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Abstract

T cells have a major role in the adaptive immune response, where they eliminate infec-

tious agents and malignant cells by specific recognition of non-self antigens. Besides this

general function in the immune response, T cells also have diverse tissue-specific func-

tions. This has been well described for regulatory T cells, which are not only essential

for the control of the immune response, but are also involved in maintaining tissue home-

ostasis. However, most evidence comes from bulk experiments in mice resulting in limited

resolution of T cell subsets and it is unknown whether Treg cells with a similar tissue

adaptation program also exist in humans. Especially epigenetic adaptations underlying

observed transcriptional changes in T cells from lymphoid and peripheral tissues remain

incompletely understood.

In this work, I analyzed single cell ATAC sequencing data of flow-sorted CD4
+
and CD8

+

T cells from lymphoid and non-lymphoid tissues to investigate the molecular programs

driving T cell adaptation to peripheral tissues. The availability of both human and murine

samples allowed me to describe commonalities and differences in their T cell biology.

In addition, I used these T cell atlases under homeostasis together with several T cell

datasets from tumors to gain insights on shared chromatin accessibility changes in the

tumor microenvironment.

My analysis showed the presence of human tissue Treg cells that have many commonalities

with their murine counterparts. These include a conserved epigenetic signature with

enriched footprint of transcription factor BATF. I further identified potential tissue Treg

precursor cells in human peripheral blood and mouse spleen sharing increased chromatin

accessibility at the locus encoding chemokine receptor CCR8. While murine tissue Treg

cells are T helper 2 cell-biased, human Treg cells in peripheral tissues more closely resemble

T follicular helper cells in their ATAC profile. Within the CD8
+
T cell compartment, I

showed that murine and human peripheral tissues harbor a population of PD1
+
TOX

+

CD8
+

T cells with epigenomes denoting a concurrent activation and exhaustion state.

PD1
+
TOX

+
CD8

+
T cells shared chromatin features of tissue adaptation and BATF

dependence with tissue Treg cells. I further contextualized epigenetic adaptation observed

in tissue-repair associated Treg cells in a comprehensive view on immune cells that suggests

commonalities not only with CD8
+
T cells and innate lymphoid cells, but also with several

myeloid cell subsets. Eventually, through comparison of T cells from healthy and tumor

tissues, I showed that Treg and PD1
+
TOX

+
CD8

+
T cells from tumors also maintain a

tissue adaptation program.

i



Zusammenfassung

T-Zellen spielen durch ihre gezielte Erkennung und Eliminierung körperfremder Anti-

gene eine fundamentale Rolle in der adaptiven Immunantwort. Daneben erfüllen sie

verschiedene Funktionen zur Aufrechterhaltung der Gewebehomöostase. Dies trifft ins-

besondere auf regulatorische T-Zellen zu, für die eine Vielzahl gewebespezifischer Funk-

tionen neben ihrer allgemeinen immunsuppressiven Funktion gefunden wurde. Bisherige

Forschungsarbeit zu T-Zellen unter Homöostase basiert jedoch hauptsächlich auf Bulk-

Sequenzierungsdaten von Mäusen, welche eine limitierte Auflösung zellulärer Untergrup-

pen aufweisen. Zudem ist bisher unbekannt, wie ähnlich epigenetische Anpassungen an

periphere Gewebe zwischen murinen und humanen regulatorischen T-Zellen sind.

Diese Arbeit untersucht anhand von ATAC-Sequenzierungsdaten epigenetische Programme

von CD4
+
und CD8

+
T-Zellen, welche deren Anpassung an periphere Gewebe steuern.

Durch die Verfügbarkeit von humanen und murinen Proben konnte ich Gemeinsamkeiten

und Unterschiede in deren T-Zell-Biologie beschreiben. Darüber hinaus konnte ich durch

einen Vergleich von T-Zellen unter Homöostase und Tumor-T-Zellen Erkenntnisse über

gemeinsame Veränderungen der Chromatinverfügbarkeit gewinnen.

In dieser Arbeit konnte ich menschliche Gewebe-Treg-Zellen charakterisieren, die eine

gemeinsame epigenetische Signatur und Aktivität des Transkriptionsfaktors BATF mit

Maus-Gewebe-Treg-Zellen teilen. Weitherin habe ich potenzielle Vorläufer von Gewebe-

Treg-Zellen im peripheren Blut des Menschen und in der Milz von Mäusen identifiziert,

die sich unter anderem durch eine erhöhte Chromatinverfügbarkeit im Chemokinrezeptor

CCR8-Lokus auszeichnen. Gewebe-Treg-Zellen der Maus ähneln in ihrem Chromatinprofil

Typ-2-T-Helferzellen, wohingegen menschliche Treg-Zellen eine höhere Übereinstimmung

zum ATAC-Profil von follikulären T-Helferzellen aufweisen. Eine Analyse des peripheren

CD8
+
T-Zellkompartiments ergab, dass beide Spezies eine Population von PD1

+
TOX

+

CD8
+
T-Zellen beherbergen, deren Epigenom auf einen gleichzeitigen Aktivierungs- und

Erschöpfungszustand hindeutet. PD1
+
TOX

+
CD8

+
T-Zellen teilen sowohl Chromatin-

merkmale der Gewebeanpassung als auch Abhängigkeit von Transkriptionsfaktor BATF

mit Gewebe-Treg-Zellen. Durch die Betrachtung von Einzelzell-Atlanten humaner und

muriner Immunzellen konnte ich zeigen, dass auch verschiedene Zelltypen des myeloischen

Kompartiments ein epigenetisches Anpassungsprogramm an einen Aufenthalt in periph-

erem Gewebe vorweisen. Schließlich ergab ein Vergleich von T-Zellen aus gesundem und

Tumorgewebe, dass Treg- und PD1
+
TOX

+
CD8

+
T-Zellen aus Tumoren ihre epigenetis-

che Adaptation an Gewebe beibehalten.
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1

1 Introduction

1.1 The immune system

Vertebrates are under a constant threat stemming from foreign antigens such as microbes,

viruses and toxins, from which they need to defend themselves effectively to maintain

homeostasis (Marshall et al., 2018). Besides anatomical barriers such as skin and mucosa,

there is a complex system of cells and molecules, collectively referred to as the immune

system, which is dedicated to clear foreign antigens and limit the damage they are causing

to the body. On a broad scale, the immune system can be divided into two major arms, the

innate immunity and the adaptive immunity (Marshall et al., 2018). If there is a breach

in the anatomical barrier, the innate immune system is the first to react to invading

pathogens. Innate immune cells as well as a set of plasma proteins called the complement

system together respond immediately but in a non-adaptive way. With some delay, the

cells of the adaptive immune system are activated, which are able to respond to the

encountered foreign antigens in a highly specific manner (Murphy and Weaver, 2018, p.

8). Innate and adaptive immunity work in a complementary fashion that allows efficient

clearance of pathogens (Turvey and Broide, 2010; Bonilla and Oettgen, 2010).

1.1.1 Innate immunity

Innate immunity is composed of four layers, each of which impedes pathogenic infections.

First, epithelial cells present on all body surfaces form a tight anatomic barrier that pre-

vents foreign antigens from entering the organism. Second, physiologic processes including

temperature regulation, acidic pH and molecules such as complement proteins inhibit or

kill pathogens. On the third level, certain immune cells are able to phagocytose and

degrade microbes. Finally, an inflammatory barrier is formed through leakage of vascular

fluid in infected areas, which contains proteins with antibacterial activity (Marshall et al.,

2018; Turvey and Broide, 2010; Bonilla and Oettgen, 2010).

The cellular component of innate immunity is able to mount a rapid defense response to

invading pathogens. This is achieved by pattern recognition receptors (PRRs) present

on innate immune cells, which recognize a range of molecular structures that are fre-

quently present on pathogens, but not on cells of the own body. An example of pathogen-

associated molecular patterns are lipopolysaccharides, which are part of bacterial cell

walls and not employed by eukaryotic cells (Marshall et al., 2018). Furthermore, PRRs

recognize several molecules such as ATP which are not present in extracellular space under

homeostatic conditions (Murphy and Weaver, 2018, p. 9). Of note, PRRs are germline-

encoded and do not change throughout the lifespan of an organism resulting in a limited

capacity to encounter foreign antigens (Medzhitov and Janeway, 2000; Lanier, 2005).

Dependent on the cell type, activation of PRRs entails processes such as phagocytosis,
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cytokine production or cell locomotion (Netea et al., 2020).

Cells of the innate immune response comprise monocytes, macrophages, granulocytes, in-

nate lymphoid cells (ILCs) and dendritic cells. Monocytes differentiate into macrophages

or dendritic cells once they enter tissues from the bloodstream. Monocytes, macrophages,

dendritic cells and granulocytes are also referred to as phagocytes due to their ability to

ingest and kill pathogens (Murphy and Weaver, 2018, pp. 9, 97). Besides phagocytosis,

macrophages and dendritic cells act as important messengers to the adaptive immune

system via antigen presentation (Turvey and Broide, 2010). Granulocytes are further

subdivided into neutrophils, eosinophils, basophils and mast cells. Neutrophils can re-

lease granules of bactericidal proteins while eosinophils are well known for their ability to

destroy parasites, which are too big to ingest via phagocytosis. Basophils and mast cells

both have important roles in the initiation of acute inflammation. Mast cells further re-

lease cytokines attracting other immune cells in an early state of infection (Marshall et al.,

2018). Eventually, ILCs can be divided into NK cells, which function in the destruction of

infected cells or cancer cells, and several other ILC subsets performing immune-regulatory

functions via cytokine release (Marshall et al., 2018).

Cytokines are proteins acting as messengers in cell-cell communication. The release of

cytokines by innate immune cells is paramount in the attraction of other immune cells

to the site of inflammation, their activation, and the initiation of fever (Marshall et al.,

2018; Murphy and Weaver, 2018, p. 33).

1.1.2 Adaptive immunity

The adaptive immune system consists of T and B lymphocytes. There are two major

differences that set cells from the adaptive immune system apart from innate immune cells.

On the one hand, receptors with a huge diversity in their recognized antigens are generated

in a process called somatic recombination. This is in sharp contrast to the limited set

of germline-encoded PRRs employed by the innate immune response (Medzhitov and

Janeway, 2000; Medzhitov, 2009). On the other hand, maintenance of a population of

antigen-specific lymphocytes after clearance of a foreign antigen results in an immunologic

memory.

T cells are responsible for cell-mediated immunity and can be divided into cytotoxic T cells

(CD8
+
T cells) and T-helper (Th) cells (CD4

+
T cells). Each cell expresses a T-cell recep-

tor (TCR) with unique antigen recognition capability. To become activated, the interac-

tion of the TCR with its cognate antigen presented on a major histocompatibility complex

(MHC) molecule is required. There are two known classes of MHC: MHC class I molecules

are found on all nucleated cells and present intracellular peptides, thereby reporting the

cellular state. MHC class II molecules are only expressed by antigen-presenting cells
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including dendritic cells, macrophages and B cells. They present extracellular peptides

derived from phagocytosed antigens (Bonilla and Oettgen, 2010; Murphy and Weaver,

2018, pp. 19, 36). While CD8
+
T cells are restricted to MHC class I molecules, CD4

+

T cells recognize MCH class II molecules (Schmidl et al., 2018). Upon activation, which

additionally requires proper signaling via co-stimulatory molecules, naive T cells perform

a clonal expansion and differentiate into effector and memory T cells (Fan and Rudensky,

2016; Hwang et al., 2020).

Effector CD8
+
T cells contribute to clearance of pathogens in multiple ways: they trigger

apoptosis in cells presenting their cognate antigen on the MHC I complex, since these

cells likely represent cancer cells or are infected with pathogens such as viruses. Besides,

they also activate phagocytes, which can subsequently ingest pathogens and cell debris.

Further, they pass on signals to nearby cells via release of cytokines (Bonilla and Oettgen,

2010). While effector CD8
+

T cells are short-lived, memory CD8
+

T cells persist for

a long time even after the infection is resolved. These memory cells allow a fast and

efficient response to repeated challenges with the same antigen thus providing long-term

protection (Bonilla and Oettgen, 2010; Murphy and Weaver, 2018, pp. 614-615).

On the other hand, naive CD4
+

T cells differentiate into various kinds of Th subsets

depending on stimulation of their TCR, co-stimulatory molecules, and the cytokine mi-

lieu (Schmidl et al., 2018). They do not directly kill pathogens, but rather support and

regulate other immune cells through release of specific cytokines. The most abundant

and well-described subsets are Th1, Th2 and Th17. The cytokines required for their dif-

ferentiation are interferon γ (IFNγ) and interleukin (IL) 12 (Th1 cells), IL-4 (Th2 cells)

and transforming growth factor β (TGFβ) (Th17 cells) (Richards et al., 2015). Th1 cells

themselves release IFNγ, which mainly increases phagocytic activity of macrophages and

anti-viral responses in other cells and promotes B cell differentiation. Together, these

effects support the defense against intracellular pathogens. Th2 cells are specialized in

directing immune responses against parasitic infections. They release interleukins 4, 5,

and 13 resulting in the attraction of eosinophils and mast cells and immunoglobulin (Ig)

E production in B cells. The release of IL-17 marks the Th17 response, which has pro-

inflammatory effects such as proliferation and recruitment of neutrophils and is geared

towards eradication of extracellular pathogens (Marshall et al., 2018; Weaver et al., 2013).

Similar to CD8
+
T cells, a small population of memory CD4

+
T cells persists after an

infection, whereas effector CD4
+
T cells die.

B cells form the second pillar of adaptive immunity by conferring humoral immunity. Like

T cells, they also have receptors with unique antigen-recognition capability. However, B

cells can directly interact with antigens without the need for mediating antigen-presenting

cells. Once activated, B cells proliferate and differentiate into plasma cells or memory

B cells. The former is able to produce large amounts of antibodies, which bind to ex-
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tracellular pathogen epitopes. This not only impedes the pathogen’s function, but also

marks it for destruction. Opsonization improves pathogen clearance by triggering comple-

ment activation, phagocytosis and destruction through immune effector cells. Memory B

cells can quickly proliferate and differentiate into antibody-producing plasma cells during

subsequent exposures to their cognate antigen (Bonilla and Oettgen, 2010; Murphy and

Weaver, 2018, pp. 34-35).

1.2 Regulation of the immune system

A tight regulation of the immune system is essential to avoid disease. Overreactions of the

immune system (hypersensitivity), targeting self-antigens (autoimmunity), or insufficient

reactions (immunodeficiency) can all stem from misregulation. Examples include allergies,

which are caused by immune responses against harmless environmental antigens such as

pollen; type I diabetes, an autoimmune reaction of the immune system against pancreatic

beta cells; or the inability to destroy a tumor due to downregulation of the immune

response in the tumor microenvironment (Kay, 2000). Misguided immune responses are

also the cause for many chronic inflammatory diseases such as rheumatoid arthritis and

asthma (Marshall et al., 2018).

During maturation of adaptive immune cells, autoimmunity is prevented by a strict se-

lection process for lymphocytes that well discriminate self from non-self antigens. In the

case of CD4
+
T cells, a fraction of self-reactive cells can also develop into regulatory T

(Treg) cells with an important role in immune regulation (Kronenberg and Rudensky,

2005). Similarly, populations of other immune cell types with regulatory function have

been described (Mauri and Bosma, 2012; Shimokawa et al., 2020; Fleming and Mosser,

2011).

1.2.1 CD4
+

regulatory T cells

Treg cells have a key role in immune regulation: they inhibit excessive immune responses

and prevent autoimmunity by suppressing immune activity against self-antigens. Be-

sides central tolerance, they also establish peripheral tolerance to harmless foreign anti-

gens (Marshall et al., 2018). Treg cells are characterized by the expression of the tran-

scription factor forkhead box P3 (FOXP3), which is essential for their development, main-

tenance and function (Fontenot et al., 2003). Their importance has been shown in scurfy

mice, which lack a functional Foxp3 gene entailing Treg cell deficiency, overreactive CD4
+

T cells, and development of fatal immune dysregulation (Brunkow et al., 2001; Clark et al.,

1999). A similar phenotype is observed in humans that suffer from X-linked neonatal di-

abetes mellitus, enteropathy and endocrinopathy syndrome (Wildin et al., 2001).

To date, four major mechanism have been described, by which Treg cells exert their
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inhibitory function (Vignali et al., 2008; Scott et al., 2021). These are summarized in

Figure 1: first, they can release molecules such as IL-10, IL-35 or TGFβ, which inhibit

effector T cells and suppress their proliferation (Vignali et al., 2008; Collison et al., 2007).

Second, Treg cells can trigger apoptosis of effector T cells and NK cells in a perforin

and granzyme-dependent mode (Grossman et al., 2004). Third, generation or deprivation

of certain molecules by Treg cells causes metabolic disruption. This includes formation

of extracellular adenosine by the CD39/CD73 pathway, which leads to suppression of

effector T cells by activation of adenosine receptor 2A on their surface (Deaglio et al.,

2007). Moreover, cyclic adenosine monophosphate (cAMP) generation and subsequent

transfer through gap junctions of responder T cells inhibits their proliferation and IL-2

synthesis (Bopp et al., 2007). IL-2 is a pleiotropic molecule that supports differentiation,

maintenance and expansion of multiple immune cell types (Sakaguchi et al., 2008). Since

Treg cells express high-affinity IL-2 receptor α-chain (CD25), they also outcompete effec-

tor immune cells for IL-2 (Vignali et al., 2008; Ross and Cantrell, 2018). Treg cells also

directly modulate dendritic cell (DC) functions: specifically, interaction of CD80/CD86

on DCs with cytotoxic T-lymphocyte antigen-4 (CTLA-4) on Treg cells induces expression

of the enzyme indoleamine 2,3-dioxygenase (IDO) in DCs, which has immunosuppressive

effects (Fallarino et al., 2003). Eventually, Liang et al. (2008) showed that interaction

of lymphocyte-activation gene 3 (LAG3) with MHC class II molecules on DCs prevents

their maturation and reduces their immunostimulatory function.
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Figure 1: Treg cell inhibitory mechanisms. Treg cells have several functions that
result in downregulation of the immune sytem. a Release of inhibitory cytokines. b Direct
killing of other immune cells through release of perforins and granzymes. c Deprivation
of molecules required for immune effector cell function and survival such as IL-2, cAMP
and adenosine receptor 2A-mediated inhibition. d Modulation of DC development and
function through inhibitory receptors such as LAG3 or induction of immunosuppressive
IDO. Reprinted from Vignali et al. (2008), Copyright © 2008 provided by Springer Nature
and Copyright Clearance Center.

Several Treg cell subsets have been described including thymus-derived (tTreg), peripheral

(pTreg) and induced (iTreg) Treg cells. These subsets mainly differ in their developmental

paths. While tTreg cells fully maturate in the thymus, pTreg cells differentiate from

conventional CD4
+

T (Tconv) cells in peripheral tissues. Together, tTreg and pTreg

cells are also called natural Treg cells due to their natural occurrence, which sets them

apart from iTreg cells that can be induced from Tconv cells in-vitro. Although iTreg cells

have many similarities with natural Treg cells, their phenotype is less stable (Ohkura and

Sakaguchi, 2020).

1.2.2 CD8
+

regulatory T cells

Besides Treg cells, there are other immune cells with immune-regulatory functions. Among

murine CD8
+
T cells, a population of CD122

+
(IL-2 receptor β) cells with both memory

and regulatory phenotype has been described (Rifa’i et al., 2004; Akane et al., 2016; Liu

et al., 2015). Similar to Treg cells, CD8
+
CD122

+
T cells can prevent autoimmunity and

alloimmune responses. For example, in a rodent type I diabetes model, it has recently
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been shown that CD8
+
CD122

+
T cells, but not Treg cells, suppress the autoimmune dis-

ease (Shimokawa et al., 2020). In resemblance to Treg cells, CD8
+
CD122

+
T lymphocytes

rely on multiple suppressive mechanisms including production of inhibitory molecules (IL-

10, TGFβ1), induction of apoptosis via Fas-FasL interaction, or modification of other T

cells such as control of IL-17 production in CD4
+
T cells (Liu et al., 2015; Akane et al.,

2016). The human counterpart to murine CD8
+
CD122

+
T cells are CD8

+
CXCR3

+
T

cells (Shi et al., 2009). To date it is still unclear in which situations these cells function as

regulatory T cells, and whether they can be induced in-vitro similarly to iTreg cells (Liu

et al., 2015).

1.2.3 Role of regulatory T cells in tumor tissue

Next to pathogens, cancer cells can serve as another source of foreign antigen, since alter-

ations in their genome can lead to expression of aberrant proteins or ectopic expression.

Peptides presented by these cells may represent neoantigens that can be detected by the

immune system. Since this causes their destruction by effector immune cells, a selective

pressure is applied to cancer cells towards mechanisms evading immune surveillance. One

such mechanism is the recruitment of Treg cells through production of chemokines. In

multiple tumor types, increased CCL5 expression by tumor cells has been observed. This

results in preferential recruitment of nTreg cells, which have high expression of the corre-

sponding receptor CCR5 (Velasco-Velázquez et al., 2014; Singh et al., 2018; Chang et al.,

2012). Another mechanism involves elevated IL-10 and TGFβ levels in the tumor mi-

croenvironment (TME) promoting pTreg cell differentiation from peripheral naive CD4
+

T cells (Sato et al., 2011; Mocellin et al., 2001; Neel et al., 2012).

In most cases, high tumor Treg cell infiltration is associated with poor prognosis (Chen

et al., 2011; De Simone et al., 2016; Flammiger et al., 2013; Togashi et al., 2019). In

murine tumor models, Treg cell depletion results in tumor rejection, but causes lethal

autoimmunity (Bos et al., 2013; Shimizu et al., 1999; Kim et al., 2007).

Tumor Treg cells apply similar mechanisms as described in section 1.2.1 to control the im-

mune response. Additionally, Xiong et al. (2015) showed that Treg cells support metastasis

by facilitating epithelium-to-mesenchymal transition. Also, they likely promote differen-

tiation of fibroblasts into cancer-associated fibroblasts. These cells release high amounts

of fibronectin and collagen into the tumor stroma, thereby reducing T cell motility (Tur-

ley et al., 2015). Eventually, tumor Treg cells have also been reported to support tumor

growth by producing vascular endothelial growth factor resulting in angiogenesis (Li et al.,

2019b; Facciabene et al., 2011).
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1.3 Origin and development of the immune system

The immune system consists of a multitude of highly specialized cell types. All of these

originate from a single cell type - hematopoietic stem cells (HSCs). Due to the short

viability of most mature blood cells, it is estimated that more than 10
11

blood cells need

to be replenished each day in an adult human. To allow the maintenance of sufficient

blood cell production throughout the life of an organism while also ensuring adequate

proportions of specialized cell subsets, hematopoiesis needs to be tightly regulated both

on a genetic and epigenetic level (Catlin et al., 2011; Orkin and Zon, 2008).

1.3.1 The hematopoietic tree

Since its start over 150 years ago, research on hematopoiesis has constantly revised the

hematopoietic tree, a hierarchy blood cells follow through during their differentiation pro-

cess (Watcham et al., 2019). With the exception of some tissue-resident immune cell

populations that develop in the yolk sac or fetal liver during embryonic development,

immune cells originate from the bone marrow (Murphy and Weaver, 2018, p. 5). In the

classic view, the hematopoietic tree can be divided into three compartments based on cell

potency (Figure 2A).

At the top of the tree reside HSCs – multipotent cells that act as the source of all other

immune cells. Another crucial characteristic besides multipotency is self-renewal that

allows maintenance of a steady pool of HSCs throughout lifetime (Seita and Weissman,

2010). HSCs can be divided by decreasing self-renewal capacity into long-term HSCs (LT-

HSCs), short-term HSCs (ST-HSCs) and multipotent progenitor (MPP) cells (King and

Goodell, 2011). MPPs are still multipotent, but have lost self-renewal capacity. They fur-

ther differentiate into one of the lineage-defining oligopotent common lymphoid progenitor

(CLP) or common myeloid progenitor (CMP) cells. CLPs eventually give rise to mature

unipotent lymphoid cell types including B cells, T cells and NK cells. On the other hand,

CMPs define the myeloid lineage and differentiate into megakaryocyte-erythroid progen-

itor cells and granulocyte-monocyte progenitor (GMP) cells. The former is commited to

megakaryocyte or erythrocyte differentiation while monocytes, granulocytes or mast cells

are progeny of the latter. Dendritic cells are a special case in the hematopoietic tree, since

they can arise from progenitor cells of the lymphoid and myeloid lineage (Manz et al.,

2001; Watcham et al., 2019; Seita and Weissman, 2010).

