus in the potential for a scalar field at positive
energy. However, since the zero-temperature, negative-energy minimum is natu-
rally very close to the line of Minkowski space, i.e. vanishing CC, and since SUSY
breaking nevertheless requires a fine-tuned F-term contribution δVX , there is again
the danger of de-tuning, which can easily raise the minimum to positive energies.
This would imply a de Sitter vacuum and thus a violation of the de Sitter conjecture.

To conclude, let us elaborate on the future perspective of realising the late-time
expansion of the universe in string theory. All in all, there seem to be three pos-
sibilities: First, the de Sitter conjecture could turn out to be false and stringy de
Sitter vacua may indeed be feasible. In this case, one could imagine that a CC
is achieved at the positive-energy minimum of a KKLT-like construction or within
the LVS including some uplift mechanism. Both cases generally require significant
fine-tuning (see also [261] for a recent discussion about the calculational control of
KKLT). Second, it is of course always a possibility that string theory is not the cor-
rect UV completion to describe our universe. While the capability to draw such a
conclusion seems to be far in the future, it is generally thinkable that the swampland
programme may eventually find proof that some crucial aspect of our universe lies
in the swampland, thus falsifying string theory. Third, if we assume that both the
de Sitter conjecture and the stringy nature of the universe are true, some sort of dy-
namic DE, as for example quintessence, appears to be the most promising candidate
to describe the observed late-time expansion. In this case, the findings of this work
take effect, namely that the light-volume and especially the F-term problem con-
stitute major challenges which have to be overcome in order to establish a stringy
quintessence scenario. We have argued that a new, negative contribution δVnew is
needed to overcome both issues. The investigation of the detailed nature and effect
of this term is left to future work. Alternatively, one may try to construct mod-
els, which completely evade the logic of an effective, four-dimensional SUGRA,
or consider other string-theoretic settings than type IIB. Possible examples are type
IIA and heterotic string theory or utilising the running of complex-structure moduli
and the dilaton towards large and small values, respectively. Both of the latter two
may nevertheless bear other issues, e.g. a large volume at large complex-structure
moduli due to mirror symmetry or a string scale below the KK scale for small dila-
ton values. In summary, we believe that the F-term problem remains a generic issue
in many scenarios, which re-appears in some form or another due to the necessity
of heavy SM-superpartners.
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7. Summary
Understanding the underlying principles of our universe is an ever-evolving, contin-
uous process, that may likely never stop. As described at the very beginning of this
thesis, some of the big scientific questions of our time concern the nature of the dark
sector and its implications on cosmology as well as the possibilities to extend the
SM of particle physics in a meaningful way. In this thesis, we described different
instances of progress towards the ultimate goal of answering these questions.

In Chpt. 3 we considered a model of coupled dark energy, which generates in-
teractions within the dark sector via a conformally transformed DM metric. Our
approach was to take a non-conventional choice of the conformal function C(φ),
which leads to a non-constant coupling function Q. We were then able to show
that under certain assumptions, of which the most important one is the quasi-static
approximation, a regime of transient weak gravity on large scales is possible. This
represents a novel result, which is opposed to the usual assumption that such a cou-
pling can merely enhance gravity, and may imply a possible decrease of the cluster-
ing strength, thus alleviating the σ8 tension. As discussed in Chpt. 3, arguably the
biggest challenge will be to implement the above behaviour into a realistic cosmo-
logical model including the correct accelerated expansion behaviour of the universe.
Afterwards, a next step will be to confront this model with real data and evaluate
the resulting goodness of fit against the ΛCDM model as well as other extensions
thereof – preferably by utilising the Bayesian evidence ratio.

We then adopted the language of string theory and proceeded with the assumption
that the latter represents the correct description of the universe on a fundamental
level. In Chpt. 5, we investigated the realisability and phenomenological conse-
quences of a prominent extension to the SM of particle physics, namely the QCD
axion, in a stringy context. We identified the branch of type IIB string theory and,
in particular, the large volume scenario as a favourable setting to obtain the required
small axion decay constant fa. Due to further cosmological constraints related to
the DM abundance and isocurvature bounds, we were led to consider models with
low inflation scale HI. A prominent representative of the latter in string theory is
blow-up inflation, which like many other LVS models is plagued by a DR prob-
lem due to decays of the volume modulus into its own axion. With the help of a
novel fast decay channel into SM Higgses, we were able to seemingly solve this
DR problem; however, the altered cosmological setting, where the inflaton itself
is the longest-lived particle before reheating, re-introduces it via decays into light
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axions with an O(1) branching ratio. While there may still be possibilities to fix
this new DR problem within the considered model by utilising direct decays of the
inflaton into SM gauge bosons, our findings could even turn out to be useful in
other scenarios, too. This is because now the DR problem does not arise from the
omnipresent volume modulus anymore but due to the inflationary sector. The latter
allows for a lot more freedom in the form of inflationary model building so that this
new DR problem may be solved by a direct coupling between the inflaton and the
SM, as for example in hybrid inflation models.

Finally, in Chpt. 6 we again addressed the implementation of a dynamical DE,
however, this time within the paradigm of string theory. Motivated by the de
Sitter-swampland conjecture, according to which true dS vacua are disallowed in
string-theoretic constructions, we collected phenomenological requirements and
challenges concerning a stringy realisation of quintessence. We concluded that
the most promising setting for the latter is the LVS where the quintessence field
is given by a combination of large Kähler moduli, which roll down a small, flat and
loop-generated potential while the overall volume V remains fixed. This implies two
major challenges, which we called the ‘light-volume problem’ and the ‘F-term prob-
lem’. The former describes the fact that the requirements for a light quintessence
mass and a heavy KK scale imply a very light volume-modulus mass, which would
result in inadmissible fifth forces. On the other hand, the novel F-term problem
indicates that the same two requirements also imply a very small SUSY-breaking
scale. This can be remedied through the addition of a dedicated SUSY-breaking
sector, which is hidden and mediates the spontaneous symmetry breaking to the SM
sector. However, as we have argued, this implies a very large contribution δVX to
the vacuum energy density, which again must be cancelled via a new contribution
δVnew of unknown origin. While the latter may also solve the light-volume problem
by increasing the volume-modulus mass, its nature remains highly speculative and
there are several problems associated to the required fine-tuning between δVX and
δVnew down to the observed vacuum energy density.
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8. Outlook
Future research is expected to shed more light on all of the above topics. With re-
gard to contemporary cosmological tensions, CDE models are on a strong footing
because they have revealed their ability to alleviate both theH0 [27] and, as we have
shown in our analysis, the σ8 tension. However, it remains challenging to solve both
tensions simultaneously and is questionable whether this is possible without further
ingredients. At this point, we want to mention a class of CDE models similar to the
ones considered in this thesis but with the additional feature of a velocity-dependent
coupling within the dark sector [326–331]. The latter implies a momentum trans-
fer between DE and the DM fluid, which can also result in a decreased gravitational
coupling constant [332–334] so that these models may alleviate the σ8 tension [335,
336] as well as the Hubble tension – possibly even at the same time [333, 337, 338].
In light of several future observational experiments, for instance the square kilo-
metre array [339] or the Euclid satellite [340–342], we may expect further insight
on the large scale structure of the universe, which could increase the σ8 tension to
a level as uncomfortable as the Hubble tension today. It is therefore all the more
important to conduct theoretical model-building to tackle both of these tensions and
we can conclude that CDE models have the potential to do so.

A consistent unification of an inflationary mechanism together with a QCD axion,
which can also play the role of DM, within the stringy paradigm would represent
a stupendous success of string-phenomenological model building. Not only would
this provide a mechanism to answer a handful of important theoretical questions si-
multaneously but also imply some predictive power, that could be used to put string
theory, or at least a some part of it, closer to the experimental side and test it. Af-
ter our findings, this is obviously still a long road to go and requires a significant
amount of model-building input; however, we have achieved some progress into the
right direction. A crucial issue that requires further scrutiny is the DR problem,
which we have extensively elaborated on in this thesis and whose solution appears
to be closer after our findings than before in the form of inflationary model building.
In particular, we want to recall that according to the newest indications a possible
solution is at hand even within the model of blow-up inflation due to direct inflaton
decays into SM gauge bosons. Nevertheless, there are other theoretical problems
that need to be taken care of. First, as already mentioned in Sec. 5.5, there is still the
danger of loop effects, which are not fully understood and may spoil the required
flatness of the inflaton potential. This deserves further scrutiny. Second, it is still
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currently debated whether the LVS provides the needed calculational control [108,
109], in particular w.r.t. an uplift to a dS spacetime via anti-D3-branes as explained
in Sec. 4.2.4. This may pose a danger for the entire setting and put the LVS into the
swampland; however, as argued in [109], the uplift can be brought under control by
the abidance of a constraint on the D3 tadpole. In a realistic scenario, this imposes
another challenge to overcome. Assuming that such theoretical issues are redressed,
observations may imply interesting consequences. First and foremost, as we have
argued, stringy axions embedded into a realistic inflation model require a very low
inflaton scale and hence tensor-to-scalar ratio r. Therefore, any future detection
of primordial gravitational waves, for instance by the square kilometre array [339],
would immediately rule out the considered scenario in Chpt. 5. Second, one may
hope for a direct detection of axions or further constraints from current or future
experiments (see also [343] or for a more recent review [135]). Worth mentioning
are light-shining-through-walls experiments, e.g. ALPS II [344], haloscopes like
ADMX [345–347] or helioscopes as for example IAXO [348, 349]. Moreover, a
recent excess in the XENON1T detector [350] has attracted much attention; how-
ever, as argued in [351] this cannot be explained by solar axions. Nevertheless,
depending on its precise properties, a detection of the QCD axion may be feasible
within the next few years, and even for a negative result, we can expect a further
constrained parameter space to test the above scenario against.

