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Abstract

In this thesis we prove finiteness and base change properties for analytic cohomology
of families of L-analytic (ϕL,ΓL)-modules parametrised by affinoid algebras. To this
end, we study an analogue of the Herr complex, which can be defined using p-adic
Fourier theory. For technical reasons we work over a field containing the finite ex-
tension L of Qp and a certain transcendental period.
In case the affinoid algebra is the base field, we prove that coadmissibility of the Iwa-
sawa cohomology groups is sufficient for the existence of a comparison isomorphism
between the Iwasawa cohomology of a (ϕL,ΓL)-module over the Robba ring and the
analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is ob-
tained by base change to the algebra of L-analytic distributions on an open subgroup
of ΓL.
In the trianguline case we show that the complex computing Iwasawa cohomology is
perfect and in particular satisfies the above condition.
Finally we describe how general perfectness results for Iwasawa cohomology can be
achieved assuming conjecturally that the statement can be proved in the étale case.

Zusammenfassung

In dieser Arbeit zeigen wir Endlichkeits- und Basiswechseleigenschaften für analy-
tische Kohomologie von Familien von L-analytischen (ϕL,ΓL)-Moduln parametrisiert
durch affinoide Algebren. Dazu untersuchen wir ein Analogon des Herr-Komplexes,
welches mittels p-adischer Fouriertheorie definiert werden kann. Aus technischen
Gründen arbeiten wir über einem Körper, welcher die endliche Erweiterung L von
Qp und eine gewisse transzendente Periode enthält.
Im Falle, dass die affinoide Algebra der Grundkörper ist, zeigen wir, dass eine
hinreichende Bedingung für die Existenz eines Vergleichsisomorphismus zwischen der
Iwasawakohomologie eines (ϕL,ΓL)-Moduls über dem Robba-Ring und der
analytischen Kohomologie seiner Lubin-Tate-Deformation, welche heuristisch durch
Basiswechsel zur L-analytischen Distributionsalgebra einer offenen Untergruppe von
ΓL entsteht, die Kozulässigkeit der Iwasawa-Kohomologiegruppen ist.
Im triangulinen Fall zeigen wir, dass der Komplex, welcher die Iwasawa-Kohomologie
berechnet, perfekt ist und insbesondere obige Bedingung erfüllt.
Zuletzt beschreiben wir, wie allgemeinere Perfektheitsergebnisse für die Iwasawa-
Kohomologie erzielt werden können, unter Annahme der Vermutung, dass die Aus-
sage im étalen Fall bewiesen werden kann.
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Introduction

Let p be a prime number. Among objects of fundamental importance in number
theory are p-adic Galois representations, i.e., continuous representations of the abso-
lute Galois group GQp on finite dimensional Qp-vector spaces. They appear naturally
in the context of p-adic étale cohomology and Fontaine’s theory of (ϕ,Γ)-modules
provides us with an equivalence of categories between p-adic Galois representations
and so-called étale (ϕ,Γ)-modules. Let L/Qp be a finite extension with absolute
Galois group GL. Fix an embedding L → Cp and a uniformiser πL of L. We de-
note by oL the ring of integers of L and by q the cardinality of oL/πLoL. Lubin-Tate
(ϕL,ΓL)-modules play an important role for understanding L-linear continuous rep-
resentations of GL. In the Lubin-Tate case ϕL(T ) ∈ oLJT K is a Frobenius power series
for πL, i.e., a series of the form ϕ(T ) = πLT + T q + πLT

2f with some f ∈ oLJT K.
One can show that there exists a unique commutative one dimensional formal group
law LT over oL admitting ϕL as an endomorphism. The action of GL on the πnL-
torsion points LT [πnL] defines, by passing to the limit with respect to n, a charac-
ter χLT : GL → AutoL(lim←−LT [πnL]) ∼= o×L . This character induces an isomorphism

ΓL := Gal(L∞/L) ∼= o×L , where L∞ is the extension obtained by adjoining to L
the πL-power torsion points. In the classical case one takes ϕQp = (1 + T )p − 1.
This leads to the multiplicative formal group Gm and the p-cyclotomic character

χcyc : Gal(Qp(ζp∞)/Qp)
∼=−→ Z×p . In analogy to the classical theory of cyclotomic

(ϕ,Γ)-modules of Fontaine the category of all continuous L-linear representations
is equivalent to the category of étale Lubin-Tate (ϕL,ΓL)-modules (cf. [KR09]).

We denote by R[r,1)
L the ring of formal Laurent series with coefficients in L con-

verging on the half-open annulus r ≤ |T | < 1. Their union RL =
⋃
r∈[0,1)R

[r,1)
L is

called the Robba ring. A crucial technique for analysing Galois representations is
p-adic Hodge Theory, which uses various period rings to describe certain subcat-
egories of representations. If one wishes to give a description purely in terms of
(ϕL,ΓL)-modules a passage to the Robba ring is required since the series in RL

admit a radius of convergence and can in a reasonable way be embedded into the
classical period rings of p-adic Hodge Theory. One can show that the category of
étale (ϕL,ΓL)-modules over the Robba ring is equivalent to the category of so-called
overconvergent étale (ϕL,ΓL)-modules. A definition of overconvergence will be given
in 1.82. For the purpose of this introduction we only need the following facts: In the
cyclotomic case every Galois representation is overconvergent (cf. [Col98]) but in the

1



case L 6= Qp this is no longer true and it is not obvious how to describe Galois rep-
resentations whose (ϕL,ΓL)-modules are overconvergent in a non-tautological way.
However, analyticity is a sufficient condition for overconvergence and we have in fact,
by a theorem of Berger, an equivalence of categories between L-analytic represen-
tations and L-analytic (ϕL,ΓL)-modules. A representation V is called L-analytic if
for every embedding σ : L → Cp that is different from the identity the semi-linear
representation Cp ⊗σ,L V is isomorphic to CdimL V

p . A (ϕL,ΓL)-module M over RL is
called L-analytic if the action of ΓL on the LF-space underlying M is differentiable
and the action of Lie(ΓL) is L-linear. This endows L-analytic (ϕL,ΓL)-modules with
additional structure. One can show that the ΓL-action extends to an action of the
algebra of L-analytic distributions D(ΓL, L) on M, which contains L[ΓL] as a dense
subring and is the natural analogue of the Iwasawa algebra in this analytic situation.
The classical equivalence of categories allows for a nice description of the Galois
cohomology of a representation V in terms of its (ϕ,Γ)-module D(V ). Assume for
simplicity p 6= 2 such that Γ is pro-cyclic and admits a topological generator γ. In
this case the Galois cohomology can be computed by the Herr complex, which is
given by the total complex

Cϕ,γ(D(V )) := Tot


D(V ) D(V )

D(V ) D(V )

γ−1

ϕ−1

−(γ−1)

ϕ−1

 .

In the case L 6= Qp the group ΓL is no longer pro-cyclic. Instead it contains an
open subgroup U ⊂ ΓL, which via the logarithm is isomorphic to the additive group

oL ∼= Z[L:Qp]
p . However, thanks to the L-analytic structure on the modules, we can

still describe the action of ΓL using a single operator. A reasonable candidate is the
action of 1 ∈ L ∼= Lie(ΓL), which is commonly denoted by ∇. For an L-analytic
(ϕL,ΓL)-module this leads to the complex

CϕL,∇(M) := Tot

 M M

M M

∇

ϕL−1

−∇
ϕL−1

 .

This cohomology has been studied by Fourquaux and Xie in [FX12] and by Colmez
in [Col16]. In some sense this leads to a coarser invariant than desired as can be seen
in degree zero, where the cohomology is the set of elements fixed by ϕL and some
open subgroup of ΓL. A finer invariant is the cohomology theory studied by Berger
and Fourquaux using L-analytic cochains of the semigroup ϕN

L×ΓL in [BF17]. They
show that this cohomology, which they only define in degree zero and one, agrees with
H0(ΓL, H

i
ϕL,∇(M)) for i = 0, 1. Using p-adic Fourier theory developed by Schneider

and Teitelbaum we study a different candidate that allows us to describe for an open
subgroup U ⊂ ΓL isomorphic to oL the ϕN

L×U -cohomology using a single operator Z
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that plays the role of γ − 1 in the classical case. Let K ⊂ Cp be a complete subfield
containing a period ΩL of the Lubin-Tate group in the sense of [ST01]. We denote
by D(U,L) (resp. D(U,K)) the algebra of L-analytic L-valued (resp. K-valued)
distributions on U. By the work of Schneider and Teitelbaum there exists a rigid
L-analytic variety XU , whose points parametrise the locally L-analytic characters on
U, such that the global sections of its structure sheaf are given by D(U,L) via the
Fourier isomorphism. They further show that over K as above XU is isomorphic to
the open unit disc. This provides us with an isomorphism D(U,K) ∼= R[0,1)

K and we
denote by Z the preimage of a coordinate T under this isomorphism. This allows us
to define the complex

CϕL,Z(M) := Tot

 M M

M M

Z

ϕL−1

−Z
ϕL−1

 .

To see that this is conceptionally an analogue of the classical Herr complex recall
that in the classical case (assume p 6= 2) the cyclotomic character induces ΓQp

∼= Z×p
and the group U (1) of 1-units is isomorphic to Zp. For simplicity assume that the
torsion subgroup of ΓQp acts trivially on D(V ). The Iwasawa algebra Λ = ZpJU (1)K
is isomorphic to ZpJT K via γ − 1 7→ T and therefore the vertical column in the Herr
complex represents RHomΛ(Zp,D(V )). Similarly in our case D(U,K) plays the role
of the Iwasawa algebra and since

0→ D(U,K)
Z−→ D(U,K)→ K → 0

is a projective resolution of K we conclude that the vertical column represents
RHomD(U,K)(K,M). This a priori algebraic invariant turns out to be of analytic
nature. For the purpose of motivation we mention Kohlhaase’s article [Koh11] but
warn the reader that his theory is not directly applicable in our case because K
is not assumed to be spherically complete. Kohlhaase defines a version of analytic
cohomology and shows that these groups agree with the groups ExtiD(U,K)(K,M).
With this in mind, up to signs, CϕL,Z(M) can be written as the cone of ϕL − 1 act-
ing on a complex that computes the analytic cohomology of U with coefficients in
M, reinforcing that it is indeed an analytic analogue of the Herr complex. In 3.35
we show that H0(ΓL, H

1
ϕL,Z

(M)) is isomorphic to the group of analytic extensions

Ext1
an(RK ,M) and hence also isomorphic to the version considered by Berger and

Fourquaux in degree one (and obviously in degree zero).
It is technically helpful to allow for more flexibility in terms of coefficients and to
not restrict oneself to working only over fields. In this thesis we consider what one
could call rigid-analytic families of L-analytic (ϕL,ΓL)-modules. For an affinoid A in
the sense of Tate we define these ad-hoc as (ϕL,ΓL)-modules over the relative Robba
ring RA := RL⊗̂LA whose underlying topological vector space has an L-analytic
action of ΓL. One can think of them as families of L-analytic (ϕL,ΓL)-modules
parametrised by the rigid analytic space Sp(A). In the classical case Berger and
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Colmez construct a functor that assigns to an A-valued representation such a (ϕ,Γ)-
module (cf. [BC08, Théorème A]). Their formalism relies on the Colmez-Sen-Tate
method, which implies the overconvergence of all p-adic Galois representations as a
corollary. For that abstract reason it cannot be generalised without difficulties to the
Lubin-Tate case since there exist representations that are not overconvergent. We do
not provide an analogous functor and instead work with the above ad-hoc description
of families of (ϕL,ΓL)-modules. Even when considering the case A = K the study of
families plays a crucial role for understanding another important complex namely

CΨ(M) : M
Ψ−1−−→M,

whose cohomology we denote by H i
Iw(M). Here Ψ denotes the left-inverse operator of

ϕL (see 1.64 for a precise definition). Informally speaking this complex (concentrated
in degrees [1, 2]) computes the Iwasawa cohomology in the étale case in both the
cyclotomic situation (cf. [CC99, Proposition II.3.1, Remarque II.3.2]) and the Lubin-
Tate case by [SV15, Theorem 5.13] 1.

Summary of the main results

The starting point is the study of the ΓL-action on MΨ=0. By transport of structure
via the isomorphism R+

K
∼= D(U,K) we can define the group Robba ring RK(U)

(and similarly RK(ΓL)). We denote by η(1, T ) the power series corresponding to
1 ∈ oL ∼= U under this isomorphism. Comparing the action of Z and the action of T
allows us to show the following theorem:

Theorem 1 (Theorem 2.19). Let M be an L-analytic (ϕL,ΓL)-module over RA ad-
mitting a model2 over [r0, 1), then there exists r1 ≥ r0 such that for any r ≥ r1

the ΓL-action on (M [r,1))ψ=0 extends to an action of R[r,1)
A (ΓL) with respect to which

(M [r,1))ψ=0 is finite projective of rank rankRA(M). If m1, . . . ,md generate M [r,1) then

the elements η(1, T )ϕL(m1), . . . , η(1, T )ϕL(md) generate (M [r,1))ψ=0 as a R[r,1)
A (ΓL)-

module.

In the cyclotomic case this is [KPX14, Theorem 3.1.1] and this theorem was proven by
Schneider and Venjakob in [SV20] for free modules over RK . This result shows that
the variable Z has properties analogous to the operator γ− 1 studied in the classical
case. As an immediate corollary we obtain a comparison isomorphism between the
(Ψ, Z) and (ϕL, Z)-cohomology.

1Note that the operator used by Schneider and Venjakob differs from our Ψ by a constant. See
4.10 for a technical solution.

2A model is a (ϕL,ΓL)-module M [r0,1) over R[r0,1)
A such that M = RA ⊗R[r0,1)

A

M [r0,1).
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Corollary. Let M be an L-analytic (ϕL,ΓL)-module over RA. The morphism of
complexes

CϕL,Z(M) : M M ⊕M M

CΨ,Z(M) : M M ⊕M M

id −Ψ⊕id −Ψ

is a quasi-isomorphism.

Next we study finiteness and base change properties of CϕL,Z(M). Here we deviate
from the approach of [KPX14], who deduce finiteness as a consequence of finiteness
of Iwasawa cohomology and instead opt for an approach using methods of [KL16].
The finiteness of (ϕL, Z)-cohomology can be deduced systematically from the general

finiteness statements in [KL16]. We denote by D
[0,2]
perf (A) the full subcategory of the

derived category consisting of complexes, which are quasi-isomorphic to a complex
of finitely generated projective modules concentrated in degrees [0, 2].

Theorem 2 (Theorem 3.22). Let A,B be K-affinoid and let M be an L-analytic
(ϕL,ΓL)-module over RA. Let f : A → B be a morphism of K-affinoid algebras.
Then:

(1) CϕL,Z(M) ∈ D
[0,2]
perf (A).

(2) The natural morphism CϕL,Z(M)⊗L
AB → CϕL,Z(M⊗̂AB) is a quasi-isomorphism.

In particular the cohomology groups H i
ϕL,Z

(M) are finite A-modules for every i.

While the preceding results are proven over the relative Robba ring RA we restrict
our considerations to the case A = K when studying Iwasawa cohomology since
already in this case we run into a series of subtleties.
However even when restricting A to a point the study of Iwasawa cohomology leads us
to studying a non-trivial family of (ϕL,ΓL)-modules, which we call the Lubin-Tate
deformation of M. Roughly speaking one would like to take the completed tensor
product D(ΓL, K)⊗̂KM and as such define a family of (ϕL,ΓL)-modules parametrised
by the rigid analytic space XΓL . For K ′/K finite, the K ′ points of XΓL are in bijection
with L-analytic K ′ valued characters on ΓL and hence the Lubin-Tate deformation
of M parametrises all twists of M by L-analytic characters. Some care is required
because D(ΓL, K) is no longer affinoid. In order to work within the framework of
families as above we have to work over an affinoid cover leading us to a derived
limit of the corresponding Herr complexes. In more precise terms we can write
D(U,K) as a projective limit of affinoid algebras Dn and the deformation (on the
level of U) is defined as a “sheaf” (Dfmn(M))n∈N, where each term is given as
Dfmn(M) = Dn⊗̂KM and γ ∈ U acts as δγ−1 ⊗ γ. The analytic cohomology of
this deformation can be related to the Iwasawa cohomology of M via the following
theorem.
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Theorem 3 (cf. Theorem 4.24). Suppose CΨ(M) has coadmissible cohomology groups.
Then there is a canonical3 isomorphism in the derived category D(D(U,K))

RlimCΨ,Z(Dfmn(M)) ' CΨ(M)

and, in particular, we have isomorphisms

lim←−
n

H i
Ψ,Z(Dfmn(M)) ∼= H i

Iw(M).

This makes it clear that the coadmissibility of the Iwasawa cohomology of M is a
desirable property and we show that a sufficient condition is that MΨ=1 is finitely
generated as a D(U,K)-module. We proceed to prove that this condition is satisfied
by modules of rank one, which are of the formRK(δ) for a locally L-analytic character
δ : L× → K×. By a dévissage argument this carries over to trianguline modules, i.e.,
successive extensions of such RK(δ). This leads us to the following theorem.

Theorem 4. (Theorem 5.8) Let M be a trianguline L-analytic (ϕL,ΓL)-module over
RK . Then CcΨ(M) is a perfect complex of D(ΓL, K)-modules for any constant c ∈
K×.

From the work of Schneider and Venjakob one obtains that the Iwasawa cohomology
H i
Iw(ΓL, V ) of an oL-linear representation V of GL is computed by the complex

D(V (τ))
ψLT−1−−−−→ D(V (τ)),

with some character τ. Applying this to V (τ−1) instead of V we obtain, in particular,
that D(V )ψLT=1 is a finite Λ = oLJΓLK-module. If one assumes further that V is L-
analytic, one can show that D(V )ψLT=1 is contained in the overconvergent submodule
D†(V ) providing us with a natural map

D(ΓL, K)⊗Λ D†(V )ψLT=1 →MψLT=1,

where M denotes the completed base change to K of the (ϕL,ΓL)-module over RL

attached to V. We conjecture that this map is an isomorphism. For our purpose the
following weak form is sufficient.

Conjecture. (Conjecture 6.3) The natural map

D(ΓL, K)⊗Λ D†(V )ψLT=1 →MψLT=1

is surjective.

In the final chapter we explain how the étale results of Schneider and Venjakob can
be implemented to show general perfectness statements for those modules that arise
as a base change of some M0 over RL under the assumption of this conjecture.

3See Theorem 4.24 for a precise description of the maps.
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The restriction to modules coming fromRL is rooted in the methodology of the proof.
The idea is that the statement is true for a certain class of (ϕL,ΓL)-modules, namely
the étale modules studied by Schneider and Venjakob in [SV15]. An induction over
Harder-Narasimhan slopes of (ϕL,ΓL)-modules “propagates” the theorem to all L-
analytic (ϕL,ΓL)-modules over RL. By introducing the large extension K/L we leave
the setting of Kedlayas slope filtrations due to no longer working with Bézout rings
and our proofs make heavy use of the structure of D(U,K) as a power series ring.
For that reason we are uncertain whether the results can be descended to M0 (as
a D(ΓL, L)-module) and whether they hold for any M (not necessarily arising as a
base change from RL or say RF for some finite extension F/L).

