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Abstract
Within this thesis, we provide a theoretical description of nuclear decay by elec-
tron capture. We discuss the influence of nuclear degrees of freedom and the
coupling to the continuous spectrum of the electromagnetic field on the decay
rate. Although these contributions are small, we will show that they are impor-
tant for metrology and high-precision measurements. Our calculations predict
that hyperfine interaction affects the decay rate on the Rydberg energy scale and
changes the lifetime on the permille level. As we will show, this highly surprising
result originates from selection rules related to the conservation of total angular
momentum. In addition, we demonstrate that the coupling of local states to the
continuous spectrum of the electromagnetic field leads to an increase of the de-
cay rate at high energies. By direct calculations of the second-order decay rate
including the decay by electron capture and subsequent fluorescence decay, we
describe the process referred to as radiative electron capture. The accurate theo-
retical description of nuclear decay rates also requires detailed knowledge of the
involved nuclear many-body wave functions. We present an iterative scheme to
determine optimized single-particle states based on natural orbitals. Our devel-
oped numerical methods are applied to calculate the electron capture decay rate
of several isotopes such as 55Fe, 65Zn, 71Ge, 118Te, 131Cs, 140Nd, 163Ho and 165Er.

Zusammenfassung
In dieser Arbeit liefern wir eine theoretische Beschreibung des Kernzerfalls durch
Elektroneneinfang. Wir diskutieren den Einfluss der nuklearen Freiheitsgrade
und die Kopplung an das kontinuierliche Spektrum des elektromagnetischen Fel-
des auf die Zerfallsrate. Obwohl diese Beiträge klein sind, werden wir zeigen,
dass sie für die Metrologie und hochpräzise Messungen wichtig sind. Unsere Be-
rechnungen sagen voraus, dass die Hyperfeinwechselwirkung die Zerfallsrate
auf der Rydberg-Energieskala beeinflusst und zu Änderungen der Lebensdauer
im Promillebereich führt. Wie wir zeigen werden, resultiert dieses höchst überra-
schende Ergebnis aus Auswahlregeln, die mit der Erhaltung des Gesamtdrehim-
pulses zusammenhängen. Darüber hinaus zeigen wir, dass die Kopplung lokaler
Zustände an das kontinuierliche Spektrum des elektromagnetischen Feldes zu
einer Erhöhung der Zerfallsrate bei hohen Energien führt. Durch direkte Berech-
nungen der Zerfallsrate zweiter Ordnung, die den Zerfall durch Elektronenein-
fang und anschließenden Fluoreszenzzerfall umfasst, beschreiben wir den Pro-
zess, der als strahlender Elektroneneinfang bezeichnet wird. Die genaue theo-
retische Beschreibung der nuklearen Zerfallsraten erfordert außerdem eine de-
taillierte Kenntnis der beteiligten nuklearen Vielteilchenwellenfunktionen. Wir
stellen ein iteratives Schema zur Bestimmung optimierter Einzelteilchenzustän-
de auf der Grundlage natürlicher Orbitale vor. Die von uns entwickelten nu-
merischen Methoden werden zur Berechnung der Elektroneneinfang-Zerfallsrate
verschiede-ner Isotope wie 55Fe, 65Zn, 71Ge, 118Te, 131Cs, 140Nd, 163Ho und 165Er
angewendet.
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1 Introduction

Radioactivity describes the process in which an unstable atomic nucleus, the so-
called radioisotope or radionuclide, undergoes a spontaneous decay accompa-
nied by the emission of radiation [1]. Since its discovery by Bécquerel in 1896 [2],
radioactivity has been of great importance for life on earth. In fact, this is closely
related to the great scientific progress, both experimental and theoretical, which
has led to the application of radioactivity in various scientific and technologically
highly relevant fields.

For example, radioactivity is widely used in medical applications, geology, en-
ergy production or metrology [1, 3]. In this context, detailed knowledge of the de-
cay properties of a radionuclide is crucial for several reasons. On the one hand,
to continue to benefit from their practical applications. On the other hand, to
control or prevent the potential damage that the released ionizing radiation can
cause. This is best illustrated by the example of radionuclides used for cancer
treatment. In new treatment methods, the radionuclides are transported directly
to the tumor cell. In order to minimize damage to healthy tissue, it is essential to
know the exact amount of ionizing radiation released in the decay and its charac-
teristics [4, 5].

In addition to the numerous practical applications, radioactive decays also play
an outstanding role in the search of new or in the testing of established physical
theories. A prominent example where the prediction of current theoretical mod-
els is wrong, concerns the neutrino. While the Standard Model of particle physics
predicts the neutrino to be massless, there has been convincing experimental evi-
dence, i.e. neutrino oscillations [6], that the neutrino’s mass is finite. The neutrino
is the only elementary particle whose mass is still unknown. Hence, its knowl-
edge is of great significance for particle physics guiding to physics beyond the
Standard Model [7]. Based on current estimates [8], the neutrino mass is less
than 1 eV and therefore several orders of magnitude smaller than the mass of all
other elementary particles. Because its mass is so small and, moreover, the neu-
trino interacts only via gravity and the weak force, its determination poses a big
challenge. One possible, model-independent approach to determine the neutrino
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1 Introduction

mass are high-precision measurements of electron capture (EC) decay rates. A
more detailed discussion on how these measurements can be used to derive the
neutrino mass is given in section 1.2.

Nuclear decay by EC is a weak interacting process, in which a parent nucleus
A
Z X absorbs a core electron while simultaneously a proton inside the nucleus is
transformed into a neutron and an electron-neutrino is released

A
Z X + e� �!

A
Z�1Y⇤ + ne. (1.1)

After EC, the daughter atom ends up in an excited state A
Z�1Y⇤ which subse-

quently de-excites into the ground state by filling the created core hole. The total
amount of energy released in the decay corresponds to the so-called Q-value,
which is defined as the ground state energy difference of parent and daughter
atom

Q = m(A
Z X) � m(A

Z�1Y). (1.2)

However, as the EC decay leads to the production of a neutrino, the energy re-
leased in the de-excitation process of the excited daughter atom A

Z�1Y⇤ does not
correspond to the Q-value. Due to energy conservation, Q is shared between
the energy stored in terms of electronic excitations w and the energy taken away
by the neutrino En. Hence, only the fraction w = Q � En is measured in the
de-excitation process. The quantity probed in experimental measurements is the
so-called differential decay rate or EC spectrum. The explanation of this highly
non-trivial quantity requires an accurate theoretical description of the atomic re-
laxation process which is one of the major goals of this work.

In section 1.1, we introduce the different decay channels driving the atomic re-
laxation process and furthermore motivate the level of theory necessary for their
precise description.

1.1 Differential decay rate – discrete meets

continuous

As we have already indicated in the previous section and will discuss in more
detail in sections 1.2 and 1.3, the precise knowledge of the spectrum describing
the atomic relaxation is of great importance. On the one hand for the use of ra-
dionuclides in practical applications like in cancer treatment, on the other hand
for the determination of the neutrino mass. In the case of nuclear decay by EC
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1.1 Differential decay rate – discrete meets continuous

the total amount of released energy corresponds to the Q-value which is shared
between the energy taken away by the neutrino En and the energy stored in terms
of electronic excitations w measured in the experiment.

The differential decay rate dG
dw (w) corresponds to the number of decays per unit

of time within the energy interval [w, w + dw] divided by the size of the interval
dw. Although atomic relaxation happens within an atom characterized by a dis-
crete set of energy levels, the differential decay rate is a continuous function, i.e.
one observes spectral weight at all energies from zero up to the Q-value. Fur-
thermore, the EC spectrum exhibits several interesting features like multiplets or
asymmetric line-shapes. To understand the underlying mechanisms leading to
these features, various different effects must be taken into account in the theoret-
ical description.

The EC decay for 163Ho is very well studied, in particular since 163Ho is the
ideal candidate for determining the neutrino mass. A more detailed discussion
is given in the following section. Fig. 1.1 shows the differential decay rate for
the example of 163Ho which decays by EC into an excited daughter 163Dy⇤ atom
plus an electron-neutrino. The blue curve illustrates the calculated spectrum on
a basis of bound states based on the theory developed in [9]. A comparison with
the experimental spectrum plotted in grey reveals that the most simple spectral
features can already be understood on this level of theory. This includes the main
resonances as well as the satellite structures close to the 4s edge .

As we will see in chapter 3, hyperfine interaction can have a considerable im-
pact on the observed resonances. Although several orders of magnitude smaller
than the energy scale at which nuclear decay takes place, different initial hyper-
fine states can lead to a shift of spectral weight on the Rydberg energy scale. A
change in the initial hyperfine state may even cause some resonances to com-
pletely disappear, while others are significantly enhanced. To account for these
effects, the simplest level of theory presented in [9] must be extended by the non-
spherical part of the interaction between nuclear and electronic degrees of free-
dom.

At this level of theory, one typically assumes the spectral line-shapes to be de-
scribed by Lorentzians. However, a comparison of the blue curve in Fig. 1.1 with
the experimental data shown in grey reveals that far away from a resonance the
agreement is not good. To accurately describe the spectrum at these energies,
additional decay channels have to be included in the calculations. As has been
shown on the example of 163Ho [11], the scattering of electrons into unbound
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Figure 1.1: Differential decay rate dG
dw (w) for the EC decay in 163Ho as a function

of the neutrino energy (top scale) or the electronic excitation energy
(bottom scale). In grey we show the experimental spectrum measured
within ECHo [10]. The blue spectrum shows a theoretical calculation
including only bound states. The calculated orange spectrum in ad-
dition allows core excited states to de-excite via Auger-Meitner decay
into the continuum. The labeling indicates the core hole in one of the
shells of the excited Dy atom. The figure is taken from [11] where
further details regarding the calculations can be found.

states plays a crucial role for the line-shape. The important discovery that an ex-
cited atom can also emit electrons was made independently by Meitner in 1922
[12] and by Auger one year later [13], and has since been referred to as Auger-
Meitner decay. If the excitation energy of the atom after EC exceeds the atom’s
auto-ionization threshold, electrons can be transferred into the continuum. In
this process, an electron from one of the outer shells fills the created core hole,
thereby transferring its energy to a second electron. If the transferred energy
is larger than its binding energy, the electron can eventually escape the atom.
Since the energy of an Auger-Meitner electron can assume all values up to the
Q-value, its energy spectrum is continuous. Hence, Auger-Meitner decay affects
the spectral line-shape on the full energy window. The orange curve displayed
in Fig. 1.1 shows the calculated differential decay rate including Auger-Meitner
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1.2 Neutrinos – A door to physics beyond the Standard Model

decay. Compared to the blue curve we observe a pronounced energy-dependent,
asymmetric broadening of the resonances in very good agreement with the ex-
periment.

While Auger-Meitner decay dominates the atomic relaxation at lower excita-
tion energies, fluorescence decay becomes particularly important for energies
starting from the K-edge. Due to a Q-value of only about 2.8 keV, the K-edge
is not apparent in the 163Ho spectrum. However, for most other EC isotopes the
Q-value is of the order of several hundred keV, such that the K-edge becomes
visible in the spectrum.

Fluorescence decay describes the coupling of a core excited state to the contin-
uous spectrum of the electromagnetic field leading to the emission of photons.
As the photon’s energy plus that of the neutrino does not necessarily have to cor-
respond to Q, additional energy can be stored in terms of electronic excitations.
Therefore, a photon produced during the de-excitation process can assume all en-
ergies from zero up to the Q-value, thus exhibiting a continuous energy spectrum.
Consequently, the differential decay rate has non-vanishing spectral weight at all
electronic excitation energies. A detailed discussion of fluorescence decay and its
impact on the spectral line-shape will be discussed in chapter 4.

1.2 Neutrinos – A door to physics beyond the

Standard Model

In the years following the discovery of radioactivity in 1896, spectra of numerous
radionuclides were measured. One very important measurement, the result of
which remained a mystery for almost three decades, was performed by Chad-
wick in 1914 [14]. He could show experimentally that the energy spectrum of the
electron emitted in the beta decay is continuous. At that time an unexpected and
puzzling result, since it was assumed that the total released energy is shared be-
tween two particles, the atomic nucleus and the emitted electron. This, however,
would imply due to energy and momentum conservation the electron’s energy
to be discrete.

In 1930, after numerous attempts to explain the continuous beta spectrum failed,
Pauli came up with the idea of postulating a new particle, the neutrino [15]. Four
years later, in 1934, it was Fermi who provided the theoretical framework describ-
ing the beta decay [16], which paved the way for the development of the theory
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1 Introduction

of weak interaction in the 1960s. Shortly after the theoretical formulation of the
beta decay, Wick, one of Fermi’s collaborators, extended his theory to the case of
electron capture. It took another 22 years until Cowan and Reines in 1956 finally
could prove the existence of the neutrino [17].

In the following years, the theories of the weak and the strong interaction were
developed, which finally led to the formulation of the Standard Model (SM) of
particle physics. Since then, the SM has proved as an extremely successful theory.
According to the SM, neutrinos are massless fermions and occur in three so-called
flavors: the electron-neutrino ne, the muon-neutrino nµ and the tau-neutrino nt

asscociated to the charged leptons (electron, muon and tauon). However, as we
will see, the assumption of massless neutrinos turned out to be wrong.

The journey towards experimental evidence of massive neutrinos by the dis-
covery of neutrino oscillations, started in 1968 with the Homestake experiment
[18]. A large number of electron-neutrinos is produced in nuclear fusion reac-
tions in the sun. As neutrinos are not charged, they only interact via gravity and
the weak force. Consequently, the neutrino’s interaction cross section with other
particles is very small, such that practically all produced neutrinos can escape
the sun and finally arrive on earth. The goal of the Homestake experiment was
to determine the solar neutrino flux. The basic idea was to count the number of
37Ar produced in the inverse beta-decay ne +37

17 Cl ! e� +37
18 Ar induced by the

incoming solar neutrinos. However, the measured neutrino flux turned out to be
much smaller than theoretically predicted by the solar standard model [19]. This
deficiency could be confirmed by numerous other experiments including SAGE
[20], GALLEX [21] and Super-Kamiokande [22] and since then is known as the
solar neutrino problem.

More than three decades after the discovery of the solar neutrino problem, so-
called neutrino flavor transformations were observed in the Sudbury Neutrino
Observatory (SNO) experiment [23]. Electron-neutrinos, the only neutrino flavor
produced in solar fusion reactions, transform over large distances into tau- and
muon-neutrinos. This observation could be explained by a quantum mechanical
effect known as neutrino oscillations [6] which can only take place if the neu-
trino’s three eigenmasses are finite, or more precisely, at least two of them are
finite. Notably, it was Pontecorvo who discussed the possibility of neutrino oscil-
lations already in 1967 [24], long before these were finally confirmed in the SNO
experiment in 2001. Up to today, however, only differences of the squared masses
are known. The knowledge of the absolute neutrino mass constitutes one of the
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1.2 Neutrinos – A door to physics beyond the Standard Model

big unsolved problems in modern physics opening the door to physics beyond
the Standard Model [7].

Neutrino mass determination by electron capture

One approach to determine the neutrino mass in a model-independent way is
the measurement of the EC decay spectrum. In an EC decay the total released
energy Q is shared between the energy stored in electronic excitations w, which
eventually is released in terms of Auger-Meitner electrons and photons, and the
energy taken away by the neutrino En. Thus, the neutrino’s energy can be written
as En = Q � w. Assuming the neutrino to be massless as predicted by the SM,
the minimal energy it can assume is zero. In this case, the EC spectrum has non-
vanishing intensity ranging from zero up to Q. The minimal energy of a massive
neutrino, on the other hand, just corresponds to its rest-mass mn, such that the
EC spectrum extends only up to an maximal energy of wmax = Q � mn. There-
fore, the impact of a finite neutrino mass on the spectrum is largest close to its
endpoint.

To determine the neutrino mass in this way, two measurements are required:
First, a very precise measurement of the Q-value achievable with Penning-trap
mass spectroscopy [25]. Second, a high statistics de-excitation spectrum with
very high energy resolution. Here the favorable approach is a calorimetric mea-
surement first proposed by De Rújula and Lusignoli in 1982 [26]. The basic idea
is to measure the total energy released in terms of photons, Auger-Meitner elec-
trons (and nuclear recoil) using low temperature metallic magnetic calorimeters
(MMC) [27] which is possible with a quantum efficiency of practically 100% when
the decaying nuclide is directly implanted in the detector [28].

Once these two measurements are performed, the theoretical line-shape (ob-
tained for the measured Q-value) can be fitted to the experimental data using the
neutrino mass (or masses) as free parameter(s). In order to achieve a very high
accuracy for the neutrino mass, this requires besides the precise measurements
of the Q-value and spectrum, also a very accurate theoretical description of the
spectral line-shape. The level of theory required and the challenges associated
with it were discussed in section 1.1.

The best sensitivity to the neutrino mass is achieved for EC isotopes with very
small Q-values, since here the relative number of data points in the vicinity of the
endpoint is largest. The nuclide with the smallest possible Q-value of about 2.8
keV is 163Ho [10] which is investigated in the ’Electron Capture in 163Ho - ECHo -
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1 Introduction

Figure 1.2: Left: EC spectrum of 163Ho calculated for Q = 2.833 keV assuming a
zero neutrino mass. Right: EC spectrum of 163Ho close to the endpoint
calculated for different neutrino masses (mne = 0, 2 and 5 eV/c2). The
figure is taken from [28].

Experiment’ [28], HOLMES [29] and NuMECS (’Neutrino Mass via Electron Cap-
ture Spectroscopy) [30]. All three experiments are based on the aforementioned
calorimetric measurement with the aim of determining the neutrino mass with
sub-eV accuracy.

Fig. 1.2 displays the calculated EC spectrum on the full energy domain (left),
i.e. from zero up to Q, and close to the endpoint (right) for three different neu-
trino masses (mne = 0, 2 and 5 eV/c2). The resonances labeled in the full spectrum
on the left correspond to states with one core hole in the 3s (M I), 3p (M II), 4s (N
I), 4p (N II), 5s (O I) and 5p (O II) shell. For a finite neutrino mass the spectrum’s
endpoint is shifted to smaller excitation energies compared to the case of a mass-
less neutrino, as can be inferred from the right plot of Fig. 1.2.

1.3 Electron capture in radiotherapy

Radionuclides including those that undergo alpha-, beta- and EC decays, are
widely used in medical applications, especially in cancer therapy, and have been
established as an effective method in this field over the past decades [31, 32]. Nev-
ertheless, the search for novel therapeutic approaches based on radionuclides not
yet in use continues [33, 34].
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1.3 Electron capture in radiotherapy

In general, the method of treatment depends on the nature of the tumor, i.e. its
shape, location and, most importantly, its size. Large tumors are usually detected
by common imaging techniques such as computer tomography (CT) or magnetic
resonance imaging (MRI). Once detected, they are either surgically removed, or
irradiated from the outside. For smaller tumors, however, these methods are
not applicable, since the tumor’s size is often so small to be detected with the
available imaging methods [4].

A favorable approach to destroy very small tumors is to transport the radionu-
clide directly to the cancer cell by using small molecules or nanoparticles. Cur-
rently, even subcellular localization approaches in which the radionuclide is di-
rectly brought into the DNA of the cancer cell are under investigation [35]. In
order to damage only as little as possible of the normal tissue surrounding the
cancer cell, it must be ensured that the tumor tissue absorbs most of the radiation
dose which in turn requires a highly localized dose-deposition [35].

This can be achieved with the help of radionuclides releasing the main part
of their energy in the form of Auger-Meitner electrons, most of which decay by
EC. Once a core electron has been captured, the resulting vacancy is filled from
electrons populating outer shells leading to the emission of photons and Auger-
Meitner electrons. For all shells except the K shell, the latter typically dominates
leading to the emission of Auger-Meitner electrons of relatively low kinetic en-
ergy ( 25 keV) [32]. This is advantageous for the irradiation of small tumors,
since electrons at such low energies exhibit a very high linear energy transfer
(LET) in human tissue and therefore lead to severe damage when brought close
to the cancer cell.

Whether a radionuclide is suitable for medical applications is often based on
theoretical radiation spectra including both, the fluorescence and electron yield
spectrum. These spectra provide information about the number and energy of
photons or electrons released in the decay [5]. However, as the International
Atomic Energy Agency (IAEA) stated back in 2011 [5, 36], it is necessary to deter-
mine "[...] the energies and emission probabilities of the low-energy X-rays and
Auger electrons to a higher degree of detail and consistency than is available at
present." Chapter 4 of this work is devoted to this problem and deals with the
accurate description of the fluorescence decay including the yield spectrum.
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1 Introduction

Outline

The thesis is structured as follows. In chapter 2, the theoretical fundamentals
necessary to describe nuclear decay by EC and subsequent atomic relaxation are
introduced. First, the concept of density functional theory is described. Then,
the most relevant parts of the Hamiltonian including Dirac’s Hamiltonian, the
mutual Coulomb interaction between bound electrons and the weak interaction
are briefly introduced. Subsequently, it is shown how to calculate EC spectra.
At the end of this chapter, EC spectra for selected radionuclides which undergo
allowed transitions are presented.

Chapter 3 deals with the investigation of the influence of hyperfine interaction
on the nuclear decay by EC. Using a simple model the underlying mechanism
is illustrated. Then, the EC spectrum for different initial hyperfine states is pre-
sented for the example of atomic 163Ho. Afterwards, the impact on the isotope’s
lifetime is investiagted. In the last part of this chapter, a realistic experimen-
tal setup found in the ECHo experiment [28] is discussed. In this context, the
non-spherical chemical environment and finite temperatures are included in the
calculations.

In chapter 4, the impact of fluorescence decay on the spectral line-shape is in-
vestigated. Starting from a multipole expansion of the (relativistic) light-matter
interaction, expressions for the fluorescence self-energy and the fluorescence yield
spectrum are derived. Finally, the results are applied to the example of 55Fe.
The EC spectrum employing the derived fluorescence self-energy and the fluo-
rescence yield spectrum is calculated.

In chapter 5, an iterative approach to determine an optimized single-particle
basis set for the quantum nuclear many-body problem is presented. The benefits
of the resulting generalized natural orbitals are outlined and possible implications
for ab initio nuclear many-body calculations are discussed.

Chapter 6 is dedicated to the study of resonant and nonresonant inelastic x-
ray scattering off matter. Two spectroscopic techniques describing the respective
processes, Resonant (RIXS) and Nonresonant Inelastic X-ray Scattering (NIXS),
are introduced. The interference between these two scattering channels is in-
vestigated. Using the example of d � d excitations in Nickel oxide, a systematic
analysis of the underlying energy and angular dependence of the interference is
provided.

A summary of this thesis including an outlook can be found in chapter 7.
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2 The theory of electron capture
spectroscopy

In this chapter we discuss the theoretical fundamentals necessary to describe the
nuclear decay by EC and subsequent atomic relaxation, which constitutes a major
part of this work. Essentially, the description of the EC process can be separated
into two main parts: The first part is to determine the ground state of the parent
atom |Y0i. Typical atoms that undergo EC reactions are made of up to ⇠ 100 in-
teracting electrons moving in the spherical symmetric Coulomb potential of the
atomic nucleus. Therefore, the first task is to solve a correlated many-particle
problem. Once the ground state has been found, the second problem is to deter-
mine the dynamics following EC.

We obtain the parent ground state |Y0i by diagonalization of the Hamiltonian
comprising the kinetic energy of the electrons and their mutual Coulomb inter-
action. Before this can be done, the Hamiltonian is expanded on a single-particle
basis obtained from density functional theory. For the diagonalization we employ
Lanczos’ algorithm [37, 38], which is briefly introduced in appendix A.1. Once
the parent ground state has been found, one can focus on the second part of the
problem, the calculation of the atom’s response to EC. As the weak interaction is
small compared to the Coulomb repulsion between the electrons, it is treated in
fist-order perturbation theory. Moreover, EC can be considered as a low-energy
weak process, which allows us to use an expression of the weak interaction for
this limiting case.

In the time domain we start at time t = 0 by annihilating a core electron, trans-
forming a proton inside the nucleus into a neutron and simultaneously create an
electron-neutrino. The atom ends up in an excited state and starts to evolve in
time. During this relaxation process, energy is released in terms of photons and
Auger-Meitner electrons. The de-excitation spectrum corresponds to a Fourier
transform of the time evolution. A favorable method to experimentally deter-
mine the de-excitation spectrum is a calorimetric measurement which we briefly
outlined in the introduction (see section 1.2). The result of such a measurement
is the so-called differential decay rate dG

dw (w) or (the more frequently used de-
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2 The theory of electron capture spectroscopy

nomination) EC spectrum. The EC spectrum corresponds to the number of de-
cays per energy and unit of time. To determine this quantity theoretically, we
choose an approach in terms of Green’s functions which is well established in
field of core-level spectroscopy [39, 40] and has been further developed by Braß
and Haverkort to describe the EC spectrum of 163Ho [9]. Here the main problem
in the determination of the EC spectrum is to calculate the resolvent 1

w�H . The
Hamiltonian H governing the dynamics subsequent to EC comprises besides the
kinetic energy of the electrons all interactions except the weak interaction, i.e. the
mutual Coulomb repulsion between bound electrons, the coupling to the electro-
magnetic field as well as the scattering of bound electrons into the continuum.

In the remainder of this chapter we start with an introduction to density func-
tional theory, a self-consistent mean-field method, from which a set of single-
particle states, the so-called Kohn-Sham orbitals, is extracted. Then, in sections
2.2 and 2.3, we provide expressions for the Dirac Hamiltonian and the Coulomb
interaction expanded on a basis of Kohn-Sham orbitals. Section 2.4 briefly out-
lines the Hamiltonian describing the neutrino. In section 2.5, an effective low-
energy expression of the weak interaction in second quantized form is discussed.
Finally, we provide the main equations necessary to compute the EC spectra fo-
cusing on the most simple case of so-called allowed transitions and in addition,
present calculated EC spectra for some selected isotopes.

Throughout this thesis we will employ natural units, i.e. Planck’s constant h̄,
the speed of light c and the vacuum permittivity are e0 are unity.

2.1 Density functional theory

Throughout this thesis, the starting point of every many-body calculation is den-
sity functional theory (DFT) [41, 42], a self-consistent mean field method, from
which a set of single-particle states is extracted. On this set of states, the underly-
ing single- and many-particle parts of the Hamiltonian are expanded.

DFT is based on two theorems formulated by Hohenberg and Kohn in 1964
[43]. The first theorem states that for a system of interacting electrons in an exter-
nal potential vext(r) (which can be the Coulomb potential of the nucleus as well
as external electromagnetic fields), is uniquely determined by the ground state
density n0(r). The statement of the second theorem is that there exists a universal

12



2.1 Density functional theory

functional for the energy in terms of the density n(r) [44],

E[n] = F[n] +
Z

d3r vext.(r)n(r) (2.1)

F[n] = T[n] + W[n] (2.2)

and the correct ground state density can be found by minimizing E[n] via the
variational principle. However, the minimization of the energy is very impracti-
cable, because Hohenberg and Kohn do not provide an explicit expression of E[n].

In 1965 Kohn and Sham proposed to replace the interacting many-body system
by a virtual one of non-interacting particles with the same ground state density
[42]. The energy functional of this auxiliary system is given by [44]

EKS[n] = Ts[n] + EH[n] +
Z

d3r vext(r)n(r) + Exc[n]. (2.3)

Here Ts[n] denotes the kinetic energy of the non-interacting system (the subscript
s stands for single-particle), EH[n] = 1

2
R

d3rd3r0 n(r)n(r0)
|r�r0| the Hartree potential

energy and vext(r) the external potential due to the atomic nucleus as well as
potential external electromagnetic fields. The exchange-correlation energy func-
tional Exc[n] corresponds to the difference of the exact energy functional E[n] and
the known part of the auxiliary system which comprises the kinetic energy, the
Hartree term and the contributions from external potential [44]

Exc[n] = E[n] � Ts[n] � EH[n] �
Z

d3r vext(r)n(r). (2.4)

Exc[n] takes into account all the quantum effects and is the same for all classes of
materials. The variation of the Kohn-Sham energy functional with respect to the
density leads to

dEKS[n]
dn

=
dTs[n]

dn
+ vext(r) +

Z
d3r0

n(r0)
|r � r0|

+
dExc[n]

dn
(2.5)

where it is used that dEH[n]
dn =

R
d3r0 n(r0)

|r�r0| . The Kohn-Sham potential is defined
by the sum of all terms except the one originating from the kinetic energy

vKS[n](r) = vext(r) +
Z

d3r0
n(r0)
|r � r0|

+ vxc[n](r) (2.6)

where vxc[n](r) = dExc[n]
dn(r) is the functional derivative of the exchange-correlation

energy with respect to the density. The problem of an interacting many-body sys-
tem is finally transformed to a single-particle one where the particles are moving

13



2 The theory of electron capture spectroscopy

in the effective potential vKS[n](r). The resulting Schrödinger equations for the
single-particle orbitals ft(r) with quantum numbers t read

✓
�
r

2

2m
+ vKS[n](r)

◆
ft(r) = etft(r) (2.7)

and are called the Kohn-Sham equations. The corresponding density is obtained
by

n(r) =
N

Â
i=1

|ft(r)|2 (2.8)

where N is the number of particles. In order to solve the Kohn-Sham equation,
one first has to make a choice (different possibilities) for the exchange-correlation
functional. As the Kohn-Sham potential vKS[n](r) itself is a functional of the den-
sity, the solution must be found self-consistently. The calculation starts by assum-
ing an initial density for which vKS[n](r) is calculated. Then the single-particle
Schrödinger equation is solved and a new density calculated via (2.8). This pro-
cess is reiterated until the change in density falls below a predefined threshold.
Once the convergence criterion is fulfilled, the calculation stops and one obtains
an approximated ground state energy as well as a set of single-particle Kohn-
Sham orbitals which define a basis set for the single-particle Hilbert space.

