Inaugural-Dissertation

zur Erlangung der Doktorwürde der
Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften der Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Rustam Steingart, M.Sc. Mathematik aus Baku, Aserbaidschan
\qquad

Analytic cohomology of families of L-Analytic Lubin-Tate $\left(\varphi_{L}, \Gamma_{L}\right)$-MODULES

Abstract

In this thesis we prove finiteness and base change properties for analytic cohomology of families of L-analytic (φ_{L}, Γ_{L})-modules parametrised by affinoid algebras. To this end, we study an analogue of the Herr complex, which can be defined using p-adic Fourier theory. For technical reasons we work over a field containing the finite extension L of \mathbb{Q}_{p} and a certain transcendental period. In case the affinoid algebra is the base field, we prove that coadmissibility of the Iwasawa cohomology groups is sufficient for the existence of a comparison isomorphism between the Iwasawa cohomology of a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over the Robba ring and the analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is obtained by base change to the algebra of L-analytic distributions on an open subgroup of Γ_{L}. In the trianguline case we show that the complex computing Iwasawa cohomology is perfect and in particular satisfies the above condition. Finally we describe how general perfectness results for Iwasawa cohomology can be achieved assuming conjecturally that the statement can be proved in the étale case.

\section*{Zusammenfassung}

In dieser Arbeit zeigen wir Endlichkeits- und Basiswechseleigenschaften für analytische Kohomologie von Familien von L-analytischen $\left(\varphi_{L}, \Gamma_{L}\right)$-Moduln parametrisiert durch affinoide Algebren. Dazu untersuchen wir ein Analogon des Herr-Komplexes, welches mittels p-adischer Fouriertheorie definiert werden kann. Aus technischen Gründen arbeiten wir über einem Körper, welcher die endliche Erweiterung L von \mathbb{Q}_{p} und eine gewisse transzendente Periode enthält. Im Falle, dass die affinoide Algebra der Grundkörper ist, zeigen wir, dass eine hinreichende Bedingung für die Existenz eines Vergleichsisomorphismus zwischen der Iwasawakohomologie eines $\left(\varphi_{L}, \Gamma_{L}\right)$-Moduls über dem Robba-Ring und der analytischen Kohomologie seiner Lubin-Tate-Deformation, welche heuristisch durch Basiswechsel zur L-analytischen Distributionsalgebra einer offenen Untergruppe von Γ_{L} entsteht, die Kozulässigkeit der Iwasawa-Kohomologiegruppen ist. Im triangulinen Fall zeigen wir, dass der Komplex, welcher die Iwasawa-Kohomologie berechnet, perfekt ist und insbesondere obige Bedingung erfüllt. Zuletzt beschreiben wir, wie allgemeinere Perfektheitsergebnisse für die IwasawaKohomologie erzielt werden können, unter Annahme der Vermutung, dass die Aussage im étalen Fall bewiesen werden kann.

Danksagung

Mein tiefster Dank gilt Otmar Venjakob für die Betreuung dieser Arbeit, sein Vertrauen und seine Geduld. Diese Arbeit wäre nicht zustande gekommen ohne die vielen Diskussionen mit ihm, welche stets eine Quelle der Inspiration und Motivation für mich waren.
Ein besonderer Dank geht an die Deutsche Forschungsgemeinschaft (DFG) für die finanzielle Unterstützung im Rahmen des TRR 326 Geometry and Arithmetic of Uniformized Structures.
Ich danke herzlich meiner Arbeitsgruppe und dem mathematischen Institut für das angenehme Umfeld, den mathematischen Austausch und die schöne Zeit. Ganz besonders danke ich Max Witzelsperger für hilfreiche Anmerkungen zu meiner Arbeit.
Schließlich möchte ich meinen Eltern und Bérénice Robert von ganzem Herzen für ihre Liebe und Unterstützung danken.

Contents

Introduction 1
1 Preliminaries 9
1.1 Some functional analysis. 9
1.2 Robba rings and their $\left(\varphi_{L}, \Gamma_{L}\right)$-actions. 12
$1.3 \quad p$-adic Fourier theory and $D(G, L)$ actions. 17
1.3.1 L-Analyticity 21
1.3.2 Lie-Elements in $D\left(\Gamma_{L}, L\right)$. 24
$1.4\left(\varphi_{L}, \Gamma_{L}\right)$-modules over the Robba ring, 26
1.4.1 A standard estimate for $\left(\varphi_{L}, \Gamma_{L}\right)$-modules 33
1.4.2 Duality 35
1.4.3 Sen-Theory 37
1.5 Etale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules 38
2 The kernel of ψ 41
2.1 Some technical preparation. 41
2.2 The group Robba ring and the structure of $M^{\psi=0}$. 42
2.3 The action via H_{n}. 46
2.4 Interpreting the results 52
3 Analytic cohomology via Herr complexes 54
3.1 Analytic Herr complex for $e<p-1$ 54
3.2 The case of general e. 55
3.3 Finiteness of analytic Herr cohomology 57
$3.4 \quad \psi$-cohomology of $M / t_{L T} M$. 64
3.5 Comparison between $H_{\varphi_{L}, \Gamma_{n}}^{1}$ and $\operatorname{Ext}_{\mathrm{an}}^{1}$ 73
4 Lubin-Tate deformations and Iwasawa cohomology 76
4.1 Basic definitions 76
4.2 Coadmissibility of Iwasawa cohomology $C_{\Psi}(M)$ over a field. 78
4.3 Consistent complexes 81
4.4 Comparison to Iwasawa cohomology. 83
6 Towards perfectness of $C_{\Psi}(M)$ and a remark on the Euler-Poincaréformula95
6.1 Perfectness of $C_{\Psi}(M)$ 95
6.2 Towards the Euler-Poincaré formula 101
Appendix 103
A. 1 Coherent Sheaves 103
A. 2 The action on $\mathcal{R}_{L}^{r} / Q_{n}$. 106
A. 3 Homological Algebra 110
A. 4 Analyticity in fibres 112
Errata 115

Introduction

Let p be a prime number. Among objects of fundamental importance in number theory are p-adic Galois representations, i.e., continuous representations of the absolute Galois group $G_{\mathbb{Q}_{p}}$ on finite dimensional \mathbb{Q}_{p}-vector spaces. They appear naturally in the context of p-adic étale cohomology and Fontaine's theory of (φ, Γ)-modules provides us with an equivalence of categories between p-adic Galois representations and so-called étale (φ, Γ)-modules. Let L / \mathbb{Q}_{p} be a finite extension with absolute Galois group G_{L}. Fix an embedding $L \rightarrow \mathbb{C}_{p}$ and a uniformiser π_{L} of L. We denote by o_{L} the ring of integers of L and by q the cardinality of $o_{L} / \pi_{L} o_{L}$. Lubin-Tate $\left(\varphi_{L}, \Gamma_{L}\right)$-modules play an important role for understanding L-linear continuous representations of G_{L}. In the Lubin-Tate case $\varphi_{L}(T) \in o_{L} \llbracket T \rrbracket$ is a Frobenius power series for π_{L}, i.e., a series of the form $\varphi(T)=\pi_{L} T+T^{q}+\pi_{L} T^{2} f$ with some $f \in o_{L} \llbracket T \rrbracket$. One can show that there exists a unique commutative one dimensional formal group law $L T$ over o_{L} admitting φ_{L} as an endomorphism. The action of G_{L} on the $\pi_{L^{-}}^{n}$ torsion points $L T\left[\pi_{L}^{n}\right]$ defines, by passing to the limit with respect to n, a character $\chi_{L T}: G_{L} \rightarrow \operatorname{Aut}_{o_{L}}\left(\lim _{\measuredangle} L T\left[\pi_{L}^{n}\right]\right) \cong o_{L}^{\times}$. This character induces an isomorphism $\Gamma_{L}:=\operatorname{Gal}\left(L_{\infty} / L\right) \cong o_{L}^{\star}$, where L_{∞} is the extension obtained by adjoining to L the π_{L}-power torsion points. In the classical case one takes $\varphi_{\mathbb{Q}_{p}}=(1+T)^{p}-1$. This leads to the multiplicative formal group \mathbb{G}_{m} and the p-cyclotomic character $\chi_{c y c}: \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\zeta_{p \infty}\right) / \mathbb{Q}_{p}\right) \xrightarrow{\cong} \mathbb{Z}_{p}^{\times}$. In analogy to the classical theory of cyclotomic (φ, Γ)-modules of Fontaine the category of all continuous L-linear representations is equivalent to the category of étale Lubin-Tate $\left(\varphi_{L}, \Gamma_{L}\right)$-modules (cf. [KR09]).
We denote by $\mathcal{R}_{L}^{[r, 1)}$ the ring of formal Laurent series with coefficients in L converging on the half-open annulus $r \leq|T|<1$. Their union $\mathcal{R}_{L}=\bigcup_{r \in[0,1]} \mathcal{R}_{L}^{[r, 1)}$ is called the Robba ring. A crucial technique for analysing Galois representations is p-adic Hodge Theory, which uses various period rings to describe certain subcategories of representations. If one wishes to give a description purely in terms of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules a passage to the Robba ring is required since the series in \mathcal{R}_{L} admit a radius of convergence and can in a reasonable way be embedded into the classical period rings of p-adic Hodge Theory. One can show that the category of étale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over the Robba ring is equivalent to the category of so-called overconvergent étale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. A definition of overconvergence will be given in 1.82. For the purpose of this introduction we only need the following facts: In the cyclotomic case every Galois representation is overconvergent (cf. [Col98]) but in the
case $L \neq \mathbb{Q}_{p}$ this is no longer true and it is not obvious how to describe Galois representations whose (φ_{L}, Γ_{L})-modules are overconvergent in a non-tautological way. However, analyticity is a sufficient condition for overconvergence and we have in fact, by a theorem of Berger, an equivalence of categories between L-analytic representations and L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. A representation V is called L-analytic if for every embedding $\sigma: L \rightarrow \mathbb{C}_{p}$ that is different from the identity the semi-linear representation $\mathbb{C}_{p} \otimes_{\sigma, L} V$ is isomorphic to $\mathbb{C}_{p}^{\operatorname{dim}_{L} V}$. A $\left(\varphi_{L}, \Gamma_{L}\right)$-module M over \mathcal{R}_{L} is called L-analytic if the action of Γ_{L} on the LF-space underlying M is differentiable and the action of $\operatorname{Lie}\left(\Gamma_{\mathrm{L}}\right)$ is L-linear. This endows L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules with additional structure. One can show that the Γ_{L}-action extends to an action of the algebra of L-analytic distributions $D\left(\Gamma_{L}, L\right)$ on M, which contains $L\left[\Gamma_{L}\right]$ as a dense subring and is the natural analogue of the Iwasawa algebra in this analytic situation. The classical equivalence of categories allows for a nice description of the Galois cohomology of a representation V in terms of its (φ, Γ)-module $\mathbb{D}(V)$. Assume for simplicity $p \neq 2$ such that Γ is pro-cyclic and admits a topological generator γ. In this case the Galois cohomology can be computed by the Herr complex, which is given by the total complex

$$
C_{\varphi, \gamma}(\mathbb{D}(V)):=\operatorname{Tot}\left(\begin{array}{cc}
\mathbb{D}(V) \xrightarrow{\varphi-1} & \mathbb{D}(V) \\
\downarrow^{\gamma-1} & \\
\mathbb{D}(V) \xrightarrow{\varphi-1} & \downarrow^{-(\gamma-1)} \\
\mathbb{D}(V)
\end{array}\right) .
$$

In the case $L \neq \mathbb{Q}_{p}$ the group Γ_{L} is no longer pro-cyclic. Instead it contains an open subgroup $U \subset \Gamma_{L}$, which via the logarithm is isomorphic to the additive group $o_{L} \cong \mathbb{Z}_{p}^{\left[L: \mathbb{Q}_{p}\right]}$. However, thanks to the L-analytic structure on the modules, we can still describe the action of Γ_{L} using a single operator. A reasonable candidate is the action of $1 \in L \cong \operatorname{Lie}\left(\Gamma_{L}\right)$, which is commonly denoted by ∇. For an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module this leads to the complex

$$
C_{\varphi_{L}, \nabla}(M):=\operatorname{Tot}\left(\begin{array}{cc}
M \xrightarrow{\varphi_{L}-1} & M \\
\downarrow & \downarrow-\nabla \\
M \xrightarrow{\varphi_{L}-1} & M
\end{array}\right) .
$$

This cohomology has been studied by Fourquaux and Xie in FX12 and by Colmez in Col16]. In some sense this leads to a coarser invariant than desired as can be seen in degree zero, where the cohomology is the set of elements fixed by φ_{L} and some open subgroup of Γ_{L}. A finer invariant is the cohomology theory studied by Berger and Fourquaux using L-analytic cochains of the semigroup $\varphi_{L}^{\mathbb{N}} \times \Gamma_{L}$ in BF17. They show that this cohomology, which they only define in degree zero and one, agrees with $H^{0}\left(\Gamma_{L}, H_{\varphi_{L}, \nabla}^{i}(M)\right)$ for $i=0,1$. Using p-adic Fourier theory developed by Schneider and Teitelbaum we study a different candidate that allows us to describe for an open subgroup $U \subset \Gamma_{L}$ isomorphic to o_{L} the $\varphi_{L}^{\mathbb{N}} \times U$-cohomology using a single operator Z
that plays the role of $\gamma-1$ in the classical case. Let $K \subset \mathbb{C}_{p}$ be a complete subfield containing a period Ω_{L} of the Lubin-Tate group in the sense of [ST01]. We denote by $D(U, L)$ (resp. $D(U, K)$) the algebra of L-analytic L-valued (resp. K-valued) distributions on U. By the work of Schneider and Teitelbaum there exists a rigid L-analytic variety \mathfrak{X}_{U}, whose points parametrise the locally L-analytic characters on U, such that the global sections of its structure sheaf are given by $D(U, L)$ via the Fourier isomorphism. They further show that over K as above \mathfrak{X}_{U} is isomorphic to the open unit disc. This provides us with an isomorphism $D(U, K) \cong \mathcal{R}_{K}^{[0,1)}$ and we denote by Z the preimage of a coordinate T under this isomorphism. This allows us to define the complex

$$
C_{\varphi_{L}, Z}(M):=\text { Tot }\left(\begin{array}{cc}
M \xrightarrow{\varphi_{L}-1} & M \\
\downarrow & \\
\downarrow^{Z} & \downarrow^{-Z} \\
M \xrightarrow{\varphi_{L}-1} & M
\end{array}\right) .
$$

To see that this is conceptionally an analogue of the classical Herr complex recall that in the classical case (assume $p \neq 2$) the cyclotomic character induces $\Gamma_{\mathbb{Q}_{p}} \cong \mathbb{Z}_{p}^{\times}$ and the group $U^{(1)}$ of 1-units is isomorphic to \mathbb{Z}_{p}. For simplicity assume that the torsion subgroup of $\Gamma_{\mathbb{Q}_{p}}$ acts trivially on $\mathbb{D}(V)$. The Iwasawa algebra $\Lambda=\mathbb{Z}_{p} \llbracket U^{(1)} \rrbracket$ is isomorphic to $\mathbb{Z}_{p} \llbracket T \rrbracket$ via $\gamma-1 \mapsto T$ and therefore the vertical column in the Herr complex represents $\operatorname{RHom}_{\Lambda}\left(\mathbb{Z}_{p}, \mathbb{D}(V)\right)$. Similarly in our case $D(U, K)$ plays the role of the Iwasawa algebra and since

$$
0 \rightarrow D(U, K) \xrightarrow{Z} D(U, K) \rightarrow K \rightarrow 0
$$

is a projective resolution of K we conclude that the vertical column represents $\mathbf{R H o m}_{D(U, K)}(K, M)$. This a priori algebraic invariant turns out to be of analytic nature. For the purpose of motivation we mention Kohlhaase's article Koh11] but warn the reader that his theory is not directly applicable in our case because K is not assumed to be spherically complete. Kohlhaase defines a version of analytic cohomology and shows that these groups agree with the groups $\operatorname{Ext}_{D(U, K)}^{i}(K, M)$. With this in mind, up to signs, $C_{\varphi_{L}, Z}(M)$ can be written as the cone of $\varphi_{L}-1$ acting on a complex that computes the analytic cohomology of U with coefficients in M, reinforcing that it is indeed an analytic analogue of the Herr complex. In 3.35 we show that $H^{0}\left(\Gamma_{L}, H_{\varphi_{L}, Z}^{1}(M)\right)$ is isomorphic to the group of analytic extensions $\operatorname{Ext}_{a n}^{1}\left(\mathcal{R}_{K}, M\right)$ and hence also isomorphic to the version considered by Berger and Fourquaux in degree one (and obviously in degree zero).
It is technically helpful to allow for more flexibility in terms of coefficients and to not restrict oneself to working only over fields. In this thesis we consider what one could call rigid-analytic families of L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. For an affinoid A in the sense of Tate we define these ad-hoc as $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over the relative Robba ring $\mathcal{R}_{A}:=\mathcal{R}_{L} \hat{\otimes}_{L} A$ whose underlying topological vector space has an L-analytic action of Γ_{L}. One can think of them as families of L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules parametrised by the rigid analytic space $\operatorname{Sp}(A)$. In the classical case Berger and

Colmez construct a functor that assigns to an A-valued representation such a (φ, Γ) module (cf. BC08, Théorème A]). Their formalism relies on the Colmez-Sen-Tate method, which implies the overconvergence of all p-adic Galois representations as a corollary. For that abstract reason it cannot be generalised without difficulties to the Lubin-Tate case since there exist representations that are not overconvergent. We do not provide an analogous functor and instead work with the above ad-hoc description of families of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. Even when considering the case $A=K$ the study of families plays a crucial role for understanding another important complex namely

$$
C_{\Psi}(M): M \xrightarrow{\Psi-1} M,
$$

whose cohomology we denote by $H_{I w}^{i}(M)$. Here Ψ denotes the left-inverse operator of φ_{L} (see 1.64 for a precise definition). Informally speaking this complex (concentrated in degrees $[1,2]$) computes the Iwasawa cohomology in the étale case in both the cyclotomic situation (cf. [CC99, Proposition II.3.1, Remarque II.3.2]) and the LubinTate case by [SV15, Theorem 5.13] ${ }^{1}$

Summary of the main results

The starting point is the study of the Γ_{L}-action on $M^{\Psi=0}$. By transport of structure via the isomorphism $\mathcal{R}_{K}^{+} \cong D(U, K)$ we can define the group Robba ring $\mathcal{R}_{K}(U)$ (and similarly $\mathcal{R}_{K}\left(\Gamma_{L}\right)$). We denote by $\eta(1, T)$ the power series corresponding to $1 \in o_{L} \cong U$ under this isomorphism. Comparing the action of Z and the action of T allows us to show the following theorem:

Theorem 1 (Theorem 2.19). Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} admitting a mode ${ }^{2}$ over $\left[r_{0}, 1\right)$, then there exists $r_{1} \geq r_{0}$ such that for any $r \geq r_{1}$ the Γ_{L}-action on $\left(M^{[r, 1)}\right)^{\psi=0}$ extends to an action of $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{L}\right)$ with respect to which $\left(M^{[r, 1)}\right)^{\psi=0}$ is finite projective of rank $\operatorname{rank}_{\mathcal{R}_{A}}(M)$. If m_{1}, \ldots, m_{d} generate $M^{[r, 1)}$ then the elements $\eta(1, T) \varphi_{L}\left(m_{1}\right), \ldots, \eta(1, T) \varphi_{L}\left(m_{d}\right)$ generate $\left(M^{[r, 1)}\right)^{\psi=0}$ as a $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{L}\right)-$ module.

In the cyclotomic case this is [KPX14, Theorem 3.1.1] and this theorem was proven by Schneider and Venjakob in [SV20] for free modules over \mathcal{R}_{K}. This result shows that the variable Z has properties analogous to the operator $\gamma-1$ studied in the classical case. As an immediate corollary we obtain a comparison isomorphism between the (Ψ, Z) and $\left(\varphi_{L}, Z\right)$-cohomology.

[^0]Corollary. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. The morphism of complexes

is a quasi-isomorphism.
Next we study finiteness and base change properties of $C_{\varphi_{L}, Z}(M)$. Here we deviate from the approach of [KPX14], who deduce finiteness as a consequence of finiteness of Iwasawa cohomology and instead opt for an approach using methods of [KL16]. The finiteness of $\left(\varphi_{L}, Z\right)$-cohomology can be deduced systematically from the general finiteness statements in |KL16|. We denote by $\mathbf{D}_{\text {perf }}^{[0,2]}(A)$ the full subcategory of the derived category consisting of complexes, which are quasi-isomorphic to a complex of finitely generated projective modules concentrated in degrees $[0,2]$.

Theorem 2 (Theorem 3.22). Let A, B be K-affinoid and let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Let $f: A \rightarrow B$ be a morphism of K-affinoid algebras. Then:
(1) $C_{\varphi_{L}, Z}(M) \in \mathbf{D}_{p e r f}^{[0,2]}(A)$.
(2) The natural morphism $C_{\varphi_{L}, Z}(M) \otimes_{A}^{\mathbb{L}} B \rightarrow C_{\varphi_{L}, Z}\left(M \hat{\otimes}_{A} B\right)$ is a quasi-isomorphism.

In particular the cohomology groups $H_{\varphi_{L}, Z}^{i}(M)$ are finite A-modules for every i.
While the preceding results are proven over the relative Robba ring \mathcal{R}_{A} we restrict our considerations to the case $A=K$ when studying Iwasawa cohomology since already in this case we run into a series of subtleties.
However even when restricting A to a point the study of Iwasawa cohomology leads us to studying a non-trivial family of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules, which we call the Lubin-Tate deformation of M. Roughly speaking one would like to take the completed tensor product $D\left(\Gamma_{L}, K\right) \hat{\otimes}_{K} M$ and as such define a family of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules parametrised by the rigid analytic space $\mathfrak{X}_{\Gamma_{L}}$. For K^{\prime} / K finite, the K^{\prime} points of $\mathfrak{X}_{\Gamma_{L}}$ are in bijection with L-analytic K^{\prime} valued characters on Γ_{L} and hence the Lubin-Tate deformation of M parametrises all twists of M by L-analytic characters. Some care is required because $D\left(\Gamma_{L}, K\right)$ is no longer affinoid. In order to work within the framework of families as above we have to work over an affinoid cover leading us to a derived limit of the corresponding Herr complexes. In more precise terms we can write $D(U, K)$ as a projective limit of affinoid algebras D_{n} and the deformation (on the level of U) is defined as a "sheaf" $\left(\operatorname{Dfm}_{n}(M)\right)_{n \in \mathbb{N}}$, where each term is given as $\operatorname{Dfm}_{n}(M)=D_{n} \hat{\otimes}_{K} M$ and $\gamma \in U$ acts as $\delta_{\gamma^{-1}} \otimes \gamma$. The analytic cohomology of this deformation can be related to the Iwasawa cohomology of M via the following theorem.

Theorem 3 (cf. Theorem 4.24). Suppose $C_{\Psi}(M)$ has coadmissible cohomology groups. Then there is a canonica $\|^{3}$ isomorphism in the derived category $\mathbf{D}(D(U, K))$

$$
\operatorname{Rlim} C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right) \simeq C_{\Psi}(M)
$$

and, in particular, we have isomorphisms

$$
{\underset{n}{l}}_{\lim _{n}} H_{\Psi, Z}^{i}\left(\mathbf{D f m}_{n}(M)\right) \cong H_{I w}^{i}(M) .
$$

This makes it clear that the coadmissibility of the Iwasawa cohomology of M is a desirable property and we show that a sufficient condition is that $M^{\Psi=1}$ is finitely generated as a $D(U, K)$-module. We proceed to prove that this condition is satisfied by modules of rank one, which are of the form $\mathcal{R}_{K}(\delta)$ for a locally L-analytic character $\delta: L^{\times} \rightarrow K^{\times}$. By a dévissage argument this carries over to trianguline modules, i.e., successive extensions of such $\mathcal{R}_{K}(\delta)$. This leads us to the following theorem.

Theorem 4. (Theorem 5.8) Let M be a trianguline L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K}. Then $C_{c \Psi}(M)$ is a perfect complex of $D\left(\Gamma_{L}, K\right)$-modules for any constant $c \in$ K^{\times}.

From the work of Schneider and Venjakob one obtains that the Iwasawa cohomology $H_{I w}^{i}\left(\Gamma_{L}, V\right)$ of an o_{L}-linear representation V of G_{L} is computed by the complex

$$
\mathbb{D}(V(\tau)) \xrightarrow{\psi_{L T}-1} \mathbb{D}(V(\tau)),
$$

with some character τ. Applying this to $V\left(\tau^{-1}\right)$ instead of V we obtain, in particular, that $\mathbb{D}(V)^{\psi_{L T}=1}$ is a finite $\Lambda=o_{L} \llbracket \Gamma_{L} \rrbracket$-module. If one assumes further that V is L analytic, one can show that $\mathbb{D}(V)^{\psi_{L T}=1}$ is contained in the overconvergent submodule $\mathbb{D}^{\dagger}(V)$ providing us with a natural map

$$
D\left(\Gamma_{L}, K\right) \otimes_{\Lambda} \mathbb{D}^{\dagger}(V)^{\psi_{L T}=1} \rightarrow M^{\psi_{L T}=1}
$$

where M denotes the completed base change to K of the (φ_{L}, Γ_{L})-module over \mathcal{R}_{L} attached to V. We conjecture that this map is an isomorphism. For our purpose the following weak form is sufficient.

Conjecture. (Conjecture 6.3) The natural map

$$
D\left(\Gamma_{L}, K\right) \otimes_{\Lambda} \mathbb{D}^{\dagger}(V)^{\psi_{L T}=1} \rightarrow M^{\psi_{L T}=1}
$$

is surjective.
In the final chapter we explain how the étale results of Schneider and Venjakob can be implemented to show general perfectness statements for those modules that arise as a base change of some M_{0} over \mathcal{R}_{L} under the assumption of this conjecture.

[^1]The restriction to modules coming from \mathcal{R}_{L} is rooted in the methodology of the proof. The idea is that the statement is true for a certain class of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules, namely the étale modules studied by Schneider and Venjakob in SV15. An induction over Harder-Narasimhan slopes of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules "propagates" the theorem to all L analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over \mathcal{R}_{L}. By introducing the large extension K / L we leave the setting of Kedlayas slope filtrations due to no longer working with Bézout rings and our proofs make heavy use of the structure of $D(U, K)$ as a power series ring. For that reason we are uncertain whether the results can be descended to M_{0} (as a $D\left(\Gamma_{L}, L\right)$-module) and whether they hold for any M (not necessarily arising as a base change from \mathcal{R}_{L} or say \mathcal{R}_{F} for some finite extension F / L).

Theorem 5 (Theorem 6.11). Assume Conjecture 6.3. Let M_{0} be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{L} and let $M:=K \hat{\otimes}_{L} M_{0}$. Then the complex $C_{\Psi}(M)$ of $D\left(\Gamma_{L}, K\right)$-modules is perfect.

We go on to discuss the Euler-Poincaré characteristic formula for $C_{\Psi, Z}(M)$. We prove that the expected Euler-Poincaré characteristic formula

$$
\sum_{i \in \mathbb{N}_{0}}(-1)^{i} \operatorname{dim}_{K} H_{\Psi, Z}^{i}(M)=-\left[\Gamma_{L}: U\right] \operatorname{rank}_{\mathcal{R}_{L}}(M)
$$

holds in the trianguline case (see Remark 6.16). We also show that the formula in the general case would follow from $\mathcal{C}(M)=\left(1-\varphi_{L}\right) M^{\Psi=1}$ being projective over $D(U, K)$ of rank $\left[\Gamma_{L}: U\right] \operatorname{rank}_{\mathcal{R}_{K}}(M)$.
The main inspiration for our work is KPX14. In fact the complex considered by us specialises to theirs in the cyclotomic case since one can take $Z=\gamma-1$. However KPX14 work in a situation where Tate-Duality, the Euler-Poincaré formula and slope theory are known for the base case $A=K=\mathbb{Q}_{p}$ and can be applied point-wise. The main difference is the fact that we need to adjoin Ω_{L} leading to a transcendental extension K / L (which introduces functional analytic subtleties in its own right) in order to truly compare $\mathcal{R}_{K}^{[r, 1)}$ and $D(U, K)$. While our theorems 2.19 and 3.22 are generalisations of their analogues in (KPX14, we make more restrictive assumptions in 6.11 and 4.24 . Of course, one can extend coefficients even further by base changing to a spherical completion. We opt to work within \mathbb{C}_{p} due to the advantage that arithmetic information can be recovered if we start with a $\left(\varphi_{L}, \Gamma_{L}\right)$-module coming from \mathcal{R}_{L} by taking G_{L}-invariants with respect to the coefficient-wise action.

Applications

An application of the theory developed in [KPX14] is the study of global triangulation (cf. Section 6 in loc.cit.). Our theorem 3.22 shows that analytic cohomology is well-behaved with respect to affinoid covers, which can be used to study families parametrised by more general rigid analytic spaces. It is likely that one can explore similar avenues but an obstruction are the Euler-Poincaré characteristic formula and Tate-Duality, whose analogues are yet to be established in the L-analytic case.

A topic of great importance in global Iwasawa theory is the study of p-adic L functions. Locally this leads to a study of local ε-constants or in more general terms local ε-isomorphism conjectures (cf. LVZ15]). The most refined application of our results so far consists of an ongoing project (joint with Malčić, Venjakob and Witzelsperger) on ε-isomorphisms for L-analytic (φ_{L}, Γ_{L})-modules of rank one. In order to explain, how our results fit into the picture, we give a rough outline of the key ideas. In Nak17] Nakamura formulates a generalised local ε-conjecture for (φ, Γ)-modules and proves it in the rank one case. To each (φ, Γ)-module M he attaches a trivialisation of a certain (graded) line bundle, its fundamental line, which is essentially given as the determinant of the Herr complex. The ε-conjecture states that there is a unique such assignment satisfying certain compatibility properties (cf. Nak17, Conjecture 3.8]).
The results of KPX14 are a crucial technical input to define the fundamental line since the determinant of a complex only makes sense if the complex is perfect. Furthermore the perfectness of Iwasawa cohomology and its comparison to the cyclotomic deformation are crucial for the definition of ε-isomorphisms used by Nakamura in his proof in the rank one case. These results allow him to reinterpret the twist by a character, which factors over Γ as a base change to a quotient of the deformation, thereby reducing the problem to (φ, Γ)-modules $\mathcal{R}(\delta)$ such that the character δ is trivial on \mathbb{Z}_{p}^{\times}. Our results lay the foundations in the L-analytic case and allow us to define a fundamental line using analytic cohomology hence forming the cornerstone for a local ε-conjecture in this case.

Chapter 1

Preliminaries

1.1 Some functional analysis.

Functional analysis over non-archimedean fields is for the most part very similar to the classical theory over $\mathbb{K}=\mathbb{C}, \mathbb{R}$ but differs in some key points when the base field is not spherically complete. A simple way to enforce spherical completeness is to assume that the value group is discrete. We will be working with LF and Fréchet spaces over a complete subfield $K \subseteq \mathbb{C}_{p}$ with dense value group, which is why we cannot assume K to be spherically complete. For the moment let K be a field of characteristic zero that is complete with respect to a non-trivial ultra-metric absolute value $|\cdot|: K \rightarrow \mathbb{R}_{\geq 0}$. Recall that a topological K-vector space is called locally convex if its topology can be defined by a family of semi-norms. For two locally convex spaces E_{1}, E_{2} we denote by $\mathcal{L}_{b}\left(E_{1}, E_{2}\right)$ the space of continuous linear maps with the strong topology.

Definition 1.1. A locally convex space E is called of countable type if for every continuous semi-norm on E the assosicated normed space $E / \operatorname{ker}(p)$ contains a countable set whose K-span is dense.

We warn the reader that this does not imply that E itself contains a countablydimensional dense subspace (such spaces are called strictly of countable type) unless E is metrizable. The following lemma is useful for checking whether a given space is of countable type.

Lemma 1.2. Subspaces, continuous linear images, products, projective limits, countable locally convex direct sums and inductive limits of spaces of countable type are of countable type.

Proof. See [PGS10, Theorem 4.2.13].
We denote by E^{\prime} the space of continuous linear forms on E. We have the following version of the Hahn-Banach theorem.

Theorem 1.3 (Hahn-Banach). Let E be a locally convex space of countable type and $D \subset E$ a subspace.

1. Then any $f \in D^{\prime}$ can be extended to $\bar{f} \in E^{\prime}$.
2. If E is normed then for every $\varepsilon>0$ and every $f \in D^{\prime}$ there exists an extension of f to an element $\bar{f} \in E^{\prime}$ such that

$$
\|\bar{f}\| \leq(1+\varepsilon)\|f\| .
$$

Proof. See [PGS10, Theorem 4.2.4] and its corollaries.
Example 1.4. Let $n \in \mathbb{N}$. The n-dimensional Tate algebra $K\left\langle X_{1}, \ldots X_{n}\right\rangle$ is of countable type.

Proof. The polynomial algebra $K\left[X_{1}, \ldots, X_{n}\right]$ is a countably-dimensional dense subspace.

Definition 1.5. A K-Banach algebra R is a unital K-algebra endowed with a norm making it a K-Banach space space such that $\|x y\| \leq\|x\|\|y\|$ for all $x, y \in R$. We always assume $\left\|1_{R}\right\|=1$ (whenever $R \neq 0$).

Proposition 1.6. Let R be a Noetherian K-Banach algebra.

1. Every finitely generated A-module M has a unique K-Banach space structure making it an A-Banach module. The norm on M is equivalent to the one obtained by taking the quotient norm of any surjection $R^{n} \rightarrow M$.
2. Any morphism between finitely generated A-modules is continuous and strict with respect to this topology.

Proof. See [BGR84, Section 3/3.7.3].
When M is a module over a Noetherian Banach algebra we implicitly endow it with its canonical topology from Proposition 1.6.

Definition 1.7. A homomorphism of topological groups $f: G \rightarrow H$ is called strict, if the induced map $G / \operatorname{ker} f \rightarrow \operatorname{Im} f$ is a topological isomorphism with respect to the quotient topology on the left and the subspace topology on the right.

Lemma 1.8. Let G, H be metrizable topological groups with completions \hat{G} (resp. $\hat{H})$ and let $f: G \rightarrow H$ be strict. Then

$$
\hat{f}: \hat{G} \rightarrow \hat{H}
$$

is strict with kernel $\widehat{\operatorname{ker}(f)}=\overline{\operatorname{ker}(f)}$ and image $\widehat{\operatorname{Im} f}=\overline{\operatorname{Im} f}$.
Proof. See [Bou66, Chapter IX §3.1 Corollary 2 p.164].

Lemma 1.9. Let G, H be Hausdorff abelian topological groups and $f: G \rightarrow H$ continuous such that f is strict on a dense subgroup $D \subset G$. Then f is strict.

Proof. Since H is assumed to be Hausdorff $V / \operatorname{ker} f$ and $\operatorname{Im} f$ are Hausdorff and we can without loss of generality assume that f is a continuous bijection that is strict when restricted to a dense subgroup and are left to show that its inverse is continuous. The abelian assumption asserts that G, H admit (Hausdorff) completions \widehat{G}, \widehat{H} (cf. Bou66, III §3.5 Theorem 2]) and since $f: D \rightarrow f(D)$ is a topological isomorphism, the induced map $\widehat{f_{\mid D}}: \widehat{D} \rightarrow \widehat{f(D)}$ is a topological isomorphism. Since D (resp. $f(D)$) is dense in G (resp. H) we conclude that the corresponding completions agree with \widehat{G} (resp. \widehat{H}). The restriction of the inverse ${\widehat{f_{\mid D}}}^{-1}$ to H agrees with f^{-1} by construction and is continuous.

The following criterion will play a crucial role for checking strictness and the Hausdorff property of certain cohomology groups of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. The second part of 1.10 is essentially an adaptation of [Sch02, Lemma 22.2] (which only treats Fredholm operators on Fréchet spaces) (see also [Tho19, Proposition 4.1.39]).

Lemma 1.10. 1. Any continuous linear surjection $V \rightarrow W$ between LF-spaces over K is open and in particular strict.
2. Any continuous linear map $f: V \rightarrow W$ between Hausdorff LF-spaces with finite dimensional cokernel is strict. In addition the cokernel is Hausdorff.

Proof. 1.) See [Sch02, Proposition 8.8]. 2.) Let $X \subset W$ be a finite dimensional subspace such that (algebraically) $W=\operatorname{im}(f) \oplus X$. Since W is Hausdorff, the subspace X carries its natural norm-topology. By assumption $V / \operatorname{ker} f$ is Hausdorff and thus by A.1 $V / \operatorname{ker} f$ is itself an LF-space and we have a continuous bijection

$$
h: V / \operatorname{ker} f \oplus X \rightarrow W
$$

of LF-spaces, which by the open mapping theorem is a homeomorphism. By construction $f: V / \operatorname{ker} f \rightarrow W$ factors via $V / \operatorname{ker} f \rightarrow V / \operatorname{ker} f \oplus X \rightarrow W$ and is thus a homeomorphism onto its image. Furthermore $\operatorname{im}(f)=\operatorname{ker}\left(p_{2} \circ h^{-1}: W \rightarrow X\right)$ is the kernel of a continuous map into a Hausdorff space and thus closed, which implies that the cokernel is Hausdorff.

Lemma 1.11. Let $V^{\prime}, V, V^{\prime \prime}$ be K-Fréchet spaces that fit into a strict exact sequenc $\rrbracket^{耳}$

$$
0 \rightarrow V^{\prime} \rightarrow V \rightarrow V^{\prime \prime} \rightarrow 0
$$

Let F be a K-Banach space of countable type over K, then the induced sequence

$$
0 \rightarrow F \hat{\otimes}_{K} V^{\prime} \rightarrow F \hat{\otimes}_{K} V \rightarrow F \hat{\otimes}_{K} V^{\prime \prime} \rightarrow 0
$$

is strict exact.

[^2]Proof. By PGS10, Corollary 2.3.9] any infinite dimensional Banach space of countable type is isomorphic to the space of zero sequences $c_{0}(K)$ and observe that $c_{0}(K)$ can be identified with the completion of $\oplus_{n \in \mathbb{N}} K$ inside $\prod_{n \in \mathbb{N}} K$. Without loss of generality assume F is infinite dimensional and take the isomorphism $F \cong c_{o}(K)$ as an identification. Similarily $c_{0}(K) \hat{\otimes} V$ is functorially isomorphic to the completion of $\oplus_{n \in \mathbb{N}} V$ inside of $\prod_{n \in \mathbb{N}} V$. Here a map $f: V \rightarrow W$ induces the map $\left(v_{n}\right)_{n} \mapsto\left(f\left(v_{n}\right)\right)_{n}$ and it is clear that strictness is preserved. Furthermore $\prod_{n \in \mathbb{N}} V$ and hence also the subspace $\oplus_{n \in \mathbb{N}} V$ is metrizable. Passing to completions and applying 1.8 gives the desired result.

Lemma 1.11 applies in particular when F / K is a complete normed field (or more generally a K-Banach algebra) of countable type over K. Since \mathbb{Q}_{p} has only finitely many extensions of a given degree we can conclude that $\overline{\mathbb{Q}_{p}} \subset \mathbb{C}_{p}$ is a countablydimensional dense subspace and in particular \mathbb{C}_{p} is of countable type over \mathbb{Q}_{p}. Slightly more subtle is the fact that any complete subfield $K \subset \mathbb{C}_{p}$ is of countable type over \mathbb{Q}_{p}. This follows from IZ95, Theorem 1], which asserts that $\overline{\mathbb{Q}_{p}} \cap K$ is dense in K (or by applying PGS10, Corollary 2.3.14]).

1.2 Robba rings and their $\left(\varphi_{L}, \Gamma_{L}\right)$-actions.

Let $\varphi_{L}(X) \in o_{L} \llbracket X \rrbracket$ be a Frobenius power series for the uniformiser $\pi_{L} \in o_{L}$, i.e., a series satisfying

$$
\varphi_{L}(X)=\pi_{L} X+\text { terms of higher order }
$$

and

$$
\varphi_{L}(X) \equiv X^{q} \quad \bmod \pi_{L}
$$

There is a unique Lubin-Tate group law $F_{L T}(X, Y)$ and a unique injective homomorphism of rings

$$
o_{L} \rightarrow \operatorname{End}(L T),
$$

mapping $a \in o_{L}$ to a power series $[a](X)$ such that $\left[\pi_{L}\right](X)=\varphi_{L}(X)$. Denote by L_{n} the extension of L that arises by adjoining all π_{L}^{n}-torsion points of the $L T$-group. The set $L T\left[\pi_{L}^{n}\right]$ of π_{L}^{n}-torsion points carries a natural o_{L}-module structure which respect to which it is a free $o_{L} / \pi_{L}^{n} o_{L}$-module of rank 1 . One can show that L_{n} is a finite Galois extension of L with Galois group isomorphic to $\operatorname{End}\left(L T\left[\pi_{L}^{n}\right]\right) \cong\left(o_{L} / \pi_{L}^{n} O_{L}\right)^{\times}$ and by passing to the limit one obtains a continuous character

$$
\chi_{L T}: G_{L} \rightarrow o_{L}^{\times}
$$

inducing for $L_{\infty}=\bigcup_{n \geq 1} L_{n}$ an isomorphism

$$
\Gamma_{L}:=\operatorname{Gal}\left(L_{\infty} / L\right) \rightarrow o_{L}^{\times} .
$$

We endow $o_{L} \llbracket X \rrbracket$ with an action of Γ_{L} via $\gamma(f(X))=f\left(\left[\chi_{L T}(\gamma)\right](X)\right)$ and similarly for φ_{L}. These actions can be extended to the p-adic completion \mathbf{A}_{L} of the ring of formal Laurent series $o_{L}((X))$. Note that these actions are continuous for the weak
topology, for which a fundamental system of open neighbourhoods of zero is given by

$$
U_{m, n}:=\pi_{L}^{m} \mathbf{A}_{L}+X^{n} o_{L} \llbracket X \rrbracket
$$

with $m, n \in \mathbb{N}$. We frequently deal with power series or Laurent series converging on some annulus $[r, s]$ with respect to the absolute value $|\cdot|$. To avoid confusion we usually express the radii in terms of $\left|\pi_{L}\right|$.
Definition 1.12. Let $K \subset \mathbb{C}_{p}$ be a complete field. We denote by $\mathcal{R}_{K}^{[r, s]}$ the ring of Laurent series (resp. power series if $r=0$) with coefficients in K that converge on the annulus $r \leq|x| \leq s$ for $r, s \in p^{\mathbb{Q}}$ and $x \in \mathbb{C}_{p}$. It is a Banach algebra with respect to the norm $|\cdot|_{[r, s]}:=\max \left(|\cdot|_{r},|\cdot|_{s}\right)$. We further define the Fréchet algebra $\mathcal{R}_{K}^{r}:=\mathcal{R}_{K}^{[r, 1)}:=\lim _{r<s<1} \mathcal{R}_{K}^{[r, s]}$ and finally the Robba ring $\mathcal{R}_{K}:={\underset{\longrightarrow}{\lim }}_{0 \leq r<1} \mathcal{R}_{K}^{[r, 1)}$ endowed with the LF topology.
We obtain similar continuous actions of Γ_{L} on \mathcal{R}_{L}^{I} for any interval $I=[r, s] \subset[0,1]$. For details concerning the φ_{L}-action we refer to [BSX20, Section 2.2]. To ensure that the action of φ_{L} on \mathcal{R}_{L}^{I} is well-defined one has to assume that the lower boundary r of I is either 0 or $r>|u|^{q}=: r_{L}$ for a non-trivial π_{L}-torsion point u of the Lubin-Tate group ${ }^{2}$. When φ_{L} acts on \mathcal{R}_{L}^{I} it changes the radius of convergence and we obtain a morphism

$$
\varphi_{L}: \mathcal{R}_{L}^{I} \rightarrow \mathcal{R}_{L}^{I^{1 / q}}
$$

We implicitly assume that r, s lie in $\left|\overline{\mathbb{Q}_{p}}\right|$, because in this case the algebra \mathcal{R}_{L}^{I} is affinoid (cf. [Lüt16, Example 1.3.2]) and this assumption is no restriction when considering the Robba ring due to cofinality considerations. We henceforth endow the rings $\mathcal{R}_{L}^{[r, 1)}$ (for $r=0$ or $r>r_{L}$) and \mathcal{R}_{L} with the (φ_{L}, Γ_{L})-actions induced by the actions on \mathcal{R}_{L}^{I}. We also work with relative versions of these rings either defined over some affinoid A over L or more generally some complete field extension K / L contained in \mathbb{C}_{p}. Before we describe these relative Robba rings we shall discuss some generalities concerning completed tensor products of Fréchet- and LF-spaces.

Definition 1.13. Let X, Y be (semi-)normed modules over a normed ring S. On $X \otimes_{S} Y$ we define the tensor product (semi-)norm

$$
|v|:=\inf _{r} \max \left|x_{i}\right|\left|y_{i}\right|,
$$

where r ranges over all representations of v as a sum of elementary tensors $v=$ $\sum_{i} x_{i} \otimes y_{i}$.
Definition 1.14. The projective completed tensor product of normed S-modules is defined as the completion of the usual tensor product with respect to the tensor product norm. If the topologies on X and Y are defined by a family of semi-norms, we can extend this notion in the obvious way. We write

$$
X \hat{\otimes}_{S} Y:=X \hat{\otimes}_{S, \pi} Y
$$

for the projective completed tensor product.

[^3]Remark 1.15. Let $X=\lim _{n \in \mathbb{N}} X_{n}$ be a Fréchet space over K with Banach spaces X_{n} and let W be a normed K-vector space. Assume that the transition maps $X_{n+1} \rightarrow X_{n}$ have topologically dense image. Then the canonical map

$$
X \hat{\otimes}_{K} W \rightarrow \underset{{ }_{n}}{\lim _{n}} X_{n} \hat{\otimes}_{K} W
$$

is a topological isomorphism.
Proof. This is a special case of Lemma 2.1.4 in BSX20. Note that all involved spaces are Hausdorff because they are metrizable.

Definition 1.16. Let V, W be locally convex K-vector spaces. The inductive tensor product topology is defined as the finest topology such that the bilinear map

$$
V \times W \rightarrow V \otimes_{K} W
$$

is separately continuous. We denote the completion of the usual tensor product with respect to that topology by $V \hat{\otimes}_{K, i} W$.

Remark 1.17. The inductive and projective tensor products agree for Fréchet spaces. The inductive tensor product and its completed version commute with countable strict locally convex inductive limits of Fréchet spaces.

Proof. For the first statement see Sch02, Proposition 17.6]. By Eme17, 1.1.30] the inductive tensor product commutes with locally convex inductive limits. Let $V={\underset{\longrightarrow}{l}}_{\lim } V_{n}$ and $W={\underset{\longrightarrow}{l}}_{n} W_{n}$ be strict LF-spaces with Fréchet spaces V_{n} (resp. $\left.W_{n}\right)$. We already know that $V \hat{\otimes}_{K, i} W$ is the completion of $\lim _{\rightarrow}\left(V_{n} \otimes_{K, i} W_{n}\right)$. In the proof of BSX20, 2.1.7] it is shown that for an inductive system $\left(E_{n}\right)_{n}$ of locally convex vector spaces such that $\lim _{n \in \mathbb{N}} \widehat{E_{n}}$ is Hausdorff and complete the natural map

$$
\underset{n}{\lim } \widehat{E_{n}} \rightarrow \underset{n}{\widehat{\lim _{n} E_{n}}}
$$

is an isomorphism. By PGS10, Theorem 11.2.4 and Theorem 11.2.5] we may apply this result to $E_{n}=V_{n} \otimes_{K} W_{n}$, which yields the desired result.

Remark 1.18. Let $D \subset V$ (resp. $E \subset W$) be dense subsets of locally convex spaces V, W. Then $D \otimes_{K} V$ is dense in $E \otimes_{K} W$ and $E \hat{\otimes}_{K} W$.
Proof. PGS10, Corollary 10.2.10] shows that the natural map $D \otimes_{K} E \rightarrow V \otimes_{K} W$ is a topological embedding. Applying Corollary 10.2.10(v) in loc.cit. to each seminorm defining the topology on $V \otimes_{K} W$ shows that $D \otimes_{K} E$ is dense in the $V \otimes_{K} W$. Because $V \otimes_{K} W \rightarrow V \widehat{\otimes}_{K} W$ is a topological embedding with dense image the statement follows.

Definition 1.19. An affinoid algebra A over a non-archimedean complete field F is an algebra that is isomorphic to

$$
T^{n} / I
$$

where T^{n} denotes the n-dimensional Tate-Algebra $F\left\langle X_{1}, \ldots, X_{n}\right\rangle$ and $I \subset T^{n}$ is an ideal. We always endow A with the residue norm obtained from the Gauß-norm on T_{n}. By [Bos14, 3.1 Proposition 20] any two residue norms are equivalent and any ideal in T^{n} is closed (cf. [Bos14, Section 2.3]).

Definition 1.20. Let $F \subset K$ be a complete subfield and A be an affinoid algebra over F. We define the relative Robba rings $\mathcal{R}_{A}^{[r, s]}:=\mathcal{R}_{K}^{[r, s]} \hat{\otimes}_{F} A$ and similarly $\mathcal{R}_{A}^{[r, 1)}$ and $\mathcal{R}_{A}:=\underline{\lim }_{0 \leq r<1} \mathcal{R}_{A}^{[r, 1)}$. These rings are naturally equipped with topolgies induced by the tensor product norm on $\mathcal{R}_{A}^{[r, s]}$.

Definition 1.21. A linear map $T: E \rightarrow F$ between locally convex K-vector spaces is called compactoid if there exists a zero neighbourhood $U \subset E$ such that $T(U)$ is compactoid in W meaning that for every zero neighbourhood $V \subset F$ there exists a finite set e_{1}, \ldots, e_{n} such that

$$
T(U) \subset V+\sum_{i=1}^{n} o_{K} e_{i} .
$$

The following is a technical subtlety and does not follow from 1.17 because (nonstrict) LF-spaces are not automatically complete.

Lemma 1.22. Let $E=\lim _{\underline{\longrightarrow}} E_{n}$ be an LB-space with L-Banach spaces E_{n} and compactoid steps. Let W be an L-Banach space then the natural map

$$
\underset{n}{\lim }\left(E_{n} \hat{\otimes}_{L, \pi} W\right) \rightarrow E \hat{\otimes}_{L, \pi} W
$$

is an isomorphism. In particular

$$
E \hat{\otimes}_{L, \pi} W=E \hat{\otimes}_{L, i} W .
$$

Proof. By [PGS10, 11.3.5] E is complete reflexive and its strong dual $E^{\prime}:=E_{b}^{\prime}$ is Fréchet. Furthermore as an inductive limit of bornological spaces E is bornological by [Sch02, Example 2) after 6.13]. By [Sch02, 18.8] together with reflexivity we have

$$
E \hat{\otimes}_{K, \pi} W=E^{\prime \prime} \hat{\otimes}_{K, \pi} W=\mathcal{L}_{b}\left(E^{\prime}, W\right) .
$$

Furthermore by ST02, Proposition 1.5]

$$
\underset{n}{\lim } E_{n} \hat{\otimes}_{K, \pi} W=\mathcal{L}_{b}\left(E^{\prime}, W\right) .
$$

Combining the above and unwinding the definitions of the involved maps yields the desired claim.

Remark 1.23. The relative Robba ring \mathcal{R}_{A} is complete. In particular $\mathcal{R}_{A}=A \hat{\otimes}_{L, i} \mathcal{R}_{L}$. Furthermore $\mathcal{R}_{A}=A \hat{\otimes}_{L, \pi} \mathcal{R}_{L}$.
Proof. Recall from the proof of [BSX20, 2.1.6] that \mathcal{R}_{L} admits a decomposition of the form $\mathcal{R}_{L}=\mathcal{R}_{L}^{+} \oplus E$ with an $L B$-space $E=\lim _{n} E_{n}$ with compactoid steps. For such spaces it is known that their inductive limit is complete by [PGS10, 11.3.5]. We obtain a corresponding decomposition $\mathcal{R}_{A}=\mathcal{R}_{A}^{+} \oplus{\underset{\longrightarrow}{\longrightarrow}}_{n} A \hat{\otimes}_{L, i} E_{n}$ with $\mathcal{R}_{A}^{+}=A \hat{\otimes}_{L, i} \mathcal{R}_{L}^{+}$ and hence $\mathcal{R}_{A}^{+}=A \hat{\otimes}_{L, \pi} \mathcal{R}_{L}^{+}$by 1.17 . The other summand is treated by the preceding Lemma 1.22 .

Lemma 1.24. Let $F \subset K$ be a complete subfield and A be an affinoid Algebra over F. Then the natural map induces isomorphisms

$$
\mathcal{R}_{K}^{I} \hat{\otimes}_{F} A \cong \mathcal{R}_{K}^{I} \hat{\otimes}_{K}\left(K \hat{\otimes}_{F} A\right)
$$

and

$$
\mathcal{R}_{K} \hat{\otimes}_{F, i} A \cong \mathcal{R}_{K} \hat{\otimes}_{K, i}\left(K \hat{\otimes}_{F} A\right)
$$

Proof. The embedding $F \subset K$ is by construction isometric and thus contracting. Applying [BGR84, 2.1.7 Proposition 7] we obtain

$$
\mathcal{R}_{K}^{I} \hat{\otimes}_{F} A=\left(\mathcal{R}_{K}^{I} \hat{\otimes}_{K} K\right) \hat{\otimes}_{F} A \cong \mathcal{R}_{K}^{I} \hat{\otimes}_{K}\left(K \hat{\otimes}_{F} A\right) .
$$

The second part follows by taking limits.
Lemma 1.24 allows us to restrict ourselves to the case $F=K$ since the base change $K \hat{\otimes}_{F} A$ of an affinoid algebra over F is an affinoid algebra over K (cf. BGR84, 6.1.1. Corollary 9]).
Remark 1.25. Fix a Banach norm on A. Let $f \in \mathcal{R}_{A}$. Then f can be expressed uniquely as a Laurent series $f=\sum_{i \in \mathbb{Z}} a_{i} T^{i}$, with $a_{i} \in A$ converging on some halfopen disc $|T| \in[r, 1)$.
Proof. Since f belongs to some \mathcal{R}_{A}^{r} and $\mathcal{R}_{A}^{r}=\lim _{r \leq s<1} \mathcal{R}_{A}^{[r, s]}$, it suffices to treat $\mathcal{R}_{A}^{[r, s]}$. In that case we can by cofinality arguments always assume $r, s \in\left|K^{\times}\right|$. Then the K algebra $\mathcal{R}_{K}^{[r, s]}$ is K-affinoid and if the absolute values r, s are achieved by $|\rho|=r$ and $|\sigma|=s$ then the set $\left\{(T / \rho)^{n},(\sigma / T)^{m} \mid n \in \mathbb{N}_{0}, m \in \mathbb{N}\right\}$ form a orthonormal basis of $\mathcal{R}_{K}^{[r, s]}$. Completed base change to A shows that any element in $\mathcal{R}_{A}^{[r, s]}$ can be uniquely written as a convergent series $\sum_{n \geq 0} a_{n}(T / \rho)^{n}+\sum_{m<0} a_{m}(T / \sigma)^{m}$. Since $\rho, \sigma \in K^{\times} \subset A^{\times}$we get the uniqueness of the Laurent expansion.

We have two reasonable choices for the $\left(\varphi_{L}, \Gamma_{L}\right)$-actions on \mathcal{R}_{K} for a complete field $K \subset \mathbb{C}_{p}$. One possibility is the linear extension of the (φ_{L}, Γ_{L}) action from \mathcal{R}_{L} using $\mathcal{R}_{K}=K \hat{\otimes}_{L} \mathcal{R}_{L}$. If on the other hand K is invariant under the G_{L} action on \mathbb{C}_{p}, we can take the semi-linear G_{L}-action, which factors over Γ_{L} if $K \subset \widehat{L_{\infty}}$. Unless stated otherwise we consider only the former action. This action also makes sense for more general coefficients. Another reason for studying the linear action rather than the semi-linear actions is that we would like to work with L-analytic actions. The semi-linear action on say \widehat{L}_{∞} will never be L-analytic by BC16, Corollaire 4.3].