Theorem 5 (Theorem 6.11). Assume Conjecture 6.3. Let M0 be an L-analytic
(ϕL,ΓL)-module over RL and let M := K⊗̂LM0. Then the complex CΨ(M) of
D(ΓL, K)-modules is perfect.

We go on to discuss the Euler-Poincaré characteristic formula for CΨ,Z(M). We prove
that the expected Euler-Poincaré characteristic formula∑

i∈N0

(−1)i dimK H
i
Ψ,Z(M) = −[ΓL : U ] rankRL(M)

holds in the trianguline case (see Remark 6.16). We also show that the formula in the
general case would follow from C(M) = (1−ϕL)MΨ=1 being projective over D(U,K)
of rank [ΓL : U ] rankRK (M).
The main inspiration for our work is [KPX14]. In fact the complex considered by us
specialises to theirs in the cyclotomic case since one can take Z = γ − 1. However
[KPX14] work in a situation where Tate-Duality, the Euler-Poincaré formula and
slope theory are known for the base case A = K = Qp and can be applied point-wise.
The main difference is the fact that we need to adjoin ΩL leading to a transcendental
extension K/L (which introduces functional analytic subtleties in its own right) in

order to truly compare R[r,1)
K and D(U,K). While our theorems 2.19 and 3.22 are

generalisations of their analogues in [KPX14], we make more restrictive assumptions
in 6.11 and 4.24. Of course, one can extend coefficients even further by base changing
to a spherical completion. We opt to work within Cp due to the advantage that
arithmetic information can be recovered if we start with a (ϕL,ΓL)-module coming
from RL by taking GL-invariants with respect to the coefficient-wise action.

Applications

An application of the theory developed in [KPX14] is the study of global triangu-
lation (cf. Section 6 in loc.cit.). Our theorem 3.22 shows that analytic cohomology
is well-behaved with respect to affinoid covers, which can be used to study families
parametrised by more general rigid analytic spaces. It is likely that one can explore
similar avenues but an obstruction are the Euler-Poincaré characteristic formula and
Tate-Duality, whose analogues are yet to be established in the L-analytic case.
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A topic of great importance in global Iwasawa theory is the study of p-adic L-
functions. Locally this leads to a study of local ε-constants or in more general
terms local ε-isomorphism conjectures (cf. [LVZ15]). The most refined application
of our results so far consists of an ongoing project (joint with Malčić, Venjakob and
Witzelsperger) on ε-isomorphisms for L-analytic (ϕL,ΓL)-modules of rank one. In
order to explain, how our results fit into the picture, we give a rough outline of
the key ideas. In [Nak17] Nakamura formulates a generalised local ε-conjecture for
(ϕ,Γ)-modules and proves it in the rank one case. To each (ϕ,Γ)-module M he at-
taches a trivialisation of a certain (graded) line bundle, its fundamental line, which
is essentially given as the determinant of the Herr complex. The ε-conjecture states
that there is a unique such assignment satisfying certain compatibility properties
(cf. [Nak17, Conjecture 3.8]).
The results of [KPX14] are a crucial technical input to define the fundamental line
since the determinant of a complex only makes sense if the complex is perfect. Fur-
thermore the perfectness of Iwasawa cohomology and its comparison to the cyclotomic
deformation are crucial for the definition of ε-isomorphisms used by Nakamura in his
proof in the rank one case. These results allow him to reinterpret the twist by a
character, which factors over Γ as a base change to a quotient of the deformation,
thereby reducing the problem to (ϕ,Γ)-modules R(δ) such that the character δ is
trivial on Z×p . Our results lay the foundations in the L-analytic case and allow us to
define a fundamental line using analytic cohomology hence forming the cornerstone
for a local ε-conjecture in this case.

8



Chapter 1

Preliminaries

1.1 Some functional analysis.

Functional analysis over non-archimedean fields is for the most part very similar to
the classical theory over K = C,R but differs in some key points when the base field
is not spherically complete. A simple way to enforce spherical completeness is to
assume that the value group is discrete. We will be working with LF and Fréchet
spaces over a complete subfield K ⊆ Cp with dense value group, which is why we
cannot assume K to be spherically complete. For the moment let K be a field of
characteristic zero that is complete with respect to a non-trivial ultra-metric absolute
value |·| : K → R≥0. Recall that a topological K-vector space is called locally convex
if its topology can be defined by a family of semi-norms. For two locally convex
spaces E1, E2 we denote by Lb(E1, E2) the space of continuous linear maps with the
strong topology.

Definition 1.1. A locally convex space E is called of countable type if for ev-
ery continuous semi-norm on E the assosicated normed space E/ ker(p) contains a
countable set whose K-span is dense.

We warn the reader that this does not imply that E itself contains a countably-
dimensional dense subspace (such spaces are called strictly of countable type) unless
E is metrizable. The following lemma is useful for checking whether a given space is
of countable type.

Lemma 1.2. Subspaces, continuous linear images, products, projective limits, count-
able locally convex direct sums and inductive limits of spaces of countable type are of
countable type.

Proof. See [PGS10, Theorem 4.2.13].

We denote by E ′ the space of continuous linear forms on E. We have the following
version of the Hahn-Banach theorem.
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Theorem 1.3 (Hahn-Banach). Let E be a locally convex space of countable type and
D ⊂ E a subspace.

1. Then any f ∈ D′ can be extended to f ∈ E ′.

2. If E is normed then for every ε > 0 and every f ∈ D′ there exists an extension
of f to an element f ∈ E ′ such that

||f || ≤ (1 + ε)||f ||.

Proof. See [PGS10, Theorem 4.2.4] and its corollaries.

Example 1.4. Let n ∈ N. The n-dimensional Tate algebra K〈X1, . . . Xn〉 is of count-
able type.

Proof. The polynomial algebra K[X1, . . . , Xn] is a countably-dimensional dense sub-
space.

Definition 1.5. A K-Banach algebra R is a unital K-algebra endowed with a
norm making it a K-Banach space space such that ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ R.
We always assume ‖1R‖ = 1 (whenever R 6= 0).

Proposition 1.6. Let R be a Noetherian K-Banach algebra.

1. Every finitely generated A-module M has a unique K-Banach space structure
making it an A-Banach module. The norm on M is equivalent to the one
obtained by taking the quotient norm of any surjection Rn →M.

2. Any morphism between finitely generated A-modules is continuous and strict
with respect to this topology.

Proof. See [BGR84, Section 3/3.7.3].

When M is a module over a Noetherian Banach algebra we implicitly endow it with
its canonical topology from Proposition 1.6.

Definition 1.7. A homomorphism of topological groups f : G→ H is called strict,
if the induced map G/ ker f → Im f is a topological isomorphism with respect to the
quotient topology on the left and the subspace topology on the right.

Lemma 1.8. Let G,H be metrizable topological groups with completions Ĝ (resp.
Ĥ) and let f : G→ H be strict. Then

f̂ : Ĝ→ Ĥ

is strict with kernel k̂er(f) = ker(f) and image Îm f = Im f.

Proof. See [Bou66, Chapter IX §3.1 Corollary 2 p.164].
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Lemma 1.9. Let G,H be Hausdorff abelian topological groups and f : G → H
continuous such that f is strict on a dense subgroup D ⊂ G. Then f is strict.

Proof. Since H is assumed to be Hausdorff V/ ker f and Im f are Hausdorff and
we can without loss of generality assume that f is a continuous bijection that is
strict when restricted to a dense subgroup and are left to show that its inverse is
continuous. The abelian assumption asserts thatG,H admit (Hausdorff) completions

Ĝ, Ĥ (cf. [Bou66, III §3.5 Theorem 2]) and since f : D → f(D) is a topological

isomorphism, the induced map f̂|D : D̂ → f̂(D) is a topological isomorphism. Since D
(resp. f(D)) is dense in G (resp. H) we conclude that the corresponding completions

agree with Ĝ (resp. Ĥ). The restriction of the inverse f̂|D
−1

to H agrees with f−1

by construction and is continuous.

The following criterion will play a crucial role for checking strictness and the Haus-
dorff property of certain cohomology groups of (ϕL,ΓL)-modules. The second part of
1.10 is essentially an adaptation of [Sch02, Lemma 22.2] (which only treats Fredholm
operators on Fréchet spaces) (see also [Tho19, Proposition 4.1.39]).

Lemma 1.10. 1. Any continuous linear surjection V → W between LF-spaces
over K is open and in particular strict.

2. Any continuous linear map f : V → W between Hausdorff LF-spaces with finite
dimensional cokernel is strict. In addition the cokernel is Hausdorff.

Proof. 1.) See [Sch02, Proposition 8.8]. 2.) Let X ⊂ W be a finite dimensional sub-
space such that (algebraically) W = im(f)⊕X. Since W is Hausdorff, the subspace
X carries its natural norm-topology. By assumption V/ ker f is Hausdorff and thus
by A.1 V/ ker f is itself an LF-space and we have a continuous bijection

h : V/ ker f ⊕X → W

of LF-spaces, which by the open mapping theorem is a homeomorphism. By con-
struction f : V/ ker f → W factors via V/ ker f → V/ ker f ⊕ X → W and is thus
a homeomorphism onto its image. Furthermore im(f) = ker(p2 ◦ h−1 : W → X) is
the kernel of a continuous map into a Hausdorff space and thus closed, which implies
that the cokernel is Hausdorff.

Lemma 1.11. Let V ′, V, V ′′ be K-Fréchet spaces that fit into a strict exact sequence1

0→ V ′ → V → V ′′ → 0.

Let F be a K-Banach space of countable type over K, then the induced sequence

0→ F ⊗̂KV ′ → F ⊗̂KV → F ⊗̂KV ′′ → 0

is strict exact.
1Equivalently it suffices to assume that V is Fréchet and V ′′ is Hausdorff.
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Proof. By [PGS10, Corollary 2.3.9] any infinite dimensional Banach space of count-
able type is isomorphic to the space of zero sequences c0(K) and observe that c0(K)
can be identified with the completion of ⊕n∈NK inside

∏
n∈NK. Without loss of gen-

erality assume F is infinite dimensional and take the isomorphism F ∼= co(K) as an
identification. Similarily c0(K)⊗̂V is functorially isomorphic to the completion of
⊕n∈NV inside of

∏
n∈N V. Here a map f : V → W induces the map (vn)n 7→ (f(vn))n

and it is clear that strictness is preserved. Furthermore
∏

n∈N V and hence also the
subspace ⊕n∈NV is metrizable. Passing to completions and applying 1.8 gives the
desired result.

Lemma 1.11 applies in particular when F/K is a complete normed field (or more
generally a K-Banach algebra) of countable type over K. Since Qp has only finitely
many extensions of a given degree we can conclude that Qp ⊂ Cp is a countably-
dimensional dense subspace and in particular Cp is of countable type over Qp. Slightly
more subtle is the fact that any complete subfield K ⊂ Cp is of countable type over
Qp. This follows from [IZ95, Theorem 1], which asserts that Qp ∩ K is dense in K
(or by applying [PGS10, Corollary 2.3.14]).

1.2 Robba rings and their (ϕL,ΓL)-actions.

Let ϕL(X) ∈ oLJXK be a Frobenius power series for the uniformiser πL ∈ oL, i.e., a
series satisfying

ϕL(X) = πLX + terms of higher order

and
ϕL(X) ≡ Xq mod πL.

There is a unique Lubin-Tate group law FLT (X, Y ) and a unique injective homomor-
phism of rings

oL → End(LT ),

mapping a ∈ oL to a power series [a](X) such that [πL](X) = ϕL(X). Denote by Ln
the extension of L that arises by adjoining all πnL-torsion points of the LT -group. The
set LT [πnL] of πnL-torsion points carries a natural oL-module structure which respect
to which it is a free oL/π

n
LoL-module of rank 1. One can show that Ln is a finite

Galois extension of L with Galois group isomorphic to End(LT [πnL]) ∼= (oL/π
n
LoL)×

and by passing to the limit one obtains a continuous character

χLT : GL → o×L

inducing for L∞ =
⋃
n≥1 Ln an isomorphism

ΓL := Gal(L∞/L)→ o×L .

We endow oLJXK with an action of ΓL via γ(f(X)) = f([χLT (γ)](X)) and similarly
for ϕL. These actions can be extended to the p-adic completion AL of the ring of
formal Laurent series oL((X)). Note that these actions are continuous for the weak
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topology, for which a fundamental system of open neighbourhoods of zero is given
by

Um,n := πmL AL +XnoLJXK
with m,n ∈ N. We frequently deal with power series or Laurent series converging
on some annulus [r, s] with respect to the absolute value |·|. To avoid confusion we
usually express the radii in terms of |πL|.

Definition 1.12. Let K ⊂ Cp be a complete field. We denote by R[r,s]
K the ring

of Laurent series (resp. power series if r = 0) with coefficients in K that converge
on the annulus r ≤ |x| ≤ s for r, s ∈ pQ and x ∈ Cp. It is a Banach algebra with
respect to the norm |·|[r,s] := max(|·|r, |·|s). We further define the Fréchet algebra

Rr
K := R[r,1)

K := lim←−r<s<1
R[r,s]
K and finally the Robba ring RK := lim−→0≤r<1

R[r,1)
K

endowed with the LF topology.

We obtain similar continuous actions of ΓL on RI
L for any interval I = [r, s] ⊂ [0, 1].

For details concerning the ϕL-action we refer to [BSX20, Section 2.2]. To ensure that
the action of ϕL on RI

L is well-defined one has to assume that the lower boundary r
of I is either 0 or r > |u|q =: rL for a non-trivial πL-torsion point u of the Lubin-Tate
group 2. When ϕL acts on RI

L it changes the radius of convergence and we obtain a
morphism

ϕL : RI
L → RI1/q

L .

We implicitly assume that r, s lie in |Qp|, because in this case the algebra RI
L is

affinoid (cf. [Lüt16, Example 1.3.2]) and this assumption is no restriction when con-
sidering the Robba ring due to cofinality considerations. We henceforth endow the
rings R[r,1)

L (for r = 0 or r > rL) and RL with the (ϕL,ΓL)-actions induced by the
actions on RI

L. We also work with relative versions of these rings either defined over
some affinoid A over L or more generally some complete field extension K/L con-
tained in Cp. Before we describe these relative Robba rings we shall discuss some
generalities concerning completed tensor products of Fréchet- and LF-spaces.

Definition 1.13. Let X, Y be (semi-)normed modules over a normed ring S. On
X ⊗S Y we define the tensor product (semi-)norm

|v| := inf
r

max|xi||yi|,

where r ranges over all representations of v as a sum of elementary tensors v =∑
i xi ⊗ yi.

Definition 1.14. The projective completed tensor product of normed S-modules
is defined as the completion of the usual tensor product with respect to the tensor prod-
uct norm. If the topologies on X and Y are defined by a family of semi-norms, we
can extend this notion in the obvious way. We write

X⊗̂SY := X⊗̂S,πY

for the projective completed tensor product.

2In the second case the assumptions guarantee ϕ(T ) ∈ (RI1/qL )×.
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Remark 1.15. Let X = lim←−n∈NXn be a Fréchet space over K with Banach spaces Xn

and let W be a normed K-vector space. Assume that the transition maps Xn+1 → Xn

have topologically dense image. Then the canonical map

X⊗̂KW → lim←−
n

Xn⊗̂KW

is a topological isomorphism.

Proof. This is a special case of Lemma 2.1.4 in [BSX20]. Note that all involved spaces
are Hausdorff because they are metrizable.

Definition 1.16. Let V,W be locally convex K-vector spaces. The inductive ten-
sor product topology is defined as the finest topology such that the bilinear map

V ×W → V ⊗K W

is separately continuous. We denote the completion of the usual tensor product with
respect to that topology by V ⊗̂K,iW.

Remark 1.17. The inductive and projective tensor products agree for Fréchet spaces.
The inductive tensor product and its completed version commute with countable strict
locally convex inductive limits of Fréchet spaces.

Proof. For the first statement see [Sch02, Proposition 17.6]. By [Eme17, 1.1.30]
the inductive tensor product commutes with locally convex inductive limits. Let
V = lim−→n

Vn and W = lim−→n
Wn be strict LF-spaces with Fréchet spaces Vn (resp.

Wn). We already know that V ⊗̂K,iW is the completion of lim−→n
(Vn ⊗K,i Wn). In the

proof of [BSX20, 2.1.7] it is shown that for an inductive system (En)n of locally

convex vector spaces such that lim−→n∈N Ên is Hausdorff and complete the natural map

lim−→
n

Ên → l̂im−→
n

En

is an isomorphism. By [PGS10, Theorem 11.2.4 and Theorem 11.2.5] we may apply
this result to En = Vn ⊗K Wn, which yields the desired result.

Remark 1.18. Let D ⊂ V (resp. E ⊂ W ) be dense subsets of locally convex spaces
V,W. Then D ⊗K V is dense in E ⊗K W and E⊗̂KW.

Proof. [PGS10, Corollary 10.2.10] shows that the natural map D⊗KE → V ⊗KW is
a topological embedding. Applying Corollary 10.2.10(v) in loc.cit. to each seminorm
defining the topology on V ⊗KW shows that D⊗KE is dense in the V ⊗KW . Because
V ⊗K W → V ⊗̂KW is a topological embedding with dense image the statement
follows.
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Definition 1.19. An affinoid algebra A over a non-archimedean complete field F
is an algebra that is isomorphic to

T n/I,

where T n denotes the n-dimensional Tate-Algebra F 〈X1, . . . , Xn〉 and I ⊂ T n is an
ideal. We always endow A with the residue norm obtained from the Gauß-norm on
Tn. By [Bos14, 3.1 Proposition 20] any two residue norms are equivalent and any
ideal in T n is closed (cf. [Bos14, Section 2.3]).

Definition 1.20. Let F ⊂ K be a complete subfield and A be an affinoid algebra
over F. We define the relative Robba rings R[r,s]

A := R[r,s]
K ⊗̂FA and similarly R[r,1)

A

and RA := lim−→0≤r<1
R[r,1)
A . These rings are naturally equipped with topolgies induced

by the tensor product norm on R[r,s]
A .

Definition 1.21. A linear map T : E → F between locally convex K-vector spaces
is called compactoid if there exists a zero neighbourhood U ⊂ E such that T (U) is
compactoid in W meaning that for every zero neighbourhood V ⊂ F there exists a
finite set e1, . . . , en such that

T (U) ⊂ V +
n∑
i=1

oKei.

The following is a technical subtlety and does not follow from 1.17 because (non-
strict) LF-spaces are not automatically complete.

Lemma 1.22. Let E = lim−→n
En be an LB-space with L-Banach spaces En and com-

pactoid steps. Let W be an L-Banach space then the natural map

lim−→
n

(En⊗̂L,πW )→ E⊗̂L,πW

is an isomorphism. In particular

E⊗̂L,πW = E⊗̂L,iW.