An extension of non-relativistic to relativistic DFT including the mathemati-
cal background is discussed in [41]. The main difference compared to the non-
relativistic framework is that the kinetic energy is described by Dirac’s Hamilto-
nian, such that the relativistic Kohn-Sham equations take the form [41]

HKSft(r) = (�ia ·r + bm + vKS[n](r)) ft(r) = etft(r). (2.9)

The quantities a and b are the 4 ⇥ 4 dimensional Dirac matrices [45]

a =

 
0 s

s 0

!
b =

 
1 0
0 �1

!
(2.10)

where s is the vector of Pauli matrices.
Assuming that the potential vKS[n](r) is spherical symmetric, the solutions

ft(r) are characterized by the quantum numbers t = {n, l, j, m}. Here n de-
notes the principal quantum number, l and j are the angular- and total angular
momentum quantum numbers, respectively, whereas m is the magnetic quan-
tum number related to j. These states are conveniently labeled by the relativistic
quantum number k

k(l, j) = (�1)(l+j+1/2) (j + 1/2) (2.11)
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2.2 Central-field Dirac Hamiltonian

which enables us to write the single-particle states as [45]

ft(r) =

 
Gnk(r)Wkm(q, f)

iFnk(r)W�km(q, f)

!
(2.12)

where t = {n, k, m}. Gnk(r) is the large and Fnk(r) the small component of the
radial wave function, where Wkm(q, f) represents a spherical spinor. Spherical
spinors are eigenstates of J2 and Jz and can be constructed by combing spherical
harmonics Ylml(q, f), the eigenstates of L2 and Lz, with two-component spinors
cms , which are eigenstates of S2 and Sz [46]:

Wkm(q, f) =
l(k)

Â
ml=�l(k)

1/2

Â
ms=�1/2

Cj(k)m
l(k)ml

1
2 ms

Yl(k)ml
(q, f)cms (2.13)

Here, Cjm
lml

1
2 ms

is a Clebsch-Gordan coefficient [47].

All calculations presented in this work are based on Kohn-Sham orbitals ob-
tained from a DFT calculation using the full-potential local-orbital minimum-
basis code FPLO [48].

2.2 Central-field Dirac Hamiltonian

Since most EC isotopes exhibit a large nuclear charge number Z and, in addition,
EC involves a core hole close to the nucleus, a relativistic description of the ki-
netic energy is necessary. Therefore, we employ Dirac’s Hamiltonian HD. For
an electron bound in the spherical symmetric Coulomb potential of a point-like
nucleus with charge number Z, the Dirac Hamiltonian takes the form [45]

HD = �ia ·r + bm �
aZ
r

. (2.14)

Here, � aZ
r denotes the spherical symmetric Coulomb potential with fine-structure

constant a and a, b are the Dirac matrices introduced in (2.10). Once we have
found a single-particle basis set given by the Kohn-Sham orbitals {ft(r)} ob-
tained from a DFT calculation, Dirac’s Hamiltonian is expanded on this basis. In
second quantization, it can be written as

HD = Â
tet0

e

ttet0
e
e†

te et0
e

(2.15)
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2 The theory of electron capture spectroscopy

where e†
te

�
et0

e

�
creates (annihilates) an electron with quantum numbers te (t0

e).
The matrix elements ttet0

e
on a basis of Kohn-Sham orbitals (2.12) are given by an

angular part times a radial part as is shown in [45]

ttet0
e
= dkek0e dmem0

e

Z •

0
(gte(r), fte(r))

 
m � a Z

r �∂r + k
r

∂r + k
r �m � a Z

r

! 
gt0

e
(r)

ft0
e
(r)

!
dr

(2.16)

where gnk(r) := rGnk(r) and fnk(r) := rFnk(r).

2.3 Coulomb interaction

The Hamiltonian used to determine the ground state before EC, as well as the
Hamiltonian governing the dynamics afterwards, both include a single- and a
two-particle part. The single-particle part is described by Dirac’s Hamiltonian.
The two-particle part is given by the Coulomb interaction between the electrons.
Coulomb interaction plays an outstanding role in particular during the atomic
relaxation process subsequent to electron capture, as it is responsible for most
features visible in the spectra. Two electrons bound in an atom may scatter into
two (not necessarily different) bound orbitals or into unbound states.

In the following, we introduce the Coulomb interaction involving solely bound
states and present the associated two-particle matrix elements. In second quanti-
zation the Coulomb interaction can be written as

HC =
1
2 Â

t0
at0

btatb

Ut0
at0

btatb
e†

t0
a
e†

t0

b
etb eta (2.17)

where the sum extends over all single-particle quantum numbers t. The prefac-
tor of 1

2 takes care of double counting as each pair of electrons only repels once.
Ut0

at0

btatb
denote the two-particle matrix elements which on a basis of Kohn-Sham

orbitals ft(r) calculated by DFT take the form

Ut0
at0

btatb
=

Z
f†

t0
a
(r1)fta(r1)

e2

|r1 � r2|
f†

t0

b
(r2)ftb(r2) dr3

1dr3
2. (2.18)

In order to perform numerical calculations, it is convenient to expand the Coulomb
potential e2

|r1�r2|
between two electrons at positions r1 and r2 in terms of spherical

tensor operators [49]

e2

|r1 � r2|
= e2

•

Â
k=0

rk
<

rk+1
>

k

Â
q=�k

(�1)qC(k)
�q(r̂1)C(k)

q (r̂2) (2.19)
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2.4 Neutrino masses

where r< = min[r1, r2] and r> = max[r1, r2] and where C(k)
m (r̂) represents a renor-

malized spherical harmonic defined by C(k)
m (r̂) =

p
4p/(2k + 1)Y(k)

m (r̂). Employ-
ing the spherical tensor expansion (2.19), the matrix elements Ut0

at0

btatb
decompose

into products of radial and angular integrals. The latter can be solved analytically
by means of Wigner-Eckart’s theorem leading to [49]

Ut0
at0

btatb
= e2

•

Â
k=0

k

Â
q=�k

(�1)(j0a+j0b�m0
a�m0

b�q)

 
j0a k ja

�m0
a q ma

! 
j0b k jb

�m0

b �q mb

!

⇥ hWk0a ||C
(k)

||WkaihWk0b
||C(k)

||WkbiRk(t0
at0

btatb). (2.20)

Here the expression in round brackets with six entries denotes the Wigner 3-
symbol. A comprehensive description of all its properties can be found in [47,
50]. The expression hWk0a ||C

(k)
||Wkai is a so-called reduced matrix element which

vanishes if l0a + k + la is odd and takes the value

hWk0a ||C
(k)

||Wkai = (�1)j0a+1/2
q

(2j0a + 1)(2ja + 1)

 
j0a ja k

�1/2 1/2 0

!
(2.21)

if l0a + k + la is even. The peculiarity of reduced matrix elements is that they are
independent of the magnetic quantum numbers.

The radial integrals of the Coulomb matrix elements are given by the (relativis-
tic) Slater-integrals Rk(t0

at0

btatb) which explicitly are given by [49]

Rk(t0
at0

btatb) =
Z •

0

Z •

0
dr1dr2

rk
<

rk+1
>

⇣
gn0

ak0a(r1)gnaka(r1) + fn0
ak0a(r1) fnaka(r1)

⌘

⇥

⇣
gn0

bk0b
(r2)gnbkb(r2) + fn0

bk0b
(r2) fnbkb(r2)

⌘

(2.22)

where gnk(r) = rGnk(r) and fnk(r) = rFnk(r). In all calculations performed
throughout this thesis, the Slater integrals are evaluated numerically using the
quantum many-body script language Quanty [51, 52].

2.4 Neutrino masses

The neutrino oscillations detected in the SNO experiment [23] are a clear indi-
cation that the eigenstates of the weak interaction, i.e. the electron-neutrino, the
muon-neutrino and the tau-neutrino periodically transform into each other as
they propagate over large distances. A quantum mechanical description of this
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2 The theory of electron capture spectroscopy

phenomenon was first discussed by Pontecorvo in 1967 [24] and is based on the
relation between the three mass eigenstates, i.e. the eigenstates of the free Hamil-
tonian, and the aforementioned weak eigenstates. These two sets of eigenstates
are related to each other by a unitary 3⇥ 3 matrix, the so-called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix U [53]. Hence, an electron-neutrino, for in-
stance, can be written as a superposition of the three mass eigenstates n1, n2 and
n3

|nei =
3

Â
a=1

U⇤
ea|nai. (2.23)

As the Standard Model assumes the neutrino to be massless, this requires a de-
scription beyond the Standard Model. Irrespective of whether neutrinos are Dirac
or Majorana particles, which up to today is an open question in particle physics
[54], neutrinos are fermions of finite mass, such that their mass-diagonal Hamil-
tonian is given by [55]

Hn =
3

Â
a=1

Z
y†

na(x) (�ia ·r + bma) yna(x)d3x (2.24)

where (yna)a=1,2,3 are the neutrino fields of the mass state a which are related to
the flavor fields by

yna = Â
l2{e,µ,t}

Ualynl . (2.25)

2.5 Weak interaction

Nuclear decay by EC is a process which is governed by the weak interaction.
A core electron is captured while a proton in the nucleus is transformed into a
neutron and an electron neutrino is emitted as shown in the Feynman-diagram
Fig.2.1. This process is mediated by massive exchange bosons W±. In contrast
to QED, where the exchange interaction is mediated by massless photons, the
W± have a mass of mW = 80.385 ± 0.015 GeV [53]. On the other hand, the
maximal energy released in an EC decay is of the order of ⇠ 103 keV and is
therefore at least three orders of magnitude smaller than mW . Hence, it is justi-
fied to consider the low-energy limit where the four-momentum transferred by
the W± bosons is small compared to its mass, i.e. q2

⌧ m2
W . In this case, the

momentum-dependence of the propagator mediating the weak interaction can
be approximated by [53]

1
q2 � m2

W
⇡

1
m2

W
(2.26)
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2.5 Weak interaction

Figure 2.1: Feynman-diagram for the EC process.

such that the effective interaction no longer has a q2-dependence. From a physical
point of view, this means that the interaction occurs at a single point in space-
time [53]. Within this approximation the effective low-energy weak interaction is
described by a current-current interaction with Hamiltonian density [56]

HW = �
GW
p

2

⇥
Jµ(x)L†

µ(x) + h.c.
⇤

(2.27)

where Jµ(x) and Lµ are the hadron and lepton current, respectively, and weak
coupling constant GW . Under the assumption of point-like nucleons, the currents
can be written as

Jµ(x) = iȳngµ

⇣
1 + lg5

⌘
yp

Lµ(x) = iȳne(x)gµ

⇣
1 + g5

⌘
ye(x) (2.28)

where l denotes a constant and where the adjoint fields are defined as ȳne(x) =

y†
ne(x)g4 and ȳn = y†

ng4. Here, the
�
gµ
�

µ=1,...,4 denote the Dirac g-matrices and
g5 = g1g2g3g4. The fields yp(x), yn(x), ye(x) and yne(x) describe the proton,
neutron, electron and neutrino, respectively, which are either annihilated (proton,
electron) or created (neutron, neutrino) in the EC process. Note that we employ
the same conventions as in [56].

In the next step, we express the effective low-energy Hamiltonian describing
weak interaction HW associated to the density HW in second quantized form. As
the neutron, proton and electron are bound particles, their corresponding fields
can be expanded on a basis of local orbitals. The neutrino, on the other hand, is re-
garded as a free particle and thus is expanded on spherical Bessel functions. Fol-
lowing the detailed derivation presented in [55], the final form of HW expanded
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2 The theory of electron capture spectroscopy

on these orbitals is given by

HW = Â
qn,tn

Â
te

Â
tnuc(i)

Â
tnuc( f )

Â
JM

(�1)
jn�mn+I f �MI f +M

 
I f J Ii

�MIf �M MIi

!

⇥

 
jn J je

�mn M me

!
p

Ii I f
J (tn, qn; te) n†

tn
ete ⌦ |tnuc( f ), I f , Mf i htnuc(i), Ii, Mi| .

(2.29)

Here the sum extends over all quantum numbers of the captured electron (te),
the created neutrino (qn, tn) and over all additional quantum numbers besides the
total nuclear angular momentum and its projection onto the z-axis which are nec-
essary to characterize the initial (tnuc(i)) and final (tnuc( f )) nuclear state. J is the
transferred total angular momentum with projection M, whereas p

Ii I f
J (tn, qn; te)

denotes the capture probability which involves besides the wavefunctions of elec-
tron and neutrino also that of the initial/final nuclear state. An explicit expression
for the capture probability can be found in [55].

From the first 3j-symbol in (2.29), involving the nuclear total angular momenta
Ii and I f , one can infer that in a weak decay the exchanged total angular momen-
tum J is determined by |Ii � I f |  J  Ii + I f . Since J is also related to the total
angular momentum of the captured electron and the created neutrino, it enters
the second 3j-symbol describing the leptonic part thereby determining the total
angular momentum of the captured electron je and that of the created neutrino
jn.

Allowed transitions

In this work, we are in particular interested in so-called allowed transitions in
which the exchanged total angular momentum amounts to J = 0, 1, while the par-
ity of the initial and final nuclear wavefunction remains unchanged, i.e. pi = p f .
Allowed transitions are the most simple weak decays for which several approxi-
mations of the general expression of the low-energy weak interaction HW are ap-
plicable. In the following, we discuss these in more detail. For this purpose, let us
assume an exchanged angular momentum of J = 1. Then, the second 3j-symbol
vanishes unless |jn � je|  1  jn + je which implies that, at least in principle,
capture is possible from all shells as long as this condition is fulfilled. However,
the corresponding capture probabilities for some shells are much bigger than for
others.
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2.5 Weak interaction

Therefore, the first common approximation is to consider capture only from
those shells which have a large overlap with the nucleus, i.e. from shells with
s-character. In a relativistic calculation the single-particle states are described by
four-spinors fte(r) and are characterized by the quantum numbers te = {ne, ke, me}.
States with ke = �1 have a large component with angular momentum le = 0, i.e.
s-character, and a small component with le = 1, i.e. p-character. The same is true
for orbitals with ke = 1, except that here the small component has s-character and
the large p-character. Orbitals with other quantum numbers have no s-character,
which is why their capture probability is strongly reduced with respect to that of
ke = ±1.

The second approximation we want to employ refers to the capture probabil-
ity p

Ii I f
J (tn, qn; te) itself. In general, the calculation of capture probabilities is very

complicated, in particular due to the dependence on the nuclear wave function
of the parent and daughter nucleus. As we will discuss in chapter 5, solving the
many-nucleon problem from first principles is very challenging and up to now
only possible for lighter nuclei, such that approximations become indispensable.
Motivated by the different spatial extent of the nucleus

�
⇠ 10�15m

�
and the elec-

trons bound in an atom
�
⇠ 10�10m

�
, a common way [56] to overcome the lack of

knowledge of the nuclear wave function is to consider relative capture probabil-
ities. Instead of using the probabilities introduced in (2.29), the idea is to replace
them by the relative capture probability with respect to the K shell which can be
written as [55]

pJ(tn, qn; te) :=
p

Ii I f
J (tn, qn; te)

p
Ii I f
J (tn, qn; 1s)

⇡

Z Rnuc

0
(gtn gte + ftn fte) hWkn ||YJ ||Wkei � i (gtn gte � ftn fte) hWkn ||YJ ||W�keidr

(2.30)

with nuclear radius Rnuc. The advantage here is that pJ(tn, qn; te) is rather insen-
sitive to the exact nuclear wavefunction.

The third approximation to further simplify the theoretical description of al-
lowed transitions is to assume the neutrino’s wavefunction to be constant in the
relevant spatial domain r 2 [0, Rnuc]. As the radial wavefunction of the neutrino
is proportional to a spherical Bessel function jln(qnr), this may be motivated as
follows: Considering the fact that its momentum qn is bounded by Q from above,
the argument of its radial wavefunction, qnr, is small for typical Q-values such
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2 The theory of electron capture spectroscopy

that one can set jln(qnr) ⇡ const. In this case, the relative capture probability is
solely determined by the overlap of the electron’s radial wavefunction with s-
character, i.e. either the large component if ke = �1 or the small one if ke = 1,
which we label by Rte(r), such that

pJ(te) ⇡
Z Rnuc

0
Rte(r)dr. (2.31)

Note that those contributions in (2.30) involving at least one wavefunction with
p-character are neglected.

We are now in a position to replace the complicated general expression of the
weak interaction (2.29) by a much simpler transition operator, with the help of
which the calculation of the EC spectrum is considerably facilitated. To motivate
the form of the transition operator, recall that nuclear decay by EC involves three
different parts: the nucleus, the electrons and the neutrino. Due to the weakness
of the interaction, the total wavefunction |Y0i of the parent nuclide (which also
has to involve these three parts) can approximately be written as a product of
a nuclear wavefunction |FZi, an electronic wavefunction |y0i and the neutrino
vacuum |0ni, i.e.

|Y0i ⇡ |FZi ⌦ |y0i ⌦ |0ni. (2.32)

This state transforms by EC into a state of the form |Y f i ⇡ |FZ�1i ⌦ |yte( f )i ⌦
|qn, tni. Here |FZ�1i denotes the nuclear wave function after EC where one
proton inside the nucleus is transformed into a neutron. |yte( f )i is the (ex-
cited) electronic wave function in the modified nuclear potential, whereas the
produced neutrino is characterized by its momentum qn and the quantum num-
bers tn = {kn, mn a}. Hence, the transition from |Y0i ! |Y f i is mediated by an
operator which can be written as a product of nuclear, electronic and neutrino
part, respectively,

TEC = TnTeTn (2.33)

where p(te) := pJ=1(te) and

Te = Â
te

p(te)ete

Tn = Â
qn,tn

n†
qn,tn

TnFZ µ FZ�1 (2.34)
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2.6 How to calculate the electron capture spectrum

Here ete annihilates a core electron with te = {ne, ke, me}, n†
qn,tn

creates a neutrino
with qn and tn = {kn mn, a}, while Tn transforms the parent nuclear wavefunction
of definite Ii and MIi into the daughter’s wavefunction with I f and MIf . Note it is
assumed that both the parent and daughter nuclear ground state can be described
in terms of a single total angular momentum quantum number I and projection
MI .

It is important to realize that for so-called forbidden transitions [56], which are
characterized by larger exchanged angular momenta J (and a possible change of
nuclear parity, i.e. pi 6= p f ), TEC is generally not applicable to calculate the EC
spectrum, such that the general expression (2.29) must be used. A decomposition
of the transition operator into a product of nuclear, electronic and neutrino part
is also no longer possible if hyperfine interaction is included in the calculations.
However, as we will see in chapter 3, one can nevertheless find a simple transition
operator describing the most important parts similar to (2.33).

2.6 How to calculate the electron capture

spectrum

As we mentioned at the beginning of this chapter, the weak interaction is small
compared to the electromagnetic interactions between the atomic electrons, such
that HW is treated in first-order perturbation theory. In the time domain, HW acts
at t = 0 on the parent ground state |Y0i, annihilates a core electron, transforms
a proton inside the nucleus into a neutron and creates a neutrino. The resulting
state ends up in an excited state and starts to evolve in time due to the electro-
magnetic interactions between the remaining electrons. During this de-excitation
process, energy is released in form of photons or electrons until the atom finally
arrives at the daughter’s ground state. An experimental measurement probes the
so-called differential decay rate or EC spectrum dG

dw (w) which corresponds to the
number of decays per unit of time within the energy interval [w, w + dw] divided
by the size of the interval dw.

Fermi’s golden rule

A common approach used by several authors, like for instance De Rújula [26, 57],
Faessler [58–60] or Robertson [61], to theoretically describe the differential decay
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2 The theory of electron capture spectroscopy

rate is Fermi’s golden rule

dG
dw

(w) µ Â
f

��⌦Y f |HW |Y0
↵��2 d(Ef � w � E0). (2.35)

Here the sum extends over all final states, including the nucleus, electrons and
neutrino, whereas the delta-function guarantees energy conservation between
initial and final state.

Atoms that undergo EC decays consist of many electrons which interact with
each other due to the Coulomb forces between them. Thus, we have to deal with
a correlated many-particle system, i.e. the atom’s electrons cannot be treated
independently from each other, leading to a ground state which is usually not
representable by a single Slater-determinant. If this atom now decays by EC,
a core hole is created and all the remaining electrons react to this perturbation,
i.e. Coulomb interaction couples the core hole to all the other shells. Hence, the
spectrum does not only involve resonances which correspond to single core hole
excitations directly accessible after EC, but also to core holes in shells from which
capture was neglected or to two core hole excitations with one additional electron
in the valence shell [9]. Assuming a parent ground state given by a superposition
of several Slater-determinants, it then becomes evident that these resonances are
also given by multi-Slater-determinant-states.

In calculations based on Fermi’s golden rule a set of final states included in
(2.35) must be found. Here the problem is that there are infinitely many final
states each carrying an infinitesimal amount of spectral weight [9]. Despite the
simple form of Fermi’s golden rule, it exhibits a major drawback, since it is a
priori not possible to determine these multi Slater-determinant states with largest
weight representing the peaks observed in the experiment. Calculations by Faess-
ler [59] and Robertson [61] for 163Ho assuming final states given by single Slater-
determinants with one and two core holes, for example, predict too little spectral
weight in particular for those resonances which are not directly accessible after
EC.

Green’s functions

A computationally more practical approach to calculate the EC spectrum, which
also enables one to solve the problems associated with Fermi’s golden rule, are
Green’s functions. It has been shown on the example of 163Ho that by using
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2.6 How to calculate the electron capture spectrum

Green’s functions it is not only possible to accurately determine the EC spectrum
on a basis of bound states [9], but also to include unbound states [11].

One possible way to derive an expression for the EC spectrum in terms of
Green’s functions is to start from the causal response to HW , which in time do-
main is defined by the retarded Green’s function [62]

G(t) = �iQ(t)hY0|[H†
W(t), HW(0)]|Y0i

= �iQ(t)
⇣
hY0|H†

W(t)HW(0)|Y0i � hY0|HW(0)H†
W(t)|Y0i

⌘
. (2.36)

At time t = 0 the parent’s ground state |Y0i is subject to a perturbation, i.e. the
weak interaction HW . This perturbed state then evolves in time, until at time t it
is projected on (HW(t) |Y0i)

†. Physically, the expression
⌦
Y0

��H†
W(t)HW(0)

��Y0
↵

corresponds to amplitude of finding the atom in state HW |Y0i at time t after a
perturbation by HW at t = 0. Applying a Fourier transform, the corresponding
expression in frequency domain is given by [62]

G(w) = hY0|H†
W

1
w � H + E0 + ih+ HW |Y0i � hY0|HW

1
w + H � E0 + ih+ H†

W |Y0i

⌘ G�(w) � G+(w) (2.37)

where E0 is the ground state energy of the parent atom. The positive, infinitesimal
imaginary part h+ is introduced to make the Fourier transform converge. The
Hamiltonian governing the dynamics subsequent to EC is given by

H = HD + HC + Hn + HP + HA (2.38)

and comprises besides the Dirac (HD) and the Coulomb (HC) part also parts de-
scribing the neutrino (Hn) and the additional photons (HP) as well as Auger-
Meitner electrons (HA) produced during the relaxation process. Here HP contains
the kinetic energy of the photons as well their interaction with the electrons. HA,
on the other hand, comprises the kinetic energy of the Auger-Meitner electrons
and their Coulomb interaction with bound electrons. It is important to note that
the difference compared to the Hamiltonian used to calculate the ground state
is that the electrons move in a modified nuclear potential with charge number
Z � 1, i.e. in the Coulomb potential of the daughter atom. After the EC decay, the
neutrino can be considered as a free particle, which allows us to decouple it from
the relaxation process, i.e. the Hamiltonian relevant for the dynamics takes the
form

H ⇡ HD + HC + HP + HA. (2.39)
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2 The theory of electron capture spectroscopy

In section 2.7 and chapter 3, HP and HA are neglected and the calculations are
restricted to a set of bound states involving neither photons nor Auger-Meitner
electrons. Chapter 4 is devoted to investigate the influence of fluorescence decay
on the spectral line-shape, while the impact of Auger-Meitner decay is discussed
in detail in [11, 55].

Starting from (2.37), the analog of Fermi’s golden rule is obtained by employing
1

w + ih+ = P
1
w

� ipd(w) (2.40)

where P denotes the Cauchy principal value which enables us to express the
differential decay rate as the negative imaginary part of the Green’s function

dG
dw

(w) µ � lim
h+!0

Im
⇥
G�(w) � G+(w)

⇤
. (2.41)

Note that, in order to take into account the finite lifetime of the resonances, h+

is typically replaced by a larger (and optionally energy-dependent) number g
2

thereby transforming the delta-peaks into Lorentzians. In the literature g is usu-
ally treated as a free parameter, but can, as we will see in chapter 4 for the case of
fluorescence decay, also be calculated from first principles.

If we compare (2.41) with (2.35), we immediately realize one fundamental dif-
ference: While Fermi’s golden rule involves a sum over final states, this sum is
transformed into the calculation of the resolvent of H projected on the parent
ground state |Y0i. The resolvent is determined by expressing H on a finite many-
particle basis using Lanczos algorithm [37, 38]. Here the resonances are naturally
given by multi-Slater-determinants.

Another difference of the Green’s function approach compared to Fermi’s gol-
den rule is that the latter resonates only at positive energy, while G(w) has in
addition to poles at positive, also poles at negative energies which correspond
to so-called virtual excitations. Although experimentally not directly accessible,
these excitations have tails which may extend into the positive energies thereby
affecting in particular the low-energy resonances.

EC spectrum for allowed transitions

As we have discussed before, for allowed transitions the complicated general ex-
pression of the weak interaction (2.29) can be replaced by the simple transition
operator TEC, such that G�(w) takes the form

G�(w) = hY0|T†
EC

1
w � H + E0 + ig

2
TEC|Y0i (2.42)
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2.6 How to calculate the electron capture spectrum

where we assume H = HD + HC. By inserting unity 1 = Â f
��Y f

↵ ⌦
Y f

�� where
H|Y f i = Ef |Y f i, we obtain

G�(w) = Â
f
hY0|T†

EC
|Y f ihY f |

w � Ef + E0 + ig
2

TEC|Y0i. (2.43)

Here, the sum Â f includes all possible neutrino and electronic final states. Note,
however, that it contains no sum over all nuclear final states, since we assume
the parent and daughter nucleus to be characterized by a single total angular mo-
mentum quantum number I and projection M. As the neutrino can be regarded
as a free particle, we separate the sum over the neutrino’s degrees of freedom
from the rest

G�(w) = Â
qn,tn

d(Q � w � En) Â
yte ( f )

hY0|T†
EC

|Y f ihY f |

w � Ef + E0 + i g
2

TEC|Y0i (2.44)

where it is used that Q is shared between the neutrino and electronic excitations,
such that En = Q � w. Due to the weak coupling of the individual sectors, the
final states can be written as a product of nuclear, electronic and neutrino part
|Y f i ⇡ |FZ�1i ⌦ |yte( f )i ⌦ |qn, tni. Thus, the nuclear and neutrino matrix ele-
ments for an initial state of the form (2.32) are explicitly given by

hFZ�1|Tn|FZi µ 1

hqn, tn|Tn|0ni = Â
q0n,t0

n

hqn, tn|q0n, t0
ni| {z }

=dqnq0n
dtnt0n

= 1 (2.45)

where Tn = Âq0n,t0
n

n†
q0n,t0

n
. In consequence, nuclear and neutrino parts can be fully

decoupled from the dynamics subsequent to EC and the calculation of G(w) is
reduced to the determination of the resolvent solely involving the electronic de-
grees of freedom. As a next step, we transform the sum over the neutrino’s mo-
mentum into an integral

Â
qn

µ
Z •

0
dEnEn

q
E2

n � m2
n. (2.46)

Employing the delta function d(Q � w � En) in (2.44) this integral is easily evalu-
ated such that the differential decay rate can be expressed in the following form

dG
dw

(w) µ �Im
3

Â
a=1

|Uae|
2 (Q � w)

q
(Q � w)2 � m2

a

⇥


hy0|T†

e
1

w � H + E0 + ig
2

Te|y0i � hy0|T†
e

1
w + H � E0 + i g

2
Te|y0i

�
. (2.47)
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2 The theory of electron capture spectroscopy

Hence, the EC spectrum can be written as the product of neutrino phase-space
factor and resolvent projected on the state after EC, Te|y0i. The EC spectrum is
calculated using the Lanczos algorithm implemented in the quantum many-body
script language Quanty [51, 52].