$1.3 \quad p$-adic Fourier theory and $D(G, L)$ actions.

We give a survey of p-adic distributions, that play a crucial role in the study of L-analytic $\left(\varphi, \Gamma_{L}\right)$-modules. In the case $G=\mathbb{Z}_{p}$ and $L=\mathbb{Q}_{p}$ a theorem of Amice asserts that $D\left(G, \mathbb{Q}_{p}\right)$ is isomorphic to the holomorphic functions on the open unit disc in the variable $\mathfrak{Z}=\delta_{1}-1$. This facilitates the study of the $\Gamma_{\mathbb{Q}_{p}}$-action in the classical theory. If $L \neq \mathbb{Q}_{p}$ a similar result can only be achieved after passing to a large extension K of L that contains a certain (transcendental) period $\Omega_{L} \in \mathbb{C}_{p}$. In the notation of [ST01] the period can be taken to be $\Omega_{L}:=\Omega_{t}$ for some basis t of the Tate module of the dual of the Lubin-Tate group.

Definition 1.26. Let G be a compact L-analytic group. We denote by $D_{\mathbb{Q}_{p}}(G, K)$ the algebra of \mathbb{Q}_{p}-analytic distributions with values in K, which is the strong dual of $C^{\mathbb{Q}_{p}-a n}(G, K)$ the space of locally \mathbb{Q}_{p}-analytic functions on G with values in K with multiplication given by convolution. We denote by δ_{g} the Dirac distribution associated to g, by which we mean the evaluation map $\delta_{g}: f \mapsto f(g)$. We denote by $D(G, K)$ the quotient of $D_{\mathbb{Q}_{p}}(G, K)$ corresponding to the dual of the subspace of the space $C^{a n}(G, K)$ of locally L-analytic functions.

For a detailed description of the topology on $C^{a n}(G, K)$ we refer the reader to Sch17, Chapters 10 and 12].

Theorem 1.27. Let $G=o_{L}$ viewed as an L-analytic group in the natural sense and let $L \subset K \subset \mathbb{C}_{p}$ be a complete intermediate field. Denote by \hat{G} the character variety constructed in [ST01, Section 2]. Then the Fourier transform (defined on p. 452 in loc. cit.) induces an isomorphism of K-Fréchet algebras

$$
D(G, K) \rightarrow \mathcal{O}(\widehat{G} / K)
$$

If K contains a period Ω_{L} of the Lubin-Tate group, then \widehat{G} and the open unit disc \mathbb{B} are isomorphic over K and by combining the above with the Fourier isomorphism we obtain an isomorphism

$$
D(G, K) \stackrel{ }{\rightrightarrows} \mathcal{O}(\mathbb{B} / K) .
$$

By choosing a coordinate T on \mathbb{B} it can be described explicitly by mapping a dirac distribution δ_{a} to the power series

$$
\eta(a, T)=\exp \left(a \Omega_{L} \log _{L T}(T)\right) \in o_{K} \llbracket T \rrbracket .
$$

Proof. This follows by combining Corollary 3.7 and Theorem 2.3. in [ST01].
Remark 1.28. If $H \subset G$ is an open normal subgroup then the decomposition $G=\bigcup_{g \in G / H} g H$ induces $D(G, K) \cong \bigoplus_{g \in G / H} \delta_{g} D(H, K) \cong \mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} D(H, K)$ algebraically and topologically.

We are mostly interested in the case where G is abelian and contains an open subgroup isomorphic to o_{L} (like Γ_{L}). For technical purposes it is important that $C^{a n}(G, K)$ can be written as a compactoid inductive limit.

Definition 1.29. An index of an L-analytic group G is a family $\mathcal{I}=\left(U_{i}, c_{i}, \varepsilon_{i} ; i \in\right.$ I) of charts $c_{i}: U_{i} \xrightarrow{\cong} B_{\varepsilon_{i}}(0)$ mapping an open subset $U_{i} \subset G$ homeomorphically to the "closed" disc of radius $\varepsilon_{i} \in \mathbb{R}_{>0}$, such that $G=\bigcup_{i \in I} U_{i}$. Given a collection of ε_{i}-convergent K-valued power series we can pull them back to G and glue them to a locally L-analytic K-valued function on G. We denote by $\mathcal{F}_{\mathcal{I}}$ the subspace of $C^{a n}(G, K)$ of functions obtained in this way.
Note that $C^{a n}(G, K)={\underset{\lim }{\mathcal{I}}}^{\mathcal{I}} \mathcal{F}_{\mathcal{I}}$, where $\mathcal{F}_{\mathcal{I}}$ is endowed with the topology induced by the ε_{i}-Gauss norms and the limits is taken over the set of all indices with respect to the partial order described in [Sch17, p. 77f].
Remark 1.30. Suppose G contains an open subgroup isomorphic to o_{L}. There exists a cofinal family of indices such that the transition maps are compactoid.
Proof. We first consider the special case $G=o_{L}$ and indices $\mathcal{I}=\left(o_{L}, \mathrm{id}, 1\right), \mathcal{J}=$ $\left(a+\pi_{L} o_{L}, \mathrm{id},\left|\pi_{L}\right| ; \bar{a} \in o_{L} / \pi_{L} o_{L}\right)$. By [PGS10, 8.1.3(i)] sums of compactoid maps are compactoid, thus it suffices to show that, denoting by

$$
\mathcal{F}_{c,\left|\pi_{L}\right|}=\left\{F: c+\pi_{L} o_{L} \rightarrow K\left|F(x)=\sum_{i=0}^{\infty} a_{i}(x-c)^{i} ; \lim _{i \rightarrow \infty}\right| a_{i}| | \pi_{L}^{i} \mid \rightarrow 0\right\}
$$

for each $c \in o_{L}$ the natural map

$$
\mathcal{F}_{0,1} \rightarrow \mathcal{F}_{c,\left|\pi_{L}\right|}
$$

is compactoid. Using [Sch17, Corollary 5.5] we may without loss of generality assume $c=0$. In this case identify $\mathcal{F}_{0,1} \cong K\langle X\rangle \cong c_{0}(K)$ and $\mathcal{F}_{0,|\pi|} \cong K\left\langle X / \pi_{L}\right\rangle \cong c_{0}(K)$ in the obvious ways. Using this identification the natural map

$$
K\langle X\rangle \rightarrow K\left\langle X / \pi_{L}\right\rangle
$$

corresponds to

$$
\begin{align*}
\mu: c_{0}(K) & \rightarrow c_{0}(K) \tag{1.1}\\
\left(a_{0}, a_{1}, a_{2}, \ldots\right) & \mapsto\left(a_{0}, \pi_{L} a_{1}, \pi_{L}^{2} a_{2}, \ldots\right) . \tag{1.2}
\end{align*}
$$

We check that this map is compactoid. Let U be the unit ball in $c_{0}(K)$ and let V be any neighbourhood of zero. Then V contains $\pi_{L}^{n} U$ for some $n \in \mathbb{N}$ and

$$
\mu(U) \subset \pi_{L}^{n} U+\sum_{i=0}^{n-1} o_{L} e_{i} \subset V+\sum_{i=0}^{n-1} o_{L} e_{i}
$$

where e_{i} denotes the i-th unit vector. Analogously this result is true for any pair of radii $\varepsilon_{1}>\varepsilon_{2}$ that lie in $|L|$. The general case is obtained from the special case above by first choosing a cover $G=\bigcup_{i \in I_{0}} U_{i}$ by disjoint open sets homeomorphic to o_{L} (via charts c_{i}), setting $\mathcal{I}_{0}=\left(U_{i}, c_{i}, 1\right)$ and then defining \mathcal{I}_{n} inductively by splitting each U_{i} appearing in \mathcal{I}_{n-1} into q smaller circles and adjusting the radius to be $\left|\pi_{L}\right|$ times the previous one. This produces a cofinal set of indices with compactoid transition maps.

Remark 1.31. Mapping g to δ_{g} induces an injective group homomorphism $G \rightarrow$ $D(G, K)^{\times}$and an injection $K[G] \hookrightarrow D(G, K)$. This injection has dense image.
Proof. For the injectivity it suffices to show that $K[G] \hookrightarrow D(G, K)$ is injective. For that purpose we show that any finite set of distinct Dirac distributions $\delta_{g_{1}}, \ldots, \delta_{g_{n}}$ is K-linearly independent. Because G is Hausdorff and compact we may find a compact open subgroup $H \subset G$ such that $g_{i} H \cap g_{j} H=\emptyset$ whenever $i \neq j$. The decomposition from 1.28 show that $\delta_{g_{i}}$ are even $D(H, K)$-linearly independent. The inclusion $K[G] \rightarrow D(G, K)$ has dense image for K spherically complete by [ST02, Lemma 3.1]. The same proof applies to the general case since $D(G, K)$ is the strong dual of $C^{a n}(G, K)$, which can be written as a compactoid inductive limit of Banach spaces by 1.30 and thus by [PGS10, 11.3.5] both $C^{a n}(G, K)$ and $D(G, K)$ are strictly of countable type, reflexive and satisfy Hahn-Banach (cf. [PGS10, 4.2.6]).

Definition 1.32. Let $G=o_{L}$. After fixing a coordinate T on \mathbb{B} we denote by $Z \in$ $D\left(o_{L}, K\right)$ the preimage of $T \in \mathcal{O}_{K}(\mathbb{B})$ with respect to the isomorphism from Theorem 1.27.

In the classical theory (assuming $p \neq 2$) we can choose explicitly $Z=\gamma-1$ with a topological generator of $\Gamma_{\mathbb{Q}_{p}}$. In our situation this variable Z serves a similar purpose but is more elusive in its description. The main difficulty is reversing η since there is no (evident) connection between the exponential and the Lubin-Tate logarithm unless $L=\mathbb{Q}_{p}$ and $L T=\mathbb{G}_{m}$.

Remark 1.33. Let Aug: $D\left(o_{L}, K\right) \rightarrow K$ be the augmentation map induced by mapping each Dirac distribution to 1 and denote by ev_{0} the map that evaluates a power series at $T=0$. Then the following diagram is commutative

In particular

$$
\operatorname{ker}(\mathrm{Aug})=\overline{\operatorname{span}\left(\delta_{a}-1, a \in G\right)}=Z D\left(o_{L}, K\right)
$$

Proof. The vertical arrows are topological isomorphisms for the Fréchet-topology on the left side (resp. the valuation topology on the right side) and the Dirac distributions span a dense subspace of $D\left(o_{L}, K\right)$. We may therefore check the commutativity of said diagram on the Dirac distributions, where we have

$$
\operatorname{Aug}\left(\delta_{a}\right)=1=\exp \left(a \Omega_{L} \log _{L T}(T)\right)_{\mid T=0}=\operatorname{ev}_{0}(\eta(a, T))
$$

For the second statement we first remark that both maps are surjective and their kernels are mapped isomorphically to one another. Evidently $\operatorname{ker}\left(\operatorname{ev}_{0}\right)=T \mathcal{O}_{K}(\mathbb{B}) \cong$ $Z D\left(o_{L}, K\right)$. Due to continuity the inclusion $\operatorname{ker}(\mathrm{Aug}) \supseteq \operatorname{span}\left(\delta_{a}-1\right)$ is clear. For the other inclusion consider the decomposition $K\left[o_{L}\right] \cong K \delta_{0} \oplus \operatorname{span}\left(\delta_{a}-1, a \in o_{L}\right)$ with the augmentation map restricted to the first factor mapping $\lambda \delta_{0}$ to λ. The left factor is clearly complete and passing to completions shows the desired result.

Remark 1.34. Let $a \in o_{L}$ and denote by a^{*} the map induced from the multiplication-by-a-map $a: o_{L} \rightarrow o_{L}$. Then the following diagram is commutative

where the vertical arrows arise from the Fourier-isomorphism.
Proof. Using $\log _{L T}([a](T))=a \log _{L T}(T)=[a] \log _{L T}(T)$ we obtain

$$
a^{*}\left(\delta_{b}\right)=\exp \left(\Omega_{L} a b \log _{L T}(T)\right)=[a]\left(\exp \left(\Omega_{L} b \log _{L T}(T)\right)\right)=[a]\left(\delta_{b}\right),
$$

proving the result for Dirac distributions. The general statement follows from continuity considerations.

Lemma 1.35. The kernel of the natural map proj: $D\left(o_{L}, K\right) \rightarrow K\left[o_{L} / \pi_{L}^{n} o_{L}\right]$ is generated by $Z_{n}:=\left[\pi_{L}\right]^{n}(Z) \in D\left(o_{L}, K\right)$.

Proof. Since Z lies in the closure of the augmentation ideal generated by the $\delta_{g}-1$ with $g \in o_{L}$ using 1.34 we see that Z_{n} lies in the closure of the augmentation ideal of $D\left(\pi_{L}^{n} o_{L}, K\right) \subset D\left(o_{L}, K\right)$. We conclude $Z_{n} \subset \operatorname{ker}(\operatorname{proj})$. By transporting the structure to $\mathcal{O}_{K}(\mathbb{B})$ we see that $\mathcal{O}_{K}(\mathbb{B}) / \varphi_{L}^{n}(T)$ is free of rank q^{n} over K by counting the number of zeros of φ_{L}^{n}, i.e., the number of $\pi_{L^{n}}^{n}$ torsion points of the LT group. We conclude that the surjective map proj has to be injective modulo $\left[\pi_{L}\right]^{n}(Z)$.

So far we only needed to choose a variable for $D\left(o_{L}, K\right)$. Analogously we can choose variables for any subgroup $\pi_{L}^{n} o_{L}$ since they are isomorphic to o_{L}. The following corollary shows that the ideal generated by such a variable is independent of any such choices. We state the result on the level of Γ_{L} since we use it in this particular context later on.

Corollary 1.36. Let n_{0} be minimal with the property that $\chi_{L T}\left(\Gamma_{n_{0}}\right)=1+\pi_{L}^{n_{0}} o_{L}$ is isomorphic to $\pi_{L}^{n_{0}} o_{L}$ via $\log _{p}$. Denote by Z_{n} the preimage of T under the sequence of isomorphisms

$$
D\left(\Gamma_{n}, K\right) \cong D\left(o_{L}, K\right) \cong \mathcal{O}_{K}(\mathbb{B})
$$

viewed as an element of $D\left(\Gamma_{n_{0}}, K\right)$. Then there is a canonical $\Gamma_{n_{0}} / \Gamma_{n}$ equivariant isomorphism $D\left(\Gamma_{n_{0}}, K\right) / Z_{n} \cong K\left[\Gamma_{n_{0}} / \Gamma_{n}\right]$ induced by mapping δ_{g} to g.

Proof. This follows from transport of structure along the isomorphisms $\chi_{L T}: \Gamma_{L} \rightarrow$ o_{L}^{\times}and $\log _{p}: 1+\pi_{L}^{n} o_{L} \rightarrow \pi_{L}^{n} o_{L} \cong o_{L}$. The isomorphism is canonical in the sense that neither its definition nor its kernel depend on the particular choice of Z_{n}.

For the remainder of the thesis we fix the following compatible choice of variables.

Definition 1.37. Consider for $n \geq n_{0}$ the system of commutative diagrams

We fix as before the variable $Z_{m} \in D\left(\Gamma_{m}, K\right)$ for every $m \geq n_{0}$. Since $\pi_{L}^{n} o_{L}=$ $\pi_{L}^{m-n}\left(\pi_{L}^{n} o_{L}\right)$ we obtain the relationship

$$
\begin{equation*}
Z_{m}=\varphi_{L}^{m-n}\left(Z_{n}\right) \tag{1.3}
\end{equation*}
$$

for every $m \geq n$.

1.3.1 L-Analyticity

In this section we discuss the question of L-analyticity in families. Abstractly L analyticity can be defined for any K-Banachspace with a continuous K-linear $\Gamma_{L^{-}}$ action where $L \subset K$ is a complete field extension. In our application families of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules will be LF-spaces over K with a \mathcal{R}_{A}-semi-linear (hence a fortiori K-linear) Γ_{L}-action.

Definition 1.38. Let X be a d-dimensional L-analytic manifold and let K be a complete subfield of \mathbb{C}_{p}.

- Let V be a K-Banach space. A map $f: X \rightarrow V$ is called locally L-analytic if for every $x \in X$ there exists an open neighbourhood U homeomorphic to $B_{\varepsilon}(0)^{d}$ and $\left(v_{\mathbf{n}}\right) \in V^{\mathbb{N}_{0}^{d}}$ such that

$$
\lim _{|\mathbf{n}| \rightarrow \infty} \varepsilon^{|\mathbf{n}|} \mid\left\|v_{\mathbf{n}}\right\|=0
$$

and

$$
f(x)=\sum_{\mathbf{n} \in \mathbb{N}_{0}^{d}} v_{\mathbf{n}}\left(x_{1}, \ldots, x_{d}\right)^{\mathbf{n}}
$$

for every $x \in U$. Where x_{i} are local coordinates of x and $\left(x_{1}, \ldots, x_{d}\right)^{\mathbf{n}}=\prod_{i} x_{i}^{n_{i}}$.

- For a K-Fréchet space $\varliminf_{\lim _{j}} V_{j}$ with Banachspaces V_{j} a map $f: X \rightarrow \lim _{\leftrightarrows_{j}} V_{j}$ is called pro-L-analytic if each induced map $X \rightarrow V_{j}$ is locally L-analytic.
- For an LF-space ${\underset{\mathrm{lim}}{i}}^{\lim _{j}} V_{i, j}$ with Banachspaces $V_{i, j}$ a map $f: X \rightarrow \underset{\longrightarrow}{\lim _{i}}{\underset{\varliminf}{\underset{j}{m}}}^{j} V_{i, j}$ is called pro-L-analytic if it factors over some $\varliminf_{\mathrm{lim}_{j}} V_{i, j}$ and the induced map is pro-L-analytic in the Fréchet-sense.

Definition 1.39. Let $V={\underset{\mathrm{lim}}{i}}^{\lim _{\hookleftarrow}} V_{i, j}$ be a K-LF-space and let G be a p-adic Lie group over L acting on V. The action is called L-analytic if for each $v \in V$ the orbit map $g \mapsto g v$ is pro-L-analytic.

In order to treat tensor products of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules we introduce the following auxiliary definition. This property will be satisfied in our applications.

Definition 1.40. Let $V=\underset{\lim _{i}}{\lim }{\underset{j}{j}} V_{i, j}$ be a $K-L F$-space with an L-analytic action of an L-analytic group G. We say that V admits a model if there exists a m_{0} such that the orbit map of each $v \in \lim _{\ddagger} V_{m, j}$ already factors over $\lim _{\leftarrow} V_{m, j}$ whenever $m \geq m_{0}$.

Lemma 1.41. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. The Γ_{L} action on M extends uniquely to a seperately continuous action of $D\left(\Gamma_{L}, K\right)$ satisfying $\delta_{g} m=$ gm and each morphism of L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules is $D\left(\Gamma_{L}, K\right)$-equivariant.

Proof. After reducing to the corresponding statement for the Banach space M^{I} for a closed interval this follows from the proof of [SV20, Proposition 2.26], which was proved for general K-Banach spaces.

Lemma 1.42. Let K / L be a complete field extension and V be a K-Banach space with a continuous K-linear Γ_{L}-action. The Γ_{L}-action on V is locally L-analytic if and only if the following conditions are satisfied:

- There exists $m \geq 2$ such that $\|\gamma-1\|_{V}<p^{-1 /(p-1)}$ for any $\gamma \in \Gamma_{m}$.
- The derived action $\operatorname{Lie}\left(\Gamma_{L}\right) \rightarrow \operatorname{End}_{K}(V)$ is L-linear.

Proof. The first condition in 1.42 asserts that the Γ_{L}-action is locally \mathbb{Q}_{p}-analytic by BSX20, Lemma 2.3.1]. The second condition then implies L-analyticity (cf. Wit19, Folgerung 2.2.10]).

Lemma 1.43. Let V, W be two LF-spaces with pro L-analytic actions, that both admit models. Then the tensor product action on $E:=\underline{\lim }_{i} V_{i} \hat{\otimes}_{K, i} W_{i}$ is pro L-analytic.
 (resp. $W_{m n}$). For E we have $E=\underset{\rightarrow}{\lim } \underset{\rightarrow}{ } \lim _{j, n} V_{i j} \hat{\otimes} W_{m n}$ thus using that V and W admit models we see that E also admits a model. We may therefore without loss of generality assume that V, W are Banach spaces. In this case the \mathbb{Q}_{p}-analyticity of the action follows from [FdL99, 3.3.11.]. By [FdL99, 3.3.12] the derived action is given by $D\left(\rho_{V}\right) \otimes \mathrm{id}_{W}+V \otimes D\left(\rho_{W}\right)$, where $D\left(\rho_{X}\right)$ denotes the derived action on $X \in\{V, W\}$. This action is L-linear as a sum of L-linear maps.

Our objects of interest are projective \mathcal{R}_{A}-modules with an L-analytic Γ_{L}-action. The following example is a sanity check.

Example 1.44. The action of Γ_{L} induced by $\gamma(T)=\left[\chi_{L T}(\gamma)\right](T)$ on the relative Robba ring $\mathcal{R}_{A}=\underset{\rightarrow 0 \leq r<1}{\lim _{\varliminf_{r<s<1}} \mathcal{R}_{A}^{[r, s]} \text { is L-analytic. }}$

Proof. Since $T \mapsto\left[\chi_{L T}(\gamma)\right](T)$ is an automorphism of each annulus $[r, s]$, this reduces to studying the action on $\mathcal{R}_{A}^{[r, s]}=A \widehat{\otimes} \mathcal{R}_{K}^{[r, s]}$. Here the left tensor factor carries the trivial $\Gamma_{L^{-}}$-action and \mathcal{R}_{K} carries the usual action. By [BSX20, Proposition 2.3.4] the latter is L-analytic. Since the trivial action is L-analytic the statement follows from 1.43.

For certain technical arguments we require an analogue (on the distribution side) of r-convergent power series.

Definition 1.45. Let $G \cong o_{L}$, let g_{1}, \ldots, g_{d} be a \mathbb{Z}_{p}-basis of G and let $r \in[|p|, 1)$. We define $D_{\mathbb{Q}_{p}, r}(G, K)$ to be the completion of $D_{\mathbb{Q}_{p}}(G, K)$ with respect to the norm

$$
\left|\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}}\left(\delta_{g_{i}}-1\right)_{i}^{\mathbf{k}}\right|_{\mathbb{Q}_{p}, r}(G, K)=\sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right| r^{|\mathbf{k}|}
$$

with the usual conventions for multi-indices i.e. $\left(\left(\delta_{g_{i}}-1\right)_{i}\right)^{\left(k_{1}, \ldots, k_{d}\right)}=\prod_{i=1}^{d}\left(\delta_{g_{i}}-1\right)^{k_{i}}$ and $|\mathbf{k}|=\sum_{i=1}^{d} k_{i}$. We further define $D_{r}(G, K)$ as the completion of $D(G, K)$ with respect to the quotient norm with respect to the natural projection $D_{\mathbb{Q}_{p}}(G, K) \rightarrow$ $D(G, K)$. One can show that the algebras above are independent of the choice of basis.

Remark 1.46. Choose an ordered \mathbb{Z}_{p}-basis h_{1}, \ldots, h_{d} of o_{L} and let $b_{i}:=\delta_{h_{i}}-1 \in$ $D_{\mathbb{Q}_{p}}\left(o_{L}, K\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{d}\right)$. Any element $\lambda \in D_{\mathbb{Q}_{p}}\left(o_{L}, K\right)$ admits a unique convergent expansion

$$
\lambda=\sum_{\mathbf{k} \in \mathbb{N}_{o}^{d}} a_{\mathbf{k}} \mathbf{b}^{\mathbf{k}}
$$

such that $|\lambda|_{D_{\mathbb{Q}_{p}, r}(G, K)}=\sup \left|a_{k}\right| r^{|\mathbf{k}|}$ is bounded for any $0<r<1$. The norms
 choice of ordered basis.

Proof. See [ST03, 4.2 and discussion after 4.10].
Lemma 1.47. Let $I=[r, s] \subset[0,1)$ and let $\mathfrak{r}>s \geq|p|$ then the homomorphism induced by the composition of the natural projection and the LT-isomorphism

$$
D_{\mathbb{Q}_{p}}\left(o_{L}, K\right) \rightarrow D\left(o_{L}, K\right) \rightarrow \mathcal{O}_{K}(\mathbb{B})
$$

extends to a continuous homomorphism

$$
D_{\mathbb{Q}_{p}, \mathfrak{r}}\left(o_{L}, K\right) \rightarrow D_{\mathfrak{r}}\left(o_{L}, K\right) \rightarrow \mathcal{O}_{K}\left(\mathbb{B}^{[0, s]}\right) \subset \mathcal{O}_{K}\left(\mathbb{B}^{I}\right)
$$

of operator norm 1 .
Proof. Consider the composite map

$$
D_{\mathbb{Q}_{p}}\left(o_{L}, K\right) \rightarrow D\left(o_{L}, K\right) \rightarrow \mathcal{O}_{K}(\mathbb{B}) \rightarrow \mathcal{O}_{K}\left(\mathbb{B}^{[0, s]}\right),
$$

where the last arrow is the canonical inclusion. Since the target is complete (with respect to the s-Gauß norm) it suffices to show that the map is continuous with respect to the \mathfrak{r}-norm on the left-hand side. The series $\eta(a, T)-1=a \Omega T+\ldots$ has no constant term and $|a \Omega|<1$ for every $a \in o_{L}$. In particular $|\eta(a, T)-1|_{I}<s$ by assumption. Choose as before a \mathbb{Z}_{p}-basis h_{1}, \ldots, h_{d} of o_{L} and let $\mathbf{e}=\left(\eta\left(h_{1}, T\right)-\right.$ $\left.1, \ldots, \eta\left(h_{d}, T\right)-1\right)$. Then $\lambda=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} \mathbf{b}^{\mathbf{k}}$ is mapped to $\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} \mathbf{e}^{\mathbf{k}}$ and

$$
\left|\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} \mathbf{e}^{\mathbf{k}}\right|_{I} \leq \sup \left|a_{\mathbf{k}}\right| s^{|\mathbf{k}|} \leq|\lambda|_{D_{Q_{p}, \mathrm{r}}\left(o_{L}, K\right)} .
$$

This shows that the operator norm is bounded by 1 . It has to be equal to 1 because the scalars are mapped to themselves.

Proposition 1.48. Let $G=o_{L}$, denote by $Z \in D(G, K)$ the element corresponding to the variable $T \in \mathcal{O}_{K}(\mathbb{B})$ via the Fourier isomorphism and let $0 \neq a \in G$.

1. We have in $D(G, K)$

$$
\left(\delta_{a}-1\right) / a \Omega Z=1+c_{1}(a) Z+c_{2}(a) Z^{2}+\ldots .
$$

2. The coefficients can be estimated with $\left|c_{n}\right| \leq|p|^{\frac{-n}{e^{\left(L / Q_{p}\right)(q-1)}}}$.

Proof. The first part is obtained by evaluating the Fourier isomorphism at $\delta_{a}-1$. One computes

$$
\delta_{a}-1 \mapsto \eta(a, T)-1=a \Omega T+\ldots
$$

The estimate of the coefficients can be found in the proof of Lemma 3.4 in [ST01. Note that the authors use the normalisation $|p|=1 / p$.

1.3.2 Lie-Elements in $D\left(\Gamma_{L}, L\right)$.

Proposition 1.49. Consider Γ_{L} as an L-analytic Lie group via $\chi_{L T}: \Gamma_{L} \rightarrow o_{L}^{\times}$. Let $\Gamma \subset \Gamma_{L}$ be an open subgroup isomorphic to o_{L}.

1. Taking the derivative of $\chi_{L T}$ induces an isomorphism

$$
\mathfrak{g}=\operatorname{Lie}\left(\Gamma_{L}\right) \cong \operatorname{Lie}(\Gamma) \cong L
$$

2. Let $\exp _{\Gamma}$ be the exponential for Γ, then

$$
\begin{aligned}
\operatorname{Lie}(\Gamma) & \rightarrow D(\Gamma, L) \\
\mathfrak{x} & \mapsto\left[f \mapsto \frac{d}{d t} f\left(\exp _{\Gamma}(t \mathfrak{x})_{\mid t=0}\right)\right]
\end{aligned}
$$

is an L-linear embedding.

Proof. Since Γ is an open subgroup of the same dimension as Γ_{L} the first isomorphism is induced by the inclusion. The second isomorphism follows from the fact that the clopen subgroup $1+\pi_{L}^{n} o_{L} \subset o_{L}^{\times}$is isomorphic to o_{L} for n large enough whose Lie-algebra is L. For the second statement see ST02, Discussion after Proposition 2.3].

Definition 1.50. We denote by $\nabla \in \operatorname{Lie}\left(\Gamma_{L}\right)=\operatorname{Lie}(\Gamma)$ the preimage of 1 under the isomorphism $d_{1} \chi_{L T}: \operatorname{Lie}(\Gamma) \stackrel{\cong}{\leftrightarrows} L$. We denote by the same symbol the image of ∇ under the embedding $\operatorname{Lie}(\Gamma) \rightarrow D(\Gamma, L)$. We use the same symbol for the element $1 \otimes \nabla \in K \otimes_{L} D(\Gamma, L) \subset D(\Gamma, K)$.
Lemma 1.51. Let $1 \neq \gamma \in \Gamma$ then $\delta_{\gamma}-1$ divides ∇ in $D(\Gamma, L)$ and Z divides ∇ in $D(\Gamma, K)$.
Proof. The first statement is Lemma 2.10 in SV20. The second statement follows from the first since Z divides $\delta_{g}-1$.

This result can be surprising at first since in particular for $\Gamma=\Gamma_{n}$ with $n \geq n_{0}$ we obtain that ∇ is divisible by every Z_{n} or using (1.3) by every $\varphi_{L}^{k}\left(Z_{n_{0}}\right)$. This relationship becomes more transparent by an explicit calculation.

Lemma 1.52. Let $n \geq n_{0}$ then the image of ∇ under the sequence of isomorphisms

$$
D\left(\Gamma_{n}, K\right) \cong D\left(o_{L}, K\right) \cong \mathcal{O}_{K}(\mathbb{B})
$$

induced by the isomorphism

$$
\Gamma_{n} \cong 1+\pi_{L}^{n} \xrightarrow{\log / \pi_{L}^{n}} o_{L}
$$

and the Fourier isomorphism is

$$
\frac{\Omega}{\pi_{L}^{n}} \log _{L T}(T)
$$

In particular

$$
\frac{\Omega}{\pi_{L}^{n}} \log _{L T}\left(Z_{n}\right)=\frac{\Omega}{\pi_{L}^{m}} \log _{L T}\left(Z_{m}\right)
$$

for any $n, m \geq n_{0}$.
Proof. The computation is contained in the proof of [SV20, Remark 2.36] for a fixed index n. We already computed $Z_{m}=\varphi_{L}^{m-n}\left(Z_{n}\right)$ for $m \geq n$. Hence the second statement follows from the first using $\log _{L T}([a](T))=a \log _{L T}(T)$.
Corollary 1.53. Let $n \geq n_{0}$, then we have a product expansion

$$
\begin{aligned}
\nabla & =\frac{\Omega}{\pi_{L}^{n}} \log _{L T}\left(Z_{n}\right) \\
& =\frac{\Omega}{\pi_{L}^{n}} Z_{n} \prod_{k \geq 1} \frac{\left[\pi_{L}^{k}\right]\left(Z_{n}\right)}{\pi_{L}\left[\pi_{L}^{k-1}\right]\left(Z_{n}\right)} \\
& =\frac{\Omega}{\pi_{L}^{n}} Z_{n} \prod_{k \geq 1} \frac{Z_{n+k}}{\pi_{L} Z_{n+k-1}} .
\end{aligned}
$$

Proof. This follows by transport of structure from the usual expansion of $\log _{L T}(T)$.

$1.4\left(\varphi_{L}, \Gamma_{L}\right)$-modules over the Robba ring.

When studying $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over the Robba ring \mathcal{R}_{K} it turns out that they admit a so-called model over some half-open interval $[r, 1$), meaning that it arises as a base extension from a module over $\mathcal{R}_{K}^{[r, 1)}$. When working with families of such modules, we enforce the existence of such a model, which in turn allows us to view the modules (more precisely their models) as vector bundles on $\operatorname{Sp}(A) \times_{K} \mathbb{B}^{[r, 1)}$. A suitable frame work to do so is the theory of coadmissible modules in the sense of Schneider and Teitelbaum.

Definition 1.54. A commutative K-Fréchet algebra \mathcal{A} is called Fréchet-Stein algebra if there is a sequence of continuous algebra seminorms $q_{1} \leq \cdots \leq q_{n} \leq \ldots$ that define the Fréchet-topology such that
(i) The completion \mathcal{A}_{n} of $\mathcal{A} /\left\{a \mid q_{n}(a)=0\right\}$ with respect to q_{n} is Noetherian and
(ii) \mathcal{A}_{n} is flat as an \mathcal{A}_{n+1}-module for any $n \in \mathbb{N}$.

A coherent sheaf is a family $\left(M_{n}\right)_{n \in \mathbb{N}}$ of finitely generated \mathcal{A}_{n}-modules endowed with their respective canonical topologies such that

$$
\mathcal{A}_{n+1} \otimes_{\mathcal{A}_{n}} M_{n} \cong M_{n+1} .
$$

The global sections of a coherent sheaf are defined to be the Fréchet-module

$$
\Gamma\left(M_{n}\right):=\lim _{n \in \mathbb{N}} M_{n} .
$$

An \mathcal{A}-module is called coadmissible if it arises as the global sections of a coherent sheaf.

Lemma 1.55. Let \mathcal{A} be a Fréchet-Stein algebra and let M be coadmissible. Then
(i) \mathcal{A}_{n} is flat as an \mathcal{A}-module.
(ii) The canonical map $M \rightarrow M_{n}$ has dense image and $\mathcal{A}_{n} \otimes_{A} M \cong M_{n}$.
(iii) ${\underset{\lim }{n \geq 1}}_{i} M_{n}=0$ for any $i \geq 1$.
(iv) Kernels, cokernels, images and coimages of \mathcal{A}-linear maps between coadmissible modules are coadmissible.
(v) Finitely generated submodules of coadmissible modules are coadmissible.
(vi) Finitely presented modules are coadmissible.
(vii) Let A be K-affinoid, then $\mathcal{R}_{A}^{[r, 1)}$ is a Fréchet-Stein algebra for any $r \in[0,1)$.

Proof. For (i)-(vi) see section 3 in [ST03]. We postpone the proof of (vii) to section A. 1 in the appendix.

Using the theory of coadmissible modules we can deduce the following useful result.
Lemma 1.56. Let $\mathfrak{m} \in \operatorname{Max}(A)$ be a maximal ideal, then the natural map

$$
\mathcal{R}_{A} \otimes_{A} A / \mathfrak{m} \rightarrow \mathcal{R}_{A / \mathfrak{m}}
$$

is an isomorphism.
Proof. By a limit argument it suffices to show that $\mathcal{R}_{A}^{[r, 1)} \otimes_{A} A / \mathfrak{m} \rightarrow \mathcal{R}_{A / \mathfrak{m}}^{[r, 1)}$ is an isomorphism for every $0<r<1$. The right-hand side is by definition the Hausdorff completion of the left-hand side. Hence we are done if we can show that $\mathcal{R}_{A}^{[r, 1)} \otimes_{A} A / \mathfrak{m}=\mathcal{R}_{A}^{[r, 1)} / \mathfrak{m} \mathcal{R}_{A}^{[r, 1)}$ is complete. Since A is Noetherian the ideal $\mathfrak{m} \mathcal{R}_{A}^{[r, 1)}$ is a finitely generated submodule of a coadmissible module hence itself coadmissible. By [ST03, Lemma 3.6] the quotient in question is complete.

We also obtain an algebraic description of $\mathcal{R}_{A}^{[r, 1)} /\left(t_{L T}\right)$.
Lemma 1.57. The natural map $\mathcal{R}_{A}^{[r, 1)} /\left(t_{L T}\right) \rightarrow \lim _{n \geq 0} \mathcal{R}_{A}^{[r, 1)} /\left(\varphi_{L}^{n}(T)\right)$ is an isomorphism.
Proof. Recall the product decomposition $t_{L T}=\log _{L T}(T)=T \prod_{n \geq 1} \frac{\varphi_{L}^{n}(T)}{\pi_{L}^{-1} \varphi_{L}^{n-1}(T)}$. The partial products are equal to $P_{n}=\pi_{L}^{-(n-1)} \varphi^{n}(T)$. In particular $t_{L T}$ is divisible by every $\varphi^{n}(T)$. We can describe $\mathcal{R}_{A}^{[r, 1)} /\left(t_{L T}\right)$ as

$$
\mathcal{R}_{A}^{[r, 1)} /\left(t_{L T}\right)=\operatorname{cok}\left(\mathcal{R}_{A}^{[r, 1)} \xrightarrow{t_{L T}} \mathcal{R}_{A}^{[r, 1)}\right)
$$

and by coadmissibility we have

$$
\operatorname{cok}\left(\mathcal{R}_{A}^{[r, 1)} \xrightarrow{t_{L T}} \mathcal{R}_{A}^{[r, 1)}\right)={\underset{s}{c}}_{\lim _{s}} \operatorname{cok}\left(\mathcal{R}_{A}^{[r, s]} \xrightarrow{t_{L T}} \mathcal{R}_{A}^{[r, s]}\right)
$$

Now take a sequence of radii s_{n} such that $\left[0, s_{n}\right]$ contains the π_{L}^{n}-torsion points of the $L T$-group (i.e. the zeroes of $\varphi^{n}(T)$) but no π_{L}^{n+1}-torsion points, that are not already π_{L}^{n}-torsion, i.e., none of the zeroes of $\varphi^{n+1}(T) / \varphi^{n}(T)$. In $\mathcal{R}_{K}^{\left[0, s_{n}\right]}$ and hence in $\mathcal{R}_{K}^{\left[r, s_{n}\right]}$ $\varphi^{n}(T)$ and $t_{L T}$ differ by $t_{L T} / \varphi^{n}(T)$, which has no zeroes in the annulus $\left[r, s_{n}\right]$ and is therefore a unit (since it is not contained in any maximal ideal of $\mathcal{R}_{K}^{\left[r, s_{n}\right]}$ by Bos14, 3.3 Lemma 10] and the Weierstraß Preparation Theorem), hence they differ by a unit in $\mathcal{R}_{A}^{\left[r, s_{n}\right]}$, in particular, $\mathcal{R}_{A}^{\left[r, s_{n}\right]} / \varphi^{n}(T)=\mathcal{R}_{A}^{\left[r, s_{n}\right]} / t_{L T}$. The statement now follows from $\mathcal{R}_{K}^{[r, 1)} / \varphi^{n}(T)=\mathcal{R}_{K}^{\left[r, s_{n}\right]} / \varphi^{n}(T)$.

The definition of coherent sheaves so far is too restrictive because we cannot change the lower boundary of a given half-open interval $[r, 1)$. Recall that a collection of subsets of a topological space is called locally finite if every point admits an open neighbourhood intersecting only finitely many members of the collection.

Remark 1.58. Let $\left\{\left[r_{i}, s_{i}\right], i \in \mathbb{N}_{0}\right\}$ be an admissible cover of $[r, 1)$ i.e. a cover by closed intervals that admits a locally finite refinement with $r_{i}, s_{i} \in \sqrt{|K|^{\times}}$. For each i let $M^{\left[r_{i}, s_{i}\right]}$ be a finitely generated $\mathcal{R}_{A}^{\left[r_{i}, s_{i}\right]}$-module together with isomorphisms

$$
\mathcal{R}_{A}^{I \cap J} \otimes_{\mathcal{R}_{A}^{I}} M^{I} \cong \mathcal{R}_{A}^{I \cap J} \otimes_{\mathcal{R}_{A}^{J}} M^{J}
$$

for any pair of intervals with non-empty intersection, satisfying the obvious compatibility conditions. Then for each $s \in[r, 1)$ there exists a unique coadmissible $\mathcal{R}_{A}^{[s, 1)}$-module together with morphisms $M^{[s, 1)} \rightarrow \mathcal{R}_{A}^{I \cap[s, 1)} \otimes_{\mathcal{R}_{A}^{I}} M^{I}$ inducing

$$
\mathcal{R}_{A}^{I \cap[s, 1)} \otimes_{\mathcal{R}_{A}^{[s, 1)}} M^{[s, 1)} \cong \mathcal{R}_{A}^{I \cap[s, 1)} \otimes_{\mathcal{R}_{A}^{I}} M^{I}
$$

for any interval appearing in the cover above. In particular a coadmissible $\mathcal{R}_{A}^{[r, 1)}$ module is uniquely determined by its sections along an admissible cover.

Proof. We only give a sketch of the proof. Reordering the intervals and refining the cover allows us to assume without loss of generality $r=s$ and assume $r_{0}=$ $r \leq r_{1} \leq s_{0} \leq r_{2} \leq s_{1}<\ldots$. In order to construct a coadmissible $\mathcal{R}_{A}^{[r, 1)}$-module we need to construct a compatible chain of $\mathcal{R}_{A}^{\left[r, t_{i}\right]}$-modules, with t_{i} converging to 1 . We shall explain how to extend the module $M^{\left[r_{0}, s_{0}\right]}$ to a module $M^{\left[r_{0}, s_{1}\right]}$ satisfying $M^{I} \cong \mathcal{R}_{A}^{I} \otimes_{\mathcal{R}_{A}^{I I\left[r_{0}, s_{1}\right]}} M^{\left[r_{0}, s_{1}\right]}$ for $I=\left[r_{0}, s_{0}\right]$ or $I=\left[r_{1}, s_{1}\right]$. By assumption $M^{\left[r_{0}, s_{0}\right]}$ and $M^{\left[r_{1}, s_{1}\right]}$ can be glued along the isomorphism

$$
\mathcal{R}_{A}^{\left[s_{1}, r_{1}\right]} \otimes_{\mathcal{R}_{A}^{\left[r_{0}, s_{0}\right]}} M^{\left[r_{0}, s_{0}\right]} \cong \mathcal{R}_{A}^{\left[s_{1}, r_{1}\right]} \otimes_{\mathcal{R}_{A}^{\left[r_{1}, s_{1}\right]}} M^{\left[r_{1}, s_{1}\right]}
$$

to a coherent $\mathcal{R}_{A}^{\left[r, s_{1}\right]}$-module, which by Kiehl's theorem (cf. Bos14, 6.1 Theorem 4]) is (associated to) a finitely generated $\mathcal{R}_{A}^{\left[r_{0}, s_{1}\right]}$-module, that we denote $M^{\left[r_{0}, s_{1}\right]}$. By construction the sections along $I \in\left\{\left[r_{0}, s_{0}\right],\left[r_{1}, s_{1}\right]\right\}$ are $\mathcal{R}_{A}^{I} \otimes_{\mathcal{R}_{A}^{I}} M^{\left[r_{0}, s_{1}\right]}$. Iterating this construction produces a sequence $M^{\left[r_{0}, s_{n}\right]}$ of $\mathcal{R}_{A}^{\left[r_{0}, s_{n}\right]}$-modules and a compatible sequence of isomorphisms $\mathcal{R}_{A}^{\left[r_{0}, s_{n}\right]} \otimes_{\mathcal{R}_{A}^{\left[r,, s_{n+1}\right]}} M^{\left[r_{0}, s_{n+1}\right]} \cong M^{\left[r_{0}, s_{n}\right]}$ passing to global sections gives the desired result.
Lemma 1.59. Let $M^{[r, 1)}$ be a coadmissible $\mathcal{R}_{A}^{[r, 1)}$-module and let $\mathfrak{U}=\left\{\left[r_{i}, s_{i}\right], i \in \mathbb{N}\right\}$ be an admissible cover of $[r, 1)$.
(i) $M^{[r, 1)}$ is finitely generated if and only if there exists $n \in \mathbb{N}$ independent of $I \in \mathfrak{U}$ such that each M^{I} is generated by at most n elements.
(ii) $M^{[r, 1)}$ is finitely presented if and only if there exist $(m, n) \in \mathbb{N}^{2}$ independent of $I \in \mathfrak{U}$ such that each M^{I} admits a presentation

$$
\left(\mathcal{R}_{A}^{I}\right)^{m} \rightarrow\left(\mathcal{R}_{A}^{I}\right)^{n} \rightarrow M^{I} \rightarrow 0 .
$$

(iii) $M^{[r, 1)}$ is finitely generated projective if there exists $n \in \mathbb{N}$ independent of $I \in \mathfrak{U}$ such that each M^{I} is generated by at most n elements and each M^{I} is flat over \mathcal{R}_{A}^{I}.

Proof. See Proposition 2.1.13 in [KPX14], whose proof works for any base field and the subsequent Remark 2.1.14. For the convenience of the reader we give a detailed proof of the first part in Lemma A.7 in the appendix. The second and third part are consequences of the first.

We are now able to define L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. In the context of φ_{L}-modules over Robba rings we always assume $r_{L}<r_{0}$. Recall $r_{L}^{1 / q}=|u|$ for $0 \neq u \in L T\left[\pi_{L}\right]$, which ensures that φ_{L} is well-defined on \mathcal{R}_{L}^{I} for any interval $I \subset\left[r_{0}, 1\right)$.

Definition 1.60. Let $r_{L}<r_{0}$. A (projective) φ_{L}-module over $\mathcal{R}_{A}^{r_{0}}=\mathcal{R}_{A}^{\left[r_{0}, 1\right)}$ is a finite (projective) $\mathcal{R}_{A}^{r_{0}}$-module $M^{r_{0}}$ equipped with an isomorphism $\varphi_{L}^{*} M^{r_{0}} \cong M^{r_{0}^{1 / q}}:=$ $M^{r_{0}} \otimes_{\mathcal{R}_{A}^{r_{0}}} \mathcal{R}_{A}^{r_{0}^{1 / q}}$. A φ_{L}-module M over \mathcal{R}_{A} is defined to be the base change of a φ_{L}-module $M^{r_{0}}$ over some $\mathcal{R}_{A}^{r_{0}}$. We call $M^{r_{0}}$ a model of M over $\left[r_{0}, 1\right)$. $A\left(\varphi_{L}, \Gamma_{L}\right)$ module over the above rings is a φ_{L}-module whose model is projective and endowed with a semilinear continuous action of Γ_{L} that commutes with φ_{L}. Here continuous means that for every $m \in M^{[r, s]}:=M^{r_{0}} \otimes_{\mathcal{R}_{A}^{r_{0}}} \mathcal{R}_{A}^{[r, s]}$ the orbit map $\Gamma_{L} \rightarrow M^{[r, s]}$ is continuous for the profinite topology on the left side and the Banach topology on the right-hand side.

We will sometimes use the notation $M^{\left[r_{0}, 1\right)}$ instead of $M^{r_{0}}$ for added clarity.
Remark 1.61. A projective φ_{L}-module over $\mathcal{R}_{A}^{r_{0}}$ is coadmissible. Furthermore given a coadmissible $\mathcal{R}^{r_{0}}$-module $M^{r_{0}}$ together with an isomorphism $\varphi_{L}^{*} M^{r_{0}} \cong M^{r_{0}^{1 / q}}$ it is projective if and only if it is flat.

Proof. The first statement follows from the fact that every finitely generated projective module is finitely presented and any finitely presented module is coadmissible. For every closed interval $[r, s]$ the sections $M^{[r, s]}$ are finitely generated over the Noetherian ring $\mathcal{R}_{A}^{[r, s]}$ and hence finitely presented. The isomorphism $\varphi_{L}^{*} M^{r_{0}} \cong M^{r_{0}^{1 / q}}$ restricts to an isomorphism $\varphi_{L}^{*}\left(M^{I}\right) \cong M^{I^{1 / q}}$, which allows us to shift a given interval $I=\left[r_{0}, s_{0}\right]$ with $s_{0}>r_{0}^{1 / q}$ and conclude that $M^{r_{0}}$ is uniformly finitely presented. Hence by 1.59 (iii) $M^{r_{0}}$ is projective if and only if it is flat.

So far we worked with φ_{L}-modules over $\mathcal{R}_{A}^{[r, 1)}$. In order to reduce the computation of cohomology to the level $[r, s]$ we introduce the notion of a φ_{L}-module over $[r, s]$. Contrary to the case $\left[r, 1\right.$), where $\varphi\left(\mathcal{R}_{A}^{[r, 1)}\right.$) can naturally be viewed as a subring of $\mathcal{R}_{A}^{\left[r^{1 / q}, 1\right)}$, the interval $[r, s]$ gets shifted to $\left[r^{1 / q}, s^{1 / q}\right]$, which means that we can only compare a φ_{L}-module and its pullback after restricting to the overlap $\left[r^{1 / q}, s\right]$ assuming $s \geq r^{1 / q}$. This makes the following definition rather artificial.

Definition 1.62. Let $0<r<s<1$ with $s \geq r^{1 / q}$. A φ_{L}-module over $\mathcal{R}_{A}^{[r, s]}$ is a finitely generated $\mathcal{R}_{A}^{[r, s]}$ module $M^{[r, s]}$ together with an isomorphism

$$
\varphi_{M}^{l i n}: \mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q]}\right.}} \varphi^{*}\left(M^{[r, s]}\right) \cong M^{\left[r^{1 / q}, s\right]}:=\mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{[r, s]}} M^{[r, s]} .
$$

A morphism $f: M^{[r, s]} \rightarrow M^{[r, s]}$ of φ_{L}-modules is a $\mathcal{R}_{A}^{[r, s]}$-linear morphism of the underlying modules such that the diagram

$$
\begin{aligned}
& \mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{[r, s]}} M^{[r, s]} \xrightarrow{\mathrm{id} \otimes f} \mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{[r, s]}} M^{[r, s]} \\
& \downarrow \cong \quad \downarrow \cong \\
& \mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{\left[1^{1 / q, s^{1 / q}}\right.}} \varphi^{*}\left(M^{[r, s]}\right) \xrightarrow{\mathrm{id} \otimes(\mathrm{id} \otimes f)} \mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{\left[{ }^{1 / q} / s^{1 / q}\right.}} \varphi^{*}\left(M^{[r, s]}\right)
\end{aligned}
$$

commutes. We denote by $\varphi_{M}: M^{[r, s]} \rightarrow M^{\left[r^{1 / q}, s\right]}$ the semi-linear map induced by the isomorphism $\varphi_{M}^{l i n}$. When there is no possibility of confusion we simply write φ_{L} instead of φ_{M}.

Lemma 1.63. Let $r \in[0,1)$ and let $s \in\left(r^{1 / q}, 1\right)$. The functor that assigns to a projective φ_{L}-module over $\mathcal{R}_{A}^{[r, 1)}$ its section $M^{[r, s]}=\mathcal{R}_{A}^{[r, s]} \otimes_{\mathcal{R}_{A}^{[r, 1)}} M^{[r, 1)}$ is an exact equivalence of categories between projective φ_{L}-modules over $\mathcal{R}_{A}^{[r, 1)}$ and projective φ_{L}-modules over $[r, s]$.

Proof. We first show essential surjectivity. Let $M^{[r, s]}$ be a φ_{L}-module over $\mathcal{R}_{A}^{[r, s]}$. By assumption $\varphi^{*}\left(M^{[r, s]}\right)=\mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q}\right]} \otimes_{\mathcal{R}_{A}^{[r, s]}, \varphi_{L}} M^{[r, s]}$ is a finitely generated $\mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q}\right]}-$ module and we have an isomorphism

$$
\mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q}\right]}} \varphi^{*}\left(M^{[r, s]}\right) \cong \mathcal{R}_{A}^{\left[r^{1 / q}, s\right]} \otimes_{\mathcal{R}_{A}^{[r, s]}} M^{[r, s]}=M^{\left[r^{1 / q}, s\right]}
$$

The right-hand side being the restriction of $M^{[r, s]}$ to $\operatorname{Sp}(A) \times{ }_{K} \mathbb{B}^{\left[r^{1 / q}, s\right]}$, which is precisely the overlap $\operatorname{Sp}(A) \times_{K} \mathbb{B}^{[r, s]} \cap \operatorname{Sp}(A) \times_{K} \mathbb{B}^{\left[r^{1 / q}, s^{1 / q}\right]}$ by our assumption on s, and thus allows us to glue $M^{[r, s]}$ and $\varphi^{*}\left(M^{[r, s]}\right)$ to a coherent sheaf on $\operatorname{Sp}(A) \times{ }_{K} \mathbb{B}^{\left[r, s^{1 / q}\right]}$, which by Kiehl's theorem is associated to a finitely generated $\mathcal{R}_{A}^{\left[r, s^{1 / q}\right]}$-module that we denote by $M^{\left[r, s^{1 / q}\right]}$. It remains to construct an isomorphism

$$
\mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q}\right]} \otimes_{\mathcal{R}_{A}^{\left[1^{1 / q}, s^{1 / q} / q^{2}\right]}} \varphi^{*}\left(M^{\left[r, s^{1 / q}\right]}\right) \cong \mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q]}\right.} \otimes_{\mathcal{R}_{A}^{\left[r, s^{1 / q]}\right.}} M^{\left[r, s^{1 / q]}\right.} .
$$

Restricting $M^{\left[r, s^{1 / q}\right]}$ to $\left[r^{1 / q}, s^{1 / q}\right]$ gives us

$$
\begin{equation*}
\varphi^{*}\left(M^{[r, s]}\right) \cong \mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q}\right]} \otimes_{\mathcal{R}_{A}^{\left[r, s^{1 / q]}\right.}} M^{\left[r, s^{1 / q]}\right.} \tag{1.4}
\end{equation*}
$$

by construction. To simplify notation let $I:=[r, s]$ and $J:=\left[r, s^{1 / q}\right]$. Consider the commutative diagram

with the horizontal arrows being the natural maps. We can interpret restriction as a pullback along the canonical inclusion. The diagram tells us that the restriction to $I^{1 / q}$ of the φ_{L}-pullback of M^{J} is the φ_{L}-pullback of the restriction of M^{J} to I. In formulae

$$
\mathcal{R}_{A}^{I^{1 / q}} \otimes_{\mathcal{R}_{A}^{J^{1 / q}}} \varphi^{*}\left(M^{J}\right)=\varphi^{*}\left(M^{I}\right)
$$

and plugging in (1.4) gives the desired

$$
\mathcal{R}_{A}^{I^{1 / q}} \otimes_{\mathcal{R}_{A}^{J^{1 / q}}} \varphi^{*}\left(M^{J}\right) \cong \mathcal{R}^{I^{1 / q}} \otimes_{\mathcal{R}_{A}^{J}} M^{J}
$$

Iterating this construction we obtain a φ_{L}-module over $\mathcal{R}_{A}^{[r, 1)}$. Note that this module is finitely generated by 1.59 since each $M^{\left[r^{1 / q^{n}}, s^{\left.1 / q^{n}\right]}\right.}$ is generated by the same number of elements as $M^{[r, s]}$ by construction. To conclude the projectivity of $M^{[r, 1)}$ one uses 1.59 (iii). We next show that the functor is fully faithful. Given a morphism $M^{[r, s]} \rightarrow N^{[r, s]}$ we can apply the previous construction to both modules at the same time and take as a morphism between their φ-pullbacks the φ-pullback of f. These morphisms glue together due to the φ-compatibility of f. If $f=f^{[r, s]}$ is the restricition of a morphism $f^{[r, 1)}: M^{[r, 1)} \rightarrow N^{[r, 1)}$, then this construction yields a morphism $g^{[r, 1)}$ such that $g-f=0$ on every $M^{\left[r^{q^{-k}}, s^{\left.q^{-k}\right]}\right]}$ but then $g=f$ by the coadmissiblity of $M^{[r, 1)}$ and the condition on r, s that ensures that these intervals cover $[r, 1)$. Because $\mathcal{R}_{A}^{[r, 1)} \rightarrow \mathcal{R}_{A}^{[r, s]}$ is flat, the functor $M^{[r, 1)} \mapsto M^{[r, s]}$ is exact. Consider an exact sequence of φ_{L}-modules over $\mathcal{R}_{A}^{[r, s]}$

$$
0 \rightarrow M_{1}^{[r, s]} \rightarrow M_{2}^{[r, s]} \rightarrow M_{3}^{[r, s]} \rightarrow 0
$$

Taking the pullback along $\varphi: \mathcal{R}_{A}^{[r, s]} \rightarrow \mathcal{R}_{A}^{\left[r^{1 / q}, s^{1 / q}\right]}$ remains exact because the $M_{i}^{[r, s]}$ are flat. Hence the induced sequence

$$
0 \rightarrow M_{1}^{[r, 1)} \rightarrow M_{2}^{[r, 1)} \rightarrow M_{3}^{[r, 1)} \rightarrow 0
$$

is exact when restricted to each $\left[r^{q^{-k}}, s^{q^{-k}}\right]$. Finally the global section sequence remains exact by Lemma 1.55 (iii).

