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Chapter 1

Introduction

1.1 Background

Advances in biological and medical research in the last decades have led to a shift in the

treatment philosophy in the field of oncology. While the approach "one treatment for one

disease" was common in the past, the focus has changed to more personalized and patient-

centered treatment approaches. This new perspective has been enabled by two key advances,

the first being the scientific, technical, and economical improvements in gene sequencing

and the corresponding knowledge about the influence of specific genes on human health.

The second advance inducing this new perspective is the development of treatments which

directly take advantage of a known patient characteristic, e.g. a genetic aberration which is

used for the treatment pathway (Kalia, 2013). Hence, the development of new treatments

does not solely focus on one disease anymore, but aims to treat many diseases within a small

subset of patients, who all express the same targeted characteristic. A direct consequence of

these advances is the need for new trial concepts to investigate the efficacy of these targeted

treatments (Berry, 2015). These trial concepts are gathered under the label ’master protocols’

and contain trial designs which are called basket trial, umbrella trial, and platform trial. The

literature has been diffuse on the definition of each of these trial designs such that no common

nomenclature has been available. Woodcock and LaVange (2017) proposed to define a basket

trial as a trial in which one treatment is investigated in multiple diseases or subtypes. They
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defined umbrella trials as studies with multiple treatments for one single disease and platform

trials as dynamic extensions of basket or umbrella trials. In a platform trial, baskets can be

added or withdrawn during an ongoing protocol and, similarly, treatments can be added or

withdrawn during the trial.

Practical trial examples for each of these three designs are available in the literature. The

BATTLE-1 trial, presented by Kim et al. (2011), is an umbrella trial and investigated four

different treatments in patients with chemotherapy-refractory non-small cell lung cancer.

The I-SPY 2 trial (Barker et al., 2009) is an example for a platform trial. It investigates

multiple treatments for the therapy of locally advanced breast cancer among ten different

groups which were defined by three biomarkers. The trial is still ongoing and keeps on

investigating potential treatments. A practical example for a basket trial is the BRAF V600

trial by Hyman et al. (2015). The authors investigated the treatment with vemurafenib among

cancer patients who express a BRAF V600 positive-mutation. The patients were recruited

to one of six prespecified cancer groups (e.g. colorectal cancer, cholangiocarcinoma), while a

seventh group contained all other cancer types. The prespecified cancer groups contained 7

to 27 patients at the final analysis. The primary endpoint was overall response after 8 weeks.

The overall response rate was analysed independently in each cancer group using the adaptive

two-stage design by Simon (1989). The general conclusion of the trial was that the conduct

of a basket trial is feasible. The medical results showed promising response rates in some

baskets (e.g. non–small-cell lung cancer) but also non-promising results in colorectal cancer.

So, even though the same genetic aberration was prevalent in all patients, the treatment

showed different responses among the groups.

The trial design in Hyman et al. (2015) was a parallel arrangement of independent Simon

two-stage designs, which could be considered as many individual trials under the shield of one

common protocol. Since then, statistical researchers have proposed many new trial designs

and statistical tools for the conduct and the analysis of basket trials. These designs also

account for the idea to share information among the groups. The sharing is based on the

assumption that the groups respond similarly due to the common genetic predisposition and

the targeted treatment for this common characteristic. The statistical research has led to a

variety of theoretical trial designs and tools for basket trials. The strong interest in the field
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of master protocols has been reported by Park et al. (2019) and Meyer et al. (2020). Both of

them performed systematic literature reviews and proved a high activity in master protocol

research throughout the last decade. The number of publications shows an exponential growth

where the peak has presumably not been reached yet. Also both reviews show that basket

trials are the dominant trial design among the master protocols with respect to practical

application and to methodological research. Consequently, when the work on this thesis

started, the status quo of (statistical) basket trial designs was very dynamic, with a constant

supply of new trial designs and statistical tools with increasing complexity.

1.2 Aim and structure of this thesis

The aim of this thesis is to investigate the basket trial design in its general structure as

well as its specific statistical tools and techniques. The investigation of the general structure

aims to define a systematic approach to the construction of basket trials. This includes

a modular construction kit, together with an overview of available statistical methods and

tools which are currently proposed for the use in basket trials, and also the elaboration of

connections among the tools. In addition to the general investigation of basket trial designs,

the individual statistical tools are investigated. The use of frequentist and Bayesian tools for

decision making in basket trials, e.g. at an interim assessment, are analysed with the aim

to evaluate differences or even equalities between the two statistical techniques. The sharing

tool will be investigated regarding the feasibility of a non-transformed hierarchical model and

it will be compared via simulations to the currently used basic hierarchical model with respect

to their sharing property in the setting of basket trials. The overall motivation in all three

aspects is to facilitate the accessibility to basket trials and to consolidate the statistical tools

in order to increase the technical understanding of basket trials and to ultimately empower

the practical application of basket trials in medical research.

This thesis is structured as follows. In Chapter 2, the methods are provided, introducing the

methodological tools and the required knowledge needed for the elaboration of the results.

The results are presented in Chapter 3 which consists of three sections. Section 3.1 presents

the results for a systematic approach to construct a basket trial in a modular fashion, includ-

ing an ordered presentation of available statistical tools in basket trials. The investigation
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of the analytical connections between Bayesian and frequentist decision tools are presented

in Section 3.2. Section 3.3 provides the results of the feasibility investigation for a non-

transformed hierarchical model including its sharing properties in comparison to the current

basic hierarchical model. In Chapter 4, the results are discussed together with their contri-

bution to research as well as limitations and directions for further research. In Chapter 5, the

thesis is summarised, once in English and once in a literal translation to German. Additional

results are presented in Appendix A, while Appendix B contains relevant R program code

for this thesis.



Chapter 2

Methods

2.1 Basket trials

2.1.1 Concept of basket trials

Parts of this Subsection 2.1.1 are already published in the article Categories, components,

and techniques in a modular construction of basket trials for application and further research

by Pohl et al. (2021). The manuscript has been written by myself but may contain comments

and corrections from the co-authors.

Basket trials are clinical trial designs which have emerged in the last decade with the rise

of personalized medicine. The knowledge about genome sequencing has led to a different

view on the categorisation of cancer types, instead of the localization from where the cancer

origins, the focus shifted to the genetic predisposition of the cancer. Clinical research therefore

started to focus on treatments which take advantage of characteristics that are associated with

the genetic predisposition of the cancer. The guiding assumption is that the treatment has

similar response among cancer types with a common genetic predisposition irrespective of the

localization (cf. Redig and Janne, 2015). As for all treatments, these targeted therapies also

have to prove their treatment effect in clinical trials, and basket trial designs were developed

for this purpose. An official definition of basket trials does not exist. However, Woodcock

and LaVange (2017) suggested that basket trials are studies with one treatment for multiple
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diseases or subtypes. The wording in literature for the diseases or subtypes is not consistent

and various names are used. These include subpopulations, indications or strata, but they

are also called baskets (e.g. in Cunanan et al., 2017b; Chu and Yuan, 2018a; Psioda et al.,

2019). The latter wording is used in this work, meaning that a basket trial consists of several

baskets, with each basket representing a disease or subtype. The separation of the subtypes

into different baskets covers, e.g. the different localizations in the light of potentially different

treatment effects even though they all share the targeted genetic predisposition. Initially,

basket trials were developed for an oncological setting, but they are also of interest in other

medical fields, like for example in psychiatry (cf. Joshi and Light, 2018).

2.1.2 Basket trial design of Cunanan et al. (2017b)

The goal of the basket trial design proposed by Cunanan et al. (2017b) is to investigate

whether the treatment works in general, but also in which particular baskets the binary

response rate is promising. The starting point are independent Simon two-stage designs

(see Simon, 1989), where each disease is investigated in a separate clinical trial. The design

of Cunanan et al. (2017b) aims to improve the efficiency of this approach when several

indications are investigated in parallel using one common treatment. The core innovation of

the proposed design is to evaluate the basket-wise response at the interim assessment and to

decide subsequently whether the baskets continue independently in a heterogeneous path or if

all baskets are combined into one group in the homogeneous path. The premise of Cunanan

et al. (2017b) is that the option to combine baskets in the second stage leads to a higher

power (or the same power with less patients) to declare the treatment efficacious compared

to the individual Simon two-stage trials. The benefits of the combination must be considered

together with power losses in the evaluation of basket-individual effects. The design is used

in Section 3.2 and, therefore, here introduced in detail.

The design of Cunanan et al. (2017b) is a two-stage basket trial and its schematic compo-

sition of decision nodes is depicted in Figure 2.1. In stage 1, it is equivalent to the first

stage of an adaptive Simon two-stage design. The first modification is the heterogeneity

assessment among the baskets when the planned patient accrual of n1 patients in stage 1

is completed. The heterogeneity is evaluated with an i × 2 (Fisher) exact test with respect

to H0 : homogenous response among all baskets. The threshold for the test is a tuning pa-
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rameter of the design and the authors explicitly state that its purpose is to guarantee the

desired design characteristics of the complete trial design and not to interpret the test as an

autonomous decision of heterogeneity. The exact test determines the path for the succeeding

steps in the trial. In the heterogeneous path, each basket is further evaluated individu-

ally. This is similar to the approach in the Simon two-stage design. When pursuing the

homogeneous path, all baskets are pooled together into one group. After the heterogeneity

assessment, the directly following trial node is the futility assessment. The futility assess-

ment requires a minimum number of responses to continue to stage 2. In the heterogeneous

path, the minimum number of responses rs refers to each basket individually and a basket

continues if ri ≥ rs, otherwise basket i is stopped due to futility. The decisions in the homo-

geneous path are made in the same way, however, the minimum number of responses rc is

compared to the total number of responses accross all baskets. In stage 2, additional patients

are recruited, either n2i patients to each of the i∗ ≤ i baskets that passed the futility bar

in the heterogeneous path, or n2 patients to the combined group in the homogeneous path.

The parameters n1, rs, rc, n2i, and n2 are tuning parameters. The final analysis is conducted

using the one-sided exact binomial test. The corresponding null hypothesis is that the re-

sponse rate is below or equal to the null value p0, and the alternative hypothesis is that the

response rate exceeds p0. In the heterogeneous path each basket is evaluated individually.

The significance level αs is a tuning parameter and is adjusted with a Bonferroni correction
αs

i∗ by the number of baskets in stage 2. In the homogeneous path, all baskets are evaluated

together in the combined set and one binomial test is conducted to evaluate if the treatment

works in all baskets or not. The respective significance level αc is a tuning parameter.

The choice of the tuning parameters aims to control the overall false positive rate at a

prespecified level. Three metrics are used by Cunanan et al. (2017b) to evaluate this. First,

the family-wise error rate (FWER) which is defined as the probability to declare at least one

basket promising when in truth all baskets have a response rate equal to the null value p0.

The second metric is the marginal power which describes the probability to declare efficacy

for a truly efficacious basket. This also allows to evaluate the basket-wise type 1 error

(T1E), which is the probability to reject the null hypothesis when in truth the treatment

does not work in this basket. The third metric is the expected sample size for the trial.

The optimized design controls the family-wise error and has an optimal trade-off between
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STAGE 1
basket-wise
enrollment

heterogeneity
assessment

combined futility
assessment

basket-wise
futility assessment

Stop
recruitment

STAGE 2
basket-wise
enrollment

basket-wise
final analysis

combined
final analysis

Stop
recruitment

STAGE 2
combined
enrollment

Figure 2.1: Basket trial design of Cunanan et al. (2017b) with decision nodes of the design
according to the flow chart in the original publication.

power and expected sample size. The tuning parameters that fulfill these requirements are

determined via simulations. The authors assign specific values to n1, n2, rs, and rc. They

do so because of the high dimension of the tuning parameters and the resulting extensive

computational burden when the optimization accounts for all parameters. The assigned values

reflect logical arguments and previous assumptions about the trial purpose. For example,

Cunanan et al. (2017b) propose to use rs := 1, because then, baskets without any observed

response are stopped. Similarly, for rc at least I responses are demanded, where I is the

number of baskets in the trial.

Moreover, the authors propose minimum and maximum restrictions for the number of patients

per basket. These rules are trial specific and can be individually chosen for every decision

node. The restrictions shall prevent a too high influence of individual baskets, especially in

the case of unequal accrual.
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2.1.3 Binomial test in general and for basket trials

The binomial test is used to evaluate the probability of a certain event in comparison to an

assumed probability value (Agresti, 2007). In clinical trials, the probability can represent a

response rate which describes how likely a patient is to respond to a certain treatment. The

probability is denoted by p. The two-sided hypothesis is

H0 : p = p0 H1 : p ̸= p0

with a null or reference value p0 with which the observed outcomes are compared. In the

one-sided test setting the hypothesis is given by

H0 : p ≤ p0 H1 : p > p0

and the one-sided direction can also be the other way around.

The underlying observed data to evaluate the hypothesis consists of the number of observa-

tions n and the number of events (e.g. responses, successes). For each individual observation,

the outcome is binary. The total number of events is denoted by r and is a realisation of a

random variable R following a binomial distribution Bin(n, p). The test statistic contains

the observed data and is used to evaluate the hypothesis. For the binomial test, the test

statistic is r given the number of observations n. This test statistic has a binomial distribu-

tion under the assumption that the null hypothesis H0 is true. The decision with respect to

the hypothesis can be made based on the comparison of the p-value to the significance level

α, or based on the comparison of the test statistic with its critical values. The critical values

are those realisations of r which change the decision from staying with the null hypothesis

to rejecting it. In the two-sided setting, the critical values are a tuple of a lower boundary

and an upper boundary that represent number of events. In the one-sided setting the critical

value is either the minimum or the maximum number of events, this depends on the direc-

tion of the alternative hypothesis. For the notation above, the critical value is the minimum

number of events.

The binomial distribution of the test statistic results in a p-value that consists of the sum over

all probabilities of the test statistic outcomes that are equal or less likely than the observed
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r events under the assumption that H0 is true. This set of outcomes represents the scenarios

that are at least equally extreme as the observation and is defined as A := {k : P[R =

k|n, p0] ≤ P[R = r|n, p0]}. The respective p-value for the two-sided test is then given by

P[R ∈ A|n, p0] =
∑
x∈A

P[R = x|n, p0] =
∑
x∈A

(
n

x

)
px

0(1 − p0)n−x.

In the one-sided setting, where the alternative hypothesis is as above, the p-value is given by

P[R ≥ r|n, p0] =
n∑

x=r

P[R = x|n, p0] =
n∑

x=r

(
n

x

)
px

0(1 − p0)n−x

where the sum goes over the observed and more extreme outcomes of the test statistic. The

extremeness refers to the direction of the alternative hypothesis under the assumption that

H0 is true.

The Central Limit Theorem allows to approximate the distribution of the test statistic to a

standard normal distribution and consequently statistical tests based on a normal distribution

are possible. The approximate tests require a larger number of observations n (cf. Fahrmeir

et al. (2007)). In clinical trials of early phases, the number of observations are often modest,

then the exact test based on the binomial distribution should be applied (cf. Sebastiao and

St. Peter (2018), Agresti (2007)). Especially in basket trials which investigate a rare disease,

the number of observations does not justify an approximate test. The exact binomial test is

a frequentist tool to evaluate an observed binary treatment response against a prespecified

control or reference value p0. The test can therefore be applied in basket trials without

control group to assess whether the treatment is promising at interim stages and for the final

analysis to make informed decisions (see e.g. Cunanan et al., 2017b).

2.2 Bayesian statistics in basket trials

This section covers the Bayesian methodologies that are used in the context of basket trials

relevant for this thesis. This requires a general approach towards Bayesian statistics including

conjugate models as well as hierarchical Bayesian models. Moreover, known and for this thesis

relevant connections between Bayesian and frequentist statistics are introduced.
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2.2.1 General methodologies of Bayesian statistics

The source of Bayesian statistics is Bayes’ theorem. The theorem was defined by Thomas

Bayes and was posthumously published as An essay towards solving a problem in the doctrine

of chance by Bayes and Price (1763).

Let A and B be two different sets of events that take place with non-zero probability. Then

Bayes’ theorem is defined as

P[A|B] = P[B|A] · P[A]
P[B] . (2.1)

This idea can be transferred to density functions. The probabilities of certain (conditional)

events are then replaced by densities of parameters. In this section, θ represents an un-

known and continuous random variable with a distribution on the parameter space Θ. The

observation x is a realisation of the random variable X and Bayes’ theorem results in

f(θ|x) = f(x|θ) · f(θ)
f(x) . (2.2)

The density of x under the assumption that θ is a distribution parameter of X is given by

f(x|θ) and is called the likelihood of the observation. The wording data and notation D are

interchangeable for the observation x, since the data set D consists of the observations. The

density function f(θ) is called the prior density. The prior represents the initial knowledge

or assumptions about the distribution of parameter θ. The resulting conditional distribution

of θ|x with corresponding density function f(θ|x) is called the posterior distribution. The

density in the denominator f(x) is called the marginal likelihood and is the unconditional

density of the observation x. Due to the law of total probability the marginal likelihood can

be determined by the likelihood and the prior

f(x) =
∫

Θ
f(x|θ)f(θ)dθ.

In case of a discrete parameter space, the integral is replaced by a sum. The unconditional

density f(x) in the denominator is a constant value. Hence, the posterior is proportional

to the likelihood multiplied with the prior. This reduces the formula for the density of the

posterior distribution to

f(θ|x) ∝ f(x|θ) · f(θ). (2.3)
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The property of the marginal likelihood is to normalize the posterior distribution such that

it fulfills the requirements for a valid density function (
∫

Θ f(θ|x)dθ = 1). In general, the

dimension of x and θ is arbitrary and can be multidimensional. With higher dimensions, the

complexity to calculate the posterior distribution increases.

The core element of Bayesian statistics is the posterior distribution. It represents the up-

dated distribution of the parameter θ after observing the data, which means the posterior

distribution is an updated prior distribution. Hence, in the Bayesian approach the param-

eter θ is considered random, whereas in frequentist statistics the observation is considered

random with a fixed value for the parameter. The choice of the prior distribution is crucial

because together with the likelihood distribution it determines the form of the posterior dis-

tribution. Relevant aspects in the prior choice are the amount of information that should

be contained in the prior and the form of the distribution. The latter means that the prior

distribution can come from known distribution families (e.g. normal, beta), can be a mixture

of distributions, or can also take non-parametric forms. Wise choices of prior distributions

in combination with the known distribution of the data can have analytical advantages and

these are introduced in the following subsection.

2.2.2 Conjugate models

A conjugate Bayesian model consists of a prior, likelihood combination that results in a pos-

terior distribution from the same class as the prior. In formal notation a class of distributions

G is called conjugate with respect to the likelihood of the observed data f(x|θ), if the poste-

rior distribution f(θ|x) is in G for every observation x and any prior distribution f(θ) ∈ G.

The most trivial choice for G := {all distributions} is of limited practical benefit (Held and

Bové, 2020). A more restrictive definition of class G can facilitate the analytical calculation

of the posterior probability, as for example when G only consists of one family of distribu-

tions, because then the posterior distribution with respect to a certain likelihood only differs

from the prior distribution in the parameters. Gelman et al. (2004) call that case a natural

conjugate combination. Throughout this work conjugate prior, likelihood combinations are

considered as natural ones. A classic example for a conjugate model is the normal-normal

scenario where the likelihood of the data is given by X|µ ∼ N(µ, σ2) with σ2 known and a

normal prior distribution for parameter µ ∼ N(µµ, σ2
µ). The resulting posterior distribution
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is again a normal distribution with a weighted mean of the prior and the data, and a variance

that is smaller than σ2 and σ2
µ.

The beta distribution is a conjugate prior distribution for data that has a binomial distribu-

tion Bin(n, p). For the beta-binomial model, the observed data is denoted as r, a realisation

of the random variable R. Let the prior for the response rate p be given by Beta(a, b). The

posterior distribution is derived according to Bayes’ theorem in Equation 2.3

f(p|r) ∝ f(r|p) · f(p)

=
(

n

r

)
pr(1 − p)n−r · 1

B(a, b)pa−1(1 − p)b−1

∝ pr+a−1(1 − p)n−r+b−1

and hence for the posterior distribution it follows

p|r ∼ Beta(a + r, b + n − r).

Both examples demonstrate that the observed data is additional information that updates the

prior distribution by modifying the distribution parameters. In application, this characteristic

is a practical advantage because the conjugate models facilitate the understanding and the

calculations for the posterior (Gelman et al., 2004). In general, for any likelihood with a

distribution that fulfills the requirements of an exponential family, there exists a natural

conjugate prior distribution. For further specification see page 41-42 in Gelman et al. (2004).

Non-conjugate combinations are more dominant in practical applications, because there is

not always a prior-likelihood combination that reflects the underlying problem. Additionally,

conjugate models become more challenging or are mostly impossible in complex structures,

like for example in hierarchical models (cf. Subsection 2.2.3). The posterior distribution in

non-conjugate models is derived in numerical Markov Chain Monte Carlo (MCMC) sampling

using different numerical algorithms.
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2.2.3 Hierarchical models

A hierarchical model adds another level to the combination of likelihood and prior. Instead

of fixed parameters, the prior distribution is defined by parameters which are random by

themselves. The distribution of these parameters, here denoted as γ, is called hyperprior dis-

tribution and the respective distribution parameters are called hyperparameters (Christensen

et al., 2011).

The additional level allows more variability among the investigated units. In a basket trial

each basket represents one unit. If the prior distribution is fixed, then all basket-wise posterior

distributions are based on this prior distribution alone and each basket is evaluated indepen-

dent of the others. However, in a hierarchical model the additional level allows many different

prior distributions via the hyperprior. When applying a hierarchical model in a basket trial,

all basket-individual parameters are modeled from one common distribution which has its

origin in the hyperprior distribution (Gelman et al., 2004). The latter reflects the underly-

ing exchangeability assumption in hierarchical models, which formally means that the joint

distribution of all basket-individual parameters f(θ1, ..., θI) is invariant to any permutation

in the basket index i ∈ {1, ..., I}.

Since the basket individual parameters are assumed to come from the same common distri-

bution, the variance of the prior distribution determines how similar the baskets are. A prior

distribution with low variance means that all baskets are similar whereas a high variance

allows rather different values and, therefore, dissimilarities between the baskets. Because

the parameters of the prior are random, they are adapted in the sense of Bayes’ theorem.

The additional level ensures that each basket distribution is guided by the same distribution,

allows more variability between baskets, and enables to share information between baskets.

In formal notation the hierarchical model can be given as

Likelihood x|θ, γ ∼f(x|θ, γ)

Prior θ|γ ∼f(θ|γ)

Hyperprior γ ∼f(γ).
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The parameters θ and γ can also be vectors in the case of multidimensional distributions

and the likelihood describes unit-wise observations. The joint posterior distribution of the

parameters is then given by

f(θ, γ|x) = f(θ|γ, x) · f(γ|x)

∝ f(x|θ, γ) · f(θ|γ) · f(γ)

as a multiplication of the conditional distribution f(θ|γ, x) for the parameter θ based on

the hyperparameter and the observed data, with the marginal distribution f(γ|x) for the

hyperparameter γ based on the observed data. The likelihood depends on both the prior and

the hyperprior, however, the dependence on the hyperprior is via the dependence of the prior

on the hyperprior and consequently one could reduce f(x|θ, γ) to f(x|θ). In a hierarchical

Bayesian model, the posterior distribution depends on the distribution of the likelihood, the

prior, and the hyperprior.

In the previous subsection the conjugate beta-binomial model was introduced and this model

is now extended to a hierarchical beta-binomial model. The hierarchical binomial model can

be depicted as

r|p ∼ Bin(n, p)

p|(a, b) ∼ Beta(a, b)

(a, b) ∼ F

with a hyperdistribution F . Apart from a multidimensional distribution for the hyperprior

tupel (a, b) one can also define individual and independent hyperdistributions for each element

a ∼ F1 and b ∼ F2. The random values of a and b then determine the prior distribution of

the response parameter p which is needed to describe the distribution of the observed data.

Instead of distributions for a and b, one can use the characteristics of the beta distribution

to improve the interpretation of the hyperprior level by setting distributions on the expected

value E[X] = a

a + b
and on a measure that represents the variance of the distribution. The

variance of a beta distribution is given by V ar(X) = ab

(a + b + 1)(a + b)2 . The sum a + b is

part of the variance and moreover is the effective sample size (ESS) of a beta distribution
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(Morita et al., 2008). The ESS represents the number of observations that are included in a

prior. Hence, the ESS, given by a+ b, can be used as an easily interpretable value to describe

the width of the prior beta distribution (Christensen et al., 2011).

The hyperparameter constitutes the highest level and creates a common link between all

elements on the lower levels. Information among elements on the lower levels can be shared

through this link. This property can be used in basket trials, and a basket trial design with

a Bayesian hierarchical model is introduced in the next subsection.

2.2.4 Bayesian hierarchical basket trial design of Berry et al. (2013)

Berry et al. (2013) proposed to use a Bayesian hierarchical model in a clinical trial where

several groups of patients are all treated in the same way. Their intention is to borrow

information among the baskets regarding the primary outcome, the binary tumor response.

Hence, the treatment effect is displayed as basket-individual response rates, denoted as pi

for basket i. The authors define a null response rate p0 and define a target response rate p1

as promising. The authors transform the basket-individual response rate pi to a continuous

scale

θi := log

(
pi

1 − pi

)
− log

(
p1

1 − p1

)
where the last element is a constant value. The sharing of information between the baskets

is conducted with the following Bayesian hierarchical model

θi ∼ N(µ, σ2)

µ ∼ N(−1.34, 102) ∀i = 1, ..., I. (2.4)

σ2 ∼ IG(0.0005, 0.000005)

The expected value µ determines the center around which the θi’s and, respectively, the pi’s

are located. The variance σ2 determines how large the range of values for the θi’s is. Large

values for σ2 mean that rather different values are likely, whereas small σ2 values restrict

the value range. Consequently, the variance determines the amount of sharing between the

baskets. The variables µ and σ2 are both random variables, therefore, according to the

Bayesian idea, their distributions are adapted based on the observed data in all baskets.
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The distributions and their hyperparameters for µ and σ2 in Equation 2.4 were specified

by the authors. The expected value for the distribution of µ reflects the null scenario with

p0 = 0.10 and an assumed target response of p1 = 0.30. The authors explicitly also allow

other parametric distributions, e.g. uniform or half-Cauchy, as hyperprior distributions for

σ2.

The authors allow adaptive decisions during the trial which includes stopping of baskets due

to futility and stopping for efficacy. These interim assessments are conducted after in total 10

patients were observed, and then after every 5 additional patients. The decisions are taken

on the posterior distributions of the basket-individual response rates that were calculated

with the hierarchical model, meaning that information between the baskets is shared before

interim decisions are made. The final analysis again uses the posterior distributions of the

basket-individual response rates from the hierarchical model to declare baskets promising or

not.

2.2.5 Connections of frequentist and Bayesian methodologies

The comparison and connection of frequentist and Bayesian methodologies with respect to

a one-sided hypothesis has been investigated by Zaslavsky (2010). The author showed that

there are prior choices for the beta-binomial model such that the posterior probability to

not exceed the null response rate (P[p ≤ p0|D]) is either larger, equal or smaller than the

respective p-value of a one-sided binomial test (order of hypothesis as in Section 2.1.3). For a

uniform prior (Beta(1, 1)), it was shown that the mentioned posterior probability is smaller

than the respective p-value.

In frequentist statistics, the focus strongly lies on the type 1 error (T1E), whereas in Bayesian

statistics it is sometimes neglected. Still, whenever a decision is made, there is the possibility

for false decisions. The T1E is an important measure to quantify this, irrespective of whether

a frequentist or a Bayesian tool is applied. The wording for type 1 error in this thesis is either

T1E or false-positive rate.
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2.3 Further relevant methods

2.3.1 Properties of the beta and the gamma function

The properties and connections among the beta and the gamma function are provided in

many basic statistics books, e.g. in Chapter 39 of Arens et al. (2009).

The density of a beta distribution, Beta(a, b), uses a beta function B(a, b) as a normalizing

constant. The beta function is defined as

B(a, b) :=
∫ 1

0
ta−1(t − 1)b−1dt

and can be rewritten as a quotient of gamma functions Γ(a)Γ(b)
Γ(a + b) .

The gamma function Γ(a) is defined as
∫∞

0 ta−1e−tdt and important characteristics of the

gamma function are

Γ(1) = 1, Γ(a + 1) = a · Γ(a), Γ(n + 1) = n!, for n ∈ N.

2.3.2 Logit-normal distribution

The characteristics of the logit-normal distribution are based on Frederic and Lad (2008)

and on the original work on (logit) transformations of variables with normal distribution of

Johnson (1949).