This classic view of hematopoiesis has been refined by the discovery of new cell sub-

sets such as multiple MPP subpopulations in the HSC compartment (Watcham et al.,

2019). For example, lymphoid-primed MPPs (LMPPs) have been discovered that are

primed towards the lymphoid arm, but also have the potential to become GMPs. Most

recently, the availability of single-cell omics technologies has allowed the investigation of

transcriptomic and (epi)genetic profiles of large numbers of cells, which revealed further
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heterogeneity among blood cells. As an example, the Human Cell Atlas Project has gen-

erated a single-cell transcriptomic dataset containing over 100,000 human hematopoietic

cells (Figure 2B) (Hay et al., 2018; Regev et al., 2017). The overarching observation

from these studies is that hematopoiesis is a continuous rather than a discrete process, in

which branching points are difficult to pinpoint (Watcham et al., 2019; Marshall et al.,

2018).

Figure 2: Hematopoietic tree diagram and corresponding scRNA atlas. A Dia-
gram of the classic view on the hematopoietic tree with discrete cellular states. Cells are
ordered in a hierarchy of increasing specialization and decreasing potency, as indicated by
dashed boxes. B UMAP of single-cell transcriptomics landscape from human bone marrow
mononuclear cells. Rather than discrete cellular states, continuous differentiation trajecto-
ries are observed. Arrows show the direction of differentiation. Adapted from Watcham
et al. (2019), Copyright © 2019 provided by Elsevier and Copyright Clearance Center.

1.3.2 T cell education

In mammals, B cells and NK cells differentiate and mature from CLPs in the bone marrow.

In contrast, CLPs constantly migrate to the thyumus, where they become thymocytes

and give rise to T cells (Serwold et al., 2009). The thymus can be divided into two

major regions, the outer cortex and the central medulla. It consists of a network of

thymic epithelial cells (TECs), macrophages, DCs and thymocytes, which collectively

form the thymic stroma, a specialized microenvironment for T cell maturation (Murphy

and Weaver, 2018, pp. 403-405). T cell education starts in the thymic cortex with early

thymic progenitor cells, which neither express CD4 nor CD8 co-receptors and are thus

double-negative (DN) (Figure 3). Epithelial cells in the cortex of the thymus then interact

with these DN1 thymocytes via Notch-signaling. This induces transcription factors that

determine their T cell fate, a developmental path that becomes irreversible in following

DN2 stage. Of note, lineage commitment steps during T cell development also entail

genome-wide epigenetic changes (Johnson et al., 2018; Hu et al., 2018; Schmidl et al.,
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2018). In the second DN stage, T cell receptor rearrangement is initiated at the gene

loci encoding TCRβ, TCRγ, and TCRδ (Koch and Radtke, 2011). The transition from

DN2 to DN3 marks the first bifurcation step, in which thymocytes further develop into

γδ or αβ T cells. The larger fraction of thymocytes follows αβ T cell fate, and only

cells that express a functional pre-TCR complex in DN3 stage move on to the last DN

stage. The pre-TCR complex consists of the TCRβ chain together with an invariant

pTα chain as well as CD3 molecules, which are the signaling components of the TCR.

CD3 signaling then induces a transition to DN4, in which cells rapidly proliferate and

subsequently express both CD4 and CD8 coreceptors, turning them into double-positive

(DP) thymocytes (Koch and Radtke, 2011; Murphy and Weaver, 2018, pp. 405-409). DP

cells rearrange their TCRα chain and present their complete TCRαβ complex on their

surface to enter a rigorous selection process, which is only passed by 2–4% of thymocytes

ensures that T cells are neither over- nor underreactive. First, they need to pass positive

selection, in which only cells with a TCR with intermediate avidity for self peptide:self-

MHC molecules on DCs, cortical TECs and fibroblasts receive positive survival signals.

Subsequently, a second lineage choice takes place by continuation of either CD4 or CD8

coreceptor expression resulting in single-positive (SP) thymocytes. SP thymocytes then

migrate from the thymic cortex to the medulla, where negative selection takes place.

Through presentation of a large compendium of self-antigens on MHC complexes of DCs

and medullary TECs, potentially autoreactive SP thymocytes are identified and deleted

through apoptosis. Mature naive T cells that have completed thymic education are self-

tolerant and self-MHC restricted. They then migrate from the thymus into the blood,

from where they reach peripheral lymphatic tissues including the spleen, lymph nodes,

and mucosa-associated lymphatic tissues. Lymphocytes patrol between the blood and

these secondary lymphoid structures until they get activated by a cognate antigen (Koch

and Radtke, 2011; Murphy and Weaver, 2018, pp. 22, 407-427).
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Figure 3: T cell development in the thymus. The steps during T cell development
in the thymus are illustrated based on the Treg cell lineage. CLPs migrate from the bone
marrow into the thymus, where they undergo a series of differentiation steps in the cortex
that determine T cell commitment and result in CD4 versus CD8 lineage choice. In the
medulla, further selective processes take place and a subset of CD4 SP thymocytes enters the
Treg lineage through upregulation of the transcription factor FOXP3. Finally, mature naive
Treg cells leave the thymus to migrate into other tissues via the circulation, where further
adaptation occurs. Reprinted from Schmidl et al. (2018), Copyright © 2018 provided by
Elsevier and Copyright Clearance Center.

1.3.3 Epigenetics and the role of chromatin accessibility

Eukaryotic DNA is organized together with DNA-binding proteins in a compact structure

called chromatin (Luger et al., 1997). This structure ensures genome integrity and regu-

lates transcription. Specifically, gene expression is controlled by DNA regulatory elements



12 1.3 Origin and development of the immune system

including promoters, enhancers and silencers that can be bound by transcription fac-

tors, their cofactors and repressors. While actively transcribed genes are typically found

within regions of accessible chromatin (euchromatin, ‘open’), RNA-polymerase cannot

transcribe genetic information within condensed regions of chromatin (heterochromatin,

‘closed’) (Klemm et al., 2019; Mellor, 2005). Chromatin accessibility is modulated by

epigenetic modifications, which encompasses heritable changes in the function of genes,

which are not encoded in the genetic code of the DNA (Wu and Morris, 2001). Epigenetic

regulation of gene expression is particularly relevant during developmental processes such

as cell differentiation (Allis and Jenuwein, 2016). There are several mechanisms of epi-

genetic regulation including DNA methylation, histone modification and reorganization,

non-coding RNAs and nucleosome remodeling (Sharma et al., 2010; Allis and Jenuwein,

2016).

One gene with well-described epigenetic regulation is FOXP3 (Figure 4) (Huehn et al.,

2009; Floess et al., 2007; Colamatteo et al., 2020). Stable FOXP3 expression is required for

a Treg phenotype, whereas its expression is suppressed in conventional T cells (Fontenot

et al., 2003; Hori et al., 2003). There are multiple species-conserved genomic loci in-

volved in its regulation: first, transcription factors downstream of TCR activation such

as NFAT and AP1 are required to bind to the FOXP3 promoter. A prerequisite for tran-

scription factor binding is the demethylation of CpG sites in this region, which entails

a relaxation of chromatin accessibility. Additionally, signals passed on trough cytokine-

receptor γ-chain from cytokines such as IL-2 impact promoter activation (Huehn et al.,

2009; Janson et al., 2008). Second, FOXP3 expression depends on accessible chromatin

within an enhancer element called TGFβ sensor. Here, the decompaction of chromatin is

mainly mediated by another epigenetic mark–an increase in histone H4 acetylation. As

the name of this enhancer indicates, TGFβ signaling is required for the restructuring of

chromatin and binding of NFAT and SMAD transcription factors in this region (Huehn

et al., 2009). Lastly, the Treg-cell-specific demethylated region (TSDR) is another en-

hancer element that is active in Treg cells. It contains a number of CpG sites, which are

demethylated specifically in Treg cells. Additional activating histone marks allow an in-

crease in chromatin accessibility through nucleosome remodeling and subsequent binding

of transcription factors that most likely stabilize FOXP3 expression (Huehn et al., 2009;

Floess et al., 2007). In the meantime, even more conserved non-coding regions affecting

FOXP3 gene expression have been described demonstrating the complexity of epigenetic

gene regulation (Colamatteo et al., 2020; Delacher et al., 2017).
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Figure 4: Epigenetic regulation of the FOXP3 gene locus. The top panel shows
the FOXP3 locus on the X chromosome as an interspecies-conservation plot. Epigenetic
modifications including DNA methylation and histone acetylation within three well-known
regulatory regions that affect FOXP3 expression are shown in comparison between FOXP3

-

conventional T cells and stable FOXP3
+

Treg cells. Upstream signals and transcription
factors required for FOXP3 expression are indicated. TSDR, Treg-cell-specific demethylated
region. Adapted from Huehn et al. (2009), Copyright © 1969 provided by Springer Nature
and Copyright Clearance Center.

1.3.4 Development of Treg cells

Not all T cells that are reactive to self-peptide:self-MHC molecules are eliminated in

the thymus. tTreg cells mainly develop from a subset of DP or CD4 SP thymocytes

with self-reactive TCRs (Figure 3). Specifically, TCR stimulation at higher intensity but

below the threshold causing negative selection induces expression of CD25 and the master

transcription factor FOXP3 (Ohkura et al., 2013). Additionally, interaction of CD28 with

its ligands on TECs and a cytokine milieu mainly including IL-2 and TGFβ is required

to start the Treg differentiation program (Richards et al., 2015). Treg cells leave the

thymus in a mature state and subsequently circulate through secondary lymphoid tissues

or migrate into nonlymphoid tissues via the blood (Sakaguchi et al., 2008).

Epigenetic processes also play an important role during Treg cell generation. Above all,

a Treg-associated DNA demethylation pattern is established, which is triggered by TCR

stimulation in the thymus and seems to be FOXP3
-
independent (Ohkura et al., 2012).

The study by Ohkura et al. (2012) further showed that only FOXP3 expression and this
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hypomethylation pattern resulted in stable Treg cells with full suppressive activity. Ac-

cordingly, while induction of Treg cells from Tconv cells by FOXP3 expression confers

suppressive activity, the majority of Treg signature genes is not induced (Fontenot et al.,

2003; Hill et al., 2007). Epigenetic changes do not only occur during development in

the thymus, but also in peripheral tissues, where further adaptations of Treg cells to-

wards tissue-specific functions are required (Delacher et al., 2017). Thus, a total of five

epigenetic reprogramming steps is observed in Treg cell development: T cell lineage com-

mitment, CD4 and Treg lineage choice, establishment of Foxp3 expression, and tissue

adaptation (Schmidl et al., 2018).

A second route of Treg cell development is the conversion from Tconv cells in the pe-

riphery. This route mainly occurs in mucosal tissues, where DCs present environmental

antigens such as food antigens and further triggers including TGFβ are present. Since

chronic exposure at low dosage to non-self antigens promotes the conversion to pTreg

cells, it is assumed that pTreg cells are responsible for establishing peripheral tolerance

to harmless foreign antigens such as commensal bacteria (Lee and Lee, 2018). Although

the developmental origin of Treg cells is difficult to determine and markers are still con-

troversial, the transcription factors HELIOS and RORγt have been proposed as markers

for tTreg and pTreg cells, respectively (Thornton et al., 2010; Himmel et al., 2013).

1.3.5 T cell exhaustion

When T cells are constantly activated by antigens they transition into a hyporesponsive

state, which is also known as T cell exhaustion. Persistent antigen exposure and accompa-

nying T cell exhaustion can occur during chronic infections or in the tumor microenviron-

ment. Chronic stimulation of the TCR results in upregulation of inhibitory receptors, i.e.

PD-1, TIM-3, TIGIT and LAG-3, and epigenetic and transcriptomic changes. Together,

these alterations lead to reduced effector function and the inability of cytotoxic T cells to

control or clear the infection or tumor. In detail, dysfunctional CD8
+
T cells produce less

effector cytokines (IFNγ, TNFα, IL-2) and cytotoxic molecules (granzymes and perforin)

and have reduced proliferative activity (Zhang et al., 2020; Philip and Schietinger, 2021;

Thommen and Schumacher, 2018). In the tumor microenvironment, several cell types

additionally contribute to immune suppression. For example, tumor cells and stromal

cells may express PD ligands that downregulate cytotoxic T cells via PD-1/PD-L interac-

tions and Treg cells can produce the suppressive cytokines IL-10 and TGFβ (Zhang et al.,

2020).

Recently, a more fine-grained distinction between different states of T cell dysfunction

has evolved (Figure 5). Mainly, progenitor exhausted T cells arise from chronic antigen

exposure. While effector functions are already reduced, this state is still reversible. The

reprogramming of these cells is the aim of many immunotherapeutic strategies such as
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PD-1 inhibitors, which shield PD-1 receptors from activation and improve their effector

function. With ongoing antigen exposure and inhibitory signaling, progenitors gradually

become terminally exhausted T cells. In contrast to early stages of dysfunction, termi-

nal dysfunction is not reversible. Main differences of these cells compared to progenitor

exhausted T cells include specific epigenetic changes and upregulation of CD39, TIM3,

transcription factor TOX and simultaneous downregulation of TCF1 (Philip and Schi-

etinger, 2021; Thommen and Schumacher, 2018).

Figure 5: T cell dysfunctional model. Functional antigen-experienced T cells are char-
acterized by low PD-1 and LAG-3 expression, absence of TOX expression, and high TCF1
activity. Persistent antigen exposure and suboptimal conditions for T cell activation as
encountered in the tumor microenvironment result in a reversible state of early T cell dys-
function. Further antigen exposure and inhibitory signals eventually cause late dysfunction
without reprogramming capability. In contrast to functional and early dysfunction states,
late dysfunction is characterized by low TCF-1 and high TOX expression. The figure is mod-
ified from Philip and Schietinger (2021), Copyright © 2021 provided by Springer Nature
and Copyright Clearance Center.

1.4 Tissue-specific functions of immune cells

Immune cells do not only protect the host against invading pathogens, but are also in-

volved in the maintenance of tissue homeostasis (Figure 6). For example, multiple, mostly

innate immune cell types have been described to regulate adipose tissue homeostasis,

thermogenesis, innervation and expansion (Trim and Lynch, 2021). A major role in pre-

venting obesity and diabetes has been attributed to macrophages, which are able to alter

lipid metabolism through adjusting insulin sensitivity and modulating lipolysis (Odegaard

et al., 2007; Lumeng et al., 2007). Invariant natural killer T (iNKT) cells, γδ T cells, mast

cells and DCs have the ability to promote proliferation of adipocyte progenitors. Addi-

tionally, iNKT cells may induce adipocyte apoptosis, γδ T cells can upregulate pathways

related to tissue remodeling and fat metabolism in adipocytes, and mast cells are in-
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volved in fibroblast activation and tissue fibrosis. Moreover, macrophages, iNKT cells, γδ

T cells, ILCs, Treg cells, mast cells and eosinophils together control adipocyte browning

and thermogenesis (Trim and Lynch, 2021).

Tissue-resident memory T (Trm) cells reside in non-lymphoid tissues, where they can

quickly respond to foreign antigens. This sets them apart from central memory (Tcm)

and effector memory T (Tem) cells, both of which circulate between lymphoid and non-

lymphoid tissues via the blood. Within adipose tissue, Trm cells have been shown to

balance antimicrobial defense and lipid metabolism (Han et al., 2017; Sasson et al.,

2020).

In barrier tissues including epithelia of the skin, intestines and the lung, macrophages

have been shown to support wound healing. Mechanistically, expression of growth factors

such as TGFβ1 and PDGF promotes differentiation and proliferation of fibroblasts and

epithelial cells (Barron and Wynn, 2011). In addition, macrophages regulate extracellular

matrix turnover through secretion of metalloproteinases or their inhibitors (Wynn, 2008;

Murray and Wynn, 2011). Similar to macrophages, tissue-resident lymphocytes can sense

tissue damage and respond by release of tissue-protective factors such as IL-22 and am-

phiregulin (AREG) in different organs (Fan and Rudensky, 2016). AREG is a ligand of

the epidermal growth factor receptor (EGFR) and stimulates differentiation and prolifer-

ation of target cells, e.g. epithelial cells, fibroblasts and immune cells, thereby promoting

tissue repair. To date, AREG production and involvement in wound healing has been

demonstrated for many cell types including T cells, ILCs, basophils and mast cells (Zaiss

et al., 2015; Rankin and Artis, 2018).
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Figure 6: Non-immunological functions of the immune system. Immune cells con-
tribute to tissue homeostasis in various organs, where they regulate processes such as tissue
repair and regeneration, thermogenesis and metabolic functions. A spectrum of diseases and
medical conditions has been associated with dysregulation of the immune system. ASD,
autism spectrum disorder; FAP, fibroadipogenic precursor; IBS, irritable bowel syndrome;
WAT, white adipose tissue. Reprinted from Rankin and Artis (2018), Copyright © 2018
provided by Elsevier and Copyright Clearance Center.

1.4.1 Klrg1
+
ST2

+
tissue Treg population

Treg cells do not only have the potential to regulate other immune cells but additionally

have an important role in maintaining homeostasis in non-lymphoid tissues. Tissue-

adapted Treg populations were first described by Feuerer et al. (2009) in visceral adi-

pose tissue (VAT). Here, they highly express peroxisome proliferator-activated receptor-γ

(PPAR-γ), the master transcription factor of adipocyte differentiation, which is required

for their accumulation and acquisition of a VAT-specific transcriptomic profile. Treg

cells maintain insulin sensitivity of adipocytes (Cipolletta et al., 2012). Skin Treg cells

are recruited both by migration into the skin and peripheral induction (Richards et al.,

2015). They can produce AREG, which stimulates keratinocyte proliferation and induces

expression of antimicrobial peptides (Johnston et al., 2011; Berasain and Avila, 2014).

Also, tissue damage arising from infections of the lung or muscle injuries is remedied

by tissue-resident Treg cells that suppress excessive inflammation and release AREG to

induce wound healing (Burzyn et al., 2013; Arpaia et al., 2015). Most pTreg cells arise

in the gut, where they provide tolerance to food antigens and commensal bacteria and
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maintain epithelial integrity together with tTreg cells. As an example, intestinal Treg cells

were shown to support stem-cell renewal via release of IL-10 (Biton et al., 2018; Cosovanu

and Neumann, 2020).

In 2017, Delacher et al. (2017) characterized murine Treg cells isolated from lymph nodes

and different non-lymphoid tissues on an epigenetic level using tagmentation-based whole-

genome bisulfite sequencing. This led to the discovery of a conserved DNA methylation

profile among tissue-resident Treg cells. Corresponding to their epigenetic programming,

these cells also had a unique gene expression signature, which was dominated by Th2

cell-specific genes. Compared to Tconv cells from the same tissues, these tissue-resident

Treg cells showed hypomethylation and concordant upregulation at several marker genes

including Il1rl1 (encoding the cytokine IL-33 receptor ST2), the differentiation marker

killer cell lectin-like receptor subfamily G1 (Klrg1 ), transcription factor Gata3 and the

immune receptor Tigit and were thus termed ‘tissue Treg (tisTreg) ST2 cells’ (tisTregST2

cells). Moreover, AREG and IL-10 expression as well as dependence on transcription fac-

tor Basic leucine zipper transcription factor, ATF-like (BATF) and IL-33 were described

as common features of tisTregST2 cells. In adult mice, the Treg population consists of

80–90% tisTregST2 cells in the VAT, 50–60% in the skin, 30% in the colon, 10%–20%

in the lungs, liver and bone marrow and below 5% in lymphoid organs (Delacher et al.,

2017). A subsequent interrogation of chromatin accessibility and single-cell transcrip-

tomes identified two tisTregST2 precursor stages that were detected in lymphoid tissues.

Using the gene nuclear factor, interleukin 3 regulated (Nfil3 ) as a reporter, development

from Klrg1
-
Nfil3

-
over Klrg1

-
Nfil3

+
towards Klrg1

+
Nfil3

+
Treg cells could be observed

in the spleen and lymph nodes (Delacher et al., 2020). In line with these results, priming

of non-lymphoid Treg cells within lymphoid tissues has been described (Miragaia et al.,

2019; Li et al., 2018). Importantly, BATF was shown to be the driver of the tisTregST2

tissue-adaptation program. Interestingly, it has also been shown that the PPAR-γ locus

is accessible in all tisTregST2 cells independent of their tissue location (Delacher et al.,

2020).

1.5 Single-cell sequencing

In 2009, Tang et al. (2009) published the first study on single-cell transcriptome se-

quencing (scRNA-seq) using next-generation sequencing technologies. Since then, there

has been a vast increase in available protocols and sequencing strategies, which improved

cell throughput by several orders of magnitude (Figure 7). Recently, a method for single

cell transcriptome sequencing scaling to millions of nuclei in a single experiment has been

reported (Datlinger et al., 2021).

Besides scRNA-seq, other types of omic layers can be assayed on a single-cell level, either

alone or in different combinations. These include single-cell genomes, epigenomes and
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proteomes (Angerer et al., 2017).

The main advantage of single-cell sequencing compared to conventional bulk-based meth-

ods is the detection of heterogeneity within the assayed population. This allows the

characterization of rare cell populations or cell states that would otherwise be masked by

the major cell type(s) present in the sample. The constant increase in cell throughput and

sensitivity not only improves the resolution of cell subsets, but also allows the inference of

continuous developmental processes and their regulatory landscapes (Hwang et al., 2018;

Kharchenko, 2021).

A common challenge encountered in single-cell data analysis is the sparsity of measure-

ments due to low amounts of input material and limited capture rates. For example, high-

throughput methods in scRNA-seq only capture between 5–20% of transcript molecules

present in each cell. Thus, special models accounting for under-sampling of mRNA tran-

scripts, so-called ‘dropouts’, are required (Ding et al., 2020).

Figure 7: Increase in throughput of scRNA-seq technologies over time. The num-
ber of sequenced single-cell transcriptomes is shown for selected datasets (red line) in com-
parison to the advancement in available CPU transistor counts (black line) and the estimated
number of cells in the human body (green line). The size of single-cell datasets is increasing
faster than computing performance, which requires development of efficient data process-
ing methods. The figure is taken from Kharchenko (2021), Copyright © 2021 provided by
Springer Nature and Copyright Clearance Center.
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1.5.1 Single-cell chromatin accessibility sequencing

To understand genotype-to-phenotype relationships it is important to investigate epi-

genetic attributes of the DNA (Klemm et al., 2019; Mellor, 2005). Buenrostro et al.

(2013) developed an assay for transposase-accessible chromatin using sequencing (ATAC-

seq), which is an efficient method to obtain information about chromatin accessibility

(Figure 8). Mechanistically, it relies on a hyperactive Tn5 transposase that is able to

simultaneously cleave DNA and insert short DNA sequences in a process called ‘tagmen-

tation’. Since Tn5 transposase can only target open chromatin regions, this results in

the generation of tagged DNA fragments representing the accessible part of the genome.

Prior to high-throughput sequencing, the DNA fragments can then be amplified using

polymerase chain reaction (PCR) to increase input material. Compared to other meth-

ods assaying chromatin accessibility such as DNase-seq or FAIRE-seq, ATAC-seq requires

fewer cells as input material and is less complex and costly (Buenrostro et al., 2013; Baek

and Lee, 2020).

Several methods have adapted ATAC-seq for single cell applications. They can be broadly

categorized into split-and-pool combinatorial cellular indexing approaches and microflu-

idics approaches. In the former, cells are repeatedly pooled and sorted into wells contain-

ing transposases with unique barcodes, which results in a library of cell-specific tagged

DNA fragments. The latter employ microfluidic devices to separate cells into reaction

chambers. These can be either wells in plate-based methods such as Fluidigm IFC or

droplets in droplet-based methods.

The first study presenting a commercial droplet-based platform was published in 2019

by Satpathy (2019), who generated chromatin profiles of more than 200,000 cells. In their

workflow, transposition of DNA is performed in a bulk suspension of nuclei. Subsequently,

a microfluidic device called ”10x Chromium controller” is used to encapsulate single nuclei

together with barcoded gel beads and chemical reagents within nanoliter-sized droplets.