2.7 Electron capture spectra for some selected

isotopes

We now apply the derived expression for the Green’s function (2.47) and calculate
EC spectra for some selected isotopes (55Fe, 65Zn, 71Ge, 118Te, 131Cs, 140Nd, 165Er)
that undergo allowed transitions.

Some of the listed isotopes are already accepted or potential candidates for
medical applications (55Fe [63], 71Ge [36], 131Cs [64], 140Nd [36], 165Er [33]), while
others (118Te, 65Zn) are interesting from a metrological point of view. 65Zn, for
instance, has been investigated in the MetroMMC project [65] which pursued the
main goal to determine the fundamental decay data of some EC isotopes.

According to [66] all presented isotopes (except 65Zn) decay solely by EC. For
65Zn an additional b+ transition has been observed [65] leading to a continu-
ous background spectrum. Furthermore, some of these isotopes involve different
decay branches including besides the nuclear ground-to-ground-state transition
also transitions into excited nuclear states which subsequently decay by emitting
g-rays. The spectra displayed below include only the nuclear ground-to-ground-
state branch.

All spectra displayed in Fig. 2.2 are normalized to their corresponding half-
lives, i.e. the integral after normalization amounts to 1

2 . The corresponding Q-
values are taken from [67].

The spectral features can be understood by the different decay channels into
bound states following the decay by EC. These have been discussed in detail on
the example of 163Ho [9] and can be transferred one-to-one to the spectra dis-
played in Fig. 2.2. In the following, we briefly explain the essential spectral
features as well as the corresponding relaxation channels. For a more detailed
explanation we refer to [9].

Since we are looking at allowed decays, electrons can be captured from the ns1/2

or np1/2 orbitals. If we would turn off the atomic relaxation directly after the cap-
ture of an electron, the resulting EC spectrum would be solely given by the main
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2.7 Electron capture spectra for some selected isotopes

resonances, i.e. the many-particle states with one core hole in the orbital from
which an electron has been captured. Some of these resonances with single core
hole in the 1s, 2s, 2p and 3s shells are indicated in the spectra presented below.

If atomic relaxation is allowed, different decay processes occur. The most sim-
ple relaxation channel originates from the modified nuclear potential. As the
ns1/2 (np1/2) orbitals of the parent atom are not orthogonal in the nuclear po-
tential of the daughter atom, different ns1/2 (np1/2) can mix. However, due to
angular momentum conservation, these scattering processes do not lead to addi-
tional states, but only affect the intensity and position of the resonances already
accessible directly after EC.

More complicated decay processes involving different orbitals occur as soon
as the Coulomb interaction couples the created core hole to all the other atomic
shells. As the Coulomb interaction conserves total angular momentum and par-
ity on a many-particle level, but not necessarily for individual electrons, addi-
tional resonances with core holes in shells from which no capture was possible,
appear. Typically, these resonances are lower in intensity than the main peaks
and are found at the excitation energies of np3/2, nd3/2, ... orbitals. As there are
various possible configurations at different energies compatible with the angular
momentum and parity selection rules, the resonances are split into multiplets.

In addition to the single core hole excitations, double core hole excitations
emerge where one additional electron is scattered into the valence shell. Dou-
ble core hole excitations are typically prominent to the right of a main resonance.
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Figure 2.2: Nuclear ground-to-ground-state EC decay spectra of 55Fe, 65Zn, 71Ge,
118Te, 131Cs, 140Nd and 165Er calculated by using (2.47) for a Lorentzian
broadening of g = 2 eV. The labeling indicates some of the main reso-
nances with single core holes in the 1s, 2s, 2p and 3s shell.
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3 How hyperfine interaction affects the
nuclear decay by electron capture

For a long time starting from the discovery of radioactivity by Becquerel in 1896
[2], nuclear decay rates were assumed to be constant, i.e. independent of the
chemical and physical environment they are exposed [68]. However, this was
predominantly based on studies of alpha- and beta-decays which do not exhibit
a significant dependence on environmental factors [68]. Nuclear decay by EC,
on the other hand, constitutes a special case, since the nuclear decay rate here is
proportional to the electronic density at the nucleus. This, in turn, is affected by
several external factors like the chemical environment, temperature or pressure
the atom is exposed to. Therefore, a change of these factors has an impact on the
nuclear decay rate. First ideas of this kind were originally developed by Segré
[69] and Daudel [70] in the late 1940s and have since been further developed
by many scientists not only to gain better understanding of nuclear decays in
general, but also to more accurately describe explicit reactions.

Since then, 7Be has established, in particular due to its simple electronic struc-
ture (1s22s2), as the most prominent example on which the impact of environmen-
tal effects of different host materials, temperature and pressure on the nuclear
decay rate have been investigated both experimentally and theoretically [68, 69,
71–74]. A particularly large effect on the decay rate/half-life in the case of Be
has been observed for 7Be encapsulated in the fullerene C60 (7Be@C60). At room
temperature the half-life of 7Be embedded in metallic Be is 0.83% faster than the
one in 7Be@C60 [72]. The authors assigned the origin of this effect to the modified
electron density at the nucleus. Due to the delocalization of the 2s electrons in
the case of 7Be in metallic Be, the electron density at the nucleus is slightly re-
duced compared to 7Be@C60 where the 2s electrons are assumed to be localized.
If 7Be@C60 is cooled down to 5 K, the radioactive speedup is even enhanced and
amounts to 1.5% [73].

An intriguing alternative to the aforementioned options to manipulate nuclear
decay rates is to change the initial hyperfine state of the atom. This possibility has
to our knowledge first been discussed by Folan and Tsifrinovich [75]. The authors
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could show using a simple model consisting of an atomic nucleus and an unfilled
(valence) s-shell that the decay rate strongly depends on the relative orientation
of nuclear and valence spins, i.e. on the initial hyperfine state, at temperatures
small compared to the hyperfine splitting. Furthermore, they addressed the ori-
gin of this effect to conservation of total angular momentum. A realistic physical
system best resembling this simple model are hydrogenlike ions. On the example
of hydrogen- and heliumlike 140Pr ions the hyperfine interaction dependence of
the decay rate has been investigated experimentally [76]. Although hydrogenlike
140Pr ions have only a single electron, i.e. one electron less than heliumlike 140Pr
ions, their decay rate is enhanced by about 50%. This is a quite surprising ob-
servation, since one would naively expect that in the case of two electrons being
captured, the decay rate would be larger than in the case of only a single electron.
A theoretical description by Patyk et al. [77] could confirm the experimental ob-
servation and attribute the origin of this effect to hyperfine interaction and the
associated conservation of total angular momentum.

However, both the simple model by Folan and Tsifrinovich [75] as well as the
more general theoretical description by Patyk et al. [77] discuss only the effect of
hyperfine interaction on the decay rate in the context of hydrogen- and/or heli-
umlike ions. An extension to the general case of charge neutral atoms is missing.
Its development is the goal of this chapter.

In section 3.1, we start by introducing the hyperfine interaction Hamiltonian.
Then, in section 3.2, we briefly discuss an effective transition operator which al-
lows us to describe allowed EC decays where nucleus and electrons are initially
coupled by hyperfine interaction. Afterwards, the mechanism leading to the hy-
perfine interaction dependent decay rate is explained using a simple model which
resembles that of Folan and Tsifrinovich [75]. In section 3.4, we consider the im-
pact of hyperfine interaction on the nuclear decay by EC in atomic 163Ho and
163Ho embedded in Gold, respectively. The latter reflects the experimental situa-
tion realized in the ECHo experiment [28]. For atomic 163Ho, which is the content
of section 3.4.1, the EC spectra and lifetimes of all possible initial hyperfine states
are calculated. In the case of 163Ho embedded in Gold, discussed in section 3.4.2,
we outline an approach capable of experimentally resolving the spectral differ-
ences that result from the different hyperfine states. In this context, we present
EC spectra and lifetimes calculated for different temperatures. The chapter ends
with an conclusion including a summary of the main results.
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3.1 Hyperfine interaction

3.1 Hyperfine interaction

Hyperfine interaction describes the electromagnetic interaction of the atomic elec-
trons with the higher-order nuclear multipole moments and is typically an effect
on the sub-meV scale [78]. It is convenient to express the hyperfine interaction
Hamiltonian in terms of a scalar product of two spherical tensor operators [46]:

HHF =
e

4pÂ
k

k

Â
l=�k

(�1)lTk
lT

k
�l (3.1)

Here, Tk
l and T

k
�l are the components of rank-k irreducible tensor operators act-

ing on the electronic and nuclear spin and spatial degrees of freedom, respec-
tively. Multipoles with even k correspond to electric interactions, while those
with odd k to the magnetic ones. The term with k = 0 represents the electric
monopole part and is not included in the hyperfine interaction Hamiltonian, be-
cause it equally shifts the levels within a given configuration.

The dominant part in (3.1) originates from the dipole interaction of the elec-
tric and magnetic moment (k = 1) and from the interaction of the electric field
gradient with the nuclear quadrupole charge distribution (k = 2). Higher-order
multipoles are usually neglected, as they are about eight orders of magnitude
smaller with respect to the dipole and quadrupole [78]. Restricting the multipole
expansion to these two multipoles we explicitly find [46]

HHF = HM + HE

=
e

4p

8
>>><

>>>:

1

Â
l=�1

(�1)l
i
p

2
h
a · C(0)

1l (r̂)
i

r2 µ�l
| {z }

= T1
lT

1
�l

+
2

Â
l=�2

(�1)l C2
l(r̂)
r3 Q�l

| {z }
= T2

lT
2
�l

9
>>>=

>>>;
.

(3.2)

The first term corresponds to the magnetic dipole and is given by the scalar prod-
uct of two rank-1 irreducible tensor operators, a · C(0)

1l (r̂) and µ�l. The former
acts on the electronic part and is composed of a renormalized vector spherical
harmonic C(0)

1l (r̂) and the Dirac matrix a (2.10). A definition of the (renormal-
ized) vector spherical harmonic C(0)

1l (r̂) can be found in [47]. The operator µ�l

acts on the nuclear degrees of freedom and characterizes the nuclear magnetic
moment.

The second term in the above expression describes the electric quadrupole part
of the hyperfine interaction. It is determined by the scalar product of the nuclear
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3 How hyperfine interaction affects the nuclear decay by electron capture

quadrupole tensor Ql and the renormalized spherical harmonic C2
l(r̂). As this

part is proportional to r�3, it is very sensitive to the electronic density close to the
nucleus. Therefore, quadrupole interactions are large and typically exceed the
magnetic dipole for atoms with an open s-shell where the radial wavefunction is
large at the origin.

The presence of a non-vanishing hyperfine interaction leads to the coupling of
the electronic J and nuclear I angular momentum to a conserved total angular
momentum F = J + I. Eigenstates of defined F are found by coupling the states
|J, MJi and |I, MIi to |F, MFi

|F, MFi = Â
MJ ,MI

CFMF
JMJ IMI

|J, MJi ⌦ |I, MIi (3.3)

with Clebsch-Gordan coefficients CFMF
JMJ IMI

. Here, J, I and F denote the quantum
numbers of the total electronic, nuclear and coupled angular momentum, respec-
tively. Their corresponding magnetic quantum numbers are labeled by MJ , MI

and MF.

To determine the relative size of the magnetic dipole and electric quadrupole
part, we evaluate the expectation value of HHF = HM + HE in the state |F, MFi

for each term separately, i.e.

DEF = hF, MF|HM|F, MFi + hF, MF|HE|F, MFi (3.4)

which corresponds to the energy shifts due to the magnetic dipole and electric
quadrupole, respectively. Following the steps presented in [46], the energy cor-
rections can finally be written as

DEF =
1
2

aK +
1
2

3K(K + 1) � 4J(J + 1)I(I + 1)
2I(2I � 1)2J(2J � 1)

b (3.5)

where K = F(F + 1) � I(I + 1) � J(J + 1). Here a and b denote the magnetic
dipole and electric quadrupole hyperfine constants which are explicitly given by
[46]

a =
µ

I · J
hJ J|T1

0 |J Ji

b = 2QhJ J|T2
0 |J Ji (3.6)

where µ and Q are the nuclear magnetic and quadrupole moment, respectively.
For 163Ho, the experimental values of µ and Q amount to aexp = (3.35 ± 0.03) ·
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10�6 eV and bexp = (�7.14 ± 1.32) · 10�6 eV [79] which enables us to estimate
the respective energy splittings. For Holmium (implanted in Gold) which will
be discussed later on (see sections 3.4.1 and 3.4.2), the energy splitting due to the
magnetic dipole is ⇠ 10�4 eV while that of the electric quadrupole amounts to
⇠ 10�6 eV. Thus, the latter is reduced by roughly two orders of magnitude which
justifies to neglect the electric quadrupole part and to set HHF ⌘ HM.

Compared to the electronic states of an atom, the energy difference between
two nuclear states typically is very large (⇠ 103 keV). As a result, the mixing
of configurations with different I becomes very unlikely such that the total nu-
clear angular momentum can be regarded as a good quantum number. Due to
the smallness of the hyperfine interaction, we can in a first approximation also
assume J to be a good quantum number [80]. Within this approximation the
magnetic dipole term is given by the effective interaction

HHF = aI · J. (3.7)

This expression leads to the same energy splitting as shown in (3.5) for b = 0.

3.2 An effective transition operator

In section 2.7, we presented EC spectra for selected isotopes that allowed decays.
In this case, the application of a very simple transition operator (2.33) given by
a product of nuclear, electronic and neutrino part was possible. Including hy-
perfine interaction, however, nuclear and electronic sector can exchange angular
momentum, such that this decoupling is not allowed any more. In the following,
we therefore introduce an effective transition operator capable of describing this
angular momentum exchange. Using this transition operator instead of the com-
plicated general form of the weak interaction (2.29) allows us to describe the EC
spectrum for different initial hyperfine states in a very simple fashion.

As the nuclear decay by EC involves not only single nucleons but the nucleus as
a whole, we seek for a transition operator acting on the many-nucleon states char-
acterized by the total nuclear angular momentum I and z-component MI . In the
case of 163Ho, the nucleus is described a total angular momentum of IHo = 7/2
and negative parity [81]. 163Ho undergoes an allowed EC transition to 163Dy with
nuclear angular momentum IDy = 5/2 and negative parity. As we have seen in
chapter 2, the total angular momentum exchanged in an EC decay is determined
by the nuclear total angular momenta of the participating nuclei and can take the
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3 How hyperfine interaction affects the nuclear decay by electron capture

values |IHo � IDy|, . . . , IHo + IDy = 1, . . . , 6. Restricting the decay to the lowest
possible value |IHo � IDy| = 1, generally the most important contribution, and
neglecting neutrinos with ln > 0, a suitable effective transition operator is given
by:

T = I · Jlep (3.8)

Here, I and Jlep are the total angular momentum vectors of nucleus and leptons,
respectively. Note that Jlep is a composite operator creating an electron-neutrino
while simultaneously annihilating a core electron. Further note that the action of
I is restricted to the part which transfers the initial many-nucleon state |I, MIiHo
into the final state characterized by |I, MIiDy.

Expressing T in terms of ladder operators we find:

T =
1
2

⇣
I+ J�lep + I� J+

lep

⌘
+ Iz Jz

lep (3.9)

As the weak interaction conserves the total angular momentum, the change of
nuclear angular momentum is compensated by the leptonic part which takes the
form

J+
lep =

1
2 Â

te,qn

p(te)ete,#n†
qn,"

J�lep =
1
2 Â

te,qn

p(te)ete,"n†
qn,#

Jz
lep =

1
2 Â

te,qn

p(te)
⇣

ete,"n†
qn," � ete,#n†

qn,#

⌘
. (3.10)

Here ete,"/# annihilates an electron with quantum numbers te = {ne, le, je} and
corresponding (relative) capture probability p(te) defined by (2.30). For an ex-
changed angular momentum of |IHo � IDy| = 1 and ln = 0 we can infer from con-
servation of total angular momentum that electron capture is only possible from
the ns1/2 and np1/2 orbitals with non-vanishing overlap at the nucleus. For 163Ho,
this are the ten orbitals with {ne, le, je} 2 {1s1/2, . . . , 6s1/2, 2p1/2, . . . , 5p1/2} [9].
Explicit values of the capture probabilities p(te) can be found in the appendix of
[9]. To keep notation short, the z-component of total angular momentum is abbre-
viated by " and # for ±1/2, respectively. The operator n†

qn,"/#, on the other hand,
creates a neutrino with momentum qn, quantum numbers ln = 0, jn = 1/2 and
spin-up or spin-down. Note that we omit the mass-eigenstates in the description
of the neutrino to keep the notation compact. Hence, the full transition operator
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3.2 An effective transition operator

equivalent to the compact version (3.8) can finally be written as

T =
1
2 Â

te,qn

p(te)
h

I+ete,"n†
qn,# + I�ete,#n†

qn," + Iz
⇣

ete,"n†
qn," � ete,#n†

qn,#

⌘i
. (3.11)

In contrast to the case for which we neglected hyperfine interaction, the transi-
tion operator T can no longer be written as a product of nuclear, electronic and
neutrino part. Therefore, it is necessary to discuss its action on an initial state
coupled by hyperfine interaction and the implications for the form of the equa-
tions we use to describe the EC spectrum. Let us assume a parent ground state
of the form |Y0i = |Y0

0i ⌦ |0ni where |Y0

0i comprises the coupled nuclear and
electronic part and where |0ni denotes the neutrino vacuum. After nuclear decay
by EC, the neutrino can be regarded as a free particle, such that the final states
are given by |Y f i ⇡ |Y0

f i ⌦ |tn, qni. Hence, the matrix element
⌦
Y f |T|Y0

↵
can be

written as

⌦
Y f |T|Y0

↵
µ hY0

f |⌦ htn, qn|

⇣
I+ete,"|Y0

0i ⌦ n†
q0n,#|0ni + . . .

⌘

= hY0

f |I
+ete,"|Y0

0i htn, qn|n
†
q0n,#|0ni

| {z }
=dqnq0n

dmsn #

+ . . . (3.12)

where we assume a fixed set of quantum numbers te and a neutrino with mo-
mentum qn and spin-component msn . Similar expressions are found for the ma-
trix elements of the remaining two terms in the above sum. Consequently, the
neutrino can be decoupled from the atomic relaxation process similar to the case
where hyperfine interaction has been neglected. Following the steps presented in
section 2.6, the EC spectrum for an initial state |Y0i = |F, MFi ⌦ |0ni coupled by
hyperfine interaction takes the form:

dG
dw

µ �Im (Q � w)
q

(Q � w)2 � m2
n

h
hF, MF|T† 1

w � HDy + EHo + ig
2

T|F, MFi

�hF, MF|T† 1
w + HDy � EHo + ig

2
T|F, MFi

i

(3.13)

Here, HDy = HD + HC comprises the Dirac Hamiltonian and the Coulomb inter-
action in the nuclear potential of the Dy atom. Note that T is understood as the
part of the transition operator acting only on the nuclear and electronic degrees
of freedom.
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3 How hyperfine interaction affects the nuclear decay by electron capture

3.3 Simple model

The simultaneous presence of an open core and valence shell, an atomic nucleus
and a neutrino makes the nuclear decay by EC an overall complicated process.
To gain better understanding it is essential to disentangle the interplay of all par-
ticipating angular momenta.

Vanishing hyperfine interaction

For this reason, let us start with a simple model consisting of a half-filled valence
s-shell with one spin-up electron and a completely filled core s-shell as is shown
in Fig. 3.1 on the left. The atomic nucleus is regarded as a spectator, i.e. the cou-
pling of its angular momentum to that of the valence due to hyperfine interaction
is neglected. As the angular momentum of the valence shell is zero, the initial
state is solely characterized by its spin, i.e. Sval = 1/2, Mval = 1/2, where Mval

denotes the magnetic quantum number associated to Sval.
After capture of one core electron, the atom ends up in a state with two open

shells. To stay simple, we restrict our considerations to the sub-space of singly
occupied core- and valence shells. The Coulomb repulsion between the two shells
can be divided into a direct and an exchange part. While the latter depends on
the spin-direction of the captured electron, the former leads to the same repulsion
irrespective of the spin and thus will be neglected. In this case the Coulomb
interaction between the (remaining) core and valence electron can be expressed
as [82]

HSM = �JH S0
core · S0

val. (3.14)

Here, JH > 0 is the Hund’s exchange constant and S0
core and S0

val are the spin
(vectors) of core and valence shell, respectively. Here and in the following, all
primed angular momenta and their corresponding quantum numbers refer to
the final states, i.e. the states after EC.

Imagine that only the electron with spin anti-parallel to the spin of the va-
lence electron is captured. Then, the final state is given by the spin-triplet (S0 =

1, M0

S = 1)
y1,1 = | "

0

vali ⌦ | "
0
corei (3.15)

resulting in a single peak at energy ET = �1/4 JH as is shown in Fig. 3.1. If, on
the other hand, only the electron with spin parallel with respect to the valence is
captured, the atom ends up in a state with anti-parallel core- and valence spin.
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Figure 3.1: Spectra for capture of spin parallel (spin-up) and anti-parallel (spin-
down) with respect to the valence spin as a function of the Hund’s
exchange constant JH. The capture of a spin-down electron results in
a final state given by a superposition of spin-triplet at energy ET =

�1/4 JH and spin-singlet at energy ES = 3/4 JH. The capture of an
spin-down electron, on the other hand, results in a pure spin-triplet
state. The nucleus is regarded as a spectator.

This state, however, is not an eigenstate of HSM resulting in a final state which is
given by a superposition of spin-triplet (S0 = 1, M0

S = 0)

y1,0 =

r
1
2
���"0val

↵
⌦
��#0core

↵
+
��#0val

↵
⌦
��"0core

↵�
(3.16)

and spin-singlet (S0 = 0, M0

S = 0)

y0,0 =

r
1
2
���"0val

↵
⌦
��#0core

↵
�
��#0val

↵
⌦
��"0core

↵�
(3.17)

with Clebsch-Gordan coefficients ±

q
1
2 . As the red curve in Fig. 3.1 illustrates,

the spectrum is given by two peaks with equal spectral weight at energies ET =

�1/4 JH and ES = 3/4 JH. According Hund’s rules, parallel orientation of core
and valence spin is energetically favorable as two electrons with the same spin-
direction try to avoid each other due to the Pauli principle. In addition, the spin-
triplet has an anti-symmetric spatial wave function for which the probability to
find two electrons at the same position is reduced leading to a gain in Coulomb
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3 How hyperfine interaction affects the nuclear decay by electron capture

energy and finally to an overall lower energy [83]. It is important to realize that
the energy difference between triplet and singlet is solely determined by the ex-
change constant JH , i.e. Coulomb interaction.

Non-vanishing hyperfine interaction

Fig. 3.1 reveals that the spectrum for spin-up and spin-down capture differs in the
number of peaks and their intensity. In a realistic scenario, however, spin-up and
spin-down electrons are always captured with equal probability. Consequently,
the spin-dependence cannot be resolved in an experimental measurement. How-
ever, our model has so far ignored an important part. In reality, nuclear decay
always involves an atomic nucleus which actively participates in the decay pro-
cess. To take this into account, we extend the simple model by a nucleus and from
now on consider a nucleus-electron system coupled by hyperfine interaction. For
simplicity, we assume a parent nuclear angular momentum of I = 1 which de-
cays by EC to a daughter nuclide with I0 = 0. Now the interesting question is
if the more realistic nucleus-electron model is capable of resolving the aforemen-
tioned differences, i.e. either to observe a decay into two or just a single state.

Due to the hyperfine interaction, I and Sval(= Jval) are coupled to the total
angular momentum F which can take the values F = 1/2 and F = 3/2 where we
assume Lval = 0 and Sval = 1/2 as is indicated in Fig. 3.2 on the left. Without
loss of generality, we consider in the following the two sub-states |F = 3/2, MF =

3/2i and |F = 1/2, MF = 1/2i as the representatives for parallel and anti-parallel
valence- and nuclear angular momentum, respectively. In terms of the uncoupled
basis these states are given by

����
1
2

,
1
2

�
=

r
2
3
|1nuci ⌦ |#vali �

r
1
3
|0nuci ⌦ |"vali (3.18)

with Clebsch-Gordan coefficients
q

2
3 and �

q
1
3 and

����
3
2

,
3
2

�
= |1nuci ⌦ |"vali (3.19)

where we characterize these states by the z-component of the nuclear and valence
angular momentum.

The initial state decays by EC into states containing a core-hole with S0
core =

1/2, a valence electron S0

val = 1/2, an electron-neutrino with S0
n = 1/2 and a
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3.3 Simple model

nucleus with I0 where one proton has been transformed into a neutron. Due to
conservation of F, the final states can be found by re-coupling the four angular
momenta to the initial |F, MFi. Since in our example the nucleus can only decay
into a single state |I0 = 0, M0

I = 0i, the angular momentum coupling simplifies to
the coupling of three angular momenta S0

val, S0
core and S0

n. One should realize that
the coupling order is not unique, as one can first combine S0

val and S0
core to S0 and

afterwards S0 and S0
n to F, or alternatively, S0

core and S0
n to S0 and then S0and S0

val
to F. However, these two coupling schemes are equivalent in the sense that they
both form a complete set of states and are related by a unitary transformation
[47].

In the following, we will first combine S0

val and S0
core to S0 for two reasons:

First, S0 then is identical to the coupled core- and valence spin S0 introduced in
the previous section. Second, this coupling order allows for a direct physical
interpretation of the final states, since the possible values of S0 here correspond
to the spin-singlet (S0 = 0) and spin-triplet (S0 = 1) observable in the spectrum.
Performing the angular momentum coupling, we obtain the final states in terms
of the uncoupled ones

|((S0

valS
0
core)S0S0

n)F, MFi

= Â
M0

S,M0
n,M0

core,M0

val

CFMF
S0M0

SS0
n M0

n
CS0M0

S
S0

val M
0

valS
0
core M0

core
|S0

val, M0

vali|S
0
core, M0

corei|S
0
n, M0

ni

(3.20)

with Clebsch-Gordan coefficients CS0M0

S
S0

val M
0

valS
0
core M0

core
and CFMF

S0M0

SS0
n M0

n
. After EC the

atom is not in an eigenstate and starts to evolve in time due to the electromag-
netic interactions between the electrons at an energy scale of ⇠ 1 Ryd [84–86].
Hyperfine interaction – an effect on the sub-meV energy scale – thus is several or-
ders of magnitude smaller and negligible in the atomic relaxation process. Hence,
the Hamiltonian which determines the spectrum is the same we used to describe
the case without hyperfine interaction (3.14).

The state |F = 1/2, MF = 1/2i decays into a superposition of spin-triplet

y
(S0=1)
1/2,1/2 =

r
2
3
��00nuc

↵
⌦
��"0val

↵
⌦
��"0core

↵
⌦
��#0n

↵
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��00nuc

↵
⌦
��"0val

↵
⌦
��#0core

↵
⌦
��"0n

↵

�

r
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6
��00nuc

↵
⌦
��#0val

↵
⌦
��"0core

↵
⌦
��"0n

↵
(3.21)
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Figure 3.2: EC spectrum for a hyperfine coupled initial state with total angular
momentum of F = 1/2 (red) and F = 3/2 (blue) as a function of
Hund’s exchange constant JH. For anti-parallel nuclear and valence
spin (F = 1/2), the atom decays into a superposition of spin-singlet
at energy ES = 3/4 JH and spin-triplet at energy ET = �1/4 JH. For
parallel nuclear and valence spin (F = 3/2), only the spin-triplet at
energy ET is allowed.

and spin-singlet
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To keep a clear and short notation, we omit the angular momentum quantum
numbers I0, S0

val, S0
core and S0

n in the description of the final states. Similar to the
case of spin-up capture discussed in the previous section, the system decays into
two states mirrored in two peaks (see Fig. 3.2, red). The only difference is that
here the intensity is not equally distributed between spin-triplet and spin-singlet
due to different Clebsch-Gordan coefficients in the initial and final states. The
state |F = 3/2, MF = 3/2i, on the other hand, can only decay into the spin-triplet

y
(S0=1)
3/2,3/2 =

��00nuc
↵
⌦
��"0val

↵
⌦
��"0core

↵
⌦
��"0n

↵
(3.23)

In that case the spectrum is given by a single peak and is identical to the one ob-
tained for spin-down capture (see Fig. 3.2, blue).
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3.4 From simple model to 163Ho

The analogy between the spin dependent spectra of the model without an ac-
tive nucleus and the hyperfine state dependency of the nucleus-electron system is
remarkable. While in the former model the number of final states depends on the
spin-orientation of the captured electron with respect to the valence spin, in the
nucleus-electron model it is determined by the relative orientation of I and Sval,
i.e. the initial hyperfine state. As the weak interaction conserves the total an-
gular momentum, the final states which are accessible after electron capture can
be found by coupling nuclear, core, valence and neutrino angular momentum to
F. The experiment, however, is only sensitive to the electronic part of the final
states which correspond to the eigenstates of HSM. Just like the weak interaction
conserves F, so does HSM conserve the coupled angular momentum of core and
valence S0 and consequently also F. As the initial hyperfine state F determines the
possible values of S0, the observed final states are subject to selection rules which
naturally arise from the conservation of F. Note that the energy shift between
the multiplets S0 = 0 and S0 = 1 is purely determined by the energy scale of the
Coulomb repulsion. Therefore, the impact of hyperfine interaction on the nuclear
decay, despite so tiny, becomes visible on this energy scale.