A random variable X has a logit-normal distribution if the logarithmic transformation of the

odds of X is normally distributed meaning that from X ∼ logitN(µ, σ2) follows

logit(X) := log

(
X

1 − X

)
∼ N(µ, σ2). The density function is given by

f(x) = 1√
2πσx(1 − x)

· exp

(
−1

2

(
logit(x) − µ

σ

)2)

The expected value for X and its variance cannot be given in closed analytical form and

numerical methods are required to calculate them. The median of X is given by logit−1(µ) :=

expit(µ) := exp(µ)
(1 + exp(µ)) . The logit-normal distribution is not symmetric, except for µ = 0.
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In that case the median (expit(0) = 0.5) corresponds with the expected value and hence

E[X] = 0.5. The logit-normal distribution is defined on (0, 1) and converges to 0 at the

boundaries. For small values of the variance σ2, the distribution is unimodal, for larger

variances the distribution is bimodal with a U-shaped form. The derivative of the density

function is 0 for all solutions of the equation logit(x) = σ2(2x − 1) + µ. The density has a

bimodal form (two local maxima and one local minimum) if the solution consists of three

values for x, and it is unimodal if only one solution exists.

2.3.3 Software

The calculations, including the simulations, and the graphs in this thesis were done with the

statistical software R, version 3.5.1 and higher (R Core Team, 2021). The operating surface

to write and run the program code was RStudio (RStudio Team, 2021). The basic R software

was extended by several packages which were needed for this thesis. The most relevant one

was the package rjags (Plummer, 2019) which was used to access the MCMC sampler JAGS

(Plummer, 2003) which then calculated the posterior distributions and returned them to

R. The package ggplot2 (Wickham, 2016) was used for the creation of the graphs. The R

program code for the simulations is given in Appendix B.2.
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Chapter 3

Results

This chapter presents the elaborated results of the investigations of basket trials for this the-

sis. This chapter is structured according to the aims of this thesis. The first section presents

a systematic approach to construct basket trials in a modular fashion and an ordered presen-

tation of available and potential tools that can be used in basket trials. The second section

presents analytical connections between Bayesian and frequentist decision tools for interim

and final assessments. The final section investigates the feasibility of a non-transformed hi-

erarchical model to share information in basket trials including its sharing properties which

are compared to the current basic hierarchical model in a simulation study.

3.1 Categorization and modular construction of basket trials

Parts of this Section 3.1 are already published in the article Categories, components, and

techniques in a modular construction of basket trials for application and further research by

Pohl et al. (2021). The manuscript has been written by myself but may contain comments

and corrections from the co-authors.

The highly dynamic research field of basket trials has led to an unordered accumulation of

designs and statistical tools. Hence, an ordered approach to basket trials is elaborated with

the intention to categorise basket trials, to introduce consistency to the presentation of the

statistical methods and tools, and to design basket trials with a modular framework.
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The categorization of existing basket trial designs is proposed to be performed on two metrics:

firstly, the purpose of the trial and, secondly, the applied statistical techniques. Most basket

trials aim to detect evidence for a possible treatment effect in an early stage of clinical

development. Hence, they are mainly classified as phase II trials with the intention to generate

data and evidence which can be used to plan a potential phase III trial. Jin et al. (2020a)

proposed a design for early development which investigates whether the treatment works in

at least one basket and explicitly named it a proof-of-concept (PoC) design. Other authors,

like Berry et al. (2013), Neuenschwander et al. (2016), Simon et al. (2016), Chen and Lee

(2019), Chu and Yuan (2018b), Chu and Yuan (2018a), Hobbs and Landin (2018), Psioda

et al. (2019), Zheng and Wason (2020), Fujikawa et al. (2020), Zhou and Ji (2020), Chen and

Lee (2020), Jin et al. (2020b), Lyu et al. (2020), and Asano and Hirakawa (2020) locate their

designs to early clinical development in phase II aiming to either detect indications where

the treatment works or at least identify promising efficacy results. The designs of Chen

et al. (2016) and Li et al. (2017) move on to confirmatory phase III basket trials and intend

to achieve approval for the treatment in multiple indications that are covered in one basket

trial. Chen et al. (2016) pursue to control the type 1 error (T1E) and use frequentist statistics

to achieve that. On the other hand, most of the proposed designs for early clinical phases

apply Bayesian techniques to analyse and conduct the trial. However, among the early phase

designs, there are also frequentist approaches (Cunanan et al., 2017b; Zhou et al., 2019),

while Liu et al. (2017) combines both techniques. Consequently, the proposed categorization

of basket trials uses the purpose (early phase exploratory, late phase confirmatory) of the

trial and the applied statistical techniques (frequentist, Bayesian, combination of both). In

Table 3.1, the so far available trial designs are categorised.

The evolution of basket trials has resulted in designs that reach from early phases up to con-

firmatory trials, containing a variety of statistical methods. The statistical methods all have

in common, that they target the assumed connection between the administered treatment

and the patients’ characteristic in order to acquire as much information as possible from

the observed data. The data are represented through the primary endpoint, for which the

proposed basket trial designs address different scales. Still, the majority of the designs use a

binary endpoint because this covers the frequently used treatment response as the endpoint

in exploratory trials.
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Table 3.1: Proposed categorisation of available basket trial designs according to the two met-
rics: purpose (rows) and statistical technique (column).

Bayesian frequentist both
PoC Jin et al. (2020a)

phase II

Berry et al. (2013)
Neuenschwander et al. (2016)
Simon et al. (2016)
Chen and Lee (2019)
Chu and Yuan (2018b)
Chu and Yuan (2018a)
Hobbs and Landin (2018)
Psioda et al. (2019)
Zheng and Wason (2020)
Fujikawa et al. (2020)
Zhou and Ji (2020)
Chen and Lee (2020)
Jin et al. (2020b)
Lyu et al. (2020)
Asano and Hirakawa (2020)

Cunanan et al. (2017b)
Zhou et al. (2019) Liu et al. (2017)

phase III Chen et al. (2016)
Li et al. (2017)

The proposed modular framework consists of four elementary design components of a bas-

ket trial. The first component is the sharing of information between baskets. It is the core

element of a basket trial, is justified by the common patient characteristic, and therefore is

an obligatory component in a basket trial design. The sharing of information intents to raise

the power to detect individual baskets with clinically relevant treatment effects. The time

points when sharing is applied can be prespecified to defined nodes of the trial, or can regu-

larly take place before decisions regarding the treatment efficacy are made. The frequency of

conducting sharing is a trial design characteristic, however, sharing must be applied at least

once throughout a basket trial. The second component is the futility assessment. It pre-

vents patients from treatment with futile treatments and additionally protects the sponsor’s

resources in form of budget and workforce. The interim futility assessments are optional,

they can be conducted once or several times during a basket trial. The third component is

the interim efficacy assessment. It terminates the recruitment of patients to baskets with

convincing evidence in favour of the investigated treatment. In exploratory trials, an interim

efficacy stop accelerates the subsequent initiation of a confirmatory trial, while the interim

efficacy stop in a confirmatory basket trial might lead to an accelerated market approval. The
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interim efficacy assessment is also optional, might be applied once or several times and can,

but does not have to, be employed parallelly with the futility assessment. The final analysis

of the baskets at the end of the trial is the fourth design component of a basket trial and is

also obligatory. The final analysis investigates the baskets according to the objective of the

trial. Each component in the modular approach for basket trials has its purpose. The sharing

of information (first component) and the final analysis (fourth component) are the defining

elements of a basket trial. The key element of a basket trial is the sharing of information be-

cause of its medical justification of similar treatment behaviour by the mutual predisposition

among the baskets. The interim futility and efficacy assessments contribute to an efficient

conduct of basket trials with respect to the resources (e.g. sample size), ethical aspects, and

type 1 and 2 error rate control. The components per se are empty elements of the modular

framework, and a basket trial becomes tangible when the components are orderly arranged in

a workflow and filled with statistical tools such that the components fulfill their designated

task.

The workflow is defined by the arrangement of the four components for which a multitude

of combinations are possible. The only restrictions are to share information at least once

and to have a final analysis. The majority of trial designs which were proposed in literature

incorporate the sharing of information before the interim futility and efficacy assessments, and

again before the final analysis. This reflects the intuitive strategy to use as much information

as available for an informed decision. However, such an order of components is not a must, as

for example in Liu et al. (2017), where the futility assessment is conducted before information

is shared among the baskets. In general, the modular framework allows flexibility on how the

components of a basket trial are arranged. The schematic workflow of a basket trial and the

exemplary arrangement of the components is given in Figure 3.1.

The statistical tools for the components can be chosen according to the preferences of the

research team and the purpose of the trial. The trial designs proposed in the literature

apply different statistical tools and serve as a portfolio for the tools in basket trials that

are designed with the modular framework. The modular basket trials can apply different

tools from different designs. The flexibility of the tools allows basket trials which consist of
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information sharing

futility interim assessment

final analysis

W O R K F L O W  - C O M P O N E N T S

efficacy interim assessment

information sharing

optional
repeat k times

in variable order

1 2 3 4 5 6

1 2 3 4 5 6

mandatory

Figure 3.1: Schematic display of a basket trial with I = 6 baskets (blue boxes), the arrangement
of optional and mandatory components throughout the trial, and an exemplary presentation
of promising (green) and non-promising (red) baskets after the final analysis. Adapted from
Pohl et al. (2021).

the sharing tool from one design, the interim (futility and/or efficacy) assessment tool from

another, and the final analysis with a tool from a third design.

The modular framework for basket trials allows to design a new basket trial in a systematic

way, it allows to arrange the four components in a workflow such that the trial fulfills practical

requirements, and it allows to choose the statistical tools to analyse trial results adequately.

The informed decision for the statistical tools is important in applied basket trials to correctly

investigate the underlying medical research question. Consequently, the technical aspects of

already published tools for each component are presented in the following subsections.

3.1.1 Consistent notation for basket trial tools

A systematic approach to the statistical tools for the components requires a structured and

consistent notation throughout all tools. This notation is specified here before the statistical

tools are investigated in detail.

An index i allocates a variable to basket i. Variables without an index represent the global

parameter value that is valid for all baskets. Additional indices are explicitly defined in
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advance if they are required. The variable n is the number of patients, r describes the

number of responses for the binary outcome and p denotes the response rate. The so far

observed data is represented by D and the explicit data from basket i is denoted by Di :=

{ni, ri}. Transformations of p are denoted as θ, and if not stated differently θ is defined

as θ := logit(p) = log
( p

1−p

)
. In general, θ can also represent a continuous parameter with

support on the real numbers. Null and alternative values of p and θ are indexed with 0

and 1, respectively. A pairwise distance measure between two baskets i and j is given by

dij . Further details about the type of distance, or divergence measure are given in respective

subsections. The variable λ denotes the probability of a distribution in a Bayesian mixture

distribution. The variable ω describes a weight. The variable γ is a general parameter of a

distribution. The variable τ describes a threshold value for decision making and the index

F indicates interim futility assessment, index E stands for interim efficacy assessment and A

indicates the final analysis at end of the trial. Additional indices in superscript distinguish

parameters of the same type but with different values. The function f() is the density

of a distribution. Non-specific distributions are denoted as G, F and E . Indices are used

to distinguish different distributions behind G (or F , E) within one model. The abstract

formulation of distributions with G, F and E aims to guide the focus on the technical ideas

of the model. Explicit distributions, which were proposed by the authors are given as well,

however, the exact distributions (including distribution family and parameters) are tuning

characteristics in the modular framework and can be adapted according to the purpose of

the trial. Explicit distributions are denoted according to known conventions from literature

e.g. N (µ, σ2) is a normal distribution with expected value µ and variance σ2. Truncated

distributions are prefixed with the letter T . The variable ϕ is a general tuning parameter

and Ω denotes a matrix.

3.1.2 Sharing tools

The statistical tools to share information among the baskets reflect whether a frequentist

or a Bayesian approach is applied. Hence, the sharing tools are presented grouped by the

underlying statistical technique, which is also a proposed metric to categorize the tools.

Additionally, the order of presentation is given by the evolution of the tools and how they are
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related among each other. The connections between the sharing tools, how the tools evolved

from each other, and a categorization of them are graphically presented in Figure 3.2.

Frequentist: Pool all or nothing

The frequentist tools use the pool all or nothing approach. At a predefined interim node of

the trial, the hitherto observed data is evaluated and, based on these results, a binary sharing

decision is taken. The decision is either to pool all baskets into one combined data set and

consider them all together, or to investigate each basket independently from the others with

individual analyses and decisions for each basket. The tools proposed in literature to make

the binary decision are:

(i) Pass 1st stage - Chen et al. (2016), Li et al. (2019), Zhou et al. (2019)

The pass 1st stage rule is a combination of futility assessment and implicit homogeneity

evaluation. Those baskets that pass the first stage without a futility stop are considered

to be homogeneous with respect to the treatment response and therefore pooled into

one group after the interim analysis. The baskets that do not pass the first stage are

stopped and not further investigated. This rule can be considered as the simplest one.

(ii) (Fisher’s) exact test for contingency table - Cunanan et al. (2017b)

The (Fisher’s) exact test is used to investigate the hypothesis of heterogeneous baskets

with respect to the treatment responses. If the null hypothesis H0 : homogeneous

response rates is rejected, each basket is investigated individually. If not and the null

hypothesis is kept, then all baskets are pooled into one group. The critical value for

the test statistic (or its significance level) is a tuning parameter and must be defined

in the planning phase of the trial.

Bayesian techniques

The Bayesian techniques share information among the baskets with different methods and

different underlying concepts. The available techniques can be divided into three groups. The

first group is the Bayesian hierarchical model with normal distribution for the transformed

response rate θi and is denoted as BHM. The simple BHM is the basic version of Bayesian

information sharing in basket trials. Also, it is the base for the evolution of sharing techniques
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for basket trials. Thall et al. (2003) already presented it for the analysis of phase II trials

with multiple subgroups. The underlying assumption is that the treatment effect among the

subgroups is exchangeable and correlated. Berry et al. (2013) adapted this model to the

developing field of basket trials. The available BHMs are either mean- or variance-driven.

The second group of Bayesian techniques shares the information among the baskets without

transforming the response rate and directly uses distributions on pi. The third group evaluates

the probabilities of the underlying hypotheses and uses these to share information among the

baskets.

(iii) BHM - Thall et al. (2003), Berry et al. (2013)

The basic BHM assumes that each basket-individual, logit-transformed response rate

comes from the same normal distribution. This means the baskets are assumed to be

exchangeable. The hierarchy in the model is introduced by defining the parameters of

the normal distribution (µ and σ2) as random variables itself, with their own distribu-

tions F and G. The parameters which define F and G are the hyperparameters and

form the second level of the BHM. The hyperparameters are usually set to fixed values,

but they can also be defined as random variables, which then creates another hierarchy

level. The BHM of Thall et al. (2003) and Berry et al. (2013) is a two-level hierarchi-

cal model, where the hyperparameters are fixed. The expected value µ influences the

location of the (transformed) response rates and σ2 determines the amount of sharing

among the baskets. The Bayesian distribution of the transformed response rate θi is

defined in the BHM by

θi ∼ N(µ, σ2)

µ ∼ G ∀i = 1, ..., I.

σ2 ∼ F

Berry et al. (2013) transform the response rate to θi := logit(pi) − c, with a constant

reference value c. The constant value c can also be incorporated in the expected value

µ such that a logit-transformation θi := logit(pi) is used. In the original publication
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Berry et al. (2013) propose to use a normal distribution with a mean corresponding to

an assumed null value for G and an inverse gamma distribution for F .

Mean-driven BHMs

The mean-driven BHMs expand the basic BHM with additional BHMs or individual distribu-

tions. This covers a wider field of locations for possible distributions and for example allows

to separate the support scale of θ into a favourable (null) and a non-favourable (alternative)

scenario. The scenarios differ by a shifted expected value and each of the individual BHMs

are applied with a probability λ, which can be fixed or random as well.

(iv) ExNex - Neuenschwander et al. (2016)

The ExNex (exchangeable - nonexchangeable) design adds to the BHM an individual

distribution, which represents the scenario when a basket-individual response rate does

not fit to the response rates in the other baskets. In that case non-exchangeability

between the baskets is assumed. The distribution of θi is then given by

θi ∼



N(µ, σ2), with probability λi

µ ∼ G

σ2 ∼ F

N(mi, vi), with probability (1 − λi)

mi, vi fixed

∀i = 1, ..., I.

λi fixed

The parameters of the individual distribution mi and vi are fixed and predefined values.

The probabilities λi are fixed a priori. The λi can, but do not have to be different values

for each basket. This can be used when it is already assumed a priori that a basket i

does not conform with the others. Additionally, Neuenschwander et al. (2016) allow to

include another hierarchy level by defining λi as a random variable with, e.g. Dirichlet

distributions. The authors propose to use a normal distribution for G and a half-normal

prior distribution for σ2.

(v) PoC - Jin et al. (2020a)

The next step in the evolution of information sharing is the weighted mixture of two
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BHMs. The proof-of-concept (PoC ) design by Jin et al. (2020a) is proposing such an

approach. The BHMs differ in the expected value around which they are centered.

The variance in both BHMs comes from the same distribution. The probability λ is a

random variable and describes how likely each of the BHMs is chosen, it is the same

for every basket. The distribution of θi is then given by

θi ∼



N(µ1, σ2
1), with probability λ

µ1 ∼ G1

σ2
1 ∼ F

N(µ2, σ2
2), with probability (1 − λ)

µ2 ∼ G2

σ2
2 ∼ F

∀i = 1, ..., I.

λ ∼ U [0, 1]

The PoC design uses an additional hierarchy level for the parameters of G1 and G2. For

G1 and G2, the authors propose a normal distribution with fixed expected value and in-

verse gamma distributed variance. For F , they propose an inverse gamma distribution.

(vi) QBHM - Liu et al. (2017)

Liu et al. (2017) propose a sharing technique for the final analysis that is very sim-

ilar to the one in PoC. The differences are individual variances for the BHMs and a

fixed probability for each BHM. Liu et al. (2017) use a Cochran’s Q test to evaluate

homogeneity and only apply the mixture of BHMs if homogeneity was not rejected.

If homogeneity is rejected, each basket is investigated independently. This reflects a

modified test-then-pool approach where Cochran’s Q test determines whether pooling

is conducted. If the data is pooled, a partial pooling via the mixture of two BHMs is

performed. The design of Liu et al. (2017) is called QBHM because of the Cochran’s

Q test.
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θi ∼



N(µ1, σ2
1), with probability λ

µ1 ∼ G1

σ2
1 ∼ F1

N(µ2, σ2
2), with probability (1 − λ)

µ2 ∼ G2

σ2
2 ∼ F2

∀i = 1, ..., I.

λ fixed

The authors propose a normal distribution for G1 and G2, and a gamma distribution

for F1 and F2.

(vii) BaCIS - Chen and Lee (2019)

The Bayesian classification and information sharing design (BaCIS) allocates in a first

step each basket to one of two clusters C1 or C2. The clustering process is based on

two BHMs with different means and the membership in C1 or C2 is determined by the

higher frequency of allocation to one of the two BHMs in the clustering process. The

second step is to apply a BHM exclusively within each cluster, which means to share

information only between baskets from the same cluster. Hence, the BaCIS sharing

tool is a binary mixture of two BHMs with a beforehand clustering.

θi ∼



N(µ1, σ2
1) | Dc1 , if basket i located to cluster C1

µ1 ∼ G1

σ2
1 ∼ F

N(µ2, σ2
2) | Dc2 , if basket i located to cluster C2

µ2 ∼ G2

σ2
2 ∼ F

∀i = 1, ..., I.

For G1 and G2, the authors propose normal distributions with different means and the

same variance. For F , they propose a gamma distribution.
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(viii) BLAST - Chu and Yuan (2018b)

The Bayesian latent subgroup trial (BLAST) extends the two-element mixtures to a

mixture of k BHMs. Each of the k BHMs describes a cluster of baskets with similar

treatment effect. The membership of basket i in a cluster is latent and determined by the

longitudinal trajectory of a biomarker and by the observed binary treatment responses.

The biomarker needs to be correlated with the treatment response and serves as proxy

for the latter. The number of clusters k is determined by the goodness of fit in the

semi-parametric mixed model for the longitudinal trajectory of the biomarker. Chu

and Yuan (2018b) argue that clustering of binary responses in small sample sizes is of

limited quality and the authors aim to enrich the binary responses by the biomarker to

take more informed decisions.

θi ∼



N(µ1, σ2
1), with probability λi1

µ1 ∼ G1

σ2
1 ∼ F
...

N(µk, σ2
k), with probability λik

µk ∼ Gk

σ2
k ∼ F

∀i = 1, ..., I.

λi ∼ Dir(γ1, ..., γk)

The k-dimensional vector of probabilities λi has a Dirichlet distribution. The authors

propose a normal distribution for all Gi and an inverse gamma distribution for F .

Variance-driven BHMs

Apart from the location, given by the expected value, the sharing in the BHM can also be

guided by the variance. The variance describes the amount of information that is shared.

The larger the variance, the less information is shared among the baskets and vice versa.

This is because a large variance allows many values around the expected value, while a small

variance restricts the values of θi closely to the expected value for all baskets i. The extremes

are σ2 = ∞ for complete independence of the baskets and σ2 = 0 for complete sharing among

them.
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(ix) calBHM - Chu and Yuan (2018a)

The calibrated BHM (calBHM ) is an adaption of the basic BHM where a fixed and

calibrated value for the variance is used. The calculated variance value is a monotoni-

cally increasing function of the test statistic T from the χ2-test and a tuning parameter

ϕ. Simulations are used to calibrate the function and the tuning parameter in order

to control the type 1 error. While any monotonically increasing function is possible,

the authors proposed g(T ; ϕ = (ϕ1, ϕ2)) := exp(ϕ1 + ϕ2 · log(T )) with ϕ2 > 0 because

they observed a robust behaviour for that monotone function in their simulations. The

model is thus given by

θi ∼ N(µ, σ2)

µ ∼ G ∀i = 1, ..., I.

σ2 = g(T ; ϕ)

The authors propose a normal distribution for G. Novelli (2021) proposed a slightly

modified calibration function g(T ; ϕ = (ϕ1, ϕ2)) = exp(ϕ1 + ϕ2 ·
√

T ) − 1 in order to

improve the overall trial characteristics.

(x) corBHM - Jin et al. (2020b)

Jin et al. (2020b) proposed a multivariate normal distribution with a correlation matrix

Ω to model the basket-individual response distributions. The model is denoted as

corBHM and each element ωij of Ω is generated with a correlation function of the

pairwise distance measures dij and a random tuning parameter ϕ ∼ E . The distances

are calculated on the posterior distributions of each individual basket and the authors

propose the Kullback-Leibler distance, the Hellinger distance, or the Bhattacharyya

distance for the pairwise dij .

θ ∼ MV N(µ, Ω · σ2
b + diag(σ2

w))

µ ∼ G

σ2
b ∼ Fb, σ2

w ∼ Fw
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The variable σ2
b is the variance between the baskets. The variance within a basket σ2

w is

stored in the diagonal matrix diag(σ2
w). corBHM applies an additional hierarchy level

for the variance of G. The authors propose a normal distribution for G with a fixed

expected value and a variance with inverse gamma distribution. For Fb and Fw, they

propose inverse gamma distributions.

(xi) BCHM - Chen and Lee (2020)

The sharing of information in the BCHM design consists of two steps. The first step is

to cluster the baskets with a Dirichlet process mixture model (DPM). For each basket,

the clustering process returns the relative frequency of a pairwise membership in the

same cluster during the sampling process. The relative frequency is denoted by ωij

and describes the similarity of two baskets with respect to the response rate. In the

second step, BHMs with respect to each basket i are constructed and the reference to i

is denoted as a superscripted index in round brackets. The ωij modify the variance in

the BHMs and consequently determine the degree of sharing between the baskets. This

leads to an individual variance for basket j in the BHM with respect to basket i. The

variance modification is the quotient of the variance of basket i, σ(i)2, and the pairwise

similarity measure ωij to basket j. Hence, the higher the similarity measure ωij , the

smaller the variance and the higher the pairwise sharing. The distribution of θi is then

given by the i-th element from the BHM with respect to i and is denoted by

θ
(i)
j ∼ N

(
µ(i), σ(i)2

ωij

)
∀j = 1, ..., I

µ(i) ∼ G

σ(i)2 ∼ F

θi := θ
(i)
i ∀i = 1, ..., I.

The authors propose a normal distribution for G and an inverse gamma distribution for

F .

(xii) Zheng - Zheng and Wason (2020)

In the design of Zheng and Wason (2020), a marginal predictive prior (MPP) is used

to share information among the baskets. The MPP is a weighted linear combination
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of (I − 1) random variables and created for each basket i. The elements in the linear

combination are commensurate predictive priors (CPPij) for basket i based on basket

j, j ̸= i and the weights ωij are functions of the Hellinger distance between basket i

and j. A CPPij element is created by integrating over the variance σ2
ij of a normally

distributed random variable θij . The expected value µj of this normal distribution is

fixed and inferred from the observed results in basket j. The variance σ2
ij is a random

variable and its distribution depends on the similarity between the results in basket i

and j and therefore controls the information sharing from j to i. In the analysis of

basket i, the MPP serves as the prior and is updated by the observed data in basket i.

θij ∼ N(µj , σ2
ij)

µj fixed and inferred from results in basket j

σ2
ij ∼ F(dij)

CPPij : integrate over the distribution of the variance σ2
ij which results in

θ
(i)
j ∼ N(mj , σ2

j )

with inferred and non-random values for µj , σ2
j

MPP: combine all (I − 1) CPPs in a linear combination of random variables

θi := ∑
j ̸=i ωij · θ

(i)
j ∼ N(∑j ̸=i ωij · mj ,

∑
j ̸=i ω2

ij · σ2
j ) ∀i = 1, ..., I.

For the distribution of σ2
ij , the authors propose the quadratic inverse of a spike-and-slab

distribution (Mitchell and Beauchamp, 1988) based on the Hellinger distance dij . The

spike-and-slab distribution in this model is a mixture of a point mass and a truncated

uniform distribution. The point mass lies above the support scale of the truncated

uniform distribution and induces strong sharing whereas the uniform distribution covers

situations where sharing is not indicated.

Non-transformed and beta-binomial model

The so far presented BHMs are all based on the transformed response rate θi, however,

there are sharing techniques which directly work with the non-transformed response rate pi.

The non-transformed techniques use the conjugate combination of binomial data and beta

distributed response rates which result in a beta-binomial model.
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(xiii) Simon - Simon et al. (2016)

Simon’s basket trial works with a non-transformed and categorical response rate p ∈

{p0, p1} and the basket-individual pi takes the value p0 with probability γ. The notation

for the categorical distribution is Cat(p0, p1; γ). The information sharing by Simon

consists of two scenarios. In the homogeneous scenario, exchangeability of the response

rates among all baskets is assumed. Hence, all baskets are evaluated together. In the

heterogeneous scenario, independence between the baskets is assumed and each basket

is evaluated individually. The two scenarios and their assumptions are similar to the

ExNex approach, however, Simon uses categorical response rates and the data are fully

shared while ExNex uses a continuous scale and allows an adjusted degree of sharing in

the BHM. The separation into two scenarios (complete sharing or individual evaluation)

is a Bayesian all or nothing approach.

pi ∼


Cat(p0, p1; γ) | D, with probability λ

Cat(p0, p1; γ) | Di, with probability (1 − λ)
∀i = 1, ..., I.

λ, γ fixed

Parameter λ is a fixed value and the same for all baskets, without any further specifica-

tions in the original paper. The posterior probability of pi can be calculated in closed

form using the Bayes theorem.

(xiv) Asano - Asano and Hirakawa (2020)

The sharing tool of Asano and Hirakawa (2020) is an extension of the Bayesian all or

nothing approach by Simon et al. (2016). However, Asano and Hirakawa (2020) use a

continuous scale on (0, 1) for the response rate p, and in the heterogeneous scenario,

they use two different priors for the individual analyses of the baskets. The two different

priors reflect different prior knowledge on the response rate and the first prior is chosen

with fixed probability ω. The fixed parameter λ describes the probability for the homo-

geneous scenario. The authors originally presented their design in form of a Bayesian

model averaging approach as proposed by Psioda et al. (2019). The distribution of the

basket individual response rates are then given by
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pi ∼



Beta
(
a +∑

j rj , b +∑
j(nj − rj)

)
, with probability λ

Beta
(
a1 + ri, b1 + (ni − ri)

)
, with probability (1 − λ) · ω

Beta
(
a2 + ri, b2 + (ni − ri)

)
, with probability (1 − λ) · (1 − ω)

∀i = 1, ..., I.

λ, ω fixed

(xv) MEM - Hobbs and Landin (2018)

The multi-exchangeability model (MEM ) shares information between the baskets based

on an exchangeability matrix Ω. The matrix Ω consists of binary entries, each dis-

playing in a pairwise manner whether two baskets are exchangeable (ωij = 1) or not

(ωij = 0). The exchangeability matrix Ω is random and depends on the distribution of

the matrix elements ωij . The authors use a priori equal probabilities P[ωij = 1] = 0.5

for all pairwise entries in their example. The information of two baskets is combined

if Ω indicates exchangeability between the two baskets, while elsewise they remain

separated. The MEM design iterates over all possible exchangeable-nonexchangeable

combinations for every basket and models them together with the observed data. The

resulting beta-binomial model describes the posterior distributions of the basket-wise

response rates

pi ∼ Beta
(
a +

∑
j

ωij · rj , b +
∑

j

ωij · (nj − rj)
)

∀i = 1, ..., I.

a, b fixed values

Ω ∼ E

(xvi) BMA - Psioda et al. (2019)

The Bayesian model averaging (BMA) of Psioda et al. (2019) presents the same idea

as the MEM approach by Hobbs and Landin (2018). Every possible combination of

pairwise exchangeability among the baskets is modeled together with the observed data.