As we already elaborated in Sec. (6.5), under the assumption that both string
theory and the dS-swampland conjecture are true some sort of dynamical DE is re-
quired to explain the late-time expansion of the universe. In some way or another,
this seems to imply a huge challenge in the form of the light-volume and the F-
term problem. Further issues of stringy quintessence have been examined in [352,
353] and one may conclude that dynamical DE models are not necessarily on a
stronger footing than constructions with a ‘true’ CC. All in all this gives rise to a
severe tension between string theory and observations, which casts some doubt on
the correctness of the dS conjecture. Further research is required to either prove the
latter (or at least provide solid indications for its validity) or to find counter exam-
ples, which violate the dS conjecture while retaining enough calculational control
to be regarded as disproof. Here as mentioned above, a critical point in many LVS
settings concerns the uplift to a dS space, which is as of yet controversial [108, 109].

To conclude, we want to emphasize that both the modified-gravity and the string-
theoretic approach constitute important as well as necessary tools to garner insight
on the nature of our universe and hence deserve attention. The former can be con-
sidered as the means of choice to address modern-day cosmological tensions due to
high-precision observations, where string theory, which even struggles to reproduce
a consistent and controllable background evolution of the universe, seems to be too
restricted. On the other hand, string theory is well established and represents the
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best understood and most prominent UV completion of the SM including gravity
that we have. As such, it naturally serves as a playground for both top-down and
a bottom-up approaches to model building. To this end, the above mentioned re-
strictions can turn out to be advantageous and provide guidance. Eventually, whilst
string theory certainly constitutes a very elegant candidate for a theory of every-
thing, a classical, field-theoretical approach to cosmology remains without alterna-
tive.
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A. Appendices

A.1. Realising small fa in general type II string
theory

In this section, we use the conventions of [96] and additionally set ls ≡ 1. An axion
θ derived from a R-R p-form Cp of type II string theory originates from the ansatz
given by Eq. (4.259). Due to the CS term (4.147), the Cp field couples to D(p− 1)-
brane instantons wrapped around the p-cycle Σp, as described by the action

S ⊃ 2π

∫
Σp

Cp = 2πθ

∫
Σp

ωp , (A.1)

where θ ≡ θ + 1 if ωp is chosen integral. We now want to estimate the size of
the axion decay constant fa on rather general grounds. The relevant terms of the
ten-dimensional Lagrangian are the Einstein-Hilbert term (from Eq. (4.134)) and
the kinetic term for Cp (from Eq. (4.136)), which in the string frame read

S ⊃ 2π

∫
d4xd6y

√
−g
{

1

g2
s
R− 1

2
|dCp|2

}
, (A.2)

where we used that the stabilised dilaton determines the string coupling,

gs = e〈Φ〉 . (A.3)

Ignoring O(1) constants, we can read off (cf. Eq. (4.262))

f 2
a

M2
P
∼ g2

s

Vs

∫
X

ωp ∧ ?ωp ∼
g2

s

Vs

∫
X

d6y
√
−g(ωp)m1···mp(ωp)n1···npg

m1n1 · · · gmpnp ,

(A.4)
where we used VXg−2

s l−8
s ∼ Vsg

−2
s M2

s ∼ M2
P with VX being the volume of the

internal CY manifold X and Vs the very same volume in the string frame and in
string units l6s .

We are interested in preferably small axion decay constants fa, so let us construct
a setting in favour of this. We assume that ωp has support only in a tubular neigh-
bourhood of Σp with diameter d and that Σp has a typical length scale L. Evaluating
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the above integral, one obtains

f 2
a

M2
P
∼ g2

s

Vs

d6−p

Lp
. (A.5)

We now set the diameter of the tubular neighbourhood to the string scale, i.e. d ∼ 1,
for optimal suppression and use that, according to the DBI action, the UV gauge
coupling is given by αs,UV ∼ gs/L

p (cf. Eq. (4.145)). This gives us

f 2
a,min

M2
P
∼ gsαs,UV

Vs
∼ αs,UV√

gs

1

V
, (A.6)

where V = Vs/g
3/2
s is the volume of the internal CY manifold in the Einstein frame

and in string units.

A.2. Gaugino mass for the loop-stabilised cycle

In this appendix, we want to illustrate by a short calculation that the mass of gaugi-
nos, associated to the super Yang-Mills theory on the branes that wrap τL, is of the
same size as the gravitino mass, m3/2 ∼ |W0|MP/V . The F-term for τL is given by

F L = eK/2
∑
ī

(
K−1

)Lī
DīW (A.7)

= eK/2
∑
ī

(
K−1

)Lī (
W∂īK + ∂īW

)
(A.8)

= V−1

−2τL

W 0 +
∑
j̄ 6=L

Aj̄e
−aj̄T j̄

− 4
∑
j̄ 6=L

aj̄Aj̄τLτj̄e
−aj̄T j̄

 , (A.9)

where in the last line we used eK/2 = V−1 and the relation
∑

iK
ij̄∂j̄K = −2τi

as well as the fact that W does not depend on τL and the fact that at leading order
(K−1)iL = 4τiτL, as can be seen from Eq. (A.32). Clearly, the dominating contri-
bution is the term proportional to W 0 so that the F-term is given by

F L ≈ −2
τlW 0

V
. (A.10)
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If no fluxes are present, the gauge-kinetic function is simply given by f = TL. The
gaugino mass then becomes [294]

m1/2 =
MP

2

|F L∂Lf |
Ref

=
|W0|
V

MP (A.11)

and is therefore of the same size as m3/2.

A.3. Decays of τL

In this appendix we estimate the rates of the most relevant decay channels of τL

in order to check whether a significant amount of dark radiation is produced by
this cycle. We only consider a simplified subsystem comprising τb and τL (and
their corresponding axionic partners) assuming that all other cycles are close to
their respective minima and ignoring their perturbations. The decays of τL that we
consider are into its own axion and into SM gauge fields, which live on stack(s) of
branes wrapping τL, as well as into SM Higgses via the Higgs mass term. For the
sake of simplicity, we also assume that, due to the almost diagonal structure of the
Kähler metric, we obtain sufficiently meaningful results without diagonalising the
system. The kinetic terms according to Eq. (4.203) at leading order in the small
parameter ε ≡ τ

−1/2
b are

L ⊃ 3

4τ 2
b
∂µτb∂

µτb +
3γL

8τ
3/2
b
√
τL

∂µτL∂
µτL +

3

4τ 2
b
∂µθb∂

µθb +
3γL

8τ
3/2
b
√
τL

∂µθL∂
µθL .

(A.12)
We canonically normalise the fields as

τb = exp

(√
2

3
φb

)
, τL =

(
3V
4γL

)2/3

φ
4/3
L , (A.13)

θb =

√
2

3
V2/3ab , θL =

2
√
V 〈τL〉1/4√

3γL
aL ,

where it is understood that V denotes the volume at the minimum. The relevant
terms for the decay of τL into axions read

L ⊃ Kbb∂µθb∂
µθb + 2KbL∂µθb∂

µθL +KLL∂µθL∂
µθL (A.14)

⊃ 15γLτ
3/2
L

8τ
7/2
b

∂µθb∂
µθb −

9γL
√
τL

4τ
5/2
b

∂µθb∂
µθL +

3γL

8τ
3/2
b
√
τL

∂µθL∂
µθL , (A.15)
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where we used that 15γIτ
3/2
L /(8τ

7/2
b ) is the leading-order τL-dependent term in Kbb.

Fixing τb at its vacuum expectation value and inserting the canonical fields for τL,
θb and θL, we obtain

L ⊃ 15

16
φ2

L∂µab∂
µab−

34/3γ
1/6
L 〈τL〉1/4

27/6 〈τb〉1/4
φ

2/3
L ∂µab∂

µaL+
(γL

6

)1/3

√
〈τL〉
〈τb〉

φ
−2/3
L ∂µaL∂

µaL .

(A.16)
We can now perturb φL ≡ 〈φL〉+ δφL about its vacuum expectation value to obtain
the trilinear couplings to axions:

L ⊃ 5
√

3γL 〈τL〉3/4

4 〈τb〉3/4
δφL∂µab∂

µab−
√

3

2
δφL∂µab∂

µaL−
〈τb〉3/4

2
√

3γL 〈τL〉3/4
δφL∂µaL∂

µaL .