3.4 From simple model to
163

Ho

3.4.1 Atomic 163Ho

Contrary to the simple model where we assumed a valence shell with Lval =

0, Sval = Jval = 1/2 and a nucleus with I = 1, the nuclear and valence total
angular momenta in 163Ho are bigger and the angular momentum coupling be-
comes more involved. The ground state electronic configuration of atomic 163Ho
is [Xe]4f116s2. According to Hund’s rules the ground state has L = 6, S = 3/2
and a total angular momentum of J = 15/2. However, this is only an approxi-
mated ground state configuration for two reasons: First, L and S are only approx-
imately good quantum numbers due to a finite spin-orbit interaction in the va-
lence shell. Second, Coulomb repulsion couples occupied and unoccupied shells
to each other, thereby mixing in additional configurations. A more detailed dis-
cussion of the Ho ground state for a vanishing hyperfine interaction can be found
in [9].

The simple nucleus-electron model introduced in the previous section reveals
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3 How hyperfine interaction affects the nuclear decay by electron capture

the significance of hyperfine interaction in the calculation of the initial state. We
expect the same to be the case for atomic 163Ho and therefore as a first step iden-
tify all possible values of the total angular momentum F. With a total nuclear
angular momentum of I = 7/2 we find F = |I � J|, . . . , I + J = 4, . . . , 11, each of
which is (2F + 1)-fold degenerate such that in total there are ÂF(2F + 1) = 136
different states that are eigenstates of

H = HD + HC + HHF (3.24)

which includes besides the Dirac and Coulomb terms also the hyperfine inter-
action (3.7). In order to obtain the spectra for each F, a naive approach would
be to calculate the spectra for all |F, MFi and then to average over the (2F + 1)

spectra with the same F but different MF. Although this approach is in principle
realizable, a calculation of 136 spectra with sufficient accuracy for an element like
163Ho with 67 interacting electrons is computationally expensive and not very
practicable. A more sophisticated approach would be to first sort out (possible)
identical spectra and thereby reduce the number of spectra to be calculated before
actually calculating them. This is achieved by exploiting underlying symmetries.

As the transition operator (3.11) and the daughter Hamiltonian HDy responsi-
ble for the atomic relaxation both conserve F, the commutators [T, F2] = 0 and
[HDy, F2] = 0 vanish. As we proof in appendix A.2, this leads to the conclusion
that all states with identical F but different MF are equivalent in the sense that
they lead to the same spectrum. Consequently, the number of spectra to be calcu-
lated reduces to only one per F and the differential decay rate dG

dw can according
to (3.13) be written as

dG
dw

µ �Im (Q � w)
q

(Q � w)2 � m2
n

⇥

h
hF|T† 1

w � HDy + EHo + ig
2

T|Fi � hF|T† 1
w + HDy � EHo + i g

2
T|Fi

i

(3.25)

with transition operator T defined in (3.11). Note that the z-component of total
angular momentum in the initial state |F, MFi ! |Fi is omitted to indicate that
the spectrum is independent of MF. Analogous to the simple nucleus-electron
model, hyperfine interaction is neglected in the atomic relaxation process, i.e.
we set HDy = HD + HC which governs the electronic dynamics in the nuclear
potential of Dy.

Fig. 3.3 displays the normalized electron capture spectra (3.25) of 163Ho for all
possible hyperfine states F = 4, . . . , 11 indicated by the different colors. The F de-
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Figure 3.3: Differential electron capture decay rate per atom per average half-life
for all possible total angular momenta F = 4 (purple) to F = 11 (red)
as a function of the electronic excitation energy (bottom scale) or neu-
trino energy (top scale). The inset shows a section around the 4s reso-
nance. For all spectra we assume a constant Lorentzian broadening of
g = 1 eV and a total decay energy of Q = 2838 eV [10].

pendence of the spectra is already clearly visible at first glance and affects the full
energy window, i.e. all resonances. On closer inspection of the spectra presented
in Fig. 3.3 one realizes that for small F the multiplets at higher excitation en-
ergy contain more spectral weight than for large F. Let us focus on the resonance
with one hole in 4s (see inset of Fig. 3.3) which is the resonance with the overall
highest intensity. Starting from the maximal total angular momentum, F = 11,
almost all spectral weight is concentrated in a single peak. When lowering F, this
resonance is split in two while spectral weight is continuously transferred to the
second peak at about 5 eV higher energy. For F < 9, the intensity ratio of these
two peaks is inverted and the second peak carries even more spectral weight than
the first one. A similar behavior, but even more clearly visible in the spectra, is
observed right of the 4s resonance where we find the states with two core holes,
one in 4p and the other in 4d. This state can, for example, result from the cap-
ture of a 4s and subsequent atomic relaxation where a 4p electron scatters into
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3 How hyperfine interaction affects the nuclear decay by electron capture

the 4 f valence shell, while a 4d electron fills the created core hole in 4s. Here the
spectrum is particularly sensitive to F, as these multiplets involve an additional
electron in the valence shell whose electronic configuration is strongly influenced
by F. While some of the multiplets disappear, others are enhanced which in con-
sequence leads to pronounced shifts of spectral weight by several Rydberg.

F-dependent lifetime

Surprisingly, the initial hyperfine state does not only determine the final states
and their corresponding spectral weight, but also how fast the radioactive isotope
decays. The lifetime t is a measure of how quickly a radioactive isotope decays
and is according to Fermi’s golden rule proportional to the inverse of the integral
over the differential decay rate

t µ
✓Z Q

0

dG
dw

dw

◆�1
. (3.26)

In order to grasp the origin of a hyperfine dependent lifetime, we first recall that
the differential decay rate dG

dw (w) can be written as the product of neutrino phase-
space factor and resolvent projected onto the state after electron capture. The
resolvent responsible for the atomic relaxation process generally conserves spec-
tral weight, i.e. we find

Z •

0

dG/dw

(Q � w)
p

(Q � w)2 � m2
n

dw = const. (3.27)

which in particular is independent of the initial hyperfine state. Hence, a fictitious
decay rate solely given by the above integrand would consequently lead to a
lifetime independent of F.

The neutrino phase-space factor is a measure of the number of states available
a created neutrino with kinetic energy En can occupy. From the F dependence
of the spectra we already know that for small F the high-energy resonances on
average contain more spectral weight than the ones at lower w. Due to energy
conservation, the total decay energy Q is shared between neutrino and electronic
excitations. Therefore, a shift of spectral weight towards higher w for smaller F
leads to an on average lower neutrino energy. A lower neutrino energy, however,
implies a reduced phase-space factor, i.e. less states available for the neutrino
to occupy, and thus a lower decay rate. This is ultimately reflected in a smaller
integral or an increased lifetime.
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Figure 3.4: Lifetime over average lifetime (left) and partial lifetime over average
partial lifetime of the 3s core hole (right) as a function of F ranging
from F = 4 (purple) to F = 11 (red).

At high excitation energies the integral is more sensitive to shifts of spectral
weight, because there the neutrino phase-space density changes more strongly
than at lower energies. Therefore, the biggest change in lifetime is expected in
this energy region. In order to obtain the F dependence of the integral only within
a certain energy window, we can define a partial lifetime by restricting w in (3.26)
to w 2 [E � e, E + e] centered around a certain resonance energy E. Fig. 3.4 illus-
trates the lifetime and the partial lifetime at the M1 edge – the resonance with one
core hole in 3s – as a function of F, both expressed relative to their corresponding
averages. The (partial) lifetime is maximal at F = 4 and continuously decreases
until it becomes minimal at F = 11. Here the continuous decrease directly reflects
the energy dependence of the phase-space factor. While the maximal change of
the lifetime (between F = 4 and F = 11) is ⇠ 1.5h, this change is enhanced by
about one order of magnitude at the M1 edge and amounts to ⇠ 3%.

The endpoint of the EC spectrum is practically unaffected by the initial hyper-
fine state. Therefore, it is not necessary to include the hyperfine interaction in the
calculations for the determination of the neutrino mass.
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3 How hyperfine interaction affects the nuclear decay by electron capture

3.4.2 A realistic experimental setup: 163Ho embedded in Gold

In the ECHo (Electron capture in 163Ho Experiment) [28] the Ho atoms are im-
planted in Gold characterized by a face-centered cubic (fcc) structure and occupy
regular lattice sites. The two valence shells (6s and 4 f ) hybridize with the Gold
which allows valence electrons to populate neighboring sites. Three electrons
contribute to the lattice resulting in a modified electronic configuration and dif-
ferent excitation energies. However, a calculation assuming Ho3+ ions with elec-
tronic configuration [Xe]4f106s0 leads to spectra with unphysical artifacts. Here
the problem is that the Ho atoms embedded in Gold are not fully ionized. The
three delocalized electrons to some extent take part in the screening of the nu-
clear charge. In order to accurately capture this effect, one has to include the
Gold band structure in the calculations [87]. As this is a challenge on its own due
to an extensive size of the resulting Hilbert space, we here want to work within
an approximation assuming the two 6s electrons to be localized, i.e. [Xe]4f106s2.
This electronic configuration maintains the symmetry of the Ho3+ ion and leads
to spectra without unphysical artifacts.

According to Hund’s rules the ground state is characterized by L = 6, S = 2
and J = 8. As the energies of the excited multiplets with J < 8 are several thou-
sand Kelvin above the ground state, the occupation of these multiplets is strongly
suppressed at temperatures well below room temperature which are considered
in this chapter. Therefore, we restrict the following calculations to the ground
state multiplet J = 8. With I = 7/2 the possible total angular momenta are
F = |I � J|, . . . , I + J = 9/2, . . . , 23/2.

Non-spherical chemical environment

In addition to the modified electronic configuration, the surrounding Gold breaks
the spherical symmetry of the Ho ions. Here we want to work within the frame-
work of crystal field theory [88, 89] and take into account the non-spherical chem-
ical environment by adding an effective crystal field potential HCF to the Hamilto-
nian (3.24) acting on the valence shell of the Ho ions. The crystal field potential is
generated by the electric field of the surrounding ions and has the same symme-
try as the crystal lattice. It is convenient to expand the potential on renormalized
spherical harmonics Ckm(q, f) [89]

HCF =
•

Â
k=0

k

Â
m=�k

akmrkCkm(q, f) (3.28)
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3.4 From simple model to 163Ho

where akm are the expansion coefficients of the potential. In second quantization
the crystal field Hamiltonian can be written as

HCF =
•

Â
k=0

k

Â
m=�k

Â
titj

AkmhYlimi |Ckm(q, f)|Yljmjia†
ti

atj
(3.29)

where we assume single-particle wave functions given by Y(r) = Rnl(r)Ylm(q, f).
The combined index t = {ne, le, je} comprises all relevant single-particle quan-
tum numbers. As it is difficult to determine the radial part of the wave function
within a solid, the expansion coefficients Akm = akmhRnili |r

k
|Rnjlji contain the

expectation value of the radial part and are usually taken from experiment [89].
Note that the sum over k in (3.28) and (3.29) is infinite. However, only a finite
and typically small number of the expansion coefficients are non-zero which can
be found by exploiting symmetry properties of the valence shell and of the sur-
rounding charges [89].

An alternative way to represent the crystal field was developed by Stevens in
the early 1950s [90]. He suggested to expand the electrostatic potential in terms of
total (electronic) angular momentum operators Jx, Jy, Jz. The explicit expression
of the crystal field potential expanded on total angular momentum operators and
the corresponding expansion coefficients - usually labeled by Bkm - can be found
in [89]. In the case of Ho implanted in Gold, the cubic (Oh) crystal field is charac-
terized by the two parameters B4 and B6 which refer to an operator expansion in
the sense of Stevens [91]. As both methods are equivalent, the set of parameters
Bkm can be related to the Akm by solving the equation defined by equalizing both
crystal field Hamiltonians.

In order to obtain HCF on a basis of spherical harmonics, the experimental crys-
tal field parameters presented in [92] are first expressed in terms of Stevens co-
efficients according to [91, 93] and then transformed to the corresponding Akm.
Explicitly, we find the following relations for the two non-zero parameters: A4 =

�240240B4 = �160.1 K and A6 = �
61837776

5 B6 = 64.3 K. Identifying the non-zero
expansion coefficients

A40 = A4, A4±4 =

r
5
14

A4, A60 = A6, A6±4 = �

r
7
2

A6 (3.30)

finally enables us to set up the crystal field Hamiltonian (3.29). Then, we de-
termine the level splitting of the J = 8 ground state by calculating the lowest
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3 How hyperfine interaction affects the nuclear decay by electron capture

Theory Experiment
E [K] E [K]

G3 0.00 0.00
G4 0.11 0.14
G5 7.04 7.64
G3 40.93 44.95
G4 42.23 46.38
G1 43.64 47.92
G5 51.73 56.68

Table 3.1: Crystal field multiplets for Holmium implanted in Gold. The experi-
mental energy levels are taken from [92]. The theoretical values are ob-
tained by calculating the 17 lowest eigenstates of H = HD + HC + HCF

whereby HCF is based on the coefficients (3.30) derived from parame-
ters which lead to the experimental splitting [92].

(2J + 1) = 17 eigenstates of H = HD + HC + HCF. Table 3.1 displays the experi-
mental and calculated energy levels. For vanishing hyperfine interaction, the 17-
fold degenerate ground state is split due to the crystal field into three low-energy
(T < 8 K) and four high-energy (T > 45 K) multiplets Gi which correspond to
irreducible representations of the cubic (Oh) point group. By switching on hyper-
fine interaction, each of the 17 states is further split into (2I + 1) = 8 sub-states
such that in total there are (2J + 1)(2I + 1) = 136 states which correspond to the
lowest 136 eigenstates of H = HD + HC + HCF + HHF. The splitting due to hyper-
fine interaction exceeds the energy difference between the ground state doublet
G3 and the first excited triplet G4 resulting in a complicated level structure. For
all other multiplets the crystal field exceeds the splitting due to hyperfine interac-
tion, i.e. HCF > HHF, such that the individual multiplets are well separated from
each other.

Due to the broken spherical symmetry the initial states are no longer eigen-
states of defined total angular momentum. We can, however, expand these states
in terms of the well-known hyperfine eigenstates

|yii = Â
F,MF

ai
F,MF

|F, MFi (3.31)

with expansion coefficients ai
F,MF

= hF, MF|yii. As a result, the spectrum for a
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3.4 From simple model to 163Ho

given state |yii can be written as

dG
dw

µ � Im (Q � w)
q

(Q � w)2 � m2
n Â

F,MF

��ai
F,MF

��2

⇥

h
hF|T† 1

w � HDy + EHo + i g
2

T|Fi � hF|T† 1
w + HDy � EHo + ig

2
T|Fi

i

(3.32)

where T corresponds to the transition operator (3.11). Note that HDy governing
the electronic dynamics neither includes the hyperfine interaction nor the crys-
tal field. These terms are at least three orders of magnitude smaller than the
Coulomb repulsion and thus irrelevant for the dynamics. In that case the spec-
tra are just like for atomic Ho independent of MF, such that the expansion (3.31)
enables a computationally cheap calculation of the spectra. Instead of calculating
(at most) 136 spectra, we only have to determine one spectrum for each F. These
spectra are then linear combined to obtain the spectrum for a given |yii.

Finite temperature

So far we have respected the non-spherical chemical environment on the level of
crystal field theory. As every experimental measurement is performed at finite
(and usually fixed) temperature Texp, we furthermore have to take into account
that at finite temperature the system generally populates not only the ground
state, but a superposition of several states |yii. The weight of each individual
state is determined by Boltzmann statistics.

Although a measurement at fixed Texp generally probes several F at once, the
weight of each F is constant. As a result, an experiment at fixed temperature is
insensitive to the spectral differences arising from the different hyperfine states.
In (3.31) the eigenstates of the Hamiltonian including the crystal field, |yii, are
expanded in terms of hyperfine eigenstates |F, MFi. The weight of each F is de-
termined by the expansion coefficients ai

F,MF
and depends on the symmetry of

|yii. As the individual crystal field multiplets Gi typically show different symme-
try properties, the amount of admixture of each F depends on the particular Gi.
For this reason, a possible approach to experimentally resolve the impact of hy-
perfine interaction on the decay rate is to compare spectra where different crystal
field multiplets are occupied.

In practice, this can be realized by measuring at various temperatures. For
example, one can set three temperature regimes which are adapted to the level
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Figure 3.5: Comparison of the differential decay rate for the low (blue), intermedi-
ate (green) and high (red) temperature regime. Note that the spectral
differences between intermediate and high temperatures are tiny and
hardly visible. Additionally, the spectra for minimal (F = 9/2) and
maximal (F = 23/2) total angular momentum are displayed in gray
and black, respectively. All spectra are calculated according to (3.32)
assuming the configuration [Xe]4f106s2, a constant Lorentzian broad-
ening of g = 1 eV and total decay energy of Q = 2838 eV [10].

structure displayed in Table 3.1: A low temperature regime at T < 0.1 K, an
intermediate regime at 8 K < T < 10 K and a high temperature regime at T >

100 K. Fig. 3.5 displays the calculated spectra for the three different temperature
regimes and the spectra for minimal (F = 9/2) and maximal (F = 23/2) total
angular momentum.

In the low temperature limit, only the first four eigenstates with energy < 0.1
K are populated which corresponds to the lowest crystal field multiplet and the
sub-states originating from hyperfine interaction. The states with higher energy
are hardly occupied and can be neglected. The blue curve in Fig. 3.5 displays the
spectrum for this temperature regime which is obtained by averaging over the
spectra of the four lowest states. A comparison of the low-temperature spectrum
with the one for F = 9/2 shows that the two spectra resemble each other. This
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3.5 Conclusion

demonstrates that the lowest four states have predominantly F = 9/2 character
with admixtures from F = 11/2 and F = 13/2. Higher values of F are strongly
suppressed.

In the intermediate temperature regime, on the other hand, thermal energy is
high enough to populate the lowest three crystal field multiplets, each of which
is further split into (2I + 1) sub-states which corresponds to the lowest 64 eigen-
states. All total angular momenta, in particular also the ones with high F, contain
considerable weight and are represented in the (average) spectrum.

The red plot in Fig. 3.5 shows the spectrum in the high temperature limit. Here,
the lowest 136 eigenstates, i.e. all crystal field multiplets and corresponding sub-
states, are populated. If we compare the spectra at intermediate and high tem-
peratures to each other, the differences are tiny and hardly visible. This explains
why the green curve in Fig. 3.5 is practically covered by the red one. Hence, a fur-
ther rise from intermediate to high temperature accompanied by the population
of the four high-energy crystal field multiplets does not significantly change the
relative weight of the individual F. By comparing the spectra at low and inter-
mediate/high temperatures to each other, the spectral differences resulting from
the different hyperfine states finally become visible.

From the case of atomic Ho (see section 3.4.1) we know that spectral weight
is shifted towards higher energies when F is lowered. At low temperature small
values of F predominate, such that we find on average more spectral weight at
higher energies than at intermediate or high temperatures, where higher F val-
ues gain more weight. As this shift of spectral weight directly affects the lifetime,
we expect longer lifetimes the lower the temperature. The lifetime difference be-
tween the low and intermediate temperature regime amounts to ⇠ 0.8h. Around
the M1 edge (core hole in 3s) this difference increases by about one order of mag-
nitude to ⇠ 0.7%.

3.5 Conclusion

In conclusion, we calculated the EC spectrum of (atomic) 163Ho for different ini-
tial hyperfine eigenstates characterized by the total angular momentum F. Al-
though hyperfine interaction – typically an effect on the sub-meV energy scale – is
at least four orders of magnitude smaller than the dominant Coulomb repulsion,
the calculated spectra show a clear dependence on the total angular momentum
of the initial state. Changing F leads to a shift of spectral weight on the Ryd-

55



3 How hyperfine interaction affects the nuclear decay by electron capture

berg energy scale. For small F, our calculations predict on average more spectral
weight at higher excitation energies than for large F.

In order to unveil the origin of this surprising effect, we first introduced a sim-
ple model. By disentangling the angular momenta of nucleus, core, valence and
neutrino, we proved that the impact of hyperfine interaction originates from its
complicated interplay with the Coulomb repulsion and the weak interaction. As
the total angular momentum F remains conserved in a weak decay, selection rules
naturally arising from this conservation determine the final states observed in the
spectra. Depending on the initial F, the system decays into different final states
with energy differences determined by the multiplet splitting on the Rydberg en-
ergy scale.

Furthermore, we found out that the shift of spectral weight as a function of
F leads to a change of the isotope’s lifetime on the per mille scale. It turns out
that this change is related to a varying number of states the created neutrino can
occupy. As the biggest changes of the neutrino phase-space factor are observed
near the endpoint, at these energies partial lifetime differences on the percent
scale are achievable.

In addition, we have considered a realistic experimental setup (realizable in
the ECHo experiment [28]) by taking into account finite temperatures and the
non-spherical chemical environment of the Ho ions on the level of crystal field
theory. At finite temperature, the system populates a mixed state whereby our
results reveal that Boltzmann statistics determines the weight of a given F. A
comparison of the spectra measured at different temperatures thus enables to
experimentally resolve spectral differences arising from the individual hyperfine
eigenstates.

Note that the experimental measurements are typically performed at very low
temperatures of Texp < 0.1 K [94]. This raises the question if it is possible to
observe sharp and defined resonances at a relatively high temperature of about
Texp ⇡ 8 K which is necessary to have a significant occupation of the three lowest
crystal field multiplets. Note, however, that the presented method to unveil the
impact of hyperfine interaction on the EC spectrum is not restricted to the pro-
posed temperature regimes. One can, for example, focus only on the two lowest
crystal field multiplets, the ground state doublet and the first excited triplet (see
Table 3.1). These two multiplets are split by hyperfine interaction into 40 sub-
states with energies up to about 1.9 K. Due to the significantly lower maximal
temperature of only 1.9 K compared to the originally proposed 8 K, this might be
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3.5 Conclusion

experimentally more realizable.
With a current detector resolution of < 10 eV [10] and high statistics in the ex-

perimental decay rates, the spectral differences between the individual hyperfine
states could even nowadays be visible. What might be problematic is that the true
line-broadening exceeds the assumed Lorentzian broadening of g = 1 eV. Conse-
quently, differences in the spectrum originating from hyperfine interaction might
be smeared out. Therefore, it is important to include Auger-Meitner decay (re-
sponsible for the largest part of the line-broadening [11]) in future calculations, in
order to see how hyperfine interaction induced spectral differences reveal under
more realistic conditions.

Since the observed spectral differences induced by hyperfine interaction prac-
tically do not affect the endpoint of the EC spectrum, it is not necessary to in-
clude hyperfine interaction in the calculations for the determination of the neu-
trino mass.
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4 Ab initio calculation of the
line-broadening due to fluorescence
decay

In a nuclear decay by EC, one of the core electrons is captured while simulta-
neously an electron neutrino is produced. In this process, the total energy Q,
which generally depends on both the element under consideration and the partic-
ular isotope, is released. For a nuclear ground-to-ground-state decay, Q is due to
energy conservation shared between electronic excitations and the energy taken
away by the neutrino. After an electron is captured, the daughter atom ends
up in an excited state and starts to de-excite. The atomic de-excitation is mainly
driven by two processes: The first is caused by the electromagnetic interactions
between the electrons, which eventually leads to the emission of Auger-Meitner
electrons into the valence shell and the continuum [12, 13]. The second process
is the fluorescence decay leading to the production of additional photons. Here,
an excited state couples to the electromagnetic field and decays by spontaneous
emission into a state with modified electron configuration and one additional
photon. Both processes play an important role for an accurate description of the
spectrum. While the release of Auger-Meitner electrons typically dominates the
decay at lower excitation energies, fluorescence decay plays a superior role for the
shells close to the nucleus at high excitation energy, i.e. in particular the K-shell,
and elements with large charge number [95].

In section 2.7, we calculated EC spectra for several selected isotopes that un-
dergo allowed transitions neglecting Auger-Meitner decay into continuum states
and the decay due to fluorescence. Thus, we considered an approximate Hamilto-
nian involving only the Dirac term and the Coulomb interaction. In this case, the
Hamiltonian is characterized by a discrete energy spectrum leading to sharp and
well-defined resonances. To account for the experimentally observable broad-
ening of the peaks, an energy-independent Lorentzian-broadening g was intro-
duced. However, a comparison of such calculations with experimental measure-
ments clearly reveals that a constant broadening does not fit the true line-shapes

59



4 Ab initio calculation of the line-broadening due to fluorescence decay

well, which show a strongly energy-dependent and asymmetric broadening.

In order to achieve better agreement of theory and experiment, a determina-
tion of the line-broadening from first principles becomes indispensable. Using
the EC isotope 163Ho as an example, the influence of the Auger-Meitner effect on
the spectrum has been investigated [11]. It turned out that the scattering of elec-
trons into unbound states with continuous energy spectrum leads to an energy-
dependent and asymmetric broadening of the resonances. Finally, this results in
a much better agreement between theory and experiment. However, due to a
very small Q-value of about 2.8 keV, 163Ho represents a special case. Since only
those resonances with excitation energy smaller than the Q-value are visible in
the spectrum, the K- and L-edge, for which fluorescence decay is particularly im-
portant, are excluded. Therefore, the agreement between theory and experiment
neglecting fluorescence decay is already very good [11]. For most other EC iso-
topes, due to their much larger Q-values of the order of several hundred keV, far
more energy can be stored in terms of electronic excitations, such that the high-
energy resonances, i.e., especially the K-edge, become visible in the spectrum. A
detailed knowledge of the spectrum at these energies is crucial as it determines
the ionizing radiation released in the nuclear decay. The use of radionuclides
for cancer treatment, for example, requires detailed knowledge not only of the
amount of produced ionizing radiation, but also on its characteristics [5]. This
knowledge is also essential to calibrate liquid scintillation counting, one of the
primary techniques to determine activity of radionuclides [96].

In order to include fluorescence decay in the calculations, we have to extend
the Hamiltonian by the light-matter interaction and by the kinetic energy of the
photon. As the photon’s energy plus that of the neutrino does not necessarily
have to correspond to Q, additional energy can be stored in the form of electronic
excitations. Therefore, a photon produced during the de-excitation process can
assume all energies from zero up to the Q-value, thus exhibiting a continuous en-
ergy spectrum. Consequently, the decay rate has non-vanishing spectral weight
at all electronic excitation energies.

In section 4.1, we perform a multipole expansion of the relativistic light-matter
interaction which enables us to systematically study the impact of fluorescence
decay on the spectral line-shape. Then, in section 4.2, we introduce the concept of
self-energies and show on the example of fluorescence decay how a self-energy
can be used to describe the line-broadening from first principles. In addition,
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we derive an explicit expression of the fluorescence self-energy employing the
multipole expansion of the light-matter interaction. Section 4.3 deals with the
derivation of the fluorescence yield spectrum. In section 4.4, we finally use the
developed concepts to calculate the high-energy radiative EC spectrum as well
as the fluorescence yield spectrum of 55Fe. The chapter ends with a summary of
the main results.