The posterior distributions are then calculated with a beta-binomial model.
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(xvii) Fujikawa - Fujikawa et al. (2020)

The Fujikawa design shares information via the properties of the beta-binomial model.

The knowledge and observations from the other baskets are incorporated in weighted

form to the posterior distribution of pi. The pairwise weights ωij are a function of the

Jensen-Shannon divergence of the individual posterior distributions from basket i and

j, and of two fixed tuning parameters. The basket-individual beta priors are given by

the fixed values aj and bj . The distribution of the basket-individual response rate is

then described by

pi ∼ Beta
(∑

j

ωij · (aj + rj),
∑

j

ωij · (bj + nj − rj)
)

∀i = 1, ..., I.

aj , bj fixed values

Hypothesis-driven models

The hypothesis-driven sharing tools use the probabilities for the null and alternative hypoth-

esis and do not directly rely on the response rate. Information is shared among those baskets

with similar probabilities for the respective hypotheses.

(xviii) RoBoT - Zhou and Ji (2020)

The robust Bayesian hypothesis testing method (RoBoT ) design shares information

within latent subgroups. A Dirichlet process mixture model (DPM) determines the

latent subgroups based on the probabilities of basket-individual hypotheses (H0 : pi ≤

pi0, H1 : pi > pi0). The defining parameters of the Dirichlet process DP are the fixed

concentration parameter α and the base distribution G0. Hence, the distribution of the

basket-indvidual response rate pi is given by
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pi ∼



TBeta(a0, b0, [0, pi0]), with probability λi

a0, b0 fixed

TBeta(a1, b1, (pi0, 1]), with probability (1 − λi)

a1, b1 fixed

∀i = 1, ..., I.

logit(λi) ∼ N(µi, σ2
i )

(µi, σ2
i ) ∼ G

G ∼ DP(α, G0)

The authors propose a two-dimensional distribution as a combination of a normal and

truncated Cauchy distribution for G0.

(xix) MUCE - Lyu et al. (2020)

Information sharing in the MUCE design is based on a hierarchical model for the

variable Zi. This variable is used to indicate the basket-individual hypotheses. The

null (H0 : θi ≤ θi0) and alternative (H1 : θi > θi0) hypothesis are chosen based on

the distribution of Zi which means the hierarchical model shares information about the

certainty of the hypotheses among the baskets.

θi ∼



TCauchy(θi0,γ, (−∞, θi0]), with probability P[Zi < 0]

γ fixed

TCauchy(θi0,γ, (θi0, ∞]), with probability P[Zi ≥ 0]

γ fixed

∀i = 1, ..., I.

Zi ∼ N(µi, σ2
Z), σ2

Z fixed

µi ∼ N(µ0, σ2
0), σ2

0 fixed

µ0 ∼ N(µ, σ2) µ, σ2 fixed
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3.1.3 Futility tools at interim

In the following, tools for the second component, the interim futility assessment, are pre-

sented. The tools are defined rules to make an informed decision whether to stop the recruit-

ment to the basket at the interim node or not. The tools all work with the non-transformed

response rate pi. Hence, designs which use the transformed response rate to model the pos-

terior distributions re-transform back to pi to take the interim futility decision. Detailed

technical relationships between the interim futility tools are elaborated in Section 3.2.3.

(i) Minimum number of responses: Prune basket i if less than ri responses have been

observed.

Used by: Cunanan et al. (2017b), Zhou et al. (2019)

(ii) Statistical test: Prune basket i if the p-value from an appropriate statistical test for

the hypotheses of the primary endpoint (e.g. H0 : p ≤ p0, H1 : p > p0 ) exceeds αF .

The significance level is a tuning parameter of the basket trial design and predefined.

The value for αF should be higher than the commonly used 5% for statistical tests,

because otherwise the pruning would be too strong and many baskets would stop early.

Used by: Chen et al. (2016)

(iii) Posterior probability: Prune basket i if the posterior probability that the response

rate exceeds the fixed reference value p0 is low, i.e.

P[pi > p0|D] ≤ τF . (3.1)

Used by: Hobbs and Landin (2018), Thall et al. (2003), Asano and Hirakawa (2020)

One modification is shift the reference value using two response values (e.g. null and

alternative values). The fraction p0+p1
2 includes both and assesses in which direction

the basket-individual response rate tends to, that is

P
[
pi >

p0 + p1
2

∣∣∣∣D] ≤ τF . (3.2)

Used by: Berry et al. (2013), Chu and Yuan (2018a), Chu and Yuan (2018b), Psioda

et al. (2019), Jin et al. (2020b)
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The second modification for the posterior probability assumes a discrete distribution of

the response rate with only two values p0 or p1, i.e.

P[pi = p1|D] ≤ τF . (3.3)

Used by: Simon et al. (2016)

(iv) Posterior probability of hypotheses: Prune basket i if the posterior probability

that the response rate follows a distribution according to the alternative hypothesis is

low. In the MUCE design of Lyu et al. (2020), the random variable Zi indicates the

distribution of the response rate in basket i. For Zi ≥ 0, the basket has a distribution

given by the alternative hypothesis, while elsewise the distribution is given according

to the null hypothesis. Basket i is then pruned if

P[Zi ≥ 0|D] < τF .

Used by: Lyu et al. (2020)

(v) Posterior predictive probability: Prune basket i if the posterior predictive proba-

bility that the response rate exceeds the reference value at the final analysis is low. It

requires that the final number of observations per basket is already known at the interim

futility assessment. Liu et al. (2017) simulate the posterior predictive probability. At

the interim assessment they use all the available observations and build a beta-binomial

model from which they draw numbers of stage two responses for the simulation process.

The simulated number of responses are then used to calculate final analyses. The fre-

quency of simulated outcomes for which the response rate in the final analysis is larger

than the reference response rate p0 is the simulated posterior predictive probability. A

basket is then pruned if the simulated posterior predictive probability is lower than a

predefined threshold τF . Fujikawa et al. (2020) applies a beta-binomial model as well,

but they compute the posterior predictive probability analytically. A basket is then

pruned if the following holds true

∑
{ri:final analysis successful}

∫ 1

0
f(ri|pi)f(pi|D)dpi ≤ τF . (3.4)
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Used by: Liu et al. (2017), Fujikawa et al. (2020)

(vi) Conditional power: Prune basket i if the conditional power of a successful final basket

analysis is low. It requires that the final number of observations per basket is already

known at the interim futility assessment and an assumption about the true response

rate must be made. A basket is then pruned if the following holds true

∑
{ri:final analysis successful}

f(ri|p̂i) ≤ τF . (3.5)

The assumed response rate p̂ at the interim assessment can take any fixed value on

the support of p. Informed choices for the point estimate of the assumed response rate

can be the maximum likelihood estimate (MLE) based on the so far observed data at

interim (Saville et al., 2014), or the initially assumed response rate under the alternative

hypothesis. Also, the boundaries of (e.g. 90%) confidence intervals can be informative

while still at least partly incorporating the uncertainty regarding the true response rate.

Used by: so far not applied in proposed basket designs but a suitable frequentist tool

In the publications of Zheng and Wason (2020), Li et al. (2019), and Chen and Lee (2019) the

interim futility assessment is optional and no further explicit explanations are given. These

works concentrate on the method to share information and not explicitly on the complete

design. In Neuenschwander et al. (2016), Jin et al. (2020a), Chen and Lee (2020), Zhou and

Ji (2020) interim futility assessments are not mentioned but in a modular basket trial their

sharing tools can be applied in basket trial designs where futility is investigated at interim.

The frequency of interim futility assessments is a design element and is an optional component.

If a futility analysis is incorporated, the time points and the rules must be specified in advance.

Jin et al. (2020b), Liu et al. (2017), Chen et al. (2016), Cunanan et al. (2017a), and Zhou et al.

(2019) propose one interim futility assessment whereas Simon et al. (2016), Chu and Yuan

(2018b), Chu and Yuan (2018a), Psioda et al. (2019), Hobbs and Landin (2018), Fujikawa

et al. (2020), Li et al. (2019), and Lyu et al. (2020) allow multiple assessments. The time

points for the assessments can depend on the passed trial time or on the amount of observed

data. In the design of Berry et al. (2013), the futility assessments take place after a certain

number (e.g. 10) of patients per basket have been observed. Additional interim looks are
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then planned after five additional patients were observed. The most extreme scenario is an

interim futility assessment after each observation (Simon et al., 2016) while the most liberal

scenario only conducts one single interim futility assessment (e.g Jin et al. (2020b)) which

reflects a two-stage design.

3.1.4 Efficacy tools at interim

The so far proposed tools for the third component are presented in the following. The tools

describe rules to stop baskets at an interim assessment due to strong evidence of a successful

treatment. The proposed tools for the interim efficacy assessments are:

(i) Statistical test: Prune basket i if the p-value from an appropriate statistical test for

the primary endpoint exceeds αE . The significance level is a tuning parameter of the

basket trial design and predefined in accordance with the regulatory requirements for

a potential accelerated approval of this basket.

Used by: Chen et al. (2016)

(ii) Posterior probability: Prune basket i if the posterior probability that the response

rate exceeds the reference value is high, i.e.

P[pi > p0|D] > τE . (3.6)

Used by: Psioda et al. (2019)

Equivalently to the futility assessments, the reference value can be changed to

P

[
pi >

p0 + p1
2

∣∣∣∣D] > τE . (3.7)

Used by: Berry et al. (2013)

The posterior probability rule can be adapted for a discrete distribution of the response

rate, resulting in

P[pi = p1|D] > τE . (3.8)

Used by: Simon et al. (2016)
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(iii) Posterior predictive probability: Prune basket i if the posterior predictive prob-

ability that the response rate exceeds the reference value at the final analysis is high,

i.e. ∑
{ri:final analysis successful}

∫ 1

0
f(ri|pi)f(pi|D)dpi > τE . (3.9)

Used by: Fujikawa et al. (2020)

The interim efficacy assessment is optional and is explicitly proposed only in a few designs

(Chen et al., 2016; Simon et al., 2016; Psioda et al., 2019; Fujikawa et al., 2020). In Berry

et al. (2013), Chen and Lee (2019), and Zheng and Wason (2020) it is mentioned to be

incorporated into the design, but without any further technical definitions in the former two.

The other designs do not consider interim efficacy assessments.

The tools are very similar to the futility tools. The difference is in the direction from which

the thresholds are considered. The operand < is changed to > for the efficacy tools (cf.

Equation 3.2 and 3.7, Equation 3.1 and 3.6, Equation 3.3 and 3.8, and Equation 3.4 and 3.9).

In the BMA design by Psioda et al. (2019), different reference values in the futility and efficacy

assessments are applied. In the other designs, the reference value remains consistent and only

the direction of the threshold is changed. The frequency of interim efficacy assessments is a

design element and the time points for these assessments must be prespecified. A pragmatic

approach is to conduct them simultaneously with the interim futility assessment. Still, the

efficacy assessment can also take place independently at nodes where it is a meaningful tool

for the purpose of the trial. Early trials rather concentrate on pruning baskets with no effect,

in order to save resources and to only continue with potentially promising indications. In

that case, the interim efficacy assessment is of limited benefit but leaves the door open for a

quick development of a potential breakthrough treatment with overwhelming early results.

3.1.5 Final analysis

The so far proposed tools for the fourth component are presented in the following. The

tools evaluate in the final analysis the success of the basket trial. The final analysis focuses

on the underlying research question (confirmatory evaluation of the investigated treatment,

detection of promising baskets, PoC) and accordingly uses the observed results in each basket

and throughout the complete trial.
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(i) Statistical test: The frequentist designs apply a statistical test to assess the final

efficacy. A binomial test can be applied for the analysis of binary response rates.

Cunanan et al. (2017b) apply the one-sided version (H0 : p ≤ p0, H1 : p > p0) of the

test and Zhou et al. (2019) use the two-sided version (H0 : p = p0, H1 : p ̸= p0). The

more general approaches for the confirmatory phase III basket trials (Chen et al., 2016;

Li et al., 2017) only refer to an appropriate statistical test for the investigated primary

endpoint.

(ii) Posterior probability: The final efficacy analysis is conducted on the posterior distri-

bution of the response rate. The probability that the response rate in basket i exceeds

a reference value is compared with the threshold for the final analysis τA. Basket i is

considered promising if it fulfills

P[pi > p0|D] > τA. (3.10)

Used by: Berry et al. (2013), Neuenschwander et al. (2016), Liu et al. (2017), Hobbs

and Landin (2018), Chu and Yuan (2018a), Psioda et al. (2019), Chen and Lee (2019),

Chu and Yuan (2018b), Jin et al. (2020b), Asano and Hirakawa (2020)

Similar to the interim futility and efficacy tools, modifications of the posterior proba-

bility decision rule are feasible, like for example, equality of the posterior distribution

with the threshold τA to declare efficacy in the final analysis

P[pi > p0|D] ≥ τA. (3.11)

Used by: Fujikawa et al. (2020)

Another modification is to change the reference value and increase the reference value

p0 by the positive value δ to incorporate an additional margin which must be exceeded

to declare a basket successful, i.e.

P[pi > p0 + δ|D] > τA.

Used by: Zheng and Wason (2020), Chen and Lee (2020)
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In the case of a discrete distribution with only two values p0, p1 for the response rate,

the posterior probability can be adapted to evaluate the probability of the alternative

value p1, i.e.

P[pi = p1|D] > τA.

Used by: Simon et al. (2016)

In the hypothesis-driven design of Lyu et al. (2020), the random variable Zi is inves-

tigated because this variable uniquely indicates whether the response rate takes values

larger or smaller than the reference value p0. Hence, in the final analysis the posterior

probability of the alternative hypothesis is evaluated which is equal to Equation 3.10

P[Zi ≥ 0|D] > τA. (3.12)

Used by: Lyu et al. (2020)

The information D, which is used in the final analysis, depends on the observations, but

also on the sharing tools applied throughout the trial. Therefore, D contains a different

amount of information among different basket trial designs. For example in Chen and

Lee (2019), only the information from the cluster to which the basket belongs to is

considered, while others, like Fujikawa et al. (2020), use all the available information.

(iii) Proof-of-concept probability: The PoC design evaluates all baskets together in the

final analysis with the goal to state that at least one basket shows efficacious results.

A single basket fulfills this requirement if its posterior response rate is distributed

according to the alternative hypothesis. The alternative response rate distribution is

represented by one of the two BHMs (cf. sharing of PoC design). Hence, the final

analysis is conducted with

P[at least one efficacious basket|D] = P

[(
I∑
i

1{basket i efficacious}

)
> 0

∣∣∣∣∣D
]

> τA.

Used by: Jin et al. (2020a)
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Zhou and Ji (2020) do not propose an explicit tool for the final analysis in their RoBoT

design. Their focus rather lies on the sharing tool, but still a final analysis can be conducted

with an appropriate tool, for example a tool similar to Equation 3.12, because the RoBoT

design is also hypothesis-driven.
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3.2 Relationships among decision tools in basket trials

The previous section showed that Basket trials apply frequentist and Bayesian methodology

to evaluate the investigated treatment. In this section, connections between frequentist and

Bayesian decision rules are investigated. The decisions with respect to futility and/or efficacy

of a basket are made at interim and also in the final analysis. This section consists of three

parts. The first elaborates the analytical relationship between the binomial test and the

posterior probability of the beta-binomial model, and quantifies their discrepancy especially

for a uniform prior. With this knowledge, congruence of decisions can be achieved which is

applied in the second part by converting the frequentist futility and efficacy decisions in the

design of Cunanan et al. (2017b) into Bayesian ones. The third part extends the map of

connections among decision tools by the remaining techniques which were introduced in the

Section 3.1.

3.2.1 Analytical relationship of one-sided binomial test and

Bayesian beta-binomial model

The assessment of futility or efficacy can be made by a frequentist one-sided binomial test or

in a Bayesian approach with a decision based on the posterior distribution (cf. Section 3.1).

The node of the trial where the decision is taken can be both at interim or at final assessment.

The motivation to investigate the connection between frequentist and Bayesian decision tools

lies in the type 1 error control of the frequentist technique and the requirement to control

the rate of false positive decisions of a Bayesian tool. Moreover, a thorough understanding of

both techniques, their characteristics, and the interaction between them is needed to correctly

apply the tools in the setting of basket trials.

The formal initial situation is the one-sided binomial test with respect to a significance level

α = 0.05. The null and alternative hypothesis for the response rate p are H0 : p ≤ p0

and H1 : p > p0 with regard to the fixed reference value p0. In the Bayesian setting, the

response rate p follows a beta distribution with parameters a and b. The combination of data

from a binomial distribution and a beta prior distribution for the response rate results in the

conjugate beta-binomial model (Section 2.2.2) with posterior distribution Beta(a+r, b+n−r).
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The frequentist decision relies on the p-value and rejects the null hypothesis if the p-value is

below the prespecified significance level α. Consequently, for the one-sided binomial test, the

p-value has the following form

P[R ≥ r|n, p0] =
n∑

x=r

P[R = x|n, p0] =
n∑

x=r

(
n

x

)
px

0(1 − p0)n−x (3.13)

and the alternative hypothesis is accepted if

P[R ≥ r|n, p0] ≤ α (3.14)

is fulfilled. The Bayesian decision is made on the posterior distribution of the response rate,

based on which the probability of the alternative hypothesis is calculated. This probability

is compared with the threshold τ . Consequently, the posterior probability to make a decision

is

P[p > p0|n, r] = 1
B(a + r, b + n − r)

∫ 1

p0
pa+r−1(1 − p)b+n−r−1dp (3.15)

and is taken in favor of a response rate exceeding the reference value p0 if

P[p > p0|n, r] ≥ τ (3.16)

holds true (cf. Section 3.1 and Fujikawa et al. (2020)).

The first step to analyse the analytical relationship between the one-sided binomial test and

the Bayesian decision is to investigate whether there is a global choice of τ such that the

probability of false positive decisions with the Bayesian decision rule is equivalent to the type

1 error of the frequentist test. The T1E is calculated by the sum over all likelihoods of data

which result in a decision in favour of H1 under the assumption that H0 holds

n∑
r=0

P[R = r|n, p0] · 1{decision for H1}. (3.17)

The following counter-example shows that there is no global τ to control the T1E simultane-

ously. For the assumed scenario p0 = 0.15 and τ = 0.975 with uniform prior (a = b = 1) the

Bayesian T1E
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• is above 0.05 for some n < 20

• is controlled for n ∈ [20, 42]

• and smaller than the T1E of the frequentist decision if n > 42.

The evolution of the T1Es in relation to n for this counterexample is shown in Figure 3.3a.

A change in the reference value p0 results in different type 1 errors (see Figure 3.3b) and

different regions of n in which the T1E is controlled by the fixed value threshold τ = 0.975.

The figures graphically display the dependence of threshold τ on the number of observations

n and on the reference value p0. This dependency can also be read from equations 3.15 and

3.17 as the posterior distribution is described by n, r, and p0, and the T1E is a sum over

each possible r. Hence, a global control with τ is not possible, however, in local regions of n

and for fixed p0 a local control can be achieved. The threshold must generally be considered

as a function of n and p0 to control the T1E with the Bayesian decision tool.

Consequently, the next step is to determine τ such that the Bayesian tool comes to the same

decision as the frequentist test. The lowest number of responses rmin for which the null

hypothesis is rejected with the binomial test is defined as

rmin := min{r|P[R ≥ r|n, p0] ≤ α}

For all r ≥ rmin it holds that the p-value is less than or equal to the significance level α,

hence, it suffices to concentrate on rmin as the relevant value to determine an appropriate

τ . This monotonicity in r also holds for the Bayesian decision on the posterior probabilities

as P[p > p0|n, r + 1] ≥ P[p > p0|n, r] ∀r ∈ {0, n − 1}, for which a proof can be found in

Kopp-Schneider et al. (2019). Consequently one has to choose τ such that P[p > p0|n, r] ≥

τ ∀r ≥ rmin. This condition is fulfilled for

τ(n,p0) : = P[p > p0|n, rmin] = (3.18)

= c ·
∫ 1

p0
pa+rmin−1(1 − p)b+n−rmin−1dp.
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Figure 3.3: Type 1 error of a one-sided frequentist binomial test with α = 0.05 and Bayesian
decision from a beta-binomial model with uniform prior a = b = 1 and threshold τ with
different reference response rates p0.
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with c being the normalizing constant. Finally with τ being chosen in dependence of the total

number of observations n and the reference value p0, the Bayesian tool comes to the same

decision as the frequentist test. Therefore, the Bayesian false-positive rate is controlled as in

the frequentist binomial test because the indicator function in Equation 3.17 is 1 if r ≥ rmin.

In such a case the p-value is smaller than α and at the same time the posterior probability

is greater than or equal to τ(n,p0).

The latter has shown that congruence between the frequentist test decision and the Bayesian

posterior probability decision can be achieved if the threshold τ (or significance level α) is

chosen appropriately. It is of further interest whether the existing connection between the

two decision tools can be quantified analytically. Therefore, the p-value of the binomial test

and the posterior probability are investigated in more detail. The p-value of the binomial test

has the appealing characteristic that it can be converted to a function of similar structure as

the density of a beta distribution. This profits from the known connection of the binomial

cumulative density function and an incomplete beta distribution (e.g. Hartley and Fitch,

1951 or Lieberman and Owen, 1961, p.18). The conversion of the p-value is achieved by

deriving the p-value (Equation 3.13) with respect to p0 using the product rule for derivation

and the calculation rules for the binomial coefficient which results in

d

dp0
P[R ≥ r|n, p0] =

n∑
x=r

[(
n

x

)
x · px−1

0 (1 − p0)n−x − (n − x) · px
0(1 − p0)n−x−1

]
=

=
n∑

x=r

[
n

(
n − 1
x − 1

)
px−1

0 (1 − p0)n−x − n

(
n − 1

x

)
px

0(1 − p0)n−x−1
]

=

= n

(
n − 1
r − 1

)
pr−1

0 (1 − p0)n−r

This term is then integrated with respect to p0, which means the p-value can be denoted as

P[R ≥ r|n, p0] = n

(
n − 1
r − 1

)∫ p0

0
pr−1(1 − p)n−rdp =

= 1
B(r, n − r + 1)

∫ p0

0
pr−1(1 − p)n−rdp. (3.19)

The conversion of the p-value allows to develop a quantified relationship to the posterior

probability. The starting point for that is the reformulation of the posterior probability

(Equation 3.15) into P[p ≤ p0|n, r] = 1 − P[p > p0|n, r] from which one can conclude that for
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the prior choice of a = 0 and b = 1, the p-value is the same as P[p ≤ p0|n, r]. The latter can

be retraced via the formulas

P[p ≤ p0|n, r] = 1
B(a + r, b + n − r)

∫ p0

0
pa+r−1(1 − p)b+n−r−1dp

a=0=
b=1

(3.20)

= 1
B(r, n − r + 1)

∫ p0

0
pr−1(1 − p)n−rdp

3.19= P[R ≥ r|n, p0]

It follows from Equation 3.13 that P[p ≤ p0|n, r] ≤ α is the frequentist decision rule which

is equivalent to 1 − P[p > p0|n, r] ≤ α and to 1 − α ≤ P[p > p0|n, r]. Therefore, choosing

τ = 1 − α as threshold for the posterior probability rule results in the same T1E control for

the Bayesian decision as for the binomial test, when the prior Beta(0, 1) is used. This holds

for all n, r, and p0 as can be seen in Equation 3.20.

Next it is of interest whether the connection between the Bayesian decision and the binomial

test can be quantified under a different prior, namely the uniform prior defined as Beta(1, 1).

For this purpose P and B are introduced to simplify the notation of the p-value and the

posterior probability using a uniform prior

P := 1
B(r, n − r + 1)

∫ p0

0
pr−1(1 − p)n−rdp,

B := 1
B(r + 1, n − r + 1)

∫ p0

0
pr(1 − p)n−rdp.

From Zaslavsky (2010) it is known that, with a uniform prior, B < P holds true. Hence, it

follows that τ must at least fulfill τ > 1−α to enable the same decisions because the binomial

test rejects H0 if P ≤ α. Since B < P, it follows that 1 − B must at least exceed 1 − α.

However, this is the most general condition, as 1 − α is the lower boundary for the space of

τ . This is thus a necessary but not sufficient condition which can be seen in Figure 3.4 where

similar T1E control is only possible for some n, but in the majority, the Bayesian decisions

are overoptimistic which results in higher T1E.

To better deal with this issue, a quantification of the difference between P and B is elabo-

rated. The difference is considered as a factor which allows the multiplicative conversion of

B to P and vice versa. The factor has moreover the practical advantage, that the posterior

probability can be corrected and then be compared to a constant threshold τ∗. The correction
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Figure 3.4: Type 1 error of a one-sided frequentist binomial test with α = 0.05 and Bayesian
decision from a beta-binomial model with uniform prior a = b = 1 showing that τ = 1 − α is
only necessary but not sufficient and reflects the lower boundary for the space of τ .

factor is denoted as κ and without loss of generality

P := κ · B (3.21)

which means, in combination with the knowledge of B < P, that κ will be larger than 1. The

correction factor has the following formula

κ := P
B

=

1
B(r, n − r + 1)

∫ p0

0
pr−1(1 − p)n−rdp

1
B(r + 1, n − r + 1)

∫ p0

0
pr(1 − p)n−rdp

=

= B(r + 1, n − r + 1)
B(r, n − r + 1) ·

∫ p0

0
pr−1(1 − p)n−rdp∫ p0

0
pr(1 − p)n−rdp

.

The factor κ consists of two elements. The first is the fraction of two beta functions, and

the second is a fraction of two integrals. The first element of κ is investigated and simplified
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using the connection of the beta function with the gamma function and results in

B(r + 1, n − r + 1)
B(r, n − r + 1) =

Γ(r + 1) · Γ(n − r + 1)
Γ(r + 1 + n − r + 1)
Γ(r) · Γ(n − r + 1)
Γ(r + n − r + 1)

=

= Γ(r + 1) · Γ(n − r + 1)
Γ(r + 1 + n − r + 1) · Γ(r + n − r + 1)

Γ(r) · Γ(n − r + 1) =

= Γ(r + 1) · Γ(n − r + 1)
Γ(n + 2) · Γ(n + 1)

Γ(r) · Γ(n − r + 1) =

= Γ(r + 1)
Γ(n + 2) · Γ(n + 1)

Γ(r) = r · Γ(r)
(n + 1) · Γ(n + 1) · Γ(n + 1)

Γ(r) = r

n + 1 (3.22)

meaning that the first fraction is smaller than 1 because of r ∈ {0, ..., n}.

For the assessment of the second element the notation P ′ and B′ for the elements of the

integral quotient is introduced

P ′

B′ :=

∫ p0

0
pr−1(1 − p)n−rdp∫ p0

0
pr(1 − p)n−rdp

. (3.23)

Both P ′ and B′ have a similar structure and the only difference is the power of p in the inte-

grand. Therefore, B′ is investigated applying partial integration (
∫

g(x)h′(x)dx = g(x)h(x)−∫
g′(x)h(x)dx) which results in

B′ =
∫ p0

0
pr(1 − p)n−rdp =

[
pr(1 − p)n−r+1(−1)

n − r + 1

]p0

0
−
∫ p0

0

rpr−1(1 − p)n−r+1(−1)
n − r + 1 dp =

= −pr
0(1 − p0)n−r+1

n − r + 1 − (−1)r
n − r + 1

∫ p0

0
pr−1(1 − p)n−r+1dp =

= −c1 + c2

∫ p0

0
pr−1(1 − p)n−r(1 − p)dp =

= −c1 + c2

∫ p0

0
pr−1(1 − p)n−r − pr(1 − p)n−rdp =

= −c1 + c2

[∫ p0

0
pr−1(1 − p)n−rdp −

∫ p0

0
pr(1 − p)n−rdp

]
=

= −c1 + c2
(
P ′ − B′)
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Now this term is solved with respect to P ′

B′ = −c1 + c2
(
P ′ − B′) ⇐⇒

B′ = −c1 + c2P ′ − c2B′ ⇐⇒

(1 + c2) · B′ = −c1 + c2P ′ ⇐⇒

(1 + c2) · B′ + c1 = c2P ′ ⇐⇒

P ′ = c2
c2

B′ + B′

c2
+ c1

c2
= B′ + B′

c2
+ c1

c2
(3.24)

The solved P ′ is then incorporated into Equation 3.23 and combined with the simplified

fraction of the beta functions in Equation 3.22 to calculate the correction factor κ as

κ = P
B

= r

n + 1 · P ′

B′
r

n + 1 ·

(
B′ + B′

c2
+ c1

c2

)
B′

= r

n + 1 ·
(

1 + 1
c2

+ c1
B′ · c2

)

= r

n + 1 +

 r

n + 1
1
r

n − r + 1

+

 r

n + 1 ·

pr
0(1 − p0)n−r+1

n − r + 1
B′ · r

n − r + 1



= r

n + 1 + n − r + 1
n + 1 + r

n + 1 · pr
0(1 − p0)n−r+1

B′ · r

= n + 1
n + 1 + pr

0(1 − p0)n−r+1

B′ · (n + 1)

= 1 + pr
0(1 − p0)n−r+1

(n + 1)
∫ p0

0
pr(1 − p)n−rdp

=: κ(n, r, p0). (3.25)

The correction factor now allows to directly calculate the frequentist p-value (P) from the

Bayesian posterior probability and vice versa. Consequently, the p-value and the posterior

probability can be considered as functions of each other.