Definition 1.64. Following \backslash SV15, Section 2] we define $\psi_{\text {col }}: o_{L} \llbracket T \rrbracket \rightarrow o_{L} \llbracket T \rrbracket$ to be the unique o_{L}-linear endomorphism satisfying

$$
\varphi_{L} \circ \psi_{c o l}(f)(T)=\sum_{a \in L T\left[\pi_{L}\right]} f\left(a+_{L T} T\right)
$$

for all $f \in o_{L} \llbracket T \rrbracket$, where $+_{L T}$ denotes the addition via the Lubin-Tate group law. This endomorphism can be extended to a continuous endomorphism of the Robba ring \mathcal{R}_{L} (cf. [FX12, Section 2.1]), which we denote by the same symbol. We define $\psi_{L T}:=$ $\pi_{L}^{-1} \psi_{\text {col }}$. We use the same symbol for the endomorphism $1 \otimes \psi_{L T}$ of $\mathcal{R}_{A}=A \hat{\otimes}_{L} \mathcal{R}_{L}$.

Note that we have $\psi_{L T} \circ \varphi_{L}=\frac{q}{\pi}$. In particular $\Psi=\frac{\pi}{q} \psi_{L T}$ is a continuous left-inverse of φ_{L}.

Definition 1.65. Using the isomorphism $\varphi_{M}^{*} M^{r_{0}} \cong M^{r_{0}^{1 / q}}$ we define

$$
\psi_{M}: M^{r_{0}^{1 / q}} \cong \mathcal{R}_{A}^{r_{0}^{1 / q}} \otimes_{\mathcal{R}_{A}^{r_{0}, \varphi_{L}}} M^{r_{0}} \rightarrow M^{r_{0}}
$$

by mapping $f \otimes m$ to $\psi_{L T}(f) m$.
Definition 1.66. $A\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} is called L-analytic if its Γ_{L}-action is L-analytic.

Remark 1.67. Let M be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. The dual

$$
M^{*}:=\operatorname{Hom}_{\mathcal{R}_{A}}\left(M, \mathcal{R}_{A}\right)
$$

endowed with the contragradient semi-linear $\left(\varphi_{L}, \Gamma_{L}\right)$-action is a $\left(\varphi_{L}, \Gamma_{L}\right)$-module.
Proof. For any model M^{r} we have canonical isomorphisms

$$
\operatorname{Hom}_{\mathcal{R}_{A}}\left(M, \mathcal{R}_{A}\right)=\operatorname{Hom}_{\mathcal{R}_{A}^{[r, 1)}}\left(M^{[r, 1)}, \mathcal{R}_{A}\right)=\mathcal{R}_{A} \otimes_{\mathcal{R}_{A}^{[r, 1)}} \operatorname{Hom}_{\mathcal{R}_{A}^{[r, 1)}}\left(M^{[r, 1)}, \mathcal{R}_{A}^{[r, 1)}\right)
$$

The first one is given by the adjunction of restriction of scalars and base change while the second one follows from the projectivity of M^{r}. One can then check that $\operatorname{Hom}_{\mathcal{R}_{A}^{[r, 1)}}\left(M^{[r, 1)}, \mathcal{R}_{A}^{[r, 1)}\right)$ is a model for M^{*}.
The problem of analyticity is more subtle. Hence we only treat it in the free case.
Remark 1.68. Let M be a free $\left(\varphi_{L}, \Gamma_{L}\right)$-module of rank d over \mathcal{R}_{A}. Then the map assigning to $\gamma \in \Gamma_{L}$ its representation matrix $\operatorname{Mat}(\gamma) \in \mathrm{GL}_{d}\left(\mathcal{R}_{A}\right)$ with respect to any basis of M is L-analytic (with respect to the subspace topology of the product topology on the space $\left.M_{n}\left(\mathcal{R}_{A}\right) \cong \mathcal{R}_{A}^{n^{2}}\right)$ if and only if M is L-analytic. In this case the dual

$$
M^{*}:=\operatorname{Hom}_{\mathcal{R}_{A}}\left(M, \mathcal{R}_{A}\right)
$$

endowed with the contragradient semi-linear $\left(\varphi_{L}, \Gamma_{L}\right)$-action is also L-analytic.
Proof. We deduce from the definitions that given a locally L-analytic map $\Gamma_{L} \rightarrow W$ into a K-Banach space W and a continuous K-linear map $W \rightarrow E$ into another Banach space E, the composed map $\Gamma_{L} \rightarrow E$ is again L-analytic. Fix a model $M^{[r, 1)}$ of M and a basis $e_{1}, \ldots e_{d}$. These e_{i} are then also a basis of each $M^{[r, s]}$ for any $s \in[r, 1)$. In the remainder fix some s and a $\mathcal{R}_{A}^{[r, s]}$-Banach norm on M. If M is assumed to be L-analytic the orbit map of (the image of) each e_{i} in $M^{[r, s]}$ is locally L-analytic. I.e.
we have a locally L-analytic map $\Gamma_{L} \rightarrow M \cong \mathcal{R}_{A}^{d}$, mapping γ to $\gamma e_{i}=\sum_{j} a_{i j} e_{j}(\gamma)$. Projecting down to the component of e_{j} we see that each of these projections is locally L-analytic. In particular the map $\Gamma_{L} \rightarrow \mathrm{GL}_{d}\left(\mathcal{R}_{A}^{[r, s]}\right)$ is L-analytic with respect to the subspace topology of the product topology on $\left.\mathrm{GL}_{d}\left(\mathcal{R}_{A}^{[r, s]}\right)\right) \subset M_{d}\left(\mathcal{R}_{A}^{[r, s]}\right)$. Now suppose that the matrix describing the Γ_{L} action with respect to some basis e_{1}, \ldots, e_{d} defines an L-analytic map $\gamma \mapsto \operatorname{Mat}(\gamma)$. Then in particular the orbit map of each basis vector e_{i} is L-analytic and we are reduced to showing that the orbit map of \mathcal{R}_{A}-linear combinations of the e_{i} is L-analytic. Let $m=\sum_{i} f_{i} e_{i}$. Since we can instead consider the map

$$
\Gamma_{L} \rightarrow M^{d} \rightarrow M
$$

given by the composite of $\gamma \mapsto\left(\gamma\left(f_{i} e_{i}\right)_{i}\right)$ and $\left(m_{i}\right)_{i} \mapsto \sum_{i} m_{i}$ it suffices to show that $\gamma \mapsto \gamma\left(f_{i} e_{i}\right)$ is L-analytic for each i which can be seen by expanding the orbit maps of f_{i} and e_{i} using that the orbit map of f_{i} is locally L-analytic by example 1.44 and restricting to a joint radius of convergence using that the norm on $M^{[r, s]}$ is \mathcal{R}_{A}-submultiplicative. For the final statement recall that the inversion map $\gamma \mapsto \gamma^{-1}$ is locally L-analytic and the map sending a matrix to its transpose is continuous and K-linear, which implies that the contragradient action on the dual can be represented with respect to the dual basis of a given basis of M by a locally L-analytic matrixvalued function (namely $\gamma \mapsto \gamma\left(\operatorname{Mat}\left(\gamma^{-1}\right)\right)^{t}$) and thus is L-analytic by the first part.

For an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} the fibre at $z \in \operatorname{Sp}(A)$, i.e., the reduction $M_{z}=M / \mathfrak{m}_{z} M$ is an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over $\mathcal{R}_{A / \mathfrak{m}_{z}}$ and it is natural to ask in what sense analyticity can be checked at the fibres. In Proposition A. 27 in the appendix we show that this is the case if A is reduced.

1.4.1 A standard estimate for $\left(\varphi_{L}, \Gamma_{L}\right)$-modules

A recurring theme in KPX14 is the fact than upon restricting M to a closed interval $I=[r, s]$ we have for the operator norm

$$
\|\gamma-1\|_{M^{I}} \xrightarrow{\gamma \rightarrow 1} 0 .
$$

This remains true for our case but in order to study the action of the distribution algebra via the operators $Z_{n}=\varphi^{n-n_{0}}\left(Z_{n_{0}}\right) \in D\left(\Gamma_{n}, K\right)$ we need to estimate the operator norm of these variables. Note that since $D\left(\Gamma_{n}, K\right)$ is a Fréchet space and M^{I} is a Banach space the a priori separately continuous action $D\left(\Gamma_{n}, K\right) \times M^{I}$ is in fact jointly continuous.

Remark 1.69. The induced map $\rho: D\left(\Gamma_{n}, K\right) \rightarrow{\mathcal{E} n d_{K}\left(M^{I}\right) \text {, that maps } \lambda \text { to the }}^{2}$ map mapping $x \rightarrow \lambda x$, is continuous with respect to the operator norm on $\mathcal{E} n d_{K}\left(M^{I}\right)$.

Proof. Let $\varepsilon>0$. Since the multiplication map $D\left(\Gamma_{n}, K\right) \hat{\otimes}_{K} M^{I} \rightarrow M^{I}$ is continuous with respect to the projective tensor product, there is a continuous semi-norm p and
a constant c such that the ball $\left\{v \in D\left(\Gamma_{n}, K\right) \hat{\otimes}_{K} M^{I}, p \otimes|-|_{I}(v) \leq c\right\}$ is mapped into $\left\{m \in M^{I}| | m \mid \leq \varepsilon\right.$. $\}$ If $\lambda \in D\left(\Gamma_{n}, K\right)$ satisfies $p(\lambda) \leq c$, then $p \otimes|-|_{I}(\lambda \otimes n) \leq c$ for any $n \in M^{I}$ with $|n|_{M^{I}} \leq 1$. In conclusion the ball $\left\{\lambda \in D\left(\Gamma_{n}, K\right) \mid p(\lambda) \leq c\right\}$ is mapped into $\left\{F \in \mathcal{E} n d_{K}\left(M^{I}\right) \mid\|F\|_{M^{I}} \leq \varepsilon\right\}$, because for any $x \in M^{I}$ with $|x| \leq 1$ we have $|\rho(\lambda)(x)| \leq \varepsilon$.

Remark 1.70. The sequence $T, \varphi(T), \varphi^{2}(T), \ldots$ converges to 0 with respect to the Fréchet-topology on $\mathcal{R}_{K}^{[0,1)}$.

Proof. By Sch17, Lemma 1.7.7] we have $\varphi^{2 k}(T) \in T \pi_{L}^{k} o_{L} \llbracket T \rrbracket+T^{k} o_{L} \llbracket T \rrbracket$. A small calculation further shows $\varphi^{2 k+1}(T) \in T \pi_{L}^{k} o_{L} \llbracket T \rrbracket+T^{k} o_{L} \llbracket T \rrbracket$. Observe that the r-Gauß norm of any element in $T \pi_{L}^{k} o_{L} \llbracket T \rrbracket+T^{k} o_{L} \llbracket T \rrbracket$ is at $\operatorname{most} \max \left(\left|\pi_{L}\right|^{k} r, r^{k}\right)$ and hence tends to 0 for every $r \in(0,1)$.

Lemma 1.71. Let M be a finitely generated module over \mathcal{R}_{A}^{r} with an L-analytic semi-linear Γ_{L}-action. Fix any closed interval $I=[r, s] \subset[r, 1)$ and any Banach norm on M^{I}.
(i) We have $\|\gamma-1\|_{M^{I}} \xrightarrow{\gamma \rightarrow 1} 0$.
(ii) Furthermore $\left\|Z_{n}\right\|_{M^{I}} \xrightarrow{n \rightarrow \infty} 0$.

Proof. For the first statement let $\varepsilon>0$ and let m_{1}, \ldots, m_{d} be a system of generators of M^{I}. We will show that there exists an open subgroup U such that $\|\gamma-1\|<\varepsilon$ for every $\gamma \in U$. By the continuity of the action we have $\lim _{\gamma \rightarrow 1}(\gamma-1) m_{i}=0$ for every i. Furthermore given $m=\sum_{i} f_{i} m_{i} \in M^{I}$ we can treat each factor $f_{i} m_{i}$ seperately and get

$$
(\gamma-1) f_{i} m_{i}=(\gamma-1)\left(f_{i}\right) m_{i}+\gamma\left(f_{i}\right)(\gamma-1)\left(m_{i}\right) .
$$

We know that $(\gamma-1)\left(m_{i}\right)$ can be made arbitrarily small. It remains to show that $(\gamma-1)\left(f_{i}\right)$ converges to 0 uniformly as $\gamma \rightarrow 1$ and that $\gamma\left(f_{i}\right)$ is bounded. We have $\left|\gamma\left(f_{i}\right)\right|=\left|\gamma\left(f_{i}\right)-f_{i}+f_{i}\right| \leq \max \left(\left|\gamma\left(f_{i}\right)-f_{i}\right|,\left|f_{i}\right|\right)$. It thus suffices to show the statement for $M=\mathcal{R}_{A}$. Since $\mathcal{R}_{K} \otimes_{K} A$ is dense in \mathcal{R}_{A} it suffices to check the corresponding statement there. The case \mathcal{R}_{K} is in [BSX20, Lemma 2.3.5] hence we may find an open subgroup U such that the result holds for $A=K$ and every $\gamma \in U$. Let $v=\sum_{i} f_{i} \otimes a_{i}$ be some representation of $v \in \mathcal{R}_{K}^{I} \otimes_{K} A$. We get $(\gamma-1) v=\sum_{i}(\gamma-1) f_{i} \otimes a_{i}$ and thus $|(\gamma-1) v| \leq \max \varepsilon\left|f_{i}\right|\left|a_{i}\right|$. Since this holds for any representation of v we get $|(\gamma-1) v| \leq \varepsilon|v|$, which proves the statement. For the second statement we combine Remark 1.70 and Remark 1.69 to conclude that given $\varepsilon>0$ there exists k_{0} such that $\left\|\varphi^{k}\left(Z_{n_{0}}\right)\right\|_{M^{I}}<\varepsilon$ for any $k \geq k_{0}$. Since $Z_{n}=\varphi^{n-n_{0}}\left(Z_{n_{0}}\right)$ the conclusion follows.

Remark 1.72. In the classical case one works with the variable $\gamma-1$ and 1.71 (ii) is an immediate consequence of the continuity of the Γ_{L} action since $\varphi_{\text {cyc }}(\gamma-1)=$ $(1+(\gamma-1))^{p}-1=\gamma^{p}-1$.

1.4.2 Duality

Definition 1.73. Let $f=\sum_{i} a_{i} T^{i} \in \mathcal{R}_{A}$ we define $\operatorname{res}(f):=a_{-1} \in A$. We obtain an A-linear map $\mathcal{R}_{A} \xrightarrow{\text { res }} A$.

This result is well-covered in the literature when A is a (discretely valued) field (see for instance Cre98, Chapter 5]). The case of general A is similar due to 1.25 .

Proposition 1.74. Consider the bilinear map $\mathcal{R}_{A} \times \mathcal{R}_{A} \rightarrow A$, mapping (f, g) to $\operatorname{res}(f g)$. This induces topological isomorphisms (for the strong topologies 3^{3})

$$
\begin{gathered}
\operatorname{Hom}_{A, c t s}\left(\mathcal{R}_{A}, A\right) \cong \mathcal{R}_{A} \\
\operatorname{Hom}_{A, c t s}\left(\mathcal{R}_{A}^{+}, A\right) \cong \mathcal{R}_{A} / \mathcal{R}_{A}^{+}
\end{gathered}
$$

and

$$
\operatorname{Hom}_{A, c t s}\left(\mathcal{R}_{A} / \mathcal{R}_{A}^{+}, A\right) \cong \mathcal{R}_{A}^{+} .
$$

Proof. Let $\mu \in \operatorname{Hom}_{A, c t s}\left(\mathcal{R}_{A}, A\right)$. We define a Laurent series $f_{\mu}:=\sum_{n \in \mathbb{Z}} \mu\left(T^{-1-n}\right) T^{n}$. On the other hand to $h \in \mathcal{R}_{A}$ we assign the functional $\operatorname{can}(h): g \mapsto \operatorname{res}(h g)$. We first show that f_{μ} is well-defined. Because μ is continuous it remains continuous when we restrict to any $\mathcal{R}^{[r, 1)}$ with respect to the Fréchet topology. In particular we may find some $r<s<1$ and $\varepsilon>0$ such that $\left|\mu\left(U_{\varepsilon,[r, s]}\right)\right| \leq 1$ where $U_{\varepsilon,[r, s]}$ denotes the "closed" ball with radius ε with respect to the Banach norm $|\cdot|_{[r, s]}$. Assume without loss of generality that $\varepsilon, r, s \in\left|K^{\times}\right|$and let $\eta, \rho, \sigma \in K$ be elements satisfying $|\eta|=\varepsilon$ (resp. for $r, s)$. Then $T^{n} \eta \sigma^{-n}$ and $T^{-n} \eta \rho^{n}$ belong to $U_{\varepsilon,[r, s]}$ for every $n \geq 0$. We deduce

$$
\begin{equation*}
\left|\mu\left(T^{n}\right)\right| \leq \max \left\{\varepsilon^{-1} r^{n}, \varepsilon^{-1} s^{n}\right\} \tag{1.5}
\end{equation*}
$$

for every $n \in \mathbb{Z}$. Next we need to refine the estimate for negative n. Note that for any ρ^{\prime} with $\left|\rho^{\prime}\right|>|\rho|=r$. We also get $T^{n} \eta\left(\rho^{\prime}\right)^{-n} \in U_{\varepsilon,[r, s]}$ for negative n. If we fix n and let $\left(\rho_{m}^{\prime}\right)_{m}$ converge to 1 we obtain $\left|\mu\left(T^{n}\right)\right| \leq \limsup _{m} \varepsilon^{-1}\left|\left(\rho_{m}^{\prime}\right)^{n}\right|=\varepsilon^{-1}$. It suffices to prove that the series $\sum_{i} \mu\left(T^{-i}\right) T^{i}$ belongs to \mathcal{R}_{A} since it differs from f_{μ} by the unit $T \in \mathcal{R}_{K}^{\times}$. For $n \geq 0$ we have $\left|\mu\left(T^{-n}\right)\right| \leq \varepsilon^{-1}$ by the improved estimate. Therefore the non-principal part of the Laurent series converges for $|T|<1$. For the principal part we have $\left|\mu\left(T^{n}\right)\right| \leq \varepsilon^{-1}\left|\sigma^{n}\right|=\varepsilon^{-1} s^{n}$. This shows $f_{\mu} \in \mathcal{R}_{A}^{[t, 1)}$ for any $t>s$. Next we show that $\mu \mapsto f_{\mu}$ is inverse to the map can(-). On the one hand given $g=\sum_{n} a_{n} T^{n}$ we have $f_{\text {can }}=\sum_{n} \operatorname{res}\left(g T^{-1-n} T^{n}\right)=\sum a_{n} T^{n}=g$. On the other hand given $\operatorname{can}\left(f_{\mu}\right)(g)=\sum_{n} \operatorname{can}\left(f_{\mu}\right)\left(a_{n} T^{n}\right)=\sum_{n} a_{n} \mu\left(T^{n}\right)=\mu(g)$. Futhermore f_{μ} belongs to \mathcal{R}_{A}^{+}if and only if the coefficients of the principal part (i.e. $\mu\left(T^{n}\right)$ for $\left.n \geq 0\right)$ vanish. This is the case if and only if $\mu\left(\mathcal{R}_{A}^{+}\right)=0$. Regarding the topologies we sketch how to deduce the general case from the case $A=L$ (treated by [Cre98]) by showing that for $E \in\left\{\mathcal{R}_{L}, \mathcal{R}_{L} / \mathcal{R}_{L}^{+}, \mathcal{R}_{L}^{+}\right\}$we have a canonical isomorphism $\operatorname{Hom}_{A, \text { cts }}\left(A \hat{\otimes}_{L, \pi} E, A\right) \cong \operatorname{Hom}_{L, c t s}(E, A)=\mathcal{L}_{b}(E, A)$, which allows us to deduce the

[^4]general statement from the known case using $E \hat{\otimes}_{L, \pi} A \cong \mathcal{L}_{b}\left(E^{\prime}, A\right)$ (as was seen in 1.23). ${ }^{4}$ We define the maps as follows: Let $f: A \hat{\otimes}_{L, \pi} E \rightarrow A$ be a continuous A-linear homomorphism. Set $\tilde{f}: E \rightarrow A \otimes_{L, \pi} E \rightarrow A \hat{\otimes}_{L, \pi} E \rightarrow A$. Given by mapping e to $1 \otimes e$ and post-composing with the natural map. By PGS10, Theorem 10.3.9] since $\|1\|_{A}=1$ the first map is a homeomorphic embedding (in particular continuous). On the other hand let $h: E \rightarrow A$ be continuous L-linear then h extends uniquely to an A-linear map $A \otimes_{L} E \rightarrow A$ and it remains to check that it is continuous. As we saw in 1.23 it suffices to check separate continuity, which is clear. Due to A being complete h extends uniquely to a continuous A-linear map $h_{A}: A \hat{\otimes}_{L, \pi} E \rightarrow A$. Clearly $f \rightarrow \tilde{f}$ and $h \rightarrow h_{A}$ are inverse to one another. It remains to check continuity with respect to the corresponding strong topologies. For that purpose we denote by A_{0} the unit ball inside A. Let $B \subset A \hat{\otimes} E$ be a bounded set and suppose $f(B) \subset A_{0}$, then (again using PGS10, Theorem 10.3.9]) the preimage \tilde{B} of $B \cap 1 \otimes E$ in E is bounded and by construction $\tilde{f}(\tilde{B}) \subset A_{0}$. On the other hand let $B^{\prime} \subset E$ be bounded and suppose $h\left(B^{\prime}\right) \subset A_{0}$. Then the closure B_{A} of $\operatorname{span}_{o_{L}}\left\{x \otimes y \mid x \in A_{0}, y \in B\right\}$ is bounded in $A \hat{\otimes}_{L, \pi} E$ and by construction $h_{A}\left(B_{A}\right) \subset A_{0}$.

Proposition 1.75. Let M be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} and consider the dual $M:=\operatorname{Hom}_{\mathcal{R}_{L}}\left(M, \mathcal{R}_{A}\left(\chi_{L T}\right)\right)$. The canonical pairing

$$
\check{M} \times M \rightarrow \mathcal{R}_{A}\left(\chi_{L T}\right)
$$

is perfect and by post-composing with the residue map gives a bilinear pairing

$$
\check{M} \times M \xrightarrow{\langle\cdot \cdot,\rangle} A
$$

identifying $\check{M}($ resp. $M)$ with $\operatorname{Hom}_{A, \text { cts }}(\check{M}, A)\left(\operatorname{Hom}_{A, c t s}(M, A)\right)$ with respect to the strong topology, satisfying

1. $\left\langle\varphi_{L}(\check{m}), \varphi_{L}(m)\right\rangle=\frac{q}{\pi_{L}}\langle\check{m}, m\rangle$
2. $\langle\sigma \check{m}, \sigma m\rangle=\langle\check{m}, m\rangle$
3. $\left\langle\psi_{L T}(\check{m}), m\right\rangle=\left\langle\check{m}, \varphi_{L}(m)\right\rangle$

For all $\sigma \in \Gamma_{L}, \check{m} \in \check{M}$ and $m \in M$.
Proof. The perfectness of the first pairing is well-known since M is finitely generated and projective. The properties of the pairing are proved in [SV15, Section 3] for the ring ${\widehat{o_{L}((T))}}^{p \text {-adic }}$ and their proofs carry over to this case. By writing M as a direct summand of a finitely generated free module the identification of duals follows from the free case by induction over the rank from 1.74 .

[^5]
1.4.3 Sen-Theory

We do not give a conceptual treatment of Sen-Theory and instead present some adhoc results that allow us to view a $\left(\varphi_{L}, \Gamma_{L}\right)$-module M^{r} over \mathcal{R}_{K}^{r} as a Γ_{L}-submodule of a finite projective $\left(L_{n} \otimes K\right) \llbracket t_{L T} \rrbracket$-module $D_{\text {dif,n }}^{+}(M)$ for a suitable $n \in \mathbb{N}$, which is technically useful because the latter module is a projective limit of finite- K-dimensional Γ_{L}-representations namely $D_{\text {dif }, n}^{+}(M) /\left(t_{L T}^{k}\right)$. The name "Sen-Theory" stems from the fact that these modules are the analogues of their counterparts in classical SenTheory (more precisely its extension to $B_{d R}$-representations) for (φ_{L}, Γ_{L})-modules which arise from Fontaine's equivalence of categories. For $n \in \mathbb{N}$ let $K_{n}:=K \otimes_{L} L_{n}$ and fix a non-trivial compatible system u_{n} of π_{L}^{n}-torsion points of the Lubin-Tate group. We endow K_{n} with its canonical K-Banach space topology and endow $K_{n} \llbracket t_{L T} \rrbracket=\lim _{k} K_{n} \llbracket t_{L T} \rrbracket /\left(t_{L T}^{k}\right)$ with the projective limit topology of the canonical topologies on each term. Since $t_{L T}=\log _{L T}(T)$ has no constant term and nonvanishing derivative in 0 the induced maps

$$
K_{n} \llbracket t_{L T} \rrbracket /\left(t_{L T}^{k}\right) \rightarrow K_{n} \llbracket T \rrbracket /\left(T^{k}\right)
$$

are isomorphisms of finite dimensional K-vector spaces and hence topological for the respective canonical topologies. We obtain that the natural map

$$
K_{n} \llbracket t_{L T} \rrbracket \rightarrow K_{n} \llbracket T \rrbracket
$$

is an isomorphism if we endow the right-hand side with its weak topology. The definition for ι_{n} below is taken from Col16, Section 1.4.2].

Lemma 1.76. Let $n \in \mathbb{N}$ and let $r^{(n)}=\left|u_{n}\right|$ then

$$
\begin{aligned}
\iota_{n}: \mathcal{R}_{K}^{\left[r^{(n)}, 1\right)} & \rightarrow K_{n} \llbracket t_{L T} \rrbracket \\
T & \mapsto \iota_{n}(T),
\end{aligned}
$$

given by $\iota_{n}(T):=u_{n}+{ }_{L T} \exp _{L T}\left(\pi_{L}^{-n} \log _{L T}(T)\right)$, is well-defined, injective and $\Gamma_{L^{-}}$ equivariant, where Γ_{L} acts on the right-hand side via the trivial action on K, the Galois action on L_{n} and the usual action (via $\chi_{L T}$) on $t_{L T}$.

Proof. The convergence, injectivity and Γ_{L}-equivariance of ι_{n} in the cyclotomic case with $K=L=\mathbb{Q}_{p}$ is known (see Ber02, Proposition 2.25 and the remark before $2.35]$) and can be analogously proved for the Robba $\operatorname{ring} \mathcal{R}_{L}$ over L. The map over $\mathcal{R}_{K}^{\left[r^{(n)}, 1\right)}$ arises by applying $K \hat{\otimes}_{L, \pi}$ to the version over the spherically complete L. We apply [Eme17, 1.1.26] to conclude that the induced map remains injective using that K as an L-Banach space is automatically bornological. The compatibility with the actions is preserved, since we let Γ_{L} act trivially on K.

Definition 1.77. Let M be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K} with model $M^{r^{(n)}}$ over $\left[r^{(n)}, 1\right)$ with $r^{(n)}$ as in 1.76 . We define $\mathbb{D}_{\text {dif,n }}^{+}(M):=K_{n} \llbracket t_{L T} \rrbracket \otimes_{\iota_{n}, \mathcal{R}_{K}^{[r(n), 1)}} M^{r^{(n)}}$.

Remark 1.78. Let M be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K} with model $M^{r^{(n)}}$ over $\left[r^{(n)}, 1\right)$ with $r^{(n)}$ as in 1.76. Then the natural map

$$
M^{r^{(n)}} \rightarrow \mathbb{D}_{d i f, n}^{+}(M)
$$

is injective and Γ_{L}-equivariant.
Proof. Using that $M^{r^{(n)}}$ is projective the statement follows by tensoring the injective and Γ_{L}-equivariant map ι_{n} with $M^{r^{(n)}}$.

1.5 Étale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules

In this section we give a brief overview on étale modules over the p-adic completion \mathbf{A}_{L} of $o_{L}((T))$. We denote by $\operatorname{Rep}_{o_{L}}\left(G_{L}\right)$ the category of finitely generated o_{L}-modules with o_{L}-linear continuous (with respect to the p-adic topology) G_{L}-action. Similary let $\operatorname{Rep}_{L}\left(G_{L}\right)$ be the category of finite dimensional L-vector space with continuous L-linear G_{L}-action. We denote by \mathbb{C}_{p}^{b} the tilt of \mathbb{C}_{p} and for an o_{L}-algebra R we write $W(R)_{L}$ for the ring of ramified Witt vectors.

Definition 1.79. $A\left(\varphi_{L}, \Gamma_{L}\right)$-module D over \mathbf{A}_{L} is a finitely generated \mathbf{A}_{L}-module with a φ_{L}-semi-linear map φ_{D} and a semi-linear action of Γ_{L} commuting with φ_{D}, such that Γ_{L} acts continuously with respect to the weak topology. D is called étale if the linearised map $\mathbf{A}_{L} \otimes_{\mathbf{A}_{L}, \varphi_{L}} D \rightarrow D$, mapping $a \otimes d$ to a $\varphi_{D}(d)$ is an isomorphism. Analogously we define $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over $\mathbf{B}_{L}:=\mathbf{A}_{L}[1 / p]$. Such a module is called étale if it arises as a base change of an étale $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathbf{A}_{L}.
Remark 1.80. Fixing a choice of generator of $\lim _{\gtrless_{n}} L T\left[\pi_{L}^{n}\right]$ leads to a canonical continuous Γ_{L}-equivariant embedding

$$
\iota: \mathbf{A}_{L} \rightarrow\left(W\left(\mathbb{C}_{p}^{b}\right)_{L}\right)^{H_{L}}
$$

such that $\iota \varphi_{L}(f)=\operatorname{Frob}_{q}(\iota(f))$, whose image is independent of the choice. This embedding extends to an embedding of the p-adic completion of the maximal unramified extension \mathbf{A} of \mathbf{A}_{L} into $W\left(\mathbb{C}_{p}^{b}\right)_{L}$.
Proof. See Sch17, Proposition 2.1.16, Remark 2.1.17 and Remark 3.1.4].
By abuse of notation we write φ_{L} for the Frobenius operator on $W\left(\mathbb{C}_{p}^{b}\right)_{L}$, which is justified due to 1.80 .

Theorem 1.81. The functors

$$
V \mapsto \mathbb{D}(V):=\left(\mathbf{A} \otimes_{o_{L}} V\right)^{H_{L}}
$$

and

$$
D \mapsto \mathbb{V}(D):=\left(\mathbf{A} \otimes_{\mathbf{A}_{L}} D\right)^{\varphi_{L}=1}
$$

are quasi-inverse and give an equivalence of categories between $\operatorname{Rep}_{o_{L}}\left(G_{L}\right)$ and the category of étale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over \mathbf{A}_{L}. This equivalence is exact and respects duals, torsion-sub-objects and tensor products and inverting p induces an equivalence of categories between $\operatorname{Rep}_{L}\left(G_{L}\right)$ and the category of étale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over \mathbf{B}_{L}.

Proof. See [Sch17, Theorem 3.3.10].
In more generality one has for F / L finite a similar equivalence for $\operatorname{Rep}_{o_{L}}\left(G_{F}\right)$ but throughout this thesis only concern ourselves with the case $F=L$. The rings \mathbf{B}_{L} and \mathcal{R}_{L} are not directly comparable because the series in \mathbf{A}_{L} do not necessarily converge on some annulus and on the other hand the coefficients of a series in \mathcal{R}_{L} are not necessarily bounded. However both rings contain the rings

$$
\mathbf{B}_{L}^{\dagger, r}:=\left\{f=\sum_{k \in \mathbb{Z}} a_{k} T^{k}\left|\lim _{k \rightarrow-\infty}\right| a_{k} \mid r^{k}=0 \text { and } \sup _{k}\left|a_{k}\right|<\infty\right\}
$$

and their union \mathbf{B}_{L}^{\dagger}.
Definition 1.82. $A\left(\varphi_{L}, \Gamma_{L}\right)$-module D over \mathbf{B}_{L} is called overconvergent if it admits a basis such that the matrices of φ_{L} and all $\gamma \in \Gamma_{L}$ have entries in \mathbf{B}_{L}^{\dagger}. The \mathbf{B}_{L}^{\dagger}-span of this basis is denoted by D^{\dagger}. A representation $V \in \operatorname{Rep}_{L}\left(G_{L}\right)$ is called overconvergent if $\mathbb{D}(V)$ is overconvergent. V is called L-analytic if $\mathbb{C}_{p} \otimes_{L, \sigma} V$ is isomorphic to the trivial \mathbb{C}_{p}-semilinear representation $\mathbb{C}_{p}^{\operatorname{dim}_{L}(V)}$ for every embedding $\sigma: L \rightarrow \mathbb{C}_{p}$ with $\sigma \neq \mathrm{id}$. If V is overconvergent, we set $\mathbb{D}_{\text {rig }}^{\dagger}(V):=\mathcal{R}_{L} \otimes_{\mathbf{B}_{L}^{\dagger}} \mathbb{D}^{\dagger}(V)$.

By [FX12, Proposition 1.6] étale $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over \mathcal{R}_{L} always descend to \mathbf{B}_{L}^{\dagger}. But contrary to the classical cyclotomic situation there exist representations that are not overconvergent (cf. FX12, Theorem 0.6]) and hence the category of $\left(\varphi_{L}, \Gamma_{L}\right)$ modules over \mathcal{R}_{L} is in some sense insufficient to study representations. Remarkably restricting to L-analytic objects on both sides alleviates this problem.

Definition 1.83. Let $\rho: L^{\times} \rightarrow L^{\times}$be a continuous character. We define $\mathcal{R}_{L}(\rho)=$ $\mathcal{R}_{L} e_{\rho}$ as the free rank $1\left(\varphi_{L}, \Gamma_{L}\right)$-module with basis e_{ρ} and action given as $\varphi_{L}\left(e_{\rho}\right)=$ $\rho\left(\pi_{L}\right) e_{\rho}$ and $\gamma\left(e_{\rho}\right)=\rho\left(\chi_{L T}(\gamma)\right) e_{\rho}$. For $i \in \mathbb{Z}$ we write $\mathcal{R}_{L}\left(x^{i}\right)$ as shorthand for the $\left(\varphi_{L}, \Gamma_{L}\right)$-module associated to the character $x \mapsto x^{i}$.

Remark 1.84. Let M be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{L} of rank 1 . Then there exists a character $\rho: L^{\times} \rightarrow L^{\times}$such that M is isomorphic to $\mathcal{R}_{L}(\rho)$. The module is L-analytic if and only if $\rho_{\rho_{L}^{\times}}$is locally L-analytic.
Proof. See FX12, Proposition 1.9].
Definition 1.85. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{L}. If $M \cong \mathcal{R}_{L}(\rho)$ has rank 1 we define

$$
\operatorname{deg}(M):=\operatorname{val}_{\pi_{L}}\left(\rho\left(\pi_{L}\right)\right)
$$

In general we define $\operatorname{deg}(M):=\operatorname{deg}\left(\Lambda^{\operatorname{rank}(M)} M\right)$ and finally the slope $\mu(M):=$ $\operatorname{deg}(M) / \operatorname{rank}(M)]^{5} M$ is called isoclinic if $\mu(N) \geq \mu(M)$ for every subobject N of $M . M$ is called étale if it is isomorphic to the $\left(\varphi_{L}, \Gamma_{L}\right)$-module $\mathbb{D}_{\text {rig }}^{\dagger}(V)$ attached to some L-analytic G_{L}-representation V.

[^6]Theorem 1.86 (Kedlaya/ Berger). Every non-zero (L-analytic) (φ_{L}, Γ_{L})-module M possesses a unique functorial filtration

$$
0=M_{0} \subsetneq M_{1} \cdots \subsetneq M_{d}=M
$$

such that the succesive quotients M_{i} / M_{i-1} are isoclinic (L-analytic) $\left(\varphi_{L}, \Gamma_{L}\right.$)-modules and $\mu\left(M_{1} / M_{0}\right)<\cdots<\mu\left(M_{d} / M_{d-1}\right)$. Furthermore the functor $V \mapsto D_{\text {rig }}^{\dagger}(V)$ defines an equivalence of categories between the category of L-analytic L-linear G_{L} representations and the full subcategory of L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules that are isoclinic of slope 0 .

Proof. From [Ked05, Theorem 6.4.1] we obtain a unique filtration by (so-called) saturated φ_{L}-modules M_{i}. By the uniqueness of the filtration the additional Γ_{L}-structure is inherited by the modules in the filtration. Note that if M is assumed to be L analytic, then so are the M_{i} in its Harder-Narasimhan filtration. The requirement in loc. cit. for the sub-modules $M_{i} \subseteq M$ to be saturated is equivalent to the requirement that $M_{i} \subset M_{i+1}$ is a \mathcal{R}_{L}-direct summand (c.f. Pot20, $\left.\S 8.1\right]$), which is equivalent to requiring that M_{i} / M_{i+1} is again projectiv ϵ^{6} i.e. a (φ_{L}, Γ_{L})-module. The statement regarding étale modules is [Ber16, Theorem 10.4]. Berger defines the notion of étale differently. The fact that being étale is equivalent to being isoclinic of slope 0 is implicit in the proof of 10.1. ibidem.

[^7]
Chapter 2

The kernel of ψ

In this chapter we study the Γ_{L}-action on the kernel of the operator $\psi=\psi_{M}$ (defined in 1.64) for an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module M. For the whole chapter fix $r_{0} \in(0,1)$ such that M comes from a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}$. We wish to show that $M^{\psi=0}$ is a finite projective module over the relative group Robba ring $\mathcal{R}_{A}\left(\Gamma_{L}\right)$. For a closed interval I we always view the continuous K-linear endomorphisms $\mathcal{E} n d_{K}\left(M^{I}\right)$ as a Banach space endowed with the operator norm. We denote by $\mathcal{E} n d_{A}\left(M^{I}\right)$ the A subalgebra of continuous A-linear endomorphisms.

2.1 Some technical preparation.

Lemma 2.1. Let V be a K-Banach space and let $F, G \in \mathcal{E} n d_{K}(V)$ such that G is invertible and

$$
\|F-G\|<\left\|G^{-1}\right\|^{-1}
$$

Then F is invertible.
Proof. By assumption the operator

$$
\left(1-F G^{-1}\right)=-(F-G) G^{-1}
$$

has operator norm <1 hence the series

$$
\sum_{k \geq 0}\left(1-F G^{-1}\right)^{k}
$$

converges to an inverse of $F \circ G^{-1}$ with respect to the operator norm. Using that G is invertible we conclude that F has to be invertible as well.

Lemma 2.2. Let R be an A-Banach algebra, i.e. a complete normed A-Algebra. Let B be a K-Banach algebra and let $H: B \rightarrow R$ be a continuous K-algebra homomorphism. Then it extends to a continuous A-linear homomorphism

$$
A \hat{\otimes}_{K} B \rightarrow R .
$$

Proof. Let $a \in A$ and define a K-bilinear map $A \times B \rightarrow R$ by mapping (a, b) to $a H(b)$. Using that R is a topological A-module and the map H is continuous one verifies that this map is separately continuous. Since A and B are Banach-spaces the inductive and projective tensor product topology agree and due to the completeness of R we obtain an extension

$$
A \hat{\otimes}_{K} B \rightarrow R .
$$

This extension is a K-algebra homomorphism because $\lambda H(b)=H(\lambda b)$ for any $b \in K$ and furthermore it is A-linear by construction.
Remark 2.3. Let I be closed then $\mathcal{E} n d_{A}\left(M^{I}\right)$ is an A-Banach algebra
Proof. It suffices to prove that $\mathcal{E} n d_{A}\left(M^{I}\right)$ is a closed subspace of the K-Banach algebra $\mathcal{E} n d_{K}\left(M^{I}\right)$. For any $a \in A$ denote by the same symbol the multiplication-by-a-map. Then $\theta_{a}: \mathcal{E} n d_{K}\left(M^{I}\right) \rightarrow \mathcal{E} n d_{K}\left(M^{I}\right)$ mapping f to $a f-f a$ is continuous with respect to the operator norm and an endomorphism is A-linear if and only if it lies in the closed subspace $\bigcap_{a \in A} \operatorname{ker}\left(\theta_{a}\right)$.

2.2 The group Robba ring and the structure of $M^{\psi=0}$.

A key observation is the following decomposition.
Lemma 2.4. We have

$$
\mathcal{R}_{K}^{[r, s]} \cong \bigoplus_{a \in o_{L} / \pi_{L}^{n}} \varphi_{L}^{n}\left(\mathcal{R}_{K}^{\left[r^{q^{n}}, s^{q^{n}}\right]}\right) \eta(a, T)
$$

Proof. See Col16, Proposition 1.4].
We now define the relative Robba group ring $\mathcal{R}_{A}\left(\Gamma_{L}\right)$.
Definition 2.5. From the isomorphism $\chi_{L T}: \Gamma_{L} \rightarrow o_{L}^{\times}$we get a canonical filtration $\Gamma_{L}=\Gamma_{0} \supset \Gamma_{1} \supset \Gamma_{2} \supset \ldots$ by defining $\Gamma_{n}:=\chi_{L T}^{-1}\left(1+\pi_{L}^{n} o_{L}\right)$ for $n \geq 1$. For n large enough we have an isomorphism $\Gamma_{n} \cong \pi_{L}^{n} o_{L}$ by mapping γ to $\log \left(\chi_{L T}(\gamma)\right)$. Let n_{0} be minimal with this property. Define charts $l_{n}: \Gamma_{n} \xrightarrow{\log \left(\chi_{L T}(\cdot)\right)} \pi_{L}^{n} o_{L} \xrightarrow{\cong} o_{L}$, where the second arrow is given by dividing by π_{L}^{n}. This induces an isomorphim of Fréchet algebras

$$
D\left(o_{L}, K\right) \cong D\left(\Gamma_{n}, K\right)
$$

Using the isomorphism from 1.27 we can view the right-hand side as a ring of convergent power series in the variable Z_{n} from 1.37. By transport of structure we define the ring extensions $\mathcal{R}_{K}\left(\Gamma_{n}\right) \cong \mathcal{R}_{K}$ and $\mathcal{R}_{K}^{I}\left(\Gamma_{n}\right) \cong \mathcal{R}_{K}^{I}$. Denoting by $i_{n+m}: \Gamma_{n+m} \rightarrow \Gamma_{n}$ the natural inclusion for $m \geq 0$ we get a commutative diagram

$$
\begin{aligned}
& o_{L} \xrightarrow{l_{n+m}^{-1}} \Gamma_{n+m} \\
& \int_{L}^{\pi_{L}^{m}} \\
& o_{L} \xrightarrow{l_{n}^{-1}} \int_{n+m}^{\iota_{n+m}} \\
& \Gamma_{n},
\end{aligned}
$$

which induces a commutative diagram

$$
\begin{aligned}
D\left(o_{L}, K\right) & \xrightarrow{\left(l_{n+m}^{-1}\right)_{*}} D\left(\Gamma_{n+m}, K\right) \\
\quad \downarrow_{L}\left(\pi_{L}^{m}\right)_{*} & \int_{l+m}\left(l_{+m}\right)_{*} \\
D\left(o_{L}, K\right) \xrightarrow{\left(l_{n}^{-1}\right)_{*}} & D\left(\Gamma_{n}, K\right) .
\end{aligned}
$$

Using the isomorphism $\mathcal{R}^{+} \cong D\left(o_{L}, K\right)$ and the fact that $\left(\pi_{L}\right)_{*}$ corresponds to the $\operatorname{map} \varphi_{L}$ we get a commutative diagram

$$
\begin{gathered}
\mathcal{R}_{K}^{I^{q^{m}}} \xrightarrow{\left(l_{n+m}^{-1}\right)_{*}} \mathcal{R}_{K}^{I^{q^{m}}}\left(\Gamma_{n+m}\right) \\
\int_{L}^{\varphi_{L}^{m}} \\
\mathcal{R}_{K}^{I} \xrightarrow{\left(l_{n}^{-1}\right)_{*}} \xrightarrow{\int^{\left(l_{l+m}\right)_{*}}} \mathcal{R}_{K}^{I}\left(\Gamma_{n}\right)
\end{gathered}
$$

and by taking limits a corresponding diagram

$$
\begin{aligned}
& \mathcal{R}_{K} \xrightarrow{\left(l_{n+m}^{-1}\right)_{*}} \mathcal{R}_{K}\left(\Gamma_{n+m}\right) \\
& \int_{L} \varphi_{L}^{m} \\
& \boldsymbol{\mathcal { R }}_{K} \xrightarrow{\left(l_{n}^{-1}\right)_{*}}{ }^{\left(l_{l+m}\right)_{*}} \mathcal{R}_{K}\left(\Gamma_{n}\right) .
\end{aligned}
$$

By mapping $\gamma \in \Gamma_{n}$ to its Dirac distribution we obtain a canonical map $\Gamma_{n} \rightarrow$ $D\left(\Gamma_{n}, K\right)^{\times}$. By transport of structure from 2.4 we see that the natural maps induce topologicall isomorphisms

$$
\mathcal{R}_{K}^{I^{q^{m}}}\left(\Gamma_{n+m}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n+m}\right]} \mathbb{Z}\left[\Gamma_{n}\right] \rightarrow \mathcal{R}_{K}^{I}\left(\Gamma_{n}\right)
$$

and

$$
\mathcal{R}_{K}\left(\Gamma_{n+m}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n+m}\right]} \mathbb{Z}\left[\Gamma_{n}\right] \rightarrow \mathcal{R}_{K}\left(\Gamma_{n}\right) .
$$

This allows us to extend our definitions to $0 \leq n \leq n_{0}$ by setting

$$
\mathcal{R}_{K}^{I}\left(\Gamma_{n}\right):=\mathcal{R}_{K}^{I^{n^{n}-n}}\left(\Gamma_{n_{0}}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n_{0}}\right]} \mathbb{Z}\left[\Gamma_{n}\right]
$$

and

$$
\mathcal{R}_{K}\left(\Gamma_{n}\right):=\mathcal{R}_{K}\left(\Gamma_{n_{0}}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n_{0}}\right]} \mathbb{Z}\left[\Gamma_{n}\right],
$$

where the topology is given by the product topology with respect to the decomposition of $\mathbb{Z}\left[\Gamma_{n}\right]$. Finally in the relative case we define $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$ as the completed tensor product $\mathcal{R}_{K}^{I}\left(\Gamma_{n}\right) \hat{\otimes}_{K} A$ endowed with the tensor product norm and $\mathcal{R}_{A}\left(\Gamma_{n}\right)$ via

$$
\mathcal{R}_{A}\left(\Gamma_{n}\right):=\lim _{0 \leq r<1} \lim _{r<s<1} \mathcal{R}_{A}^{[r, s]}\left(\Gamma_{n}\right)
$$

[^8]Remark 2.6. $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{n}\right)$ is a Fréchet-Stein algebra.
Proof. If $n \geq n_{0}$ the statement is clear by transport of structure. If $n<n_{0}$ we recall the decomposition

$$
\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)=\mathcal{R}_{A}^{I q^{n_{0}-n}}\left(\Gamma_{n_{0}}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n_{0}}\right]} \mathbb{Z}\left[\Gamma_{n}\right] .
$$

Take a sequence $r=r_{0}, r_{1}, \ldots$ converging to 1 , let $I_{k}:=\left[r_{0}, r_{k}\right]$ and let $\tilde{I}_{k}:=I_{k}^{q^{n_{0}-n}}$. We know that $\mathcal{R}_{A}^{[r, 1)^{q^{n_{0}-n}}}$ is Fréchet-Stein and hence the maps $\mathcal{R}_{A}^{\tilde{I}_{k+1}} \rightarrow \mathcal{R}_{A}^{\tilde{I}_{k}}$ are flat with dense image. Since $\mathbb{Z}\left[\Gamma_{n}\right]$ is free over $\mathbb{Z}\left[\Gamma_{n_{0}}\right]$ and hence flat these properties remain for the induced maps

$$
\mathcal{R}_{A}^{\tilde{I}_{k+1}}\left(\Gamma_{n_{0}}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n_{0}}\right]} \mathbb{Z}\left[\Gamma_{n}\right] \rightarrow \mathcal{R}_{A}^{\tilde{I}_{k}}\left(\Gamma_{n_{0}}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n_{0}}\right]} \mathbb{Z}\left[\Gamma_{n}\right]
$$

The resulting rings are finite modules over the Noetherian rings $\mathcal{R}_{A}^{\tilde{I}_{k+1}}\left(\Gamma_{n_{0}}\right)$ hence themselves Noetherian.

Note that we change the radius of convergence while also changing the group. This stems from the fact that, using suitable charts for $o_{L} \cong \Gamma_{n} \subset \Gamma_{L}$, the subgroup Γ_{n+1} corresponds to the index q subgroup $\pi_{L} o_{L}$ and multiplication by π_{L} corresponds to φ_{L} via the Fourier isomorphism. This rule of thumb does not apply at the level $\Gamma_{1} \subset \Gamma_{L}=\Gamma_{0}$, where $\left[\Gamma_{L}: \Gamma_{1}\right]=q-1$. In Proposition 2.8 it will become apparent, why this convention on radii makes sense for studying the action on $\operatorname{ker}(\psi)$. Another caveat, we would like to point out, is the fact that contrary to the cyclotomic case the notions of r-convergent distributions (introduced in 1.45) and " I-convergent" distributions $\mathcal{R}_{A}^{I}\left(\Gamma_{L}\right)$ are not related in an obvious way (outside of certain special cases). See BSX20, Section 1.3] for a precise description of the relationship.

Lemma 2.7. Let M be a φ_{L}-Module over \mathcal{R}_{A} together with a model M_{0} over $\mathcal{R}_{A}^{r_{0}}$. Then for $r, s \geq r_{0}^{1 / q^{n}}$ we have

$$
M^{[r, s]} \cong \bigoplus_{a \in o_{L} / \pi_{L}^{n}} \eta(a, T) \varphi_{M}^{n} M^{\left[r^{q^{n}}, s^{q^{n}}\right]} .
$$

Proof. Because the linearised map is an isomorphism we get

$$
\begin{align*}
M^{[r, s]} & \cong \mathcal{R}_{A}^{[r, s]} \otimes_{\mathcal{R}_{A}^{[r, s]}, \varphi_{L}^{n}} M^{\left[r q^{n}, s^{q^{n}}\right]} \tag{2.1}\\
& \cong\left(\bigoplus_{a \in o_{L} / \pi_{L}^{n}} \varphi_{L}^{n}\left(\mathcal{R}^{\left[r^{q}, s^{q}\right]}\right) \eta(a, T)\right) \otimes_{\mathcal{R}_{A}^{\left[r q^{n}\right.}, s^{\left.q^{n}\right]}, \varphi_{L}^{n}} M^{\left[r^{q^{n}}, s^{q^{n}}\right]} \tag{2.2}\\
& \cong \bigoplus_{a \in o_{L} / \pi_{L}^{n}} \eta(a, T) \varphi_{M}^{n} M^{\left[r^{n}, s s^{q^{n}}\right]} . \tag{2.3}
\end{align*}
$$

In order to prove Theorem 2.19 we will need a several base change formulae. These allow us, roughly speaking, to change the interval $[r, s]$ to an interval $[r, s]^{n^{n}}$, by replacing $M^{[r, s]}$ with $\varphi^{n} M^{\left[r^{q^{n}}, s^{q^{n}}\right]}$.

Proposition 2.8. Let $I=[r, s]$ be an interval such that ψ_{M} is defined on $M^{I^{1 / q^{n}}}$. We have

$$
\left(M^{I^{1 / q^{n}}}\right)^{\psi=0} \cong \mathbb{Z}\left[\Gamma_{L}\right] \otimes_{\mathbb{Z}\left[\Gamma_{n}\right]} \eta(1, T) \varphi_{M}^{n} M^{I}
$$

and

$$
\left(M^{\left[r^{1 / q^{n}}, 1\right)}\right)^{\psi=0} \cong \mathbb{Z}\left[\Gamma_{L}\right] \otimes_{\mathbb{Z}\left[\Gamma_{n}\right]} \eta(1, T) \varphi_{M}^{n} M^{[r, 1)}
$$

Proof. From 2.7 we get a decomposition

$$
M^{I^{1 / q^{n}}} \cong \bigoplus_{a \in o_{L} / \pi_{L}^{n}} \eta(a, T) \varphi_{M}^{n} M^{I}
$$

Recall that $\frac{\pi_{L}}{q} \psi_{L T}(\eta(i, T))=\eta\left(\frac{i}{\pi_{L}}\right)$ if $i \in \pi_{L} o_{L}$ and 0 otherwise. Furthermore for $a \in o_{L}^{\times} \cong \Gamma_{L}$ we have $\eta(a, T)=\eta\left(\chi_{L T}\left(\chi_{L T}^{-1}(a)\right), T\right)=\chi_{L T}^{-1}(a) \eta(1, T)$. Because $\chi_{L T}^{-1}(a) \in \Gamma_{L}$ induces an automorphism of M^{I} and commutes with φ_{M} we get $\chi_{L T}^{-1}(a)\left(\eta(1, T) \varphi_{M}^{n} M^{I}\right)=\eta(a, T) \varphi^{n} M^{I}$. Combining everything we get

$$
\begin{aligned}
\left(M^{I^{1 / q^{n}}}\right)^{\psi=0} & \cong \bigoplus_{a \in\left(o_{L} / \pi_{L}^{n} o_{L}\right)^{\times}} \eta(a, T) \varphi^{n} M^{I} \\
& =\bigoplus_{a \in\left(o_{L} / \pi_{L}^{n} o_{L}\right)^{\times}} \chi_{L T}^{-1}(a)\left(\eta(1, T) \varphi^{n} M^{I}\right) \\
& =\bigoplus_{\gamma \in \Gamma_{L} / \Gamma_{n}} \gamma\left(\eta(1, T) \varphi^{n} M^{I}\right) \\
& \cong \mathbb{Z}\left[\Gamma_{L}\right] \otimes_{\mathbb{Z}\left[\Gamma_{n}\right]} \eta(1, T) \varphi_{M}^{n} M^{I}
\end{aligned}
$$

This proves the first formula. The second formula follows by passing to the limit $s \rightarrow 1$.

These results show that we have to understand the Γ_{L}-action on $\eta(1, T) \varphi^{n}\left(M^{I}\right)$. Let $\gamma \in \Gamma_{n}$ such that $\left(\chi_{L T}(\gamma)-1\right)$ is divisible by π_{L}^{n}. We compute

$$
\left.\gamma\left(\eta(1, T) \varphi^{n}(m)\right)=\eta\left(\chi_{L T}(\gamma), T\right) \varphi^{n}(\gamma m)\right)=\eta(1, T) \varphi^{n}\left(\eta\left(\frac{\chi_{L T}(\gamma)-1}{\pi_{L}^{n}}, T\right) \gamma m\right)
$$

We may thus equivalently study the action of Γ_{n} on M^{I} given by

$$
\begin{align*}
H_{n}: \Gamma_{n} & \rightarrow{\mathcal{E} n d_{A}\left(M^{I}\right)}^{\gamma} \mapsto\left[m \mapsto\left(\eta\left(\frac{\chi_{L T}(\gamma)-1}{\pi_{L}^{n}}, T\right) \gamma m\right]\right. \tag{2.4}
\end{align*}
$$

Leaning on the results of SV20 we shall extend this action to an action of $A \hat{\otimes}_{K} D\left(\Gamma_{n}, K\right)$. Note that we deviate from their notation. We always use T for the variable of \mathcal{R}_{A} acting via multiplication on M and use Z_{n} for the variable of $D\left(\Gamma_{n}, K\right)$ whenever $n \geq n_{0}$ acting on M via continuous extension of the $K\left[\Gamma_{L}\right]$-action.