Linear amplification results in the attachment of barcodes to the DNA fragments, thereby

uniquely mapping fragments to each cell. Eventually, the emulsion is broken, and a

common PCR step is applied to further amplify the fragment pool for high-throughput

sequencing (Satpathy, 2019).

scATAC-seq allows the identification of cell types and their regulatory elements. It can

be used to uncover de novo transcription factor motifs and estimate transcription factor

activity. Further, the single-cell resolution allows the delineation of smooth transitions in

chromatin accessibility making scATAC-seq a useful method for the inference of develop-

mental trajectories.
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Figure 8: Single-cell strategies for ATAC-seq. The ATAC-seq protocol involves a
transposition step, in which Tn5 transposase fragments and tags accessible DNA and an
amplification step to increase the input material for sequencing. In a single-cell setting,
cell-specific barcodes can be introduced by split-pool approaches (a) or using microfluidics
(b). Adapted from Baek and Lee (2020), Copyright © 2020 by the authors under the CC
BY-NC-ND license.

1.6 Aims of the thesis

It is becoming increasingly clear that many immune cells fulfill tissue-specific functions

besides their protective role for the host. In mice, tisTregST2 cells have been previously

described to be involved in tissue regeneration (Delacher et al., 2017, 2020). However, it is

not well defined whether these findings also apply to humans and other types of immune

cells may also have such a tissue repair program.

In this thesis, three projects are presented that employ scATAC-seq to map immune cell

epigenomes at single cell resolution and deepen the current understanding of tissue-specific

immune functions (Figure 9).

In Chapter 3.1, CD4
+
T cells from healthy murine and human tissues are analyzed with
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a focus on Treg cells. The main research questions are whether human Treg cells in pe-

ripheral tissues with similar characteristics to murine tisTregST2 cells can be identified,

and what their epigenetic commonalities and differences are. Moreover, the single cell

epigenomes are used to gain insights into the developmental steps towards a tisTreg phe-

notype and the underlying driving transcription factors. Sequencing of CD4
+
T cells from

gnotobiotic mice aims to answer whether the repair phenotype of Treg cells in the colon

can be established independently from microbiota. Eventually, Treg cells from healthy

peripheral tissues are compared to those from tumor tissues to define differences between

homeostasis and challenged conditions.

In Chapter 3.2, the focus is shifted towards the CD8
+
T cell compartment. The project

is based on multiple datasets containing CD8
+
T cells extracted from healthy murine and

human tissues as well as human solid tumors. Specifically, comparisons with tisTregST2

cells based on chromatin accessibility are performed to determine whether CD8
+
T cells

also have tissue-regenerative potential in addition to their effector function. If similar

characteristics to tisTregST2 cells are found, an in-depth analysis including differential

accessibility, pseudotime and transcription factor activity analysis equivalent to Chap-

ter 3.1 is done. This includes the identification and comparison of CD8
+

T cells with

tissue-adapted phenotype in healthy murine and human tissues, the determination of

their possible developmental paths, assessment of microbiota-dependence in the colon,

and comparisons between healthy and tumor tissue. Importantly, tissue-regenerative

CD8
+

T cells are contextualized in the current CD8
+

T cell classification and known

effector states such as T cell exhaustion.

The third project presented in Chapter 3.3 expands the view of tissue-specific roles by

performing a pan-leukocyte analysis. Murine and human scATAC-seq datasets containing

both innate and adaptive immune cells from healthy tissues are evaluated with respect

to their tissue-repair potential, thereby validating and extending the findings from the T

cell compartment. This project aims to obtain a more holistic view on tissue-adaptation

of immune cells.



1.6 Aims of the thesis 23

Figure 9: Project overview and aims. Summary of the experimental strategy and aims
of the three projects presented in this thesis.
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2 Methods

I applied similar methods to analyze data from Projects 1 (tisTreg cell analysis, Results

Chapter 3.1) and 2 (Tissue CD8
+
T cell analysis, Results Chapter 3.2). For Project 3

(Immune cell atlas, Results Chapter 3.3), I changed the analysis workflow to ensure the

use of most up-to-date data processing methods. An overview of all samples analyzed in

this work is given in Supplementary Table S1. Supplementary Tables S2 and S3 list the

computational tools I employed for data analysis.

2.1 scATAC-seq of murine and human immune cells

In Project 1 and 2, specific-pathogen-free (SPF) male C57BL/6 mice of at least 10 weeks

of age and germ-free male wild type C57BL/6 mice of at least 9 weeks of age were used

to obtain tissue samples. In Project 3, male C57BL/6 mice of 48–50 weeks of age were

used. Additionally, tumor tissue samples of murine breast cancer were obtained from

BALB-NeuT transgenic mice (Hosseini et al., 2016).

Murine and human tissue samples were dissociated to obtain single cell suspensions, which

were enriched for immune cells using column-based magnetic purification and fluorescence-

activated cell sorting (FACS). For Project 1, T cells were magnetically enriched using anti-

CD4 or anti-CD25 antibodies. Subsequently, cells were sorted with a BD FACSAria
Tm

II

or BD FACSFusion
Tm

cell sorter. Treg cells from the murine spleen were sorted as

CD45
+
Dead

-
CD19

-
CD3

+
TCRβ

+
CD8

-
CD4

+
CD25

+
. Additionally, cells from the spleen,

colon, skin, lung and VAT were sorted for CD45
+
Dead

-
CD19

-
CD3

+
TCRβ

+
CD8

-
CD4

+

to enrich CD4
+

T cells. The same sorting strategy was applied to tissues from

germ-free animals and HER2-transgenic tumor bearing animals. From human pe-

ripheral blood of two independent donors, CD3
+
Dead

-
CD19

-
TCRβ

+
CD8

-
CD4

+
CD4

+

T cells and CD3
+
Dead

-
CD19

-
TCRβ

+
CD8

-
CD4

+
CD25

+
CD127

-
Treg cells were sorted.

Using the same sorting gates, CD4
+

T cells were sorted from subcutaneous fat

of donor 3, 4 and 5, skin of donor 4 and 5 and Treg cells were sorted from

subcutaneous fat of donor 3 and 5. For Project 2, anti-CD8 antibodies were

used for pre-enrichment of T cells from healthy tissues with column-based mag-

netic separation. CD45
+
Dead

-
CD19

-
CD3

+
TCRβ

+
CD4

-
CD8

+
sort gates were then

used to sort CD8
+

T cells from the murine spleen, colon, skin, VAT (SPF and

germ-free mice) and lung (SPF mice only). CD3
+
Dead

-
CD19

-
TCRβ

+
CD4

-
CD8

+

T cells were sorted from peripheral blood of healthy human donors 1 and 2,

Additionally, sorting was done for CD45
+
Dead

-
CD14

-
CD19

-
CD3

+
TCRβ

+
CD4

-
CD8

+

for fat tissue from donors 3, 4 and 5 and skin of donors 4 and 5.

Cells from liver cancer donor 6 were sorted with CD45
+
Dead

-
CD3

+
TCRβ

+
or

CD45
+
Dead

-
CD14

-
CD19

-
CD3

+
TCRβ

+
CD4

-
CD8

+
to obtain T cells or CD8

+
T cells, re-
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spectively. Similarly, T cells were sorted from liver cancer donor 7. Eventually, CD8
+

T cells and CD45
+
Dead

-
CD3

+
TCRβ

+
CD4

+
CD8

-
CD25

+
CD127

-
Treg cells were sorted

from liver cancer donor 8. In Project 3, anti-CD45 microbeads were used to magnetically

purify immune cells from dissociated murine tissue samples. Then, anti-CD45 antibody

staining was performed on murine and human cell suspensions and CD45
+
immune cells

were sorted with a BD FACSFusion
Tm

cell sorter.

Subsequently, nuclei were prepared and the transposition reaction was performed before

loading the mix on a 10x Chromium Next GEM Chip H for library generation with the 10x

Chromium Controller. After PCR-based library amplification, sequencing was performed

on an Illumina NextSeq
Tm

550.

For the basal cell carcinoma T cell dataset from (Satpathy, 2019), processed data files

were obtained from GSE129785. The peak matrix, Cicero gene activity scores (Pliner

et al., 2018) and meta data provided by the authors were used for analyses in Project

1.

2.2 Preprocessing of scATAC-seq data

The software Cell Ranger atac (version 1.1.0) was used to process scATAc-seq raw data.

Read filtering, alignment, peak calling and count matrix generation were done using

the command ‘cellranger-atac count’. The 10x Genomics reference genome assemblies

‘refdata-cellranger-atac-mm10-1.1.0’ and ‘refdata-cellranger-atac-hg19-1.1.0’ were used for

mouse and human data, respectively. Gel bead and barcode multiplets were identified with

a custom script (‘clean barcode multiplets 1.1.py’) provided by 10x Genomics. Barcodes

were subsequently annotated as cells when they passed the following filters:

• minimum of 5,000 read-pairs passing Cell Ranger atac read filters

• less than 20% read-pairs with poor mapping behavior (reads with mapq below 30,

chimeric and unmapped reads)

• less than 90% read-pair duplicates

• less than 10% mitochondrial DNA read-pairs

• no annotation as gel bead or barcode multiplet

A merged peak-barcode matrix including barcodes annotated as cells from all samples

was generated with the command ‘cellranger-atac aggr –normalize=none’. For further

processing, the merged matrix was loaded into R (version 3.6.0) using the package Seurat

(version 3.2.1, (Stuart et al., 2019)). As another important quality control measure, the

transcription start site score was calculated for each cell as previously described (Satpathy,

2019). In short, transcription start sites (TSS) were obtained from the R annotation
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packages TxDb.Mmusculus.UCSC.mm10.knownGene (version 3.4.7, murine samples) or

TxDb.Hsapiens.UCSC.hg19.knownGene (version 3.2.2, human samples). Then, the per-

base coverage in a 1 kb region around each TSS was calculated and normalized by division

by the mean coverage of the 100 bp flanks of each region. Subsequently, the normalized

coverage was smoothed over a window of 50 bp and the maximum smoothed value was

defined as TSS score. All cells with a TSS score smaller than 8 were filtered out.

In Project 1, the influence of cells with high count depth on downstream analyses was re-

duced by randomly subsampling fragments to 50,000 unique fragments per cell. In Project

2, instead an approach with synthetic doublet generation was chosen to identify and re-

move potential cell doublets. For each sample, 20% of cells were randomly selected and

sorted into pairs. For each pair, the peak counts were summed up and binarized, result-

ing in a synthetic cell doublet. All synthetic doublets were then merged with the original

peak-barcode matrix. The cells in this matrix were then projected into a low dimensional

space using the R package Signac (Stuart et al., 2021, version 1.0.0). Briefly, TF-IDF

transformation was applied to the matrix using the function ‘RunTFIDF(method=1)’

followed by singular value decomposition (‘RunSVD’) based on the upper quartile of ac-

cessible peaks (FindTopFeatures(min.cutoff = ‘q75’). Secondary dimensionality reduction

was applied to the first 20 SVD components with the command ‘RunUMAP(dims=20,

metric = ‘euclidean’))’. Then, the two-dimensional UMAP embeddings were used to count

the number of synthetic doublets for each cell among its 50 nearest neighbours. Finally,

all cells with more than 10 synthetic doublets in their neighbourhood were excluded from

further analysis.

Peaks on chromosomes Y, M or random were removed. Additionally, peaks overlapping

with regions from the Signac blacklists ‘blacklist mm10’ and ‘blacklist hg19’ were filtered

out from the murine and human peak-barcode matrix, respectively. Moreover, peaks with

a total binary count below 10 across all cells were excluded.

The binary peak-barcode matrix was subjected to normalization (‘RunTFIDF(method=1)’)

and dimensionality reduction based on the upper quartile of accessible peaks using the

functions ‘FindTopFeatures(min.cutoff = ‘q75’)’ and ‘RunSVD’. Batch effects present in

the SVD space due to donors in the human and sample pooling in the murine datasets

were corrected with Harmony (version 1, (Korsunsky et al., 2019)) using the command

‘HarmonyMatrix’ with sigma=1 for human and sigma=0.3 for murine data, respectively.

Finally, the first 20 components from SVD or Harmony embeddings were passed to

‘RunUMAP(metric=‘euclidean’)’ for secondary dimensionality reduction with UMAP.

In Project 3, the following changes were introduced to preprocessing: Cell Ranger atac

version 2.0.0 was used, which includes bead and barcode multiplet detection in its pipeline.

Moreover, refdata-cellranger-arc-mm10-2020-A-2.0.0 and refdata-cellranger-arc-GRCh38-
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2020-A-2.0.0 were used for alignment of murine and human reads, respectively. Subse-

quent analyses were performed with the R package ArchR (Granja et al., 2021, version

1.0.1)). First, the fragment files (‘fragments.tsv’) generated by the Cell Ranger atac

pipeline were converted into Arrow files using the command ‘createArrowFiles(minTSS=0,

minFrags=1000, maxFrags=10000) and bundled into an ArchR project (‘ArchRProject’).

Then, all barcodes with less than 3000 fragments or a ArchR TSS score below 6 were

filtered out. Subsequently, doublet enrichment scores were calculated for each Arrow

file using ‘addDoubletScores’ and potential doublets were filtered out by exclusion of all

barcodes with DoubletEnrichment score above 2. Eventually, all barcodes annotated by

the Cell Ranger ATAC pipeline as gel bead doublet, low-targeting barcode, or barcode

multiplet were removed.

Further, dataset-specific filtering of barcodes was required in Project 3. In short, a group

of cells clustering into the barcode multiplet region in UMAP space was removed in the

mouse dataset. The human dataset was split by donor, and one cluster likely representing

cell doublets was excluded for donor 11. Dimensionality reduction was performed with

iterative semantic indexing (addIterativeLSI) followed by ‘addUMAP(nNeighbors=30,

minDist=0.5)’ for secondary dimensionality reduction with UMAP.

2.3 Gene activity scores

Gene activity scores were calculated as a proxy for mRNA expression levels. In

Projects 1 and 2, coordinates of gene bodies were obtained by running the R

GenomicFeatures commands ‘genes(TxDb.Mmusculus.UCSC.mm10.knownGene)’ and

‘genes(TxDb.Hsapiens.UCSC.hg19.knownGene)’ for annotation of murine and human

datasets, respectively. The coordinates were pruned to standard chromosomes (keep-

StandardChromosomes(pruning.mode=‘coarse’)) and extended by 2 kb upstream of the

TSS to cover promoter regions (Extend(upstream=2,000)). Subsequently, these regions

were used as input features for the ‘FeatureMatrix’ command from the Signac package to

count the number of fragments per feature for each cell. These gene activity scores were

normalized and scaled using ‘NormalizeData(normalization.method=‘LogNormalize’,

scale.factor=median(nCount Reads)’ for visualization purposes.

In Project 3, gene activity scores were automatically added during Arrow file genera-

tion.

2.4 Peak and gene activity module scores

To summarize accessibility within a set of regions of interest, the frequency of each peak

in the binary peak-cell matrix of the dataset was quantified by dividing the sum of counts

for the peak through the total sum of counts for all peaks. Then, all peaks from the



2.5 chromVAR transcription factor activity 29

dataset overlapping with the regions of interest (signature peaks) were identified and the

number of signature peaks was summed up for each cell. To estimate the size of random

overlap while accounting for cell count depth, cells with increasing peak count (step size

1,000 peaks for normal tissue datasets, step size 5,000 for tumor T cells from Satpathy

(2019) were simulated. For each of these simulated cells, the respective number of peaks

was randomly drawn from the dataset with probabilities set to the previously determined

peak frequencies. Subsequently, the number of signature peaks in this random peak set

was calculated. This procedure was repeated 48 times and the average number of signa-

ture peaks + 1 pseudocount was set as expected background match number with the set

of regions of interest for a given count depth. Finally, a module score was assigned for

each cell by dividing the number of signature peaks +1 through the background match

number of the simulated cell with closest count depth.

In Project 3, regions of interest were first added to the ArchR project using the ‘ad-

dPeakAnnotations’ function. Then, chromVAR deviation z-scores (Schep et al., 2017) for

this set were calculated (‘addDeviationsMatrix’) and used as module scores.

Gene activity module scores were calculated with the function ‘AddModuleScore(nbin=10,

ctrl=200)’ from the Seurat R package. The ‘pool’ parameter was set to a sample of 2,000

randomly chosen genes from the gene activity matrix.

2.5 chromVAR transcription factor activity

In Projects 1 and 2, transcription factor activity was estimated for each cell us-

ing chromVAR deviation z-scores (Schep et al., 2017). Position weight matri-

ces from known transcription factor motifs provided by the Homer software pack-

age (http://homer.ucsd.edu/homer/custom.motifs) were used to construct a motif-

peak matrix with the Signac function ‘CreateMotifMatrix’. As reference genomes,

BSgenome.Mmusculus.UCSC.mm10 and BSgenome.Hsapiens.UCSC.hg19 were used for

mouse and human data, respectively. The matrix was added to the Seurat object (Create-

MotifObject, AddMotifObject) and annotated with base composition statistics for each

peak (RegionStats). Eventually, deviation z-scores were calculated using ‘RunChrom-

VAR’.

In Project 3, the ArchR functions ‘addPeakAnnotations’ and ‘addDeviationsMatrix’ were

used to access chromVAR functionalities in a similar way.

2.6 Cell clustering

Starting from SVD or Harmony embeddings, a shared nearest neighbour graph was gener-

ated using Seurat (FindNeighbours(dims=1:20)). The graph was then used to identify cell

clusters with the function ‘FindClusters’ at various resolutions. The partionings selected
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for visualization and further analyses are summarized in Supplementary Table S4.

In Project 3, the function ‘addClusters(maxClusters=Inf)’ was used as a wrapper to Seu-

rat’s clustering workflow based on the embeddings from iterative LSI.

2.7 Peak calling

In Project 3, MACS2 (Zhang et al., 2008, https://github.com/macs3-project/MACS)

was used for peak calling. First, datasets were clustered at resolution 0.1. Subse-

quently, the coverage for each group was determined with the function ‘addGroupCover-

ages(groupBy=‘Clusters 0.1’)’. Eventually, 501 bp fixed-width peaks were added for each

cluster, and iteratively aggregated into a common peak set using the function ‘addRepro-

duciblePeakSet(groupBy=‘Clusters 0.1’)’.

2.8 Detection of differential chromatin accessibility

Seurat was used to detect differentially accessible peak regions. Briefly, a logistic re-

gression model was constructed for each peak and compared to a null model with a

likelihood ratio test. The count depth per cell was introduced as latent variable (Find-

Markers(test.use = ‘LR’, latent.vars=‘n peaks’, min.pct=0.1, logfc.threshold=0.25). In

Project 3, markers were identified with a Wilcoxon rank sum test using the ArchR function

‘getMarkerFeatures(bias=c(”TSSEnrichment”, ”log10(nFrags)”))’. TSS score and count

depth were specified as biases, which are factored in during null group selection.

2.9 Generation of bigWig tracks

The Sinto toolkit (https://github.com/timoast/sinto) was used to extract reads from a

barcode selection from sample-level bam files as generated by Cell Ranger atac. Reads

from different samples were merged into a common bam files using ‘samtools merge’ (Li

et al., 2009) and the coverage within bins was calculated with ‘bamCoverage’ from deep-

Tools (Ramı́rez et al., 2016).

2.10 Homer transcription factor motif analysis

To answer whether known or de novo transcription factor motifs are enriched within a

set of marker peaks, Homer (Heinz et al., 2010) was applied. Position weight matrices

available on the Homer website (http://homer.ucsd.edu/homer/custom.motifs) were used

as reference for transcription factor database to run the command ‘findMotifsGenome.pl

peaks.bed hg19 -mask -size given -len 8,10,12,14’.

Transcription factor footprints for clusters of cells were generated by sorting their reads

into a cluster-level bam file. Then, ‘makeTagDirectory’ was used to convert these bam files
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into tag directories. Finally, peaks from the respective dataset were centered around the

selected transcription factor motif (annotatePeaks.pl -center -mask -size -1000,1000) and

tags within 2,000 bp around centered peaks were quantified (annotatePeaks.pl -fragLength

1 -size -1000,1000 -hist 1).

2.11 Trajectory analysis

Monocle (Trapnell et al., 2014) was used to order cells along a possible developmental

trajectory. First, clusters of cells from presumably different developmental steps were

extracted from the complete dataset and normalization as well as dimensionality reduc-

tion were done as described in section 2.2. For the human CD4
+

T cell dataset, the

peak-barcode matrix was subsetted to a random sample of 5,000 cells from each cluster

to reduce computational burden. Next, it was reduced to the 3,000 peaks with highest

accessibility across all cells and the number of peaks per cell was counted (detectGenes).

Subsequently, size factors were estimated (estimateSizeFactors) and dimensionality re-

duction with DDRTree was performed (reduceDimensions(reduction method=‘DDRTree’,

residualModelFormulaStr=‘˜num genes expressed’)). In a final step, cells were mapped

into the trajectory using ‘orderCells’.

2.12 Peak region liftOver and cross-species comparison

To compare peaksets between mouse and human, regions were transferred from

mm10 to hg19 genome coordinates using the UCSC liftOver tool (Kuhn et al.,

2013) together with a matching chain file (mm10ToHg19.over.chain.gz, available at

http://hgdownload.cse.ucsc.edu/goldenpath/). The lifted regions were additionally trans-

ferred back to mm10 with the hg19ToMm10.over.chain.gz file. In both cases, the ‘min-

Match’ argument was set to 0.2 to ensure high DNA sequence conservation between murine

and human regions. Only regions with an overlap above 90% and width difference below

40% with the original regions after mm10-hg19-mm10 liftover sequence were kept. Then,

original and hg19-liftover regions were annotated with the symbols of overlapping genes

as well as their closest gene using the gene references described in section 2.3. To include

promoter regions, all gene regions were extended by 2 kb upstream of their transcription

start site. After translation of MGI symbols to HGNC symbols with biomart (Durinck

et al., 2009), mm10 region - hg19 liftover region pairs without any matching symbols

were filtered out. The procedure to derive a species-conserved tisTreg peak signature is

summarized in Figure 10.
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Figure 10: Cross-species region comparison. Steps done to derive a tisTreg signa-
ture conserved between mouse and human. The number of available peaks in each step is
indicated.

2.13 Comparison of scATAC-seq and ChIP-seq data

Chromatin immunoprecipitation following sequencing (ChIP-seq) data for transcription

factor BATF was obtained from replicate 2 of GSM803538 (Pope et al., 2014). Subse-

quently, the number of peaks from the conserved tisTreg signature overlapping with at

least one BATF ChIP-seq peak was counted to assess the extent of BATF binding.

2.14 Reference-based cell annotation

Reference-based cell annotation was done with SingleR using reference datasets from the

celldex R package (Aran et al., 2019). For mouse and human data, the ImmGen and

Monaco immune reference atlases were chosen, respectively (Monaco et al., 2019; Heng

et al., 2008). Prior to annotation, reference samples were reduced to the cell types present

in the query dataset. Annotation was performed based on the normalized gene activity

matrix using the command ’SingleR’ with default settings.
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3 Results

In Chapter 3.1, I present analyses of several murine and human CD4
+
T cell datasets that

resulted in the epigenetic characterization of human tissue regulatory T (tisTreg) cells.

Chapter 3.2 summarizes results from similarly composed datasets of CD8
+
T cells and

defines peripheral tissue PD1
+
TOX

+
CD8

+
T cells with a shared activation and interme-

diate exhaustion phenotype. Finally, I give an outlook on tissue adaptation programs in

a pan-immune cell context by introducing a murine and human scATAC-seq immune cell

atlas in Chapter 3.3.

The projects presented in this thesis are the result of collaborative work between the

Chair of Immunology at the Leibniz Institute for Immunotherapy in Regensburg headed

by Prof. Dr. Markus Feuerer and the Division of Applied Bioinformatics at the Ger-

man Cancer Research Center (DKFZ) in Heidelberg headed by Prof. Dr. Benedikt

Brors. Prof. Dr. Markus Feuerer and Prof. Dr. Michael Delacher (Chair of Immunol-

ogy at the Leibniz Institute for Immunotherapy and Institute of Immunology, University

Medical Center Mainz) conceptualized the projects. All wet-lab experiments, sequenc-

ing and data demultiplexing were performed at the Leibniz Institute for Immunotherapy.

Dr. Charles Imbusch (Division of Applied Bioinformatics, DKFZ) analyzed scRNA- and

scTCR datasets. Bulk RNA-seq analysis was performed by Dr. Agnes Hotz-Wagenblatt

(Core Facility Omics IT and Data management, DKFZ). I (Division of Applied Bioinfor-

matics, DKFZ) performed the bioinformatic analysis of all scATAC-seq datasets generated

for these projects.