Proof. By [PGS10, 11.3.5] E is complete reflexive and its strong dual E ′ := E ′b is
Fréchet. Furthermore as an inductive limit of bornological spaces E is bornological
by [Sch02, Example 2) after 6.13]. By [Sch02, 18.8] together with reflexivity we have

E⊗̂K,πW = E ′′⊗̂K,πW = Lb(E ′,W ).

Furthermore by [ST02, Proposition 1.5]

lim−→
n

En⊗̂K,πW = Lb(E ′,W ).

Combining the above and unwinding the definitions of the involved maps yields the
desired claim.
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Remark 1.23. The relative Robba ringRA is complete. In particularRA = A⊗̂L,iRL.
Furthermore RA = A⊗̂L,πRL.

Proof. Recall from the proof of [BSX20, 2.1.6] that RL admits a decomposition of
the form RL = R+

L ⊕ E with an LB-space E = lim−→n
En with compactoid steps. For

such spaces it is known that their inductive limit is complete by [PGS10, 11.3.5]. We
obtain a corresponding decompositionRA = R+

A⊕lim−→n
A⊗̂L,iEn withR+

A = A⊗̂L,iR+
L

and hence R+
A = A⊗̂L,πR+

L by 1.17. The other summand is treated by the preceding
Lemma 1.22.

Lemma 1.24. Let F ⊂ K be a complete subfield and A be an affinoid Algebra over
F . Then the natural map induces isomorphisms

RI
K⊗̂FA ∼= RI

K⊗̂K(K⊗̂FA)

and
RK⊗̂F,iA ∼= RK⊗̂K,i(K⊗̂FA).

Proof. The embedding F ⊂ K is by construction isometric and thus contracting.
Applying [BGR84, 2.1.7 Proposition 7] we obtain

RI
K⊗̂FA = (RI

K⊗̂KK)⊗̂FA ∼= RI
K⊗̂K(K⊗̂FA).

The second part follows by taking limits.

Lemma 1.24 allows us to restrict ourselves to the case F = K since the base change
K⊗̂FA of an affinoid algebra over F is an affinoid algebra over K (cf. [BGR84, 6.1.1.
Corollary 9]).

Remark 1.25. Fix a Banach norm on A. Let f ∈ RA. Then f can be expressed
uniquely as a Laurent series f =

∑
i∈Z aiT

i, with ai ∈ A converging on some half-
open disc |T | ∈ [r, 1).

Proof. Since f belongs to some Rr
A and Rr

A = lim←−r≤s<1
R[r,s]
A , it suffices to treat R[r,s]

A .

In that case we can by cofinality arguments always assume r, s ∈ |K×|. Then the K-

algebra R[r,s]
K is K-affinoid and if the absolute values r, s are achieved by |ρ| = r

and |σ| = s then the set {(T/ρ)n, (σ/T )m | n ∈ N0,m ∈ N} form a orthonormal

basis of R[r,s]
K . Completed base change to A shows that any element in R[r,s]

A can
be uniquely written as a convergent series

∑
n≥0 an(T/ρ)n +

∑
m<0 am(T/σ)m. Since

ρ, σ ∈ K× ⊂ A× we get the uniqueness of the Laurent expansion.

We have two reasonable choices for the (ϕL,ΓL)-actions on RK for a complete field
K ⊂ Cp. One possibility is the linear extension of the (ϕL,ΓL) action from RL using
RK = K⊗̂LRL. If on the other hand K is invariant under the GL action on Cp,

we can take the semi-linear GL-action, which factors over ΓL if K ⊂ L̂∞. Unless
stated otherwise we consider only the former action. This action also makes sense
for more general coefficients. Another reason for studying the linear action rather
than the semi-linear actions is that we would like to work with L-analytic actions.
The semi-linear action on say L̂∞ will never be L-analytic by [BC16, Corollaire 4.3].
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1.3 p-adic Fourier theory and D(G,L) actions.

We give a survey of p-adic distributions, that play a crucial role in the study of
L-analytic (ϕ,ΓL)-modules. In the case G = Zp and L = Qp a theorem of Amice
asserts that D(G,Qp) is isomorphic to the holomorphic functions on the open unit
disc in the variable Z = δ1 − 1. This facilitates the study of the ΓQp-action in the
classical theory. If L 6= Qp a similar result can only be achieved after passing to a
large extension K of L that contains a certain (transcendental) period ΩL ∈ Cp. In
the notation of [ST01] the period can be taken to be ΩL := Ωt for some basis t of the
Tate module of the dual of the Lubin-Tate group.

Definition 1.26. Let G be a compact L-analytic group. We denote by DQp(G,K)
the algebra of Qp-analytic distributions with values in K, which is the strong dual
of CQp-an(G,K) the space of locally Qp-analytic functions on G with values in K
with multiplication given by convolution. We denote by δg the Dirac distribution
associated to g, by which we mean the evaluation map δg : f 7→ f(g). We denote by
D(G,K) the quotient of DQp(G,K) corresponding to the dual of the subspace of the
space Can(G,K) of locally L-analytic functions.

For a detailed description of the topology on Can(G,K) we refer the reader to [Sch17,
Chapters 10 and 12].

Theorem 1.27. Let G = oL viewed as an L-analytic group in the natural sense and
let L ⊂ K ⊂ Cp be a complete intermediate field. Denote by Ĝ the character variety
constructed in [ST01, Section 2]. Then the Fourier transform (defined on p. 452 in
loc. cit.) induces an isomorphism of K-Fréchet algebras

D(G,K)→ O(Ĝ/K).

If K contains a period ΩL of the Lubin-Tate group, then Ĝ and the open unit disc B
are isomorphic over K and by combining the above with the Fourier isomorphism we
obtain an isomorphism

D(G,K)
∼=−→ O(B/K).

By choosing a coordinate T on B it can be described explicitly by mapping a dirac
distribution δa to the power series

η(a, T ) = exp(aΩL logLT (T )) ∈ oKJT K.

Proof. This follows by combining Corollary 3.7 and Theorem 2.3. in [ST01].

Remark 1.28. If H ⊂ G is an open normal subgroup then the decomposition
G =

⋃
g∈G/H gH induces D(G,K) ∼=

⊕
g∈G/H δgD(H,K) ∼= Z[G] ⊗Z[H] D(H,K)

algebraically and topologically.

We are mostly interested in the case where G is abelian and contains an open
subgroup isomorphic to oL (like ΓL). For technical purposes it is important that
Can(G,K) can be written as a compactoid inductive limit.
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Definition 1.29. An index of an L-analytic group G is a family I = (Ui, ci, εi; i ∈
I) of charts ci : Ui

∼=−→ Bεi(0) mapping an open subset Ui ⊂ G homeomorphically to

the “closed” disc of radius εi ∈ R>0, such that G =
⋃̇
i∈IUi. Given a collection

of εi-convergent K-valued power series we can pull them back to G and glue them
to a locally L-analytic K-valued function on G. We denote by FI the subspace of
Can(G,K) of functions obtained in this way.

Note that Can(G,K) = lim−→I FI , where FI is endowed with the topology induced by
the εi-Gauss norms and the limits is taken over the set of all indices with respect to
the partial order described in [Sch17, p. 77f].

Remark 1.30. Suppose G contains an open subgroup isomorphic to oL. There exists
a cofinal family of indices such that the transition maps are compactoid.

Proof. We first consider the special case G = oL and indices I = (oL, id, 1), J =
(a+ πLoL, id, |πL|; a ∈ oL/πLoL). By [PGS10, 8.1.3(i)] sums of compactoid maps are
compactoid, thus it suffices to show that, denoting by

Fc,|πL| =

{
F : c+ πLoL → K | F (x) =

∞∑
i=0

ai(x− c)i; lim
i→∞
|ai||πiL| → 0

}
,

for each c ∈ oL the natural map

F0,1 → Fc,|πL|
is compactoid. Using [Sch17, Corollary 5.5] we may without loss of generality assume
c = 0. In this case identify F0,1

∼= K〈X〉 ∼= c0(K) and F0,|π| ∼= K〈X/πL〉 ∼= c0(K) in
the obvious ways. Using this identification the natural map

K〈X〉 → K〈X/πL〉

corresponds to

µ : c0(K)→ c0(K) (1.1)

(a0, a1, a2, . . . ) 7→ (a0, πLa1, π
2
La2, . . . ). (1.2)

We check that this map is compactoid. Let U be the unit ball in c0(K) and let V be
any neighbourhood of zero. Then V contains πnLU for some n ∈ N and

µ(U) ⊂ πnLU +
n−1∑
i=0

oLei ⊂ V +
n−1∑
i=0

oLei,

where ei denotes the i-th unit vector. Analogously this result is true for any pair of
radii ε1 > ε2 that lie in |L|. The general case is obtained from the special case above
by first choosing a cover G =

⋃
i∈I0 Ui by disjoint open sets homeomorphic to oL (via

charts ci), setting I0 = (Ui, ci, 1) and then defining In inductively by splitting each
Ui appearing in In−1 into q smaller circles and adjusting the radius to be |πL| times
the previous one. This produces a cofinal set of indices with compactoid transition
maps.
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Remark 1.31. Mapping g to δg induces an injective group homomorphism G →
D(G,K)× and an injection K[G] ↪→ D(G,K). This injection has dense image.

Proof. For the injectivity it suffices to show that K[G] ↪→ D(G,K) is injective. For
that purpose we show that any finite set of distinct Dirac distributions δg1 , . . . , δgn
is K-linearly independent. Because G is Hausdorff and compact we may find a
compact open subgroup H ⊂ G such that giH ∩ gjH = ∅ whenever i 6= j. The
decomposition from 1.28 show that δgi are even D(H,K)-linearly independent. The
inclusion K[G] → D(G,K) has dense image for K spherically complete by [ST02,
Lemma 3.1]. The same proof applies to the general case since D(G,K) is the strong
dual of Can(G,K), which can be written as a compactoid inductive limit of Banach
spaces by 1.30 and thus by [PGS10, 11.3.5] both Can(G,K) and D(G,K) are strictly
of countable type, reflexive and satisfy Hahn-Banach (cf. [PGS10, 4.2.6]).

Definition 1.32. Let G = oL. After fixing a coordinate T on B we denote by Z ∈
D(oL, K) the preimage of T ∈ OK(B) with respect to the isomorphism from Theorem
1.27.

In the classical theory (assuming p 6= 2) we can choose explicitly Z = γ − 1 with a
topological generator of ΓQp . In our situation this variable Z serves a similar purpose
but is more elusive in its description. The main difficulty is reversing η since there
is no (evident) connection between the exponential and the Lubin-Tate logarithm
unless L = Qp and LT = Gm.

Remark 1.33. Let Aug: D(oL, K)→ K be the augmentation map induced by map-
ping each Dirac distribution to 1 and denote by ev0 the map that evaluates a power
series at T = 0. Then the following diagram is commutative

D(oL, K) K

OK(B) K

Aug

∼=

ev0

.

In particular
ker(Aug) = span(δa − 1, a ∈ G) = ZD(oL, K).

Proof. The vertical arrows are topological isomorphisms for the Fréchet-topology on
the left side (resp. the valuation topology on the right side) and the Dirac distribu-
tions span a dense subspace of D(oL, K). We may therefore check the commutativity
of said diagram on the Dirac distributions, where we have

Aug(δa) = 1 = exp(aΩL logLT (T ))|T=0 = ev0(η(a, T )).

For the second statement we first remark that both maps are surjective and their
kernels are mapped isomorphically to one another. Evidently ker(ev0) = TOK(B) ∼=
ZD(oL, K). Due to continuity the inclusion ker(Aug) ⊇ span(δa − 1) is clear. For
the other inclusion consider the decomposition K[oL] ∼= Kδ0 ⊕ span(δa − 1, a ∈ oL)
with the augmentation map restricted to the first factor mapping λδ0 to λ. The left
factor is clearly complete and passing to completions shows the desired result.
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Remark 1.34. Let a ∈ oL and denote by a∗ the map induced from the multiplication-
by-a-map a : oL → oL. Then the following diagram is commutative

D(oL, K) D(oL, K)

OK(B) OK(B)

a∗

[a]

,

where the vertical arrows arise from the Fourier-isomorphism.

Proof. Using logLT ([a](T )) = a logLT (T ) = [a] logLT (T ) we obtain

a∗(δb) = exp(ΩLab logLT (T )) = [a](exp(ΩLb logLT (T ))) = [a](δb),

proving the result for Dirac distributions. The general statement follows from conti-
nuity considerations.

Lemma 1.35. The kernel of the natural map proj : D(oL, K)→ K[oL/π
n
LoL] is gen-

erated by Zn := [πL]n(Z) ∈ D(oL, K).

Proof. Since Z lies in the closure of the augmentation ideal generated by the δg − 1
with g ∈ oL using 1.34 we see that Zn lies in the closure of the augmentation ideal of
D(πnLoL, K) ⊂ D(oL, K). We conclude Zn ⊂ ker(proj). By transporting the structure
to OK(B) we see that OK(B)/ϕnL(T ) is free of rank qn over K by counting the number
of zeros of ϕnL, i.e., the number of πnL-torsion points of the LT group. We conclude
that the surjective map proj has to be injective modulo [πL]n(Z).

So far we only needed to choose a variable for D(oL, K). Analogously we can choose
variables for any subgroup πnLoL since they are isomorphic to oL. The following corol-
lary shows that the ideal generated by such a variable is independent of any such
choices. We state the result on the level of ΓL since we use it in this particular
context later on.

Corollary 1.36. Let n0 be minimal with the property that χLT (Γn0) = 1 + πn0
L oL is

isomorphic to πn0
L oL via logp . Denote by Zn the preimage of T under the sequence of

isomorphisms
D(Γn, K) ∼= D(oL, K) ∼= OK(B)

viewed as an element of D(Γn0 , K). Then there is a canonical Γn0/Γn equivariant
isomorphism D(Γn0 , K)/Zn ∼= K[Γn0/Γn] induced by mapping δg to g.

Proof. This follows from transport of structure along the isomorphisms χLT : ΓL →
o×L and logp : 1 + πnLoL → πnLoL

∼= oL. The isomorphism is canonical in the sense that
neither its definition nor its kernel depend on the particular choice of Zn.

For the remainder of the thesis we fix the following compatible choice of variables.
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Definition 1.37. Consider for n ≥ n0 the system of commutative diagrams

Γn 1 + πnL πnLoL

Γm 1 + πmL πmL oL

χLT logp

χLT logp

We fix as before the variable Zm ∈ D(Γm, K) for every m ≥ n0. Since πnLoL =
πm−nL (πnLoL) we obtain the relationship

Zm = ϕm−nL (Zn) (1.3)

for every m ≥ n.

1.3.1 L-Analyticity

In this section we discuss the question of L-analyticity in families. Abstractly L-
analyticity can be defined for any K-Banachspace with a continuous K-linear ΓL-
action where L ⊂ K is a complete field extension. In our application families of
(ϕL,ΓL)-modules will be LF-spaces over K with a RA-semi-linear (hence a fortiori
K-linear) ΓL-action.

Definition 1.38. Let X be a d-dimensional L-analytic manifold and let K be a
complete subfield of Cp.

� Let V be a K-Banach space. A map f : X → V is called locally L-analytic if
for every x ∈ X there exists an open neighbourhood U homeomorphic to Bε(0)d

and (vn) ∈ V Nd0 such that
lim
|n|→∞

ε|n|||vn|| = 0

and
f(x) =

∑
n∈Nd0

vn(x1, . . . , xd)
n

for every x ∈ U. Where xi are local coordinates of x and (x1, . . . , xd)
n =

∏
i x

ni
i .

� For a K-Fréchet space lim←−j Vj with Banachspaces Vj a map f : X → lim←−j Vj is

called pro-L-analytic if each induced map X → Vj is locally L-analytic.

� For an LF-space lim−→i
lim←−j Vi,j with Banachspaces Vi,j a map f : X → lim−→i

lim←−j Vi,j
is called pro-L-analytic if it factors over some lim←−j Vi,j and the induced map

is pro-L-analytic in the Fréchet-sense.

Definition 1.39. Let V = lim−→i
lim←−j Vi,j be a K-LF-space and let G be a p-adic Lie

group over L acting on V. The action is called L-analytic if for each v ∈ V the orbit
map g 7→ gv is pro-L-analytic.
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In order to treat tensor products of (ϕL,ΓL)-modules we introduce the following
auxiliary definition. This property will be satisfied in our applications.

Definition 1.40. Let V = lim−→i
lim←−j Vi,j be a K-LF-space with an L-analytic action

of an L-analytic group G. We say that V admits a model if there exists a m0

such that the orbit map of each v ∈ lim←−j Vm,j already factors over lim←−Vm,j whenever

m ≥ m0.

Lemma 1.41. Let M be an L-analytic (ϕL,ΓL)-module over RA. The ΓL action on
M extends uniquely to a seperately continuous action of D(ΓL, K) satisfying δgm =
gm and each morphism of L-analytic (ϕL,ΓL)-modules is D(ΓL, K)-equivariant.

Proof. After reducing to the corresponding statement for the Banach space M I for
a closed interval this follows from the proof of [SV20, Proposition 2.26], which was
proved for general K-Banach spaces.

Lemma 1.42. Let K/L be a complete field extension and V be a K-Banach space
with a continuous K-linear ΓL-action. The ΓL-action on V is locally L-analytic if
and only if the following conditions are satisfied:

� There exists m ≥ 2 such that ||γ − 1||V < p−1/(p−1) for any γ ∈ Γm.

� The derived action Lie(ΓL)→ EndK(V ) is L-linear.

Proof. The first condition in 1.42 asserts that the ΓL-action is locally Qp-analytic by
[BSX20, Lemma 2.3.1]. The second condition then implies L-analyticity (cf. [Wit19,
Folgerung 2.2.10]).

Lemma 1.43. Let V,W be two LF-spaces with pro L-analytic actions, that both admit
models. Then the tensor product action on E := lim−→i

Vi⊗̂K,iWi is pro L-analytic.

Proof. Write V = lim−→i
lim←−j Vij (resp. W = lim−→m

lim←−nWmn) with Banach spaces Vij

(resp. Wmn). For E we have E = lim−→m,i
lim←−j,n Vij⊗̂Wmn thus using that V and W

admit models we see that E also admits a model. We may therefore without loss
of generality assume that V,W are Banach spaces. In this case the Qp-analyticity
of the action follows from [FdL99, 3.3.11.]. By [FdL99, 3.3.12] the derived action
is given by D(ρV ) ⊗ idW +V ⊗ D(ρW ), where D(ρX) denotes the derived action on
X ∈ {V,W}. This action is L-linear as a sum of L-linear maps.

Our objects of interest are projective RA-modules with an L-analytic ΓL-action. The
following example is a sanity check.