Moreover, a dynamic τ dependent on the known and observed values n, r, p0 can be deter-

mined for the underlying data situation. For the frequentist decision rule it is given that

P ≤ α must be fulfilled to decide in favour of the alternative hypothesis. Based on Equation
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3.21, the condition is rewritten as κ · B ≤ α which is equivalent to B ≤ α

κ
from which follows

1 − B ≥ 1 − α

κ

and, consequently, the dynamic threshold τ can be seen in dependence of n, r, p0 in form of

τ(n,r,p0) = 1 − α

κ(n, r, p0) (3.26)

Moreover, the correction factor κ is larger than 1 because the second term in Equation 3.25 is

larger than 0, as the reference value p0 lies in the interval (0, 1). Consequently, Equation 3.25

proves that B < P under a uniform prior distribution. This characteristic has been shown

before by Zaslavsky (2010) and was also mentioned in this chapter to grasp the lower bound

for τ . However, this characteristic was not used to elaborate κ and therefore, in the end,

the elaborated κ proves the finding of Zaslavsky (2010) in a different way. The innovation

is that κ quantifies the known gap between the frequentist and Bayesian tool in form of a

multiplicative factor.

The correction factor is displayed in Figure 3.5 for different total numbers of patients. The

figure reveals that κ is monotonically increasing in the number of responses and that the

maximum at r = n is independent of the number of patients. This characteristic can be

proven by setting r = n into Equation 3.25 which results in

1 + pn
0 (1 − p0)n−n+1

(n + 1)
∫ p0

0
pn(1 − p)n−ndp

= 1 + pn
0 (1 − p0)

(n + 1)
[

pn+1

n + 1

]p0

0

=

1 + pn
0 (1 − p0)

(n + 1)
(

pn+1
0

n + 1 − 0
) = 1 + pn

0 (1 − p0)
pn+1

0
= 1 + pn

0 − pn+1
0

pn+1
0

= 1 + 1
p0

− 1 = 1
p0

:= κmax,

which proves that the correction factor κ increases as the reference value p0 declines (cf.

Appendix A.1 with additional plots under different p0).

Figure 3.5 also shows that κ remains flat until a certain number of responses has been reached.

After this point has been reached, κ starts to rise and converts into a linear increase. The
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Figure 3.5: Correction factor κ for different total number of patients n and its monotonic
increase in r up to the maximum κmax which only depends on the reference value p0 = 0.30.

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00

Observed response rate 
r

n

κ

n 20 30 40 50 60

p0 =  0. 3 and different number of patients

Figure 3.6: Correction factor κ for different total number of patients n in relation to the
observed response rate r

n
. The dashed vertical line marks the reference value p0 = 0.30.
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next step is to get a closer look at the area of r in which the first rise is observed. At first

glance, it seems that κ increases the closer the observed response rate r

n
comes to p0. Hence,

κ will be displayed in relation to the observed response rate instead of only r. Figure 3.6

underlines what was hypothesized before. The closer the observed response rate is to p0, the

larger κ becomes. The consequence is a substantially increased κ as regions of r are reached in

which the frequentist test starts to reject the null hypothesis. This means that the Bayesian

posterior rule is too optimistic and decides too early in favour of the alternative hypothesis if

the threshold τ is chosen naively. This overoptimism finally results in a larger T1E. Hence,

it is important to know by how much exactly B is smaller than P because the factor has its

drawbacks when the absolute values are small. In those cases, the absolute difference can

facilitate the conversions between B and P and might be helpful to grasp the difference in

more detail. The absolute difference is worked out with the elaborated knowledge from the

ratio. As of Equation 3.24, it is possible to display P ′ as a function of B′, and, because of

the definition of P = 1
B(r, n − r + 1) · P ′, it follows that the p-value is given by

P = 1
B(r, n − r + 1)

(
B′ + B′

c2
+ c1

c2

)
,

and with the property of the beta function B(r, n − r + 1) = n + 1
r

· B(r + 1, n − r + 1) and

with c1 = pr
0(1 − p0)n−r+1

n − r + 1 , c2 = r

n − r + 1, it further follows that P is a function of B

P = 1
n + 1

r
· B(r + 1, n − r + 1)

(
B′ + B′

c2
+ c1

c2

)
=

= r

n + 1 ·

B + B
r

n − r + 1
+ 1

B(r + 1, n − r + 1) · pr
0(1 − p0)n−r+1

r



= r · B
n + 1 + (n − r + 1) · B

n + 1 + pr
0(1 − p0)n−r+1

(n + 1) · B(r + 1, n − r + 1)

= r · B + n · B − r · B + B
n + 1 + pr

0(1 − p0)n−r+1

(n + 1) · B(r + 1, n − r + 1)

= B + pr
0(1 − p0)n−r+1

(n + 1) · B(r + 1, n − r + 1) .
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This consequently leads to the analytically quantifiable difference between the Bayesian pos-

terior probability in the beta-binomial model with uniform prior and the p-value of the

one-sided binomial test, with the difference being

δ := P − B = pr
0(1 − p0)n−r+1

(n + 1) · B(r + 1, n − r + 1) . (3.27)

In Figure 3.7, the absolute difference δ is displayed, showing that it can take values which are

of importance when decisions are made based on B. For example for n = 30, the difference δ

can be more than 10 percentage points. Also the asymptotic characteristic of the difference

becomes visible. For an increasing total number of observations n, the absolute difference

in general declines and converges to 0 because a constant which is smaller than 1 with the

power n declines faster than the multiplication with n increases. It therefore holds for the

absolute difference δ that

δ = pr
0(1 − p0)n−r+1

(n + 1) · Γ(n + 2)
Γ(r + 1)Γ(n − r + 1) =

= pr
0(1 − p0)n−r+1

(n + 1)Γ(r + 1) · (n + 2)!
(n − r + 1)!

n→∞−−−→ 0.

The magnitude of the absolute difference δ in regions where discriminatory decisions with

respect to the hypothesis are made is high (see Figure 3.8). This corresponds to the results

for the correction factor κ. Additional plots of δ in relation to the observed response rate for

different reference values p0 are given in Appendix A.2 and underline what was observed for

the factor; a general decline of the absolute difference with increasing p0 and also n.

The elaborated analytical relationship allows to interchangeably apply the frequentist bi-

nomial test and decisions based on the posterior distribution from a beta-binomial model

with uniform prior. The dynamic threshold ensures equal decisions because a static thresh-

old cannot be applied under all scenarios. The correction factor and the absolute difference

quantify by how much the decision measures, p-value and posterior probability, differ and

they therefore underline how much adaption is required to come to the same decision.
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Figure 3.7: Absolute difference between P and B for different total number of patients n in
relation to the observed number of responses r.
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Figure 3.8: Absolute difference between P and B for different total number of patients n in
relation to the observed response rate r

n
. The dashed vertical line marks the reference value

p0 = 0.30.
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3.2.2 Conversion of a frequentist basket trial into a design with Bayesian

tools

In this section, the elaborated connection between the frequentist binomial test and the

Bayesian posterior probability is applied. The frequentist design of Cunanan et al. (2017b)

will be modified to a basket trial design that applies Bayesian techniques. This will show that

tools can be interchanged and, although they appear completely different, the same decisions

are made. This also means the same erroneous decisions are made and therefore the T1E

remains untouched. The design of Cunanan et al. (2017b) and its tools are described in

Section 2.1.2.

The specific setting for a basket trial is taken from the simulation study in Cunanan et al.

(2017b), where the authors compare their proposed design with a reference design. For their

trial setting, they oriented themselves on talks with experts and on the reported character-

istics of the applied basket trial by Hyman et al. (2015). Therefore, their example works

with I = 5 baskets. For the interim assessment, they require at least rs ≥ 1 responses in

the heterogeneous and rc ≥ 5 responses in the homogeneous path to continue the individual

basket and the pooled trial, respectively. In the first stage n1 = 35 patients are recruited. In

general, the authors assume an equal accrual of patients, meaning that on average 7 patients

per basket are available after stage 1. In the second stage, additional n2 = 20 patients are

added in the homogeneous path, while in the heterogeneous path n2i additional patients are

recruited to each basket that passed the first stage. The authors simulated n2i together with

the significance level for the final analysis in the homogeneous path αc, the significance level

in the heterogeneous path before correction for multiplicity αs, and the tuning parameter γ

in the assessment of heterogeneity. The premise for the simulation was to reach the same

family-wise T1E as the reference design under the global null hypothesis (all baskets are

futile). The simulation returned n2i = 15, αc = 0.05, αs = 0.07, and γ = 0.52.

With all this information, the frequentist assessments of futility after stage 1 and the final

efficacy evaluation after stage 2 are converted to Bayesian decision rules. The null hypothesis

assumes a response rate lower than or equal to p0 = 0.15 (H0 : p ≤ p0).

Stage 1: Futility decisions after in total n1 = 35 patients are recruited
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• Homogeneous path: The example requires at least rc = 5 responses within the pooled

baskets at the interim futility assessment. In a statistical test setting, this corresponds

to a significance level of at least P[X ≥ 5|p = 0.15, n = 35] = 0.6193 for the one-sided

binomial test. The upper boundary is 0.7912, the p-value for r = 4 which is the highest

number of responses that results in a futility stop. Consequently, the trial continues for

any significance level within [0.6193, 0.7912). The values within the interval are rather

uncommon choices for the significance level in a statistical test, however, it reflects the

liberal layout of the interim futility assessment with the purpose to continue the trial

and stop only if barely any support for a potentially efficacious treatment is given. The

posterior probability for the Bayesian futility assessment in this setting is derived using

the p-value and the elaborated absolute difference δ (Equation 3.27)

P[p ≤ p0|n = 35, r = 5] = 0.6193 − 0.155(1 − 0.15)35−7+1

(35 + 1) · B(5 + 1, 35 − 5 + 1) =

= 0.6193 − 0.1599 = 0.4594.

Consequently the posterior probability to assess interim futility is

P[p > p0|n = 35, r = 5] = 1 − 0.4594 = 0.5406.

The threshold for the interim futility assessment τF can then be derived because it is

known that the trial must continue if the posterior probability is 0.5406 or higher (cf.

Equation 3.1). Therefore, the trial is stopped for any τF in [0.3550, 0.5406) because the

lower bound of the interval is the posterior probability for r = 4.

• Heterogeneous path: At least rc = 1 responses among the expected n1i = 7 patients

within each basket are required. Similarly to the homogeneous path, this requirement

can be transposed into a statistical test setting for a one-sided binomial test that results

in a significance level of at least P[X ≥ 1|p = 0.15, n = 7] = 0.6794 and an upper

boundary 1, which is the p-value for r = 0. Hence, a significance level from the interval

[0.6794, 1) ensures that the basket continues only if at least one response is observed.
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The corresponding posterior probability to assess interim futility is then derived via

P[p ≤ p0|n = 7, r = 1] = 0.6794 − 0.151(1 − 0.15)7−1+1

(7 + 1) · B(1 + 1, 7 − 1 + 1) =

= 0.6794 − 0.3366 = 0.3428

and is given by

P[p > p0|n = 7, r = 1] = 1 − 0.3428 = 0.6572.

The threshold for the interim futility assessment τF must be smaller than 0.6572 because

r = 1 is the smallest response for which the basket moves to the second stage. Hence,

any value from the interval [0.2725, 0.6572) may be feasible because the lower boundary

is the posterior probability for r = 0, which results in a stop.

Stage 2: Efficacy assessment after completed recruitment with all available patients

• Homogeneous path: Additional n2 = 20 patients are recruited, hence, the total number

of patients is n = n1 + n2 = 55. The significance level is defined as αc = 0.05 based

on the simulations. Therefore, the smallest number of total responses to reject the null

hypothesis with a one-sided binomial test is

rmin := min{r : P[R ≥ r|p = 0.15, n = 55] ≤ αc} = 14

The corresponding p-value for r = 14 is 0.0297. According to the absolute difference

between the p-value and the posterior probability (cf. Equation 3.27), it follows that

P[p ≤ p0|n = 55, r = 14] = 0.0297 − 0.1514(1 − 0.15)55−14+1

(55 + 1) · B(14 + 1, 55 − 14 + 1) =

= 0.0297 − 0.0138 = 0.0159.

Consequently, the Bayesian posterior probability to declare the treatment efficacious in

the final analysis is

P[p > p0|n = 55, r = 14] = 1 − P[p ≤ p0|n = 55, r = 14] = 1 − 0.159 = 0.9841
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and the threshold τA could be chosen as 0.9841. However, any value for τA within the

interval (0.9657, 0.9841] would fulfill the efficacy rule denoted in Equation 3.11 because

the lower boundary is the posterior probability for r = 13, and with that number of

responses the treatment would not be declared efficacious.

• Heterogeneous path: Additional n2i = 15 patients are recruited to each basket that

passed the first stage, hence the total number of patients is n = 22, which includes the

expected 7 patients per basket in stage 1. The number of baskets that reach the second

stage is denoted by i∗ and is used for the Bonferroni correction of the significance level

resulting in αs

i∗ . The significance level for each basket therefore depends on the number

of baskets in the second stage and potential levels for i∗ ∈ {1, 2, 3, 4, 5} are

0.07
i∗ = 0.0700 0.0350 0.0233 0.0175 0.0140.

Consequently, the smallest number of responses to reject the null hypothesis is not

unique and depends on i∗

rmin := min

{
r : P[R ≥ r|p = 0.15, n = 22] ≤ 0.07

i∗

}
=


7, if i∗ = 1

8, if i∗ ∈ {2, 3, 4, 5}

because for r = 7 the p-value is 0.0368, while it is 0.0114 for r = 8.

It then follows for the posterior probability that with r = 7

P[p ≤ p0|n = 22, r = 7] = 0.0368 − 0.157(1 − 0.15)22−7+1

(22 + 1) · B(7 + 1, 22 − 7 + 1) =

= 0.0368 − 0.0216 = 0.0152

and, consequently,

P[p > p0|n = 22, r = 7] = 1 − P[p ≤ p0|n = 22, r = 7] = 1 − 0.0152 = 0.9848,

which means the threshold τA for the final analysis with in total i∗ = 1 baskets can be

chosen from (0.9537, 0.9848]. The lower boundary is the posterior probability for r = 6.



3.2. Relationships among decision tools in basket trials 67

For r = 8, the posterior probability is similarly derived from the p-value:

P[p ≤ p0|n = 22, r = 8] = 0.0114 − 0.158(1 − 0.15)22−8+1

(22 + 1) · B(8 + 1, 22 − 8 + 1) =

= 0.0114 − 0.0072 = 0.0042

and, consequently,

P[p > p0|n = 22, r = 8] = 1 − P[p ≤ p0|n = 22, r = 8] = 1 − 0.0042 = 0.9958,

which results in the threshold choice τA ∈ (0.9848, 0.9958] for the individual analysis in

each of the i∗ ∈ {2, 3, 4, 5} baskets.

The example showed that a transformation of a frequentist design into a design with Bayesian

decision rules is feasible. For every frequentist decision, a Bayesian decision rule can be

derived with respective threshold values for τF and τA to ensure the same decisions at the

interim futility node and at the final analysis in both the homogeneous and the heterogeneous

path of Cunanan et al. (2017b)’s basket trial design.

Equal accrual across the baskets is assumed in the example, hence, on average 7 patients are

recruited into each basket during stage 1. In practice however, unequal recruitment is likely

even if equal accrual rates are assumed. If the sponsor does not, or cannot, wait until the

required 7 patients per basket are recruited, minimum and maximum rules for the number

of patients can be set. In their example, Cunanan et al. (2017b) propose at least 3 and a

maximum of 10 patients per basket in stage 1, while recruitment continues until in total

35 patients are included. In the homogeneous path, the total number of patients does not

change under unequal accrual. Therefore, the Bayesian decision rules do not need adaptions

for this scenario. On the other site, in the heterogeneous path, unequal accrual results in

baskets with unequal numbers of patients and decisions need to be taken in each basket.

More precisely, after stage 1, the number of patients per basket can range from 3 to 10. After

the recruitment of additional 15 patients in stage 2, the final basket-wise analysis is then

based on 18 to 25 patients. The shifted numbers of patients affect the threshold values for

the decisions based on the posterior probability because the transformation of the p-value

into a posterior probability depends on the total number of observations n (cf. Equation
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3.27). The consequences of the proposed minimum and maximum numbers on the conversion

of the frequentist tools into Bayesian decision rules are presented in the following.

In stage 1, the requirement to only continue if at least r = 1 response is observed among 3

up to 10 patients results in p-values of the one-sided binomial test that range from 0.3859

for n = 3 up to 0.8031 for 10. Correspondingly, the posterior probability P[pi > p0|n, r = 1]

decreases from 0.8905 for n = 3 to 0.4922 for n = 10. To ensure the consistency of decisions,

the threshold τF must be chosen such that the respective basket is stopped for r = 0. The p-

value is then 1 for every n, however, the posterior probability P[pi > p0|n, r = 0] ranges from

0.5220 (n = 3) to 0.1673 (n = 10) which causes an intersection of the posterior probabilities

between r = 1 and r = 0. The posterior probabilities for every n ∈ {3, ..., 10} with r ∈ {0, 1}

are given in Table 3.2.

Table 3.2: Posterior probability P[pi > p0|n, r] to assess interim futility under varying number
of patients per basket n and with the intention to continue the basket if at least r = 1 response
was observed.

n
3 4 5 6 7 8 9 10

r = 1 0.8905 0.8352 0.7765 0.7166 0.6572 0.5995 0.5443 0.4922
r = 0 0.5220 0.4437 0.3771 0.3206 0.2725 0.2316 0.1969 0.1673

Consequently, a constant τF that applies for all scenarios (n ∈ {3, ..., 10}) in stage 1 cannot be

determined. Locally for either n ∈ {4, ..., 10} or n ∈ {3, ..., 9} solutions are possible, because

then the maximum posterior probability for r = 0 is smaller than the minimum posterior

probability under r = 1. The threshold τF can then be defined as a value between the

maximum under r = 0 and the minimum posterior probability under r = 1, more specifically

[0.4437, 0.4922) for n ∈ {4, ..., 10} and [0.5220, 0.5443) for n ∈ {3, ..., 9}.

In stage 2, the unequal accrual in stage 1 results in 18 to 25 patients per basket. The frequen-

tist decisions are made based on p-values that are compared with an adjusted significance

level which depends on i∗ = {1, ..., 5}, the number of baskets in stage 2. The transformation

under equal accrual already showed that the minimum number of responses rmin to declare

the basket promising varies under different i∗. Consequently, for unequal accrual the trans-

formation has to account for the two-dimensional set i∗ × n := {1, ..., 5} × {18, ...25}, which



3.2. Relationships among decision tools in basket trials 69

defines the adjusted significance level αs

i∗ = (0.0700, 0.0350, 0.0233, 0.0175, 0.0140) and the

number of patients in the investigated basket. The different minimum number of responses

rmin for theses scenarios are given in Table 3.3.

Table 3.3: Minimum number of observed responses rmin to declare a basket promising in the
final analysis under varying number of patients per basket n and varying adjusted significance
level αs

i∗ .

i∗ αs

i∗
n

18 19 20 21 22 23 24 25
5 0.0140 7 8 8 8 8 9 9 9
4 0.0175 7 7 8 8 8 8 9 9
3 0.0233 7 7 7 8 8 8 8 9
2 0.0350 7 7 7 7 8 8 8 8
1 0.0700 6 6 6 7 7 7 7 7

This results in an increased complexity in the choices for the threshold τA of the posterior

probability. A consistent solution among both dimensions is not possible as already shown

when only i∗ varied, however, local solutions over i∗ and n are available. The results for the

transposed posterior probability under i∗ = 3 and adjusted significance level 0.07
3 = 0.0233

are presented in the following. According to Equation 3.27, the p-value of the minimum

number of responses is converted into the posterior probability. Apart from that, the posterior

probability with one response less than the minimum number or responses is given because

in that case, the basket must not be declared promising. These posterior probabilities for

n ∈ {18, ..., 25} are shown in Table 3.4. The posterior probabilities for rmin − 1 and rmin

do not intersect because the maximum posterior probability for rmin − 1 is smaller than the

minimum under rmin (0.9894 < 0.9917). Therefore, a local solution for τA under i∗ = 3 over

all n is feasible and a specific choice from (0.9894, 0.9917] ensures equal decisions in the final

analysis for the posterior probability and the one-sided binomial test under observed unequal

accrual.

The respective tables with posterior probabilities P[pi > p0|n, r] for the other i∗ are given in

Appendix A.3 because the procedure is equivalent and the results are similar. For every i∗,

there exists a local solution over the potential number of observations n. However, a solution

for τA over all i∗ is not possible because there is no value that is contained in every interval
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Table 3.4: Posterior probability P[pi > p0|n, r] for the final analysis with the intention to
declare a basket promising if at least rmin responses were observed. The number of patients
per basket n among the i∗ = 3 different baskets in stage 2 is varying.

n
18 19 20 21 22 23 24 25

rmin 0.9959 0.9941 0.9917 0.9970 0.9958 0.9941 0.9920 0.9970
rmin − 1 0.9837 0.9781 0.9713 0.9886 0.9848 0.9801 0.9745 0.9894

generated by the maximum of the posterior probability under rmin − 1 and the minimum of

the posterior probability under rmin. The intervals for all i∗ are shown in Table 3.5.

Table 3.5: Upper and lower boundary of the interval that contains the local solution for τA

over all n given for every i∗.

i∗

1 2 3 4 5
upper 0.9679 0.9886 0.9917 0.9941 0.9958
lower 0.9632 0.9848 0.9894 0.9920 0.9941

The presented results show that the complexity of the conversion increases in the case of

unequal accrual in the heterogeneous path. The interim futility assessment is more challenging

because no unique solution for the Bayesian threshold τF can be given for all n1i ∈ {3, ..., 10}.

However, if 3 or 10 is removed, a solution τF can be determined to ensure equal decisions in

the frequentist and the Bayesian setting. In the final analysis, a local solution for τF can be

determined. The solution holds true over all n ∈ {18, ..., 25}. The only restriction lies in i∗,

the number of baskets in stage 2, which is equivalent to the frequentist trial conduct when

the significance level is adapted according to i∗.

This subsection showed that the relationship between the frequentist and Bayesian decision

rules can be practically applied and leads to the same decisions at the respective nodes of

the basket trial design which was proposed by Cunanan et al. (2017b).

3.2.3 Further connections between interim futility tools

Parts of this Subsection 3.2.3 are already published in the article Categories, components,

and techniques in a modular construction of basket trials for application and further research
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by Pohl et al. (2021). The manuscript has been written by myself but may contain comments

and corrections from the co-authors.

In this subsection, further connections among interim futility tools for basket trials are elab-

orated. The futility tools all have a different way to process the available information and to

make a decision. The connections allow to tune the tools such that the same decisions can

be achieved, as already shown for the binomial test and the posterior probability. The so far

observed information from basket i at the interim assessment is stored in D = {n, r}, where

the index i is dropped for a more clear presentation.

The starting point for the connection map (Figure 3.9) is the minimum number of responses

criterion. This rule requires a minimum number of responses r ≥ rmin to continue with

the basket. The connection to the statistical test (H0 : p ≤ p0, H1 : p > p0) was already

used in the previous subsections and is based on the fixed p-value that is returned for the

same data. The p-values which are smaller than the significance level αF reject the null

hypothesis and indicate that there is currently enough support for a non-futile treatment

effect. Consequently, for a known number of observations n, the significance level αF can be

chosen such that for at least rmin responses the statistical test does not prune the basket.

Hence, a minimum number of responses rule can be considered as a primitive one-sided

binomial test. The connection goes in both directions because a minimum number of response

also reflects a certain significance level and a given significance level represents a certain

minimum number of responses. The knowledge about the a smallest number of responses

rmin can be used in the Bayesian setting. The threshold τF for the posterior distribution is

then chosen such that it fulfills P[pi > p0|n, rmin] > τF and that at the same time for r < rmin

the posterior probability is smaller than or equal to τF (cf. Equation 3.1). This connection

between the frequentist statistical test and the Bayesian posterior probability holds when

no information was shared before because with shared information, the threshold τF also

depends on the observations in the other baskets and on the applied sharing tool.

The Bayesian interim futility tool uses the posterior probability with two different reference

values, p0 (Equation 3.1) and p0+p1
2 (Equation 3.2). In both tools, the same posterior dis-

tribution of response rate p is underlying. Hence, the two tools differ in the investigated

intervals on the space of p because of the different reference values. Without loss of general-
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ity, it is assumed that p0 < p1 and that for rP P , the posterior probability does not lead to a

futility stop because of P[p > p0+p1
2 |n, rP P ] > τm

F , but for r < rP P the basket is pruned. The

resulting question is how to choose τF such that the same decision is taken while using p0 as

the reference value. It is known that

P

[
p >

p0 + p1
2

∣∣∣∣n, r

]
= P

[
p > p0

∣∣∣∣n, r

]
− P

[
p ∈

(
p0,

p0 + p1
2

] ∣∣∣∣n, r

]
≤ τm

F

and that the same decision is taken if P[p > p0|n, r] ≤ τF holds at the same time. Hence,

from

P

[
p > p0

∣∣∣∣n, r

]
= P

[
p >

p0 + p1
2

∣∣∣∣n, r

]
+ P

[
p ∈

(
p0,

p0 + p1
2

] ∣∣∣∣n, r

]
≤ τF

it follows that τF = τm
F + P[p ∈ (p0, p0+p1

2 ]|n, r], where the last summand is a constant

value. The constant increment to τm
F is the probability mass in (p0, p0+p1

2 ] of the investigated

posterior distribution. Therefore, both tools take the same decisions when the reference values

and the thresholds are adapted. The adaptions in the reference value and the thresholds

are interchangeable because both refer to the same posterior distribution. The posterior

distribution can also contain shared information from other baskets.

The MUCE design by Lyu et al. (2020) applies a hypothesis driven approach, where the

random variable Zi indicates at which side of the null reference θ0 the posterior distribution

is mainly located. The futility tool is defined as P[Z ≥ 0|D] < τF . It follows from the defined

characteristic of Z, that for Z ≥ 0 the transformed response rate θ is located below θ0, which

means that the futility tool can be rewritten as P[p > p0|D] < τF and then conforms with

the other posterior probability tools.

The posterior predictive probability (PPP) is a function of the current posterior distribution

and the number of remaining observations n2 (cf. Equation 3.4). It calculates the total prob-

ability for a successful final analysis. The PPP futility tool can be applied for every reference

value and the threshold value τP
F is independent of the current number of observations. This

is the major difference to the posterior probability tool where smaller n1 result in higher

variances and therefore more uncertainty, which requires regular adaptions of the threshold

τF as n1 changes. Still, the two tools go hand in hand because, under fixed n1 observations,

the threshold τF can be adapted such that the decisions with both tools are the same. This
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is achieved for τF := P[p > p0|n1, rP P P − 1], where rP P P is the smallest number of responses

for which the PPP tool continues. The PPP can be simulated or analytically calculated. The

analytic solution works in Fujikawa et al. (2020) because a beta-binomial model is applied,

which means that the posterior distribution is beta-distributed and the number of future

responses follows a binomial distribution. The following calculation shows that the posterior

predictive probability is then a sum over beta functions. The so far used notation rules are

expanded by r∗, the number of responses including the shared information, and ci, c̃i as

unspecified constant values. The probability of future responses is

∫ 1

0
f(ri|p)f(p|D)dp =

=
∫ 1

0
cip

ri(1 − p)n2−ri · 1
B(a + r∗, n1 − r∗ + b)pa+r∗−1(1 − p)n1−r∗+b−1dp

= ci

B(a + r∗, n1 − r∗ + b) ·
∫ 1

0
pa+ri+r∗−1(1 − p)b+n1+n2−r∗−ri−1dp

= c̃i · B(a + ri + r∗, b + n1 + n2 − r∗ − ri),

hence, the posterior predictive probability (PPP) is a sum over beta functions

∑
{ri: final

analysis successful}

∫ 1

0
f(ri|pi)f(pi|D)dpi =

∑
{ri: final

analysis successful}

c̃i ·B(a+ri+r∗, b+n1+n2−r∗−ri).

If the posterior distribution at interim does not have a beta distribution, simulations can be

used. The posterior distribution at interim might already contain shared information from

other baskets.

