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Abstract

Solitons are fascinating non-dispersive solutions to non-linear systems,
which appear in various scenarios across nature. Because of their stability
and longevity these excitations are of great interest in non-equilibrium
scenarios. In multi-component systems, the solitons acquire an internal
degree of freedom, contributing to a rich variety of interaction effects, which
make these excitations particularly interesting.

In this work we experimentally realize the deterministic generation
of coherent three-component vector solitons in a quasi one-dimensional
Bose-Einstein condensate of 87Rb. For this, a local spin rotation is gen-
erated with a single laser beam. We investigate the spatial profiles and
propagation of the solitons in a trap as well as their dynamics during soliton-
soliton collisions. These are found to be well-described by the analytical
Manakov model. In particular, we realize the striking phenomenon of
ploarization scattering during soliton collisions, known from the attractive
multi-component Manakov system, in a repulsively interacting condensate.
The polarization dynamics of the vector solitons is further applied in an
application to precisely determine magnetic field gradients.

In a second set of experiments, the non-equilibrium dynamics following
an interaction quench is investigated. For this, the excitations in the
transverse spin which are spontaneously generated by spin-changing col-
lisions are characterized. Utilizing multiple solitons as initial condition,
two regimes are realized, in which localized excitations either decay or
strong fluctuations persist over long times. In these scenarios, two distinct
dynamical scaling evolutions are identified. These indicate the presence of
two different non-thermal fixed points in the spin-1 Bose gas.
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Zusammenfassung

Solitonen sind faszinierende nichtdispersive Lösungen nichtlinearer Sys-
teme, die in verschiedenen Szenarien in der Natur vorkommen. Auf-
grund ihrer Stabilität und Langlebigkeit sind diese Anregungen in Nicht-
gleichgewichtsszenarien von großem Interesse. In mehrkomponentigen
Systemen besitzen Solitonen einen internen Freiheitsgrad, welcher zu einer
Vielzahl von Wechselwirkungseffekten beiträgt, die diese Anregungen beson-
ders interessant machen.

In dieser Arbeit realisieren wir experimentell eine deterministische Erzeu-
gung von kohärenten dreikomponentigen Vektorsolitonen in einem quasi-
eindimensionalen 87Rb Bose-Einstein-Kondensat. Dazu wird eine lokale
Spinrotation mithilfe eines einzelnen Laserstrahls erzeugt. Wir unter-
suchen die räumlichen Profile und die Bewegung der Solitonen in einer
Falle, sowie deren Dynamik bei Soliton-Soliton-Kollisionen. Diese wer-
den durch das analytische Mankov-Modell gut beschrieben. Insbesondere
realisieren wir das bemerkenswerte Phänomen der Polarisationsstreuung
während Solitonenkollisionen, welches für das mehrkomponentige attrak-
tive Mankov-System wohlbekannt ist, in einem Kondensat mit repulsiven
Wechselwirkungen. Die Polarisationsdynamik der Vektorsolitonen wird
ferner angewandt um Magnetfeldgradienten präzise zu vermessen.

In einer zweiten Reihe von Experimenten wird die Nichtgleichgewichts-
dynamik infolge eines Wechselwirkungsquenches untersucht. Dazu werden
die spontan erzeugten Anregungen, welche von spinverändernden Stößen
verursacht werden, charakterisiert. Durch Verwendung mehrerer Solitonen
als Anfangsbedingung werden zwei Regime realisiert, in welchen lokalisierte
Anregungen entweder zerfallen oder Fluktuationen über lange Zeit bestehen
bleiben. In diesen Szenarien wird unterschiedliches dynamisches Skalieren
in der Zeitentwicklung beobachtet. Dies weist auf die Existenz von zwei
unterschiedlichen nichtthermischen Fixpunkten im Spin-1 Bosegas hin.
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1. Introduction

Non-linear phenomena are ubiquitous in nature and lead, for instance, to chaos
[1], turbulence [2] and the generation of entanglement [3]. These mechanisms
affect every-day life through the intricate dynamics of weather and climate [4], but
are relevant also in more abstract scenarios as diverse as chemical reactions [5],
population dynamics in biology [6], or the application of squeezed light [7–9] for
the detection of gravitational waves [10–13]. In particular, in interacting many-
body systems these non-linear interactions give rise to complex non-equilibrium
physics. It is exactly such a non-linearly interacting many-body system which
has been studied in the famous work of Fermi, Pasta, Ulam and Tsingou [14].
They numerically investigated the equilibration of a chain of coupled particles with
close to cubic interactions. Initially, the displacement of the particles from their
rest position was excited with a superposition of sinusoidal modes. Much to their
surprise, the system did not show ergodicity but instead they observed recurrences
of the initially excited modes. A decade later, Zabusky and Kruskal explained the
appearance of recurrences by scattering of certain non-linear and non-dispersive
wave excitations, which retain their shape during collisions [15]. These excitations
are called solitons. Their actual discovery dates back to the famous account of
the pursuit of a non-dispersive water wave by John Scott Russell. He followed
such a wave on horseback over a few thousand meters down a narrow channel
in the summer of 1834 [16]. Nevertheless, the study by Zabusky and Kruskal
marks the central rediscovery of these non-linear excitations, which have since
been studied in many different systems. Especially in optics solitons are applied to
reduce dispersion and soliton interactions have even been proposed to realize logic
gates [17, 18] and even quantum gates [19].

In Bose-Einstein condensates (BECs), where the s-wave interaction gives rise
to the non-linear interactions, such excitations can be realized as well [20, 21].
Here, solitons correspond to a localized and collective excitations which propagate
without dispersion [22]. In multi-component systems solitons may also consist of
a coupled excitation between multiple of these components. These are so-called
vector solitons, which incorporate internal degrees of freedom that are completely
separated from their free spatial propagation. Analogous to scattering of particles,
these vector solitons change their internal state during collisions [23], showing a
particularly intriguing example of dynamics between stable collective excitations.

In this thesis, and experimental implementation for the deterministic generation
of three-component vector solitons in a spin-1 BEC is presented. The properties
of these solitons are characterized during their propagation and in collisions. The
experimental results are found to be in good agreement with the analytical Manakov
model. Strikingly, their interactions during collisions provide the means to directly
obtain an interferometric contrast, which probes their phase evolution. This
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CHAPTER 1. INTRODUCTION

phase evolution is further applied to determine the magnetic field gradient along
the condensate. The vector solitons promise to be a powerful tool for precise
phase measurements, which do not require additional potentials to realize an
interferometer [24–26], and are not limited by density-dependent mean-field shifts.

These controlled scenarios with only a few excitations, like a pair of colliding
solitons, are captured well by the microscopic theory. However, far from equilibrium
the description of an interacting many-body system on the microscopic level becomes
intractable. In a second set of experiments we investigate the influence of non-linear
excitation in the system to the non-equilibrium dynamics of the spin-1 BEC. In
order to highly excite the system, typically a quench (rapid change) of a control
parameter is applied [27]. The following dynamics may then be expected to depend
on the details of the system. However, over the last years numerical studies
suggested that in such scenarios the dynamics of certain observables becomes
independent of microscopic details [28–30]. The notion of non-thermal fixed
points (NTFPs) emerged as candidate for a unifying concept to capture these
phenomena in physically vastly different systems [31]. However, in general it is
not yet clear, which of the system properties determine these scaling parameters.
Experimentally, universal dynamics associated to the presence of a NTFP has
already been measured in different systems [32–34] and there is some evidence
for the insensitivity of this phenomenon on the initial state of the system [32].
Nevertheless, a general experimental classification of the dependence of the non-
equilibrium dynamics close to a NTFP on the initial condition has not yet been
achieved.

In a first step towards this goal we apply the same techniques previously used
to generate vector solitons to obtain an initial condition containing non-linear
excitations. We then proceed to classify the spin defects following an interaction
quench to obtain two qualitatively different dynamical scenarios in the evolution.
One is characterized by a well-defined spin length and phase excitation, while the
other exhibits strong fluctuations in both observables. Both scenarios show non-
equilibrium scaling, albeit with different parameters. This indicates the presence
of distinct NTFPs in a spinor Bose gas.

2



Structure of this Thesis
In Chapter 2 general theoretical concepts for treating BECs are discussed and the
properties of the spin-1 gas employed in experiment are introduced. Additionally,
an overview over the experiment and the control techniques for manipulating and
extracting the internal spin states is provided. Particularly emphasis is put on the
implementation and characterization of the local control setup.

In Chapter 3 a general overview of solitons is provided and the properties of
the vector solitons generated in experiment are discussed in detail. This is com-
plemented by a description of the experimental technique for the deterministic
soliton preparation and a characterization of the measured soliton properties. In
particular, the collisional dynamics are investigated. Further, the coherent nature
of the vector solitons is employed to precisely characterization of magnetic field
gradients in the system.

In Chapter 4 the spin dynamics after an interaction quench is investigated. Here
a homogeneous system is compared to an initial condition leading to multiple vector
soliton pairs (of the type discussed in the previous chapter). In both cases the
generated spin excitations are characterized and compared to expectation derived
from different approximate models.

In Chapter 5 the non-equilibrium dynamics characteristic for systems close to a
NTFP is investigated experimentally. Distinct scaling properties are extracted for
the two scenarios discussed in chapter 4.

In Chapter 6 a short summary of the results obtained in this thesis is provided.

In Chapter 7 a range of proposals for future experiments and investigations of the
various topics touched over the previous chapters is provided. These include both,
technical improvements of the setup and new experiments to investigate different
physical phenomena.
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2. Experimental System
This chapter will introduce the experimental concepts relevant for the measurements
presented in this thesis. First, a brief overview over the experimental setup is
presented. The apparatus employed in this thesis already has a long history and
therefore most of its setup is already presented in other works [35–41], which will
also be referenced at the appropriate points. Further, a short overview of the full
experimental cycle will be given here. Additionally, as basis for the discussion
of dynamics and the experimental control, the spin-1 system will be introduced
in some detail. This is complemented with an overview of various techniques to
control the atoms and their internal states. In particular, these are relevant for
the preparation and readout of the system. Since a substantial part of this work is
centered around the local control of the spin degree of freedom, this chapter will
provide a detailed description of the local control setup. At first, however, some
quite general basic theoretical concepts will be introduced, which are of importance
at different points throughout the whole thesis.

2.1. The Gross-Pitaevskii Equation – A Mean-Field
Model for BECs

The fascination sparked by the process of Bose-Einstein condensation lies in the
generation of a macroscopic coherent system, i.e. a system consisting of many parti-
cles in which all constituents are in the same state. This system consequently allows
for the fascinating quantum phenomena like superfluidity [42–44] or interference of
BECs [45].

In order to capture these phenomena, it is sufficient to consider the system on
the mean-field level, which is valid for large populations. In this limit of large
occupations, the small (quantum-)fluctuations can be neglected. Thus, instead
of treating the system in terms of quantum fields ψ̂(x, t) described by operators,
the fields are replaced by complex-valued functions ψ(x, t). In this scenario the
equation of motion of these ”classical” fields takes the form of the Gross-Pitaevskii
equation (GPE) [44]

iℏ∂tψ =
(︄

−ℏ2∇2

2m + Vext + g |ψ|2
)︄
ψ, (2.1)

where Vext denotes the trapping potential and the constant g describes the in-
teractions between the atoms. In ultracold gases where only low-energy s-wave
scattering is relevant it is parameterized solely by the s-wave scattering length
a via g = 4πℏ2a/m [44]. For stable BECs the interactions are usually repulsive
(g > 0). The GPE provides a simple but extremely useful model for the condensate.

5



CHAPTER 2. EXPERIMENTAL SYSTEM

As we will also see in the next chapter, this equation will also form the basis for
the vector solitons discussed in this thesis.

An important quantity, which will appear at various points, is the healing length

ξ = ℏ√
2mng . (2.2)

It specifies the length scale on which condensate density n = |ψ|2 adjusts to sharp
features like a potential barrier in the external potential Vext in the steady-state
limit. Considering for example a constant potential with an infinitely large wall,
then also the condensate density would be constant far away from the wall, while
becoming zero at the wall. The healing length specifies the length scale over
which the transition between these two regimes takes place. Alternatively, it can
be interpreted as the wavelength scale (though not precisely the wavelength λ
but rather λ/(2π)) for which the kinetic energy of plane waves with momentum
p = ℏk = ℏ/ξ becomes equal to the chemical potential µ = ng fixed by the
interactions. [44]

Thomas-Fermi Approximation
Particularly for analyzing the static density distribution of condensates in a static
potential Vext(x) it is useful to introduce the Thomas-Fermi (TF) approximation
to eq. (2.1). For the GPE the wavefunction can be written in the form ψ(x, t) =√︂
n(x, t)eiφ(x,t) of a superfluid order parameter with density n(x, t) and phase

φ(x, t). The TF approximation neglects the so called quantum pressure term
∼ ∇2√n, which is part of the kinetic term related to gradients in the density. It is
valid if the density varies on scales large compared to the healing length ξ. For
a static state where the phase φ is flat, also the contributions of the superfluid
velocity vs ∼ ∇φ can be dropped. This corresponds to fully neglecting the kinetic
term in eq. (2.1). By introducing the chemical potential µ as energy scale for the
evolution of the condensate phase φ we obtain the TF density profile

n(x) = µ− Vext(x)
g

(2.3)

of the condensate groundstate in a trap. This result is only valid in the limit of
vanishing temperature and dilute gases where na3 ≪ 1. By setting the minimum of
Vext to zero we also obtain the chemical potential from the peak condensate density
n0 as µ = n0g.

Many of the experimentally employed potentials are approximately harmonic
with Vext = mω2x2/2, where for simplicity we consider the 1-dimensional (1d) case.
The density therefore also assumes a parabolic shape with TF radius

rTF = 1
ω

√︄
2µ
m

= a2
ho
ξ0

(2.4)

between the center at maximal density and the edge where the condensate density
drops to zero. It is given by the harmonic oscillator length aho =

√︂
ℏ/(mω) scaled

6



2.2. PREPARATION OF THE BEC

by the ratio between aho and the healing length ξ0 with respect to the peak density
n0.

Experimentally, the measurement of the full 3D density distribution is not directly
possible. Therefore, it is helpful to estimate the chemical potential from 1d density
distributions. For this, the chemical potential is fixed to the (local) 1d density n1d
by integrating eq. (2.3) over the transverse directions. Assuming a cylindrically
symmetric harmonic potential, which is flat in the longitudinal direction, we obtain

µ = ω⊥

√︃
mgn1d

π
, (2.5)

where ω⊥ is the transverse harmonic trap frequency. Further, when all dynamics
in the transverse direction is suppressed, a 1d version of the GPE (2.1) can be
derived by integration over the normalized transverse wavefunction. When only the
transverse harmonic oscillator groundstate is occupied the effective 1d interaction
constant takes the convenient form of [44, 46]

g1d = g

2πa2
⊥
. (2.6)

By replacing g in eq. (2.1) by g1d an effective description for the 1d wavefunction
is obtained. Note that, unless noted otherwise, everywhere except in this section
an effective 1d description is applied implicitly, i.e. densities n are usually referring
to the 1d density n1d (see section 2.2.3 for more details).

A more comprehensive overview over the mean-field description of BECs (and
beyond) may be found in [44, 47].

2.2. Preparation of the BEC
In our experiments we are working with elongated quasi 1-dimensional condensates
of 87Rb which contain up to ∼ 150 k atoms. In the electronic groundstate the
electron spin S = 1/2 and nuclear spin I = 3/2 couple to two values of the
total hyperfine spin F = 1, 2. Therefore, multiple internal magnetic substates
mF = −F, . . . , F are available.

The experiment is run continuously in cycles. During the first 37 s the atoms are
cooled and finally condensed into a BEC [35, 36]. Then the desired experimental
sequence is run, consisting of the initial state preparation, evolution and, finally,
the readout of the atomic density distributions. Here, the evolution period may
last up to ∼ 50 s while all remaining steps are completed within a few milliseconds
[40].

2.2.1. Stabilization and Monitoring
To accumulate a sufficient number of single realizations during measurements, the
repeatability of the experiment with the same parameters is of central importance.
Because some measurements last for up to a week, the experimental conditions need
to remain stable over extended periods of time. For this, experimental quantities
are either actively stabilized or measured periodically to detect drifts. Here, an

7



CHAPTER 2. EXPERIMENTAL SYSTEM

active temperature regulation of the complete room to ∼ ±0.2 ◦C combined with a
passive stabilization of all optical components near the atoms by a full enclosure
sets the baseline for the required stability. Further, special care has to be taken to
regulate the magnetic field and microwave dressing (see section 2.4.2 for details on
the microwave setup). The magnetic field is actively stabilized to a flux gate sensor
positioned close to the atoms and the microwave power is monitored with a power
diode [41]. This ensures a sufficient short-time stability which is complemented by
periodic control measurements to account for long-term drifts.1 The magnetic offset
field strength is calibrated hourly (see section 2.7 for details) while every (12 – 25) h
the magnetic field gradient is monitored (see also section 2.7) and the microwave
dressing is calibrated using a spectroscopy measurement (see section 2.3.5 for
details).

2.2.2. Cooling and Trapping
The preparation of the condensate starts by cooling 87Rb atoms of the background
gas in the ”high” pressure region of the vacuum setup in a 2D magneto-optical
trap (MOT). These atoms are transferred through a differential pumping stage into
a 3D MOT in the low pressure region of the vacuum chamber. After continuously
loading the 3D MOT for approx. 4 s and a short sequence of sub-doppler cooling
the atoms are transferred into a magnetic time-orbiting potential (TOP) trap for
evaporative cooling. Before loading the TOP trap, the atoms are pumped into the
trapped low-field seeking state |F = 1,mF = −1⟩ and remaining F = 2 atoms are
removed via MOT light. The basic setup and principle of these first stages are
described in [35, 36] but a short overview is also given in [37, 38].

After approx. 25 s of evaporation, the atom cloud is transferred into a far red-
detuned crossed-beam dipole trap (also called crossed dipole trap (XDT)) at a
wavelength of 1030 nm (see fig. 2.1 for an overview of the optical trapping beams).
Here, the power of the beams is ramped down for further evaporation. The endpoint
of this evaporation ramp is also used to change the final atom number. After this step
we obtain a spin-polarized condensate of up to ∼ 150 k atoms in the state |1,−1⟩.
One of the crossed beams is then ramped down, such that the cloud expands
in the potential of the remaining beam. This beam is rotationally symmetric
and only weakly focused and hence provides a cigar-shaped harmonic trap with
longitudinal and transverse trap frequencies of (ω∥, ω⊥) = 2π× (1.6 Hz, 170 Hz). As
it provides a quasi-1d propagation channel for matterwaves we will call this dipole
trap waveguide (WG). A general overview over the laser setup is provided in [37]
although some components like the dipole laser and the imaging system have been
replaced (see [39–41]).

Additionally, blue-detuned laser beams can be superimposed with the WG such
that the expansion of the atoms is limited to the central part of the harmonic WG
potential (see fig. 2.1). This approximately realizes a box-potential for the atoms
along the WG axis, which will be utilized in chapters 4 and 5. More details on the

1For the magnetic field a significant portion of the drifts originate from a temperature-induced
change of the output value of the fluxgate sensor due to its temperature coefficient [41].
Therefore, changes in the cycle period need to be limited to suppress magnetic field drifts.
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2.2. PREPARATION OF THE BEC

Figure 2.1.: Setup of the optical traps and arrangement of magnetic coils for the
control of internal hyperfine levels. The WG and XDT beams are red-detuned
(1060 nm) dipole traps and the box beams are blue-detuned (760 nm) repulsive end
caps which restrict the expansion of atoms in the WG beam. This approximately
generates a 1d box trap for the atoms.

9



CHAPTER 2. EXPERIMENTAL SYSTEM

laser setup and the implementation of this trap will be given in section 2.6.
One crucial ingredient for achieving access to long-time spin dynamics in our

system was the reduction of the WG trap power. When tuning the system into
a parameter regime where the groundstate features a non-zero spin length we
observed that large WG powers lead to a decay of spin coherence, signaled by a
decay of both the average values as well as the fluctuations of the spin observables.
In contrast, for low powers, both the mean spin length and fluctuations show a
decay only on the time scale of the atom number lifetime or even slower than that.
For a more detailed study on this see [48]. For the experiments discussed here we
reduced the WG power slightly above the limit at which the atom number lifetime
starts to reduce. With this configuration we are able to achieve atom number and
spin lifetimes larger than 40 s.

2.2.3. Quasi-1d Limit of the Condensate

Although the WG trap provides a strong transverse confinement, our experiments
are usually performed at typical densities of n1d ∼ 400 atoms/µm where aho/ξ ∼ 3.
This implies that the condensate wavefunction may change on scales smaller than the
extent of the Gaussian groundstate of the transverse harmonic confinement. Thus,
the effective 1d description of the system via eq. (2.6) is not strictly correct. However,
in this situation the system is also not well described by the TF approximation,
which would require the variation of the transverse density profile to be slow
(rTF/ξ = (aho/ξ)2 ≫ 1). Nevertheless, calculating the effective 1d interaction
constant g1d in the transverse TF approximation yields values which deviate by less
than 20 % from the harmonic oscillator groundstate value of eq. (2.6). Therefore,
to obtain an approximate but simple description of our system we combine both
limits by using the Gaussian effective interactions given in eq. (2.6) together with a
TF estimation of the chemical potential in eq. (2.5). Thus, unless noted otherwise,
from now on all quantities are related to this effective 1d description (i.e. densities
n denote the transversely integrated 1d density n1d from now on).

Independent from the extraction of the exact parameters of the system we
can clearly distinguish the directions which will participate in the dynamics. In
transverse direction the system size is on the order of a few density healing lengths
ξd ∼ 0.3 µm (this denotes the healing length with respect to the density-density
interactions; see section 2.3.2 for more details). Thus, excitations in the density
degree of freedom (d.o.f.) are possible in transverse direction. However, in the
longitudinal WG direction larger-scale excitations are possible, which therefore
have considerably smaller kinetic energy. Thus, mainly longitudinal excitations are
expected. Here, however, we are mainly interested in structures with an extension
corresponding to the spin healing length ξs ∼ 5 µm with respect to the much
smaller spin interaction in our system.2 Therefore, the dynamics relevant for these
excitations should be well described by the 1d approximation introduced before.

2Not for all structures we are considering here their typical size is associated to the spin
interaction. One example of this are the vector solitons discussed in chapter 3. Nevertheless,
their size, determined by the method of their generation, is also on the order of ξs.
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2.3. THE SPIN-1 SYSTEM

2.2.4. Manipulation and Readout
After expanding the atoms in the final trapping potential (WG or with additional
box walls) the initial state for investigating the desired dynamics is prepared. For
this, we manipulate the atoms by driving transitions within or between the F = 1
and F = 2 hyperfine manifolds. An overview of these techniques are given in
sections 2.4 and 2.6, where also the internal structure of 87Rb is discussed in more
detail.

After preparation and a certain period of dynamical evolution we read out the
in-situ density distribution of the system using absorption imaging. Because we
additionally require internal state resolution this step is regularly preceded by
another set of internal state rotations and population transfers.

Further we apply a magnetic field gradient to facilitate a Stern-Gerlach (SG)
force on the atoms. After a short (2 ms) period of time-of-flight to separate the
different mF levels, the atoms are illuminated. A first pulse of light is only resonant
to atoms in the F = 2 state. This is used to read out the F = 2 density distribution
and remove this species of atoms from the focal plane of the imaging setup. A
second pulse contains light with frequencies resonant to both F = 1 and F = 2,
which is used to measure the F = 1 density. Relevant details for understanding the
measurement of the observables relevant for this thesis are given later in section 2.5.
A more comprehensive overview of the imaging setup and its calibration is described
in [40, 49].

2.3. The Spin-1 System
In our experiments all levels of the F = 1 and F = 2 hyperfine levels are relevant.
To individually control couplings we apply a homogeneous magnetic bias field of
B = 0.894 G such that all levels split energetically (see fig. 2.2 and fig. 2.7 for
quantitative details on the splitting). While especially for the readout also the
F = 2 levels are relevant, all dynamics takes place in the F = 1 system. In the
following we will discuss the theoretical model for spinor gases and a classification
of their dynamics.

2.3.1. Symmetries and Operators
The F = 1 hyperfine manifold consists of three magnetic sublevels mF = 0,±1. The
state vector of each atom may be characterized by a complex function for each of
these levels. Therefore, the space of possible transformations of the system is given
by the special unitary group SU(3). For our purposes, a suitable representation of
the generators of this group is the spin-quadrupole basis [50, 51]. It conveniently
captures the symmetries of the interactions in spinor gases and allows an efficient
description of the system dynamics.

The beauty of describing the spinor system in such a basis lies in the realization
that SU(3) contains several SU(2) subspaces. This means that there exist triples
of spin and quadrupole operators whose commutation relations induce a behavior
analogous to the spin operators in a spin-1/2 system. Thus, the time evolution of
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expectation values under a Hamiltonian given in terms of these spin or quadrupole
operators can directly be understood as rotations around the coordinate axes. The
most prominent example of this are, of course, the 3 spin operators which we will
denote F̂j with j ∈ {x, y, z}.

However, instead of describing each single atom, a more efficient description is
possible in terms of a quantum fields [52]

ψ̂
(†)
j (x) =

∑︂
k

â
(†)
k,jζk,j(x), (2.7)

where â†
k,j and âk,j are the bosonic creation and annihilation operators and ζk,j(x)

are the spatial mode functions for atoms with momentum ℏk in the magnetic
substate mF = j. In contrast to the mean-field description given in section 2.1,
these operators capture the full quantum mechanical nature of the system, includ-
ing quantum fluctuations. Since the atoms are bosons, the operators fulfill the
commutation relations

[âk,j, â
†
k′,j′ ] = δkk′δjj′ ,

[âk,j, âk′,j′ ] = 0,
(2.8)

and therefore

[ψ̂j(x), ψ̂†
j′(x′)] = δjj′δ(x− x′),

[ψ̂j(x), ψ̂j′(x′)] = 0.
(2.9)

In this language the density operators of the magnetic substates are given by
n̂j(x) = ψ̂†

j(x)ψ̂j(x) and the spin operators are expressed as F̂j = Ψ̂†fjΨ̂. Here, the
vector Ψ̂ = (ψ̂+1, ψ̂0, ψ̂−1)T describes the full spinor field and the spin-1 matrices
are given by

fx = 1√
2

⎛⎜⎝0 1 0
1 0 1
0 1 0

⎞⎟⎠ , fy = i√
2

⎛⎜⎝0 −1 0
1 0 −1
0 1 0

⎞⎟⎠ , fz =

⎛⎜⎝1 0 0
0 0 0
0 0 −1

⎞⎟⎠ . (2.10)

Because in some cases the explicit form of the observables is useful we will also
give it here:

F̂x = 1√
2
(︂
ψ̂†

0

(︂
ψ̂+1 + ψ̂−1

)︂
+ ψ̂0

(︂
ψ̂†

+1 + ψ̂†
−1

)︂)︂
,

F̂y = i√
2
(︂
ψ̂†

0

(︂
ψ̂+1 − ψ̂−1

)︂
+ ψ̂0

(︂
ψ̂†

−1 − ψ̂†
+1

)︂)︂
,

F̂z = ψ̂†
+1ψ̂+1 − ψ̂†

−1ψ̂−1.

(2.11)

As will be described in the following, the inter-atomic interactions and the
external magnetic field break the full SU(3) symmetry. For certain parameter
regimes we find that the dynamics is predominantly confined to the Fx-Fy plane.
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2.3. THE SPIN-1 SYSTEM

Figure 2.2.: Splitting of the spin-1 hyperfine levels |F,mF⟩. p labels the splitting
linear in mF and q denotes the quadratic shift.

2.3.2. Hamiltonian
The microscopic model of spinor gases is well understood and an in-depth description
of the models can be found in the reviews [52, 53]. Here, we give a short summary
of the description relevant for the experiment.

The energy contributions to the system Hamiltonian H = H0 + Hint can be
divided into a single-particle term H0 and inter-particle interactions Hint. The
single-particle terms

H0 =
∫︂
d3x Ψ̂†

(︄
−ℏ2∇2

2m + Vext + pfz + qf 2
z

)︄
Ψ̂ (2.12)

stem from the kinetic energy, the trapping potential Vext, and shifts of the magnetic
hyperfine sublevels. The linear and quadratic contributions p and q (see fig. 2.2)
mainly originate from the linear and second order Zeeman shift induced by the
homogeneous magnetic offset field, respectively. However, as will be discussed
in section 2.4, there are additional contributions to these shifts which are not
associated to the magnetic field. Except in a few scenarios where it is explicitly
discussed, the linear shift does not influence the dynamics of the system and can
be removed by transforming to the co-rotating frame.

As introduced in section 2.1 the low energy interactions in BECs are characterized
by s-wave scattering lengths. In spinor BECs, where multiple internal levels couple
with different strengths, these scattering lengths aF describe the interaction of
an atom pair which couples their individual hyperfine spins F to a total spin
F = −2F, . . . , 2F . Due to the bosonic exchange symmetry for the low-energy
s-wave scattering only even pair spins interact. Therefore, all interactions in the
F = 1 manifold are characterized by the scattering lengths a0 and a2. From these
one obtains the interaction constants

c0 = 4πℏ2

m

a0 + 2a2

3 and c1 = 4πℏ2

m

a2 − a0

3 , (2.13)

where m denotes the atomic mass. Using this representation allows conveniently
writing the interaction Hamiltonian of spin-1 gases as

Hint =
∫︂
d3x

c0

2 : n̂2 : +c1

2 : F̂ 2 : (2.14)

Here, : : denotes normal ordering of the field operators, the spin operator F̂ has
already been introduced in section 2.3.1 and n̂ = n̂+1 + n̂0 + n̂−1 is the total
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density operator, where n̂j = ψ†
j ψ̂j. From this Hamiltonian it becomes clear that

c0 describes the density-density interaction strength and c1 is only relevant for the
spin-spin interactions. As for all stable BECs the density interactions are repulsive
(c0 > 0), while the spin interactions are ferromagnetic (c1 < 0).

For 87Rb the ratio between density and spin interaction strength is |c0/c1| ∼ 220
[53]. This implies that also the timescales td = h/(nc0) ∼ 2 ms and ts = h/ |nc1| ∼
400 ms of the density and spin interactions are separated by more than 2 orders of
magnitude. This implies that for an adequate description of the total energy, which
is precise on the ∼ 1 % level, the spin interaction term can be neglected. In certain
scenarios also the contributions from the external magnetic field can be dropped.
Then, on the mean-field level the system may be described by a GPE similar to
eq. (2.1). We will explicitly make this connection and discuss the applicability of
these approximations in section 3.4.2.

As discussed in section 2.1, an effective 1d description of the system can be
derived and as presented in section 2.2 the WG trap provides a sufficiently strong
transverse confinement that all spin excitations only appear in axial direction.
Thus, it is sufficient to only consider the spatial extension in x-direction along the
weakly confined WG axis.

Spin-Changing Collisions
Nevertheless, although the energy scale of the spin interactions is small, under
certain conditions their dynamics dominates the system. The most important
process connected to this are the spin-changing collisions introduced here. When
expanding the spin interaction term : F̂ 2 : in terms of the fields ψ̂j it decomposes
into two contributions. One can solely be written in terms of the hyperfine densities
n̂j , giving rise to energy shifts, which only depend on the population of the different
hyperfine levels. More interestingly, the second contribution is ψ̂†

+1ψ̂
†
−1ψ̂0ψ̂0 + h.c.,

which gives rise to a redistribution of populations between the hyperfine levels.
This spin-changing collision (SCC) process redistributes two atoms in level mF = 0
to mF = ±1 and vice versa (cf. fig. 2.7). Since this redistribution is symmetric in
mF, the SCCs are not influenced by the linear Zeeman shift of the external field.
However, the second-order shift detunes this process such that a redistribution of
population violates energy conservation. Therefore, to tune the energy offset q of
this process into resonance, we apply off-resonant microwave (MW) dressing to
control the SCCs (see section 2.4.2 for more details).

2.3.3. Bogoliubov Theory and Instabilities
In order to analyze dynamical properties of the system it is desirable to diagonalize
the full Hamiltonian. For the full spinor Hamiltonian this is not possible but in
certain limits a Bogoliubov transformation can be derived to achieve this goal. A
comprehensive set of Bogoliubov transformations and results for the mean-field
groundstates of spinor gases are presented in [52, 54]. Throughout this thesis only
a few properties of the Bogoliubov solutions are required so this section will only
cover the basic idea of the method and the reader is referred to the previously
listed references for more details.
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2.3. THE SPIN-1 SYSTEM

The starting point of the diagonalization procedure is the Bogoliubov approxi-
mation. It is centered around the assumption that only small fluctuations around a
mean-field state of the system are relevant for its dynamics. For the spin-polarized
initial conditions in the experiment this assumption is certainly valid because
the large populations of these states ensure the validity of the mean-field limit.
Therefore, the field operators can be written in terms of a (classical) complex mean
field ψj and a fluctuating field δψ̂j as

ψ̂j(x) = ψj(x) + δψ̂j(x). (2.15)

Because these fluctuations are small, only terms up to second order in δψ̂j are
kept in the Hamiltonian. As the kinetic term only is diagonal in momentum space,
the fields (in a homogeneous system with flat potential) are usually represented in
momentum modes

ψ̂j = 1√
V

∑︂
k

âk,je
ikx (2.16)

with system volume V . Here, we assume that the k = 0 mode is highly occupied
and that therefore the k = 0 contribution is given by ψj(x). The Bogoliubov
transformation then provides a generic method to construct a transformation which
diagonalizes the Hamiltonian. This leads to a set of quasi-particle operators b̂(†)

k,m,
where the index m describes the quasi-particle modes instead of the hyperfine
levels mF. For each of these modes an accompanying dispersion relation ωm(k)
is obtained. The structure of these quasi-particles and dispersion will be used at
different points.

For this work the most relevant Bogoliubov dispersion is the one of the polar
state (all atoms occupy the mF = 0 level), which will be used as initial state for
most of the measurements discussed here. The Bogoliubov modes relevant for this
thesis3 are related to transverse spin excitations and are given by [52]

b̂k,±1 = −

⌜⃓⃓⎷ε(k) + q + nc1 + ℏω(k)
2ℏω(k) âk,±1 +

⌜⃓⃓⎷ε(k) + q + nc1 − ℏω(k)
2ℏω(k) â†

−k,∓1,

(2.17)
where ε(k) = ℏ2k2/(2m) denotes the kinetic energy. These modes are related to
excitations in the hyperfine levels mF = ±1. Both modes are degenerate and have
the dispersion relation

ℏω(k) =
√︂

(ε(k) + q) (ε(k) + q + 2nc1). (2.18)

While these modes give a valuable insight into the dynamics of the system, the most
prominent feature is the existence of instabilities. For q < 2n |c1| the dispersion ω
becomes imaginary, which gives rise to an exponential growth of these spin modes
in time ∝ exp(−iωt) = exp(γt) with γ > 0. Figure 2.3 shows the dispersion for
a range of q values from the stable to the unstable regime. It is visible that for
n |c1| ≤ q ≤ 2n |c1| the most unstable momentum k with the largest growth rate
γ is kmu = 0 while for q < n |c1| the instability range shifts to larger k and below
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Figure 2.3.: Bogoliubov dispersion relation of the transverse spin modes for the
polar state. For q ≤ 2n |c1| this mode becomes unstable where ω2 < 0. For
n |c1| ≤ q ≤ 2n |c1| k = 0 has the larges growth rate while the most unstable
momentum grows with decreasing q < n |c1|. Below q = 0 the k = 0 momentum
becomes stable again. The k-axis is normalized by the healing momentum kξs = 1/ξs

with respect to the spin interaction c1.

q = n |c1| /2 k = 0 even becomes stable again.
In the experiments carried out for this thesis this Bogoliubov instability serves as

a process to drive the system far from equilibrium by generating a momentum mode
occupation which is very distinct from the (thermal) equilibrium distribution. For
q in the unstable region the SCC process is resonant and redistributes population
between mF = 0 and mF = ±1. The picture of the Bogoliubov instability is
strictly only valid for small excitations around the polar state where the Bogoliubov
approximation is still valid. However, in section 4.4 we will see that the Bogoliubov
description seemingly provides a good qualitative guide for the generation of even
large excitations.