Example 1.44. The action of ΓL induced by γ(T ) = [χLT (γ)](T ) on the relative

Robba ring RA = lim−→0≤r<1
lim←−r<s<1

R[r,s]
A is L-analytic.
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Proof. Since T 7→ [χLT (γ)](T ) is an automorphism of each annulus [r, s], this reduces

to studying the action on R[r,s]
A = A⊗̂R[r,s]

K . Here the left tensor factor carries the
trivial ΓL-action and RK carries the usual action. By [BSX20, Proposition 2.3.4] the
latter is L-analytic . Since the trivial action is L-analytic the statement follows from
1.43.

For certain technical arguments we require an analogue (on the distribution side) of
r-convergent power series.

Definition 1.45. Let G ∼= oL, let g1, . . . , gd be a Zp-basis of G and let r ∈ [|p|, 1).
We define DQp,r(G,K) to be the completion of DQp(G,K) with respect to the norm

|
∑
k∈Nd0

ak(δgi − 1)ki |DQp,r(G,K) = sup
k
|ak|r|k|

with the usual conventions for multi-indices i.e. ((δgi − 1)i)
(k1,...,kd) =

∏d
i=1(δgi − 1)ki

and |k| =
∑d

i=1 ki. We further define Dr(G,K) as the completion of D(G,K) with
respect to the quotient norm with respect to the natural projection DQp(G,K) →
D(G,K). One can show that the algebras above are independent of the choice of
basis.

Remark 1.46. Choose an ordered Zp-basis h1, . . . , hd of oL and let bi := δhi − 1 ∈
DQp(oL, K) and b = (b1, . . . , bd). Any element λ ∈ DQp(oL, K) admits a unique
convergent expansion

λ =
∑
k∈Nd0

akb
k

such that |λ|DQp,r(G,K) = sup|ak|r|k| is bounded for any 0 < r < 1. The norms

|−|DQp,r(G,K) for r ∈ pQ, |p| < r < 1 are sub-multiplicative and independent of the
choice of ordered basis.

Proof. See [ST03, 4.2 and discussion after 4.10].

Lemma 1.47. Let I = [r, s] ⊂ [0, 1) and let r > s ≥ |p| then the homomorphism
induced by the composition of the natural projection and the LT-isomorphism

DQp(oL, K)→ D(oL, K)→ OK(B)

extends to a continuous homomorphism

DQp,r(oL, K)→ Dr(oL, K)→ OK(B[0,s]) ⊂ OK(BI)

of operator norm 1.

Proof. Consider the composite map

DQp(oL, K)→ D(oL, K)→ OK(B)→ OK(B[0,s]),
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where the last arrow is the canonical inclusion. Since the target is complete (with
respect to the s-Gauß norm) it suffices to show that the map is continuous with
respect to the r-norm on the left-hand side. The series η(a, T )− 1 = aΩT + . . . has
no constant term and |aΩ| < 1 for every a ∈ oL. In particular |η(a, T ) − 1|I < s by
assumption. Choose as before a Zp-basis h1, . . . , hd of oL and let e = (η(h1, T ) −
1, . . . , η(hd, T )− 1). Then λ =

∑
k∈Nd0

akb
k is mapped to

∑
k∈Nd0

ake
k and∣∣∣∣∣∣

∑
k∈Nd0

ake
k

∣∣∣∣∣∣
I

≤ sup|ak|s|k| ≤ |λ|DQp,r(oL,K).

This shows that the operator norm is bounded by 1. It has to be equal to 1 because
the scalars are mapped to themselves.

Proposition 1.48. Let G = oL, denote by Z ∈ D(G,K) the element corresponding
to the variable T ∈ OK(B) via the Fourier isomorphism and let 0 6= a ∈ G.

1. We have in D(G,K)

(δa − 1)/aΩZ = 1 + c1(a)Z + c2(a)Z2 + . . . .

2. The coefficients can be estimated with |cn| ≤ |p|
−n

e(L/Qp)(q−1) .

Proof. The first part is obtained by evaluating the Fourier isomorphism at δa − 1.
One computes

δa − 1 7→ η(a, T )− 1 = aΩT + . . .

The estimate of the coefficients can be found in the proof of Lemma 3.4 in [ST01].
Note that the authors use the normalisation |p| = 1/p.

1.3.2 Lie-Elements in D(ΓL, L).

Proposition 1.49. Consider ΓL as an L-analytic Lie group via χLT : ΓL → o×L . Let
Γ ⊂ ΓL be an open subgroup isomorphic to oL.

1. Taking the derivative of χLT induces an isomorphism

g = Lie(ΓL) ∼= Lie(Γ) ∼= L.

2. Let expΓ be the exponential for Γ, then

Lie(Γ)→ D(Γ, L)

x 7→ [f 7→ d

dt
f(expΓ(tx)|t=0)]

is an L-linear embedding.
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Proof. Since Γ is an open subgroup of the same dimension as ΓL the first isomorphism
is induced by the inclusion. The second isomorphism follows from the fact that
the clopen subgroup 1 + πnLoL ⊂ o×L is isomorphic to oL for n large enough whose
Lie-algebra is L. For the second statement see [ST02, Discussion after Proposition
2.3].

Definition 1.50. We denote by ∇ ∈ Lie(ΓL) = Lie(Γ) the preimage of 1 under the

isomorphism d1χLT : Lie(Γ)
∼=−→ L. We denote by the same symbol the image of ∇

under the embedding Lie(Γ) → D(Γ, L). We use the same symbol for the element
1⊗∇ ∈ K ⊗L D(Γ, L) ⊂ D(Γ, K).

Lemma 1.51. Let 1 6= γ ∈ Γ then δγ − 1 divides ∇ in D(Γ, L) and Z divides ∇ in
D(Γ, K).

Proof. The first statement is Lemma 2.10 in [SV20]. The second statement follows
from the first since Z divides δg − 1.

This result can be surprising at first since in particular for Γ = Γn with n ≥ n0

we obtain that ∇ is divisible by every Zn or using (1.3) by every ϕkL(Zn0). This
relationship becomes more transparent by an explicit calculation.

Lemma 1.52. Let n ≥ n0 then the image of ∇ under the sequence of isomorphisms

D(Γn, K) ∼= D(oL, K) ∼= OK(B)

induced by the isomorphism

Γn ∼= 1 + πnL
log /πnL−−−−→ oL

and the Fourier isomorphism is

Ω

πnL
logLT (T ).

In particular
Ω

πnL
logLT (Zn) =

Ω

πmL
logLT (Zm)

for any n,m ≥ n0.

Proof. The computation is contained in the proof of [SV20, Remark 2.36] for a fixed
index n. We already computed Zm = ϕm−nL (Zn) for m ≥ n. Hence the second state-
ment follows from the first using logLT ([a](T )) = a logLT (T ).

Corollary 1.53. Let n ≥ n0, then we have a product expansion

∇ =
Ω

πnL
logLT (Zn)

=
Ω

πnL
Zn
∏
k≥1

[πkL](Zn)

πL[πk−1
L ](Zn)

=
Ω

πnL
Zn
∏
k≥1

Zn+k

πLZn+k−1

.
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Proof. This follows by transport of structure from the usual expansion of logLT (T ).

1.4 (ϕL,ΓL)-modules over the Robba ring.

When studying (ϕL,ΓL)-modules over the Robba ring RK it turns out that they
admit a so-called model over some half-open interval [r, 1), meaning that it arises

as a base extension from a module over R[r,1)
K . When working with families of such

modules, we enforce the existence of such a model, which in turn allows us to view
the modules (more precisely their models) as vector bundles on Sp(A) ×K B[r,1). A
suitable frame work to do so is the theory of coadmissible modules in the sense of
Schneider and Teitelbaum.

Definition 1.54. A commutative K-Fréchet algebra A is called Fréchet-Stein al-
gebra if there is a sequence of continuous algebra seminorms q1 ≤ · · · ≤ qn ≤ . . .
that define the Fréchet-topology such that

(i) The completion An of A/{a | qn(a) = 0} with respect to qn is Noetherian and

(ii) An is flat as an An+1-module for any n ∈ N.

A coherent sheaf is a family (Mn)n∈N of finitely generated An-modules endowed
with their respective canonical topologies such that

An+1 ⊗An Mn
∼= Mn+1.

The global sections of a coherent sheaf are defined to be the Fréchet-module

Γ(Mn) := lim←−
n∈N

Mn.

An A-module is called coadmissible if it arises as the global sections of a coherent
sheaf.

Lemma 1.55. Let A be a Fréchet-Stein algebra and let M be coadmissible. Then

(i) An is flat as an A-module.

(ii) The canonical map M →Mn has dense image and An ⊗AM ∼= Mn.

(iii) lim←−
i

n≥1
Mn = 0 for any i ≥ 1.

(iv) Kernels, cokernels, images and coimages of A-linear maps between coadmissible
modules are coadmissible.

(v) Finitely generated submodules of coadmissible modules are coadmissible.

(vi) Finitely presented modules are coadmissible.
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(vii) Let A be K-affinoid, then R[r,1)
A is a Fréchet-Stein algebra for any r ∈ [0, 1).

Proof. For (i)-(vi) see section 3 in [ST03]. We postpone the proof of (vii) to section
A.1 in the appendix.

Using the theory of coadmissible modules we can deduce the following useful result.

Lemma 1.56. Let m ∈ Max(A) be a maximal ideal, then the natural map

RA ⊗A A/m→ RA/m

is an isomorphism.

Proof. By a limit argument it suffices to show that R[r,1)
A ⊗A A/m → R[r,1)

A/m is an
isomorphism for every 0 < r < 1. The right-hand side is by definition the Haus-
dorff completion of the left-hand side. Hence we are done if we can show that
R[r,1)
A ⊗A A/m = R[r,1)

A /mR[r,1)
A is complete. Since A is Noetherian the ideal mR[r,1)

A

is a finitely generated submodule of a coadmissible module hence itself coadmissible.
By [ST03, Lemma 3.6] the quotient in question is complete.

We also obtain an algebraic description of R[r,1)
A /(tLT ).

Lemma 1.57. The natural map R[r,1)
A /(tLT ) → lim←−n≥0

R[r,1)
A /(ϕnL(T )) is an isomor-

phism.

Proof. Recall the product decomposition tLT = logLT (T ) = T
∏

n≥1
ϕnL(T )

π−1
L ϕn−1

L (T )
. The

partial products are equal to Pn = π
−(n−1)
L ϕn(T ). In particular tLT is divisible by

every ϕn(T ). We can describe R[r,1)
A /(tLT ) as

R[r,1)
A /(tLT ) = cok(R[r,1)

A

tLT−−→ R[r,1)
A )

and by coadmissibility we have

cok(R[r,1)
A

tLT−−→ R[r,1)
A ) = lim←−

s

cok(R[r,s]
A

tLT−−→ R[r,s]
A )

Now take a sequence of radii sn such that [0, sn] contains the πnL-torsion points of the
LT -group (i.e. the zeroes of ϕn(T )) but no πn+1

L -torsion points, that are not already

πnL-torsion, i.e., none of the zeroes of ϕn+1(T )/ϕn(T ). In R[0,sn]
K and hence in R[r,sn]

K

ϕn(T ) and tLT differ by tLT/ϕ
n(T ), which has no zeroes in the annulus [r, sn] and is

therefore a unit (since it is not contained in any maximal ideal ofR[r,sn]
K by [Bos14, 3.3

Lemma 10] and the Weierstraß Preparation Theorem), hence they differ by a unit

in R[r,sn]
A , in particular, R[r,sn]

A /ϕn(T ) = R[r,sn]
A /tLT . The statement now follows from

R[r,1)
K /ϕn(T ) = R[r,sn]

K /ϕn(T ).
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The definition of coherent sheaves so far is too restrictive because we cannot change
the lower boundary of a given half-open interval [r, 1). Recall that a collection of
subsets of a topological space is called locally finite if every point admits an open
neighbourhood intersecting only finitely many members of the collection.

Remark 1.58. Let {[ri, si], i ∈ N0} be an admissible cover of [r, 1) i.e. a cover by
closed intervals that admits a locally finite refinement with ri, si ∈

√
|K|×. For each

i let M [ri,si] be a finitely generated R[ri,si]
A -module together with isomorphisms

RI∩J
A ⊗RIA M

I ∼= RI∩J
A ⊗RJA M

J

for any pair of intervals with non-empty intersection, satisfying the obvious com-
patibility conditions. Then for each s ∈ [r, 1) there exists a unique coadmissible

R[s,1)
A -module together with morphisms M [s,1) → RI∩[s,1)

A ⊗RIA M
I inducing

RI∩[s,1)
A ⊗R[s,1)

A
M [s,1) ∼= RI∩[s,1)

A ⊗RIA M
I

for any interval appearing in the cover above. In particular a coadmissible R[r,1)
A -

module is uniquely determined by its sections along an admissible cover.

Proof. We only give a sketch of the proof. Reordering the intervals and refining
the cover allows us to assume without loss of generality r = s and assume r0 =
r ≤ r1 ≤ s0 ≤ r2 ≤ s1 < . . . . In order to construct a coadmissible R[r,1)

A -module

we need to construct a compatible chain of R[r,ti]
A -modules, with ti converging to 1.

We shall explain how to extend the module M [r0,s0] to a module M [r0,s1] satisfying
M I ∼= RI

A⊗RI∩[r0,s1]
A

M [r0,s1] for I = [r0, s0] or I = [r1, s1]. By assumption M [r0,s0] and

M [r1,s1] can be glued along the isomorphism

R[s1,r1]
A ⊗R[r0,s0]

A

M [r0,s0] ∼= R[s1,r1]
A ⊗R[r1,s1]

A

M [r1,s1]

to a coherent R[r0,s1]
A -module, which by Kiehl’s theorem (cf. [Bos14, 6.1 Theorem 4])

is (associated to) a finitely generated R[r0,s1]
A -module, that we denote M [r0,s1]. By

construction the sections along I ∈ {[r0, s0], [r1, s1]} are RI
A ⊗RIA M

[r0,s1]. Iterating

this construction produces a sequence M [r0,sn] of R[r0,sn]
A -modules and a compatible

sequence of isomorphisms R[r0,sn]
A ⊗

R[r0,sn+1]

A

M [r0,sn+1] ∼= M [r0,sn] passing to global

sections gives the desired result.

Lemma 1.59. Let M [r,1) be a coadmissible R[r,1)
A -module and let U = {[ri, si], i ∈ N}

be an admissible cover of [r, 1).

(i) M [r,1) is finitely generated if and only if there exists n ∈ N independent of I ∈ U
such that each M I is generated by at most n elements.

(ii) M [r,1) is finitely presented if and only if there exist (m,n) ∈ N2 independent of
I ∈ U such that each M I admits a presentation

(RI
A)m → (RI

A)n →M I → 0.
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(iii) M [r,1) is finitely generated projective if there exists n ∈ N independent of I ∈ U
such that each M I is generated by at most n elements and each M I is flat over
RI
A.

Proof. See Proposition 2.1.13 in [KPX14], whose proof works for any base field and
the subsequent Remark 2.1.14. For the convenience of the reader we give a detailed
proof of the first part in Lemma A.7 in the appendix. The second and third part are
consequences of the first.

We are now able to define L-analytic (ϕL,ΓL)-modules. In the context of ϕL-modules

over Robba rings we always assume rL < r0. Recall r
1/q
L = |u| for 0 6= u ∈ LT [πL],

which ensures that ϕL is well-defined on RI
L for any interval I ⊂ [r0, 1).

Definition 1.60. Let rL < r0. A (projective) ϕL-module over Rr0
A = R[r0,1)

A is a

finite (projective) Rr0
A -module M r0 equipped with an isomorphism ϕ∗LM

r0 ∼= M r
1/q
0 :=

M r0 ⊗Rr0A R
r
1/q
0
A . A ϕL-module M over RA is defined to be the base change of a

ϕL-module M r0 over some Rr0
A . We call M r0 a model of M over [r0, 1). A (ϕL,ΓL)-

module over the above rings is a ϕL-module whose model is projective and endowed
with a semilinear continuous action of ΓL that commutes with ϕL. Here continuous
means that for every m ∈ M [r,s] := M r0 ⊗Rr0A R

[r,s]
A the orbit map ΓL → M [r,s] is

continuous for the profinite topology on the left side and the Banach topology on the
right-hand side.

We will sometimes use the notation M [r0,1) instead of M r0 for added clarity.

Remark 1.61. A projective ϕL-module over Rr0
A is coadmissible. Furthermore given

a coadmissible Rr0-module M r0 together with an isomorphism ϕ∗LM
r0 ∼= M r

1/q
0 it is

projective if and only if it is flat.

Proof. The first statement follows from the fact that every finitely generated pro-
jective module is finitely presented and any finitely presented module is coadmissi-
ble. For every closed interval [r, s] the sections M [r,s] are finitely generated over the

Noetherian ringR[r,s]
A and hence finitely presented. The isomorphism ϕ∗LM

r0 ∼= M r
1/q
0

restricts to an isomorphism ϕ∗L(M I) ∼= M I1/q
, which allows us to shift a given inter-

val I = [r0, s0] with s0 > r
1/q
0 and conclude that M r0 is uniformly finitely presented.

Hence by 1.59(iii) M r0 is projective if and only if it is flat.

So far we worked with ϕL-modules over R[r,1)
A . In order to reduce the computation

of cohomology to the level [r, s] we introduce the notion of a ϕL-module over [r, s].

Contrary to the case [r, 1), where ϕ(R[r,1)
A ) can naturally be viewed as a subring

of R[r1/q ,1)
A , the interval [r, s] gets shifted to [r1/q, s1/q], which means that we can

only compare a ϕL-module and its pullback after restricting to the overlap [r1/q, s]
assuming s ≥ r1/q. This makes the following definition rather artificial.
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Definition 1.62. Let 0 < r < s < 1 with s ≥ r1/q. A ϕL-module over R[r,s]
A is a

finitely generated R[r,s]
A module M [r,s] together with an isomorphism

ϕlin
M : R[r1/q ,s]

A ⊗
R[r1/q,s1/q ]
A

ϕ∗(M [r,s])
∼=−→M [r1/q ,s] := R[r1/q ,s]

A ⊗R[r,s]
A

M [r,s].

A morphism f : M [r,s] → M ′[r,s] of ϕL-modules is a R[r,s]
A -linear morphism of the

underlying modules such that the diagram

R[r1/q ,s]
A ⊗R[r,s]

A
M [r,s] R[r1/q ,s]

A ⊗R[r,s]
A

M ′[r,s]

R[r1/q ,s]
A ⊗

R[r1/q,s1/q ]
A

ϕ∗(M [r,s]) R[r1/q ,s]
A ⊗

R[r1/q,s1/q ]
A

ϕ∗(M ′[r,s])

id⊗f

∼= ∼=

id⊗(id⊗f)

commutes. We denote by ϕM : M [r,s] → M [r1/q ,s] the semi-linear map induced by
the isomorphism ϕlin

M . When there is no possibility of confusion we simply write ϕL
instead of ϕM .

Lemma 1.63. Let r ∈ [0, 1) and let s ∈ (r1/q, 1). The functor that assigns to a

projective ϕL-module over R[r,1)
A its section M [r,s] = R[r,s]

A ⊗R[r,1)
A

M [r,1) is an exact

equivalence of categories between projective ϕL-modules over R[r,1)
A and projective

ϕL-modules over [r, s].