3.1 Characterization of CD4
+
regulatory T cells in humans and

mice

In this project, I analyzed several scATAC-seq datasets of sorted CD4
+
T cells from murine

and human tissues. This confirmed the presence of a previously identified Treg cell pop-

ulation with regenerative capacity (termed tisTregST2 cells) in murine peripheral tissues

and led to the identification of human tisTreg cells with similar characteristics (Delacher

et al., 2017, 2020). A cross-species comparison of chromatin accessibility allowed the

identification of a conserved tisTreg epigenetic program. Further, transcription factor

footprinting indicated a strong regulatory role of basic leucine zipper transcription factor,

ATF-like (BATF) in this program. Importantly, we identified the chemokine receptor

CCR8 as a common marker for murine and human tisTreg cells which is also useful to

detect their precursor cells in the blood. In contrast to these commonalities, I showed that

human tisTreg cells share a T follicular helper (Tfh)-like differentiation program, which

differs from the T-helper 2 (Th2)-like tisTregST2 program observed in Treg cells within

murine peripheral tissues. In a comparison of tisTreg cells from healthy tissues with tu-
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mor Treg cells I further revealed that several features which were previously thought to be

tumor-specific rather depict tissue adaptations, which are also present under homeostatic

conditions.

Results from this analysis were published in:

Single-cell chromatin accessibility landscape identifies tissue repair program in human

regulatory T cells (Delacher, M., Simon, M., Sanderink, L., Hotz-Wagenblatt, A., Wuttke,

M., Schambeck, K., Schmidleithner, L., Bittner, S., Pant, A., Ritter, U., Hehlgans, T.,

Riegel, D., Schneider, V., Groeber-Becker, F. K., Eigenberger, A., Gebhard, C., Strieder,

N., Fischer, A., Rehli, M., Hoffmann, P., Edinger, M., Strowig, T., Huehn, J., Schmidl,

C., Werner, J., Prantl, L., Brors, B., Imbusch, C., Feuerer, M., 2021, Immunity).

3.1.1 Identification of tisTregST2 cells in healthy murine tissues

To investigate chromatin accessibility in Treg cells under homeostasis on a single-cell level,

my collaborators Prof. Dr. Markus Feuerer and Prof. Dr. Michael Delacher generated

a scATAC-seq dataset of murine CD4
+
T cells. Briefly, CD4

+
and CD4

+
CD25

+
T cells

were extracted from tissues pooled from several specific-pathogen-free (SPF) mice includ-

ing spleen, colon, skin, visceral adipose tissue (VAT) and lung and subjected to droplet-

based single-cell assay for transposase-accessible chromatin using sequencing (scATAC-

seq) using the 10x Genomics Chromium Single Cell ATAC library preparation and Illu-

mina Next-Generation Sequencing (Supplementary Table S1, details described in Methods

Chapter 2.1).

I processed demultiplexed FASTQ files using the Cell Ranger ATAC pipeline, which in-

cludes quality control steps on reads and barcodes, read alignment and peak calling.

Subsequently, I annotated barcodes as cells if they passed several quality control criteria

(Supplementary Figure S1A). These included a sufficient number of detected fragments

(unique sequenced reads of pieces of DNA resulting from two adjacent Tn5 transposase

integration events) for downstream analyses. Furthermore, I calculated the enrichment of

reads around transcription start sites over their flanking regions, which is expected to be

high for high-quality single-cell libraries. Eventually, I confirmed successful ATAC library

preparation by plotting the distribution of fragment sizes, which showed a clear periodic-

ity representing nucleosome positioning (Supplementary Figure S1B) (Buenrostro et al.,

2015). After quality control a dataset of 26,002 cells with a median of 20,397 fragments

per cell was obtained. I then generated a low-dimensional representation of the data us-

ing latent semantic indexing (LSI) and UMAP (Deerwester et al., 1990; McInnes et al.,

2018), which is shown colored by originating tissue in Figure 11A. After batch-correction

against the pool of mice using Harmony (Korsunsky et al., 2019), I clustered cells in the

obtained low-dimensional space (Figure 11B, Supplementary Figure 11C). Cells in the
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UMAP space arranged according to library sizes within clusters, but count depth did

not strongly influence the overall clustering (Supplementary Figure 11D). To identify cell

types in this CD4
+
T cell atlas, I calculated gene activities by summing up reads within

genes and their promoter regions for known marker genes. Treg cell clusters were high-

lighted by gene activity of their master regulator FOXP3, killer cell lectin-like receptor

subfamily G1 (KLRG1) and effector molecules AREG and IL-10 (Figure 11C, Supple-

mentary Figure S2A). Proliferator-activated receptor γ (PPAR-γ), which was identified

as an important transcription factor for fat Treg cell accumulation but also accessible

in tisTregST2 cells in general, had the highest gene activity in fat Treg cells, thereby

supporting these previous findings (Cipolletta et al., 2012; Delacher et al., 2020). On

the other hand, accessibility at the Il2, Tbx21 and Ifng loci identified FOXP3-negative

conventional T (Tconv) cells in peripheral tissues. Sell (CD62L) gene activity was high

in the majority of cells derived from the spleen (e.g. clusters 0, 3, 4, 7) and marked the

localization of naive T cells.

In addition to marker gene activity, I also employed previously established ATAC signa-

tures to identify tisTregST2 cells (Delacher et al., 2020). The core tisTregST2 signature

contains peaks conserved in tisTregST2 cells among multiple tissues and includes several

regions at gene loci encoding tisTregST2 key regulators or effector molecules. It clearly

highlighted Treg cells in peripheral tissues, as shown in Figure 11D. Moreover, tisTregST2

signatures separately derived for each tissue also had the highest overlap in tisTregST2

cells from the respective tissue in our dataset, thereby confirming their tissue specificity

(Supplementary Figure S2B). Potential precursor Treg cells from the spleen were high-

lighted by the early and late tisTregST2 progenitor signatures (Delacher et al., 2020).

Based on these analyses, I annotated tisTregST2 cells in the VAT (cluster 23), skin (16)

and colon (10, 19). Treg cells from the spleen were found in clusters 0, 3, 5, 11, 14, 18

and 22. I further annotated effector CD4
+
T cells in peripheral tissues including the VAT

(2, 17, 21), skin (12, 20) and colon (6).

To derive a tisTregST2-specific peakset based on our scATAC-seq data, I performed a

differential accessibility analysis via comparison of skin and VAT tisTregST2 clusters 16

and 23, which showed the highest overlap with the core tisTregST2 signature, against

spleen naive Treg cell clusters 0, 3 and 14. This resulted in a signature of 14,594 peaks,

half of which (7,655 peaks) were significantly more accessible in tisTregST2 cells. Closer

examination revealed a stronger fold-change in accessibility for the majority of these

peaks within tisTregST2 cells from the skin as compared to the VAT (Figure 12, left).

To show the specificity of these results, I annotated the closest genes to the peaks and

confirmed the presence of known tisTregST2 marker genes (Klrg1, Pparg, Il10 ) (Figure 12,

right) (Tsukumo et al., 2013; Delacher et al., 2020).
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Figure 11: Mouse CD4
+

T cell atlas. scATAC-seq data of CD4
+

T cells sorted from
different murine tissues. UMAP colored by A originating tissue and defining FACS marker,
B clusters obtained from graph-based clustering. C Dotplot of marker gene activity showing
the percentage of cells with detected activity and scaled number of fragments per cluster.
The top annotation shows the main tissue of origin and cell type for each cluster. Columns
and rows are clustered using Euclidean distances and complete linkage. D UMAP colored
by enrichment of core tisTregST2 signature peaks within each cell. Modified from Delacher
et al. (2021).
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Figure 12: Mouse tisTregST2 peakset. A Heatmap of scaled accessibility within peak
regions resulting from the differential comparison of murine skin and fat tisTregST2 cells
against naive Treg cells from the spleen. Columns show differentially accessible peaks and are
clustered using Euclidean distances and complete linkage. B The volcano plot is showing log-
fold change and adjusted P-values of the differential accessible peaks between tisTregST2 cells
(cluster 16, 23) and naive Treg cells (cluster 0, 3, 14). The number of differentially accessible
peaks is indicated and gene symbols of several peak-associated genes with important role
in Treg biology are highlighted (tisTregST2 marker genes Klrg1, Pparg, Il10 ; naive T cell
transcription factor Bach2 ; chemokine receptor Ccr8 ). Modified from Delacher et al. (2021).
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3.1.2 Dependence of tisTreg cells in the colon on microbiota

To investigate whether the maturation and maintenance of the colonic tisTregST2 pop-

ulation depends on microbiota, my collaboration partners generated a dataset similar to

Chapter 3.1.1 using gnotobiotic mice. I processed the data and performed quality control

(Supplementary Figure S3), which resulted in a dataset of 31,124 cells with 8,562 median

fragments per cell. Subsequently, I reduced the dimensionality of the data by running

LSI and UMAP and clustered the cells in LSI space. A UMAP representation of the data

colored by originating tissue and cluster annotation is shown in Figure 13A-B. Similar

to the previous analysis, I used gene activities and bulk ATAC tisTregST2 signatures to

annotate clusters (Figure 13C-D, Supplementary Figure S4). Cluster 9 mainly contained

tisTregST2 cells from the colon, but also from the VAT, whereas cluster 13 represented

skin tisTregST2 cells. Moreover, spleen-derived cluster 6 was identified as tisTregST2

precursor population and clusters 1, 5, 15 and 17 contained naive Treg cells. Eventually,

several Tconv cell clusters were annotated (clusters 3, 11, 12, 19, 20).

To further investigate the influence of microbiota on Treg cells in the colon, I next fil-

tered the scATAC-seq data from SPF and gnotobiotic mice to the subset of colon-derived

cells and repeated dimensionality reduction (Figure 14). Subsequently, I plotted marker

gene activities and the core tisTregST2 signature to identify tisTregST2 cells. In both

datasets, a population of cells with high Foxp3, Klrg1 and Ikzf2 and low Rorc chromatin

accessibility was detected corresponding to tisTregST2 cells of thymic origin (tTreg cells).

In contrast, peripheral Treg (pTreg) cells with high Foxp3 and Rorc but low Ikzf2 gene

activity were only detected in the colon of SPF mice but not in germ-free mice in line with

previous studies (Atarashi et al., 2013; Sawa et al., 2011; Sefik et al., 2015). The tTreg

fractions had high gene activity of Areg and Il10. My collaboration partners confirmed

the protein expression of these genes in KLRG1
+
Treg cells isolated from the skin of SPF

and gnotobiotic mice (data not shown).

Together, this analysis showed that tisTregST2 cells of thymic origin, but not pTreg

cells, populate the colon without interaction with microbiota-derived antigens and express

tisTregST2 effector molecules AREG and IL-10.
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Figure 13: Mouse gnotobiotic CD4
+

T cell atlas. UMAP of scATAC-seq data from
gnotobiotic mice colored by A tissue and sort marker and B results from graph-based clus-
tering. C Dotplot of marker gene accessibility showing the percentage of cells and scaled
number of fragments per cluster. The top annotation shows the main tissue of origin and
cell type for each cluster. Rows and columns are clustered using Euclidean distances and
complete linkage. D Core tisTregST2 signature enrichment. Modified from Delacher et al.
(2021).
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Figure 14: tisTregST2 evolve independently from microbiota. UMAP representation
of colon-derived CD4

+
T cells selected from the gnotobiotic mice colored by A cluster anno-

tation from Figure 13B, B gene activity of Foxp3, Klrg1, Rorc and Ikzf2 and C enrichment
of core tisTregST2 signature peaks. Equivalently, a UMAP representation of colon-derived
CD4

+
T cells selected from SPF mice colored by D cluster annotation from Figure 11B, E

gene activity and F core tisTregST2 signature enrichment is shown. The tisTregST2 popu-
lations of thymic origin are circled. Additionally, a pTreg population is detected in cluster
19 of SPF mice. Modified from Delacher et al. (2021).
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3.1.3 tisTreg cells in healthy human tissues show Tfh-bias

In the previous chapters, I have shown that scATAC-seq is a suitable method to charac-

terize Treg cells and was able to confirm previous results on tisTregST2 cells (Delacher

et al., 2020, 2017). Since it is unclear whether a population similar to murine tisTregST2

cells also exists in humans, my collaboration partners generated a scATAC-seq dataset of

sorted CD4
+
T cells from blood, fat and skin tissue of healthy human donors. Based on

the established metrics, I evaluated the quality of the sequenced samples and performed

filtering on the barcodes resulting in a final dataset of 83,267 cells with a median number

of 12,989 fragments per cell (Supplementary Figure S5A-B). Since the cells clustered by

donor, I performed a Harmony integration of the data using the donor as batch vari-

able (Supplementary Figure S5C). I also used the corrected embedding for graph-based

clustering into 16 clusters and UMAP dimensionality reduction (Figure 15A-B and Sup-

plementary Figure S5C-D). Subsequently, I annotated cells based on gene activities of

lineage-defining genes (Figure 15C and Supplementary Figure S6). Specifically, acces-

sibility in the human Treg marker genes FOXP3, CTLA4 and ENTPD1 (CD39) was

observed in clusters 1, 3, 7, 8, 9 and 11. These cells also had high IKZF2 gene activity

supporting a tTreg differentiation path. The murine tisTregST2 marker gene KLRG1

had very low accessibility in human Treg cells indicating the need to further investigate

differences between murine and human Treg cells. Low FOXP3 but high gene activity

of genes encoding Th effector molecules including IL2 and IFNG was found in clusters

0, 2, 4, 10, 12, 14, which I annotated as Tconv cells. Eventually, high SELL gene ac-

tivity and low accessibility within genes encoding activation-associated molecules marked

naive Tconv (6, 13) and Treg (7) cell clusters. While murine tisTregST2 cells have been

shown to be Th2-biased, loci encoding Th2 key transcription factors including GATA3

and IRF4 did not have increased accessibility in human tisTreg cells (Supplementary Fig-

ure S7) (Delacher et al., 2017, 2020; Tindemans et al., 2014). However, I showed that

human tisTreg cells share many chromatin regulatory features with Tfh cells by generating

a Tfh peak signature from a public human T cell scATAC-seq dataset (Satpathy, 2019). I

then tested for its enrichment in our dataset of healthy human CD4
+
T cells (Figure 15D).

The overlap with this signature increased from naive (cluster 7) over memory (cluster 1)

towards Treg cells in the fat and skin (cluster 3) indicating a possible developmental path

(Figure 15E).

Since cluster 3 was the only one containing Treg cells from peripheral tissues including fat

and skin, I performed a differential accessibility analysis between these tissue Treg cells

and blood naive Treg cluster 7 to derive a human tisTreg peak signature. This resulted in

12,236 differential accessible peaks including 4,416 tisTreg-specific peaks. Among these,

I observed both shared and tissue-specific increases in accessibility (Figure 16, left). Sev-

eral naive Treg-associated peaks were in close proximity to BACH2, whereas increased
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accessibility in tisTreg cells was found nearby CTLA4 and ENTPD1, thereby supporting

the validity of the signature (Figure 16, right).

To provide evidence that the human Tfh-biased tisTreg population represents cells with

tissue-regenerative capacity, my collaboration partners performed an in-vitro wound-

healing experiment (Figure 17A-B). First, they treated naive Treg cells either with a

cytokine cocktail inducing Tfh differentiation or only Il-2 to maintain the Treg phenotype

for 6 days. Supernatant from these cells was collected and applied to a wound-healing as-

say, in which the closing of a scratched layer of keratinocytes was observed over time. As a

result, wounds treated with supernatant from Tfh-like Treg cells closed significantly faster

compared to those treated with supernatant from Il2-only Treg cells or without super-

natant. They next performed bulk ATAC-seq of in-vitro Tfh-like Treg cells and Il-2-only

Treg cells and compared them against each other to define differentially accessible peaks

(in-vitro Tfh-like Treg signature, 12,622 Tfh-like Treg-specific peaks). To evaluate the

similarity of in-vitro Tfh-like Treg cells with tissue Treg cells, I annotated the closest gene

to each peak in the human tissue Treg signature, the Tfh-like signature and the in-vitro

Tfh-like Treg signature and calculated intersection sizes (Figure 17C). Approximately half

of the peak-associated genes in both the human tissue Treg signature (784/1,633 genes)

and the Tfh-like signature (826/1,675 genes) overlapped with those from the in-vitro Tfh-

like signature. This was well above the expected overlap of 23% (5,361/22,955 genes) for

a random selection of genes from the human CD4
+
dataset. In addition, my collabora-

tion partners compared in-vitro induced Tfh-like Treg cells with ex-vivo human CCR8
+

Treg cells on the transcriptomic level, which resulted in 228 common upregulated genes

including several transcription factors and tissue-repair-associated genes such as BATF,

BCL6, PDGFA and GRN (data not shown) (Bateman et al., 2018; Bowen-Pope et al.,

1989).

Together, these experiments confirmed the tissue-regenerative capacity of human tisTreg

cells and showed that a similar population can be generated in-vitro from naive Treg cells

by applying a Tfh-inducing cytokine mixture.
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Figure 15: Human CD4
+

T cell atlas. A UMAP representation colored by tissue of
origin and the defining sort marker. B Cell grouping into 16 clusters based on graph-based
clustering. C Dotplot showing scaled gene activity and percentage of cells with detected
activity per cluster. The top annotation shows main tissue per cluster and annotated cell
types. Rows and columns are clustered using Euclidean distances and complete linkage.
Enrichment scores of Tfh-associated peaks D in the UMAP space and E as violin plot for
Treg clusters 1, 3 and 7. Modified from Delacher et al. (2021).
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Figure 16: Human tisTreg peakset. A human tisTreg-specific peakset was derived by
comparing fat and skin Treg cluster 3 against naive Treg cluster 7 resulting in 12,236 dif-
ferential peaks. A Heatmap of scaled accessibility of tisTreg signature peaks in skin, fat
and blood Treg cells. Columns show differential peaks and are clustered using Euclidean
distances and complete linkage. B The volcano plot is showing log-fold changes and adjusted
P-values of peaks from the differential accessibility analysis. Numbers of differentially ac-
cessible peaks for the respective clusters are indicated and BACH2 -, CCR8 -, CTLA4 - and
ENTPD1 -associated peaks are highlighted. Modified from Delacher et al. (2021).
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Figure 17: Human Tfh-like Treg cells support wound healing. A Scheme of the
experimental setup. Naive Treg cells were treated either with IL-2 only or a cytokine cocktail
(IL-2, IL-12, IL-21, IL-23 and TGFβ), which is known to induce Tfh differentiation over
6 days. B Diluted supernatants including factors secreted by the IL-2 Treg cells or Tfh-like
Treg cells were applied to a wound-healing assay, in which closing of a wounded HaCaT
cell monolayer was tracked over time (n = 5, unpaired t test, adjustment of p-values with
Holm-Sidak test). C Upset plot showing intersection sizes between the human tissue Treg
signature (‘Tissue Treg repair signature’), the Tfh-like signature and the in-vitro Tfh-like
signature. For each signature peak, the closest gene was annotated. Subsequently, unique
genes were compared between the sets. Subfigures A and B were prepared by Prof. Dr.
Michael Delacher. Modified from Delacher et al. (2021).

3.1.4 Determination of a conserved tisTreg epigenetic signature

Having defined mouse and human tisTreg peaksets based on scATAC-seq data, I was

wondering whether these chromatin states are conserved between species. Therefore I

developed an approach to perform a cross-species comparison of genomic regions based

on the UCSC genome liftOver tool (described in Methods Chapter 2.12) (Kuhn et al.,

2013). Briefly, the mouse tisTregST2 signature with 14,954 peaks was transferred to the

human genome and tested for robustness resulting in 8,554 peaks transferred from mm10

to hg19. Subsequently, I searched for overlaps of the liftOver peaks with the human

tisTreg peakset (12,236 peaks) and determined 1,055 matches. A final conserved tisTreg

signature with 643 peaks was obtained by filtering for peak pairs within gene bodies or

promoter regions that have a consistent direction of change in chromatin accessibility in
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the mouse and human differential accessibility analysis (Figure 18A). Annotation of the

closest genes showed that species-conserved tisTreg peaks are located within transcrip-

tion factors (BATF, GATA3, TOX ), surface receptors (CCR2, CCR5, CCR6, CCR8 ),

and members of the TNF receptor superfamily (TNFRSF8, TNFRSF9 ). A low acces-

sibility compared to naive Treg cells was observed for tisTreg cells at the loci encoding

transcription factor BACH2 and surface receptor CCR7.

I next approached the question whether there are common transcription factors regulating

tisTreg development. First, I used HOMER to search for de-novo motifs in the human

tisTreg peakset (4,416 skin and fat Treg-specific peaks). This revealed a DNA pattern

similar to the basic leucine zipper (bZIP) domain trancription factor family motif as

top enriched sequence (Figure 18B, top) (Heinz et al., 2010). As transcription factor

BATF belongs to this family and was also among the conserved genes gaining chromatin

accessibility within tisTreg cells, I quantified the accessibility around BATF binding motifs

throughout the human genome. This showed high coverage within cells from tisTreg cell

cluster 3, somewhat lower coverage in memory Treg cell cluster 1 and lowest coverage in

naive Treg cell cluster 7 (Figure 18B, bottom). I found further evidence for the importance

of BATF in tisTreg development by searching for overlaps between the conserved tisTreg

signature peaks with publicly available BATF chromatin immunoprecipitation following

sequencing (ChIP-seq) data (Gene Expression Omnibus accession code GSM803538). This

revealed BATF binding sites within more than half of the tisTreg-specific peaks, whereas

less than a quarter of conserved naive Treg peaks had confirmed BATF binding sites

(summarized as piecharts in Figure 18A).
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Figure 18: Species-conserved tisTreg signature. A Left, scatter plot of 643 conserved
tisTreg-specific peaks in mouse and humans. Log-fold changes are shown from the human
and murine cluster comparison of tisTreg cells against naive Treg cells. Genes of interest
are highlighted and ATAC peaks overlapping with peaks from a BATF ChIP-seq experiment
(GSM803538) are encircled in blue. Right, barplot summarizing the number of peaks with
BATF ChIP-seq overlaps for tisTreg- and naive Treg-specific peaks. B Top, most enriched
motif from the HOMER de-novo motif analysis on human tisTreg-associated peaks and most
similar transcription factor family. Bottom, transcription factor footprint for the BATFmotif
that summarizes the coverage around BATF binding sites for human Treg clusters 1, 3 and
7. Modified from Delacher et al. (2021).

3.1.5 tisTreg cell development and identification of precursor cells

A fundamental question in the characterization of tisTreg cells is how they develop from

naive T cells. It was previously shown that murine tisTregST2 cells have two precur-

sor stages, which can be detected in lymphoid tissues including the spleen and lymph

nodes (Delacher et al., 2020). Building on these results, I performed pseudotime analy-

ses using Monocle (Trapnell et al., 2014). First, I extracted Treg cell clusters from the

SPF mouse CD4
+
T cell dataset and used the most accessible peaks to order cells along

a pseudotime trajectory (Figure 19A). This showed a developmental path starting from

naive Treg cell cluster 0 over clusters 5 and 11 towards tisTregST2 clusters from the

colon (10), skin (16) and VAT (23) (Supplementary Figure S2B). Clusters 5 and 11 also

shared a high overlap with the early and late tisTregST2 progenitor signature, respec-

tively. Overall, the obtained trajectory confirmed a development with multiple precursor

steps (Delacher et al., 2020). Moreover, an increase in BATF transcription factor ac-
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tivity was observed over pseudotime supporting its role in tisTregST2 development. I

applied the same procedure to order Treg cells from the gnotobiotic mice along a possi-

ble developmental path. Similar to the SPF mouse dataset, this resulted in a trajectory

from naive Treg cells (cluster 01), over early and late precursor stages (cluster 6) towards

tisTregST2 cells from peripheral tissues (clusters 9, 13) with a steady increase in BATF

activity (Figure 19B).

I investigated whether a similar differentiation sequence is obtained in humans by subject-

ing Treg cells from the human CD4
+
T cell dataset to trajectory inference with Monocle.

As shown in Figure 19C, pseudotime increased from naive Treg cells (cluster 7) over mem-

ory Treg cells (cluster 1) from the blood towards the common skin and fat tisTreg cluster

3, again accompanied by an increase in BATF activity. Besides an increase in BATF

chromVAR score (Schep et al., 2017), the chromatin accessibility within the BATF gene

locus also increased from naive over memory Treg towards tisTreg cells.