2.3 The action via H_{n}.

We explain how to extend the H_{n}-action to $A \hat{\otimes}_{K} D\left(\Gamma_{n}, K\right)$. Since the Γ_{L}-action is A linear it is natural to expect that this extension arises as a base change of an extension to $D\left(\Gamma_{n}, K\right)$. Such an extension is constructed in [SV20, p. 50, Discussion after 2.29] for the case $A=K$. If we forget the A-action and think of modules over \mathcal{R}_{A} by considering their underlying topological vector space we arrive at a similar situation. Strictly speaking the underlying \mathcal{R}_{K}-module of a (φ_{L}, Γ_{L})-module over \mathcal{R}_{A} is not a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K} since it is not finitely generated. For this reason the results of [SV20] are not directly applicable and we sketch the construction for the convenience of the reader.

In the following I denotes one of the intervals $\left[r_{0}, r_{0}\right],\left[r_{0}, r_{0}^{1 / q}\right]$. For $m \geq 0$ set $\mathfrak{r}_{\mathfrak{m}}:=$ $p^{\frac{-1}{p^{m}}}$. We fix an integer m_{0} such that for any $m \geq m_{0}$ we have $r_{0}^{1 / q}<\mathfrak{r}_{m}$ and

$$
\begin{equation*}
|\eta(x, T)-1|_{I}<\mathfrak{r}_{m} . \tag{2.6}
\end{equation*}
$$

This is possible due to Proposition 1.48. Furthermore Lemma 1.71 (i) allows us to choose $n_{1} \geq n_{0}$ such that

$$
\begin{equation*}
\|\gamma-1\|_{M^{I}}<\mathfrak{r}_{m_{0}} . \tag{2.7}
\end{equation*}
$$

for any $\gamma \in \Gamma_{n_{1}}$ with respect to a fixed Banach-module norm on M^{I}.
Proposition 2.9. The Γ_{n}-action on M^{I} via H_{n} extends to a continuous ring homomorphism

$$
H_{n}: D_{\mathfrak{r}_{m}}\left(\Gamma_{n}, K\right) \rightarrow{\mathcal{E} n d_{A}}\left(M^{I}\right)
$$

for any $m \geq m_{0}$ and $n \geq n_{1}$.
Proof. We first construct an extension that we denote by the same symbol

$$
H_{n}: D_{\mathfrak{r}_{\mathfrak{m}}}\left(\Gamma_{n}, K\right) \rightarrow \mathcal{E} n d_{K}\left(M^{I}\right),
$$

which is induced by mapping a $\gamma-1$ to $H_{n}(\gamma)-1$. Since M is assumed to be L analytic and the map $\gamma \mapsto \pi_{L}^{-n}\left(\eta\left(\chi_{L T}(\gamma)-1\right), T\right.$) (as a function $\Gamma_{n} \rightarrow \mathcal{R}_{K}^{+}$) is locally L-analytic one checks that the action via H_{n} is L-analytic. It thus suffices to extend the action to an action of $D_{\mathbb{Q}_{p}, \mathfrak{r}_{\mathbf{m}}}\left(\Gamma_{n}, K\right)$ as the latter will factor as desired

$$
H_{n}: D_{\mathbb{Q}_{\mathrm{p}}, \mathrm{r}_{\mathrm{m}}}\left(\Gamma_{n}, K\right) \xrightarrow{\text { can }} D_{\mathrm{r}_{\mathrm{m}}}\left(\Gamma_{n}, K\right) \rightarrow \mathcal{E} n d_{K}\left(M^{I}\right) .
$$

Let $\lambda \in D_{\mathbb{Q}_{p}, r_{\mathrm{m}}}\left(\Gamma_{n}, K\right)$ and let $\mathbf{b}=\left(\gamma_{1}-1, \ldots, \gamma_{d}-1\right)$, where $\gamma_{1}, \ldots, \gamma_{d}$ is a \mathbb{Z}_{p}-basis of Γ_{n}. Recall that λ admits a convergent expansion

$$
\lambda=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} \mathbf{b}^{\mathbf{k}} .
$$

We are reduced to showing that the operator

$$
H_{n}(\lambda):=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} H_{n}\left(\mathbf{b}^{\mathbf{k}}\right)
$$

converges with respect to the operator norm on M^{I}. Knowing that $\left|a_{\mathbf{k}}\right| \mathfrak{r}_{m}^{|\mathbf{k}|}$ tends to zero it suffices due to the sub-multiplicativity of the operator norm to show $\left\|H_{n}\left(\mathbf{b}^{\mathbf{k}}\right)\right\|_{M^{I}} \leq \mathfrak{r}_{m}$ for any \mathbf{k} with $|\mathbf{k}|=1$, in particular, it suffices to show

$$
\left\|H_{n}(\gamma-1)\right\|_{M^{I}} \leq \mathfrak{r}_{m}
$$

for any $\gamma \in \Gamma_{m}$. We write out

$$
H_{n}(\gamma-1) m=\eta\left(\frac{\chi_{L T}(\gamma)-1}{\pi_{L}^{n}}, T\right)(\gamma m-m)+\left(\eta\left(\frac{\chi_{L T}(\gamma)-1}{\pi_{L}^{n}}, T\right)-1\right) m .
$$

The assumptions (2.6) and (2.7) assert that both summands are bounded above by $\mathfrak{r}_{m}\|m\|_{M^{I}}$. We conclude that the series defining $H_{n}(\lambda)$ converges with respect to the operator norm. Our proof also shows that $\lambda \mapsto H_{n}(\lambda)$ is bounded with operator norm bounded by 1 , which shows that the extension we constructed is continuous. The assumption that γ acts \mathcal{R}_{A}-semi-linearly guarantees in particular that $\gamma-1$ acts A-linearly for any $\gamma \in \Gamma_{L}$ using 2.3 we conclude that the image of this extension is contained in $\mathcal{E} n d_{A}\left(M^{I}\right)$.

Corollary 2.10. The Γ_{n}-action on M^{I} via H_{n} extends to a continuous ring homomorphism

$$
H_{n}: A \hat{\otimes}_{K} D_{\mathfrak{r}_{m}}\left(\Gamma_{n}, K\right) \rightarrow \mathcal{E} n d_{A}\left(M^{I}\right)
$$

for any $m \geq m_{0}$ and $n \geq n_{1}$. Passing to the limit with respect to m we obtain the desired extension

$$
H_{n}: A \hat{\otimes}_{K} D\left(\Gamma_{n}, K\right) \rightarrow \mathcal{E} n d_{A}\left(M^{I}\right) .
$$

Proof. For the first part apply 2.2 in conjunction with 2.9. We have $D\left(\Gamma_{n}, K\right)=$ $\lim _{m} D_{\mathfrak{r}_{m}}\left(\Gamma_{n}, K\right)$ and using 1.15 we conclude that

$$
A \hat{\otimes}_{K} D\left(\Gamma_{n}, K\right) \cong{\underset{\zeta}{m}}_{\lim _{m}} A \hat{\otimes} D_{\mathfrak{r}_{m}}\left(\Gamma_{n}, K\right) .
$$

We may increase m such that $\mathfrak{r}_{m}>r_{0}^{1 / q}$. In this case using 1.47 we can extend the scalar action of $\mathcal{O}_{K}(\mathbb{B})$ to an action of $D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(\Gamma_{n}, K\right)$ that we call scalar action via

$$
\mathfrak{S}_{n}: D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(\Gamma_{n}, K\right) \xrightarrow{l_{n} *} D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(o_{L}, K\right) \xrightarrow{\text { proj }} D_{\mathfrak{r}_{m}}\left(o_{L}, K\right) \xrightarrow{L T} \mathcal{O}_{K}\left(\mathbb{B}^{I}\right) .
$$

If we denote by Z_{n} a preimage of T in $D\left(\Gamma_{n}, K\right)$ and by X_{n} a lift to $D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(\Gamma_{n}, K\right)$ then by construction $\mathfrak{S}_{n}\left(X_{n}\right)$ acts as multiplication by T on M^{I}. Since $0 \notin I$ we know that the action of T on M^{I} is invertible and the goal is to compare the action of $H_{n}\left(X_{n}\right)=H_{n}\left(Z_{n}\right)$ with $\mathfrak{S}_{n}\left(X_{n}\right)=T$. The following lemma allows us to choose a sequence of lifts whose \mathfrak{r}_{m}-norms do not depend on n.

Lemma 2.11. Fix a lift $X_{n_{1}}$ of $Z_{n_{1}}$ to $D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(\Gamma_{n_{1}}, K\right)$. Then there exists a sequence $X_{n_{1}+l} \in D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(\Gamma_{n_{1}+l}, K\right)$ such that $X_{n_{1}+l}$ is a lift of $Z_{n_{1}+l} \in D\left(\Gamma_{n_{1}+l}, K\right)$ and

$$
\left|X_{n_{1}+l}\right|_{D_{\mathbb{Q}_{p}, \mathrm{r}_{m}}\left(\Gamma_{n_{1}+l}, K\right)}=\left|X_{n_{1}}\right|_{D_{\mathbb{Q}_{p}, \mathrm{r}_{m}}\left(\Gamma_{n_{1}}, K\right)}
$$

for every $l \geq 0$.
Proof. The charts satisfy $l_{n}=\pi_{L} l_{n+1}$ for every $n \geq n_{0}$. Transporting the problem to o_{L} and arguing inductively it suffices to show that given $\lambda \in D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(o_{L}, K\right)$ there exists an element $\tilde{\lambda} \in D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}}\left(\pi_{L} o_{L}, K\right)$, whose projection to $D\left(\pi_{L} o_{L}, K\right)$ is equal to $\pi_{L *}(\bar{\lambda})$, such that $\tilde{\lambda}$ satisfies

$$
|\tilde{\lambda}|_{D_{Q_{p}, r_{m}}\left(\pi_{L} o_{L}, K\right)}=|\lambda|_{D_{Q_{p}, r_{m}}\left(o_{L}, K\right)} .
$$

We claim that $\pi_{L *}(\lambda)$ has the desired properties. Given a \mathbb{Z}_{p}-basis b_{1}, \ldots, b_{d} of o_{L} the elements $\pi_{L} b_{1}, \ldots, \pi_{L} b_{d}$ form a basis $\pi_{L} o_{L}$. Since the \mathfrak{r}_{m}-norm is independent of the choice of basis we see that the isomorphism

$$
D_{\mathbb{Q}_{p}}\left(o_{L}, K\right) \rightarrow D_{\mathbb{Q}_{p}}\left(\pi_{L} o_{L}, K\right)
$$

induced by the isomorphism $o_{L} \cong \pi_{L} o_{L}$ given by multiplication-by- π_{L} is isometric with respect to the respective \mathfrak{r}_{m}-norms hence extends to an isometric isomorphism of the respective completions.

Lemma 2.12. There exists $n_{2} \geq n_{1}$ such that the map H_{n} constructed above extends to continuous ring homomorphism

$$
\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right) \rightarrow \mathcal{E} n d_{A}\left(M^{I}\right)
$$

for any $n \geq n_{2}$.
Proof. Lemma 2.11 allows us to fix a sequence of elements X_{n} lifting Z_{n} such that $C=\left|X_{n}\right|_{D_{\mathbb{Q}_{p}, \mathfrak{r}_{m}\left(\Gamma_{n}, K\right)}}$ is independent of $n \geq n_{1}$. Let $0<\varepsilon<\min \left(r_{0} / C, 1\right)$. Having fixed such a sequence we assume that n_{2} is large enough such that the following assumptions are satisfied:
A. $1\|\gamma-1\|_{M^{I}}<\varepsilon r_{0}^{1 / q}$ for every $\gamma \in \Gamma_{n_{2}}$.
A. 2 Choose $l=l(\varepsilon)$ such that $\|[a]-\mathrm{id}\|_{\mathcal{R}_{A}^{I}}<\varepsilon$ for every $a \in 1+\pi_{L}^{l} o_{L}$.
A. $3 \frac{1+\pi_{L}^{n_{2}} x}{x \pi_{L}^{n_{2}}}=1-\frac{\pi_{L}^{n_{2} x}}{2}+\ldots$ belongs to $1+\pi_{L}^{l} o_{L}$.

The first two conditions can be achieved by using 1.71 applied to M^{I} and \mathcal{R}_{A}^{I} respectively. The third one can be achieved by making n_{2} large enough after having chosen l. Let $n \geq n_{2}$ and fix a \mathbb{Z}_{p}-basis $\gamma_{1}, \ldots, \gamma_{d}$ of Γ_{n}. Write

$$
X_{n}=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}}\left(\delta_{\gamma_{i}}-1\right)^{\mathbf{k}}
$$

by construction we have $C=\sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right| \mathfrak{r}_{m}^{|\mathbf{k}|}$. We claim

$$
\left\|H_{n}\left(X_{n}\right)-\mathfrak{S}_{n}\left(X_{n}\right)\right\|_{M^{I}}<r_{0}=\left|T^{-1}\right|_{I}^{-1} \leq\left\|T^{-1}\right\|_{M^{I}}^{-1} .
$$

We abbreviate $\alpha(\gamma)=l_{n}(\gamma)=\log \left(\chi_{L T}(\gamma)\right) / \pi_{L}^{n}$ and denote by β the chart $\beta(\gamma)=$ $\frac{\chi_{L T}(\gamma)-1}{\pi_{L}^{n}}$. By construction

$$
H_{n}(\gamma-1)=\eta(\beta(\gamma), T)(\gamma-1)+(\eta(\beta(\gamma), T)-1)
$$

and

$$
\mathfrak{S}_{n}(\gamma-1)=\eta(\alpha(\gamma), T)-1
$$

We first show

$$
\left\|H_{n}(\gamma-1)^{k}-\mathfrak{S}_{n}(\gamma-1)^{k}\right\|_{M^{I}}<\varepsilon\left(r_{0}^{1 / q}\right)^{k} .
$$

We have

$$
\left\|H_{n}(\gamma-1)\right\|_{M^{I}} \leq \sup \left(\|\eta(\beta(\gamma), T)(\gamma-1)\|_{M^{I}},\|\eta(\beta(\gamma), T)-1\|_{M^{I}}\right)<r_{0}^{1 / q}
$$

and

$$
\|\eta(\alpha(\gamma), T)-1\|_{M^{I}} \leq|\eta(\alpha(\gamma), T)-1|_{I}<r_{0}^{1 / q}
$$

using that $|\eta(a, T)-1|_{I}<r_{0}^{1 / q}$ and $|\eta(a, T)|_{I}=1$ for any $a \in o_{L}$, the assumption A. 1 together with $\varepsilon<1$. This allows us to reduce the claim to the case $k=1$ by writing for $x=\gamma-1$

$$
\begin{align*}
& H_{n}(x)^{k}-\mathfrak{S}_{n}(x)^{k} \\
= & H_{n}(x)\left(H_{n}(x)^{k-1}-\mathfrak{S}_{n}(x)^{k-1}\right)+\mathfrak{S}_{n}(x)^{k-1}\left(H_{n}(x)-\mathfrak{S}_{n}(x)\right) . \tag{2.8}
\end{align*}
$$

If $k=1$ we have

$$
\begin{align*}
H_{n}(\gamma-1)-\mathfrak{S}_{n}(\gamma-1) & =\eta(\beta(\gamma), T)(\gamma-1)+(\eta(\alpha(\gamma), T)-1)-(\eta(\beta(\gamma), T)-1) \tag{2.9}\\
& =\eta(\beta(\gamma), T)(\gamma-1)+([u(\gamma)]-1)(\eta(\alpha(\gamma), T-1) . \tag{2.10}
\end{align*}
$$

Where $u(\gamma)=\beta(\gamma) / \alpha(\gamma)$, which due A.3 belongs to $1+\pi_{L}^{l} o_{L}$ using that $\eta(\beta(\gamma), T)=$ $\eta(\alpha(\gamma) u(\gamma), T)=[u(\gamma)](\eta(\alpha(\gamma), T))$ and the fact that 1 is fixed by the $\Gamma_{L^{-}}$-action. The assumptions A. 1 and A. 2 ensure that both terms can be estimated by $\varepsilon r_{0}^{1 / q}$. Let $\mathbf{b}=\left(\gamma_{1}-1, \ldots, \gamma_{d}-1\right)$. We next prove

$$
\left\|H_{n}(\mathbf{b})^{\mathbf{k}}-\mathfrak{S}_{n}(\mathbf{b})^{\mathbf{k}}\right\|<\varepsilon\left(r_{0}^{1 / q}\right)^{|\mathbf{k}|}
$$

for any multi-index $\mathbf{k} \in \mathbb{N}_{0}^{d}$ by induction on the number h of non-zero components of \mathbf{k}. We already treated the case $h=1$ and may therefore split $\mathbf{k}=\left(k_{1}, 0, \ldots, 0\right)+$ $\left(0, k_{2}, k_{3}, \ldots, k_{d}\right)$ and assume that the corresponding estimate holds for $\mathbf{i}=\left(k_{1}, 0, \ldots, 0\right)$ and $\mathbf{j}=\left(0, k_{2}, k_{3}, \ldots, k_{d}\right)$. Using the same trick as in (2.8) we rewrite

$$
\begin{aligned}
& H_{n}(\mathbf{b})^{\mathbf{k}}-\mathfrak{S}_{n}(\mathbf{b})^{\mathbf{k}} \\
& =H_{n}(\mathbf{b})^{\mathbf{j}}\left(H_{n}(\mathbf{b})^{\mathbf{i}}-\mathfrak{S}_{n}(\mathbf{b})^{\mathbf{i}}\right)+\mathfrak{S}_{n}(\mathbf{b})^{\mathbf{i}}\left(H_{n}(\mathbf{b})^{\mathbf{j}}-\mathfrak{S}_{n}(\mathbf{b})^{\mathbf{j}}\right)
\end{aligned}
$$

and use the estimates $\left\|H_{n}(\mathbf{b})^{1}\right\|<\left(r_{0}^{1 / q}\right)^{|\boldsymbol{l}|}\left(\right.$ resp. $\left.\left\|\mathfrak{S}_{n}(\mathbf{b})^{1}\right\|<\left(r_{0}^{1 / q}\right)^{|l|}\right)$ that can be obtained in the same way as in the case $h=1$. Putting everything together we obtain the final estimate

$$
\begin{align*}
\left\|H_{n}\left(X_{n}\right)-\mathfrak{S}_{n}\left(X_{n}\right)\right\| & \leq \sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right|\left\|H_{n}(\mathbf{b})^{\mathbf{k}}-\mathfrak{S}_{n}(\mathbf{b})^{\mathbf{k}}\right\| \tag{2.11}\\
& <\varepsilon \sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right|\left(r_{0}^{1 / q}\right)^{|\mathbf{k}|} \tag{2.12}\\
& <\varepsilon \sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right| \mathfrak{r}_{m}^{|\mathbf{k}|}=\varepsilon C<r_{0} . \tag{2.13}
\end{align*}
$$

Using 2.1 we conclude that $H_{n}\left(Z_{n}\right)$ is invertible and its inverse given by

$$
H_{n}\left(Z_{n}\right)^{-1}=T^{-1}\left(\left(T^{-1} H_{n}\left(Z_{n}\right)-1\right)+1\right)^{-1}=T^{-1} \sum_{k \geq 0}\left(1-T^{-1} H_{n}\left(Z_{n}\right)\right)^{k}
$$

has operator norm

$$
\left\|H\left(Z_{n}\right)^{-1}\right\|_{M^{I}} \leq\left\|T^{-1}\right\|_{M^{I}}
$$

and satisfies

$$
\left\|H_{n}\left(Z_{n}\right)^{-1}-T^{-1}\right\|_{M^{I}}<\left\|T^{-1}\right\|_{M^{I}}
$$

which follows from the estimate (2.13), which asserts that the expression in the geometric series has operator norm less than 1. From (2.13) and the strict triangle inequality we further conclude

$$
\left\|H_{n}\left(Z_{n}\right)\right\|_{M^{I}}=\left\|H_{n}\left(Z_{n}\right)-T+T\right\|_{M^{I}} \leq\|T\|_{M^{I}}
$$

which means that given $f(T) \in \mathcal{R}_{A}^{I}$ the operator $f\left(H_{n}\left(Z_{n}\right)\right)$ converges to an operator on M^{I} of operator norm bounded by $|f|_{I}$. In particular we obtained the desired continuous homomorphism

$$
\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right) \rightarrow \mathcal{E} n d_{A}\left(M^{I}\right)
$$

given by mapping Z_{n} to $H_{n}\left(Z_{n}\right)$.
Remark 2.13. Let $n \geq n_{2}$ and let $f \in \mathcal{R}_{A}^{I}$. We have

$$
\left\|f\left(H_{n}\left(Z_{n}\right)\right)-f(T)\right\|_{M^{I}}<\|f(T)\|_{I}
$$

Proof. We show that

$$
\left\|H_{n}\left(Z_{n}\right)^{ \pm k}-T^{ \pm k}\right\|_{M^{I}}<\left\|T^{ \pm k}\right\|_{I}
$$

holds for every $k \in \mathbb{N}$. The case $k=0$ is trivial and the case $k=1$ has been treated in the proof of 2.12. We proceed inductively by expressing

$$
H_{n}(Z)^{ \pm 1^{k}}-T^{ \pm 1^{k}}=H_{n}(Z)^{ \pm 1(k-1)}\left(H_{n}(Z)^{ \pm 1}-T^{ \pm 1}\right)+T^{ \pm 1}\left(H_{n}(Z)^{ \pm 1(k-1)}-T^{ \pm 1(k-1)}\right)
$$

and using the estimates $\left\|H_{n}\left(Z_{n}\right)^{ \pm j}\right\|_{M^{I}} \leq\left\|T^{ \pm}\right\|_{M^{I}}^{j} \leq\left|T^{ \pm}\right|_{I}^{j}=\left|T^{ \pm j}\right|_{I}$ for $j \in\{1, k-1\}$ that were obtained implicitly in the proof of 2.12. Note that $\left|T^{ \pm j}\right|_{I}=\left|T^{ \pm}\right|_{I}^{j}$ by definition of the I-norm.

Lemma 2.14. M^{I} is finite projective with respect to the $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$-module structure induced by H_{n} of the same rank as M^{I} over \mathcal{R}_{A}^{I}. Any system of generators of M^{I} as a \mathcal{R}_{A}^{I}-module also generates M^{I} as a $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$-module (via H_{n}).

Proof. Choose N^{I} (and a Banach norm on N^{I}) such that $M^{I} \oplus N^{I}=\left(\mathcal{R}_{A}^{I}\right)^{d}=$ $\bigoplus_{i=1}^{d} \mathcal{R}_{A}^{I} e_{i}$ endowed with the sup-norm of the norms on M^{I} and N^{I}. We endow N^{I} with a tautological $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$-module structure by letting the variable $Z=Z_{n} \in$ $D\left(\Gamma_{n}, K\right)$ act as multiplication by $T \in \mathcal{R}_{A}^{I}$. Then the estimate from Remark 2.13 remains valid for N^{I}, since $H_{n}(Z)-T$ acts as zero on N^{I} by construction. Fix a basis of $M^{I} \oplus N^{I}$ and define

$$
\begin{align*}
\Phi: M^{I} \oplus N^{I} & \rightarrow\left(\mathcal{R}_{A}^{I}\right)^{d} \tag{2.14}\\
\sum f_{i}(T) v_{i} & \mapsto f_{i}(T) e_{i} \tag{2.15}
\end{align*}
$$

and

$$
\begin{aligned}
\Psi:\left(\mathcal{R}_{A}^{I}\right)^{d} & \rightarrow\left(\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)\right)^{d} \\
\sum f_{i}(T) e_{i} \mapsto N^{I} & \mapsto f_{i}\left(Z_{n}\right) e_{i}
\end{aligned}>\sum f_{i}\left(H_{n}(Z)\right)\left(v_{i}\right) . . ~ \$
$$

By construction Φ is a topological isomorphism and $\Psi \circ \Phi$ is an endomorphism of $M^{I} \oplus N^{I}$ leaving both M^{I} and N^{I} invariant. We claim

$$
\|\Psi \circ \Phi-1\|_{M^{I} \oplus N^{I}}<1 .
$$

This implies that $\Psi \circ \Phi$ is an automorphism, but then Ψ has to be an isomorphism. In particular the map $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)^{d} \rightarrow M^{I} \oplus N^{I}$ has to be an isomorphism, which shows the projectivity and the second part of the statement. For the estimation observe that $\Psi \circ \Phi-1$ is 0 on N^{I}, hence we only need to concern ourselves with M^{I}, where the estimate follows from 2.13. Regarding the rank we compute

$$
\begin{aligned}
\operatorname{rank}_{\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)}\left(M^{I}\right) & =\operatorname{rank}_{\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)}\left(M^{I} \oplus N^{I}\right)-\operatorname{rank}_{\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)}\left(N^{I}\right) \\
& =\operatorname{rank}_{\mathcal{R}_{A}^{I}}\left(M^{I} \oplus N^{I}\right)-\operatorname{rank}_{\mathcal{R}_{A}^{I}}\left(N^{I}\right) \\
& =\operatorname{rank}_{\mathcal{R}_{A}^{I}}\left(M^{I}\right),
\end{aligned}
$$

using additivity of ranks in the first and third equation. The second equality follows by construction since on the one hand $M^{I} \oplus N^{I}$ is isomorphic to $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)^{d}$ and on the other hand N^{I} is viewed as a $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$-module via transport of structure along the isomorphism $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right) \cong \mathcal{R}_{A}^{I}$. The statement about the generators follows from the fact that $\Psi \circ \Phi$ respects the decomposition $M^{I} \oplus N^{I}$ in the sense that M^{I} (resp. N^{I}) is mapped into itself. Hence if M^{I} admits a system of generators that lifts to a basis v_{i} of $M^{I} \oplus N^{I}$ the statement becomes clear since we have shown that these form a basis of the $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$-module $M^{I} \oplus N^{I}$ (with action via H_{n}). Having chosen some system of generators $\left(m_{1}, \ldots, m_{d}\right)$ of M^{I} we can always find a suitable N^{I} such that the m_{i} are projections of a basis of $\left(\mathcal{R}_{A}^{I}\right)^{d}$ by taking the surjection $\left(\mathcal{R}_{A}^{I}\right)^{d} \rightarrow M^{I}$ given by mapping $e_{i} \rightarrow m_{i}$ and splitting it using the projectivity of M^{I}.

2.4 Interpreting the results

We now explain how these results translate to the original module. We found it convenient to introduce the following abstract notation.

Definition 2.15. Let $I \in\{[r, s],[r, 1)\}$ with $r \geq r_{0}$ and let $n \in \mathbb{N}$. We say that M satisfies property $\mathcal{P}(n, I)$ with respect to a system of generators $m_{1}, \ldots, m_{d} \in$ M^{I} if the $A\left[\Gamma_{n}\right]$-action on $\eta(1, T) \varphi^{n}\left(M^{I}\right)$ extends to an action of $\mathcal{R}_{A}^{I}\left(\Gamma_{n}\right)$ with respect to which M^{I} is projective and finitely generated by the elements $\eta(1, T) \varphi^{n}\left(m_{i}\right), i=$ $1, \ldots, d$.

This notion depends on the choice of system of generators. Since we assumed that M admits a model over $\left[r_{0}, 1\right)$ we may fix a system of generators m_{1}, \ldots, m_{d} of $M^{\left[r_{0}, 1\right)}$. For any $I \subset\left[r_{0}, 1\right)$ we take the images of m_{i} as a choice of system of generators for M^{I}. To keep notation simple in the following we refer to $\mathcal{P}(n, I)$ with respect to this choice of generating system.

Proposition 2.16. Let $I \subset\left[r_{0}, 1\right)$ be an interval, $l, n \in \mathbb{N}$ and let $\left(I_{k}\right)_{k}$ be an admissible covering of $\left[r_{0}, 1\right)$. Then
1.) $\mathcal{P}(n+l, I)$ implies $\mathcal{P}\left(n, I^{1 / q^{l}}\right)$.
2.) If M satisfies $\mathcal{P}\left(n, I_{k}\right)$ is for every k then M satisfies $\mathcal{P}\left(n,\left[r_{0}, 1\right)\right)$.

Proof. The first statement follows from the decomposition

$$
\eta(1, T) \varphi^{n}\left(M^{I^{1 / q^{l}}}\right)=\eta(1, T) \varphi^{n+l}\left(M^{I}\right) \otimes_{\mathbb{Z}\left[\Gamma_{n+l}\right]} \mathbb{Z}\left[\Gamma_{n}\right] .
$$

For the second statement our assumptions guarantee that each $\eta(1, T) \varphi^{n} M^{I_{k}}$ is flat and finitely generated by at most d elements. If $n \geq n_{0}$ such that $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}\left(\Gamma_{n}\right) \cong \mathcal{R}_{A}^{\left[r_{0}, 1\right)}$ the statement follows from Lemma 1.59. In the case $n<n_{0}$ one can adapt Lemma 1.59 since any covering of $\left[r_{0}, 1\right)$ provides a system of algebras defining the FréchetStein structure on $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}\left(\Gamma_{n}\right)$ as explained in Remark 2.6.

Our results so far translate as follows.
Lemma 2.17. Let $I=\left[r_{0}, r_{0}\right]$ or $I=\left[r_{0}, r_{0}^{1 / q}\right]$. Then there exists $n_{1} \in \mathbb{N}$ such that for any $n \geq n_{1}$ the property $\mathcal{P}(n, I)$ is satisfied.

Proof. This translates to the assertion of 2.14 .
Lemma 2.18. There exists r_{2} such that M satisfies $\mathcal{P}\left(1,[r, 1)\right.$) for any $r \geq r_{2}$.
Proof. By Lemma 2.17 we have $\mathcal{P}(n, I)$ for any $n \geq n_{1}$. Applying Proposition 2.16 1.) we obtain $\mathcal{P}\left(n_{1}, I^{1 /} q^{l}\right)$ for any $l \geq 0$. Notice that the intervals $I^{1 / q^{l}}$ with I as in Lemma 2.17 cover $\left[r_{0}, 1\right)$. Using Proposition 2.16 2.) we conclude that $\mathcal{P}\left(n_{1},\left[r_{0}, 1\right)\right)$ is satisfied and applying Proposition 2.161.) yet again we conclude that $\mathcal{P}\left(1,\left[r_{2}, 1\right)\right)$ holds with $r_{2}=r_{0}^{1 / q^{n_{1}-1}}$.

Theorem 2.19. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} admitting a model over $\left[r_{0}, 1\right)$, then there exists $r_{1} \geq r_{0}$ such that for any $r \geq r_{1}$ the $\Gamma_{L^{-}}$action on $\left(M^{[r, 1)}\right)^{\psi=0}$ extends to an action of $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{L}\right)$ with respect to which $\left(M^{[r, 1)}\right)^{\psi=0}$ is finite projective of rank $\operatorname{rank}_{\mathcal{R}_{A}}(M)$. If m_{1}, \ldots, m_{d} generate $M^{[r, 1)}$ then the elements $\eta(1, T) \varphi\left(m_{1}\right), \ldots, \eta(1, T) \varphi\left(m_{d}\right)$ generate $\left(M^{[r, 1)}\right)^{\psi=0}$ as a $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{L}\right)$-module.

Proof. Using the decomposition $\left(M^{[r, 1)}\right)^{\psi=0}=\mathbb{Z}\left[\Gamma_{L}\right] \otimes_{\mathbb{Z}\left[\Gamma_{1}\right]} \eta(1, T) \varphi\left(M^{\left[r^{q}, 1\right)}\right)$ this follows from Lemma 2.18 by taking $r_{1}=r_{2}^{1 / q}$.

We have implicitly proved the following result.
Theorem 2.20. Let M be a an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} admitting a model over $\left[r_{0}, 1\right)$. Let $n \geq n_{0}$ then there exists r_{1} such that the action of $Z_{n} \in$ $D\left(\Gamma_{n}, K\right)$ is invertible on $\left(M^{[r, 1)}\right)^{\psi=0}$ for any $r \in\left[r_{1}, 1\right)$.

Proof. We have seen that the action of $D\left(\Gamma_{n}, K\right)$ extends to an action of $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{n}\right)$ $r \geq r_{1}$ with a suitable r_{1}. Note that the variable Z_{n} is a unit in every $\mathcal{R}_{A}^{J}\left(\Gamma_{n}\right)$ for any interval $J \subset(0,1)$.

If M is free we can further sharpen the results.
Corollary 2.21. Let M be a free L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module with a model over $\left[r_{0}, 1\right)$ such that m_{1}, \ldots, m_{d} are a basis of $M^{\left[r_{0}, 1\right)}$. Then there exists $r_{1} \geq r_{0}$ such that the action of Γ_{L} on $\left(M^{[r, 1)}\right)^{\psi=0}$ extends to a $\mathcal{R}_{A}^{\left[r_{1}, 1\right)}\left(\Gamma_{L}\right)$-action with respect to which $\eta(1, T) \varphi\left(m_{1}\right), \ldots, \eta(1, T) \varphi\left(m_{d}\right)$ form a basis.

Proof. We use the notation of the proof of Lemma 2.14. Using that M is free one can choose $N=0$. This shows that M^{I} is free over $\mathcal{R}_{A}\left(\Gamma_{n}\right)$ with basis $\eta(1, T) \varphi^{n}\left(m_{i}\right)$. Tracing through the definitions we conclude that $\eta(1, T) \varphi\left(m_{1}\right), \ldots, \eta(1, T) \varphi\left(m_{d}\right)$ are global sections of the projective and hence coadmissible $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{L}\right)$-module $\left(M^{[r, 1)}\right)^{\psi=0}$ that form a basis of $\left(M^{J}\right)^{\psi=0}$ for J in a suitable cover of $[r, 1)$. Then the map $\mathcal{R}_{A}^{[r, 1)}\left(\Gamma_{L}\right)^{d} \rightarrow\left(M^{[r, 1)}\right)^{\psi=0}$ mapping e_{i} to $\eta(1, T) \varphi\left(m_{i}\right)$ is an isomorphism of coadmissible modules, hence the claim.

Chapter 3

Analytic cohomology via Herr
 COMPLEXES

In this chapter we introduce the analytic Herr complex, which serves as an analogue of the classical Herr complex with the operator $\gamma^{p^{n}}-1$ replaced by Z_{n} and prove finiteness and base change properties similar to KPX14]. In order to obtain the operators Z_{n} on M we need to choose an open subgroup of Γ_{L} that is isomorphic to o_{L}, which in general is not a direct summand in Γ_{L}. Before circumventing this difficulty we discuss the split case.

3.1 Analytic Herr complex for $e<p-1$

Assume for the moment $e\left(L / \mathbb{Q}_{p}\right)<p-1$. Therefore we have

$$
\Gamma_{L} \cong o_{L}^{\times} \cong \kappa_{L}^{\times} \times U_{1} \cong \text { torsion } \times o_{L},
$$

where the isomorphism $o_{L} \cong U_{1}$ is induced by $\exp \left(\pi_{L} \cdot\right)$. We denote by $\Delta \subset \Gamma_{L}$ the torsion subgroup.

Definition 3.1. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} and let f be an A-linear continuous operator that commutes with the action of Γ_{L}. We define

$$
C_{f, D\left(\Gamma_{L}, A\right)}:=\left[0 \rightarrow M^{\Delta} \xrightarrow{(f-1, Z)} M^{\Delta} \oplus M^{\Delta} \xrightarrow{Z \oplus 1-f} M^{\Delta} \rightarrow 0\right]
$$

concentrated in $[0,2]$. We denote by $H_{f, D\left(\Gamma_{L}, A\right)}^{*}(M)$ the cohomology of this complex.
Remark 3.2. The morphism

is a quasi-isomorphism between $C_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}$ and $C_{\frac{\pi_{L}}{q} \psi_{L T}, D\left(\Gamma_{L}, A\right)}$.

[^9]Proof. The cokernel complex is 0 because $\frac{\pi_{L}}{q} \psi_{L T}$ is surjective since it is the left inverse of φ_{L}. The kernel complex is given by

$$
M^{\Delta \psi_{L T}=0} \xrightarrow{Z} M^{\Delta \psi_{L T}=0}
$$

which is quasi-isomorphic to 0 since by 2.20 the action of Z is bijective on the kernel of $\psi_{L T}$.

3.2 The case of general e.

Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}.
Definition 3.3. Let $n \geq n_{0}$ such that $\chi_{L T} \circ \log$ induces an isomorphism $\Gamma_{n_{0}} \cong$ $\pi_{L}^{n_{0}} o_{L} \cong o_{L}$. We define

$$
C_{f, Z_{n}}:=\left[M \xrightarrow{\left(f-1, Z_{n}\right)} M \oplus M \xrightarrow{Z_{n} \oplus 1-f} M\right] .
$$

We denote the cohomology of this complex (concentrated in degrees [0, 2]) by $H_{f, Z_{n}}^{i}$.
Remark 3.4. The complexes $C_{\varphi_{L}, Z_{n}}$ and $C_{\frac{\pi_{L} \psi_{L T}, Z_{n}}{}}$ are quasi-isomorphic.
Proof. We may define the quasi-isomorphism analogously to 3.2 and invoke Theorem 2.20 to deduce that the action of Z_{n} is invertible on the kernel of $\psi_{L T}$.

Definition 3.5. Let $m \geq n \geq n_{0}$. We define the restriction $\operatorname{res}_{n, m}: C_{f, Z_{n}} \rightarrow C_{f, Z_{m}}$ as

where \mathfrak{Q}_{m-n} is defined using $Z_{m}=\varphi_{L}^{m-n}\left(Z_{n}\right)=\mathfrak{Q}_{m-n} Z_{n}$.
Lemma 3.6. Let $m \geq m^{\prime} \geq n \geq n_{0}$. Then

1. We have $\operatorname{res}_{n, m}=\operatorname{res}_{m^{\prime}, m} \circ \operatorname{res}_{n, m^{\prime}}$.
2. For each i we have $\operatorname{im}\left(\operatorname{res}_{n, m}\right)\left(H_{f, Z_{n}}^{i}(M)\right) \subset\left(H_{f, Z_{m}}^{i}(M)\right)^{Z_{n}=0}$.

Proof. The first statement follows by transport of structure from the corresponding computation in $\mathcal{R}_{K}^{+} \cong D\left(\Gamma_{n}, K\right)$. There we have for any pair $a, b \in \mathbb{N}$

$$
\varphi_{L}^{a+b}(T)=\varphi_{L}^{a}\left(\varphi_{L}^{b}(T)\right)=Q_{a}\left(\varphi_{L}^{b}(T)\right) \varphi_{L}^{b}(T) .
$$

For the second statement we consider each degree individually. Z_{m} is divisible by Z_{n} in the distribution algebra, which implies the statement in degree 0 . In degree 1 consider a class $\overline{(a, b)} \in H_{f, Z_{n}}^{1}$ with $Z_{n} a=(f-1) b$. We compute

$$
Z_{n} \operatorname{res}_{n, m}(a, b)=Z_{n}\left(a, \mathfrak{Q}_{m-n} b\right)=\left(Z_{n} a, Z_{m} b\right)=\left(f-1 b, Z_{m} b\right),
$$

which lies in the image of the first differential of $C_{f, Z_{m}}$. In degree 2 let $b \in M$. Then $Z_{n} \mathfrak{Q}_{m-n} b=Z_{m} b=\partial(b, 0) \equiv 0$.

Corollary 3.7. Applying the above for $m=n$ shows that $H_{f, Z_{n}}^{i}$ has trivial Γ_{n}-action.
Contrary to the classical theory we cannot define the analytic Herr complex for Γ_{L} directly unless $e<p-1$. Our observations so far show that the cohomology groups of the restricted Herr complex for any subgroup Γ_{n} isomorphic to o_{L} carry a residual Γ_{L} / Γ_{n} action. This allows us to define the Herr cohomology for Γ_{L} after choosing such a subgroup.

Definition 3.8. Choose $n \geq n_{0}$. We define $H_{f, D\left(\Gamma_{L}, K\right)}^{i}(M):=\left(H_{f, Z_{n}}^{i}(M)\right)^{\Gamma_{L}}$.
Lemma 3.9. $H_{f, D\left(\Gamma_{L}, K\right)}^{i}$ is independent of the choice of $n \geq n_{0}$.
Proof. We are reduced to showing that $\operatorname{res}_{n, m}:\left(H_{f, Z_{n}}^{i}(M)\right) \rightarrow\left(H_{f, Z_{m}}^{i}(M)\right)^{Z_{n}=0}$ is an isomorphism.
The case $i=0$ follows from $H_{f, Z_{n}}^{0}(M)=M^{f=1, \Gamma_{n}}=\left(M^{f=1, \Gamma_{m}}\right)^{\Gamma_{n}}$.
For $i=1$ consider a pair (a, b) with $Z_{n} a=(f-1) b$ that is mapped to 0 in $H_{f, Z_{m}}^{1}$. Meaning that there exists a $v \in M$ satisfying $\left((f-1) v, Z_{m} v\right)=\left(a, \mathfrak{Q}_{m-n} b\right)$. We compute the image of v in $H_{f, Z_{n}}^{1}$ and obtain $\left((f-1) v, Z_{n} v\right)-(a, b)=\left(0, Z_{n} v-b\right)$, which is an element in the kernel of the multiplication-by- \mathfrak{Q}_{m-n}-map. But on the cohomology Z_{n} acts as zero and hence \mathfrak{Q}_{m-n} is invertible as it has a non-zero constant term, which proves injectivity. For surjectivity consider $(a, b) \in M^{2}$ satisfying $Z_{m} a=(f-1) b$. By the same argument as above the operator \mathfrak{Q}_{m-n} is invertible on $H_{f, Z_{m}}^{1}(M)^{Z_{n}=0}$ and we may find a cocycle (c, d) such that $\mathfrak{Q}_{m-n}(c, d) \equiv(a, b)$ in $H_{f, Z_{m}}^{1}(M)$. Then $\left(\mathfrak{Q}_{m-n} c, d\right)$ satisfies $Z_{n}\left(\mathfrak{Q}_{\mathfrak{m}-\mathfrak{n}} c\right)=Z_{m} c=(f-1) d$ and is mapped to the class of (a, b) by the restriction map.
It remains to treat the case $i=2$. We first prove injectivity. Let $c \in M$ such that $\mathfrak{Q}_{m-n} c$ vanishes in $H_{f, Z_{m}}^{2}(M)$ i.e. $\mathfrak{Q}_{m-n} c \in Z_{m} M+(f-1)(M)$. This means $\mathfrak{Q}_{m-n} m \in Z_{n} M+(f-1) M$ and hence vanishes in $H_{f, Z_{n}}^{2}(M)$, but then c already has to vanish in $H_{f, Z_{n}}^{2}(M)$. For surjectivity let $\bar{d} \in H_{f, Z_{m}}^{2}(M)^{Z_{n}=0}$. By the preceeding arguments we may find an element $\bar{c} \in H_{f, Z_{m}}^{2}(M)$ satisfying $\mathfrak{Q}_{m-n}(\bar{c})=\bar{d}$. We can lift \bar{c} to an element of M and take its projection to $H_{f, Z_{n}}^{2}(M)$ in order to find a preimage of d in $H_{f, Z_{n}}^{2}(M)$.

Remark 3.10. Let $n \geq n_{0}$. The action of Γ_{L} on M induces a natural action on $C_{f, Z_{n}}(M)$, given by letting $\gamma \in \Gamma_{L}$ act in the usual way on each component in each degree. If $\gamma \in \Gamma_{n}$ then this action is homotopic to the identity. In other words, the image of $C_{f, Z_{n}}(M)$ in the derived category $\mathbf{D}(A)$ carries an action of Γ_{L} / Γ_{n}.

Proof. The action is well-defined because f commutes with $\gamma \in \Gamma_{L}$. If $\gamma \in \Gamma_{n}$ then the action of γ - id is given by $\eta\left(a, Z_{n}\right)-1=Z_{n} H\left(Z_{n}\right)$ with some $a \in o_{L}$ and $H\left(Z_{n}\right) \in o_{L} \llbracket Z_{n} \rrbracket$. A small calculation shows that the maps

$$
\begin{aligned}
M^{2} & \rightarrow M \\
\left(m, m^{\prime}\right) & \mapsto H\left(Z_{n}\right) m^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
M & \rightarrow M^{2} \\
m & \mapsto\left(0, H\left(Z_{n}\right) m\right)
\end{aligned}
$$

define a homotopy between γ and id.

3.3 Finiteness of analytic Herr cohomology

The results of the previous section allow us to flexibly change between the open subgroups Γ_{n} used to define the analytic Herr complex and to simplify the notation we fix some $n \geq n_{0}$ and write $Z:=Z_{n}$. The goal of this section is to prove that for any analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module M over \mathcal{R}_{A} the cohomology groups $H_{\varphi_{L}, Z}^{i}(M)$ are finitely generated over A. We follow the strategy of Bel21] using the result from the previous chapter regarding the Z action on the kernel of ψ to arrive at a situation that allows us to apply results from KL16]. This approach differs from KPX14 who first prove the finiteness of the Iwasawa cohomology of M and compare it to the (φ, Γ)-cohomology of the cyclotomic deformation of M. The finiteness of the cohomology of M is obtained in KPX14 as a corollary by writing M as a base change of its deformation. Similar arguments to the ones of Bellovin already appear in KP18|. We denote by $\mathbf{D}_{\text {perf }}^{b}(A), \mathbf{D}_{\text {perf }}^{-}(A), \mathbf{D}_{p e r f}^{[a, b]}(A)$ the full subcategory of the derived category consisting of objects which are quasi-isomorphic to bounded (resp. bounded above, resp. concentrated in degree $[a, b]$) complexes of finite projective A-modules.

Definition 3.11. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} with model over $\left[r_{0}, 1\right)$. For any $1>r \geq r_{0}$ we define

$$
C_{\varphi_{L}, Z,[r, 1)}(M): M^{[r, 1)} \xrightarrow{\left(\varphi_{L}-1, Z\right)} M^{\left[r^{1 / q}, 1\right)} \oplus M^{[r, 1)} \xrightarrow{Z \oplus\left(1-\varphi_{L}\right)} M^{\left[r^{1 / q}, 1\right)} .
$$

For $r<s<1$ we define the complex

$$
C_{\varphi_{L}, Z,[r, s]}(M): M^{[r, s]} \xrightarrow{\left(\varphi_{L}-1, Z\right)} M^{\left[r^{1 / q}, s\right]} \oplus M^{[r, s]} \xrightarrow{Z \oplus\left(1-\varphi_{L}\right)} M^{\left[r^{1 / q}, s\right]}
$$

for any $s \in\left[r^{1 / q}, 1\right.$). We obtain canonical morphisms of complexes (of A-modules)

$$
C_{\left.\varphi_{L}, Z, r, r, 1\right)}(M) \rightarrow C_{\varphi_{L}, Z}(M)
$$

and

$$
C_{\varphi_{L}, Z,[r, 1)}(M) \rightarrow C_{\varphi_{L}, Z,[r, s]}(M) .
$$

We say that the cohomology of M is computed on the level of $C_{\varphi_{L}, Z,[r, 1)}(M)$ (resp. $\left.C_{\varphi_{L}, Z,[r, s]}(M)\right)$ if the first (resp. both) maps are quasi-isomorphisms.

When working with φ_{L}-modules over \mathcal{R}_{A} we can identify the cohomology of the complex $\left[M \xrightarrow{\varphi_{L}-1} M\right]$ with the Yoneda extension groups in the category of modules
over the twisted polynomial ring $\mathcal{R}_{A}\left[X ; \varphi_{L}\right]$ with X acting as φ_{L} on \mathcal{R}_{A} (cf. [KL13, Definition 1.5.4]). The analogous result holds for φ_{L}-modules over $[r, 1$) (resp. $[r, s]$) but requires some care, since $\varphi_{L}: M^{[r, 1)} \rightarrow M^{\left[r^{1 / q}, 1\right)}$ changes the ring over which the module is defined.

Definition 3.12. Let M be a φ_{L}-module over \mathcal{R}_{A}^{I}, where $I=[r, 1)$ or $I=[r, s]$ with $s \in\left[r^{1 / q}, 1\right)$. We denote by $\operatorname{Ext}_{\varphi}^{1}\left(\mathcal{R}_{A}^{I}, M\right)$ the group of extensions (as φ_{L}-modules) of \mathcal{R}_{A}^{I} by M.
Remark 3.13. Let M be a φ_{L}-module over \mathcal{R}_{A}^{I} with I as in 3.12. The natural map

$$
\begin{aligned}
\operatorname{ker}\left(\varphi_{M}-1\right) & \rightarrow \operatorname{Hom}_{\varphi}\left(\mathcal{R}_{A}^{I}, M^{I}\right) \\
x & \mapsto(f \mapsto f x)
\end{aligned}
$$

is an isomorphism.
Proof. The map is well-defined because $\varphi_{M}(f x)=\varphi_{L}(f) \varphi_{M}(x)=\varphi_{L}(f) x$ and an inverse is given by mapping $\alpha \in \operatorname{Hom}_{\varphi}\left(\mathcal{R}_{A}^{I}, M^{I}\right)$ to $\alpha(1)$.
Lemma 3.14. Let M be a φ_{L}-module over \mathcal{R}_{A}^{I}, with I as in 3.12 and let $J:=I^{1 / q} \cap I$. The map that assigns to $E \in \operatorname{Ext}_{\varphi}^{1}\left(\mathcal{R}_{A}^{I}, M\right)$ the element $\varphi_{E}(e)-e \in M^{J}$, where e is any preimage of $1 \in \mathcal{R}_{A}^{I}$, induces an isomorphism

$$
\operatorname{Ext}_{\varphi}^{1}\left(\mathcal{R}_{A}^{I}, M\right) \cong M^{J} /\left(\varphi_{M}-1\right)\left(M^{I}\right) .
$$

Proof. One checks that $\varphi_{E}(e)-e$ is mapped to zero in \mathcal{R}_{A}^{J} and hence $\varphi_{E}(e)-e$ indeed belongs to M^{J}. Let \tilde{e} be another preimage of $1 \in \mathcal{R}_{A}^{I}$, then $e-\tilde{e}$ lies in M^{I} and therefore $\varphi_{E}(e)-e=\varphi_{E}(\tilde{e})-\tilde{e}+\varphi_{M}(e-\tilde{e})-(e-\tilde{e})$. This proves that the map in question is well-defined. Let $v \in M^{J} /\left(\varphi_{M}-1\right)\left(M^{I}\right)$ and define E_{v} to have $M^{I} \times \mathcal{R}_{A}^{I}$ as its underlying \mathcal{R}_{A}^{I}-module with $\varphi_{E_{v}}(m, r):=\left(\varphi_{M}(m)+\varphi_{L}(r) v, \varphi_{L}(r)\right)$. The module E_{v} is finitely generated over \mathcal{R}_{A}^{I} and $\varphi_{E_{v}}$ is φ_{L}-semi-linear. The linearised map is an isomorphism by the five lemma and hence $E_{v} \in \operatorname{Ext}_{\varphi}^{1}\left(\mathcal{R}_{A}^{I}, M\right)$. The element $e_{1}:=(0,1)$ is a preimage of 1 and satisfies $\varphi\left(e_{1}\right)-e_{1}=(v, 0)$, which proves the surjectivity. It remains to show injectivity. A computation shows that E_{v} is the trivial extension if $v \equiv 0$ and hence it suffices to show that any extension E is isomorphic to E_{v} with $v=\varphi_{E}(e)-e$. Since \mathcal{R}_{A}^{I} is free and hence projective any extension of \mathcal{R}_{A}^{I} by M^{I} is split as a \mathcal{R}_{A}^{I}-module. Let $s: \mathcal{R}_{A}^{I} \rightarrow E$ be any \mathcal{R}_{A}^{I}-linear section. And write $x \in E$ as $x=m+s(f)=m+f s(1)$. Then $\varphi_{E}(x)=\varphi_{M}(m)+\varphi_{L}(f) \varphi_{E}(s(1))=$ $\varphi_{M}(m)+\varphi_{L}(f)\left(\varphi_{E}(s(1))-s(1)\right)+\varphi_{L}(f) s(1)$. In particular, E is isomorphic to E_{v} with $v=\varphi_{E}(s(1))-s(1)$.

Lemma 3.15. Let M be a projective φ_{L}-module over \mathcal{R}_{A} with model over $[r, 1)$ and let $s \in\left[r^{1 / q}, 1\right)$. Then the canonical morphism

$$
\left[M^{[r, 1)} \xrightarrow{\varphi_{L}-1} M^{\left[r^{1 / q}, 1\right)}\right] \rightarrow\left[M^{[r, s]} \xrightarrow{\varphi_{L}-1} M^{\left[r^{1 / q}, s\right]}\right]
$$

induced by the restrictions $M^{[r, 1)} \rightarrow M^{[r, s]}$ (resp. $M^{\left[r^{1 / q}, 1\right)} \rightarrow M^{\left[r^{1 / q}, s\right]}$) is a quasiisomorphism.

Proof. The statement follows from 1.63 together with 3.13 and 3.14 .
Lemma 3.16. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} with model over $\left[r_{0}, 1\right)$. Then there exists $1>r_{1} \geq r_{0}$ such that for any $1>r \geq r_{1}$ the cohomology $H_{\varphi_{L}, Z}^{i}(M)$ is computed by the complex

$$
C_{\varphi_{L}, Z,[r, s]}: M^{[r, s]} \xrightarrow{\left(\varphi_{L}-1, Z\right)} M^{\left[r^{1 / q}, s\right]} \oplus M^{[r, s]} \xrightarrow{Z \oplus\left(1-\varphi_{L}\right)} M^{\left[r^{1 / q}, s\right]}
$$

for any $s \in\left[r^{1 / q}, 1\right)$.
Proof. The complex computing the cohomology of M is the direct limit of the corresponding complexes for $M^{[r, 1)}$ as $r \rightarrow 1$. By a cofinality argument we may take the colimit over $r_{0}{ }^{1 / q^{n}}$ with $n \rightarrow \infty$. We hence need to show that the restriction maps (labeled as id below)

induce quasi-isomorphisms. Following [Bel21] we do so in two steps. We show that the restriction above is homotopic to the map

and the latter induces the desired quasi-isomorphism. One can check that the maps

$$
\operatorname{pr}_{1}: M^{\left[r^{1 / q}, 1\right)} \oplus M^{[r, 1)} \rightarrow M^{\left[r^{1 / q}\right]}
$$

and

$$
(0,-\mathrm{id}): M^{\left[r^{1 / q}, 1\right)} \rightarrow M^{\left[r^{1 / q}, 1\right)} \oplus M^{[r, 1)}
$$

induce a homotopy between φ_{L} and id. In order to see that φ_{L} induces a quasiisomorphism consider the left-inverse $\Psi: C_{\varphi_{L}, Z,\left[r^{1 / q, 1)}\right.} \rightarrow C_{\varphi_{L}, Z,[r, 1)}$ obtained by applying $\frac{\pi_{L}}{q} \psi_{L T}$ in each degree of the complex. By 2.20 there exists r_{1} such that for any $r \geq r_{1}$ the action of Z on the kernel of Ψ is invertible with continuous inverse (note that the constant $\frac{\pi_{L}}{q}$ does not change the kernel). In particular we obtain a decomposition $C_{\varphi_{L}, Z,\left[r^{1 / q}, 1\right)}=\varphi_{L}\left(C_{\varphi_{L}, Z,[r, 1)}\right) \oplus \operatorname{ker}(\Psi)$ as complexes of A-modules. We claim that the $\left(Z, \varphi_{L}\right)$-cohomology of the second summand vanishes, which implies the desired result. The vanishing of H^{0} and H^{2} is an immediate consequence of Z being invertible on the kernel of $\psi_{L T}$. We prove that $H_{\varphi_{L}, Z}^{1}\left(\left(M^{[r, 1)}\right)^{\psi_{L T}=0}\right)$ vanishes.