4.1 Multipole expansion of the light-matter

interaction

The Hamiltonian describing the (relativistic) interaction of light with matter in
the Coulomb gauge is given by [46]

Heg = e
Z

y†(r)a · A(r)y(r)d3r (4.1)

where y†(r) and y(r) are the four-component Dirac-spinor fields and a the Dirac
matrix. A(r) denotes the vector potential which in its canonical form reads

A(r) = Â
kg

2

Â
µ=1

1p
2Vwg

�
eµ(kg)a†

kg,µeikg·r + e⇤µ(kg)akg,µe�ikg·r
�
. (4.2)

Here, V denotes the quantization volume which we set to 1. en(kg) represents the
polarization vector and a†

kg,n and akg,n are the creation and annihilation operators
of a photon in mode {kg, µ}, respectively. The kinetic energy of the photons is
given by

Hg = Â
kg

2

Â
µ=1

wga†
kg,µakg,µ. (4.3)

where wg = c|kg| = kµ with c = 1. Inserting the vector potential (4.2) into (4.1),
the light-matter interaction Hamiltonian becomes

Heg = e Â
kg

2

Â
µ=1

1p
2wg

⇥

Z
y†(r)a ·

⇣
eµ(kg)a†

kg,µeikg·r + e⇤µ(kg)akg,µe�ikg·r
⌘

y(r)d3r. (4.4)

In order to simplify notation, we introduce the transition operator

Teg(kg, µ) = eµ(kg) ·
Z

d3r y†(r)aeikg·ry(r) (4.5)

61



4 Ab initio calculation of the line-broadening due to fluorescence decay

such that Heg takes the compact form

Heg = e Â
kg

2

Â
µ=1

1p
2wg

⇣
a†

µ(kg)Teg(kg, µ) + aµ(kg)T†
eg(kg, µ)

⌘
. (4.6)

Note that the light-matter interaction involves only a single photon, i.e. Heg can
induce transitions from an initial state with n to a final state with n ± 1 photons
by absorbing or emitting a photon.

To systematically study the interaction between light and matter, it is conve-
nient to decompose Teg(kg, µ) into its multipoles. For brevity, we first drop the
momentum dependence of eµ(kg), i.e. eµ(kg) ! eµ, and then expand eµ · eikg·r

in terms of multipole potentials [46]

eµ · eikg·r = 4p Â
JMl

iJ�l
⇣

eµ · Y(l)⇤
JM (k̂g)

⌘
a(l)

JM(r) (4.7)

where l = 0, 1 and M = �J, . . . , J. As en · eikg·r transforms as a vector under
rotations, the multipole potentials a(l)

JM(r) can be expressed as linear combinations

of vector spherical harmonics Y(l)
JM(r̂)

a(0)
JM(r) = jJ(kgr)Y(0)

JM(r̂)

a(1)
JM(r) =

✓
j0J(kgr) +

jJ(kgr)
kgr

◆
Y(1)

JM(r̂) +
q

J(J + 1)
jJ(kgr)

kgr
Y(�1)

JM (r̂). (4.8)

A definition of the vector spherical harmonics Y(l)
JM(r̂) can be found in [47]. In the

Coulomb gauge plane waves are transverse. Therefore, their polarization vector
eµ is perpendicular to the direction of propagation kg, i.e. eµ · kg = 0. Since the
vector spherical harmonic Y(�1)

JM (k̂g) is parallel to kg, we find that eµ ·Y(�1)
JM (k̂g) =

0, such that only the multipoles with l = 0, 1 contribute to the above expansion.
The parts with l = 0 are referred to as magnetic multipoles, while those with
l = 1 represent the electric multipoles [46]. This labeling will become meaningful
as soon as we have derived explicit expressions for the matrix elements later on,
when it will turn out that the magnetic and electric multipoles matrix elements
satisfy the corresponding selection rules.

Inserting the multipole expansion (4.7) into (4.5), the transition operator de-
composed into the individual multipole moments is given by

Teg(kg, µ) = 4p Â
JMl

iJ�l
⇣

eµ · Y(l)⇤
JM (k̂g)

⌘ Z
d3r y†(r)a · a(l)

JM(r)y(r). (4.9)
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In order to obtain an expression for T(kg, µ) in second quantization, we next ex-
pand the four component Dirac-spinor field in terms creation e†

t and annihilation
et operators weighted by the single-particle wave functions f†

t(r) and ft(r), re-
spectively,

y(r) = Â
t

ft(r)et y†(r) = Â
t

f†
t(r)e†

t (4.10)

where t comprises the quantum numbers t = {n, k, m}. Here, the single-particle
wave functions are given by the previously introduced four-component spinors
(2.12). Inserting (4.10) into (4.9) and using (2.12) as the single-particle wave func-
tions, the second quantized form of the transition operator decomposed into a
sum over magnetic (l = 0) and electric (l = 1) multipoles takes the form

Teg(kg, µ) =
1

Â
l=0

Â
tatb

t(l)
tbta(kg, µ)e†

tb
eta . (4.11)

The matrix elements t(l)
tbta(kg, n) are explicitly given by

t(0)
tbta(kg, µ)

= 4p Â
JM

iJ
⇣

eµ · Y(0)⇤
JM (k̂g)

⌘ Z
d3r f†

tb
(r)a · a(0)

JMfta(r)

= 4p Â
JM

iJ+1
⇣

eµ · Y(0)⇤
JM (k̂g)

⌘ Z
dr

✓
gnbkb(r)jJ(kgr) fnaka(r)

⇥ hWkbmb |s · Y(0)
JM|W�kamai � fnbkb(r)jJ(kgr)gnaka(r)hW�kbmb |s · Y(0)

JM|Wkamai

◆

(4.12)

and

t(1)
tbta(kg, µ)

= 4p Â
JM

iJ�1
⇣

eµ · Y(1)⇤
JM (k̂g)

⌘ Z
d3r f†

tb
(r)a · a(1)

JMfta(r)

= 4p Â
JM

iJ
⇣

eµ · Y(1)⇤
JM (k̂g)

⌘ Z
dr

 ✓
j0J(kgr) +

jJ(kgr)
kgr

◆✓
gnbkb(r) fnaka(r)

⇥ hWkbmb |s · Y(1)
JM|W�kamai � fnbkb(r)gnaka(r)hW�kbmb |s · Y(1)

JM|Wkamai

◆

+
q

J(J + 1)
jJ(kgr)

kgr

✓
gnbkb(r) fnaka(r)hWkbmb |s · Y(�1)

JM |W�kamai

� fnbkb(r)gnaka(r)hW�kbmb |s · Y(�1)
JM |Wkamai

◆�
(4.13)
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for the magnetic and electric multipoles, respectively. Both involve matrix ele-
ments of products of the vector of Pauli matrices s and vector spherical har-
monics that can be rewritten in terms of matrix elements of ordinary spherical
harmonics using the following relations [46]:

hWkbmb |s · Y(�1)
JM |Wkamai = �hW�kbmb |YJM|Wkamai

hWkbmb |s · Y(0)
JM|Wkamai =

ka � kbp
J(J + 1)

hWkbmb |YJM|Wkamai

hWkbmb |s · Y(1)
JM|Wkamai =

ka + kbp
J(J + 1)

hW�kbmb |YJM|Wkamai (4.14)

Hence, the matrix element for magnetic multipoles simplifies to

t(0)
tbta(kg, µ) = 4p Â

JM
iJ+1

⇣
eµ · Y(0)⇤

JM (k̂g)
⌘
hWkbmb |YJM|W�kamai

⇥
�(ka + kb)p

J(J + 1)
R(0)

tbta(wg)

⌘ 4p Â
JM

iJ+1
⇣

eµ · Y(0)⇤
JM (k̂g)

⌘ h
T(0)

JM(wg)
i

tbta
(4.15)

with radial integral R(0)
tbta(wg) =

R
dr jJ(kgr) (gnbkb fnaka + fnbkb gnaka). For the elec-

tric multipoles, on the other hand, we obtain matrix elements of the form

t(1)
tbta(kg, µ) = 4p Â

JM
iJ
⇣

eµ · Y(1)⇤
JM (k̂g)

⌘
hWkbmb |YJM|Wkamai

⇥


kb � kap
J(J + 1)

R(1,1)
tbta (wg) +

q
J(J + 1)R(1,2)

tbta (wg)

�

⌘ 4p Â
JM

iJ
⇣

eµ · Y(1)⇤
JM (k̂g)

⌘ h
T(1)

JM(wg)
i

tbta
(4.16)

where we have introduced the following abbreviations for the two radial inte-
grals:

R(1,a)
tbta (wg) =

8
<

:

R
dr (gnbkb fnaka + fnbkb gnaka)

⇣
j0J(kgr) +

jJ(kgr)
kgr

⌘
for a = 1

R
dr ( fnbkb gnaka � gnbkb fnaka)

jJ(kgr)
kgr for a = 2

(4.17)

Note that the matrix elements
h

T(0)
JM(wg)

i

tbta
and

h
T(1)

JM(wg)
i

tbta
involve only

those parts that are independent of the photon’s polarization and direction of
propagation.
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4.1 Multipole expansion of the light-matter interaction

While the radial part must be evaluated numerically, for the angular part there
exists an analytical solution. Matrix elements of the form hWkbmb |YJM|Wkamai are
conveniently evaluated by using the Wigner-Eckart theorem [47, 50] which allows
us to write the angular part as

hWkbmb |YJM|Wkamai = (�1)jb�mb

 
jb J ja

�mb M ma

!
hWkb ||YJ ||Wkai. (4.18)

Here, hWkb ||YJ ||Wkai denotes the reduced matrix element and the expression in
brackets is the Wigner 3j-symbol [47, 50]. The reduced matrix element vanishes if
lb + J + la is odd and takes the value

hWkb ||YJ ||Wkai = (�1)jb+1/2
q

(2jb + 1)(2ja + 1)(2J + 1)/4p

 
jb ja J

�1/2 1/2 0

!

(4.19)
if lb + J + la is even. Thus,

h
T(0)

JM(wg)
i

tbta
can be written as

h
T(0)

JM(wg)
i

tbta
= (�1)2jb�mb+3/2

 
jb J ja

�mb M ma

! 
jb ja J

�1/2 1/2 0

!

⇥

q
(2jb + 1)(2ja + 1)(2J + 1)/4p

ka + kbp
J(J + 1)

R(0)
tbta(wg) (4.20)

if lb + J + la ± 1 is even, whereas
h

T(1)
JM(wg)

i

tbta
becomes

h
T(1)

JM(wg)
i

tbta
= (�1)2jb�mb+1/2

 
jb J ja

�mb M ma

! 
jb ja J

�1/2 1/2 0

!

⇥

q
(2jb + 1)(2ja + 1)(2J + 1)/4p

"
kb � kap
J(J + 1)

R(1,1)
tbta (wg)

+
q

J(J + 1)R(1,2)
tbta (wg)

#
(4.21)

if lb + J + la is even.
Note that the condition 0lb + J + la ± 1 = even0 for magnetic and 0lb + J +

la = even0 for electric multipole transitions to be non-vanishing, along with the
properties of the Wigner 3j-symbols, reflects what is referred to as selection rules.
For electric dipole transitions (l = 1, J = 1), for example, the selection rule
states that a transition is only possible between states with opposite parity and
Dj = jb � ja = 0, 1, while a transition between two states with jb = ja = 0 is
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4 Ab initio calculation of the line-broadening due to fluorescence decay

forbidden. In addition, the condition mb = ma, ma ± 1 must be fulfilled [50]. This
condition is exactly reflected in (4.21). On the other hand, the selection rule for
a magnetic dipole transition (l = 0, J = 1) is identical to the one for the electric
dipole with the difference that here the two states must have the same parity. This
condition is contained in 0lb + J + la ± 1 = even0.

4.2 Fluorescence self-energy

Compared to section 2.7 where we calculated the EC spectrum neglecting fluo-
rescence and Auger-Meitner decay, we now consider a Hamiltonian of the form

H = HD + HC + Heg + Hg ⌘ H0 + Heg + Hg (4.22)

which in addition to Dirac’s Hamiltonian and the Coulomb interaction, HD and
HC, also includes the light-matter interaction Heg and the photon’s kinetic energy
Hg. Due to Heg, excited states can decay subsequent to EC by the emission of a
photon. Several photons can also be released during the de-excitation process.
However, since the light-matter interaction is linear in the photon creation and
annihilation operators, this would require higher-order processes in perturbation
theory, which are much less likely. For this reason, we can restrict ourselves to
those processes that involve only one additional photon and further assume no
photons to be present at the beginning. In this special case, Heg couples the two
sub-spaces with zero and one photon.

The aim of this section is to describe the impact of fluorescence decay on the
EC spectrum. Starting from bound states that do not contain any photons, we
investigate how these resonances are affected by the additional decay channel.
The most obvious approach to this problem is to determine the Green’s function

G�(w) =
⌦
y0
��T†

EC
1

w + ih+ � H0 � Heg � Hg
TEC

��y0
↵
. (4.23)

Here, TEC denotes the transition operator used to describe the weak interaction.
Note that the parent ground state energy is set to zero. This expression, however,
would require to invert the full Hamiltonian (4.22) which is no longer possible
in this case. After the emission of a photon the atom does not necessarily end
up in its ground state, since additional energy may be stored in the form of elec-
tronic excitations. Consequently, the photon’s kinetic energy can assume all val-
ues from 0 up to the Q-value which can correspond to an energy window up to
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4.2 Fluorescence self-energy

several hundred keV. Due to this large energy domain, the resulting Hilbert space
including states with one photon is of extensive size rendering a determination
of the Green’s function in this way infeasible.

Instead of directly employing (4.23), we follow an alternative approach pre-
sented in [11, 97]. We first partition the Hamiltonian into two parts defined by
the projection operators

P = Â
i
|yiihyi|, Q = Â

i
|fiihfi|. (4.24)

Here, |yii denote the bound states with no photon, whereas |fii = |yii ⌦ |kg, µi

are those configurations involving a single photon. Using the projection opera-
tors P and Q the Hamiltonian can be written as

H =

 
PHP PHQ
QHP QHQ

!
=

 
PH0P PHegQ

QHegP Q(H0 + Hg)Q

!
. (4.25)

We aim to find out how the line-shape of the resonances is influenced by the
decay due to fluorescence. Thus, we restrict the inversion of (4.25) to the sub-
space defined by P, i.e. to those states involving no photon, which yields [97]

P
1

w + ih+ � H
P =

1
w + ih+ � PH0P � S(w)

(4.26)

where the fluorescence self-energy is introduced as

S(w) = PHegQ
1

w + ih+ � Q(H0 + Hg)Q
QHegP. (4.27)

Since the light-matter interaction Hamiltonian acts only between the sub-spaces
with zero and one photon, we find PHegP = 0. Consequently, all projectors Q that
occur in S(w) can be replaced by unit operators. Inserting the explicit expression
for the projector P on the left and right allows us to express the self-energy as a
matrix with components

Sij(w) =
⌦
yi
��Heg

1
w + ih+ � H0 � Hg

Heg
��yj

↵
. (4.28)

The dimension of this matrix is determined by the dimension of the sub-space
defined by P. The EC spectrum including the decay due to fluorescence is then
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4 Ab initio calculation of the line-broadening due to fluorescence decay

obtained by taking the expectation value of the projected resolvent (4.26) with
respect to the state after EC:

G�(w) = Â
ij

⌦
y0
��T†

EC
��yi

↵⌦
yi
�� 1
w � Eidij � Sij(w)

��yj
↵⌦

yj
��TEC

��y0
↵

(4.29)

Here, we assumed that H0 is diagonal on P, i.e. PH0P = Âi Ei|yiihyi| ⌘ diag(Ei).
Thus, the impact of fluorescence decay on the EC spectrum is effectively incor-
porated in the self-energy Sij(w). This enables us to easily include the additional
relaxation process due to fluorescence decay into existing calculations that neglect
this decay channel. Here the big advantage is that both the Green’s function and
the self-energy are evaluated on the sub-space of states with no photon. There-
fore, the active Hilbert space to be considered is much smaller than the full one
including the states with one photon which would have been necessary for the
calculation of (4.23) and thus is computationally much more favorable.

Let us now take a closer look at the self-energy and discuss some of its prop-
erties along with their physical interpretation. Considering (4.28) we first notice
that S(w) has the same mathematical structure as a Green’s function and is there-
fore a complex-valued object. While its real part shifts the peak positions, the
imaginary part leads to the broadening of the resonances. The previously used
energy independent Lorentzian broadening g (used as a fit parameter) is now re-
placed by the imaginary part of the fluorescence self-energy calculated from first
principles (see (4.29)). Note that the self-energy itself contains an infinitesimal
imaginary part h+. This, however, has no effect of the spectrum as it drops out of
the equations when employing a principal value decomposition as we will see in
(4.39).

According to Fermi’s golden rule, the broadening of a state |yii is related to
its lifetime ti by t�1

i µ �Im Sii(Ei), where Ei denotes the excitation energy of
|yii. Note, however, that the fluorescence self-energy alone captures only parts
of the experimentally observed broadening and thus describes only the (partial)
lifetime related to fluorescence. Auger-Meitner decay into continuum states is
of the same order of magnitude and is essential for an accurate description of
the spectrum [11]. While fluorescence decay plays a superior role at high exci-
tation energies, i.e. in particular starting from the K-edge, Auger-Meitner decay
usually dominates the line-broadening at lower excitation energies [95]. In exper-
iments that rely on a calorimetric measurement of the EC spectrum, the isotopes
are embedded in some absorber material. Consequently, the isotope’s outer shells
hybridize with the orbitals of surrounding absorber material thereby opening ad-
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4.2 Fluorescence self-energy

ditional relaxation channels. The influence of these can be taken into account by
introducing a suitable self-energy, analogous to the one derived here [55, 87]. As
the decay due to fluorescence and Auger-Meitner decay into the continuum (or
the chemical environment) are fully unrelated processes, the total self-energy is
obtained by adding up the self-energies of the individual decay channels.

Moreover, Sij(w) is generally not diagonal. Therefore, bound states without
photon, which are decoupled from each other neglecting the self-energy, are now
coupled by the off-diagonal elements. The interference induced in this way leads
to an asymmetric broadening of the resonances known as Fano’s effect [98]. How-
ever, as shown on the example of Auger-Meitner decay in 163Ho, the asymmetry
induced by the energy-dependent broadening is much larger and mainly respon-
sible for the observed line-shape [11]. The same is to be expected for the decay
due to fluorescence.

The self-energy in terms of multipoles

In the following steps, we further simplify the fluorescence self-energy. For this
purpose, we employ the multipole expansion of the light-matter interaction de-
rived in section 4.1, which allows us to study the impact of individual multipoles
on the spectral line-shape. Substituting (4.6) for Heg, the self-energy becomes

Sij(w) =
e2

2

2

Â
µ=1

Â
kg

1
wg

⌦
yi
��T†

eg(kg, µ)
1

w + ih+ � H0 � Hg
Teg(kg, µ)|yj

↵
. (4.30)

The sum over all photon momenta kg can be performed by taking the continuum
limit as

Â
kg

!
1

(2p)3

Z
d3kg =

1
(2p)3

Z
dwgw2

gdWg (4.31)

where we assume spherical coordinates. Hence, the fluorescence self-energy can
be written as

Sij(w) =
e2

2(2p)3

2

Â
µ=1

Z ⌦
yi
��T†

eg(kg, µ)
1

w + ih+ � H0 � Hg
Teg(kg, µ)|yj

↵

⇥ wgdwgdWg. (4.32)

Inserting (4.11) for the transition operator Teg(kg, µ) with matrix elements (4.15)
and (4.16) for the magnetic and electric multipoles, respectively, and further using
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4 Ab initio calculation of the line-broadening due to fluorescence decay

that Hga†
kg,µ|yii = wga†

kg,µ|yii, we finally end up with

Sij(w) = 4a
2

Â
µ=1

Z
wgdwgdWg Â

tatbt0
at0

b

Â
JMl

Â
J0M0l0

⇣
Y(l0)

J0M0(k̂g) · e⇤µ

⌘ ⇣
eµ · Y(l)⇤

J M (k̂g)
⌘

⇥

h
T(l0)

J0M0(wg)
i

t0

bt0
a

h
T(l)

JM (wg)
i

tbta

⌦
yi
��e†

t0

b
et0

a

1
w + ih+ � H0 � wg

e†
tb

eta

��yj
↵

(4.33)

where a denotes the fine-structure constant. As the vector spherical harmonics
with l = 0, 1 both are orthogonal to k̂g, the sum over the two polarizations can
be performed as [46]

2

Â
µ=1

⇣
Y(l0)

J0M0(k̂g) · e⇤µ

⌘ ⇣
eµ · Y(l)⇤

J M (k̂g)
⌘

=
⇣

Y(l0)
J0M0(k̂g) · Y(l)⇤

J M (k̂g)
⌘

(4.34)

such that the self-energy simplifies to

Sij(w) = 4a
Z

wg Â
tatbt0

at0

b

Â
JMl

Â
J0M0l0

⇣
Y(l0)

J0M0(k̂g) · Y(l)⇤
J M (k̂g)

⌘ h
T(l0)

J0M0(wg)
i

t0

bt0
a

⇥

h
T(l)

JM (wg)
i

tbta

⌦
yi
��e†

t0

b
et0

a

1
w + ih+ � H0 � wg

e†
tb

eta

��yj
↵
dwgdWg.

(4.35)

In the following, we integrate over the photon’s kinetic energy and all momen-
tum directions. To evaluate the latter integral, we exploit that the vector spherical
harmonics obey in analogy to the ordinary ones the orthonormality relation [47]

Z
dWg Y(l0)⇤

J0M0 (k̂g) · Y(l)
JM(k̂g) = dJ0 JdM0Mdl0l. (4.36)

This enables us to directly integrate over all photon directions

Sij(w) = 4a
Z

Â
tatbt0

at0

b

Â
JMl

h
T(l)

JM (wg)
i

t0

bt0
a

h
T(l)

JM (wg)
i

tbta

⇥
⌦
yi
��e†

t0

b
et0

a

1
w + ih+ � H0 � wg

e†
tb

eta

��yj
↵
wgdwg. (4.37)

It is important to note that a direct consequence of the orthonormality relation
(4.36) is that different multipoles as well as magnetic and electric parts of the
transition operator never interfere. To evaluate the integral over wg, we replace

1
w + ih+ � H0 � wg

�! Â
n

|ynihyn|

w + ih+ � En � wg
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4.3 Fluorescence yield spectrum

where |yni are eigenstates of H0. Then we rewrite 1
w+ih+�En�wg

as

1
w + ih+ � En � wg

= P
1

w � En � wg
� ipd(w � En � wg) (4.38)

where P represents the Cauchy principal value. Now the self-energy is split into a
real and an imaginary part, both involving an integral over wg. For the imaginary
part the integration is simple and leads to

Im Sij(w) = �4pa Â
tatbt0

at0

b

Â
JMl

Â
n

h
T(l)

JM (w � En)
i

t0

bt0
a

h
T(l)

JM (w � En)
i

tbta

⇥ (w � En)
⌦
yi
��e†

t0

b
et0

a

��yn
↵⌦

yn
��e†

tb
eta

��yj
↵
Q(w � En). (4.39)

The integral for the real part, on the other hand, is more involved. However,
once we have found an expression for Im Sij(w), the corresponding real part
Re Sij(w) is related to it via the Kramers-Kronig relation and can be written as
[99]

Re Sij(w) =
2
p
P

Z •

0

w0Im Sij(w0)

w02 � w2 dw0. (4.40)

At first glance, it does not look like we have simplified the calculation of the real
part, since we have transformed one integral into another one, both extending
to infinity. However, (4.40) has the advantage that the integrand falls off quickly
such that in practice one can restrict the integration domain to a finite interval
and still obtain sufficiently converged real parts. Here the drawback is that this
interval exceeds the energy window on which the self-energy is needed. Hence
it is necessary to determine Im Sij(w) on this extended energy domain.

4.3 Fluorescence yield spectrum

The fluorescence yield (FY) spectrum determines the number of photons with
energy wg released following the nuclear decay by EC. The aim of this section is
to derive an explicit expression for the FY spectrum. Let us assume that the parent
ground state |Y0i = |FZi ⌦ |y0i ⌦ |0ni ⌦ |0gi with parent nuclear wavefunction
|FZi, electronic ground state wave function |y0i, zero neutrinos and zero photons
transforms by EC into an intermediate state of the form |Yni = |FZ�1i ⌦ |yni ⌦

|q0n, t0
ni ⌦ |0gi. Here, |FZ�1i denotes the nuclear wave function after EC where

one proton inside the nucleus is transformed into a neutron. |yni is the (excited)
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4 Ab initio calculation of the line-broadening due to fluorescence decay

electronic wave function in the modified nuclear potential, whereas the produced
neutrino is characterized by its momentum q0n and the set of quantum numbers
t0

n. As no photon is produced in the EC process, we assume zero photons to be
present in the parent ground and intermediate state.

In a second step, the excited intermediate state decays under the emission of
a photon. As the intermediate states |Yni involve no photons, the light-matter
interaction can only induce transitions where one photon is created. Therefore,
Heg can be replaced by the transition operator Teg introduced in (4.5). Hence,
the final state is given by |Y f i = |FZ�1i ⌦ |y f i ⌦ |qn, tni ⌦ |kg, µi comprising
an (excited) electronic wave function |y f i, a neutrino with momentum qn and
quantum numbers tn, as well as a photon with momentum kg and polarization
µ. According to Fermi’s golden rule, this process is described by the second-order
decay rate G(2) [100]:

G(2) µ Â
f

�����Ân

⌦
Y f

��Teg
��Yn

↵⌦
Yn

��TEC
��Y0

↵

E0 � En

�����

2

d(E0 � Ef ) (4.41)

Here, E0 = Q + Ed, En = E⇤

d(n) + En and Ef = E⇤

d( f ) + En + wg are the energies
of initial, intermediate and final state, respectively. The sum over |Yni extends
over all excited electronic wavefunctions and all states the neutrino can occupy,
i.e. Ân = Âyn Âq0n,t0

n
. The sum over final states additionally involves a photon

and can be written as Â f = Ây f Âkg,µ Âqn,tn
= Ây f

R
w2

gdwgdWg Âqn,tn
where the

sum over kg is transformed into an integral under the assumption of spherical
coordinates. Recall that the EC transition operator can be written as a product of
nuclear, electronic and neutrino part, TEC = TnTeTn. With Tn = Âq00n ,t00

n
n†

q00n ,t00
n

we
explicitly find for the neutrino part of the two matrix elements in (4.41)

Â
q0n,t0

n

hqn, tn|q0n, t0
nihq

0
n, t0

n| Â
q00n ,t00

n

n†
q00n ,t00

n
|0ni = Â

q0n,t0
n

Â
q00n ,t00

n

dqn,q0n dtn,t0
n
dq0n,q00n dt0

n,t00
n

= 1.

(4.42)
The action of Tn can be written as TnFZ µ FZ�1. Consequently, nuclear and
neutrino part can be decoupled from the rest, such that the second-order decay
rate is solely determined by the electronic part

G(2) µ Â
y f

2

Â
µ=1

Z
wgdwgdWg Â

qn,tn

�����Âyn

⌦
y f
��Teg

��yn
↵⌦

yn
��Te

��y0
↵

Q � en � En + ig
2

�����

2

⇥ d(Q � e f � En � wg) (4.43)
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where we introduced en := E⇤

d(n) � Ed and e f := E⇤

d( f ) � Ed as the intermediate
and final state energies measured from the daughter ground state energy Ed. Note
that we added an imaginary part ig

2 in the denominator, in order to take into
account the finite lifetime of the intermediate states which is assumed to be the
same for all |yni. Furthermore, one wg in the integrand over all photon energies
cancels due to the prefactor of (2wg)�1/2 in the light-matter interaction (4.6).

As the energy taken away by the neutrino is experimentally not accessible, we
in the next step sum over all possible momenta qn. This is done by taking the
continuum limit as Âqn

!
R

dEnE2
n, where we assume massless neutrinos. By

employing the delta function d(Q� e f � En �wg), this integral is easily evaluated
such that the decay rate becomes:

G(2) µ Â
y f

(Q � e f � wg)2
2

Â
µ=1

Z
wgdwgdWg

�����Âyn

⌦
y f
��Teg

��yn
↵⌦

yn
��Te

��y0
↵

e f + wg � en + i g
2

�����

2

(4.44)

Our final goal is to derive an expression for the FY spectrum, i.e. to determine
the number of photons as a function of their energy wg released subsequent to
nuclear decay by EC. We are not interested in one particular polarization or direc-
tion. Thus, the integral

R
dWg and the sum over polarizations Âµ are evaluated

by using (4.34) and further exploiting orthonormality of the vector spherical har-
monics (4.36). As G(2) yields the total number of released photons disregarding
their energy distribution, the desired quantity is finally obtained by performing
the derivative with respect to wg:

dG(2)

dwg
(wg) µ Â

y f

(Q � e f � wg)2wg

�����Âyn

⌦
y f
��Teg

��yn
↵⌦

yn
��Te

��y0
↵

e f + wg � en + ig
2

�����

2

(4.45)

Here, Teg denotes the polarization- and direction-independent part of photon
transition operator Teg. Note that the orthonormality relation of the vector spher-
ical harmonics (4.36) employed to evaluate

R
dWg ensures that different multi-

poles do not interfere.
It is convenient to express the FY spectrum in terms of a Green’s function in

analogy to the EC spectrum, but now for a second-order process. For this pur-
pose, we first rewrite dG(2)

dwg
(wg) as:

dG(2)

dwg
(wg) µ

Z
dw(Q � w)2 wg Â

y f

d(w � e f � wg)

�����Âyn

⌦
y f
��Teg

��yn
↵⌦

yn
��Te

��y0
↵

e f + wg � en + ig
2

�����

2

(4.46)
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Replacing the delta function by the response function of a classical damped har-
monic oscillator [9]

d(w � e f � wg) ! � lim
g!0+

Im

"
1

w � e f � wg + ig
2
�

1
w + e f + wg + ig

2

#

⇡ � lim
g!0+

Im

"
1

w � e f � wg + i g
2

#
(4.47)

and the sum over the excited states by the resolvent, we finally arrive at the most
compact expression for the FY spectrum:

dG(2)

dwg
(wg) µ �Im

Z
dw(Q � w)2 wg

⇥
⌦
y0
��T†

e
1

w � H0 � i g
2
T

†
eg(wg)

1
w � H0 � wg + ig

2
Teg(wg)

1
w � H0 + ig

2
Te
��y0

↵

(4.48)

Note that all propagators contain an energy-independent broadening g. As we
have discussed before, this parameter can be replaced by a self-energy calculated
from first principles including all possible additional decay channels, i.e. fluo-
rescence and Auger-Meitner decay into the continuum (or the chemical environ-
ment).