In summary, pseudotime analysis showed that BATF is an important transcription factor

in both mouse and human tisTreg development. Since BATF is also known to be involved

in Tfh cell development in humans (Ise et al., 2011) the observed overlap with the Tfh

signature within the tisTreg cluster described earlier in Chapter 3.1.3 supports a major

role of BATF in tisTreg development.

To identify potential tisTreg precursor cells in mice and humans, I searched for unifying

marker genes within the conserved tisTreg signature (presented in Chapter 3.1.4). One

such gene was the surface receptor CCR8 (Figure 18A, in addition also highlighted in

Figures 12 and 16). I used BATF CHiP-seq data to confirm a BATF binding site in its

promoter region. Chromatin accessibility at this site and other regions in the promoter

and gene body of CCR8 increased from naive and progenitor Treg cells to tisTreg cells

in both species making it a promising gene to track tisTreg progenitors early during their

development (Figure 19D-E). My collaboration partners did two additional experiments

to confirm CCR8 as useful marker gene for tisTreg cells and their precursors in mice and

humans: first, RNA-seq of flow-sorted murine tisTregST2 and their precursor populations

showed that high Ccr8 transcript numbers are detected in peripheral tisTregST2 cells

and Klrg1
+
Nfil3

+
late tisTregST2 precursors (Figure 19F). Klrg1

-
Nfil3

+
early precursors

had an intermediate Ccr8 gene expression, which was still significantly higher than the

expression level in Klrg1
-
Nfil3

-
naive Treg cells. This analysis showed that the observed

increase in chromatin accessibility of Ccr8 during tisTregST2 development entails an

increase in Ccr8 mRNA transcript levels. Second, additional scATAC-seq of flow-sorted

CCR8
+
Treg cells from human blood was performed to evaluate CCR8 as a marker gene

for tisTreg precursors in human blood. I integrated these data into the human CD4
+
T

cell atlas and repeated pseudotime analysis on the Treg cell compartment including blood

CCR8
+
Treg cells (Figure 19G, top). As expected, blood CCR8

+
Treg cells aligned in
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between naive Treg (cluster 7) and tisTreg (cluster 3) cells at a pseudotime similar to

the blood memory Treg cells (cluster 1). I employed the human tisTreg peak signature

presented in Figure 16 to further measure the similarity of blood CCR8
+
Treg cells to

tisTreg cells from the fat and skin. This signature was refined by correcting for Tconv-

associated peaks. In detail, differential peaks from the comparison of Tconv clusters 0, 2,

4, 10, 12, 14 against cluster 7 from the human CD4
+
T cell dataset were excluded resulting

in 2,678 tisTreg-specific peaks (human tisTreg signature). The overlap with the human

tisTreg signature was quantified in all Treg populations and showed that the CCR8
+
Treg

cells from the blood are most similar to tisTreg cells from peripheral tissues (Figure 19G,

bottom). Eventually, I searched for differential peaks between fat and skin tisTreg cells

from human cluster 3 and calculated their enrichment within the CCR8
+
Treg population.

This highlighted largely different subsets of cells indicating a commitment of precursors

towards one specific tissue or possibly the presence of recirculating tisTreg cells from fat

and skin (Figure 19H).

In summary, tisTreg cells develop from naive Treg cells via precursor populations present

in the murine spleen and human blood. These can be detected using CCR8 as a common

marker.
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Figure 19: tisTreg development. (Legend continued.)
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3.1.6 Treg cells in tumors also have a tisTreg phenotype

High expression of CCR8 in Treg cells within tumor tissue has been described in several

studies (De Simone et al., 2016; Plitas et al., 2016). Since I was interested in comparing

tisTreg cells from healthy peripheral tissues to tumor-resident Treg cells, I downloaded

and analyzed a publicly available scATAC-seq dataset containing cells from tumor biopsies

of several basal cell carcinoma patients (Satpathy, 2019). I extracted the CD4
+
T cell

subset from the data using the authors’ annotations and visualized the cells in UMAP

space (Figure 20A). Treg cells indeed had high gene activity of CCR8. High accessibility

within the IKZF2 gene locus classified these cells as tTreg. Importantly, the previously

defined human tissue Treg signature was enriched within the majority of tumor Treg and

Tfh cells. To confirm this result, I searched for differentially accessible peaks of tumor Treg

cells in comparison to other CD4
+
T cells in the tumor dataset (Tumor Treg signature).

The tisTreg cells (cluster 3) from the healthy human CD4
+
T cell dataset had the highest

overlap with the tumor Treg signature, and an intermediate overlap was found in the

tisTreg precursor/recirculating tisTreg cluster 1 (Figure 20B).

In addition to looking at the human tumor T cells, my collaboration partners also gen-

erated a scATAC-seq dataset of sorted CD4
+
and CD25

+
T cells from mammary tumors

of BALB-neuT mice (Hosseini et al., 2016). After processing these data, I demonstrated

that a subset of CD25
+
Treg cells is enriched for peaks from the previously defined murine

core tisTregST2 signature (Figure 20C). Similar to human Treg cells, these cells also had

high Ccr8 and Ikzf2 chromatin accessibility.

Together, this analysis revealed that many tumor CCR8
+
Treg-associated chromatin fea-

tures are also found in tisTreg cells under homeostatic conditions.
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Figure 19: tisTreg development. Density of cells from Treg clusters and Batf chromVAR
score against pseudotime for the A SPF mouse dataset, B gnotobiotic mouse dataset and
the C human dataset. Additionally, BATF gene activity per cluster is shown. D UMAP
representation of human Treg cells colored by cluster annotation, tissue of origin, BATF
chromVAR deviation score and CCR8 gene activity. E Aggregated chromatin accessibility
signal for human (top) and murine (bottom) Treg cell clusters at the CCR8 gene locus. The
bottom track shows the ChIP-seq signal for BATF (GSM803538). The yellow bar highlights
a BATF binding site in the CCR8 promoter region that increases in chromatin accessibility
during development of tisTreg cells. F Ccr8 mRNA expression in murine tisTregST2 cells
from the lung, liver, VAT and skin and their precursors from the spleen (n=5, DeSeq2 (Love
et al., 2014)). G Density of human Treg cells from Monocle trajectory as shown in C (blood
naive Treg cluster 7, blood memory Treg cluster 1, skin and fat tissue Treg cluster 3), but
including the sorted blood CCR8

+
Treg population. Below, violin plot of enrichment scores

for the human tisTreg signature. H UMAP plot showing the enrichment of the human skin
Treg and fat Treg peak signatures in the human blood CCR8

+
Treg population. Subfigures

E and F were prepared by Prof. Dr. Michael Delacher. Modified from Delacher et al. (2021).

Figure 20: Treg cells in tumors share similarity with tisTregST2 cells in healthy
tissues. A UMAP of CD4

+
T cell subset from Satpathy (2019) colored by cell type an-

notation, enrichment of the human tisTreg signature and gene activity scores of CCR8 and
IKZF2. B Enrichment of tumor Treg-specific peaks generated from A in the human CD4

+

T cell dataset. C UMAP of CD4
+

T cells isolated from murine mammary tumors colored
by sort marker, enrichment of core tisTregST2 signature peaks and Ccr8 and Ikzf2 gene
activity score. Modified from Delacher et al. (2021).
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3.2 Chromatin accessibility landscape of murine and human

CD8
+

T cells

Following a close characterization of Treg cells in murine and human tissues, we proceeded

with investigations on the chromatin accessibility landscape of CD8
+
T cells. One major

question that we aimed to answer is whether CD8
+

T cells are also involved in tissue

regeneration. Previously, supportive and obstructive roles of CD8
+
T cells in tissue re-

generation have been reported in different mouse models (Zhang et al., 2014; Dudek et al.,

2021; Liang et al., 2020; Linehan et al., 2018). Since little is known on tissue-regenerative

roles of CD8
+
T cells in humans and it is unclear, how tissue regeneration is regulated in

CD8
+
T cells, we performed scATAC-seq of CD8

+
T cells sorted from different healthy

murine and human tissues and human tumor tissue. In this analysis, we found that CD8
+

T cells in healthy peripheral murine and human tissues show both characteristics of ef-

fector and exhaustion state. These cells share similarities with tisTregST2 cells – above

all they also participate in tissue repair and are controlled by transcription factor BATF.

This population was also present in human hepatocellular carcinoma (HCC) tumor tissue

highlighting a new facet of tumor immunology.

We are currently revising a manuscript with results from this analysis under the title:

Single-cell chromatin accessibility landscape reveals tissue-repair potential of human ef-

fector CD8 T cells (Delacher, M., Simon, M., Schmidleithner, L., Stüve, P., Sanderink, L.,

Hotz-Wagenblatt, A., Wuttke, M., Schambeck, K., Ruhland, B., Hofmann, V., Bittner,

S., Pant, A., Eigenberger, A., Menevse, A., Gebhard, C., Strieder, N., Abken, H., Rehli,

M., Schmidl, C., Beckhove, P., Strowig, T., Huehn, J., Hehlgans, T., Prantl, L., Werner,

J., Brors, B., Imbusch, C., Feuerer, M.)

3.2.1 Effector-like PD1
+
TOX

+
CD8

+
T cells share features with tisTreg cells

in healthy murine tissues

To reveal the chromatin landscape of murine CD8
+
T cells, my collaborators generated

a scATAC-seq data set of sorted CD8
+
T cells from murine VAT, skin, colon, lung and

spleen. After processing these data, I performed quality control and obtained a final

dataset of 11,755 cells with a median of 21,457 fragments per cell (Supplementary Fig-

ure S8). I then generated a low-dimensional representation and determined graph-based

clusters (Figure 21A-B). Interestingly, I observed that several genes reported in the context

of T cell exhaustion (Havcr2, Pdcd1, Lag3, Tigit) or effector activity (Gzmb, Areg, Ifng,

Tnf ) were also accessible in CD8
+
T cells from healthy peripheral tissues including the

skin (cluster 11), VAT (clusters 3, 10, 16) and colon (clusters 14, 15) (Figure 21C and Sup-

plementary Figure S9A). To further characterize cellular states, I performed annotation

with SingleR using the CD8
+
T cell subset from the Immgen dataset as reference (Heng
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et al., 2008; Aran et al., 2019). This confirmed the effector identity of the aforementioned

clusters and revealed a segmentation by differentiation status in addition to the tissue of

origin within the UMAP space (Figure 21D, Supplementary Figure S9B). Next, I used

Monocle to order cells along a trajectory to gain insights about possible developmental

paths (Figure 21E). Effector CD8
+
T cell clusters positioned at the end of this trajectory

and had increased BATF activity, as seen previously during tisTregST2 cell development.

I defined a CD8 activation signature by comparison of effector CD8
+
T cell clusters 3,

10, 11, 14-16 against all other clusters (3,321 effector CD8
+
T cell-specific peaks). Addi-

tionally, the top de novo enriched motif based on this CD8 activation signature was most

similar to motifs from the bZIP transcription factor family further supporting a role of

BATF in the development of effector CD8
+
T cells. My collaboration partners validated

this finding by flow cytometry of T cells obtained from the spleen, lung, and VAT of

BATF-deficient mice, which confirmed a low abundance of CD62L
-
PD1

+
TOX

+
CD8

+
T

cells (data not shown).

In short, we identified CD8
+
T cells in healthy murine peripheral tissues with effector and

exhaustion phenotype and high BATF activity (subsequently termed PD1
+
TOX

+
CD8

+

T cells).
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Figure 21: Mouse CD8
+

T cell atlas. scATAC-seq data of CD8
+

T cells sorted from
different healthy murine tissues. UMAP of CD8

+
T cells colored by A originating tissue

and B clusters obtained from graph-based clustering. C Dotplot of scaled gene activity and
fraction of cells with detected fragments for CD8

+
T cell activation and exhaustion marker

genes summarized by clusters. The top rows show the main tissue of origin and effector
CD8 annotation by cluster. Rows and columns are clustered using Euclidean distances and
complete linkage. D Localization of cells annotated as effector CD8

+
T cells by SingleR.

The number of nearest neighbors with effector CD8 annotation is encoded by color, gray
values indicate a different annotation. E BATF chromVAR deviation score plotted against
pseudotime (top). Effector CD8

+
T cell clusters are highlighted by their cluster color, and

cells from other clusters are colored in light blue. (Bottom) Top-ranking de novo motif from
the HOMER motif discovery analysis based on CD8 activation signature peaks. Modified
from Delacher et al. (nd).
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3.2.2 PD1
+
TOX

+
CD8

+
T cell activation program is independent of micro-

biota in the colon

Similar to the establishment of the tisTregST2 program, we were interested whether

PD1
+
TOX

+
CD8

+
T cells arise independent from microbiota. Therefore I processed

and analyzed a newly generated scATAC-seq dataset of sorted CD8
+
T cells from healthy

tissues of gnotobiotic mice. After quality control, the dataset contained 16,258 cells with

a median number of 9,414 fragments per cell (Supplementary Figure S10). Similar to the

CD8
+

T cells from SPF mice, effector CD8
+

T cells were found in the VAT, skin and

colon (Figure 22A-B, Supplementary Figure S11A). I then calculated the enrichment for

the CD8 activation signature in cells from the mouse SPF and gnotobiotic datasets. The

effector CD8
+
T cell populations in both datasets showed a similar overlap with the signa-

ture and there was a high correlation of the colon effector CD8
+
T cell clusters from both

datasets based on their gene activities (Figure 22C, Supplementary Figure S11B-C).

Together, these results indicated independence of PD1
+
TOX

+
CD8

+
T cells from micro-

biota.
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Figure 22: PD1
+
TOX

+
CD8

+
T cells are independent from microbiota. UMAP

of CD8
+

T cells from gnotobiotic mice colored by A originating tissue and B SingleR
annotation of effector CD8

+
T cells. C CD8 activation signature enrichment score shown

on UMAP of the SPF (left) and gnotobiotic (right) mouse dataset.

3.2.3 Effector-like PD1
+
TOX

+
CD8

+
T cells are present in healthy human

tissues

We next performed a close characterization of human CD8
+
T cells to reveal commonal-

ities and differences to murine PD1
+
TOX

+
CD8

+
T cells. My collaborators generated a

scATAC-seq dataset of sorted CD8
+
T cells from the fat, skin and blood of healthy human

donors. I processed these data and tested its quality resulting in a dataset of 37,013 cells

with a median of 13,974 fragments per cell (Supplementary Figure S12). As before, I then

performed dimensionality reduction, batch correction with Harmony, graph-based clus-

tering, and reference-based cell annotation with SingleR (Figure 23A-C, Supplementary

Figure S13A-B). Using this approach together with marker gene activities, I annotated

clusters 3, 4 and 10 as naive CD8
+
T cells (high SELL gene activity), clusters 2 and 5 as

mucosal-associated invariant (MAIT) cells (high KLRB1 gene activity) and the remain-
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ing cells as central or effector memory CD8
+
T cells. I also quantified the enrichment

for the previously established human tisTreg signature, which highlighted memory CD8
+

T cells from the fat (cluster 9), skin (cluster 11) and blood (cluster 6) (Figure 23D).

Interestingly, these cells were accessible in exhaustion-associated genes including TOX,

PDCD1, LAG3, TIGIT and ENTPD1. I confirmed this observation by including peak

signatures from a recent ATAC-based analysis of CD8
+
T cell dysfunctional states, which

showed enrichment of exhaustion-associated peaks in clusters 9 and 11 (Supplementary

Figure S13C) (Pritykin et al., 2021). These clusters also had low gene activity in S1PR1

and CCR7 indicating tissue-resident behavior (data not shown) (Kok et al., 2021). I fur-

ther characterized cells from clusters 9 and 11 by comparing their chromatin accessibility

against naive CD8
+

T cells and MAIT cells. De-novo motif discovery analysis on the

common 263 differential peaks gaining accessibility in the memory CD8
+
T cells resulted

in BATF as transcription factor with the highest similarity to the top-enriched motif. As

previously observed, there was an increase in the BATF chromVAR deviation score from

naive over blood-based intermediates towards tissue-resident effector CD8
+
T cells over

pseudotime (Figure 23E).

Increased expression of the above-mentioned exhaustion-associated genes and BATF in

fat and skin PD1
+
TOX

+
CD8

+
T cells from healthy human donors was confirmed on

scRNA-seq data by my collaboration partners (data not shown). They also performed an

in-vitro wound healing assay to study whether TOX
+
effector CD8

+
T cells also support

wound healing similar to induced Tfh-like Treg cells. Specifically, my collaborators used

a system with three different cell lines including influenza-specific TOX
+
effector CD8

+

T cells, HLA-A2
+
fibroblasts presenting influenza-peptide and HLA-A2

-
epithelial cells

(data not shown). With increasing concentrations of influenza peptide, TOX
+
effector

CD8
+

T cell activation and cell-mediated killing of fibroblasts increased as expected.

However, they also observed a simultaneous dose-dependent growth of epithelial cells,

which persisted when applying cell-free supernatant from the system to an in-vitro wound

healing assay with epithelial cells. Mechanistically, concentrations of the EGFR ligands

TGFα and AREG increased dependent on influenza peptide dose and the presence of

epithelial cells. Moreover, activated CD8
+
T cells directly supported wound healing via

release of TNF and IFNγ. This experiment showed that interactions of activated TOX
+

effector CD8
+

T cells with fibroblasts and epithelial cells promote wound healing via

release of tissue-regenerative factors (Delacher et al., nd).

In short, human tissue-resident CD8
+

T cells have an activation and exhaustion-like

chromatin state with a predominant footprint of transcription factor BATF. Similar to

their murine counterparts, PD1
+
TOX

+
CD8

+
T cells also exist in human peripheral

tissues. They support wound healing by inducing the expression of tissue-regenerative

molecules.
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Figure 23: Human CD8
+

T cell atlas. scATAC-seq data of CD8
+

T cells sorted from
healthy human tissues. UMAP of CD8

+
T cells colored by A originating tissue and B 16

clusters obtained from graph-based clustering. C Dotplot of scaled marker gene activity and
fraction of cells with detected gene activity by cluster with major originating tissue and cell
type annotation shown in the top rows. D Enrichment score for human tisTreg signature
presented in Chapter 3.1.5. E Top de-novo motif search result from HOMER based on the
tisTreg signature-positive memory CD8

+
T cell clusters 9 and 11 against naive CD8

+
T cells

and MAIT cells (clusters 2, 3, 4, 5, 10) (top) and scatter plot of BATF transcription factor
activity against pseudotime colored by cluster. Modified from Delacher et al. (nd).
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3.2.4 Comparison of PD1
+
TOX

+
CD8

+
T cells between human healthy and

tumor tissue

Since PD1
+
TOX

+
CD8

+
T cells are known in the context of exhaustion within tumor

tissue, we next compared these cells between healthy and tumor tissue. My collaborators

sequenced CD3
+
T cells isolated from tumors of three human hepatocellular carcinoma

patients. I processed these scATAC-seq data and performed quality control, after which I

obtained 36,555 cells with 7,503 median fragments per cell (Supplementary Figure S14).

Since the low-dimensional representation of the data was influenced by the donor, I cal-

culated a batch-corrected dimensionality reduction using Harmony (Supplementary Fig-

ure S14C). To obtain a segmentation into CD4
+
and CD8

+
T cells, I then smoothed CD4

and CD8A gene activities among neighboring cells and assigned the cell type for each cell

based on the bigger value (Figure 24A). Next, I performed graph-based clustering to en-

able a cluster-level mapping of cell types and states (Figure 24B). I further annotated cells

by inspection of marker gene activities, calculation of a gene activity module score based

on a previously published RNA CD8
+

T cell exhaustion signature (Miao et al., 2020)

and reference-based annotation with SingleR (Figure 24C-D, Supplementary Figure S15).

Using these approaches, I assigned clusters 1 and 4 as Treg cells, cluster 10 as MAIT cells

and cluster 2 and 7 as Tconv cells. Among the SingleR-annotated effector CD8
+
T cell

clusters (5, 6, 8, 9, 11, 12), clusters 5, 9, 11 and 12 had the highest scores of the RNA

CD8 exhaustion signature. Since they also had high gene activity of ENTPD1, a marker

for terminal exhaustion of CD8
+
T cells (Gupta et al., 2015), I annotated these clusters

as terminally-exhausted CD8
+
T cells (CD8exh). Concordant with the intermediate ex-

haustion phenotype of memory CD8
+

T cells in healthy peripheral human tissues, the

effector CD8
+
T cell clusters 6 and 8 had intermediate CD8

+
T cell exhaustion signature

scores.

To compare PD1
+
TOX

+
CD8

+
T cells from healthy tissues with exhausted CD8

+
T

cells from tumor tissue I first derived an ATAC-based CD8
+
T cell exhaustion signature

by comparing CD8exh cells (cluster 5, 9, 11, 12) against the remaining CD8
+

T cells

(clusters 6, 8, 14) and MAIT cells (10) (ATAC CD8 exhaustion signature, 1,895 CD8exh-

specific peaks). Subsequently, I quantified the enrichment for the RNA and ATAC-based

CD8 exhaustion signatures in the human healthy CD8
+
T cell dataset and compared it

with the human tisTreg signature (Figure 25). The exhaustion and tisTreg signatures

had similar score distributions between the clusters: fat and skin memory CD8
+
T cells

ranged at the upper end and blood naive CD8
+

T cells at the lower end. To take a

more detailed look at CD8
+
T cell exhaustion-associated genes (PDCD1, ENTPD1, TOX,

TIGIT ) I summarized the fragment coverage within genomic windows for selected clusters

(Supplementary Figure S16). While ENTPD1 was only accessible in tumor CD8exh cells,

memory CD8
+
T cells from healthy fat, skin and blood had high similarity to CD8exh



3.2 Chromatin accessibility landscape of murine and human CD8
+
T cells 61

cells in their accessibility profiles for the remaining genes. Naive CD8
+
T cells from the

blood were inaccessible in these markers, and tumor effector CD8
+
T cells had similar

gene accessibility in PDCD1 and TIGIT but low TOX gene accessibility.

These analyses show that, although not being identical in their chromatin landscapes,

there are many shared features between tumor CD8exh and healthy tissue PD1
+
TOX

+

CD8
+
T cells.

Figure 24: Human HCC T cell atlas. scATAC-seq data of T cells from hepatocellular
tumors. UMAP of T cells colored by A annotation the CD4

+
and CD8

+
T cell compartment,

B assignment to 15 clusters by graph-based clustering,C RNA-based CD8
+
T cell exhaustion

gene signature score, and D density of cells annotated as effector memory CD8
+

T cell by
SingleR. Modified from Delacher et al. (nd).
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Figure 25: Signature comparison. A Heatmap of scaled scores for the human tisTreg
signature and RNA-based and ATAC-based CD8 exhaustion signatures for clusters from the
human CD8

+
T cell dataset. Rows and columns are clustered using Euclidean distances

and complete linkage. B The violin plots are showing the distribution of signature scores by
cluster from A. Modified from Delacher et al. (nd).
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3.3 Expanding the view: an immune cell atlas of tissue-specific

programs

Following the in-depth characterization of the chromatin states of murine and human T

cells with tissue-regenerative potential, we broadened the view to the whole immune cell

landscape. To investigate tissue repair programs in other immune cell types, my collab-

oration partners generated two additional scATAC-seq datasets from flow-sorted CD45
+

immune cells of different healthy murine and human tissues. As before, my contribution

is to process and analyze these datasets.

Although this project is still ongoing, I included some of the preliminary results in this

thesis: within the Treg cell subset, I confirmed the tisTregST2 marker Ccr8 that can

already be detected in tisTregST2 precursor cells from the spleen. Above all, my analysis

showed that many of the tisTregST2 cell-associated chromatin features are not exclusive

to T cells but are also present in other immune cell types including ILC2 cells, monocytes,

macrophages and dendritic cells.

3.3.1 tisTreg signature identifies innate immune cells with potential repair

function in healthy murine tissues

To generate a murine immune cell chromatin accessibility atlas, my collaboration partners

sorted CD45
+
immune cells from skin, VAT, colon and spleen tissue pooled from several

healthy mice and subjected them to scATAC-seq. I then processed these data and per-

formed quality control, which resulted in a collection of 44,192 cells with a median of 8,710

fragments per cell (Supplementary Figure S17). Next, I reduced the dimensionality of the

dataset, did graph-based clustering and annotated the resulting clusters based on marker

gene activities and reference-based annotation with SingleR (Figure 26A-D, Supplemen-

tary Figure S19A and C). To verify these annotations, I compared the obtained immune

cell type fractions per tissue with annotations from published datasets (Supplementary

Figure S19B). Consistent with previous studies, more than 50% of immune cells from the

spleen were B lymphocytes, and T lymphocytes represented the second largest fraction of

immune cells (The Tabula Muris Consortium et al., 2018; Han et al., 2018; Chen et al.,

2018).