(A.17)
Clearly, since 〈τb〉 � 〈τL〉, the last term dominates, which is unsurprisingly the
coupling of τL to its own axion. Since we assume that the potential for aL is gen-
erated by QCD instantons, its mass is much smaller than that of φL. The resulting
decay rate is then given by

ΓφL→aLaL =
1

384πγL

(
〈τb〉
〈τL〉

)3/2 m3
φL

M2
P

. (A.18)

This has to be compared to the rate of decays into SM gauge bosons Aµ living on
the branes that wrap τL. The induced coupling is given by

L ⊃ τLTrFµνF µν . (A.19)

The field strength can be canonically normalised by replacingFµν → Fµν/(2
√
〈τL〉).

With that and Eq. (A.13) we obtain

L ⊃ 1

4 〈τL〉

(
3V
4γL

)2/3

φ
4/3
L FµνF

µν . (A.20)

Perturbing φL about its vacuum expectation value, this becomes

L ⊃ 1

4
FµνF

µν +
1

3

δφL

〈φL〉
FµνF

µν (A.21)

=
1

4
FµνF

µν +
〈τb〉3/4

2
√

3γL 〈τL〉3/4
δφLFµνF

µν . (A.22)
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The resulting decay rate is

ΓφL→AA =
Ng

48πγL

(
〈τb〉
〈τL〉

)3/2 m3
φL

M2
P
, (A.23)

where Ng is the number of gauge bosons and we have neglected the contribution
of brane-fluxes to the gauge-kinetic function. Realising that ΓφL→AA/ΓφL→aLaL =
8Ng � 1, one can infer that the decays of φL have only a negligible branching ratio
into DR.

Besides the decays into SM gauge fields, one may wonder whether τL experiences
an enhanced production of Higgses via a τL-dependent Higgs mass, in analogy to
the discussion about the enhanced decay rate of the volume modulus in Sec 5.4.2.
The relevant expression is given by Eq. (5.45),

m2
H ∼ m2

3/2

[
c0 + cloop ln

(
mKK

m3/2

)]
. (A.24)

Restoring the explicit dependence of the Kaluza-Klein scale on the SM cycle,mKK ∼
Ms/τ

1/4
L ∼MPV−1/2τ

−1/4
L , this becomes

m2
H ∼

(
W0

V

)2
[
c0 + cloop ln

(
V1/2

W0τ
1/4
L

)]
. (A.25)

Inserting the canonical field for τL as given by Eq. (A.13) and perturbing about the
vacuum expectation value, we obtain the trilinear coupling

L ⊃ ∼ m2
3/2cloop

〈τb〉3/4

2
√

3γL 〈τL〉3/4
δφLh

2 . (A.26)

Parametrically, the resulting decay rate is given by

ΓφL→hh ∼
c2

loopm
4
3/2

mφLM
2
P

〈τb〉3/2

〈τL〉3/2
. (A.27)

Using typical values, cloop ' (16π2)−1, τL ∼ O(10) and Ng = 12, this is smaller
than the rate into SM gauge fields by a factor

ΓφL→hh

ΓφL→AA
∼
c2

loop

Ng

m4
3/2

m4
φL

∼
c2

loopτ
4
L

Ng

∼ O(10−2) , (A.28)

where we used that according to Eq. (A.65) the mass of the loop modulus scales
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like
mφL ∼

W0

τLV
∼
m3/2

τL
. (A.29)

We conclude by stating that the decay into SM gauge bosons is indeed the dominant
channel of φL and that only a negligible amount of DR is produced.

A.4. Dynamics of the three-moduli system τb, τI

and τL

In this appendix, we estimate the decay rates of the inflaton and its axion into the
volume and the loop-cycle modulus as well as their respective axionic superpart-
ners. Since this appendix involves many cumbersome technicalities, which do not
provide a lot of physical insight, we adopt it in almost one-to-one correspondence
from [3]. In the same reference, one can also find a simpler analysis involving only
the 2-moduli system comprised of τb and τI. Note that we only consider a simplified
system here as well, which does not take into account the additional small cycles
τs,i, which must be present to ensure the stability of the volume during inflation.
However, as we will argue below, we do not expect that the inclusion of said small
cycles, which play a role very similar to the inflaton τI except that they are not ini-
tially excited, would change our findings of this section significantly. This analysis
follows the methodology of [128] adapted to our purposes: We expand the potential
V and (going beyond [128]) the Kähler potential K up to third order in fluctuations
of the δτi and δθi about their respective LVS vacuum expectation values. We then
diagonalise and canonically normalise the fields so that we obtain trilinear coupling
terms and can read off the respective decay rates. Throughout this appendix, we set
MP = 1.

A.4.1. Basic definitions

The total Kähler potential is given by Eq. (4.187); however, we are only interested
in the Kähler moduli Kähler potential modified by α′ corrections, which is given in
Eq. (4.193). Since we ignore the small cycles τs,i, the volume and relevant Kähler
potential are of the form

V = τ
3/2
b − γIτ

3/2
I − γLτ

3/2
L , K = −2 ln

(
V +

ξ

2

)
+KS +Kcs . (A.30)
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The resulting Kähler metric and its inverse at leading order in the small parameter
ε ≡ τ

−1/2
b are given by

Kij =
∂2K

∂Ti∂T̄j
≈


3

4τ2
b

−9γI
√
τI

8τ
5/2
b

−9γL
√
τL

8τ
5/2
b

−9γI
√
τI

8τ
5/2
b

3γI

8
√
τIτ

3/2
b

9γIγL
√
τIτL

8τ3
b

−9γL
√
τL

8τ
5/2
b

9γIγL
√
τIτL

8τ3
b

3γL

8
√
τLτ

3/2
b

 , (A.31)

(K−1)ij ≈


4τ2

b
3

4τbτI 4τbτL

4τbτI
8
√
τIτ

3/2
b

3γI
4τIτL

4τbτL 4τIτL
8
√
τLτ

3/2
b

3γL

 , (A.32)

where Ti = τi + iθi with i ∈ {b, I,L}. Since the model is constructed so that τL

is not stabilised by non-perturbative effects, the superpotential is only corrected by
D3-brane instantons on τI and hence is given by

W = W0 + AIe−aITI , (A.33)

with aI = 2π. The axio-dilaton S and the complex-structure moduli are fixed by
fluxes so that KS and Kcs represent constants, which we absorb into a redefinition
of AI and W0.

The total scalar potential consist of the typical LVS contribution as given in
Eq. (5.62), which is generated through the usual interplay of non-perturbative and α′

corrections as explained in Sec. (4.2.4), and a contribution induced by loop effects,
as given in Eq. (5.57),

V = V
(I)

LVS(V , τI, θI) + Vloop(V , τL) . (A.34)

The individual contributions read [99, 100, 137]

V
(I)

LVS = V−2

[
8τ

3/2
b
√
τI

3γI
a2

I |AI |2e−2aIτI + 4aIτIe−aIτI |AIW0| cos (aIθI)

]
+

3|W0|2ξ
4V3

,

(A.35)

Vloop =

(
µ1√
τL
− µ2√

τL − µ3

)
W 2

0

V3
, (A.36)

where the complex phases argAI and argW0 have been absorbed into a redefinition
of θI. According to Eq. (4.200), the minimum of this potential is defined by the
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relations

ξ = 2γI〈τI〉3/2 , eaI〈τI〉 =
4〈V〉|AI |aI

3γI|W0|
√
〈τI〉

, cos(aI〈θI〉) = −1 . (A.37)

Both the kinetic term as well as the scalar potential can now be expanded about
this minimum. The relevant Lagrangian for us is the truncation of this expansion at
cubic order,

L = 〈Kij〉∂µδτi∂µδτj + 〈∂τiKjk〉δτi∂µδτj∂µδτk + 〈Kij〉∂µδθi∂µδθj

+ 〈∂τiKjk〉δτi∂µδθj∂µδθk − 〈V 〉 −
1

2

〈
∂2V

∂τi∂τj

〉
δτiδτj

− 1

6

〈
∂3V

∂τi∂τj∂τk

〉
δτiδτjδτk −

1

2

〈
∂2V

∂θi∂θj

〉
δθiδθj

− 1

2

〈
∂3V

∂τi∂θj∂θk

〉
δτiδθjδθk . (A.38)

Note that θI enters the potential only inside a cosine ∝ cos(aIθI). The global mini-
mum of the potential lies at a locus where the cosine is at an extremum. Therefore,
any odd-order derivative of V w.r.t. θI will be ∂2n+1

θI
V ∝ sin(aIθI) = 0 at the ex-

tremum. Thus, any mixing between moduli and axions appears only at cubic order
in the perturbed fields.