Consider (a, b) that satisfy $Z a+\left(1-\varphi_{L}\right) b=0$ then $a=Z^{-1}\left(\varphi_{L}-1\right) b=\left(\varphi_{L}-1\right) Z^{-1} b$ and obviously $b=Z Z^{-1} b$. Setting $x:=Z^{-1} b$ we see that $(a, b)=\left(\left(\varphi_{L}-1\right) x, Z x\right)$ vanishes in H^{1}. So far we proved that the cohomology is computed by the complex $C_{\varphi_{L}, Z,[r, 1)} r \geq r_{1}$. Consider the canonical morphism $C_{\varphi_{L}, Z,[r, 1)} \rightarrow C_{\varphi_{L}, Z,[r, s]}$. Up to signs these complexes are the total complexes of the double complexes

(resp. for $M^{[r, s]}$)). By the Acyclic Assembly Lemma A. 15 together with 3.15 we conclude that these total complexes are quasi-isomorphic.

Definition 3.17. Let R be a topological ring complete with respect to a submultiplicative semi-norm containing a topologically nilpotent unit. A map between two R-Banach modules $f: M \rightarrow N$ is called completely continuous if there exists a sequence of finitely generated R-submodules $N_{i} \subset N$ such that operator norms of $f_{i}: M \xrightarrow{f} N \rightarrow N / N_{i}$ converge to zero with respect to fixed Banach norms on M, N and the quotient seminorm on N / N_{i}.

Lemma 3.18. Let $R \rightarrow S$ be a bounded morphism of Banach-algebras over A, that is completely continuous when viewing R, S as Banach modules over A. Let M be a finitely generated R-Banach module such that $S \otimes_{R} M$ is an S-Banach module, then

$$
M \rightarrow M \otimes_{R} S
$$

is completely continuous as a morphism of A-Banach modules.
Proof. See KL16, Remark 1.7].
Lemma 3.19. Let $\left[r^{\prime}, s^{\prime}\right] \subset[r, s] \subset(0,1)$ with $r^{\prime}>r, s^{\prime}<s$ and $r, r^{\prime}, s, s^{\prime} \in\left|K^{\times}\right|$. The natural inclusions

$$
\mathcal{R}_{A}^{[0, s]} \rightarrow \mathcal{R}_{A}^{\left[0, s^{\prime}\right]}
$$

and

$$
\mathcal{R}_{A}^{[r, s]} \rightarrow \mathcal{R}_{A}^{\left[r^{\prime}, s^{\prime}\right]}
$$

are completely continuous. 园
Proof. The first case is proved analogously to the second case with a slightly simpler proof. By assumption there exist elements $\rho, \sigma, \rho^{\prime}, \sigma^{\prime} \in K$ attaining the absolute values $r, s, r^{\prime}, s^{\prime}$ respectively. Write $\mathcal{R}_{A}^{[r, s]}=A\langle T / \sigma, \rho / T\rangle$ and take as $N_{i} \subset \mathcal{R}_{A}^{\left[r^{\prime}, s^{\prime}\right]}$ the subspace generated by the monomials $T^{-i}, \ldots, 1, T, \ldots T^{i}$. By expressing a series

[^10]$f \in \mathcal{R}_{A}^{[r, s]}$ as an element of $A\left\langle T / \sigma^{\prime}, \rho^{\prime} / T\right\rangle$ and projecting modulo N_{i} we obtain the estimate
$$
|f|_{A\left\langle T / \sigma^{\prime}, \rho^{\prime} / T\right\rangle / N_{i}} \leq \max \left(\frac{r}{r^{\prime}}, \frac{s^{\prime}}{s}\right)^{i+1}|f|_{A\langle T / \sigma, \rho / T\rangle}
$$

By our assumption on the intervals $\max \left(\frac{r}{r^{\prime}}, \frac{s^{\prime}}{s}\right)<1$ and therefore the operator norms of the composed maps $\mathcal{R}_{A}^{[r, s]} \rightarrow \mathcal{R}_{A}^{\left[r^{\prime}, s^{\prime}\right]} / N_{i}$ tend to zero.

Lemma 3.20. Let $M^{[r, 1)}$ be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over $\mathcal{R}_{A}^{[r, 1)}$ and let $0<r<r^{\prime} \leq s^{\prime}<$ $s<1$. Then the restriction $M^{[r, s]} \rightarrow M^{\left[r^{\prime}, s^{\prime}\right]}$ is completely continuous.

Proof. By definition $M^{[r, s]}$ is a finitely generated module over the Banach algebra $\mathcal{R}_{A}^{[r, s]}$ and $M^{\left[r^{\prime}, s^{\prime}\right]}=\mathcal{R}_{A}^{\left[r^{\prime}, s^{\prime}\right]} \otimes_{\mathcal{R}_{A}^{[r, s]}} M^{[r, s]}$. The result follows from 3.18 because the natural inclusion $\mathcal{R}_{A}^{[r, s]} \rightarrow \mathcal{R}_{A}^{\left[r^{\prime}, s^{A}\right]}$ is completely continuous.

Theorem 3.21. Let A be K-affinoid and let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Then the cohomology groups

$$
H_{\varphi_{L}, Z}^{i}(M)
$$

are finitely generated over A.
Proof. By Lemma 3.16 the cohomology can be computed on the level of $M^{[r, s]}$ for $r \geq r_{1}$ and any $s \in\left[r^{1 / q}, 1\right)$. Choose any subinterval $\left[r^{\prime}, s^{\prime}\right] \subset[r, s]$ like in Lemma 3.20 satisfying in addition $s \in\left[r^{\prime 1 / q}, 1\right)$. The restriction $M^{[r, s]} \rightarrow M^{\left[r^{\prime}, s^{\prime}\right]}$ induces completely continuous maps in each degree of $C_{\varphi_{L}, Z,[r, s]} \rightarrow C_{\varphi_{L}, Z,\left[r^{\prime}, s^{\prime}\right]}$ that are quasiisomorphisms by Lemma 3.16. By Lemma 1.10 in [KL16] the cohomology groups are contained in a finitely generated A-module and hence themselves finitely generated because A is Noetherian.

Theorem 3.22. Let A, B be K-affinoid and let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Let $f: A \rightarrow B$ be a morphism of K-affinoid algebras. Then:
(1) $C_{\varphi_{L}, Z}(M) \in \mathbf{D}_{p e r f}^{[0,2]}(A)$.
(2) The natural morphism $C_{\varphi_{L}, Z}(M) \otimes_{A}^{\mathbb{L}} B \rightarrow C_{\varphi_{L}, Z}\left(M \hat{\otimes}_{A} B\right)$ is a quasi-isomorphism.

Proof. By 3.21 the cohomology groups of $C_{\varphi_{L}, Z}(M)$ are finitely generated and because A is Noetherian quasi-isomorphic to a bounded above complex of finitely generated projective A-modules by [Sta21, Tag 05T7] using that the category of finitely generated modules over a Noetherian ring is abelian. By A. $5 \mathcal{R}_{A}$ is flat over A and hence $C_{\varphi_{L}, Z}(M)$ consists of flat A-modules. Combining both points we see that $C_{\varphi_{L}, Z}(M)$ is quasi-isomorphic to a complex

$$
X \rightarrow P_{1} \rightarrow P_{2}
$$

where P_{1}, P_{2} are projective and $X=\operatorname{ker}\left(P_{1} \rightarrow P_{2}\right)$ is flat using A.16. Then X is a finitely generated submodule of a finitely generated module over a Noetherian ring and hence even finitely presented. We conclude that X is finitely generated and projective by Sta21, Tag 00NX and therefore $C_{\varphi_{L}, Z}(M) \in \mathbf{D}_{\text {perf }}^{[0,2]}(A)$. For the second statement the proof of [KPX14] carries over verbatim using 1.56 .

Remark 3.23. More precisely 3.22, 3.21 hold for $C_{\varphi_{L}, Z, I}(M)$ for any $I=[r, s]$ or $I=[r, 1)$ with $r \geq r_{1}$ and $s \in\left[r^{1 / q}, 1\right)$.

Proof. The analogues of 3.21 and 3.22 (1) were proved implicitly. For 3.22 (2) the same proof works when we replace M by M^{I} the only subtlety being that in order to apply [KPX14, 4.1.5] we need $C_{\varphi_{L}, Z, I}\left(M \hat{\otimes}_{A} B\right) \in \mathbf{D}_{\text {perf }}^{-}(B)$, which we deduce by using 3.21 requiring $r \geq r_{1}$, with r_{1} depending on M ! One can check that the same r_{1} works for $M \hat{\otimes}_{A} B$ using that the $\left(\varphi_{L}, \Gamma_{L}\right)$-action on B is trivial.

For the full analytic Herr cohomology we obtain a variant of 3.22. Because the cohomology is defined by taking the invariants of the (φ_{L}, Z)-cohomology we cannot formulate similar perfectness results (outside of the case $e<p-1$) and we only obtain a base change result in the flat case.

Remark 3.24. Let $R \rightarrow S$ be a flat morphism of commutative rings, G be a finite group and W an $R[G]$-module. Then $\left(S \otimes_{R} W\right)^{G}=S \otimes_{R} W^{G}$

Proof. We can rewrite W^{G} as $W^{G}=\operatorname{ker}\left(W \xrightarrow{\oplus(g-1)} \bigoplus_{g \in G} W\right)$ and apply the exact functor $S \otimes_{R}-$.

Corollary 3.25. Let A, B be K-affinoid and let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Let $f: A \rightarrow B$ be a flat morphism of K-affinoid algebras. Then:
(1) The groups $H_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}^{i}(M)=H_{\varphi_{L}, Z}^{i}(M)^{\Gamma_{L}}$ are finitely generated and vanish for $i \neq 0,1,2$.
(2) The natural morphism $H_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}^{i}(M) \otimes_{A} B \rightarrow H_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}^{i}\left(M \hat{\otimes}_{A} B\right)$ is an isomorphism.

Proof. The first statement follows from 3.21 because A is Noetherian. For the second statement we use 3.22 to conclude $H_{\varphi_{L}, Z}^{i}(M) \otimes_{A} B=H_{\varphi_{L}, Z}^{i}(M \hat{\otimes} B)$ and taking $\Gamma_{L^{-}}$ invariants we obtain

$$
H_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}^{i}\left(M \hat{\otimes}_{A} B\right)=\left(B \otimes_{A} H_{\varphi_{L}, Z}^{i}(M)\right)^{\Gamma_{L}},
$$

using 3.24 and the fact that the Γ_{L} action factors over Γ_{n} we have

$$
\left(B \otimes_{A} H_{\varphi_{L}, Z}^{i}(M)\right)^{\Gamma_{L}}=B \otimes_{A} H_{\varphi_{L}, Z}^{i}(M)^{\Gamma_{L}}=B \otimes_{A} H_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}^{i}(M) .
$$

Corollary 3.26. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Assigning to an affinoid subdomain $S p\left(A^{\prime}\right) \subset S p(A)$ the cohomology groups $H_{\varphi_{L}, Z}^{i}\left(M \hat{\otimes}_{A} A^{\prime}\right)$ (resp. $\left.H_{\varphi_{L}, D\left(\Gamma_{L}, A\right)}^{i}\left(M \hat{\otimes}_{A} A^{\prime}\right)\right)$ defines a coherent sheaf on $S p(A)$.

Proof. By Bos14, 4/Corollary 5 p. 68] the map $A^{\prime} \rightarrow A$ is flat. Theorem 3.21 and the base change property 3.22 (2) assert that the sheaf is associated to the finitely generated module $H_{\varphi_{L}, Z}^{i}(M)$ and hence coherent. The second case is treated in the same way with the base change formula from Corollary 3.25.

3.4ψ-cohomology of $M / t_{L T} M$.

The following section is based on Sections 3.2 and 3.3 in [KPX14]. We adapt their methods to our situation. The main results are Lemmas 3.29 and 3.30. The proofs are adaptations of their counterparts Propositions 3.2.4 and 3.2.5 in [KPX14]. They turn out to be more complicated due to the implicit nature of "the" variable Z and the fact that by extending scalars to K some care is required when studying the quotients $\mathcal{R}_{K}^{+} / \varphi^{n}(T)$ since K could contain non-trivial π_{L}^{n}-torsion points while having the trivial Γ_{L}-action. In the appendix we elaborate on crucial parts of the argument whose details are left out in loc. cit.. Let $Q_{1}(T)=\varphi_{L}(T) / T$ and $Q_{n}(T):=$ $\varphi^{n-1}\left(Q_{n-1}(T)\right)$ for $n \geq 1$. We will show in $A .11$ that $\mathcal{R}_{L}^{[r, s]} / Q_{n}$ can be identified with the field L_{n} whenever the zeroes of Q_{n} (i.e. the π_{L}^{n}-torsion points of the LT group that are not already π_{L}^{n-1}-torsion) lie in the annulus $[r, s]$. This is Γ_{L}-equivariant for the Galois action on L_{n} and $\varphi: \mathcal{R}_{L}^{[r, s]} / Q_{n} \rightarrow \mathcal{R}_{L}^{\left[r^{q}, s^{q}\right]} / Q_{n+1}$ corresponds to the inclusion $L_{n} \hookrightarrow L_{n+1}$. When we extend coefficients to K we let Γ_{L} act trivially on the coefficients on \mathcal{R}_{K}. One has to be careful since $\mathcal{R}_{K}^{[r, s]} / Q_{n}$ is not necessarily a field extension of K. It is in general only some finite étale K-algebra, which we denote by E_{n}. It carries a Γ_{L}-action induced from the action on \mathcal{R}_{K}. We can write $Q_{n}=G_{n} U_{n}$ with some polynomial G_{n}, that is necessarily irreducible3 over L with splitting field L_{n} and a unit $U_{n} \in\left(\mathcal{R}_{K}^{[r, s]}\right)^{\times}$. E_{n} can now be explicitly described as $E_{n}=\mathcal{R}_{K}^{[r, s]} / Q_{n} \cong K[T] / G_{n} \cong K \otimes_{L} L[T] / G_{n} \cong K \otimes_{L} L_{n}$. Here $\mathcal{R}_{K}^{[r, s]}$ carries its usual Γ_{L}-action while Γ_{L} acts on the right-hand side via the right factor. We also need similar elements on the level of $D(\Gamma, K)$. For $n \geq n_{0}$ we define

$$
\mathfrak{L}_{n}:=Z_{n} \prod_{m} \pi_{L}^{-1} Q_{m}\left(Z_{n}\right)=\log _{L T}\left(Z_{n}\right)
$$

Corollary 1.36 asserts that the ideal generated by $\varphi_{L}\left(Z_{n}\right)$ in $D\left(\Gamma_{n}, K\right)$ does not depend on the choice of variable and hence neither does the ideal generated by $\varphi_{L}^{k}\left(Z_{n}\right)=Z_{n} \prod_{m=1}^{k} Q_{m}\left(Z_{n}\right)$ nor the ideal generated by \mathfrak{L}_{n}.

Lemma 3.27. Let $M^{r_{0}}$ be a (φ, Γ)-module over $\mathcal{R}_{A}^{r_{0}}$. Let $n_{1}=n_{1}\left(r_{0}\right) \in \mathbb{N}_{0}$ be minimal among $n \in \mathbb{N}$ such that $\left|\pi_{L}\right|^{\frac{q^{n-1}(q-1)}{1}} \geq r_{0}$. then:

- $M^{r_{0}} / t_{L T} M^{r_{0}} \cong \prod_{n \geq n_{1}} M^{r_{0}} / Q_{n} M^{r_{0}}$.
- φ^{m} induces an $A[\Gamma]$-linear isomoprhism $\varphi^{m} \otimes 1: M^{r_{0}} / Q_{n} \otimes_{E_{n}} E_{n+m} \rightarrow M^{r_{0}} / Q_{n+m}$

Proof. The zeros of Q_{n} are precisely the π_{L}^{n}-torsion points of the LT-group, which are not already π_{L}^{n-1}-torsion. Hence Q_{n} is a unit in $\mathcal{R}_{K}^{[r, s]}$ if and only if

$$
v(n):=\left|\pi_{L}\right|^{\frac{1}{q^{n-1}(q-1)}} \notin[r, s] .
$$

[^11]Let $w(s)$ be the largest integer n satisfying $v(n) \leq s$. For a closed interval we obtain from the Chinese remainder theorem

$$
\mathcal{R}_{K}^{\left[r_{0}, s\right]} / t_{L T} \mathcal{R}_{K}^{\left[r_{0}, s\right]}=\bigoplus_{n_{1} \leq n \leq w(s)} \mathcal{R}_{K}^{\left[r_{0}, s\right]} / Q_{n} \mathcal{R}_{K}^{\left[r_{0}, s\right]}
$$

and

$$
\mathcal{R}_{A}^{\left[r_{0}, s\right]} / t_{L T} \mathcal{R}_{A}^{\left[r_{0}, s\right]}=\bigoplus_{n_{1} \leq n \leq w(s)} \mathcal{R}_{A}^{\left[r_{0}, s\right]} / Q_{n} \mathcal{R}_{A}^{\left[r_{0}, s\right]}
$$

The first statement follows by passing to the limit $s \rightarrow 1$. The second statement follows inductively from the case $m=1$. Because the linearised map is an isomorphism we have

$$
\begin{align*}
M^{r_{0}} / Q_{n+1} & =M^{r_{0}^{1 / q}} / Q_{n+1} \tag{3.1}\\
& \cong \varphi_{L}^{*}\left(M^{r_{0}}\right) / \varphi_{L}\left(Q_{n}\right) \tag{3.2}\\
& \cong M^{r_{0}} / Q_{n} \otimes_{E_{n}} E_{n+1} \tag{3.3}
\end{align*}
$$

where for the last isomorphism we use $\mathcal{R}_{K}^{r_{0}^{1 / q}} / Q_{n+1}=E_{n+1}$ since the zeros of Q_{n+1} are the preimages of the zeros of Q_{n} under φ and we assumed that the latter are contained in $\left[r_{0}, 1\right)$. We further used that φ induces the canonical inclusion $E_{n} \rightarrow E_{n+1}$ and that the identification $\mathcal{R}_{K}^{[r, s]} / Q_{n} \cong E_{n}$ is Γ-equivariant as described in the beginning of the chapter.

To keep notation light we define $M_{n}:=M_{n}^{r}:=M^{r} / Q_{n} M^{r}$ and suppress the dependence on r. This poses no problem as long as M admits a model over $[r, 1)$ and $n \geq n_{0}(r)$ satisfying the conditions of 3.27 .

Corollary 3.28. With respect to the decomposition

$$
M^{r_{0}} / t_{L T} M^{r_{0}} \cong \prod_{n \geq n_{1}} M^{r_{0}} / Q_{n} M^{r_{0}}=\prod_{n \geq n_{1}} M_{n}
$$

the $\operatorname{map} \varphi_{L}: M^{r_{0}} / t_{L T} M^{r_{0}} \rightarrow M_{r_{0}^{1 / q}} / t_{L T} M^{r_{0}^{1 / q}}$ takes $\left(x_{n}\right)_{n}$ to $\left(x_{n-1}\right)_{n}$. The map $\psi_{L T}$: $M^{r_{0}^{1 / q}} / t_{L T} M^{r_{0}^{1 / q}} \rightarrow M^{r_{0}} / t_{L T} M^{r_{0}}$ takes $\left(x_{n}\right)_{n}$ to $\left(\pi^{-1} \operatorname{tr}_{E_{n} / E_{n-1}}\left(x_{n}\right)\right)_{n}$. Where

$$
\operatorname{tr}_{E_{n} / E_{n-1}}: M_{n}^{r_{0}}=M_{n-1}^{r_{0}} \otimes_{E_{n-1}} E_{n} \rightarrow M_{n-1}^{r_{0}}
$$

is given by the trace induced from the trace $L_{n} \rightarrow L_{n-1}$ on the second factor of $E_{n} \cong K \otimes_{L} L_{n}$.

Proof. The statement for φ_{L} follows by combining both points in 3.27. The statement for $\psi_{L T}$ follows from A.11.

Lemma 3.29. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Then the cohomology groups $H_{\varphi, Z}^{i}(M / t M)$ vanish outisde of degrees 0 and 1 and are finitely generated A-modules.

Proof. Assume M is defined over $\left[r_{0}, 1\right)$ and let $n_{1} \in \mathbb{N}$ such that $M^{r_{0}} / t M^{r_{0}} \cong$ $\prod_{n \geq n_{1}} M_{n}$. We claim that $\varphi-1$ is surjective which implies the vanishing of H^{2}. Let $\left(x_{n}\right) \in \prod_{n \geq n_{1}+1} M_{n}$. Set $y_{n}:=-x_{n}+x_{n-1}-x_{n-2}+\cdots+(-1)^{n-n_{1}} x_{n_{1}+1}$. Then $\left(\varphi_{L}-1\right)\left(y_{n-1}\right)=x_{n}$. On the other hand $\operatorname{ker}\left((\varphi-1)_{[r, 1)}\right)=\left(M^{r} / t M^{r}\right)^{\varphi=1} \cong M_{n_{1}(r)}$ and thus

$$
\operatorname{ker}(\varphi-1)=\underset{r>0}{\lim }\left(M^{r} / t M^{r}\right)^{\varphi=1} \cong \underset{n}{\lim } M_{n} .
$$

Next consider the complex

$$
\left(\underset{n}{\lim } M_{n}\right) \xrightarrow{Z}\left(\underset{n}{\lim } M_{n}\right) .
$$

Using 3.27 we can explicitly describe each module appearing in the direct limit as $M_{n_{1}} \otimes_{L_{n_{1}}} L_{m}$, where $W:=M_{n_{1}}$ is an A-module of finite type with a continuous L-analytic A-linear Γ_{L}-action and Γ_{L} acts on the right factor via its natural action. We claim that for $m \gg 0$ the natural map

$$
\left.\left[M_{m} \xrightarrow{Z} M_{m}\right] \rightarrow\left[\left(\underset{n}{\lim } M_{n}\right) \xrightarrow{Z} \underset{n}{\left(\lim _{n}\right.} M_{n}\right)\right]
$$

is a quasi-isomorphism. By the normal basis theorem and Maschke's theorem there is for any pair $m \geq m^{\prime}$ an isomorphism of representations $L_{m} \cong L_{m^{\prime}}\left[\Gamma_{m^{\prime}} / \Gamma_{m}\right] \cong$ $\prod_{\eta} L_{m^{\prime}}(\eta)$, where the product runs over all characters of $\operatorname{Gal}\left(L_{m} / L_{m^{\prime}}\right)$. Hence for $n \geq m$ as representations

$$
M_{n_{1}} \otimes_{L_{n_{1}}} L_{n} \cong \bigoplus_{\rho} M_{n_{1}}(\rho)=\bigoplus_{\rho\left(\Gamma_{m}\right)=1} M_{n_{1}}(\rho) \oplus \bigoplus_{\rho\left(\Gamma_{m}\right) \neq 1} M_{n_{1}}(\rho),
$$

where ρ runs through the characters of $\Gamma_{n_{1}} / \Gamma_{n}$.
It suffices to show that there exists a m such that for any ρ with $\rho\left(\Gamma_{m}\right) \neq 1$ the action of Z is invertible meaning that the only contribution to the cohomology comes from the components corresponding to characters vanishing on Γ_{m} hence the claim. It suffices to show that the action of Z_{m} is invertible for some $m \gg 0$ hence we may assume that $M_{n_{1}}$ satisfies the estimates of A.14 with respect to the action of Γ_{m}. But then \triangle A.14 asserts that the action of Z_{m} on $M_{n_{1}}(\rho)$ is invertible for any ρ that is not trivial on Γ_{m}. Since M_{m} is finitely generated over A we conclude that the complex computing $H_{\varphi, Z}^{i}\left(M / t_{L T} M\right)$ is quasi-isomorphic to a complex of finitely generated A modules and because A is Noetherian we conclude that the cohomology groups are finitely generated.

Lemma 3.30. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. Then

$$
\frac{\pi_{L}}{q} \psi_{L T}-1: M / t_{L T} M \rightarrow M / t_{L T} M
$$

is surjective and its kernel viewed as a $D\left(\Gamma_{n}, A\right)$-module admits a 2-term finite projective resolution for any $n \geq n_{0}$.

Proof. Let $M^{r_{0}}$ be a model of M with $r_{0}>\left|\pi_{L}^{\frac{1}{q^{n_{0}-1}(q-1)}}\right|$ such that $n_{1}\left(r_{0}\right) \geq n_{0}$. Consider the decomposition $M^{r_{0}} / t_{L T} M^{r_{0}} \cong \prod_{n \geq n_{1}} M_{n}$ from 3.27 and let $x=\left(x_{n}\right)_{n \geq n_{1}} \in$ $\prod_{n \geq n_{1}} M_{n}$. If $z \in M_{n+1}$ belongs to the image of M_{n} then its trace is $q z$ since due to our assumptions on r_{0} we have $\left[L_{n+1}: L_{n}\right]=q$ for every $n \geq n_{1}$. In particular $\frac{\pi_{L}}{q} \pi_{L}^{-1} \operatorname{Tr}(z)=z$ which via the explicit description of the $\psi_{L T}$-action in Corollary 3.28 should be read as " $\frac{\pi_{L}}{q} \psi_{L T}(z)=z$ ". Using the explicit description of $M^{r_{0}} / t_{L T} M^{r_{0}}$ from 3.28 we shall in the following define a tuple $y=\left(y_{n}\right)_{n \geq n_{0}\left(r_{0}^{1 / q}\right)} \in M^{r_{0}^{1 / q}} / t_{L T} M^{r_{0}^{1 / q}}$ with $y_{n_{0}\left(r^{1 / q}\right)}=0$ such that $\left(\frac{\pi_{L}}{q} \psi_{L T}-1\right) y=x$. This notation is abusive since in order to make sense of $\frac{\pi_{L}}{q} \psi_{L T}-1$ we need to view $\psi_{L T}$ as a map

$$
M^{r_{0}^{1 / q}} / t_{L T} M^{r_{0}^{1 / q}} \xrightarrow{\frac{\pi_{L}}{q} \psi_{L T}} M^{r_{0}} / t_{L T} M^{r_{0}} \xrightarrow{\mathrm{res}} M^{r_{0}^{1 / q}} / t_{L T} M^{r_{0}^{1 / q}}
$$

i.e. via the description from 3.28 a map

$$
\prod_{n \geq n_{0}\left(r_{0}^{1 / q}\right)} M_{n} \xrightarrow{\left(\frac{\pi_{L}}{q} \pi_{L}^{-1} \mathrm{Tr}\right)_{n}} \prod_{n \geq n_{1}\left(r_{0}\right)=n_{0}\left(r_{0}^{1 / q}\right)-1} M_{n} \xrightarrow{\text { res }} 0 \times \prod_{n \geq n_{1}\left(r_{0}^{1 / q}\right)} M_{n} \rightarrow \prod_{n \geq n_{1}\left(r_{0}^{1 / q}\right)} M_{n} .
$$

The restriction map is given by mapping $\left(x_{n} \bmod Q_{n}\right)_{n}$ to $\left(\operatorname{res}\left(x_{n}\right) \bmod Q_{n}\right)_{n}$ and one can see that by the choice of $n_{1}\left(r_{0}\right)$ the element $Q_{n_{1}}$ becomes invertible when restricted to $\left[r_{0}^{1 / q}, 1\right)$. In particular the $n_{1}\left(r_{0}\right)$-th component is mapped to zero and the last map is given by ommiting this component. We define $y_{n_{1}\left(r_{0}\right)}=0$ and $y_{n}=$ $\sum_{j=n_{1}}^{n-1} x_{j}$. One can see inductively that $\left(\frac{\pi_{L}}{q} \psi_{L T}-1\right)(y)=x$. Indeed the map $\frac{\pi}{q} \psi_{L T}$ corresponds to shifting indices and applying $\frac{1}{q}$-times the trace map by 3.28 . Hence we obtain $\left(\frac{\pi_{L}}{q} \psi_{L T}-1\right)(y)=\left(\frac{1}{q} \operatorname{Tr}\left(y_{n+1}\right)-y_{n}\right)_{n}$, which turns out to be $\left(x_{n}\right)_{n}$ since in every component M_{n+1} we apply $1 / q \operatorname{Tr}$ to elements in the image of M_{n} such that all terms but x_{n+1} cancel out. Using the description of $M^{r_{0}} / t_{L T} M^{r_{0}}$ and the $\psi_{L T}$-action we obtain

By 1.36 (after base change from K to A) we have $D\left(\Gamma_{n_{1}}, A\right) / Z_{n} \cong A\left[\Gamma_{n_{1}} / \Gamma_{n}\right]$ and we obtain

$$
\begin{align*}
\underset{\frac{1}{q} \operatorname{Tr}\left(L_{n+1} / L_{n}\right)}{\lim _{n}} M_{n} \otimes_{L_{n}} L_{n+1} & \cong{\underset{\sim}{\gtrless}}_{\lim _{n}} M_{n_{1}} \otimes_{A} D\left(\Gamma_{n_{1}}, A\right) / Z_{n} \tag{3.4}\\
& =M_{n_{1}} \otimes_{A}{\underset{\gtrless}{n}}_{\lim _{n}} D\left(\Gamma_{n_{1}}, A\right) / Z_{n} \tag{3.5}\\
& =M_{n_{1}} \otimes_{A} D\left(\Gamma_{n_{1}}, A\right) / \mathfrak{L}_{n_{1}} . \tag{3.6}
\end{align*}
$$

using that $M_{n_{1}}$ is finitely presented over A due to being finitely generated over a Noetherian ring and that $\left(A\left[\Gamma_{n_{1}} / \Gamma_{n}\right]\right)_{n \geq n_{1}}$ is Mittag-Leffler due to having surjective
transition maps consisting of free and hence flat A-modules to apply A.12. In the last equality we use the relationship (1.3) and use 1.57 via transport of structure along $\mathcal{R}_{A}^{+} \cong D\left(\Gamma_{n_{1}}, A\right)$ since under the map $T \mapsto Z_{n_{1}}$ the element $t_{L T}$ is mapped precisely to $\mathfrak{L}_{n_{1}}$. This isomorphism is $\Gamma_{n_{1}}$-equivariant with respect to the diagonal action. We have a naive resolution

$$
M_{n_{1}} \otimes_{A} D\left(\Gamma_{n_{1}}, A\right) / \mathfrak{L}_{n_{1}}=\operatorname{cok}\left(M_{n_{1}} \otimes_{A} D\left(\Gamma_{n_{1}}, A\right) \xrightarrow{\mathrm{id} \otimes \mathfrak{L}_{n_{1}}} M_{n_{1}} \otimes_{A} D\left(\Gamma_{n_{1}}, A\right)\right) .
$$

We shall prove that each factor of this resolution is finite projective with respect to the diagonal action, which will complete the proof. Using A.21 applied to the algebras $D\left(\Gamma_{m}, A\right) \subset D\left(\Gamma_{n_{1}}, A\right) \subset D\left(\Gamma_{n_{0}}, A\right)$ we are reduced to proving that each factor is finite projective over $D\left(\Gamma_{m}, A\right)$ for some $m \geq n_{0}$. We remark at this point that $M_{n_{1}}$ is projective over $\mathcal{R}_{A}^{r_{0}} / Q_{n}$ due to the projectivity of $M^{r_{0}}$ and hence projective over A since $\mathcal{R}_{A}^{r_{0}} / Q_{n}$ is free over A. Because $M_{n_{1}}$ is finitely generated projective over A, we can choose some finitely generated projective complement $N_{n_{1}}$ which we view with the trivial Γ_{L}-action, such that $M_{n_{1}} \oplus N_{n_{1}} \cong A^{d}$ and we endow the lefthand side with the norm corresponding to the sup-norm of the Banach norm on the right side with respect to some basis e_{1}, \ldots, e_{d}. By an analogue of Lemma 1.71 for finitely generated A-modules with A-linear L-analytic $\Gamma_{L^{-}}$-action we may assume that $\left\|Z_{m}\right\|_{M_{n_{1}} \oplus N_{n_{1}}}<\varepsilon<1$ after eventually enlarging m and the $D\left(\Gamma_{m}, K\right)$-action extends to an action of $D_{\mathfrak{r}_{l}}\left(\Gamma_{m}, K\right)$ for any $l \geq l_{0}$ with a suitable $l_{0} \in \mathbb{N}$. By the same reasoning as in the proof of 2.10 the action extends to a continuous action of $D_{\mathfrak{r}_{l}}\left(\Gamma_{m}, A\right):=A \hat{\otimes}_{K} D_{\mathfrak{r}_{l}}\left(\Gamma_{m}, K\right){ }^{4}$ Consider the maps

$$
\begin{align*}
\bigoplus_{i=1}^{d} D\left(\Gamma_{m}, A\right) e_{i} & \rightarrow\left(M_{n_{1}} \oplus N_{n_{1}}\right) \otimes_{A} D\left(\Gamma_{m}, A\right) \tag{3.7}\\
\Phi: f\left(Z_{m}\right) e_{i} & \rightarrow f\left(Z_{m}\right) \cdot\left(e_{i} \otimes 1\right) \tag{3.8}\\
\Psi: f\left(Z_{m}\right) e_{i} & \rightarrow e_{i} \otimes f\left(Z_{m}\right) \tag{3.9}
\end{align*}
$$

By construction Φ is equivariant for the diagonal action while Ψ is a topological isomorphism. It remains to conclude that Φ is an isomorphism and for that purpose it suffices to show that

$$
\Phi \circ \Psi^{-1}: D\left(\Gamma_{m}, A\right)^{d} \rightarrow D\left(\Gamma_{m}, A\right)^{d}
$$

is an isomorphism. By passing to the limit it suffices to show that for any $\mathfrak{r}_{l}>\varepsilon$ the induced map

$$
\Phi \circ \Psi^{-1}: D_{\mathbf{r}_{l}}\left(\Gamma_{m}, A\right)^{d} \rightarrow D_{\mathbf{r}_{l}}\left(\Gamma_{m}, A\right)^{d}
$$

is an isomorphism. We henceforth assume $\mathfrak{r}_{l}>\varepsilon$ in particular we may find $\delta<1$ such that $\varepsilon=\mathfrak{r}_{l} \delta \int^{5}$ Let $\bar{\lambda}=\left(\overline{\lambda_{1}}, \ldots, \overline{\lambda_{d}}\right) \in D_{\mathfrak{r}_{l}}\left(\Gamma_{m}, A\right)^{d}$ and let $\lambda_{i} \in D_{\mathbb{Q}_{p}, \mathfrak{r}_{l}}\left(\Gamma_{m}, A\right)$

[^12]be lifts. We wish to show $\left\|\Phi \circ \Psi^{-1}-\mathrm{id}\right\|_{D_{\mathrm{r}_{l}}\left(\Gamma_{m}, A\right)^{d}}<1$. For that purpose we view the $D\left(\Gamma_{m}, A\right)$-action as a $D_{\mathbb{Q}_{p}}\left(\Gamma_{m}, A\right)$ action that factors over the natural projection $D_{\mathbb{Q}_{p}}\left(\Gamma_{m}, A\right) \rightarrow D\left(\Gamma_{m}, A\right)$. This allows us to define analogously
$$
\Phi_{\mathbb{Q}_{p}}, \Psi_{\mathbb{Q}_{p}}: \bigoplus_{i=1}^{d} D_{\mathbb{Q}_{p}}\left(\Gamma_{m}, A\right) e_{i} \rightarrow A^{d} \otimes_{A} D_{\mathbb{Q}_{p}}\left(\Gamma_{m}, A\right)
$$
given on Dirac distributions by $\Phi_{\mathbb{Q}_{p}}\left(\gamma e_{i}\right)=\gamma\left(e_{i} \otimes 1\right)$ and $\Psi_{\mathbb{Q}_{p}}\left(e_{i} \otimes \gamma\right)=\gamma e_{i}$. Evidently $\Psi_{\mathbb{Q}_{p}}$ is an isomorphism. We denote by $\|\cdot\|_{\mathrm{r}_{l}}$ the norm introduced in 1.45 . Let $\gamma_{1}, \ldots, \gamma_{h}$ be a \mathbb{Z}_{p}-Basis of o_{L} and let $\mathbf{b}=\left(\gamma_{j}-1\right)_{j}$. Recall that we have $\left\|\gamma_{j}-1\right\|_{\mathfrak{r}_{l}}=\mathfrak{r}_{l}<1$ by definition and hence also $\left\|\gamma_{j}\right\|_{\mathfrak{r}_{l}}=1$. We first show
$$
\left\|\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}^{-1}\left(e_{i} \otimes \mathbf{b}^{\mathbf{k}}\right)-e_{i} \otimes \mathbf{b}^{\mathbf{k}}\right\| \leq \varepsilon \mathfrak{r}_{l}^{|\mathbf{k}|-1} \leq \delta \mathfrak{r}_{l}^{|\mathbf{k}|}<\mathfrak{r}_{l}^{|\mathbf{k}|}
$$
for any $\mathbf{k} \in \mathbb{N}_{0}^{h}$. The assumption on ε guarantees
$$
\left(\gamma_{i}-1\right)(x \otimes y)=\left(\gamma_{i}-1\right) x \otimes \gamma_{i} y+x \otimes\left(\gamma_{i}-1\right) y
$$
has operator norm $\leq \mathfrak{r}_{l}$, which allows us to reduce the computation by induction on $|\mathbf{k}|$ (the case $k=0$ being trivial). Assume $\mathbf{b}^{\mathbf{k}}=\left(\gamma_{j}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}}$ with $\left|\mathbf{k}^{\prime}\right|+1=|\mathbf{k}|$. We compute
\[

$$
\begin{align*}
& \Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}^{-1}\left(e_{i} \otimes \mathbf{b}^{\mathbf{k}}\right)-e_{i} \otimes \mathbf{b}^{\mathbf{k}} \tag{3.10}\\
& =\mathbf{b}^{\mathbf{k}}\left(e_{i} \otimes 1\right)-e_{i} \otimes \mathbf{b}^{\mathbf{k}} \tag{3.11}\\
& =\left(\gamma_{j}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}}\left(e_{i} \otimes 1\right)-e_{i} \otimes\left(\gamma_{j}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} \tag{3.12}\\
& =\left(\gamma_{j}-1\right)\left(\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}\right)\left(e_{i} \otimes \mathbf{b}^{\mathbf{k}^{\prime}}\right)-\left(\gamma_{j}-1\right)\left(e_{i} \otimes\left(\mathbf{b}^{\mathbf{k}^{\prime}}\right)\right)-\left(\gamma_{j}-1\right) e_{i} \otimes \gamma_{j} \mathbf{b}^{\mathbf{k}^{\prime}} \tag{3.13}\\
& =\left(\gamma_{j}-1\right)\left(\left[\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}^{-1}-\operatorname{id}\right]\left(e_{i} \otimes \mathbf{b}^{\mathbf{k}^{\prime}}\right)\right)-\left(\left(\gamma_{j}-1\right) e_{i}\right) \otimes \gamma_{j} \mathbf{b}^{\mathbf{k}^{\prime}} . \tag{3.14}
\end{align*}
$$
\]

Assuming that the corresponding estimate holds for $\mathbf{b}^{\mathbf{k}^{\prime}}$ we obtain

$$
\left\|\left(\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}^{-1}-\mathrm{id}\right)\left(e_{i} \otimes \mathbf{b}^{\mathbf{k}}\right)\right\| \leq \sup \left(\mathfrak{r}_{l}\left\|\left(\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}^{-1}-\mathrm{id}\right)\left(e_{i} \otimes \mathbf{b}^{\mathbf{k}^{\prime}}\right)\right\|, \varepsilon \mathfrak{r}_{l}^{\left|\mathbf{k}^{\prime}\right|}\right) \leq \delta \mathbf{r}_{l}^{|\mathbf{k}|} .
$$

In conclusion for each $\overline{\lambda_{i}}$ and any lift λ_{i} thereof we have

$$
\left\|\left(\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}^{-1}-\mathrm{id}\right)\left(e_{i} \otimes \lambda_{i}\right)\right\|<\left\|\lambda_{i}\right\|_{\mathfrak{r}_{l}} .
$$

More precisely our proof shows

$$
\left\|\left(\Phi_{\mathbb{Q}_{p}} \circ \Psi_{\mathbb{Q}_{p}}{ }^{-1}-\mathrm{id}\right)\left(e_{i} \otimes \lambda_{i}\right)\right\| \leq \delta\left\|\lambda_{i}\right\|_{\mathfrak{r}_{l}} .
$$

Hence the corresponding estimate with respect to the quotient norm $\|\cdot\|_{{\overline{r_{l}}}}$ of $\|\cdot\|_{\mathfrak{r}_{l}}$ on $D\left(\Gamma_{m}, A\right)$ namely

$$
\begin{equation*}
\left\|\left(\Phi \circ \Psi^{-1}-\mathrm{id}\right)\left(e_{i} \otimes \lambda_{i}\right)\right\| \leq \delta\left\|\lambda_{i}\right\|_{\overline{\mathrm{r}}_{l}}<\left\|\lambda_{i}\right\|_{\overline{\mathrm{r}}_{l}} \tag{3.15}
\end{equation*}
$$

remains valid. By a geometric series argument $\Phi \circ \Psi^{-1}$ is an isomorphism forcing Ψ to also be an isomorphism.

Lemma 3.31. Let $m \in \mathbb{N}, C_{0}:=|p|^{q /(q-1) e}$ and $C_{0} \leq r \leq s<1$. We denote by $|\cdot|_{s}$ the s-Gauss norm on $\mathcal{R}_{K}^{[r, 1]}$. Then there exists a constant such that

$$
\left|\psi\left(T^{-m}\right)\right|_{s} \leq C\left|T^{-m / q}\right|_{s} .
$$

Proof. By $\left[\mathrm{FX12}\right.$, Lemma 2.7] there exists a constant C such that $\left|\psi\left(T^{-m}\right)\right|_{s} \leq$ $C\left|T^{-m}\right|_{s^{1 / q}} \leq C|T|_{s}^{-m / q}$.

Theorem 3.32. Let M be a (φ, Γ)-module over \mathcal{R}_{A}. Then $M /(\psi-1)$ is a finitely generated A-module.

Proof. Let $M^{r_{0}}$ be a model of M over $\left[r_{0}, 1\right)$ with $r_{0} \geq C_{0}$. Define $r:=r_{0}^{1 / q^{2}}$. Let $e_{1}^{\prime}, \ldots e_{n}^{\prime}$ be generators of M^{r}. By assumption $M^{r^{q}}$ is a projective module generated by $e_{i}:=\varphi\left(e_{i}^{\prime}\right)$. We can hence find $N^{r^{q}}$ satisfying $N^{r^{q}} \oplus M^{r^{q}} \cong \bigoplus_{i} \mathcal{R}_{A}^{r^{q}} e_{i}=: E$. We denote by $|\cdot|_{s}$ the s-Gauss norm on the free module E and denote by the same symbol the restriction of said norm to $M^{r^{q}}$ viewed as a submodule of E. Let C_{s} be the operator norm of the canonical projection $E \rightarrow M^{r^{q}}$ with respect to the s Gauss norm. Because the e_{i} and e_{i}^{\prime} generate $M^{r^{q}}$ we may find a $\mathcal{R}_{A}^{r^{q}}$ valued matrix F^{\prime} satisfying $e_{j}=\sum_{i} F_{i j}^{\prime} e_{i}^{\prime}$. Similarily we can chose a matrix G with values in $\mathcal{R}_{A}^{r q}$ satisfying $e_{j}^{\prime}=\sum_{i} G_{i j} e_{i}$. Setting $F:=\varphi\left(F^{\prime}\right)$ we compute

$$
\begin{align*}
\varphi\left(\sum_{i} c_{i} e_{i}\right) & =\sum_{i} \varphi\left(c_{j}\right) \varphi\left(e_{i}\right)=\sum_{i}\left(\varphi\left(c_{i}\right) \varphi\left(\sum_{j} F_{i j}^{\prime} e_{i}^{\prime}\right)\right)=\sum_{i}\left(\sum_{j} F_{i j} \varphi\left(c_{j}\right)\right) e_{i} \tag{3.16}\\
\psi\left(\sum_{i} c_{i} e_{i}\right) & =\sum_{i} \psi\left(c_{i}\left(\varphi\left(\sum_{j} G_{i j} e_{i}\right)\right)\right)=\sum_{i}\left(\sum_{j} \psi\left(c_{i}\right) G_{i j} e_{i}\right) . \tag{3.17}
\end{align*}
$$

Let $0<\varepsilon$, let $a, b \in \mathbb{R}$ and let $I \subset \mathbb{R} \cup\{ \pm \infty\}$ be an interval. Any element of the free module E can be written as a convergent series $v=\sum_{j=1}^{n} \sum_{i \in \mathbb{Z}} a_{i j} T^{i} e_{j}$. This allows us to define the A-linear map

$$
P_{I}(v):=\sum_{j} \sum_{i \in I \cap \mathbb{Z}} a_{i j} T^{i} e_{j} .
$$

By abuse of notation we denote the induced map

$$
M^{r^{q}} \stackrel{\iota}{\hookrightarrow} E \xrightarrow{P_{[a, b]}} E \xrightarrow{\text { proj }} M^{r^{q}}
$$

by the same symbol. The image of $P_{[a, b]}$ is clearly a finitely generated A-submodule of $M^{r^{q}}$ generated by the elements $T^{i} e_{j}$ with $j=1, \ldots, n$ and $i \in[a, b] \cap \mathbb{Z}$. Given $v \in F$ we can write

$$
\begin{aligned}
v & =\sum_{j} \sum_{i<a} a_{i j} T^{i} e_{j}+\sum_{j} \sum_{i \in[a, b] \cap \mathbb{Z}} a_{i j} T^{i} e_{j}+\sum_{j} \sum_{i>b} a_{i j} T^{i} e_{j} \\
& =P_{[-\infty, a)}(v)+P_{[a, b]}(v)+P_{(b, \infty]}(v) .
\end{aligned}
$$

Define $v^{-}:=P_{[-\infty, a)}(v)$ and $v^{+}:=P_{(b, \infty]}(v)$. The decomposition above becomes

$$
v=v^{-}+P_{[a, b]}(v)+v^{+} .
$$

We now define $\lambda: M^{r^{q}} \rightarrow M^{r^{q}}$ via

$$
\lambda(v):=\operatorname{proj} v^{-}-\frac{\pi}{q} \operatorname{proj}\left(\varphi\left(v^{+}\right)\right) .
$$

We compute

$$
\begin{align*}
v & -P_{[a, b]}(v)+(\psi-1)(\lambda(v)) \tag{3.18}\\
& =\operatorname{proj}\left(v^{-}+v^{+}\right)+(\psi-1)\left(\operatorname{proj} v^{-}-\frac{\pi}{q} \operatorname{proj}\left(\varphi\left(v^{+}\right)\right)\right) \tag{3.19}\\
& =\operatorname{proj} \psi\left(\left(v^{-}\right)\right)+\operatorname{proj}\left(\frac{\pi}{q} \varphi\left(v^{+}\right)\right) \tag{3.20}\\
& =\operatorname{proj}\left(\sum_{l j} \sum_{i<a} G_{l j} \psi\left(a_{i j} T^{i}\right) e_{j}\right)+\operatorname{proj}\left(\sum_{l j} \sum_{i>b} \frac{\pi}{q} F_{l j} \varphi\left(a_{i j} T^{i}\right) e_{j}\right) . \tag{3.21}
\end{align*}
$$

Next we shall estimate both summands of (3.21). For the left-hand side

$$
\begin{align*}
C_{r} \max _{l j} \sup _{i<a}\left|G_{l j} \psi\left(a_{i j} T^{i}\right)\right|_{r} & \leq \max _{j} \sup _{i<a} C| | G| |_{r}\left|a_{i j} \psi\left(T^{i}\right)\right| \tag{3.22}\\
& \leq C \max _{j} \sup _{i<a}\left|a_{i j}\right|\left|q^{2} T^{i / q}\right|_{r} \tag{3.23}\\
& \leq C C_{1} \max _{j} \sup _{i<a}\left|a_{i j} T^{i} T^{i\left(q^{-1}-1\right)}\right| \tag{3.25}\\
& \leq C C_{1}|v|_{r}\left|T^{a\left(q^{-1}-1\right)}\right|_{r} \tag{3.26}\\
& \leq \tilde{C}|v|_{r} r^{a\left(q^{-1}-1\right)}
\end{align*}
$$

where C is a suitable constant, C_{1} is the constant from 3.31 and $\tilde{C}=C C_{1}$. For a small enough we have

$$
\begin{equation*}
\tilde{C}|v|_{r} r^{a\left(q^{-1}-1\right)} \leq|v|_{r} \epsilon . \tag{3.28}
\end{equation*}
$$

For the right-hand side of (3.21) we have

$$
\begin{aligned}
C_{r} \max _{l j} \sup _{i>b}\left|\frac{\pi}{q} F_{l j} \varphi\left(a_{i j} T^{i}\right)\right|_{r} & \leq \max _{j} \sup _{i>b} C\|F\|_{r}\left|a_{i j} \varphi\left(T^{i}\right)\right|_{r} \\
& \leq C \max _{j} \sup _{i>b} \|\left. F\right|_{r}\left|a_{i j} T^{i}\right|_{r} \\
& \leq\left. C| | F\right|_{r}|v|_{r}\left|T^{b}\right|_{r}
\end{aligned}
$$

where again C is some suitable constant (not necessary equal to the previous constant) and we use the estimate $\left|\varphi\left(T^{i}\right)\right|_{r} \leq\left|T^{i}\right|_{r q} \leq\left|T^{i q}\right|_{r}$ since $\varphi(T) \in T+o_{L}[[T]]$. For b large enough we can have

$$
\begin{equation*}
C||F||_{r}|v|_{r}\left|T^{b}\right|_{r} \leq|v|_{r} \epsilon . \tag{3.29}
\end{equation*}
$$

We now show that the series $w:=\sum_{k} v_{k}$ with $v_{0}=v$ and $v_{n+1}=v_{n}-P_{[a, b]}\left(v_{n}\right)+$ $(\psi-1) \lambda\left(v_{n}\right)$ converges and satisfies

$$
v-P_{[a, b]}(w)+(\psi-1)(\lambda(w))=0 .
$$

By choosing a small enough and b large enough we can ensure that $\left|v_{n+1}\right|_{r} \leq\left|v_{n}\right|_{r} \varepsilon$. Because we chose $\varepsilon<1$ this means that v_{k} is a zero-sequence with respect to the r-Gauss norm. We next show that this series converges with respect to any s-Gauß norm for $s \in\left(r^{1 / q}, 1\right)$. Arguing analogously for the constants C_{s} and the operator norms $\|G\|_{s}$ (resp. $\|F\|_{s}$) one concludes that we may find $a^{\prime}<a$ and $b^{\prime}>b$ (depending on s but independent of v) such that the analogues of (3.28) and (3.29) hold. By splitting the summands in (3.21) into four parts namely the partial sums $i<a^{\prime}, a^{\prime} \leq$ $i<a$ and respectively $i>b^{\prime}$ and $b^{\prime} \geq i>b$, it remains to estimate the summands corresponding to the intervals $\left[a^{\prime}, a\right)$ and $\left[b, b^{\prime}\right)$. One checks that the s-Gauß norm of these summands can be bounded by $C^{(s)}|v|_{r}$ with a suitable constant $C^{(s)}$ independent of v. Hence we obtain $\left|v_{n+1}\right|_{s} \leq \max \left\{\varepsilon\left|v_{n}\right|_{s}, C^{(s)}\left|v_{n}\right|_{r}\right\}$, which means that v_{n} is also a zero-sequence with respect to the s-Gauß norm for $s \in\left(r^{1 / q}, 1\right)$. This means that v_{n} tends to zero with respect to the $[r, s]$-norms for any $s \in\left(r^{1 / q}, 1\right)$. Therefore w converges with respect to the Fréchet topology on $M^{r^{q}}$. We compute

$$
\begin{align*}
P_{[a, b]}(w)-(\psi-1) \lambda(w) & =\sum_{n \geq 0} P_{[a, b]}\left(v_{n}\right)-(\psi-1) \lambda\left(\sum_{n \geq 0} v_{n}\right) \tag{3.30}\\
& =\sum_{n \geq 0} v_{n}-v_{n+1} \tag{3.31}\\
& =v_{0}=v . \tag{3.32}
\end{align*}
$$

This in turn implies that any $v \in M^{r^{q}}$ can be represented modulo $\psi-1$ by an element in the image of $P_{[a, b]}$. This implies that $M^{r^{q}} /(\psi-1)$ is finite over A. Finally let $v \in M$. Then v belongs to some M^{s} with $1>s \geq r_{0}$. Then take m large enough such that $\psi^{m} v$ belongs to M^{r}. We deduce that $\psi^{m} v$ and v are congruent modulo $\psi-1$ and $\psi^{m} v$ is represented by an element in the image of $P_{[a, b]}$. Therefore $M /(\psi-1)$ is finite over A.

Remark 3.33. The same result holds for $c \psi$ for any constant c.
Proof. Apply 3.32 to a module with φ_{L}-action twisted by c^{-1}.
Lemma 3.34. There exists $n \gg 0$ such that $\psi-1: t_{L T}^{-n} M \rightarrow t_{L T}^{-n} M$ is surjective.
Proof. Because M is projective and hence torsion-free, $t^{-n} M$ can be viewed as a \mathcal{R}_{A} submodule (isomorphic to M) of $M[1 / t]$. Furthermore the formula $\varphi\left(t_{L T}\right)=\pi_{L} t_{L T}$ allows us to extend φ and ψ to $t^{-n} M$. We use the notation from the proof of theorem 3.32. Note that replacing M with $t^{-n} M$ replaces the matrices F and G with $\pi_{L}^{-n} F$ and $\pi_{L}^{n} G$. In the proof of 3.32 we implicitly showed that M is generated by $\# \mathbb{Z} \cap[a, b]$ elements. This number is evidently zero, if $a=b \notin \mathbb{Z}$. Hence it suffices to show that there exists a choice of a such that

$$
\begin{equation*}
C_{1}\left|\pi_{L}^{n}\|| | G\| r^{a\left(q^{-1}-1\right)} \leq \epsilon\right. \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}\left|\pi_{L}^{-n}\right|| | F \|_{r} r^{a} \leq \epsilon \tag{3.34}
\end{equation*}
$$

with some suitable constants C_{i} independent of n and a. We can replace the first inequality by

$$
\begin{equation*}
C_{1}^{q}\left|\pi_{L}^{q n}\right|| | G \mid \|^{q} r^{a(1-q)} \leq \epsilon^{q} \tag{3.35}
\end{equation*}
$$

and multiply it with the second inequality to obtain

$$
\begin{equation*}
C_{1}^{q} C_{2}\left|\pi_{L}\right|^{(q-1) n}\|G\|^{q}\|F\| r^{a(2-q)} \leq \varepsilon^{q+1} . \tag{3.36}
\end{equation*}
$$

Chosing any $a \notin \mathbb{Z}$ such that (3.33) is satisfied for any $n \in \mathbb{N}$, we can see that (3.36) is satisfied for $n \gg 0$, because $\left|\pi_{L}\right|^{(q-1) n}$ converges to 0 for $n \rightarrow \infty$ and all other terms are independent of n. Obviously (3.33) implies (3.35) while (3.36) and (3.35) imply (3.34).

3.5 Comparison between $H_{\varphi_{L}, \Gamma_{n}}^{1}$ and Ext ${ }_{\text {an }}^{1}$

In this section we simplify the notation and consider $U=\Gamma_{n}$ for an $n \geq n_{0}$ and write Z for the variable $Z_{n} \in D\left(\Gamma_{L}, K\right)$. We denote by $\alpha(-):=\log \left(\chi_{L T}(-)\right) / \pi_{L}^{n}$ the chart used to indentify U with o_{L}.