I calculated an enrichment score for the core tisTregST2 signature with chromVAR to

localize cells sharing commonalities with tisTregST2 cells (Figure 26E) (Schep et al., 2017).

The score indicated a strong enrichment of signature peaks in macrophages (clusters 18-21,

23) and monocytes (22), and an intermediate enrichment in DCs (24-28), granulocytes

(16, 17), and a subset of ILCs largely consisting of ILC2 cells (9). tisTregST2 cells

from the VAT, skin and colon (11) had the highest enrichment score within the lymphoid

compartment. However, they had a lower overlap with the signature compared to myeloid
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cells. As expected, naive T cells (13) ranged among the cells with lowest enrichment of

coreTisTregST2 signature peaks. Similarly, I observed that there was a high predicted

transcription factor activity of BATF in cell clusters with high core tisTregST2 signature

scores (core tisTregST2 signature z-score - BATF chromVAR z-score Pearson correlation

= 0.63), especially within a subset of monocytes and macrophages (20-22) (Figure 26F).

On the other hand, BATF activity was low in naive B and T cell clusters 5, 6 and 13.

To disentangle, which peaks of the core tisTregST2 signature contribute to the high enrich-

ment within myeloid cells, I counted the number of fragments within each peak region per

cell and then summarized the mean fragment number per cluster (Figure 27). Partition-

ing of the peaks into four clusters using k-means clustering showed that approximately

half of the signature peaks (k-means peak clusters 2-4) had high accessibility within

macrophages, monocytes and DCs (clusters 18-28), but comparatively low accessibility

within tisTregST2 cluster 11. On the other hand, the remaining regions from peak cluster

1 were most accessible in tisTregST2 cells and ILC clusters 2 and 9. This indicated that

the peaks in the core tisTregST2 signature are only partially exclusive to tisTregST2 cells

when evaluated in a pan-immune cell context.

I confirmed our findings presented in Chapter 3.1.5 on the detection of tisTregST2 pre-

cursor cells by Ccr8 expression using the naive CD4
+
T cell and Treg cell subset from the

mouse immune cell atlas. First, I recalculated a dimensionality reduction and graph-based

clusters (Figure 28A). I then used Ccr8 gene activity as a proxy for its mRNA expression

level and compared it with the enrichment of the murine tisTregST2 tissue and progenitor

signatures and additional marker genes (Figure 28B-D, Supplementary Figure S18). Ccr8

gene activity was low in the naive CD4
+
T cell/naive Treg cluster 1 and increased towards

late tisTregST2 progenitor cells within cluster 5, which were also accessible in the murine

tisTregST2 precursor marker genes Nfil3 and Klrg1 (Delacher et al., 2020). Eventually,

highest Ccr8 gene activity was obtained in tisTregST2 cells from the colon (cluster 3),

VAT (4) and skin (2). On the other hand, the colonic pTreg cluster 6, as identified by

high Rorc and low Ikzf2 gene activity, had low chromatin accessibility at the Ccr8 locus.

These results confirmed Ccr8 as marker for tisTregST2 cells and their progenitors.
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Figure 26: Mouse immune cell atlas. scATAC-seq data of CD45
+

immune cells sorted
from different murine tissues. UMAP colored by A originating tissue, B 28 clusters from
graph-based clustering and C mapping of clusters to cell types. D Dotplot showing scaled
gene activities and fraction of cells with detected activity per cluster. The column anno-
tations indicate the major compartment and cell type, respectively. Markers for T cells
(Cd3e), B cells (Cd19 ), plasma cells (Sdc1 ), myeloid cells (Itgam), macrophages (Csf1r)
and NK cells (Klrb1c) are shown. Rows and columns are clustered using Euclidean dis-
tances and complete linkage. cromVAR deviation z-scores visualized on UMAP for E the
core tisTregST2 peak signature and F BATF transcription factor activity.
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Figure 27: Core tisTregST2 signature peak accessibility. Heatmap of the mean num-
ber of fragments per cell summarized by clusters from the murine immune cell atlas (Fig-
ure 26B). The columns indicate clusters and rows represent peaks from the core tisTregST2
signature (2,267 peaks). Rows were partitioned into four peak clusters using k-means cluster-
ing. Within each subset, hierarchical clustering based on Euclidean distances with complete
linkage was applied. Similarly, columns were grouped using hierarchical clustering. The top
annotation summarizes the mean total fragment number per cell in the respective cluster.
tisTregST2 cluster 11 is highlighted in red.
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Figure 28: Confirmation of tisTregST2 marker Ccr8. UMAP of the Treg and naive
T cell subset from the murine immune cell atlas colored by A originating tissue and clusters
from graph-based clustering, B Ccr8 gene activity score andC chromVAR deviation z-scores
highlighting enrichment of the core tisTregST2 and late tisTregST2 progenitor signature
peaks. D Dotplot of scaled gene activities and fraction of cluster cells with detected activity
for key genes characterizing tisTregST2 development. The main originating tissues and
developmental steps are annotated above the dotplot for the clusters from A. Rows and
columns are clustered using Euclidean distances and complete linkage.

3.3.2 Characterization of immune cells with potential tissue-specific roles in

healthy human tissues

Analogous to the murine data, my collaboration partners prepared cells for a human

immune cell atlas by flow-sorting CD45
+
immune cells from fat, skin and blood of a healthy

donor and subsequent scATAC-seq. I processed these data and filtered out low-quality

barcodes. This resulted in a dataset of 38,783 cells with a median of 7,207 fragments

per cell (Supplementary Figure S20). In Figure 29A-B, tissue and cluster annotations

of the cells in UMAP space are shown. As before, I annotated cells using SingleR and

gene activities of selected cell type markers (Figure 29C-D, Supplementary Figure S21).

According to this annotation, CD4
+

T cells dominate the immune cell composition of

blood and skin. B cells, CD8
+
T cells, MAIT cells and neutrophils were almost exclusively

detected in the blood, whereas macrophages and DCs were only found in the fat and

skin.

I next used the previously defined human tisTreg signature to compute a peak enrichment

score for each cell. A high z-score was obtained for Treg cells from the fat and skin (subset
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of cluster 9) and a fraction of non-naive blood Treg cells (subset of 14), thereby confirming

its specificity to highlight tisTreg cells and their precursors. In addition, high scores within

the blood were obtained for CD8
+
T cells (16), a subset of NK cells (subset of 19) and

B cells (6). Within fat and skin, the signature was highly enriched in a fraction of cells

from clusters 4 and 5 (monocytes/macrophages/DCs) and another non-Treg cell subset

of cluster 9 (Figure 29E). These immune cell subsets from the peripheral tissues also had

the highest BATF transcription factor activity scores (human tisTreg signature z-score -

BATF chromVAR z-score Pearson correlation = 0.58) (Figure 29F).
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Figure 29: Human immune cell atlas. scATAC-seq data of CD45
+
immune cells sorted

from the fat, skin and blood of a healthy human donor. UMAP colored by A originating
tissue, B 19 clusters obtained by graph-based clustering, C cell type annotation of clusters
from B. D Dotplot of scaled marker gene activity and fraction of cells with detected activity
by cluster defining major compartments and cell types. The column annotations represent
the major compartment and cell type, respectively. Markers for neutrophils (FUT4 ), NK
cells (FCGR3A), myeloid cells (ITGAM ), macrophages (CSF1R), B cells (MSA1 ) and T
cells (CD3E ) are shown. Rows and columns are clustered using Euclidean distances and
complete linkage. UMAP colored by chromVAR deviation z-scores for E the human tisTreg
signature and F BATF transcription factor activity.
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4 Discussion

4.1 scATAC-seq confirms tisTregST2 phenotype in mice

The data presented in Chapter 3.1 provides the first scATAC-seq atlas of CD4
+
T cells

from healthy murine and human lymphoid and non-lymphoid tissues. Previous publica-

tions involving scATAC-seq were either assaying a broad spectrum of tissue cells without

focus on the immune cell compartment, generating immune cell profiles from the blood

only or investigating certain disease conditions such as basal cell carcinoma (Cusanovich

et al., 2018; Domcke et al., 2020; Zheng et al., 2020; Satpathy, 2019; Yu et al., 2020).

My analysis provided a detailed view on epigenetic changes and their underlying regula-

tory factors occurring within immune cells during tissue adaptation under homeostasis.

Importantly, the single-cell resolution provided the means to identify differences between

cellular subsets and the inference of developmental trajectories. Both would not have

been possible with bulk sequencing approaches.

Delacher et al. (2017) previously used a combination of whole-genome bisulfite sequencing

and RNA-seq to characterize a murine population of tissue-resident Treg cells termed

‘tisTregST2’ cells. These cells secrete the tissue-regenerative factor AREG and IL-10,

and have a defined transcriptional and DNA methylation landscape. In particular, they

have high expression of Th2 cell-associated genes including Il1rl1 (IL-33 receptor ST2)

and Gata3, and were shown to depend on transcription factor BATF. In addition, two

murine tisTregST2 precursor stages were identified in the spleen and lymph nodes using

scRNA-seq (Delacher et al., 2020). The authors further derived chromatin accessibility

signatures based on ATAC-seq of sorted tisTregST2 cells from peripheral tissues including

the skin, VAT, colon and lung and determined a ‘core tisTregST2’ signature, which is

shared among all tisTregST2 populations (Delacher et al., 2020).

In this work, I projected the tisTregST2 signatures on the scATAC-seq dataset of mouse

CD4
+

T cells and was able to identify clusters representing tisTregST2 cells. Frac-

tions of tisTregST2 cells within the Treg compartment were concordant with previous

results, where tisTregST2 cells constituted the majority of Treg cells in fat and skin,

but were only present in low fractions within the lung and lymphoid tissues including the

spleen (Delacher et al., 2020). I found an increase in the enrichment of precursor signature

peaks along the developmental trajectory from spleen naive Treg cells towards peripheral

tisTregST2 cells. The cell ordering in my pseudotime analysis is therefore in line with the

results from Delacher et al. (2020). BATF transcription factor activity assessed for each

cell showed an increase along this trajectory confirming its importance for tisTregST2

cell development. Importantly, the single-cell resolution of the dataset allowed a precise

annotation of tisTregST2 cells, which is in contrast to the lower cell type purity obtained

from bulk sequencing data (Sicherman et al., 2021; Delacher et al., 2020). I used this
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advantage to derive a refined tisTregST2-specific peak signature.

Together, my analysis showed that tisTregST2 cells can be successfully identified and

characterized using scATAC-seq. Pseudotime analysis confirmed the previously proposed

developmental steps with early and late precursor stages in the spleen and supported a

major role of BATF in driving this development.

4.2 tisTregST2 cells develop independently from microbiota in

the colon

In the colon, two subsets of FOXP3
+

Treg cells have been described. They differ by

their origin: thymus-derived Treg (tTreg) cells and peripheral Treg (pTreg) cells. pTreg

cells are induced from Tconv cells in mucosal tissues to mediate tolerance against self-

antigens and harmless foreign antigens (Shevach and Thornton, 2014; Yadav et al., 2013).

I annotated colon Treg cell subsets in our scATAC-seq data generated from SPF and

gnotobiotic mice and showed that pTreg cells were absent in the gnotobiotic mice. This

was in line with previous results describing the dependency of pTreg cell induction on

microbial antigens (Atarashi et al., 2011; Geuking et al., 2011; Yadav et al., 2013). In

accordance with their development originating in lymphoid tissues, tisTregST2 cells made

up the tTreg fraction in the colon of SPF mice, but were different from pTreg cells, which

only had a low-to-intermediate enrichment of tisTregST2 signature peaks. The tisTregST2

cells in the colon of SPF and gnotobiotic mice had high gene activity of tisTreg effector

molecules AREG and IL-10 (Burzyn et al., 2013; Cipolletta et al., 2012). My collaboration

partners further confirmed their protein expression in skin KLRG1
+
Treg cells from SPF

and gnotobiotic mice (Delacher et al., 2021).

In short, these analyses showed that functional tisTregST2 cells colonize the colon inde-

pendent from microbiota. Consequently, tTreg cells do not only mediate peripheral tol-

erance in the colon, but are also capable to produce tissue-regenerating factors. Whether

the same holds true for pTreg cells is subject to further investigations. The specific de-

pletion of the tTreg lineage in mice combined with a wound-healing assay would be an

option to address this question.

4.3 Identification and characterization of human tisTreg cells

Previous evidence on tisTregST2 cells is based on research conducted on mice (Delacher

et al., 2017, 2020). It was an unanswered question whether Treg cells with tissue-

regenerative capacity also exist in humans. The main finding of my analysis in Chap-

ter 3.1 is the identification of tisTreg cells in human peripheral tissues including fat and

skin (Figure 15). I performed an in-depth comparison between human and murine tisTreg

cells elaborating on their commonalities and differences. This analysis is especially valu-
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able since the transferability of knowledge gained from mouse models to humans is a

major concern in the development of new treatments (Leenaars et al., 2019).

Regarding commonalities, I found a set of tisTreg-specific open chromatin regions, which

was present in both species (Figure 18). Peaks in this conserved tisTreg signature were

associated with the transcription factors BATF, GATA3 and TOX, and multiple surface

and TNF superfamily receptors. The signature also contained ENTPD1 among its asso-

ciated genes, which encodes the ectonucleotidase CD39 known to play an important role

in the suppressive function of Treg cells in mice and humans (Antonioli et al., 2013). In

addition, multiple regions associated with BACH2, a transcription factor responsible for

maintenance of a naive T cell state, became consistently inaccessible in mouse and hu-

man tisTreg cells (Tsukumo et al., 2013). The conserved signature was strongly enriched

for BATF binding sites supporting its fundamental role for the tisTreg program in both

species (Hayatsu et al., 2017; Mijnheer et al., 2021; Vasanthakumar et al., 2015; Ise et al.,

2011).

Treg cells were shown to mirror transcriptional programs of specific Th cell subsets

to allow their effective regulation (Duhen et al., 2012; Cretney et al., 2013). A well-

described property of murine tisTregST2 cells is their polarization towards a Th2 cell

phenotype (Delacher et al., 2017). Indeed, murine tisTregST2 cells in our scATAC-seq

data had high gene activity of the Th2 transcription factors Gata3 and Irf4. However,

this was not the case in their human counterparts, which instead showed enrichment of

peaks associated with Tfh cells. Type 2 immune responses mounted by Th2 cells are

directed against helminths and support tissue repair, but are also involved in allergy and

other diseases with a chronic inflammatory component (Walker and McKenzie, 2018). Tfh

cells, on the other hand, regulate B cell maturation within germinal centers and B cell fol-

licles (Zaretsky et al., 2009; Crotty, 2014). This difference in polarization between mouse

and human tisTreg cells shows that their epigentic program is only partly conserved. It

raises the question, why Treg cells in peripheral tissues have a Tfh bias although Tfh cells

are primarily present in lymphoid tissues (Crotty, 2019). Of note, a close relationship be-

tween the Th2 and Tfh lineage has been reported, i.e. both cell types having the ability to

produce Il-4, the Th2 signature cytokine (Zaretsky et al., 2009; Sahoo et al., 2016).

Murine tisTreg cells have been shown to support wound healing in multiple tissues in-

cluding the skin, muscle and lung via release of amphiregulin (Burzyn et al., 2013; Arpaia

et al., 2015; Johnston et al., 2011; Berasain and Avila, 2014). To provide evidence that

the human tisTreg cells have similar capacity my collaboration partners induced Tfh-

like Treg cells from naive Treg cells in-vitro. Supernatant from these cells accelerated

wound closure in an in-vitro wound-healing assay suggesting that human tisTreg cells in-

deed produce tissue-regenerative factors. I compared in-vitro induced Tfh-like Treg cells

and true tisTreg cells on the epigenetic level: approximately half of the peak-associated
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genes from the human tisTreg scATAC-seq-based peakset overlapped with genes associ-

ated with Tfh-like Treg ATAC-peaks, thus showing considerable similarity between the

populations. Additionally, a comparison of transcriptomes from in-vitro induced Tfh-like

Treg cells and ex-vivo human CCR8
+
Treg cells showed consistent log-fold change for the

majority of their differentially-expressed genes. It included upregulation of transcription

factors BATF and BCL6 and several wound-healing associated genes (Delacher et al.,

2021). While we were able to provide strong evidence for the tissue-repair functionality of

human tisTreg cells, a definite proof would be the use of bona fide human tisTreg cells for

the wound healing assay. However, it is only possible to extract a few thousand tisTreg

cells from human skin and fat tissue samples. This is not sufficient for the assay, which

requires approximately 100 times more cells. Another possibility would be the in-vitro

expansion of CCR8
+
Treg cells isolated from human blood, however, protocols to achieve

this are yet to be established.

4.4 CCR8 expression identifies tisTreg cells and their precur-

sors

An important aspect in the characterization of tisTreg cells is the understanding of their

developmental path and the underlying driving transcription factors. Delacher et al. (2020)

showed that early and late tisTregST2 precursor cells can be identified in the murine spleen

using the marker genes Klrg1 and Nfil3. However, these markers were not accessible in

human Treg cells, thus requiring the definition of new human markers. I used Monocle to

align human and mouse Treg cells from lymphoid and non-lymphoid tissues along pseudo-

time trajectories (Figure 19). In all cases, I observed a development from naive Treg cells

over intermediates in the spleen or blood towards tisTreg cells, which was accompanied

by an increase in accessibility of tisTreg-specific peaks and BATF transcription factor

activity.

I identified CCR8 among the associated genes in the species-conserved tisTreg signature.

Its localization on the cell surface and the gradual increase of CCR8 gene activity along

the pseudotime trajectories in both species make it a promising new marker for tisTreg

precursor cells. CCR8 encodes the C-C motif chemokine receptor 8, which is involved

in cell migration and increases suppressive activity and survival of Treg cells. In mouse

and humans, it is expressed in Treg cells and to lesser extent in Th2 cells, NK cells and

monocytes (Barsheshet et al., 2017; Soler et al., 2006; Coghill et al., 2013). To further

validate CCR8 as a marker for the identification of tisTreg cells and their precursors,

my collaboration partners showed its increase in mRNA abundance from Klrg
-
Nfil3

-
Treg

cells over early precursors towards the late precursors and tisTregST2 cells in peripheral

tissues of the mouse. In addition, human CCR8
+
Treg cells were sorted from the blood and

assayed by scATAC-seq. I found that these cells align between blood-based intermediates
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and tisTreg cells within the human tisTreg developmental trajectory. Moreover, there

was a differential enrichment of skin- or fat-specific tisTreg peaks within the CCR8
+
Treg

pool indicating a priming of these cells for the respective tissue. In Delacher et al. (2021),

additional paired scRNA- and scTCR-seq showed that there was a considerable clonal

overlap between tisTreg cells and blood CCR8
+
Treg cells. This observation strengthened

the suitability of CCR8 as marker to identify tisTreg precursor cells. In mouse experi-

ments, Kolodin et al. (2015) previously showed that there is only little recirculation of

Treg cells between fat and the spleen. Instead, tTreg cells clonally expanded within the fat

based on TCR sequencing data. Therefore, although my analysis does not provide definite

evidence that human blood CCR8
+
Treg cells are tisTreg precursors directly originating

from lymphoid organs, it is unlikely that they contain a large fraction of recirculating

tisTreg cells from fat or skin.

A comparison of the human CCR8
+
Treg population with Treg cell subsets described in the

literature shows that they share similarity with the highly suppressive effector/activated

Treg cell fraction described by Tanaka and Sakaguchi (2017), which is defined by high

FOXP3 and CD25 expression and low CD45RA surface protein abundance. Povoleri et al.

(2018) further described a CD161
+

Treg population with tissue-regenerative and high

suppressive capacity found in human blood and the intestinal mucosa. Despite sharing

functional similarity with tisTreg cells, they represent another cell subset: CD161
+
Treg

cells are induced by microbiota-derived retinoic acid and therefore belong to the pTreg

fraction whereas tisTreg cells originate from the thymus (tTreg). The difference between

these Treg cell subsets becomes further evident by the lack of KLRB1 (CD161) gene

accessibility and mRNA expression in tisTreg cells.

4.5 Clinical significance of Treg cells in the tumor

Selective pressure posed by the host‘s immune system frequently results in tumor-mediated

recruitment of Treg cells, which subsequently suppress the immune response and thereby

avoid the destruction of cancer cells. Consequently, the presence of Treg cells in tumors

is mostly associated with poor survival rates (Chen et al., 2011; De Simone et al., 2016;

Flammiger et al., 2013; Togashi et al., 2019). In previous studies, CCR8
+

expression

was described as specific feature of tumor Treg cells and had a negative correlation with

overall and disease free survival of patients (Plitas et al., 2016; De Simone et al., 2016).

Recently, Wang et al. (2019) proposed that CCR8
+

Treg cells in peripheral blood of

breast cancer patients represent precursors of tumor Treg cells. According to my analysis,

CCR8
+
Treg cells are not tumor-specific, but reside in peripheral tissues of healthy donors

as well. Moreover, blood-based CCR8
+
Treg cells are a subset of effector/memory Treg

cells most likely constituting tisTreg precursors.

The similarity of tumor-resident Treg cells with tisTreg cells in our data suggests that
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they also share most of their functional properties including the production of tissue-

regenerative molecules. This would constitute an additional, more direct way to support

tumor growth besides mediating immune suppression. While this hypothesis still needs

to be experimentally verified, previous studies reported a related mechanism: tumor Treg

cells released VEGF, which increased angiogenesis within the tumor tissue (Li et al.,

2019b; Facciabene et al., 2011).

Based on their supportive role in tumor growth and their negative impact on patient

survival, targeting tumor Treg cells is of high clinical interest. However, targeted therapies

are required since systemic Treg depletion results in severe autoimmunity (Sakaguchi

et al., 1995; Kim et al., 2007). Most recently, monoclonal antibodies directed against

CCR8 were used to deplete CCR8
+

Treg cells in mice bearing breast, colon or renal

carcinoma. This resulted in a durable anti-tumor immune response and a stong inhibition

of tumor growth (Kidani et al., 2022; Villarreal et al., 2018). Interestingly, the authors

did not observe immunopathologies in anti-CCR8 treated mice even though such side

effects would be likely based on my analysis showing the presence of CCR8
+
Treg cells

in healthy peripheral tissues. They hypothesized that tumor de-novo antigens might

have higher antigenicity compared to self-antigens from normal tissue. Therefore, partial

tumor Treg depletion suffices to restore the immune response against the tumor, whereas

autoimmunity only arises at close to complete depletion of Treg cells (Kidani et al., 2022;

Shimizu et al., 1999). Together, CCR8-targeted treatment, either alone or in combination

with other immunotherapy agents that lead to synergistic effects, may be a promising

future treatment approach (Kidani et al., 2022; Villarreal et al., 2018). In 2021, one

phase I clinical trial involving anti-CCR8 monoclonal antibody treatment in patients with

advanced solid tumors has been started (NCT05007782, registered on ClinicalTrials.gov
1
).

This trial will provide new data on automimmunity and other possible side effects of

CCR8
+
Treg depletion in humans.

4.6 PD1
+
TOX

+
CD8

+
T cells share tissue-adaptation features

with tisTreg cells

In Chapter 3.1, I performed a close characterization of the chromatin accessibility land-

scape of mouse and human tisTreg cells. Insights from this study are also useful to

evaluate other immune cell types with respect to the tisTreg program and potential re-

generative capacity. In Chapter 3.2, my collaboration partners generated scATAC-seq of

sorted CD8
+
T cells from the same tissues as the previously analyzed CD4

+
T cells, which

allowed a direct comparison with known features of tisTreg cells. Similar to the collection

of CD4
+
T cell datasets, this resulted in a scATAC-seq atlas of CD8

+
T cells from healthy

1
https://clinicaltrials.gov/ct2/show/NCT05007782, last visited on 04/20/2022
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and diseased mouse and human tissues. I used these data to define epigenetic features of

CD8
+
T cells in nonlymphoid tissues. This analysis allows the interpretation of previous

publications on tumor CD8
+
T cells in a new context – tissue adaptation (Satpathy, 2019;

Pritykin et al., 2021).