A.4.2. Decay into moduli fields

Diagonalisation of fields

The next step is to diagonalise and canonically normalise the system. Usually, one
would need to find a transformation, that simultaneously diagonalises both the ki-
netic and mass matrix followed by a field rescaling in order to canonically nor-
malise the kinetic term. Practically, this can be done by first diagonalising only the
kinetic matrix 〈K〉, then rescaling the fields to render the kinetic terms canonical
and afterwards rotating the fields by an orthogonal transformation, which retains the
canonical form of the kinetic terms, so that the mass matrix diagonalises as well.

In this analysis, we follow another approach presented in [128], which yields
a diagonalised, canonical system as well. The basic idea is to define the matrix
(M2)ij ≡ 〈(K−1)ik Vkj〉 /2. One can show that the eigenvectors ~vi of this matrix
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constitute a field transformation,
δτb

δτI

δτL

 =

~vb

 δφb√
2

+

~vI

 δφI√
2

+

~vL

 δφL√
2
, (A.39)

which diagonalises and canonically normalises the system after imposing the nor-
malisation condition

~vTi · 〈K〉 · ~vj = δij . (A.40)

Moreover, the eigenvalues of M2 turn out to be the squared masses of the canonical
fields.

Let us illustrate how this works in detail. We define Pij as the matrix that con-
tains the eigenvectors ~vj as columns. The field transformations then read δτi =
Pijδφj/

√
2 and the normalisation condition (A.40) becomes

~vTi · 〈K〉 · ~vj ≡ Pki〈Kkl〉Plj = δij . (A.41)

Applying this transformation on the kinetic and mass terms, one has

L ⊃ 〈Kij〉∂µδτi∂µδτj −
1

2
〈Vij〉 δτiδτj

= 〈Kij〉∂µ
(
Pikδφk√

2

)
∂µ
(
Pjlδφl√

2

)
− 1

2
〈Vij〉

(
Pikδφk√

2

)(
Pjlδφl√

2

)
=

1

2
Pik〈Kij〉Pjl∂µδφk∂µδφl −

1

4
〈Vij〉PikPjlδφkδφl

=
1

2
δkl∂µδφk∂

µδφl −
1

4
〈Vij〉 δimPmkPjlδφkδφl

=
1

2
∂µδφi∂

µδφi −
1

4
〈Vij〉

(
K−1

)
ni
KmnPmkPjlδφkδφl , (A.42)

where Vij ≡ ∂τi∂τjV . From (A.41), we know that PkiKkj = (P−1)ij and, using the
definition of (M2)ij , we obtain

L ⊃ 1

2
∂µδφi∂

µδφi −
1

2

(
M2
)
nj

(
P−1

)
kn
Pjlδφkδφl . (A.43)

Since P contains the eigenvectors ~vi of M2 as columns, the above expression diag-
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onalises:

L ⊃ 1

2
∂µδφi∂

µδφi −
1

2
m2
kδklδφkδφl

=
1

2
∂µδφi∂

µδφi −
1

2
m2
i δφ

2
i . (A.44)

The diagonalisation and canonical normalisation of the axion fields works in princi-
ple the same way; however, one has to take into account that the second-derivative
matrix of the potential looks different.

Let us apply this method to the above 3-moduli system. We first need to calculate
the second-derivative matrix Vij , which at leading order in the small parameter ε ≡
1/
√
τb is given by

〈Vij〉 ≈


v11ε

13 v12ε
11 v13ε

11

v12ε
11 v22ε

9 v23ε
12

v13ε
11 v23ε

12 v33ε
9

 , (A.45)

where the vij are expressions which do not depend on τb and which are given by

v11 =
9(11W 2

0 (µ1µ̃+ µ2
√
τL) + 3|W0|2γIτ

3/2
I
√
τLµ̃

4
√
τLµ̃

, (A.46)

v12 = −9|W0|2γIaIτ
3/2
I

2
, (A.47)

v13 =
9W 2

0 (µ1µ̃
2 − µ2τL)

4µ̃2τ
3/2
L

, (A.48)

v22 = 3|W0|2γIa
2
I τ

3/2
I , (A.49)

v23 =
9γI
√
τI(W

2
0 (µ2τL − µ1µ̃

2)− 3|W0|2γLτ
2
L µ̃

2)

4µ̃2τ
3/2
L

, (A.50)

v33 =
W 2

0 (3µ1µ̃
3 − µ2(µ3 − 3

√
τL)τL)

4µ̃3τ
5/2
L τ

9/2
b

, (A.51)

(A.52)

with µ̃ ≡ µ3 −
√
τL. Here we used the relations (A.37) after applying the second

derivatives.
Next we have to calculate the eigenvectors ~vj . The M2 matrix at leading order is
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given by,

(
M2
)
ij
≈


m11ε

9 m12ε
7 m13ε

7

m21ε
8 m22ε

6 m23ε
9

m31ε
8 m32ε

9 m33ε
6

 , (A.53)

where the mij are given by

m11 =
3
[
−6|W0|2µ̃2√τLγIaIτ

5/2
I +W 2

0

(
14µ̃2µ1 + 11µ̃µ2

√
τL − 3µ2τL

)]
2µ̃2
√
τL

,

(A.54)

m12 = 6|W0|2γIa
2
I τ

5/2
I , (A.55)

m13 =
W 2

0

(
6µ̃3µ1 − 3µ̃µ2τL + µ2τL

(
−µ3 + 3

√
τL
))

2µ̃3τ
3/2
L

, (A.56)

m21 = −6|W0|2aIτ
2
I , (A.57)

m22 = 4|W0|2a2
I τ

2
I , (A.58)

m23 = −
W 2

0 τI
[
−12µ̃3µ1 + µ2τL(µ3 − 3

√
τL) + 3µ̃(2µ̃2µ1 + µ2τL)

]
2µ̃3τ

3/2
L

− 9|W0|2γL
√
τLτI , (A.59)

m31 =
3W 2

0 (µ̃2µ1 − µ2τL)

γLµ̃2τL
, (A.60)

m32 =
3γI

[
2|W0|2γLτ

2
L µ̃

2a2
I τ

5/2
I +W 2

0

√
τI (µ2τL − µ1µ̃

2)
]

γLµ̃2τL
, (A.61)

m33 =
W 2

0

(
3µ̃3µ1 + µ2τL

(
−µ3 + 3

√
τL
))

3γLµ̃3τ 2
L

. (A.62)
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The eigenvalues and eigenvectors of M2 at leading order in ε are given by

m2
τb

=
−m13m22m31 −m12m21m33 +m11m22m33

m22m33

ε9, ~v1 =


−m33

m31
ε−2

m21m33

m22m31

1

 ,

(A.63)

m2
τI

= m22ε
6, ~v2 =


m12(m22−m33)
m12m31+m22m32

ε−2

m22(m22−m33)
m12m31+m22m32

ε−3

1

 ,

(A.64)

m2
τL

= m33ε
6, ~v3 =


m13

m33
ε

m13m21+m23m33

m33(−m22+m33)
ε3

1

 .

(A.65)

Note that m2
τI
/m2

τL
= m22/m33 ∼ a2

I τ
2
I τ

2
L � 1. To fulfill the normalisation condi-

tions (A.41), we rescale the above eigenvectors,

~vb ≡
~v1√

~vT1 · 〈K〉 · ~v1

≈ − 2m31√
3m33

~v1 =


2τb√

3

− 2m21√
3m22

− 2m31√
3m33

 , (A.66)

~vI ≡
~v2√

~vT2 · 〈K〉 · ~v2

≈ 4(m12m31 +m22m32)τ
1/4
I√

6γIm22(m22 −m33)τ
3/4
b

~v2 =


4m12τ

1/4
b τ

1/4
I√

6γIm22

4τ
3/4
b τ

1/4
I√

6γI

4(m12m31+m22m32)τ
1/4
I√

6γIm22(m22−m33)τ
3/4
b

 ,

(A.67)

~vL ≡
~v3√

~vT3 · 〈K〉 · ~v3

≈ 4τ
3/4
b τ

1/4
L√

6γL
~v2 =


4m13τ

1/4
b τ

1/4
I√

6γLm33

4(m13m21+m23m33)τ
1/4
L√

6γLm33(m33−m22)τ
3/4
b

4τ
3/4
b τ

1/4
L√

6γL

 , (A.68)

where we used m22 > m33 to specify some signs.
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Coupling terms

The kinetic and potential trilinear coupling terms are respectively given by

Lint,kin = Kmnpδτm(∂µδτn)(∂µδτp), (A.69)

Lint,pot = −1

6
Vmnpδτmδτnδτp . (A.70)

The third-order derivatives Kijk ≡ 〈∂τiKjk〉 and Vijk ≡ 〈∂τi∂τj∂τkV 〉 at leading
order read

Kbbb = − 3

2τ 3
b
, (A.71)

KbbI =
45γI
√
τI

16τ
7/2
b

, (A.72)

KbbL =
45γL
√
τL

16τ
7/2
b

, (A.73)

KbII = − 9γI

16
√
τIτ

5/2
b

, (A.74)

KbIL = −
27γIγL

√
τIτL

8τ 4
b

, (A.75)

KbLL = − 9γL

16
√
τLτ

5/2
b

, (A.76)

KIII = − 3γI

16τ
3/2
I τ

3/2
b

, (A.77)