Theorem 3.35. Let M, E be L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over \mathcal{R}_{A} that fit in an exact sequence

$$
0 \rightarrow M \rightarrow E \rightarrow \mathcal{R}_{A} \rightarrow 0 .
$$

Let e be a preimage of 1 in E then $e \mapsto\left(\left(\varphi_{L}-1\right) e, Z e\right)$ gives a well-defined injection

$$
\Theta: \operatorname{Ext}_{a n}^{1}\left(\mathcal{R}_{A}, M\right) \rightarrow H_{\varphi_{L}, Z}^{1}(M),
$$

whose image is contained in $H_{\varphi_{L}, D\left(\Gamma_{L}, K\right)}^{1}(M)$ inducing a bijection

$$
\operatorname{Ext}_{a n}^{1}\left(\mathcal{R}_{A}, M\right) \rightarrow H_{\varphi_{L}, D\left(\Gamma_{L}, K\right)}^{1}(M) .
$$

Proof. Since all modules involved are L-analytic, the morphisms between them are even $D\left(\Gamma_{L}, K\right)$-linear. Because 1 is invariant under the action of φ_{L} and U the element $\left(\left(\varphi_{L}-1\right) e, Z e\right)$ lies in $M \times M$ and it is clear that $\partial_{2}\left(\left(\varphi_{L}-1\right) e, Z e\right)=0$. If \tilde{e} is another preimage of 1 then $e-\tilde{e}$ lies in M and therefore $\left(\left(\varphi_{L}-1\right) e, Z e\right)-\left(\left(\varphi_{L}-1\right) \tilde{e}, Z \tilde{e}\right)=$ $\left(\left(\varphi_{L}-1\right)(e-\tilde{e}), Z(e-\tilde{e})\right)=\partial_{1}(e-\tilde{e})$. Note that for any $\gamma \in \Gamma_{L}$ the element γe is yet another preimage of 1 and the above computation shows that the cocycles $\left(\varphi_{L}-\right.$ 1) $e, Z e)$ and $\left.\gamma\left(\varphi_{L}-1\right) e, Z e\right)$ differ by a coboundary, which proves the Γ_{L}-invariance of $\overline{\left.\left(\left(\varphi_{L}-1\right) e, Z e\right)\right)}$. For the injectivity let E be an extension such that $\left(\left(\varphi_{L}-1\right) e, Z e\right)$ vanishes in H^{1}. Then there exists $d \in M$ such that $\left(\left(\varphi_{L}-1\right)(e-d), Z(e-d)\right)=0$. That means $e-d \in E$ is a preimage of $1 \in \mathcal{R}_{A}$ fixed by φ_{L} and U, which can be modified to be $\left(\varphi_{L}, \Gamma_{L}\right)$-invariant by replacing it with $\frac{1}{\left[\Gamma_{L}: U\right]} \sum_{\gamma \in \Gamma_{L} / U} \gamma(e-d)$ and therefore induces a section of $E \rightarrow \mathcal{R}_{A}$, which shows injectivity.

For the surjectivity let $\overline{(a, b)} \in H_{\varphi_{L}, D\left(\Gamma_{L}, K\right)}^{1}(M)$. We first explain how to construct an L-analytic coycle of the semigroup $\varphi_{L}^{\mathbb{N}_{0}} \times \Gamma_{L}$ with values in M. In the following we identify σ with its corresponding Dirac distribution. We obtain $\sigma-1=Z G_{\sigma}(Z)$ with a suitable power series $G_{\sigma} \in o_{K} \llbracket Z \rrbracket$. Note that the map $\sigma \mapsto G_{\sigma}(Z) b$ defines a 1-cocycle $c: U \rightarrow M$ as for $\tau \in U$ we have

$$
\sigma \tau-1=\sigma(\tau-1)+(\sigma-1)=Z \delta_{\sigma} G_{\tau}(Z)+Z G_{\sigma}(Z)
$$

We extend it to the whole group Γ_{L} using $\frac{1}{\left[\Gamma_{L}: V\right]}$-times the corestriction (defined in BF17, Definition 2.1.2]) such that the restriction of c to U is the cocycle we started with. Finally we define an extension of M by \mathcal{R}_{A} by setting $E=M \times \mathcal{R}_{A}$ as \mathcal{R}_{A}-modules with actions $\sigma((m, r))=(\sigma m+(\sigma r) c(\sigma), \sigma r)$ and $\left(\varphi_{E}(m, r)=\left(\varphi_{M}(m)+\right.\right.$ $\left.\varphi_{L}(r) a, \varphi_{L}(r)\right)$). In order to show that this extension is L-analytic we need to show that the function $\sigma \mapsto c(\sigma)$ is L-analytic. It suffices to show that for $m \in M^{[r, s]}$ for any interval $[r, s]$ and a sufficiently small open subgroup $U^{\prime} \subset U$ the orbit map $\sigma \mapsto \sigma m$ restricted to U^{\prime} is L-analytic. Recall that σ acts on m via the operator

$$
\eta(\alpha(\sigma), Z)
$$

for some fixed $n \in \mathbb{N}$ depending on U and we abbreviate $x:=\alpha(\sigma)$. We wish to show that the series

$$
G_{\sigma}(Z) m=(\eta(x, Z)-1) / Z m=\sum_{k=1}^{\infty} \frac{\left(x \Omega \log _{L T}(Z)\right)^{k}}{k!Z} m
$$

converges on some ball $|x| \leq \pi_{L}^{j}$, which via the chart $\chi_{L T}$ corresponds to the desired subgroup U^{\prime}. For that purpose choose j such that $\left\|\frac{\left(\Omega \log _{L T}(Z) \pi_{L}^{j} / Z\right)^{k}}{k!}\right\|_{M^{[r, s]}}$ converges to zero for $k \rightarrow \infty$. The choice of j is possible because the series $\exp (T)$ has non-trivial radius of convergence and the operator norm of $\log _{L T}(Z) / Z \in D(U, K)$ acting on $M^{[r, s]}$ is bounded. It remains to show that the image of E is the original element $(\overline{a, b})$. We may choose $e=(0,1)$ as an explicit preimage of 1 . By construction $(\varphi-1) e=$ $(a, 0)$. It remains to show $Z e=(b, 0)$. For $\sigma \in U$ we compute $(\sigma-1)(e)=\left(G_{\sigma}(Z) b, 0\right)$. Recall that the action of $D\left(\Gamma_{L}, K\right)$ is obtained by continuous extension of the $K\left[\Gamma_{L}\right]$ action and that the action of $Z \in D(U, K)$ agrees with the action of any $X \in$ $D_{\mathbb{Q}_{p}}(U, K)$ that projects to Z. Choose such an element and express it as a convergent series

$$
X=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} \mathbf{b}^{\mathbf{k}},
$$

where $\mathbf{b}=\left(\gamma_{i}-1, \ldots, \gamma_{d}-1\right)$ is a \mathbb{Z}_{p}-basis of U. The series defining X converges a fortiori in $D(U, K)$ by definition of the quotient topology and since $\gamma_{i}-1$ is given by the power series $\eta\left(\alpha\left(\gamma_{i}\right), Z\right)-1$ evaluating at $Z=0$ shows that necessarily $a_{0}=0$. We set $G_{i}(Z):=G_{\gamma_{i}}(Z)$. Let $\mathbf{G}:=\left(G_{1}, \ldots, G_{d}\right)$ such that the image of $\mathbf{b}^{\mathbf{k}}$ under the
projection proj : $D_{\mathbb{Q}_{p}}(U, K) \rightarrow D(U, K)$ is $\left(Z G_{1}(Z), \ldots, Z G_{d}(Z)\right)^{\mathbf{k}}$. We compute

$$
\begin{align*}
Z & =\operatorname{proj}(X) \tag{3.37}\\
& =\sum_{0 \neq \mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} Z^{|\mathbf{k}|} \mathbf{G}^{\mathbf{k}} \tag{3.38}\\
& =Z\left(\sum_{0 \neq \mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} Z^{|\mathbf{k}|-1} \mathbf{G}^{\mathbf{k}}\right) \tag{3.39}
\end{align*}
$$

We claim that the inner sum $\mu:=\sum_{0 \neq \mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} Z^{\mathbf{k} \mid-1} \mathbf{G}^{\mathbf{k}}$ converges with respect to the Fréchet topology to an element of $D(U, K)$ which satisfies $\mu Z=Z$ by construction and hence has to be 1 since $D(U, K)$ is a domain. For the convergence we remark that the map $\lambda \mapsto Z \lambda$ is an injective continuous operator with finite-dimensional (hence Hausdorff by 1.10) cokernel.
In particular $Z D(U, K)$ is itself a Fréchet space and we conclude that $\lambda \mapsto \lambda Z$ is a continuous surjection $D(U, K) \rightarrow Z D(U, K)$ between Fréchet spaces and thus a homeomorphism by the open mapping theorem. We further compute for $\mathbf{k} \neq 0$

$$
\mathbf{b}^{\mathbf{k}}(e)=\left(Z^{|\mathbf{k}|-1} \mathbf{G}^{\mathbf{k}} b, 0\right),
$$

which can be seen as follows. Without loss of generality assume $k_{1} \neq 0$. Since U is commutative we may first apply $\gamma_{1}-1$ and obtain $\left(\gamma_{1}-1\right)(e)=\left(G_{1}(Z) b, 0\right)$ by construction. The resulting element belongs to the image of M under the natural inclusion $M \rightarrow E$ and hence $\gamma_{i}-1$ acts via multiplication by $Z G_{i}(Z)$. Putting everything together we conclude

$$
Z e=\left(\sum_{0 \neq \mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} Z^{|\mathbf{k}|-1} \mathbf{G}^{\mathbf{k}} b, 0\right)=(\mu b, 0)=(b, 0) .
$$

Chapter 4

Lubin-Tate deformations and IWASAWA COHOMOLOGY

In this chapter we study deformations of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules with the distribution algebra and their relationship to Iwasawa cohomology. We shall establish a comparison between the (Ψ, Z)-cohomology of $\operatorname{Dfm}(M)$ and the Iwasawa cohomology of M which is defined as the cohomology of the complex

$$
C_{\Psi}(M): M \xrightarrow{\Psi-1} M
$$

concentrated in degrees [1,2]. This is motivated by the fact that for an étale module (coming from a representation V) this cohomology is closely related to the Iwasawa cohomology of V. Roughly speaking the deformation is a family of (φ_{L}, Γ_{L})-modules parametrised by the Fréchet-Stein algebra $D\left(\Gamma_{L}, K\right)$ and specialising to a point $\mathfrak{m}_{x} \in$ $\operatorname{Sp}\left(D\left(\Gamma_{L}, K\right)\right)$ corresponds to twisting the module at $x=0$ by an analytic character. As before we run into the problem that, contrary to the cyclotomic case, the inclusion $\Gamma_{n_{0}} \subset \Gamma_{L}$ does not split and hence we restrict a priori to this subgroup.

4.1 Basic definitions

For now fix $U:=\Gamma_{m}$ for some $m \geq n_{0}$. We shorten our notation and write $D:=$ $D(U, K)$ and pick an affinoid cover $D=\lim _{n} D_{n}$ that arises as a base change of an affinoid cover of $D(U, L)$ with U-stable terms (e.g. $D_{n}:=D_{r_{n}}(U, K)$ for a non trivial sequence r_{n} converging to 1 from below). We further abbreviate $D\left(\Gamma_{L}\right):=$ $D\left(\Gamma_{L}, K\right)=\mathbb{Z}\left[\Gamma_{L}\right] \otimes_{\mathbb{Z}[U]} D(U, K)$ and $D_{n}\left(\Gamma_{L}\right):=\mathbb{Z}\left[\Gamma_{L}\right] \otimes_{\mathbb{Z}[U]} D_{n}$. In this chapter let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A} with a model over $\left[r_{0}, 1\right)$. As before we denote by Z the preimage of a coordinate T under the Fourier isomorphism. We denote by Ψ the left-inverse operator to φ_{L} i.e. $\Psi=\frac{\pi_{L}}{q} \psi_{L T}$. We henceforth omit the subscript $\psi_{L T}$ and write $\psi:=\psi_{L T}$.

Definition 4.1. We define for $r \geq r_{0}$

$$
\operatorname{Dfm}_{n}\left(M^{r}\right):=D_{n} \hat{\otimes}_{K, \pi} M^{r}
$$

and

We endow $\mathbf{D f m}_{n}\left(M^{r}\right)$ (resp. $\mathbf{D f m}\left(M^{r}\right)$) with an action of φ_{L} and U via $\gamma(a \otimes m)=$ $\delta_{\gamma^{-1}} a \otimes \gamma m$ and $\varphi_{L}(a \otimes m):=a \otimes \varphi_{L}(m)$. We further define $\operatorname{Dfm}_{n}^{\Gamma_{L}}\left(M^{r}\right)$ (resp. $\operatorname{Dfm}_{n}^{\Gamma_{L}}\left(M^{r}\right)$) as $D_{n}\left(\Gamma_{L}\right) \hat{\otimes} M^{r}$ (resp. $D\left(\Gamma_{L}\right) \hat{\otimes} M^{r}$) with analogously defined actions.

In particular $\operatorname{Dfm}\left(M^{r}\right)$ can be viewed as a sheaf on (the rigid analytic space associated to) D. We can also define

$$
\operatorname{Dfm}_{n}(M):=D_{n} \hat{\otimes}_{K, i} M
$$

but passing to $\mathbf{D f m}$ poses a problem, since inductive tensor product topologies do not necessarily commute with projective limits. However the inductive tensor product topology is the most reasonable choice for a tensor product of an LF-space and a Fréchet space. We shall avoid this problem by working on the level of models.

Proposition 4.2. $\operatorname{Dfm}_{n}^{\Gamma_{L}}\left(M^{r}\right)$ is an L-analytic family of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over $\operatorname{Sp}\left(D_{n}\left(\Gamma_{L}\right)\right) \times_{K} \operatorname{Sp}(A)$ i.e. an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over $\mathcal{R}_{D_{n}\left(\Gamma_{L}\right) \hat{\otimes} A}^{[r, 1)}$.

Proof. By construction $\operatorname{Dfm}_{n}^{\Gamma_{L}}\left(M^{r}\right)$ is finite projective of the same rank as M. The actions are semi-linear (in particular $D_{n} \hat{\otimes} A$-linear) because

$$
\gamma(\lambda \mu \otimes a m)=(\lambda \otimes a)\left(\delta_{\gamma}^{-1} \mu \otimes m\right)
$$

for any $\lambda \in D, \mu \in D_{n}, a \in A$ and $m \in M^{r}$. Note that semi-linearity refers to the action of $\lambda \otimes a \otimes f \in \mathcal{R}_{D_{n} \hat{\otimes} A}$ via multiplication $(\lambda \otimes a \otimes f)(\mu \otimes m)=\lambda \mu \otimes a f m$, where $\lambda \in D, \mu \in D_{n}, a \in A, f \in \mathcal{R}_{K}, m \in M^{r}$. L-analyticity (and hence continuity) follows from 1.43 once we establish that the U-action on D_{n} (via inverted multiplication) is locally L-analytic. By our assumptions the Dirac distribution corresponding to $u \in U$ admits an expansion $\delta_{u}=\eta(a(u), Z)$ with a suitable $a(u) \in o_{L}$. Fixing $\lambda \in D_{n}$ its orbit map is given by $u \mapsto \eta(-a(u), Z) \lambda$. Expanding out the terms shows that the orbit map is locally L-analytic. The φ_{L} and Γ_{L}-actions clearly commute and the linearised φ_{L}-map is invertible, since it is the linear extension of $\varphi_{M^{r}}$.

Remark 4.3. $\operatorname{Dfm}\left(M^{r}\right), \operatorname{Dfm}_{n}\left(M^{r}\right)$ carry two different D-actions. One induced by the scalar action in the left tensor component, that we shall call scalar action. The other one induced by the L-analytic action defined in 4.1, which we shall call diagonal action. Note that $\operatorname{Dfm}\left(M^{r}\right)$ is only a $\left(\varphi_{L}, U\right)$-module but not a $\left(\varphi_{L}, \Gamma_{L}\right)$ module. (Because there is no action of the full group Γ_{L}.) Instead we can restrict the action to the subgroup $U \subset \Gamma_{L}$ which is still enough to make sense of the operator $Z \in D(U, K)$ and the complex $C_{\varphi, Z}\left(\mathbf{D f m}\left(M^{r}\right)\right)\left(\right.$ resp. $C_{\varphi, Z}\left(\mathbf{D f m}_{n}\left(M^{r}\right)\right)$). We use a subscript $(-)_{\text {diag }}$ to emphasize that the action is given diagonally when ambiguity can arise.

Another subtlety is the fact that the induced diagonal action of D on $\operatorname{Dfm}\left(M^{r}\right)$, in particular, the diagonal action of Z is harder to understand. It is neither given by $Z \otimes Z$ nor by $Z^{i} \otimes Z$, where Z^{i} denotes the action induced by the inversion on U. This problem already occurs in the cyclotomic case where $Z=\gamma-1$ and

$$
(\gamma-1)_{\operatorname{diag}}(a \otimes m)=\delta_{\gamma^{-1}} a \otimes \gamma m-a \otimes m
$$

while

$$
(\gamma-1) a \otimes(\gamma-1) m=\delta_{\gamma^{-1}} a \otimes \gamma m-a \otimes \gamma m-\delta_{\gamma^{-1}} a \otimes m+a \otimes m .
$$

4.2 Coadmissibility of Iwasawa cohomology $C_{\Psi}(M)$ over a field.

For technical reasons that will become clear in the proof of 4.24 we require that the complex of D-modules $C_{\Psi}(M)$ has coadmissible cohomology groups to obtain a comparison between the Iwasawa cohomology and the cohomology of $\operatorname{Dfm}(M)$. Our Theorem 5.8 asserts that this perfectness holds for so-called trianguline modules. In chapter 6 we shall explore conjecturally how the étale case can be incorporated into the picture. More precisely we show that it suffices to proof the statement in the étale case to conclude that it holds for every $\left(\varphi_{L}, \Gamma_{L}\right)$-module coming from \mathcal{R}_{L}.

Remark 4.4. The rings $\mathcal{R}_{K}^{+}, \mathcal{R}_{K}^{r, 1)}, \mathcal{R}_{K}, D\left(o_{L}, K\right), D\left(o_{L}, L\right)$ are Prüfer-domains (i.e. every finitely generated ideal is invertible). In particular a module over the above rings is flat if and only if it is torsion-free and any finitely generated torsion-free module is projective.

Proof. Using the Fourier isomorphism ST01, Theorem 2.3] this is BSX20, Corollary 1.1.8].

Definition 4.5. We define the heart of M as

$$
\mathcal{C}(M):=\left(\varphi_{M}-1\right) M^{\Psi=1} .
$$

If there is no possibility of confusion we omit M and simply write $\mathcal{C}:=\mathcal{C}(M)$. For each $c \in K^{\times}$we define a variant of the heart as

$$
C_{c}(M):=\left(\varphi_{M}-c\right) M^{c \Psi=1} .
$$

Remark 4.6. \mathcal{C} is a $D\left(\Gamma_{L}, K\right)$-submodule of $M^{\psi_{L T}=0}$, in particular \mathcal{C} is $D\left(\Gamma_{L}, K\right)$ -torsion-free. Furthermore we have for every $c \in K^{\times}$an exact sequence

$$
0 \rightarrow M^{\varphi=c} \xrightarrow{\iota} M^{c \Psi=1} \xrightarrow{\varphi-c} \mathcal{C}_{c}(M) \rightarrow 0,
$$

where ι is the inclusion.

Proof. $\mathcal{C}_{c}(M)$ is a $K\left[\Gamma_{L}\right]$-submodule since the actions of Γ_{L} and φ (resp. Ψ) commute and by continuity considerations it is also a $D\left(\Gamma_{L}, K\right)$-submodule of M. Using $\Psi \circ \varphi=$ id one concludes that $\mathcal{C}_{c}(M)$ is contained in $M^{\Psi=0}$ which is projective over $\mathcal{R}_{K}\left(\Gamma_{L}\right)$ by 2.19 and, in particular, $D\left(\Gamma_{L}, K\right)$-torsion-free. The exactness of the sequence on the right is given by definition. It remains to see $M^{\varphi=c} \cap M^{c \Psi=1}=M^{\varphi=c}$ i.e. $M^{\varphi=c} \subset$ $M^{c \Psi=1}$ for this purpose let $m \in M^{\varphi=c}$ then $c m=\varphi(m)$ implies $\Psi(\varphi(m))=c \Psi(m)$ but then $c \Psi(m)=m$.

The following lemma is a strengthening of [KPX14, Lemma 4.1.6]. We elaborate on the proof for the convenience of the reader.

Lemma 4.7. Let $r \in[0,1)$. Any $\mathcal{R}_{K}^{[r, 1)}$-module V of finite K-dimension admits a resolution of the form

$$
0 \rightarrow F_{1} \rightarrow F_{2} \rightarrow V \rightarrow 0,
$$

where F_{i} are finite free $\mathcal{R}_{K}^{[r, 1)}$-modules.
Proof. Let v_{1}, \ldots, v_{d} be a K-basis of V. Consider the surjection $\left(\mathcal{R}_{K}^{[r, 1)}\right)^{d} \rightarrow V$ mapping e_{i} to v_{i}. Since for each i the elements $v_{i}, T v_{i}, T^{2} v_{i}, \ldots$ have to be linearly dependent we observe that there exists a polynomial $f \in K[T]$ such that the structure map $\mathcal{R}_{K}^{[r, 1)} \rightarrow \operatorname{End}(V)$ factors over $\mathcal{R}_{K}^{[r, 1)} /(f)$. Now take a factorisation of f viewed as an element in $K\langle T\rangle$ of the form $u g$, where u is a unit and g is a Weierstraß polynomial and rewrite this decomposition as $u g_{1} g_{2}$, such that the zeroes of g_{1} lie outside the annulus $\left[r, 1\right.$) (i.e. g_{1} becomes a unit in $\mathcal{R}_{K}^{[r, 1)}$) and the zeroes of g_{2} are contained inside the annulus. Without loss of generality we assume $g_{2}=g$. By the coadmissibility of $\mathcal{R}_{K}^{[r, 1)}$ and $g \mathcal{R}_{K}^{[r, 1)} \cong \mathcal{R}_{K}^{[r, 1)}$ we have $\mathcal{R}_{K}^{[r, 1)} /(g)=\operatorname{cok}\left(\mathcal{R}_{K}^{[r, 1)} \xrightarrow{g} \mathcal{R}_{K}^{[r, 1)}\right)=\lim _{s} \operatorname{cok}\left(\mathcal{R}_{K}^{[r, s]} \xrightarrow{g} \mathcal{R}_{K}^{[r, s]}\right)$. For s large enough (such that the zeroes of g are contained in the annulus $[r, s]$) we have by (Bos14, 3.3 Lemma 10] and the chinese remainder theorem $\mathcal{R}_{K}^{[r, s]} /(g) \cong K\langle T\rangle /(g)$. In particular the limit stabilises for s large enough and we obtain $\mathcal{R}_{K}^{[r, 1)} /(g) \cong K\langle T\rangle /(g)$. Recall that $K\langle T\rangle$ is a principal ideal domain by [Bos14, 2.2 Corollary 10]. By the elementary divisor theorem we may find a free resolution of V as a $K\langle T\rangle$-module of the form

$$
0 \rightarrow K\langle T\rangle^{d_{1}} \rightarrow K\langle T\rangle^{d_{2}} \rightarrow V \rightarrow 0
$$

with some $d_{i} \in \mathbb{N}$. Since $K\langle T\rangle$ is a principal ideal domain and $\mathcal{R}_{K}^{[r, 1)}$ is torsion free we get via base change along the flat map $K\langle T\rangle \rightarrow \mathcal{R}_{K}^{[r, 1)}$ a resolution

$$
0 \rightarrow\left(\mathcal{R}_{K}^{[r, 1)}\right)^{d_{1}} \rightarrow\left(\mathcal{R}_{K}^{[r, 1)}\right)^{d_{2}} \rightarrow \mathcal{R}_{K}^{[r, 1)} \otimes_{K\langle T\rangle} V \rightarrow 0 .
$$

Because V is a $\mathcal{R}_{K}^{[r, 1)} /(g)$-module we obtain $\mathcal{R}_{K}^{[r, 1)} \otimes_{K\langle T\rangle} V=\mathcal{R}_{K}^{[r, 1)} /(g) \otimes_{K\langle T\rangle} V=$ $K\langle T\rangle /(g) \otimes_{K\langle T\rangle} V=V$. We have therefore constructed the desired resolution of V.

Remark 4.8. Let N be a not necessarily L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K} and let $n \geq n_{0}$ such that $\Gamma_{n} \cong o_{L}$. Then

1. $N^{c \varphi=1}$ has finite K-dimension for any $c \in K^{\times}$.
2. If N is L-analytic and $c \in K^{\times}$then $N^{c \varphi=1}[0]$ belongs to $\mathbf{D}_{\text {perf }}^{b}\left(D\left(\Gamma_{n}, K\right)\right)$.
3. If N is L-analytic and $c \in K^{\times}$then $N /\left(c \psi_{L T}-1\right)[0]$ belongs to $\mathbf{D}_{\text {perf }}^{b}\left(D\left(\Gamma_{n}, K\right)\right)$.

Proof. Restricting the residue pairing from 1.75 to $N^{c \varphi=1}$ we see that the pairing factors over $\check{N} /\left(c \psi_{L T}-1\right)$ which is finite-dimensional by 3.32 . If N is L-analytic, then $N^{\varphi=1}$ and $N /\left(c \psi_{L T}-1\right)$ carry natural $D\left(\Gamma_{n}, K\right)$-module structures and are finite dimensional over K by the above (resp. 3.32). Hence 2. and 3 . follow from 4.7 by transport of structure along $\mathcal{R}_{K}^{+} \cong D\left(\Gamma_{n}, K\right)$.

Proposition 4.9. Let $c \in K^{\times}$. The following are equivalent.
(i.) $C_{c \Psi}(M) \in \mathbf{D}_{p e r f}^{b}(D(U, K))$.
(ii.) $M^{c \Psi=1}$ is coadmissible and finitely generated as a $D(U, K)$-module.
(iii.) $M^{c \Psi=1}$ is finitely generated as a $D(U, K)$-module.
(iv.) $\mathcal{C}_{c}(M)$ is finitely generated as a $D(U, K)$-module.

Proof. (i.) \Longrightarrow (ii.) follows from the fact that finite projective modules are automatically coadmissible and the latter form an abelian category. Hence $M^{\Psi=1}$ is coadmissible as a cohomology group of a complex of coadmissible modules. Finite generation follows from BSX20, Lemma 1.1.9]. The implication (ii.) \Longrightarrow (iii.) is trivial. (iv.) follows immediately from (iii.) via the exact sequence from 4.6. Lastly assume (iv.) then $\mathcal{C}_{c}(M)$ is a torsion-free module which is finitely generated. Since $D(U, K)$ is a Prüfer-domain we conclude that $\mathcal{C}_{c}(M)$ has to be finitely generated projective by Remark 4.4. From the exact sequence in 4.6 and by 4.8 2.) we conclude that the bounded complex $C_{c \Psi}(M)$ has cohomology groups belonging to $\mathbf{D}_{\text {perf }}^{b}(D)$. Then Sta21, Tag 066U implies that $C_{c \Psi}(M)$ itself belongs to $\mathbf{D}_{\text {perf }}^{b}(D)$.

In chapter 6 we will require some flexibility concerning the constant c.
Lemma 4.10. Let $c \in K^{\times}$and define a character $\rho: L^{\times} \rightarrow K^{\times}$by $\rho\left(\pi_{L}\right)=c$ and $\rho_{o_{L}^{\times}}=1$. Then the identity induces a Γ_{L}-equivariant isomorphism.

$$
C_{\Psi}(M) \cong C_{c \Psi}(M(\rho)) .
$$

Furthermore if M is L-analytic then so is $M(\rho)$ and the isomorphism above is $D\left(\Gamma_{L}, K\right)$-equivariant.

Proof. Since the character ρ is trivial on o_{L}^{\times}the identity is Γ_{L}-equivariant. Furthermore we have $\varphi_{M(\rho)}(m)=c \varphi_{M}(m)$ and hence $\Psi_{M(\rho)}=c^{-1} \Psi_{M}$ which shows that the identity induces a morphism of complexes. The second part of the statement follows from the fact that ρ does not change the Γ_{L}-action and hence it remains L-analytic on $M(\rho)$. The $D\left(\Gamma_{L}, K\right)$-equivariance follows from continuity.

Corollary 4.11. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K}. Then the complex $C_{c \Psi}\left(M / t_{L T}\right)=\left[M / t_{L T} \xrightarrow{c \Psi-1} M / t_{L T}\right]$ is perfect.

Proof. Since twisting by a character that is trivial on o_{L}^{\times}preserves the property that M is L-analytic by 4.10 we may without loss of generality assume $c=1$. Because the complex is bounded it suffices to show that the cohomology groups are perfect. The cohomology groups are precisely kernel and cokernel of $\Psi-1$ for which the statement has been shown in 3.30 .

4.3 Consistent complexes

When studying the Iwasawa cohomology $C_{\Psi}(M)$ the conceptual approach is to view the cohomology groups $H_{I w}^{i}(M)$ as coherent sheaves on $D(U, K)$. We do however not know if M itself can be viewed as a sheaf on $D(U, K)$ in a suitable sense and we instead study the "sheaf" $D_{n} \mapsto C_{\Psi}\left(D_{n} \otimes_{D} M\right)$. We describe a framework for studying complexes of D modules whose cohomology groups are coadmissible D modules. A similar situation was studied by Berthelot and Ogus (cf. Appendix B in (BO78]) in the case where A is a noetherian ring that is I-adically complete and $A_{n}:=A / I^{n}$. We adapt their setup for our purpose following Pot13]. One can view a projective system of D_{n} modules as a sheaf on the ringed site \mathbb{N} (where $\mathcal{O}(n)=D_{n}$) with the indiscrete topology (such that only isomorphism are coverings and thus every presheaf is a sheaf). In overblown terms given a projective system $\left(A_{n}\right)$ of rings with $A:=\lim _{n} A_{n}$ we have a canonical morphism of topoi $f: \operatorname{Sh}\left(\mathbb{N}, A_{\bullet}\right) \rightarrow \operatorname{Sh}(\mathrm{pt}, A)$. Where $\overleftarrow{f}_{*}^{n}$ is just $\varliminf_{\leftarrow}{ }_{n}$ and f^{*} will be described below. In order to describe the cohomology groups of complexes of sheaves on both sides we need to understand the respective derived functors. Fix a countable projective system $\left(A_{n}\right)_{n \in \mathbb{N}}$ of rings and denote by A their limit. We denote by $\bmod (\mathbb{N}, A)$ the abelian category of inverse systems $\left(M_{n}\right)_{n}$ of abelian groups indexed by \mathbb{N} such that each M_{n} is a A_{n}-module and the transition maps $M_{n+1} \rightarrow M_{n}$ are A_{n+1}-linear. Denote by Rlim the rightderived functor of the functor $\left(M_{n}\right) \mapsto \lim _{n} M_{n}$ taking values in $\mathbf{D}(A)$. Observe that a morphism of complexes in $\bmod \left(\mathbb{N}^{,} \overleftarrow{A}^{n}\right.$ is a quasi-isomorphism if and only if this is the case on every level and hence the projection to the n-th degree of the projective system induces a functor $\mathbf{D}(\bmod (\mathbb{N}, A)) \rightarrow \mathbf{D}\left(A_{n}\right)$. We denote the image of $C \in \mathbf{D}(\bmod (\mathbb{N}, A))$ by C_{n}.

Lemma 4.12. Given $C=\left(C_{n}^{\bullet}\right)_{n} \in \mathbf{D}\left(\bmod \left(\mathbb{N}, A_{n}\right)\right)$ we have a canonical distinguished triangle

$$
\operatorname{Rlim} C \rightarrow \prod_{n} C_{n}^{\bullet} \rightarrow \prod_{n} C_{n}^{\bullet} \rightarrow \mathbf{R} \lim C[1]
$$

in $\mathbf{D}(A)$. Its long exact sequence splits into short exact sequences

$$
0 \rightarrow \mathbf{R}^{1}{\underset{氵}{1}}_{\lim _{n}} H^{i-1}\left(C_{n}^{\bullet}\right) \rightarrow H^{i}(\mathbf{R l i m} C) \rightarrow \underset{{ }_{n}}{\lim _{n}} H^{i}\left(C_{n}^{\bullet}\right) \rightarrow 0
$$

Proof. See Sta21, Tag 0CQD together with Sta21, Tag 0CQE].

Now let M be an A module and consider $S(M):=\left(A_{n} \otimes_{A} M\right)_{n}$. By taking the component wise base change of a morphism along $A \rightarrow A_{n}$ this defines a right-exact functor to $\bmod (\mathbb{N}, A)$ and we denote by $\mathbf{L} S: \mathbf{D}^{-}(A) \rightarrow \mathbf{D}^{-}(\bmod (\mathbb{N}, A))$ its leftderived functor. Here we remark that a complex in $\bmod (\mathbb{N}, A)$ is bounded above if for some i_{0} the cohomology groups vanish in degree $i \leq i_{0}$ in every step of the projective system. By construction $(\mathbf{L} S C)_{n} \simeq A_{n} \otimes_{A}^{\mathbb{L}} C_{n}$. We have constructed functors

$$
\mathbf{D}^{-}(A) \underset{\rightleftarrows}{\stackrel{\mathrm{LS} S}{\mathrm{Rlim}}} \mathbf{D}^{-}(\bmod (\mathbb{N}, A)) .
$$

One can check that lim and $S(-)$ are adjoint and hence by [Sta21, Tag 0DVC] so are their derived functors (restricted to the respective \mathbf{D}^{-}). Assume henceforth that each A_{n} (but not necessarily A) is Noetherian. In this case it makes sense to speak of the full triangulated subcategory $\mathbf{D}_{f t}\left(A_{n}\right)$ of objects in $\mathbf{D}\left(A_{n}\right)$ whose cohomology groups are A_{n}-finitely generated (cf. [Sta21, Tag 06UQ]).

Definition 4.13. Let $C \in \mathbf{D}^{-}(\bmod (\mathbb{N}, A))$.

1. We call C quasi-consistent if $A_{n} \otimes_{A_{n+1}}^{\mathbb{L}} C_{n+1} \rightarrow C_{n}$ is an isomorphism (in $\mathbf{D}\left(A_{n}\right)$) for every $n \in \mathbb{N}$.
2. C is called consistent if it is quasi-consistent and $C_{n} \in \mathbf{D}_{f t}\left(A_{n}\right)$.

We denote by $\mathbf{D}_{\text {con }}^{-}(\bmod (\mathbb{N}, A))$ the full subcategory of $\mathbf{D}^{-}(\bmod (\mathbb{N}, A))$ of consistent objects.

The following result is BO78, Corollary B.9].
Remark 4.14. If A is Noetherian and I-adically complete for some ideal I, then $\mathbf{L} S$ and Rlim induce an equivalence of categories

$$
\mathbf{D}_{f t}^{-}(A) \cong \mathbf{D}_{c o n}^{-}(\bmod (\mathbb{N}, A))
$$

We now specialise to the situation where A is a Fréchet-Stein algebra. We denote by $\mathbf{D}_{\mathcal{C}}^{-}(A)$ the full triangulated subcategory of objects in the bounded above derived category whose cohomology groups are coadmissible A-modules. This makes sense by [Sta21, Tag 06UQ] because an extension of two coadmissible modules is again coadmissible and hence the category of coadmissible modules is a weak Serre-subcategory of the category of all A-modules.

Proposition 4.15. Let $A=\lim _{n} A_{n}$ be a Fréchet-Stein algebra then the functor S is exact and the adjoint pair $S \dashv$ Rlim restricts to an equivalence of categories

$$
\mathbf{D}_{\mathcal{C}}^{-}(A) \cong \mathbf{D}_{c o n}^{-}(\bmod (\mathbb{N}, A))
$$

Proof. By Lemma $1.55 A \rightarrow A_{n}$ is flat and hence S is exact. Flatness also implies that the functors are well-defined since for a complex C of modules with coadmissible cohomology we have $A_{n} \otimes_{A} H^{i}(C) \cong H^{i}\left(A_{n} \otimes_{A} C\right)$ and the left-hand side is finitely
generated by assumption. On the other hand if we have $\left(C_{n}\right)_{n}$ representing an object in $\mathbf{D}_{\text {con }}^{-}(\bmod (\mathbb{N}, A))$ then due to flatness of A_{n} over A_{n+1} and quasi-consistency the natural morphism $A_{n} \otimes_{A_{n+1}} H^{i}\left(C_{n}\right) \rightarrow H^{i}\left(C_{n+1}\right)$ is an isomorphism for every n. The assumption that $\left(C_{n}\right)_{n}$ is consistent asserts that $\left(H^{i}\left(C_{n}\right)\right)_{n}$ is a coherent sheaf in the sense of Schneider and Teitelbaum and thus $\varliminf_{l_{n}}\left(H^{i}\left(C_{n}\right)\right)$ is a coadmissible A-module. The key observation of the proof is that $\lim ^{1}\left(H^{i}\left(C_{n}\right)\right)=0$ for any quasi-consistent C and any i by 1.55 . This applied to the exact sequence in 4.12 shows that $H^{i} \mathbf{R l i m}\left(C_{n}\right)$ is coadmissible and hence the functor is well-defined. The same observation allows us to conclude that the natural maps (obtained from the adjunction) $S\left(\boldsymbol{\operatorname { R l i m }} C_{n}\right) \rightarrow$ $\left(C_{n}\right)_{n}$ and $M \rightarrow \mathbf{R l i m}(S(M))$ are quasi-isomorphism. We have

$$
H^{i}\left(S\left(\mathbf{R} \lim C_{m}\right)\right)=\left(A_{n} \otimes_{A} H^{i} \mathbf{R} \lim C_{m}\right)_{n}=\left(A_{n} \otimes_{A}{\underset{m}{m}}_{\lim } H^{i}\left(C_{m}\right)\right)_{n}=\left(H^{i}\left(C_{n}\right)\right)_{n}
$$

using flatness in the first, 4.12 in the second and 1.55 in the last equation. For the second quasi-isomorphism we have

$$
H^{i}(\operatorname{Rlim}(S(C)))=\underset{{\underset{n}{n}}^{\lim }}{ } H^{i}\left(A_{n} \otimes_{A} C\right)=\underset{{ }_{n}}{\lim _{n}} A_{n} \otimes_{A} H^{i}(C)=H^{i}(C)
$$

using similar arguments and coadmissibility in the last equation.

4.4 Comparison to Iwasawa cohomology.

Proposition 4.15 gives us the correct framework to describe a comparison between Iwasawa cohomology and analytic cohomology of the Lubin-Tate deformation.

Remark 4.16. The projective system $\left(C_{\Psi, Z}\left(\mathbf{D f m}_{n}(M)\right)\right)_{n}$ defines a consistent object in $\mathbf{D}\left(\bmod \left(\mathbb{N}, D_{n}\right)\right)$. In particular the cohomology groups $H^{i}\left(\mathbf{R l i m}\left(C_{\Psi, Z}\left(\mathbf{D f m}_{n}(M)\right)\right)\right)$ are coadmissible D-modules for every i and

$$
H^{i}\left(\operatorname{Rlim}\left(C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right)\right)\right) \cong \varliminf_{n}^{\lim } H_{\Psi, Z}^{i}\left(\operatorname{Dfm}_{n}(M)\right) .
$$

Proof. Consistency follows from 3.22 together with the fact that D is a Fréchet-Stein algebra. The latter cohomology groups are coadmissible by 4.15. The isomorphism follows from 4.12 using again 3.22 ,

Lemma 4.17. Let V be a finite dimensional K-linear U-representation. Then for $W=D_{n} \otimes_{K} V$ we have $H^{0}(U, W)=0$ with respect to the U-action via $\gamma(1 \otimes m)=$ $\delta_{\gamma^{-1}} \otimes \gamma m$.

Proof. Fix a basis $w_{1}, \ldots w_{d}$ of W let $w \in W^{U}$ and write $w=\sum_{i=1}^{d} \lambda_{i} \otimes w_{i}$. Let $g \in U$ and define $G \in M_{\operatorname{dim}_{K} V}(K)$ via $g w_{j}=\sum_{i} G_{i j} w_{i}$. We compute

$$
g w=\sum_{j=1}^{d}\left(g^{-1} \lambda_{j} \otimes g w_{j}\right)=\sum_{j=1}^{d} \sum_{i=1}^{d} G_{i j}\left(g^{-1} \lambda_{j} \otimes w_{i}\right) .
$$

Since we assumed that w is fixed by g and the decomposition with respect to the basis w_{i} is unique we conclude

$$
\lambda_{j}=\sum_{i=1}^{d} G_{j i} g^{-1} \lambda_{i} .
$$

Multiplying both sides by g we see $g \lambda_{j} \in \operatorname{span}_{K}\left(\lambda_{i}\right)$. Since this works for any choice of g we conclude that the λ_{i} span a finite-dimensional U-stable subspace of D_{n}. This is only possible if $\lambda_{1}=\cdots=\lambda_{d}=0$.

Lemma 4.18. Let $m \in \mathbb{N}$ then for the diagonal action of U we have $H^{0}\left(U, D_{m} \hat{\otimes}_{K} M^{r}\right)=$ 0. In particular the kernel of Z acting diagonally is trivial.

Proof. It suffices to show that there are no non-trivial U-invariant elements. By 1.78 there exists $n \gg 0$ such that M^{r} can be embedded into $D_{\text {dif }, n}^{+}\left(M^{r}\right)$ which is a projective finitely generated $\left(K \otimes_{L} L_{n}\right) \llbracket t_{L T} \rrbracket$-module. We claim that we have an injection

$$
D_{m} \hat{\otimes}_{K} M^{r} \rightarrow \mathbb{D}:=D_{m} \hat{\otimes}_{K} D_{\mathrm{dif}, n}^{+}\left(M^{r}\right) .
$$

Since we do not know whether ι_{n} is strict we instead make use of [Eme17, 1.1.26] by rewriting $D_{m} \hat{\otimes}_{K}-=D_{m}^{(L)} \hat{\otimes}_{L} K \hat{\otimes}_{K}-$ with a suitable Banach algebra $D_{m}^{(L)}$ over L and using the associativity of projective tensor products from BGR84, 2.1.7 Proposition 7] after reducing to the Banach case via 1.15 . By applying again 1.15 it suffices to show that $\mathbb{D} / t_{L T}^{k} \mathbb{D}$ has no non-trivial U-invariants for each $k \geq 0$. Dévissage using the exact sequence

$$
0 \rightarrow \mathbb{D} / t_{L T} \mathbb{D} \rightarrow \mathbb{D} / t_{L T}^{k} \mathbb{D} \rightarrow \mathbb{D} / t_{L T}^{k-1} \mathbb{D} \rightarrow 0
$$

induction on k and passing to the limit $\mathbb{D}=\lim _{k} \mathbb{D} / t_{L T}^{k} \mathbb{D}$ shows that it suffices to prove the statement for $\mathbb{D} / t_{L T} \mathbb{D}=D_{m} \otimes_{K}\left(D_{\text {dif,n }}^{+}\left(M^{r}\right) / t_{L T} D_{\text {dif }, n}^{+}\left(M^{r}\right)\right)$, where we use 1.11 and can omit the completion since the right-hand side is finite-dimensional Hausdorff. The statement now follows from 4.17.

Lemma 4.19. The natural map

$$
\begin{aligned}
\mathfrak{I}: \operatorname{Dfm}\left(M^{r}\right) & \rightarrow M^{r} \\
\lambda \otimes m & \mapsto \lambda m
\end{aligned}
$$

is surjective and its kernel is the image of $Z \in D_{n}$ (acting diagonally).
Proof. Surjectivity is clear by definition. Observe that for any $y \in \operatorname{Dfm}\left(M^{r}\right)$ and any $\gamma \in U$ the element $(\gamma-1) y$ lies in the kernel of \mathfrak{I}. Since Z lies in the closure of the augmentation ideal in D we conclude that $\operatorname{Im}(Z) \subseteq \operatorname{ker}(\Im)$. In order to show $\operatorname{ker}(\mathfrak{I}) \subseteq \operatorname{Im}(Z)$ we will reduce to the case of elementary tensors via a series of technical arguments. We will show that an element of the form $\lambda \otimes m-1 \otimes \lambda m$
belongs to the image of Z and its preimage can be bounded for each norm defining the Fréchet topology of $\operatorname{Dfm}\left(M^{r}\right)$ which, in particular, implies strictness with respect to the Fréchet topology. Note that the map \mathfrak{I} admits a section $\mathfrak{S}: m \mapsto 1 \otimes m$ and any element y of the kernel can be written as $z-\mathfrak{S} \mathfrak{J}(z)$ for some z. As an intermediate step we consider an element of the form $\lambda \otimes m \in \operatorname{ker}(\mathfrak{I})$ with $\lambda \in D$. Fix a $\mathcal{R}^{[r, s]}{ }^{[}$ module norm on $M^{[r, s]}$ and consider the tensor product norm induced by the norm on D_{m} and said norm on $D_{m} \hat{\otimes}_{K} M^{[r, s]}$ for $m \in \mathbb{N}_{0}$ We will show that there exists a constant C depending only on m and $\|-\|_{M^{[r, s]}}$ such that $\lambda \otimes m-1 \otimes \lambda m=Z_{\text {diag }} x$ and $\|x\| \leq C\|\tilde{\lambda} \otimes m\|_{D_{m, \mathbb{Q}_{p}} \hat{\otimes}_{K} M^{[r, s]}}$, where $\tilde{\lambda}$ is any lift of λ in $D_{\mathbb{Q}_{p}, m}(U, K)$. Since Z is injective by 4.18 we obtain that x is uniquely determined and hence satisfies this bound with respect to the quotient norm on D_{m}. Let $\varepsilon=\sup _{\gamma \in U}\|\gamma-1\|_{D_{m}}$. Choose $n \gg 0$ such that $\|\gamma-1\|_{M^{[r, s]}}<\varepsilon$ for $\gamma \in \Gamma_{n}$. Before treating the general case assume that λ belongs to $D\left(\Gamma_{n}, K\right)$. Fix a \mathbb{Z}_{p}-Basis γ_{i} of Γ_{n} and set $\mathbf{b}:=\left(\delta_{\gamma_{i}}-1\right)_{i}$. By taking a preimage in $D_{\mathbb{Q}_{p}}\left(\Gamma_{n}, K\right)$ we can express λ as a convergent series

$$
\lambda=\sum_{\mathbf{k} \in \mathbb{N}_{o}^{d}} a_{k} \mathbf{b}^{\mathbf{k}}
$$

We compute

$$
\lambda \otimes m-1 \otimes \lambda m=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{k}\left(\mathbf{b}^{\mathbf{k}} \otimes m-1 \otimes \mathbf{b}^{\mathbf{k}} m\right)
$$

The terms in degree $\mathbf{k}=0$ cancel out and we shall estimate $\mathbf{b}^{\mathbf{k}} \otimes m-1 \otimes \mathbf{b}^{\mathbf{k}} m$. Without loss of generality we can assume $\mathbf{k} \neq 0$ i.e. at least one term $\delta_{\gamma_{i}}-1$ appears in $\mathbf{b}^{\mathbf{k}}$. We will show that each summand is in the image of the diagonal Z-map and estimate the norm of its Z-preimage. We first explain a dévissage procedure to arrive at a situation where we estimate terms of the form

$$
\begin{align*}
(\gamma-1) a \otimes b-a \otimes(\gamma-1) b & =\gamma a \otimes b-a \otimes \gamma b \tag{4.1}\\
& =\left(\gamma^{-1}-1\right)(a \otimes \gamma b) \tag{4.2}\\
& =Z G(Z)(a \otimes \gamma b) \tag{4.3}
\end{align*}
$$

Where $\gamma \in\left\{\gamma_{1}, \ldots \gamma_{d}\right\}$ and the assumption on the operator norm of $\gamma-1$ acting on $M^{[r, s]}$ asserts that $\|\gamma b\|_{[r, s]}=\|b\|_{[r, s]}$ and hence

$$
\|G(Z)(a \otimes \gamma b)\| \leq C(\gamma)\|(\gamma-1) a \otimes b\|
$$

with $C(\gamma)$ depending on γ and $[r, s]$. Without loss of generality assume $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right)$ with $k_{1} \neq 0$ and let $\mathbf{k}^{\prime}=\left(k_{1}-1, \ldots, k_{d}\right)$. We rewrite

$$
\begin{align*}
\mathbf{b}^{\mathbf{k}} \otimes m-1 \otimes \mathbf{b}^{\mathbf{k}} m & =\left(\gamma_{1}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} \otimes m-1 \otimes\left(\gamma_{1}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} m \\
& =\left(\gamma_{1}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} \otimes m-\mathbf{b}^{\mathbf{k}^{\prime}} \otimes\left(\gamma_{1}-1\right) m \\
& +\mathbf{b}^{\mathbf{k}^{\prime}} \otimes\left(\gamma_{1}-1\right) m-1 \otimes\left(\gamma_{1}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} m \tag{4.4}
\end{align*}
$$

We see that $\left(\gamma_{1}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} \otimes m-\mathbf{b}^{\mathbf{k}^{\prime}} \otimes\left(\gamma_{1}-1\right) m$ is an expression of the form (4.1). While the remainder i.e. $\mathbf{b}^{\mathbf{k}^{\prime}} \otimes\left(\gamma_{1}-1\right) m-1 \otimes\left(\gamma_{1}-1\right) \mathbf{b}^{\mathbf{k}^{\prime}} m$ can be rewritten as

$$
\mathbf{b}^{\mathbf{k}^{\prime}} \otimes m^{\prime}-1 \otimes \mathbf{b}^{\mathbf{k}^{\prime}} m^{\prime},
$$

where $m^{\prime}=\left(\gamma_{i}-1\right) m$ and by the assumption on the operator norm we have

$$
\left\|\mathbf{b}^{\mathbf{k}^{\prime}} \otimes m^{\prime}\right\| \leq\left\|\mathbf{b}^{\mathbf{k}} \otimes m\right\| .
$$

The remainder vanishes as soon as $\mathbf{k}^{\prime}=0$ and if $\mathbf{k}^{\prime} \neq 0$ we may again find an index, that is not zero and apply the same procedure to, in the end, express $\mathbf{b}^{\mathbf{k}} \otimes m-1 \otimes \mathbf{b}^{\mathbf{k}} m$ as a finite sum of elements of the form from (4.1) more explicitly we can group them as

$$
\mathbf{b}^{\mathbf{k}} \otimes m-1 \otimes \mathbf{b}^{\mathbf{k}} m=\sum_{i=1}^{d} \sum_{j=1}^{e_{i}}\left(\gamma_{i}-1\right) a_{i j} \otimes b_{i j}-a_{i j} \otimes\left(\gamma_{i}-1\right) b_{i j},
$$

Where the elements $a_{i j}, b_{i j}$ are not canonical and depend on the order in which we reduce the components of \mathbf{k} in the inductive procedure. Nonetheless our construction asserts that each $\left(\gamma_{i}-1\right) a_{i j} \otimes b_{i j}$ is bounded above by $\mathbf{b}^{k} \otimes m$. Using (4.1) we can write

$$
\mathbf{b}^{\mathbf{k}} \otimes m-1 \otimes \mathbf{b}^{\mathbf{k}} m=Z x_{\mathbf{k}}
$$

where

$$
\left\|x_{\mathbf{k}}\right\|_{D_{n} \hat{\otimes} M^{[r, s]}} \leq C\left\|\mathbf{b}^{\mathbf{k}} \otimes m\right\|_{D_{n}\left(\mathbb{Q}_{p}\right) \hat{\otimes} M^{[r, s]}}
$$

with a suitable constant C depending only on $[r, s]$. By Lemma $4.18 Z$ is injective and hence the element x_{k} is uniquely determined. Note that a priori (4.1) produces constants for each γ_{i} but we can take the supremum over all those constants. In particular

$$
x:=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{k} x_{\mathbf{k}}
$$

converges to an element in $D_{n} \hat{\otimes}_{K} M^{r}$ satisfying $Z x=\lambda \otimes m-1 \otimes \lambda m$ and $\|x\|_{D_{n} \hat{\otimes} M^{[r, s]}} \leq$ $C\|\lambda \otimes m\|_{D_{n}\left(\mathbb{Q}_{p}\right) \hat{\otimes} M^{[r, s]}}$ and because this estimate holds for any preimage of λ and x is uniquely determined by the injectivity of Z we also obtain $\|x\|_{D_{n} \hat{\otimes} M^{[r, s]}} \leq$ $C\|\lambda \otimes m\|_{D_{n} \hat{\otimes} M^{[r, s]} \text {. Now assume } \lambda \in D(U, K) \text { and decompose } \lambda=\sum_{g \in U / \Gamma_{n}} g \lambda_{g}, ~ . ~}^{\text {. }}$ with $\lambda_{g} \in D\left(\Gamma_{n}, K\right)$ we obtain

$$
\begin{align*}
g \lambda_{g} \otimes m-1 \otimes g \lambda_{g} m & =g \lambda_{g} \otimes m-\lambda_{g} \otimes g m+\lambda_{g} \otimes g m-1 \otimes \lambda_{g} g m \\
& =\left(g^{-1}-1\right)_{\operatorname{diag}}\left(\lambda_{g} \otimes g m\right)+\lambda_{g} \otimes g m-1 \otimes \lambda_{g} g m \tag{4.5}
\end{align*}
$$

The case $\lambda_{g} \otimes g m-1 \otimes \lambda_{g} g m$ has been treated above and recall that $g^{-1}-1$ is divisible by Z in D (and hence also in every D_{m}). Combining the case treated above with an argument similar to the one after (4.1) we conclude that there exists a unique element x such that $\lambda \otimes m-1 \otimes \lambda m=Z x$ and a constant C depending on $[r, s]$ such that $\|x\|_{D_{n} \hat{\otimes} M^{[r, s]}} \leq C\|\lambda \otimes m\|_{D_{n} \hat{\otimes} M^{[r, s]}}$. If we pass from $M^{[r, s]}$ to $M^{\left[r, s^{\prime}\right]}$ the n that we chose before might no longer satisfy the desired bound on the operator norm
and we might be required to pass to a subgroup satisfying the corresponding bound. Similarly if we pass from D_{m} to D_{m+1} we have $\|\gamma-1\|_{D_{m+1}} \leq\|\gamma-1\|_{D_{m}}$ and given $[r, s]$ we might need to pass to a smaller subgroup $\Gamma_{\tilde{n}} \subset U$ in order to achieve the estimate $\|\gamma-1\|_{M^{[r, s]}}<\|\gamma-1\|_{D_{m+1}}$ that we used in the preceding computations. In both those cases a consideration analogous to (4.5) leads to the existence of a constant $C\left(m,\left[r, s^{\prime}\right]\right)$ such that

$$
\left\|x_{\mathbf{k}}\right\|_{D_{m} \hat{\otimes} M^{\left[r, s^{\prime}\right]}} \leq C\left(m,\left[r, s^{\prime}\right]\right)\left\|\mathbf{b}^{\mathbf{k}} \otimes m\right\|_{D_{m}\left(\mathbb{Q}_{p}\right) \hat{\otimes} M^{\left[r, s^{\prime}\right]}}
$$

implying the convergence of x with respect to the Fréchet topology and the estimate

$$
\begin{equation*}
\|x\|_{D_{m} \hat{\otimes} M^{[r, s]}} \leq C\left(m,\left[r, s^{\prime}\right]\right)\|\lambda \otimes m\|_{D_{m} \hat{\otimes} M^{[r, s]}} . \tag{4.6}
\end{equation*}
$$

Now consider a general element y of the kernel of \mathfrak{I} and write it as a convergent series

$$
y=\sum_{i=0}^{\infty} \lambda_{i} \otimes m_{i} .
$$

Since it belongs to the kernel we have

$$
y=y-\mathfrak{S}(\mathfrak{I}(y))=\sum_{i=0}^{\infty}\left(\lambda_{i} \otimes m_{i}-1 \otimes \lambda_{i} m_{i}\right)
$$

and the preceding discussion shows that each $\lambda_{i} \otimes m_{i}-1 \otimes \lambda_{i} m_{i}$ belongs to the image of $Z_{\text {diag }}$ and can be written as

$$
\lambda_{i} \otimes m_{i}-1 \otimes \lambda_{i} m_{i}=Z x_{i} .
$$

Clearly if $x=\sum_{i=0}^{\infty} x_{i}$ converges then it satisfies $Z x=y$. The convergece of x with respect to the Fréchet topology defined by the tensor product norms on $D_{m} \hat{\otimes}_{K} M^{[r, s]}$ follows from the convergence of the series defining y and the estimates 4.6).