Proof. We first show essential surjectivity. Let M [r,s] be a ϕL-module over R[r,s]
A . By

assumption ϕ∗(M [r,s]) = R[r1/q ,s1/q ]
A ⊗R[r,s]

A ,ϕL
M [r,s] is a finitely generated R[r1/q ,s1/q ]

A -

module and we have an isomorphism

R[r1/q ,s]
A ⊗

R[r1/q,s1/q ]
A

ϕ∗(M [r,s]) ∼= R[r1/q ,s]
A ⊗R[r,s]

A
M [r,s] = M [r1/q ,s].

The right-hand side being the restriction of M [r,s] to Sp(A) ×K B[r1/q ,s], which is

precisely the overlap Sp(A)×KB[r,s]∩Sp(A)×KB[r1/q ,s1/q ] by our assumption on s, and

thus allows us to glue M [r,s] and ϕ∗(M [r,s]) to a coherent sheaf on Sp(A)×K B[r,s1/q ],

which by Kiehl’s theorem is associated to a finitely generated R[r,s1/q ]
A -module that

we denote by M [r,s1/q ]. It remains to construct an isomorphism

R[r1/q ,s1/q ]
A ⊗

R[r1/q,s1/q
2

]
A

ϕ∗(M [r,s1/q ]) ∼= R[r1/q ,s1/q ]
A ⊗

R[r,s1/q ]
A

M [r,s1/q ].

Restricting M [r,s1/q ] to [r1/q, s1/q] gives us

ϕ∗(M [r,s]) ∼= R[r1/q ,s1/q ]
A ⊗

R[r,s1/q ]
A

M [r,s1/q ] (1.4)
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by construction. To simplify notation let I := [r, s] and J := [r, s1/q]. Consider the
commutative diagram

RJ1/q

A RI1/q

A

RJ
A RI

A

ϕL ϕL

with the horizontal arrows being the natural maps. We can interpret restriction as
a pullback along the canonical inclusion. The diagram tells us that the restriction
to I1/q of the ϕL-pullback of MJ is the ϕL-pullback of the restriction of MJ to I. In
formulae

RI1/q

A ⊗RJ1/q

A

ϕ∗(MJ) = ϕ∗(M I)

and plugging in (1.4) gives the desired

RI1/q

A ⊗RJ1/q

A

ϕ∗(MJ) ∼= RI1/q ⊗RJA M
J .

Iterating this construction we obtain a ϕL-module over R[r,1)
A . Note that this module

is finitely generated by 1.59 since each M [r1/qn ,s1/q
n

] is generated by the same number
of elements as M [r,s] by construction. To conclude the projectivity of M [r,1) one
uses 1.59(iii). We next show that the functor is fully faithful. Given a morphism
M [r,s] → N [r,s] we can apply the previous construction to both modules at the same
time and take as a morphism between their ϕ-pullbacks the ϕ-pullback of f. These
morphisms glue together due to the ϕ-compatibility of f. If f = f [r,s] is the restricition
of a morphism f [r,1) : M [r,1) → N [r,1), then this construction yields a morphism g[r,1)

such that g − f = 0 on every M [rq
−k
,sq
−k

] but then g = f by the coadmissiblity of
M [r,1) and the condition on r, s that ensures that these intervals cover [r, 1). Because

R[r,1)
A → R[r,s]

A is flat, the functor M [r,1) 7→M [r,s] is exact. Consider an exact sequence

of ϕL-modules over R[r,s]
A

0→M
[r,s]
1 →M

[r,s]
2 →M

[r,s]
3 → 0.

Taking the pullback along ϕ : R[r,s]
A → R[r1/q ,s1/q ]

A remains exact because the M
[r,s]
i

are flat. Hence the induced sequence

0→M
[r,1)
1 →M

[r,1)
2 →M

[r,1)
3 → 0

is exact when restricted to each [rq
−k
, sq

−k
]. Finally the global section sequence re-

mains exact by Lemma 1.55(iii).

Definition 1.64. Following [SV15, Section 2] we define ψcol : oLJT K → oLJT K to be
the unique oL-linear endomorphism satisfying

ϕL ◦ ψcol(f)(T ) =
∑

a∈LT [πL]

f(a+LT T )
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for all f ∈ oLJT K, where +LT denotes the addition via the Lubin-Tate group law. This
endomorphism can be extended to a continuous endomorphism of the Robba ring RL

(cf. [FX12, Section 2.1]), which we denote by the same symbol. We define ψLT :=
π−1
L ψcol. We use the same symbol for the endomorphism 1⊗ ψLT of RA = A⊗̂LRL.

Note that we have ψLT ◦ϕL = q
π
. In particular Ψ = π

q
ψLT is a continuous left-inverse

of ϕL.

Definition 1.65. Using the isomorphism ϕ∗MM
r0 ∼= M r

1/q
0 we define

ψM : M r
1/q
0 ∼= Rr

1/q
0
A ⊗Rr0A ,ϕL M

r0 →M r0

by mapping f ⊗m to ψLT (f)m.

Definition 1.66. A (ϕL,ΓL)-module over RA is called L-analytic if its ΓL-action
is L-analytic.

Remark 1.67. Let M be a (ϕL,ΓL)-module over RA. The dual

M∗ := HomRA(M,RA)

endowed with the contragradient semi-linear (ϕL,ΓL)-action is a (ϕL,ΓL)-module.

Proof. For any model M r we have canonical isomorphisms

HomRA(M,RA) = HomR[r.1)
A

(M [r,1),RA) = RA ⊗R[r,1)
A

HomR[r.1)
A

(M [r,1),R[r,1)
A ).

The first one is given by the adjunction of restriction of scalars and base change
while the second one follows from the projectivity of M r. One can then check that
HomR[r.1)

A
(M [r,1),R[r,1)

A ) is a model for M∗.

The problem of analyticity is more subtle. Hence we only treat it in the free case.

Remark 1.68. Let M be a free (ϕL,ΓL)-module of rank d over RA. Then the map
assigning to γ ∈ ΓL its representation matrix Mat(γ) ∈ GLd(RA) with respect to any
basis of M is L-analytic (with respect to the subspace topology of the product topology
on the space Mn(RA) ∼= Rn2

A ) if and only if M is L-analytic. In this case the dual

M∗ := HomRA(M,RA)

endowed with the contragradient semi-linear (ϕL,ΓL)-action is also L-analytic.

Proof. We deduce from the definitions that given a locally L-analytic map ΓL → W
into a K-Banach space W and a continuous K-linear map W → E into another
Banach space E, the composed map ΓL → E is again L-analytic. Fix a model M [r,1)

ofM and a basis e1, . . . ed. These ei are then also a basis of eachM [r,s] for any s ∈ [r, 1).

In the remainder fix some s and a R[r,s]
A -Banach norm on M. If M is assumed to be

L-analytic the orbit map of (the image of) each ei in M [r,s] is locally L-analytic. I.e.
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we have a locally L-analytic map ΓL → M ∼= Rd
A, mapping γ to γei =

∑
j aijej(γ).

Projecting down to the component of ej we see that each of these projections is

locally L-analytic. In particular the map ΓL → GLd(R[r,s]
A ) is L-analytic with respect

to the subspace topology of the product topology on GLd(R[r,s]
A )) ⊂Md(R[r,s]

A ). Now
suppose that the matrix describing the ΓL action with respect to some basis e1, . . . , ed
defines an L-analytic map γ 7→ Mat(γ). Then in particular the orbit map of each
basis vector ei is L-analytic and we are reduced to showing that the orbit map of
RA-linear combinations of the ei is L-analytic. Let m =

∑
i fiei. Since we can instead

consider the map
ΓL →Md →M

given by the composite of γ 7→ (γ(fiei)i) and (mi)i 7→
∑

imi it suffices to show
that γ 7→ γ(fiei) is L-analytic for each i which can be seen by expanding the orbit
maps of fi and ei using that the orbit map of fi is locally L-analytic by example
1.44 and restricting to a joint radius of convergence using that the norm on M [r,s] is
RA-submultiplicative. For the final statement recall that the inversion map γ 7→ γ−1

is locally L-analytic and the map sending a matrix to its transpose is continuous and
K-linear, which implies that the contragradient action on the dual can be represented
with respect to the dual basis of a given basis of M by a locally L-analytic matrix-
valued function (namely γ 7→ γ(Mat(γ−1))t) and thus is L-analytic by the first part.

For an L-analytic (ϕL,ΓL)-module over RA the fibre at z ∈ Sp(A), i.e., the reduction
Mz = M/mzM is an L-analytic (ϕL,ΓL)-module over RA/mz and it is natural to ask
in what sense analyticity can be checked at the fibres. In Proposition A.27 in the
appendix we show that this is the case if A is reduced.

1.4.1 A standard estimate for (ϕL,ΓL)-modules

A recurring theme in [KPX14] is the fact than upon restricting M to a closed interval
I = [r, s] we have for the operator norm

||γ − 1||MI
γ→1−−→ 0.

This remains true for our case but in order to study the action of the distribution
algebra via the operators Zn = ϕn−n0(Zn0) ∈ D(Γn, K) we need to estimate the
operator norm of these variables. Note that since D(Γn, K) is a Fréchet space and
M I is a Banach space the a priori separately continuous action D(Γn, K)×M I is in
fact jointly continuous.

Remark 1.69. The induced map ρ : D(Γn, K) → EndK(M I), that maps λ to the
map mapping x→ λx, is continuous with respect to the operator norm on EndK(M I).

Proof. Let ε > 0. Since the multiplication map D(Γn, K)⊗̂KM I →M I is continuous
with respect to the projective tensor product, there is a continuous semi-norm p and
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a constant c such that the ball {v ∈ D(Γn, K)⊗̂KM I , p ⊗ |−|I(v) ≤ c} is mapped
into {m ∈M I | |m| ≤ ε.} If λ ∈ D(Γn, K) satisfies p(λ) ≤ c, then p⊗|−|I(λ⊗n) ≤ c
for any n ∈ M I with |n|MI ≤ 1. In conclusion the ball {λ ∈ D(Γn, K) | p(λ) ≤ c} is
mapped into {F ∈ EndK(M I) | ||F ||MI ≤ ε}, because for any x ∈ M I with |x| ≤ 1
we have |ρ(λ)(x)| ≤ ε.

Remark 1.70. The sequence T, ϕ(T ), ϕ2(T ), . . . converges to 0 with respect to the

Fréchet-topology on R[0,1)
K .

Proof. By [Sch17, Lemma 1.7.7] we have ϕ2k(T ) ∈ TπkLoLJT K + T koLJT K. A small
calculation further shows ϕ2k+1(T ) ∈ TπkLoLJT K+T koLJT K. Observe that the r-Gauß
norm of any element in TπkLoLJT K + T koLJT K is at most max(|πL|kr, rk) and hence
tends to 0 for every r ∈ (0, 1).

Lemma 1.71. Let M be a finitely generated module over Rr
A with an L-analytic

semi-linear ΓL-action. Fix any closed interval I = [r, s] ⊂ [r, 1) and any Banach
norm on M I .

(i) We have ||γ − 1||MI
γ→1−−→ 0.

(ii) Furthermore ||Zn||MI
n→∞−−−→ 0.

Proof. For the first statement let ε > 0 and let m1, . . . ,md be a system of generators
of M I . We will show that there exists an open subgroup U such that ||γ− 1|| < ε for
every γ ∈ U. By the continuity of the action we have limγ→1(γ − 1)mi = 0 for every
i. Furthermore given m =

∑
i fimi ∈ M I we can treat each factor fimi seperately

and get
(γ − 1)fimi = (γ − 1)(fi)mi + γ(fi)(γ − 1)(mi).

We know that (γ − 1)(mi) can be made arbitrarily small. It remains to show that
(γ − 1)(fi) converges to 0 uniformly as γ → 1 and that γ(fi) is bounded. We have
|γ(fi)| = |γ(fi)−fi+fi| ≤ max(|γ(fi)−fi|, |fi|). It thus suffices to show the statement
for M = RA. Since RK ⊗K A is dense in RA it suffices to check the corresponding
statement there. The caseRK is in [BSX20, Lemma 2.3.5] hence we may find an open
subgroup U such that the result holds for A = K and every γ ∈ U. Let v =

∑
i fi⊗ai

be some representation of v ∈ RI
K ⊗K A. We get (γ − 1)v =

∑
i(γ − 1)fi ⊗ ai and

thus |(γ − 1)v| ≤ max ε|fi||ai|. Since this holds for any representation of v we get
|(γ − 1)v| ≤ ε|v|, which proves the statement. For the second statement we combine
Remark 1.70 and Remark 1.69 to conclude that given ε > 0 there exists k0 such that
||ϕk(Zn0)||MI < ε for any k ≥ k0. Since Zn = ϕn−n0(Zn0) the conclusion follows.

Remark 1.72. In the classical case one works with the variable γ − 1 and 1.71(ii)
is an immediate consequence of the continuity of the ΓL action since ϕcyc(γ − 1) =
(1 + (γ − 1))p − 1 = γp − 1.
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1.4.2 Duality

Definition 1.73. Let f =
∑

i aiT
i ∈ RA we define res(f) := a−1 ∈ A. We obtain an

A-linear map RA
res−→ A.

This result is well-covered in the literature when A is a (discretely valued) field (see
for instance [Cre98, Chapter 5]). The case of general A is similar due to 1.25.

Proposition 1.74. Consider the bilinear map RA × RA → A, mapping (f, g) to
res(fg). This induces topological isomorphisms (for the strong topologies3)

HomA,cts(RA, A) ∼= RA,

HomA,cts(R+
A, A) ∼= RA/R+

A

and
HomA,cts(RA/R+

A, A) ∼= R+
A.

Proof. Let µ ∈ HomA,cts(RA, A). We define a Laurent series fµ :=
∑

n∈Z µ(T−1−n)T n.
On the other hand to h ∈ RA we assign the functional can(h) : g 7→ res(hg). We first
show that fµ is well-defined. Because µ is continuous it remains continuous when we
restrict to any R[r,1) with respect to the Fréchet topology. In particular we may find
some r < s < 1 and ε > 0 such that |µ(Uε,[r,s])| ≤ 1 where Uε,[r,s] denotes the ”closed”
ball with radius ε with respect to the Banach norm |·|[r,s]. Assume without loss of
generality that ε, r, s ∈ |K×| and let η, ρ, σ ∈ K be elements satisfying |η| = ε (resp.
for r, s). Then T nησ−n and T−nηρn belong to Uε,[r,s] for every n ≥ 0. We deduce

|µ(T n)| ≤ max{ε−1rn, ε−1sn} (1.5)

for every n ∈ Z. Next we need to refine the estimate for negative n. Note that for
any ρ′ with |ρ′| > |ρ| = r. We also get T nη(ρ′)−n ∈ Uε,[r,s] for negative n. If we
fix n and let (ρ′m)m converge to 1 we obtain |µ(T n)| ≤ lim supm ε

−1|(ρ′m)n| = ε−1.
It suffices to prove that the series

∑
i µ(T−i)T i belongs to RA since it differs from

fµ by the unit T ∈ R×K . For n ≥ 0 we have |µ(T−n)| ≤ ε−1 by the improved
estimate. Therefore the non-principal part of the Laurent series converges for |T | < 1.

For the principal part we have |µ(T n)| ≤ ε−1|σn| = ε−1sn. This shows fµ ∈ R[t,1)
A

for any t > s. Next we show that µ 7→ fµ is inverse to the map can(−). On the
one hand given g =

∑
n anT

n we have fcan =
∑

n res(gT−1−nT n) =
∑
anT

n = g.
On the other hand given can(fµ)(g) =

∑
n can(fµ)(anT

n) =
∑

n anµ(T n) = µ(g).
Futhermore fµ belongs to R+

A if and only if the coefficients of the principal part (i.e.
µ(T n) for n ≥ 0) vanish. This is the case if and only if µ(R+

A) = 0. Regarding the
topologies we sketch how to deduce the general case from the case A = L (treated by
[Cre98]) by showing that for E ∈ {RL,RL/R+

L ,R
+
L} we have a canonical isomorphism

HomA,cts(A⊗̂L,πE,A) ∼= HomL,cts(E,A) = Lb(E,A), which allows us to deduce the

3By the strong topology we mean the subspace topology of the space of continuous K-linear
operators LK,b(RA, A) with the strong topology.
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general statement from the known case using E⊗̂L,πA ∼= Lb(E ′, A) (as was seen in
1.23).4 We define the maps as follows: Let f : A⊗̂L,πE → A be a continuous A-linear
homomorphism. Set f̃ : E → A ⊗L,π E → A⊗̂L,πE → A. Given by mapping e to
1⊗ e and post-composing with the natural map. By [PGS10, Theorem 10.3.9] since
‖1‖A = 1 the first map is a homeomorphic embedding (in particular continuous). On
the other hand let h : E → A be continuous L-linear then h extends uniquely to an
A-linear map A⊗LE → A and it remains to check that it is continuous. As we saw in
1.23 it suffices to check separate continuity, which is clear. Due to A being complete
h extends uniquely to a continuous A-linear map hA : A⊗̂L,πE → A. Clearly f → f̃
and h→ hA are inverse to one another. It remains to check continuity with respect
to the corresponding strong topologies. For that purpose we denote by A0 the unit
ball inside A. Let B ⊂ A⊗̂E be a bounded set and suppose f(B) ⊂ A0, then (again
using [PGS10, Theorem 10.3.9]) the preimage B̃ of B ∩ 1 ⊗ E in E is bounded and
by construction f̃(B̃) ⊂ A0. On the other hand let B′ ⊂ E be bounded and suppose
h(B′) ⊂ A0. Then the closure BA of spanoL{x ⊗ y | x ∈ A0, y ∈ B} is bounded in
A⊗̂L,πE and by construction hA(BA) ⊂ A0.

Proposition 1.75. Let M be a (ϕL,ΓL)-module over RA and consider the dual
M̌ := HomRL(M,RA(χLT )). The canonical pairing

M̌ ×M → RA(χLT )

is perfect and by post-composing with the residue map gives a bilinear pairing

M̌ ×M 〈·,·〉−−→ A

identifying M̌ (resp. M) with HomA,cts(M̌, A) (HomA,cts(M,A)) with respect to the
strong topology, satisfying

1. 〈ϕL(m̌), ϕL(m)〉 = q
πL
〈m̌,m〉

2. 〈σm̌, σm〉 = 〈m̌,m〉

3. 〈ψLT (m̌),m〉 = 〈m̌, ϕL(m)〉

For all σ ∈ ΓL, m̌ ∈ M̌ and m ∈M.

Proof. The perfectness of the first pairing is well-known since M is finitely generated
and projective. The properties of the pairing are proved in [SV15, Section 3] for the

ring ̂oL((T ))
p−adic

and their proofs carry over to this case. By writing M as a direct
summand of a finitely generated free module the identification of duals follows from
the free case by induction over the rank from 1.74.