4.4 The example of
55
Fe

The aim of this section is to apply the previously derived expressions for the
fluorescence self-energy and the FY spectrum to the example of 55Fe. Here we
calculate the EC spectrum employing the derived fluorescence self-energy to de-
scribe the line-broadening from first principles. As fluorescence decay becomes
particularly important at high excitations energies, we focus on the high-energy
part of the EC spectrum up to 200 keV. At these energies, the impact of Auger-
Meitner decay on the spectral line-shape is small and will be neglected. In ad-
dition, we calculate the FY spectrum which in this context provides information
about the number of photons released subsequent to EC. Our calculations include
a description of radiative EC, a process which is in literature often referred to as
internal bremsstrahlung. Radiative EC describes the decay of parent atom into
the daughter, an electron-neutrino and a photon. The radiative EC spectrum was
first calculated for the case of K capture by Morrison and Schiff in 1940 [101]. A
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(relativistic) theory of radiative EC was developed by Martin and Glauber in the
1950s [102, 103]. Although fully relativistic, the theory of Martin and Glauber de-
scribes the Coulomb interaction between the electrons on a mean-field level. We
will go beyond mean-field and show the implications of the FY spectrum.

55Fe undergoes an allowed nuclear EC decay into an excited 55Mn⇤ atom under
the emission of an electron-neutrino. The total energy released in the nuclear de-
cay amounts to Q = 231 keV [67] and is shared between the electronic excitations
and the energy taken away by the neutrino. The differential decay rate dG

dw (w)

presents the rate of decay as a function of the electronic excitations w of the 55Mn
atom. An expression of the differential decay rate for an allowed EC decay was
derived in section 2.6. For the case of 55Fe it takes the form:

dG
dw

µ �Im

hYFe|T†

EC
1

w + ih+ � H
TEC|YFei � hYFe|T†

EC
1

w + ih+ + H
TEC|YFei

�

(4.49)
Here, |YFei denotes the ground state of the 55Fe atom and TEC the transition op-
erator describing the EC process. Note that the ground state energy of the 55Fe
atom is set to zero. The Hamiltonian H governing the dynamics subsequent to
EC comprises all interactions except the weak interaction which is treated pertur-
batively and hence already described by TEC. Here we want to study the impact
of fluorescence decay on the spectral line-shape. Therefore, we neglect Auger-
Meitner decay and work with the Hamiltonian introduced in (4.22),

H = HD + HC + Heg + Hg ⌘ H0 + Heg + Hg. (4.50)

H contains besides the Dirac and Coulomb parts also the light-matter interac-
tion Heg as well as the photon’s kinetic energy Hg. The light-matter interaction
allows the system to spontaneously decay by emitting a photon. As the atom
afterwards not necessarily ends up in the 55Mn ground state, additional photons
may be emitted. However, the light-matter interaction Hamiltonian is linear in
the photon creation and annihilation operators, such that the production of more
than one photon would involve higher-order processes. Hence, the most domi-
nant contribution stems from the emission of a single photon which we consider
here.

Once a core electron has been captured, an electron from one of the outer shells
can refill the core hole under the emission of a photon. This process is described
by the self-energy (operator) S(w). Following the derivation in section 4.2, the
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differential decay rate including fluorescence decay can be written as

dG
dw

µ �Im (Q � w)
q

(Q � w)2 � m2
n

⇥


hyFe|T†

e
1

w � H � S(w)
Te|yFei � hyFe|T†

e
1

w + H + S(w)
Te|yFei

�
(4.51)

where |yFei denotes the (electronic) ground state of the 55Fe atom. Te is the elec-
tronic part of the EC transition operator TEC (2.33) annihilating one of the core
electrons in the ns1/2 and mp1/2 orbitals of 55Fe. The corresponding (relative)
capture probabilities are calculated according to (2.31). Note that the infinitesi-
mal imaginary part h+ is replaced by the self-energy S(w).

As we have shown in section 4.2, the self-energy can be represented as a matrix
on the basis of states involving no photons. According to (4.28), the elements of
this matrix are given by

Sij(w) =
⌦
yi
��Heg

1
w + ih+ � H0 � Hg

Heg
��yj

↵
(4.52)

where |yii and |yji are bound states with zero photons.

Fig. 4.1 illustrates a specific decay channel. The operator Te in (4.51) can, for
example, annihilate a 1s core electron. The resulting state, within the Hilbert
space of zero photons, has an excitation energy of about 6.5 keV measured from
the 55Mn ground state. This state is not an eigenstate of H. It can, for example,
interact via the light-matter interaction with an electronic state with a core hole in
the 2p shell and one additional photon. As the photon can assume any positive
energy, there is a continuum of states with a 2p core hole and one additional
photon as is indicated by the blue density of states in Fig. 4.1. This results in a
set of mixed states in terms of photon occupation number. Each state with a 2p
core hole and one photon gets a small admixture of the state with a 1s core hole
without photon, as indicated in purple. The process depicted in Fig. 4.1 can be
described by a function, i.e. a single matrix element of the form (4.52). For a state
with core hole in 1s and no photon we obtain according to (4.32)

S2p
1s (w) µ

Z •

0

⌦
y1s

��T†
eg(kg)

1
w + ih+ � w2p � wg

Teg(kg)
��y1s

↵
wgdwg (4.53)

where Teg(kg) is the light-matter transition operator introduced in (4.6) which
depends on the photon’s wave vector kg and therefore also on its energy wg. The
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Figure 4.1: Sketch of a specific decay channel subsequent to nuclear decay by EC
of an 55Fe atom. The energy is labeled with respect to the ground-state
energy of the 55Mn atom. At about 6.5 keV excitation energy (red line)
one finds a state with a core hole in 1s. This state is not an eigenstate of
the Hamiltonian, but can via the light-matter interaction Heg interact
with states with for example a 2p core hole and one additional photon
(blue). These states start at about 0.63 keV, the excitation energy of a 2p
core hole and form a continuum due to all possible photon energies.
Each state with 2p core hole plus photon gets an admixture of a state
with 1s core hole and no photon (purple).

matrix elements of Heg (or Teg) scale as the Fourier transform of the product of
these orbitals which are in turn strongly energy-dependent.

Fig. 4.2 shows the imaginary part of the fluorescence self-energy (4.39) on a
double-logarithmic plot for several decay channels starting from the capture of
a 1s core electron in 55Fe. The displayed self-energies exhibit a strong energy-
dependence and change by several orders of magnitude on an energy window of
roughly 200 keV.

At resonance, we can compare the imaginary part of the self-energy with Har-
tree-Slater (HS) [104] and Hartree-Fock (HF) [105] calculations. These values are
indicated by blue and green dots, respectively, and are in good agreement with
the presented calculations. Note that the literature values correspond to the full
width at half maximum and can thus be compared to twice the imaginary part
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Figure 4.2: Energy-dependence of the imaginary part of the fluorescence self-
energy (FSE) for different decay channels after the capture of a 1s elec-
tron in 55Fe. At resonance, we can compare the imaginary part of the
self-energy with Hartree-Slater (HS) [104] and Hartree-Fock (HF) [105]
calculations. These values are indicated by blue and green dots, re-
spectively. For the K � K channel no literature value was found. Note
the logarithmic vertical axis.
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Figure 4.3: High-energy part of the EC spectrum of 55Fe for a constant Lorentzian
line-broadening (blue) and an energy-dependent broadening due to
fluorescence decay (red). The energy-dependence of the latter leads
to an increase of more than one order of magnitude in the ionizing
radiation with energies in the range from 50 � 200 keV. Close to the
main resonance, the differences between the two spectra are modest.

of the self-energy. Also note that no literature value was found for the K � K
transition related to a spin-flip of the 1s core hole.

Remarkably, we observe a strong increase of the self-energy above the bind-
ing energies of the core electrons. This is directly related to a strong increase in
the transition matrix element, in particular due to magnetic dipole transitions.
Although the fluorescence self-energy of a core excited atomic state is strongly
energy-dependent over an energy window of several keV, this does not imply
that the line-shape completely deviates from a Lorentzian. The imaginary-part of
the self-energy is of the order of eV, whereas its changes on this energy scale are
small enough, such that at resonance the line-shape is approximately given by a
Lorentzian.

Fig. 4.3 shows the high-energy part of the EC spectrum of 55Fe as function of
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4 Ab initio calculation of the line-broadening due to fluorescence decay

w, the energy stored in terms of electronic excitations, which is approximately
equal to the energy of the ionizing radiation released in the EC decay. The blue
curve displays the EC spectrum under the assumption of a constant self-energy.
The red curve, on the other hand, shows the spectrum for an energy-dependent
self-energy broadening. For an energy window of several hundred eV around the
resonance, the differences between the two theories are tiny and hardly visible in
the spectra. However, in the range of 50 � 200 keV where high-energy ionizing
radiation is emitted, we observe an increase of events by more than one order of
magnitude in the case of the energy-dependent self-energy. In consequence, this
also affects the total amount of ionizing radiation which roughly corresponds to
the first moment of the differential decay rate, i.e. the integral

R •
0 w dG

dw dw. As
most events happen close to the resonance, we only find a modest change of less
than one per mille for the total energy released in terms of ionizing radiation.

Fluorescence yield spectrum

Following nuclear decay by EC, the atom can, for example, first evolve in time
due to the electromagnetic interactions between the electrons and occupy (ex-
cited) bound states which include no photon. These states, referred to as inter-
mediate states, can spontaneously decay into (excited) states with modified elec-
tronic configuration plus one additional photon. As discussed in section 4.3, such
processes are described by the second-order decay rate. From this expression one
can derive the fluorescence yield (FY) spectrum by integrating over all neutrino
energies En, or equivalently, over all excitation energies w = Q � En. The FY
spectrum provides information about the number of photons released with en-
ergy wg. Following the derivation presented in section 4.3, the final form of the
FY spectrum can be written in terms of a Green’s function (4.48)

dG(2)

dwg
(wg) µ �Im

Z
dw(Q � w)2 wg

⌦
yFe

��T†
e

1
w � H0 � S†(w)

⇥ T
†

eg(wg)
1

w � H0 � wg � S(w)
Teg(wg)

1
w � H0 � S(w)

Te
��yFe

↵

(4.54)

where the Lorentzian broadening ig
2 is replaced by the fluorescence self-energy

S(w). The operator Teg(wg) denotes the polarization- and angular independent
part of the light-matter transition operator, Te the electronic part of the EC tran-
sition operator. The Hamiltonian H0 comprises the Dirac Hamiltonian and the

80



4.4 The example of 55Fe

10-2

102

106

1010

1014

0.8 50 100 150 200

fr
ac
tio
na
lp
ho
to
n
yi
el
d
dΓ
/d
ω
γ
(a
rb
.u
.)

photon energy ωγ (keV)

energy-dependent broadening + He γ(ωγ)
Lorentzian broadening + He γ = const.

106

108

1010

1012

6.4 6.42 6.44 6.46 6.48

Figure 4.4: Calculated high-energy part of the FY spectrum of 55Fe. The red curve
assumes an energy-dependent broadening due to fluorescence de-
cay and an energy-dependent Hamiltonian Heg(wg). The blue curve
is calculated for a constant Lorentzian line-broadening and energy-
independent Hamiltonian Heg = const. The latter is evaluated at the
energy difference of the respective coupled states. The inset shows a
section of the FY spectrum at ⇡ 6.44 keV. Photons at this energy are
produced in the transition of a 3p electron into the 1s core hole result-
ing in a final state with one hole in 3p plus additional photon. Due to
the 3p � 3d Coulomb interaction multiplets are formed leading to six
peaks split by energies on the Rydberg scale.

Coulomb interaction.

Fig. 4.4 displays the FY spectrum between 0.8 � 200 keV and a section around
⇡ 6.44 keV. The red curve is calculated for an energy-dependent broadening
and energy-dependent light-matter interaction. For the blue curve a constant
Lorentzian broadening and energy-independent light-matter interaction is as-
sumed. In this case, Heg (or Teg) is evaluated at the energy difference of the
respective coupled states. If, for example, a 2p electron fills a 1s core hole, the

81



4 Ab initio calculation of the line-broadening due to fluorescence decay

transition operator Teg is evaluated at wg = w1s � w2p, where w1s and w2p are the
energies of the states with core holes in 1s and 2p, respectively.

A comparison of the FY spectrum shown in Fig. 4.4 and the EC spectrum dis-
played in Fig. 4.3 reveals that the two spectra resemble each other. While the
agreement is good at very high energies, differences become visible close to the
resonances at lower energies. These emerge due to the fact that in the first-order
spectrum the fluorescent decay of an excited state into a second excited state at
lower excitation energy cannot be resolved.

Our result for the FY spectrum employing the energy-dependent broadening,
i.e. the red curve displayed in Fig. 4.4, is in good agreement with theoretical
calculations based on the Martin and Glauber theory [102, 103] as well as with
experimental measurements [106]. Martin and Glauber employ a fully relativistic
framework, but treat the mutual Coulomb repulsion between the electrons only
on a mean-field level. We go beyond this level of theory and take into account
the full Coulomb interaction. This leads to differences close to the resonances.
An example of a specific decay channel where these differences become visible
is displayed in the inset of Fig. 4.4. Here the FY spectrum at photon energies of
⇡ 6.44 keV is shown. These photons are produced in the decay of a 3p electron
into a 1s core hole created in the EC process leading to a final state with one hole
in 3p and additional photon. Due to the Coulomb interaction between the 3p
shell and the valence 3d shell, this state is split into multiplets. This explains the
six peaks for the blue and red curve shown in the inset of Fig. 4.4 which are split
by energies on the Rydberg scale. In addition, the 3p shell is split due to a finite
spin-orbit coupling into 3p1/2 and 3p3/2. However, the splitting due to spin-orbit
interaction is much smaller compared to the multiplet splitting. On a pure mean-
field level, the multiplet splitting would not be visible. Hence, one would only
observe a very small splitting due to a finite spin-orbit coupling.

Although the number of peaks observed for the blue and red curve displayed
in the inset of Fig. 4.4 is the same, the peak positions for the latter are shifted to
lower photon energies. This is caused by the real part of the self-energy shifting
the resonance with core hole in the 1s shell by several eV towards lower excitation
energies. On the other hand, the calculation leading to the blue curve assumes a
vanishing real part, such that these resonances are not shifted.
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4.5 Conclusion

In conclusion, we developed an ab initio description of the line-broadening due to
fluorescence decay in terms of a self-energy formalism. This enables for a compu-
tationally efficient way to include additional photons in the Hilbert space. Start-
ing from a multipole expansion of the (relativistic) light-matter interaction, we
expressed the fluorescence self-energy in terms of the individual multipole tran-
sitions. Thus, the effect of single decay channels on the spectral line-shape can be
analyzed.

Furthermore, we derived an expression for the FY spectrum based on Green’s
functions. This allows accurate prediction of the number of photons released and
their energy following nuclear decay by EC.

As the formalism is general in its form, it can also be used to derive the elec-
tron yield, i.e. an expression for the number of electrons subsequent to EC. In
this case the light-matter interaction Hamiltonian Heg must be replaced by the
Coulomb repulsion coupling bound to unbound states. A detailed knowledge of
the electron yield spectrum is of great interest, for example in radiotherapy [4].
Therefore, it may be interesting in future studies to calculate the electron yield for
established or potential new isotopes suitable for this purpose.

In section 4.4, we applied the derived concepts to determine the high-energy
EC spectrum of 55Fe. We calculated the spectrum for an energy-dependent broad-
ening by means of the fluorescence self-energy and for an energy-independent
Lorentzian broadening. A comparison of these two spectra revealed that close to
a resonance, the differences between the two theories are modest. At very high
excitation energies of > 50 keV, however, our calculations predict at least one
order of magnitude more intensity for the energy-dependent broadened spec-
trum than for the case of a Lorentzian broadening. This clearly demonstrates the
significance of an energy-dependent line-broadening calculated from first princi-
ples for an accurate description of EC spectra in general. An analysis of the cor-
responding matrix elements proved that this high-energy photon excess results
particularly from magnetic dipole transitions. The difference in total amount of
ionizing radiation between these two theories is less than one per mille.

Finally, we calculated the high-energy FY spectrum of 55Fe. At high energies,
our results are in good agreement with theoretical as well as experimental results
found in the literature. However, close to the resonances at lower energies, differ-
ences compared to other theories become visible. While these theories work on a
mean-field level, we calculate the electronic interactions using the full Coulomb
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interaction. Hence, single resonances get split by energies on the Rydberg scale
not captured on the mean-field level.
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5 Optimized single-particle states for the
nuclear many-body problem

Most of the unstable atomic nuclei decay by beta- or EC transitions in which a
proton (neutron) is transformed into a neutron (proton). These decays involve
the nuclear many-body wave functions of the initial and final state, whose ac-
curate calculation is one of the major concerns in nuclear structure theory. To
address this problem, several approaches based on phenomenological interac-
tions or mean-field approximations have been employed [107, 108]. However,
these theoretical models often lead to inaccurate descriptions which are not in
accordance with experimental observations. Only recently, it could be shown on
the example of beta decay rates that this discrepancy can be strongly reduced by
using an ab initio description of the nuclear many-body problem [109].

A prominent example, which strongly depends on the knowledge of an accu-
rate nuclear matrix element, is the conjectured neutrinoless double-beta decay
(0nbb) [54, 110], in which the parent nucleus decays into its daughter with two
fewer neutrons and two more protons, while emitting two electrons but no neu-
trino. Whether the neutrino is a Majorana particle, i.e. its own anti-particle, or
a Dirac particle is still an open question in particle physics. Hence, the confir-
mation of the existence of the 0nbb decay, for which an accurate knowledge of
the nuclear matrix element is indispensable, would imply the neutrino to be its
own anti-particle, i.e. a Majorana particle and thereby solve this puzzle. Ab initio
nuclear structure calculations seem to be a very promising approach to provide
nuclear matrix elements with the desired accuracy necessary to achieve this goal
[54].

Although very auspicious, such calculations are also challenging as they in-
volve two- as well as three-nucleon interactions and besides require very large
model spaces. For this reason, ab initio descriptions of the nuclear many-body
problem for heavy nuclei are (currently) infeasible. Up to today, the upper end
of the nuclear chart which could be described from first principles is set by 100Sn
[111] with the future goal to extent this limit to higher mass numbers.

The starting point of many ab initio computations is the choice of a suitable
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single-particle basis. Since the associated single- and consequently also the many-
particle space is infinite-dimensional, some kind of truncation must be employed
in order to perform numerical calculations. However, this leads to the undesir-
able fact that physical observables turn out to depend on the basis set parameters.
A key criterion in choosing a suitable single-particle basis is to reduce this depen-
dence as much as possible while ensuring rapid convergence [112].

Here we want to focus on one particular ab initio approach, the so-called no-
core shell model (NCSM) [113, 114] in which the nucleus is described by a set
of point-like, interacting nucleons. The basic idea of the NCSM is to express the
many-body states in terms of Slater determinants and to convert the many-body
Schrödinger equation into a Hamiltonian matrix eigenvalue problem. It has only
recently been shown for the NCSM [112, 115] that a single-particle basis of natu-
ral orbitals constructed in a preceding calculation, one can not only minimize the
dependence on basis set parameters, but also reduce the complexity of the many-
body problem, which ultimately translates into much faster convergence. This
constitutes a promising improvement to extend ab initio calculations to heavier
nuclei.

The goal of this chapter is to present a novel iterative method to optimize the
single-particle basis set, formulated for the NCSM and based in its fundamental
idea on the concept of natural orbitals. To do so, we first provide a brief overview
of the status quo in section 5.1 by introducing two important and commonly used
basis sets in nuclear structure theory, namely the harmonic oscillator and the nat-
ural orbital basis. Then, in section 5.2, we present our novel iterative scheme by
providing a detailed explanation of the underlying algorithm. In section 5.3, we
finally discuss advantages of the introduced approach over conventional meth-
ods and possible implications for ab initio nuclear structure calculations.

5.1 The status quo

The basic assumption in low-energy nuclear many-body calculations is that the
nucleus is made up of point-like interacting protons and neutrons. The starting
point in the NCSM is the intrinsic Hamiltonian [114]

H = Trel + V (5.1)
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which is given by the relative kinetic energy Trel and the interaction V between
the nucleons. The latter typically involves two- as well as three-nucleon interac-
tions. The relative kinetic energy consists of a one- and two-body operator [114]

Trel =

✓
1 �

1
A

◆ A

Â
i

p2
i

2mN
�

1
A

A

Â
i<j

pi · pj

mN
(5.2)

where pi is the momentum of the i-th nucleon and mN the (average) nucleon
mass. Note that Trel depends on the number of nucleons A leading to an overall
A-dependent intrinsic nuclear Hamiltonian.

5.1.1 Harmonic oscillator eigenstates

Usually, the first step in NCSM calculations is to express the intrinsic nuclear
Hamiltonian (5.1) on a basis of harmonic oscillator (HO) wave functions which
are eigenstates of the well-known Hamiltonian

h(w) =
p2

2mN
+

mNw2r2

2
(5.3)

where w denotes the oscillator frequency. The corresponding eigenenergies, which
are identical for protons and neutrons, are given by enl = (2n + l + 3

2)w and are
fully characterized by the quantum number e = (2n + l) [116].

Due to their localized nature and simple analytic form, HO states are widely
used in nuclear physics and are well suited to describe the atomic nucleus [117].
However, the convergence of physical observables like for example the ground
state energy or the charge radius is relatively slow. In addition, these observables
turn out to be strongly dependent on the basis set parameter, i.e. the oscillator
frequency w, which hinders an extraction of such observables from theoretical
calculations [112]. The reason for this is that HO wave functions show the wrong
asymptotic behavior, since they fall off like Gaussians at large distances, while
the correct behavior corresponds to that of bound states in an attractive potential
of finite range, which typically fall off exponentially [118]. Consequently, many
wave functions are needed to correctly describe the long-range behavior of the
states, which is reflected in a fast growing many-body space and finally explains
the slow convergence. This becomes a major drawback when systems with a
larger number of nucleons are described on an HO basis and eventually overrules
the advantages of this basis.
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5.1.2 Natural orbitals

A second single-particle basis set are the so-called natural orbitals (NOs), origi-
nally proposed by Löwdin and Shull in the 1950s [119, 120]. The goal was to find
single-particle states that are optimally matched to the structure of the underly-
ing many-particle states, i.e. to describe them by only a few Slater-determinants.
Since then, NOs have been used primarily in quantum chemistry [121], atomic
[122] and solid state physics [123], but in recent years have received increasing
attention in the field of nuclear theory [112, 115, 118, 124].

The central object for the determination of the NOs is the single-particle density
matrix of the many-body ground state |y0i,

rtt0 = hy0|a†
tat0 |y0i (5.4)

where t = {n, l, j, m, t} represent the single-particle quantum numbers. Here n
is the radial quantum number, l the angular momentum, j the total angular mo-
mentum with projection m and t the isospin projection quantum number. NOs
are defined as the eigenstates of rtt0 , whereas the associated eigenvalues give the
(mean) occupation numbers. NOs are designed to minimize the number of Slater-
determinants required to represent the many-particle wave function |y0i and in-
clude additional contributions originating from high-lying orbitals that would be
unoccupied at the pure mean-field level. These turn out to be of great significance
which ultimately leads to faster convergence compared to alternative basis sets
[112, 115, 123].

However, it is important to realize that before we can determine the density
matrix, we must first calculate the many-body ground state |y0i. For most rele-
vant systems, this is beyond the realm of possibility, since it would require solv-
ing the full many-body Schrödinger equation. Fortunately, it has been shown
in older works from quantum chemistry [125] that an approximate ground state
taking into account at least parts of the correlations beyond mean-field, is al-
ready sufficient to optimize the single-particle basis. However, it is expectable
that the closer the approximate ground state approaches the exact one, the greater
the benefit of the basis optimization. Therefore, it is desirable to determine the
ground state as accurately as possible. The prevailing approach in nuclear theory
is starting from the Hartree-Fock (HF) state obtained in a previous calculation
and adding correlations by many-body perturbation theory [112, 115].

Once an (approximate) ground state has been found, one can construct the den-
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sity matrix. For the rotationally symmetric nuclear problem, the many-particle
ground state is characterized by a definite total angular momentum J with projec-
tion M and parity P. Such a state is generally given by a superposition of various
Slater-determinants composed of single-particle states of the form |nljmti. If one
were to diagonalize the density matrix without additional constraints, then the
resulting NOs would generally be incompatible with the underlying symmetries.
For an initial state with definite J, for example, the density matrix generally cou-
ples states with different j, i.e. the total angular momentum of the NOs would
not be a good quantum number [118]. To ensure that the NOs have well-defined
isospin projection, angular- and total angular momentum, we thus diagonalize
and subsequently transform the respective (l jt)-blocks of the density matrix sep-
arately. Note that the rotation matrix can only connect states with identical mag-
netic quantum number m. Due to the underlying symmetries each of the individ-
ual (l jt)-blocks is independent of m. In consequence, the rotation matrices that
transform HO wave functions to NOs are identical for each magnetic substate
with m = �j, . . . , j that belong to a given j. A more detailed discussion can be
found in [118].

5.2 An outlook to the future � generalized natural

orbitals

The aim of this chapter is to present a novel approach to the optimization of the
single-particle basis, which in its basic idea relies on the concept of the previously
introduced NO. However, the fundamental difference from the usual method is
that the basis is not optimized in one step, but iteratively, i.e., one first optimizes
a sub-set of single-particle states and then gradually adds the remaining orbitals
after the included ones have been pre-optimized. To obtain (optimized) states
with the correct symmetry in the ordinary NO approach, each (l jt)-block of the
density-matrix must be diagonalized separately. For simplicity, we from now on
do not distinguish between protons and neutrons which allows us to ignore the
isospin projection t. Hence, we focus on (l j)-blocks in the density matrix whose
size will determine the (minimal) number of states included in each iteration step.

In the following, we specify our method and present the relevant steps of the
underlying algorithm. For this purpose, we assume the nuclear Hamiltonian (5.1)
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to be given on a basis of HO eigenstates. Different basis sets, for example HF
wave functions, work equally well. In practice, we have to work on a finite basis
and truncate the single-particle space. Since each HO is characterized by the
number of oscillator quanta e, this is done by discarding all states with e > emax.
To keep the notation short, we introduce the quantum number k, where k =

�l � 1 if j = l + 1/2 and k = l if j = l � 1/2, which enables us to label the
sub-sets by only one quantum number instead of two.

Instead of setting up the full density matrix of the (approximate) ground state,
we assume in the first iteration step that the A nucleons may only occupy single-
particle states with one specific k, i.e., we restrict ourselves to those states of a
single sub-block of the density matrix. Since the 0s1/2-orbital is typically the most
occupied one, we choose to start with s1/2-orbitals characterized by k1 = �1.
Hence, the single-particle Hilbert space is given by

V(1) =
n
|nk1i

�� n = 0, . . . ,
emax � l(k1)

2

o
. (5.5)

where n1 are the radial quantum numbers of the HO states with k1. Here the
maximal value of n is determined by the chosen truncation emax.

In the next step we diagonalize the corresponding Hamiltonian labeled by H(1)

to determine the many-body ground state |y
(1)
0 i. This, however, is only achiev-

able for larger nuclei if one removes (unimportant) configurations from the many-
particle basis, i.e. the Slater determinants which can be constructed from single-
particle states with e  emax. In the traditional NO approach starting from the
HO basis, for this purpose, one uses the so-called Nmax-truncation scheme [114].
Every many-particle basis state is characterized by a total of N = (e1 + · · · + eA)

HO oscillator quanta. Let N0 denote the number of quanta in the lowest allowed
configuration, then N can be written as N = N0 + Nex, where Nex are the number
of excited quanta with respect to N0. In the Nmax-truncation scheme all Slater-
determinants with Nex > Nmax are removed from the many-particle basis. Al-
though the Nmax-truncation scheme is applicable in the first iteration step where
we start from a sub-set solely given by HO states, it loses its validity in all further
iteration steps.