My analysis identified CD8
+
T cells in peripheral mouse and human tissues that share

both characteristics of effector and exhaustion status (Figures 21 and 23). For instance,

I observed high chromatin accessibility in the effector-associated genes GZMB and IFNG

and exhaustion-associated genes TOX, PDCD1 and TIGIT. Therefore, these cells were

termed PD1
+
TOX

+
CD8

+
T cells. A subsequent comparison of PD1

+
TOX

+
CD8

+
T cells

with tisTreg cells revealed several similarities including an increase in BATF transcription

factor activity during their development towards a tissue CD8 phenotype, presence in

germ-free mice, conservation of tisTreg-associated peaks and importantly, capability to

promote tissue repair. BATF dependence was validated by my collaboration partners

in BATF
-/-

mice that almost completely lacked the PD1
+
TOX

+
CD8

+
T cell fraction

in multiple tissues. Finally, CD8
+
T cells with high conservation of chromatin features

specific for PD1
+
TOX

+
CD8

+
T cells from healthy peripheral tissues were also detected

in tumor tissue, indicating that their tissue adaptation progam is preserved even in a

disease setting.

4.7 Comparison of PD1
+
TOX

+
CD8

+
T cells with reported

CD8
+

T cell subsets

Based on TCR activation status and localization, T cells are frequently classified as naive

(antigen-inexperienced), effector (activated and proliferating after exposure to a cognate

antigen) or memory (previous antigen experience) cell. Within the memory fraction,

there is a further distinction between central/effector memory (circulating) and tissue-

resident memory (Trm, non-circulating) cells (Szabo et al., 2019; Kok et al., 2021). In

this framework, PD1
+
TOX

+
CD8

+
T cells are most similar to the Trm fraction based

on their gene activity, and SingleR based annotation as central/effector memory CD8
+
T

cells can most likely be attributed to missing CD8
+
Trm cell samples within the reference

dataset (Monaco et al., 2019; Aran et al., 2019; Hayward et al., 2020). For example,

PD-1 expression in CD8
+
T cells under homeostasis has been described as a feature of

Trm cells (Kumar et al., 2017; Hombrink et al., 2016). In addition, Trm cells represent

the largest subset among memory T cells within peripheral tissues, which is in concor-

dance with the high abundance of PD1
+
TOX

+
CD8

+
T cells from peripheral tissues in

our datasets (Kumar et al., 2018; Thome et al., 2014; Kumar et al., 2017). My pseudo-

time analysis further suggests the presence of an intermediate PD1
+
TOX

+
CD8

+
T cell

phenotype in the blood. This is consistent with previous studies reporting that a popu-

lation of T cells poised for tissue residency exist within the circulating pool of cells (Kok
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et al., 2021, 2020). Additional studies such as cell tracking or parabiosis experiments

would be required to test the extent of recirculation within the PD1
+
TOX

+
CD8

+
T cells

population (Piconese et al., 2020).

There are reports about multiple subsets of CD8
+
T cells with regulatory function, to-

gether termed CD8
+
Treg cells (Smith and Kumar, 2008; Niederlova et al., 2021). One of

the best described subsets are the murine CD8
+
CD122

+
T cells and their human coun-

terparts, CD8
+
CXCR3

+
T cells (Rifa’i et al., 2004; Akane et al., 2016; Shi et al., 2009).

They resemble central memory T cells and were shown to suppress auto- and alloimmune

responses by direct target cell killing and production of inhibitory molecules such as IL-10

and TGFβ1 (Liu et al., 2015; Mishra et al., 2021; Akane et al., 2016). More detailed, PD-1

expression was proposed as a marker to distinguish CD8
+
CD122

+
T cells with regulatory

from those with memory phenotype (Dai et al., 2010). Since there is still controversy in

this field and robust markers for CD8
+
Treg populations are missing, it was not possible

to unequivocally identify such cells in our data. Although a subset of PD1
+
TOX

+
CD8

+

T cells with high tisTreg signature expression also had high gene activity of published

CD8
+

Treg cell markers including IL2RB (CD122), KLRA1 (mouse-specific, encoding

Ly49) and CXCR3, further experiments such as in-vitro suppression assays would be re-

quired to show immune-regulatory activity of PD1
+
TOX

+
CD8

+
T cells (Shi et al., 2009;

Rifa’i et al., 2004).

4.8 Tissue regenerative potential of CD8
+

T cells

Support in tissue repair by CD8
+
T cells has been described under different conditions

in mice. Yu et al. (2011); Brodeur et al. (2015) showed that CD8
+
T cells secrete factors

that directly (TNFα) or indirectly (IL13-mediated stimulation of TNFα production in

macrophages) increase proliferation in epithelial cells and thereby promote thyroid or lung

fibrosis. Further studies revealed that CD8
+
Trm cells recruit CD4

+
mononuclear cells to

enhance vascular regeneration after injury, whereas an obstructive role was attributed to

the enrichment of effector/effector memory CD8
+
T cells (Stabile et al., 2006; Liang et al.,

2020). Similarly, promoting MCP-1 secretion and consequential attraction of macrophages

was shown to stimulate myoblast proliferation in damaged muscle tissue (Zhang et al.,

2014).

While wound healing capability of murine CD8
+
T cells is well supported, there are only

few reports about tissue-repair function of human CD8
+
T cells. In-vitro assays performed

by my collaboration partners showed that human activated TOX
+
CD8

+
T cells induce

wound healing by release of TNF and IFNγ and interaction with epithelial cells that pro-

motes production of TGFα and AREG. My analysis of scATAC-seq data revealed that

human PD1
+
TOX

+
CD8

+
T cells share many chromatin features with tisTreg cells distin-

guishing them from naive Treg and Tconv cells. These results indicate that PD1
+
TOX

+
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CD8
+
T cells also contribute to the maintenance of tissue homeostasis besides their cyto-

toxic function. To further strengthen this hypothesis, it would be important to annotate

the regions within the tisTreg signature with respect to their functional impact, since it

likely contains both features specific to tissue-repair and tissue-adaptation. This would

allow to define whether chromatin accessibility features indicative of tissue-repair function

are present in PD1
+
TOX

+
CD8

+
T cells as well. Above all, further studies are required

to investigate the relevance of TOX
+
CD8

+
T mediated wound healing in vivo, and to

clarify whether this function is restricted to the PD1
+
TOX

+
CD8

+
T cell subset or a

general feature of activated CD8
+
T cells.

-

4.9 PD1
+
TOX

+
CD8

+
T cells from tumors and healthy periph-

eral tissues are similar

My analysis including both published CD8
+

T cell exhaustion signatures and a direct

comparison of our own scATAC-seq data of CD8
+
T cells from healthy peripheral and

HCC tumor tissue showed that PD1
+
TOX

+
CD8

+
T cells from the skin and fat of healthy

donors are similar to exhausted CD8
+
T cells derived from tumor samples (Pritykin et al.,

2021). Specifically, dysfunctional CD8
+
T cell signatures showed the strongest overlap

with the chromatin landscape of PD1
+
TOX

+
CD8

+
T cells from healthy tissues, and

scores were enriched in a highly similar fashion to the human tisTreg signature. Despite

this enrichment of exhaustion-associated accessible chromatin regions, it is highly unlikely

that PD1
+
TOX

+
CD8

+
T cells from the skin and fat of healthy donors are dysfunctional,

i.e. gene activity for effector-associated genes such as IFNG, GZMB or TNF was high.

Instead, our data indicate that many features previously described as specific for T cell

exhaustion in cancer or other chronic diseases rather represent tissue adaptation. This

includes well-known exhaustion-associated genes such as PDCD1, TOX and TIGIT, all of

which are also accessible and expressed at somewhat lower level in peripheral tissue CD8
+

T cells under homeostasis (Scott et al., 2019; Wherry et al., 2007; Ostroumov et al., 2021).

Given the Trm phenotype of PD1
+
TOX

+
CD8

+
T cells, there is supporting evidence

found for this hypothesis: Corgnac et al. (2020) reported a functional population of Trm

cells expressing both PD-1 and CD39. Their density correlated with improved survival

rates of lung cancer patients. It is now recognized that tumor-infiltrating lymphocytes

are composed of a variety of different subsets and that some of these subsets – including

Trm and other memory-type T cells – express inhibitory checkpoint molecules in a fully

functional state. Moreover, control or clearance of a tumor requires the presence of both

effector T cells and long-lasting memory-type T cells (Han and Yoon, 2020; Schøller et al.,

2021). Therefore, my results fit well in the growing body of evidence that expression of

inhibitory checkpoint molecules does not imply T cell exhaustion.
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To date, studies frequently include comparisons between T cells from tumor tissue and

peripheral blood or lymphoid tissues, which yields both disease- and tissue-associated

features (Li et al., 2019a; Cillo et al., 2020; Puram et al., 2017; Zhang et al., 2018; Azizi

et al., 2018). The data presented in this chapter will thus be useful to allow a better

distinction between true disease-associated changes and features occurring in T cells from

healthy peripheral tissues as well in the future.

The high concordance between exhaustion- and tisTreg signature score distributions com-

bined with the results from our in-vitro wound healing assays of human PD1
+
TOX

+
CD8

+

T cells leads to the hypothesis that CD8
+
T cells in the tumor act like a double-edged

sword: they might both kill tumor cells and support tumor cell proliferation. However, fur-

ther experiments to prove tissue-repair capacity of tumor-infiltrating PD1
+
TOX

+
CD8

+

T cells are warranted. Meanwhile, the vast amounts of literature on positive effects of

tumor CD8
+
T cell infiltration on survival rates suggest that the cytotoxic function of

CD8
+
T cells might outweigh the effects of supporting cell proliferation (van der Leun

et al., 2020; Ali et al., 2014; Fluxá et al., 2018; Oshi et al., 2020; Craven et al., 2021).

4.10 Immune cell atlas reveals shared features of tissue adapta-

tion

Chapter 3.3 provides an outlook on tissue-specific alterations in atlases of murine and

human immune cells containing both lymphoid and myeloid cells. I quantified the over-

lap with the tisTreg ATAC signatures for each cell. These features were enriched within

the tisTreg clusters and underrepresented in naive T cell clusters, thereby confirming my

previous results. However, peaks from the tisTreg signatures were also present in ILC2

cells, and had high enrichment within monocytes, macrophages and dendritic cells. To

further explain this observation, I quantified the accessibility for each peak in the core

tisTregST2 signature in the murine scATAC-seq atlas and found that it consists of roughly

equal contributions from peaks with specificity for tisTreg cells and ILCs and peaks with

high accessibility within the myeloid compartment (Figures 26 and 27). Since the core

tisTregST2 signature was derived from multiple independent samples from different tis-

sues, each of which required a distinct T cell extraction protocol, it is highly unlikely

that it contains a common myeloid cell contamination (Delacher et al., 2020). Moreover,

I determined a similar mixed contribution of accessible peaks for the murine and human

scATAC-based tisTreg signatures from chapters 3.1.1 and 3.1.3. Due to the single-cell res-

olution underlying these comparisons, a contamination of myeloid cells in these analyses

could be excluded. Rather, the shared peaks show that the tisTreg signatures contain a

‘tissue’ component present across multiple immune cell types, and that they are in the

current state most appropriate to highlight tisTreg clusters in datasets of T lymphocytes

only. The immune cell atlases now provide the opportunity to refine these signatures
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to their subset of true tisTreg-specific peaks. This will not only be useful for a precise

annotation of tisTreg cells in new datasets, but also give insights into tisTreg biology by

interpreting genes associated with the retained features.

Another explanation for the enrichment of tisTreg signature peaks in myeloid cells is that

they share chromatin features related to a tissue repair phenotype with tisTreg cells. In-

deed, AREG expression and wound healing potential has been demonstrated in multiple

cell types including macrophages, dendritic cells and ILCs (Meng et al., 2015; Bles et al.,

2010; Zaiss et al., 2015; Rankin and Artis, 2018). For example, macrophages have con-

firmed tissue-reparative functions in the skin, intestines, lung and hair follicles (Barron

and Wynn, 2011; Nguyen and Soulika, 2019; Yanez et al., 2017). They support prolifera-

tion of target cells such as fibroblasts and epithelial cells not only via AREG production,

but also via release of other growth factors such as TGFβ, PDGF and VEGF (Nguyen

and Soulika, 2019; Barron and Wynn, 2011).

In summary, our immune cell atlas project has potential to advance the understanding of

tissue-specific functions of immune cells by defining their common epigenetic framework

and highlighting immune cell subset-specific chromatin features of tissue adaptation.

4.11 Role of BATF in immune cell development

In Chapters 3.1 and 3.2, we found that the transcription factor BATF plays an impor-

tant role for Treg and PD1
+
TOX

+
CD8

+
T cells in their development towards peripheral

tissues. In mice, this result confirmed previous studies emphasizing the requirement of

BATF for tisTreg differentiation and maintenance (Delacher et al., 2017; Miragaia et al.,

2019; Vasanthakumar et al., 2015; Hayatsu et al., 2017). (Mijnheer et al., 2021) described

a similar population of human effector Treg cells under inflammatory conditions and pro-

posed BATF to be a key transcriptional regulator for these cells. Similarly, the activated

and suppressive effector Treg cell phenotype in human non-small-cell lung cancer tumor

samples was dependent on the activity of BATF and its binding partner IRF4 (Alvisi

et al., 2020).

The immune atlas data presented in Chapter 3.3 showed that there is a high correlation

of BATF activity with enrichment of the tisTreg signature, and more importantly, that

its activity is also high in a subset of other immune cell types such as macrophages, DCs,

ILCs and plasma cells. This indicates that BATF plays a more general role in immune

cell development and their adaptation towards peripheral tissues. In support of this

observation, BATF was recently described as a pioneer transcription factor that initiates

effector cell differentiation (Pham et al., 2019; Ciofani et al., 2012). In T cells, BATF is

activated downstream of TCR signaling and induces changes in chromatin accessibility.

In turn, these allow the expression of lineage-defining transcription factors such as Bcl-6,
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which is considered the master regulator of Tfh cell development (Ise et al., 2011; Pham

et al., 2019; Nurieva et al., 2009). Besides its role in T cells, BATF is also involved

in the development and function of B cells and dendritic cells (Betz et al., 2010; Ise

et al., 2011; Murphy et al., 2013; Tsao et al., 2022). Important insights were gained

from BATF knockout mice, which lack Th17 cells and have impaired Th2 and Tfh cell

development (Schraml et al., 2009; Betz et al., 2010). In CD8
+
T cells, missing BATF

activity results in diminished proliferation and effector cell differentiation and an aberrant

cytokine production profile, whereas Treg cells acquire characteristics typical for Th2

cells (Tsao et al., 2022; Xu et al., 2021; Kurachi et al., 2014). Together, BATF has

a broad spectrum of effects in the development and function of multiple immune cell

lineages. While we were able to show that it is also required for acquisition of a tissue-

specialized phenotype in tisTreg and PD1
+
TOX

+
CD8

+
T cells, a direct link to the tissue

repair capacity of these cells is still missing. The interrogation of BATF binding sites

at gene loci of molecules involved in wound-healing would be a good starting point to

approach this question.

4.12 Limitations

Methods interrogating chromatin accessibility such as scATAC-seq yield genomic regions

(‘peaks’) as features, which are difficult to interpret. Therefore, a common approach is

to summarize chromatin accessibility within and around gene-encoding regions to obtain

a gene activity score. This score can be used in a similar way as in transcriptomic anal-

yses, e.g. to define differentially accessible genes, and annotate cell populations based

on the activity of marker genes or with scRNA-based methods such as SingleR (Aran

et al., 2019). A limitation of this approach is that while gene activity often represents

a good proxy for the gene’s expression level, chromatin accessibility has poor predictive

value for mRNA transcript levels of some genes. In a comparison of bulk sequencing

data, Starks et al. (2019) reported a Spearman correlation of 0.7 between ATAC-based

gene activities and RNA-seq measurements from matching biological samples. Recently,

multi-omic approaches have become available, in which both ATAC- and RNA-signals

are captured from the same cell. Studies reported median Pearson correlations in the

range of 0.4 – 0.6 between gene activity scores and mRNA transcript counts of cells

from PBMC and bone marrow samples (Granja et al., 2021; Stuart et al., 2019; Granja

et al., 2019). One explanation for this moderate correlation is that genes are frequently

‘poised’ for expression: their DNA is already accessible, but requires further activation

signals such as histone modifications or transcription factor binding in order to get tran-

scribed (DiSpirito et al., 2018; Klemm et al., 2019). Also, there is a negligible or even

repressing effect of increased chromatin accessibility on gene expression in some cases (Ri-

ethoven, 2010). Several improvements in the correspondence of gene activities and mRNA
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levels were achieved by incorporating distal regions in a distance-weighted fashion besides

gene body and promoter region into gene activity models (Granja et al., 2021). How-

ever, there remains uncertainty about the true association of these elements with nearby

genes (McLean et al., 2010). An example from our data is the AREG gene, which clearly

shows increased mRNA expression in human fat and skin PD1
+
TOX

+
CD8

+
T cells com-

pared to blood CD8
+
T cells, whereas hardly any change is detectable in its chromatin

accessibility (Delacher et al., nd). Thus, gene activity scores need to be interpreted with

care and it may be beneficial to select regions incorporated in a gene activity score on

an individual basis instead of using a generalized approach. In the future, the generation

of cis-regulatory maps defining distal elements and their effects on genes may greatly

improve the prediction of gene expression based on their chromatin accessibility.

Another limitation of our work is the requirement of additional experiments to prove the

tissue-repair capacity of tisTreg and PD1
+
TOX

+
CD8

+
T cells in vivo. In Chapter 3.1, we

showed the similarity of in-vitro induced Tfh-like Treg cells with tisTreg cells, which pro-

duced factors that significantly supported wound closure. However, it is still unclear how

much tisTreg cells contribute to wound healing under natural conditions in organisms in-

cluding mice and humans. Currently, the number of tisTreg cells that can be isolated from

peripheral tissue samples such as fat and skin is too low for applications such as wound

healing assays hindering the use of ex-vivo tisTreg cells (Pijuan et al., 2019). The develop-

ment of new assays with lower cell input requirements or the use of mouse models allowing

selective depletion of tisTreg cells could consolidate the tissue-repair function of bonafide

tisTreg cells. Similar considerations also apply to the proposed growth-promoting function

of tumor CCR8
+
Treg cells and the PD1

+
TOX

+
CD8

+
T cells described in Chapter 3.2.

Another line of evidence would be to elucidate the molecular mechanisms underlying the

repair capacity of tisTreg and PD1
+
TOX

+
CD8

+
T cells. This could be approached by

generation of gene-regulatory networks linking transcription factors to genes directly in-

volved in tissue repair, accompanied with loss-of-function experiments to validate their

impact on tissue repair potential (DiSpirito et al., 2018; Cong et al., 2013).

Using pseudotime analysis, I was able to infer developmental trajectories of tisTreg and

PD1
+
TOX

+
CD8

+
T cells. These started from naive T cells in lymphoid tissues and devel-

oped via precursor stages in the spleen and blood. A caveat of scATAC-based trajectory

inference with Monocle is that the direction of change is arbitrary. It was therefore not

possible to unambiguously determine whether the cells with intermediate phenotypes rep-

resent precursors or recirculating cells. This is in contrast with other methods such as

RNA velocity or scVelo that rely on RNA-splicing information and produce directed tra-

jectories (Bergen et al., 2020; La Manno et al., 2018; Trapnell et al., 2014). An advantage

over single-cell transcriptomic methods is that trajectory analysis based on scATAC-seq

captures dynamic changes in gene regulation and transcription factor activity, thereby
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providing valuable insights into the drivers of cell development.

Lastly, it remains to be clarified whether tissue repair capacity is a distinct feature of

PD1
+
TOX

+
CD8

+
T cells, which would justify to classify them as another subpopulation

among CD8
+
T cells.

4.13 Outlook

The close epigenetic characterization of CD4
+
and CD8

+
T cells from peripheral tissues

presented in Chapters 3.1 and 3.2 have led to the identification of human tisTreg cells and

PD1
+
TOX

+
CD8

+
T cells with tissue-regenerative capacity. The immune cell atlas data

introduced in Chapter 3.3 will allow me to obtain a comprehensive view on chromatin

accessibility in immune cells, and thereby distinguish between universal and cell type-

specific alterations in chromatin accessibility. Using these data, I will not only be able

to refine previous results such as the tisTreg signatures, but also generate insights on cell

types such as ILCs, which are yet to be described on the epigenetic level.

Delacher et al. (2020) previously showed two precursor stages of murine tisTregST2 cells

within the spleen using a combination of scRNA-seq and ATAC-seq. To better under-

stand human tisTreg cells, an important task will be to define whether there are also

multiple distinc steps during the development of human tisTreg cells. In this context, it

would also be relevant to distinguish between tisTreg precursors and tisTreg cells that

have egressed from peripheral tissues. Parabiosis experiments, cell tracking protocols or

bioinformatic approaches that yield directed graphs of development such as RNA velocity

might be useful to investigate this aspect (La Manno et al., 2018; Piconese et al., 2020).

Also, recent development of multi-omic single-cell approaches such as SHARE-seq that

allow simultaneous measurement of RNA transcripts and accessible chromatin allow the

inference of directed developmental steps with new concepts such as ‘chromatin potential’,

in which chromatin accessibility predicts future mRNA states (Ma et al., 2020).

Our analyses are therapeutically relevant in multiple aspects. First, the identification

of human tisTreg cells may lead to new applications in regenerative medicine, where

expansion and administration of tisTreg-like cells to patients may foster wound healing

while simultaneously preventing further tissue damage caused by inflammatory reactions.

Second, with their ability to promote proliferation, we revealed a potential additional

mechanism of Treg cells to support tumor growth besides their suppressive effects on

effector cells. It will be important to further test this hypothesis, since it might entail al-

tered cancer immunotherapeutic strategies: checkpoint inhibitors could be combined with

agents blocking signaling pathways that induce cell proliferation such as the EGFR path-

way (Wee and Wang, 2017). On a similar note, PD1
+
TOX

+
CD8

+
T cells may support

cell proliferation and thereby also support tumor growth in some cases. A supporting ob-
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servation to this notion was reported in nonalcoholic steatohepatitis, where CD8
+
T cells

with a PD1
+
CXCR6

+
TOX

+
TNF

+
phenotype promoted tissue fibrosis and the induction

of hepatocellular carcinoma (Pfister et al., 2021; Dudek et al., 2021). Third, my compar-

ison of T cells between healthy peripheral tissues and tumor tissue showed substantial

overlap in their epigenetic landscape. The data included in these analyses will therefore

be useful to define changes affecting T cell epigenomes in the tumor microenvironment

that do not merely represent tissue adaptation events. This may support the choice of tar-

getable molecules in immunotherapies that specifically affect tumor T cells and minimize

the risk of side effects in healthy tissues such as autoimmune reactions.
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Hartkopf, A. D., Taran, F.-A., Brucker, S. Y., Fehm, T., Rack, B., Buchholz, S., Spang, R., Meister, G., Aguirre-Ghiso,

J. A., and Klein, C. A. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634):552–558.

Hu, G., Cui, K., Fang, D., Hirose, S., Wang, X., Wangsa, D., Jin, W., Ried, T., Liu, P., Zhu, J., Rothenberg, E. V., and

Zhao, K. (2018). Transformation of Accessible Chromatin and 3D Nucleome Underlies Lineage Commitment of Early T

Cells. Immunity, 48(2):227–242.e8.

Huehn, J., Polansky, J. K., and Hamann, A. (2009). Epigenetic control of FOXP3 expression: the key to a stable regulatory

T-cell lineage? Nature Reviews Immunology, 9(2):83–89.

Hwang, B., Lee, J. H., and Bang, D. (2018). Single-cell RNA sequencing technologies and bioinformatics pipelines. Exper-

imental & Molecular Medicine, 50(8):1–14.

Hwang, J.-R., Byeon, Y., Kim, D., and Park, S.-G. (2020). Recent insights of T cell receptor-mediated signaling pathways

for T cell activation and development. Experimental & Molecular Medicine, 52(5):750–761.

Ise, W., Kohyama, M., Schraml, B. U., Zhang, T., Schwer, B., Basu, U., Alt, F. W., Tang, J., Oltz, E. M., Murphy, T. L.,

and Murphy, K. M. (2011). The transcription factor BATF controls the global regulators of class-switch recombination

in both B cells and T cells. Nature Immunology, 12(6):536–543.

Janson, P. C. J., Winerdal, M. E., Marits, P., Thörn, M., Ohlsson, R., and Winqvist, O. (2008). FOXP3 Promoter

Demethylation Reveals the Committed Treg Population in Humans. PLoS ONE, 3(2):e1612.