4Alternatively one can redo the proof with A replacing L.
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1.4.3 Sen-Theory

We do not give a conceptual treatment of Sen-Theory and instead present some ad-
hoc results that allow us to view a (ϕL,ΓL)-module M r overRr

K as a ΓL-submodule of
a finite projective (Ln⊗K)JtLT K-module D+

dif,n(M) for a suitable n ∈ N, which is tech-
nically useful because the latter module is a projective limit of finite-K-dimensional
ΓL-representations namely D+

dif,n(M)/(tkLT ). The name “Sen-Theory” stems from the
fact that these modules are the analogues of their counterparts in classical Sen-
Theory (more precisely its extension to BdR-representations) for (ϕL,ΓL)-modules
which arise from Fontaine’s equivalence of categories. For n ∈ N let Kn := K ⊗L Ln
and fix a non-trivial compatible system un of πnL-torsion points of the Lubin-Tate
group. We endow Kn with its canonical K-Banach space topology and endow
KnJtLT K = lim←−kKnJtLT K/(tkLT ) with the projective limit topology of the canonical
topologies on each term. Since tLT = logLT (T ) has no constant term and non-
vanishing derivative in 0 the induced maps

KnJtLT K/(tkLT )→ KnJT K/(T k)

are isomorphisms of finite dimensional K-vector spaces and hence topological for the
respective canonical topologies. We obtain that the natural map

KnJtLT K→ KnJT K

is an isomorphism if we endow the right-hand side with its weak topology. The
definition for ιn below is taken from [Col16, Section 1.4.2].

Lemma 1.76. Let n ∈ N and let r(n) = |un| then

ιn : R[r(n),1)
K → KnJtLT K

T 7→ ιn(T ),

given by ιn(T ) := un +LT expLT (π−nL logLT (T )), is well-defined, injective and ΓL-
equivariant, where ΓL acts on the right-hand side via the trivial action on K, the
Galois action on Ln and the usual action (via χLT ) on tLT .

Proof. The convergence, injectivity and ΓL-equivariance of ιn in the cyclotomic case
with K = L = Qp is known (see [Ber02, Proposition 2.25 and the remark before
2.35]) and can be analogously proved for the Robba ring RL over L. The map over

R[r(n),1)
K arises by applying K⊗̂L,π to the version over the spherically complete L. We

apply [Eme17, 1.1.26] to conclude that the induced map remains injective using that
K as an L-Banach space is automatically bornological. The compatibility with the
actions is preserved, since we let ΓL act trivially on K.

Definition 1.77. Let M be a (ϕL,ΓL)-module overRK with model M r(n)
over [r(n), 1)

with r(n) as in 1.76. We define D+
dif,n(M) := KnJtLT K⊗

ιn,R[r(n),1)
K

M r(n)
.
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Remark 1.78. Let M be a (ϕL,ΓL)-module over RK with model M r(n)
over [r(n), 1)

with r(n) as in 1.76. Then the natural map

M r(n) → D+
dif,n(M)

is injective and ΓL-equivariant.

Proof. Using that M r(n)
is projective the statement follows by tensoring the injective

and ΓL-equivariant map ιn with M r(n)
.

1.5 Étale (ϕL,ΓL)-modules

In this section we give a brief overview on étale modules over the p-adic completion
AL of oL((T )). We denote by RepoL(GL) the category of finitely generated oL-modules
with oL-linear continuous (with respect to the p-adic topology) GL-action. Similary
let RepL(GL) be the category of finite dimensional L-vector space with continuous
L-linear GL-action. We denote by C[

p the tilt of Cp and for an oL-algebra R we write
W (R)L for the ring of ramified Witt vectors.

Definition 1.79. A (ϕL,ΓL)-module D over AL is a finitely generated AL-module
with a ϕL-semi-linear map ϕD and a semi-linear action of ΓL commuting with ϕD,
such that ΓL acts continuously with respect to the weak topology. D is called étale if
the linearised map AL ⊗AL,ϕL D → D, mapping a⊗ d to aϕD(d) is an isomorphism.
Analogously we define (ϕL,ΓL)-modules over BL := AL[1/p]. Such a module is called
étale if it arises as a base change of an étale (ϕL,ΓL)-module over AL.

Remark 1.80. Fixing a choice of generator of lim←−n LT [πnL] leads to a canonical
continuous ΓL-equivariant embedding

ι : AL → (W (C[
p)L)HL

such that ιϕL(f) = Frobq(ι(f)), whose image is independent of the choice. This em-
bedding extends to an embedding of the p-adic completion of the maximal unramified
extension A of AL into W (C[

p)L.

Proof. See [Sch17, Proposition 2.1.16, Remark 2.1.17 and Remark 3.1.4].

By abuse of notation we write ϕL for the Frobenius operator on W (C[
p)L, which is

justified due to 1.80.

Theorem 1.81. The functors

V 7→ D(V ) := (A⊗oL V )HL

and
D 7→ V(D) := (A⊗AL

D)ϕL=1

are quasi-inverse and give an equivalence of categories between RepoL(GL) and the
category of étale (ϕL,ΓL)-modules over AL. This equivalence is exact and respects
duals, torsion-sub-objects and tensor products and inverting p induces an equivalence
of categories between RepL(GL) and the category of étale (ϕL,ΓL)-modules over BL.
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Proof. See [Sch17, Theorem 3.3.10].

In more generality one has for F/L finite a similar equivalence for RepoL(GF ) but
throughout this thesis only concern ourselves with the case F = L. The rings BL and
RL are not directly comparable because the series in AL do not necessarily converge
on some annulus and on the other hand the coefficients of a series in RL are not
necessarily bounded. However both rings contain the rings

B†,rL :=

{
f =

∑
k∈Z

akT
k | lim

k→−∞
|ak|rk = 0 and sup

k
|ak| <∞

}

and their union B†L.

Definition 1.82. A (ϕL,ΓL)-module D over BL is called overconvergent if it
admits a basis such that the matrices of ϕL and all γ ∈ ΓL have entries in B†L. The
B†L-span of this basis is denoted by D†. A representation V ∈ RepL(GL) is called
overconvergent if D(V ) is overconvergent. V is called L-analytic if Cp ⊗L,σ V is

isomorphic to the trivial Cp-semilinear representation CdimL(V )
p for every embedding

σ : L→ Cp with σ 6= id . If V is overconvergent, we set D†rig(V ) := RL ⊗B†L
D†(V ).

By [FX12, Proposition 1.6] étale (ϕL,ΓL)-modules over RL always descend to B†L.
But contrary to the classical cyclotomic situation there exist representations that are
not overconvergent (cf. [FX12, Theorem 0.6]) and hence the category of (ϕL,ΓL)-
modules over RL is in some sense insufficient to study representations. Remarkably
restricting to L-analytic objects on both sides alleviates this problem.

Definition 1.83. Let ρ : L× → L× be a continuous character. We define RL(ρ) =
RLeρ as the free rank 1 (ϕL,ΓL)-module with basis eρ and action given as ϕL(eρ) =
ρ(πL)eρ and γ(eρ) = ρ(χLT (γ))eρ. For i ∈ Z we write RL(xi) as shorthand for the
(ϕL,ΓL)-module associated to the character x 7→ xi.

Remark 1.84. Let M be a (ϕL,ΓL)-module over RL of rank 1. Then there exists a
character ρ : L× → L× such that M is isomorphic to RL(ρ). The module is L-analytic
if and only if ρ|o×L

is locally L-analytic.

Proof. See [FX12, Proposition 1.9].

Definition 1.85. Let M be an L-analytic (ϕL,ΓL)-module over RL. If M ∼= RL(ρ)
has rank 1 we define

deg(M) := valπL(ρ(πL)).

In general we define deg(M) := deg(Λrank(M)M) and finally the slope µ(M) :=
deg(M)/ rank(M)5 M is called isoclinic if µ(N) ≥ µ(M) for every subobject N
of M. M is called étale if it is isomorphic to the (ϕL,ΓL)-module D†rig(V ) attached
to some L-analytic GL-representation V.

5With our conventions RL(xi) has slope i.
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Theorem 1.86 (Kedlaya/ Berger). Every non-zero (L-analytic) (ϕL,ΓL)-module M
possesses a unique functorial filtration

0 = M0 (M1 · · · (Md = M

such that the succesive quotients Mi/Mi−1 are isoclinic (L-analytic) (ϕL,ΓL)-modules
and µ(M1/M0) < · · · < µ(Md/Md−1). Furthermore the functor V 7→ D†rig(V ) de-
fines an equivalence of categories between the category of L-analytic L-linear GL-
representations and the full subcategory of L-analytic (ϕL,ΓL)-modules that are iso-
clinic of slope 0.

Proof. From [Ked05, Theorem 6.4.1] we obtain a unique filtration by (so-called) satu-
rated ϕL-modules Mi. By the uniqueness of the filtration the additional ΓL-structure
is inherited by the modules in the filtration. Note that if M is assumed to be L-
analytic, then so are the Mi in its Harder-Narasimhan filtration. The requirement in
loc. cit. for the sub-modules Mi ⊆M to be saturated is equivalent to the requirement
that Mi ⊂ Mi+1 is a RL-direct summand (c.f. [Pot20, §8.1]), which is equivalent to
requiring that Mi/Mi+1 is again projective6 i.e. a (ϕL,ΓL)-module. The statement
regarding étale modules is [Ber16, Theorem 10.4]. Berger defines the notion of étale
differently. The fact that being étale is equivalent to being isoclinic of slope 0 is
implicit in the proof of 10.1. ibidem.

6Note that RL is a Bézout domain hence being finitely generated projective is equivalent to being
finite free.
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Chapter 2

The kernel of ψ

In this chapter we study the ΓL-action on the kernel of the operator ψ = ψM (defined
in 1.64) for an L-analytic (ϕL,ΓL)-module M. For the whole chapter fix r0 ∈ (0, 1)

such that M comes from a (ϕL,ΓL)-module over R[r0,1)
A . We wish to show that Mψ=0

is a finite projective module over the relative group Robba ring RA(ΓL). For a closed
interval I we always view the continuous K-linear endomorphisms EndK(M I) as a
Banach space endowed with the operator norm. We denote by EndA(M I) the A-
subalgebra of continuous A-linear endomorphisms.

2.1 Some technical preparation.

Lemma 2.1. Let V be a K-Banach space and let F,G ∈ EndK(V ) such that G is
invertible and

||F −G|| < ||G−1||−1.

Then F is invertible.

Proof. By assumption the operator

(1− FG−1) = −(F −G)G−1

has operator norm < 1 hence the series∑
k≥0

(1− FG−1)k

converges to an inverse of F ◦G−1 with respect to the operator norm. Using that G
is invertible we conclude that F has to be invertible as well.

Lemma 2.2. Let R be an A-Banach algebra, i.e. a complete normed A-Algebra. Let
B be a K-Banach algebra and let H : B → R be a continuous K-algebra homomor-
phism. Then it extends to a continuous A-linear homomorphism

A⊗̂KB → R.
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Proof. Let a ∈ A and define a K-bilinear map A × B → R by mapping (a, b) to
aH(b). Using that R is a topological A-module and the map H is continuous one
verifies that this map is separately continuous. Since A and B are Banach-spaces the
inductive and projective tensor product topology agree and due to the completeness
of R we obtain an extension

A⊗̂KB → R.

This extension is a K-algebra homomorphism because λH(b) = H(λb) for any b ∈ K
and furthermore it is A-linear by construction.

Remark 2.3. Let I be closed then EndA(M I) is an A-Banach algebra

Proof. It suffices to prove that EndA(M I) is a closed subspace of the K-Banach
algebra EndK(M I). For any a ∈ A denote by the same symbol the multiplication-
by-a-map. Then θa : EndK(M I) → EndK(M I) mapping f to af − fa is continuous
with respect to the operator norm and an endomorphism is A-linear if and only if it
lies in the closed subspace

⋂
a∈A ker(θa).

2.2 The group Robba ring and the structure of Mψ=0.

A key observation is the following decomposition.

Lemma 2.4. We have

R[r,s]
K
∼=

⊕
a∈oL/πnL

ϕnL

(
R[rq

n
,sq

n
]

K

)
η(a, T ).

Proof. See [Col16, Proposition 1.4].

We now define the relative Robba group ring RA(ΓL).

Definition 2.5. From the isomorphism χLT : ΓL → o×L we get a canonical filtration
ΓL = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . by defining Γn := χ−1

LT (1 + πnLoL) for n ≥ 1. For n large
enough we have an isomorphism Γn ∼= πnLoL by mapping γ to log(χLT (γ)). Let n0

be minimal with this property. Define charts ln : Γn
log(χLT (·))−−−−−−→ πnLoL

∼=−→ oL, where
the second arrow is given by dividing by πnL. This induces an isomorphim of Fréchet
algebras

D(oL, K) ∼= D(Γn, K).

Using the isomorphism from 1.27 we can view the right-hand side as a ring of conver-
gent power series in the variable Zn from 1.37. By transport of structure we define the
ring extensions RK(Γn) ∼= RK and RI

K(Γn) ∼= RI
K . Denoting by in+m : Γn+m → Γn

the natural inclusion for m ≥ 0 we get a commutative diagram

oL Γn+m

oL Γn,

l−1
n+m

πmL
ιn+m

l−1
n
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which induces a commutative diagram

D(oL, K) D(Γn+m, K)

D(oL, K) D(Γn, K).

(l−1
n+m)∗

(πmL )∗ (ιl+m)∗

(l−1
n )∗

Using the isomorphism R+ ∼= D(oL, K) and the fact that (πL)∗ corresponds to the
map ϕL we get a commutative diagram

RIq
m

K RIq
m

K (Γn+m)

RI
K RI

K(Γn)

(l−1
n+m)∗

ϕmL (ιl+m)∗

(l−1
n )∗

and by taking limits a corresponding diagram

RK RK(Γn+m)

RK RK(Γn).

(l−1
n+m)∗

ϕmL (ιl+m)∗

(l−1
n )∗

By mapping γ ∈ Γn to its Dirac distribution we obtain a canonical map Γn →
D(Γn, K)×. By transport of structure from 2.4 we see that the natural maps induce
topological1 isomorphisms

RIq
m

K (Γn+m)⊗Z[Γn+m] Z[Γn]→ RI
K(Γn)

and
RK(Γn+m)⊗Z[Γn+m] Z[Γn]→ RK(Γn).

This allows us to extend our definitions to 0 ≤ n ≤ n0 by setting

RI
K(Γn) := RIq

n0−n

K (Γn0)⊗Z[Γn0 ] Z[Γn]

and
RK(Γn) := RK(Γn0)⊗Z[Γn0 ] Z[Γn],

where the topology is given by the product topology with respect to the decomposition of
Z[Γn]. Finally in the relative case we define RI

A(Γn) as the completed tensor product
RI
K(Γn)⊗̂KA endowed with the tensor product norm and RA(Γn) via

RA(Γn) := lim−→
0≤r<1

lim←−
r<s<1

R[r,s]
A (Γn).

1We endow the left-hand side with the maximum norm with respect to the decomposition Z[Γn] =⊕
γ∈Γn/Γn+m

γZ[Γn+m].
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Remark 2.6. R[r,1)
A (Γn) is a Fréchet-Stein algebra.

Proof. If n ≥ n0 the statement is clear by transport of structure. If n < n0 we recall
the decomposition

RI
A(Γn) = RIq

n0−n

A (Γn0)⊗Z[Γn0 ] Z[Γn].

Take a sequence r = r0, r1, . . . converging to 1, let Ik := [r0, rk] and let Ĩk := Iq
n0−n

k .

We know that R[r,1)q
n0−n

A is Fréchet-Stein and hence the maps RĨk+1

A → RĨk
A are flat

with dense image. Since Z[Γn] is free over Z[Γn0 ] and hence flat these properties
remain for the induced maps

RĨk+1

A (Γn0)⊗Z[Γn0 ] Z[Γn]→ RĨk
A (Γn0)⊗Z[Γn0 ] Z[Γn].

The resulting rings are finite modules over the Noetherian rings RĨk+1

A (Γn0) hence
themselves Noetherian.

Note that we change the radius of convergence while also changing the group. This
stems from the fact that, using suitable charts for oL ∼= Γn ⊂ ΓL, the subgroup Γn+1

corresponds to the index q subgroup πLoL and multiplication by πL corresponds to
ϕL via the Fourier isomorphism. This rule of thumb does not apply at the level
Γ1 ⊂ ΓL = Γ0, where [ΓL : Γ1] = q − 1. In Proposition 2.8 it will become apparent,
why this convention on radii makes sense for studying the action on ker(ψ). Another
caveat, we would like to point out, is the fact that contrary to the cyclotomic case
the notions of r-convergent distributions (introduced in 1.45) and “I-convergent”
distributions RI

A(ΓL) are not related in an obvious way (outside of certain special
cases). See [BSX20, Section 1.3] for a precise description of the relationship.

Lemma 2.7. Let M be a ϕL-Module over RA together with a model M0 over Rr0
A .

Then for r, s ≥ r
1/qn

0 we have

M [r,s] ∼=
⊕

a∈oL/πnL

η(a, T )ϕnMM
[rq

n
,sq

n
].

Proof. Because the linearised map is an isomorphism we get

M [r,s] ∼= R[r,s]
A ⊗R[r,s]

A ,ϕnL
M [rq

n
,sq

n
] (2.1)

∼= (
⊕

a∈oL/πnL

ϕnL(R[rq ,sq ])η(a, T ))⊗
R[rq

n
,sq
n

]
A ,ϕnL

M [rq
n
,sq

n
] (2.2)

∼=
⊕

a∈oL/πnL

η(a, T )ϕnMM
[rq

n
,sq

n
]. (2.3)

In order to prove Theorem 2.19 we will need a several base change formulae. These
allow us, roughly speaking, to change the interval [r, s] to an interval [r, s]q

n
, by

replacing M [r,s] with ϕnM [rq
n
,sq

n
].
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Proposition 2.8. Let I = [r, s] be an interval such that ψM is defined on M I1/qn

.
We have

(M I1/qn

)ψ=0 ∼= Z[ΓL]⊗Z[Γn] η(1, T )ϕnMM
I

and
(M [r1/qn ,1))ψ=0 ∼= Z[ΓL]⊗Z[Γn] η(1, T )ϕnMM

[r,1).

Proof. From 2.7 we get a decomposition

M I1/qn ∼=
⊕

a∈oL/πnL

η(a, T )ϕnMM
I .

Recall that πL
q
ψLT (η(i, T )) = η( i

πL
) if i ∈ πLoL and 0 otherwise. Furthermore

for a ∈ o×L
∼= ΓL we have η(a, T ) = η(χLT (χ−1

LT (a)), T ) = χ−1
LT (a)η(1, T ). Because

χ−1
LT (a) ∈ ΓL induces an automorphism of M I and commutes with ϕM we get
χ−1
LT (a)(η(1, T )ϕnMM

I) = η(a, T )ϕnM I . Combining everything we get

(M I1/qn

)ψ=0 ∼=
⊕

a∈(oL/π
n
LoL)×

η(a, T )ϕnM I

=
⊕

a∈(oL/π
n
LoL)×

χ−1
LT (a)(η(1, T )ϕnM I)

=
⊕

γ∈ΓL/Γn

γ(η(1, T )ϕnM I)

∼= Z[ΓL]⊗Z[Γn] η(1, T )ϕnMM
I .