Definition 4.20. Let F be a topological D-module whose underlying K-vector space is Fréchet. We define

$$
D_{n} \hat{\otimes}_{D} F
$$

as the completion of $D_{n} \otimes_{D} F$ with respect to the quotient topology of $D_{n} \otimes_{K, \pi} F$. For a D-module whose underlying K-vector space is an LF-space $E=\underset{\longrightarrow}{\lim } E_{n}$ we define

$$
D_{n} \tilde{\otimes}_{D} E:=\underset{r}{\lim } D_{n} \hat{\otimes}_{D} E^{r} .
$$

We do not know whether $D_{n} \tilde{\otimes}_{D} M$ is complete for a $\left(\varphi_{L}, \Gamma_{L}\right)$-module M. Even if we knew that it was complete, we would run into subtleties concerning commutation of completion and cohomology since these spaces are in general not metrizable.

Lemma 4.21. We have for each $r \in\left[r_{0}, 1\right)$ a strict exact sequence of D-modules

$$
\begin{equation*}
0 \rightarrow D \hat{\otimes}_{K} M^{r} \xrightarrow{Z} D \hat{\otimes}_{K} M^{r} \xrightarrow{\mu} M^{r} \rightarrow 0, \tag{4.7}
\end{equation*}
$$

where the $D \hat{\otimes}_{K} M^{r}$ is viewed as D-module via the left tensor component and μ is given by $\mu(\lambda \otimes m)=\lambda m$. Which induces for every m compatible exact sequences

$$
\begin{gather*}
0 \rightarrow D_{m} \otimes_{D}\left(D \hat{\otimes}_{K} M^{r}\right) \xrightarrow{\mathrm{id} \otimes Z} D_{m} \otimes_{D}\left(D \hat{\otimes}_{K} M^{r}\right) \xrightarrow{\mathrm{id} \otimes_{\mu}} D_{m} \otimes_{D} M^{r} \rightarrow 0, \tag{4.8}\\
0 \rightarrow D_{m} \hat{\otimes}_{K} M^{r} \xrightarrow{Z} D_{m} \hat{\otimes}_{K} M^{r} \xrightarrow{\mu} D_{m} \hat{\otimes}_{D} M^{r} \rightarrow 0 \tag{4.9}
\end{gather*}
$$

and

$$
\begin{equation*}
0 \rightarrow D_{m} \hat{\otimes}_{K} M \xrightarrow{Z} D_{m} \hat{\otimes}_{K} M \xrightarrow{\mu} D_{m} \tilde{\otimes}_{D} M \rightarrow 0 . \tag{4.10}
\end{equation*}
$$

The sequence 4.9 is strict for every m.
Proof. One first checks that all maps are D-linear. The exactness of the first sequence was proved in 4.19. On the one hand the operator μ is a continuous surjection of Fréchet spaces and hence strict. On the other hand, since the image of Z is the kernel of a continuous map of Fréchet spaces, it is closed and hence itself a Fréchet space. By the same argument Z is a continuous surjection onto $\operatorname{Im}(Z)$ and hence a homeomorphism on its image. The exactness of the second sequence is clear because D_{n} is flat over D. The modules appearing in (4.8) endowed with the quotient topology from a surjection from $D_{m} \otimes_{K, \pi}\left(D \hat{\otimes}_{K} M^{r}\right)$ are not necessarily hausdorff (hence in particular not necessarily metrizable). Nonetheless the Hausdorff completion of $D_{m} \otimes_{D}\left(D \hat{\otimes}_{K} M^{r}\right)$ can naturally be identified with $D_{m} \hat{\otimes}_{K} M^{r}$ and we can argue using the maximal Hausdorff quotients ${ }^{1}$ as follows. The Hausdorff quotient \mathcal{X} of $D_{m} \otimes_{D}\left(D \otimes M^{r}\right)$ can be embedded into $D_{m} \hat{\otimes}_{K} M^{r}$ and the map induced by $\mathrm{id} \otimes Z$ is continuous and strict on the dense subset $D \hat{\otimes}_{K} M^{r}$ by the preceding (4.7) and hence strict by 1.9 . As a quotient of a metrizable space by a closed space \mathcal{X} is again metrizable and we conclude using 1.8 that

$$
D_{m} \hat{\otimes}_{K} M^{r} \xrightarrow{Z} D_{m} \hat{\otimes}_{K} M^{r}
$$

is strict, injective and its cokernel is the Hausdorff completion of $D_{m} \otimes_{D} M^{r}$ since a strict map of Fréchet spaces has closed image. This gives the desired (4.9). Finally passing to direct limits produces the sequence 4.10 using 1.23 to see that ${\underset{\longrightarrow}{l}}_{\underline{l}} D_{m} \hat{\otimes}_{K} M^{r}$ is complete.
Definition 4.22. We define the complex

$$
C_{\Psi}(M): M \xrightarrow{\Psi-1} M
$$

concentrated in degrees 1,2 and we call its cohomology groups the Iwasawa cohomology of M. Analogously we define $C_{c \Psi}(M)$ and $C_{c \Psi}\left(M^{r}\right)$ for $r \in[0,1)$, $c \in K^{\times}$.

[^13]Lemma 4.23. Assume $C_{\Psi}(M)$ has coadmissible cohomology groups. Then the natural map

$$
D_{n} \otimes_{D} M \rightarrow D_{n} \tilde{\otimes}_{D} M
$$

induces a quasi-isomorphism

$$
D_{n} \otimes_{D} C_{\Psi}(M)=C_{\Psi}\left(D_{n} \otimes_{D} M\right) \rightarrow C_{\Psi}\left(D_{n} \tilde{\otimes}_{D} M\right)
$$

Proof. Taking cohomology commutes with colimits and thus it suffices to show that

$$
D_{n} \otimes_{D} M^{r} \rightarrow D_{n} \hat{\otimes}_{D} M^{r}
$$

is a quasi-isomorphism for sufficiently large r. The groups $D_{n} \hat{\otimes}_{D} M^{r}$ are metrizable and by 1.8 and strictness of $\Psi-1$ taking kernels and cokernels commutes with completion i.e. $H_{\Psi}^{i}\left(D_{n} \otimes_{D} M^{r}\right) \cong H_{\Psi}^{i}\left(D_{n} \hat{\otimes}_{D} M^{r}\right)$. By assumption the cohomology groups are coadmissible and thus $D_{n} \otimes_{D} H_{\Psi}^{i}(M)$ is D_{n}-finite, complete and any submodule is itself D_{n} finite and complete by 1.6 because D_{n} is Noetherian. This implies $D_{n} \otimes_{D} H_{\Psi}^{0}\left(M^{r}\right) \cong D_{n} \hat{\otimes}_{D} H_{\Psi}^{0}\left(M^{r}\right)$. Regarding H^{1} the proof of 3.32 shows that for all sufficiently large r we have that $M^{r} /(\Psi-1)$ is K-finite therefore D-finitely generated and is in addition Hausdorff by the strictness of $\Psi-1$. We conclude $D_{n} \otimes_{D} H_{\Psi}^{1}\left(M^{r}\right) \cong D_{n} \hat{\otimes}_{D} H_{\Psi}^{1}\left(M^{r}\right)$ (for $r \gg 0$ as in the proof of 3.32).

Theorem 4.24 (Comparison between Herr- and Iwasawa-cohomology). Consider the complexes

$$
\left(C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right)\right)_{n \in \mathbb{N}}
$$

and

$$
\left(C_{\Psi}\left(D_{n} \tilde{\otimes}_{D} M\right)\right)_{n \in \mathbb{N}}
$$

in $\bmod (\mathbb{N}, D)$. There is a canonical compatible family of morphisms

$$
\operatorname{Comp}_{I W}\left(C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right)\right)_{n \in \mathbb{N}} \rightarrow\left(C_{\Psi}\left(D_{n} \tilde{\otimes}_{D} M\right)\right)_{n \in \mathbb{N}}
$$

induced by the exact sequences (4.8). If the cohomology groups of $C_{\Psi}(M)$ are coadmissible as D-modules we further obtain canonical compatible quasi-isomorphisms

$$
C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right) \simeq C_{\Psi}\left(D_{n} \tilde{\otimes}_{D} M\right),
$$

which together with the maps induced by the natural maps $C_{\Psi}(M) \rightarrow \mathbf{R l i m}\left(C_{\Psi}\left(D_{n} \otimes_{D}\right.\right.$ $M)$) and $\left(C_{\Psi}\left(D_{n} \otimes_{D} M\right)\right)_{n} \rightarrow\left(C_{\Psi}\left(D_{n} \tilde{\otimes}_{D} M\right)\right)_{n}$ induce an isomorphism in $\mathbf{D}(D)$

$$
\operatorname{Rlim} C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right) \simeq C_{\Psi}(M)
$$

and, in particular, isomorphisms

$$
{\underset{\check{n}}{n}}^{\lim _{\Psi, Z}^{i}} H_{\left.\mathbf{D f m}_{n}(M)\right) \cong H_{I w}^{i}(M) . ~}^{\text {. }} .
$$

Proof. We have seen in 4.9 that there exists a compatible family of surjections μ_{n} : $\operatorname{Dfm}_{n}(M) \rightarrow D_{n} \tilde{\otimes}_{D} M$ whose kernel is the image of the diagonal Z-map. Rewrite $C_{\Psi, Z}\left(\mathbf{D f m}_{n}(M)\right)$ as a total complex of the double complex

and consider $C_{\Psi}\left(D_{n} \hat{\otimes}_{D} M\right)$ as the total complex of the "double complex"

Applying μ_{n} in the lower row and zero in the upper row of (4.11) induces a surjective morphism of double complexes with kernel

The kernel double-complex has exact columns and hence acyclic total complex by A.15. Since passing to total complexes is exact we obtain the desired compatible family of quasi-isomorphisms. By 4.23 the natural map

$$
D_{n} \otimes_{D} C_{\Psi}(M) \rightarrow C_{\Psi}\left(D_{n} \tilde{\otimes}_{D} M\right)
$$

is a quasi-isomorphism.
Composing the first quasi-isomorphism with the inverse of the latter gives isomorphism in $\mathbf{D}(D)$

$$
\operatorname{Rlim} C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right) \simeq \operatorname{Rlim} C_{\Psi}\left(D_{n} \otimes_{D} M\right)
$$

Using the coadmissibility assumption on $C_{\Psi}(M)$ by 4.15 the natural map

$$
C_{\Psi}(M) \rightarrow \boldsymbol{R} \lim \left(\left(C_{\Psi}\left(D_{n} \otimes_{D} M\right)\right)_{n}\right)
$$

is an isomorphism in $\mathbf{D}(D)$.
By Remark 4.16 we have $H^{i}\left(\operatorname{Rlim} C_{\Psi, Z}\left(\operatorname{Dfm}_{n}(M)\right)\right) \cong \lim _{n} H_{\Psi, Z}^{i}\left(\operatorname{Dfm}_{n}(M)\right)$ and putting everything together we obtain

$$
H^{i}\left(\boldsymbol{\operatorname { R l i m }} C_{\Psi, Z}\left(\mathbf{D f m}_{n}(M)\right)\right) \cong \varliminf_{n} H_{\Psi, Z}^{i}\left(\mathbf{D f m}_{n}(M)\right) \cong \varliminf_{n} D_{n} \otimes_{D} H_{\Psi}^{i}(M) \cong H_{\Psi}^{i}(M)
$$

Chapter 5

Explicit Results in the rank one AND TRIANGULINE CASE

In this chapter we study $M^{\Psi=1}$ for rank one modules of the form $\mathcal{R}_{K}(\delta)$. The ideas are based on $\overline{\mathrm{Col08}}, \overline{\mathrm{Col16}}, \overline{\mathrm{FX12}}$ and Che13]. Some small adjustments are required in order to incorporate 2.19. We are mostly interested in showing that $M^{\Psi=1}$ is finitely generated and coadmissible.

Definition 5.1. An L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K} is called trianguline if it is a successive extension of modules of the form $\mathcal{R}_{K}(\delta)$ with locally L-analytic characters $\delta: L^{\times} \rightarrow K^{\times}$.

Fix as usual a subgroup $U \subset \Gamma_{L}$ isomorphic to o_{L}. Recall that the space $C^{a n}(U, K)$ of locally L-analytic functions $U \rightarrow K$ is reflexive (see proof of 1.31) and its strong dual is by definition $D(U, K)$. On the other hand \mathcal{R}_{K}^{+}is reflexive and its strong dual is $\mathcal{R}_{K} / \mathcal{R}_{K}^{+}$via the residue pairing from Proposition 1.75 .

Lemma 5.2. By transport of structure along $\mathcal{R}_{K}^{+} \cong D(U, K)$ we obtain a $\left(\varphi_{L}, U\right)$ -semi-linear strict exact sequence

$$
0 \rightarrow D(U, K) \rightarrow \mathcal{R}_{K} \rightarrow C^{a n}(U, K) \otimes \chi^{-1} \rightarrow 0
$$

where $\chi(\pi)=\frac{\pi}{q}$ and $\chi(a)=a$ for $a \in o_{L}^{\times}$.
Proof. See [Col16, Théorème 2.3].
Remark 5.3. Let $\delta: L^{\times} \rightarrow K^{\times}$be a locally L-analytic character and $\mathcal{R}_{K}(\delta)=\mathcal{R}_{K} e_{\delta}$ the corresponding free rank 1 module. Then $\mathcal{R}_{K}^{+}(\delta):=\mathcal{R}_{K}^{+} e_{\delta}$ is a $\left(\varphi_{L}, \Gamma_{L}\right)$-stable submodule and fits into a short exact sequence

$$
0 \rightarrow \mathcal{R}_{K}^{+}(\delta) \rightarrow \mathcal{R}_{K}(\delta) \rightarrow C^{a n}(U, K) \otimes \chi^{-1} \delta \rightarrow 0
$$

where $\chi(\pi)=\frac{\pi}{q}$ and $\chi(a)=a$ for $a \in o_{L}^{\times}$.

Proof. The stability follows because the image of δ is contained in $\left(\mathcal{R}_{K}^{+}\right)^{\times}$. The sequence is obtained by twisting the sequence from 5.2.

Lemma 5.4. Any element $\zeta \in C^{a n}\left(o_{L}, K\right)$ admits a unique expansion of the form

$$
\zeta=\sum_{k \geq 0} a_{k}\left[\begin{array}{l}
x \\
k
\end{array}\right],
$$

where $\left[\begin{array}{l}x \\ k\end{array}\right]: o_{L} \rightarrow K$ is the polynomial function in x defined via

$$
\eta(x, T)=\sum_{k \geq 0}\left[\begin{array}{l}
x \\
k
\end{array}\right] T^{k}
$$

and the coefficients satisfy $\lim _{k \rightarrow \infty}\left|a_{k}\right| r^{k}$ for some $r>1$.
Proof. See [ST01, Theorem 4.7].
The following lemmas are essentially an L-analytic version of Che13, Lemme 2.9]. We let Ψ act on $C^{a n}\left(o_{L}, K\right)$ as $\Psi(f)(x)=f\left(\pi_{L} x\right)$.

Lemma 5.5. Let $\alpha \in K^{\times}$. Denote by $x \in C^{a n}\left(o_{L}, K\right)$ the function $x \mapsto x$.

1. If N is such that $\left|\alpha \pi_{L}^{N}\right|<1$ then $1-\alpha \Psi$ is bijective on $x^{N} C^{a n}\left(o_{L}, K\right)$.
2. The cokernel of $1-\alpha \Psi$ acting on \mathcal{R}_{K}^{+}is at most one-dimensional over K.
3. The cokernel of the inclusion $\left(\mathcal{R}_{K}^{+}\right)^{\alpha \Psi=1} \rightarrow \mathcal{R}_{K}^{\alpha \Psi=1}$ is finite dimensional over K.

Proof. For $h \in \mathbb{N}_{0}$ denote by $C_{h}^{a n}$ the subspace of functions that are globally analytic on $a+\pi_{L}^{h} o_{L}$ for each $a \in o_{L} / \pi_{L}^{h} o_{L}$. Every element $f \in C^{a n}\left(o_{L}, K\right)$ belongs to some $C_{h}^{a n}$ and from the definitions one has $\Psi\left(x^{N} C_{h}^{a n}\right) \subset x^{N} C_{h-1}^{a n}$ for $h \geq 1$. If $f \in x^{N} C_{0}^{a n}$ then expanding f as a power series yields

$$
\begin{equation*}
|\Psi(f)|_{o_{L}} \leq\left|\pi_{L}^{N}\right||f|_{o_{L}} \tag{5.1}
\end{equation*}
$$

with respect to the sup-norm on o_{L}. Let $f \in x^{N} C_{h}^{a n}$ then $\Psi^{h}(f) \in C_{0}^{a n}$ and the estimate (5.1) together with the assumption on N shows that the series

$$
\sum_{k=0}^{\infty} \alpha^{m} \Psi^{m}
$$

converges to an inverse of $1-\alpha \Psi$ on $x^{N} C_{h}^{a n}$. The claim follows because $C^{a n}\left(o_{L}, K\right)=$ $\underset{\overrightarrow{\mathrm{l}}}{\underline{\lim }}{ }^{\text {C }}{ }_{h}^{a n}$.

$$
F:=\sum_{i=0}^{\infty} \alpha^{-i} \varphi^{i}
$$

converges to a continuous operator on $T^{N} \mathcal{R}_{K}^{+}$. The existence of such N can be seen using that T^{N} tends to zero as $N \rightarrow \infty$ and that φ_{L} is contractive with respect to the norms $|-|_{[0, r]}$ for any $0<r<1$ as a consequence of Remark 1.70 . Given $h \in T^{n} \mathcal{R}_{K}^{+}$ we observe that $(1-\alpha \Psi)(F(h))=\alpha \Psi(h)$. Using that Ψ is surjective on \mathcal{R}_{K}^{+}, we can deduce that h belongs to the image of $1-\alpha \Psi$. By writing $\mathcal{R}_{K}^{+}=\bigoplus_{k=0}^{N-1} K t_{L T}^{k} \oplus T^{K} \mathcal{R}_{K}^{+}$ we conclude that it remains to show that at most one $t_{L T}^{k}$ is not contained in the image of $1-\alpha \Psi$. Because $\Psi\left(t_{L T}^{i}\right)=\pi_{L}^{-i} t_{L T}^{i}$ there can be at most one i_{0} such that $(1-\alpha \Psi)\left(t_{L T}^{i_{0}}\right)=0$. For every $i \neq i_{0}$ we have $(1-\alpha \Psi)\left(t_{L T}^{i}\right)=\left(1-\alpha \pi_{L}^{-i}\right) t_{L T}^{i}$ with $\left(1-\alpha \pi_{L}^{-i}\right) \in K^{\times}$.
For the third statement observe that Lemma 5.2 and the Snake Lemma gives a short exact sequence

$$
0 \rightarrow\left(\mathcal{R}_{K}^{+}\right)^{\alpha \Psi=1} \rightarrow \mathcal{R}_{K}^{\alpha \Psi=1} \rightarrow C^{a n}(U, K)^{\alpha \frac{q}{\pi} \Psi=1} .
$$

The image of the last map is finite dimensional by 1.) because any element in $C^{a n}$ can be written as a sum of a polynomial of degree $\leq N-1$ and an element of $x^{N} C^{a n}\left(o_{L}, K\right)$ by Lemma 5.4 .

Lemma 5.6. Let $\delta: L^{\times} \rightarrow K^{\times}$be a locally L-analytic character and $M:=\mathcal{R}_{K}(\delta)$ the corresponding free rank 1 module. Let $M^{+}:=\mathcal{R}_{K}^{+}(\delta)$.

1. We have $\left(M^{+}\right)^{\psi=0}=D\left(\Gamma_{L}, K\right) \eta(1, T) \varphi\left(e_{\delta}\right)$. In particular $\left(M^{+}\right)^{\Psi=0}$ is free of rank 1 over $D\left(\Gamma_{L}, K\right)$.
2. The map $1-\varphi:\left(M^{+}\right)^{\Psi=1} \rightarrow\left(M^{+}\right)^{\Psi=0}$ has finite dimensional kernel and cokernel.

Proof. 1. follows from the explicit description in Corollary 2.21.
For 2. let $\eta(1, T) \varphi(m) \in\left(M^{+}\right)^{\Psi=0}$ with some $m=f e_{\delta} \in M^{+}$. Let $N \in \mathbb{N}$ and write $f=f_{0}+T^{N} g$ according to the decomposition $\mathcal{R}_{K}^{+}=\bigoplus_{k=0}^{N-1} t_{L T}^{k}+T^{N} \mathcal{R}_{K}^{+}$. Choosing N large enough (like in the proof of Lemma 5.5) we can ensure that

$$
h:=\sum_{k=0}^{\infty} \delta\left(\pi_{L}\right)^{k} \varphi^{k}\left(\eta(1, T) \varphi\left(\left(T^{N} g\right)\right)\right.
$$

converges independently of $g \in \mathcal{R}_{K}^{+}$. The element $m^{\prime}:=h e_{\delta} \in M^{+}$satisfies $(\varphi-$ 1) $\left(m^{\prime}\right)=\eta(1, T)\left(\varphi\left(T^{N} g\right) e_{\delta}\right)$. In particular $\left(\varphi_{L}-1\right)\left(m^{\prime}\right) \in M^{\Psi=0}$ and hence necessarily $\Psi\left(m^{\prime}\right)=m^{\prime}$. Finite dimensionality of the kernel is immediate from Remark 4.8. For the codimension of the image $\left(M^{+}\right)^{\Psi=1}$ in $\left(M^{+}\right)^{\Psi=0}$ our proof thus far shows that any element in $\eta(1, T)\left(\varphi\left(T^{N} M^{+}\right)\right)$lies in the image of $\varphi_{L}-1$. We use the analogue of the decomposition from Proposition 2.8 for M^{+}to conclude that the codimension of the image is at most $N\left[\Gamma_{L}: \Gamma_{1}\right]=N(q-1)$.

Proposition 5.7. Let $\delta: L^{\times} \rightarrow K^{\times}$be a locally L-analytic character and let $M=$ $\mathcal{R}_{K}(\delta)$ then $M^{\Psi=1}$ is a finitely generated coadmissible $D(U, K)$-module of rank $\left[\Gamma_{L}: U\right]$. In particular, $C_{\Psi}(M)$ is perfect.

Proof. Applying Lemma 5.5 and Lemma 5.6 we conclude that $M^{\Psi=1}$ fits into an exact sequence

$$
0 \rightarrow\left(M^{+}\right)^{\Psi=1} \rightarrow M^{\Psi=1} \rightarrow V \rightarrow 0
$$

with a $D(U, K)$-module V whose underlying K-vector space is finite-dimensional. By Lemma 4.7 V is coadmissible and evidently torsion as a $D(U, K)$-module. Because the category of coadmissible module is abelian we conclude that it suffices to show that $\left(M^{+}\right)^{\Psi=1}$ is coadmissible of the desired rank. For M^{+}we have by Lemma 5.6 an exact sequence of the form

$$
0 \rightarrow V_{1} \rightarrow\left(M^{+}\right)^{\Psi=1} \xrightarrow{\varphi-1}\left(M^{+}\right)^{\Psi=0} \rightarrow V_{2} \rightarrow 0
$$

with two $D(U, K)$-modules whose underlying K-vector-spaces are finite-dimensional. From this exact sequence and Lemma 5.6 it is clear that the rank is precisely $\left[\Gamma_{L}: U\right]$. Again V_{2} is coadmissible by Lemma 4.7 and the image of $\left(M^{+}\right)^{\Psi=1}$ is the kernel of a map between coadmissible modules and hence coadmissible. By [ST03, Lemma 3.6] the image is closed in the canonical topology. Because $\left(M^{+}\right)^{\Psi=0}$ is finitely generated projective we obtain that $(1-\varphi)\left(\left(M^{+}\right)^{\Psi=1}\right)$ is finitely generated by BSX20, Lemma 1.1.9]. Now the short exact sequence

$$
0 \rightarrow V_{1} \rightarrow\left(M^{+}\right)^{\Psi=1} \rightarrow(1-\varphi)\left(\left(M^{+}\right)^{\Psi=1}\right) \rightarrow 0
$$

proves that $\left(M^{+}\right)^{\Psi=1}$ is finitely generated and coadmissible. Perfectness follows from Proposition 4.9.

Theorem 5.8. Let M be a trianguline L-analytic (φ_{L}, Γ_{L})-module over \mathcal{R}_{K}. Then $C_{c \Psi}(M)$ is a perfect complex of $D\left(\Gamma_{L}, K\right)$-modules for any constant $c \in K^{\times}$.

Proof. By applying Lemma A. 21 to the cohomology groups of $C_{\Psi}(M)$ we conclude that perfectness as a complex of $D\left(\Gamma_{L}, K\right)$-modules follows from perfectness as a complex of $D(U, K)$-modules. For $c=1$ this is a corollary of Proposition 5.7. Because twisting by a character preserves the property of M being trianguline the general statement follows from Lemma 4.10 .

Chapter 6

Towards perfectiness of $C_{\Psi}(M)$ AND A REMARK ON THE Euler-Poincaré formula

6.1 Perfectness of $C_{\Psi}(M)$.

In the cyclotomic case the perfectness of $C_{\Psi}(M)$ as a complex of $D(U, K)$-modules is obtained by an inductive procedure from the étale case. In the cyclotomic étale case the heart $C=(1-\varphi)(M)$ is free over $D_{\mathbb{Q}_{p}}\left(\Gamma_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)$ of the same rank as M (cf. Col10, Proposition V.1.18]) and an induction over the Harder-Narasimhan slopes implies the general result. In our situation we run into several problems. Most notably the corresponding result concerning the heart is not known. Furthermore the theory of slope filtrations makes heavy use of the Bézout property of the coefficient rings. By passing to the large extension K / L we leave the situation of Kedlaya's slope theory and also do not have the equivalence of categories at our disposal for modules of slope zero. We interpret the passage to K as a technical tool to understand $\left(\varphi_{L}, \Gamma_{L}\right)$ modules coming from \mathcal{R}_{L} employed for example in [BSX20] and [FX12]. Hence we put a special emphasis on those coming from \mathcal{R}_{L}. We show that the induction over Harder-Narasimhan slopes as in KPX14 works in essentially the same way. To do so we require some technical lemmas concerning the (Ψ, ∇)-cohomology of M that might be interesting in their own right.

Conjecture 6.1. Let M_{0} be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{L}. Then the complex $C_{\Psi}\left(K \hat{\otimes}_{L} M_{0}\right)$ is a perfect complex of $D\left(\Gamma_{L}, K\right)$-modules.

So far we have not concerned ourselves with the étale picture. Schneider and Venjakob showed the following

Theorem 6.2. Let $V \in \operatorname{Rep}_{o_{L}}\left(G_{L}\right)$, let $H_{I w}^{i}\left(L_{\infty} / L, V\right):=\lim _{L \subset F \subset L_{\infty}} H^{i}(F, V)$ and let $M_{L T}$ be the étale Lubin-Tate- $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathbf{A}_{L} attached to $V\left(\chi_{L T} \chi_{c y c}^{-1}\right)$ endowed with its integral ψ-operator (i.e. $\psi \circ \varphi=\frac{q}{\pi}$).

1. $H^{i}\left(L_{\infty} / L, V\right)$ vanishes for $i \neq 1,2$.
2. $H^{2}\left(L_{\infty} / L, V\right)$ is o_{L}-finite.
3. $H^{1}\left(L_{\infty} / L, V\right)$ is $\Lambda:=o_{L} \llbracket \Gamma_{L} \rrbracket$-finite.
4. $H_{I w}^{i}\left(L_{\infty} / L, V\right)$ is computed by the complex

$$
M_{L T} \xrightarrow{\psi-1} M_{L T}
$$

concentrated in degrees 1 and 2 .
Proof. See SV15, Lemma 5.12 and Theorem 5.13].
In order to connect this result to the present situation assume first that $M_{L T}$ is L-analytic and thus a fortiori overconvergent. An analogue of CC99, Proposition III.3.2] (cf. [SV20, A.53]) allows us to view $M_{L T}^{\psi=1}[1 / p]$ as a Λ-submodule of $\mathbb{D}^{\dagger}(V) \sqrt{1}$ and thus as a Λ-submodule of $\mathbb{D}_{\text {rig }}^{\dagger}(V)^{\psi=1}$. Let $M_{\text {rig }}:=\mathbb{D}_{\text {rig }}^{\dagger}(V)$. Since $M_{\text {rig }}$ is L analytic we obtain that $M_{r i g}^{\psi=1}$ is even a $D\left(\Gamma_{L}, L\right)$-module and thus a natural map

$$
D\left(\Gamma_{L}, L\right) \otimes_{\Lambda} M_{L T}^{\psi=1} \xrightarrow{\text { comp }} M_{r i g}{ }^{\psi=1} .
$$

This leads us to the following natural conjecture.
Conjecture 6.3. Let $M_{L T}=\mathbb{D}(V)$ be an étale L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathbf{A}_{L} and let $M_{\text {rig }}:=\mathbb{D}_{\text {rig }}^{\dagger}(V)$ then the natural map

$$
D\left(\Gamma_{L}, L\right) \otimes_{\Lambda} M_{L T}^{\psi=1} \xrightarrow{\text { comp }} M_{r i g}{ }^{\psi=1}
$$

is surjective.
A stronger form of this conjecture would be to require bijectivity. In the classical case the map above is bijective by Col10, Proposition V.1.18]. We will show that this weaker version is sufficient for conjecture 6.1. Observe that Theorem 3.32 works over any base field and hence $M_{\text {rig }} /(\psi-1)$ is finite L-dimensional. This implies that $\psi-1$ is strict by Lemma 1.10 and because K is an L-Banach space of countable type over L we conclude using Lemma 1.11

$$
\left(M_{r i g} \hat{\otimes}_{L} K\right)^{\psi=1}=\left(M_{r i g}^{\psi=1}\right) \hat{\otimes}_{L} K .
$$

The results of Schneider and Venjakob in the étale case suggest that $\psi-1$ is the "correct" operator to study Iwasawa cohomology. This leads us to believe that the complex defined using ψ is well-behaved while in order to obtain a quasi-isomorphism to the $\left(\varphi_{L}, Z\right)$-complex we need to work with the Ψ-complex with the left-inverse operator. Our philosophy is that the $c \Psi$-complex for some constant c can be reinterpreted as the Ψ-complex of a module twisted by a (non-étale) character. In particular, if

[^14]the analogue of Conjecture 6.1 concerning the ψ-complex is true for all analytic (not necessarily étale) $\left(\varphi_{L}, \Gamma_{L}\right)$-modules coming from \mathcal{R}_{L}, then Lemma 4.10 asserts that Conjecture 6.1 itself is true.
We require an analogue of the fact that there exists an isoclinic module E of slope $1 / d$ that is a successive extension of $\mathcal{R}_{L}(x) \cong \mathcal{R}_{L} t_{L T}$ by $d-1$ copies of \mathcal{R}_{L} requiring in addition that the latter module is L-analytic. This allows us to argue inductively over the slopes of a module. While the $\left(\varphi_{L}, Z\right)$-cohomology enjoys a number of nice properties, its biggest downfall is the fact that it can only be defined over the large field K that is not discretely valued and hence \mathcal{R}_{K} does not fit into the framework of Kedlayas slope theory. In order to translate known results from the étale case to more general modules we use the Lie-algebra cohomology of M that can be defined over L using either the operators $(\nabla, \varphi-1)$ or $(\nabla, \Psi-1)$. We do not know whether they give the same cohomology groups in degree 2 and since the cokernel of $\Psi-1$ is better behaved than that of $\varphi_{L}-1$, we shall work with the Ψ-version.

Definition 6.4. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{L}. Let ∇ be the operator defined in 1.50. We define the complex

$$
C_{L i e}(M):=\left[M \xrightarrow{(\nabla, \Psi-1)} M \oplus M \xrightarrow{(\Psi-1)\left(\mathrm{pr}_{1}\right)-\nabla\left(\mathrm{pr}_{2}\right)} M\right]
$$

concentrated in degrees [0, 2]. Denote by $H_{\text {Lie }}^{i}(-)$ the cohomology groups of the complex $C_{L i e}(-)$ and define $H_{a n}^{i}(M):=H_{L i e}^{i}(M)^{\Gamma_{L}}$. Analogously we define $H_{a n}^{i}\left(M / t_{L T} M\right)$.

Remark 6.5. One can show that the residual Γ_{L}-action on $H_{L i e}^{i}(M)$ is discrete (i.e. every element has open stabiliser). Since the cohomology groups are L-vector spaces we can deduce that $H_{a n}^{i}(M)$ takes short exact sequences to long exact sequences in cohomology.

Remark 6.6. Analogously one can define a version with $\varphi-1$ instead of $\Psi-1$. Copying the proof of [FX12, Proposition 4.1] together with the comparison isomorphism in [BF17, Theorem 2.2.2] shows that the H^{0} and H^{1} agree for the φ_{L} and Ψ-versions and agree with the corresponding cohomology groups for L-analytic cocycles studied by BF17.

The main reason to use the Ψ-version is the following Lemma.
Lemma 6.7. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module then $H_{L i e}^{2}(M)$ is finite dimensional and Hausdorff.

Proof. The continuous map $\Psi-1: M \rightarrow M$ has finite dimensional cokernel by Theorem 3.32. The statement follows from Lemma 1.10.

Lemma 6.8. For the L-analytic rank one $\left(\varphi_{L}, \Gamma_{L}\right)$-modules $\mathcal{R}_{L}\left(x^{i}\right)$ we have

$$
H_{a n}^{2}\left(\mathcal{R}_{L}\left(x^{i}\right)\right)=0
$$

for every $i \in \mathbb{Z}$.

Proof. Since $H_{\text {Lie }}^{2}\left(\mathcal{R}_{L}\left(x^{i}\right)\right)$ is finite-dimensional Hausdorff, every linear form is continuous. Suppose

$$
H_{\mathrm{Lie}}^{2}\left(\mathcal{R}_{L}\left(x^{i}\right)\right)=\left(\mathcal{R}_{L}\left(x^{i}\right) /(\nabla,(\Psi-1))\right)
$$

admits a (continuous) functional $H_{\text {Lie }}^{2}\left(\mathcal{R}_{L}\left(x^{i}\right)\right) \rightarrow L$, then pre-composing it with the canonical map $\mathcal{R}_{L}\left(x^{i}\right) \rightarrow H_{\text {Lie }}^{2}\left(\mathcal{R}_{L}\left(x^{i}\right)\right)$ gives a continuous functional $\mathcal{R}\left(x^{i}\right) \rightarrow L$ which by the duality described in Proposition 1.75 corresponds to a unique element in $m \in \mathcal{R}_{L}\left(x^{-i}\right)\left(\chi_{L T}\right)$ killed by $\varphi_{L}-1$ and ∇_{ι}, where ∇_{ι} denotes the adjoint of ∇. A computation using that the adjoint of $\gamma \in \Gamma_{L}$ is γ^{-1} shows $\nabla_{\iota}=-\nabla$ and that m is also killed by ∇. Hence m is an element in $\mathcal{R}_{L}\left(x^{-i}\right)\left(\chi_{L T}\right)^{\nabla=0, \varphi=1}$, but $\mathcal{R}_{L}\left(x^{-i}\right)\left(\chi_{L T}\right)^{\nabla=0, \varphi=1}=0$ by FX12, Proposition 5.6] and thus $m=0$. We conclude that $H_{\text {Lie }}^{2}\left(\mathcal{R}_{L}\left(x^{i}\right)\right)$ admits no non-zero functionals and therefore has to be zero.

Lemma 6.9. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{L}. Then:

1. There is a canonical bijection between $H_{a n}^{1}(M)$ and isomorphism classes of extensions

$$
0 \rightarrow M \rightarrow E \rightarrow \mathcal{R}_{L} \rightarrow 0
$$

of L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules.
2. For $i \in \mathbb{N}_{0}$ the L-dimension of $H_{a n}^{j}\left(\mathcal{R}_{L}\left(x^{-i}\right)\right)$ in degrees $j=0,1,2$ is $1,2,0$ respectively.
3. For $i \in \mathbb{N}$ the L-dimension of $H_{\text {an }}^{j}\left(\mathcal{R}_{L}\left(x^{i}\right)\right)$ in degrees $j=0,1,2$ is $0,1,0$ respectively.

Proof. For the corresponding results using the φ_{L}-version see [FX12, Theorem 0.1 (resp. Theorem 4.2)] for the first statement and [Col16, Théorème 5.6] for 2 and 3 under the assumption that the field contains Ω_{L}. The dimensions were computed without this assumption by Fourquaux and Xie in degrees 0,1 and agree with the results of Colmez. By $[\overline{\mathrm{BF} 17}$, Theorem 2.2.2] they can be translated to the Ψ-version. The computation of H^{2} over L was done in Lemma 6.8.

The proof of the following Lemma is based on Liu's proof in Liu07, Lemma 4.2], but we need to make some adjustments since we do not know in general whether the Euler-Poincaré-Characteristic formula holds for analytic cohomology.

Lemma 6.10. There exist an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module E of rank d that is isoclinic of slope $1 / d$ and a successive extension of $\mathcal{R}\left(x^{i}\right)$, where $i=0,1$. It can be chosen such that $H_{a n}^{1}(E) \neq 0$ and $H_{a n}^{2}(E)=0$.

Proof. We shall construct a sequence $\left(E_{d}\right)_{d}$ of L-analytic modules of rank $d \in \mathbb{N}$ isoclinic of slope $1 / d$ such that $H_{\mathrm{an}}^{1}\left(E_{d}\right) \neq 0$ and $H_{\mathrm{an}}^{2}\left(E_{d}\right)=0$. Clearly $E_{1}:=\mathcal{R}(x)$ is L-analytic of rank 1 and isoclinic of slope 1 . By Lemma $6.9 E_{1}$ satisfies $H_{\text {an }}^{1}\left(E_{1}\right) \neq 0$ and $H_{\mathrm{an}}^{2}\left(E_{1}\right)=0$. Suppose E_{d} has been constructed. Take a non-trivial extension E_{d+1} corresponding to a non-zero element in $H_{\mathrm{an}}^{1}\left(E_{d}\right)$ and consider the exact sequence

$$
0 \rightarrow E_{d} \rightarrow E_{d+1} \rightarrow \mathcal{R}_{L} \rightarrow 0 .
$$

Passing to the long exact cohomology sequence we obtain by the second point of Lemma 6.9 an exact sequence

$$
\cdots \rightarrow H_{\mathrm{an}}^{2}\left(E_{d}\right) \rightarrow H_{\mathrm{an}}^{2}\left(E_{d+1}\right) \rightarrow 0
$$

and the vanishing of $H_{\mathrm{an}}^{2}\left(E_{d}\right)$ implies the vanishing of $H_{\mathrm{an}}^{2}\left(E_{d+1}\right)$. Due to the exactness of

$$
\cdots \rightarrow H_{\mathrm{an}}^{1}\left(E_{d+1}\right) \rightarrow H_{\mathrm{an}}^{1}\left(\mathcal{R}_{L}\right) \rightarrow H_{\mathrm{an}}^{2}\left(E_{d}\right)=0
$$

we conclude that $H_{\text {an }}^{1}\left(E_{d+1}\right)$ surjects onto a non-zero space and hence has to be nonzero. The slope of E_{d+1} is $1 /(d+1)$ by construction. It remains to see that E_{d+1} is isoclinic. For the convenience of the reader we reproduce Liu's argument. Suppose $P \subset E_{d+1}$ is a non-zero proper subobject of slope $\mu(P)=\frac{\operatorname{deg}(P)}{\operatorname{rank}(P)}<1 /(d+1)$. Then its rank is bounded above by $d+1$ and hence $\operatorname{deg}(P) \leq 0$ is necessary which implies $\mu(P) \leq 0$. Denote by X the image of P in \mathcal{R}_{L}. The exact sequence

$$
0 \rightarrow P \cap E_{d} \rightarrow P \rightarrow X \rightarrow 0
$$

implies by general Harder-Narasimhan-Theory (cf. [Pot20, 4.4]) that the corresponding slopes are given either in ascending or descending order. Since $\mu(P) \leq 0$ and $\mu(X) \geq 0$ due to \mathcal{R}_{L} being isoclinic of slope 0 we conclude that we have $\mu\left(P \cap E_{d}\right) \leq 0$ which together with the fact that E_{d} is isoclinic of slope $1 / d$ implies that $P \cap E_{d}=0$ holds. This in turn means P is a subobject of \mathcal{R}_{L} with slope ≤ 0 and hence isomorphic to \mathcal{R}_{L}. This contradicts the assumption that the extension E_{d+1} is not split.

Theorem 6.11. Assume Conjecture 6.3 is true. Let M_{0} be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$ module over \mathcal{R}_{L} and let $M:=K \hat{\otimes}_{L, i} M_{0}$. Then the complex $C_{\psi_{L T}}(M)$ of $D(U, K)$ modules is perfect.

Proof. We abbreviate $\psi=\psi_{L T}$. By abuse of language we say M is étale if M_{0} is étale. Similarily we mean the slopes of M_{0} when refering to the slopes of M. Since the complex is bounded it suffices to prove the statement for the cohomology groups by [Sta21, Tag 066U]. More precisely Proposition 4.9 shows that finite generation of $M^{\psi=1}$ is sufficient. Hence if M is étale the statement follows by combining Conjecture 6.3 with Proposition 4.9. Suppose M is isoclinic and has integral slopes. Then $M t_{L T}^{n}$ is étale for some power $n \in \mathbb{Z}$ and we argue inductively via the exact sequence of complexes induced by the sequence

$$
0 \rightarrow M t_{L T} \rightarrow M \rightarrow M / t_{L T} \rightarrow 0
$$

For negative integers we set $N=t_{L T}^{-1} M$ and use the corresponding sequence for N. We obtain a short exact sequence of complexes

$$
0 \rightarrow C_{\psi}\left(M t_{L T}\right) \rightarrow C_{\psi}(M) \rightarrow C_{\psi}\left(M / t_{L T}\right) \rightarrow 0 .
$$

Here we make implicit use of the exactness of $K \hat{\otimes}_{L}-$ for strict sequences of Fréchet spaces given by Lemma 1.11 and the exactness of filtered colimits to reduce to the

Fréchet case. The perfectness of the rightmost term holds unconditionally by Corollary 4.11. By induction hypothesis either the middle or the leftmost term are perfect. In both cases we conclude from [Sta21, Tag 066R] that the third term is also perfect. This concludes the case of integral slopes. We first show that the theorem holds for any isoclinic M such that $M /(\psi-1)$ and $M(x) /(\psi-1)$ vanishes. Recall that in the proof of Lemma 6.10 we produced a family of exact sequences

$$
0 \rightarrow E_{i} \rightarrow E_{i+1} \rightarrow \mathcal{R}_{L} \rightarrow 0
$$

such that E_{i} is isoclinic of slope $1 / i$ starting with $E_{1}=\mathcal{R}(x)$. Tensoring this sequence with M_{0} and applying $\psi-1$ we get a commutative diagram with exact rows

and induction on i together with the Snake Lemma shows that $\left(E_{i} \otimes_{\mathcal{R}_{L}} M_{0}\right) /(\psi-1)$ vanishes for every i. For $i=d-1$ we obtain a surjection $\left(E_{d} \otimes_{\mathcal{R}_{L}} M_{0}\right)^{\psi=1} \rightarrow\left(M_{0}\right)^{\psi=1}$ and $E_{d} \otimes_{\mathcal{R}_{L}} M_{0}$ is pure of slope $c / d+1 / d=(c+1) / d$. By Proposition 4.9 we are done if we can show that $M^{\psi=1}$ is finitely generated. Due to strictness of $\psi-1$ we have $M^{\psi=1}=K \hat{\otimes}_{L} M_{0}^{\psi=1}$ and it suffices to show that $M_{0}^{\psi=1}$ is finitely generated. Our argument thus far shows that given an isoclinic module M_{0} of some slope $\frac{c}{d}$ with vanishing $(\psi-1)$-cokernel there exists an isoclinic module of slope $\frac{c+i}{d}$ say X_{i} with vanishing $(\psi-1)$-cokernel such that $X_{i}^{\psi=1}$ surjects onto $M_{0}^{\psi=1}$. We fix d and argue inductively "in reverse", i.e. start with the base case $\frac{d}{d}$ and from the above deduce the statement for $\frac{(d-i)}{d}$ for $i \in\{1, \ldots, d-1\}$.
Now let M_{0} be arbitrary isoclinic then $t_{L T}^{-n} M_{0}$ satisfies $t_{L T}^{-n} M_{0} /(\psi-1)=0$ by Lemma 3.34 and we can thus apply the preceding result and Corollary 4.11. Finally assume M_{0} is arbitrary then either M_{0} is isoclinic or it fits into an exact sequence $0 \rightarrow N \rightarrow$ $M_{0} \rightarrow M_{0} / N \rightarrow 0$ with M_{0} / N isoclinic and $\operatorname{rank}(N)<\operatorname{rank}(M)$. Since every rank 1 module is automatically isoclinic we deduce the general statement by induction over the rank of M.

Corollary 6.12. In the situation of 6.11 the complex $C_{c \Psi}(M)$ is perfect as a complex of $D\left(\Gamma_{L}, K\right)$-modules for any $c \in K^{\times}$.

Proof. Apply Lemma 4.10 and Theorem 6.11 to conclude perfectness as a complex of $D(U, K)$-modules. An application of Lemma A. 21 to the cohomology groups implies perfectness as a complex of $D\left(\Gamma_{L}, K\right)$-modules. The cohomology groups are coadmissible because finite projective modules are coadmissible and coadmissible modules form an abelian category.

Remark 6.13. We do not know whether the corresponding statement is true for the complex of $D\left(\Gamma_{L}, L\right)$-modules $C_{\psi}\left(M_{0}\right)$ since the results 3.30 and 4.7 made use of the explicit description of $D(U, K)$ as a power-series ring.

6.2 Towards the Euler-Poincaré formula

In this section we discuss the Euler-Poincaré characteristic formula for the analytic Herr complex $C_{\Psi, Z}(M)$ for L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules. From formal arguments one can deduce a variant of the formula involving the heart $\mathcal{C}(M)$ for all L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over \mathcal{R}_{K}. Our computations in the trianguline case are sufficient to prove the expected formula in this case.

Definition 6.14. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. We define the Euler-Poincaré characterstic of M as

$$
\chi(M):=\sum_{i \in \mathbb{N}_{0}}(-1)^{i} \operatorname{rank}_{A}\left(H_{\psi, Z}^{i}(M)\right) .
$$

Theorem 3.22 asserts that $\chi(M)$ is well-defined. Note that this formula depends on Z or more precisely on the index of the group $U \subset \Gamma_{L}$ used to define Z. We expect

$$
\chi(M)=-\left[\Gamma_{L}: U\right] \operatorname{rank}_{\mathcal{R}_{A}}(M) .
$$

When considering modules over relative Robba rings \mathcal{R}_{A}, the validity of such a formula can be checked on each fibre $z \in \operatorname{Sp}(A)$ and thus there is no harm in assuming $A=K$. The classical methods of Herr (cf. Her98, Section 4.2]) show that the heart $\mathcal{C}(M)$ of M plays an integral role. The following proposition is from MSVW.

Proposition 6.15. Let M be an L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K}. Then $\mathcal{C}(M) / Z$ is finite K-dimensional and $\chi(M)=-\operatorname{dim}_{K}(\mathcal{C}(M) / Z)$.

Proof. By the exact sequence from 4.6 it suffices to show that $M^{\Psi=1} / Z$ is finite K dimensional. Let $m \in M^{\Psi=1}$. One checks that $(0, m)$ is a 1-cocycle for $C_{\Psi, Z}(M)$ and the coboundary condition $(0, m)=((\Psi-1)(n), Z n)$ for some $n \in M$ implies $n \in$ $M^{\Psi=1}$ and therefore $m \in Z M^{\Psi=1}$. We thus have an injection $M^{\Psi=1} / Z \hookrightarrow H_{\Psi, Z}^{1}(M)$ forcing the left-hand side to be finite K-dimensional by Theorem 3.22 as a subspace of a finite-dimensional space. Consider the finite filtration of $\mathcal{F}^{0} C_{\Psi, Z}(M):=C_{\Psi, Z}(M)$ by the complexes

$$
\begin{gathered}
\mathcal{F}^{1} C_{\Psi, Z}(M)=\left[\begin{array}{lll}
M^{\Psi=1} & \xrightarrow[\rightarrow]{ } M^{\Psi=1}
\end{array}\right], \\
\mathcal{F}^{2} C_{\Psi, Z}(M)=\left[\begin{array}{lll}
M^{\varphi_{L}=1} & \xrightarrow{Z} & M^{\varphi_{L}=1}
\end{array}\right]
\end{gathered}
$$

concentrated in degrees $[0,1]$ and $\mathcal{F}^{3} C_{\Psi, Z}(M)=0$. Clearly

$$
\operatorname{gr}^{2} C_{\Psi, Z}(M)=\left[M^{\varphi_{L}=1} \xrightarrow{Z} M^{\varphi_{L}=1}\right]
$$

and the exact sequence from Remark 4.6 shows

$$
\operatorname{gr}^{1} C_{\Psi, Z}(M)=[\mathcal{C}(M) \xrightarrow{Z} \mathcal{C}(M)] .
$$

An argument analogous to Her98, Lemme 4.2] shows that $\operatorname{gr}^{0} C_{\Psi, Z}(M)$ is quasiisomorphic to the complex

$$
M /(\Psi-1) \xrightarrow{Z} M /(\Psi-1)
$$

concentrated in degrees $[1,2]$. From the associated convergent spectral sequence (cf. [Sta21, Tag 012W])

$$
E_{1}^{p, q}=H^{p+q}\left(g r^{p}\left(C_{\Psi, Z}(M)\right)\right) \Longrightarrow H^{p+q}\left(C_{\Psi, Z}(M)\right)
$$

we conclude, using that all terms on the first page are finite-dimensional,

$$
\chi(M)=\sum_{p, q}(-1)^{p+q} \operatorname{dim}_{K} H^{p+q}\left(g r^{p}\left(C_{\Psi, Z}(M)\right)\right) .
$$

By remark 4.8 the terms for $\mathrm{gr}^{2} C_{\Psi, Z}(M)$ and $\mathrm{gr}^{0} C_{\Psi, Z}(M)$ cancel out. Because $\mathcal{C}(M)$ is a subspace of $\operatorname{ker}(\Psi)$, the bijectivity of Z on the kernel of Ψ implies that the only remaining term is $-\operatorname{dim}_{K}(\mathcal{C}(M) / Z)$.

The expected Euler-Poincaré characteristic formula holds in the trianguline case.
Remark 6.16. Let M be a trianguline L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{K}, then

$$
\chi(M)=-\left[\Gamma_{L}: U\right] \operatorname{rank}_{\mathcal{R}_{K}}(M) .
$$

Proof. By induction it suffices to treat the case where $M=\mathcal{R}_{K}(\delta)$ for some locally L-analytic character $\delta: L^{\times} \rightarrow K^{\times}$. In this case by Proposition 5.7 $M^{\Psi=1}$ is finitely generated and hence $\mathcal{C}(M)$ is projective by Remark 4.4. The proof of 5.7 shows further that $\operatorname{rank}_{D(U, K)}(\mathcal{C}(M))$ is precisely $\left[\Gamma_{L}: U\right]$. Since $D(U, K)$ is a domain with maximal ideal (Z), the rank of $\mathcal{C}(M)$ is equal to $\operatorname{dim}_{K}(\mathcal{C}(M) / Z)$. The result now follows from Proposition 6.15.

Proposition 6.15 shows that the Euler-Poincaré formula would follow from $\mathcal{C}(M)$ being projective as a $D(U, K)$-module of $\operatorname{rank}\left[\Gamma_{L}: U\right] \operatorname{rank}_{\mathcal{R}_{L}} M$. In the cyclotomic case one uses slope theory to reduce to the étale case where it follows from corresponding results for (φ, Γ)-modules over $\mathbf{A}_{\mathbb{Q}_{p}}$ (cf. [Col10, V.1.13, V.1.18]). We run into various problems because our theory requires the passage to K in order to be able to define the cohomology groups in the first place and some key structural results like Theorem 2.19 do not have an analogue over the base field L. Furthermore the dimension of $o_{L} \llbracket U \rrbracket$ poses a problem when working with an étale module $M_{L T}$ over \mathbf{B}_{L}. The projectivity of $\left(1-\frac{\pi_{L}}{q} \varphi_{L}\right) M_{L T}^{\psi_{L T}=1}$ is unknown to us and does not follow from a reflexivity argument like in \Col10, I.5.2], because $o_{L} \llbracket U \rrbracket$ can be of dimension greater than two.

Appendix

Lemma A.1. (Eme17) Let $V \rightarrow W$ be a strict surjection with W Hausdorff and V an LF-space (resp. LB-space) then W is an LF-space (resp. LB-space). In particular any quotient of an LF-space (resp. LB-space) by a closed subspace is an LF- (resp. LB-space).

Proof. Let $V={\underset{\lim }{n}}^{n} V_{n}$ with Fréchet spaces V_{n} (resp. Banach spaces) and denote by X_{n} the kernel of $V_{n}^{n} \rightarrow V \rightarrow W$. Since W is assumed to be Hausdorff X_{n} is closed in V_{n} and therefore $V_{n} / X_{n}=: W_{n}$ is a Fréchet space (resp. Banach space). As a result $V \rightarrow W$ factors as $V \xrightarrow{\alpha} \underline{\lim }_{n} W_{n} \xrightarrow{\beta} W$ and with a continuous surjection of LF-spaces α which has to be open by the open mapping theorem and a continuous bijection β such that $\beta \circ \alpha$ is strict forcing β to be strict as well hence the claim.

A. 1 Coherent Sheaves

We would like to prove that $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}$ is a Fréchet-Stein algebra in the sense of SchneiderTeitelbaum. For that purpose we fix a sequence $0 \leq r_{0}<r_{1}<\ldots$ in $[0,1) \cap\left|\overline{\mathbb{Q}_{p}}\right|$ converging to 1 . We have to show that $\mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}$ is Noetherian und $\mathcal{R}_{A}^{\left[r_{0}, r_{n+1}\right]} \rightarrow \mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}$ is flat and has topologically dense image. Recall that a coadmissible module $M^{\left[r_{0}, 1\right)}$ over $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}$ is uniquely determined by its sections along an admissible cover by Remark 1.58 .

Lemma A.2. $\mathcal{R}_{A}^{\left[r_{0}, r_{n+1}\right]} \rightarrow \mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}$ is flat and has topologically dense image.
Proof. Assume $r_{0} \neq 0$ since the case $r_{0}=0$ can be treated analogously. Let $I=$ [$\left.r_{0}, r_{n}\right]$. The Laurent polynomials $K\left[T, T^{-1}\right]$ are a dense subset of \mathcal{R}_{K}^{I} and thus the image of $K\left[T, T^{-1}\right] \otimes_{F} A$ is dense in both rings. It remains to show flatness. Let $I \subset \mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}$ be a finitely generated ideal and consider the map $I \otimes_{\mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}} \mathcal{R}_{A}^{\left[r_{0}, r_{n+1}\right]} \rightarrow$ $\mathcal{R}_{A}^{\left[r o r_{n}\right]}$. It remains to show flatness. We can view $U:=S p\left(\mathcal{R}_{K}^{\left[r, r_{n}\right]}\right)$ as an affinoid subdomain of $X:=S p\left(\mathcal{R}_{K}^{\left[r_{0}, r_{n+1}\right]}\right)$. Consider the canonical map $p_{1}: Y=X \times_{K}$ $S p(A) \rightarrow X$ then by [BGR 7.2.2. prop 4]. $U \times_{X} Y$ is an affinoid subdomain of Y. By Definition

$$
U \times_{X} Y=U \times_{X} X \times_{K} S p(A)=U \times_{K} S p(A) .
$$

We conclude that $\mathcal{R}_{A}^{\left[r_{0}, r_{n+1}\right]} \rightarrow \mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}$ is the canonical map induced from the inclusion of the affinoid subdomain $U \times_{K} S p(A)=S p\left(\mathcal{R}_{A}^{\left[r_{0}, r_{n+1}\right]}\right)$ in $X \times_{K} S p(A)$. Then by [BGR Corollary 6 Section 7.3.2.] the coressponding map on the level of rings is flat.