The frequentist conditional power is a function of the assumed response rate, the number of

remaining observations n2, and the significance level α in the final analysis. The threshold τF

can be tuned such that the decisions are congruent to the minimum number of responses rmin

which are needed to not prune that basket. The conditional power tool is then in line with

the statistical test and the minimum number of responses. The conditional power and the

posterior predictive probability have the same goal, they both skip ahead to the final analysis

and evaluate if it is worth to continue up until there. Apart from that, they highlight the

difference of a frequentist (point estimate) and a Bayesian (random variable with distribution)

approach on how the response rate is evaluated.
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Figure 3.9: Each box stands for an interim futility tool. The arrows indicate the connections
between the tools and the text beside gives further information. The names within the boxes
present in which design a tool is applied. Adapted from Pohl et al. (2021).

The elaborated connections among the interim futility tools are graphically summarized in

Figure 3.2. The knowledge about the connection can be helpful when designing a basket trial

with the modular framework (cf. Section 3.1). The connections between the futility tools

also apply for the interim efficacy tools because of the equivalent structure of the tools.
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3.3 Hierarchical beta-binomial model in comparison to BHM

for information sharing in basket trials

This section investigates whether a hierarchical beta-binomial model (HBB) is a feasible tool

to share information among baskets. Section 3.1.2 shows that the BHM by Berry et al. (2013)

is the basic sharing tool which was further developed into many other sharing tools. Also, it

shows that non-transformed tools are available. Consequently, the next step is to think of a

non-transformed Bayesian hierarchical model as an additional basic tool to share information.

In the following, the HBB and its properties are systematically investigated and compared

to the BHM.

3.3.1 Comparison of assumed distributions for p

The first aspect of the comparison is to investigate whether and if yes, how the assumed

distributions for the response rate p differ. In the BHM, a normal distribution for the logit-

transformed response rate, also denoted as a logit-normal distribution (p ∼ logitN(µ, σ2)), is

assumed, whereas for the HBB a beta distribution (p ∼ beta(a, b)) is assumed. The difference

of a logit-normal distribution and a beta distribution is investigated via the densities. If

the distributions were equal, a logit-transformed beta distribution would result in a normal

distribution. That assumption holds because a logit-transformed logit-normal distribution

has a normal distribution. The logit function is differentiable and non-zero on (0, 1) (see

Appendix A.4) and therefore fulfils the requirements for the transformation of a density

function. Hence, a logit-transformed beta distribution has the following density function

flogitBeta(x) = fBeta(logit−1(x)) ·
∣∣∣∣∣d logit−1(x)

dx

∣∣∣∣∣
= 1

B(a, b) · (expit(x))a−1(1 − expit(x))b−1 ·
∣∣∣∣∣d logit−1(x)

dx

∣∣∣∣∣
= 1

B(a, b) ·
(

exp(x)
1 + exp(x)

)a−1 ( 1
1 + exp(x)

)b−1
· exp(x)(1 + exp(x)) − exp(x)2

(1 + exp(x))2

= 1
B(a, b) ·

(
exp(x)

1 + exp(x)

)a−1 ( 1
1 + exp(x)

)b−1
·
(

exp(x)
1 + exp(x)

)( 1
1 + exp(x)

)
= 1

B(a, b) ·
(

exp(x)
1 + exp(x)

)a ( 1
1 + exp(x)

)b

.
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Beta distribution: p ~ Beta(a,b)

Figure 3.10: Beta distribution of response rate p with different parameter choices.

The density does not have the form of a normal distribution. Also it is not symmetric

because the mean and the median are different, e.g. for a = 2, b = 6 they are −1.2836

and −1.2174. Mean and median were calculated numerically using 107 samples. Hence, the

logit-transformed beta distribution is not a normal distribution. It then directly follows that

an expit-transformed normal distribution is not a beta distribution, because otherwise the

logit-transformed beta distribution must have been a normal distribution. This holds because

the expit(x) function is the inverse function of logit(x). Finally, this means that the assumed

distributions for the response rate p are different in BHM and HBB.

Nevertheless, the logit-normal distribution and the beta distribution have similar character-

istics. Both are defined on the interval (0, 1) and are either unimodal or bimodal. Both are

not symmetric, except for the parameter choices µ = 0 and a = b. Different behaviour is

observed at the interval borders. The logit-normal distribution converges to 0 whereas the

beta distributions converges to ∞. Figures 3.10 and 3.11 display these characteristics.

In the next step, the aim is to approach one given distribution as close as possible with

the other distribution. The procedure is as follows. First, the given distribution is defined.

Without loss of generality, the procedure is described for a given beta distribution with
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µ =  0 , σ2 =  4 µ =  −1 , σ2 =  1 µ =  −1 , σ2 =  0. 25

Logit normal distribution: p ~ logitN(µ,σ2)

Figure 3.11: Logit-normal distribution of response rate p with different parameter choices.

a = 2 and b = 5. Based on this distribution, a certain number of samples (e.g. 105) are

drawn and then logit-transformed. These transformed samples are then used to fit a normal

distribution. The expected value and the standard deviation are estimated with maximum

likelihood estimates (MLE). The MLEs then define the logit-normal distribution that most

likely approaches the given beta distribution. For Beta(2, 5) the MLEs are µMLE = −1.08

and σ2
MLE = 0.932. In case the given distribution is logit-normal, the sampled data from

the normal distribution is transformed with the expit(x) function. Plots with the given

distribution, the distribution based on MLE parameters, and the empirical distribution of

the samples are used to graphically evaluate the differences and the behaviour under different

parameter scenarios. In Figure 3.12, the beta distribution is the given distribution, while in

Figure 3.13 the logit-normal distribution is displayed. The figures underline the different

forms of the distributions and show that adaptions of the parameters do not overcome this

structural difference, but allow at least an approximation of each other.

Since the beta distribution converges for increasing n, namely a, b → ∞, towards a nor-

mal distribution (Moscovich et al., 2016), it follows with the continuous mapping theorem

that the logit-transformed beta distribution converges towards a normal distribution and,

therefore, the beta distribution converges towards a logit-normal distribution. Consequently,
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empirical logit−normal dist. beta dist.

Fixed Beta( 2 , 5 ) distribution and MLE estimates µMLE =  −1. 08 and σMLE
2 =  0. 93 2

Figure 3.12: Fixed beta distribution and corresponding maximum likelihood estimated logit-
normal distribution.
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Fixed logitN( −0. 75 , 2. 25 ) distribution and MLE estimates aMLE =  1. 02 and bMLE =  1. 69

Figure 3.13: Fixed logit-normal distribution and corresponding maximum likelihood estimated
beta distribution.
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asymptotic equivalence can be achieved. However, in applied basket trials the number of

observations is often low and the asymptotic characteristic is not reached.

3.3.2 Bayesian behaviour with binomial data

The previous subsection showed that the assumed distributions for the response rate p in BHM

and HBB are different. In this subsection the Bayesian behaviour of the two distributions

together with binomial data is investigated. Hence, either a logit-normal or a beta prior are

assumed, and, together with the binomial likelihood, the respective posterior distributions

are calculated. The binomial data is chosen such that it reflects a potential data scenario

in one basket in an applied basket trial. In Hyman et al. (2015) for example, half of the

baskets contained 10 or less patients at the final analysis. The total number of observations

is set to n = 10 and the posterior distributions are calculated for all responses scenarios

r ∈ {0, 1, 2, ..., 10}. The posterior distributions are calculated numerically using the JAGS

MCMC sampler via R. The posterior distributions are then compared using their 2.5%, 25%,

50%, 75%, and 97.5% quantiles.

The comparison of the posterior distributions requires that the underlying prior distributions

are similar with respect to both their position and to the amount of contained informa-

tion. The main purpose of the comparison is to investigate how the prior distributions

evolve in combination with observed data. Hence, for the prior distribution a prior is used

which is as vague as possible. For the logit-normal distribution, this means that the vari-

ance σ2 is large. In orientation to Berry et al. (2013), the prior distribution is then set to

logitN(logit(0.25), 7.82). This distribution is approximated by Beta(0.153, 0.183), where the

parameters are MLEs based on the logit-normal distribution. Both distributions are shown

in Figure 3.14.

Tables 3.6 and 3.7 present the quantiles of the posterior distributions. Three posterior dis-

tributions are sampled for each response outcome r ∈ {0, 1, 2, ..., 10}. The intention behind

this is to check the robustness of the numerical calculation. The logit-normal prior distri-

bution results in numerically robust posterior distributions. However, the beta distribution

has numerical problems. First, the MCMC sampling in JAGS stops when the chain reaches

values for which no density exists, that is for 0 and 1. A pragmatic solution for this problem
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logit−normal dist. beta dist.

ml_a =  0.153   ml_b =  0.183    mu = logit(0.25) =  −1.099  sd =  7.8

Prior distributions

Figure 3.14: Logit-normal and beta prior distributions to compare their posterior behaviour
together with binomial data.

is to truncate the beta distribution in the JAGS code very close to 0 and 1, e.g. to the

interval (0.000000000001, 0.999999999999999) (cf. Appendix B.1). Moreover, the quantiles

for r = 0 and r = 10 are varying, which means that the numerical estimation of the posterior

distribution in these scenarios are unstable. The variation can be reduced if the number of

MCMC samples is increased. The tables presented here are based on 105 MCMC samples.

An increase in the number of samples directly corresponds to an increase in the computation

time. Despite these drawbacks in the numerical calculation of the posterior distribution for

the beta-binomial model, the conjugacy of this prior-likelihood combination allows to calcu-

late the posterior distribution analytically. Hence, the numerical problems can be avoided in

practice. Moreover, the numerical instabilities for r ∈ {0, n} reduce for an increasing number

of observations n.

The quantiles show that the posterior distributions based on a logit-normal prior (Table

3.6) and based on a the beta prior (Table 3.7) are different and also evolve differently with

increasing r. For r ∈ {0, 1, 2, 3}, the quantiles of the posterior distribution with logit-normal

prior are smaller than those from the beta prior. This means that the logit-normal posterior

distribution is rather located towards the left boundary 0 as compared to a beta prior.
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Table 3.6: Quantiles of the posterior distribution and their numerical robustness for every
possible number of responses r given the logit-normal prior.

r 2.5% 25% 50% 75% 97.5%

0
0.000000 0.000014 0.000497 0.006977 0.102401
0.000000 0.000014 0.000495 0.006992 0.103469
0.000000 0.000014 0.000489 0.006898 0.102077

1
0.003489 0.033816 0.076937 0.145540 0.339187
0.003510 0.033487 0.076775 0.145815 0.337552
0.003503 0.033665 0.076994 0.146281 0.340119

2
0.029360 0.108550 0.180779 0.272689 0.481105
0.029190 0.108239 0.180462 0.273022 0.481046
0.029140 0.108144 0.180350 0.272474 0.480833

3
0.075262 0.195604 0.286280 0.389760 0.600403
0.075390 0.195621 0.286197 0.390404 0.598562
0.075373 0.195775 0.285874 0.390006 0.598951

4
0.136111 0.290017 0.391580 0.500341 0.698575
0.137455 0.290409 0.392217 0.500386 0.698509
0.136319 0.289813 0.391755 0.500247 0.697705

5
0.211810 0.391865 0.498313 0.605261 0.785368
0.212255 0.390891 0.497951 0.605471 0.785574
0.212470 0.389919 0.497698 0.605750 0.783773

6
0.299233 0.495780 0.603939 0.706214 0.859965
0.298270 0.495423 0.604615 0.706633 0.861377
0.298531 0.495769 0.604706 0.707277 0.861608

7
0.395831 0.606021 0.709868 0.801024 0.922537
0.395596 0.606409 0.710393 0.801546 0.923380
0.397012 0.606702 0.710586 0.801170 0.922933

8
0.513437 0.722986 0.815698 0.889018 0.970068
0.514640 0.722603 0.815411 0.888499 0.969263
0.513855 0.723040 0.815996 0.888816 0.969640

9
0.655639 0.849879 0.919573 0.964039 0.995998
0.656514 0.849868 0.919702 0.964270 0.996093
0.655725 0.849574 0.919406 0.963954 0.996045

10
0.884603 0.989801 0.999046 0.999964 1.000000
0.884482 0.989777 0.999037 0.999964 1.000000
0.884056 0.989691 0.999045 0.999963 1.000000

This behaviour starts to change for r = 4, where the 75% and 97.5% quantiles for the

logit-normal scenario are larger than the respective quantiles from the beta scenario. The

same holds for r = 5 and for r = 6, where all logit-normal quantiles except for the 2.5%

quantile are larger. For r ∈ {7, 8, 9, 10} all logit-normal quantiles are larger than the beta

quantiles. Consequently, the posterior distribution with logit-normal prior tends towards the

boundaries 0 and 1, whereas the posterior distribution with beta prior orientates itself more

towards the center. The differences between the quantiles are in particular cases larger than

one percentage point, e.g. for r = 1, 75% and 97.5%.
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Table 3.7: Quantiles of the posterior distribution and their numerical robustness for every
possible number of responses r given the beta prior.

r 2.5% 25% 50% 75% 97.5%

0
0.00000 0.00001 0.00084 0.01173 0.11295
0.00000 0.00001 0.00100 0.01445 0.13734
0.00000 0.00001 0.00077 0.01119 0.15498

1
0.00480 0.04016 0.08686 0.15828 0.35094
0.00482 0.04021 0.08702 0.15878 0.35175
0.00480 0.04016 0.08694 0.15817 0.34962

2
0.03297 0.11600 0.18952 0.28177 0.48979
0.03283 0.11533 0.18870 0.28048 0.48774
0.03273 0.11583 0.18909 0.28136 0.48714

3
0.07989 0.20238 0.29248 0.39536 0.60144
0.07996 0.20209 0.29285 0.39577 0.60194
0.08021 0.20183 0.29178 0.39469 0.60173

4
0.14186 0.29522 0.39575 0.50295 0.69774
0.14210 0.29479 0.39548 0.50249 0.69716
0.14219 0.29453 0.39491 0.50194 0.69772

5
0.21478 0.39174 0.49808 0.60425 0.78180
0.21395 0.39259 0.49865 0.60491 0.78312
0.21478 0.39265 0.49850 0.60472 0.78276

6
0.29836 0.49416 0.60169 0.70254 0.85679
0.30023 0.49498 0.60206 0.70260 0.85563
0.30010 0.49465 0.60142 0.70191 0.85529

7
0.39559 0.60149 0.70477 0.79534 0.91846
0.39535 0.60212 0.70508 0.79551 0.91837
0.39711 0.60172 0.70477 0.79548 0.91840

8
0.50794 0.71462 0.80739 0.88154 0.96602
0.50742 0.71463 0.80742 0.88150 0.96601
0.50732 0.71523 0.80804 0.88187 0.96582

9
0.64437 0.83804 0.90997 0.95778 0.99477
0.64576 0.83798 0.91025 0.95784 0.99471
0.64400 0.83750 0.91000 0.95783 0.99471

10
0.82922 0.98051 0.99812 0.99996 1.00000
0.86415 0.98556 0.99866 0.99997 1.00000
0.81278 0.97968 0.99801 0.99995 1.00000
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The R and JAGS code for the calculation of the posterior distributions is given in Appendix

B.1.

3.3.3 Properties and prior choices for BHM and HBB

The next step is to expand the Bayesian models and to assume that the parameters of the

prior (logit-normal or beta) are random variables by themselves and that they are described

by probability distributions. This converts the models into hierarchical models.

The hierarchical structure in the beta-binomial model does not conclude in a conjugate

posterior distribution with a closed analytical form anymore. Hence, numerical MCMC

sampling is required to determine the posterior distribution in a HBB. Instead of using

distributions for the parameters a and b, distributions for a

a + b
, which is the expected value

of a beta distribution, and for a + b, which is the effective sample size, are assumed. Hence,

the position of the common distribution on the highest level is determined by the distribution

of the expected value a

a + b
. The amount of sharing is determined by the distribution of the

ESS a + b. The parameter a in a beta-binomial model can be interpreted as the number

of successes/responses and the parameter b as the number of failures/non-responses. The

ESS a + b reflects the total number of underlying observations. High values of a + b reflect

many observations, hence higher certainty and lower variance, which consequently results

in a narrow beta distribution for the basket-individual response rates pi, and, therefore, a

higher amount of sharing among the baskets. Lower values for a + b represent a lesser degree

of sharing. Consequently, the amount of sharing in a HBB is determined by the distribution

of a + b. Natural choices for the distribution of the expected value a

a + b
and the ESS are a

beta distribution and a gamma distribution, respectively. The HBB for the basket-individual

response rate pi is given as

pi ∼Beta(a, b)
a

a + b
∼ Beta(α, β) ∀i = 1, ..., I,

a + b ∼ Gamma(ϕ, ϱ)

with hyperparameters α, β, ϕ, and ϱ.
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The BHM is defined according to Berry et al. (2013) with a normal distribution for the

expected value and an inverse-gamma distribution for the variance of the logit-normal distri-

bution of response rate pi (θi := logit(pi))

θi ∼ N(µ, σ2)

µ ∼ N(µµ, σ2
µ) ∀i = 1, ..., I.

σ2 ∼ IG(κ, ν)

The hyperparameters are µµ, σ2
µ, κ, and ν. The position of the common distribution is deter-

mined by the distribution of µ and the amount of sharing is determined by the distribution

of σ2.

The choices of the hyperparameters in both models and, consequently, the prior distributions

determine how the models behave in combination with observed data. A similar starting

point is required for a fair comparison of the two models. This means that the priors must

ensure that the position around which the common distribution is located is similar and,

more importantly, that the amount of sharing is comparable between BHM and HBB. This

is a prerequisite for a comparison of BHM and HBB. The elaborated steps to achieve this

similarity in the prior distributions are presented in the following.

The BHM serves as the orientation model because it is the basic model and is widely used

in literature for basket trials. With reference to Berry et al. (2013), the distribution for µ is

set to be centered at the fixed value µµ := logit(0.1), while the variance is set to σ2
µ := 82,

which allows flexibility in the position for the common distribution. The inverse-gamma

distribution is defined by the shape parameter κ := 0.01 and the rate parameter ν := 0.1.

This setup allows for sharing between the baskets because the posterior distributions have

higher certainty than individual posterior distributions. The distribution of the expected

value a

a + b
in HBB is defined in accordance to the distribution of µ from the BHM. The

hyperparameters α and β for the beta distribution of a

a + b
are estimated via maximum-

likelihood estimators based on expit()-transformed samples from the normal distribution for

the position in BHM (N(logit(0.1), 82)). This estimation procedure is the one which was
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elaborated in Subsection 3.3.1, and the resulting distribution for the position in HBB is

Beta(0.1377, 0.1945).

The transfer of the sharing property in BHM, defined by the variance σ2 ∼ IG(κ, ν), to

the distribution of a + b ∼ Gamma(ϕ, ϱ) is not straightforward. Therefore, an approximate

approach is introduced. This requires a reference data scenario, which is used to calibrate

the HBB with respect to the sharing behaviour of the BHM on this reference data scenario.

Firstly, the reference data scenario is defined. In general, it can be any outcome of the

basket trial. A guided approach is to choose the reference data scenario such that it reflects

a desirable outcome of the trial. Secondly, the BHM is used to calculate the basket-wise

posterior distributions. In the next step, a HBB is applied to the reference data scenario. The

distribution of the expected value in the HBB is already determined as described above. The

distribution of the ESS a + b is varied and the resulting posterior distributions are compared

to the ones from the BHM. The comparison is done using the quantiles of the distributions,

especially the 2.5% and 97.5% quantiles, because the difference of these two is the width of

the 95% credibility interval. The width is an indicator for the amount of sharing, with smaller

widths for a high degree of sharing and vice versa. An appropriate hyperparameter choice

for ϕ and ϱ is found if the 2.5% and 97.5% quantiles of HBB and BHM are similar and, most

importantly, the width of the credibility intervals are of comparable length. Only similar

values can be obtained for the quantiles due to the different distributional assumptions with

resulting different characteristics which were shown in the previous subsections (e.g. logit-

normal distribution tends towards the boundaries, beta distribution towards the center).

Consequently, the width of the 95% credibility interval is the main measure to determine

the hyperparameters ϕ and ϱ. In the particular scenario in this thesis, the reference data

scenario is set to r = 3 responses among n = 10 observations in each of the I = 6 baskets.

Additionally, the hyperpriors are chosen such that the credibility intervals for HBB are slightly

wider, in order to ensure that HBB has at least no starting bonus. The explicit example

BHM with µ ∼ N(logit(0.1), 82) and σ2 ∼ IG(0.01, 0.1) returns a mean 95% credibility

interval of (0.1389, 0.4980) with a width of 0.3591 for this reference data scenario. The mean

credibility interval is calculated as the mean over the quantiles of the six baskets. A HBB

with a

a + b
∼ Beta(0.1377, 0.1945) and a calibrated distribution a + b ∼ G(3, 0.16) results in

a mean 95% credibility interval of (0.1398, 0.5035) with a width of 0.3637.
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The here proposed procedure for the elaboration of comparable prior distributions in BHM

and HBB are applied in the next subsections, where the information sharing property in both

models is compared in a simulation study.

3.3.4 Simulation scenarios and evaluation measures

The sharing property of the HBB is compared to BHM in a simulation study among four

different prior scenarios and for twelve different data scenarios.

The prior scenarios are described in Table 3.8. The priors are set for BHM and then derived

for HBB according to the described procedure in Subsection 3.3.3. The priors vary for the

distribution of the position. An expected value of logit(0.3) for the normal distribution of µ

reflects a more optimistic assumption about the response rate than logit(0.1). The variance

is then slightly reduced to 7.82 because otherwise the maximum likelihood estimation for the

corresponding beta distribution has numerical problems. The second variation is to assume

a different reference scenario with r = 6 responses and n = 20 observations in each of the

I = 6 baskets.

Table 3.8: Prior scenarios for the simulations to compare BHM and HBB.

Prior
scenario

BHM HBB
n µ ∼ σ ∼ a

a+b ∼ a + b ∼
1 10 N(logit(0.1), 82) IG(0.01, 0.1) Beta(0.1377, 0.1945) IG(3, 0.16)
2 10 N(logit(0.3), 7.82) IG(0.01, 0.1) Beta(0.1559, 0.1787) IG(3, 0.16)
3 20 N(logit(0.1), 82) IG(0.01, 0.1) Beta(0.1377, 0.1945) IG(3, 0.12)
4 20 N(logit(0.3), 7.82) IG(0.01, 0.1) Beta(0.1559, 0.1787) IG(3, 0.12)

The twelve different data scenarios are described in Table 3.9. The scenarios present a

variety of possible response rates for each basket and reach from completely homogeneous to

completely heterogeneous responses. For each data scenario, 105 outcomes are simulated. In

each of the 105 iterations, the number of responses in every basket are sampled from a binomial

distribution, assuming the respective true response rate and the number of observations given

by the data and prior scenario. The simulated responses are then used to calculate the

basket-individual posterior distributions with BHM and HBB. Additionally, the posterior

distributions without sharing are calculated, once using a logit-normal prior and once for a

beta prior. The prior distributions for the response rates in these independent calculations
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are logitN(logit(0.1), 82) and logitN(logit(0.3), 7.82) for the logit-normal prior, while they

are Beta(0.1377, 0.1945) and Beta(0.1559, 0.1787) for the beta prior.

Table 3.9: Data scenarios for assumed response rates per basket in simulations to compare
BHM and HBB.

Data
scenario

Basket
1 2 3 4 5 6

1 0.30 0.30 0.30 0.30 0.30 0.30
2 0.20 0.20 0.20 0.20 0.20 0.20
3 0.10 0.10 0.10 0.10 0.10 0.10
4 0.10 0.30 0.30 0.30 0.30 0.30
5 0.10 0.10 0.30 0.30 0.30 0.30
6 0.10 0.10 0.10 0.30 0.30 0.30
7 0.10 0.20 0.30 0.30 0.30 0.30
8 0.10 0.15 0.30 0.30 0.30 0.30
9 0.10 0.15 0.20 0.30 0.30 0.30
10 0.05 0.10 0.15 0.20 0.25 0.30
11 0.18 0.20 0.22 0.24 0.26 0.28
12 0.18 0.19 0.20 0.21 0.22 0.23

The measure to evaluate the sharing property in the simulations is the mean posterior prob-

ability to exceed the assumed true response rate which was used to simulate the data. The

mean is calculated over the 105 simulated studies and for each basket. For data scenario 1

and basket 1, the mean posterior probability to exceed the assumed true response rate is

given by

1
105

105∑
j=1

P [p1 > 0.30|Dj ],

where p1 is the random response rate in basket 1, 0.30 is the assumed true response rate

which was used to generate the simulation data, and Di contains the sampled responses from

all baskets in iteration j.

This evaluation measure is calculated for each basket, in each data scenario, and in each prior

scenario using the two independent calculations with logit-normal and beta prior, and the two

hierarchical models, BHM and HBB. The independent calculations serve as a control, where

no sharing among the baskets takes place. The changes in the mean posterior probability

to exceed the true response rate between the hierarchical models and the corresponding

independent calculation indicates the strength of the hierarchical sharing, because it describes
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by how much the position of the posterior distribution shifts due to the sharing. The posterior

probabilities for the independent beta-binomial model (BB) are calculated analytically using

the conjugate property.

3.3.5 Simulation results for the sharing property of BHM and HBB

The results of the simulation study are presented in tables which contain the mean posterior

probability that the response rate exceeds the assumed true response rate which was used in

the simulation process. The word ’mean’ is left away in the following to reduce the complexity

in the description of the results. Table 3.10 and Table 3.11 show the results for the twelve data

scenarios using the four different prior scenarios. The R and JAGS code for the simulation

studies are given in Appendix B.2.

The first three data scenarios reflect homogeneous responses among the baskets. In the sce-

narios 1 and 2, the HBB shows the highest absolute posterior probability that the response

rate exceeds the true response rate. It is higher compared to BHM as well as to the inde-

pendent beta-binomial model. The increment in the posterior probability from independent

BB to HBB is higher than the increment from the independent logit-normal prior model to

BHM. Hence, HBB tends to shift the position of the posterior distribution more strongly,

which means the sharing is more active. Moreover, the absolute posterior probability in BHM

is smaller than the one in the independent BB, which indicates that the distributional as-

sumptions (logit-normal or beta) for the response rate influence the form and position of the

posterior probability. In data scenario 3, the sharing property of HBB is weaker compared to

the other two homogeneous scenarios. This can be interpreted from the small increment of

independent BB to HBB, and the small difference between HBB and BHM. The performance

of HBB improves (increased difference to BHM and higher increment to independent BB)

in the third data scenario when prior scenario 2 is applied, in which a shift in the position

towards higher response rates is assumed. The performances of the data scenarios 1 and 2

do not change in prior scenario 2 compared to prior scenario 1. The inconsistency across the

homogeneous data scenarios in the performance of HBB compared to BHM disappears when

the number of observations per basket increases to n = 20, as is the case in prior scenarios

3 and 4. In both of these particular prior scenarios, the performances are comparable, and

the change in the prior position from logit(0.1) to logit(0.3) only leads to a slightly higher
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posterior probability throughout all four methods. Additionally, the increase in the number

of observations leads to posterior probabilities closer to 0.5, which can be explained by the

convergence to a normal distribution with symmetry around the expected value.

The data scenarios 4 to 6 represent two clusters with a response rate that is either 0.1 or

0.3. In all three of them, an orientation towards the overall mean response rate is observed

for the hierarchical models. For true response rates below the overall mean, the posterior

probability to exceed the true response rate increases compared to the independent evaluation,

while for true response rates above the overall mean, the posterior probability declines. These

increases and declines are stronger in HBB than those in BHM, which indicates that HBB

shares information among the baskets to a higher degree. In general, the findings remain the

same in the other prior scenarios. In prior scenario 2, where the position of the prior is raised,

a slight increase in the posterior probabilities is observed, especially in HBB when the true

response rate is 0.1. An increase in the number of observations per basket (prior scenarios 3

and 4) leads to higher posterior probabilities for baskets below the overall mean response rate

and lower posterior probabilities above the overall mean response rate in all four calculation

methods. The change can be explained by a decreased variance due to more observations

and, therefore, an increased certainty about the position of the posterior distribution.

The scenarios 7 to 9 consist of one cluster and different individual responses in the other

baskets. The individual true response rates are lower than the common response rate in the

cluster. In general, the same tendency towards the overall mean response rate is observed for

the hierarchical models. The HBB shows a higher activity in the shift compared to BHM,

which indicates a stronger sharing of information among the baskets. In BHM and HBB,

the shift towards the overall mean response rate is stronger when the true response rate is

further away from the overall mean response rate. An increase of the prior position (prior

scenario 2) leads in general to an increase in the posterior probabilities in all baskets for all

methods. This increase is stronger in HBB when the true response rates are low (e.g. 0.1),

but it disappears when the number of observations is higher, namely n = 20 (prior scenario

4). The general reaction to an increased number of observations per basket (prior scenarios

3 and 4) is equivalent (higher certainty) to the data scenarios before.
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The scenarios 10, 11, and 12 have different response rates for each basket. The differences in

the true response rates between the baskets reach from 0.05 (scenario 10) to 0.01 (scenario

12). In all scenarios, the general orientation of hierarchical models towards the overall mean

response rate is observed, but now HBB does not always show the strongest tendency towards

the overall mean response rate. This can be seen in scenario 10 where the absolute posterior

probability to exceed the true response rate 0.05 is larger for BHM compared to HBB, and for

the true response rate 0.20 it is vice versa. Also, the increment in the posterior probability

from the individual analysis to the hierarchical analysis is larger for BHM compared to HBB

when the true response rate is 0.05 and 0.10. In the scenarios 11 and 12, the HBB has higher

absolute posterior probabilities compared to BHM, even when the true response rate is above

the overall mean response rate. Additionally, the sharing strength is not persistently stronger

for HBB. In data scenario 11, the decline towards the overall mean response rate is smaller

for HBB compared to BHM when the true response rate is 0.22 and 0.24. In data scenario

12, this holds true for all response rates larger than the overall mean response rate.