This proves the first formula. The second formula follows by passing to the limit
s→ 1.

These results show that we have to understand the ΓL-action on η(1, T )ϕn(M I). Let
γ ∈ Γn such that (χLT (γ)− 1) is divisible by πnL. We compute

γ(η(1, T )ϕn(m)) = η(χLT (γ), T )ϕn(γm)) = η(1, T )ϕn
(
η

(
χLT (γ)− 1

πnL
, T

)
γm

)
.

We may thus equivalently study the action of Γn on M I given by

Hn : Γn → EndA(M I) (2.4)

γ 7→ [m 7→
(
η

(
χLT (γ)− 1

πnL
, T

)
γm

]
(2.5)

Leaning on the results of [SV20] we shall extend this action to an action ofA⊗̂KD(Γn, K).
Note that we deviate from their notation. We always use T for the variable of RA

acting via multiplication on M and use Zn for the variable of D(Γn, K) whenever
n ≥ n0 acting on M via continuous extension of the K[ΓL]-action.
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2.3 The action via Hn.

We explain how to extend the Hn-action to A⊗̂KD(Γn, K). Since the ΓL-action is
A linear it is natural to expect that this extension arises as a base change of an
extension to D(Γn, K). Such an extension is constructed in [SV20, p. 50, Discussion
after 2.29] for the case A = K. If we forget the A-action and think of modules over
RA by considering their underlying topological vector space we arrive at a similar
situation. Strictly speaking the underlyingRK-module of a (ϕL,ΓL)-module overRA

is not a (ϕL,ΓL)-module over RK since it is not finitely generated. For this reason
the results of [SV20] are not directly applicable and we sketch the construction for
the convenience of the reader.

In the following I denotes one of the intervals [r0, r0], [r0, r
1/q
0 ]. For m ≥ 0 set rm :=

p
−1
pm . We fix an integer m0 such that for any m ≥ m0 we have r

1/q
0 < rm and

|η(x, T )− 1|I < rm. (2.6)

This is possible due to Proposition 1.48. Furthermore Lemma 1.71 (i) allows us to
choose n1 ≥ n0 such that

||γ − 1||MI < rm0 . (2.7)

for any γ ∈ Γn1 with respect to a fixed Banach-module norm on M I .

Proposition 2.9. The Γn-action on M I via Hn extends to a continuous ring homo-
morphism

Hn : Drm(Γn, K)→ EndA(M I)

for any m ≥ m0 and n ≥ n1.

Proof. We first construct an extension that we denote by the same symbol

Hn : Drm(Γn, K)→ EndK(M I),

which is induced by mapping a γ − 1 to Hn(γ) − 1. Since M is assumed to be L-
analytic and the map γ 7→ π−nL (η(χLT (γ)− 1), T ) (as a function Γn → R+

K) is locally
L-analytic one checks that the action via Hn is L-analytic. It thus suffices to extend
the action to an action of DQp,rm(Γn, K) as the latter will factor as desired

Hn : DQp,rm(Γn, K)
can−−→ Drm(Γn, K)→ EndK(M I).

Let λ ∈ DQp,rm(Γn, K) and let b = (γ1− 1, . . . , γd− 1), where γ1, . . . , γd is a Zp-basis
of Γn. Recall that λ admits a convergent expansion

λ =
∑
k∈Nd0

akb
k.

We are reduced to showing that the operator

Hn(λ) :=
∑
k∈Nd0

akHn(bk)
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converges with respect to the operator norm on M I . Knowing that |ak|r|k|m tends
to zero it suffices due to the sub-multiplicativity of the operator norm to show
‖Hn(bk)‖MI ≤ rm for any k with |k| = 1, in particular, it suffices to show

‖Hn(γ − 1)‖MI ≤ rm

for any γ ∈ Γm. We write out

Hn(γ − 1)m = η

(
χLT (γ)− 1

πnL
, T

)
(γm−m) + (η

(
χLT (γ)− 1

πnL
, T

)
− 1)m.

The assumptions (2.6) and (2.7) assert that both summands are bounded above by
rm‖m‖MI . We conclude that the series defining Hn(λ) converges with respect to the
operator norm. Our proof also shows that λ 7→ Hn(λ) is bounded with operator
norm bounded by 1, which shows that the extension we constructed is continuous.
The assumption that γ acts RA-semi-linearly guarantees in particular that γ−1 acts
A-linearly for any γ ∈ ΓL using 2.3 we conclude that the image of this extension is
contained in EndA(M I).

Corollary 2.10. The Γn-action on M I via Hn extends to a continuous ring homo-
morphism

Hn : A⊗̂KDrm(Γn, K)→ EndA(M I)

for any m ≥ m0 and n ≥ n1. Passing to the limit with respect to m we obtain the
desired extension

Hn : A⊗̂KD(Γn, K)→ EndA(M I).

Proof. For the first part apply 2.2 in conjunction with 2.9. We have D(Γn, K) =
lim←−mDrm(Γn, K) and using 1.15 we conclude that

A⊗̂KD(Γn, K) ∼= lim←−
m

A⊗̂Drm(Γn, K).

We may increase m such that rm > r
1/q
0 . In this case using 1.47 we can extend the

scalar action of OK(B) to an action of DQp,rm(Γn, K) that we call scalar action via

Sn : DQp,rm(Γn, K)
ln∗−→ DQp,rm(oL, K)

proj−−→ Drm(oL, K)
LT−→ OK(BI).

If we denote by Zn a preimage of T in D(Γn, K) and by Xn a lift to DQp,rm(Γn, K)
then by construction Sn(Xn) acts as multiplication by T on M I . Since 0 /∈ I we
know that the action of T on M I is invertible and the goal is to compare the action
of Hn(Xn) = Hn(Zn) with Sn(Xn) = T. The following lemma allows us to choose a
sequence of lifts whose rm-norms do not depend on n.
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Lemma 2.11. Fix a lift Xn1 of Zn1 to DQp,rm(Γn1 , K). Then there exists a sequence
Xn1+l ∈ DQp,rm(Γn1+l, K) such that Xn1+l is a lift of Zn1+l ∈ D(Γn1+l, K) and

|Xn1+l|DQp,rm (Γn1+l,K) = |Xn1|DQp,rm (Γn1 ,K)

for every l ≥ 0.

Proof. The charts satisfy ln = πLln+1 for every n ≥ n0. Transporting the problem
to oL and arguing inductively it suffices to show that given λ ∈ DQp,rm(oL, K) there

exists an element λ̃ ∈ DQp,rm(πLoL, K), whose projection to D(πLoL, K) is equal to

πL∗(λ), such that λ̃ satisfies

|λ̃|DQp,rm (πLoL,K) = |λ|DQp,rm (oL,K).

We claim that πL∗(λ) has the desired properties. Given a Zp-basis b1, . . . , bd of oL
the elements πLb1, . . . , πLbd form a basis πLoL. Since the rm-norm is independent of
the choice of basis we see that the isomorphism

DQp(oL, K)→ DQp(πLoL, K)

induced by the isomorphism oL ∼= πLoL given by multiplication-by-πL is isometric
with respect to the respective rm-norms hence extends to an isometric isomorphism
of the respective completions.

Lemma 2.12. There exists n2 ≥ n1 such that the map Hn constructed above extends
to continuous ring homomorphism

RI
A(Γn)→ EndA(M I)

for any n ≥ n2.

Proof. Lemma 2.11 allows us to fix a sequence of elements Xn lifting Zn such that
C = |Xn|DQp,rm(Γn,K)

is independent of n ≥ n1. Let 0 < ε < min(r0/C, 1). Having
fixed such a sequence we assume that n2 is large enough such that the following
assumptions are satisfied:

A.1 ‖γ − 1‖MI < εr
1/q
0 for every γ ∈ Γn2 .

A.2 Choose l = l(ε) such that ‖[a]− id‖RIA < ε for every a ∈ 1 + πlLoL.

A.3
1+π

n2
L x

xπ
n2
L

= 1− π
n2
L x

2
+ . . . belongs to 1 + πlLoL.

The first two conditions can be achieved by using 1.71 applied to M I and RI
A re-

spectively. The third one can be achieved by making n2 large enough after having
chosen l. Let n ≥ n2 and fix a Zp-basis γ1, . . . , γd of Γn. Write

Xn =
∑
k∈Nd0

ak(δγi − 1)k
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by construction we have C = supk|ak|r
|k|
m . We claim

‖Hn(Xn)−Sn(Xn)‖MI < r0 = |T−1|−1
I ≤ ‖T

−1‖−1
MI .

We abbreviate α(γ) = ln(γ) = log(χLT (γ))/πnL and denote by β the chart β(γ) =
χLT (γ)−1

πnL
. By construction

Hn(γ − 1) = η(β(γ), T )(γ − 1) + (η(β(γ), T )− 1)

and
Sn(γ − 1) = η(α(γ), T )− 1.

We first show
‖Hn(γ − 1)k −Sn(γ − 1)k‖MI < ε(r

1/q
0 )k.

We have

‖Hn(γ − 1)‖MI ≤ sup(‖η(β(γ), T )(γ − 1)‖MI , ‖η(β(γ), T )− 1‖MI ) < r
1/q
0

and
‖η(α(γ), T )− 1‖MI ≤ |η(α(γ), T )− 1|I < r

1/q
0

using that |η(a, T ) − 1|I < r
1/q
0 and |η(a, T )|I = 1 for any a ∈ oL, the assumption

A.1 together with ε < 1. This allows us to reduce the claim to the case k = 1 by
writing for x = γ − 1

Hn(x)k −Sn(x)k

= Hn(x)(Hn(x)k−1 −Sn(x)k−1) + Sn(x)k−1(Hn(x)−Sn(x)). (2.8)

If k = 1 we have

Hn(γ − 1)−Sn(γ − 1) = η(β(γ), T )(γ − 1) + (η(α(γ), T )− 1)− (η(β(γ), T )− 1)
(2.9)

= η(β(γ), T )(γ − 1) + ([u(γ)]− 1)(η(α(γ), T − 1). (2.10)

Where u(γ) = β(γ)/α(γ), which due A.3 belongs to 1+πlLoL using that η(β(γ), T ) =
η(α(γ)u(γ), T ) = [u(γ)](η(α(γ), T )) and the fact that 1 is fixed by the ΓL-action.

The assumptions A.1 and A.2 ensure that both terms can be estimated by εr
1/q
0 .

Let b = (γ1 − 1, . . . , γd − 1). We next prove

‖Hn(b)k −Sn(b)k‖ < ε(r
1/q
0 )|k|

for any multi-index k ∈ Nd
0 by induction on the number h of non-zero components

of k. We already treated the case h = 1 and may therefore split k = (k1, 0, . . . , 0) +
(0, k2, k3, . . . , kd) and assume that the corresponding estimate holds for i = (k1, 0, . . . , 0)
and j = (0, k2, k3, . . . , kd). Using the same trick as in (2.8) we rewrite

Hn(b)k −Sn(b)k

= Hn(b)j(Hn(b)i −Sn(b)i) + Sn(b)i(Hn(b)j −Sn(b)j)
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and use the estimates ‖Hn(b)l‖ < (r
1/q
0 )|l| (resp.‖Sn(b)l‖ < (r

1/q
0 )|l|) that can be

obtained in the same way as in the case h = 1. Putting everything together we
obtain the final estimate

‖Hn(Xn)−Sn(Xn)‖ ≤ sup
k
|ak|‖Hn(b)k −Sn(b)k‖ (2.11)

< ε sup
k
|ak|(r1/q

0 )|k| (2.12)

< ε sup
k
|ak|r|k|m = εC < r0. (2.13)

Using 2.1 we conclude that Hn(Zn) is invertible and its inverse given by

Hn(Zn)−1 = T−1((T−1Hn(Zn)− 1) + 1)−1 = T−1
∑
k≥0

(1− T−1Hn(Zn))k

has operator norm
‖H(Zn)−1‖MI ≤ ‖T−1‖MI

and satisfies
‖Hn(Zn)−1 − T−1‖MI < ‖T−1‖MI ,

which follows from the estimate (2.13), which asserts that the expression in the
geometric series has operator norm less than 1. From (2.13) and the strict triangle
inequality we further conclude

‖Hn(Zn)‖MI = ‖Hn(Zn)− T + T‖MI ≤ ‖T‖MI ,

which means that given f(T ) ∈ RI
A the operator f(Hn(Zn)) converges to an operator

on M I of operator norm bounded by |f |I . In particular we obtained the desired
continuous homomorphism

RI
A(Γn)→ EndA(M I)

given by mapping Zn to Hn(Zn).

Remark 2.13. Let n ≥ n2 and let f ∈ RI
A. We have

‖f(Hn(Zn))− f(T )‖MI < ‖f(T )‖I .

Proof. We show that
‖Hn(Zn)±k − T±k‖MI < ‖T±k‖I

holds for every k ∈ N. The case k = 0 is trivial and the case k = 1 has been treated
in the proof of 2.12. We proceed inductively by expressing

Hn(Z)±1k − T±1k = Hn(Z)±1(k−1)(Hn(Z)±1 − T±1) + T±1(Hn(Z)±1(k−1) − T±1(k−1))

and using the estimates ‖Hn(Zn)±j‖MI ≤ ‖T±‖j
MI ≤ |T±|jI = |T±j|I for j ∈ {1, k−1}

that were obtained implicitly in the proof of 2.12. Note that |T±j|I = |T±|jI by
definition of the I-norm.
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Lemma 2.14. M I is finite projective with respect to the RI
A(Γn)-module structure

induced by Hn of the same rank as M I over RI
A. Any system of generators of M I as

a RI
A-module also generates M I as a RI

A(Γn)-module (via Hn).

Proof. Choose N I (and a Banach norm on N I) such that M I ⊕ N I = (RI
A)d =⊕d

i=1RI
Aei endowed with the sup-norm of the norms on M I and N I . We endow

N I with a tautological RI
A(Γn)-module structure by letting the variable Z = Zn ∈

D(Γn, K) act as multiplication by T ∈ RI
A. Then the estimate from Remark 2.13

remains valid for N I , since Hn(Z) − T acts as zero on N I by construction. Fix a
basis of M I ⊕N I and define

Φ : M I ⊕N I → (RI
A)d (2.14)∑

fi(T )vi 7→ fi(T )ei (2.15)

and

Ψ : (RI
A)d → (RI

A(Γn))d →M I ⊕N I∑
fi(T )ei 7→

∑
fi(Zn)ei 7→

∑
fi(Hn(Z))(vi).

By construction Φ is a topological isomorphism and Ψ ◦ Φ is an endomorphism of
M I ⊕N I leaving both M I and N I invariant. We claim

||Ψ ◦ Φ− 1||MI⊕NI < 1.

This implies that Ψ ◦ Φ is an automorphism, but then Ψ has to be an isomorphism.
In particular the map RI

A(Γn)d →M I ⊕N I has to be an isomorphism, which shows
the projectivity and the second part of the statement. For the estimation observe
that Ψ ◦ Φ− 1 is 0 on N I , hence we only need to concern ourselves with M I , where
the estimate follows from 2.13. Regarding the rank we compute

rankRIA(Γn)(M
I) = rankRIA(Γn)(M

I ⊕N I)− rankRIA(Γn)(N
I)

= rankRIA(M I ⊕N I)− rankRIA(N I)

= rankRIA(M I),

using additivity of ranks in the first and third equation. The second equality follows
by construction since on the one hand M I ⊕ N I is isomorphic to RI

A(Γn)d and on
the other hand N I is viewed as a RI

A(Γn)-module via transport of structure along
the isomorphism RI

A(Γn) ∼= RI
A. The statement about the generators follows from

the fact that Ψ ◦Φ respects the decomposition M I ⊕N I in the sense that M I (resp.
N I) is mapped into itself. Hence if M I admits a system of generators that lifts to
a basis vi of M I ⊕ N I the statement becomes clear since we have shown that these
form a basis of the RI

A(Γn)-module M I ⊕ N I (with action via Hn). Having chosen
some system of generators (m1, . . . ,md) of M I we can always find a suitable N I such
that the mi are projections of a basis of (RI

A)d by taking the surjection (RI
A)d →M I

given by mapping ei → mi and splitting it using the projectivity of M I .
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2.4 Interpreting the results

We now explain how these results translate to the original module. We found it
convenient to introduce the following abstract notation.

Definition 2.15. Let I ∈ {[r, s], [r, 1)} with r ≥ r0 and let n ∈ N. We say that M
satisfies property P(n, I) with respect to a system of generators m1, . . . ,md ∈
M I if the A[Γn]-action on η(1, T )ϕn(M I) extends to an action of RI

A(Γn) with respect
to which M I is projective and finitely generated by the elements η(1, T )ϕn(mi), i =
1, . . . , d.

This notion depends on the choice of system of generators. Since we assumed that M
admits a model over [r0, 1) we may fix a system of generators m1, . . . ,md of M [r0,1).
For any I ⊂ [r0, 1) we take the images of mi as a choice of system of generators for
M I . To keep notation simple in the following we refer to P(n, I) with respect to this
choice of generating system.

Proposition 2.16. Let I ⊂ [r0, 1) be an interval, l, n ∈ N and let (Ik)k be an
admissible covering of [r0, 1). Then

1.) P(n+ l, I) implies P(n, I1/ql).

2.) If M satisfies P(n, Ik) is for every k then M satisfies P(n, [r0, 1)).

Proof. The first statement follows from the decomposition

η(1, T )ϕn(M I1/ql

) = η(1, T )ϕn+l(M I)⊗Z[Γn+l] Z[Γn].

For the second statement our assumptions guarantee that each η(1, T )ϕnM Ik is flat

and finitely generated by at most d elements. If n ≥ n0 such that R[r0,1)
A (Γn) ∼= R[r0,1)

A

the statement follows from Lemma 1.59. In the case n < n0 one can adapt Lemma
1.59 since any covering of [r0, 1) provides a system of algebras defining the Fréchet-

Stein structure on R[r0,1)
A (Γn) as explained in Remark 2.6.

Our results so far translate as follows.

Lemma 2.17. Let I = [r0, r0] or I = [r0, r
1/q
0 ]. Then there exists n1 ∈ N such that

for any n ≥ n1 the property P(n, I) is satisfied.

Proof. This translates to the assertion of 2.14.

Lemma 2.18. There exists r2 such that M satisfies P(1, [r, 1)) for any r ≥ r2.