2.3.4. Mean-Field Ground State Phase Diagram
A further central step in understanding the dynamics of spinor BECs is their
phase diagram as a function of the parameter q. To derive a basic picture, some
simplifying approximations are made. These are assuming the condensate to
be ”zero-dimensional”, i.e. without spatial dynamics (also known as single-mode
approximation where only the k = 0 mode is considered), and to be well in the
mean field limit of large occupation numbers. This allows dropping terms of the
interaction Hamiltonian (2.14) which are linear in the density n compared to n2.
We are therefore left with the single-mode mean-field energy per particle

ϵ = Vext + p (ρ+1 − ρ−1) + q (ρ+1 + ρ−1) + 1
2nc0 + 1

2nc1F
2, (2.19)

3In total there are 3 modes. Additional to the two transverse spin modes there also exist density
excitations of the condensate in mF = 0, which have the usual properties of single-component
Bogoliubov modes (see [52]).
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Figure 2.4.: Spin-1 phase diagram (left) and easy-plane phase spin potential
(right) in the mean-field single-mode approximation. The vectors in the phase
diagram denote the normalized mean-field groundstate spinor wavefunctions. For
the experimentally relevant case of ferromagnetic spin interactions (c1 < 0) the
spin features 3 different phases. In the EP ferromagnetic phase and for Fz = 0
the groundstate has transverse spin according to eq. (2.22). Here, the groundstate
populations follow given via eq. (2.21) as sin θ =

√︂
(1 − q/(2nc1))/2. The dashed

line marks the −qc line; between −qc and +qc the minimal energy states for Fz = 0
have transverse spin (see discussion of eq. (2.22) for details). Within the EP phase
the spin part ϵs of the mean-field energy assumes a Mexican-hat shape in the
transverse spin plane according to eq. (2.20). An example for a radial cut of this
potential is given in the right-hand plot for q = n |c1|.

where the mean densities ρj = nj/N are normalized by the total atom number
N . Deviating from the introduction of the spin operators but for ease of notation
we also interpret the spin expectation values connected to the vector F to be
normalized by N to a maximum of 1 in the analogous fashion.

Since we are only considering the case Fz = 0 in this thesis and the Hamiltonian
conserves the z-projection of the spin, we will drop the linear Zeeman term here.
Further, because we are considering a system with stationary density profile, the
Vext and nc0 terms only contribute as constant offset and will therefore also be
neglected for the following discussion. Minimizing the resulting energy function
with respect to the mean fields results in the groundstate phase diagram shown
in fig. 2.4. For the antiferromagnetic interactions c1 < 0 of the F = 1 manifold of
87Rb three phases with different spin order are relevant. At large positive q the
polar state with all population in mF = 0 has least energy while at large negative
q either mF = +1 or mF = −1 are the degenerate groundstates. In between the
easy-plane (EP) ferromagnetic phase emerges, where the competition between q
and c1 forces the spin into the Fx-Fy-plane transverse to the external magnetic
field. In all cases the ferromagnetic spin interaction always favors the spin length
|F | to be as large as possible for the given populations. Within the EP phase the
transverse length continuously grows from the continuous quantum phase transition
to the polar phase at qc = 2n|c1| towards unity at q = 0.
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To gain some intuition about the system properties in the experimentally relevant
EP phase it is useful to reformulate the mean-field energy of eq. (2.19) in terms
of the transverse spin. Because we choose Fz = 0 in our experiments, the spin
contribution may be expressed as4

ϵs = q (ρ+1 + ρ−1) + 1
2nc1F

2

= 1
2nc1

(︂
F 2

x + F 2
y

)︂
+ q

2

(︄
1 −

√︃
1 −

(︂
F 2

x + F 2
y

)︂)︄
.

(2.20)

This mean-field energy, which may be pictured as a Mexican-hat-like potential in
the transverse spin plane, favors a certain transverse spin length as function of q
(see right plot in fig. 2.4) as given by eq. (2.22). This potential has a steep gradient
in the radial direction of the transverse spin F⊥ = Fx + iFy = |F⊥| eiφL while the
energy along the bottom of the spin potential ϵs is flat. This scenario gives rise to
two excitation modes: one ”massive” (i.e. with quadratic dispersion) Higgs mode
and a gappless (i.e. ω(k = 0) = 0) linear Goldstone mode. These correspond
approximately to excitations in the transverse length |F⊥| and the Larmor phase
φL, respectively (see [52, 54] for more details on the quasi-particle excitations in
the EP phase). In the non-equilibrium dynamics following a quench to a q value in
the EP phase, the low-energy Goldstone excitations have been identified to drive
dynamics [32, 55] close to a NTFP. In chapter 5 we will revisit this scenario and
compare it to a case where also the spin length excitations are relevant. For these
different cases we will find two distinct NTFPs.

2.3.5. Spin-Changing Collision Spectroscopy Measurements
Due to the second-order Zeeman shift induced by the magnetic offset field, the
q parameter of the experiment starts deep in the polar phase at q ≈ 30n |c1|.
In typical non-equilibrium experiments the system is suddenly quenched close to
q = 0 by applying off-resonant MW dressing (for details see section 2.4.2). For the
polar state there exist transverse spin modes which become unstable at the phase
transition to the EP phase (cf. fig. 2.3). SCCs populate the mF = ±1 levels and the
spin interactions lead to a build-up of coherence in the transverse plane if q is in the
range of the EP phase (see peak in |F⊥| in the upper plot of fig. 2.6). A few seconds
(∼ 8ts) after the quench we observe that in a certain range of q values SCCs have
populated the mF = ±1 levels. Figure 2.5 shows a strong increase of the instability
region with density. This can be understood because the critical value qc = 2n|c1|
for the existence of the Bogoliubov instabilities at q < qc increases linearly with
the density n. From this density shift we can extract an effective value for the spin
interactions ceff

1 in our system. To determine qc for each measured atom number, we
fit a linear function to the right edge of the mF = ±1 population and set qc to the

4Let us denote the normalized mean-field spin wavefunctions as ζj , such that ψj =
√
nζj . By

setting Fz = 0 we have |ζ+1| = |ζ−1|. Because the global phase of the state may be chosen
arbitrarily, we set the wavefunction ζ0 to be real. Thus, we obtain the spin expectation values
Fx = 2

√
2ζ0|ζ+1| cosφL and Fy = 2

√
2ζ0|ζ+1| sinφL with the Larmor phase φL (angle of the

transverse spin vector in the Fx-Fy-plane). This also allows expressing the mF = ±1 densities
in terms of the transverse spins.
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Figure 2.5.: Density dependence of the SCC instability after a quench of the
polar state. After preparation of the polar state (all atoms in mF = 0) off-resonant
MW dressing is used to instantaneously change the energy detuning q to the
experimentally adjusted value qexp (see section 2.4.2 for details on the difference
between q and qexp). The left plot shows the relative population of the mF = ±1
levels after 4 s of evolution after the quench over the full range of densities applied
in the experiments presented in this thesis. From the crossing point of linear fits
with the zero line we determine the critical value qc for the instability for each
atom number. The 1d box trap employed in this measurement with a size of
approx. 130 µm ensures an approximately flat density over the whole system and
thus enables the direct conversion between atom number N and 1d density n. From
the linear density dependence of qc for the Bogoliubov spin dispersion we extract
the effective spin interaction strength ceff

1 = −h× (2.10 ± 0.09) Hz nm. The error
bars indicate 1 standard deviation (s.d.) intervals of the mean.

value where the fit crosses the zero line. The values of qc determined in this fashion
increase linearly with the density of the system over most of the experimentally
relevant range of densities (see right plot of fig. 2.5). From the gradient of qc we
obtain the effective spin interaction ceff

1 = −h× (2.10 ± 0.09) Hz nm.
This value is not only effective in the sense that it is a value valid only in our

specific quasi-1d trap geometry but it also contains effects from temperature and
depletion effects not captured by the Bogoliubov approximation [56, 57]. On the one
hand, with increasing temperature qc is expected to decrease but on the other hand
it also grows with increasing depletion at larger densities. Comparing to literature
values of the spin interaction [53, 58], the effective value ceff

1 for our system lies in
the range of (25 – 35) % of the 1d literature values c1/(2πa2

⊥). Nevertheless, for the
application in our experiments this value serves as useful quantity as it contains
all effects stemming from the exact trap geometry, temperature and interactions,
which are notoriously hard to describe theoretically.

For long times after the quench, when the initial excitations generated by the
instabilities have been redistributed, average spin observables show a behavior
compatible with the mean-field expectations. In the vicinity of q values expected
for the EP phase we find a large transverse spin length. When averaging Fz over
the whole cloud we also obtain values close to zero, as expected from the global Fz

conservation of the Hamiltonian. For deriving the properties of the minimal energy
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state which can be reached by the system, we explicitly impose Fz = 0 and stay in
the single-mode approximation.5 To obtain the minimal energy with respect to all
sublevels we require the variation of the energy to vanish independent from the mF
level, i.e. ∂ϵs/∂ζj = 0 (ζj being the single-mode mean-field spinor wavefunctions of
the hyperfine levels).6 From this the level population and transverse spin length
can directly be obtained as

ρ0 = 1
2 − q

4nc1
and (2.21)

|F⊥| =
√︄

1 −
(︃

q

2nc1

)︃2
. (2.22)

Due to the Fz constraint the remaining populations are given by ρ±1 = (1 − ρ0)/2.
These equations are valid for 2nc1 ≤ q ≤ −2nc1 and thus also cover the EP phase
(see solid and dashed lines marking ±qc in fig. 2.4). Interestingly, the Fz = 0
constraint leads to the same EP like structure for q < 0 mirrored at the c1 axis.
Note, however, that these equations are only applicable to ferromagnetic systems
with c1 < 0.

In order to compare the experimental results with these predictions, we measure
the transverse spin length for different q a long time of t = 30 s (corresponding
to ≥ 45ts) after the quench. As initial condition we again apply the polar state.
Here, we observe that for experimental values qexp around zero the transverse spin,
averaged over the whole system, follows eq. (2.22) (see the upper plot of fig. 2.6).
For comparison between data and the theoretical model we allow for an offset in q
and introduce a coherence prefactor which reduces the maximal transverse length
from unity (as in eq. (2.22)) to approx. 0.6. The amplitude reduction may be
associated to excitations of higher spatial (spin-)modes, finite temperature effects
and possibly also due to technical fluctuations of qexp. Additionally, a small residual
Fz magnetization builds up to a level of approx. 0.1, which is associated to a small
uncompensated magnetic field gradient. In section 4.3 data will be shown which
shows a higher mean spin length, possibly resulting from improvements of some of
the previously mentioned points.

Fitting the measured |F⊥| values in between the blue dashed lines with eq. (2.22)
(including the heuristic coherence factor) results in the black line. The points
where it becomes zero mark the critical value ±qc = ±2n|c1| of the easy plane
phase transition. These results are consistent with the value of n|ceff

1 | ≈ h× 0.97 Hz
5The experimentally investigated system is a quasi-1d box with a size of approx. 130 µm. This

corresponds to ∼ 20ξs such that imposing the single-mode approximation in this scenario
does not make sense. Nevertheless, fig. 2.6 shows that the experimentally obtained results
for observables averaged over the whole system show quite good agreement with eqs. (2.21)
and (2.22) obtained in the single-mode approximation.

6For ease of calculation the rotational symmetry of the energy around the z-axis also allows
choosing Fy = 0. This fixes ζ+1 = ζ−1. When again setting ζ0 ∈ R the remaining free complex
phase φS is the one between ζ±1 and ζ0. This phase is called spinor phase and rotates the
spin coherences between the transverse spins Fx/y and the quadrupoles Qyz/xz (see [51] or
[59] for more details on this). For minimizing ϵs with c1 < 0 it is thus clear that φS = 0. This
can also be shown explicitly by introducing ζ±1 = ζSe

−iφS with ζS ∈ R and varying the energy
with respect to φS.
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extracted from the value of ceff
1 obtained in fig. 2.5 together with the density of

n ≈ 460 atoms/µm at the time of the measurement (see blue lines). The plot below
also shows that the population of the mF = 0 level roughly follows the mean-field
expectation of eq. (2.21).

Additional to the averaged observables, the histograms of the transverse spin
observables Fx and Fy shown at the bottom of fig. 2.6 give additional insights into
the state of the system long after the quench. At large qexp ≈ h× 5.2 Hz where the
EP phase transition has not been crossed, no instabilities are present and therefore
the system remains in the polar state, as signaled by the large probability to find
the state at vanishing spin length. For smaller qexp the Bogoliubov instabilities
generate transverse spin through SCCs. With decreasing qexp the spin length grows
and in the range qexp ≈ h × (1.7 – 2.7) Hz a ring builds up. This distribution is
consistent with the mean-field Mexican-hat type potential of the transverse spin
shown in fig. 2.4. This transition also happens over the range of 2n|c1| expected
for the width of the EP phase in the ground state phase diagram (cf. fig. 2.4).
Decreasing qexp further, the histograms first fill up in the center and then their
width decreases until at large negative qexp the histograms tend towards the one of
the polar state, albeit the mF = 0 level is almost unoccupied.

While the evaluation of averaged observables shows quite good agreement with
the single-mode mean-field picture of the minimal energy state of the spin-1 system,
there are more excitations present in the experiment. The trap in which this
measurement has been performed is a 1d box potential with a size of approx. 130 µm,
corresponding to ∼ 20 spin healing lengths ξs.7 Therefore, the system is far away
from the single-mode approximation and indeed, there are also higher spatial modes
excited in the spin degree of freedom while the density remains flat.

When comparing the value qexp calculated from the magnetic field and microwave
dressing to the q values expected from the mean-field phase diagram for the spin
dynamics observed here, the values differ by an offset of ∆qexp ≈ h× 1.7 Hz. This
shift may originate from a calibration offset of the microwave dressing (cf. sec-
tion 2.4.2). The offset ∆qexp is also roughly consistent with the offset of qc at zero
density in the right-hand plot of fig. 2.5, further supporting the consistency between
the mean-field picture and the spin observables for long times after the quench
form the polar state. Note, however, that this behavior does seem to depend on the
initial state before the quench. For example, a homogeneous initial condition which
is spin-polarized along the x-direction everywhere (i.e. Fx = 1) and quenching
to values around qexp ∼ h× 5 Hz retains some of its initial spin coherence in the
transverse plane even after 30 s of evolution. Thus, the question of the equilibration
process after a quench and the eventual final state do seem to depend on the initial
state in some way.

2.4. Spin Control
In order to prepare initial states, control the dynamics and read out the desired
observables, population transfers and the control of hyperfine sublevel energies are

7ξs is the healing length according to eq. (2.2) associated to the spin interaction constant c1.
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Figure 2.6.: Measurement of the transverse spin and mF = 0 population after long
evolution times of 30 s after a quench in q, starting from the polar state as initial
condition. The data points in the upper plot show the transverse spin length |F⊥|
averaged over the size of the 1d box trap with a size of approx. 130 µm. At the time
of the measurement the average density is approx. 460 atoms/µm. The black line is
a fit of eq. (2.22) with an additional coherence prefactor for the amplitude and an
offset ∆qexp along qexp to the data points between the dashed blue lines. The blue
lines indicate the ±2n|ceff

1 | interval around the center ∆qexp = h× (1.70 ± 0.04) Hz
of the fit, where we use the values ceff

1 extracted from fig. 2.5. The error bars
indicate the 1 s.d. interval of the mean. The plot below shows the normalized
population N0/N of the mF = 0 level. The black line indicates the mean-field
values expected from eq. (2.21) with the same parameters as the fit to |F⊥|. The
lower plots show histograms of the spin in the Fx-Fy-plane for all positions and
(approx. 20) realizations for different values of qexp of the same measurement. The
color indicates the relative probability to find results in the corresponding 2D bin,
normalized to unity for comparability between different qexp.
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Figure 2.7.: Energy splitting of internal hyperfine levels of 87Rb in a magnetic
field. The left-hand side shows the linear splitting of the levels while the right-hand
side shows the energy shifts in the co-rotating frame of the Larmor precession.
For controlling the parameter q we apply off-resonant microwave dressing (see
section 2.4.2 for details) and obtain qexp = qB − qMW. For q in the range of the EP
phase or smaller SCCs become resonant and redistribute population to mF = ±1
when initializing the polar state with all atoms in mF = 0. The energies are
obtained from formulas provided in [60].

required. All these techniques can be understood in the standard formulation of
coupled 2-level systems. Here, we first give a short overview of the system structure
and the basic techniques needed. Building on these, we then assemble the readout
schemes required for performing the experiments.

2.4.1. Level Structure

The electronic groundstate of 87Rb features two hyperfine manifolds with total spin
F = 1 and F = 2 (see left-hand side of fig. 2.7). All the dyanmics investigated in
this thesis takes place in F = 1 but for the preparation, control and readout also
the F = 2 states need to be accessed.

In the external homogeneous offset field of B ≈ 0.894 G the magnetic sublevels
separate energetically. The linear splitting of the hyperfine levels is the largest
energy scale in the system and is determined to good approximation by the linear
Zeeman shift p = gFµBB with Landé g-factor (gF = −1/2 for F = 1 and gF = 1/2
for F = 2) and Bohr magneton µB. For the spin dynamic only the much smaller
quadratic shift q is relevant (see right-hand side of fig. 2.7). The contribution
due to the external magnetic field is qB = (gJ − gI)2µ2

B/(16∆EHFS)B2, where
∆EHFS denotes the hyperfine splitting and gJ and gI are the electronic and nuclear
g-factors, respectively. For more details on the calculation of these quantities, see
[60].
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2.4.2. Microwave Pulses and Dressing
For the initial state preparation and readout, transfers of the atomic populations
between sublevels are required. Due to the hyperfine coupling, the F = 1 and F = 2
states are separated energetically by ∆EHFS, which corresponds to frequencies in the
MW range. The corresponding signal at a frequency of around 6.8 GHz required for
the coupling between levels these two hyperfine manifolds are generated with two
commercial MW generators HP 8673D and HP 83620A. Their signals are combined,
amplified and radiated from an antenna close to the atoms. The basic microwave
setup is presented in [41]; the few additional modifications relevant for the presented
measurements are described in the following.8 The MW source HP 8673D is used in
combination with an external power diode for actively power-stabilized off-resonant
dressing. The MW signal of the other source is mixed with an arbitrary waveform
generator (AWG) signal (33612A from Keysight Technologies) at around 30 MHz to
quickly switch between the different transitions and is the specifically used for short
pulses to induce population transfers. For the multiplication of the two signals
the IQ-Mixer AD HMC 8193 is used, where both, the in-phase and quadrature
inputs are supplied by the two AWG channels. This signal is then fed through an
electronic switch (HP 11720A) and an amplifier before it is combined with the MW
source for the dressing signal.

In the experiments we apply resonant microwave-frequency pulses which couple
two levels |F = 1,mF⟩ ↔ |F = 2,mF + ∆mF⟩ with ∆mF = 0,±1. Using a single-
loop antenna (see fig. 2.1) separated by a few centimeters from the atoms we achieve
Rabi frequencies on the order of Ω ∼ 2π× (2 – 10) kHz. The MW radiation contains
all polarizations and therefore simultaneously couples all levels but tuning the
frequency resonant to a specific linear Zeeman splitting allows selecting the desired
transitions. To minimize spatial gradients for the control of the spin dynamics via
off-resonant MW dressing, the position of the antenna is adjusted for minimal Rabi
frequency gradients. By driving a Rabi oscillation in the WG trap for up to 400 ms
we determine our Rabi frequency gradients ∆Ω/∆x along the cloud to be smaller
than

5 × 10−4 Ω
100 µm for π polarization

1 × 10−2 Ω
100 µm for σ+ polarization

7 × 10−4 Ω
100 µm for σ− polarization.

Due to lower Rabi frequencies of the σ+ the absolute gradient for this polarization is
only ∼ 5× larger than for the other polarizations. Nevertheless, for all polarizations
the Rabi period is well below the fastest dynamical timescale of the density
interaction. Therefore, all manipulation pulses may be regarded as instantaneous
with respect to the dynamics.

8As described in [61] the MW stabilization setup has also been further modified to allow for a
more versatile control of the power. The concept of the stabilization is similar to the previous
approach and these changes impact only a few of the measurements presented here.
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For controlling the energy detuning q in the experiment we apply off-resonant
microwave radiation which is blue-detuned by about δmw ∼ 2π × 300 kHz to the
|1, 0⟩ ↔ |2, 0⟩ transition. This shifts the energies of the magnetic sublevels and
can be described in the dressed-atom picture by taking into account the dressing
contributions from all transitions between the F = 1 and F = 2 manifolds [62]. In
the effective rotating frame of the Larmor precession (see right-hand side of fig. 2.7)
the total experimental shift due to the magnetic offset field and microwave dressing
can be expressed as

qexp = qB − qmw, (2.23)

where, in first approximation, the dressing contribution takes a form similar to
qmw = ℏΩ2/(4δmw). By adjusting the detuning δmw, the energy mismatch q can be
adjusted conveniently, giving control over the SCC processes particularily relevant
in parameter regime of the EP phase (see section 2.3.2). However, due to off-
resonant coupling between all pairs of levels between the hyperfine manifolds, all
their contributions have to be taken into account for the calculation of qmw, similar
to the approach presented in [62]. Drifts of the MW Rabi frequencies on any of
these transitions may lead to an offset in qexp, which may explain the discrepancy
of qexp observed in fig. 2.6.

2.4.3. Spin Rotations
To rotate the spin vector we utilize oscillating magnetic fields close to the Larmor
frequency ωL given by the linear Zeeman splitting (ωL ∼ 2π × 630 kHz). For the
short coupling pulses ≲ 100 µs relevant here, the detuning induced by the second
order shift are neglected.9 In the experiment two magnetic coils are used to generate
small oscillating magnetic fields transverse to the offset field. Each of these fields
can be vector-decomposed into two counter-rotating fields. One of these co-rotates
with the Larmor precession of the transverse spin components while the other
one counter-rotates at almost twice this frequency. Therefore, the co-rotating
component induces a precession of the spin in the rotating frame while the influence
of the other component is negligible due to the large relative oscillation frequency.
It is precisely this precession around the co-rotating magnetic field component
which drives the spin rotations.

To rigorously derive the spin rotation Hamiltonian, the same approach is followed
as is given in [49]. Since the timescale of the spin rotations is much shorter than
that of the previously discussed interactions, they can be neglected. Here, we only
need to consider the Hamiltonian for the linear Zeeman shift

ĤB = ℏωLF̂z (2.24)

and for the transverse oscillating field

Ĥrf = 2ℏΩrf cos (ωrft+ ϕrf) F̂y, (2.25)

9These can, however, be treated rigorously and have also been measured in our system. See [49]
for details.
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which we choose to point in y-direction.10 Here, the oscillation frequency ωrf of the
magnetic field will usually be chosen close to ωL in the experiment and ϕrf is the
phase of the oscillation. Ωrf is the Rabi frequency of the spin rotation, which is
equal to the precession rate around the co-rotating field component on resonance
(ωrf = ωL). Transforming the total Hamiltonian Ĥ = ĤB + Ĥrf into the frame of
the transverse field component co-rotating with the Larmor precession we obtain

Ĥrot = ℏ(ωrf − ωL)F̂z + e−iωrftF̂zĤrfe
iωrftF̂z

= ℏδF̂z + 2ℏΩrf cos (ωrft+ ϕrf)
(︂
cos(ωrft)F̂y − sin(ωrft)F̂x

)︂
= ℏδF̂z + ℏΩrf

(︂
cos(ϕrf)F̂y + sin(ϕrf)F̂x

)︂
,

(2.26)

where we have applied the rotating wave approximation [63] in the last line and
dropped the quickly oscillating terms with frequency 2ωrf. In the experiment the
radio frequency (RF) field is always driven on resonance such that the detuning
δ = ωrf − ωL = 0. Therefore, the magnetic coupling induces spin rotations around
a transverse axis controlled by the phase ϕrf. Typically, the Rabi frequency of this
rotation is Ωrf ∼ 2π × 7 kHz.

By applying two coils, oriented roughly along both transverse directions (see RF
coils 1 and 2 in fig. 2.1), rotating fields can be generated when choosing the driving
phases of both coils appropriately. One of these coils is also used to compensate
magnetic field gradients along the axis of the cloud. Here, a bias tee consisting of
an inductor and a capacitor is used to combine the direct and alternating signal
components for the gradient compensation and the RF pulses, respectively.

For rotating magnetic fields the counter-rotating field component present for
linearly oscillating coupling can be suppressed. This is relevant in scenarios where
both hyperfine manifolds are occupied. Due to the opposite signs of the g-factors,
the counter-rotating field for a spin in F = 1 is co-rotating in F = 2 and vice
versa. Because of the small difference in the Larmor frequencies between the
two hyperfine levels (see fig. 2.7) compared to the Rabi frequency Ωrf a linearly
polarized transverse coupling field leads to simultaneous spin rotations in F = 1
and F = 2. For our readout scheme hyperfine-selective spin rotations are required,
which are generated by circularly polarized coupling fields from the application of
two field coils. The treatment of these rotations in the rotating frame is analogous
to eq. (2.26) and the orientation of the rotation axis can similarly be adjusted
with the phase ϕrf. A full treatment of the spin rotations in our setup and a
characterization of the setup with both RF coils can be found in [49].

2.5. Simultaneous Detection of Multiple Spin
Components

For our measurements the transverse spin two sets of observables are of central
interest: the hyperfine level occupations and the transverse spin. Both can be
10As shown in eq. (2.26) the axis of the spin rotation can be controlled by the phase ϕrf. Therefore,

the actual oscillation direction of the magnetic field in the transverse plane is not crucial.
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accessed by standard absorption readout techniques combined with spin rotations.
However, to determine the transverse spin also correlations between the length
|F⊥| and the Larmor phase φL of the spin need to be measured within the same
realization. For this a simultaneous readout of multiple observables is required. A
detailed description of this method may be found in [49, 64] and also a short overview
of the transverse spin readout is contained in the method section of [65]. Although
the simultaneous readout of multiple observables introduces quantum noise, such
types of measurements can still be utilized to directly certify entanglement [66].

One of the central benefits of this simultaneous readout is the independence from
phase coherence with respect to the preparation. When preparing a transverse spin,
for example, the fluctuations of the magnetic offset field will dephase the Larmor
phase with respect to the initial direction after ∼ 10 ms. Because the readout
effectively utilizes one of the spin directions at the time of the readout as reference
for the other observables, correlation can be obtained at arbitrarily long evolution
times. Therefore, when observing the system in the parameter regime of the EP
ferromagnetic phase we are able to observe transverse spin coherence in excess of
50 s of evolution time with spin coherence times larger than the BEC lifetime.

2.5.1. Imaging
In general, the readout consists of three steps:

i) Spin rotations to map the desired observables on the measurable occupation
numbers of the hyperfine levels

ii) Application of a Stern-Gerlach magnetic field gradient to separate the mF
levels by a short (∼ 2 ms) time-of-flight

iii) High-intensity absorption imaging of the F = 2 and F = 1 levels with short
15 µs pulses of resonant light spaced by ∼ 1 ms

Details on the imaging method are described in [40] and the calibration procedure
of the involved imaging parameters based on the readout of atom shot noise
fluctuations is given in [49].

This method allows the extraction of the 1d densities of all 8 hyperfine levels in
both manifolds. By summing over the vertical (z-) direction we obtain the averaged
density over the size of one pixel along axial (x-) direction of the atom cloud (see
fig. 2.1 for the definition of the coordinate system). Because the optical resolution
of the imaging system is approx. 1.2 µm, for the analysis of density profiles we
usually bin 3 pixels along the x-direction. Since the time-of-flight period is kept
short enough to only separate the atomic clouds to detect them independently, the
technique effectively constitutes an in-situ imaging of the densities. Therefore, our
readout effectively extracts coarse-grained values of the observables (averaged over
a volume containing ∼ 600 atoms, which is given by the width of the binned pixels).
This directly resembles the interpretation of fields applied in effective quantum
field theories relevant for the description of the non-equilibrium evolution discussed
in chapter 5.

27



CHAPTER 2. EXPERIMENTAL SYSTEM

2.5.2. General Idea for the Readout of Spin Observables
For the spin observables given in the basis of the external magnetic offset field
aligned along z-direction (see section 2.3.1), the Fz value can directly be read out
from the level populations. Using again the normalized form of the spin observables,
the local z-projection is calculated from the atom numbers NmF measured in the
vertical bin via

Fz = N+1 −N−1

N
(2.27)

with the total atom number N = N+1 + N0 + N−1. In contrast, the transverse
components are additionally encoded in the phase relations (in analogy to quantum
optics also called coherences) between the levels. Therefore, a simple π/2 spin
rotation around the Fx or Fy axis prior to imaging maps the observables to the
detectable atom numbers.

For the simultaneous detection of multiple spin observables an extension of the
Hilbert space is required to encode all necessary information of the observables in
level populations.11 This is facilitated by splitting populations between the F = 1
and initially empty F = 2 manifold by the application of MW π/2-pulses. The
exact schemes for the relevant sets of observables are detailed in the following.

2.5.3. Transverse Spin
To obtain full information about the length |F⊥| and Larmor phase φL of the spin in
the transverse plane it is necessary to read out both transverse projections Fx and
Fy. This, in turn, allows constructing the full order-parameter field F⊥ = Fx + iFy

of the EP ferromagnetic phase. This is also the central quantity for the investigation
of far-from equilibrium dynamics following quenches of q (cf. chapters 4 and 5).

The readout sequence is given in fig. 2.8. It starts with a π/2 spin rotation
around Fy to map the Fx projection to the population imbalance between mF = ±1.
Then all three level populations are split with MW π/2-pulses, which shelve half
of the populations in the F = 2 manifold. Afterwards, another π/2 spin rotation
around the Fx-axis maps the Fy projection of the state to the population imbalance
(this is the last pulse shown in the figure). For this RF pulse it is crucial that only
the F = 1 manifold is addressed to preserve the observable shelved in F = 2. Thus,
by measuring the imbalances in F = 1 and F = 2 the projections Fy and Fx are
extracted, respectively:

Fx = N2,+1 −N2,−1

N2,+1 +N2,0 +N2,−1
,

Fy = N1,+1 −N1,−1

N1,+1 +N1,0 +N1,−1
,

(2.28)

where NF,mF denotes the occupation of the magnetic sublevel |F,mF⟩. In order
to minimize errors in the projection angle of the extracted observables, which
stem from small drifts of the magnetic field or gradients, a spin echo sequence is
11The basic idea of this scheme is more generally connected to the concept of positive operator-

valued measures (POVMs). See [49, 64] for more details.
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Figure 2.8.: Pulse sequence for the simulataneous readout of both transverse
spin-1 observables Fx and Fy. The observables are extracted from the populations
via eq. (2.28)

performed. For this, a π spin rotation is inserted in the middle of the time interval
between the π/2-pulses, which cancels the effect of the Larmor phase evolution
between these π/2-pulses.

2.5.4. All 3 Spin-Dipole Operators

The transverse spin readout can straightforwardly be extended to also include the
z-projection. Prior to the first spin rotation a quarter of the population of the
|1,±1⟩ levels is shelved in |2,±1⟩, followed by a similar readout scheme as described
in the previous section (see fig. 2.9 for the full pulse sequence). However, because
the populations before the spin rotations have been altered, now the transverse
spin observables are not simply given by the population imbalances anymore. To
determine the proper combination of the populations required to extract the desired
observables, the readout transformations applied to the combined 8-level system of
both hyperfine manifolds needs to be considered. This way the explicit encoding of
the final state populations after the readout pulse sequence in terms of the spin
observables of the system prior to readout can be derived. The resulting spin
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Figure 2.9.: Pulse sequence for the simultaneous readout of all three spin-1
observables Fx, Fy, and Fz. The observables are extracted from the populations
via eq. (2.29)

observables are then given by (see [49] for the actual form of the mapping12)

Fx = 4√
3
N2,−2 −N2,+2

N
,

Fy = 4√
3
N1,−1 −N1,+1

N
,

Fz = 1
4
N2,+1 −N2,−1

N
.

(2.29)

Here, NF,mF denotes the occupation of the magnetic sublevel |F,mF⟩ and N =∑︁
F,mF NF,mF is the total atom number (in the corresponding evaluation interval).

2.5.5. 2-Level Spin
For characterizing the vector solitons discussed in chapter 3 it will be relevant to
access the coherences between the two states |1,±1⟩. Interpreting these levels as
pseudo-spin-1/2 system, the corresponding spin operators can be written in the
form

Ŝx = ψ̂†
+1ψ̂−1 + ψ̂†

−1ψ̂+1,

Ŝy = i
(︂
ψ̂†

−1ψ̂+1 − ψ̂†
+1ψ̂−1

)︂
,

Ŝz = ψ̂†
+1ψ̂+1 − ψ̂†

−1ψ̂−1,

(2.30)

12The mapping between populations (or POVM elements) and spin observables is given in
appendix B.1 of [49]. The splitting ratio of the first two MW π/3-pulses is η = 1/4. Note
that in [49] the F = 1 spin operators are denoted by Ŝj instead of F̂j . Due to the additional
RF π-pulse of the spin echo the sign of the Sy terms is flipped for the F = 1 observables.
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with the field operators ψ̂(†)
j of the magnetic substates introduced in section 2.3.1.

Similarly to the spin-1 variables, in the following we will consider the quantities
which are normalized by the population N+1 +N−1 of the two levels.

While the previously extracted spin-1 observables F̂x and F̂y also contain infor-
mation about these 2-level coherences, the phase relation between mF = ±1 and
mF = 0 also enters in F̂x/y (cf. eq. (2.11)). Therefore, it is necessary to directly
couple the mF = ±1 levels for mapping the coherences to the detectable popula-
tions. The most straight-forward method to facilitate this coupling would involve
an initial removal of all mF = 0 atoms followed by an RF pulse to implement
a pseudo-spin-1/2 rotation. However, we observed that in that case the sharp
density structures of the solitons undergo spatial dynamics on time scales of the
readout (∼ 3 ms). This happens because of the loss of repulsive interaction with
the background provided by the mF = 0 component. To suppress such deformation
of the mF = ±1 densities as much as possible the readout scheme needs to keep
the mF = 0 component trapped along with the mF = ±1 components, although
no information is extracted from the mF = 0 density. Therefore, these atoms are
shelved in F = 2 at the start of the readout. Because for the following readout the
populations of all three F = 1 levels need to be split between the two hyperfine
manifolds the initial shelving of the mF = 0 atoms must take place in |2,−1⟩
(or |2,+1⟩). The frequency of the transition |1, 0⟩ ↔ |2,−1⟩ is almost equal to
|1,−1⟩ ↔ |2, 0⟩ (cf. fig. 2.7). Therefore, such MW coupling would also affect the
mF = −1 atoms. To prevent this, the first MW π-pulse temporarily transfers
the |1,−1⟩ population to |2,−2⟩. After shelving the mF = 0 atoms, another MW
π-pulse brings the |2,−2⟩ population back to |1,−1⟩.13 At this point the actual
mapping of the 2-level spins to the populations begins.