KIIL =
9γIγL

√
τL

16
√
τIτ 3

b
, (A.78)

KILL =
9γIγL

√
τI

16
√
τLτ 3

b
, (A.79)

KLLL = − 3γL

16τ
3/2
L τ

3/2
b

, (A.80)

197



A. Appendices

Vbbb = −
9
[
143W 2

0

(
µ1µ̃+ µ2

√
τL
)

+ 72|W0|2γIµ̃τ
3/2
I
√
τL

]
8µ̃
√
τLτ

15/2
b

, (A.81)

VbbI =
99γI|W0|2aIτ

3/2
I

4τ
13/2
b

, (A.82)

VbbL = −99W 2
0 (µ1µ̃

2 − µ2τL)

8µ̃2τ
3/2
L τ

13/2
b

, (A.83)

VbII = −
27γI|W0|2aI

√
τI

2τ
11/2
b

, (A.84)

VbIL = −
27γI

[
2|W0|2γLµ̃

2aIτ
3/2
I τ 2

L + 2W 2
0

√
τI (µ2τL − µ1µ̃

2)
]

4µ̃2τ
3/2
L τ 7

b

, (A.85)

VbLL = −
9W 2

0

[
3µ1µ̃

3 + µ2(−µ3 + 3
√
τL)τL

]
8µ̃3τ

5/2
L τ

11/2
b

, (A.86)

VIII = −9γI|W0|2a3
I τ

3/2
I

τ
9/2
b

, (A.87)

VIIL =
9γI [8|W0|2γLµ̃

2a2
I τ

2
I τ

2
L −W 2

0 (µ1µ̃
2 − µ2τL)]

8µ̃2
√
τIτ

3/2
L τ 6

b

, (A.88)

VILL =
9γI
[
−3|W0|2γLµ̃

3√τIτ
2
L +W 2

0

(
3µ1
√
τIµ̃

3 + µ2
√
τIτL(−µ3 + 3

√
τL)
)]

8µ̃3τ
5/2
L τ 6

b

,

(A.89)

VLLL = −
3W 2

0

[
5µ1µ̃

4 − µ2τL
(
µ2

3 − 4µ3
√
τL + 5τL

)]
8µ̃4τ

7/2
L τ

9/2
b

. (A.90)

Here we have again used the relations (A.37), however, this time only after forming
the third derivatives.

To obtain the kinetic couplings, we can insert the canonical fields δτi = Pijδφj/
√

2
into (A.69),

Lint,kin =
1

23/2
KmnpPmiPnjPpkδφi(∂µδφj)(∂

µδφk). (A.91)

To eliminate the derivatives, let us consider a trilinear kinetic coupling of three
arbitrary fields ϕ1, ϕ2 and ϕ3. Then by performing several integrations by parts,
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one obtains

ϕ1∂µϕ2∂
µϕ3 = −ϕ3(∂µϕ1∂µϕ2 + ϕ1�ϕ2) + b.t.

= ϕ2(ϕ3�ϕ1 + ∂µϕ3∂
µϕ1)− ϕ1ϕ3�ϕ2 + b.t.

= ϕ2ϕ3�ϕ1 − ϕ1(ϕ2�ϕ3 + ∂µϕ3∂
µϕ2)− ϕ1ϕ3�ϕ2 + b.t. ,

(A.92)

where � ≡ ∂µ∂µ and ‘b.t.’ stands for ‘boundary terms’. From the last line, we than
obtain

ϕ1∂µϕ2∂
µϕ3 =

1

2
(ϕ2ϕ3�ϕ1 − ϕ1ϕ2�ϕ3 − ϕ1ϕ3�ϕ2) + b.t. . (A.93)

As long as the ϕi are close to their respective VEVs, i.e. for small perturbations,
we can then use the free Klein-Gordon equation to replace the box operators by the
respective masses, thus arriving at

ϕ1∂µϕ2∂
µϕ3 =

1

2
ϕ1ϕ2ϕ3

(
m2
ϕ1
−m2

ϕ2
−m2

ϕ3

)
. (A.94)

Eliminating the derivatives in Eq. (A.91) via the relation (A.94), we obtain

Lint,kin =
1

25/2
KmnpPmiPnjPpk

(
m2
i −m2

j −m2
k

)
δφiδφjδφk. (A.95)

For the potential couplings, after inserting the canonical fields into (A.70), we have

Lint,pot = − 1

12
√

2
VmnpPmiPnjPpkδφiδφjδφk. (A.96)

We can now calculate the individual coupling terms:

• Decay δφI → δφbδφb:
Relevant are those terms in Lint,kin for which one of the three indices i, j,
k is an ‘I’ while the other two are a ‘b’. As in the previous section, from
(A.95), we see that all factors in Lint,kin are invariant under permutation of
these indices except for the factor (m2

i −m2
j −m2

k). Again, m2
τI
� m2

τb
, and

hence this factor is dominated by m2
τI

. Therefore, it only changes by a minus
sign under permutation of i, j and k, depending on which of the three indices
takes on the value ‘I’. Summing up the three terms, two of which have a
minus sign, we obtain,

L(φI→φbφb)
int,kin = − 1

25/2
KmnpPmIPnbPpbm

2
τI
δφIδφbδφb. (A.97)
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The contraction is given by

KmnpPmIPnbPpb ≈ KbbbPbIPbbPbb + PIbbPIIPbbPbb (A.98)

≈
√

6γIτ
3/4
I

2τ
3/4
b

. (A.99)

Inserting this and (A.64) into (A.97), we obtain

L(φI→φbφb)
int,kin ≈ −

√
3γI|W0|2a2

I τ
11/4
I

2τ
15/4
b

δφIδφbδφb. (A.100)

For the potential coupling, only those terms from (A.96) contribute where
one of the indices i, j, k takes on the value ‘I’ while the other two take on the
value ‘b’. Following the same argument as before there are in total three such
terms that are all equal and can be accounted for by a factor of 3,

L(φI→φbφb)
int,pot = − 1

4
√

2
VmnpPmIPnbPpbδφIδφbδφb. (A.101)

The contraction reads

VmnpPmIPnbPpb ≈ VIbbPIIPbbPbb + VIIIPIIPIbPIb (A.102)

=
4
√

6γI|W0|2aIτ
7/4
I

τ
15/4
b

. (A.103)

Inserting this into (A.101), we arrive at

L(φI→φbφb)
int,pot = −

√
3γI|W0|2aIτ

7/4
I

τ
15/4
b

δφIδφbδφb . (A.104)

From this we conclude

L(φI→φbφb)
int,kin

L(φI→φbφb)
int,pot

≈ aIτI

2
� 1. (A.105)

• Decay δφI → δφLδφL:
Analogously to the decay δφI → δφbδφb, now those terms from Lint,kin con-
tribute for which one of the three indices i, j, k is an ‘I’ while the other two
are an ‘L’. With m2

τI
� m2

τL
, the factor (m2

i −m2
j −m2

k) is again dominated
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by m2
τI

. Thus we arrive at

L(φI→φLφL)
int,kin = − 1

25/2
KmnpPmIPnLPpLm

2
τI
δφIδφLδφL. (A.106)

The contraction is given by

KmnpPmIPnLPpL ≈ KbLLPbIPLLPLL +KILLPIIPLLPLL +KLLLPLIPLLPLL

(A.107)

≈ −
√

6γIτ
3/4
I

τ
3/4
b

, (A.108)

where we used that aIτI, τL � 1 and assumed that there is no fine-tuning of
the parameter µ̃ = µ3 −

√
τL. Inserting this and (A.64) into (A.106), we

obtain

L(φI→φLφL)
int,kin ≈

√
3γI|W0|2a2

I τ
11/4
I

τ
15/4
b

δφIδφLδφL. (A.109)

For the potential coupling, we obtain analogously to (A.101),

L(φI→φLφL)
int,pot = − 1

4
√

2
VmnpPmIPnbPpbδφIδφLδφL. (A.110)

The contraction reads

VmnpPmIPnLPpL ≈
2
√

6γIτ
3/4
I W 2

0

[
−4µ1µ̃

4 + µ2(µ2
3 − 4µ3

√
τL + 4τL)τL

]
γLµ̃4τ 2

Lτ
15/4
b

− 6
√

6γI|W0|2τ 3/4
I

τ
15/4
b

(A.111)

The potential coupling is then given by

L(φI→φLφL)
int,pot =

−
√

3γIτ
3/4
I

[
−3|W0|2γLµ̃

4τ 2
L +W 2

0

(
−4µ1µ̃

4 + µ2(µ2
3 − 4µ3

√
τL + 4τL)τL

)]
2γLµ̃4τ 2

Lτ
15/4
b

× δφIδφLδφL. (A.112)

Note that the term ∼ |W0|2, which stems from VLVS, is larger than the term ∼
W 2

0 , which stems from Vloop, by a factor ∼ τ 2
L . This confirms the correctness

of our estimation (5.90). Again, the kinetic decay dominates the potential
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one,
L(φI→φLφL)

int,kin

L(φI→φLφL)
int,pot

∼ a2
I τ

2
I � 1. (A.113)

Furthermore, we see that the potential couplings into the volume modulus and
loop modulus differ by a factor

L(φI→φbφb)
int,pot

L(φI→φLφL)
int,pot

∼ aIτI � 1. (A.114)

• Decay δφI → δφbδφL:

For this decay, the relevant terms are those with the indices i = I, j = b
and k = L as well as all permutations thereof. In total, there are 3! = 6
permutations, which have all the same absolute value but with four of them
coming with a minus sign compared to the other two. Thus, w.l.o.g. we fix
i = I, j = b and k = L and assign a factor 2− 4 = −2,

L(φI→φbφL)
int,kin = − 1

23/2
KmnpPmIPnbPpLm

2
τI
δφIδφbδφL. (A.115)

The contraction scales as

KmnpPmIPnbPpL ∼ τ
−3/2
b , (A.116)

so that the total coupling term scales like

L(φI→φbφL)
int,kin ∼ τ

−9/2
b δφIδφbδφL. (A.117)

This, the kinetic decay δφI → δφbδφL is suppressed compared to the kinetic
decays δφI → δφbδφb and δφI → δφLδφL.