Lemma A.3. $\mathcal{R}_{A}^{\left[r_{0}, r_{n}\right]}$ is Noetherian.
Proof. This follows from the fact that the completed tensor product of two affinoid algebras is again affinoid by [BGR84, 7.1.3. Proposition 4] and hence Noetherian by BGR84, 5.2.6 Theorem 1].

Lemma A.4. (cf. [KPX14, 2.1.12]) Let M be a coadmissible module over \mathcal{R}_{A}^{r}. Suppose M^{I} is generated by f_{1}, \ldots, f_{n}. Then there exists an $\varepsilon>0$ such that any g_{1}, \ldots, g_{n} satisfiying $\left|f_{i}-g_{i}\right|<\varepsilon$ also generates M^{I}.

Proof. We have a continuous surjection of Banach modules $\left(\mathcal{R}_{A}^{I}\right)^{n} \rightarrow M^{I}$. Where e_{i} is mapped to f_{i}. By the open mapping theorem the image of the ball $\left\{v \in\left(\mathcal{R}_{A}^{I}\right)^{n}| | v \mid<\right.$ $1 / 2\}$ contains some ball $\left\{m \in M^{I}| | m \mid<\varepsilon\right\}$. Given g_{i} we can write $g_{i}-f_{i}=\sum_{j} a_{i j} f_{j}$ with $\left|a_{i j}\right|<1 / 2$. In other words $g_{i}=f_{i}+\sum_{j} a_{i j} f_{j}$. By a geometric-series-argument the matrix $E_{n}+\left(a_{i j}\right)_{i j}$ is invertible. We conclude that the g_{i} generate M^{I}.

Lemma A.5. Let $r_{0} \in(0,1)$ and let $f \in \mathcal{R}_{K}^{r_{0}}$. Then \mathcal{R}_{A} / f, and $\mathcal{R}_{A}^{\left[r_{0}, 1\right)} / f$ are flat as A-modules.

Proof. This is analogous to KPX14, 2.1.5]. The proof carries over to our situation using that $\mathcal{R}_{K}^{[r, s]}$ is of countable type over K as a quotient of a Tate-Algebra over K.

The following Lemma is KPX14, Proposition 2.1.13(i)]. We elaborate on the proof.
Lemma A.6. Let M be a coadmissible module over \mathcal{R}_{A}^{r}. Suppose there exist global sections $f_{1}, \ldots, f_{n} \in M$ that generate each M^{I} for any closed interval I. Then the f_{i} generate M.

Proof. Consider the morphism

$$
\theta:\left(\mathcal{R}_{A}^{r}\right)^{n} \rightarrow M
$$

mapping e_{i} to f_{i}. Then $\operatorname{ker}(\theta)$ is coadmissible by 1.55 (iv). By assumption we have an exact sequence

$$
0 \rightarrow \operatorname{ker}\left(\left.\theta\right|_{[r, s]}\right) \rightarrow\left(\mathcal{R}_{A}^{[r, s]}\right)^{d} \rightarrow M^{[r, s]} \rightarrow 0
$$

Passing to the limit $s \rightarrow 1$ and using the fact that $\lim ^{1}$ vanishes for coadmissible modules by 1.55 (iii) we obtain that θ is surjective.

Lemma A.7. Let M be coadmissible module over $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}$. Then M is finitely generated if and only if there exists a natural number n and an admissible cover $\left[r_{i}, s_{i}\right], i \in$ \mathbb{N}_{0} of $\left[r_{0}, 1\right)$ such that each $M^{\left[r_{i}, s_{i}\right]}$ is generated by at most n elements.

Proof. Define $I_{i}:=\left[r_{i}, s_{i}\right]$. We treat the non-trivial implication. After eventually refining a given admissible cover of $\left[r_{0}, 1\right)$ we can assume that $\left[r_{i}, s_{i}\right]$ and $\left[r_{i+2}, s_{i+2}\right]$ do not intersect for any $i \in \mathbb{N}_{0}$ and that the intervals are ordered in ascending order i.e. $r_{i}<r_{i+1}$ and $s_{i}<s_{i+1}$. By construction the intervals with even indices $\left[r_{2 i}, s_{2 i}\right]$ are pairwise disjoint. The same applies for the intervals $\left[r_{2 i+1}, s_{2 i+1}\right]$ with odd indices. We first show that there exist global sections f_{1}, \ldots, f_{n} and g_{1}, \ldots, g_{n} such that the f_{j} generate each $M^{\left[r_{2 i}, s_{2 i}\right]}$ and the g_{j} generate each $M^{\left[r_{2 i+1}, s_{2 i+1}\right]}$. Since the argument is symmetric we restrict ourselves to the intervals with even indices. By assumption for each i we can find sections $f_{2 i, 1}, \ldots, f_{2 i, n}$ that generate $M^{\left[r_{2 i}, s_{2 i}\right]}$. When $i=0$ we can assume that the sections are global sections because M is dense in M^{I} by using Lemma 1.55 (i). When $i \neq 0$, we can a priori assume that the sections lie in $M[1 / T]$. But in this case T becomes a unit in M^{I} hence even in this case we can assume that the sections are global sections. For every interval $I_{2 i}$ we can find $\varepsilon(2 i)$ such that any $f_{2 i, j}^{\prime}$ satisfying $\left|f_{2 i, j}-f_{2 i, j}^{\prime}\right| \leq \varepsilon(2 i)$ generates the same module by A.4. The idea is to define a convergent series

$$
f_{j}:=\sum_{k} p^{a(k)} T^{b(k)} f_{2 k, j} .
$$

Satisfying $a(0)=0, b(0)=0$ and the following three conditions

1. for any $k<k_{0}$ we have $\left|p^{a\left(k_{0}\right)-a(k)} T^{b\left(k_{0}\right)-b(k)} f_{2 k_{0}, j}\right|_{\left[r_{2 k}, s_{2 k}\right]} \leq \varepsilon(2 k)$
2. for any $k<k_{0}$ we have $\left|p^{a(k)-a\left(k_{0}\right)} T^{b(k)-b\left(k_{0}\right)} f_{2 k, j}\right|_{\left.r_{2 k_{0}}, s_{2 k_{0}}\right]} \leq \varepsilon\left(2 k_{0}\right)$
3. for any $k<2 k_{0}-1$ we have $\left|p^{a\left(k_{0}\right)} T^{b\left(k_{0}\right)} f_{2 k_{0}, j}\right|_{\left[r_{k}, s_{k}\right]} \leq p^{-k_{0}}$

The third condition guarantees that f_{j} converges with respect to the Fréchet topology. We now explain how to chose $a(k), b(k)$ inductively. By our conventions we have for any interval $I:|T|_{I}=\sup I,\left|T^{-1}\right|_{I}=\inf I^{-1}$ and $\left|p^{n}\right|_{I}=p^{-n}$. As noted before we define $a(0)=b(0)=0$. Next assume $a(2 k), b(2 k)$ have been defined up to some $k_{0} \in \mathbb{N}$. We rewrite ${ }^{2}$ the conditions as follows

1. for any $k<k_{0}$ we have $p^{-a\left(k_{0}\right)} s_{2 k}^{b\left(k_{0}\right)} \leq s_{2 k}^{b(k)}\left|f_{2 k_{0}, j} p^{-a(k)}\right|_{\left[r_{2 k}, s_{2 k}\right]}^{-1}$
2. for any $k<k_{0}$ we have $p^{-a\left(k_{0}\right)} r_{2 k_{0}}^{b\left(k_{0}\right)} \geq r_{2 k_{0}}^{b(k)}\left|p^{a(k)} f_{2 k, j}\right|{ }_{\left.r 2 k_{0}, s_{2 k_{0}}\right]}$
3. for any $k<2 k_{0}-1$ we have $p^{-a\left(k_{0}\right)} s_{k}^{b\left(k_{0}\right)} \leq\left|f_{2 k, j}\right|_{\left[r_{k}, s_{k}\right]}^{-1} p^{-k_{0}}$.

Because the intervals are disjoint, we have $s_{2 k}<r_{2_{k_{0}}}$ and $s_{k}<r_{2_{k_{0}}}$. After replacing the right-hand side in each inequality with a suitable constant by taking the infimum (in the first and third inequality) or supremum (in the second inequality) over all k we can reduce to the subsequent Lemma A.8. It remains to show, that the $f_{j}^{\prime} s$ generate M^{I} for every interval $I=\left[r_{2 k_{0}}, s_{2 k_{0}}\right]$. By A. 4 it suffices to show

$$
\left|f_{j} \frac{1}{p^{a\left(k_{0}\right)} T^{b\left(k_{0}\right)}}-f_{2 i, j}\right|_{I} \leq \varepsilon(2 k)
$$

[^15]We compute

$$
\begin{align*}
& \left|f_{j} \frac{1}{p^{a\left(k_{0}\right)} T^{b\left(k_{0}\right)}}-f_{2 i, j}\right|_{\left[r_{2 k_{0}}, s_{2 k_{0}}\right]} \tag{A.1}\\
& =\left|\sum_{k<k_{0}} p^{a(k)-a\left(k_{0}\right)} T^{b(k)-b\left(k_{0}\right)} f_{2 k, j}+\sum_{k>k_{0}} p^{a(k)-a\left(k_{0}\right)} T^{b(k)-b\left(k_{0}\right)} f_{2 k, j}\right|_{\left[r_{\left.2 k_{0}, s_{2 k_{0}}\right]}\right.} \tag{A.2}\\
& \leq \max \left(\max _{k<k_{0}}\left|p^{a(k)-a\left(k_{0}\right)} T^{b(k)-b\left(k_{0}\right)} f_{2 k, j}\right|_{\left[r_{\left.2 k_{0}, s_{2 k_{0}}\right]}\right]} \max _{k>k_{0}}\left|p^{a(k)-a\left(k_{0}\right)} T^{b(k)-b\left(k_{0}\right)} f_{2 k, j}\right|_{\left[r_{2 k_{0}, s_{2} k_{0}}\right]}\right) \tag{A.3}
\end{align*}
$$

$$
\begin{equation*}
\leq \varepsilon\left(2 k_{0}\right) \tag{A.4}
\end{equation*}
$$

Here we use the second inequality to estimate the left-hand side of (A.3) and apply the first inequality with the roles of k and k_{0} interchanged to estimate the right summand of A.3). Finally we use lemma A. 6 to conclude that M is finitely generated.

Lemma A.8. Let $x_{1}, x_{2}, x_{3} \in[0,1)$ with $x_{2}>x_{1}, x_{3}$ and let $0<C_{1}, C_{2}, C_{3}$ be real constants. Then there exists a natural number $b \gg 0$ such that there exists a natural number a satisfying the following inequalities

1. $p^{a} x_{1}^{b} \leq C_{1}$
2. $p^{a} x_{2}^{b} \geq C_{2}$
3. $p^{a} x_{3}^{b} \leq C_{3}$.

Proof. By assumption $x_{i} / x_{2}<1$ for $i=1,3$ and thus $Y_{1}:=x_{1}^{b} x_{2}^{-b}$ converges to 0 for large b. The same is true for $Y_{2}:=x_{3}^{b} x_{2}^{-b}$. Choosing b large enough we can ensure that $Y_{1} \leq p^{-1} C_{1} / C_{2}$ and $Y_{2} \leq p^{-1} C_{3} / C_{2}$ next choose a to be minimal such that $p^{a} \geq C_{2} x_{2}^{-b}$. By construction $p^{a} \leq p C_{2} x_{2}^{-b}$. The second inequality is satisfied by construction. For the other inequalities we compute

$$
p^{a} x_{1}^{b} \leq p C_{2} x_{1}^{b} x_{2}^{-b}=p C_{2} Y_{1} \leq C_{2}\left(C_{1} / C_{2}\right)=C_{1} .
$$

The computation for the third inequality is analogous.

A. 2 The action on $\mathcal{R}_{L}^{r} / Q_{n}$.

Recall the product formula

$$
t_{L T}=\log _{L T}(X)=X \prod_{n \geq 1} \frac{Q_{n}(X)}{\pi_{L}}
$$

where $Q_{1}(X)=\varphi(X) / X$ and $Q_{n}:=\varphi\left(Q_{n-1}\right)$. The zeroes of Q_{n} are precisely the π_{L}^{n}-torsion points of the LT-group that are not already π_{L}^{n-1} torsion points. Contrary
to the cyclotomic situation these Q_{n} are not necessarily polynomials. We denote by G_{n} the polynomial

$$
G_{n}:=\prod_{a \in L T\left[\pi_{L}^{n}\right] \backslash L T\left[\pi_{L}^{n-1}\right]}(X-a) .
$$

By construction $G_{n} \in o_{L}[[X]]$ and $G_{n} \mid Q_{n}$ in $o_{L}[[X]]$ and therefore in every $\mathcal{R}_{L}^{[r, s]}$. We also observe that Q_{n} / G_{n} is a unit in $\mathcal{R}_{L}^{[r, s]}$ since it does not have any zeroes in \mathbb{C}_{p} and therefore is not contained in any maximal ideal of $\mathcal{R}_{L}^{[r, s]}$ by an argument like in the proof of 1.57 .

Lemma A.9. Let $z \in L T\left[\pi_{L}^{n}\right] \subset L_{n}$ and let $\sigma \in \Gamma_{L}$ then

$$
\sigma(z)=\left[\chi_{L}(\sigma)\right]_{\phi}(z) .
$$

Proof. See [Sch17, 1.3.12].
Lemma A.10. Fix a Basis $z=\left(z_{n}\right)$ of $\varliminf_{\leftarrow}{\underset{\mathrm{m}}{n}}^{L} T\left[\pi_{L}^{n}\right]$. By mapping X to $z_{n} \in L T\left[\pi_{L}^{n}\right]$ we obtain a Γ_{L}-equivariant isomorphism

$$
\mathbf{B}_{L}^{+} / Q_{n} \cong L_{n}
$$

furthermore the following diagrams commute

$\mathbf{B}_{L}^{+} / Q_{n} \longrightarrow L_{n}$
Proof. Note that L is flat over o_{L} and because L_{n} over L is totally ramified with uniformiser z_{n} we have $o_{L_{n}}=o_{L}\left[z_{n}\right]$. Hence it suffices to show the corresponding statement for $\mathbf{A}_{L}^{+}=o_{L}[[X]]$. On the one hand the constant term of Q_{n} is π_{L}, on the other hand the constant term of G_{n} has valuation $\operatorname{val}(z)\left[L_{n}: L\right]=\operatorname{val}\left(\pi_{L}\right)=1$ Therefore the quotient Q_{n} / G_{n} is already a unit in $o_{L}[[X]]$. Evaluation at z_{n} induces $o_{L}[[X]] / Q_{n} \cong o_{L}[[X]] / G_{n} \cong o_{L}[X] / G_{n} \cong o_{L}[z]$ using that G_{n} is a distinguished polynomial because it reduces to the monic polynomial $X^{\operatorname{deg}\left(G_{n}\right)}$ modulo π_{L}. This isomorphism is Γ_{L}-equivariant by A.9. The desired isomorphism is obtained by tensoring both sides with L. For the commutativity of the first diagram we observe that $\varphi_{L}(X)$ is mapped to $\left[\pi_{L}\right]\left(z_{n}\right)=z_{n-1}$ by assumption. For the second diagram we first remark that $\psi_{L T}$ is well-defined. Let $f=g+h Q_{n+1}$ then $\psi_{L T}(f)=\psi_{L T}(g)+\psi_{L T}\left(\varphi_{L}\left(Q_{n}\right) h\right)=\psi_{L T}(g)+Q_{n} \psi_{L T}(h)$ by the projection formula. The commutativity of the diagram follows from $\varphi_{L} \psi_{L T}(x)=\frac{1}{\pi_{L}} \operatorname{tr}_{\mathbf{B}_{L} / \varphi\left(\mathbf{B}_{L}\right)}(x)$ using that the latter trace can be computed as the trace of the multiplication-by- x-matrix M_{x} with respect to the basis $1, X, \ldots, X^{q-1}$ and said matrix has coefficients in \mathbf{B}_{L}^{+}if $x \in \mathbf{B}_{L}^{+}$. Because of the additivity of matrix traces we have $\operatorname{trace}\left(M_{x}\right) \bmod Q_{n}=\operatorname{trace}\left(M_{x} \bmod Q_{n}\right)$. Finally we use that φ_{L} induces the inclusion $L_{n} \hookrightarrow L_{n+1}$ modulo Q_{n}.

Corollary A.11. Let $[r, s]$ be an interval with $r_{L}<r<s<1$ such that the corresponding annulus contains $L T\left[\pi_{L}^{n}\right]$. Fix a Basis $z=\left(z_{n}\right)_{n}$ of $\varliminf_{幺} L T\left[\pi_{L}^{n}\right]$. By mapping X to $z_{n} \in L T\left[\pi_{L}^{n}\right]$ we obtain a Γ_{L}-equivariant isomorphism

$$
\mathcal{R}_{L}^{[r, s]} / Q_{n} \cong L_{n}
$$

and the following diagrams commute:

Proof. By assumption the map in question is well-defined. The commutativity follows from A. 10 by first considering the map $\mathbf{B}_{L}^{+} / Q_{n} \rightarrow L_{n}$, which factors over $\mathcal{R}_{L}^{[r, s]}$ since L_{n} is a field and z_{n} lies in the annulus $\mathbb{B}_{[r, s]}\left(\mathbb{C}_{p}\right)$. Note that a priori $\mathcal{R}_{L}^{[r, s]} / Q_{n} \rightarrow L_{n}$ is merely surjective. By writing $Q_{n}=U_{n} G_{n}$ with a unit U_{n} and G_{n} like in the proof of A. 10 one can see, that the left hand-side is at most $\left[L_{n}: L\right]$-dimensional over L, which implies the injectivity.

Lemma A.12. ${ }^{3}$ Let M be a finitely presented R-module and $\left(N_{n}\right)_{n \in \mathbb{N}}$ either a countable projective Mittag-Leffler system of flat R-modules or a countable projective system of Artinian modules. Then the natural map

$$
M \otimes_{R}{\underset{\lim }{n}}^{{ }_{n}} N_{n} \rightarrow \underset{n}{\lim _{\underset{n}{ }} M \otimes_{R} N_{n}, ~}
$$

is an isomorphism.
Proof. We first treat the flat case. Take a finite presentation $R^{s} \rightarrow R^{r} \rightarrow M \rightarrow 0$ of M. Tensoring with $N:=\lim _{n} N_{n}\left(\right.$ resp. $\left.\left.N_{n}\right)\right)$ allows us to express $M \otimes_{R} N$ (resp. $M \otimes_{R} N_{n}$) as the cokernel of the induced map $N^{s} \rightarrow N^{r}\left(\right.$ resp. $\left.N_{n}^{s} \rightarrow N_{n}^{r}\right)$. But then the statement follows if we can show $\operatorname{cok}\left(N^{s} \rightarrow N^{r}\right)=\lim _{\leftarrow} \operatorname{cok}\left(N_{n}^{s} \rightarrow N_{n}^{r}\right)$. Consider the extended exact sequence

$$
0 \rightarrow C \rightarrow R^{s} \rightarrow R^{r} \rightarrow M \rightarrow 0,
$$

where $C:=\operatorname{ker}\left(R^{s} \rightarrow R^{r}\right)$. Since N_{n} is assumed to be flat we have an exact sequence

$$
0 \rightarrow C \otimes_{R} N_{n} \rightarrow N_{n}^{s} \rightarrow N_{n}^{r} \rightarrow M \otimes N_{n} \rightarrow 0
$$

and one checks that $C \otimes N_{n}$ is again Mittag-Leffler. Splitting the above sequence into two short sequences shows the vanishing of $\lim ^{1} N_{n}^{s} /\left(C \otimes N_{n}\right)$ since $\lim ^{1} N_{n}^{s}=0$

[^16]surjects onto it, which via the isomorphism between coimage and image implies the vanishing of $\lim ^{1}\left(\operatorname{im}\left(N_{n}^{s} \rightarrow N_{n}^{r}\right)\right)$ hence the desired $\operatorname{cok}\left(N^{s} \rightarrow N^{r}\right)=\varliminf_{n} \operatorname{cok}\left(N_{n}^{s} \rightarrow\right.$ $\left.N_{n}^{r}\right)$. In the Artinian case it is well-known that $\left(N_{n}\right)_{n}$ is Mittag-Leffler and since submodules of Artinian modules are Artinian, we see that $\left(\operatorname{ker}\left(N_{n}^{s} \rightarrow N_{n}^{r}\right)\right)_{n}$ is also Mittag-Leffler. Hence one may proceed with the same arguments as in the first case.

Lemma A.13. Let $n \geq n_{0}$ and let $\rho: \Gamma_{n} \rightarrow K^{\times}$be a non-trivial character of finite order. We denote by $K(\rho)$ the corresponding one-dimensional K-linear representation. Then

$$
\|Z\|_{K(\rho)} \geq|p|^{\frac{1}{p-1}}
$$

Proof. First of all we remark that any such character is automatically continuous by [NS03, Théorème 0.1] because Γ_{n} is topologically of finite type. $K(\rho)$ is a locally L analytic representation since the orbit maps are even locally constant. Since $\Gamma_{n} \cong o_{L}$ by assumption, we have $\rho\left(\Gamma_{n}^{p^{m}}\right)=1$ for some $m \gg 0$. By assumption there exists some $\gamma \in \Gamma_{n}$ such that $\rho(\gamma) \neq 1$. In this case $\rho(\gamma)$ is some non-trivial p-power root of unity. In particular $|\rho(\gamma)-1| \geq|p|^{\frac{1}{p-1}}$. Since $K(\rho)$ is one-dimensional the operator norm is multiplicative and because $\sum_{k \geq 0} Z^{k} \in D\left(\Gamma_{n}, K\right)$ converges to a well-defined operator on $K(\rho)$ we necessarily have $\|Z\|_{K(\rho)}<1$. By expressing $\delta_{\gamma}-1$ as a power series $\delta_{\gamma}-1=Z F(Z)$, we conclude $\|Z\|_{K(\rho)} \geq\|Z F(Z)\|_{K(\rho)}=\|\gamma-1\|_{K(\rho)} \geq|p|^{1 /(p-1)}$, where for the first estimate we use $Z F(Z) \in Z o_{K} \llbracket Z \rrbracket$.

Lemma A.14. Let $r \in\left(|p|^{\frac{1}{p-1}}, 1\right)$ and fix a lift X_{n} of Z_{n} to $D_{\mathbb{Q}_{p}}\left(\Gamma_{n}, K\right)$ of norm $|X|_{r}=C(r)$. Let W be a finite A-module with an L-analytic Γ_{n}-action such that

$$
\|\gamma-1\|_{W}<\varepsilon:=C(r)^{-1}|p|^{\frac{1}{p-1}}
$$

for any $\gamma \in \Gamma_{n}$. Then the action of $Z_{n} \in D\left(\Gamma_{n}, K\right)$ is invertible on $W(\rho)=W \otimes_{K}$ $K(\rho)$ for any non-trivial character $\rho: \Gamma_{n} \rightarrow K^{\times}$of finite order.

Proof. It suffices to show that the action of Z_{m} is invertible for some $m \geq n$ since $Z_{n+1}=\varphi\left(Z_{n}\right)=Q\left(Z_{n}\right) Z_{n}$. If we fix a \mathbb{Z}_{p}-basis $\gamma_{1}, \ldots, \gamma_{d}$ of Γ_{n} the images $\rho\left(\gamma_{i}\right)$ have to be p-power roots of unity and by replacing Γ_{n} with a small enough subgroup $\Gamma_{m} \subset \Gamma_{n}$ we may and do assume that $\rho\left(\gamma_{i}\right) \neq 1$ for at least one i and $\rho\left(\gamma_{i}\right)$ is a p-th root of unity for every i, i.e. ρ is a non-trivial finite-order character whose values lie in the goup of p-th roots of unity. By Lemma 2.11 we can replace Z_{n} by Z_{m} and replace the lift X_{n} by a lift X_{m} of Z_{m} whose r-norm is the same. Since K is one-dimensional the K-linear action of Z on $K(\rho)$ is either zero or invertible. Since ρ is assumed to be non-trivial it has to be invertible. Let $X=\sum_{\mathbf{k} \in \mathbb{N}_{0}^{d}} a_{\mathbf{k}} \mathbf{b}^{\mathbf{k}}$ be a preimage of Z in $D_{\mathbb{Q}_{p}}\left(\Gamma_{m}, K\right)$ of norm $\|X\|_{r} \leq C(r)$. Our assumptions guarantee that $\gamma_{i}-1$ acts on $W \otimes K(\rho)$ with operator norm bounded above by $\left|p^{\frac{1}{p-1}}=\left|\zeta_{p}-1\right|\right.$ and Lemma A. 13 asserts that the invertible operator id $\otimes Z$ has operator norm bounded below by
$|p|^{\frac{1}{p-1}}$. We use the notation $Z_{\text {diag }}$ to emphasize that Z acts diagonally and compute

$$
\begin{align*}
& \left\|Z_{\text {diag }}(a \otimes b)-(\operatorname{id} \otimes Z)(a \otimes b)\right\|_{W(\rho)} \tag{A.5}\\
& \leq \sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right|\left\|\mathbf{b}^{\mathbf{k}}(a \otimes b)-a \otimes \mathbf{b}^{\mathbf{k}}(b)\right\|_{W(\rho)} \tag{A.6}\\
& <\sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right| \varepsilon|p|^{\frac{1}{p-1}}|\mathbf{k}|
\end{aligned} a \otimes b \|_{W(\rho)}, \begin{aligned}
& \text { k } \tag{A.7}\\
& <\sup _{\mathbf{k}}\left|a_{\mathbf{k}}\right| \varepsilon r^{|\mathbf{k}|}\|a \otimes b\|_{W(\rho)} \tag{A.8}\\
& =C(r)^{-1} C(r)|p|^{\frac{1}{p-1}}\|a \otimes b\|_{W(\rho)}, \tag{A.9}
\end{align*}
$$

where we use in (A.7) the estimate

$$
\|(\gamma-1)(a \otimes b)-a \otimes(\gamma-1) b\|=\|(\gamma-1) a \otimes \gamma b\|<\varepsilon\|a \otimes b\|
$$

and the same inductive argument that we used in the proof of Lemma 2.12 to treat general multi-indices. We conclude $\left\|Z_{\text {diag }}-(i d \otimes Z)\right\|<\|i d \otimes Z\|_{W(\rho)}=$ $\left(\|\operatorname{id} \otimes Z\|^{-1}\right)_{W(\rho)}^{-1}$ and using 2.1 that the diagonal action of Z is invertible on $W(\rho)$. Note that $K(\rho)$ is one-dimensional hence the action of $1 \otimes Z$ is given by multiplication by a constant in K^{\times}and hence satisfies the last equality $\|i d \otimes Z\|_{W(\rho)}=$ $\left(\|\mathrm{id} \otimes Z\|^{-1}\right)_{W(\rho)}^{-1}$.

A. 3 Homological Algebra

In the following R always denotes a commutative unital ring. We recall a useful result on double complexes which we intend to apply to the Herr complex by viewing it as a total complex of a double complex. By a double complex of R-modules we mean a system of R-modules $C^{\bullet \bullet}$ with horizontal differentials $d_{p, q}^{h}: C^{p, q} \rightarrow C^{p, q+1}$ and vertical differentials $d_{p, q}^{v}: C^{p, q} \rightarrow C^{p+1, q}$ satisfying $0=\left(d^{h}\right)^{2}=\left(d^{v}\right)^{2}$ and $d^{v} d^{h}+d^{h} d^{v}=0$ (i.e. the squares are anti-commutative). The (sum)-total complex of C is the complex $\operatorname{Tot}(C)^{n}:=\bigoplus_{p+q=n} C^{p, q}$ with differentials $d=d^{h}+d^{v}$.
Lemma A. 15 (Acyclic Assembly Lemma). Let C be a bounded double complex with exact rows or exact columns. Then $\operatorname{Tot}(C)$ is exact.
Proof. Cf. Wei95, Lemma 2.7.3 p. 59f.]
The following Lemma is KPX14, 4.1.3]. For the convenience of the reader we elaborate on the argument.
Lemma A.16. Let C^{\bullet}, D^{\bullet} be complexes of projective (resp. flat) R-modules with C^{\bullet} concentrated in degrees $[0, d]$ and D^{\bullet} bounded above. Suppose we have a quasiisomorphism $D \rightarrow C$ or $C \rightarrow D$. Then D is quasi-isomorphic to the complex

$$
\operatorname{coker}\left(d_{-1}\right) \rightarrow D_{1} \rightarrow \ldots
$$

and coker $\left(d_{-1}\right)$ is projective (resp. flat).

Proof. Since C and D are quasi-isomorphic the cohomology of D has to vanish in degrees <0 which proves first claim. Without loss of generality we replace D by the complex coker $\left(d_{-1}\right) \rightarrow D_{1} \rightarrow \ldots$. Since the complexes C and D are quasi-isomorphic the mapping fibre cone $\left(D^{\bullet} \rightarrow C^{\bullet}\right)[-1]$ or cone $\left(C^{\bullet} \rightarrow D^{\bullet}\right)[-1]$ (depending on the direction of the quasi-isomorphism) is acyclic. In the first case the fibre is a complex of the form

$$
0 \rightarrow \operatorname{coker}\left(d_{-1}\right) \rightarrow X^{1} \rightarrow \cdots \rightarrow X^{n} \rightarrow 0
$$

where all $X^{i}=C^{i} \oplus D^{i-1}$. are projective (resp. flat) by assumption. Because the complex is acyclic we can split it into short exact sequences in particular we have a short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(X^{n-1} \rightarrow X^{n}\right) \rightarrow X^{n-1} \rightarrow X^{n} \rightarrow 0 .
$$

Since X^{n-1} and X^{n} are projective (resp. flat) the module $\operatorname{ker}\left(X^{n-1} \rightarrow X^{n}\right)=$ $\operatorname{im}\left(X^{n-2} \rightarrow X^{n-1}\right)$ has to be projective (resp. flat). Inductively we conclude that $\operatorname{coker}\left(d_{-1}\right)$ has to be projective (resp. flat).
In the second case the fibre is a complex of the form

$$
0 \rightarrow Y^{0} \rightarrow Y^{1} \oplus \operatorname{coker}\left(d_{-1}\right) \rightarrow Y^{2} \rightarrow \cdots \rightarrow Y^{n} \rightarrow 0
$$

where $Y^{0}=C^{0}, Y^{1}=C^{1}, Y^{i}=C^{i} \oplus D^{i-1}$ are projective (resp. flat) by assumption. By the same argument as before we arrive at a situation where we have a short exact sequence $0 \rightarrow Y^{0} \rightarrow Y^{1} \oplus \operatorname{coker}\left(d_{-1}\right) \rightarrow M \rightarrow 0$ with a projective (resp. flat) module M. Then $Y^{1} \oplus \operatorname{coker}\left(d_{-1}\right)$ has to be projective (resp. flat) which implies that $\operatorname{coker}\left(d_{-1}\right)$ has the same property as a direct summand.

Lemma A.17. Let $\Psi: C^{\bullet} \rightarrow D^{\bullet}$ be a morphism of complexes in $D_{\text {perf }}^{-}(R)$. Then Ψ is a quasi-isomorphism if and only if the induced morphism

$$
C^{\bullet} \otimes_{R}^{\mathbb{L}} R / \mathfrak{m} \rightarrow D^{\bullet} \otimes_{R}^{\mathbb{L}} R / \mathfrak{m}
$$

is a quasi-isomorphism for every maximal ideal $\mathfrak{m} \in R$.
Proof. This is [KPX14, 4.1.5].
Lemma A.18. Let S be a ring and N an S-module. Then $p d_{S}(M) \leq p d_{S}(N)$ for any direct summand $M \subset N$.

Proof. By Sta21, Tag 065R] we have

$$
\operatorname{Ext}_{S}^{i}(N, T)=0
$$

for any S-module T and any $i>n$ if and only if $p d_{S}(M) \leq n$. Writing $N=M \oplus M^{\prime}$ we conclude that $\operatorname{Ext}_{S}^{i}(M, T)=0$ for $i>p d_{S}(N)$, proving that $p d_{S}(M) \leq p d_{S}(N)$ using again the characterisation above.

Definition A.19. A complex of R-module is called pseudo-coherent if it is quasiisomorphic to a bounded above complex of finite free modules. An R-module is called pseudo-coherent if $M[0]$ is pseudo-coherent.

Lemma A.20. Let M be a module over a ring R.

1. M is pseudo-coherent if and only if M admits a resolution

$$
\cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

of finite free modules.
2. Direct summands of pseudo-coherent complexes are pseudo-coherent.

Proof. See Sta21, Tag 064T an Tag 064X.
Lemma A.21. Let S be a finite R algebra, that is free as an R-module such that the inclusion $R \rightarrow S$ admits an R-linear section and let M be an S-module that admits (as an R-module) a d-term projective resolution by finitely generated projective R modules. Then M admits (as an S-module) a d-term projective resolution by finitely generated S modules.

Proof. By assumption we have a resolution of M with finitely generated projective R-modules

$$
0 \rightarrow X_{n} \rightarrow \cdots \rightarrow X_{0} \rightarrow M \rightarrow 0 .
$$

Since S is assumed flat over R we obtain an exact sequence of finitely generated projective S-modules

$$
0 \rightarrow X_{n} \otimes_{R} S \rightarrow \cdots \rightarrow X_{0} \otimes_{R} S \rightarrow M \otimes_{R} S \rightarrow 0
$$

In particular $M \otimes_{R} S$ is a pseudo-coherent S-module. The R-linear split $S=R \oplus \tilde{S}$ gives a $R \otimes_{R} S=S$ linear split $M \otimes_{R} S=M \oplus \tilde{M}$ hence M is a direct summand in $M \otimes_{R} S$. By A. 18 the projective dimension of M is bounded by that of $M \otimes_{R} S$ and by A. $20 M$ is pseudo-coherent and hence admits a (potentially infinte) resolution

$$
\ldots F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

by finite free S-modules. By A. 18 the kernel of $F_{d} \rightarrow F_{d-1}$ is projective and we may truncate the sequence by replacing F_{d} with $\operatorname{ker}\left(F_{d} \rightarrow F_{d-1}\right)$. The latter remains finitely generated because it is equal to the image of $F_{d+1} \rightarrow F_{d}$ by construction.

A. 4 Analyticity in fibres

In this section we discuss the property of being analytic in Families. As before let $L \subset K \subset \mathbb{C}_{p}$ be a complete field extension and let A be K-affinoid. For each maximal ideal $\mathfrak{m}_{z} \subset A$ corresponding to $z \in \operatorname{Sp}(A)$ we obtain a (φ_{L}, Γ_{L})-module M_{z} over $\mathcal{R}_{A / \mathrm{m}_{z}}$ (cf. Lemma 1.56) and one checks that the latter is L-analytic if the original module is L-analytic by projecting the orbit maps down to M_{z}.

Definition A.22. Let M be a $\left(\varphi_{L}, \Gamma_{L}\right)$-module over \mathcal{R}_{A}. We call M fibre-wise L-analytic if M_{z} is L-analytic for each $z \in \operatorname{Sp}(A)$.

We will show that for reduced A fibre-wise L-analyticity is equivalent to L-analyticity. We collect some preliminaries from commutative algebra.

Definition A.23. Let R be a commutative ring. Let M be an R-module. We define $\operatorname{Rad}(M)$ as the intersection of all maximal submodules of M. As usual we denote by $J(R)$ the (Jacobson) radical of R.

Lemma A.24. Let R be a commutative ring. Let $M,\left(M_{i}\right)_{i \in I}$ be R-modules. We have

1. $\operatorname{Rad}(M)=\bigcap_{\mathfrak{m} \in \operatorname{Max}(R)} \mathfrak{m} M$
2. $\operatorname{Rad}\left(\bigoplus_{i \in I} M_{i}\right)=\bigoplus_{i \in I} \operatorname{Rad}\left(M_{i}\right)$.
3. $\operatorname{Rad}(M)=J(R) M$ for every free R-module.
4. $\operatorname{Rad}(M)=J(R) M$ for every projective R-module.

Proof. 1.) and 2.) are well-known, 3.) is clear from 2.), 4.) follows by writing a projective module as a direct summand of a free module and applying 3.).

Lemma A.25. Let A be K-affinoid then A is Jacobson. In particular if A is reduced we have $J(A)=0$.

Proof. See [BGR84, 3.8 Lemma 9 and 6.1 Proposition 3].
Lemma A.26. Let A, B be K-affinoid and reduced. Then

$$
\operatorname{Sp}(A) \times_{K} \operatorname{Sp}(B)=\operatorname{Sp}\left(A \hat{\otimes}_{K} B\right)
$$

is reduced.
Proof. See [Duc09, Théorème 8.1] for the statement concerning the corresponding Berkovich spaces using that over a perfect field geometrically reduced and reduced are equivalent. By [BGR84, 7.3.2. Corollary 9] an affinoid is reduced if and only if the ring of global sections is reduced. On the other hand for a K-affinoid \mathcal{A} (in the sense of Berkovich) the corresponding Berkovich space $\mathcal{M}(\mathcal{A})$ is reduced if and only if \mathcal{A} is reduced as a ring by combining [Ber93, Theorem 2.2.1] and [Ber93, Theorem 2.1.1].

Proposition A.27. Let A be a reduced K-affinoid and M be a fibre-wise L-analytic $\left(\varphi_{L}, \Gamma_{L}\right)$-module M over \mathcal{R}_{A}. Then M is L-analytic.

Proof. After choosing a model M^{r} we can view M^{r} as a vector bundle on $\operatorname{Sp} A \times_{K}$ $\operatorname{Sp}\left(\mathcal{R}_{K}^{r, 1)}\right)$. By 1.42 it suffices to show that the derived action Lie $\rightarrow \operatorname{End}\left(M^{r}\right)$ is L-linear. Equivalently it suffices to show that for every $m \in M^{r}$ and $\lambda \in L$ we have $\lambda \nabla(m)-\nabla(\lambda m)=0$. This vanishing can be checked on each $M^{[r, s]}$. In this case $M^{[r, s]}$ is a projective module over the reduced (by A.26) affinoid $X:=\operatorname{Sp} A \times_{K} \operatorname{Sp}\left(\mathcal{R}_{K}^{[r, s]}\right)$. Let $m \in M^{[r, s]}$ and $\lambda \in L$. Then $v:=\lambda \nabla(m)-\nabla(\lambda m)$ belongs by assumption to $\mathfrak{m}_{x} M^{[r, s]}$ for every $x \in X$. More precisely v belongs a priori to $\bigcap_{z \in \operatorname{Sp}(A)} \mathfrak{m}_{z} M^{[r, s]}$. By $1.56 \mathfrak{m}_{z} \mathcal{R}_{A}^{[r, s]}$ is prime because $\mathcal{R}_{A / \mathfrak{m}_{z}}^{[r, s]}$ is a domain as a subring of $\mathcal{R}_{\mathbb{C}_{p}}^{[r, s]}$. Thus the ideal generated by \mathfrak{m}_{z} is a radical ideal and because $\mathcal{O}_{X}(X)$ is Jacobson it is the intersection of all maximal ideals containing it. However every $x \in \operatorname{Sp}(X)$ lies above some $z \in \operatorname{Sp}(A)$ which implies that the intersection is taken over all of X. From A. 24 and A. 25 we conclude $v=0$.

Errata

Lemma 1.11. The proof of the lemma contains a false claim. Evidently $c_{o}(K)$ is not the completion of $\bigoplus_{n \in \mathbb{N}} K$ with respect to the product topology, but rather the completion with respect to the sup-norm topology (which can be viewed as a subset of the product). Nevertheless $c_{o}(K) \hat{\otimes}_{K} V$ can be functorially identified with the space of zero sequences in V and strict maps are preserved (cf. proof of Eme17, Proposition 2.1.23]).

Lemma 1.43. In the proof there is an inaccuracy. In order to commute the projective limit and the completed projective tensor product, one has to represent the Fréchet spaces V_{i}, W_{i} as projective limits of Banach spaces with dense transition maps. This can be done without loss of generality by replacing a countable system of semi-norms inducing the topology on a given Fréchet space by an ordered system and taking the projective limit over the corresponding Hausdorff completions.
Proposition 1.74. The line on the top of page 36: As was seen in 1.23 should be replaced by as was seen in the proof of 1.22. More precisely, the claim follows from [Sch02, Corollary 18.8] using the reflexivity of E in the known case.
Definition 2.5. The definition in question contains some ambiguities which we would like to clarify. For $n \geq n_{0}$ we define $\mathcal{R}_{K}^{I}\left(\Gamma_{n}\right)$ as the ring of I-convergent Laurent series in the variable Z_{n}. The map $\left(l_{n}^{-1}\right)_{*}$ is thus given by mapping $T \in$ $\mathcal{R}_{K}^{+} \cong D\left(o_{L}, K\right)$ to Z_{n}. We opted for the complicated notation to keep track of the charts as the commutativity of the diagrams involved is a consequence of our specific choices of charts. The commutative diagrams on page 43 contain a typo: ι_{l+m} should be called ι_{n+m}.
Lemma A. 21 is incorrect in the generality stated by us. For our intended application the following form is sufficient.

Lemma E.1. Let G be a compact L-analytic group, let $H \subset G$ be a (finite index) normal open subgroup, let A be K-affinoid, let $S:=D(G, A)^{4}, R:=D(H, A)$ and let M be an S-module that admits (as an R-module) a $d+1$-term ($d \geq 0$) projective resolution by finitely generated projective R-modules. Then M admits (as an S module) a d +1 -term projective resolution by finitely generated S-modules.

Proof. Let T be an S-module. Using that the Dirac distributions δ_{g}, where g runs through a system of representatives of G / H, form a basis of S as an R-module,

[^17]we have $\operatorname{Hom}_{S}(M, T)=\operatorname{Hom}_{R}(M, T)^{G / H}$, where G / H acts on a homomorphism f via $(g f)(-)=g f\left(g^{-1}-\right)$. Because A contains a field of characteristic 0 the functor $(-)^{G / H}$ is exact on $A[G / H]$-modules and we obtain corresponding isomorphisms
$$
\operatorname{Ext}_{S}^{i}(M, T) \cong \operatorname{Ext}_{R}^{i}(M, T)^{G / H}
$$

In particular the assumption on the length of the resolution asserts

$$
\begin{equation*}
\operatorname{Ext}_{S}^{i}(M, T)=0 \tag{*}
\end{equation*}
$$

for every $i>d$. This implies that the projective dimension of M is bounded by d. By assumption we have a resolution of M with finitely generated projective R-modules. From [Sta21, Tag 064U] we obtain that M is in particular pseudo-coherent as an R-module. The ring S is finite free as an R module and hence pseudo-coherent. Applying [Sta21, Tag 064Z] we can conclude that M is pseudo-coherent as an S module. By Lemma Sta21, Tag 064T] admits a (potentially infinte) resolution

$$
\ldots F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

by finite free S-modules.
Using $|*\rangle$ the kernel of $F_{d} \rightarrow F_{d-1}$ is projective and we may truncate the sequence by replacing F_{d} with $\operatorname{ker}\left(F_{d} \rightarrow F_{d-1}\right)$. The latter remains finitely generated because it is equal to the image of $F_{d+1} \rightarrow F_{d}$ by construction.

Bibliography

[BC08] Laurent Berger and Pierre Colmez, Familles de représentations de de Rham et monodromie p-adique, Astérisque 319 (2008), 303-337.
[BC16] , Théorie de Sen et vecteurs localement analytiques, Ann. Sci. Éc. Norm. Supér.(4) 49 (2016), no. 4, 947-970.
[Bel21] Rebecca Bellovin, Cohomology of (φ, Γ)-modules over pseudorigid spaces, arXiv preprint arXiv:2102.04820 (2021).
[Ber93] Vladimir G Berkovich, Étale cohomology for non-archimedean analytic spaces, Publications Mathématiques de l'IHÉS 78 (1993), 5-161.
[Ber02] Laurent Berger, Représentations p-adiques et équations différentielles, Inventiones mathematicae 148 (2002), no. 2, 219-284.
[Ber16] _ Multivariable (φ, Γ)-modules and locally analytic vectors, Duke Mathematical Journal 165 (2016), 3567-3595.
[BF17] Laurent Berger and Lionel Fourquaux, Iwasawa theory and F-analytic lubin-tate (φ, Γ)-modules, Documenta Mathematica 22 (2017), 999-1030.
[BGR84] S. Bosch, U. Güntzer, and R. Remmert, Non-archimedean analysis : a systematic approach to rigid analytic geometry, Springer-Verlag, Berlin New York, 1984.
[BO78] Pierre Berthelot and Arthur Ogus, Notes on crystalline cohomology.(mn21), Princeton University Press, 1978.
[Bos14] Siegfried Bosch, Lectures on formal and rigid geometry, vol. 2105, Springer, 2014.
[Bou66] N Bourbaki, Elements of mathematics general topology part 2, Hermann and Addison-Wesley, Paris (1966).
[BSX20] Laurent Berger, Peter Schneider, and Bingyong Xie, Rigid Character Groups, Lubin-Tate Theory, and (φ, Γ)-Modules, vol. 263, American mathematical society, 2020.
[CC99] Frédéric Cherbonnier and Pierre Colmez, Théorie d'Iwasawa des représentations p-adiques d'un corps local, Journal of the American Mathematical Society 12 (1999), no. 1, 241-268.
[Che13] Gaëtan Chenevier, Sur la densité des représentations cristallines de $\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)$, Math. Ann 355 (2013), no. 4, 1469-1525.
[Col98] Pierre Colmez, Frédéric Cherbonnier, Représentations p-adiques surconvergentes, Inventiones Mathematicae 133 (1998), no. 3, 581-611.
[Col08] Pierre Colmez, Représentations triangulines de dimension 2, Astérisque 319 (2008), no. 213-258, 83.
[Col10] , Représentations de $G L_{2}\left(\mathbb{Q}_{p}\right)$ et (φ, Γ)-modules, Astérisque 330 (2010), no. 281, 509.
$\left[\right.$ Col16] _, Représentations localement analytiques de $G L_{2}\left(\mathbb{Q}_{p}\right)$ et (φ, Γ) modules, Representation Theory of the American Mathematical Society 20 (2016), no. 9, 187-248.
[Cre98] Richard Crew, Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Annales Scientifiques de l'École Normale Supérieure, vol. 31, Elsevier, 1998, pp. 717-763.
[Cyr] Cyril, Inverse limit of modules and tensor product, Mathematics Stack Exchange, URL:https://math.stackexchange.com/q/181004 (version: 2012-08-10).
[Duc09] Antoine Ducros, Les espaces de berkovich sont excellents, Annales de l'institut Fourier, vol. 59, 2009, pp. 1443-1552.
[Eme17] Matthew J. Emerton, Locally analytic vectors in representations of locally p-adic analytic groups, American Mathematical Soc., 2017.
[FdL99] Christian Tobias Féaux de Lacroix, Einige Resultate über die topologischen Darstellung p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Mathematisches Institut der Universität Münster, 1999.
[FX12] Lionel Fourquaux and Bingyong Xie, Triangulable oon-analytic (φ, Γ) modules of rank 2, Algebra and Number Theory 7 (2012), no. 10.
[Her98] Laurent Herr, Sur la cohomologie galoisienne des corps p-adiques, Bulletin de la Société mathématique de France 126 (1998), no. 4, 563-600.
[IZ95] Adrian Iovita and Alexandru Zaharescu, Completions of rat-valued fields of rational functions, Journal of Number Theory 50 (1995), no. 2, 202-205.
[Ked05] Kiran S. Kedlaya, Slope filtrations revisited., Documenta Mathematica 10 (2005), 447-525 (eng).
[KL13] Kiran S Kedlaya and Ruochuan Liu, Relative p-adic Hodge theory: foundations, arXiv preprint arXiv:1301.0792 (2013).
[KL16] , Finiteness of cohomology of local systems on rigid analytic spaces, arXiv preprint arXiv:1611.06930 (2016).
[Koh11] Jan Kohlhaase, The cohomology of locally analytic representations, Journal für die reine und angewandte Mathematik 2011 (2011), no. 651, 187-240.
[KP18] Kiran Kedlaya and Jonathan Pottharst, On categories of (φ, Γ)-modules, Algebraic Geometry: Salt Lake City 2015: Salt Lake City 2015: 2015 Summer Research Institute, July 13-31, 2015, University of Utah, Salt Lake City, Utah 97 (2018), 281.
[KPX14] Kiran Kedlaya, Jonathan Pottharst, and Liang Xiao, Cohomology of arithmetic families of (φ, Γ)-modules, Journal of the American Mathematical Society 27 (2014), no. 4, 1043-1115.
[KR09] Mark Kisin and Wei Ren, Galois Representations and Lubin-Tate Groups, Documenta Mathematica 14 (2009), 441-461.
[Liu07] Ruochuan Liu, Cohomology and duality for (φ, Γ)-modules over the Robba ring, International Mathematics Research Notices 2007 (2007), no. 9, rnm150-rnm150.
[Lüt16] Werner Lütkebohmert, Rigid geometry of curves and their jacobians, vol. 61, Springer, 2016.
[LVZ15] David Loeffler, Otmar Venjakob, and Sarah Livia Zerbes, Local epsilon isomorphisms, Kyoto Journal of Mathematics 55 (2015), no. 1, 63-127.
[MSVW] Milan Malčić, Rustam Steingart, Otmar Venjakob, and Max Witzelsperger, ε-Isomorphisms for rank one Lubin-Tate (φ, Γ)-modules over the Robba ring, In preparation.
[Nak17] Kentaro Nakamura, A generalization of Kato's local ε-conjecture for (φ, Г)-modules over the Robba ring, Algebra \& Number Theory 11 (2017), no. 2, 319-404.
[NS03] Nikolay Nikolov and Dan Segal, Finite index subgroups in profinite groups, Comptes Rendus Mathematique 337 (2003), no. 5, 303-308.
[PGS10] C. Perez-Garcia and W.H. Schikhof, Locally convex spaces over nonarchimedean valued fields, Cambridge University Press, Cambridge, 2010.
[Pot13] Jonathan Pottharst, Analytic families of finite-slope Selmer groups, Algebra \& Number Theory 7 (2013), no. 7, 1571-1612.
[Pot20] , Harder-Narasimhan theory, arXiv preprint arXiv:2003.11950 (2020).
[Sch02] Peter Schneider, Nonarchimedean functional analysis, Springer Berlin Heidelberg, 2002.
[Sch17] Peter Schneider, Galois representations and (φ, Γ)-modules, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2017.
[ST01] Peter Schneider and Jeremy Teitelbaum, p-adic fourier theory., Documenta Mathematica 6 (2001), 447-481 (eng).
[ST02] , Locally analytic distributions and p-adic representation theory, with applications to $G L_{2}$, Journal of the American Mathematical Society 15 (2002), no. 2, 443-468.
[ST03] , Algebras of p-adic distributions and admissible representations, Inventiones mathematicae 153 (2003), no. 1, 145-196.
[Sta21] The Stacks project authors, The stacks project, https://stacks.math. columbia.edu, 2021.
[SV15] Peter Schneider and Otmar Venjakob, Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions, Elliptic Curves, Modular Forms and Iwasawa Theory, Springer, 2015, pp. 401-468.
[SV20] _, Reciprocity laws for $\left(\varphi_{L}, \Gamma_{L}\right)$-modules over Lubin-Tate extensions, preprint (2020), https://www.mathi.uni-heidelberg.de/ fg-sga/Preprints/regulator.pdf.
[Tho19] Oliver Thomas, On Analytic and Iwasawa Cohomology, Ph.D. thesis, Heidelberg University, 2019.
[Wei95] Charles A Weibel, An introduction to homological algebra, no. 38, Cambridge university press, 1995.
[Wit19] Max Witzelsperger, Kategorienäquivalenz L-analytischer Darstellungen und (φ, Γ)-Moduln über dem Robba-Ring, Master's thesis, Heidelberg University, 2019.

[^0]: ${ }^{1}$ Note that the operator used by Schneider and Venjakob differs from our Ψ by a constant. See 4.10 for a technical solution.
 ${ }^{2} \mathrm{~A}$ model is a $\left(\varphi_{L}, \Gamma_{L}\right)$-module $M^{[r 0,1)}$ over $\mathcal{R}_{A}^{\left[r_{0}, 1\right)}$ such that $M=\mathcal{R}_{A} \otimes_{\mathcal{R}_{A}^{\left(r_{0}, 1\right)}} M^{\left[r_{0}, 1\right)}$.

[^1]: ${ }^{3}$ See Theorem 4.24 for a precise description of the maps.

[^2]: ${ }^{1}$ Equivalently it suffices to assume that V is Fréchet and $V^{\prime \prime}$ is Hausdorff.

[^3]: ${ }^{2}$ In the second case the assumptions guarantee $\varphi(T) \in\left(\mathcal{R}_{L}^{I^{1 / q}}\right)^{\times}$.

[^4]: ${ }^{3}$ By the strong topology we mean the subspace topology of the space of continuous K-linear operators $\mathcal{L}_{K, b}\left(\mathcal{R}_{A}, A\right)$ with the strong topology.

[^5]: ${ }^{4}$ Alternatively one can redo the proof with A replacing L.

[^6]: ${ }^{5}$ With our conventions $\mathcal{R}_{L}\left(x^{i}\right)$ has slope i.

[^7]: ${ }^{6}$ Note that \mathcal{R}_{L} is a Bézout domain hence being finitely generated projective is equivalent to being finite free.

[^8]: ${ }^{1}$ We endow the left-hand side with the maximum norm with respect to the decomposition $\mathbb{Z}\left[\Gamma_{n}\right]=$ $\bigoplus_{\gamma \in \Gamma_{n} / \Gamma_{n+m}} \gamma \mathbb{Z}\left[\Gamma_{n+m}\right]$.

[^9]: ${ }^{1}$ This also forces $p \neq 2$.

[^10]: ${ }^{2}$ The assumption $r, s, r^{\prime}, s^{\prime} \in\left|K^{\times}\right|$can be weakened to $r, s, r^{\prime}, s^{\prime} \in \sqrt{\left|K^{\times}\right|}$without any difficulties. In our application K carries a non-discrete valuation and cofinality arguments allow us to choose suitable intervals

[^11]: ${ }^{3}$ Since it is the minimal polynomial of the π_{L}^{n}-torsion points of the Lubin-Tate group.

[^12]: ${ }^{4}$ The precise value $\mathfrak{r}_{l}=p^{-\frac{1}{p^{l}}}$ is not relevant in the following. One could replace \mathfrak{r}_{l} by any sequence converging to 1 , that is bounded below by $\mathfrak{r}_{l_{0}}$.
 ${ }^{5}$ This choice of δ is a technicality in order to obtain a strict bound with respect to the quotient topology in (3.15).

[^13]: ${ }^{1}$ For a topological group G the maximal Hausdorff quotient is defined as $G / \overline{\left\{1_{G}\right\}}$.

[^14]: ${ }^{1} \mathbb{D}^{\dagger}(V)$ was defined in 1.82

[^15]: ${ }^{2}$ With the convention $0^{-1}=+\infty$.

[^16]: ${ }^{3}$ This is an adaption of an answer to Cyr . Commonly this result is stated requiring N_{n} to be of finite length, which does not suffice to treat our desired application to $R=A$ affinoid over K unless A is Artinian.

[^17]: ${ }^{4}$ We take $D(G, A):=A \hat{\otimes}_{K} D(G, K)$ as a convention.