The central idea of the readout is based on the realization that the 2-level
observables Ŝx and Ŝy can be written as an observable

Λ̂ = 2n̂0 − 1̂ = ψ̂†
0ψ̂0 −

(︂
ψ̂†

+1ψ̂+1 + ψ̂†
−1ψ̂−1

)︂
, (2.31)

which only depends on populations in the mF levels, transformed by spin rotations
around the transverse spin axis F̂xy(α) = cos(α)F̂x + sin(α)F̂y as

cos(2α)Ŝx + sin(2α)Ŝy = P̂±1 exp
(︃
i
π

2 F̂xy(α)
)︃

Λ̂ exp
(︃

−iπ2 F̂xy(α)
)︃

P̂±1. (2.32)

Here, P̂±1 denotes the projector on the mF = ±1 states. The action of this operator
corresponds to the removal of the mF = 0 population from the F = 1 manifold, as
described in the previous paragraph. For α = 0 and α = π/4 we therefore obtain
exactly the pseudo-spin observables Ŝx and Ŝy encoded in the detectable densities
after a π/2 spin rotation of the system without the mF = 0 component. This also
shows that the simultaneous extraction of the observables with consecutive RF
pulses around different rotations axes is possible analogous to the readout schemes
discussed previously.
13The two MW π-pulses on |1,−1⟩ ↔ |2,−1⟩ can introduce a phase offset between the mF = ±1

states, which effectively rotates the state in the Sx-Sy-plane. However, such a rotation can
easily be calibrated by changing the phase of the MW pulses or the following RF pulses.
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Figure 2.10.: Pulse sequence for the simultaneous readout of the 2-level observ-
ables Sx and Sy as defined in eq. (2.30). The observables are extracted from the
populations via eq. (2.33)

Here, however, because the rotation axis only needs to be rotated by π/4 to
obtain the conjugate pseudo-spin operator, the amplitude of the rotation angles in
the simultaneous readout will be different. For the first spin rotation a π/2-pulse
is performed as given in eq. (2.32) (see fig. 2.10). After shelving half of the F = 1
population in F = 2 the state in the F = 1 manifold is rotated again. Since
the readout axes are only separated by π/4 in the azimuthal angle of the spin-1
operators, also only a π/4-pulse is required when rotating around a spin axis
orthogonal to the first rotation. To cancel any phase evolution induced by the
magnetic field between the two RF pulses, again a spin-echo π-pulse is inserted in
the readout. After performing this pulse scheme the 2-level spin observables can
therefore be extracted from the densities associated to the operator Λ̂ as

Sx = N2,0 − (N2,+2 +N2,−2)
N2,+2 +N2,0 +N2,−2

,

Sy = −N1,0 − (N1,+1 +N1,−1)
N1,+1 +N1,0 +N1,−1

.

(2.33)

2.6. Local Control
For the purpose of local control of the spin as well as the total density with spatially
arbitrary patterns steerable laser beams at different wavelengths are applied. These
act in the form of ac-Stark shifts by modifying the energy of the atomic levels. For
circularly polarized light the vector-Stark shift allows the generation of effective
magnetic fields which vary spatially on distances corresponding to the size of the
laser beam. Additionally, far red- or blue-detuned light facilitates dipole potentials.

The position of these beams are controlled by an acousto-optic deflector (AOD)
which is controlled by applying a combination of RF signals. The basic concept of
the AOD is similar to that of the more common acousto-optic modulator (AOM):
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A piezo transducer driven at ∼ 100 MHz generates a sound wave in an optically
transparent crystal. This can effectively be interpreted as a modulation of the
refractive index, which induces effects similar to a grating. In detail, however, the
photon-phonon scattering processes relevant for an AOD differ, which lead to a
larger bandwidth of frequencies and therefore a larger range of possible deflection
angles. This allows controlling the position of the beams via the frequency of
the RF tone applied to the piezo transducer. By combining multiple frequency
components, also multiple beams are generated in the first scattered order.

In the following a summary of the physical effects relevant for this setup are
given, complemented by a detailed description of the optical setup and the required
signal generation for controlling the laser beams.

2.6.1. Linear and Vector Stark Shift for Dipole Traps and
Magnetic Fields

Although close-to-resonance application of the light is sometimes useful (see sec-
tion 2.6.4), in this section we want to consider cases in which the light is at least a
few nm away from resonance. Therefore, only atom-light interactions described by
ac-Stark shifts are relevant.14 For the groundstate of alkali-metal atoms where the
total electron angular momentum quantum number J = 1/2 and only the electric
dipole contributions are considered, the Stark shift Hamiltonian may be written in
the form [67, 68]

ĤStark = −1
4

(︃
αs(E∗

1 · E2)1̂ − iαv

2F (E∗
1 × E2) F̂

)︃
(2.34)

with ”classical” electric field components Ej = EjEje
i(ωjt+ϕj) of the light,15 scalar

and vector polarizabilities αs and αv of the atoms, and spin operator F̂ = Ĵ + Î.
The polarizabilities include a sum over the transition matrix elements

⃓⃓⃓
⟨g | d̂ | e⟩

⃓⃓⃓2
with respect to the atomic dipole d̂ = −er̂ between the ground and excited states
|g⟩ and |e⟩, weighed with the distance from the corresponding transition energy
(see [67] for details). This form of eq. (2.34), however, is only valid in the limit of
small Zeeman shifts and light intensities such that ⟨HStark⟩ ≪ ℏωL ≪ EHFS. This
is well satisfied in the experiment.

There, we apply a single laser beam (i.e. all field components are co-propagating)
with the same polarization for all frequency components. While for equally polarized
field components the first term of eq. (2.34) only depends on the power and phase
of the fields, the second term also involves their polarization. In the experiment the
local control laser beams propagate to good approximation along the y-direction.
Therefore, the general form of the unit polarization vector for all field components

14Obviously, for dipole potentials also off-resonant scattering rates are important. However, in
our case these rates are much lower than that of the WG beam trapping the condensate or
the atoms are only illuminated for short durations < 1 ms.

15These electric fields may be same (E1 = E2) or different frequency components of the same or
of different laser beams (possibly even propagating in different directions).
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takes the form (see e.g. [69])

E =

⎛⎜⎝ cos(θ)
0

sin(θ) eiϕ

⎞⎟⎠ , (2.35)

where ϕ determines the phase shift between vertical and horizontal field components
and θ specifies the plane of the polarization for purely linearly polarized light.

The scalar ac-Stark shift described by the first term of eq. (2.34) gives rise to the
dipole force of far off-resonant radiation employed in dipole traps. In the dressed
atom picture [70], for a light field far-detuned by the frequency δ = ω − ωr from
the transition at ωr this term can analogously be obtained as

∆s = Ω2

4δ (2.36)

with Rabi frequency Ω in the limit δ ≫ Ω. Thus, for red-detuned light (δ < 0) an
attractive and for blue-detuned light (δ > 0) a repulsive dipole force is obtained.

The second term of eq. (2.34) describes the vector-Stark shift. Its energy
contribution is proportional to the magnetic quantum number mF and can be cast
into the form of a Zeeman shift

ℏ∆v = gFµBF Bfict (2.37)

with the light-induced fictitious magnetic field

Bfict = αv

8gFµBF
iE∗

1 × E2. (2.38)

Note that this field is not connected to the magnetic field of the light but stems
from the interaction between the electric atomic dipole and the electric field of the
light. The fictitious field is parallel to the propagation direction of the light and,
in case of equally polarized and co-propagating field components, it is maximal
for circularly polarized light (i.e. ϕ = ±π/2 and θ = π/4). This becomes obvious
when calculating

iE∗ × E = sin(2θ) sin(ϕ)

⎛⎜⎝0
1
0

⎞⎟⎠ . (2.39)

For linearly polarized light, i.e. sin(2θ) sin(ϕ) = 0, the magnetic field completely
vanishes.16

To obtain purely magnetic fields it is necessary to choose the wavelength of the
light such that the scalar shift vanishes. This occurs at a wavelength where the red-
and blue-detuned Stark shifts of the neighboring lines (here the D1 and D2-line)
cancel each other. The specific point is called tune-out wavelength and for the
F = 1 manifold of 87Rb this occurs at approx. 790.018 nm [71–74].17 Thus, for
16Therefore, to prevent relative shifts of the mF levels dipole traps for spinor gases should not

contain circular polarization components.
17Measurements indicate that the value of the scalar tune-out wavelength for the F = 2 manifold

occurs at a slightly larger value of 790.032 nm [71–73]. For the purpose of generating fictitious
magnetic fields in the experiment however, such small differences are not relevant.
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Figure 2.11.: Laser setup for the generating local spin rotations (790 nm light) and
blue-detuned potentials (760 nm light). Both beams are combined and delivered
to the AOD setup (see fig. 2.14) via fiber, where the laser is steered over the
condensate. This figure uses symbols from [75].

optically generating fictitious magnetic fields in our experiment we set the laser
close to the tune-out wavelength to prevent density excitations associated to the
scalar Stark shifts. This will be used to induce local spin rotations (see section 2.6.6
for details).

2.6.2. Laser Setup
In order to utilize both, the scalar ac-Stark shift for optical traps as well as
the vector-Stark shift for generating local spin rotations, two lasers at different
frequencies are required. The full optical setup for the generation of the laser
utilized for the local control setup is shown in fig. 2.11. For the tune-ability in a
wavelength range of ∼ ±10 nm around the Rb D2-line while maintaining stability of
the wavelength, extended cavity diode lasers (DL pro from Toptica Photonics AG)
were chosen. The laser for generating the fictitious magnetic field is tuned to the
scalar tune-out wavelength close to 790 nm. The other laser, which is intended for
generating blue-detuned repulsive potentials, is lasing at 760 nm. This wavelength
is chosen to be sufficiently far outside the pass-band of the filters in front of the
camera in our system, to block the light during imaging.

Both lasers are passed through AOMs for fast switching and stabilization of their
optical power. For the 790 nm light the AOM is additionally used for modulating
the beam amplitude at the Larmor frequency ωL of the spins, which is required for
implementing local spin rotations (see fig. 2.12). To ensure the full modulation of the
laser a square-wave modulation of the RF signal of the AOM is chosen. Compared
to a sinusoidal modulation this induces side-bands at higher harmonic frequencies.
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Figure 2.12.: Signal generation for the AOMs of the local control setup shown in
fig. 2.11. Feedback from the photodiodes (PDs) in the AOD setup (fig. 2.14) close
to the BEC are used to independently stabilize the laser power.

However, these also contribute to the local spin rotations (see appendix A). Since
both lasers are driven far from resonance, the shifts of the laser frequencies induced
by the AOMs (and also later by the AODs) are irrelevant.

Afterwards both beams are coupled in to the same fiber. To efficiently combine
both beams a long pass interference filter (type T 770 LPXR from AHF analy-
sentechnik AG) is utilized. At a certain angle of incidence the 790 nm light is
transmitted while most of the 760 nm light is reflected. Here, the filter acts a
dichroic mirror, which is used to overlap the beams. This combined beam is then
passed through a polarizing beam splitter (PBS) to ensure that both frequency
components are linearly polarized along the same axis. Finally, the beam is coupled
into a single-mode fiber. The two lenses in front of the fiber implement a reduction
telescope which improves this coupling. The fiber transports the light to the AOD
setup which is assembled close to the vacuum chamber containing the BEC.

An overview of the setup for the AOM signal generation is shown in fig. 2.12. It
includes PI-loops for independently power stabilizing both lasers to photo diodes
mounted after the fiber. Additionally, the application of an AWG (model 33612A
from Keysight Technologies) allows full control over the phase, amplitude and
duration of the 790 nm light modulation.

2.6.3. AOD Setup
For steering the local control laser beam over the condensate a pair of crossed
acousto-optic deflectors (AODs) is used. Deflectors are devices which are optimized
to modulate the deflection angle of collimated beams. Similar to modulators this
is achieved by scattering the light off an acoustic wave of frequency ωa = cka

and wavevector ka traveling through a crystal, where c denotes the relevant speed
of sound (cf. left part of fig. 2.13). To increase the acoustic bandwidth, and
therefore also the range of achievable deflection angles, AODs utilize birefringent
crystals instead of isotropic media applied in acousto-optic modulators (AOMs).
During the scattering of an incident beam with wavevector ki the light changes

36



2.6. LOCAL CONTROL

Figure 2.13.: Principle of operation of acousto-optic deflectors (AODs). A linearly
polarized light beam with wavevector ki passes through a birefringent crystal. There,
it refracts off the modulation of the index of refraction ni induced by a sound wave
(wave fronts of the sound wave are indicated by black lines). The scattered light has
a different polarization, which is associated to a different index of refraction nr < ni.
Due to the corresponding change in the wavelength the refracted wavevector kr

lies on a smaller sphere in the Ewald construction (right). In the scenario where
the direction of the acoustic wave with ka is almost orthogonal to kr a broad range
of acoustic frequencies ωa = cka fulfills momentum conservation.

its polarization direction. Therefore, the index of refraction ni experienced by
the incoming wave is different from the index nr < ni relevant for the outgoing
light. Hence, the refracted wavevector kr is significantly shorter than the inicident
one. In the Ewald construction this implies that the vecotrs end on spheres
with different radii. If the acoustic wave propagates almost perpendicular to the
refracted beam momentum conservation is still approximately fulfilled over a broad
range of the acoustic frequencies ωa. In contrast to AOMs built from isotropic
media, the birefringent momentum matching is significantly relaxed in AODs. This
broader range of acoustic momenta permissible for scattering processes results in
an increased bandwidth and is associated to an extended range of deflection angles
θr. More details may be found in [69, 76].

The optical setup incorporating the AODs in the experiment has initially been
built up and characterized in the scope of a Master’s thesis [77]. Since then it
has been modified slightly and the full layout is shown in fig. 2.14. The deflectors
applied in the experiment are a pair consisting of horizontal and vertical deflector,
pre-aligned and mounted onto a metal holder (model DTSXY-400-780 from AA
Opto-Electronic). They each consist of TeO2 crystals in which a shear-mode wave
with a speed of sound of c = 650 m/s is excited. The usual driving frequency
lies in a range of ∼ 100 MHz ± 2 MHz which is well inside the total bandwidth of
∼ ±18 MHz. This range is sufficient to address the whole condensate (extent of
approx. 2rTF ≈ 400 µm) with a horizontal resolution of (39.3 ± 0.2) µm/MHz on
the atoms. While this value has been measured in horizontal direction, from direct
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deflection measurements of the AODs we expect the vertical direction to have the
same resolution value [77].

Before the local control beam passes through the AODs its polarization is first
cleaned by passing through a PBS. Afterwards, a small fraction of its power is
diverted onto photodiodes (PDs) (the wavelengths are separated with the same low
pass filter as used in the laser setup) by a wedged pick-up quartz plate. Finally, a
half-wave plate adjusts the beam polarization to the axis required for the operation
of the AODs. At this point the waist radius18 of the collimated Gaussian beam is
3.8 mm [77]. After deflection by the AODs it passes through a quarter-wave plate
to transform the polarization from linear to circular, which is required to utilize
fictitious magnetic fields induced by the vector-Stark shift. For focusing the beam
on the condensate down to a waist radius of (7.0 ± 0.3) µm (cf. section 2.6.6) we
use the imaging objective in reverse direction. To couple the light into the imaging
path we apply a pellicle (model BP208 from Thorlabs). This is a membrane with
a thickness of 2 µm which has been chosen to prevent a significant offset of the
imaging beam, which passes through the pellicle from left to right in fig. 2.14.
According to the manufacturer’s specifications it reflects approx. 3 % of the light
polarized parallel to the plane of incidence and approx. 26 % of the light with
perpendicular polarization at 760 nm and 790 nm. Therefore we expect only ∼ 3 %
of the total deflected light to contribute to the vector stark shift. Nevertheless,
∼ 5 mW in either of the wavelength components at the output of the fiber are
sufficient to fully confine the atoms with the dipole force exerted by the 760 nm
light or implement spin rotations with a Rabi frequency of ∼ 10 kHz for the 790 nm
component.

To control the deflection angles of the AODs we utilize AWGs (model 33622A19

from Keysight Technologies) to directly generate the required RF signals at ∼
100 MHz. The advantage of utilizing AWGs lies in the possibility to generate short
local rotation pulses by switching on the AOD signals without the requirement of
external RF switches, arbitrarily combining frequency components for generating
multiple beams, and the possibility to sweep frequencies or amplitudes.20 In our
experiments the local control beams serve two distinct purposes: generating blue-
detuned end-caps for a box-like confinement in the center of the WG trap (760 nm
light) and performing local spin rotations (790 nm light). Both of these require
signals which pose different requirements to the AWG programming. To optimize
the signal handling we divide the generation of the signals onto two AWGs which
are subsequently combined and amplified before being fed into the AODs.

18The waist radius is the distance from the center of a Gaussian beam where the intensity drops
to 1/e2 of the peak value.

19This AWG has two independent output channels capable of replaying 120 MHz signals at a
maximal sample rate of 1 GHz with a waveform memory of 64 MSa per channel (device option
MEM).

20For sweeps over extended periods of time, however, the sample memory of the devices is not
sufficient. For this, the integrated frequency or amplitude modulation of the function generator
mode may be used in combination with an external AWG which provides the modulation
waveform (at significantly lower sample rate).

38



2.6. LOCAL CONTROL

Figure 2.14.: Setup for steering the local control beams over the condensate with
the application of two crossed AODs. Two wavelength components at 760 nm and
790 nm are used for blue-detuned potentials (e.g. for confinement in a box-like
potential) and local spin rotations, respectively. They are generated in the laser
setup shown in fig. 2.11 and delivered to this part by fiber. A small portion of the
optical power is directed towards photodiodes (PDs) for power stabilization. The
optical low-pass filter acts as dichroic mirror, as described in section 2.6.2. The
collimated beam with a waist radius of 3.8 mm is deflected in horizontal and vertical
direction by the AODs and is focused on the condensate by the imaging objective
with focal length of 31.23 mm [40]. This results in a waist radius of (7.0 ± 0.3) µm
on the atoms with a spatial sensitivity of (39.3 ± 0.2) µm/MHz to the frequency of
the RF signal delivered to the AODs. This figure uses symbols from [75].
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2.6.4. Alignment and Characterization
Due to the small size of the condensate compared to the full accessible scan range of
the AODs the initial alignment of the local control beams to the atoms is difficult.
The most convenient method of ”finding” the correct AOD frequencies tuned out
to be locally detuning a MW π-pulse. For this the 790 nm laser is tuned to the
resonance of the D2-line close to 780.24 nm for the F = 2 → F ′ = 3 transition.
Here, even small beam powers induce a splitting of the F = 2 states sufficiently
large to prevent MW transitions with usual Rabi frequencies of ∼ 10 kHz. This
provides a clear signal when the local control laser overlaps with the cloud, owing
to the short interaction time and low power requirements.

The resonance of the scattering with the acoustic waves in the AOD crystal
is governed by a modified Bragg condition (see fig. 2.13 for the optimal working
condition kr ⊥ ka)

sin θr = λi

niλa

(2.40)

with acoustic wavelength λa = 2π/ka. Therefore, the deflection angle θr has a
wavelength dependence similar to a grating. Therefore, different RF frequencies
are required to deflect beams with different wavelengths to the same position.
This seemingly inconvenient property has two crucial benefits: even lasers with a
broad spectrum may be used for the generation of close-resonant potentials21 (with
potentially long hold times) and the local spin rotations can be applied at positions
which are, to a certain degree, independent from the box beams.

Figure 2.15 shows the local control beam deflection in an exemplary scenario
where two 760 nm beams are required to confine the atoms in a box-like trap (see
section 2.6.5 for details) and simultaneously a local rotation is performed with
790 nm light. Due to the dispersive deflection of the AODs this requires two vertical
frequency components fAOD-V to deflect both wavelengths to the plane of the atoms.
In horizontal direction two frequencies fAOD-H are required to generate the two
end-caps of the box and a third one to independently place the local rotation in
the trap. All these frequency components lead to a deflection of both wavelengths,
resulting in a total of 12 deflected beams.22 As indicated in the figure, only three
of these are actually focused onto the condensate. However, due to the horizontal
frequency components of the box beams, it is possible that also an additional
local rotation beam is deflected to the position of the atoms. For the particular
combination of frequencies shown in the picture, the frequency fAOD-H of the right
box wall results in a deflection of a local rotation beam (790 nm) to the position of
the left box wall. This means that for a larger box a second local rotation would
appear at the left edge of the box. This can of course be suppressed by switching
off the box for the short duration (∼ 100 µs) of a local rotation without significantly
affecting the condensate density.
21Using two 780.16 nm beams as end-cap potentials, which are blue-detuned to the D2-line

by only 0.08 nm, we were able to fully contain the atoms in a box trap with atom number
lifetimes of more than 40 s. This lifetime is comparable to box-like traps with beams which
are blue-detuned by more than 10 nm.

22We are only considering the first deflection order of each of the AODs here. In total there are
more beams exiting the AODs which are, however, blocked by an iris.

40



2.6. LOCAL CONTROL

C
am

er
a 

C
ou

nt
s

0

20

40

60

80

100

120

140

160

180

200

220

Figure 2.15.: Picture of the local control beams for a scenario with box beams
(760 nm) and a local rotation (790 nm) with color-coded intensity. Two frequency
components fAOD-V deflect both wavelengths to the plane of the atoms. For
generating the two walls of box-like trap and a local rotation in its center, three
horizontal components fAOD-H are applied. Each wavelength is therefore split into
six single beams marked by colored circles (one of the 790 nm beams is not visible
in the picture). Note that the camera is mounted at an angle of approx. 33◦

with respect to the horizontal plane; cf. the coordinate axes, which indicate the
direction of the deflection with respect to the applied AOD frequencies fAOD and
the physical position x on pictures or the setup. In the depicted scenario one of the
790 nm beams overlaps with the left wall (760 nm) of the box, marked by a split
blue and red circle. Additionally, the region which would be occupied by the atoms
in the focal plane of the imaging objective is indicated by a dashed contour. The
picture is taken by focusing the deflected beams onto the camara (Mako G234B
from Allied Vision) shown in fig. 2.14. Note, that the focal position of the lens is
not optimized and the measured intensities do not correspond to the distribution
at the position of the condensate.
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Due to excessive polarization drifts in the fiber between laser and AOD setups
the intensity fluctuations of the local control beams initially were on the order
of ∼ 10 %. By implementing a power regulation with photodiodes in front of
the AODs these fluctuations have been significantly reduced. For the short local
spin rotations pulses a sample-and-hold circuit (see fig. 2.12) is applied, which
updates the regulation values after imaging and applies the stored values during the
next experimental cycle approx. 40 s later. This approach leads to residual relative
fluctuations of 0.004 in the 790 nm beam power. The fluctuations of single deflection
orders imaged by the observation CMOS camera (Mako from Allied Vision) are of
similar size, implying that the beam power at the condensate should be stabilized
to the same level. The stabilization may be further improved by sampling the
regulation signal shortly before the experiment. To prevent illuminating the atoms
during the short regulation period of ∼ 10 ms the RF signals to the AODs should
be switched off. This may be implemented by an RF switch in front of the AOD
signal amplifiers.

Additionally to amplitude fluctuations, also position noise may be induced by
mechanical vibrations in the system. In the setup shown in fig. 2.14 this may
become problematic because the distance of ∼ 1 m between the AODs and the
imaging objective may strongly amplify any vibrations of the optical components.
For short coupling pulses (see section 2.6.6) with a typical time scale of < 100 µs this
would manifest as position fluctuations of the coupling region between realizations
because mechanical oscillations of massive objects would be expected to occur
in the frequency range < kHz. However, the setup shows excellent positional
stability with typical standard deviations of only about 0.4 µm, less than 10 % of
the waist radius of the local control beam. Nevertheless, temperature drifts lead to
significant deviations in the beam position, such that appropriately spaced control
scans should be executed to account for such drifts in both, horizontal and vertical
direction.

2.6.5. Box Trap
In the experimental setup the atoms are usually confined in the attractive dipole-
potential of the WG beam, which provides an elongated cigar-shaped trap. By
combining it with two blue-detuned local control beams, which serve as repulsive
end-caps, the atoms can be confined in the approximately flat center of the WG
potential. This effectively implements a box trap [78].

For loading this box we slowly ramp down the XDT beam and let the atoms
expand in the WG potential until they fill out the whole box. The time evolution of
the density profiles during this process are shown in fig. 2.16. Here, t = 0 indicates
the usual time at which the initial state preparation starts; this coincides with the
point when the density profile settles to the final shape. For t > 0 the density is
approximately flat and only shows small short-range deviations around this profile.
Because these short-wavelength deviations persist over many times t is can be
excluded that they resemble propagating sound waves but rather originate from
slight modulations in the WG potential along its beam axis.

While the right edge of the box shows a sharp gradient in the density profile,
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Figure 2.16.: Density profiles (averaged over 1 – 3 realizations) during the loading
process of the box trap for an atom number of ∼ 70 k. While slowly ramping down
the XDT potential the atoms expand in the WG until the full region between
the blue-detuned local control beams are occupied by the atoms. The time t = 0
indicates the point when experiments usually start. No spatial dynamics is visible
after loading the box-like trap. The profile for t = −0.1 s is missing.
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the left edge is much broader. This results from an imbalance in the optical power
of both box walls; in the particular case shown in fig. 2.16, the right beam is less
intense than the left one. The condensate density expands in the confining trap
to the point where the external potential corresponds to the chemical potential:
Vext(x) = µ. This implies that only the spatial region of the potential where
Vext(x) < µ determines the density profile. According to eq. (2.34) the potential
of the blue-detuned box walls has the Gaussian shape of the laser beam intensity.
Therefore, at large beam powers the density only occupies the region of small
gradient farther away from the center. Contrary, for small power the region of
large gradients closer to the maximum dominate and lead to a sharper density
drop-off at the edges. These gradients become largest when choosing the peak
power Ip such that the chemical potential crosses the dipole potential of the beam
around the inflection points of the intensity profile. This implies Ip =

√
eµ ≈ 1.6µ.

Choosing these parameters also ensures that despite small intensity fluctuations of
the beam or variations of the atom number tunneling out of the box-like trap is
still sufficiently suppressed.

Because a part of the experiments presented in chapters 4 and 5 take place over
vastly different durations (0 – 40) s it is crucial to take the heating of the AOD
crystal due to the dissipation of the applied RF power into consideration. This
leads to a slight change in the refractive index and therefore to a change of the
deflection angle over time. Especially in vertical direction this effect is important
because the beam needs to be aligned to the position of the condensate with a
radius of ∼ 2 µm (estimated in TF approximation for n = 400 atoms/µm). The
main heating contribution to the AOD is provided by the deflection signal for the
box beams (760 nm) because these are active for the full duration of the experiment
after loading the dipole traps. In contrast, the short spin rotation pulses are usually
active for a duration shorter than 1 ms and therefore only dissipate a vanishing
amount of energy in the AODs. To avoid drifts associated to changes in heating
we continuously apply the box frequencies to the AODs, even during the cooling
cycle and when no 760 nm light is applied to the atoms.

2.6.6. Spin Rotations
Analogous to the treatment of spin rotations in section 2.4.3 the fictitious magnetic
field induced by the vector-Stark shift can be applied to generate spin rotations
locally. For this, oscillating magnetic fields are required. These are generated by an
amplitude modulation of the local control laser at frequency ωrf.23 This leads to the
generation of different frequency components in the electric field of the local control
beam. For simplicity, the electric field E = E1 + E2 of the light is considered
23The modulation is performed by digitally switching the RF signal applied to the 790 nm AOM

(cf. figs. 2.11 and 2.12). This leads to a square-wave modulation of the laser amplitude, giving
rise to multiple frequency components separated by ωrf. According to eq. (2.41) the closest
Fourier components of this spectrum therefore contribute to the oscillating fictitious field
Bfict

rf at frequency ∆ω = ωrf. This coincides with the sine modulation assumed in eq. (2.25).
All higher frequency differences are sufficiently far detuned from the resonance at ωL to be
neglected within the scope of the rotating wave approximation. See appendix A for more
details.

44



2.6. LOCAL CONTROL

to consist only of two equally polarized frequency components E1 = E1Eei(ωt+ϕ)

and E2 = E2Eei((ω+∆ω)t+ϕ+∆ϕ) with real amplitudes Ej and frequency separation
∆ω = ωrf. According to eq. (2.38) the fictitious magnetic field is given by

Bfict ∝ iE∗ × E =
(︂
E2

1 + E2
2 + 2E1E2 cos (∆ω + ∆ϕ)

)︂
ey, (2.41)

with unit vector ey pointing in y-direction and where we assumed circularly polarized
light and applied eq. (2.39). The cross products with the same frequency components
give rise to a static fictitious field Bfict

0 while all pairs of different frequency
components contribute fields Bfict

rf , oscillating at the difference frequency ∆ω. The
fictitious field components oscillating close to resonance (i.e. the Larmor frequency
ωL) thus result in a coupling described by the Hamiltonian (2.25). Analogous to
before, by changing the phase of the laser amplitude modulation the spin rotation
axis is adjusted to an arbitrary angle in the transverse plane in the rotating frame.
Note that, contrary to direct optical dipole couplings, for the fictitious magnetic
field the Rabi frequency ΩRF is proportional to the optical power of the cross terms
P ∝ E1E2.

Alternatively to the picture of oscillating fictitious magnetic fields, this coupling
between the magnetic substates may also be interpreted as Raman transitions
between the different magnetic substates [68]. The amplitude modulation of the
laser beam at frequency ωrf leads to the generation of pairs of side-bands at frequency
offset ±nωrf (n ∈ N) around the original laser beam frequency (see appendix A for
more details on the modulation spectrum). At resonance (i.e. ωrf = ωL) neighboring
components with a frequency difference of ∆ω = ωL thus drive Raman transitions
between two states with ∆mF = ±1. This is equivalent to a coupling with the spin
operators as given in the spin rotation Hamiltonian (2.26).

This method of coupling the magnetic substates of spinor condensates with
off-resonant light has also been applied in different experiments. Similarly to the
application presented here, this coupling has been implemented to generate magnon
excitations and map out their dispersion [79]. By detuning this coupling from the
Raman resonance, these vector-Stark shifts have also been applied to implement
an artificial vector potential [80]. Inducing spatial gradients in the vector potential,
artificial magnetic fields which couple to neutral atoms have been engineered [81].
These techniques are relevant in the broader context of spin-orbit coupling and
artificial gauge fields.

To characterize this local coupling, all atoms are prepared in mF = −1, i.e. in
a state with Fz = −1. Then a local spin rotation pulse of varying duration t is
applied. This coupling leads to a redistribution which transfers atoms to mF = 0
and for larger coupling times to mF = +1. The Rabi frequency profile of this
transfer results from the intensity profile of the laser beam. The resulting spatial
variation of the population transfer is shown in the absorption pictures in fig. 2.17.

Assuming a Gaussian beam with transverse intensity profile I ∝ exp(−2x2/w2)
with waist radius w (in the focal plane) the rotation around a transverse spin
rotation leads to a spatially varying z-projection

Fz(x, t) = − cos
(︃
α(t)e−2 x2

w2

)︃
(2.42)
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Figure 2.17.: Local spin rotation around a transverse spin direction starting with
all atoms in mF = −1. This leads to oscillations of the z-projection of the spin
(Fz ∝ N+1 −N−1) according to eq. (2.42) in space and time. On the left-hand side
absorption pictures of the three mF densities are shown to illustrate the spatial
dynamics. Free evolution during the short time-of-flight period (∼ (2 – 3) ms) prior
to imaging leads to a deformation of the density profiles. Fitting each of the spatial
profiles with eq. (2.42) allows the extraction of local rotation angle amplitude α0.
Due to the deformation of the spatial profiles the fit always converges towards
α0 < 2π. From these fit parameters the Fz projection amplitudes in the center
of the local rotation are calculated as Fz = − arccos(α0) and displayed in the
right-hand plot. The red line is a sinusoidal fit, corresponding to a Rabi frequency
of Ωrot = 2π × (12.6 ± 0.2) kHz, to the data up to 23 µs with a time-offset of the
pulse duration of 2 µs. For large pulse durations the most likely reason for the
deviation of the data points from the curve is spatial dynamics of the density
profiles prior to imaging.
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with rotation angle αrot = Ωrott and local rotation Rabi frequency amplitude Ωrot
in the center of the beam. For rotation angles up to α ≈ π, which occurs at around
t = 35 µs, the spatial modulation, visible in the absorption pictures, roughly fits to
the oscillation predicted by this formula. Afterwards, however, no clear transfer
back to the mF = −1 level is visible in the center of the beam. Nevertheless, for
larger times spatial structure appears, especially in the mF = 0 component at
t = 65 µs. This trend is also visible when comparing the oscillation of the extracted
Fz amplitude with the expected oscillation (right-hand plot). From a fit to short
coupling times t ≤ 23 µs a local Rabi frequency of Ωrot = 2π × (12.6 ± 0.2) kHz is
extracted.

While fluctuations of the beam position or noise of the amplitude modulation
could, in principle, lead to a vanishing of the spatial structure and thus a damping
of the extracted oscillations, these are most likely not the causes for the deviations
from the expected behavior. Position fluctuations, which originate from mechanical
fluctuations of massive objects, are expected to occur at small frequencies < kHz,
which is slow compared to the relevant coupling times here. Additionally, a
measurement of the beam modulation confirms a stable control beam amplitude
modulation. Insead, in this scenario the exact imaging sequence becomes important
because it gives rise to spatial dynamics. For spin excitations, usually the spin
interaction time scale ts ∼ 400 ms (cf. section 2.3.2), governed by the difference
in interactions between the mF levels, is the relevant scale for dynamics. Before
imaging, the mF components are separated by a SG pulse followed by a (2 – 3) ms
time-of-flight period. During this period, after the clouds have separated, the
only remaining interaction scale is that of the density interactions with td ∼ 2 ms,
which may thus lead to significant dynamics. Here, the dispersion of the density
wavepackets generated by the local rotation in the single mF components is expected.

As shown in eq. (2.41), the local control laser does not only generate an oscillating
fictitious field Bfict

rf but also a static offset field Bfict
0 . This results from the presence

of static, i.e. zero-frequency components in the spectrum of the fictitious field
(cf. eq. (2.41)). The fictitious magnetic field is oriented parallel to the laser beam
axis. It adds vectorially to the global magnetic offset field as B(x) = B0 + Bfict

0 .
Because B0 ≫ Bfict

0 it rotates the quantization axis only slightly but simultaneously
generates a magnetic potential V fict

mag(x) = ℏΩ(x)Fz for the atoms occupying the
states mF = ±1. Here, ℏΩ(x) = gFµB(|B(x)| − |B0|) originates from the change
of the total magnetic field amplitude.

This can be measured directly by observing the local density depletion of a
single-component condensate after adiabatically ramping up the local control
beam. To prevent spin rotations, the amplitude modulation frequency ωrf = 2ωL is
detuned far from resonance. Here, care has to be taken to image the condensate
without switching off the laser beams or time-of-flight to prevent spatial dynamics.24

We achieve this by imaging without SG separation and before switching off the
local rotation beam or the WG potential.25 Repeating this experiment for single-

24This leads to a splitting of the single density depletion into two traveling wavepackets, even for
time-of-flight periods as short as 2 ms.

25Note, that the ac-Stark shift due to the WG beam may lead to a shift of the resonance of
the imaging transition away from the frequency of the imaging light. This may affect the
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component condensates prepared in each of the three mF levels leads to the density
curves shown in fig. 2.18. For the mF = ±1 densities the local rotation beam acts
as repulsive/attractive potential while not affecting the mF = 0 component, in
accordance to the action of a magnetic field. This shows that the local rotation
beam generates a magnetic potential with an amplitude of ℏΩ0 ∼ 0.4ℏΩrot.

Thus, phase gradients imprinted to the mF = ±1 components during local spin
rotations will also affect the subsequent spatial dynamics. While the local magnetic
potential attracts the mF = +1 atoms, the mF = −1 component is expelled from
the region of the local rotation. This further prevents the faithful measurement
of the local rotations in the absorption pictures. Nevertheless, this may explain
why spatial structures in mF = 0 resemble the expectations more closely than the
mF = ±1 densities. The presence of this magnetic potential implies only a small
reduction in the amplitude of the local rotation (see appendix A). This is consistent
with the observed amplitude of the spin rotation, which seems to be almost unity
(cf. absorption picture at 35 µs in fig. 2.17).

The fits to the spatial profiles of figs. 2.17 and 2.18 also allow for an estimation of
the beam diameter. By applying the function given in eq. (2.42) to the case of the
local rotation a beam waist radius of w ≈ 9.7 µm is obtained. In comparison, fitting
a Gaussian profile to the density deviations due to the magnetic potential results
in a radius of w = (7.0 ± 0.3) µm.26 It is conceivable that the radius extracted
from the spin rotation profiles is larger due to the additional dispersive broadening
during time-of-flight. Here, the sharp density gradients at the edge of the rotation
profile reduce, which leads to broader structures. Thus, the radius extracted from
the density imprinting method is likely to resemble the actual waist radius more
closely. This value is in accordance with a previous measurement [77] but is still
above the expected beam waist radius of approx. 4 µm in the focus of the imaging
objective.