In data scenario 10, the increased prior position in prior scenario 2 leads to a higher absolute

posterior probability for the basket with response rate 0.05 under HBB compared to BHM.

Moreover, the complete HBB reacts as in the previous heterogeneous data scenarios with

stronger orientation towards the overall mean response rate compared to BHM. The data

scenarios 11 and 12 behave analogously under both prior scenario 2 and prior scenario 1.

In data scenario 10, a higher number of observations (prior scenario 3) results in a sharing

behaviour that is consistent to the previous heterogeneous data scenarios, where the HBB

has a stronger tendency towards the overall mean response rate. Still, for the true response

rate 0.20, the HBB has a higher absolute response rate than BHM. The data scenarios 11

and 12 behave under prior scenario 3 similarly as under prior scenario 1. Prior scenario 4

does not present any additional improvements.

The general result from the simulations is that the HBB tends to share information among

the baskets to a stronger and more active degree than BHM does. This conclusion can be

drawn from the absolute values and from the changes compared to independent evaluation

in the posterior probability to exceed the true response rate. The absolute values describe

the position of the posterior distributions, and the simulation results show that the HBB

orientates the position more towards the overall mean than BHM does. This shift is quantified
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by the change of the posterior probabilities in comparison to the individual assessment,

where no sharing is conducted. The changes are often stronger in HBB as compared to

BHM, and the change describes the sharing effect which is incorporated by the hierarchical

assessment. Moreover, the simulations show that the underlying true data scenario influences

the performance of BHM and HBB, while also indicating that the prior distributions and the

number of observations influence the behaviour of BHM and HBB. The simulations illustrate

that the HBB is an applicable tool to share information among baskets. It can therefore

serve as a basic sharing tool in basket trials, equivalent to the role of BHM as the currently

predominant basic sharing tool.
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Table 3.10: Mean posterior probability to exceed the true response rate under the defined data scenarios using prior scenario 1 and 2.

Prior scenario 1 Prior scenario 2

1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

indep. BB 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4709 0.4709 0.4709 0.4709 0.4709 0.4709

indep. logitN 0.4481 0.4572 0.4573 0.4545 0.4545 0.4559 0.4522 0.4615 0.4616 0.4587 0.4588 0.4600

BHM 0.4564 0.4625 0.4624 0.4604 0.4607 0.4616 0.4575 0.4635 0.4635 0.4615 0.4618 0.4626

HBB 0.4774 0.4833 0.4829 0.4810 0.4816 0.4820 0.4783 0.4842 0.4838 0.4819 0.4824 0.4828

2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

indep. BB 0.4465 0.4465 0.4465 0.4465 0.4465 0.4465 0.4505 0.4505 0.4505 0.4505 0.4505 0.4505

indep. logitN 0.4203 0.4285 0.4296 0.4282 0.4258 0.4277 0.4253 0.4335 0.4346 0.4332 0.4308 0.4327

BHM 0.4322 0.4374 0.4381 0.4370 0.4361 0.4371 0.4336 0.4387 0.4394 0.4383 0.4374 0.4385

HBB 0.4619 0.4674 0.4678 0.4666 0.4659 0.4668 0.4656 0.4709 0.4711 0.4702 0.4694 0.4699

3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

indep. BB 0.4027 0.4027 0.4027 0.4027 0.4027 0.4027 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085

indep. logitN 0.3699 0.3787 0.3782 0.3763 0.3767 0.3766 0.3767 0.3854 0.3850 0.3831 0.3836 0.3833

BHM 0.3923 0.3977 0.3966 0.3959 0.3960 0.3969 0.3943 0.3995 0.3983 0.3980 0.3980 0.3987

HBB 0.3999 0.4056 0.4050 0.4036 0.4039 0.4046 0.4174 0.4243 0.4221 0.4210 0.4217 0.4215

4 0.10 0.30 0.30 0.30 0.30 0.30 0.10 0.30 0.30 0.30 0.30 0.30

indep. BB 0.4027 0.4674 0.4674 0.4674 0.4674 0.4674 0.4085 0.4709 0.4709 0.4709 0.4709 0.4709

indep. logitN 0.3699 0.4573 0.4574 0.4544 0.4544 0.4559 0.3768 0.4615 0.4615 0.4586 0.4588 0.4601

BHM 0.7509 0.4032 0.4032 0.4007 0.4009 0.4020 0.7521 0.4043 0.4043 0.4016 0.4019 0.4030

HBB 0.8170 0.4116 0.4113 0.4091 0.4095 0.4103 0.8232 0.4123 0.4118 0.4097 0.4102 0.4108
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5 0.10 0.10 0.30 0.30 0.30 0.30 0.10 0.10 0.30 0.30 0.30 0.30

indep. BB 0.4027 0.4027 0.4674 0.4674 0.4674 0.4674 0.4085 0.4085 0.4709 0.4709 0.4709 0.4709

indep. logitN 0.3700 0.3786 0.4574 0.4544 0.4545 0.4559 0.3768 0.3854 0.4616 0.4586 0.4586 0.4601

BHM 0.6750 0.6788 0.3591 0.3566 0.3567 0.3581 0.6766 0.6804 0.3599 0.3573 0.3575 0.3588

HBB 0.7316 0.7337 0.3471 0.3446 0.3452 0.3466 0.7528 0.7557 0.3466 0.3445 0.3450 0.3459

6 0.10 0.10 0.10 0.30 0.30 0.30 0.10 0.10 0.10 0.30 0.30 0.30

indep. BB 0.4027 0.4027 0.4027 0.4674 0.4674 0.4674 0.4085 0.4085 0.4085 0.4709 0.4709 0.4709

indep. logitN 0.3700 0.3787 0.3781 0.4545 0.4545 0.4558 0.3768 0.3855 0.3849 0.4586 0.4586 0.4601

BHM 0.6035 0.6077 0.6072 0.3232 0.3234 0.3249 0.6055 0.6096 0.6090 0.3236 0.3240 0.3255

HBB 0.6447 0.6484 0.6485 0.2902 0.2906 0.2918 0.6676 0.6710 0.6701 0.2884 0.2885 0.2898

7 0.10 0.20 0.30 0.30 0.30 0.30 0.10 0.20 0.30 0.30 0.30 0.30

indep. BB 0.4027 0.4465 0.4674 0.4674 0.4674 0.4674 0.4085 0.4505 0.4709 0.4709 0.4709 0.4709

indep. logitN 0.3700 0.4285 0.4573 0.4544 0.4544 0.4559 0.3768 0.4335 0.4615 0.4587 0.4587 0.4601

BHM 0.7258 0.5291 0.3778 0.3754 0.3754 0.3767 0.7271 0.5304 0.3788 0.3763 0.3764 0.3776

HBB 0.7854 0.5718 0.3786 0.3765 0.3768 0.3778 0.7960 0.5758 0.3789 0.3768 0.3771 0.3780

8 0.10 0.15 0.30 0.30 0.30 0.30 0.10 0.15 0.30 0.30 0.30 0.30

indep. BB 0.4027 0.4301 0.4674 0.4674 0.4674 0.4674 0.4085 0.4347 0.4709 0.4709 0.4709 0.4709

indep. logitN 0.3700 0.4096 0.4573 0.4544 0.4545 0.4559 0.3768 0.4152 0.4615 0.4587 0.4587 0.4601

BHM 0.7042 0.6043 0.3676 0.3650 0.3650 0.3663 0.7056 0.6057 0.3685 0.3658 0.3658 0.3671

HBB 0.7622 0.6567 0.3628 0.3606 0.3608 0.3621 0.7769 0.6659 0.3628 0.3606 0.3610 0.3620
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9 0.10 0.15 0.20 0.30 0.30 0.30 0.10 0.15 0.20 0.30 0.30 0.30

indep. BB 0.4027 0.4301 0.4465 0.4674 0.4674 0.4674 0.4085 0.4347 0.4505 0.4709 0.4709 0.4709

indep. logitN 0.3700 0.4096 0.4296 0.4544 0.4545 0.4559 0.3768 0.4153 0.4346 0.4586 0.4587 0.4601

BHM 0.6810 0.5751 0.4794 0.3418 0.3420 0.3433 0.6826 0.5766 0.4806 0.3425 0.3428 0.3442

HBB 0.7307 0.6213 0.5138 0.3305 0.3310 0.3320 0.7457 0.6305 0.5184 0.3301 0.3304 0.3314

10 0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25 0.30

indep. BB 0.3464 0.4027 0.4301 0.4465 0.4582 0.4674 0.3559 0.4085 0.4347 0.4505 0.4619 0.4709

indep. logitN 0.3115 0.3787 0.4105 0.4282 0.4403 0.4559 0.3218 0.3855 0.4161 0.4331 0.4447 0.4601

BHM 0.7109 0.5683 0.4607 0.3807 0.3279 0.2975 0.7132 0.5703 0.4623 0.3818 0.3287 0.2979

HBB 0.7094 0.5914 0.4872 0.3923 0.3143 0.2551 0.7523 0.6185 0.5009 0.3984 0.3146 0.2509

11 0.18 0.20 0.22 0.24 0.26 0.28 0.18 0.20 0.22 0.24 0.26 0.28

indep. BB 0.4407 0.4465 0.4516 0.4561 0.4602 0.4639 0.4450 0.4505 0.4554 0.4598 0.4638 0.4675

indep. logitN 0.4134 0.4285 0.4369 0.4399 0.4435 0.4507 0.4186 0.4335 0.4417 0.4446 0.4480 0.4550

BHM 0.5397 0.5017 0.4638 0.4262 0.3938 0.3658 0.5412 0.5031 0.4652 0.4275 0.3949 0.3668

HBB 0.5775 0.5365 0.4939 0.4507 0.4114 0.3750 0.5815 0.5396 0.4961 0.4525 0.4125 0.3754

12 0.18 0.19 0.20 0.21 0.22 0.23 0.18 0.19 0.20 0.21 0.22 0.23

indep. BB 0.4407 0.4437 0.4465 0.4491 0.4516 0.4539 0.4450 0.4478 0.4505 0.4531 0.4554 0.4577

indep. logitN 0.4134 0.4263 0.4296 0.4303 0.4329 0.4385 0.4186 0.4314 0.4346 0.4351 0.4377 0.4431

BHM 0.4859 0.4696 0.4494 0.4282 0.4103 0.3950 0.4874 0.4709 0.4507 0.4294 0.4116 0.3962

HBB 0.5191 0.5019 0.4797 0.4566 0.4362 0.4175 0.5242 0.5061 0.4831 0.4596 0.4386 0.4193
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Table 3.11: Mean posterior probability to exceed the true response rate under the defined data scenarios using prior scenario 3 and 4.

Prior scenario 3 Prior scenario 4

1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30

indep. BB 0.4773 0.4773 0.4773 0.4773 0.4773 0.4773 0.4798 0.4798 0.4798 0.4798 0.4798 0.4798

indep. logitN 0.4615 0.4709 0.4721 0.4682 0.4676 0.4690 0.4644 0.4738 0.4751 0.4712 0.4706 0.4720

BHM 0.4656 0.4722 0.4731 0.4701 0.4704 0.4709 0.4663 0.4730 0.4738 0.4708 0.4711 0.4716

HBB 0.4824 0.4888 0.4893 0.4865 0.4871 0.4872 0.4829 0.4894 0.4899 0.4871 0.4877 0.4878

2 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

indep. BB 0.4631 0.4631 0.4631 0.4631 0.4631 0.4631 0.4659 0.4659 0.4659 0.4659 0.4659 0.4659

indep. logitN 0.4418 0.4521 0.4527 0.4484 0.4483 0.4497 0.4452 0.4555 0.4561 0.4518 0.4518 0.4531

BHM 0.4477 0.4546 0.4552 0.4518 0.4525 0.4531 0.4486 0.4554 0.4560 0.4527 0.4534 0.4539

HBB 0.4750 0.4820 0.4823 0.4790 0.4799 0.4801 0.4756 0.4827 0.4829 0.4797 0.4806 0.4808

3 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

indep. BB 0.4350 0.4350 0.4350 0.4350 0.4350 0.4350 0.4389 0.4389 0.4389 0.4389 0.4389 0.4389

indep. logitN 0.4064 0.4151 0.4154 0.4130 0.4119 0.4147 0.4112 0.4198 0.4202 0.4178 0.4167 0.4195

BHM 0.4180 0.4237 0.4235 0.4221 0.4216 0.4233 0.4195 0.4249 0.4249 0.4234 0.4230 0.4247

HBB 0.4564 0.4628 0.4625 0.4607 0.4605 0.4618 0.4600 0.4664 0.4660 0.4644 0.4641 0.4654

4 0.10 0.30 0.30 0.30 0.30 0.30 0.10 0.30 0.30 0.30 0.30 0.30

indep. BB 0.4350 0.4773 0.4773 0.4773 0.4773 0.4773 0.4389 0.4798 0.4798 0.4798 0.4798 0.4798

indep. logitN 0.4064 0.4709 0.4722 0.4682 0.4677 0.4692 0.4112 0.4739 0.4751 0.4711 0.4706 0.4721

BHM 0.7733 0.4089 0.4100 0.4064 0.4068 0.4075 0.7741 0.4096 0.4106 0.4070 0.4074 0.4081

HBB 0.8485 0.4080 0.4085 0.4055 0.4059 0.4066 0.8489 0.4086 0.4091 0.4060 0.4065 0.4072
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5 0.10 0.10 0.30 0.30 0.30 0.30 0.10 0.10 0.30 0.30 0.30 0.30

indep. BB 0.4350 0.4350 0.4773 0.4773 0.4773 0.4773 0.4389 0.4389 0.4798 0.4798 0.4798 0.4798

indep. logitN 0.4065 0.4151 0.4722 0.4682 0.4676 0.4691 0.4113 0.4198 0.4752 0.4711 0.4705 0.4720

BHM 0.6889 0.6933 0.3714 0.3681 0.3682 0.3691 0.6898 0.6941 0.3719 0.3687 0.3688 0.3696

HBB 0.7761 0.7795 0.3420 0.3392 0.3395 0.3404 0.7769 0.7804 0.3423 0.3395 0.3400 0.3409

6 0.10 0.10 0.10 0.30 0.30 0.30 0.10 0.10 0.10 0.30 0.30 0.30

indep. BB 0.4350 0.4350 0.4350 0.4773 0.4773 0.4773 0.4389 0.4389 0.4389 0.4798 0.4798 0.4798

indep. logitN 0.4064 0.4152 0.4154 0.4682 0.4676 0.4691 0.4112 0.4199 0.4202 0.4711 0.4706 0.4720

BHM 0.6204 0.6254 0.6258 0.3398 0.3400 0.3411 0.6215 0.6265 0.6268 0.3401 0.3405 0.3415

HBB 0.6998 0.7044 0.7046 0.2836 0.2842 0.2852 0.7018 0.7063 0.7065 0.2836 0.2843 0.2853

7 0.10 0.20 0.30 0.30 0.30 0.30 0.10 0.20 0.30 0.30 0.30 0.30

indep. BB 0.4350 0.4631 0.4773 0.4773 0.4773 0.4773 0.4389 0.4659 0.4798 0.4798 0.4798 0.4798

indep. logitN 0.4065 0.4521 0.4721 0.4682 0.4676 0.4691 0.4112 0.4556 0.4751 0.4712 0.4706 0.4721

BHM 0.7514 0.5514 0.3839 0.3804 0.3807 0.3814 0.7521 0.5522 0.3843 0.3809 0.3813 0.3820

HBB 0.8239 0.5929 0.3733 0.3703 0.3708 0.3716 0.8244 0.5935 0.3738 0.3708 0.3713 0.3721

8 0.10 0.15 0.30 0.30 0.30 0.30 0.10 0.15 0.30 0.30 0.30 0.30

indep. BB 0.4350 0.4523 0.4773 0.4773 0.4773 0.4773 0.4389 0.4555 0.4798 0.4798 0.4798 0.4798

indep. logitN 0.4065 0.4377 0.4722 0.4682 0.4676 0.4691 0.4112 0.4417 0.4751 0.4711 0.4706 0.4721

BHM 0.7264 0.6289 0.3751 0.3718 0.3720 0.3728 0.7272 0.6297 0.3757 0.3723 0.3725 0.3733

HBB 0.8038 0.6901 0.3568 0.3540 0.3544 0.3553 0.8045 0.6908 0.3573 0.3544 0.3549 0.3558
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9 0.10 0.15 0.20 0.30 0.30 0.30 0.10 0.15 0.20 0.30 0.30 0.30

indep. BB 0.4350 0.4523 0.4631 0.4773 0.4773 0.4773 0.4389 0.4555 0.4659 0.4798 0.4798 0.4798

indep. logitN 0.4065 0.4378 0.4526 0.4682 0.4676 0.4691 0.4112 0.4417 0.4561 0.4711 0.4706 0.4720

BHM 0.7093 0.6025 0.4982 0.3471 0.3475 0.3484 0.7102 0.6034 0.4991 0.3476 0.3481 0.3489

HBB 0.7782 0.6560 0.5313 0.3209 0.3215 0.3225 0.7789 0.6566 0.5319 0.3215 0.3220 0.3230

10 0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25 0.30

indep. BB 0.3950 0.4350 0.4523 0.4631 0.4710 0.4773 0.4007 0.4389 0.4555 0.4659 0.4736 0.4798

indep. logitN 0.3623 0.4151 0.4381 0.4483 0.4588 0.4691 0.3692 0.4199 0.4420 0.4518 0.4619 0.4720

BHM 0.7349 0.5948 0.4805 0.3931 0.3414 0.3119 0.7361 0.5959 0.4814 0.3938 0.3420 0.3123

HBB 0.8087 0.6571 0.5199 0.4001 0.3101 0.2437 0.8144 0.6598 0.5212 0.4007 0.3100 0.2431

11 0.18 0.20 0.22 0.24 0.26 0.28 0.18 0.20 0.22 0.24 0.26 0.28

indep. BB 0.4593 0.4631 0.4665 0.4696 0.4724 0.4749 0.4622 0.4659 0.4692 0.4722 0.4749 0.4774

indep. logitN 0.4378 0.4521 0.4565 0.4574 0.4613 0.4662 0.4414 0.4555 0.4598 0.4605 0.4644 0.4692

BHM 0.5765 0.5308 0.4822 0.4347 0.3960 0.3619 0.5774 0.5317 0.4830 0.4355 0.3966 0.3627

HBB 0.6073 0.5596 0.5075 0.4551 0.4095 0.3670 0.6079 0.5603 0.5082 0.4557 0.4102 0.3675

12 0.18 0.19 0.20 0.21 0.22 0.23 0.18 0.19 0.20 0.21 0.22 0.23

indep. BB 0.4593 0.4612 0.4631 0.4649 0.4665 0.4681 0.4622 0.4641 0.4659 0.4676 0.4692 0.4708

indep. logitN 0.4377 0.4487 0.4527 0.4521 0.4528 0.4564 0.4414 0.4522 0.4562 0.4555 0.4562 0.4596

BHM 0.5149 0.4932 0.4683 0.4417 0.4181 0.3976 0.5158 0.4941 0.4692 0.4425 0.4189 0.3984

HBB 0.5436 0.5214 0.4954 0.4672 0.4416 0.4179 0.5443 0.5222 0.4962 0.4679 0.4423 0.4185



Chapter 4

Discussion

In this chapter the results of this thesis are discussed and the structure in this chapter is

according to the order in the results Chapter 3. In each section the corresponding results

including the contribution to research are discussed as well as limitations and directions for

further research. The discussion chapter ends with a conclusion of the results from this thesis.

4.1 Categorization and modular construction of basket trials

Parts of this Section 4.1 are already published in the article Categories, components, and

techniques in a modular construction of basket trials for application and further research by

Pohl et al. (2021). The manuscript has been written by myself but may contain comments

and corrections from the co-authors.

4.1.1 Discussion and contribution to research

The dynamic research in the past years on basket trials has led to many designs and tech-

niques, and in general to a diffuse landscape of options for basket trials. To disentangle this

situation, a categorization and a modular approach for basket trials was developed. The

categorization and the modular approach offer a systematic approach to basket trial designs.

The categorization of designs based on the applied statistical technique and on the purpose

of the trial allows a quick and informative classification of a design. It serves as a starting
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point to get a first impression of a design and whether it potentially fits to an underlying

medical research question.

The modular construction has its focus on a systematic approach to a newly designed basket

trial. It consists of four components which can be individually arranged. The components

are then filled with tools from different already known basket trial designs or with newly

created tools. A common notation was introduced among the statistical tools in this work

and in the corresponding publication in Pohl et al. (2021). The understanding of the tools

is required to create a new basket trial in a modular manner. The consistent notation is

therefore an important cornerstone to understand the ideas of the tools, especially those

for sharing of information. The technical ideas of available tools for each component were

presented in Section 3.1 and serve as catalogue to look up the tools. The sharing is the key

component of a basket trial and the available tools can be complex. The modular approach

reveals different underlying techniques. The frequentist pool all or nothing approaches must

be considered critically, since only two extremes of sharing (all or nothing) are allowed. The

Bayesian tools allow intermediate amounts of sharing, especially the variance-driven BHMs

present an intuitive technique due to their mechanism in which a higher variance corresponds

to lower sharing and vice versa. The amount of sharing can be tuned by the parameter

choice. The flexibility of the Bayesian tools also comes to light when information between

only a subset of baskets is shared. Hobbs and Landin (2018), as well as Psioda et al. (2019)

introduced these multisource exchangeability models based on the theoretical work of Kaizer

et al. (2017) and many other tools (e.g. Fujikawa et al., 2020; Jin et al., 2020b; Chen and

Lee, 2020) addressed the same idea with different techniques. The choice of the sharing tool

is an important aspect for the acceptance of the trial design among all involved researchers.

Tools which share information without a transformation of the response rate are for the

acceptance of advantage, because they can use the conjugate property of a beta-binomial

combination of prior distribution and observed data. In the latter case, the observations can

be added in weighted form to the parameters of the posterior distribution, which makes the

sharing process more understandable for non-statisticians. The interim futility and efficacy

component are optional, but can help to save resources. They must be chosen in the context

of the underlying trial. For example, in an exploratory phase II trial, the goal is to detect



4.1. Categorization and modular construction of basket trials 101

promising baskets, but it is not of interest to already declare early efficacy, which might even

not be possible due to a rather small number of patients.

The categorization and the modular construction facilitate access to basket trial designs for

statisticians and interested medical staff with the intention to accelerate the practical applica-

tion of basket trials, to facilitate communication about them, and to motivate further research

due to increased visibility of the current landscape of available tools and their connections.

4.1.2 Limitations and directions for further research

The categorization is limited to the so far available trial designs and therefore reflects the

current state of research. It can be assumed that the number of metrics to efficiently categorise

basket trial designs might increase in the future, and new values within the metrics might be

added. Potentially new aspects could be phase I dose finding trials or seamless trial designs.

The current categorization is not a static rule and should evolve as dynamically as the whole

research field does. The categorization also revealed that there are only few basket trial

designs available for phase III and when they are, frequentist techniques are used. This reflects

the current expectations of regulatory agencies for the approval of new treatments. However,

the quickly evolving field of personalized medicine could change that and when this is the

case, efficient basket trial designs should be available. This includes sharing tools which are

more sophisticated than the frequentist pool all or nothing approaches. Bayesian techniques

are of advantage in that case, hence further research for Bayesian phase III designs might

be of interest. This also includes sharing techniques for endpoints that reflect the patients’

benefit more precisely, e.g. in form of a time-to-event endpoint. Such an endpoint will

additionally increase the complexity in the interim analyses, which might constitute another

field of future research. Additional research efforts can be invested in seamless designs, e.g a

combined investigation of dose levels and first evidence of efficacy in a phase I/II design, for

which the recent publication by Lin et al. (2021) could be a starting point. Also, seamless

phase II/III designs where promising baskets from phase II directly switch to phase III can

be subject to further research.

The modular framework led to subcategories for the Bayesian sharing techniques (mean-

drive, variance-driven, hypothesis-driven, non-transformed) and each of them can be a field
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for further research with the intention to create efficient sharing techniques with reduced

complexity. A high complexity of the tools turns basket trials into a black box where the

stakeholders of the trial barely understand what is happening with the data. This is a current

limitation for the application of innovative sharing tools in real basket trials. Moreover, the

choice for a sharing tool must be justified by advantageous characteristics compared to other

tools. However, the innovative sharing tools were mostly only compared to the basic tools.

Hence, a broad comparison of all relevant sharing tools to each other is necessary, and is an

important aspect to transfer the theoretical tools into applications in real trials.

Another limitation is that programming code is not easily accessible for every tool. Even

if code is available, it is stored in different places. Hence, future research should focus on

the creation of a package for the open-source software R which should contain the known

tools such that a modular basket trial can easily be constructed. With such a package,

design characteristics of a modular basket trial can be investigated in simulations and also

comparisons among different designs would be possible.

Generally, the field of further research in basket trials is wide and covers the optimal arrange-

ment of components, the improvement and modification of existing tools for the components,

and the development of new innovative methods which improve the performance of a bas-

ket trial. This comprises analytical investigations as well as numerical ones using extensive

simulation studies.

4.2 Relationships among decision tools in basket trials

4.2.1 Discussion and contribution to research

The investigation of the Bayesian and frequentist decision rules showed that the adaption

of the threshold leads to congruence in the decisions based on the one-sided binomial test

and on the Bayesian posterior distribution of a beta-binomial model with uniform prior. The

threshold of the posterior probability must be adapted dynamically based on n and p0, which

means that local control is possible. A global choice for the threshold is only given for a beta

prior with a = 0, b = 1, because then, the p-value and the posterior probability are the same

for every n, r and p0. Local control is sufficient in practical scenarios of basket trials, where,



4.2. Relationships among decision tools in basket trials 103

e.g. the number of patients per basket or in total is prespecified to a certain range of values.

These are tuning parameters of a basket trial that need to be defined in the context of the

trial objective and based on pragmatic restrictions.

The required adaption of the threshold is based on the general difference of the p-value and

the posterior probability. The analytically elaborated differences specify this difference more

clearly and they are presented in form of a correction factor δ and the absolute difference κ.

Both quantify the general difference when a uniform prior is applied. They enable to directly

convert B into P and vice versa. The advantage of the correction factor is that a relative

difference is shown according to the basis, which is the p-value in this case. However, for small

values the correction factor can be very large while the absolute difference is small, therefore

both measures are used to evaluate the difference. The quantification of the difference allows

B and P to be displayed as functions of each other. Especially the posterior probability as a

function of a p-value allows to convert a frequentist design into a basket trial with Bayesian

decision rules. In the other direction, the posterior probability can be converted into a p-

value such that a comparison to a constant threshold is possible irrespective of the observed

data. The conversion of the frequentist example of Cunanan et al. (2017b) into a design

with Bayesian tools shows the practical purpose of the (absolute and relative) difference in

the setting of a basket trial. Finally, the frequentist and the Bayesian tool can simply be

considered as two different tools to display the observed data and to take decisions.

The posterior probability could also be calculated directly based on the available data, how-

ever, the multiplicative or additive adaption of the p-value shows by how much the two tools

differ. This also shows that the naive approach to use 1 − α as the threshold for efficacy

assessment (e.g. in Psioda et al., 2019) is misleading and results in overoptimism of Bayesian

decisions which consequently supports the negative impression that Bayesian statistics does

not take enough care of error control. The use of 1 − α can only approximately achieve a

false-positive rate of α because the absolute difference declines to 0 for n → ∞. However,

for even a moderately high number of observations in a basket (e.g. n = 30, p0 = 0.30), the

absolute difference δ is substantially far away from 0, which means the same error control

can then not be assured. The differences are high in response regions in which discriminatory

decisions are made. Especially in these regions, it is important to mind the difference.
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The analytical relationship was elaborated with respect to efficacy (p > p0) but can be

converted to the assessment of futility by changing the reference value and/or the threshold

τ . Hence, the differences in frequentist and Bayesian tools and the congruence of decisions

also hold true in the assessment of futility.