The symmetry-adapted NOs we want to work with are given by linear com-
binations of the chosen single-particle states (here HO wave functions) with the
same k. For this reason, their radial quantum number n is not well-defined, which
makes an assignment of oscillator quanta e in the context of NOs meaningless. In-
stead, we truncate the many-particle basis by neglecting all configurations with
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5.2 An outlook to the future � generalized natural orbitals

coefficients e smaller than a predefined threshold value e
(1)
min, i.e. we remove all

Slater-determinants with e < e
(1)
min. Once we have found the ground state for a

given e
(1)
min, we set up the density matrix

r(1) =
⇣

r
(1)
n,k1;n0,k1

⌘
(5.6)

where r
(1)
n,k1;n0,k1

= hy
(1)
0 |a†

n,k1
an0,k1 |y

(1)
0 i. The eigenvectors of r(1) define a unitary

transformation u(1,k1)

|mk1i
(1) = Â

n
u(1,k1)

m,n |nk1i (5.7)

with the help of which the HO states |nk1i are transformed to their NO represen-
tation |mk1i

(1). Here the quantum number m labels the transformed radial part
(not to be confused with the magnetic quantum number), whereas the super-
script in |. . .i(1) indicates the (first) iteration step. Note that u(1,k1) does not mix
HO states with different magnetic number. Hence, the states |nk1i and |mk1i

(1)

have the same magnetic quantum number.
Since some NOs are hardly occupied in |y

(1)
0 i, these states can be optionally

removed from the basis. In practice, this is realized by introducing a threshold
value n(1)

min. States with an occupation smaller than n(1)
min are excluded from the

basis, while those with larger occupation are kept. In this way the single-particle
basis is reduced which is ultimately reflected in a smaller number of matrix ele-
ments and thus accelerated convergence. As we only want to remove unimpor-
tant states, the computational accuracy remains practically unchanged compared
to the original set of states. However, one should keep in mind that orbitals which
have a low occupation number at a particular iteration step and therefore appear
unimportant, might be more occupied at a later time and thus become more rele-
vant.

Note that if any NOs have been removed from the basis, u(1,k1) is adjusted ac-
cordingly, i.e. the corresponding rows/columns are removed. Afterwards, the
transformation u(1,k1) is applied to all matrix elements of the nuclear Hamilto-
nian H involving states with k1. If the nucleons could only occupy single-particle
states characterized by k1, then we would have already found an optimized basis
set. However, we know that in reality things are more complicated and require
an inclusion of single-particle states with different k as well.

Therefore, in the second iteration step we extend the (optimized) basis set con-
sisting of the NOs |mk1i

(1) by adding HO states with identical quantum number
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5 Optimized single-particle states for the nuclear many-body problem

k2 = 1, i.e. the p1/2-orbitals. Thus, the single-particle Hilbert space of the second
iteration step is given by

V(2) =
n
|mk1i

(1)
o[n

|nk2i
�� n = 0, . . . ,

emax � l(k2)
2

o
. (5.8)

The associated Hamiltonian H(2) includes, in addition to the parts that contain
solely orbitals with k1 or k2, also terms that involve both. Note that all matrix
elements of H(2) involving orbitals with k1 are transformed by using u(1,k1). As in
the previous iteration step, we now determine the density matrix of the ground
state of H(2) for a chosen e

(2)
min which is labeled by |y

(2)
0 i, and neglect those parts

that couple states with k1 and k2, i.e. the off-diagonal elements, since these would
lead to NOs incompatible with the required symmetry properties. Hence, the
density matrix of the second iteration step takes the block-diagonal form

r(2) =

 
r

(2)
m,k1;m0,k1

0

0 r
(2)
n,k2;n0,k2

!
(5.9)

where the first block, r
(2)
m,k1;m0,k1

= hy
(2)
0 |a†

m,k1
am0,k1 |y

(2)
0 i, includes the previously

optimized orbitals with k1, while the second one, r
(2)
n,k2;n0,k2

= hy
(2)
0 |a†

n,k2
an0,k2 |y

(2)
0 i,

comprises the yet fully unadapted HO wave functions |nk2i. The eigenvectors of
r(2) define a unitary transformation u(2) that transforms all states, i.e. |mk1i

(1)

and |nk2i, to their NO representation. Note that the first block of r(2) involving
the previously optimized states |mk1i

(1) is not diagonal due to a different ground
state and is therefore re-optimized. Due to the block-diagonal structure of r(2),
the rotation of each sub-block can be performed separately. Let u(2,k1) and u(2,k2)

denote the parts of u(2) acting on |mk1i
(1) and |nk2i, respectively, then the trans-

formation is explicitly given by

|mk1i
(2) = Â

m0

u(2,k1)
m,m0 |m0k1i

(1)

|mk2i
(2) = Â

n
u(2,k2)

m,n |nk2i . (5.10)

As before, m labels the radial quantum number of the states optimized in the
current iteration step which are either obtained from previously optimized states
or from the yet fully unadapted HO wave functions. Then u(2) is applied to the
nuclear Hamiltonian with the possibility to remove unimportant states from the
single-particle basis by introducing a threshold n(2)

min.
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5.2 An outlook to the future � generalized natural orbitals

In this way, we can iteratively include and optimize all other single-particle
states up to kimax which is achieved in imax � 2 further iteration steps where imax

is determined by the number of possible k-values compatible with the given emax.
In each iteration we choose values for n(i)

min and e
(i)
min that define the truncation on

the single- and many-particle level, respectively. In the last iteration step we end
up with a single-particle Hilbert space of the form

V(imax) =
n
|mk1i

(imax�1)
o[

· · ·
[n

|nkimaxi

��� n = 0, . . . ,
emax � l(kimax)

2

o
(5.11)

involving all previously optimized states with k = k1, . . . , kimax�1 and HO states
with |nkimaxi. Diagonalization of the corresponding Hamiltonian H(imax) leads to
the ground state |y

(imax)
0 i which enables us to set up the density matrix

r(imax) =

0

BBBBB@

r
(imax)
m,k1;m0,k1

0 . . . 0

0 r
(imax)
m,k2;m0,k2

. . . 0
...

... . . . ...
0 0 . . . r

(imax)
n,kimax ;n0,kimax

1

CCCCCA
. (5.12)

Here r
(imax)
m,kj;m0,kj

= hy
(imax)
0 |a†

m,kj
am0,kj |y

(imax)
0 i are the sub-blocks of the density ma-

trix for the last iteration step imax involving the states optimized in the previous
iteration steps where j = 1, . . . , imax � 1. The last block of r(imax) contains the HO
states with |nkimaxi and reads r

(imax)
n,kimax ;n0,kimax

= hy
(imax)
0 |a†

n,kimax
an0,kimax

|y
(imax)
0 i. The

eigenvectors of r(imax) define a unitary transformation u(imax,ki) for every sub-set
of states labeled by i = 1, . . . , imax such that

|mk1i
(imax) = Â

m0

u(imax,k1)
m,m0 |m0k1i

(imax�1)

|mk2i
(imax) = Â

m0

u(imax,k2)
m,m0 |m0k2i

(imax�1)

...

|mkimaxi
(imax) = Â

n
u(imax,kimax )

m,n |nkimaxi (5.13)

which transforms all single-particle basis states to a set of fully optimized NOs.
After the imax-th iteration, the algorithm stops and we obtain in addition to a
fully optimized set of single-particle states the nuclear Hamiltonian on this basis.
Although constructed in a different way, our single-particle states still show a
strong similarity to the ordinary NOs, which is why we refer to them as generalized
NOs.
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5 Optimized single-particle states for the nuclear many-body problem

Note that both n(i)
min and e

(i)
min generally depend on the iteration step and can be

chosen to be of different sizes. However, as we have indicated before, it remains
to be clarified how to choose best the thresholds n(i)

min so that no important states
are removed from the basis set at inopportune times. e

(i)
min, on the other hand,

allows us to fix the number of configurations in the many-particle basis. For
small configuration spaces it is feasible to choose e

(i)
min very small, i.e. to consider

large many-particle configuration spaces. For higher iteration steps the single-
particle basis sets get larger accompanied by an increasing number of configu-
rations. Therefore, one typically has to increase e

(i)
min in order to avoid excessive

computational costs.
Recall that so far we have made no distinction between protons and neutrons.

If we distinguished between them, then each sub-set of identical k would split
into two, one for protons and the other for neutrons. Consequently, there would
then be twice as many sub-sets in total, requiring twice as many iteration steps to
determine the fully optimized single-particle basis set.

5.3 Conclusion

In conclusion, we have proposed a novel approach to find an optimized single-
particle basis set for the nuclear many-body problem starting from a basis of HO
eigenstates. The main difference of this method over the existing NO approach
is that the optimization is performed iteratively, i.e., sub-sets of the basis are op-
timized separately. Here, the (minimum) size of each sub-set is determined by
symmetries required of the single-particle states, i.e., parity, total angular mo-
mentum and isospin conservation.

One starts by including only a sub-set of states that coincide in their quantum
number k and then transforms these states to NOs using the eigenvectors of the
corresponding density matrix. Subsequently, one extends the optimized single-
particle basis by a set of states with identical k (different from the previous one)
and rotates as before all orbitals contained in this basis set to their NO represen-
tation. This process is reiterated until all possible states are included and finally
optimized. Due to the similarity to ordinary NOs, we refer to the fully optimized
states as generalized NOs.

The key advantage of this method is that in all iteration steps except the last
one, we consider (pre-optimized) sub-spaces of smaller size than the full space
considered in the classical NO approach. The gain here is that by pre-optimizing
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parts of the basis before adding further states, the diagonalization of the resulting
Hamiltonian in each iteration step is simplified compared to the situation without
any optimization. Thus it is possible to start from much larger single-particle
basis sets than currently tractable, i.e. to choose bigger values of emax at the very
beginning, as well as to manage larger configuration spaces on the many-particle
level.

Moreover, our method allows to dynamically eliminate, i.e. in each iteration
step separately, (unimportant) states with very low occupations. This enables us
to effectively capture the impact of very high-lying HO states while at the same
time keeping the size of the single-particle space small and the computational
costs low.

In order to extract physical observables from theoretical calculations and to
compare them to experimental results, it is crucial to achieve full convergence
as well as to minimize the dependence of physical observables on the basis set
parameters. Using ordinary NOs, it was shown on the example of 16O that the
frequency dependence of the ground state energy and the charge radius practi-
cally vanishes, while at the same time the convergence behavior improves sub-
stantially with respect to the HO or HF basis [112, 115]. However, for heavier
nuclei such as 78Ni, this frequency dependence cannot be fully eliminated [112].

This problem can be addressed by starting from single-particle wave functions
that reflect the true states better than is currently done. Our introduced generalized
NOs seem to be ideally suited for this purpose for the reasons given above. It is
to be expected that if the generalized NOs are chosen as a single-particle basis,
the dependence of the observables on the oscillator frequency could be further
reduced or, at best, even eliminated. This could enable one to extend ab initio
calculations to heavier nuclei than currently feasible.
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6 Interference between Nonresonant and
Resonant Inelastic X-Ray Scattering:
The example of NiO

Transition-metal compounds are of great significance in the search for new, tech-
nologically highly-relevant quantum materials with open d-shells, as they show
many fascinating properties like giant magnetoresistance or high temperature
superconductivity [126, 127]. All of these properties are closely related to the
underlying electronic structure, in particular to the orbital degrees of freedom.
Therefore, a detailed knowledge of the so-called d � d excitations, i.e. on-site
transitions between crystal field split d-states, is crucial, as they provide material
specific information about the local symmetry of d-ions in a crystal. However,
the precise determination of the corresponding spectra is quite challenging, since
d � d excitations involve dipole-forbidden transitions which in turn are difficult
to access experimentally [128].

In recent years, two spectroscopic techniques, the Resonant Inelastic X-ray Scat-
tering (RIXS) and the Nonresonant Inelastic X-ray Scattering (NIXS), have proven
among others useful for their identification [128–133]. In typical NIXS (as well as
RIXS) experiments the conditions are set such that the respective other process
is suppressed. For instance, in NIXS the incident photon energy is typically cho-
sen several hundred electron volt away from an atomic resonance [129–131] in
order to minimize the resonant contribution of RIXS to the cross section. This
implies, that interference between NIXS and RIXS is assumed to be negligible in
the explanation of the measured spectrum.

However, almost a decade ago, Sun et al. [134] observed in their inelastic x-
ray study on the O2 molecule a pronounced angular anisotropy in the measured
intensity, which could be attributed to the interference of NIXS and RIXS. Fur-
thermore, the authors indicate the importance of the interference term for the
interpretation of x-ray scattering spectra in general [134]. Indeed, there is also ex-
perimental evidence for the case of Nickel oxide, which may indicate interference
of NIXS and RIXS [135]. Until today, a theoretical investigation of the NIXS-RIXS
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interference term particularly in the context of d � d excitations is missing.

In the remainder of this chapter we want to investigate the interference of RIXS
and NIXS in more detail using the textbook example of Nickel oxide (NiO). For
this purpose, we begin in section 6.1 with an introduction to Inelastic X-ray Scat-
tering (IXS), a spectroscopic technique capable of probing the electronic structure
of materials. IXS comprises NIXS and RIXS, which are afterwards introduced in
the sections 6.1.1 and 6.1.2, respectively. There we review the corresponding cross
sections and explain how d � d excitations are induced. In section 6.2, we then
focus on the NIXS-RIXS interference term and analyze besides the polarization
dependence predicted by Sun et. al [134], also the energy dependence, under the
assumption of a typical experimental scattering geometry.

6.1 Inelastic X-ray Scattering (IXS)

Inelastic X-ray Scattering (IXS) is a powerful experimental tool to investigate the
correlated motion of electrons in atoms, molecules or solids. The basic idea of ev-
ery x-ray scattering experiment is to scatter photons off matter, leaving behind the
system in an excited state [100]. By measuring the change in energy, momentum
(and polarization) of the scattered photons information on the excitations can be
extracted. IXS is mediated by the light-matter interaction which typically can be
treated non-relativistically, as the photon energies (⇠ 10 keV) used in inelastic
scattering experiments are well below the electron rest mass (me = 511 keV) such
that relativistic effects can be neglected. In the Coulomb gauge (r · A = 0) the
non-relativistic light-matter interaction Hamiltonian is given by [100]

Hint =
N

Â
n=1

✓
e

me
pn · A(rn, k) +

e2

2me
A2(rn, k)

◆
(6.1)

where we employ natural units (c = h̄ = e0 = 1). Here rn and pn are the position
and momentum of the n-th electron and A(rn, k) denotes the vector potential with
wave vector k. In the following we will omit the index n and implicitly assume a
summation over all N electrons.

The vector potential A is linear in the photon annihilation and creation opera-
tors. Therefore, the p · A term leads to inelastic x-ray scattering in second-order
perturbation theory which dominates close to an absorption edge. The A2 term,
on the other hand, corresponds to the first-order contribution and is the leading
term far away from a resonance [100].
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6.1 Inelastic X-ray Scattering (IXS)

The quantity of interest in IXS experiments is the double differential cross sec-
tion (DDCS) which describes the intensity of scattered photons measured within
the energy range dw0

out and solid angle dW [100]

d2s

dWdw0
out

= r2
0

 
w0

out
w0

in

!

Â
f

����h f |eiq·r
|ii(e⇤out · ein)

+
1

me
Â
n

h f |e⇤out · p|nihn|ein · p|ii
w0

in � (E0
n � E0

i ) + iG/2

����
2

d(E0
i � E0

f + w) (6.2)

where r0 = e2

me
denotes the classical electron radius. |ii, | f i and |ni are the initial,

final and intermediate states with corresponding energies E0
i , E0

f and E0
n. kin, w0

in
and ein are the wave vector, energy and polarization of the incoming, and kout,
w0

out and eout of the outgoing photons. The scattering vector and the energy loss
are defined by q = kin � kout and w = w0

in � w0
out, respectively. G is the lifetime

broadening and will be taken from experiment.

In order to calculate the DDCS (6.2) for NiO the first step is to set up the Hamil-
tonian and to determine all relevant eigenstates. The Hamiltonian describing NiO
is similar to the one we used to describe electron capture spectra, with the differ-
ence that we now consider a crystal and not a single atom. The spherical sym-
metry in NiO is broken due to the six O2�-ions which surround the Ni2+-ions
octahedrally. To mimic the local symmetry of the Ni2+-ions, we approximate the
solid by a single Ni2+-ion and add an effective crystal field potential HCF to the
Hamiltonian H = HD + HC + HCF where HD and HC represent Dirac’s Hamil-
tonian and Coulomb interaction, respectively. In an octahedral crystal field, the
ten-fold degenerate 3d states split into a six-fold degenerate t2g and a four-fold
degenerate eg irreducible representation. The eg orbitals (dz2 and dx2�y2) point
towards the oxygen ions, whereas the lobes of the t2g orbitals (dxy, dxz and dyz)
point in between the oxygen. Hence, the electrons in the eg orbitals experience
a stronger Coulomb repulsion than electrons in the t2g orbitals and are therefore
higher in energy. The energy splitting between eg and t2g is referred to as the
crystal field splitting DCF and in NiO amounts to DCF ⇡ 1.1 eV [126].

6.1.1 Nonresonant Inelastic X-ray Scattering (NIXS)

The first term in (6.2) is based on the A2 term of the interaction and describes
the Nonresonant Inelastic X-ray scattering (NIXS). The basic idea of NIXS is to

99



6 Interference between Nonresonant and Resonant Inelastic X-Ray Scattering

transfer high momenta in the scattering process such that higher-order multi-
poles beyond the dipole become relevant. This is typically achieved in the hard
x-ray regime (⇠ 10 keV) where the photon energy exceeds the atomic transi-
tion energies [136]. While at low momentum transfer the direction of q pro-
vides equivalent information as the polarization vector in x-ray absorption spec-
troscopy (XAS), at high momentum transfer NIXS can resolve more complicated
features not accessible in XAS. This property is for example utilized in the re-
cently developed experimental method s-NIXS which allows to make a direct
image of the active orbitals in novel quantum materials [137]. Furthermore, NIXS
has been used to study the ground-state symmetry in strongly correlated materi-
als [138] or to observe d � d excitations in transition metal oxides [128–131].

The NIXS spectrum is determined by the so-called dynamic structure factor

S(q, w) = Â
f

��h f |eiq·r
|ii
��2d(E0

i � E0
f + w) (6.3)

which contains only the material-specific part of the DDCS (6.2). Note than one
can express the dynamic structure factor in terms of a linear response function as
shown in [128].

In order to directly obtain the transitions in terms of the different allowed mul-
tipole excitations, it is convenient to expand the exponential in terms of renor-
malized spherical harmonics C(k)

m (r̂) =
p

4p/(2k + 1)Y(k)
m (r̂)

eiq·r =
•

Â
k=0

k

Â
m=�k

ik(2k + 1)jk(qr)C(k)⇤
m (q̂)C(k)

m (r̂) (6.4)

where jk(qr) is a k-th order spherical Bessel function. Then, the matrix elements
can be written as [128]

h f |eiq·r
|ii =

•

Â
k=0

k

Â
m=�k

ik(2k + 1)hRn f l f |jk(qr)|Rnilii

⇥ C(k)⇤
m (q̂)hYl f m f |C

(k)
m (r̂)|Ylimii (6.5)

where we have assumed initial and final state wave functions of the form y(r) =

Rnl(r)Ylm(q, f). The sum over multipole moments k, which contribute to a tran-
sition from li ! l f are restricted by the triangle condition of the Clebsch-Gordan
coefficients |li � l f | 6 k 6 li + l f and by parity li + l f + k = even. For d � d tran-
sitions this implies k = 0, 2, 4. Due to conservation of angular momentum, the
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Figure 6.1: Sketch of the scattering geometry. The momentum transfer q = kin �

kout is parallel to the [110]-direction.

magnetic quantum number m satisfies the condition m = m f � mi. The excita-
tions in NIXS are spin-conserving, i.e. DS = 0.

The NIXS scattering amplitude (6.5) depends on both, the absolute values of the
scattering vector |q| = q and on its direction q̂ with respect to the crystal axis. The
momentum transfer q emerges in the argument of the spherical Bessel function
jk(qr). For the scattering geometry (see Fig. 6.1) we assume for all our calculations
q is related to the incident photon energy and the angle f = ^(kin/out, q) by q =

2 cos(f)w0
in. As the momentum transfer increases, first the quadrupole (k = 2)

and then the hexadecapole (k = 4) transitions become maximal [128]. Monopole
(k = 0) excitations, on the other hand, peak at zero photon energy, but only play
a role for the elastic scattering which is irrelevant for our purpose. Hence, the
size of q determines the spectral weight of the allowed multipoles which offers
an opportunity to optimize the experimentally measured intensity.

The directional dependence on q, on the other hand, is encoded in the angu-
lar part of the matrix element Âk

m=�k C(k)⇤
m (q̂)hYl f m f |C

(k)
m (r̂)|Ylimii. All multipoles

except the monopole (k = 0) show a directional dependence on q. Since the
spherical harmonics are sensitive to the z-component of the orbital angular mo-
mentum of the initial and final states, the orientation of q with respect to the
sample determines which valence states are probed [136].

6.1.2 Resonant Inelastic Scattering (RIXS) at the K-edge

Resonant inelastic X-ray Scattering (RIXS) originates from the p · A term and is
the second order process of the DDCS (6.2). A core electron is first excited into
the valence shell and then decays by refilling the core hole and emitting a pho-
ton. By analyzing the change in energy, momentum and polarization of the scat-
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tered photons one can retrieve information about the elementary excitations of
the system under consideration. RIXS is a versatile technique, capable of prob-
ing a broad class of low-energy excitations in molecules, atoms or solids. For
example, it has been successfully applied to probe elementary excitations like
magnons [139], charge-transfer [140] or phonons [141]. In particular, also the
d� d excitations in transition metal oxides have been observed by RIXS [132, 133].
Apart from its versatility, RIXS has numerous advantages compared to alterna-
tive methods like for instance neutron scattering, which made RIXS a popular
and widespread technique. For example, RIXS is bulk sensitive, polarization de-
pendent and can be utilized to probe thin films or surfaces [142]. A more detailed
discussion can be found in the review [142].

The RIXS spectrum is determined by the the second term of the DDCS (6.2)

d2s

dWdw0
out

µ Â
f

�����Ân

h f |D0†
|nihn|D|ii

w0
in � (E0

n � E0
i ) + iG/2

�����

2

d(E0
i � E0

f + w) (6.6)

where D = ein · p and D
0 = eout · p are the dipole operators for the absorp-

tion and emission processes, respectively. Alternatively, one can rewrite the RIXS
cross section in terms of a Green’s function similar to the dynamic structure fac-
tor. However, since RIXS is a second-order process, this requires a higher-order
Green’s function.

In the following, we will consider RIXS at the K-edge, i.e. the excitation of a 1s
core electron. Since the transition into the 3d shell is dipole-forbidden and there-
fore weak, we focus on the much stronger dipole-allowed excitation into the 4p
shell above the Fermi edge. At the K-edge, the angular momentum of the excited
4p electron is directly related to the polarization of the incident photons. More
precisely, the dipole operator takes the form D ⇠ Âqs eq p†

qsss where eq = C(1)
q (ê)

are the components of the polarization vector e; p†
qs creates an electron in 4p

with spin component s and projection of of orbital momentum q onto the z-axis,
whereas ss annihilates a 1s electron [133]. Note that we have neglected the finite
4p band width and instead assume a constant, momentum independent energy
of the 4p shell. In the intermediate state, the 1s core hole, the 4p and 3d shell in-
teract. d � d excitations describe the transitions between different d-orbitals and
involve a change of orbital angular momentum. Since the 1s core hole cannot
transfer angular momentum to the valence, the d � d excitations are caused by
the higher-order terms of the 3d � 4p Coulomb repulsion (⇠ 0.1 eV). The much
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stronger 1s � 3d Coulomb interaction (⇠ 6 � 8 eV), on the other hand, leads to
charge-transfer excitations which are observed at higher excitation energies [133].
Since the excitations are induced by the 3d � 4p Coulomb repulsion and not di-
rectly by the photon, this process is referred to as indirect RIXS.

In order to better understand how the d � d excitations are induced in the indi-
rect RIXS process, let us now take a look at an example. Assume the 1s electron
to be excited from the ground state into the 4p state with orbital angular mo-
mentum m4p = 1. An electron in one of the t2g orbitals, for example the one
with m3d = �2, then interacts with the 4p electron, thereby exchanging an or-
bital angular momentum of +2 such that the two electrons are scattered into the
states with m0

3d = 0 and m0

4p = �1. The dipole operator responsible for the de-
excitation process annihilates the 4p electron and refills the core-hole. Finally, the
atom ends up in a state where one of the t2g electrons has been excited into an eg

which corresponds to a d � d excitation.
Due to the absent spin-orbit coupling at the K-edge, only the exchange interac-

tion of the 1s with the valence shell can lead to a spin-flip of the core hole. This
term, however, is relatively small such that the spin is unlikely to change. Con-
sequently, also the spin of the 4p electron which refills the core hole remains the
same and one mainly probes spin-conserving excitations. Furthermore, it is im-
portant to realize that the angular momentum transfer from 4p to 3d is necessarily
connected with a polarization change of the photon.

In the following, we focus on incident photon energies far away from a res-
onance which is satisfied if the photon energy exceeds the excitation energy of
all the intermediate states |ni, i.e. we assume

�� En
win+iG/2

�� ⌧ 1 8 |ni. As a first
step we rewrite the scattering amplitude and measure all energies from the reso-
nance energy wres which in the underlying case corresponds to the 1s� 4p atomic
transition energy. In that case the RIXS scattering amplitude takes the form

F f i = Â
n

h f |D0†
|nihn|D|ii

win � En + iG/2
(6.7)

where win = w0
in � wres denotes the energy of the incoming x-rays and En =

E0
n � wres the energy of the intermediate state |ni both measured from wres. The

initial state energy has been set to zero Ei ⌘ 0.
Although we evaluate the general expression of the RIXS amplitude (6.7) in all

our calculations, we now expand the scattering amplitude in terms of a power
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6 Interference between Nonresonant and Resonant Inelastic X-Ray Scattering

series in order to provide a better understanding of the relevant terms. Far away
from the resonance, (6.7) can be written as [143]

F f i =
1

win + iG/2

•

Â
m=0

Fm (6.8)

with matrix elements

Fm = Â
n

✓
En

win + iG/2

◆m
h f |D0†

|nihn|D|ii

=

✓
1

win + iG/2

◆m
h f |D0†Hm

D|ii. (6.9)

In the last line the sum over intermediate states |ni with energy En has been
replaced by Hm, as these are eigenstates of the Hamiltonian.

We can further make the following approximations: The first term in the ex-
pansion (m = 0) does not involve the Hamiltonian H. Hence, the state after the
dipole-allowed excitation, D|ii, remains unaltered and consequently the m = 0
term only contributes to elastic scattering. Since we are interested in d � d exci-
tations which are caused by IXS, we can omit the m = 0 term. In addition, we
ignore all terms in the series with m > 1, because for large win these are strongly
suppressed with respect to m = 1. Finally, the leading-order scattering amplitude
for incident photon energies far away from a resonance is given by

F
(1)
f i =

✓
1

win + iG/2

◆2
h f |D0†HD|ii. (6.10)

In this case RIXS is proportional to a linear response function similar to NIXS.
Compared to the general RIXS amplitude (6.7), (6.10) has the advantage that it
is independent of the complicated intermediate states |ni which in particular is
useful for systems with a large number of atoms where the calculation of the
intermediate states might become challenging [143]. However, despite a finite
4p bandwidth of the order of one Rydberg [144] (which is neglected here) and
the fact that only the m = 1 term is included in the expansion, the leading-order
scattering amplitude (6.10) provides an accurate description of RIXS starting from
approximately 100 eV away from the resonance.

Since the polarization and momentum vectors are rank-1 spherical tensor oper-
ators, it is convenient to separate polarization-dependent and independent parts
by re-coupling the spherical tensor operators [142]

F
(1)
f i ⇠

✓
1

win + iG/2

◆2 2

Â
K=0

�
e⇤out ⌦ ein

 (K)
· h f |

�
r†
⌦ Hr

 (K)
|ii (6.11)

104



6.2 NIXS-RIXS interference

where the momentum is linked to the position by p = m
i [r, H]. The scalar product

of the two spherical tensor operators A(K)
⌘

�
e⇤out ⌦ ein

 (K) and B(K)
⌘

�
r†

⌦

Hr
 (K) can explicitly be written as [47]

A(K)
· B(K) =

K

Â
Q=�K

(�1)Q A(K)
�QB(K)

Q (6.12)

with components A(K)
�Q and B(K)

Q . Since we consider excitations between two
states with identical parity, the contribution from K = 1 vanishes due to con-
servation of parity. Although the K = 0 term is non-zero, it only contributes to
the elastic scattering. Therefore, the amplitude is determined by K = 2 and reads

F
(1)
f i =

✓
1

win + iG/2

◆2 2

Â
Q=�2

(�1)QA(2)
�QB(2)

Q . (6.13)

In contrast to NIXS where the polarization dependence enters as a geometric pref-
actor, in RIXS it directly influences the scattering process by weighting the fun-
damental amplitudes B(2).