Fluctuations
Another important characteristic of the local rotations are the technical fluctuations
associated to this coupling method. For a rough estimation of these we record the
fluctuations of Fz for a spin Rabi as shown in fig. 2.17. The coupling time is chosen
such that the rotation angle in the center is αrot ≈ π/2. In this case Fz is calculated
by first summing all atoms within ±1 RMS radius of the local rotation profile
before inserting the atom numbers of the different mF levels into the formula for Fz.
This leads to relative fluctuations of ∆Fz/Fz ∼ 0.05. These are a mangitude larger
than the power fluctuations of the local control beams (cf. section 2.6.4), which
would contribute to noise in this quantity through rotation amplitude fluctuations.
Furthermore, these fluctuations are also more than twice the fluctuations expected
after rotation of the initial coherent spin state.27

extracted atom number. Here, however, the determination of the amplitude of the magnetic
potential is presumably limited by the estimation of the chemical potential.

26This waist radius corresponds to an root mean square (RMS) radius of σ = w/2 =
(3.5 ± 0.2) µm.

27In a typical measurement (e.g. fig. 2.19) the central ∼ 4 µm of the local rotation region, which
mainly fixes the rotation amplitude, are occupied by N ∼ 1300 atoms. Considering a local
coupling which rotates the spin to the equator in the center (e.g. Fx = 1) the expected coherent
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Figure 2.18.: Single-component density response to the local rotation baser beam
(790 nm) with far off-resonant amplitude modulation at frequency ωrf = 2ωL to
prevent spin rotations. The beam intensity is ramped up linearly over a period
of 500 ms and the density is imaged without turning off neither the 790 nm beam
nor the WG potential to prevent spatial dynamics before imaging. In different
experiments the atoms are prepared in either of the three mF levels and the density
difference to the unperturbed case without local rotation beam is plotted as an
average over multiple realizations (error bars indicate the 1 s.d. error interval
of the mean). The static fictitious field component Bfict

0 leads to a depletion
(attraction) of the mF = −1 (mF = +1) component while not affecting the density
distribution of mF = 0, as expected for a magnetic potential. For the density of
approx. 400 atoms/µm the maximal depletion/attraction of atoms corresponds to a
potential amplitude of ℏΩ0 ∼ h× 380 Hz (estimated by assuming the 1d coupling
constant given by eq. (2.6)). For this measurement the local spin rotation Rabi
frequency has been reduced to Ωrot ≈ 2π × 890 Hz. From Gaussian fits to the
density profiles a beam waist radius of w = (7.0 ± 0.3) µm is estimated as the
average over mF = ±1.
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For the stability of the rotation amplitude of local spin rotations the position
fluctuations of the beam are important. This is especially relevant for poor vertical
overlap of the local control beam with the condensate. To illustrate this, the Fz

projections and standard deviations ∆Fz are plotted as a function of the vertical
beam position in fig. 2.19 (blue line). Here, ∆Fz is extracted from the local rotation
center (analogously to the treatment in fig. 2.17). The fluctuation profiles in the
figure show that in the vertical beam center the amplitude fluctuations of the
measured spin reduce when the beam is centered on the condensate. In contrast,
they increase when the flanks of the beam lie in the center of the atom cloud.

For the fraction of atoms transferred to other levels by the local spin rotation at
some position x the full 3d overlap between the local rotation laser beam and the
atomic cloud needs to be considered. In scenarios where slight shifts of the laser
beam or cloud do not significantly change the overlap between these quantities the
local rotation is relatively robust against noise induced by position fluctuations
(i.e. when the beam and cloud are centered). However, because the condensate
(radius of ∼ 2 µm in the TF approximation) is smaller than the laser beam, the
largest gradient in the overlap occurs when the steepest gradient of the beam
intensity lies in the center of the condensate.

Therefore, the fluctuations show a shape similar to the derivative of the vertical
intensity profile of the local rotation beam. The application of this fluctuation model
to our system is studied in [82]. Assuming that the typical horizontal beam position
fluctuations of approx. 0.4 µm also apply to the vertical direction is not sufficient
to explain the magnitude of the observed fluctuations. However, evaluating the
position fluctuations on the atom cloud on the picture, a typical standard deviation
of approx. 1 µm is observed. This additional noise may account for the full noise
excess when the local rotation beam is not centered on the condensate.

Inversely, this noise model may be applied to the experiment to reduce the
fluctuations of the local coupling by increasing the beam size in vertical direction.
This may be accomplished by optical components, e.g. cylindrical lenses or prisms,
or with an appropriate RF signal applied to the vertical AOD. The additional
lines in fig. 2.19 correspond to a slow frequency modulation of the diffraction signal
during the local spin rotation pulse period of 80 µs. For this, the vertical frequency
fAOD-V is swept once by the value of the modulation width ∆f from −∆f/2 to
+∆f/2 around the frequency indicated on the vertical axis. The resulting effective
vertical profiles show, as expected, an increasing width. Simultaneously, the sharp
noise peaks start to decrease due to the decreased effective vertical gradient of the
beam intensity. This helps to significantly reduce the fluctuation sensitivity to drifts
in the vertical beam position, as induced by e.g. temperature changes. Nevertheless,
no reduction below the fluctuation level in the center of the unmodulated beam is
achieved. This hints towards another remaining fluctuations source, like e.g. imaging
noise which has not been properly calibrated in this measurement.

state fluctuations are ∆Fz =
√︂

(⟨F̂ 2
z ⟩ − ⟨F̂z⟩2)/N =

√︁
(0.5 − 0)/N ≈ 0.02. These arguments

can be performed rigorously by considering the total amount of atoms to be distributed
over the mF levels according to a binomial distribution with probabilities determined by the
integrated rotation profile. In this example, this results in approximately the same standard
deviation.
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Figure 2.19.: Vertical Fz profile and fluctuations of a local spin rotation starting
for all atoms initialized in mF = −1 for different vertical beam widths. The
left-hand plot shows the peak Fz projection extracted analogously to the procedure
in fig. 2.17 and the right-hand plot shows the corresponding standard deviation of
this observable. The different colors encode the frequency modulation widths ∆f
over which the vertical AOD frequency fAOD-V is swept during the local rotation
duration of τ = 80 µs to effectively obtain a larger beam width in vertical direction.
The fluctuations obtain a profile similar to the derivative of the vertical intensity
profile, consistent with rotation amplitude fluctuations originating from variations
of the overlap between the local control beam and the condensate induced by
vertical position noise (see text). Assuming the same vertical AOD resolution as in
horizontal direction (in accordance to the calibration of the deflection angles in
both directions [77]), the unmodulated (∆f = 0 MHz) Gaussian beam radius in
vertical direction is approx. 7.9 µm.
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2.7. Control of the Magnetic Offset Field
For the observation and manipulation of spin dynamics in our experiment the
control of the magnetic fields is of central importance. Employing two vertical
pairs of coils (one for a static offset and the other for regulation), the magnetic field
amplitude is actively stabilized to the value measured by a flux-gate sensor mounted
close to the glass cell of the vacuum chamber. The details of this stabilization can
be found in [41] and reaches a stability of ∼ 50 µG.28 To account for slow drifts
of the regulation we calibrate the magnetic field to the detuning measured in a
Ramsey spectroscopy in approximately hourly intervals. As frequency reference the
clock signal of the global position system is used to ensure a sufficient long-time
stability.

Magnetic field gradients along the axial direction of the condensate are controlled
daily. When observing the spin dynamics after a quench (especially relevant for
the measurements in chapters 4 and 5) usually large evolution times need to be
accessed. Therefore, it is sensible to apply control measurements with similar
interrogation times of ∼ 30 s to obtain a sufficiently large resolution. By tuning
qexp approx. h × 1 Hz to the left of the center of the resonance feature in |F⊥|
(gray vertical line in fig. 2.6) the presence of population in all mF levels is ensured.
Because q < 0 in this range, short-ranged excitations prevent long-range order
and the mF = ±1 densities redistribute according to the magnetic gradients along
the cloud. This technique has also been applied in [55] and allows for precise
cancellation of the gradient.

For the experiments presented in chapter 3 usually the soliton collisions themselves
are applied as Larmor phase sensitive detectors (see section 3.5.3 for details). Here,
a Ramsey spectroscopy with long interrogation time is used to calibrate this method
and we find the phase sensitivity of the solitons to exceed that of the Ramsey
sequence at small gradients.

28This value is obtained from fluctuations between single realizations of Ramsey spectroscopies
on the |1,−1⟩ ↔ |2, 0⟩ transition with an interrogation time of 625 µs at a fixed detuning of
400 Hz.
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3. Vector Solitons
In this section we will discuss the theoretical concepts required to describe soli-
tons and the experimental generation of vector solitons and the observation and
characterization of their dynamics. Some of the results discussed here have been
published in [83]. After a short general introduction to solitons the basic theoretical
concepts for solitons in BECs will be introduced. Here, a focus will be placed on
the Manakov limit of equal interactions between all atoms, which is the relevant
model for the experiments performed in this work. This is complemented by a
short summary of soliton experiments performed with BECs.

In the remainder of the chapter, the experimental implementation of 3-component
vector solitons will be discussed. Interleaved, the required theoretical concepts will
be worked out, where appropriate. First, the general preparation and characteriza-
tion of these solitons will be explained. Here, the discussion of the static profiles
is complemented by the propagation in a harmonic trap. Further the collision
dynamics of the vector solitons is investigated and compared to an analytical
Manakov description, which shows good agreement with the experiments. Finally,
an application of these collisions as interferometer is given, which allows the precise
measurement of magnetic field gradients.

3.1. A (Short) Introduction to Solitons
In general, solitons are non-dispersive waves which can exist in systems where a
non-linearity cancels the dispersion in such a way that excitations with stationary
shape can exist (see fig. 3.1). Their names stem from solitary waves, which were
first reported in the 19th century as water waves propagating over long distances
without significant change of their shape [16, 84]. The great interest the topic of
solitons has attracted over the last decades has been sparked by the puzzling lack of
equilibration in the simulations of a non-linearly coupled chain performed by Fermi,
Pasta, Ulam and Tsingou [14]. This phenomenon has then been explained through
the analysis of soliton scattering [15], which found almost exact recurrences of the
initial in simulations. This shows another fascinating property of solitons: their
particle-like behavior. After collisions they continue the propagation with preserved
shape but offset in their positions. Since these initial works, solitons have been
studied in many fields of science. Especially in optics, where the power-dependent
change of the refractive index introduces non-linearities, solitons have been studied
in great detail [85, 86]. Further examples are their application to describe domain
walls in lattices [87], excitations in conducting polymers [88], blood pressure waves
in arteries [89, 90] and protein movement in muscle contraction [91, 92] and more
applications in e.g. biology [93]. For a short and historic overview on the topic
of solitons in various systems see [94]. Finally, shortly after the generation of the
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Figure 3.1.: Comparison between Gaussian wavepackets and solitons in a BEC.
On the left-hand side a pair of wavepackets are generated, which disperse over time
(each line corresponds to the time given in gray). On the right, non-dispersive
solitons propagate without significant change in their shape. The plots show density
profiles of the mF = ±1 components of the condensate after the generation of a
local excitation (see section 3.4.1 for details). The duration of the local rotation is
τ = 33 µs on the left and τ = 65 µs on the right. The figure is adapted from [83].

first BECs [95, 96] solitons have also been generated and studied in ultracold gases
[20, 21]. Here, the interactions between the atoms provides the crucial non-linearity
which supports the existence of solitons.

Although in the recent years more flavors have been discussed in literature,
solitons come in two distinct basic categories: bright and dark solitons. This
classification originates from optics where the soliton structure describes the electric
field amplitude. Correspondingly, a bright soliton describes an object consisting
of large radiation power on a dark background and a dark soliton is a localized
depletion of a bright background. As such, bright solitons bear a certain kind of
resemblance with wavepackets, albeit not being a superposition of linear waves
and completely lacking their dispersion, of course. Dark solitons, sometimes also
called ”kinks”, bear an additional feature compared to bright solitons. While
their amplitude envelopes, apart for obvious inversion, are described by the same
function, are similar the underlying field supporting dark solitons possess a phase
change localized around the position of greatest depletion in its amplitude. [97] The
gradient and size of the phase jump correlate with the depletion amplitude of the
soliton; for a total depletion of the background the jump becomes instantaneous–a
”kink”. In optics this phase would correspond to an offset in the phase angle of
the electric field and for BECs the complex phase of the macroscopic wavefuntion
describing the condensate.

While the preceding classification of solitons is valid only for single component
systems, they build the basis for the following. In this chapter, we will concern
ourselves with composite solitons, namely vector solitons, which consist of a
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superposition of solitons in different degrees of freedom [98, 99]. For optical systems
this may be two orthogonal polarization directions or distinct frequency ranges;
in BECs different hyperfine states or different superimposed atomic species may
provide the required internal states. Here, we will utilize the three substates of the
F = 1 hyperfine manifold of 87Rb to harbor bright and dark soliton components.
Each of these, inherit their basic properties from the single-component excitations
discussed above [100]. Therefore, these will be treated in some more detail before
introducing the multi-component solitons, which, in a loose sense, contain bright
and dark components as ”building blocks”. Although solitons are possible even if
the underlying field is incoherent [101, 102], we will discuss vector solitons in the
presence of large coherence within and between the different components.

3.2. Manakov Theory
While the previous section gave a general overview on the topic of solitons we
now want to specifically discuss a certain model system relevant for the later
discussion. As we are interested in interacting ultracold gases, such a model should
appropriately involve the kinetic properties of the atoms as well as their interaction
trough point-like s-wave interactions. On the mean-filed level, and neglecting the
trapping potential, such a suitable model, which may also describe the electric field
in optics [23, 86], is given by the non-linear Schrödinger equation (NLSE) (which
is equivalent to the GPE without trapping potential) [22, 103]

iℏ∂tψ = −ℏ2∇2

2m ψ + g |ψ|2 ψ. (3.1)

In our interpretation of ψ as mean-field macroscopic wavefunction of a (single-
component) condensate the first term on the right-hand side describes the contri-
butions from kinetic energy. The second term, involving the interaction constant g
arises from the atomic interactions and introduces the non-linearity required to
balance the kinetic dispersion to allow for the existence of solitons. This system is
integrable [104], therefore allowing for a complete analytic solution of its dynamics.
These have initially been derived via the inverse scattering transform (IST) [105–
107]. This method has then been adjusted to more generalized systems by Manakov
[23] and nowadays systems described by the NLSE discussed in the context of
solitons are often referred to under his name. Therefore, we will also call the soliton
solutions for these types of equations ”Manakov solitons”.

In ultracold gases solitons are strictly only stable in 1d systems. The transverse
extension breaks the integrability of the NLSE, which leads to dissipation via phonon
scattering [108] and decay to vortices or vortex rings via the snake instability [109].
Therefore, we will consider only transversely tightly confined systems. In particular
we will assume the experimentally realistic case of a cigar-shaped harmonic trap
with large transverse trap frequency ω⊥ such that only the lowest harmonic oscillator
state is occupied in transverse direction. Longitudinally we assume the trap to be
sufficiently flat to neglect the trapping potential in this direction in accordance
with eq. (3.1). In order to appropriately describe experiments in (or close) to this
1d limit all quantities in this equation must be expressed as functions of only the
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Figure 3.2.: Density and phase profiles of bright and dark solitons of the NLSE
(3.1). The density profiles are normalized to the maximum. The bright soliton
(left) is displayed for v = 0 while the dark soliton is shown vor v/c = 0.4. At this
velocity the associated phase jump, width and darkness of the dark soliton are
∆φ ≈ −0.74π, 1/κ ≈ 1.54ξ, and D = 0.84, respectively.

spatial coordinate x along the longitudinal trap direction. To achieve this, an
effective 1d interaction constant g1d = g/(2πa2

⊥) can be obtained by incorporating
the transverse energy contributions from applying the system Hamiltonian to the
transverse wavefunction; here, this corresponds to an integration

∫︁
dydz |ψ⊥(y, z)|4.

For the harmonic oscillator groundstate the result naturally incorporates the the
transverse harmonic oscillator length a⊥ =

√︂
ℏ/(mω⊥). Because this whole chapter

focuses on 1d systems we will drop the designation ”1d” of the interaction constant
in the following and implicitly assume 1d systems from now on.

In general, eq. (3.1) supports both of the two previously introduced distinct types
of bright and dark solitons in dependence of the interaction parameter. Subject
to a so-called ”focusing” nonlinearity with g < 0 (a name again transferred from
optics), bright solitons are of the form [103]

ψ(x, t) = a⊥κ√︂
2 |a|

sech {κ [x− x0(t)]} eiφ(x,t). (3.2)

Here, a < 0 is the scattering length associated to the effective 1d interaction
constant g = 2ℏ2a/(ma2

⊥), κ = |a|N/a2
⊥ is the inverse soliton width, x0 = x̃0 − vt

the center-of-mass position of the soliton moving at velocity v, and N is the total
number of atoms contributing to the soliton. Note that, in order to fulfill the
requirement of the effective 1d approximation the atom number N needs to be
sufficiently small (N ≪ a⊥/ |a|), which also implies 1/κ ≫ a⊥ because of the
attractive interaction between the atoms. The associated profile of a bright soliton
is shown in the left plot of fig. 3.2. The phase φ(x, t) of this soliton wavefunction
is equivalent to eq. (3.11).

In the opposite scenario for a repulsively interacting system with g > 0 the atoms
form a BEC with a flat density. This background density n0 is associated with the
chemical potential µ = n0g of the condensate. Often the term µψ is subtracted
from eq. (3.1) to remove phase evolution associated to this constant mean-filed
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energy contribution. In this case the dark soliton solution is given by [22, 103]

ψ(x, t) = √
n0

(︄
i
v

c
+

√
c2 − v2

c
tanh {κ [x− x0(t)]}

)︄
, (3.3)

where the inverse length is given by κ =
√︂

1 − v2/c2/(
√

2ξ), the center-of-mass
is defined as x0 = x̃0 − vt like before and c =

√︂
n0g/m and ξ = ℏ/

√
2mn0g are

the Bogoliubov speed of sound and healing length, respectively. This velocity
also represents the largest upper velocity at which a dark soliton can move. An
exemplary dark soliton profile is displayed in the right plot of fig. 3.2. As can be
seen from the soliton wavefunction the amplitude of the density depletion given by
the prefactor of the tanh term scales with the soliton velocity. A useful quantity
related to this is the darkness [22]

D = n0 − |ψ(x = x0)|2

n0
= 1 − v2

c2 = 2ξ2κ2, (3.4)

which specifies the density depletion in the center of the soliton. The last charac-
teristic feature of the dark soliton profile is a jump of the wavefunction phase by
∆φ = −2α from negative to positive x. Most of this rapid change is localized in the
region around the density depletion. The so called soliton phase angle associated
to the phase jump is given by

tanα =
√
c2 − v2

v
. (3.5)

For dark solitons the velocity is the single parameter defining all their properties.
At the upper and lower limit of the velocity, these are given by:

Quantity v → 0 v → c

Width 1/κ
√

2ξ ∞
Darkness D 1 0
Phase jump ∆φ π 0

For large velocities v → c the soliton function continuously transforms into a
homogeneous density by decreasing both the phase jump as well as the dip in
the density depletion while the width diverges. On the other hand, for vanishing
velocity the phase jump becomes instantaneous while the width of the density
depletion never decreases below the healing length.

3.3. Overview of Solitons in BEC Experiments
In repulsively interacting BEC experiments dark solitons have been prepared
deterministically via phase imprinting methods [20, 21, 110, 111]. For this, a
detuned laser beam is partially blocked with a razor blade to generate a sharp
intensity gradient which is imaged onto the condensate. A short time evolution in
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this anisotropic potential generates the phase jump ∆φ, such that in the following
free evolution the condensate density dynamically adjusts to form a dark soliton.
This has also been combined with density engineering to reduce the velocity of the
solitons [112]. Other methods involve the counterflow of condensates [113–115],
shock waves [109, 116] or the sweep of a potential barrier through the system [117].
IN most of these works, the motion of the solitons in confining potentials, collisions
between solitons, or their decay and dissipation have been investigated.

For repulsive interactions,the formation of bright solitons is possible, which
form spontaneously when tuning the inter-atomic interactions to be attractive
[118–123]. Also forced evaporation may be applied to obtain bright solitons [124].
Alternatively, the dispersion relation of an underlying lattice potential may be
utilized to generate gap solitons in repulsively interacting systems [125]. Stabilized
by attractive interactions, in 2d also Townes solitons have been realized [126], which
may also be obtained via effective interactions in a 2-component system [127].

After the generation of coupled dark-bright solitons in optics [128, 129] such
composite structure were also investigated in BECs. Here, even in purely repulsively
interacting BECs bright soliton components can be generated by ”trapping” them
in the effective potential of a dark soliton in 2-component condensates [100, 130].
Also dark-dark solitons are possible [131]. Experimentally, this has been realized by
a local state transfer [132, 133], counterflow induced by a a magnetic field gradient
in 2-component BECs [134–139] or miscible mixing [140]. Here, the much richer
interactions are of great interest [131, 141]. Similarly, also in a 3-component gas the
counterflow technique has been used to excite different composite vector solitons
[142]. Such 3-component solitons have been shown to exhibit further interesting
collision dynamics and interaction effects [130, 143, 144].

Apart from these multi-component vector solitons there are many more soliton
solutions. Particularly relevant examples for spinor gases include magnetic solitons
[145–147] or spin solitons in spinor gases [148]. These, in contrast to the Manakov-
type vector solitons, exhibit no depletion in the total density. Recently, magnetic
solitons have also been realized in experiments [149, 150].

In the following we will introduce the experimental implementation of a repro-
ducible generation of 3-component solitons and the characterize the resulting soliton
excitations and their dynamics. This allows a systematic study of the dynamics.
In particular, this allows an experimental characterization of 3-component soliton
interactions for the first time.

3.4. Experimental Realization of Vector Solitons
To generate solitons in the experiment our strategy starts from a local perturbation.
This approach, as it leaves the phase of the condensate wavefunction outside the
localized regions unchanged, cannot generate a single dark soliton. On the other
hand, because all intra- and interspecies interactions in the F = 1 manifold of 87Rb
are repulsive bright solitons without phase change are not stable in our system.
Consequently, we aim for the generation of a pair of solitons.

Simultaneously, applying local spin rotations also allows us to generate pop-
ulations in other magnetic sublevels. Due to the coherent nature of the local
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manipulation these excitations also possess fixed phase relations. This enables
access to vector solitons in which the relative phases are well defined by the initial
state preparation and the following propagation dynamics. In particular, we want
to generate vector solitons with one dark component and two bright components.

3.4.1. Experimental Generation of Excitations
For this, we start with all atoms occupying the state |1, 0⟩. Then, a short local
spin rotation (see section 2.6.6 for details) with a Gaussian Rabi frequency profile
Ω(x) = Ω0 exp(−x2/(2σ2)) with radius σ = w/2 ≈ 3.5 µm is applied.1 This Rabi
pulse of duration τ leads to a localized transfer of atoms to the mF = ±1 levels
with position dependent transfer fraction of (n+1 + n−1)/n0 = sin(Ω(x)τ).

In the following period of free time evolution of this initial state the wavepackets
propagate in the approximately flat background density in the center of the harmonic
trap. Figure 3.3 shows the evolution of the mF = ±1 density averaged over 6 – 9
realizations. All atoms occupying these levels have been transferred there from the
mF = 0 state during the preparation of the wavepacket. Due to the interaction with
the density background in the mF = 0 level, their dynamics allows inferring the
total amplitude profile of the wavepacket. Correspondingly, the mF = 0 show the
same behavior as shown in fig. 3.3 with depletions in the density. For short coupling
times τ ≤ 33 µs this leads to a dispersive movement in which the excitations
broaden and reduce in amplitude. Increasing τ above a certain threshold leads to
a strong decrease in the broadening of the excitations, which is a characteristic
sign for the excitation of solitons. In fig. 3.3 the apparent broadening arises from
averaging over realizations subject to fluctuations of the soliton position between
different realizations. Above a further threshold in τ additional localized excitations
are generated. In fig. 3.3 some of these are visible as a second lobe of dispersive
wavepackets propagating outwards at larger excitations.

To understand this threshold behavior in the generation of the wavepackets
we now look at the spatial structure of the initial condition after the local spin
rotation depicted in fig. 3.4. Characterized by a Rabi oscillation the local spin
rotation couples the hyperfine states with spatially varying coupling strength. In
other words, the typical Rabi oscillation between the initially occupied mF = 0 and
mF = ±1 levels advances with spatially changing Rabi frequency Ω(x). For small
rotation angles Ω(x)τ the population transfer to the mF = ±1 levels is largest in
the center of the Gaussian Rabi frequency profile (see left column of fig. 3.4). The
introduction of the phase jumps along with the density depletion in mF = 0 is
the crucial ingredient for the generation of non-dispersive solitons in our system.
This property of the initial conditions explains the qualitative difference between
the first and second row in fig. 3.3. In presence of phase jumps during the initial
phase of the free propagation the wavepackets dynamically adjust by appropriately
shedding atoms and adjusting the amplitude of the phase jump to arrive at a
stable soliton solution. Once the rotation angle becomes larger than π atoms are
transferred back to mF = 0 and the Rabi coupling introduces a sign change in the

1Here, w denotes the usual beam waist radius of a Gaussian beam. It specifies the distance from
the center at which the intensity has dropped to 1/e2 of the central value.
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Figure 3.3.: n+1 + n−1 density during the time evolution of local excitations
averaged over 6 – 9 realizations. The excitations are generated by different local
spin rotation durations τ . Starting from an approximately homogeneous density
distribution in only the |1, 0⟩ state the local coupling pulse transfers atoms to
mF = ±1 during the initial state preparation. For τ ≤ 33 µs (first line) dispersive
wavepackets are generated. For longer couplings a phase jump is generated in
the center of the local rotation which leads to a stabilization of the exitations as
solitons (lower line). The apparent broadening of the solitons over time For very
long couplings τ ≥ 80 µs more than 2 wavepackets are generated due to multiple
phase jumps in the initial condition.
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Figure 3.4.: Local Rotation Profiles for different local coupling durations. The
upper row shows calculated profiles of the mF = 0,+1 levels (results for mF = −1
are equivalent to mF = 1) rotated for durations τ from a homogeneous density
where only the mF = 0 is occupied. The Rabi frequency amplitude Ω0 = 7 kHz
in the center of the Gaussian Rabi frequency profile Ω(x) is chosen such that the
resulting density profiles roughly match the observed distributions. The calculation
is performed for a rotation around Fx. This introduces a global phase difference
of π between mF = 0 and mF = ±1 which is dropped here. In the lower row
absorption pictures with SG separation of the hyperfine levels after local rotation
are shown for corresponding local coupling durations τ .

mF = 0 wavefunction. Viewed along the condensate axis this corresponds to two
phase jumps, first by +π and then by −π (see central column of fig. 3.4). This
qualitatively changes again once the rotation angle crosses 2π where two additional
phase jumps are generated in the wavefunction. These, however, are associated
with the mF = ±1 levels and occur in a region with high mF = 0 density but
comparably small mF = ±1 density (see right column in fig. 3.4). Therefore, the
formation of solitons, which are associated with a strong density depletion in the
vicinity of a phase jump, is not strongly affected by the additional phase structure
in mF = ±1. On the other hand, the presence of this soliton-like structure prevents
the mF = ±1 atoms from flowing into the solitons created around the density
depletions in mF = 0. Consequently, these central atoms form a pair of dispersive
wavepackets which propagate independently of the 2 solitons (cf. τ = 80 µs in
fig. 3.3).

In the absorption pictures shown in fig. 3.4 it is clearly visible that the mF = ±1
levels are characterized by different density profiles. However, for the local spin
rotation discussed previously both densities should be exactly the same. This results
from the implementation of the local rotations. Instead of generating a purely
oscillating fictitious magnetic field, according to eq. (2.41) the laser modulation also
generates a static fictitious magnetic field. This vectorially adds to the global offset
field and locally changes the local magnetic field amplitude, as shown explicitly in
section 2.6.6. This generates an effective magnetic potential V fict

mag(x) ∼ 0.4ℏΩ(x)Fz.
Nevertheless, the oscillating fictitious magnetic field still drives the intended spin
rotation with coupling Hamiltonian Ĥrot = ℏΩ(x)F̂x/2 in the rotating frame of the
Larmor precession. From the Rabi frequency amplitude Ω0 ≈ 7 kHz, estimated
from fig. 3.4, we can therefore infer the local modulation of the magnetic field
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amplitude to be Bfict
mag,0 ∼ h × 2.8 kHz. This magnetic potential imposed on the

atoms during the local rotation induces a magnetic force which pushes the high-field
seeking mF = +1 atoms into the center of the rotation and expel the low-field
seekers in mF = −1 from this region. This is consistent with the pronounced and
almost vanishing gaps between the ”blobs” of atoms in mF = −1 and mF = +1 in
fig. 3.4, respectively.

Experimentally, we observe a mixture of the previously outlined scenarios. The
reason for this most likely are fluctuations in the Rabi frequency amplitude between
different realizations. Especially for rotation angles close to integer multiples of
π in the center of the transfer profile one would expect these fluctuations to lead
to increased noise in the evolution dynamics. For example, in a few realizations
for τ = 80 µs we observed the generation of 4 solitons. This is conceivable if the
rotation angle amplitude crossed 1.5π, where 4 phase jumps are generated in the
mF = 0 wavefunction.

3.4.2. Vector Soliton Solutions
For the spin-1 Hamiltonian (2.14), containing density and spin interactions c0
and c1, analytical solutions have been derived [151], albeit in the integrable limit
of equal spin and density interactions c0 = c1. Naturally, these solutions are
3-component vector solitons which feature population in all hyperfine levels with
specific phase relations fixed by the interactions. Also for c1 values closer to the
case of 87Rb vector solitons in spin-1 BECs have been investigated analytically
and numerically [152]. Additionally, in presence of magnetic fields, i.e. under the
influence the second-order Zeeman shift q, the stability and soliton phase diagram
have been derived [153, 154]. Here, similar to the groundstate of spinor gases,
the energy detuning q induces phases which are characterized by different vector
solitons consisting of bright and dark components. As function of the second
order Zeeman shift different populations are favored in the hyperfine levels. This
leads to phase boundaries which are similar to the F = 1 mean field phases with
different populations and coherences [153]. Our experiments take place inside the
ferromagnetic phase which features bright-dark-bright (BDB) solitons, consisting
of two bright and one dark component.

To obtain a suitable model for the solitons in our system it is sensible to introduce
some approximations to the spinor Hamiltonian given in section 2.3.2.2 First, as
the analytical solutions available for solitons are usually derived on the mean-field
level we neglect fluctuations and replace the operators with complex fields. We can
therefore introduce macroscopic wavefunctions describing the magnetic substates
mF. In full generality, the equation of motion for these wavefunctions ψj for each
of the magnetic substates j is given by the 3-component coupled GPE

iℏ∂tψj =
(︄

−ℏ2∇2

2m + Vext +
∑︂

k

gjk |ψk|2
)︄
ψj (3.6)

with suitable external potential Vext and intra- and interspecies interaction constants
2See also [155] for an analytical and numerical investigation of vector solitons in the spin-1

system.
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Figure 3.5.: Intra- and interspecies scattering lengths in the F = 1 hyperfine
manifold of 87Rb in units of the Bohr radius aB. The values are calculated via
eq. (C.3) from the spin pair F = 0, 2 scattering lengths a0 = 101.78 aB and
a2 = 100.4 aB [53, 58].

gjk = 4πℏ2ajk/m (see fig. 3.5 for the scattering lengths in the F = 1 hyperfine
manifold). In Hint given by eq. (2.14) these are expressed as density-density and
spin-spin interactions c0 and c1, respectively. Here, the spin interactions arise from
the differences between the gjk (cf. definition (2.13) of the spin interaction constant
c1). In 87Rb the largest relative deviation between these values is approx. 0.9 %
[53, 58], such that the spin interactions can be neglected over the density interactions.
See fig. 3.5 and appendix C for the calculation of the scattering lengths between
all pairs of F = 1 states.

Thus, by neglecting the small differences between the possible collision channels,
i.e. dropping the c1 term in the interaction Hamiltonian Hint, in the condensate
we can therefore replace the interaction constants gjk by the weighed average
c0 = 4πℏ2(a0 + 2a2)/m of the density interactions. This is equivalent to neglecting
all energy shifts resulting from the mean field spin-spin interactions which are
proportional to c1. Additionally, due to the second order Zeeman shift induced by
the magnetic offset field the SCC processes are energetically forbidden and can be
ignored.

For the discussion of the spatial structure and time evolution of the solitons
we also drop the energy contribution of the homogeneous external magnetic field.
In the mean field limit this allows us to formulate a significantly more compact
equation of motion for the fields Ψ = (ψ+1, ψ0, ψ−1)T in form of the GPE

iℏ∂tΨ =
(︄

−ℏ2∇2

2m + c0 |Ψ|2 − µ

)︄
Ψ. (3.7)

Here, we subtract the phase evolution due to the chemical potential µ of the
condensate. Additionally, we also drop the external trapping potential because we
can assume the longitudinal axis of the WG to be sufficiently flat to be approximated
by a homogeneous potential.

For the BDB type3 we are experimentally investigating here, analytical soliton
3These bright-dark-bright solitons are solitons in a 3-component system, which consist of bright
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solutions can be obtained by means of the IST [143] or Hirota’s bilinear method
[156]. In this scenario the soliton is an excitation in a system where all atoms
occuipy the mF = 0 level with a homogeneous density n0. Staying close the form
of the wavefunctions given in [143], the resulting wavefunctions ψmF are given by
the expressions (cf. bright and dark soliton solutions given in section 3.2)

ψ±1 = √
n0 c±1η sinα sech [κ (x− x0 − vt)] eiφkin ,

ψ0 = √
n0 e

iφS (i cosα + sinα tanh [κ (x− x0 − vt)]) .
(3.8)

Here, c±1 denotes the components of a normalized complex polarization vector
of the bright components in mF = ±1, η the relative amplitude between bright
and dark components, α the soliton angle of the dark component, κ the inverse
soliton width, x0 the initial position, v the soliton velocity, φkin the kinetic phase
of the bright components, and φS a phase offset analogous to a spinor phase. The
parameters κ and v fully determine the soliton via

η =

⌜⃓⃓⎷1 − 1
µ

(︄
ℏ2κ2

m
+mv2

)︄
, (3.9)

tanα = ℏκ
mv

, (3.10)

and
φkin = mv

ℏ
(x− x0) − 1

ℏ

(︄
mv2

2 − ℏ2κ2

2m

)︄
t, (3.11)

where µ = n0c0 is the chemical potential and m the mass of 87Rb. The phase
φkin incorporates the kinetic phase evolution, where the first x-dependent term
corresponds to the equivalent of a kx-term of a a linear wave and the second
t-dependent term evolves with the energy difference to the stationary background
in mF = 0.

While for single component solitons there exists a relation which fixes κ to v,
in multicomponent systems this condition is relaxed and only constrained by the
background through the chemical potential by

ℏ2κ2

m
+mv2 ≤ µ. (3.12)

This inequality constrains the ”localization-induced energy” (by interpreting κ ∼ k
as wave number via the Heisenberg uncertainty relation) and the kinetic energy of
the soliton (or rather flow of the background density ”under” the soliton) against
the condensate energy µ. For equality in eq. (3.12) the soliton becomes a single
component dark soliton (cf. eq. (3.9)), where the width is fully constrained by the
soliton velocity. In the presence of bright components, which exert a repulsive force
against the background, the width of such a filled BDB soliton can support widths
larger than a single component dark type. This, in theory, allows the velocities and

solitons in two components and a dark soliton in the remaining component at the same
position. Due to the mutual interactions this structure is fully coupled, such that the single
components do not behave as individual solitons but as one combined object.
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Figure 3.6.: Parameter dependence of darkness D0 of the mF = 0 component
(left-hand plot) and total density depletion δn/n0 (right-hand plot). The range
of valid inverse soliton widths κ and velocities v is given by the filled area of
the left-hand plot. According to eq. (3.12) the soliton width is bounded by the
Bogoliubov healing length ξd = ℏ/

√
2mn0c0 and speed of sound cd =

√︂
n0c0/m.