In Cunanan et al. (2017b) the interim futility assessment requires an arbitrary minimum

number of responses to continue the trial (or a specific basket). This tool is a naive approach

and easily understood, however, it does not directly correspond to a certain statistical metric

(e.g. p-value, posterior probability) that can justify the threshold choices. In the conversion

of the practical example, this requirement is transformed into a posterior probability via

the corresponding p-value from a one-sided binomial test. In the heterogeneous path with

only a few patients per basket, this results in rather wide intervals from which the threshold

values can be chosen. Choosing a value close to the borders might appear surprising when

there is unawareness about the interval range. Moreover, in the case of unequal accrual,

the required one response among 3 to 10 patients reflects quite different response scenarios

in the heterogeneous path, and the plausibility of the minimum and maximum rule for the

number of patients per basket must be considered carefully in the context of the trial purpose

(e.g. imbalance due to rare disease property) and in accordance to available resources (e.g.

possibility to wait for equal numbers in each basket). For the practical conversion under

unequal accrual, the interim requirement imposes a minor restriction because there is no

threshold value τF that can cover the wide spectrum for r = 1 and n ∈ {3, ..., 10}. However,

a unique solution is available if n = 3 or n = 10 is removed and the minimum and maximum

rules can be defined accordingly. Apart from that, the example shows that the conversion

works well in general, and threshold values can be determined for each node of the trial such

that congruence in the decisions is guaranteed, irrespective of equal or unequal numbers per

basket.

The conversion of the example shows that Bayesian tools do not change the error rates,

because the new tools will exactly take the same decisions. This also means that the T1E

rates will also be controlled when Bayesian tools are applied. Bayesian statistics is not relieved

from T1E control, they take decisions as well and need to inform how well they do, since

error control is a fundamental characteristic of a decision tool. In frequentist statistics, the

T1E control is required and due to the direct link to the Bayesian tools, it must be considered
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obligatory there too. Hence, in practice one can plan a trial in a frequentist way and then

convert it later into a basket trial with Bayesian tools. Moreover, the conversion allows a

more intuitive interpretation of the final analysis, because the posterior probability presents

what is actually asked: "How likely is the alternative hypothesis?" whereas the p-value can

only answer whether the null hypothesis is rejected. Also, the conversion opens the door for

other tools (e.g. posterior predictive probability) that could be applied for decision making,

thus potentially leading to more understandable and interpretative decisions.

Apart from the naive binomial test and the posterior probability, there are other tools which

were proposed for interim futility assessment. For these tools, connections among each other

were elaborated. The existence of these links show that the futility tools are different ways

to display the same data. The characteristics of the tools are tuned via the tool-specific

parameters (reference values, thresholds). The predictive posterior probability (PPP) and

the conditional power are interesting tools because they project the current information to the

final analysis and quantify how likely the desired result will be achieved. The advantage of the

Bayesian tools is that the posterior distribution already contains the shared information. This

holds also true for the predictive posterior probability because it is a function of the posterior

distribution and the number of additional observations. In the case of a beta-binomial model,

a closed analytical form for the PPP is available, and for other cases simulations are feasible.

The advantage of PPP over the posterior probability is that the decision threshold can be kept

constant at each interim assessment because the final analysis is the target. The threshold

for the posterior probability must be adapted according to the available data in order to

account for the underlying uncertainties. The choice of the interim futility tool should be

made in the context of the trial. A ’minimum r responses’ rule can have its justification in

trials where simplicity and pragmatism are important and also when the first interim is early

in the trial. Kopp-Schneider et al. (2019) for example converted the posterior probability in

interim assessments into a minimum number of responses and argue that this can facilitate

the communication with non-statisticians. On the other side conditional power and PPP

offer more informed decisions but also require a certain amount of information, including the

fixed number of observations at the end of the trial.
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4.2.2 Limitations and directions for further research

The quantified differences refer to the beta-binomial model with prior a = 0, b = 1 and

a = b = 1. The prior beta(0, 1) is hardly used in practice whereas the uniform prior beta(1, 1)

is applied in proposed basket trial designs (cf. Fujikawa et al. (2020)). An interesting prior

choice is the Jeffrey’s prior beta(0.5, 0.5) for the beta-binomial model. It is considered as

non-informative because it is invariant for transformations of the parameter (Robert et al.,

2009; Yang and Berger, 1997) and has a reduced effective sample size (ESS) in the beta-

binomial model compared to the uniform prior. This is of advantage when the number of

observations is small. The characteristics of the beta-binomial model in basket trials under

different priors, including the Jeffrey’s prior, is of interest in further research. This includes

also the behaviour of δ and κ under different priors. In general, the interpretation of the

posterior must always take the prior distribution into account.

The example of Cunanan et al. (2017b) reveals that the conversion has its practical limitations

for small number of observations n because then, the p-value and the posterior probability are

difficult to interpret due to the high variability and the uncertainty of the data. Additionally,

for small n, the prior can have substantial impact on the posterior distribution, e.g. uniform

beta(1, 1) prior and a posterior probability of P[p > 0.15|n = 3, r = 0] = 0.522. The prior

might out-weight the observed data and influence the decision. The naive decision rule to

not stop for futility if at least a certain number of observations has been observed therefore

has its merits when only few observations are available. In that case, the conversion must be

considered carefully.

The conversion applies to stand-alone decisions where the underlying data is the same for the

frequentist binomial test and the Bayesian posterior distribution. This is the case in basket

trials where an all or nothing approach for the sharing is used. Most Bayesian sharing tools

(e.g. hierarchical models) partially share information between baskets and consequently the

amount of information in the posterior distribution is larger than in the statistical test and,

therefore, a direct analytic relationship cannot be derived anymore. The basket-individual

posterior distribution then depends on the results in that basket, on the results in the other

baskets, and on the sharing technique.
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The conversion and also the application in the example showed that the Bayesian tools are

not free from the discreteness of the binomial data. The minimum response tables (e.g.

Table 3.4) underlined that, since for the decision making, the discrete counts (r responses,

n observations) are transformed to a value (p-value, posterior probability) on a continuous

scale, which is subsequently used to justify the decisions. Consequently, the p-value and the

posterior probability can be considered as just two different ways to display the observed

data.

The map of connections among tools for interim (efficacy, futility) assessments is limited by

the already discussed aspect of different underlying data which is induced by partial sharing.

This restricts the connections between the frequentist and the Bayesian tools. A limitation of

the conditional power and of the predictive posterior probability is the number of additional

observations until the end of the trial. This number must be fixed and prespecified and

might contradict the dynamical appearance of basket trials. The PPP accounts for the

sharing of information up to the point where the interim analysis takes place but not when

the final analysis is calculated under the different scenarios. Therefore, future research could

investigate how the sharing of information could be incorporated and potentially help to take

a more informed interim decision.

4.3 Hierarchical beta-binomial model in comparison to BHM

for information sharing in basket trials

4.3.1 Discussion and contribution to research

The BHM sharing tool by Berry et al. (2013) calculates the posterior distributions on a logit-

transformed scale. Nevertheless, the authors conduct the inference on the probability scale

and justify this with better clinical interpretation, however, they do not argue why the logit-

transformation of the response rate bears advantages in the calculations. The sharing tools

which directly evolved from the BHM neither give an explanation. Hence, a vital investigation

whether a hierarchical model directly on the probability scale is a suitable alternative to a

logit-transformed model (BHM) in basket trials was conducted. The motivation to investigate

this stems from the non-transformed model proposed by Fujikawa et al. (2020) and from the



108 Chapter 4. Discussion

idea that a non-transformed distribution is easier to be understood. A better comprehension

of the underlying statistical tool makes it more appealing for the use in applied trials because

more stakeholders of the trial understand what kind of calculations are conducted.

The independent investigation of the assumed distributions for the response rate in BHM and

HBB show that the logit-normal distribution and a beta distribution are in general different

distributions. The counterexample was derived via the transformation of the densities. The

logit-transformation of a beta density function does not result in a normal distribution,

hence the two distributions are in general different, even though they asymptotically converge

towards each other. However, the number of observations per basket is usually small in

basket trials and, therefore, asymptotic convergence of logit-normal and beta distribution is

not reached in practice. In application it must be clear that two different distributions for

the response rate p are assumed. Nevertheless, a procedure to approach a given logit-normal

distribution with a beta distribution, and vice versa, was elaborated. The procedure uses

MLEs to approach the given distribution (e.g. logit-normal) with the other distribution (e.g.

beta). The similarity of two prior distributions is a prerequisite if a comparison of them in a

Bayesian analysis is planned. This can be achieved with the proposed approach and allows

for at least a similar starting point in a Bayesian comparison.

A vague prior was chosen for the comparison of the Bayesian behaviour of a logit-normal

and a beta prior together with binomial data. The intention behind this choice is to let

the observed data carve the posterior distribution. The results reveal that the different

distribution structures pertain, and the two prior distributions result with the same binomial

observations in different posterior distributions.

The HBB has the advantage of interpretability of the common beta distribution via the

expected value and the effective sample size. Both of them represent concrete values that

describe the common beta distribution from which the basket individual distributions of the

response rates pi are drawn. Especially the effective sample size is of advantage, because

it is an equivalent to an underlying observation count. Hence, their distributions, prior and

posterior, have an intuitive interpretation. On the other hand, in BHM neither the parameter

µ nor the variance σ2 have an interpretation that directly refers to intuitive measures. This
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is because they refer to the normal distribution of the logit-transformed response rate and,

hence, a straightforward interpretation on the probability scale is not available.

The focus in the comparison of HBB and BHM lies in the sharing characteristic. A fair

comparison of the two tools under different data scenarios requires hyperparameter choices

such that both tools have similar sharing characteristics. The calibration procedure for the

two tools elaborated in this thesis, is supposed to ensure this. The idea is to define one

reference data scenario under which both tools share information to a similar extent. The

reference data scenario has the same response in each basket because this reflects the implicit

exchangeability assumption of hierarchical models. It was a deliberate choice to allow the

HBB to perform a bit worse than the BHM under the reference data scenario, because the

HBB is challenging the widely used BHM and therefore it should not have a starting bonus.

The calibration based on the sharing strength is different from the calibration on the trial

characteristics, mostly the false positive rate under a null scenario. The latter is used when

the complete trial design is investigated (cf. Chu and Yuan, 2018a; Chen and Lee, 2019). A

calibration based on the complete trial was also used in Freidlin and Korn (2013), where the

BHM was compared to a hierarchical beta-binomial model. However, the authors investigated

the final analysis of the basket trial and its false positive rate. Additionally, they assumed

truncated uniform distributions for a and b. Both aspects are different from the investigation

in this thesis.

The simulation scenarios were chosen to reflect a wide variety of possible response rates

among the baskets. The two anchor response rates 0.1 and 0.3 represent a non-promising

and a promising treatment response and the data scenarios are constructed around them.

The number of baskets was set to I = 6 and is similar to the simulation scenarios in e.g.

Jin et al. (2020a) or Asano and Hirakawa (2020). The mean posterior probability to exceed

the underlying true response rate was introduced to measure the sharing property of the

tools. It directly refers to the true response rate and gives an impression about the position

of the posterior distribution. The advantage of a comparison against the true underlying

response rate is that the posterior probability to exceed it lies in a range around 0.5, whereas

a comparison against a value which is far away from the underlying true response rate results

in values close to 0 or 1. Moreover, in the latter cases, an evaluation of the sharing property
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is barely possible because the changes in the position of the posterior distribution induced by

sharing are small. This is due to the fact that most of the probability mass of the posterior

distribution already lies on the left or on the right of the reference value when no sharing

is conducted. In that case, the sharing property cannot be assessed. However, this is not

the case when the true response rate is the reference value and, therefore, differences in

the sharing tools can be detected more easily. The comparison to the individual posterior

probability shows by how much the posterior distribution changes due to the sharing.

The simulation results show that in HBB the orientation towards the overall mean and,

therefore, the sharing is stronger than it is in BHM. This is of advantage when all baskets

are homogeneous, but can conclude in higher basket-individual false-positive rates when at

least one basket is different from the others. This characteristic is what BHM is criticised

for when used as a standalone sharing tool (e.g. Freidlin and Korn, 2013; Chu and Yuan,

2018a). The simulations also showed that the underlying assumption about the distribution

of the response rate persists, and these distributional characteristics of a logit-normal and a

beta distribution are also detected in the hierarchical models.

The results prove the feasibility of HBB to be applied as a basic sharing tool. Its character-

istics are a bit different to BHM, but still they encourage a further investigation, especially

when the interpretational advantage of HBB is kept in mind.

4.3.2 Limitations and directions for further research

Further research, especially for basket trial designs, must keep in mind that a normal dis-

tribution of the logit-transformed response rate is a different distributional assumption than

a beta distribution for the non-transformed response rate. The logit-normal and the beta

distribution can be approximated by each other, but still the differences in the distributions

can be substantial, and the approximation towards each other cannot eliminate the structural

differences of two distribution.

The numerical problems limit the calculation of the posterior distribution for the beta-

binomial model with MCMC sampling via JAGS. Firstly, unintended stops of the MCMC

sampling terminate the code early and without a result. This can be avoided with a trun-

cated beta distribution in the JAGS code. Secondly, there are numerical instabilities in the
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calculation of posterior probabilities when responses are not at all or exclusively observed.

The instabilities can be overcome with higher sampling numbers, however, this also increases

the calculation time, which is already higher than for the logit-normal prior. The instabilities

are reduced when the number of observations increases, e.g. for n = 20. Further research

can concentrate on a faster code for the MCMC sampling, e.g. with a different software.

Albeit all those numerical drawbacks, the posterior probability can in practice be calculated

analytically due to the conjugate property of a beta-binomial model.

Further methodological research of the HBB can address the distribution of the expected

sample size of the common distribution. Interesting aspects could be HBBs where the gamma

distribution of the ESS is for example restricted to values which are smaller than the total

number of observations in the basket trial. Moreover, the posterior distribution of the ESS

could be investigated as a potential measure of how much information was shared between

the baskets.

A limitation of the proposed calibration procedure is that only one reference scenario with

fixed numbers of responses in each of the baskets is used. Future research could concentrate on

a calibration procedure based on simulations with given response rates per basket. Apart from

the assumed data scenario, the assessment of similarity of the posterior distributions for the

calibration procedure can be subject to additional research, e.g. calibration via minimisation

of distance measures for distributions. In general, the calibration of sharing tools is an

interesting field for future research because equal starting points are an essential element

in the comparison of the tools and the latter is needed to enable a thorough comparison of

existing and future basket trial designs.

A limitation and consequently a potential subject for further research are the simulation

scenarios. Only two different number of patients per basket were simulated, also the number

of patients per basket were equal. Hence, in future simulations, imbalanced number of patients

per basket could be investigated. Moreover, other response rates can be considered, e.g. rates

above 0.3. However, the purpose in this thesis was to investigate whether a HBB is in general

a feasible basic tool to share information in a basket trial. Hence, it suffices to use it in data

scenarios that can potentially be obtained in applied basket trials, and it can be argued that

not every possible data scenario must be covered to come to a conclusion.
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The simulations showed that HBB is a feasible basic sharing tool, but should not solely be

applied, since it has the same disadvantages as BHM. Hence, future research can concentrate

on BHM-based sharing tools where the BHM is replaced by a HBB. Due to the advantage

in simple application and interpretation of the parameters, it suffices if the HBB modified

designs do not perform inferior to the existing BHM-based designs. Also, new trial designs

using HBB as the starting point might be developed. A drawback of HBB compared to BHM

is the higher numeric computation time. This is no problem in the analysis of an applied

basket trial, but might be an issue when simulations of the trial characteristics are performed.

4.4 Conclusion

In conclusion, basket trial designs and its tools are a diverse and dynamic field of research.

The elaborated systematic approach towards basket trials via categories and modular com-

ponents clarified the current status of basket trial designs and also pointed out the method-

ological complexities in the designs and tools. Unnecessary complexity is an obstacle for the

implementation of these tools in applied trials. Therefore, the interim tools and the sharing

tools were investigated with the intention to reveal unexpected connections and to minimize

complexity. The interim decision rules using frequentist and Bayesian techniques turn out

to be different ways to display the observed data, and it was shown that, under appropriate

assumptions, the rules can be tuned to come to the same conclusions. For the sharing tools, it

was shown that a hierarchical beta-binomial model is a feasible alternative basic model com-

pared to the mainly used hierarchical logit-normal model. With the HBB, the complexity in

the sharing tools can be reduced because the response rate is directly modeled without the

logit-transformation. This makes an information-guided definition of the hyperparameters in

the hierarchical model easier and makes the sharing tool more understandable for all involved

researchers. Moreover, a calibration procedure for an equal sharing among different hierar-

chical models was proposed, which can be helpful in future research when different sharing

tools and designs are compared to each other.
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Summary

5.1 Summary

The scientific advances in medical research in the last two decades have shifted the focus to

a personalized treatment approach. An immanent consequence is the need for clinical trials

which cover these new treatment approaches. A group of clinical trial designs which account

for this are gathered under the generic term master protocols. The basket trial design has

evolved as the most prominent master protocol design and investigates one treatment in sev-

eral different diseases. The joint investigation is justified by a common characteristic, such

as a genetic aberration, which is prevalent in all of the diseases and which is used as an effect

pathway by the investigated treatment. Basket trial designs have been a virulent field of

research with respect to the statistical tools and characteristics of such trials. This has led to

an unclear situation in literature and an increasing level of complexity in the statistical tools

which are proposed for the use throughout a basket trial. However, a practical application as

well as an increased interest in basket trials is rather hampered if the complexity is increased

and if no access point to the topic is available. Hence, the aim of this thesis was to introduce

a systematic approach to basket trial designs and to investigate the statistical tools in order

to facilitate, connect, and improve statistical tools, all with the intention to make the com-

plete basket trial setting more accessible, understandable, and applicable from a statistical

perspective. The here elaborated systematic approach towards basket trial designs consists of
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two aspects, first a categorization of the trial designs and second a modular construction kit

for basket trials. The categorization of basket trials is based on the purpose of the trial and

on the statistical techniques that are applied. The modular construction separates a basket

trial into four different components and presents available statistical tools for the compo-

nents in a common notation. It moreover elaborates the methodological connections among

the sharing tools and shows that they use different techniques. However, even though their

complexity varies strongly, the tools are connected with each other or can be the same, even if

they were proposed in different ways in different publications. The modular construction kit

additionally serves as a catalogue to look up the available statistical tools when a basket trial

is planned. The decision tools in basket trials were investigated with a focus on the difference

in the statistical methodologies, namely between the frequentist one-sided binomial test and

the Bayesian decision based on the posterior distribution from a beta-binomial model. It was

shown that the decision tools can be tuned such that the same decisions are made. The differ-

ence between the frequentist p-value and the Bayesian posterior probability under a uniform

prior was quantified analytically and it was shown by how much the two decision measures

deviate from each other. With the elaborated difference, the p-value and the posterior proba-

bility can be given as functions of each other and therefore can be used interchangeably. The

practical feasibility of that relationship for basket trials was shown with the conversion of the

decision tools in a frequentist design into Bayesian decisions. Additionally, the connections

between the other decision tools from the construction kit were investigated. The construction

kit showed that the hierarchical model with normally distributed, logit-transformed response

rate is the base for the majority of the sharing tools. In this thesis, a detailed investigation of

a hierarchical model directly relying on the beta distributed, non-transformed response rate

was conducted with respect to its feasibility as a basic sharing tool in basket trials. It was

shown that the non-transformed model shares information to a slightly stronger degree, that

the different underlying distributional assumption for the response rate persists, and that,

in general, it is a feasible sharing tool which does have advantages in the interpretation of

the hyperparameters. Therefore, its use in basket trial designs should be further investigated

in future research. To conclude, this thesis provides a thorough investigation of basket trial

designs, it starts with the elaboration of a systematic approach to them and continues with

the investigation of the particular components and their statistical tools.
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5.2 Zusammenfassung

Die wissenschaftlichen Fortschritte in der medizinischen Forschung in den vergangenen beiden

Dekaden haben den Fokus zu einem personalisierten Behandlungsansatz verschoben. Eine

immanente Konsequenz daraus ist die Notwendigkeit klinischer Studien, die diese neuen Be-

handlungsansätze abdecken. Eine Gruppe von Studiendesigns, die dies berücksichtigen, sind

unter dem generischen Term Master Protokolle zusammengefasst. Die Basketstudie hat sich

als das bisher bedeutendste Master Protokoll Design herausgestellt und untersucht eine Be-

handlung in mehreren unterschiedlichen Erkrankungen. Die gemeinsame Untersuchung wird

über eine geteilte Charakteristik, zum Beispiel eine genetische Anomalie, begründet, welche

in allen Erkrankungen vorliegt und von der untersuchten Behandlung als Wirkungsmechanis-

mus genutzt wird. Basketstudien waren und sind in Bezug auf die statistischen Werkzeuge

und auf die Eigenschaften der Studiendesigns ein dynamisches Forschungsfeld. Dies hat zu

einer unübersichtlichen Literaturlage und einer zunehmenden Komplexität in den statistis-

chen Werkzeugen geführt, die für die Anwendung in einer Basketstudie vorgeschlagen wurden.

Eine praktische Anwendung, wie auch ein erhöhtes Interesse an Basketstudien, ist jedoch

beeinträchtigt, wenn die Komplexität konstant erhöht wird und zudem kein Zugangspunkt

zu diesem Thema gegeben ist. Daher war das Ziel dieser Dissertation, einen systematis-

chen Zugang zu Basketstudien einzuführen und die statistischen Werkzeuge zu untersuchen,

um diese zu vereinfachen, miteinander in Verbindung zu bringen und zu verbessern und all

dies mit der Intention das Studiendesign aus einer statistischen Perspektive zugänglicher,

verständlicher und einfacher anwendbar zu machen. Der hier erarbeitete systematische Zu-

gang zu Basketsstudien besteht aus zwei Aspekten, erstens, der Kategorisierung der Studi-

endesigns und zweitens dem modularen Baukasten für Basketstudien. Die Kategorisierung

basiert auf dem Studienzweck und auf den statistischen Techniken, die angewendet wer-

den. Der modulare Baukasten unterteilt eine Basketstudie in vier Komponenten und stellt

die gegebenen statistischen Werkzeuge für die einzelnen Komponenten in einer einheitlichen

Notation dar. Zudem wurden methodische Verbindungen zwischen den Werkzeugen zum

Teilen von Informationen zwischen den einzelnen Baskets erarbeitet und es zeigt sich, dass

dafür unterschiedliche Techniken verwendet werden. Obwohl deren Komplexität stark vari-

iert, sind diese Werkzeuge miteinander verbunden oder können sogar gleich sein, auch wenn
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sie auf verschiedene Weisen und in verschiedenen Publikationen vorgeschlagen wurden. Der

modulare Baukasten dient zusätzlich als ein Katalog zum Nachschlagen vorhandener statis-

tischer Werkzeuge, insbesondere in der Planungsphase einer Basketstudie. Die Entschei-

dungsregeln in Basketstudien wurden mit dem Fokus auf den Unterschied in den statistischen

Methoden untersucht, speziell bezüglich des frequentistischen, einseitigen Binomialtests und

der Bayesianischen Entscheidung basierend auf der Posterior-Verteilung eines Beta-Binomial

Modells. Es wurde gezeigt, dass die Entscheidungsregeln so eingestellt werden können, dass

dieselben Entscheidungen getroffen werden. Der Unterschied zwischen dem frequentistischen

p-Wert und der Bayesianischen Posterior-Wahrscheinlichkeit gegeben einem gleichverteilten

Prior wurde analytisch quantifiziert und es wurde gezeigt, wie die beiden Entscheidungsmaße

voneinander abweichen. Mit der erarbeiteten Differenz können der p-Wert und die Posterior

Wahrscheinlichkeit als Funktionen voneinander dargestellt werden und daher zueinander aus-

tauschbar verwendet werden. Die praktische Anwendbarkeit dieser Verbindung wurde mit

der Transformation der Entscheidungswerkzeuge in einem frequentistischen Studiendesign in

Bayesianische gezeigt. Zudem wurden die Verbindungen zwischen den weiteren Entschei-

dungsregeln aus dem Baukasten untersucht. Der modulare Baukasten hat gezeigt, dass das

hierarchische Model mit normal-verteilter, logit-transformierter Responserate die Basis für

die Mehrheit der Werkzeuge zum Teilen von Informationen ist. In dieser Dissertation wurde

eine detaillierte Untersuchung eines hierarchischen Modells direkt auf einer beta-verteilten,

nicht-transformierten Responserate durchgeführt, mit Bezug auf dessen Mach- und Umset-

zbarkeit als ein Basiswerkzeug zum Teilen von Informationen in Basketstudien. Es wurde

gezeigt, dass das nicht-transformierte Modell die Informationen etwas stärker teilt, dass die

unterschiedlichen Verteilungsannahmen für die Responserate bestehen bleiben und dass es im

Allgemeinen ein anwendbares Werkzeug zum Teilen der Informationen ist, welches Vorteile

in der Interpretation der Hyperparameter hat. Daher sollte seine Anwendung in Basket-

studien als Teil zukünftiger Forschung weitergehend untersucht werden. Zusammenfassend

bietet diese Dissertation eine eingehende Untersuchung von Basketstudien, welche mit der

Erarbeitung des systematischen Zugangs beginnt und mit der Untersuchung der einzelnen

Komponenten und den zugehörigen statistischen Werkzeugen fortgeführt wurde.
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Appendix A

Appendix - Additional results

A.1 Additional plots of correction factor κ

Plots of the correction factor κ are shown under different total number of patients and with

different reference values p0 in order to show the decline of κ with increasing p0. The plots

are equivalent to those shown in Section 3.2.1.
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Figure A.1: Correction factor κ for different total number of patients n and its monotonic
increase in r up to the maximum κmax which only depends on the reference value p0 = 0.10.
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Figure A.2: Correction factor κ for different total number of patients n and its monotonic
increase in r up to the maximum κmax which only depends on the reference value p0 = 0.15.
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Figure A.3: Correction factor κ for different total number of patients n and its monotonic
increase in r up to the maximum κmax which only depends on the reference value p0 = 0.25.
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Figure A.4: Correction factor κ for different total number of patients n and its monotonic
increase in r up to the maximum κmax which only depends on the reference value p0 = 0.50.

0

1

2

3

4

5

0 20 40 60
Number of responses r

κ

n 20 30 40 50 60

p0 =  0. 65 and different number of patients

Figure A.5: Correction factor κ for different total number of patients n and its monotonic
increase in r up to the maximum κmax which only depends on the reference value p0 = 0.65.
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A.2 Additional plots of the absolute difference δ

Plots of the absolute difference δ in relation to the observed response rate r

n
are shown for

different reference values p0. The plots show that the difference is high in regions where

discriminatory decisions with respect to the hypothesis are made. Moreover, they show that

with increasing p0 the absolute difference declines.
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Figure A.6: Absolute difference between P and B for different total number of patients n in
relation to the observed response rate r

n
. The dashed vertical line marks the reference value

p0 = 0.10.
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Figure A.7: Absolute difference between P and B for different total number of patients n in
relation to the observed response rate r

n
. The dashed vertical line marks the reference value

p0 = 0.15.
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Figure A.8: Absolute difference between P and B for different total number of patients n in
relation to the observed response rate r

n
. The dashed vertical line marks the reference value

p0 = 0.25.
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Figure A.9: Absolute difference between P and B for different total number of patients n in
relation to the observed response rate r

n
. The dashed vertical line marks the reference value

p0 = 0.50.
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Figure A.10: Absolute difference between P and B for different total number of patients n in
relation to the observed response rate r

n
. The dashed vertical line marks the reference value

p0 = 0.65.
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A.3 Additional posterior probabilities for the conversion of

Cunanan et al. (2017b)

This section contains the tables with the posterior probabilities P[pi > p0|n, r] for rmin and

rmin −1 under varying number of baskets in stage 2, denoted as i∗, in the heterogeneous path.

The corresponding minimum number of responses rmin for every i∗ are given in Section 3.2.2

in Table 3.3.

A.3.1 i∗ = 1, αs

i∗ = 0.07
1 = 0.0700, rmin ∈ {6, 7}

Table A.1: Posterior probability P[pi > p0|n, r] for the final analysis with the intention to
declare a basket promising if at least rmin responses were observed. The number of patients
per basket n among the i∗ = 1 different baskets in stage 2 is varying.

n
18 19 20 21 22 23 24 25

rmin 0.9837 0.9781 0.9713 0.9886 0.9848 0.9801 0.9745 0.9679
rmin − 1 0.9463 0.9327 0.9173 0.9632 0.9537 0.9428 0.9305 0.9167

A.3.2 i∗ = 2, αs

i∗ = 0.07
2 = 0.0350, rmin ∈ {7, 8}

Table A.2: Posterior probability P[pi > p0|n, r] for the final analysis with the intention to
declare a basket promising if at least rmin responses were observed. The number of patients
per basket n among the i∗ = 2 different baskets in stage 2 is varying.

n
18 19 20 21 22 23 24 25

rmin 0.9959 0.9941 0.9917 0.9886 0.9958 0.9941 0.9920 0.9894
rmin − 1 0.9837 0.9781 0.9713 0.9632 0.9848 0.9801 0.9745 0.9679
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A.3.3 i∗ = 4, αs

i∗ = 0.07
4 = 0.0175, rmin ∈ {7, 8, 9}

Table A.3: Posterior probability P[pi > p0|n, r] for the final analysis with the intention to
declare a basket promising if at least rmin responses were observed. The number of patients
per basket n among the i∗ = 4 different baskets in stage 2 is varying.

n
18 19 20 21 22 23 24 25

rmin 0.9959 0.9941 0.9980 0.9970 0.9958 0.9941 0.9979 0.9970
rmin − 1 0.9837 0.9781 0.9917 0.9886 0.9848 0.9801 0.9920 0.9894

A.3.4 i∗ = 5, αs

i∗ = 0.07
5 = 0.0140, rmin ∈ {7, 8, 9}

Table A.4: Posterior probability P[pi > p0|n, r] for the final analysis with the intention to
declare a basket promising if at least rmin responses were observed. The number of patients
per basket n among the i∗ = 5 different baskets in stage 2 is varying.

n
18 19 20 21 22 23 24 25

rmin 0.9959 0.9987 0.9980 0.9970 0.9958 0.9985 0.9979 0.9970
rmin − 1 0.9837 0.9941 0.9917 0.9886 0.9848 0.9941 0.9920 0.9894

A.4 Requirement for logit-transformation of beta distribution

The transformation of a density function f(x) by a differentiable function g() requires that

g′(x) ̸= 0 for all x ∈ [a, b] where [a, b] is the space on which f(x) is defined. In Subsection

3.3.1, the transformation function is g(x) := logit(x) and the definition space of the density

function of a beta distribution is (0, 1).