For the potential coupling, all 6 permutations of i = I, j = b and k = L are
the same so that we obtain:

L(φI→φbφL)
int,pot = − 1

2
√

2
VmnpPmIPnbPpLδφIδφbδφL. (A.118)

Calculating the contractions, it turns out that we have

L(φI→φbφL)
int,pot ∼ τ

−9/2
b δφIδφbδφL, (A.119)

which is also suppressed compared to the potential decays δφI → δφbδφb and
δφI → δφLδφL.
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Note that the inclusion of the other small cycles τs,i does not alter the results
for the couplings to moduli fields because it only changes the expression for ξ in
(A.37), which then becomes a sum over all small cycles including τI. However, ξ
appears only in the components Vbb, (M2)11 and Vbbb at leading order. Even though
this induces a slight shift of the volume modulus mass (A.63), none of these three
components enters the trilinear coupling terms and hence they remain unaltered.

A.4.3. Decay into axion fields

Diagonalisation of fields

For the decay into the volume axion, we proceed analogously as for the decay into
volume modulus. The second-derivative matrix w.r.t. the axions at leading order is
given by

〈V (θ)
ij 〉 ≡

〈
∂2V

∂θi∂θj

〉
=


0 0 0

0
3γI|W0|2a2

I τ
3/2
I

τ
9/2
b

0

0 0 0

 , (A.120)

where we have, again, used the relations (A.37) after applying the second deriva-
tives. The transformation to canonical fields is given by

δθb

δθI

δθL

 =

~wb

 δab√
2

+

~wI

 δaI√
2

+

~wL

 δaL√
2

(A.121)

or δθi = Qijδaj/
√

2 where Q is the matrix that contains the vectors ~wj as columns.
They are the eigenvectors of the matrix (M2

(θ))ij ≡ 〈(K−1)ikV
(θ)
kj 〉/2 whose eigen-

values are the axion masses. The eigenvectors fulfill the normalisation condition

~wT
i · 〈K〉 · ~wj ≡ Qki〈Kkl〉Qlj = δij. (A.122)

The M2
(θ) matrix at leading order is given by

(M2
(θ))ij ≈


0

6γI|W0|2a2
I τ

5/2
I

τ
7/2
b

0

0
4|W0|2a2

I τ
2
I

τ3
b

0

0
6γI|W0|2a2

I τ
5/2
I τL

τ
9/2
b

0

 . (A.123)
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The corresponding eigenvalues and eigenvectors are

m2
θb

= 0, ~w1 =


1

0

0

 , (A.124)

m2
θI

=
4|W0|2a2

I τ
2
I

τ 3
b

, ~w2 =


τb/τL

2τ
3/2
b

3γI
√
τIτL

1

 , (A.125)

m2
θL

= 0, ~w3 =


0

0

1

 . (A.126)

After rescaling to fulfill the normalisation condition (A.122), the normalised eigen-
vectors read

~wb ≡
~w1√

~wT
1 · 〈K〉 · ~w1

≈ 2τb√
3
~w1 =


2τb√

3

0

0

 , (A.127)

~wI ≡
~w2√

~wT
2 · 〈K〉 · ~w2

≈
√

6γIτ
3/4
I τL

τ
3/4
b

~w2 =


√

6γIτ
3/4
I τ

1/4
b

2
√

2τ
1/4
I τ

3/4
b√

3γI√
6γIτ

3/4
I τL

τ
3/4
b

 , (A.128)

~wL ≡
~w3√

~wT
3 · 〈K〉 · ~w3

≈ 2
√

2τ
1/4
L τ

3/4
b√

3γL
~w3 =


0

0

2
√

2τ
1/4
L τ

3/4
b√

3γL

 . (A.129)
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Coupling terms

The kinetic and potential trilinear coupling terms are respectively given by

Lint,kin,(θ) = 〈∂τmKnp〉δτm∂µδθn∂µδθp

=
1

23/2
KmnpPmiQnjQpkδφi∂µδaj∂

µδak, (A.130)

Lint,pot,(θ) = −1

2

〈
∂3V

∂τm∂θn∂θp

〉
δτmδθnδθp

= − 1

25/2

〈
∂3V

∂τm∂θn∂θp

〉
PmiQnjQpkδφiδajδak . (A.131)

Let us first argue that the potential couplings to the volume and loop axions vanish:
Since V does not depend on θb or θL but only on θI, the indices n and p in (A.131)
must both take on the value ‘I’. However, the components QIb and QIL vanish, so
that there are no potential couplings ∼ δφIδabδab or ∼ δφIδaLδaL.

The individual coupling terms are then calculated as:

• Decay δφI → δabδab:
Eliminating the derivatives by using (A.94), the kinetic coupling term be-
comes

L(φI→abab)
int,kin,(θ) =

1

25/2
KmnpPmIQnbQpbm

2
τI
δφIδabδab. (A.132)

Since QIb = QLb = 0, the indices n and p must take on the value b, so that we
have

L(φI→abab)
int,kin,(θ) =

1

25/2
KmbbPmIQbbQbbm

2
τI
δφIδabδab (A.133)

=
1

25/2
(KbbbPbI +KIbbPII +KLbbPLI)QbbQbbm

2
τI
δφIδabδab

(A.134)

≈
√

3γI|W0|2a2
I τ

11/4
I

2τ
15/4
b

δφIδabδab. (A.135)

• Decay δφI → δaLδaL:
Analogously to before we have

L(φI→aLaL)
int,kin,(θ) =

1

25/2
KmnpPmIQnLQpLm

2
τI
δφIδaLδaL. (A.136)

Since QbL = QIL = 0, the indices n and p must take on the value ‘L’, so that
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we have

L(φI→aLaL)
int,kin,(θ) =

1

25/2
KmLLPmIQLLQLLm

2
τI
δφIδaLδaL (A.137)

=
1

25/2
(KbLLPbI +KILLPII +KLLLPLI)QLLQLLm

2
τI
δφIδaLδaL

(A.138)

= −
√

3γI|W0|2a2
I τ

11/4
I

τ
15/4
b

δφIδaLδaL. (A.139)

• Decay δφI → δabδaL:
For this decay, we have

L(φI→abaL)
int,kin,(θ) =

1

23/2
KmnpPmIQnbQpLm

2
τI
δφIδabδaL, (A.140)

where we have also assigned a factor 2 because their are two possibilities how
δφiδajδak can contribute to this decay. Again, since QIb = QLb = QbL =
QIL = 0, the indices are forced to take on the values n = b and p = L so that
we have

L(φI→abaL)
int,kin,(θ) =

1

23/2
KmbLPmIQbbQLLm

2
τI
δφIδabδaL (A.141)

=
1

23/2
(KbbLPbI +KIbLPII +KLbLPLI)QbbQLLm

2
τI
δφIδabδaL

(A.142)

≈ 0. (A.143)

Note that this zero only holds at leading order under the approximation that
aIτI, τL � 1 and that there is no fine-tuning of the parameter µ̃ = µ3 −

√
τL.

At the next-to-leading order, we would get a contribution that scales as,

L(φI→abaL)
int,kin,(θ) ∼ τ

−9/2
b δφIδabδaL, (A.144)

which is suppressed compared to δφI → δabδab and δφI → δaLδaL.

A.4.4. Decays of the inflaton axion

The trilinear couplings of the inflaton axion always involve exactly one other axion
and one modulus field. The relevant coupling terms are given in (A.130) and (A.131).
In analogy to the argument above, the potential coupling terms (A.131) vanish be-
cause the indices n and p must both take on the value ‘I’ while on of the indices j
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and k must either take on the value ‘b’ or ‘L’. This gives rise to either a factor ‘QIb’
or ‘QIL’, both of which are zero.