The black curve given by a circle corresponds to a single component dark soliton
solution in mF = 0 without occupation of mF = ±1. However, in the presence of
bright components, arbitrarily slow and broad soliton solutions are possible. The
soliton angle α corresponds to the angle opening from the v-axis. The colormap of
the filled area indicates the darkness D0 given by eq. (3.13). According to eq. (3.14)
the total density depletion δn/n0 increases quadratically with κ. This is equivalent
to the darkness D of a single component soliton given by eq. (3.4).
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widths to be changed independently (see fig. 3.6 for permissible parameters). In the
experimental preparation utilizing the local rotation a certain average atom number
is transferred to mF = ±1. This constrains the possible soliton wavefunctions
which can form. Another constraint is imposed by the energy added to the system
by the local spin rotation.

Similar to single component dark solitons the darkness (resembling the density
depletion in the soliton center; i.e. 1 for a stationary ”black” soliton) of the dark
component in the BDB soliton is determined by the soliton angle α. Its value for
the dark component in mF = 0 is given by

D0 = n0 − |ψ0 (x = x0, t = 0)|2

n0
= sin2 α = 1(︂

mv
ℏκ

)︂2
+ 1

. (3.13)

Additionally, all Manakov vector solitons exhibit a depletion in the total density
n = ∑︁

mF nmF which results from the deviation of η from 1. For the solution in
eq. (3.8) this depletion has the form

δn = n0 − n = n0
ℏ2κ2

mµ

(︂
1 − tanh2 [κ (x− x0 − vt)]

)︂
, (3.14)

which, in the center of the soliton, is equivalent to the darkness D = δn/n0 = 2ξ2
dκ

2

of the single-component dark soliton given in eq. (3.4).4 In that sense the total
density depletion is the ”true darkness” of the vector soliton. It is also interesting to
note that δn only depends on the soliton width while the for the relative amplitudes
η or mF = 0 darkness D0 also the soliton velocity is important.

In fig. 3.7 the density and wavefunction profiles of a soliton with parameters
close to experimental values is shown. The width of the soliton density is related
to the parameter κ via

FWHM = 2
κ

ln
(︂
1 +

√
2
)︂

≈ 1.7627
κ

. (3.15)

The gradients of the phases are results of the soliton movement. In the bright
component the phase attains a slope similar to linear waves and mF = 0 exhibits
a phase profile typical for dark solitons. This phase profile consists of a smooth
change by a value of 2α over the soliton. Compared to the bright component
the phase gradient of the dark component is inverted because here the phase is
associated with the movement of the background atoms opposite to the soliton
velocity.

3.4.3. Systematic Analysis of Soliton Excitations
Due to the filling with bright components the repulsive interactions leads to a
broadening of the BDB vector solitons of ≥ 10× the density healing length in our
system. This allows a direct observation of the soliton density profiles in each

4This depletion of the total density is one crucial difference to magnetic solitons in BECs [145],
which only posses a vanishing density depletion in 87Rb or 23Na, based on the small spin
interactions c1/c0.
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Figure 3.7.: Density and wavefunction profiles of a BDB soliton calculated from
eq. (3.8). The background density, chemical potential, inverse width, and velocity
are equal to the values extracted in the experiment (see fig. 3.11). These lead to a
phase jump of α ≈ 0.30π and a relative total density depletion δn/n0 ≈ 2.2 % at
x = 0. As polarization the values c+1 = 1/

√
5 and c−1 = 2/

√
5 have been chosen.

As reference the half amplitude width is marked with vertical dashed lines. For
the wavefunctions the absolute values (solid lines) and phases (dashed lines) are
plotted. The phases are shifted to cross zero at the plot edges.
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experimental realization. To facilitate a systematic evaluation of these excitations
we fit the measured density profiles with functions corresponding to eq. (3.8).
However, to exclude effects introduced by additional dynamics during time-of-flight
before the imaging procedure we optimize the function parameters for each mF
level independently. The origin and effects connected to thsi have been discussed
in more detail in sections 2.6.6 and 3.4.1.

Single experimental realizations often are subject of substantial local fluctuations
due to e.g. atom number shot noise or fluctuations of the soliton position. For
evaluating the experimental data in presence of this noise the following procedure
has turned out to provide robust results for finding the solitons generated in the
system and extracting their parameters. An exemplary plot with experimental
density profiles and corresponding fit results is shown in fig. 3.8. Although not
strictly necessary it may be helpful for rejecting noise peaks and extracting solitons
with only small amplitudes to constrain the number of solitons to extract in the
measurements. For our experiments this is usually possible because we generate
a well-defined number of solitons from each local rotation (2 in most cases). For
fitting the measured density profiles it is necessary to select a certain region around
the soliton (see short vertical colored and dashed lines in fig. 3.8). This ensures
that the optimization routine does not converge towards noise peaks on top of the
background. Thus, the selection of these fit region requires a rough determination
of the most probable soliton positions. This is achieved by a peak-finding algorithm
which rejects all local maxima below a certain density threshold (see long vertical
colored and dashed lines in fig. 3.8). To increase the signal-to-noise ratio further
it turned out to be advantageous to only apply this algorithm to the sum of the
bright components n−1 +n+1 (see black dashed line in the n+1 plot of fig. 3.8). The
empty density profiles provide a low noise background which allows for the faithful
detection of small amplitudes. Fixing the number of solitons allows rejecting all but
the largest density peaks. Then, the density profiles around each of the extracted
peak positions is fitted over a fixed range; each of the mF components is fitted
independently to ensure optimal flexibility in the following data analysis (see colored
and solid lines in fig. 3.8). When two of the peaks are close by or even overlapping
it is necessary to define a combined region incorporating both of the peaks (see
green fit region in fig. 3.8). In this case also a specialized fit function must be
applied with simultaneously optimizes the parameters for two solitons in the fitting
region; the previously extracted peak positions can be used as start parameters for
the optimization procedure. For mF = 0 it is necessary to account for the curvature
of the background density profile which may vary significantly over the chosen fit
range. In our experiment the background profile can be described as a quadratic
density distribution in the TF approximation (see dashed black line in the n0 plot
of fig. 3.8). This shape can be fitted at the positions not incorporated in any fit
ranges associated to the solitons. Then, during the fit of the soliton density profiles
this function can be added to account for the background curvature.

Especially for fitting small amplitudes or decaying wavepackets it is advisable to
constrain the fit region by the approximate expected position of the wavepacket.
Still, for very small local spin rotation durations τ < 33 µs (cf. fig. 3.3) the precise
fitting is hindered by the fast dispersion of the wavepackets which leads to a rapid
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Figure 3.8.: Example for fitting a single experimental realization with 4 solitons
after a free evolution of 160 ms. First the rough soliton positions (long vertical
dashed lines) are extracted from the peaks in the sum n−1 + n+1 (dashed black line
in n+1 plot) of the bright components. Then fit regions are defined around the peaks
(short vertical dashed lines). Within each of these region the experimental density
(black dots) are fitted with an appropriate model function (solid lines). When the
distance between two peaks is below a certain threshold such that independent
fitting is not possible a combined fit is used (central fit in green). For mF = 0 a
quadratic fit (black dashed line in n0 plot) is added to the soliton fit function to
account for the background curvature.
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decrease of the signal-to-noise ratio in single realizations. In the intermediate
regime around τ = 33 µs this becomes less problematic due to the sufficiently large
peak amplitude.

Utilizing these fitting procedures we first analyze the formation process of the
solitons more quantitatively. From the evolution shown in fig. 3.3 we already expect
a qualitative change in the behaviour of the excitations between τ = 33 µs and
45 µs. This change is induced by the generation of phase jumps during the Rabi
cycle for sufficiently large rotation angles. As discussed before, in case of a local
excitation without introduction of phase jump we would expect the formation of
wavepackets. These should be sufficiently close to a Gaussian shape to be able to
apply the usual description of the wavepacket as a collective excitation of plane
waves with amplitudes following a Gaussian distribution. In real space we therefore
model the density distributions as

n±1(x, t) = A±1(t)e
− (x−x0)2

2σ(t)2 . (3.16)

Here, we only consider the ”bright” components in mF = ±1 to reject the noise
from total density fluctuations during fitting as outlined earlier. As dispersion
relation for these waves we will assume the Bogoliubov dispersion of excitations
in the levels mF = ±1 for an expansion around the polar phase groundstate |1, 0⟩
given by [54]

ℏω(k) =
√︂

(ε(k) + q) (ε(k) + q + 2nc1)

=
√︂
q2 + 2qnc1 +

1 + nc1
q√︂

1 + 2nc1
q

ε(k) + O
(︂
ε(k)2

)︂
≈
√︂
q2 + 2qnc1 + ε(k) for q ≫ nc1

(3.17)

with ε(k) = ℏ2k2/(2m) describing the kinetic energy, m denoting the mass of
87Rb, q the second order Zeeman shift, and c1 the spin interaction constant. Our
experiment with q ≈ h× 56 Hz and nc1 ∼ h× 2 Hz is well in the limit where the
dispersion is described by the quadratic dependence of ε(k). Therefore, we expect
a dispersive broadening of the wavepacket with

σ(t) = σ0

⌜⃓⃓⎷1 + 1
σ4

0

(︄
ℏt
2m

)︄2

(3.18)

with σ0 denoting the initial RMS width and a decay of the wavepacket amplitude

A(t) = A0
σ0

σ(t) (3.19)

constrained by the normalization of the wavefunction with initial density amplitude
A0.

Figure 3.9 shows the amplitudes and RMS widths extracted from Gaussian fits
to the wavepackets for different rotation amplitudes. The black lines indicate the
wavepacket dynamics expected from eqs. (3.18) and (3.19) with σ0 and A0 defined
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Figure 3.9.: Amplitudes and RMS widths of Gaussian fits to the wavepackets
emerging from a local spin rotation for different rotation amplitudes. The rotation
amplitudes are controlled by the duration τ of the local rotation (cf. fig. 3.9). The
data points are obtained from individual fits to the density profiles of approx. 9
experimental realizations. Here, to each mF = ±1 profile a superposition of
two Gaussian functions is fitted. For rejecting total density noise only these
two hyperfine levels are evaluated and their results averaged. The black lines
are calculated via eqs. (3.18) and (3.19) with A0 and σ0 set to the initial values
extracted for τ = 33 µs at t = 0. Only results obtained from the fit to the right
one of the two excitations generated by the local rotation is plotted here. The
error bars indicate the 1 s.d. interval of the mean over the single realizations and
mF = ±1 levels.
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Figure 3.10.: Linear propagation and velocities of solitons and wavepackets
generated by a local spin rotation. The left plot shows the propagation of a pair of
solitons extracted from fits to the mF = ±1 density profiles. By applying linear fits
to the positions between t = 40 ms and 200 ms (indicated by vertical dashed lines)
the velocities are extracted and plotted in the right graph. The values extracted for
wavepackets (τ ≤ 33 µs) increase with the rotation amplitude (∝ τ) and settle back
down to a fixed level for solitons (τ ≥ 45 µs). On the left the error bars indicate 1
s.d. interval of the mean and on the right of the statistical fit error.

by the initial values for the duration τ = 33 µs of the local rotation. For small
rotations with τ ≤ 33 µs this curve describes the evolution of the wavepackets with
reasonable accuracy. As soon as the rotation introduces phase jumps (τ ≥ 45 µs)
the amplitude does not decay beyond a certain value and also the width shows
no divergence, as expected for the non-dispersive propagation of solitons. In the
experiment we observe that the initial formation of the solitons is still dominated
by the dispersive behaviour roughly described by the time evolution of Gaussian
wavepackets. This is associated to the dynamical formation of the self-consistent
solition solution within the first ∼ 40 ms of the evolution. Here, the reformation
of the wavefunction profile seems to transpire via emitting plane waves. Once the
wavepacket reaches the shape of the soliton this process stops and the solitonic
behavior of the excitation takes over.

For the fitting procedure applied in this evaluation the fit function always con-
sisted of two Gaussian functions, which, for short evolution times t, overlapped.
Therefore, the fit amplitude does not correspond to the peak amplitude observed in
the density profiles but a smaller value, depending on the overlap of the wavepack-
ets. This procedure is motivated by the experimentally observed movement and
spreading of the excitations. This behaviour cannot be described by the purely
quadratic dispersion of eq. (3.17) but also requires a linear component. In this
scenario the initially stationary wavepacket generated by the local rotation is a
superposition of two counterpropagating wavepackets moving at the same speed
of sound characteritic for the linear dispersion. Nevertheless, the good agreement
between the experimental data and the broadening and associated amplitude de-
cay predicted from eqs. (3.18) and (3.19) implies that the Bogoliubov dispersion
accurately models the quadratic part. That this is the case is not clear because the
amplitude of excitations generated by the local rotations extend beyond the limit
of small excitations, for which the Bogoliubov approximation is derived.
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3.4.4. Extraction of the Soliton Density Profile
Due to the experimental resolution of the soliton profile, it is possible to directly
compare the measured density profiles with the soliton profiles provided by eq. (3.8).
For this, we plot the density profile of a single realization of a soliton after t = 100 ms
of evolution in fig. 3.11, where we bin5 3 adjacent pixels, corresponding to our optical
resolution in the image plane. In order to reduce imaging noise we further apply a
fringe removal algorithm [157]. To constrain the soliton parameters in eq. (3.8) we
extract the required values independently; i.e. we do not rely on a fit to find a closely
matching function but extract parameters consistent with the expected motion.
For this we determine the velocity to v = (x(t) − x(t = 0))/t from the fit positions
at the corresponding times. The inverse width κ is extracted as average of sech2 fits
to the mF = ±1 densities. Here, the profiles are convoluted with a Gaussian with
RMS width of 1.2 µm to account for the finite resolution of the imaging setup [64].
To fix the background density we set n0 to the value of the mF = 0 density around
the soliton. To determine the amplitude of the polarization c±1 =

√︂
(1 ± Sz)/2 we

determine the mF = ±1 pseudo-spin imbalance Sz; at this point, the phases of these
complex parameters are irrelevant because we are only interested in the densities.
The projection Sz = (N+1 −N−1)/(N+1 +N−1) in the 2-level pseudo-spin system of
the bright components is calculated via the atom numbers Nj =

∫︁
dxnj integrated

over ±3 RMS radii of the soliton, where N+1 + N−1 ≈ 2000 atoms. Finally, to
determine the relative amplitude η between bright and dark components and total
density depletion δn we also need to estimate the chemical potential. For this,
we apply the local density and TF approximations in longitudinal direction and
therefore assume a cylindrical symmetric and longitudinally homogeneous trap. By
integrating the radial TF profile

|ψ0|2 (r⊥) = 1
c0

(︃
µ− 1

2mω
2
⊥r

2
⊥

)︃
(3.20)

over the transversal plane up to the TF radius rTF =
√︂

2µ/m/ω⊥ we obtain the 1d
density n0 and can then solve for the chemical potential [44]

µ = ω⊥

√︃
mnc0

π
. (3.21)

The parameters used for the plotting the model predictions of the soliton profiles
shown in fig. 3.11 are:

v = −0.16 µm/ms
κ = 0.31 µm−1

n0 = 435 atoms/µm

c =
(︄

0.73
0.68

)︄
µ = h× 518 Hz

5Here ”binning” means averaging over 3 pixels without overlap with neighboring averaging
interavlas.
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Figure 3.11.: Density profiles of a single vector soliton after 100 ms of free evolution.
The markers correspond to the experimentally measured 1d densities binned over
3 pixels (1.26 µm in the image plane of the atoms). In the upper plot values of a
single realization are shown. The lines are density profiles calculated from eq. (3.8)
convoluted with a Gaussian with 1.2 µm RMS width to simulate the resolution of
our imaging setup [64] and a fringe removal algorithm is applied to remove noise
from the pictures [157]. The soliton parameters are independently extracted (see
text). The bright components in mF = ±1 are occupied by N+1 ≈ 1100 atoms and
N−1 ≈ 860 atoms, respectively. The lower plot shows the depletion in the total
density associated with the solitons of Manakov type. To obtain the values plotted
here we subtract density profiles with and without solitons. The data points are
averages over 20 realizations; error bars mark the 1 s.d. interval of the mean. This
figure is similar to the one shown in [83].
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For the calculation of µ the value c0 ≈ 5.169 · 10−51 Jm3 in accordance with the
scattering lengths given in [53] has been used.

For the profiles in the upper plot the mF = ±1 model predictions fit the
measured data well. For mF = 0, however, the measured peak depletion shows
a significantly larger value than the model. We attribute this deviation to the
short time-of-flight period to separate the mF components during SG imaging (see
section 2.5.1). After the SG pulse the mF components are spatially separated such
that no interactions occur between the different components. Thus, the states in
these single component condensates does not resemble a self-consistently stabilized
soliton solution anymore; in mF = 0 such a single-component dark soliton should
have a width 1/κ ∼

√
2ξd = 0.5 µm. Therefore, we would expect the background

density to partially fill up the depletion in mF = 0 during the short time-of-flight.
The much lower density of the bright components may be small enough that no
significant dynamical expansion occurs during this period.

Due to this dynamical deformation of the density profiles during imaging the
measured total density does not correspond to the actual profile during the evolution.
Therefore, to resolve the small total density depletion of ∼ 2 % expected for our
soliton parameters we image without SG separation. Additionally, we average
over 20 realizations and subtract subtract density profiles without solitons. With
this we are able to determine a depletion of 100 atoms in the range of the soliton,
corresponding to a peak depletion amplitude of approx. 3 %. Like the single mF
profiles, also this parameter is in good agreement with the Manakov vector soliton
model.

3.4.5. Propagation in Harmonic Traps
In homogeneous potentials, i.e. the exact Manakov scenario for which the soliton
solutions eq. (3.8) have been derived, the solitons propagate at a fixed velocity
between zero and the speed of sound cs. More complicated external potentials, for
which a harmonic trap certainly is a classical example, the motion of solitons is
perturbed and even more complex dynamics becomes relevant.

At first, let us consider again the measurement associated to the initial time after
soliton formation (cf. figs. 3.3 and 3.9). Tracking the average positions of solitons
(and also wavepackets) over time after the initial formation we observe a linear
propagation over ∼ 200 ms (see fig. 3.10). This is expected for both wavepackets
and solitons on a homogeneous density background. While for wavepackets the
velocity seems to increase with the local rotation duration τ it decreases again in
the soliton regime. This effect may be connected to the change of atom number in
the initial wavepackets which increases with τ . Additionally, the velocities for the
excitations propagating to the left and right of the local rotation exhibit different
velocities. The left wavepacket is always slower than the right one while for the
solitons the situations is reversed.

For solitons this phenomenon can be understood by taking into account the
curved density background provided by the harmonic trap. The rotations are not
performed perfectly in the center of the trap but slightly to the right. This means
that the right excitation travels in the same direction as the total density gradient
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while the left one propagates in a roughly constant trap background. As we will
discuss later, the kinetic properties of the BDB solitons seem to be derived from the
properties of a single component dark soliton with the same amplitude as the dark
component of the vector soliton. For dark solitons propagating in an inhomogeneous
density the amplitude of the density depletion stays constant. This means that
the darkness, i.e. the amplitude relative to the background, and associated with
this quantity also the velocity changes. When propagating towards a lower density
the soliton becomes slower. Since the right soliton in our experiments propagate,
on average, in a slightly lower background density it is therefore expected for its
velocity to be smaller than value extracted for the left soliton.

For single component dark solitons on a stationary background the equation of
motion mẍ = −∂xV/(2m) [158] is modified by a factor of 1/2 in comparison to a
classical object. In harmonic traps V = mω2x2/2 with frequency ω this leads to a
reduced oscillation frequency of ω/

√
2. For vector solitons with bright components

the situation is similar but modified by the interaction of the bright components
with the trapping potential. For 2 component dark-bright vector solitons this leads
to [141]

ẍ = − 1
2m

⎛⎜⎜⎝1 − N̄B

4
√︃

1 +
(︂
N̄B/4

)︂2
− V (x)/µ

⎞⎟⎟⎠ ∂xV (x) (3.22)

where N̄B = NB/(
√

2ξdn0) denotes the atom number in the bright component
relative to the atom number per healing length ξd of the background. Since the left
term in eq. (3.22) is always ≤ 1/2 for vector solitons we would therefore qualitatively
expect a behavior similar to that of the single component dark solitons. However,
the filling of the soliton due to the bright component will reduce the effective force
−∂xV (x) on the soliton such that the oscillation frequency will be smaller compared
to the single component scenario.

For an experimental analysis of the motion of the BDB vector solitons we generate
two pairs in the WG trap (see section 3.5.2 for details of the preparation), which has
a roughly harmonic trapping potential in longitudinal direction with trap frequency
ω∥ = 2π × 1.6 Hz. Figure 3.12 shows the ensuing oscillation in the trap. For such a
harmonic potential V eq. (3.22) implies a soliton frequency of

ω2 ≈
ω2

∥

2

⎛⎜⎜⎝1 − N̄B

4
√︃

1 +
(︂
N̄B/4

)︂2

⎞⎟⎟⎠ (3.23)

for an oscillation where N̄B ≫ V (x)/µ. As expected from this, we observe a soliton
oscillation frequency of ω ≈ 0.6 Hz which is smaller than the single component
soliton frequency ω∥/

√
2 ≈ 2π × 1.1 Hz [158]. However, applying eq. (3.23) with

a bright atom number6 of NB = N+1 + N−1 ≈ 2000 atoms (cf. fig. 3.14), and
with the other parameters similar to the ones given in section 3.4.4 (leading to

6The summation of the bright atom numbers is justified because the symmetry of the Manakov
NLSE allows the rotation of the complete bright component population to a single hyperfine
state. Thus, after rotation the system is a two-component dark-bright system, for which
eq. (3.22) is valid [142].
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Figure 3.12.: Histogram of soliton positions for an oscillation in a harmonic
trap over an extended period of time. Two soliton pairs are generated as initial
condition and then freely propagate in the harmonic oscillation potential with
trap frequency ω = 2π × 1.6 Hz centered around the zero position. The positions
are extracted from Gaussian fits to the mF = ±1 components. Every 20 ms the
evolution is sampled and histograms of the positions are calculated. For each
time the histogram is independently normalized to the same value independently
to enhance the visibility of the spread of positions at late times. The oscillation
frequency of the solitons is roughly 1/800 ms ≈ 0.6 Hz. Over time the soliton
amplitude decays (see fig. 3.14) such that the turning points, where the dark
component becomes black, move outward. The bending of soliton trajectories
towards the trap center around t = 160 ms may be caused by a decrease of the trap
density due to a slight breathing of the density in the harmonic potential.
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Figure 3.13.: Fluctuations of the soliton position around the extracted average
position. In each single realization the fitted solitons are ordered according to
their position. The inset shows this ordering into 4 different groups marked by the
colors for the result of each single realization (the axes of the inset are the same
as in fig. 3.12). The plot shows the standard deviation of the fit positions within
each of these groups for evolution times prior to the second collisions at around
450 ms. The solitons which are located farther from the trap center (blue and cyan)
consistently show larger position fluctuations than the ”inner” solitons (red and
green).

N̄B ≈ 12), results in an oscillation frequency ω ≈ 0.3 Hz, which is much slower than
the observed value. This is the case because eq. (3.23) does not account for the
soliton-soliton interactions, which modify their oscillation frequency [113, 137, 159].

Additional to the oscillation fig. 3.12 clearly shows that the spread of the soliton
position strongly increases over time. This effect may originate from systematic
fluctuations of the initial soliton stemming from fluctuations of the local Rabi
frequency amplitude. On the other hand, also scattering with thermal excitations
of the background affect the soliton motion [108, 160]. While the former should be
equal for all solitons around 200 ms a clear increase of the position spread is visible
for the solitons at their turning point at the trap edges (see fig. 3.13). Because the
non-condensed part of the background predominantly occupies the trap edges in a
harmonic trap [47] it is conceivable that mostly thermal scattering is responsible
for the increase of fluctuations in the position and therefore also in the velocity.

Experimentally we also observe a decay of the soliton amplitude. To quantify
this evolution we consider two observables which should behave similarly: the sum
of the atom number NB in both the bright components, summed over a range of
±3 RMS radii, and the fit amplitude to the mF = ±1 density profiles. Both show
an exponential decay (see left plot of fig. 3.14) with 1/e lifetime of (1.40 ± 0.02) s
and (1.49 ± 0.02) s, respectively.
NB shows two jumps around 250 ms and 450 ms, which correspond to the times of

collision between the solitons in fig. 3.12. On the mean field level, soliton collisions
should conserve the atom number NB [141, 143]. Therefore, these jumps may be a
sign of a non-elasticity in the soliton collisions in our system, associated with the
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Figure 3.14.: Bright component atom numbers and RMS radius extracted for
the oscillations shown in fig. 3.12. The left plot (and inset) show the decay of the
atom number NB = N+1 +N−1 (fit amplitude) of the bright components averaged
over all solitons and realizations. The red line is a fit of an exponential function
f(t) = a exp(−t/t0) with t0 = (1.40 ± 0.02) s (t0 = (1.49 ± 0.02) s). On the right
the corresponding average values of the RMS with of the fits to the solitons are
shown. While the soliton amplitude decays its width stays almost constant over
the observed time interval. The error bars in all figures show the 1 s.d. interval of
the mean values; where no error bars are visible the error is smaller than the plot
markers.

breaking of the integrability of the Manakov model.
Additionally, scattering with perturbation potentials, like here in the form of the

confining harmonic trap, is possible and has been studied for single-component dark
solitons [22]. The acceleration of solitons leads to the emission of phonons [161],
which, in a harmonic trap, may be re-absorbed [160]. In anharmonic potentials
phonons may dephase which suppresses the re-capture and enhances the decay
rate of the soliton. In multi-component solitons the dark component generates
an effective potential for the bright components [100, 130]. Thus, a damping of
the dark component may lead to radiating atoms out of the soliton to maintain
the soliton solution. Additional to the scattering with an external potential, also
interactions with the thermal part of the atomic cloud leads to dissipation [22].
The transverse extent of the dipole trap breaks the integrability of the Manakov
model and allows scattering between thermal excitations and dark solitons, which
leads to a decay of the darkness and an acceleration of the soliton [108]. For an
initial darkness ≲ 0.4 the amplitude decay can roughly be approximated by an
exponential function, where the lifetime t0 ∝ T depends on the temperature T .

This is in good agreement with the results observed in fig. 3.14. A more elaborate
study of a 2-component dark-bright soliton in an harmonic trap suggests that
the presence of the bright components reduces the damping in comparison to a
single-component dark soliton [159]. This is conceivable because the increase of the
soliton width due to the presence of the bright components places the soliton deeper
in the 1d limit, where the transverse instability is less relevant [141]. Nevertheless,
similar to scattering off a potential, both decay channels lead to a anti-damping of
the osicllations. This occurs due to the coupling of soliton amplitude and velocity; a
soliton of vanishing amplitude or energy has the largest velocity v ≈ cd. Therefore,
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in the harmonic trap the inversion points of the soliton motion, which is also the
position at which the dark soliton component depletes the full background (becomes
”black”), move outwards. This can nicely be observed in fig. 3.12.

Curiously, while the amplitude shows a significant decay we observe that the
soliton width stays almost constant (see right plot of fig. 3.14). For atom loss
from the soliton both a decrease in amplitude as well as a decrease of the width
would reduce the atom number contributing to the soliton. For single-component
dark solitons, in fact, the width would change together with the amplitude because
the equivalent form of eq. (3.10) with an equal sign couples both quantities. For
the vector soliton case, however, both quantities are independent and indeed, our
experiment shows that the width of the vector solitons only weakly couples to the
decay channel.

3.4.6. Effective Interactions
In the previous discussion of the BDB vector solitons we have seen that the inter-
actions between dark and bright components significantly alter the soliton solution
compared to single-component solitons. Nevertheless, many of the dynamical
properties of its propagation the vector soliton inherits, at least analytically, from
single-component dark solitons. Further, the dynamics of the bright soliton com-
ponents during the collisions discussed in section 3.5.2 are very similar to the
dynamics of 2-component bright solitons described in [23]. This suggests, that an
effective description of the GPE (3.6) should be possible which decouples the dark
and bright components ψ̃0 and ψ̃± such that

ψ̃0 =
(︄

−ℏ2∇2

2m + Ṽext + g̃00

⃓⃓⃓
ψ̃0

⃓⃓⃓2)︄
ψ̃0, (3.24)

ψ̃± =
(︄

−ℏ2∇2

2m + Ṽext + g̃±

⃓⃓⃓
ψ̃±

⃓⃓⃓2
+ g̃+−

⃓⃓⃓
ψ̃∓

⃓⃓⃓2)︄
ψ̃±. (3.25)

with effective potential Ṽext and effective intra-species interaction constants g̃00
and g̃± and inter-species interaction g̃+− between the bright components ψ± in
mF = ±1. These effective interactions are obtained by rewriting the density |ψj|2
of the coupling term. Here, we also changed the notation from ψj to ψ̃j to indicate
that this effective description only approximately describes the corresponding fields.
Here, the effective interactions will be reduced in strength because of the repulsion
provided by the respective other soliton components. Similarly, for the existence of
bright components, effective attractive interactions g̃± < 0 are required, although
the underlying interactions of 87Rb are purely repulsive.

The procedure for decoupling the GPEs of the bright and dark components
is based on the scheme applied in [162] and also in [127, 163] for eliminating a
highly occupied level in a two-component system. However, the procedure applied
here will diverge at crucial points. For separating the GPEs two assumptions are
applied: we assume that the total background density profile n0(x) (in analogy
to the constant background in eq. (3.8)) of the system without the soliton7 is

7Here, the excitation does not necessarily have to be a soliton but can also be a general excitation
which fulfills the two relevant assumptions.

80



3.4. EXPERIMENTAL REALIZATION OF VECTOR SOLITONS

well-described by a TF profile (given by eq. (2.3)) and the density perturbations
of the bright and dark components have the same functional form. Given that
|ψ−1|2 + |ψ+1|2 = af(x), the second condition implies that the dark component
density is described by |ψ0|2 = b(1 − f(x)), with a and b being some real numbers.
Thus, the densities can be expressed in terms of a perturbation δn0(x) of the total
density as

|ψ0|2 + |ψ−1|2 + |ψ+1|2 = n0 + δn0. (3.26)
Based on the assumption of the equal shape of the density profiles in all components
this perturbation may be expressed in terms of the bright component densities as

δn0 = D

D0 −D

(︂
|ψ−1|2 + |ψ+1|2

)︂
. (3.27)

Here, the explicit form of eq. (3.8) was assumed for ψ±1 to derive the prefactor
in terms of the darkness D of the total density and darkness D0 of the mF = 0
component of the BDB vector soliton. With these two relations the dark component
density |ψ0|2 can be eliminated from the bright components in the GPE (3.6) to
obtain eq. (3.25) with the effective couplings8

g̃± =
(︄

1 − 1
η2

)︄
g±, (3.28)

g̃+− =
(︄
g+−

g±
− 1
η2

)︄
g±. (3.29)

Here, the real couplings g± and g+− are associated to the intra- and interspecies
scattering lengths of the bright components mF = ±1, respectively (cf. fig. 3.5).
Note that the elimination simultaneously rescales the amplitude of an external
potential such that Ṽexp = (1 − g±/g00)Vexp. An analogous procedure may be
applied to also decouple the dark component from the bright ones.

According to its definition the relative amplitude η of the bright vector soliton
components is always < 1, which implies g̃± < 0. Thus, the total density depletion
induced by the vector soliton induces effective attractive interaction between the
bright components. For the typical experimental soliton parameters given in
section 3.4.4 1/η2 ∼ 1.03, such that g̃± < 0 and g̃+− < 0. Here, the effective
scattering lengths are ã± ≈ −3.4aB and ã+− ≈ −2.4aB. To verify the validity of
this effective description we may approximate the bright components of eq. (3.25)
as a single component bright soliton with interaction constant g = g̃± + g̃+−. When
calculating the density amplitude of the bright soliton solution given by eq. (3.2)
we arrive at a value of approx. 210 atoms/µm, which is in good agreement with
the combined amplitude measured in fig. 3.11.

For small velocities and large soliton widths, when η becomes close to unity, g̃+−
may also become attractive. Here, enforced by the strong interspecies repulsion
between mF = ±1 and mF = 0, the approximations should still hold true but the
difference of scattering lengths displaces the system far from the Manakov limit.

8Note that 1 +D/(D0 −D) = 1/η2. Because away from the soliton the background is exclusively
given by the mF = 0 population the corresponding density is expressed as n0(x) = (µ −
Vext(x))/g00 in terms of the mF = 0 interactions.
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Therefore, different phenomena may be expected to emerge. It will be interesting to
investigate whether the soliton interactions discussed in the next sections are still
described by the Manakov predictions in this regime. Particularly, the soliton may
transition to a state similar to a self-bound droplet [164]. However, for the collisions
considered in the following, effects due to the presence of the dark component is
expected [156].

3.5. Soliton Collisions
In the previous section we discussed the requirements for the generation of solitons
in the experiment, the initial formation of these excitations. Further, we compared
the measured density profiles with the predictions of the Manakov model and
confirmed its applicability to the parameter regime of our experiment. Clearly, one
of the most striking aspects of solitons is their non-dispersive propagation, shown in
section 3.4.5. This may be viewed as particle-like behavior in the sense of classical
objects. Actually, for solitons this analogy goes beyond their propagation but is
also applicable to their interactions: they exhibit close-ranged interactions, which
may change their state during collisions, and, after collision, retain this changed
state.

Of course, the actually possible range of interactions phenomena between solitons
are much richer than the simple case outlined above. Vector solitons combine
the interaction effects of dark and bright components and therefore lead to a
wider range of interactions and even bound states [131, 141]. Going beyond the
mean-field approximation, also quantum effects influence correlations between
phase and position or momentum of the soliton via their interactions [165]. While
the latter effects require a tremendous experimental precision and stability, it is
usually feasible to access these particle-like interaction effects outlined in the first
paragraph .

3.5.1. Collisions in Single Component Systems
In general, for single-component Manakov solitons two types of interactions occur:
”repulsive” and ”attractive” collisions. These terms are related to the total density
distributions describing the system at the time of closest approach. Here, ”attractive”
describes a singly peaked profile in which both solitons overlap while a ”repulsive”
interaction features a density minimum between the colliding solitons. For bright
solitons these scenarios can be understood as interference between two patches
of the coherent wavefunction, which depends on the phase offset of these patches
[166]. In contrast, for dark solitons only repulsive collisions occur [167].

As an example, let us consider a pair of counter-propagating bright solitons with
the same amplitude and velocity generated from the same coherent cloud. Then,
only the position dependent phase evolution in eq. (3.11) will be different but of
same absolute value and opposite sign. Therefore, the initial phase offset from the
common coherent reference fully determines the interference of the solitons. Thus,
a phase difference of π will lead to destructive interference (”repulsive” collision)
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and a vanishing phase difference induces fully constructive interference (”attractive”
scenario).

3.5.2. Vector Soliton Collisions
In comparison to the single-component scenario vector solitons allow for a much
larger variety of collision dynamics by combining effects of the bright and dark
constituents. As we have seen before, the motion of the solitons seems to be
reminiscent of the dark soliton propagation. Here, we will further extend the
conceptual separation between bright and dark components. Across collisions
the dark components stay approximately invariant; i.e. they do not participate
in collision dynamics. The bright components, on the other hand, constitute a
coherent 2-component internal degree of freedom similar to a pseudo-spin 1/2
particle. We will see that soliton collisions change this internal polarization. In the
following we will work out the experimental control required for the observation of
this dynamics and discuss the properties and show an application of this behavior
in the experiment.

3.5.2.1. Experimental Measurement

Starting from the procedure discussed in section 3.4.1 a pair of solitons can be
generated in the experiment at arbitrary positions. Because the manipulation
involved in this procedure is restricted to a spin rotation on a localized patch the
remaining system is not perturbed. Thus, multiple local spin rotations can be
combined to generate multiple soliton pairs as it shown in fig. 3.12. In principle, it
is even possible to apply the rotations in parallel to simultaneously seed the desired
number of solitons in the system. However, when combining multiple frequencies
in an AWG signal undesired side-bands arise close to the required frequencies.
Although the spectral power in these frequency ranges is small compared to the
desired frequencies they still generate measurable perturbation on the background.
To eliminate these effects we chose to generate the single pairs sequentially. Never-
theless, this happens ”quasi-simultaneously” because the time scale of the local
Rabi oscillation is small compared to the density interaction timescale and therefore
also to the soliton movement in the system.