6.2 NIXS-RIXS interference

Although NIXS and RIXS can be regarded as two complementary experimental
techniques, both can be used to probe d � d excitations. Consequently, most of
the final states | f i are reached in NIXS and RIXS such that there is - apart from the
pure NIXS and RIXS parts - also a non-vanishing NIXS-RIXS interference which
contributes to the DDCS (6.2). This term, however, is typically neglected in the-
oretical calculations. Here we want to systematically analyze the energy- and
angular dependence of the NIXS-RIXS interference and to show its impact on the
d � d excitations in NiO.

In order to specify the relative strength of NIXS and RIXS as a function of the
incident photon energy, we now calculate the transition strength which we define
as the radial part of the cross section. In NIXS the transition strength can be read
off directly from the scattering amplitude (6.5)

fN =
��(2k + 1)hR3d(r)|jk(2 cos(f)w0

inr)|R3d(r)i
��2 (6.14)

and depends on the multipole order k and on f. In RIXS, on the other hand, the
transition strength is determined by the product of two dipole matrix elements
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Figure 6.2: Transition strength for NIXS (blue) and RIXS (red) as a function of the
incident photon energy w0

in at an angle of f = ^(kin/out, q) = 60�.
The lifetime broadening G of the Ni 1s core hole is set to G = 1.44 eV
and has been taken from experiment [145]. wres corresponds to the
energy matching the 1s � 4p atomic transition which in NiO amounts
to wres ⇡ 8.4 keV. The red hatched area ±100 eV around the resonance
indicates where the leading-order RIXS amplitude (6.10) loses validity.

times the resonant enhancement as can be inferred from (6.6). Replacing the mo-
mentum operator by p = m

i [r, H], the dipole operator is proportional to the scalar
product of polarization and position vector

e · hn0l0m0
|r|nlmi =

1

Â
q=�1

(�1)qe�qhRn0l0(r)|r|Rnl(r)ihl0m0
|C(1)

q (r̂)|lmi (6.15)

with single-particle orbitals |nlmi = Rnl(r)|lmi.

Here we focus on the 1s � 4p edge, i.e. the dipole operators couple the 1s
and 4p orbital, such that the relevant radial integral is hR4p(r)|r|R1s(r)i. The
Hamiltonian originating from the commutator p = m

i [r, H] enters twice and is
evaluated between the initial/final state and the intermediate state with a core
hole in the 1s shell. Assuming that wres ⇡ |Ei � En| and Ei ⇡ Ef leads to an
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additional factor of w2
res. Finally, the transition strength in RIXS takes the form

fR =

�����
|hR4p(r)|r|R1s(r)i|2mew2

res

w0
in � wres + iG/2

�����

2

. (6.16)

Fig. 6.2 displays the transition strength in RIXS and NIXS as a function of the
incident photon energy w0

in. Close to a resonance, RIXS it is strongly enhanced
exceeding NIXS. At the resonance the enhancement is (wres/G)2 and for tran-
sition metals amounts to ⇠ 106 [143]. Off-resonance RIXS rapidly decays until
at about 100 eV away from the resonance. First the quadrupole (k = 2) and fi-
nally, at higher photon energies, the hexadecapole (k = 4) term in NIXS take over.
The magnitude of the interference is proportional to the product of the NIXS and
RIXS transition strength. Although this leads to a big interference in the vicinity
of a resonance, it is small compared to the strongly enhanced RIXS which will
dominate the cross section at these energies. Thus, the energy window, where
measurable interference effects can be expected, ranges from hundred eV up to
a few keV away from the resonance. Interestingly, typical NIXS experiments on
transition-metal oxides, like for example NiO [129, 130] and CuO [131], are per-
formed at photon energies ⇠ 0.8 � 1.5 keV away from the resonance and fall in
the aforementioned energy window. Hence, interference effects are expected to
become relevant and should be included in the calculations in order to accurately
describe the measured spectra.

Energy dependence

While the transition strength determines the magnitude, the type of the inter-
ference, i.e. constructive or destructive, depends on the relative phase between
the NIXS and RIXS scattering amplitudes. One possibility to change the relative
phase and thereby the interference is to tune the incident photon energy across a
resonance which in the underlying case corresponds to the 1s � 4p atomic transi-
tion energy at wres ⇡ 8.4 keV.

Fig. 6.3 shows the RIXS+NIXS spectrum of NiO including the interference for
pin � pout at an angle of f = ^(kin/out, q) = 60� and sin � sout polarization for
different photon energies from 5 keV (purple) to 9 keV (red). The bottom row
displays the individual RIXS, NIXS and interference contributions. In all calcula-
tions the momentum transfer points in the [110]-direction. For cross-polarization
sin � pout and pin � sout NIXS and consequently the interference vanishes, be-
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Figure 6.3: The top row shows the NIXS+RIXS spectra including the interference
for pin � pout polarization at f = ^(kin/out, q) = 60� and sin � sout

polarization (see Fig. 6.1) for different incident photon energies w0
in =

5� 9 keV. The bottom row displays the different parts (RIXS, NIXS and
Interference) composing the full spectra on the top. The momentum
transfer q is parallel to the [110]-direction.

cause the polarization vectors of the incident and scattered photons are by defi-
nition orthogonal to each other. Therefore, we can ignore these channels.

Both, the RIXS and NIXS spectrum shows three main peaks. The first peak at
1.1 eV has 3T2g symmetry and is quadrupole forbidden. However, hexadecapole
transitions and higher-order effects lead to some small intensity. The second and
third peak around 1.8 and 3.0 eV have 3T1g symmetry and can be reached from
the 3A2g ground state with configuration t6

2ge2
g by quadrupole and hexadecapole

transitions [128].
At first glance it might be surprising to observe three resonances instead of

one, as a single photon can only excite one electron at time. We therefore want to
explain the origin of the individual resonances in more detail:

The first peak is understandable on a mean-field level and corresponds to the
excitation of one electron from the occupied t2g into one of the empty eg states
at an excitation energy of roughly DCF = 1.1 eV. However, Coulomb repulsion
splits the energy of the t5

2ge3
g configuration, because the t2g (xy) electron interacts

108



6.2 NIXS-RIXS interference

more strongly with the eg (x2
� y2) than with an eg (z2) electron which leads to

an additional peak at 3 eV. The second peak sits at roughly twice the energy of
the crystal field splitting and corresponds to the double excitation from t2g to eg.
This peak results from the Coulomb interaction between t2g and eg which mixes
in configurations with two holes in t2g and therefore is only understandable in a
true many-body picture [40].

In both polarization channels the interference is constructive below the edge
(w0

in = 5 � 8 keV) and destructive above (w0
in = 9 keV) which can be understood

as follows: The sign of the RIXS amplitude (6.7) is determined by 1/(win + iG/2).
Below the edge (win < 0), the real and imaginary part of 1/(win + iG/2) are neg-
ative. If, however, the photon energy is tuned above the edge (win > 0), the
real part turns positive while the imaginary part remains negative. Contrarily,
in NIXS neither the sign of the real nor the imaginary part changes which could
compensate the sign-flip in RIXS. Therefore, the relative phase between RIXS and
NIXS differs below and above the edge, finally changing the character of the in-
terference.

The magnitude of the interference shows a similar energy dependence as RIXS.
It is maximal at 8 keV – the energy closest to the resonance – and rapidly decays
when the photon energy moves away. Remarkably, for the 3T1g states in the pin �

pout channel, the spectral weight due to interference exceeds RIXS by almost one
order of magnitude. Above 7 keV the interference is even of the same order as
NIXS leading to prominent changes of the spectra. While in NIXS the intensity
of all peaks increases from 5 to 9 keV, the sequence of the spectra changes when
the RIXS and interference parts are included. Precisely, the spectrum at 9 keV
drops below the one at 6 keV for the first and third excitation or even below the
spectrum at 5 keV for the second peak. As RIXS adds more spectral weight to the
spectrum at 9 keV than to all the other spectra below 8 keV, the strongly reduced
intensity can only be explained by the interference.

In the sin � sout channel, the excitations with 3T1g symmetry disappear in RIXS.
Hence, also the interference vanishes and the spectra look similar to NIXS at
these energies. The 3T2g peak, however, shows a high RIXS intensity and a non-
vanishing interference. At 8 keV RIXS and the interference become maximal and
are of similar magnitude. Since the interference is – like in the pin � pout channel
– constructive below the edge and destructive above, RIXS and interference both
add spectral weight to the NIXS intensity leading to the pronounced peak at 1.1
eV.
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Angular dependence

So far we have discussed the energy-dependence of the NIXS+RIXS spectrum
at the fixed angle of f = ^(kin/out, q) = 60�. A second possibility to tune the
NIXS-RIXS interference is by changing f. Photons are characterized by transverse
waves, i.e. their momentum and polarization vector are perpendicular to each
other. Since the electric field of s-polarized photons oscillates perpendicular to
the scattering plane, their polarization vector is independent of f and hence, no
angular dependence of the interference is observed. In the pin � pout channel, on
the other hand, an angular dependence of the interference is expected, because
here the polarization vectors depend on the orientation of kin and therefore on f.
Two sets of polarization vectors for pin � pout polarization are compatible with
the scattering geometry shown in Fig. 6.1. In Cartesian coordinates they are given
by

ein =
1

p
a2 + b2

0

B@
a
b
0

1

CA , eout =
1

p
a2 + b2

0

B@
b
a
0

1

CA

and

e0in =
1

p
a2 + b2

0

B@
b
a
0

1

CA , e0out =
1

p
a2 + b2

0

B@
a
b
0

1

CA (6.17)

where a = sin(f) � cos(f) and b = sin(f) + cos(f). Note that the two sets of
polarization vectors lead to the same spectrum.

Fig. 6.4 shows the angular dependence of the interference for pin � pout polar-
ization below (w0

in = 8 keV) and above (w0
in = 9 keV) the edge. Below the edge

the interference is constructive for f > 45� and destructive for f < 45�. Above
the edge, the situation is reversed as a result of the energy-dependence of the
interference discussed before.

To unscramble the origin of the observed angular dependence of the interfer-
ence, we will in the following analyze the individual polarization dependence
of NIXS and RIXS. In NIXS the polarization dependence is determined by the
scalar product of the polarization vectors. Explicitly, we find for the two possible
sets of polarization vectors e⇤out · ein = sin2(f) � cos2(f), i.e. negative values for
f < 45� and positive for f > 45�. At an angle of f = 45� the scalar product van-
ishes leading to vanishing NIXS and interference terms. While the sign-change of
e⇤out · ein induces a phase-change in NIXS, the sign in RIXS remains constant when
f crosses 45� which is closely connected to the change of orbital angular momen-
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Figure 6.4: Angular dependence of the NIXS-RIXS interference below and above
the 1s � 4p edge at an energy of wres ⇡ 8.4 keV. The calculations are
performed for pin � pout polarization and the momentum transfer is
parallel to the [110]-direction.

tum of the 4p electron in the intermediate state and to the particular scattering
geometry. Recall the example discussed in section 6.1.2, where a 1s core elec-
tron is excited into the 4p orbital with angular momentum m4p = 1, then scatters
into m4p = �1 and finally refills the core hole. As we have pointed out, the rele-
vant components of the polarization vector in the excitation (e1) and de-excitation
(e�1) steps necessarily need to be different in order to transfer angular momen-
tum to the 3d states, thereby inducing d � d excitations. By relating the spherical
components e±1 to the Cartesian ones (6.17), e±1 = ⌥(ex ± iey)/

p
2, the polariza-

tion dependence takes the form e⇤
�1 · e1 = �(ia + b)(a + ib) = �i and in particu-

lar is independent of f. As a result, the different interference beyond f = 45� can
be attributed to the sign change of the NIXS amplitude, because only the NIXS
flips sign. In alternative scattering geometries, however, where for example the
angles ^(kin, q) and ^(kout, q) are not identical, the angular dependence of the
polarization vectors is different and one might also observe sign-changes of the
RIXS amplitude which could affect the interference.
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6.3 Conclusion

In summary, we have calculated the NIXS spectrum for the textbook-example
NiO including RIXS and interference contributions for incident photon energies
from w0

in = 5 � 9 keV and a momentum transfer in the [110]-direction. The pho-
ton energies were chosen far away from the 1s � 4p resonance at wres ⇡ 8.4 keV
enabling us to expand the RIXS amplitude in terms of a power series. Since the
cross-polarized channels vanish in NIXS, interference is possible for pin � pout

and sin � sout polarization.
Our results reveal that even several hundred electron volts away from the

1s � 4p resonance, the interference can be of the same order as NIXS leading
to prominent changes of the relative and absolute peak intensities. In particular,
this becomes evident in the pin � pout channel where all three peaks show non-
vanishing interference. Furthermore, our study unscrambles the origin of the
NIXS-RIXS interference and provides a systematic analysis of the angular and en-
ergy dependence. It turns out that whether one has constructive or destructive in-
terference depends on the scattering geometry, i.e. on the angle f = ^(kin/out, q),
but also on the incident photon energy relative to the resonance. The different in-
terference across an edge can be assigned to a sign change of the real part in RIXS
and is observed in both polarization channels. The angular dependence is due
to the sign change of the polarization in NIXS and only occurs in the pin � pout

channel.
In conclusion, our results indicate that the inclusion of the interference term in

future calculations will reduce the discrepancy between theory and experiment
and provide a better understanding of the d � d excitations in transition metal
compounds. A comparison of theory and future experiments will make it pos-
sible to test our predictions. In particular, it will be interesting to see if our the-
oretical predictions can explain the observed features in the NiO spectrum [135]
which might originate from a NIXS-RIXS interference.
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Within this thesis, we provided a theoretical description of nuclear decay by elec-
tron capture. We discussed the influence of nuclear degrees of freedom and the
coupling to the continuous spectrum of the electromagnetic field on the decay
rate.

In chapter 2, we used the theory originally developed by Brass and Haverkort
for the case of 163Ho [9] to calculate the electron capture spectra of various iso-
topes such as 55Fe, 65Zn, 71Ge, 118Te, 131Cs, 140Nd and 165Er. Some of these iso-
topes (55Fe, 71Ge, 131Cs, 140Nd, 165Er) are of relevance for radiotherapy, while
others (118Te, 65Zn) are interesting from a metrological point of view. We calcu-
lated all spectra on a basis of bound orbitals without explicitly including Auger-
Meitner and fluorescence decay. To improve the accuracy of these calculations,
future work could include the decay into unbound states and the coupling to the
continuous spectrum of the electromagnetic field. For the case of Auger-Meitner
decay the necessary formalism was developed in [11, 55], while chapter 4 of this
work provides the setting for the description of fluorescence decay.

In chapter 3, we investigated the influence of hyperfine interaction on the nu-
clear decay by electron capture. For the example of charge neutral atomic 163Ho,
we demonstrated that a change of the initial hyperfine state leads to a shift of
spectral weight on the Rydberg energy scale. Using a simple model, we were
able to show that this surprising effect originates from selection rules related to
the conservation of total angular momentum. In addition, we observed that a
variation of the initial hyperfine state leads to a change of the isotope’s lifetime
on the per mille level. The calculations presented here constitute an extension of
the studies on hydrogen- and heliumlike ions found in the literature [76, 77] to the
case of charge neutral atoms. Furthermore, we considered a realistic experimen-
tal setup realizable in the ECHo experiment [28]. In this context, we included the
non-spherical chemical environment as well as finite temperatures in the calcula-
tions. We could show that Boltzmann statistics determines the weight of a given
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hyperfine state. Therefore, by comparing spectra measured at different tempera-
tures, the influence of hyperfine interaction can be made visible. With a current
detector resolution of < 10 eV [10], spectral differences induced by hyperfine in-
teraction may already be visible. However, in order to see how these differences
reveal under more realistic experimental conditions, Auger-Meitner decay to un-
bound states should be included in future calculations.

To accurately describe the differential decay rate requires to include Auger-
Meitner decay into unbound states and the decay due to fluorescence. While
the former is important at lower excitation energies, the latter becomes partic-
ularly relevant for the high-energy part of the spectrum. In chapter 4, we pre-
sented a description of the line-broadening due to fluorescence decay. Employ-
ing a self-energy formalism we showed that it is possible to efficiently include
additional photons in the Hilbert space. For the example of electron capture de-
cay in 55Fe, we applied the derived formalism to describe the high-energy part
of the spectrum. Compared to a constant Lorentzian broadening, an energy-
dependent broadening described by the fluorescence self-energy leads to an in-
crease of events by more than one order of magnitude at very high energies. This
clearly demonstrates the relevance of an ab initio description of the spectral line-
shape at these energies.

In addition, we calculated the second-order fluorescence yield spectrum, which
provides information about the number of released photons following electron
capture. We compared two calculations: First, a calculation employing an energy-
independent Lorentzian line-broadening as well as an energy-independent light-
matter interaction. Second, a calculation where these quantities were assumed
to be energy-dependent. For the latter, our calculations predict a high-energy
photon excess of more than one order of magnitude. This is in agreement with
calculations based on the theory of Martin and Glauber [102, 103] and with ex-
perimental results [106]. While this frequently cited theory works on a mean-field
level, we described the problem employing the full Coulomb interaction between
the electrons. As we could show, this leads to additional multiplets in the fluo-
rescence yield spectrum not resolved in theory of Martin and Glauber.

By means of the developed formalism it is possible to accurately predict the
amount of ionizing radiation released in the decay. For example, this is important
in the search for new radionuclides for cancer treatment, since their selection is
often based on theoretical calculations [5]. In addition, a detailed knowledge of
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the amount of ionizing radiation released in the decay is also crucial to calibrate
liquid scintillation counting [96].

In a future work, it will be interesting to extend the derived approach to deter-
mine the electron yield spectrum, i.e. the number of electrons released following
electron capture. This can be achieved by combining the derived equations de-
scribing the second-order decay process with the description of Auger-Meitner
decay discussed in [11, 55].

The accurate description of nuclear decay rates requires a precise knowledge of
the involved nuclear many-body wave functions. Within chapter 5 of this thesis,
we were concerned with the optimization of the single-particle basis, the starting
point of many ab initio nuclear many-body calculations. Although very promis-
ing, ab initio calculations are also quite challenging. As we have discussed, the
choice of the single-particle basis is decisive for the computational performance
of the many-body calculation and thus for the convergence behavior of the ob-
servables to be calculated. We presented a novel iterative scheme to determine an
optimized set of single-particle states, which we referred to as generalized natural
orbitals. Compared to ordinary natural orbitals, already used in nuclear structure
calculations [112, 115, 118, 124], the proposed generalized natural orbitals promise
to better reflect the true single-particle states. Hence, a calculation starting from
these orbitals is expected to reduce the complexity of the many-body problem,
which ultimately translates into a faster convergence. Therefore, generalized nat-
ural orbitals constitute a promising improvement to extend ab initio calculations
to heavier nuclei than currently feasible. By directly implementing our proposed
iterative scheme in a future work, it will be possible to test the performance of
our method and to further investigate the implications for nuclear structure cal-
culations.

In chapter 6, we considered inelastic x-ray scattering, a powerful tool to inves-
tigate the electronic structure of correlated many-electron systems. Depending
on the energy of the incoming x-rays relative to an atomic edge, x-rays can scat-
ter resonantly or nonresonantly off matter. Two established spectroscopic tech-
niques, the Resonant Inelastic X-ray Scattering (RIXS) and the Nonresonant In-
elastic X-ray Scattering (NIXS) were introduced. These techniques rely on the
two terms of the (non-relativistic) light-matter interaction Hamiltonian, which
are proportional to the vector potential and the vector potential squared, respec-
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tively. As we demonstrated, both RIXS and NIXS are capable of probing so-called
d � d excitations, i.e. on-site transitions between crystal field split d-states. Mo-
tivated by experimental indications of a possible NIXS-RIXS interference for the
case of d � d excitations in Nickel oxide [135], we provided a theoretical analysis
of the interference and focused on this example. Our results revealed that the type
of interference, i.e. constructive or destructive, depends not only on the incoming
photon energy with respect to an atomic edge, but also on the angle between the
momentum of the incoming photons and the scattering vector. We could show
that even several hundred electron volts away from an atomic edge, the NIXS-
RIXS interference leads to prominent changes of the absolute and relative peak
intensities. As typical NIXS experiments on transition-metal compounds are per-
formed at photon energies several hundred electron volts away from an atomic
edge [129–131], including the interference in theoretical calculations might lead
to a better agreement with the experiment. Thus, it will be interesting to com-
pare our calculations with experimental data to see if our predictions can explain
the observed features in the Nickel oxide spectrum [135], which are presumably
related to NIXS-RIXS interference.

116



A Appendix

A.1 Lanczos method

In this section, we introduce the Lanczos method [37]. In this work it is used to
determine the ground state of a many-body problem described by a hermitean
Hamiltonian H as well as to determine its dynamics subsequent to some pertur-
bation. The basic idea of the Lanczos method is to iteratively construct a sub-
space of the full Hilbert space, the so-called Krylov space, on which the Hamil-
tonian is represented as a tri-diagonal matrix. Using an appropriate algorithm,
this matrix is then easily diagonalized to obtain an approximate ground state.
Below, we briefly outline the algorithm and show how it can be used to calculate
response functions, closely following [38].

The algorithm

The first step in the Lanczos algorithm is to generate a normalized and typically
random trial vector |f0i which is included in the basis. To determine the many-
body ground state, starting vector and true ground state must have a finite over-
lap. In the next step, the Hamiltonian acts on |f0i thereby creating a new state

b1|f1i = |f̃1i = H|f0i � a0|f0i (A.1)

where a0 := hf0|H|f0i and b2
1 := hf̃1|f̃1i. By subtracting a0|f0i from the newly

generated state H|f0i, it is assured that new state is orthogonal to |f0i, whereas b1

takes into account the normalization. Thus, |f1i denotes the properly orthonor-
malized state which is included in the Krylov basis. Similarly, the third state is
constructed by acting with H on the previously generated state |f1i. This state is
afterwards orthogonalized with respect to all previous basis states and normal-
ized

b2 |f2i = |f̃2i = H |f1i �
1

Â
i=0

|fii hfi|H|f1i = H |f1i � a1 |f1i � b1 |f0i (A.2)
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where an := hfn|H|fni and b2
n = hf̃n|f̃ni. The construction of further basis states

works in the same way. For the (n + 1)-st state we find

bn+1 |fn+1i = |f̃n+1i = H |fni �
n

Â
i=0

|fii hfi|H|fni

= H |fni � an |fni � bn |fn�1i . (A.3)

Note that due to orthogonality of the first n basis states, all terms except an |fni �

bn |fn�1i vanish in the orthogonalization of |fn+1i. In consequence, only |fni

and |fn±1i have non-vanishing overlap with H |fni. After L iteration steps the
Hamiltonian can be expressed on the L + 1 dimensional Krylov space as

HL =

0

BBBBBBBBBB@

a0 b1 0 . . . 0 0
b1 a1 b2 . . . 0 0

0 b2 a2
. . . 0 0

...
... . . . . . . . . . ...

0 0 . . . . . . aL�1 bL

0 0 . . . 0 bL aL

1

CCCCCCCCCCA

. (A.4)

If the number of iteration steps corresponds to L = N � 1 where N denotes the di-
mension of the underlying full Hilbert space, then the Lanczos method performs
a unitary transformation of the original Hamiltonian. However, for most many-
body problems the full Hilbert space is of extraordinary size and therefore com-
putationally intractable. For this reason, one is usually restricted to the regime
L ⌧ N. Using an appropriate second algorithm, the (approximate) ground state
is obtained by diagonalization of HL. Note that due to the typically small number
of Krylov states compared to the dimension of the full space, the Lanczos method
only gives a good approximation of the ground and the lowest lying states.

Response functions

The system’s response to some perturbation T, for instance the weak interaction
or in a core-level spectroscopic context the light-matter interaction, is described
by the Green’s function

G(z) = hy0|T† 1
z � H

T|y0i (A.5)

where |y0i denotes the system’s ground state obtained from a previous Lanczos
run. To calculate G(z), one can start the Lanczos routine as described above for
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the normalized state T|y0i and create in L iteration steps the tridiagonal Hamil-
tonian HL. The spectrum is then determined by the resolvent of HL projected on
the normalized state T|y0i which corresponds to the [1, 1] matrix element of the
inverse of

z � HL =

0

BBBBBBBBBB@

z � a0 �b1 0 . . . 0 0
�b1 z � a1 �b2 . . . 0 0

0 �b2 z � a2
. . . 0 0

...
... . . . . . . . . . ...

0 0 . . . . . . z � aL�1 �bL

0 0 . . . 0 �bL z � aL

1

CCCCCCCCCCA

. (A.6)

Rewriting this matrix in block-matrix form

z � HL =

 
z � a0 B(1)T

B(1) z � H(1)
L

!
, (A.7)

the Green’s function can be written as

G(z) =
h
(z � HL)

�1
i

1,1
=
⇣

z � a0 � B(1)T
(z � H(1)

L )B(1)
⌘�1

=

✓
z � a0 � b2

1

h
(z � H(1)

L )�1
i

1,1

◆�1
. (A.8)

As one can immediately see, the evaluation of this expression involves the inverse
of z � H(1)

L , i.e. the inversion of a sub-matrix of dimension L � 1. Thus, we can
proceed in the same way and obtain the inverse by partitioning this sub-matrix
analogous to (A.7). This step is iteratively repeated for all other sub-matrices until
we finally obtain the Green’s function as a continued fraction

G(z) =
h
(z � HL)

�1
i

1,1
=

1

z � a0 �
b2

1

z�a1�
b2
2

z�a2�...

. (A.9)

Block Lanczos

Of particular importance for the calculation of EC spectra is the block-variant of
Lanczos’ method, a generalization of the ordinary algorithm presented here. The
basic idea is similar to the above description with the difference that the block-
version starts from set of n orthonormal vectors F0 = {|f

(1)
0 i , . . . , |f(n)

0 i}. In
consequence, the Hamiltonian is represented by a block-tri-diagonal matrix, i.e.
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the diagonal and off-diagonal entries ai and bi in (A.4) are replaced by block-
matrices Ai and Bi, whereas their dimension equals the length of the starting
vector F0. A more detailed description of the block-variant can be found in [55,
87].
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A.2 Equivalence of the states |F, MFi with

identical F but different MF

Given a state with definite F and maximal Fmax
z , all the other 2F states with identi-

cal F but different MF can be constructed by repeated application of the lowering
operator

F�
|F, Mmax

F i = c�(F, MF)|F, Mmax
F � 1i (A.10)

where the prefactor is given by c� ⌘ c�(F, MF) =
p

(F � MF + 1) (F + MF). F±

represent the raising (+) and lowering (�) operators of the coupled total angular
momentum F.

Let G(w) to be defined by

G(w) ⌘
⌦

F, MF
��T†(z � HDy)

�1T
��F, MF

↵
(A.11)

with z := w + ig
2 + EHo. In this case G(w) corresponds up to the neutrino phase-

space factor to the part of differential decay rate (3.25) with poles at positive en-
ergies. After lowering the MF component by one, the spectrum for the new state��F, MF � 1

↵
is given by

G0(w) =
⌦

F, MF � 1
��T†(z � HDy)

�1T
��F, MF � 1

↵

=
1

c2
�

⌦
F, MF

��F+T†(z � HDy)
�1TF�

��F, MF
↵
. (A.12)

The transition operator T commutes with the squared total angular momentum,
i.e. [T, F2] = 0 and [T, F±] = 0. Since the total angular momentum F is conserved,
it follows that [HDy, F2] = 0 and [HDy, F±] = 0. Consequently, also resolvent and
ladder operators commute, i.e. [(z � HDy)�1, F±] = 0, such that G0(w) can be
written as

G0(w) =
1

c2
�

⌦
F, MF

��F+T†(z � HDy)
�1TF�

��F, MF
↵

=
1

c2
�

⌦
F, MF

��T†F+(z � HDy)
�1F�T

��F, MF
↵

=
1

c2
�

⌦
F, MF

��T†(z � HDy)
�1F+F�T

��F, MF
↵

=
⌦

F, MF
��T†(z � HDy)

�1T
��F, MF

↵

= G(w) (A.13)

whereby it is used that F+F�
��F, MF

↵
= c2

�. From (A.13) we can infer that the
spectra for

��F, MF
↵

and
��F, MF � 1

↵
are identical which holds for all pairs of states
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differing in MF by ±1. In consequence, all spectra calculated for states with iden-
tical F but different MF are equal and thus, only one spectrum per F needs to be
calculated which in the case of 163Ho leads to a reduction from 136 to 8 different
spectra.
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