From the kinetic coupling terms of the inflaton axion are induced from (A.130).
There are always two possibilities how δφi∂µδaj∂

µδak can contribute to a decay of
aI corresponding to j = I or k = I. Eliminating the derivatives using (A.94), the
individual coupling terms are given as follows:

• Decay δaI → δφbδab:
Here we have

L(aI→φbab)
int,kin,(θ) = − 1

23/2
KmnpPmbQnIQpbm

2
θI
δφbδaIδab. (A.145)

Since QLb = QIb = 0, the index p is forced to take on the value ‘b’ so that we
obtain

L(aI→φbab)
int,kin,(θ) = − 1

23/2
KmnbPmbQnIQbbm

2
θI
δφbδaIδab (A.146)

≈ − 1

23/2
(KbbbPbbQbI +KbIbPbbQII)Qbbm

2
θI
δφbδaIδab (A.147)

≈ −
√

3γI|W0|2a2
I τ

11/4
I

τ
15/4
b

δφbδaIδab . (A.148)

• Decay δaI → δφbδaL:
This decay is given by

L(aI→φbaL)
int,kin,(θ) = − 1

23/2
KmnpPmbQnIQpLm

2
θI
δφbδaIδaL. (A.149)

Since QIL = QbL = 0, the index p is forced to take on the value ‘L’ so that
we have

L(aI→φbaL)
int,kin,(θ) = − 1

23/2
KmnpPmbQnIQLLm

2
θI
δφbδaIδaL (A.150)

∼ τ
−9/2
b δφbδaIδaL . (A.151)

• Decay δaI → δφLδab:
The coupling terms read

L(aI→φLab)
int,kin,(θ) = − 1

23/2
KmnpPmLQnIQpbm

2
θI
δφLδaIδab. (A.152)
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Here the index p is again forced to take on the value ‘b’ and we obtain

L(aI→φLab)
int,kin,(θ) = − 1

23/2
KmnpPmLQnIQpbm

2
θI
δφLδaIδab (A.153)

∼ τ
−9/2
b δφLδaIδab . (A.154)

• Decay δaI → δφLδaL:
For this decay we have

L(aI→φLaL)
int,kin,(θ) = − 1

23/2
KmnpPmLQnIQpLm

2
θI
δφLδaIδaL. (A.155)

The index p must take on the value ‘L’ and the coupling terms are given by

L(aI→φLaL)
int,kin,(θ) = − 1

23/2
KmnpPmLQnIQLLm

2
θI
δφLδaIδaL (A.156)

≈ − 1

23/2
(KLbLPLLQbI +KLILPLLQII +KLLLPLLQLI)QLLm

2
θI

× δφLδaIδaL (A.157)

≈ 2
√

3γI|W0|2a2
I τ

11/4
I

τ
15/4
b

δφLδaIδaL . (A.158)

A.4.5. Decay rates

To obtain the corresponding decay rates, we use the standard formula

Γ =
1

S

∫
|M|2

2E
dLIPS, (A.159)

where S is the symmetry factor, E is the energy of the decaying particle, |M|2
is the matrix element squared and dLIPS is an element of Lorentz invariant phase
space. The decays we consider can be grouped into two categories, either with two
identical decay products or with two different ones. The corresponding interaction
terms are schematically of the form

LA ⊃ gAϕAψ
2
A, LB ⊃ gBϕBψBχB, (A.160)

where we assume that the decaying particle ϕ is much heavier than the decay prod-
ucts ψ and χ, i.e. mϕA � 2mψA and mϕB � mψB + mχB . A crucial difference
between the two categories lies in their respective symmetry factors and matrix el-
ements. For category A, we have S = 2 and |M|2 = 4g2

A whereas for category B,
we have S = 1 and |M|2 = g2

B. This results in the following decay rates for the two
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categories,

ΓϕA→ψAψA =
g2

A

8πmϕA

, ΓϕB→ψBχB =
g2

B

16πmϕB

. (A.161)

By reading off the respective couplings g from the trilinear coupling terms above,
we can easily obtain the corresponding decay rates.

The relevant decays of the inflaton fall into category A. For the kinetic decay into
the volume modulus we have

|M1|2 =
3γI|W0|4a4

I τ
11/2
I

τ
15/2
b

, m2
τI

=
4|W0|2a2

I τ
2
I

τ 3
b

, (A.162)

and thus obtain

Γ1 ≡ Γkin
φI→φbφb

≈ 3γI|W0|3a3
I τ

9/2
I

64πV4
. (A.163)

Analogously, for the potential decay into the loop modulus, the matrix element
squared is given by

|M2|2 =(
−
√

3γIτ
3/4
I

[
−3|W0|2γLµ̃

4τ 2
L +W 2

0

(
−4µ1µ̃

4 + µ2(µ2
3 − 4µ3

√
τL + 4τL)τL

)]
γLµ̃4τ 2

Lτ
15/4
b

)2

(A.164)

and the decay rate by

Γ2 ≡ Γpot
φI→φLφL

=

3γI
√
τI
[
−3|W0|2γLµ̃

4τ 2
L +W 2

0

(
−4µ1µ̃

4 + µ2(µ2
3 − 4µ3

√
τL + 4τL)τL

)]2
64πγ2

L|W0|µ̃8aIτ 4
LV4

.

(A.165)

Note that Γ1/Γ2 ∼ a4
I τ

4
I ∼ (lnV)4 � 1. Comparing the coupling functions, all

other decay rates of inflaton decays can be related to Γ1 and Γ2 as given in Tab. 4.
Likewise, the decay rates of the inflaton axion fall into category B and can also

be related to Γ1 as given in Tab. 4.
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problème des isopérimètres”. In: Mem. Acad. St. Petersbourg 6.4 (1850),
pp. 385–517.

[38] Richard P. Woodard. “Avoiding dark energy with 1/r modifications of grav-
ity”. In: Lect. Notes Phys. 720 (2007). Ed. by Lefteris Papantonopoulos,
pp. 403–433. DOI: 10.1007/978-3-540-71013-4_14. arXiv: astro-
ph/0601672.

[39] Hayato Motohashi and Teruaki Suyama. “Third order equations of motion
and the Ostrogradsky instability”. In: Phys. Rev. D 91.8 (2015), p. 085009.
DOI: 10.1103/PhysRevD.91.085009. arXiv: 1411.3721 [physics.class-ph].

[40] Mark Trodden. “Theoretical Aspects of Cosmic Acceleration”. In: PoS DSU2015
(2016), p. 005. DOI: 10.22323/1.268.0005. arXiv: 1604.08899 [astro-ph.CO].

[41] Gregory Walter Horndeski. “Second-order scalar-tensor field equations in
a four-dimensional space”. In: Int. J. Theor. Phys. 10 (1974), pp. 363–384.
DOI: 10.1007/BF01807638.

214

https://doi.org/10.1051/0004-6361/202039063
https://arxiv.org/abs/2007.15632
https://doi.org/10.1088/1361-6633/ab2429
https://arxiv.org/abs/1901.07183
https://doi.org/10.1063/1.1665613
https://doi.org/10.1063/1.1666069
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/0550-3213(88)90193-9
https://arxiv.org/abs/1711.03844
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://arxiv.org/abs/2103.01183
https://doi.org/10.1007/978-3-540-71013-4_14
https://arxiv.org/abs/astro-ph/0601672
https://arxiv.org/abs/astro-ph/0601672
https://doi.org/10.1103/PhysRevD.91.085009
https://arxiv.org/abs/1411.3721
https://doi.org/10.22323/1.268.0005
https://arxiv.org/abs/1604.08899
https://doi.org/10.1007/BF01807638


Bibliography

[42] C. Deffayet, S. Deser, and G. Esposito-Farese. “Generalized Galileons: All
scalar models whose curved background extensions maintain second-order
field equations and stress-tensors”. In: Phys. Rev. D 80 (2009), p. 064015.
DOI: 10.1103/PhysRevD.80.064015. arXiv: 0906.1967 [gr-qc].

[43] C. Deffayet, Gilles Esposito-Farese, and A. Vikman. “Covariant Galileon”.
In: Phys. Rev. D 79 (2009), p. 084003. DOI: 10.1103/PhysRevD.79.
084003. arXiv: 0901.1314 [hep-th].

[44] C. Deffayet et al. “From k-essence to generalised Galileons”. In: Phys. Rev.
D 84 (2011), p. 064039. DOI: 10.1103/PhysRevD.84.064039. arXiv:
1103.3260 [hep-th].

[45] Miguel Zumalacárregui and Juan Garcı́a-Bellido. “Transforming gravity:
from derivative couplings to matter to second-order scalar-tensor theories
beyond the Horndeski Lagrangian”. In: Phys. Rev. D 89 (2014), p. 064046.
DOI: 10.1103/PhysRevD.89.064046. arXiv: 1308.4685 [gr-qc].
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[338] Jose Beltrán Jiménez et al. “Probing elastic interactions in the dark sector
and the role of S8”. In: Phys. Rev. D 104.10 (2021), p. 103503. DOI: 10.
1103/PhysRevD.104.103503. arXiv: 2106.11222 [astro-ph.CO].