Applying this method we generate two pairs of solitons in our system and
investigate the collision of the two inner solitons as shown on the right side of
fig. 3.15. The local rotation generates vector solitons with equal populations
occupying the bright components. Strikingly, as shown on the bottom of the left
half of the figure, the bright components exchange population during the collision.
This dynamics is associated to the soliton polarization c = (c+1, c−1)T in eq. (3.8).
Note here, that for the observation of this effect it is crucial to cancel the magnetic
field gradient to high precision as is discussed in section 3.5.3.

To investigate this phenomenon further it is necessary to control the phases
between the bright components. Employing the pseudo-spin 1/2 description of
the two levels mF = ±1 our method generates solitons without imbalance in the
populations NmF , i.e. Sz = (N+1 − N−1)/(N+1 + N−1) = 0. In the spin sphere
picture this corresponds to expectation values on the equator. Analogous to the

83



CHAPTER 3. VECTOR SOLITONS

20µm

D
en

si
ty

 (1
/µ

m
2 )

0

10

20

30

40

50

60

Position (µm)

Ev
ol

ut
io

n 
Ti

m
e 

(m
s)

−80 −40 0 40 80

0

80

160

240

320

400

D
en

si
ty

 (1
/µ

m
)

0

70

140

210

280

1 2

12

−1

+1

0

Figure 3.15.: Atomic Densities during collision of two vector solitons. The left
plots show absorption pictures for the generation of two soliton pairs, after some
free evolution and after collision. During the collision the bright components
exchanged populations such that after collision the solitons have opposite atom
number imbalances in the mF = ±1 components. The plot on the right shows the
propagation of the bright parts of the soltions as proxy for the soliton movement.
Here, for each evolution time approx. 45 – 90 realizations have been averaged. The
apparent decay of the bright component amplitude results from this averaging over
realizations with fluctuating soliton positions. Pseudo-spin resolved data of the
cutout marked by the rectangle are shown in fig. 3.16. The numbers (1) and (2)
define the order of the solitons for the differences ∆φL (see text). The data on the
left is shown for a phase difference of ∆φi

L ≈ 215◦ while the data on the right is an
average over all phases (cf. fig. 3.17 for the measured phases).
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Figure 3.16.: Examples of vector soltion collisions for different initial Larmor
phase differences ∆φi

L = φ
(1)
L − φ

(2)
L . Here, the numbers refer to the ones marked

on the right-hand side of fig. 3.15 and the cutout shown there is a zoom of the
region marked by the rectangle of the same plot. The initial pseudo-spin 1/2
orientation in the x-y-plane is marked by the green arrows for each soliton. Below,
the z-projection, indicated by the density difference n+1 − n−1, is marked by the
hue of the color. Simultaneously, the bright density n+1 + n−1 is encoded in the
saturation of the colormap. For each time a single realization is shown. The soliton
polarization after collision shows a strong dependence on the initial phase difference
∆φi

L. This figure is adapted from [83]

representation of 2-level states on the Bloch sphere, the rotation around the polar
axis corresponds to a change of the relative phases, or, in spin language, the Larmor
phase φL. This, in turn, is connected to the transverse spin projections Sx and Sy.
Thus, to control and measure the full soliton polarization c we require access to all
pseudo-spin projections of both colliding solitons.

Appropriately, the method of successive local rotations also enables the inde-
pendent control of the local rotation. Analogous to spin-1/2 systems, its degree of
freedom is given by the orientation of the rotation axis in the plane transverse to
the homogeneous magnetic offset field. The angle of this axis can be adjusted by
changing the phase of the amplitude modulation of the local control laser beam.
The amplitude modulation generates the oscillation of the fictitious magnetic field
required for the local coupling (see sections 2.4.3, 2.6.1 and 2.6.6). This changes
the phase of the population which is transferred to mF = ±1 by the local coupling
and thus adjusts the Larmor phase of the pseudo-spin system.

For the measurement of the pseudo-spin projections we apply two different
readout schemes. The projection Sz along the magnetic offset field can be accessed
directly from the populations obtained after the SG pulse. To obtain the transverse
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projections we apply an appropriate spin rotation to map the quantity of interest
to the z-axis for readout. However, fluctuations of the magnetic offset field lead
to a 2π dephasing between the Larmor phase angle of the prepared spin and the
readout axis over a time scale of less than 30 ms on the 1 s.d. level. Nevertheless,
the field gradients along the cloud are experimentally well controlled, such that
the relative Larmor phase fluctuations between solitons in the same realization are
negligible. To obtain a precise measurement of the difference ∆φL between the
Larmor phases of the colliding solitons we measure both transverse pseudo-spin
projections simultaneously as described in section 2.5.5. For this, the populations
are split between the F = 1 an F = 2 hyperfine manifolds and in each system
one of the spin projections is extracted. In the measurements we observe that the
Larmor phase ∆φL does not evolve significantly during free propagation when the
magnetic field gradient is fully compensated (see section 3.5.3 for more details on
the free phase evolution). This is also consistent with the Manakov solution (3.8)
of the vector solitons, for which the complex polarization vector c is a constant
parameter. Therefore, we define ∆φi

L and ∆φf
L as the initial and final Larmor

phase differences between the central solitons, which only changes during their
collision. More precisely, the differences ∆φL = φ

(2)
L −φ

(1)
L between the two solitons

are defined with respect to the numbers given on the right-hand side of fig. 3.15.
In fig. 3.16 we show the density and their imbalance in the bright components as

measure for the pseudo-spin z-projection during the collision for different initial
values of ∆φi

L. The final pseudo-spin z-projection of the solitons after collisions
show a strong dependence on this initial difference. In particular, we can tune the
final polarizations of the solitons continuously and deterministically. For opposite
initial polarizations with ∆φi

L = 180◦ obtain a vanishing Sz imbalance while for
some other values we obtain large values of Sz. In the following we will investigate
this effect more systematically.

3.5.2.2. Comparison with Mean Field Theory

To obtain a more thorough quantitative picture we extend the measurements of
the final pseudo-spin projections also to the transverse plane to obtain also the
final Larmor phase difference ∆φf

L. The corresponding experimental measurements
are shown in fig. 3.17. The measured data indicates vanishing Sz (i.e. no change
in polarization) for ∆φi

L = 0◦, 180◦ but the peak values for Sz seem to be reached
not in the middle between these points (i.e. no sinusoidal behavior). Tagging the
solitons with their Larmorphase, which does not evolve during free propagation,
allows tracking them trough the collision. Comparing the final Larmor phase
differences ∆φf

L with the initial values we obtain a curve which roughly tracks
a line through the origin but shows interaction induced deviations from this
unperturbed propagation. This suggests that the bright components of the solitons
are transmitted through each other as compared to being reflected during collision.
Further, by summing all measured spin projections to obtain the full pseudo-spin
length |S| =

√︂
S2

x + S2
y + S2

z we investigate the coherence of the bright components,
each of which initially consist of approx. 1000 atoms. Overall, the initial state
shows a large coherence ≳ 0.8 which is preserved during the collision.
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Figure 3.17.: Comparison of experimental data and model predictions of the
polarization scattering of the vector soliton bright components. The data points
and dashed lines show the measured experimental data for the different pseudo-spin
projections after and prior to the collision, respectively. The total spin length
|S| =

√︂
S2

x + S2
y + S2

z is a measure for the coherence between the atoms contributing
to the bright components. It shows a high value which is preserved during collision.
The solid lines are predictions obtained from the Manakov model [143] for the
soliton parameters given in the text. This mean-field model shows good agreement
with our measurement results. The error bars mark statistical 1 s.d. intervals of
the mean. This figure is adapted from [83]
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For 2-component bright Manakov solitons the phenomenon of polarization scat-
tering during their collisions has first been described analytically a long time ago
[23]. In this work electromagnetic fields in a self-focusing medium (negative change
of the refractive index with the power of the radiation) were considered, where the
bright soliton components correspond to the two orthogonal orientations of the po-
larization. In this system soliton collisions lead to a redistribution of power between
the two polarizations. Here, although qualitatively similar in form, the presence
of the background and the dark component modify the analytical description. To
obtain the polarization change during collisions in [143] soliton pair solutions of
the GPE (3.7) are considered. Fixing the position of one of the solitons (i.e. in the
moving frame of this soliton) its parameters in the asymptotic limit t → ±∞ are
calculated. From these the polarization change from initial vector ci

j to final value
cf

j for soliton j = 1, 2 in accordance with the numbering scheme shown in fig. 3.15
can be obtained as

cf
1 = χ

(︂
ci

1 + A12
⟨︂
ci

2

⃓⃓⃓
ci

1

⟩︂
ci

2

)︂
,

cf
2 = χ

(︂
ci

2 + A∗
21

⟨︂
ci

1

⃓⃓⃓
ci

2

⟩︂
ci

1

)︂
,

(3.30)

with soliton parameter dependent coupling factors

Ajk =
z∗

j (z∗
k − zk) (q2

0 − |zk|2)
zk

(︂
z∗

j − z∗
k

)︂ (︂
q2

0 − z∗
j z

∗
k

)︂ (3.31)

and normalization

χ =
(︄

1 + (z∗
1 − z1) (z2 − z∗

2) (q2
0 − |z1|2) (q2

0 − |z2|2)
|z1 − z2|2|q2

0 − z1z2|2
⃓⃓⃓⟨︂

ci
1

⃓⃓⃓
ci

2

⟩︂⃓⃓⃓2)︄−1/2

. (3.32)

The variable q0 describes the chemical potential in dimensionless form and the
eigenvalues zj = ξj + i νj are associated with soliton j, where ξj and νj denote
dimensionless measures of the velocity vj and inverse width κj, respectively. The
dimensionless quantities are related to physical units by

q2
0 = µ

n0c1d
0
,

ξj =
√︄

m

nc1d
0
vj ,

νj = ℏ√︂
mnc1d

0

κj .

(3.33)

Here, c1d
0 denotes the effective 1d coupling constants which we estimate in our system

as c1d
0 = c0/(2πa2

⊥) with the transverse harmonic oscillator length a⊥ =
√︂
ℏ/(mω⊥).

This is strictly valid only when no higher oscillator modes are excited in the
transverse direction. With a transverse trapping frequency of ω⊥ = 2π×170 Hz our
experiment however is in a crossover regime between this approximation and the TF
approximation. Assuming a transverse TF profile one obtains values ∼ 20 % smaller
than with the approximation given here. By extracting the soliton parameters in a
similar fashion as presented in section 3.4.4 we obtain for the colliding solitons in
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Quantity Soliton 1 Soliton 2

v [µm/ms] 0.18 −0.21
κ [1/µm] 0.33 0.34
Sz 0.01 −0.05
n0 [atoms/µm] 471 456
ξj 0.09 −0.09
νj 0.12 0.12

Table 3.1.: Experimentally extracted soliton parameters used for calculating the
theoretical curves in fig. 3.17. The densities n0 are the background values obtained
for an evolution time t = 220 ms before the collision. ξj and νj from these respective
values while q2

0 ≈ 0.64 is obtained from the mean of both background densities,
leading to µ ≈ h× 540 Hz.

the current measurement the values given in table 3.1. By inserting these values
into eq. (3.30) we calculate the Manakov predictions shown in fig. 3.17. Because the
background density is not completely flat we use the background densities at the
respective soliton positions to determine the dimensionless quantities for velocity
ξj and width νj. Since the collision happens roughly in the middle between the
positions where these densities are extracted, we calculate the chemical potential
q0 from the average of the two values of n0.

The experimental system certainly is not a pure implementation of the Manakov
model given by eq. (3.7). For the derivation of this equation we neglected the
differences in the scattering length and the presence of SCCs (i.e. neglected the
spin interactions) and dropped the magnetic filed contributions to the energy
shifts. Nevertheless, we find that the solitons in our system (density profiles and
interactions) are still well described by the Manakov model.

For such deviations, namely spin interactions and the presence of external
magnetic fields, the properties of solitons in the spin-1 system have been studied
analytically and numerically [153, 154]. In [153] the phase ground state diagram
of solitons with dark component in mF = 0 has been mapped out. Its general
features are reminiscent of the single-mode spin-1 groundstate phase diagram,
where the second order Zeeman shift q influences the populations and relative
phases between the mF = ±1 levels. For large q > µ/2 the soliton groundstate
corresponds to a single-component soliton which continuously transitions to a BDB
soliton with equal populations in mF = ±1 for µ/4 ≲ q < µ/2. At moderate
shfits q ≲ µ/4 the groundstate develops a population imbalance in the bright
components, corresponding to a growing z-polarization for q → 0. In the experiment
at q ≈ h× 56 Hz we are thus in this latter regime where the energy of Manakov-like
solitons is close to the actual minimal energy soliton in the system.
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3.5.3. Application of Soliton Dynamics for the Measurement of
Magnetic Field Gradients

In the previous chapters the properties of the soliton dynamics have been discussed.
In particular, the internal pseudo-spin like degree of freedom in the bright compo-
nents showed interesting dynamics, which critically depends on the Larmor phase
of the colliding solitons. This chapter will discuss applying the coherent nature
of the vector solitons to realize precise phase measurements for the determination
of magnetic field gradients. This task is similar to a possible application of the
concept of a soliton interferometer [24–26]. While in these references only attractive
interactions are considered, a particular benefit of applying BDB vector solitons
is the possibility to realize such interferometers also in repulsively interacting
condensates.

In our experiment two scenarios are possible. As shown in the previous section,
the Sz-projection after a soliton collision depends on the difference in Larmor
phases of the colliding vector solitons. Therefore, Sz could directly be used as
interferometric contrast. Instead, we want to focus on another approach which only
utilizes the simultaneous readout to directly infer the differential Larmor phase
evolution between a pair of solitons. This avoids the soliton collision and may
potentially be more robust against technical fluctuations influencing the soliton
parameters.

From the vector soliton solutions (3.8) we know that there is no relative phase
evolution between the mF = ±1 components. Thus, the Larmor phase of the
bright components only evolves due to the external fields. This behavior is a direct
consequence of the self-consistent nature of the soliton solutions. The effective
potential of the dark components which guides the bright components is adjusted
precisely such that at all times there is no Larmor phase evolution. Even if the
soliton travels through the curved background density of the harmonic trap, if the
change if slow enough such that the soliton wavefunction can adjust adiabatically,
there is no Larmor phase evolution. For this reason BDB solitons resemble a
”probing particle” well suited to investigate the magnetic offset field.

In the experiment we apply a vertical magnetic offset field perpendicular to the
long axis of the trap. By applying a current I to a coil oriented along the axial
direction of the trap magnetic field gradients along the trap axis are canceled. For
measuring and minimizing this gradient a Ramsey sequence is applied. It consists
of two π/2 pulses applied to the |F = 1,mF = −1⟩ ↔ |2,−2⟩ transition with an
interrogation time of t = 50 ms in between. We apply this Ramsey spectroscopy to
the whole cloud and read out the resulting oscillation with spatial resolution. Due
to the spatially changing magnetic field strength the detuning from the transition
spatially varies. Thus, the final imbalance N−/N+ with N− = NF =2 −NF =1 and
N+ = NF =2 +NF =1 obtained after the interrogation time varies with the spatial
difference of the detuning. Assuming only a linear gradient, this detuning profile is
given by the spatial variation of the Larmor frequency profile

∆ωL(x) = ∆mF |gF | µB

ℏ
∇Bx (3.34)

with Bohr magneton µB, Landé factor gF , and magnetic field gradient ∇B along
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Figure 3.18.: Single experimental realizations of the magnetic field gradient along
the condensate measured via spatially resolved Ramsey spectroscopy on the levels
|1,−1⟩ ↔ |2,−2⟩. The measured imbalance N−/N+ (black dots) varies spatially
with the sine of the Larmor phase difference ∆φL(x) = ωL(x)t given by eq. (3.34)
over the Ramsey interrogation time t = 50 ms. For a large gradient (left plot)
the imbalance shows the expected modulation. For vanishing magnetic gradients
(right plot; cf. fig. 3.19) the Ramsey imbalance has a residual curvature. This is
most likely induced by mean field shifts of the curved background density in the
harmonic trap or spatial dynamics during the interrogation time.

the condensate. Here, the factor ∆mF specifies the sensitivity of the transition to
the Magnetic field. Because gF = −1/2 in F = 1 and gF = +1/2 in F = 2 this
factor is ∆mF = 3 for the transition probed during the Ramsey sequence.

Two exemplary single realizations of the imbalance extracted from the Ramsey
spectroscopy for different magnetic gradients are given in fig. 3.18. For large
magnetic gradients (see left plot) this method leads to an oscillatory spatial
modulation of the imbalance as expected. By linearly interpolating between large
magnetic gradients the rough compensation coil current for a vanishing gradient
can be estimated (cf. fig. 3.19). At this current, however the Ramsey imbalance
(right plot of fig. 3.18) still shows a residual curvature. This most likely stems
from spatially varying mean-field shifts due to the quadratic density profile in the
harmonic trap or spatial dynamics during the interrogation time induced by the
first π/2 pulse.

In contrast to this, solitons cancel all mean-field induced phase evolution as
explained before. Thus, by tracking the magnetic field induced phase evolution
over an extended period of time accurate measurements of the magnetic field
gradient are obtained. Here, we generate two soliton pairs and simultaneously
read out the transverse pseudo-pseudo spin projections Sx and Sy to gain access to
the Larmor phase difference ∆φL = φ

(2)
L − φ

(1)
L between the right and left soliton

(see fig. 3.19). Here, one soliton serves as phase reference for the other, which
effectively separates the fast Larmor precession time scale (ωL = 2π × 618 kHz)
from the comparably long experimental evolution period t ∼ 200 ms. This enables
a tremendous enhancement of phase resolution. To make sure both solitons have
the same initial Larmor phase orientation, i.e. ∆φL = 0 at t = 0, they are generated
at the same time by simultaneously applying two local rotations via two spatially
separated laser beams. The relative velocity v = v1 − v(2) ≈ 0.25 µm/ms of the
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CHAPTER 3. VECTOR SOLITONS

solitons is extracted from linear fits to their propagation. As shown before, the
soliton propagation is sufficiently linear to assume the relative position to evolve
according to x(t) = x0 − vt, where the initial soliton separation, inferred from the
linear fits to their propagation, is x0 ≈ 75 µm. The values of x0 and v are extracted
for each magnetic field gradient setting separately. Thus, from eq. (3.34) we obtain
the Larmor phase evolution

∆φL(t) =
∫︂ t

0
dt′ωL (x(t′)) t′ = ∆mFgF

µB

ℏ
∇B

(︃
x0t− 1

2vt
2
)︃

(3.35)

with gF = −1/2 in the F = 1 manifold and ∆mF = 2 for the Larmor phase evolution
in the pseudo-spin system provided by the bright components in mF = ±1. The
upper right-hand plot in fig. 3.19 shows the measured phase evolution and fits
according to eq. (3.35), where the only free parameter is ∇B. The resulting values
for the magnetic field gradients from the Ramsey method and soliton propagation
are shown in the lower plots of the same figure. The red line is a linear fit to the
data obtained by the Ramsey spectroscopies. While gradients obtained from the
Larmor phase method show a nice linear behaviour in the vicinity of ∇B = 0 the
Ramsey data displays an offset, as discussed before.

Effectively, the initial spin rotation and the readout of the transverse pseudo-spin
projections constitute a Ramsey sequence. During its interrogation time the self-
consistent canceling of mean-field shifts for the bright soliton components allows
for an increase of the interrogation on the scale of the soliton lifetime os 1.4 s (see
section 3.4.5). Thus, soliton-enhanced magnetic field gradient measurements allow
for a significant increase of measurement precision over the usual Ramsey method.
Here, technical fluctuations of the soliton velocity and initial positions will limit
the achievable precision. At these long interrogation times also the small difference
between the inter- and intraspecies scattering lengths (cf. fig. 3.5) may become
important when the atom number in the bright components are not perfectly
balanced.
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Figure 3.19.: Measurement of magnetic field gradients via soliton phase evolution.
The relative phase evolution ∆φL of two approaching and (almost) identical solitons
is measured. Depending on the current I applied to the magnetic field gradient
compensation coil the gradient and therefore also the Larmor phase evolution
of the solitons varies quadratically according to eq. (3.35). The data points are
averages over 3 experimental realizations and the solid lines are fits with ∇B as
only free parameter. The magnetic gradients, extracted from the soliton Larmor
phase evolution and additionally also from Ramsey spectroscopies, are shown in
the lower row. The red line is a linear fit to the data obtained from the Ramsey
method. For I < 3.4 the sign of ∇B values extracted from Ramsey spectroscopies
has manually been inverted. For small magnetic field gradients (around I = 3.4)
the Ramsey method is probably limited by mean field shifts due to the curvature of
the density or spatial dynamics during the interrogation time. Here, the differential
Larmor phase evolution of the solions still allow for accurate results. All error bars
show 1 s.d. intervals of the mean; where no error bars are visible they are smaller
than the plot markers.
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4. Spin Excitations in Quench
Dynamics

Quenches, i.e. instantaneous changes of a microscopic control parameter, induce
spontaneous excitations in the system. In case of many-body quantum systems,
where potentially all particles are interacting with each other, the description
of these highly excited states is, in general, intractable. Nevertheless, there are
concepts which offer the prospect of a general classification far from equilibrium.
While this aspect is discussed in chapter 5, here we will focus on the investigation of
the general structure of excitations and the generation of local defects. In particular,
this section will introduce the application of local spin rotations as an additional
initial condition. During evolution this state develops strong persistent fluctuations
in the system, which are distinct from previously studied initial conditions (ICs) in
this system [32, 55]. After a short introduction of the experimental sequence and
the initial conditions a characterization of typical spin excitations follows.

4.1. Layout of the Experiment
The experiments in this and the next chapter are performed in a quasi-1d box
potential. This is generated by a red-detuned elongated dipole trap (WG) super-
imposed with two blue-detuned laser beams at a wavelength of 760 nm. These
two beams are steered using the AOD setup and serve as sharp potential barriers1

which confine the atoms in the central region of approx. 130 µm in size, where the
longitudinal harmonic oscillator potential of the WG trap is approximately flat.2
We choose this trap geometry because here we aim to study the dynamics subject
to a large number of defects in the system. Here, the nearly constant density
prevents an accumulation of defects at the low densities near the trap edges, which
we usually observed for a harmonic confinement.

To initialize dynamics in the condensate the relative energy shift q between the
mF = 0 and mF = ±1 components (cf. eq. (2.12)) is changed instantaneously. This
quench is implemented via MW dressing (see section 2.4.2 for details) and tunes q
from a value deep in the polar phase (q ≈ h× 58 Hz) to a value in the EP phase
(q ≤ nc1). Here, spin-mixing processes driven by SCCs are tuned into resonance
and allow the spontaneous redistribution of population between the hyperfine levels.
The associated interaction time scale is ts ∼ h/ |nc1| ∼ 1 s. For the observation of
long-time non-equilibrium dynamics over the course of many ts, this implies the

1The density drops from 90 % to 10 % of the bulk value over a range of approx. 6 µm for atom
numbers between (40 – 150) k atoms. This corresponds roughly to the spin healing length
ξs = ℏ/

√︁
2mn |c1| ∼ (5 – 10) µm for these densities.

2Within the box trap the density varies by approx. (10 – 20) % for atoms numbers of (150 – 40) k.
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4.2. INITIAL CONDITIONS

access to long experimental evolution times. Here, we observe the spin dynamics
for up to ∼ 40 s.

4.2. Initial conditions
Mainly, two initial conditions will be of interest here. The first one is the polar state,
describing the scenario when all atoms are prepared in the level |F = 1,mF = 0⟩.
The second one is comprised of multiple local spin rotations with sufficient rotation
amplitude to form soliton pairs in the system (see section 3.4.1). For shortness,
these will be referred to as ”polar IC” and ”soliton IC” from here on. In the
following their respective properties and dynamics after the quench are outlined.

Polar Initial Condition
In this scenario approx. 150 k atoms are prepared in the mF = 0 state After
the quench, the polar state is unstable such that SCCs spontaneously build up
population in mF = ±1, which leads to transverse spin F⊥ (cf. sections 2.3.3
and 2.3.4). In accordance with the instabilities predicted by Bogoliubov theory, this
process takes place at a characteristic momentum ℏk such that a large population
builds up in the corresponding k-mode (see e.g. [55] for a measurement of this
instability). In the following evolution this localized spectrum is redistributed in
k-space.

In our experiments we observed that at large atom numbers of ∼ 150 k localized
excitations, which are generated after the quench, decay. This provides a controlled
reference of the non-equilibrium dynamics with a flat background spin length (see
the next section for more details).

Soliton Initial Condition
While previously flat backgrounds (e.g. the polar state) or linear waves have been
applied as initial condition [32, 55], here we introduce non-linear excitations in the
initial state as seed for the dynamics. This presents a potentially fundamentally
different IC because the longevity of these defects may affect the dynamics on much
larger timescales than other ICs. For small atom numbers we observe a lower decay
rate of these excitation, which is why we apply this IC in a system of ∼ 40 k atoms.

As shown in section 3.4.5 local spin rotations provide a versatile and well-
controlled method to reproducibly excite independent pairs of coherent vector
solitons. To initialize these in the system, a homogeneous condensate in the
polar state is prepared, followed by multiple local rotations. These are performed
consecutively within < 1 ms and are roughly equally spaced across the system. Here
we will usually investigate dynamics starting from up to 6 local spin rotations to
ensure that the mean distance between the rotations is larger than their width (see
fig. 4.1). Note, however, that due to this tight spacing the evolution of the emerging
solitons is strongly dominated by their interactions and therefore is not captured by
the free evolution usually assumed for the derivation of soliton solutions. Neither
is it clear that over the course of the dynamics, especially in the presence of SCCs,
the structure of the initially generated excitations persists.
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Figure 4.1.: Absorption picture with SG imaging of the soliton IC for the investi-
gation of non-equilibirum dynamics. The atoms are confined in a box-like potential
in the center of the harmonic trap with blue-detuned end caps. The atoms are
initialized in |1, 0⟩ and at 6 positions spin rotations are performed sequentially.
This particular realization is recorded for a total atom number of approx. 65 k.

Nevertheless, in the first ∼ 300 ms of the evolution, where excitations due to the
SCC instability are still small, the solitons start to propagate and collide with each
other (see fig. 4.2 for an exemplary evolution without q quench in the harmonic
trap).

In the first ∼ 300 ms of the evolution, where excitations due to the SCC instability
are still small, the solitons start to propagate and collide with each other (see
fig. 4.2 for an exemplary evolution without q quench in the harmonic WG trap).
Around the time of the third or fourth collision also SCC processes become relevant
and the system begins to develop large local fluctuations between realizations. This
is in contrast to the predictions of the integrable Manakov model which predicts
that the solitons emerge from an arbitrary number of collisions without change
in shape [168]. The differences of the scattering lengths between the hyperfine
substates (cf. fig. 3.5) in the experiment and the associated SCCs, however, lead
to a breaking of this integrability. Instead of recurrent soliton motion, we observe
that the soliton interactions lead to a strongly fluctuating system. It is interesting
to note, however, that even without the q quench such strong fluctuations build up.

4.3. Evolution of Spin Distributions

Over the course of the first ∼ 10 s the initial excitations in the system are re-
distributed and a structure specific for the two initial conditions builds up. To
illustrate their properties spin histograms of the full spin distribution will be
presented in the following. These are obtained from a simultaneous readout of
the 3 spin-1 projections Fx, Fy, and Fz as described in section 2.5.4. To obtain
the histograms of the local spin observables the values measured at each position
over all realization are evaluated equally. For an intuitive interpretation of the
spin distributions, 2d projections of the histograms are shown for a view along
z-direction (top line of plots) and along y-direction (bottom line) of the spin sphere.
The relative frequency of the measured results is encoded in the color.
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Figure 4.2.: Initial evolution after generation of the soliton IC. Averaged mF = ±1
densities (of up to 4 realizations) shown in the plot indicate the movement of the
vector solitons. Note that this measurement, deviating from the remaining dynamics
discussed here, is performed in the harmonic WG trap and without quench (i.e. in
the Manakov limit applied in chapter 3). The trap center is indicated with zero
and at the left and right edges the reversals of soliton propagation are visible. After
approx. 300 ms the excitations start to bunch together, which indicates an attractive
interaction. During the evolution the total density retains its approximately
quadratic TF profile centered around zero.
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Figure 4.3.: Histograms of all 3 spin dipole operators for evolution from the polar
initial condition (all atoms in |1, 0⟩) with ∼ 140 k atoms. The spin projections
are measured simultaneously as discussed in section 2.5.4. All spatial points and
realization contribute to the histograms. The upper row shows histograms in the
Fx-Fy-plane measured after different evolution times t after the quench and in
the lower row histograms of the Fx-Fz plane are displayed. Initially, the SCCs
generate large fluctuations in all spin directions which dampen down over time. In
the transverse directions the spin settles to a finite length and zero in z-direction.
During the imaging sequence in this measurement the top of the reference picture
is illuminated with higher intensity than the actual image. This leads to an
underestimation of atom numbers in the topmost SG component. To compensate
this, the atom numbers of the topmost component on the images (i.e |1,+1⟩ and
|2,−2⟩) are scaled such that Fx = Fy = 0 for the initial condition at t = 0 (see
section 2.5.4 for details on the calculation of the observables). This scaling factor
is used for all t.

Polar Initial Condition
As shown in fig. 4.3 the initial instabilities quickly generate spin excitations in
all directions. In the following dynamics these are redistributed such that after
approx. 17 s a well-defined transverse spin length |F⊥| builds up while the Fz exci-
tations become small. Here, at t ≥ 17 s the total spin length |F | =

√︂
F 2

x + F 2
y + F 2

z

settles to a well-defined value of |F | ≥ 0.76 which is mostly comprised of transverse
spin length |F⊥| ≥ 0.73. The quantity O denotes the average of the quantity O
over all positions and realizations.

The corresponding ring-shaped histograms emerging in the in the x-y-plane for
large evolution times are qualitatively in accordance with the Mexican-hat-shaped
mean-field potential for q > 0 in the EP phase (cf. section 2.3.4).3 In fact, in the
experiment the parameter q is chosen by maximizing |F⊥| after 30 s. At this point
the dynamics of the system is dominated by phase excitations. Their amplitude
slowly decreases over time, which is associated to the scaling evolution (see chapter 5
for details) observed during this period. Here, the populations are transported

3Here ,the ring shape is mainly a result of a randomization of the orientation of the readout
axes. At these large evolution times the histogram of a single realization does typically not
cover the whole circle but only a fraction of it.
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Figure 4.4.: Histograms of all spin dipole operators for evolution from the soliton
initial condition with ∼ 30 k atoms. The data extraction, post-processing and dis-
play of the plots is equivalent to fig. 4.3. Throughout the evolution the fluctuations
stay symmetric around zero.

towards lower momenta, leading to an increasing population of the k = 0 mode.

Soliton Initial Condition
Similarly to the polar IC, also for the soliton IC the excitations induce strong
fluctuations in all spin projections. However, the crucial difference here is, that these
fluctuations persist during the whole evolution. At 10 s the averaged spin lengths
settle to |F | ≈ 0.61 and |F⊥| ≈ 0.55 in the transverse plane. Subsequently, only a
small decay of these values and also no reduction of the fluctuations is observed.
The initial generation of excitations in the system seemingly saturates the system
at the length scale on the order of the spin healing length ξs = ℏ/

√︂
2mn |c1| ∼

5 µm (cf. spectra in fig. D.2, where the healing wavelength for the initial density
corresponds to 1/λs = 1/(2πξs) ∼ 0.03 µm−1) such that only a slow redistribution
is possible.

Comparison
Interestingly, the excitations emerging from the soliton IC are much more stable
than the ones generated from the polar IC. This may be a result of the energy of
the corresponding state. The local rotations introduce additional energy to the
system which is not present for the polar IC. Furthermore, the lower atom number
of the soliton IC leads to a shallower mean-field potential (cf. fig. 2.4), additionally
inhibiting the build-up of the expected ring-structure. Nevertheless, the excess
energy added by the local rotations corresponds to an energy well below 1 nK.
Thus, this contribution is on the order of ∼ 0.01Tc of the critical temperature Tc of
the condensate.4 In thermal equilibrium this would not lead to a full suppression
of the easy-plane spin expectation values as observed here [56]. Therefore, it can
be concluded that the system initialized with the soliton IC does not reach thermal
equilibrium during its whole evolution observed here.

4Estimating the order of the critical temperature [47] by applying the TF approximation in the
WG potential with N = 40 k atoms, we obtain Tc ∼ 60 nK.
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Figure 4.5.: Spatial profiles of |F⊥| and φL for single realizations at time t = 29 s
for the polar state and soliton ICs. Almost all transverse spin defects generated after
the quench from the polar state decay over time. Their characteristic structure is a
reduction in the spin length with simultaneous jump in the Larmor phase as shown
in the left plot. The spin length |F⊥| and phase φL are qualitatively similar to the
typical profiles of dark solitons of the NLSE (cf. fig. 3.2). To identify such excitations
in the spin it is useful to evaluate the quantity S(x) =

(︂
|F⊥| − |F⊥| (x)

)︂
|∇φL(x)|

(see discussion of eq. (4.1) for the definition of the involved quantities). The
corresponding profiles for the single realizations are shown in the lower plots. The
evolved soliton IC shows strong fluctuations in both, the spin length and phase,
leading to a strongly peaked signal of S(x). The average 1d density for the evolved
polar IC (soliton IC) at t = 29 s is approx. 510 atoms/µm (170 atoms/µm), which
leads to ξs ∼ 7 µm (ξs ∼ 13 µm) with the interaction constant extracted from
fig. 2.5.

4.4. Generation and Spatial Structure of Spin
Defects

Investigating the structure of spin excitations in the system reveals that often
correlations between the spin length |F⊥| and jumps of the Larmor phase φL in
the transverse plane arise (cf. fig. 4.5). Here, the properties of these excitations
and possible mechanisms for their generation will be discussed.

To systematically investigate the amount of generated excitations and their
stability over time we evaluate the two-point cross correlator between depletions in
the spin length and phase gradient

S(∆x, t) = 1
N∆

∑︂
x

⟨︂(︂
|F⊥|(t) − |F⊥| (x, t)

)︂
|∇φL(x+ ∆x, t)|

⟩︂
. (4.1)

Here, the quantity |F⊥|(t) = ∑︁
x ⟨|F⊥| (x, t)⟩ /Nx denotes the mean transverse spin

length averaged within the evaluation window consisting of Nx pixels, ⟨·⟩ denotes
the ensemble average, and N∆ = Nx − ∆x/spx is the number of pixels contributing
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Figure 4.6.: Correlation between dips in the transverse spin length and Larmor
phase gradient for polar and soliton (with 6 local rotations) initial conditions.
The atom numbers at t = 0 are ∼ 150 k and ∼ 40 k, respectively. In the left
column the correlator profiles S(∆x, t) defined in eq. (4.1) shows a well-localized
correlation as expected from the profiles shown in fig. 4.5. While for the polar
initial condition only a small amount of these excitations are generated after the
quench the correlator indicates a large amount of excitations for the soliton IC.
The correlator amplitude S(∆x = 0, t) displayed in the right-hand plot shows the
time evolution of the excitations in the system. In contrast to the quick decay for
the polar IC the indicated amount of the excitations stays almost constant for the
soliton IC.

to the sum in eq. (4.1). This value is the number of overlapping pixels when shifting
the |F⊥| and ∇φL arrays by the distance ∆x, which corresponds to a shift of
∆x/spx pixels. The size of each pixel corresponds to the distance spx ≈ 3 × 0.42 µm
on the atomic cloud in the focal plane of the imaging setup.5

Polar Initial Condition

Although a well-defined spin length builds up for the quench from the polar
state, the are some spin defects being generated after the quench. These usually
exhibit the previously described correlation between spin length depletion and a

5Here, we are binning (i.e. averaging over non-overlapping intervals of) 3 adjacent pixels of the
image to account for the optical resolution. The distance spx therefore corresponds to the size
of 3 camera pixels in the focal plane.
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CHAPTER 4. SPIN EXCITATIONS IN QUENCH DYNAMICS

steep phase gradient as shown for an exemplary spin profile in the left-hand plot of
fig. 4.5. This resembles the structure of dark solitons described in section 3.2. For
previous quench experiments in a spinor gas solitons have already been discussed
as excitations arising when imposing the Fz conservation of the spinor Hamiltonian
also locally [169]. However, these soliton solutions have been associated to a full
reversal of the transverse spin with a phase change of ∆φL = π.6 In contrast to
these full reversals, which are associated to a depletion to |F⊥| = 0, we observe a
rather continuous distribution of spin dips and Larmor phase changes. These may,
however, correspond to similar solution of a more general type, which also allows
for a more generalized change of the Larmor phase by arbitrary angles ∆φL.