Johnson, J. L., Georgakilas, G., Petrovic, J., Kurachi, M., Cai, S., Harly, C., Pear, W. S., Bhandoola, A., Wherry, E. J.,

and Vahedi, G. (2018). Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells.

Immunity, 48(2):243–257.e10.

Johnston, A., Gudjonsson, J. E., Aphale, A., Guzman, A. M., Stoll, S. W., and Elder, J. T. (2011). EGFR and IL-1

Signaling Synergistically Promote Keratinocyte Antimicrobial Defenses in a Differentiation-Dependent Manner. Journal

of Investigative Dermatology, 131(2):329–337.

Kay, A. B. (2000). Overview of ‘Allergy and allergic diseases: with a view to the future’. British Medical Bulletin,

56(4):843–864.

Kharchenko, P. V. (2021). The triumphs and limitations of computational methods for scRNA-seq. Nature Methods,

18(7):723–732.

Kidani, Y., Nogami, W., Yasumizu, Y., Kawashima, A., Tanaka, A., Sonoda, Y., Tona, Y., Nashiki, K., Matsumoto, R.,

Hagiwara, M., Osaki, M., Dohi, K., Kanazawa, T., Ueyama, A., Yoshikawa, M., Yoshida, T., Matsumoto, M., Hojo, K.,

Shinonome, S., Yoshida, H., Hirata, M., Haruna, M., Nakamura, Y., Motooka, D., Okuzaki, D., Sugiyama, Y., Kinoshita,

M., Okuno, T., Kato, T., Hatano, K., Uemura, M., Imamura, R., Yokoi, K., Tanemura, A., Shintani, Y., Kimura, T.,

Nonomura, N., Wada, H., Mori, M., Doki, Y., Ohkura, N., and Sakaguchi, S. (2022). CCR8-targeted specific depletion



92 References

of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proceedings

of the National Academy of Sciences, 119(7).

Kim, J. M., Rasmussen, J. P., and Rudensky, A. Y. (2007). Regulatory T cells prevent catastrophic autoimmunity through-

out the lifespan of mice. Nature Immunology, 8(2):191–197.

King, K. Y. and Goodell, M. A. (2011). Inflammatory modulation of HSCs: viewing the HSC as a foundation for the

immune response. Nature Reviews Immunology, 11(10):685–692.

Klemm, S. L., Shipony, Z., and Greenleaf, W. J. (2019). Chromatin accessibility and the regulatory epigenome. Nature

Reviews Genetics, 20(4):207–220.

Koch, U. and Radtke, F. (2011). Mechanisms of T Cell Development and Transformation. Annual Review of Cell and

Developmental Biology, 27(1):539–562.

Kok, L., Dijkgraaf, F. E., Urbanus, J., Bresser, K., Vredevoogd, D. W., Cardoso, R. F., Perié, L., Beltman, J. B., and
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6 Supplement

6.1 Supplementary Figures

Figure S1: Mouse SPF CD4
+

T cell quality control. A TSS score plotted over number
of fragments for barcodes passing fragment and TSS score thresholds. Color indicates the
number of nearest neighbours for each cell. B Fragment size distribution for each sample
in the dataset. C UMAP representations calculated on the first 20 components of the SVD
score matrix (left) and the Harmony score matrix (right) with batch correction against the
pool of mice. D UMAP colored by peak count.
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Figure S2: Mouse SPF CD4
+

T cell markers and signatures. A UMAP of mouse
CD4

+
T cell dataset colored by marker gene activity scores for Treg cells (Foxp3 ), tisTregST2

cells (Klrg1, Areg, Il10 ), Tconv cells (Il2, Tbx21, Ifng) and naive T cells (Sell). B Signature
enrichment scores of tisTregST2 signatures taken from Delacher et al. (2020).
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Figure S3: Mouse gnotobiotic CD4
+

T cell quality control. A Scatter plot showing
number of fragments and TSS score after filtering out low-quality barcodes. The number of
nearest neighbors for each cell is indicated by color. B Fragment size distribution for each
sample in the dataset. C UMAP colored by peak count.
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Figure S4: Mouse gnotobiotic CD4
+

T cell markers and signatures. A UMAP
colored by gene activities. Marker genes for Treg cells (Foxp3 ), tisTregST2 cells (Klrg1, Areg,
Il10 ), Tconv cells (Il2, Tbx21, Ifng) and naive T cells (Sell) are displayed. B tisTregST2
signature enrichment scores plotted in UMAP space.
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Figure S5: Human CD4
+

T cell quality control. A Scatter plot of TSS score over
number of fragments per cell. Prior to visualization, barcodes underwent filtering for mini-
mum fragment count and TSS score. B Distribution of fragment sizes per sample. C UMAP
based on SVD or donor-corrected Harmony embedding colored by donor. D Peak count per
cell visualized on UMAP.
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Figure S6: Human CD4
+

T cell marker genes. UMAP colored by gene activity of
selected marker genes for Treg cells (FOXP3, ENTPD1, CTLA4 ), tTreg cells (IKZF2 ),
Tconv cells (IL2, IFNG) and naive T cells (SELL). The murine tisTregST2 marker gene
KLRG1 had low accessibility in the human dataset.
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Figure S7: Th2 transcription factor gene activity. UMAP of summarized chromatin
accessibility within the Gata3 and Irf4 gene body and promoter regions for the A mouse
and B human CD4

+
T cell dataset. Outlined fractions correspond to tisTreg cells from the

fat and skin.
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Figure S8: Mouse SPF CD8
+

T cell quality control. A TSS score plotted over number
of fragments after application of fragment and TSS filters. The color indicates the number
of nearest neighbors for each cell. B Distribution of fragment sizes by sample in the dataset.
C UMAP colored by peak count per cell.
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Figure S9: Mouse SPF CD8
+

T cell markers. A UMAP colored by gene activities
for exhausted T cells (Pdcd1, Havcr2, Lag3, Tigit, Tox ), naive T cells (Sell) and effector T
cells (Areg, Ifng, Gzmb, Tnf ) are shown.B Number of nearest neighbors that received the
indicated label by referenced-based annotation with SingleR. Grey dots indicate cells with
another label. The CD8

+
T cell subset from the ImmGen dataset provided in the celldex R

package was used as reference (Aran et al., 2019).
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Figure S10: Mouse gnotobiotic CD8
+

T cell quality control. A Scatter plot of TSS
score over number of fragments for cells passing fragment and TSS filters. B Distribution
of fragment lengths per sample. Due to a low number of cells in sample MD scATAC 52 its
fragment size periodicity is not visible on the absolute count scale. C Peak count per cell
shown on the UMAP dimensionality reduction.
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Figure S11: Independence of effector CD8
+

T cells from microbiota. A Gene
activities plotted on the UMAP representation of the gnotobiotic mouse CD8

+
T cell dataset.

Markers for exhausted T cells (Pdcd1, Havcr2, Lag3, Tigit, Tox ), naive T cells (Sell) and
effector T cells (Areg, Ifng, Gzmb, Tnf ) are shown. B Clusters obtained by graph-based
clustering. C Heatmap showing Spearman correlations between clusters from the SPF and
gnotobiotic mouse CD8

+
T cell datasets. Correlations were calculated based on the mean

scaled gene activity by cluster considering the intersection between the 3,000 most variable
gene activities in both datasets (1,481 common genes). SPF mouse clusters 14, 15 and
gnotobiotic mouse clusters 2, 6 contain effector CD8

+
T cells from the colon.
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Figure S12: Human CD8
+

T cell quality control. A TSS score plotted against fragment
count for cells passing fragment and TSS score quality control filters. The color encodes the
number of neighbors for each cell in UMAP space. B Distribution of fragment length per
sample. C UMAP representation of the dataset without (left) and with correction (right) for
batch effects introduced by different donors with Harmony. D Peak count per cell visualized
on UMAP.
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Figure S13: Human CD8
+

T cell markers and cell type annotations. (Legend on
the next page.)
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Figure S13: Human CD8
+

T cell markers and cell type annotations. A UMAP of
human CD8

+
T cells colored by gene activity scores for exhausted CD8

+
T cells (PDCD1,

LAG3, TIGIT, ENTPD1, TOX ), naive T cells (SELL) and effector T cells (IFNG, GZMB).
B Density of SingleR cell type annotations. Grey values indicate different cell type anno-
tations. The CD8

+
T cell samples from the Monaco immune cell atlas was used as refer-

ence (Aran et al., 2019). C Signature enrichment scores for differential peaks from pairwise
comparisons of dysfunctional (dys) against naive, memory or progenitor dysfunctional CD8

+

T cells provided by (Pritykin et al., 2021).

Figure S14: Human HCC CD3
+

T cell quality control. A TSS score plotted over
number of fragments. Prior to visualization, a minimum filter was applied to TSS score
and fragment number. B Fragment size distribution per sample. C Left, UMAP based on
first 20 score components from SVD. Right, UMAP on Harmony-corrected embedding with
donor as batch variable. D UMAP colored by peak count.
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Figure S15: Human HCC CD3
+

T cell markers and cell type annotations. A
Marker gene activity visualized on UMAP. Markers are shown for exhausted CD8

+
T cells

(PDCD1, LAG3, TIGIT, ENTPD1, TOX ), naive T cells (SELL), effector T cells (IFNG,
GZMB), MAIT cells (KLRB1 ) and Treg cells (FOXP3, CCR8 ). B Density of SingleR cell
type annotations plotted on UMAP. Color indicates the number of nearest neighbors sharing
the respective label and grey dots represent cells with a different label. The Monaco immune
cell atlas was used as reference (Aran et al., 2019).
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Figure S16: CD8
+

T cell ATAC-profiles at exhaustion marker genes. Aggregated
chromatin accessibility profiles for selected clusters from the human CD8

+
T cell dataset

and HCC CD3
+
T cell dataset at the gene loci of CD8

+
T cell exhaustion-associated genes

PDCD1, ENTPD1, TOX and TIGIT. The figure was prepared by Prof. Dr. Michael
Delacher and is adapted from Delacher et al. (nd).
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Figure S17: Mouse immune cell atlas quality control. A Number of unique fragments
per cell compared with TSS score. Horizontal and vertical lines represent the applied fil-
ter thresholds and the number of barcodes in each quadrant is indicated. Only barcodes
above both filter thresholds are annotated as high-quality cells for downstream analyses. B
Fragment size distribution per sample. The y-axis shows the percentage of fragments with
respective length of all fragments available for the sample. C Peak count per cell visualized
on UMAP.
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Figure S18: Confirmation of Ccr8
+

Treg cell marker in the mouse. A UMAP
colored by gene activities. Markers for CD4

+
T cells (Cd4 ), Treg cells (Foxp3 ), antigen-

naive cells (Sell), early and late tisTregST2 precursors (Nfil3, Klrg1, Ccr8 ), tisTregST2 cells
(Ccr8 ), tTreg and pTreg cells (Ikzf2, Rorc) are shown. B chromVAR deviation z-scores of
tisTregST2 signature peak sets from Delacher et al. (2020).
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Figure S19: Mouse immune cell atlas cell type annotation and markers. A UMAP
of murine immune cell atlas colored by SingleR cell type annotation. Samples from the
ImmGen dataset served as reference (Aran et al., 2019). B Barplot of fractions of immune
cell types per tissue based on the cluster annotation from Figure 26C. C UMAP of murine
immune cells colored by gene activity scores. The following cell type markers are shown
with corresponding cell type in brackets: Cd3e (T cells), Cd4 (CD4

+
), Foxp3 (Treg cell),

Cd8a (Cd8 T cell), Cd19 (B cell), Sdc1 (Plasma cell), Klrb1c (NK cell), Itgam (myeloid
cell), Csf1r (Monocyte/Macrophage), Cx3cr1 (Monocyte), Siglech (pDC), Clec9a (cDC).
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Figure S20: Human immune cell atlas quality control. A TSS score over number of
unique fragments per cell. Filter thresholds are indicated by red lines and the number of
barcodes in each quadrant is shown. Only barcodes in the first quadrant are used for further
analyses. B Fragment length distribution for each sample in the dataset. C Peak count
shown in UMAP space.
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Figure S21: Human immune cell atlas cell type annotation and markers. scATAC-
seq data of CD45

+
immune cells sorted from different human tissues. A UMAP colored by

SingleR cell type annoation based on the Monaco reference dataset (Aran et al., 2019). B
Fractions of annotated cell types by tissue. C Gene activity scores including markers for T
cells (CD3E ), CD4

+
T cells (CD4 ), Treg cells (FOXP3 ), CD8

+
T cells (CD8A, GZMB), B

cells (MS4A1 ), NK cells (FCGR3A, NCAM1, GZMB), MAIT cells (RORC ), myeloid cells
(ITGAM ), macrophages (CSF1R) and neutrophils (FUT4 ).
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6.2 Supplementary Tables

Table S1: Dataset overview. Samples included in the indicated datasets of Project 1
(tisTreg cell analysis, Results Chapter 3.1), Project 2 (Tissue CD8

+
T cell analysis, Results

Chapter 3.2) and Project 3 (Immune cell atlas, Results Chapter 3.3). For murine sam-
ples, tissues from several mice were pooled. Mm, Mus musculus; Hs, Homo sapiens; gn,
gnotobiotic.

Sample Project Dataset Pool/Donor Tissue Celltype

MD scATAC 1 1 Mm CD4
+

1-5 Spleen CD4
+

MD scATAC 4 1 Mm CD4
+

1-5 Colon CD4
+

MD scATAC 5 1 Mm CD4
+

1-5 Fat CD4
+

MD scATAC 8 1 Mm CD4
+

6-10 Spleen CD25
+

MD scATAC 9 1 Mm CD4
+

6-10 Skin CD4
+

MD scATAC 19 1 Mm CD4
+

11-14 Fat CD4
+

MD scATAC 21 1 Mm CD4
+

11-14 Spleen CD25
+

MD scATAC 40 1 Mm CD4
+

40-41 Lung CD4
+

MD scATAC 44 1 Mm gn CD4
+

44-52 Spleen CD4
+

MD scATAC 46 1 Mm gn CD4
+

44-52 Spleen CD25
+

MD scATAC 47 1 Mm gn CD4
+

44-52 Fat CD4
+

MD scATAC 49 1 Mm gn CD4
+

44-52 Colon CD4
+

MD scATAC 51 1 Mm gn CD4
+

44-52 Skin CD4
+

MD scATAC 11 1 Hs CD4
+

1 Blood CD4
+

MD scATAC 13 1 Hs CD4
+

1 Blood CD25
+

MD scATAC 14 1 Hs CD4
+

1 Blood CD25
+

MD scATAC 15 1 Hs CD4
+

2 Blood CD4
+

MD scATAC 17 1 Hs CD4
+

2 Blood CD25
+

MD scATAC 18 1 Hs CD4
+

2 Blood CD25
+

MD scATAC 28 1 Hs CD4
+

3 Fat CD4
+

MD scATAC 30 1 Hs CD4
+

3 Fat CD25
+

MD scATAC 31 1 Hs CD4
+

4 Fat CD4
+

MD scATAC 33 1 Hs CD4
+

4 Skin CD4
+

MD scATAC 35 1 Hs CD4
+

5 Fat CD4
+

MD scATAC 37 1 Hs CD4
+

5 Fat CD25
+

MD scATAC 38 1 Hs CD4
+

5 Skin CD4
+

MD scATAC 53 1 Hs CCR8
+

3 Blood CCR8
+

MD scATAC 54 1 Hs CCR8
+

3 Blood CCR8
+

MD scATAC 2 2 Mm CD8
+

1-5 Colon CD8
+

MD scATAC 3 2 Mm CD8
+

1-5 Spleen CD8
+

Continued on next page
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Sample Project Dataset Pool/Donor Tissue Celltype

MD scATAC 6 2 Mm CD8
+

6-10 Fat CD8
+

MD scATAC 10 2 Mm CD8
+

6-10 Skin CD8
+

MD scATAC 20 2 Mm CD8
+

11-14 Fat CD8
+

MD scATAC 41 2 Mm CD8
+

40-41 Lung CD8
+

MD scATAC 45 2 Mm gn CD8
+

44-52 spleen CD8
+

MD scATAC 48 2 Mm gn CD8
+

44-52 fat CD8
+

MD scATAC 50 2 Mm gn CD8
+

44-52 colon CD8
+

MD scATAC 52 2 Mm gn CD8
+

44-52 skin CD8
+

MD scATAC 12 2 Hs CD8
+

1 Blood CD8
+

MD scATAC 16 2 Hs CD8
+

2 Blood CD8
+

MD scATAC 29 2 Hs CD8
+

3 Fat CD8
+

MD scATAC 32 2 Hs CD8
+

4 Fat CD8
+

MD scATAC 34 2 Hs CD8
+

4 Skin CD8
+

MD scATAC 36 2 Hs CD8
+

5 Fat CD8
+

MD scATAC 39 2 Hs CD8
+

5 Skin CD8
+

MD scATAC 96 2 Hs HCC CD3
+

HCC1 HCC CD3
+

MD scATAC 107 2 Hs HCC CD3
+

HCC2 HCC CD3
+

MD scATAC 108 2 Hs HCC CD3
+

HCC3 HCC CD3
+

MD scATAC 71 3 Mm CD45
+

53-57 Spleen CD45
+

MD scATAC 72 3 Mm CD45
+

53-57 Spleen CD45
+

MD scATAC 73 3 Mm CD45
+

53-57 VAT CD45
+

MD scATAC 74 3 Mm CD45
+

53-57 VAT CD45
+

MD scATAC 75 3 Mm CD45
+

53-57 Skin CD45
+

MD scATAC 76 3 Mm CD45
+

53-57 Skin CD45
+

MD scATAC 77 3 Mm CD45
+

53-57 Colon CD45
+

MD scATAC 78 3 Mm CD45
+

53-57 Colon CD45
+

MD scATAC 81 3 Hs CD45
+

11 Blood CD45
+

MD scATAC 82 3 Hs CD45
+

11 Blood CD45
+

MD scATAC 83 3 Hs CD45
+

11 Fat CD45
+

MD scATAC 84 3 Hs CD45
+

11 Fat CD45
+

MD scATAC 85 3 Hs CD45
+

11 Fat CD45
+

MD scATAC 86 3 Hs CD45
+

11 Skin CD45
+

MD scATAC 87 3 Hs CD45
+

11 Skin CD45
+
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Table S2: Software used for data analysis. If different versions were used between
projects, the project numbers are indicated in brackets.

Package Version

Cell Ranger atac 1.1.0 (1, 2), 2.0.0 (3)
deepTools 3.5.1
Homer 4.11.1
R 3.6.0 (1, 2), 4.0.0 (3)
refdata-cellranger-atac-mm10-1.1.0 1.1.0
refdata-cellranger-atac-hg19-1.1.0 1.1.0
refdata-cellranger-arc-mm10-2020-A-2.0.0 2.0.0
refdata-cellranger-arc-GRCh38-2020-A-2.0.0 2.0.0
samtools 1.5
Sinto 0.7
UCSC liftOver -

Table S3: R packages used for data analysis. If different versions were used between
projects, the project numbers are indicated in brackets.

Package Version

ArchR 1.0.1
biomaRt 2.40.5
BSgenome.Hsapiens.UCSC.hg19 1.4.0 (1, 2)
BSgenome.Hsapiens.UCSC.hg38 1.4.3 (3)
BSgenome.Mmusculus.UCSC.mm10 1.4.0
celldex 1.0.0
chromVAR 1.6.0 (1, 2), 1.10.0 (3)
cicero 1.2.0
EnsDb.Hsapiens.v86 2.99.0
EnsDb.Mmusculus.v79 2.99.0
GenomicFeatures 1.36.4
GenomicRanges 1.38.0 (1, 2), 1.40.0 (3)
harmony 1
Homo.sapiens 1.3.1
liftOver 1.12.0
monocle 2.12.0
org.Hs.eg.db 3.8.2
org.Mm.eg.db 3.8.2
Seurat 3.2.1
Signac 1.0.0
SingleCellExperiment 1.6.0
SingleR 1.0.6 (1, 2), 1.2.4 (3)
SummarizedExperiment 1.14.1 (1, 2), 1.18.2 (3)
tidyverse 1.3.0
TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2 (1, 2)
TxDb.Hsapiens.UCSC.hg38.knownGene 3.10.0 (3)
TxDb.Mmusculus.UCSC.mm10.knownGene 3.4.7
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Table S4: Embeddings and resolutions per dataset. The listed embeddings were used
for shared nearest neighbour graph calculation. (-) No cell clustering was performed. (*)
Human CD4

+
T cell clusters were used. (**) from Satpathy (2019).

Dataset Embedding Resolution

Mouse SPF CD4
+
T cell Harmony 1.7

Mouse tumor CD4
+
T cell SVD 0.5

Mouse gnotobiotic CD4
+
T cell SVD 1.7

Human CD4
+
T cell Harmony 1.0

Human CCR8
+
T cell Harmony -

Human CD4
+
with CCR8

+
T cell Harmony *

Mouse SPF CD8
+
T cell SVD 1.3

Mouse gnotobiotic CD8
+
T cell SVD 0.5

Human CD8
+
T cell Harmony 1.0

Human HCC CD3
+

Harmony 1.3
Human melanoma** Harmony 0.7
Mouse immune cell atlas IterativeLSI 0.5
Human immune cell atlas IterativeLSI 0.5
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7 List of Abbreviations

AREG amphiregulin

ATP adenosine triphosphate

BAM binary sequence alignment/map

BATF basic leucine zipper transcription factor, ATF-like

bp base pairs

bZIP basic leucine zipper

cAMP cyclic adenosine monophosphate

CCL CC chemokine ligand

CCR CC chemokine receptor

CD cluster of differentiation

CD8exh exhausted CD8+ T cell

ChIP-seq chromatin immunoprecipitation following sequencing

CLP common lymphoid progenitor cell

CMP common myeloid progenitor cell

CpG cytosine-guanine dinucleotide

CTLA4 cytotoxic T-lymphocyte antigen-4

DC dendritic cell

DN double-negative

DP double-positive

ENTPD1 ectonucleoside triphosphate diphosphohydrolase-1

FACS fluorescence-activated cell sorting

FOXP3 forkhead box P3

GMP granulocyte-monocyte progenitor cell

HCC hepatocellular carcinoma

hg human genome

HSC hematopoietic stem cell

IDO indoleamine 2,3-dioxygenase

IFNγ interferon gamma

Ig immunoglobulin

IL interleukin

ILC innate lymphoid cell

iNKT invariant natural killer T cell

iTreg induced regulatory CD4+ T cell
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kb kilo base

Klrg1 killer cell lectin-like receptor subfamily G1

LAG3 lymphocyte-activation gene 3

LMPP lymphoid-primed multipotent progenitor cell

LSI latent semantic indexing

MAIT mucosal-associated invariant cell

mb mega base

MHC major histocompatibility complex

mm Mus musculus

MPP multipotent progenitor cell

mRNA messenger RNA

Nfil3 nuclear factor, interleukin 3 regulated

NK cell natural killer cell

PBMC peripheral blood mononuclear cell

PC principal component

PCA principal component analysis

PCR polymerase chain reaction

PD-1 programmed cell death protein 1

PD-L programmed death-ligand

PPARγ peroxisome proliferator-activated receptor gamma

PRR pattern recognition receptor

pTreg peripherally induced regulatory CD4+ T cell

QC quality control

RORγ RAR-related orphan receptor gamma

scATAC-seq single-cell assay transposase-accessible chromatin using sequencing

scRNA-seq single-cell RNA sequencing

SP single-positive

SPF specific-pathogen-free

ST2 interleukin 1 receptor-like 1

SVD singular value decomposition

Tcm central memory T cell

Tconv conventional CD4+ T cell

TCR T-cell receptor

TEC thymic epithelial cell
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Tem effector memory T cell

Tfh T follicular helper cell

TF-IDF term frequency-inverse document frequency

TGFβ transforming Growth Factor beta

Th cell T-helper cell

TIGIT T cell immunoreceptor with Ig and ITIM domains

tisTreg tissue regulatory CD4+ T cell

TME tumor microenvironment

TNF tumor necrosis factor

TOX thymocyte selection-associated high mobility group box protein

Treg regulatory CD4+ T cell

Trm tissue-resident memory T cell

TSS transcription start site

tTreg thymically derived regulatory CD4+ T cell

UMAP Uniform Manifold Approximation and Projection

VAT visceral adipose tissue
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