[339] Roy Maartens et al. “Overview of Cosmology with the SKA”. In: PoS AASKA14
(2015). Ed. by Tyler L. Bourke et al., p. 016. DOI: 10.22323/1.215.0016.
arXiv: 1501.04076 [astro-ph.CO].

[340] R. Laureijs et al. “Euclid Definition Study Report”. In: (Oct. 2011). arXiv:
1110.3193 [astro-ph.CO].

[341] Luca Amendola et al. “Cosmology and fundamental physics with the Euclid
satellite”. In: Living Rev. Rel. 16 (2013), p. 6. DOI: 10.12942/lrr-2013-6.
arXiv: 1206.1225 [astro-ph.CO].

240

https://doi.org/10.1103/PhysRevD.101.063511
https://arxiv.org/abs/1910.02699
https://arxiv.org/abs/1910.02699
https://doi.org/10.1016/j.physletb.2020.135400
https://arxiv.org/abs/1911.02179
https://doi.org/10.1088/1475-7516/2020/06/020
https://arxiv.org/abs/2003.02686
https://arxiv.org/abs/2003.02686
https://doi.org/10.1088/1475-7516/2020/11/032
https://arxiv.org/abs/2005.13809
https://doi.org/10.1103/PhysRevD.94.043518
https://arxiv.org/abs/1604.04222
https://arxiv.org/abs/1604.04222
https://doi.org/10.1103/PhysRevD.101.043531
https://arxiv.org/abs/1912.09858
https://doi.org/10.1088/1475-7516/2021/03/085
https://arxiv.org/abs/2012.12204
https://arxiv.org/abs/2012.12204
https://doi.org/10.1103/PhysRevD.104.103503
https://doi.org/10.1103/PhysRevD.104.103503
https://arxiv.org/abs/2106.11222
https://doi.org/10.22323/1.215.0016
https://arxiv.org/abs/1501.04076
https://arxiv.org/abs/1110.3193
https://doi.org/10.12942/lrr-2013-6
https://arxiv.org/abs/1206.1225


Bibliography

[342] Luca Amendola et al. “Cosmology and fundamental physics with the Euclid
satellite”. In: Living Rev. Rel. 21.1 (2018), p. 2. DOI: 10.1007/s41114-
017-0010-3. arXiv: 1606.00180 [astro-ph.CO].

[343] P. Sikivie. “Experimental Tests of the Invisible Axion”. In: Phys. Rev. Lett.
51 (1983). Ed. by M. A. Srednicki. [Erratum: Phys.Rev.Lett. 52, 695 (1984)],
pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415.

[344] Robin Bähre et al. “Any light particle search II —Technical Design Report”.
In: JINST 8 (2013), T09001. DOI: 10.1088/1748-0221/8/09/T09001.
arXiv: 1302.5647 [physics.ins-det].

[345] S. J. Asztalos et al. “A SQUID-based microwave cavity search for dark-
matter axions”. In: Phys. Rev. Lett. 104 (2010), p. 041301. DOI: 10.1103/
PhysRevLett.104.041301. arXiv: 0910.5914 [astro-ph.CO].

[346] N. Du et al. “A Search for Invisible Axion Dark Matter with the Axion Dark
Matter Experiment”. In: Phys. Rev. Lett. 120.15 (2018), p. 151301. DOI:
10.1103/PhysRevLett.120.151301. arXiv: 1804.05750 [hep-ex].

[347] T. Braine et al. “Extended Search for the Invisible Axion with the Axion
Dark Matter Experiment”. In: Phys. Rev. Lett. 124.10 (2020), p. 101303.
DOI: 10.1103/PhysRevLett.124.101303. arXiv: 1910.08638 [hep-ex].

[348] E. Armengaud et al. “Conceptual Design of the International Axion Ob-
servatory (IAXO)”. In: JINST 9 (2014), T05002. DOI: 10.1088/1748-
0221/9/05/T05002. arXiv: 1401.3233 [physics.ins-det].

[349] E. Armengaud et al. “Physics potential of the International Axion Observa-
tory (IAXO)”. In: JCAP 06 (2019), p. 047. DOI: 10.1088/1475-7516/
2019/06/047. arXiv: 1904.09155 [hep-ph].

[350] E. Aprile et al. “Excess electronic recoil events in XENON1T”. In: Phys.
Rev. D 102.7 (2020), p. 072004. DOI: 10.1103/PhysRevD.102.072004.
arXiv: 2006.09721 [hep-ex].

[351] Luca Di Luzio et al. “Solar axions cannot explain the XENON1T excess”.
In: Phys. Rev. Lett. 125.13 (2020), p. 131804. DOI: 10.1103/PhysRevLett.
125.131804. arXiv: 2006.12487 [hep-ph].

[352] Michele Cicoli et al. “Quintessence and the Swampland: The parametrically
controlled regime of moduli space”. In: Fortsch. Phys. 70.40 (2022). DOI:
10.1002/prop.202200009. arXiv: 2112.10779 [hep-th].

[353] Michele Cicoli et al. “Quintessence and the Swampland: The numerically
controlled regime of moduli space”. In: Fortsch. Phys. 70.4 (2022). DOI:
10.1002/prop.202200008. arXiv: 2112.10783 [hep-th].

241

https://doi.org/10.1007/s41114-017-0010-3
https://doi.org/10.1007/s41114-017-0010-3
https://arxiv.org/abs/1606.00180
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1088/1748-0221/8/09/T09001
https://arxiv.org/abs/1302.5647
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.1103/PhysRevLett.104.041301
https://arxiv.org/abs/0910.5914
https://doi.org/10.1103/PhysRevLett.120.151301
https://arxiv.org/abs/1804.05750
https://doi.org/10.1103/PhysRevLett.124.101303
https://arxiv.org/abs/1910.08638
https://doi.org/10.1088/1748-0221/9/05/T05002
https://doi.org/10.1088/1748-0221/9/05/T05002
https://arxiv.org/abs/1401.3233
https://doi.org/10.1088/1475-7516/2019/06/047
https://doi.org/10.1088/1475-7516/2019/06/047
https://arxiv.org/abs/1904.09155
https://doi.org/10.1103/PhysRevD.102.072004
https://arxiv.org/abs/2006.09721
https://doi.org/10.1103/PhysRevLett.125.131804
https://doi.org/10.1103/PhysRevLett.125.131804
https://arxiv.org/abs/2006.12487
https://doi.org/10.1002/prop.202200009
https://arxiv.org/abs/2112.10779
https://doi.org/10.1002/prop.202200008
https://arxiv.org/abs/2112.10783

	Philosophical motivation
	The modified gravity approach
	Introduction
	General relativity and the LCDM model
	General relativity in a nutshell
	Background evolution in the CDM model
	Linear perturbations in the CDM model

	Scalar-tensor theories and coupled dark energy
	Overview of scalar-tensor theories
	Coupled dark energy


	Transient weak gravity in coupled dark energy
	Motivation and outline
	Specification of the model
	Background evolution equations
	Evolution equations of linear perturbation

	Approximations
	The pure conformal coupling case and a new mass scale
	The evolution equation for the DM density contrast
	Weak gravity

	Summary and discussion


	The stringy universe
	Introduction
	String theory and supersymmetry in a nutshell
	The bosonic string
	Supersymmetry
	Superstring theory

	String phenomenology
	Type IIB ten-dimensional supergravity
	Kaluza-Klein compactification, Calabi-Yau manifolds and moduli spaces
	Flux compactifications and moduli stabilisation
	The large volume scenario

	Physics beyond the standard model in string theory
	Inflation and reheating – overview
	Stringy inflation models
	Axions


	Axions in string theory and the Hydra of dark radiation
	Motivation and outline of approach
	General properties of stringy QCD axions
	Achieving a small axion decay constant
	Embedding of stringy axions into inflation

	Cosmological constraints
	Assuming a standard cosmology for the expansion history
	Assuming an early matter domination for the expansion history

	The old dark radiation problem and its new resolution by Higgs-mass-mediated decays
	Decays of taub into its axion ab and the SM
	Mass-term-induced, rapid decays of the volume modulus into Higgses

	Combining the QCD axion with a suitable inflation model
	The new dark radiation problem due to problematic contributions from early decays
	Decay rates
	The dark radiation problem re-emerges

	Resulting axion dark matter cosmology
	High reheating temperatures and a standard radiation-dominated cosmology
	Low reheating temperatures and axion oscillations during a matter-dominated phase

	Discussion

	Quintessence in string theory and the F-term problem
	Motivation and outline
	Preliminaries and phenomenological requirements
	Mass hierarchies and the light-volume problem
	The F-term problem
	Limits on the F-term contribution
	Need for a new contribution

	Summary and discussion


	Conclusions
	Summary
	Outlook
	Appendices
	Realising small fa in general type II string theory
	Gaugino mass for the loop-stabilised cycle
	Decays of L
	Dynamics of the three-moduli system b, I and L
	Basic definitions
	Decay into moduli fields
	Decay into axion fields
	Decays of the inflaton axion
	Decay rates


	Bibliography