Evaluating the correlator profiles given by eq. (4.1) for the polar IC plotted in
the left-hand upper corner of fig. 4.6 show a clear localized correlation at the same
position, as expected from the F⊥ profile in fig. 4.5. Due to the construction of
this correlator and the evaluation of the spatial spin profiles of fig. 4.5 the value of
S(∆x, t) should indicate the strength of the perturbation to the system generated
by these spin-soliton-like excitations. This strength depends on the number and
amplitude (or ”darkness”) of the defects. To investigate the time evolution of the
soliton excitations the amplitude S(∆x = 0, t) of the correlator is evaluated in
the right-hand plot. For the polar initial condition the correlator indicates that
for t ≤ 1 s (corresponds to t ≲ 2ts) some soliton excitations are generated after
the quench which quickly decay again afterwards. Simultaneous to the build-up
of the ring-shaped histograms with constant spin length |F⊥| between (15 – 20) s
(cf. fig. 4.3), the amplitude approaches zero, indicating that almost all of these
excitations decay.

Next, the possible origing of the spin excitations for the quench form the polar
IC is investigated. The arguments provided here are in line with the discussion
in [169]. For this investigation, it is instructive to measure the correlator consider
S(∆x = 0, t) as a function of the quench parameter q. The lower left-hand plot
in fig. 4.7 shows the correlator amplitude measured for an initial atom number of
∼ 120 k after a fixed evolution period of t = 30 s. For decreasing values of q the
correlator amplitude indicates an increased number of soliton-like spin excitations
in the system. Note, however, that in regions where the transverse spin length |F⊥|
(see upper left-hand plot of fig. 4.7) is small, the correlator amplitude increases,
simply because the phase gradients become large in this case. Therefore, only
regions where also |F⊥| > 0 should be considered here.

It is likely that the increased amount of excitations at lower q is connected to the
k-dependence of the unstable Bogoliubov modes which grow after the quench. For
q < 2n |c1| the corresponding dispersion relation of spin excitations in the transverse
plane (see eq. (2.18)) features a k-range in which the frequency becomes imaginary.
This leads to the instability in the form of exponentially growing populations
N(k) ∼ exp (−iω(k)t) in the respective observables. The wavefunctions related to
these instabilities oscillate at a spatial frequency given by the wavenumber k. Thus,
the wavelength of the generated transverse spin excitations will be around λ ∼ 2πξs.
Therefore, the spin direction also reverses over an interval of comparable size. This

6Instead of a smooth tanh2 profile these spin solitons would therefore exhibit a sharp notch in
the transverse spin length, which, however, would not be clearly resolvable in our experiment.
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structure is similar to the soliton-like excitations observed in the system, which are
also related to a rapid change of the spin direction. Thus it seems plausible that
this instability induces the generation of the soliton-like spin defects we observe
in F⊥ after a quench from the polar state. For the arguments given above one
would expect this process to become efficient when the distance, over which the
spin orientation changes, is compatible with the soliton size.

In order to estimate the size of the spin structures generated by the Bogoliubov
instability it is helpful to consider the most unstable momentum (see right-hand
plot in fig. 4.7)

kmu = ±1
ℏ

√︂
−2m (q + nc1). (4.2)

In the instability region parameterized by q < 2n |c1| kmu specifies the mode growing
at the largest rate, which is given by the maximum of the imaginary part of ω(k).
While for q > n |c1| the zero momentum modes grows fastest, at decreasing q the
instability favors increasing momenta. At q < 0 its values become larger than the
spin healing momentum kξs = 2π/λs = 1/ξs. Around this range of q the wavelength
of these excitations becomes shorter than the spin healing length. For dark solitons
the size of the localized density depletion 1/κ =

√
2ξ is given by the healing length

(see section 3.4.4). Thus, for spin solitons it is conceivable that their size is given
by the healing length ξs = ℏ/

√︂
2mn |c1| associated to the spin interaction strength

c1. This is roughly compatible with the excitations observed for the soliton IC, as
shown in fig. 4.5.

Soliton Initial Condition
Seeding the dynamics with local rotations leads to a much larger density of spin
defects, as already indicated by fig. 4.4. Interestingly, their structure, as shown in
the F⊥ profile in the right-hand plots of fig. 4.5, is very similar to the previously
discussed defects appearing after the quench from the polar IC. However, the
length scale of the excitations is notably shorter than the spin healing length ξs

at the corresponding density. While the spin length |F⊥| is strongly fluctuating,
most of the sharp dips are accompanied by a rapid change in the Larmor phase φL.
This structure is also captured by the correlator S shown in the bottom left-hand
corner of fig. 4.6. In accordance with the previous discussion of the spin excitations,
the correlator profile only changes slightly and shows no significant decay of the
amplitude after 10 s (cf. right-hand plot of fig. 4.6). The width of the correlator
grows slightly over time, which may indicate the increase of the defect width. We
experimentally confirmed that this is not connected to the change of the spin
healing length due to a change of the density.

4.5. Characterization of the Soliton Initial Condition
To further characterize the behavior of the soliton IC at long times we systematically
investigate the behavior of the system as function of different parameters. At first,
the amount of excitations present after long times are investigated for different
numbers of local rotations. The left plot in fig. 4.8 shows a strong increase of
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Figure 4.7.: Spin soliton correlations as a function of q after an evolution of
t = 30 s after a quench from the polar state initial condition. This measurement
is carried out for an initial atom number of ∼ 120 k atoms. The upper left-hand
plot shows a measurement of the transverse spin length |F⊥| averaged over the
whole system. The point where |F⊥| is maximal is compatible with q = 0 in the
single-mode mean-filed picture (black solid line; blue dashed lines indicate ±2n |c1|
around q = 0) and is marked by a gray dashed line. For more information about
the spectroscopy method and interpretation of the results see section 2.3.5. The
lower plot shows the amplitude S(∆x = 0, t) of the spin soliton correlator given in
eq. (4.1). Its value indicates the amount of excitations in the form of spin solitons
in the system and shows a strong increase left to the center of the spectroscopy. For
the q values inferred from the spectroscopy measurement this this range corresponds
to q < 0. In contrast, for 0 < q < 2n |c1| ≈ h × 3.7 Hz the correlator amplitude
stays almost zero. At larger q the transverse spin length drops rapidly because the
system looses its easy-plane ferromagnetic properties and enters the polar phase.
The right-hand plot shows the most unstable momentum kmu given by eq. (4.2) of
the transverse spin Bogoliubov dispersion given in eq. (2.18).
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the correlator amplitude S(∆x = 0, t) after a constant evolution of t = 30 s for
measurements starting from approx. 70 k atoms. This shows that a moderate
number of local rotations leads to a significant amount of perturbations in the
system. These excitations also show a sufficiently long lifetime to affect the
dynamics over times scales of ∼ 40 s we are interested in. To further characterize
the state of the system connected to the spin excitations, the right plot of fig. 4.8
shows the radial probability density p⊥(|F⊥|) for the same measurement. Assuming
rotational symmetry in the transverse plane, the probability to find |F⊥| in the
interval [a, b] is given by integrating the transverse spin plane in polar coordinates
over the density p̃⊥ as

P ([a, b]) = 2π
∫︂ b

a
fp̃⊥(f)df =

∫︂ b

a
fp⊥(f)df. (4.3)

Here, we absorb the contribution of the polar angle into the plotted density p⊥.
Thus, by assuming a slowly varying probability density profile, its value can be
extracted from the transverse spin histogram by dividing by the centers of the
histogram bins. For the polar initial state the system develops an almost constant
spin length |F⊥| ≈ 0.75 everywhere in the system which appears as sharp peak
in the radial distribution. For an increasing number of rotations the probability
density quickly transforms to an almost flat distribution up to this length. This
behaviour is consistent with the histograms previously shown in figs. 4.3 and 4.4
for the polar and Soliton initial conditions with 6 local rotations.

For completeness we also checked the stability of the excitations generated from
6 local rotations to be stable against the other defining parameters of our system.
Measurements after a fixed evolution of t = 30 s show that an increase of he initial
atom number from approx. 25 k to above 100 k leads to a decrease of about 30 % in
the correlator amplitude (see left plot of fig. 4.9). This indicates that the stability
of the spin excitations in the system is connected to the atom number. To further
verify this systematic behavior a second set of measurements is performed in which
no local rotations are used to initialize excitations in the system. However, just
quenching the polar state only leads to a small correlator amplitude. Instead, to
obtain a larger amount of excitations we prepared the coherent spin state with
Fx = 1 followed by the application of a magnetic field gradient for a duration of
94 ms. This leads to a Larmor phase which is linearly increasing with the position
along the cloud. The resulting spin wave in the transverse plane has a wavelength
of approx. 14 µm. Afterwards, the experimental sequence proceeds with the quench
of q as previously discussed. During the evolution this initial condition also leads
to strong fluctuations in F⊥ and a large signal in S. Depending on the initial atom
number however, the correlator amplitude S(∆x = 0, t) measured after t = 29 s
shows a strong dependence on the atom number in the system (see right plot in
fig. 4.9). While for atom numbers around 60 k the correlator shows values similar
to the usual soliton IC, for an increasing amount of atoms the correlator amplitude
quickly drops towards zero.

However, because in our measurements a higher atom number is achieved by
reducing the potential amplitude at the endpoint of the evaporation ramp in the
optical trap the excitation lifetime may, to some degree, also be connected to the
system temperature. An exact investigation of the temperature in our experiment
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Figure 4.8.: Soliton correlator amplitude S(∆x = 0, t) and |F⊥| probability density
after an evolution of t = 30 s as function of the number of local spin rotations for
generating vector solitons pairs. The measurement is performed at an initial atom
number of approx. 70 k. The amount of excitations indicated by the correlator
amplitude displayed in the left-had plot sharply increases with the number of
local rotations in the system. Above 5 rotations its value becomes approximately
constant value. Simultaneously, the right-hand plots shows how the the radial
probability density of the transverse spin length |F⊥| changes its shape (numbers
in the legend denote the number of local spin rotations). For the polar state initial
condition (0 rotations) the transverse spin settles to approximately the same length
at each position (cf. fig. 4.3), which corresponds to the sharp peak at |F⊥| ≈ 0.75
displayed in the plot. For an increasing number of rotations the probability density
transforms into an almost flat distribution up to around the spin length obtained
from the polar initial condition. This is consistent with the 2d histograms shown
in fig. 4.4. The errorbars in the plot on the left-hand side mark the 1 s.d. error
interval of the mean. In the right-hand side plot the errors are obtained from
jackknife resampling (see [170] or appendix D.2 for details on the error analysis).
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Figure 4.9.: Soliton correlator amplitude as function of initial atom number
for different initial conditions. To induce perturbations in the system local spin
rotations (left plot; measured after t = 30 s) and spinwaves in the Larmor phase
(right plot; measured after t = 29 s) are used (see text for more details). Here,
the size of the box trap is 130 µm for the soliton IC and 110 µm for spinwave IC.
Here, the spin wave has a wavelength of approx. 14 µm. While low atom numbers
show large correlator amplitudes for both initial conditions, at large atom numbers
almost no excitations remain in the system with the spinwave initial condition as
signified by the small correlator amplitude. In contrast, the excitations generated
from local spin rotations show a strongly reduced sensitivity to the atom number.

is difficult because the setup does no permit standard time-of-flight measurements
or T/4 imaging in a harmonic trap required to directly infer the temperature from
a measurement of the momentum-space distribution. Nevertheless, both systematic
measurements as well as as estimation of the temperature are possible in certain
limits. Our findings in this respect are shortly summarized in the following.

In order to discuss the effects which may influence the temperature of the
condensate we first want to quickly outline the relevant steps of the experimental
sequence introduced in section 2.2. After loading the XDT from the magnetic
trap, the optical power in the dipole beams is lowered to perform another step
of evaporative cooling in the optical traps. After this, the crossed dipole beams
is slowly ramped down to expand the atoms into the box trap consisting of the
WG dipole beam and blue-detuned walls. Because the magnetic trap only confines
low-filed seeking states all atoms are in the state |1,−1⟩ at this point. Then, two
consecutive MW π-pulses transfer all atoms into the state |1, 0⟩. This is the starting
point for the local rotations for the soliton IC. To test whether the correlator
amplitude exhibits a dependence on the strength of the dipole potential at the
endpoint of the optical evaporation ramp we conduct a series of measurements
with fixed evolution time t = 30 s. Between the measurements the final potential
amplitude during evaporation is varied such that the atom number changes by
almost a factor of 3. However, to exclude effects which stem from a change in
the atom number it is quenched to a fixed value of approx. 60 k. This quench is
performed by adjusting the MW pulses between |1,−1⟩ ↔ |1, 0⟩ such that only
the desired population is transferred to |1, 0⟩. The atoms which remain in |1,−1⟩
are then removed from the trap by a short SG pulse. For the lowest evaporation
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Figure 4.10.: Soliton correlator amplitude and corresponding atom number after
an evolution of t = 30 s for different potential amplitudes at the end of the
evaporation ramp. After evaporation, atoms are removed from the trap in order to
keep the initial number approximately constant (see text for details). The correlator
amplitude stays constant for all evaporation ramp endpoints. For reference, the
right plot shows the corresponding atom number after the evolution period.

potential no atoms are removed. Figure 4.10 shows that for all evaporation
endpoints the correlator amplitude S(∆x = 0, t) stays constant within statistical
errors. This result suggests that the temperature, controlled by the evaporation,
does not influence. Although we cannot directly specify this temperature, the
measurement nevertheless shows that the excitations are robust against changes
in this experimental parameter. The removal of a toms via the SG pulse may
additionally heat the system. However, assuming that the amount of potential
heating induced by this step grows with the number of removed atoms, the atom
number quench would add the same systematic temperature bias as the change in
evaporation endpoint. That is, because for the largest final potential, which should
also correspond to the largest temperature, also the largest amount of atoms needs
to be removed to reach the desired atom number.
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5. Universal Dynamics Far From
Equilibrium

5.1. Introduction
In interacting many-body quantum systems, the microscopic description of highly
excited states is, in general, intractable. In far-from equilibrium scenarios the
excitation spectrum of the system is characterized by a strong deviation from the
thermal scenario at a temperature compatible with the mean energy of the system.
In this regime, usually many degrees of freedom, related to the large number of
particles, are available to the system and therefore a microscopic description becomes
exponentially hard in the system size. However, before eventual equilibration at
large times, phenomena may emerge in these systems which allow a classification
of the dynamics far from equilibrium [30]. Theoretical studies suggested that
there exist regimes that feature universal dynamics, which is characterized by a
scaling evolution of certain observables in time and space. This is associated to the
existence of NTFPs [28, 31]. This offers the prospect of classifying non-equilibrium
dynamics in universality classes [29, 30] in a similar way as equilibrium critical
phenomena [171].

In the universal regime the dynamics in the infrared (i.e. low momenta ℏk) fully
governed by universal exponents α, β and scaling function fs, which determine the
time evolution of a dynamical observable f , via the scaling hypothesis [30]

f(k, t) =
(︃
t

tref

)︃α

fs

(︄(︃
t

tref

)︃β

k

)︄
. (5.1)

Here, the observable f is determined by a universal function fs by rescaling its
amplitude and momentum axis in time, where tref is an arbitrarily chosen reference
time for the scaling procedure. Close the a NTFP the scaling is tied to a transport
of excitations towards the infrared. Here, the corresponding ”particle” number,
given by the integral over f , is conserved, which implies α = dβ, where d denotes
the spatial dimension of the system; i.e. d = 1 for our experiment. In general, it is
not clear which system observable is associated to f and this ”relevant” quantity
first has to be identified in the analysis of the dynamics.

Experimentally, non-equilibrium scaling has been observed in our spin-1 BEC
[32]. Additionally, over the last years also other groups identified such universal
dynamics with BECs prepared far from equilibrium by quenches. In a quasi-1d
configuration a thermal cloud of single-component 87Rb atoms has been quenched
by rapidly reducing the trap depth to remove the large momentum population [33].
The following evolution shows a self-similar evolution of the density distribution in
momentum space. Another experiment employed 39K in a cylindrically symmetric
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3d box, which quench-cooled the system by allowing the fast atoms to escape from
the trapped region [34]. In the following evolution two distinct scaling evolutions
at low and high momenta could explicitly be associated to the particle transport
towards low k and the energy transport towards large k, respectively.

5.2. Previous Observation of Universal Dynamics in
the Spin-1 BEC

For our first investigation of the occurrence of universal dynamics in the spin-1
BEC we start from the polar state as initial condition. By quenching q to a value in
the easy-plane region strong spin excitations are generated via the SCC instability
in the system. For measurements performed in the quasi-1d WG trap we have
observed self-similar scaling in the Larmor phase spectra of the transverse spin
F⊥ [32] (see also [55] for a more detailed investigation of these non-equilibrium
phenomena). To ensure that the scaling properties are independent of the initial
condition we prepared additional initial states. These involve a homogeneous
population of the mF = ±1 states via a short spin rotation, a spin wave with
constant amplitude in the transverse plane, and an additional first quench to a
different q value to generate excitations via SCCs over a short period of time, which
are not commensurate to the final value of q. All these excitations show the same
universal exponents and functional form of the rescaled spectra and are therefore
robust against variations of the initial condition.

In accordance with these experimental findings, universal dynamics is expected
to emerge for a certain set of initial conditions. Here, it may be expected that this
set of states shares some feature which induces the approach to the same NTFP.
However, which property governs this behavior is not yet clear. Therefore, it is
possible that another set of initial conditions exists, which evolves towards another
NTFP. Here, the question if this happens and what might be the relevant properties
for this change in evolution poses an interesting question in the investigation of
non-equilibirum dynamics.

To tackle this problem, we alter the experimental conditions with respect to
the previously performed measurements on the spin-1 BEC. Here, a quasi-1d box
trap is applied to confine the atoms. Further, the non-equilibrium behavior at long
times is compared for the two different scenarios detailed in section 4.2.

5.3. Polar Initial Condition
As first we consider the polar IC, i.e. ∼ 150 k initialized in the polar state. Here,
q is quenched to the value corresponding to the center of the spectroscopy feature
shown in fig. 2.6. A short time after the quench the initially unstable modes
excited by the SCCs are redistributed and a fixed transverse spin length starts to
build up. This is nicely shown in fig. 4.3 and can be understood in terms of the
mean-field Mexican-hat potential of the spin of the groundstate (see section 2.3.4
for details). At this point in time also a fixed functional form of the observable
f(k, t) develops and a self-similar evolution is observed by rescaling the spectra.
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Here, the development of this fixed form is the feature defining the scaling regime
in momentum k and t over which the rescaling is evaluated. In the previous
measurements [32] the evolution of the Larmor phase, i.e. the Goldstone mode,
towards lower k has been identified as relevant quantity for the scaling dynamics.
Here, we will evaluate the structure factor of the transverse spin

f(k) = Fx→k

{︄∑︂
x̃

⟨F ∗
⊥(x̃)F⊥(x+ x̃)⟩

}︄
=
⟨︂
|Fx→k {F⊥(x)}|2

⟩︂
, (5.2)

which is related to the power spectrum of the spatial profile F⊥(x) = Fx(x)+iFy(x)1

via the Wiener–Khinchin theorem (see e.g. [70]). We extract this quantity at
each time t from the measured profiles by performing a spatial discrete Fourier
transformation Fx→k. In the scaling regime, where the transverse spin length is
approximately constant, the structure factor f captures the same physics as the
Larmor phase observable applied in [32].

In fig. 5.1 bi-logarithmic plots of the strucutre factor f(k, t) are shown in the
scaling regime between (17 – 42) s. Here, the range of momenta contributing to the
scaling regime is marked by the gray shaded area, where the deviation from the
power law behavior at large momenta defines the upper cutoff. This is motivated by
the phase structure factor in [32], which shows a plateau region at low momenta and
transitions to a power law at large momenta. This is well described by the function
function fs ∝ 1/(1 + (k/ks)ζ), transitioning from a plateau region at small k < ks

to a power law drop-off with exponent −ζ at large k [172]. In this measurement
only the power law regime and the bending towards the plateau region is visible.
We attribute this to a difference in system parameters as compared to [32], like the
temperature and final q value.

To evaluate the scaling behavior a procedure similar to a least-squares optimiza-
tion is applied to the scaling hypothesis given in eq. (5.1). A detailed explanation
of the procedure is given in section 5.5. By choosing the last time tref = 42 s as
reference the exponents2

α = 0.46 ± 0.38, β = 0.49 ± 0.18

are obtained, which collapse all times in the scaling regime to a single curve,
i.e. the scaling function (see right-hand side of fig. 5.1). In a bi-logarithmic plot the
rescaling with the exponent α leads to a shift upwards in time and the exponent β
shifts the curves to the left of the plot.

The values of these exponents are similar to the ones obtained in [32] and thus
suggest that the change in parameters (confinement in a box, change in temperature

1To account for the spatial resolution of the imaging setup the F⊥ profiles are binned over
a range of approx. 1.2 µm and normalized to the local atom number of the bins such that
|F⊥| ≤ 1.

2The errors of the scaling exponents given here are estimated from jackknife resampling (for a
short overview of this method see [170] and appendix D.2). The large error values for the
polar IC stem from the closeness of the scaling function to a power law, which does not permit
the determination of a unique set of (α, β) but instead allows a whole range of values. These
correlations are visible in fig. 5.3 (and fig. D.3 for more details) but are not reflected in the
errors given here.
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Figure 5.1.: Time evolution of structure factor f(k, t) (left) and rescaled curves
(right) for the polar IC. The optimal scaling exponents are extracted for a χ2-like
analysis (see section 5.5 for details) in the scaling regime where the functional from
of the spectra stays constant (gray shaded area). Here, the momentum limits are
defined by the lowest non-zero Fourier momentum and the upper bound is given by
klim ≈ 2π× 0.04 µm−1. The rescaling procedure according to eq. (5.1) collapses the
data to a common distribution (right-hand plots). To ease conversion to physical
length scales, on the horizontal axis the reciprocal wavelength 1/λ is plotted instead
of the wavenumber k = 2π/λ. Statistical 1 s.d. errors of the measured structure
factor are smaller than the plot markers. The lower plots indicate the relative
deviations of the spectra from the time-averaged strcuture factor ⟨f⟩t(k). For the
rescaled data values for the time-averaged structure factor ⟨f⟩t(k) is obtained from
piece-wise power law interpolation of the single spectra to common times.
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and possibly also in q) noes not affect the non-equilibrium scaling significantly. For
a proper interpretation of the error values given here, correlations between both
values are important. More details about these are given in section 5.5.

5.4. Soliton Initial Condition
In contrast to the polar IC, the soliton IC leads to strong persistent fluctuations
in the system. Therefore, it is interesting to see, whether also in this scenario a
scaling evolution can be observed. For this, approx. 40 k atoms are prepared in the
polar state and six pairs of local spin rotations generate vector solitons initially.
As in the previously discussed measurement, q is quenched to approximately the
same value. Over the same time scale of (17 – 42) s as for the polar IC the structure
factor f(k, t) also shows a constant functional form (see fig. 5.2), as required for a
scaling evolution. Here, a clear plateau region is present at low momenta, which
is compatible with the smaller range of fluctuations compared to the polar IC
(cf. fig. 4.5). At larger momenta it transitions to a smooth falloff. This functional
form is compatible with the structure factor of a dilute soliton gas [173], consisting
of a plateau region, which transitions to an exponential decay at large momenta.
However, our system is not in the regime of dilute solitons but instead the size of
the spin excitations in the system is comparable to their distance.

Applying the analysis described in section 5.5, a set of optimal rescaling expo-
nents3

α = 0.20 ± 0.09, β = 0.22 ± 0.09

is extracted. These increase the overlap as is visible in the reduction of residuals
especially at the right edge of the scaling regime (see right-hand side of fig. 5.2).
Thus, also in the strongly fluctuating regime, where conceivably different excitations
are relevant for the dynamics of the system, a scaling evolution is present.

5.5. Extraction Procedure for the Scaling Exponents
For faithfully extracting the scaling exponents we apply a method similar to a
least-squares χ2 optimization, which is adapted from [174]. Here, to avoid biasing
the analysis by optimizing the data to a certain approximate scaling function the
crucial difference of the analysis is to minimize the distance between the structure
factors. For this we define the scaling residuum

χ2 =
∑︂

k

Vart {f(k, t)}
⟨f(k, t)⟩2

t k
2

(5.3)

as distance measure on the measured structure factors, where time-subscripted
quantities Vart and ⟨·⟩t specify averages with respect to time instead of ensemble
averages. It evaluates the temporal deviations at each momentum k relative to the
mean amplitude of the structure factor to weight all parts of the spectrum equally.

3The errors of the scaling exponents are estimated from jackknife resampling (see [170] and
appendix D.2 for details).
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Figure 5.2.: Time evolution of structure factor f(k, t) (left) and rescaled curves
(right) for the soliton IC. See fig. 5.1 for more details on the structure of the
figure. The gray shaded area marks the scaling regime in which the optimal scaling
exponents are extracted. It is bounded by the lowest non-zero momentum and
klim ≈ 2π× 0.056 µm−1. Note that on the horizontal axis the reciprocal wavelength
1/λ is plotted instead of the wavenumber k = 2π/λ. The lower plots indicate the
relative deviations of the spectra from the time-averaged strcuture factor ⟨f⟩t(k).
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Nevertheless, to approximately take the non-uniform distribution of the equally
spaced Fourier momenta on the logarithmic axis into account, a heuristic factor
of k2 is introduced. Only momenta in the scaling regime (gray shaded area in
figs. 5.1 and 5.2) are taken into account. The lower bound of these ranges is given
by the lowest non-zero Fourier momentum and the upper limit klim is identified
by a similar gradient of the structure factors f(k, t). This upper cutoff klim is
induced by the growth of f(k, t) at large k (see the full structure factors provided
in appendix D.1). χ2 needs to be evaluated with respect to the rescaled spectra,
i.e. in particular at rescaled momenta (t/tref)βk. This results in differing momentum
axes for the different times. We linearly interpolate the corresponding rescaled
structure factors (t/tref)αf to 20 equally distributed momenta in the bi-logarithmic
plot (i.e. piece-wise power law interpolation4). This allows the evaluation of χ2 at
common momenta for all times, which is minimized to find the optimal scaling
exponents α and β. To visualize the results of this analysis, in fig. 5.3 we plot the
normalizable residual distribution

W = 1
N

exp
(︄

− χ2

2χ2
min

)︄
, (5.4)

where χ2
min denotes the smallest value obtained in the optimization and the normal-

ization factor N is chosen such that W = 1 at this point. Here, χ2
min takes the role

of the systematic deviation of the measured structure factors from a perfect scaling
behavior.5 Its numeric value depends on the specific definition of χ2 but it is useful
to note that at the point where W dropped to ∼ 0.6 the overlap of the spectra
achieved by the rescaling procedure is separated by χ2

min from the optimum.
For the polar IC the residual distribution has the shape of an ellipse, which is

strongly extended along α. The reason for this is that the lack of a clear plateau in
the strucutre factor (cf. fig. 5.1). Therefore, the exponents are not well constrained
along the axis of the ellipse. The correlations in these uncertainties, which are
connected to the orientation of the ellipse, are not captured by the error values
given in section 5.3. Since the ellipse is not oriented along the diagonal this allows
a better distinction of scaling exponents than one would naively expect from the
error values. See also appendix D.2 for more details on the error extraction.

In contrast, the residual distribution for the soliton IC is more circular. Therefore,
the error values resemble the actual uncertainties in the scaling exponents much
better. This allows a distinction between the sets of exponents for the two different
ICs.

5.6. Conclusions
For both the polar and soliton ICs, confined in a box potential, a non-equilibrium
scaling evolution is observed in the structure factor f of the transverse spin F⊥.

4This is most conveniently implemented by linearly interpolating the logarithms of the structure
factor with respect to the logarithms of the momenta. After the interpolation the resulting
spectrum needs to be transformed by the corresponding exponential function.

5The χ2
min values extracted for the scaling analysis described here are χ2

min = (271 ± 106) µm2

for the polar IC and χ2
min = (185 ± 75) µm2 for the soliton IC. The errors are estimated,

equivalently to the ones of the scaling exponents, from jackknife resampling.
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Figure 5.3.: Scaling residual distribution W (cf. eq. (5.4)) of the strcuture factors
(see figs. 5.1 and 5.2) for time evolution from the polar and soliton ICs. The scaling
residuals χ2 (cf. eq. (5.3)) entering in the distribution are calculated from the
structure factors summed over the gray area shown in the respective plots, rescaled
with the exponents α and β in order to collapse the data to a common scaling
function fs according to eq. (5.1) (cf. axes in right-hand plots of the structure
factor figures). W is normalized to 1 at the position where the minimal residuals
are obtained. The corresponding optimal exponents are marked with dashed black
lines. These values are clearly distinct for the two different scenarios.

Here, the equality α ≈ β of the extracted exponents indicates particle number
conservation in d = 1 dimension.6 For the polar IC these values are compatible
with the analytic prediction of β = 1/2 for O(N) [30] and U(N) [175] symmetric
models for Bose gases.

However, for the soliton IC we find distinctly different set of scaling exponents
with β ≈ 0.2 and also a different scaling function, indicating the presence of a
different NTFPs in this scenario. In a numerical study a reduction of the scaling
exponents to β ≈ 0.2 has been observed for the decay of non-elementary vortices
with winding numbers > 1 in a 2d system, while the decay of elementary vortices
with winding number 1 shows β ≈ 0.5 [172]. Here, the clustering of like-sign
(same direction of rotation) reduces the annihilation process between vortex and
anti-vortex pairs and may play a role in the slowing of the scaling evolution. This
whole process, however, is associated to phase-ordering kinetics [176]. There, the
pairwise annihilation of defects (domain walls, vortices, etc.) leads to a growth of
the length scales associated to the order parameter. While important for a wide
variety of systems, in our system this description does not seem to be the driving
mechanism because the defect density, as indicated by the correlator S does not
decay for the soliton IC.

Nevertheless, not only the initial conditions, but also changed system parameters
6Although the system is not 1d for density excitations, here the relevant excitations are related

to the spin d.o.f. Because the spin healing length ξs is larger than the transverse extent of the
trap, for the spin dynamics the system should be 1d.
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may be associated to the change in scaling behavior. The ICs clearly induce
different excitations in the system but also the difference in density may affect
the evolution. At the smaller density employed for the soliton IC the parameter
q/ |nc1| is effectively larger. Truncated-Wiegner simulations in a 1d system with
homogeneous density and periodic boundary conditions have indicated an increase
of the scaling exponents from α, β ∼ 0.25 at q/ |nc1| = 1.1 to α, β ∼ 0.45 at
q/ |nc1| = 0.1 for both the polar and soliton IC7 shows a similar behavior [177].
Experimentally, a sufficiently reliable investigation of the q-dependence has not
been achieved, yet.

Additionally, the loss of atoms over the course of the ∼ 42 s required for the
observation of the scaling dynamics may impact the measurement. The loss is
roughly exponential8 and leads to an also exponential decrease in the 1d density.
As observed in fig. 2.5 the change in density is proportional to the spin interaction
energy nc1 and therefore induces a dynamical change of q/ |nc1| over time. These
have not yet been considered in the previously referenced simulations but given the
q-dependence it would be conceivable that it reduces the scaling exponent. This,
however, is not observed experimentally. To gauge the impact of the atom loss on
the experimental dynamics we performed an experiment during which the left box
wall was shifted inwards. This was implemented such that despite the continuous
loss of atoms the density inside the box remained constant over time. This way we
explicitly confirmed that changes in the width of the S correlator peak at ∆x = 0
are not connected to the density-dependence of the healing length. However, a
systematic study of the impact of the density change on the scaling exponents in
still missing.

Nevertheless, the experiments discussed in this chapter show the realization of
two distinct scaling phenomena, which indicates the presence of at least two NTFPs
for the dynamics in a spin-1 BEC. This implies that, although the appearance of
scaling seems to be robust against a wide range of initial conditions, there exist
specific system parameters (initial condition, density or q) which constrain the
non-equilibrium scaling. This sets the foundation for the precise determination
of the relationship between universal dynamics and these parameters in future
experimental or theoretical works.

7For both ICs the same density is used.
8However, during the initial period the decay is slightly faster. This is most likely connected to

the density-dependence of three-body loss processes which are more relevant at larger densities
at early times. Over the time range associated to the scaling regime 1/e lifetimes of 39 s and
53 s are observed for the polar and soliton IC, respectively.
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6. Summary
In this thesis a method is introduced to generate coherent vector solitons in a
spin-1 BECs. It is based on the application of the vector-Stark shift to gener-
ate local spin rotations with a steerable laser beam. In chapter 3 this method
is applied to deterministically prepare three-component vector solitons. While
also showing properties reminiscent of single-component solitons, the presence
of population in multiple components gives rise to a richer parameter space and
accompanying dynamics. Most prominently, the bright-dark-bright (BDB) vector
solitons investigated here possess an internal degree of freedom associated to the
two bright components, which may be described similar to a spin-1/2 particle.
During collisions of two solitons this internal polarization state changes depending
on the soliton parameters and the initial soliton polarization. This underlines
the difference between linear waves and solitons: while the former only change
amplitudes via interference while overlapping, solitons may alter their state in
collisions and therefore act as a collective particle consisting of ∼ 2000 atoms.
Both, the spatial motion and density profiles, as well as the collisional dynamics
are consistent with analytical predictions for the three-component Manakov system.
This model is also expected to give an accurate description of the microscopic
Hamiltonian when the SCCs are switched off. However, dissipation and indications
for a possible inelasticity of the collisions also show the presence of effects beyond
the Manakov limit. Due to the self-consistent nature of the vector solitons the
phase evolution of their polarization is not affected by mean-field shifts due to
changes in the background density. This allows the application of these solitons as
accurate sensors for magnetic field gradients.

In a separate set of experiments the impact of localized defects on non-equilibrium
dynamics was investigated. In quench experiments starting from the homogenous
polar state, instabilities highly excite the system. For small q these generate
localized spin defects which bear a remarkable resemblance to dark solitons of
the NLSE (i.e. Manakov solitons), although they appear in the transverse spin
instead of the densities. At large densities these defects decay and appear to not
significantly influence the long-time dynamics. In this limit the system shows
a scaling evolution indicative for the presence of a NTFP. To investigate the
dynamics with respect to the presence of a large number of defects, multiple local
spin rotations of the type discussed in chapter 3 are applied to generate non-linear
excitations as initial condition for the quench experiments. After some time, this
system develops strong fluctuations in spin length and phase. At low densities,
where these length-and-phase defects are stable, a scaling evolution is observed
as well. However, due to the presence of the defects the structure factors show a
different functional form and much slower shift than for the polar IC. This indicates
the presence of two distinct NTFPs in the system.
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7. Outlook

7.1. Improvement and Extension of the Local
Control Setup

In section 2.6.6 we have shown that the vector-Stark shift of a focused laser beam
can readily be used to drive local spin rotations. However, also shortcomings have
been identified or general extensions to the experiments are possible and may yield
interesting results. Some of these are presented in the following.

7.1.1. Differently Sized Rotations
Numerical simulations accompanying the investigation of the vector soliton dy-
namics suggested that spin rotations with a much larger beam diameter still lead
to stable excitations in the system. These BDB structures additionally showed
oscillations in the size as well as much more pronounced spatial dynamics during
collisions.1 Here, the usual repulsive interaction between colliding dark solitons
[129] seems to be partly overcome by attractions in the bright components to
permit multiple oscillations in the collision region, similar to numerically obtained
oscillations of soliton bound states [131, 144]. This also promises access to bound
states between these structures similar to dark-bright bound solitons observed in
optics [129].