The derivative g′(x) = logit(x)′ = log

(
x

1 − x

)
is

g′(x) = 1 − x

x
·
(
x(1 − x)−1

)′
= 1 − x

x
·
(
(1 − x)−1 + x(1 − x)−2(−1)

)
= 1

x
− 1

1 − x
= 1 − x

x(1 − x) − x

x(1 − x) = 1
x − x2

and for all x ∈ (0, 1) it holds that g′(x) ̸= 0.
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Appendix - Implementations in R

B.1 Bayesian behaviour - JAGS code for posterior distribu-

tions
1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 # q u a n t i l e s o f the p o s t e r i o r d i s t r i b u t i o n

3 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 # data f o r p o s t e r i o r behavior

5 d <− data . frame (made = s o r t ( rep ( 0 : 1 0 , 3 ) ) ,

6 attempts = c ( rep (10 ,11 ∗ 3) ) )

7 # − i n c r e a s e d number o f o b s e r v a t i o n s

8 # d <− data . frame (made = s o r t ( rep ( 0 : 2 0 , 3 ) ) ,

9 # attempts = c ( rep (20 ,21 ∗ 3) ) )

10

11 sigma2 <− sigma ^2

12

13 # i n i t s f o r MCMC sampling

14 i n i t s <− l i s t ( l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 200618) ,

15 l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 210618) ,

16 l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 220618) ,

17 l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 210621) )

18

19 # data and p r i o r d i s t r i b u t i o n

20 dat = l i s t ( y = d$made ,

21 n = d$ attempts ,

22 N = nrow (d) ,

23 mu = mu,
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24 sigma2 = sigma2 )

25

26 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27 # l o g i t −normal

28

29 l gn="

30 model {

31 prec = 1/ sigma2

32

33 f o r ( i in 1 :N) {

34 y [ i ] ~ dbinom (p [ i ] , n [ i ] )

35

36 p [ i ] = exp ( theta [ i ] ) /(1+exp ( theta [ i ] ) )

37 theta [ i ] ~ dnorm (mu, prec )

38 }

39 }

40 "

41

42 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

43 # implement MCMC

44 model_lgn <− j a g s . model ( textConnect ion ( lgn ) ,

45 data = dat ,

46 n . cha ins = 4 ,

47 i n i t s = i n i t s )

48

49 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 # sample the i n d i c a t o r va lue s ( which . i ) f o r theta

51 samples_lgn <− coda . samples ( model = model_lgn ,

52 v a r i a b l e . names = c ( " p " ) ,

53 n . i t e r = 10^5)

54

55 q u a n t i l e s_l o g i t n <− summary( samples_lgn ) $ q u a n t i l e s

56 rownames ( q u a n t i l e s_l o g i t n ) <− as . c h a r a c t e r ( 1 : 3 3 )

57 xtab l e ( q u a n t i l e s_l o g i t n , d i g i t s = 6)

58

59 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

60 # beta

61

62 # robustne s s check l e a v i n g out 0 and 10

63 # d <− data . frame (made = s o r t ( rep ( 1 : 9 , 3 ) ) ,

64 # attempts = c ( rep (10 ,9 ∗ 3) ) )

65

66 dat = l i s t ( y = d$made ,

67 n = d$ attempts ,

68 N = nrow (d) ,
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69 a = ml_a ,

70 b = ml_b)

71

72 # without adding T(0 .000000000001 ,0 .999999999999999) the model does not converge

73 bb="

74 model {

75 f o r ( i in 1 :N) {

76 p [ i ] ~ dbeta ( a , b )T(0 .000000000001 ,0 .999999999999999)

77 y [ i ] ~ dbinom (p [ i ] , n [ i ] )

78 }

79 }

80 "

81

82 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 # implement MCMC

84 model_bb <− j a g s . model ( textConnect ion ( bb ) ,

85 data = dat ,

86 n . cha ins = 4 ,

87 i n i t s = i n i t s )

88

89 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

90 # sample the i n d i c a t o r va lue s ( which . i ) f o r theta

91 samples_bb <− coda . samples ( model = model_bb ,

92 v a r i a b l e . names = c ( " p " ) ,

93 n . i t e r = 10^5)

94 q u a n t i l e s_beta <− summary( samples_bb ) $ q u a n t i l e s

95 rownames ( q u a n t i l e s_beta ) <− as . c h a r a c t e r ( 1 : 3 3 )

96 xtab l e ( q u a n t i l e s_beta , d i g i t s = 5)
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B.2 Simulation study for comparison of BHM and HBB
1 ################################################################################

2 # Load packages and f u n c t i o n s

3 ################################################################################

4 l i b r a r y ( r j a g s )

5 l i b r a r y ( p a r a l l e l )

6

7 l o g i t <− f u n c t i o n (p) {

8 l og (p/(1−p) )

9 }

10

11 e x p i t <− f u n c t i o n ( x ) {

12 exp ( x ) /(1+exp ( x ) )

13 }

14

15 ################################################################################

16 # D e f i n i t i o n o f g e n e r a l v a r i a b l e s

17 ################################################################################

18 s e t . seed (100200)

19 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

20 # l o g i t −normal

21 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

22 # Prior

23 mu <− l o g i t ( . 3 )

24 sigma2 <− 7.8^2

25

26 # l o g i t normal model

27 l gn="

28 model {

29

30 prec = 1/ sigma2

31

32 f o r ( i in 1 :N) {

33 y [ i ] ~ dbinom (p [ i ] , n [ i ] )

34

35 p [ i ] = exp ( theta [ i ] ) /(1+exp ( theta [ i ] ) )

36 theta [ i ] ~ dnorm (mu, prec )

37 }

38 }

39 "

40

41 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

42 # BHM

43 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
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44 # Prior : shar ing

45 mu_exp <− l o g i t ( 0 . 3 )

46 mu_sigma2 <− 7.8^2

47

48 bhm_shape <− 0.01

49 bhm_r a t e <− 0.10

50

51 # BHM model

52 bhm="

53 model {

54 mu ~ dnorm (mu_exp , mu_prec )

55 mu_prec = 1/mu_sigma2

56

57 prec ~ dgamma( shape , r a t e )

58 sigma2 = 1/ prec

59

60 f o r ( i in 1 :N) {

61 theta [ i ] ~ dnorm (mu, prec )

62

63 p [ i ] = exp ( theta [ i ] ) /(1+exp ( theta [ i ] ) )

64 y [ i ] ~ dbinom (p [ i ] , n [ i ] )

65 }

66 }

67 "

68

69 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

70 # HBB

71 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

72 # Prior : shar ing

73 # p o s i t i o n based on MLE est imate o f e x p i t transformed N( l o g i t ( 0 . 1 ) , 8^2)

74 # a <− 0.1377218

75 # b <− 0.1944923

76 # p o s i t i o n based on MLE est imate o f e x p i t transformed N( l o g i t ( 0 . 3 ) , 7 . 8^2)

77 a <− 0.1558973

78 b <− 0.1786819

79

80 # chosen based on assumed data o f r=3 ( r=6 f o r n = 20) f o r a l l basket s

81 # and s i m i l a r 2.5% and 97.5% q u a n t i l e s o f p o s t e r i o r and most important

82 # an at l e a s t wider range between 2.5% and 97.5% f o r HBB

83 hbb_shape <− 3

84 hbb_r a t e <− 0.12

85

86 # HBB model account ing f o r z e r o s

87 hbb="

88 model {
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89

90 mu ~ dbeta ( a , b )

91 eta ~ dgamma( shape , r a t e )

92

93 alpha = eta ∗mu

94 beta = eta ∗(1−mu)

95

96 f o r ( i in 1 :N) {

97 p [ i ] ~ dbeta ( alpha , beta )T( 0 . 0 0 0 0 0 0 1 , )

98 y [ i ] ~ dbinom (p [ i ] , n [ i ] )

99 }

100 }

101 "

102

103 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

104 # Functions

105 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

106 data_sampler <− f u n c t i o n ( basket s_sample , p_sample , n_sample ) {

107 r_sample <− rbinom (n = basket s_sample ,

108 prob = p_sample ,

109 s i z e = n_sample )

110 r e turn ( r_sample )

111 }

112

113 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

114 # Simulat ion c h a r a c t e r i s t i c s

115 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

116

117 # number o f s imulated s t u d i e s

118 n_sim_s t u d i e s <− 10000

119

120 # s e t seed f o r i n i t a l va lue o f the chain − r e p r o d u c i b i l i t y

121 i n i t s <− l i s t ( l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 200618) ,

122 l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 210618) ,

123 l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 220618) ,

124 l i s t ( " .RNG. name" = " base : : Wichmann−H i l l " , " .RNG. seed " = 210621) )

125

126 # number o f basktes in s imu la t i on

127 n_basket s_sample <− 6

128

129 # number o f p a t i e n t s / o b s e r v a t i o n s per basket

130 n_sample <− c ( rep (20 , n_basket s_sample ) )

131

132 # assumed response r a t e s to sample data

133 p_sample_ l i s t <− l i s t ( rep ( 0 . 3 , n_basket s_sample ) ,
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134 rep ( 0 . 2 , n_basket s_sample ) ,

135 rep ( 0 . 1 , n_basket s_sample ) ,

136

137 c ( 0 . 1 , rep ( 0 . 3 , n_basket s_sample − 1) ) ,

138 c ( 0 . 1 , 0 . 1 , rep ( 0 . 3 , n_basket s_sample − 2) ) ,

139 c ( 0 . 1 , 0 . 1 , 0 . 1 , rep ( 0 . 3 , n_basket s_sample − 3) ) ,

140

141 c ( 0 . 1 , 0 . 2 0 , rep ( 0 . 3 , n_basket s_sample − 2) ) ,

142 c ( 0 . 1 , 0 . 1 5 , rep ( 0 . 3 , n_basket s_sample − 2) ) ,

143 c ( 0 . 1 , 0 . 1 5 , 0 . 2 , rep ( 0 . 3 , n_basket s_sample − 3) ) ,

144

145 c ( seq ( 0 . 0 5 , 0 . 3 , by = 0 . 0 5 ) ) ,

146 c ( seq ( 0 . 1 8 , 0 . 2 8 , by = 0 . 0 2 ) ) ,

147 c ( seq ( 0 . 1 8 , 0 . 2 3 , by = 0 . 0 1 ) )

148 )

149

150 ################################################################################

151 # Simulate p o s t e r i o r d i s t r i b u t i o n s with models

152 ################################################################################

153

154 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

155 # Sample data f o r each basket under g iven p and n

156 sample_data <− f u n c t i o n (p_sample ) {

157 p_sample <− p_sample

158

159 # s e t counter

160 counter_study <− 0

161

162 whi le ( counter_study < n_sim_s t u d i e s ) {

163

164 # i n c r e a s e counter

165 counter_study <− counter_study + 1

166

167 r_sample <− data_sampler ( basket s_sample = n_basket s_sample ,

168 p_sample = p_sample ,

169 n_sample = n_sample )

170

171 # s t o r a g e f o r s imulated number o f r e s p on s e s

172 i f ( counter_study == 1) {

173 s t o r a g e_r <− r_sample

174 } e l s e {

175 s t o r a g e_r <− rbind ( s t o r a g e_r , r_sample )

176 }

177 }

178 colnames ( s t o r a g e_r ) <− p_sample
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179 rownames ( s t o r a g e_r ) <− 1 : n_sim_s t u d i e s

180

181 # r e s e t counter to 0

182 i f ( counter_study == n_sim_s t u d i e s ) {

183 counter_study <− 0

184 }

185

186 r e turn ( s t o r a g e_r )

187 }

188

189 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

190 # Sample p o s t e r i o r d i s t r i b u t i o n s f o r i n d i v i d u a l eva luat ion , BHM and HBB

191

192 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

193 # f u n c t i o n f o r a n a l y t i c beta−binomial

194

195 # a l l p o s s i b l e r e s p o n s e s

196 r_a n a l y t i c a l <− c ( 0 : n_sample [ 1 ] )

197

198 # a n a l y t i c mean p o s t e r i o r p r o b a b i l i t y to exceed the sample p r o b a b i l i t y

199 # in i n d i v i d u a l beta−binomial model

200 ana_bb <− f u n c t i o n (p_sample_scenar io , p0=FALSE) {

201 sapply (p_sample_scenar io , f u n c t i o n ( x ) {

202 lhood <− dbinom ( r_a n a l y t i c a l , n_sample [ 1 ] , x )

203 i f ( p0==F) {

204 post <− 1 − pbeta (x , a + r_a n a l y t i c a l , b + n_sample [ 1 ] − r_a n a l y t i c a l )

205 } e l s e {

206 post <− 1 − pbeta ( p0 , a + r_a n a l y t i c a l , b + n_sample [ 1 ] − r_a n a l y t i c a l )

207 }

208 r e turn (sum( lhood ∗ post ) )

209 })

210 }

211

212 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

213 # f u n c t i o n f o r l o g i t n o r m a l model

214 sim_lgn <− f u n c t i o n ( s t o r a g e_r ) {

215 # r e s e t counter

216 counter_study <− 0

217

218 # add the a l r eady sampled data

219 s t o r a g e_r <− s t o r a g e_r

220 p_sample <− as . numeric ( colnames ( s t o r a g e_r ) )

221

222 whi le ( counter_study < n_sim_s t u d i e s ) {

223
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224 # i n c r e a s e counter

225 counter_study <− counter_study + 1

226

227 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

228 # JAGS to sample p o s t e r i o r p r o b a b i l i t i e s

229

230 # . . . . . . . . . . . . . . . . . . . .

231 # l o g i t −normal

232 # . . . . . . . . . . . . . . . . . . . .

233 dat_lgn = l i s t ( y = s t o r a g e_r [ counter_study , ] ,

234 n = n_sample ,

235 N = n_basket s_sample ,

236 mu = mu,

237 sigma2 = sigma2 )

238

239 model_lgn <− j a g s . model ( textConnect ion ( lgn ) ,

240 data = dat_lgn ,

241 n . cha ins = 4 ,

242 i n i t s = i n i t s )

243

244 samples_lgn <− coda . samples ( model = model_lgn ,

245 v a r i a b l e . names = c ( " p " ) ,

246 n . i t e r = 10000)

247

248 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

249 # Analys i s o f the p o s t e r i o r samples with r e s p e c t to assumed p

250

251 # combine the cha ins from JAGS sampling

252 combined_cha ins <− do . c a l l ( rbind , samples_lgn )

253

254 # c a l c u l a t e p o s t e r i o r p r o b a b i l i t y to exceed sampling p r o b a b i l i t y

255 sim_post_prob <− sapply ( 1 : n_basket s_sample ,

256 f u n c t i o n ( x ) {

257 sum( combined_cha ins [ , x ] > p_sample [ x ] ) /dim ( combined_

cha ins ) [ 1 ]

258 })

259

260 # c a l c u l a t e p o s t e r i o r p r o b a b i l i t y to exceed n u l l va lue 0 .1

261 sim_post_prob_n u l l <− sapply ( 1 : n_basket s_sample ,

262 f u n c t i o n ( x ) {

263 sum( combined_cha ins [ , x ] > 0 . 1 ) /dim ( combined_cha ins )

[ 1 ]

264 })

265

266 # s t o r a g e f o r s imulated p o s t e r i o r p r o b a b i l i t i e s
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267 i f ( counter_study == 1) {

268 s t o r a g e_post_prob <− sim_post_prob

269 s t o r a g e_post_prob_n u l l <− sim_post_prob_n u l l

270 } e l s e {

271 s t o r a g e_post_prob <− rbind ( s t o r a g e_post_prob , sim_post_prob )

272 s t o r a g e_post_prob_n u l l <− rbind ( s t o r a g e_post_prob_nul l , sim_post_prob_n u l l )

273 }

274 }

275

276 # names f o r c o l and row o f r e s u l t t a b l e

277 colnames ( s t o r a g e_post_prob ) <− p_sample

278 rownames ( s t o r a g e_post_prob ) <− 1 : n_sim_s t u d i e s

279 colnames ( s t o r a g e_post_prob_n u l l ) <− p_sample

280 rownames ( s t o r a g e_post_prob_n u l l ) <− 1 : n_sim_s t u d i e s

281 r e turn ( l i s t ( s t o r a g e_post_prob ,

282 s t o r a g e_post_prob_n u l l ) )

283 }

284

285 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

286 # f u n c t i o n f o r BHM

287 sim_bhm <− f u n c t i o n ( s t o r a g e_r ) {

288

289 # r e s e t counter

290 counter_study <− 0

291

292 # add the a l r eady sampled data

293 s t o r a g e_r <− s t o r a g e_r

294 p_sample <− as . numeric ( colnames ( s t o r a g e_r ) )

295

296 whi le ( counter_study < n_sim_s t u d i e s ) {

297

298 # i n c r e a s e counter

299 counter_study <− counter_study + 1

300

301 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

302 # JAGS to sample p o s t e r i o r p r o b a b i l i t i e s

303

304 # . . . . . . . . . . . . . . . . . . . .

305 # BHM

306 # . . . . . . . . . . . . . . . . . . . .

307 dat_bhm = l i s t ( y = s t o r a g e_r [ counter_study , ] ,

308 n = n_sample ,

309 N = n_basket s_sample ,

310 mu_exp = mu_exp ,

311 mu_sigma2 = mu_sigma2 ,
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312 shape = bhm_shape ,

313 r a t e = bhm_r a t e )

314

315 model_bhm <− j a g s . model ( textConnect ion (bhm) ,

316 data = dat_bhm,

317 n . cha ins = 4 ,

318 i n i t s = i n i t s )

319

320 samples_bhm <− coda . samples ( model = model_bhm,

321 v a r i a b l e . names = c ( " p " ) ,

322 n . i t e r = 10000)

323

324 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

325 # Analys i s o f the p o s t e r i o r samples with r e s p e c t to assumed p

326

327 # combine the cha ins from JAGS sampling

328 combined_cha ins <− do . c a l l ( rbind , samples_bhm)

329

330 # c a l c u l a t e p o s t e r i o r p r o b a b i l i t y to exceed sampling p r o b a b i l i t y

331 sim_post_prob <− sapply ( 1 : n_basket s_sample ,

332 f u n c t i o n ( x ) {

333 sum( combined_cha ins [ , x ] > p_sample [ x ] ) /dim ( combined_

cha ins ) [ 1 ]

334 })

335

336 # c a l c u l a t e p o s t e r i o r p r o b a b i l i t y to exceed n u l l va lue 0 .1

337 sim_post_prob_n u l l <− sapply ( 1 : n_basket s_sample ,

338 f u n c t i o n ( x ) {

339 sum( combined_cha ins [ , x ] > 0 . 1 ) /dim ( combined_cha ins )

[ 1 ]

340 })

341

342 # s t o r a g e f o r s imulated p o s t e r i o r p r o b a b i l i t i e s

343 i f ( counter_study == 1) {

344 s t o r a g e_post_prob <− sim_post_prob

345 s t o r a g e_post_prob_n u l l <− sim_post_prob_n u l l

346 } e l s e {

347 s t o r a g e_post_prob <− rbind ( s t o r a g e_post_prob , sim_post_prob )

348 s t o r a g e_post_prob_n u l l <− rbind ( s t o r a g e_post_prob_nul l , sim_post_prob_n u l l )

349 }

350 }

351

352 # names f o r c o l and row o f r e s u l t t a b l e

353 colnames ( s t o r a g e_post_prob ) <− p_sample

354 rownames ( s t o r a g e_post_prob ) <− 1 : n_sim_s t u d i e s
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355 colnames ( s t o r a g e_post_prob_n u l l ) <− p_sample

356 rownames ( s t o r a g e_post_prob_n u l l ) <− 1 : n_sim_s t u d i e s

357 r e turn ( l i s t ( s t o r a g e_post_prob ,

358 s t o r a g e_post_prob_n u l l ) )

359 }

360

361 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

362 # f u n c t i o n f o r HBB

363 sim_hbb <− f u n c t i o n ( s t o r a g e_r ) {

364

365 # r e s e t counter

366 counter_study <− 0

367

368 # add the a l r eady sampled data

369 s t o r a g e_r <− s t o r a g e_r

370 p_sample <− as . numeric ( colnames ( s t o r a g e_r ) )

371

372 whi le ( counter_study < n_sim_s t u d i e s ) {

373

374 # i n c r e a s e counter

375 counter_study <− counter_study + 1

376

377 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

378 # JAGS to sample p o s t e r i o r p r o b a b i l i t i e s

379

380 # . . . . . . . . . . . . . . . . . . . .

381 # HBB

382 # . . . . . . . . . . . . . . . . . . . .

383 dat_hbb = l i s t ( y = s t o r a g e_r [ counter_study , ] ,

384 n = n_sample ,

385 N = n_basket s_sample ,

386 a = a ,

387 b = b ,

388 shape = hbb_shape ,

389 r a t e = hbb_r a t e )

390

391 model_hbb <− j a g s . model ( textConnect ion ( hbb ) ,

392 data = dat_hbb ,

393 n . cha ins = 4 ,

394 i n i t s = i n i t s )

395

396 samples_hbb <− coda . samples ( model = model_hbb ,

397 v a r i a b l e . names = c ( " p " ) ,

398 n . i t e r = 10000)

399
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400 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

401 # Analys i s o f the p o s t e r i o r samples with r e s p e c t to assumed p

402

403 # combine the cha ins from JAGS sampling

404 combined_cha ins <− do . c a l l ( rbind , samples_hbb )

405

406 # c a l c u l a t e p o s t e r i o r p r o b a b i l i t y to exceed sampling p r o b a b i l i t y

407 sim_post_prob <− sapply ( 1 : n_basket s_sample ,

408 f u n c t i o n ( x ) {

409 sum( combined_cha ins [ , x ] > p_sample [ x ] ) /dim ( combined_

cha ins ) [ 1 ]

410 })

411

412 # c a l c u l a t e p o s t e r i o r p r o b a b i l i t y to exceed n u l l va lue 0 .1

413 sim_post_prob_n u l l <− sapply ( 1 : n_basket s_sample ,

414 f u n c t i o n ( x ) {

415 sum( combined_cha ins [ , x ] > 0 . 1 ) /dim ( combined_cha ins )

[ 1 ]

416 })

417

418 # s t o r a g e f o r s imulated p o s t e r i o r p r o b a b i l i t i e s

419 i f ( counter_study == 1) {

420 s t o r a g e_post_prob <− sim_post_prob

421 s t o r a g e_post_prob_n u l l <− sim_post_prob_n u l l

422 } e l s e {

423 s t o r a g e_post_prob <− rbind ( s t o r a g e_post_prob , sim_post_prob )

424 s t o r a g e_post_prob_n u l l <− rbind ( s t o r a g e_post_prob_nul l , sim_post_prob_n u l l )

425 }

426 }

427

428 # names f o r c o l and row o f r e s u l t t a b l e

429 colnames ( s t o r a g e_post_prob ) <− p_sample

430 rownames ( s t o r a g e_post_prob ) <− 1 : n_sim_s t u d i e s

431 colnames ( s t o r a g e_post_prob_n u l l ) <− p_sample

432 rownames ( s t o r a g e_post_prob_n u l l ) <− 1 : n_sim_s t u d i e s

433 r e turn ( l i s t ( s t o r a g e_post_prob ,

434 s t o r a g e_post_prob_n u l l ) )

435 }

436

437 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

438 # Simulate d i f f e r e n t data s c e n a r i o s

439 system . time (

440 raw_r e s u l t s <− mclapply (p_sample_l i s t , f u n c t i o n ( x ) {

441

442 # simulate each data s c e n a r i o
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443 s e t . seed (124578)

444 s t o r a g e_r <− sample_data (p_sample = x )

445

446 r e s u l t s_lgn <− sim_lgn ( s t o r a g e_r )

447 r e s u l t s_bhm <− sim_bhm( s t o r a g e_r )

448 r e s u l t s_hbb <− sim_hbb ( s t o r a g e_r )

449

450 # return the r e s u l t s

451 r e t_ l i s t <− l i s t ( s t o r a g e_r = s t o r a g e_r ,

452 r e s u l t s_lgn = r e s u l t s_lgn [ [ 1 ] ] ,

453 r e s u l t s_bhm = r e s u l t s_bhm [ [ 1 ] ] ,

454 r e s u l t s_hbb = r e s u l t s_hbb [ [ 1 ] ] ,

455

456 r e s u l t s_lgn_n u l l = r e s u l t s_lgn [ [ 2 ] ] ,

457 r e s u l t s_bhm_n u l l = r e s u l t s_bhm [ [ 2 ] ] ,

458 r e s u l t s_hbb_n u l l = r e s u l t s_hbb [ [ 2 ] ] )

459 r e turn ( r e t_ l i s t )

460 } , mc . c o r e s = 12)

461 )

462

463 ################################################################################

464 # Analyze and s t o r e the r e s u l t s

465 ################################################################################

466 # under ly ing s imu la t i on parameters

467 assumed_parameters <− l i s t (n_sim_s t u d i e s = n_sim_stu d i e s ,

468 n_basket s_sample = n_basket s_sample ,

469 n_sample = n_sample ,

470 p_sample_ l i s t = p_sample_l i s t ,

471 mu = mu,

472 sigma2 = sigma2 ,

473 mu_exp = mu_exp ,

474 mu_sigma2 = mu_sigma2 ,

475 bhm_shape = bhm_shape ,

476 bhm_r a t e = bhm_rate ,

477 a = a ,

478 b = b ,

479 hbb_shape = hbb_shape ,

480 hbb_r a t e = hbb_r a t e

481 )

482

483

484 # − Mean o f P[ p_i > p ]

485 r e s u l t s_means <− lapp ly ( raw_r e s u l t s , f u n c t i o n ( x ) {

486 mean_prob <− rbind ( ana_bb ( as . numeric ( colnames ( x$ r e s u l t s_bhm) ) ) ,

487 colMeans ( x$ r e s u l t s_lgn ) ,
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488 colMeans ( x$ r e s u l t s_bhm) ,

489 colMeans ( x$ r e s u l t s_hbb ) )

490 rownames (mean_prob ) <− c ( " a n a l y t i c BB" , " lgn " , "BHM" , "HBB" )

491 r e turn (mean_prob )

492 })

493 r e s u l t s_means

494

495 # − Mean o f P[ p_i > p0 ] − a g a i n t s NULL value

496 r e s u l t s_means_n u l l <− lapp ly ( raw_r e s u l t s , f u n c t i o n ( x ) {

497 mean_prob_n u l l <− rbind ( ana_bb ( as . numeric ( colnames ( x$ r e s u l t s_bhm) ) , p0 = 0 . 1 ) ,

498 colMeans ( x$ r e s u l t s_lgn_n u l l ) ,

499 colMeans ( x$ r e s u l t s_bhm_n u l l ) ,

500 colMeans ( x$ r e s u l t s_hbb_n u l l ) )

501 rownames (mean_prob_n u l l ) <− c ( " a n a l y t i c BB" , " lgn_n u l l " , "BHM_n u l l " , "HBB_n u l l " )

502 r e turn (mean_prob_n u l l )

503 })

504 r e s u l t s_means_n u l l

505

506 # − Mean r e s p o n s e s o f s imulated data

507 r e s u l t s_sim_data <− lapp ly ( raw_r e s u l t s , f u n c t i o n ( x ) {

508 r e turn ( colMeans ( x$ s t o r a g e_r )

509 )

510 })

511 r e s u l t s_sim_data

512

513 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

514 # Save the data e x t e r n a l l y

515

516 # n = 10 , l o g i t ( 0 . 1 )

517 # save ( assumed_parameters ,

518 # r e s u l t s_means ,

519 # r e s u l t s_means_nul l ,

520 # r e s u l t s_sim_data ,

521 # f i l e = " d i s s /sim_r e s u l t s /n10_l o g i t 0 1 . RData " )
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