Experimentally, this increased size of the rotation region may be implemented
using a frequency modulated AOD signal as demonstrated during the discussion of
fluctuations in section 2.6.6. By sweeping the horizontal AOD frequency once during
the pulse time of the local spin rotation, effectively a larger region is addressed by
the spin rotation. The modulation waveform can be tuned to the desired spatial
shape and may even be optimized for the generation of the solitons by minimizing
the radiation of undesired wavepackets.

7.1.2. Cancellation of the Local Magnetic Offset Field
As shown in fig. 2.18 the application of circularly polarized light for the local
rotation beam induces a magnetic offset field which scales with the spin rotation
Rabi frequency Ωrot (see appendix A). This leads to an, in general, undesired
detuning and a phase evolution of the mF = ±1 atoms which perturbs the system
and induces additional spatial dynamics. To cancel the offset field, it is imperative
to remove the circular polarization. This is simply achieved by removing the λ/4

1These numerical simulations have been carried out by Christian-Marcel Schmied within the
scope of [83].
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waveplate in the optical setup after the AODs. To induce a vector Stark shift,
however, the cross product between electric field components may not vanish. This
is possible by using two separate beams with different polarization directions (see
e.g. [80]). Here, both beams should be co-propagating to minimize the momentum
transfer to the atoms induced by the coupling. The pairs of electric field components
from both beams must also oscillate at distinct frequencies which are separated by
the resonance frequency, i.e. the Larmor frequency ωL in case of the spin rotations.
This can be achieved by an appropriate modulation of the laser beams.

Because the diffraction of the AODs requires a fixed polarization direction of
the incident light, only one of these linearly polarized beams may be deflected by
the current AOD setup. However, a second beam with orthogonal polarization
may be combined with the deflected beam with the help of a polarizing beam
splitter after the AODs. Because the direction of this second beam cannot be
adjusted during the experiments it should be focused to the back focal plane of the
objective to obtain a collimated beam which illuminates the whole BEC. Because
the wavelength of this laser is close to the tune-out wavelength of the scalar Stark
shift and it is linearly polarized the atoms do not experience an energy shift due to
this beam alone. Only in the region where the local control beam overlaps with this
collimated beam are local spin rotations induced by the presence of the appropriate
polarization and frequency components of the electric field.

7.1.3. Local Microwave Control
The local coupling via a steerable laser beam is not only limited to spin rotations
within a hyperfine manifold. Instead, a two-photon Raman transition may be used
to locally drive transitions between the hyperfine manifolds [127, 178]. Employing
an electro-optic modulator for the appropriate modulation of the light at the
hyperfine splitting frequency ∆EHFS/h ∼ 6.8 GHz this scheme can be implemented
similar to the current local control. Here, not only population transfers may be
implemented but also local dressing can be achieved, similar to the global MW
dressing already used in the experiment. This allows the spatially resolved control
of q. This may allow for a Josephson-like contact in the transverse spin of the
easy-plane phase without perturbing the total density.

Additionally, the phase control of different mF levels, which may be implemented
via two consecutive π-pulses with different phase or via dressing, allows for the
full state control. Combined with the local spin rotations this may enable the full
control of the vector soliton parameters. With the width of the local spin rotation
the size of the solitons is adjusted while the control of the phase profile in mF = 0
should allow the access to the soliton velocity.

7.2. A Road Towards Soliton Entanglement
While soliton solutions in BECs are derived on the mean-field level they are still
excitations which are inherently subject to quantum evolution. Therefore they
also exhibit fluctuations constrained by the uncertainty relation and entanglement.
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Quantity Soliton 1 Soliton 2

Norm. velocity ξj 0.0452 −0.0563
Norm. inv. width νj 0.1794 0.1968
Chem. potential q2

0 0.66 0.66

Table 7.1.: Soliton parameters applied for the simulation of polarization scattering.
The values are given in the normalized form defined by eq. (3.33). These values
are similar to the ones given in table 3.1.

These have been discussed in the context of the spatial and phase degrees of freedom
for single-component solitons [165].

Here, we want to present an alternative approach to the extraction of entangle-
ment based on the internal degree of freedom offered by multi-component vector
solitons. The basic idea follows the concept of spin squeezing induced by the
interaction of spins [179, 180]. Here, the role of the spin is assigned to the polar-
ization c of the BDB solitons investigated in chapter 3 and the interactions are
provided by the polarization scattering during the soliton collision. Instead of a
single particle carrying spin we are therefore considering the combined spin of all
atoms contributing to the soliton.

7.2.1. Polarization Squeezing and Entanglement
To exemplify the polarization squeezing we will consider the collision of two solitons
(see table 7.1 for soliton parameters). Applying an approach similar to Truncated-
Wigner simulations, 5000 complex polarization vectors ci

1,2 are drawn from a
Gaussian distribution with the same variance as the initial states for solitons 1
and 2. These are then inserted into the polarization scattering formula (3.30)
to obtain the final polarization cf

1,2 after a soliton collision. Here, we define the
pseudo-spin-1/2 observable of the polarization (see section 3.5 or section 2.5.5 for
the definition of the spin observables Ŝj with respect to the bright components of
the soliton) as

Ŝ(ϕ) = cos(ϕ)Ŝy + sin(ϕ)Ŝz, (7.1)
corresponding to a projection in the y-z-plane. In contrast to the previous use of the
operators, here no implicit normalization with the atom number will be assumed
(i.e. the maximal expectation value ⟨S(ϕ)⟩ is given by the atom number N). As
initial polarizations coherent states aligned with the x-axis, and occupied by N = 50
atoms, are used. The distribution of the Truncated-Wigner samples is shown on
the left-hand side of fig. 7.1. For this choice of initial Larmor phases (φL = 0 for
soliton 1 and φL = π for soliton 2) the fluctuations of the spin observables are
strongly enhanced by the collision. In fact, traces of this behavior may already be
visible in the form of slightly increased error bars in fig. 3.17 for ∆φi

L ∼ 180 deg.
While spin interactions induce squeezing of a collective spin observable in spinor

gases, in case of the solitons we will consider a combined observable

û(ϕ1, ϕ2) = Ŝ1(ϕ1) + Ŝ2(ϕ2), (7.2)
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Figure 7.1.: Truncated-Wigner samples of the soliton polarizations before and
after collision on the spin sphere (left) and squeezing variance ∆2û of the soliton
polarizations after collision (right). On the left-hand side the observables are
normalized by the atom number N to a maximal value of 1 while on the right-hand
side no normalization is applied. This calculation uses an number of N = 50 atoms
in the bright components mF = ±1 to properly visualize the distribution on the spin
sphere (the usual atom numbers in the experiment are much larger cf. section 3.4.4).
From Gaussian distributions with fluctuations corresponding to the initial coherent
states of the soliton polarizations before collision 5000 samples are drawn and
propagated with eq. (3.30) to obtain the polarizations after soliton collision. For
certain angles ϕ1,2 the combined observable û(ϕ1, ϕ2) shows fluctuations which are
smaller than the minimal uncertainty coherent states. Because û consists of a sum
of observables from both solitons, the Heisenberg bound is 2 in this case. For
the 5000 samples used here, the normalized variance ∆2û/N of the uncorrelated
initial coherent states lies within a range of ±0.15 around this value. Therefore,
all variances significantly below 2 indicate squeezing below the standard quantum
limit (blue part of the color map).
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which is constructed by summing the spins of both solitons labeled by the numbers
1 and 2 (cf. fig. 3.15 for the definition of the soliton labels). For the initially
uncorrelated coherent states the variance ∆2û(ϕ1, ϕ2) = ∆2Ŝ1(ϕ1)+∆2Ŝ2(ϕ2) = 2N
is equal to twice the coherent state variance orthogonal to its orientation on the
spin sphere. Therefore, fluctuations smaller than 2 in the soliton polarizations after
collisions show squeezing below the standard quantum limit and therefore signify
the presence of entanglement. For angles ∆ϕ = ϕ2 − ϕ1 ≈ 0.12 π the calculation
shows the strongest squeezing to a value of ∆2û(∆ϕ = 0.12π)/N ≈ 0.13 (see
right-hand side of fig. 7.1). Here, the exact value of the offset ∆ϕ is probably a
result of the soliton interaction controlled by the exact soliton parameters used
here.

To explicitly verify the presence of entanglement between the two solitons, the
Duan inseparability criterion [181] may be applied. For separable states it bounds
the sum of the variance of two observables from below. Here, we consider two
observables û(ϕ1,1, ϕ1,2) and û(ϕ2,1, ϕ2,2), which differ in the respective projection
angles. A similar calculation as performed in [181] leads to the following variance
criterion fulfilled by all separable states:

∆2û(ϕ1,1, ϕ1,2) + ∆2û(ϕ2,1, ϕ2,2) ≥ 2
(︂
|sin(∆ϕ1)|

⃓⃓⃓⟨︂
Ŝ1,x

⟩︂⃓⃓⃓
+ |sin(∆ϕ2)|

⃓⃓⃓⟨︂
Ŝ2,x

⟩︂⃓⃓⃓)︂
,

(7.3)
where ∆ϕj = ϕ2,j − ϕ1,j is the difference of the projection angles applied to soliton
j and ⟨Ŝj,x⟩ denotes the pseudo-spin Sx expectation value of soliton j. For the
coherent state ICs ⟨Ŝj,x⟩/N = 1, which leads to a a structure shown on the left-hand
side of fig. 7.2. To obtain an entanglement witness D, the left-hand side of eq. (7.3)
may simply be divided by the right-hand side. This quantity signifies entanglement
when D < 1. This violation is strongest for a set of angles where the fluctuations
are minimal (blue region in the squeezing plot of fig. 7.1), i.e. ϕ2,k − ϕ1,k = 0.12 π,
and the bound is maximal, i.e. ∆ϕj = π/2. This leads to a maximal violation of
D ≈ 0.09 (see right-hand side plot of fig. 7.2).

This calculation suggests that collisions of BDB vector solitons may become
entangled in their polarization degree of freedom during collisions. Further, the
scheme of this discussion is almost equivalent to the method used in [66], implying
that its extraction is experimentally feasible. However, magnetic field fluctuations
in the experiment will lead to a scrambling of the Larmor phase before readout.
This needs to be taken into account in the analysis. This may possibly also be
overcome by another choice of initial polarization state. Therefore, the soliton
polarization is a promising candidate to prove entanglement of solitons.

Here, not only soliton collisions may provide an interesting opportunity for the
production of entanglement. In case of the generation from local spin rotation the
formation process may, at least in the sense of the possibility for interactions, also
be interpreted as a soliton collision. Therefore, also during formation entanglement
may be generated between the two solitons emerging from a single rotation site.

7.2.2. Technical Limitations
For experimentally witnessing entanglement it is crucial that the technical fluctua-
tions of the initial state preparation and readout are small enough to not scramble
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Figure 7.2.: Inseparability bound (left) and violation of the soliton polarization
after collision (right) for the scenario shown in fig. 7.1. The inseparability bound
corresponds to the right-hand side of eq. (7.3) for a coherent state with ⟨Ŝj,x⟩/N = 1.
However, the reduction the bound due to a change of ⟨Sx⟩ for the polarizations
after collision needs to be taken into account. For a maximal violation fo the
inseparability bound, for the first observable the angles ϕ1,1 = 0 and ϕ1,2 = 0.12π
are chosen to obtain minimal fluctuations (cf. right-hand plot in fig. 7.1). The
entanglement witness D is the fraction between the left and right-hand side of
eq. (7.3) and signifies entanglement when D < 1 (blue part of the color map). This
witness is shown as a function of the projection angles of the second observable in
D and inherits its structure from the squeezing variance shown in fig. 7.1 and the
bound on the left-hand side. As indicated by the bound, the largest violation of
D ≈ 0.09 is obtained when ∆ϕj = nπ/2 (n ∈ N), i.e. ϕ2,1 = 0.5π and ϕ2,2 = 0.62 π.
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the required signatures. In case of variance-based witnesses this is clear: if the
technical fluctuations are larger than the Heisenberg bound of the coherent state
no entanglement may be certified. As has been analyzed in section 2.6.6, the
local spin rotation currently seems induce a critical level of noise, i.e. more than
coherent state noise. Therefore, no entanglement certification is currently possible.
Previous analysis of the local laser beam power and position suggest that position
fluctuations contribute, but cannot fully explain the overall noise. Another possible
source for fluctuations may be the polarization of the light, which also enters in the
rotation amplitude. This may be analyzed with the Mako camera in the AOD setup
shown in fig. 2.14 by inserting a λ/4 waveplate in combination with a polarizing
beam splitter or polarization filter.

7.3. Non-Equilibrium Dynamics
The investigation of the non-equilibrium dynamics presented in chapter 5 clearly
shows two different scaling scenarios with individual functions and exponents.
However, due to the different densities applied in the initial condition and the
inconclusive connection between qexp and the actual value of q, different effects
may be responsible for the observation of the two scaling phenomena. Here, a few
ideas for measurements are given, which will allow the distinction of possible effects
affecting the scaling dynamics.

The most likely origin of differences in the scaling behavior may be the exact value
of q/ |nc1|, which defines the mean-field groundstate as discussed in section 2.3.4.
As suggested by numerical simulations [177], this parameter may affect the scaling
exponents. To test this experimentally, it would be sensible to systematically
observe the dynamics for different final q values of the quench. Here, it would
be sensible to enhance this measurement by ensuring a fixed q/ |nc1| during the
evolution (see section 7.3.2). Depending on the results, an impact of q on the
scaling may already be excluded. On the other hand, if the q-dependence can
be confirmed, this would imply a continuous dependence of the scaling behaviour
on the parameters of the microscopic Hamiltonian. For NTFPs the microscopic
details should not be relevant and therefore the experimental determination of the
exponents for different q poses an interesting question.

Since a single measurement of the scaling dynamics (i.e. the measurement for a
single q value) will require approx. 3 days of continuous measurements (for a single
IC), this measurement will require at least 2 weeks of continuous measurements,
over which the parameters need to be held constant. For this, special care must
be taken to continuously calibrate qexp. Also magnetic field gradients need to be
monitored as they also affect the spin dynamics. Additionally, also a comparable
temperature of the condensate must be ensured because large temperatures decrease
the final spin length and therefore obviously impact the dynamics of the system.

7.3.1. Comparison of Polar and Soliton Initial Conditions
If only a change of q/ |nc1| between the two settings presented in chapter 5 is
supposed to be excluded, also a different approach is possible. When the exact
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calibration of qexp against q can be determined the same q/ |nc1| value may directly
be set in the experiment. For this, however, the calibration of qexp has to be
understood as a function of the density. The single-mode mean-field picture around
the easy-plane phase suggests that the center of the resonance shown in fig. 2.6
corresponds to q = 0. However, it is not clear, how well this picture actually holds
in the extended system, which is not at all in the single-mode limit. Deviating
from this picture, for small densities the center of the resonance shifts to lower qexp.
To alleviate the uncertainty of applicability of the single-mode approximation in
the calibration of the qexp values it is therefore sensible to probe this resonance
in a system with a spatial extension smaller than the spin healing length ξs. In
this limit, even full quantum mechanical predictions are possible for ≥ 1000 atoms.
Thus, the proper calibration can be performed in a small system and then be
applied in the extended system for the measurement of the long-time dynamics.

Alternatively, measurements at an intermediate density can be performed to
ensure the same system parameters. However, in this regime, both initial conditions
show a similar decay of the soliton correlator amplitude, albeit with different initial
offset. here, the initial excitations after a quench of the polar IC have an increased
lifetime while the lifetime of the ones generated from the soliton IC decreases. This
may again impact the properties of the scaling dynamics which may be observed
in the system.

7.3.2. Suppression of q-Dependence
For comparison with theoretical predictions, which typically assume a constant
value of q/ |nc1| after the quench, it is desirable to keep this ratio fixed in the
experiment. Experimentally, the atom loss over the large time scales involved in
the dynamics is slowly increasing this ratio over time. Although the change of
this quantity is slow, and therefore effectively adiabatic, it may still affect the
exact properties of the evolution. To tackle this time dynamics there are currently
two approaches available in the experiment which are shortly summarized in the
following.

While a reduction of the atom loss is difficult, the density may be kept constant
even though atoms are lost. This can be achieved by slowly reducing the box
size during the evolution of the system by moving the box walls. Experimentally,
this is readily implemented by a slow frequency modulation of the horizontal
frequency of one box wall. Since this requires a non-periodic RF signal for the
AOD, either another AWG must be used which supports a streaming mode2 or
frequency modulation3 together with RF combiners may be applied. Either way,
this approach changes the system size in time, which may also affect the dynamics.

2Here, the values sampled by the AWG are continuously supplied by the controlling computer.
Given a sufficient computational throughput this allows either a calculation of the required
”on the fly” or the signal may be pre-calculated and recalled from memory. A popular example
for such an AWG is the 66xx-x8 series manufactured by Spectrum Instrumentation.

3The Keysight 33600 series of AWGs currently employed in the experiment already offer an
integrated frequency modulation capability with an external drive. Therefore, a second AWG
may be used to drive the slow modulation ramp and the appropriately modulated horizontal
RF signals for each of the box walls required for the horizontal AOD.
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Instead of changing the density, also the MW dressing may be adjusted dy-
namically to maintain a constant ratio of q/ |nc1|. Here, the newly implemented
stabilization setup for the MW system [61] offers this capability. It regulates the
power to a fixed value but the frequency of the radiation may dynamically be
changed with an AWG (see section 2.4.2 for details on the setup). Here, a similar
signal generation setup may be employed as discussed in the previous paragraph.
This way the detuning of the dressing may be changed in order to adjust the
dressing value qmw to the change of the density induced by the atom loss.

The capability to dynamically vary qexp also opens further possibilities. When
adiabatically crossing the quantum phase transitions from the polar to the easy-axis
phase entanglement is generated between mF = ±1 [182]. In addition to this, the
spatial extension of our system offers the possibility to investigate the spatial
distribution of entanglement, which may be directly accessed with the simultaneous
readout [66]. For this, also novel entanglement witnesses based on entropies may
be applied [183].

7.4. Towards Thermal Exquilibrium
Although not detailed in this work, we have further studied the structure of
excitations in the quenched system in [184]. Starting from a homogeneous system
which if fully spin-polarized transverse to the magnetic offset field (e.g. Fx = 1) we
have found the system become approximately stationary and all measured spectra
are consistent with curves obtained from Bogoliubov theory expanded around a
thermal state. Using the steerable laser beam, the Landau criterion for superfluidity
is probed with a blue-detuned optical potential as moving obstacle. This allows to
certify superfluid behavior both in the density and transverse spin in the easy-plane
phase of the spinor gas. Additionally, by applying local spin rotations, we performed
linear response measurements in observables which are close to the Bogoliubov
quasi-particle modes. The motion of the resulting wavepackets is in agreement
with the structure of the relevant easy-plane Bogoliubov modes, supporting the
validity of Bogoliubov theory in this scenario.

These measurements complement the study of non-equilibrium dynamics in the
sense that the dynamical scaling associated to the presence of a NTFP in far-from-
equilibrium many-body systems is expected to be only a transient phenomenon
before the eventual equilibration of the system. Although the experimentally
accessible timescales are still too short to observe the full evolution for the same
initial state, the dynamical processes involved here seem to have the same structure,
albeit at different energies.

The observation of a spin state compatible with thermal predictions may therefore
allow a closer study of the equilibration of a far-from equilibrium state. This implies
a detailed comparison of the time dynamics of the spin-polarized IC with that of
the polar IC. Further, the equilibrated spin state represents a promising candidate
for testing the fluctuation-dissipation theorem in ultracold gases [185].
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A. Laser Modulation and Properties
of the Local Spin Rotations

Here, a detailed description of the modulation applied to the 790 nm local control
laser is given, which is required to drive the local spin rotations. Because for the
effect of the vector-Stark shift the interference of the frequency components of the
electric field are crucial, here the modulation spectrum of the light is derived. This
allows a determination of the static and spin coupling contributions of the fictitious
field. These are further used to analyze the local spin coupling Hamiltonian and
the angle between of the magnetic fields.

A.1. Modulation Spectrum and Coupling
Hamiltonian for Local Spin Rotations

To ensure a constant modulation amplitude the laser power is modulated with an
AOM (cf. fig. 2.11) whose RF signal is modulated with an RF switch (ZASWA-2-
50DR+ manufactured by Mini-Circuits; see fig. 2.12) that achieves a suppression
of more than 75 dB. This leads to a square-wave amplitude modulation with a
waveform shown on the left-hand side of fig. A.1. This modulation is performed at
a frequency ωrf = 2π/T , which is usually set to the Larmor frequency ωL of the
atomic spins and with a duty cycle d = τ/T = 0.5. The corresponding modulation
function can be expressed as Fourier series as

m(t) = Ad

(︄
1 + 2

∞∑︂
n=1

sinc(nd) cos(nωrft)
)︄
, (A.1)

where A specifies the modulation amplitude and sinc(x) = sin(πx)/(πx) denotes
the normalized sinc function. This function is used to modulate the amplitude of the
local spin rotation light described by the electric field amplitude E(t) = E0e

iωlightt,
where we drop the spatial dependence. The modulated signal is therefore given by

Emod(t) = E0m(t)eiωlightt. (A.2)

To obtain the modulation spectrum we will employ the convolution theorem
F{gh} = F{g} ∗ F{h}, which relates the Fourier transform F{·} of a product of
functions g, h(t) to the convolution (f̃ ∗ g̃)(ω) =

∫︁
dω̃f̃(ω̃)g̃(ω − ω̃). Applying the

definitions for the Fourier transform and its inverse

F{f}(ω) =
∫︂ ∞

−∞
dtf(t)e−iωt,

F−1{f̃}(t) = 1
2π

∫︂ ∞

−∞
dωf̃(ω)eiωt,

(A.3)
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Figure A.1.: Amplitude modulation signal (left) and resulting E-field spectrum of
the 790 nm local control laser beam for the implementation of local rotations. The
square-wave modulation is performed at frequency ωrf = 2π/T with a duty cycle of
d = τ/T = 0.5. This leads to a symmetric generation of discrete side-bands around
the original laser frequency ωlight which are spaced by ωrf and whose amplitude
follows an envelope given by a sinc function. Because in the experiment the local
rotation pulses are applied over a finite duration ∼ (20 – 100) µs the frequency
components acquire a finite width on the order of tens of kHz, which, however, is
still ≪ ωrf.

we obtain F{1} = 2πδ(ω) and F{eiω0t} = 2πδ(ω−ω0), where δ(·) denotes the Dirac
delta distribution. With this the spectrum of the modulation signal is obtained as

F{m} = 2πAd
(︄
δ(ω) +

∑︂
n

sinc(nd) (δ(ω − nωrf) + δ(ω + nωrf))
)︄
, (A.4)

which allows the calculation of the full modulation spectrum:

Ẽ(ω) = F{E} = E0F{m} ∗ F{eiωlightt}

= 2πE0

∫︂
dω̃F{m}(ω̃)δ(ω − ωlight − ω̃)

= 2πE0F{m}(ω − ωlight)

(A.5)

This leads to the discrete spectrum (black lines) shown in the right-hand plot
of fig. A.1. Due to the finite duration of the local rotation pulses applied in the
experiment the discrete frequencies are actually convoluted with a sinc function,
which broadens them to a width of tens of kHz. This broadening is still much
smaller than the separation of the frequencies given by ωrf. This, however does not
change the distribution of the amplitude between the peaks, which is why we will
use this discrete approximation for further estimations.

According to eq. (2.41) the static field amplitude is given by the sum Bfict
0 ∝∑︁

n E
2
n of the amplitudes En of all frequency components while the oscillating part

is generated by the cross-terms Bfict
rf ∝ 2∑︁n EnEn+1 separated by ωrf in frequency.1

1The factor of 2 in the amplitude of Bfict
rf stems from the appearance of both cross terms EnEn+1

and En+1En in the cross product between the electric fields in eq. (2.41).
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The fraction of the static field is numerically calculated to be

Bfict
0

Bfict
rf

≈ 0.785. (A.6)

A.2. Spin Rotation Hamiltonian with Offset Field
For the description of the local spin rotations it is important to also take the static
offset Bfict

0 of the full fictitious field Bfict = Bfict
0 +Bfict

rf into account. The static and
oscillating field contributions Bfict

0 and Bfict
rf give rise to the Ω̃0 and Ω̃rot terms in

eq. (A.7), respectively. Furthermore, the spin rotation coupling Hamiltonian (2.25)
should be generalized to arbitrary angles of the coupling field in the y-z-plane.
Assuming that the tilt of the total magnetic field due to the fictitious field is
negligible2 the coupling Hamiltonian may be written as

Ĥrf =
(︂
ℏΩ̃0 + 2ℏΩ̃rot cos (ωrft+ ϕrf)

)︂ (︂
sin(γ)F̂y + cos(γ)F̂z

)︂
. (A.7)

Here, γ denotes the angle between the fictitious magnetic field Bfict, given by the
propagation direction of the local rotation beam, and the global magnetic offset
field B0. These do not necessarily have to be orthogonal because the global field
may be tilted slightly against the z-axis and the local rotation beam may be angled
deflected in vertical direction by the objective if the AODs are not exactly on the
same height as the BEC. Transforming this Hamiltonian to the rotating frame of
the of the modulated fictitious field (cf. eq. (2.26)) leads to

Ĥrot
rf = ℏ

(︂
δrf + Ω̃0 cos(γ)

)︂
F̂z + ℏΩ̃rot sin(γ)

(︂
cos(ϕrf)F̂y + sin(ϕrf)F̂x

)︂
, (A.8)

where all oscillating terms (at frequencies ωrf and 2ωrf) have been dropped and
δrf = ωrf −ωL denotes the detuning between the coupling frequency and the Larmor
precession with respect to the global offset field B0. Because the change of the
total magnetic field amplitude is negligible2 the amplitudes of the measurable
amplitudes of the static and coupling contributions of the fictitious field are given
by the projections relative to the quantization axis defined by the global offset field
as

Ω0 ≈ Ω̃0 cos(γ) = gfµB

ℏ
Bfict

0 cos(γ), (A.9)

Ωrot = Ω̃rot sin(γ) = gfµB

ℏ
Bfict

rf sin(γ). (A.10)

Therefore, the angle between fictitious field and global offset field can be determined
to be

γ ≈ arctan
(︄
Bfict

0
Bfict

rf

Ωrot

Ω0

)︄
∼ 63◦. (A.11)

2The modulation ∆B0 =
⃓⃓
B0 + Bfict

0
⃓⃓

− |B0| of the magnetic field amplitude becomes most
relevant when the local rotation laser is orthogonal to the offset field, i.e. Bfict

0 ⊥ B0. In
this case, the Rabi frequency amplitude of the local rotation directly determines the static
fictitious field amplitude via eq. (A.6). In any realistic scenario the measured local rotation
Rabi frequency Ωrot will be on the order of the full coupling amplitude Ωrot ∼ Ω̃rot. This
allows the direct estimation of ∆B0 ∼ 0.1 mG ≪ B0 ∼ 0.9 G for the largest observed local
Rabi frequency of Ωrot ≈ 2π × 12.6 kHz.
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Here, the result Ω0/Ωrot ∼ 0.4 from fig. 2.18 is used. This leads to a realistic value
of γ, which implies full fictitious field amplitudes of

Ω̃0 ∼ 2π × 11.1 kHz, Bfict
0 ∼ 16 mG,

Ω̃rot ∼ 2π × 14.1 kHz, Bfict
rf ∼ 20 mG.

(A.12)

for Ωrot ≈ 2π × 12.6 kHz. The static fictitious field also induces a detuning

δfict = Ω0 ≈ cot(γ)B
fict
0

Bfict
rf

Ωrot ∼ 0.4 Ωrot, (A.13)

which limits the maximal transfer fraction of the local spin rotation to Ω2
rot/(δ2

fict +
Ω2

rot) ∼ 0.9.
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B. Retrieving Physical Units from
Dimensionless Equations

In theoretical papers the equations are often presented in unitless form to simplify
the expressions and simplify transformations. When comparing such models to
experiments, however, it is crucial to reintroduce the proper physical units to all
quantities. This section should serve as ”recipe” for this process and as reference
for the required transformation between physical and unitless quantities for the
most important sources for this thesis.

As example for the transformation let us consider the GPE provided in [141]:

i∂t̄ψ̄j =
(︃

−1
2∂

2
x̄ + V̄j +

⃓⃓⃓
ψ̄j

⃓⃓⃓2
+ δgjk

⃓⃓⃓
ψ̄k

⃓⃓⃓2
− µ̄j

)︃
ψ̄j, (B.1)

where the barred symbols (e.g. x̄) denote dimensionless quantities. We want to
translate this equation into the form of the Manakov GPE eq. (3.7) with physical
units (associated to the plain variables; e.g. x)

iℏ∂tψj =
(︄

−ℏ2∂2
x

2m + c0 |ψj|2 + δgjkc0 |ψk|2 − µj

)︄
ψj. (B.2)

For this we first have to choose a normalization for the wavefunction for which
we naturally use the background density n0 (of the dark component j = D),
i.e. ψ̄j = ψj/

√
n0. Inserting this identification into eq. (B.1) and comparing the

resulting equation

i∂t̄ψj =
(︄

−1
2∂

2
x̄ + V̄j + |ψj|2

n0
+ δgjk

|ψk|2

n0
− µ̄j

)︄
ψj (B.3)

with eq. (B.2) we realize that we have to multiply the equation with n0c0 to obtain
the c0 |ψj|2 ψj term on the right-hand side. Identifying the result

in0c0∂t̄ψj =
(︃

−n0c0

2 ∂2
x̄ + n0c0V̄j + c0 |ψj|2 + δgjkc0 |ψk|2 − n0c0µ̄j

)︃
ψj (B.4)

with eq. (B.2) we can extract the relations between dimensionless variables and
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quantities in physical units:

t̄ = n0c0

ℏ
t (B.5)

x̄ =
√
mn0c0

ℏ
x (B.6)

ψ̄j = ψj

n0
(B.7)

V̄j = Vj

n0c0
(B.8)

µ̄j = µj

n0c0
(B.9)
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C. Derivation of all F = 1
Scattering Lengths gjk

For the discussion of the 3-component vector solitons in the F = 1 hyperfine
manifold of 87Rb in chapter 3 it is helpful to consider the pair scattering lengths ajk

between all possible combinations of magnetic substates j and k. This form is usually
applied in the discussion of Manakov solitons. In contrast, interactions in spinor
gases are mainly discussed in terms of the pair spin scattering channels allowed
for the s-wave collisions. Here, a conversion between these two representations is
provided.

In full generality, the equation of motion for the BEC wavefunctions ψj for each
of the magnetic substates j is given by the 3-component coupled GPE

iℏ∂tψj =
(︄

−ℏ2∇2

2m + Vext +
∑︂

k

gjk |ψk|2
)︄
ψj (C.1)

with suitable external (magnetic and trapping) potentials Vext and intra- and
interspecies interaction constants gjk = 4πℏ2ajk/m (see fig. 3.5 for the scattering
lengths in the F = 1 hyperfine manifold). Usually, the interactions in spinor
gases are formulated in terms of spin operators and spin pair scattering lengths
aF [52, 53]. The scattering lengths aF for the pair spin channels F = 0, 2 fully
specify all interactions. Employing a formulation in spin operators, the interactions
are usually expressed by coupling constants c0 and c1 which depend on the sum
and difference of the spin pair scattering lengths. Equivalently, the interaction
Hamiltonian for F = 1 may be written in terms of the pair state projector
P̂ = ∑︁F

M=−F |F ,M⟩ ⟨F ,M| as follows [52, 58, 186]:

Ĥint =
2F∑︂

F=0
gF P̂Fδ(r)

=
∑︂

F ,M

∑︂
m1,m2

∑︂
m3,m4

gF |m1;m2⟩ ⟨m1;m2|F ,M⟩ ⟨F ,M|m3;m4⟩ ⟨m3;m4| δ(r)

=
∑︂

m1,m2

gm1m2 |m1;m2⟩ ⟨m1;m2| δ(r)

+ c1(|0; 0⟩ ⟨−1; 1| + |−1; 1⟩ ⟨0; 0| + . . . )δ(r)
(C.2)

Here, δ(r) constrains the interacting particles to the same position and we use the
short-hand notation |m1;m2⟩ = |F,m1;F,m2⟩ for the spin pair state in the basis of
hyperfine sublevels. In the third line we split the sums running over the sublevels
into two parts with equal and unequal initial and final states. Imposing conservation
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APPENDIX C. DERIVATION OF ALL F = 1 SCATTERING LENGTHS GJK

of angular momentum for the unequal states therefore results in the SCC terms
proportional to the spin interaction constant c1. For equal spin states we can
express the left part in terms of the interaction constants gm1m2 = 4πℏ2am1m2/m
which couple the single magnetic sublevels. Here, the scattering lengths am1m2 are
connected to the pair scattering lengths aF via

am1m2 =
2F∑︂

F=0

F∑︂
M=−F

⟨F,m1;F,m2|F ,M⟩2 aF (C.3)

with the Clebsch-Gordan coefficients ⟨F,m1;F,m2|F ,M⟩ for coupling the single
spin states |F,m1⟩ and |F,m2⟩ to the pair spin state |F ,M⟩. Using the values
a0 = 101.78 aB and a2 = 100.4 aB [53, 58] for the pair scattering lengths in units of
the Bohr radius aB leads to the scattering lengths displayed in fig. 3.5. The largest
relative deviation of the scattering lengths is approx. 0.9 %.
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D. Additional Strucutre Factor Data
and Details on the Scaling
Analysis

D.1. Full Time Evolution of Strucure Factors
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Figure D.1.: Full time evolution of the structure factor for the Polar IC. The
leftmost points which are not connected with a dashed line indicate the value of
f(k = 0) for the corresponding times.
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Figure D.2.: Full time evolution of the structure factor for the soliton IC. The
leftmost points which are not connected with a dashed line indicate the value of
f(k = 0) for the corresponding times. The peaks in the initial condition correspond
to the spin modulation of the six local rotations. Here, during the short time-of-
flight before imaging small spin excitations are generated which appear as signal in
the structure factor.

D.2. Additional Details on Errors of the Scaling
Analysis

For the error analysis via jackknife resampling (see [170]) one single realization
j is removed from the data (all realizations at all times in the scaling regime)
contributing to the analysis. For this reduced data set the optimal scaling exponents
α and β are calculated. This procedure is repeated for the removal of each of the
Ns realizations. From this Ns values νj for each of the exponents is obtained and
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Figure D.3.: Scaling residual distribution W for the Polar IC with zoom to show
the fine structure. The double-peaked structure around the minimal residual
(W = 1) leads to the large jackknife error (see text).

the standard error of the best estimate ν of the actual exponent is calculated as

∆ν =
√︂
Ns − 1 Std{νj}, (D.1)

where Std{·} denotes the standard deviation.
For the Polar IC the distribution W of residuals χ2 is rather unconstrained along

one axis (see fig. D.3). However, this plateau region in W is not homogeneous with
a single maximum but there is structure on the 10−3 level where even two maxima
emerge. Most likely this is not a physical property of the spinor dynamics but
rather a finite size effect which limits the number of available data points of the
structure factor in the scaling region. For the removal of six individual realizations
j instead of the lower maximum the upper one leads to a smaller χ2

min. This results
in an increased value of Std{νj}. When excluding these six jackknife samples from
the analysis the resulting error estimation leads to ∆α = 0.08 and ∆β = 0.02 for
the Polar IC.

For each of the time steps between 200 and 300 realizations have been measured.
This leads to a total number of realizations of Ns = 1576 for the Polar IC and
Ns = 1273 for the soliton IC.
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Figure D.4.: Scaling residual distribution W for the soliton IC. In constrast to
the Polar IC (fig. D.3) the zoom shows only a single optimum.
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List of Acronyms
MOT magneto-optical trap

TOP time-orbiting potential

XDT crossed dipole trap

WG waveguide

TF Thomas-Fermi

d.o.f. degree of freedom

AOD acousto-optic deflector

AOM acousto-optic modulator

RMS root mean square

SG Stern-Gerlach

IST inverse scattering transform

GPE Gross-Pitaevskii equation

NLSE non-linear Schrödinger equation

SCC spin-changing collision

s.d. standard deviation

AWG arbitrary waveform generator

BEC Bose-Einstein condensate

NTFP non-thermal fixed point

MW microwave

RF radio frequency

EP easy-plane

PBS polarizing beam splitter

PD photodiode

IC initial condition

BDB bright-dark-bright
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