Proof. By Lemma 2.17 we have P(n, I) for any n ≥ n1. Applying Proposition 2.16
1.) we obtain P(n1, I

1/ql) for any l ≥ 0. Notice that the intervals I1/ql with I as in
Lemma 2.17 cover [r0, 1). Using Proposition 2.16 2.) we conclude that P(n1, [r0, 1))
is satisfied and applying Proposition 2.16 1.) yet again we conclude that P(1, [r2, 1))

holds with r2 = r
1/qn1−1

0 .
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Theorem 2.19. Let M be an L-analytic (ϕL,ΓL)-module over RA admitting a model
over [r0, 1), then there exists r1 ≥ r0 such that for any r ≥ r1 the ΓL-action on

(M [r,1))ψ=0 extends to an action of R[r,1)
A (ΓL) with respect to which (M [r,1))ψ=0 is

finite projective of rank rankRA(M). If m1, . . . ,md generate M [r,1) then the elements

η(1, T )ϕ(m1), . . . , η(1, T )ϕ(md) generate (M [r,1))ψ=0 as a R[r,1)
A (ΓL)-module.

Proof. Using the decomposition (M [r,1))ψ=0 = Z[ΓL]⊗Z[Γ1] η(1, T )ϕ(M [rq ,1)) this fol-

lows from Lemma 2.18 by taking r1 = r
1/q
2 .

We have implicitly proved the following result.

Theorem 2.20. Let M be a an L-analytic (ϕL,ΓL)-module over RA admitting a
model over [r0, 1). Let n ≥ n0 then there exists r1 such that the action of Zn ∈
D(Γn, K) is invertible on (M [r,1))ψ=0 for any r ∈ [r1, 1).

Proof. We have seen that the action of D(Γn, K) extends to an action of R[r,1)
A (Γn)

r ≥ r1 with a suitable r1. Note that the variable Zn is a unit in every RJ
A(Γn) for any

interval J ⊂ (0, 1).

If M is free we can further sharpen the results.

Corollary 2.21. Let M be a free L-analytic (ϕL,ΓL)-module with a model over
[r0, 1) such that m1, . . . ,md are a basis of M [r0,1). Then there exists r1 ≥ r0 such that

the action of ΓL on (M [r,1))ψ=0 extends to a R[r1,1)
A (ΓL)-action with respect to which

η(1, T )ϕ(m1), . . . , η(1, T )ϕ(md) form a basis.

Proof. We use the notation of the proof of Lemma 2.14. Using that M is free one
can choose N = 0. This shows that M I is free over RA(Γn) with basis η(1, T )ϕn(mi).
Tracing through the definitions we conclude that η(1, T )ϕ(m1), . . . , η(1, T )ϕ(md) are

global sections of the projective and hence coadmissibleR[r,1)
A (ΓL)-module (M [r,1))ψ=0

that form a basis of (MJ)ψ=0 for J in a suitable cover of [r, 1). Then the map

R[r,1)
A (ΓL)d → (M [r,1))ψ=0 mapping ei to η(1, T )ϕ(mi) is an isomorphism of coad-

missible modules, hence the claim.
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Chapter 3

Analytic cohomology via Herr
complexes

In this chapter we introduce the analytic Herr complex, which serves as an analogue
of the classical Herr complex with the operator γp

n − 1 replaced by Zn and prove
finiteness and base change properties similar to [KPX14]. In order to obtain the
operators Zn on M we need to choose an open subgroup of ΓL that is isomorphic
to oL, which in general is not a direct summand in ΓL. Before circumventing this
difficulty we discuss the split case.

3.1 Analytic Herr complex for e < p− 1

Assume for the moment e(L/Qp) < p− 11. Therefore we have

ΓL ∼= o×L
∼= κ×L × U1

∼= torsion× oL,

where the isomorphism oL ∼= U1 is induced by exp(πL·). We denote by ∆ ⊂ ΓL the
torsion subgroup.

Definition 3.1. Let M be an L-analytic (ϕL,ΓL)-module over RA and let f be an
A-linear continuous operator that commutes with the action of ΓL. We define

Cf,D(ΓL,A) := [0 −→M∆ (f−1,Z)−−−−→M∆ ⊕M∆ Z⊕1−f−−−−→M∆ −→ 0]

concentrated in [0, 2]. We denote by H∗f,D(ΓL,A)(M) the cohomology of this complex.

Remark 3.2. The morphism

M∆ M∆ ⊕M∆ M∆

M∆ M∆ ⊕M∆ M∆

id −πL
q
ψLT⊕id −πL

q
ψLT

is a quasi-isomorphism between CϕL,D(ΓL,A) and CπL
q
ψLT ,D(ΓL,A).

1This also forces p 6= 2.
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Proof. The cokernel complex is 0 because πL
q
ψLT is surjective since it is the left inverse

of ϕL. The kernel complex is given by

M∆ψLT=0 Z−→M∆ψLT=0
,

which is quasi-isomorphic to 0 since by 2.20 the action of Z is bijective on the kernel
of ψLT .

3.2 The case of general e.

Let M be an L-analytic (ϕL,ΓL)-module over RA.

Definition 3.3. Let n ≥ n0 such that χLT ◦ log induces an isomorphism Γn0
∼=

πn0
L oL

∼= oL. We define

Cf,Zn := [M
(f−1,Zn)−−−−−→M ⊕M Zn⊕1−f−−−−−→M ].

We denote the cohomology of this complex (concentrated in degrees [0, 2]) by H i
f,Zn

.

Remark 3.4. The complexes CϕL,Zn and CπL
q
ψLT ,Zn

are quasi-isomorphic.

Proof. We may define the quasi-isomorphism analogously to 3.2 and invoke Theorem
2.20 to deduce that the action of Zn is invertible on the kernel of ψLT .

Definition 3.5. Let m ≥ n ≥ n0. We define the restriction resn,m : Cf,Zn → Cf,Zm
as

M M ⊕M M

M M ⊕M M,

id id⊕Qm−n Qm−n

where Qm−n is defined using Zm = ϕm−nL (Zn) = Qm−nZn.

Lemma 3.6. Let m ≥ m′ ≥ n ≥ n0. Then

1. We have resn,m = resm′,m ◦ resn,m′ .

2. For each i we have im(resn,m)(H i
f,Zn

(M)) ⊂ (H i
f,Zm

(M))Zn=0.

Proof. The first statement follows by transport of structure from the corresponding
computation in R+

K
∼= D(Γn, K). There we have for any pair a, b ∈ N

ϕa+b
L (T ) = ϕaL(ϕbL(T )) = Qa(ϕ

b
L(T ))ϕbL(T ).

For the second statement we consider each degree individually. Zm is divisible by
Zn in the distribution algebra, which implies the statement in degree 0. In degree 1
consider a class (a, b) ∈ H1

f,Zn
with Zna = (f − 1)b. We compute

Zn resn,m(a, b) = Zn(a,Qm−nb) = (Zna, Zmb) = (f − 1b, Zmb),

which lies in the image of the first differential of Cf,Zm . In degree 2 let b ∈M. Then
ZnQm−nb = Zmb = ∂(b, 0) ≡ 0.
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Corollary 3.7. Applying the above for m = n shows that H i
f,Zn

has trivial Γn-action.

Contrary to the classical theory we cannot define the analytic Herr complex for ΓL
directly unless e < p− 1. Our observations so far show that the cohomology groups
of the restricted Herr complex for any subgroup Γn isomorphic to oL carry a residual
ΓL/Γn action. This allows us to define the Herr cohomology for ΓL after choosing
such a subgroup.

Definition 3.8. Choose n ≥ n0. We define H i
f,D(ΓL,K)(M) := (H i

f,Zn
(M))ΓL .

Lemma 3.9. H i
f,D(ΓL,K) is independent of the choice of n ≥ n0.

Proof. We are reduced to showing that resn,m : (H i
f,Zn

(M))→ (H i
f,Zm

(M))Zn=0 is an
isomorphism.
The case i = 0 follows from H0

f,Zn
(M) = M f=1,Γn = (M f=1,Γm)Γn .

For i = 1 consider a pair (a, b) with Zna = (f − 1)b that is mapped to 0 in H1
f,Zm

.
Meaning that there exists a v ∈ M satisfying ((f − 1)v, Zmv) = (a,Qm−nb). We
compute the image of v in H1

f,Zn
and obtain ((f − 1)v, Znv) − (a, b) = (0, Znv − b),

which is an element in the kernel of the multiplication-by-Qm−n-map. But on the
cohomology Zn acts as zero and hence Qm−n is invertible as it has a non-zero con-
stant term, which proves injectivity. For surjectivity consider (a, b) ∈ M2 satisfying
Zma = (f − 1)b. By the same argument as above the operator Qm−n is invertible
on H1

f,Zm
(M)Zn=0 and we may find a cocycle (c, d) such that Qm−n(c, d) ≡ (a, b) in

H1
f,Zm

(M). Then (Qm−nc, d) satisfies Zn(Qm−nc) = Zmc = (f − 1)d and is mapped
to the class of (a, b) by the restriction map.
It remains to treat the case i = 2. We first prove injectivity. Let c ∈ M such
that Qm−nc vanishes in H2

f,Zm
(M) i.e. Qm−nc ∈ ZmM + (f − 1)(M). This means

Qm−nm ∈ ZnM + (f − 1)M and hence vanishes in H2
f,Zn

(M), but then c already

has to vanish in H2
f,Zn

(M). For surjectivity let d ∈ H2
f,Zm

(M)Zn=0. By the preceeding

arguments we may find an element c ∈ H2
f,Zm

(M) satisfying Qm−n(c) = d. We can lift
c to an element of M and take its projection to H2

f,Zn
(M) in order to find a preimage

of d in H2
f,Zn

(M).

Remark 3.10. Let n ≥ n0. The action of ΓL on M induces a natural action on
Cf,Zn(M), given by letting γ ∈ ΓL act in the usual way on each component in each
degree. If γ ∈ Γn then this action is homotopic to the identity. In other words, the
image of Cf,Zn(M) in the derived category D(A) carries an action of ΓL/Γn.

Proof. The action is well-defined because f commutes with γ ∈ ΓL. If γ ∈ Γn then
the action of γ − id is given by η(a, Zn) − 1 = ZnH(Zn) with some a ∈ oL and
H(Zn) ∈ oLJZnK. A small calculation shows that the maps

M2 →M

(m,m′) 7→ H(Zn)m′
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and

M →M2

m 7→ (0, H(Zn)m)

define a homotopy between γ and id .

3.3 Finiteness of analytic Herr cohomology

The results of the previous section allow us to flexibly change between the open
subgroups Γn used to define the analytic Herr complex and to simplify the notation
we fix some n ≥ n0 and write Z := Zn. The goal of this section is to prove that
for any analytic (ϕL,ΓL)-module M over RA the cohomology groups H i

ϕL,Z
(M) are

finitely generated over A. We follow the strategy of [Bel21] using the result from the
previous chapter regarding the Z action on the kernel of ψ to arrive at a situation
that allows us to apply results from [KL16]. This approach differs from [KPX14]
who first prove the finiteness of the Iwasawa cohomology of M and compare it to
the (ϕ,Γ)-cohomology of the cyclotomic deformation of M. The finiteness of the
cohomology of M is obtained in [KPX14] as a corollary by writing M as a base
change of its deformation. Similar arguments to the ones of Bellovin already appear
in [KP18]. We denote by Db

perf (A),D−perf (A),D
[a,b]
perf (A) the full subcategory of the

derived category consisting of objects which are quasi-isomorphic to bounded (resp.
bounded above, resp. concentrated in degree [a, b]) complexes of finite projective
A-modules.

Definition 3.11. Let M be an L-analytic (ϕL,ΓL)-module over RA with model over
[r0, 1). For any 1 > r ≥ r0 we define

CϕL,Z,[r,1)(M) : M [r,1) (ϕL−1,Z)−−−−−→M [r1/q ,1) ⊕M [r,1) Z⊕(1−ϕL)−−−−−−→M [r1/q ,1).

For r < s < 1 we define the complex

CϕL,Z,[r,s](M) : M [r,s] (ϕL−1,Z)−−−−−→M [r1/q ,s] ⊕M [r,s] Z⊕(1−ϕL)−−−−−−→M [r1/q ,s]

for any s ∈ [r1/q, 1). We obtain canonical morphisms of complexes (of A-modules)

CϕL,Z,[r,1)(M)→ CϕL,Z(M)

and
CϕL,Z,[r,1)(M)→ CϕL,Z,[r,s](M).

We say that the cohomology of M is computed on the level of CϕL,Z,[r,1)(M) (resp.
CϕL,Z,[r,s](M)) if the first (resp. both) maps are quasi-isomorphisms.

When working with ϕL-modules over RA we can identify the cohomology of the

complex [M
ϕL−1−−−→M ] with the Yoneda extension groups in the category of modules
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over the twisted polynomial ring RA[X;ϕL] with X acting as ϕL on RA (cf. [KL13,
Definition 1.5.4]). The analogous result holds for ϕL-modules over [r, 1) (resp. [r, s])

but requires some care, since ϕL : M [r,1) →M [r1/q ,1) changes the ring over which the
module is defined.

Definition 3.12. Let M be a ϕL-module over RI
A, where I = [r, 1) or I = [r, s] with

s ∈ [r1/q, 1). We denote by Ext1
ϕ(RI

A,M) the group of extensions (as ϕL-modules) of
RI
A by M.

Remark 3.13. Let M be a ϕL-module over RI
A with I as in 3.12. The natural map

ker(ϕM − 1)→ Homϕ(RI
A,M

I)

x 7→ (f 7→ fx)

is an isomorphism.

Proof. The map is well-defined because ϕM(fx) = ϕL(f)ϕM(x) = ϕL(f)x and an
inverse is given by mapping α ∈ Homϕ(RI

A,M
I) to α(1).

Lemma 3.14. Let M be a ϕL-module over RI
A, with I as in 3.12 and let J := I1/q∩I.

The map that assigns to E ∈ Ext1
ϕ(RI

A,M) the element ϕE(e)− e ∈ MJ , where e is
any preimage of 1 ∈ RI

A, induces an isomorphism

Ext1
ϕ(RI

A,M) ∼= MJ/(ϕM − 1)(M I).

Proof. One checks that ϕE(e) − e is mapped to zero in RJ
A and hence ϕE(e) − e

indeed belongs to MJ . Let ẽ be another preimage of 1 ∈ RI
A, then e − ẽ lies in M I

and therefore ϕE(e)−e = ϕE(ẽ)− ẽ+ϕM(e− ẽ)−(e− ẽ). This proves that the map in
question is well-defined. Let v ∈MJ/(ϕM−1)(M I) and define Ev to have M I×RI

A as
its underlying RI

A-module with ϕEv(m, r) := (ϕM(m) + ϕL(r)v, ϕL(r)). The module
Ev is finitely generated over RI

A and ϕEv is ϕL-semi-linear. The linearised map
is an isomorphism by the five lemma and hence Ev ∈ Ext1

ϕ(RI
A,M). The element

e1 := (0, 1) is a preimage of 1 and satisfies ϕ(e1) − e1 = (v, 0), which proves the
surjectivity. It remains to show injectivity. A computation shows that Ev is the trivial
extension if v ≡ 0 and hence it suffices to show that any extension E is isomorphic
to Ev with v = ϕE(e) − e. Since RI

A is free and hence projective any extension of
RI
A by M I is split as a RI

A-module. Let s : RI
A → E be any RI

A-linear section. And
write x ∈ E as x = m+ s(f) = m+fs(1). Then ϕE(x) = ϕM(m) +ϕL(f)ϕE(s(1)) =
ϕM(m) + ϕL(f)(ϕE(s(1)) − s(1)) + ϕL(f)s(1). In particular, E is isomorphic to Ev
with v = ϕE(s(1))− s(1).

Lemma 3.15. Let M be a projective ϕL-module over RA with model over [r, 1) and
let s ∈ [r1/q, 1). Then the canonical morphism

[M [r,1) ϕL−1−−−→M [r1/q ,1)]→ [M [r,s] ϕL−1−−−→M [r1/q ,s]]

induced by the restrictions M [r,1) → M [r,s] (resp. M [r1/q ,1) → M [r1/q ,s] ) is a quasi-
isomorphism.
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Proof. The statement follows from 1.63 together with 3.13 and 3.14.

Lemma 3.16. Let M be an L-analytic (ϕL,ΓL)-module over RA with model over
[r0, 1). Then there exists 1 > r1 ≥ r0 such that for any 1 > r ≥ r1 the cohomology
H i
ϕL,Z

(M) is computed by the complex

CϕL,Z,[r,s] : M [r,s] (ϕL−1,Z)−−−−−→M [r1/q ,s] ⊕M [r,s] Z⊕(1−ϕL)−−−−−−→M [r1/q ,s]

for any s ∈ [r1/q, 1).

Proof. The complex computing the cohomology of M is the direct limit of the cor-
responding complexes for M [r,1) as r → 1. By a cofinality argument we may take the
colimit over r0

1/qn with n → ∞. We hence need to show that the restriction maps
(labeled as id below)

Cϕ,Z,[r,1) : M [r,1) M [r1/q ,1) ⊕M [r,1) M [r1/q ,1)

Cϕ,Z,[r1/q ,1) : M [r1/q ,1) M [r1/q2 ,1) ⊕M [r1/q ,1) M [r1/q2 ,1)

id id id id

induce quasi-isomorphisms. Following [Bel21] we do so in two steps. We show that
the restriction above is homotopic to the map

Cϕ,Z,[r,1) : M [r,1) M [r1/q ,1) ⊕M [r,1) M [r1/q ,1)

Cϕ,Z,[r1/q ,1) : M [r1/q ,1) M [r1/q2 ,1) ⊕M [r1/q ,1) M [r1/q2 ,1)

ϕL
ϕL ϕL ϕL

and the latter induces the desired quasi-isomorphism. One can check that the maps

pr1 : M [r1/q ,1) ⊕M [r,1) →M [r1/q ]

and
(0,− id) : M [r1/q ,1) →M [r1/q ,1) ⊕M [r,1)

induce a homotopy between ϕL and id. In order to see that ϕL induces a quasi-
isomorphism consider the left-inverse Ψ : CϕL,Z,[r1/q,1)) → CϕL,Z,[r,1) obtained by ap-
plying πL

q
ψLT in each degree of the complex. By 2.20 there exists r1 such that for

any r ≥ r1 the action of Z on the kernel of Ψ is invertible with continuous inverse
(note that the constant πL

q
does not change the kernel). In particular we obtain a

decomposition CϕL,Z,[r1/q ,1) = ϕL(CϕL,Z,[r,1))⊕ker(Ψ) as complexes of A-modules. We
claim that the (Z, ϕL)-cohomology of the second summand vanishes, which implies
the desired result. The vanishing of H0 and H2 is an immediate consequence of Z
being invertible on the kernel of ψLT . We prove that H1

ϕL,Z
((M [r,1))ψLT=0) vanishes.
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Consider (a, b) that satisfy Za+(1−ϕL)b = 0 then a = Z−1(ϕL−1)b = (ϕL−1)Z−1b
and obviously b = ZZ−1b. Setting x := Z−1b we see that (a, b) = ((ϕL − 1)x, Zx)
vanishes in H1. So far we proved that the cohomology is computed by the complex
CϕL,Z,[r,1) r ≥ r1. Consider the canonical morphism CϕL,Z,[r,1) → CϕL,Z,[r,s]. Up to
signs these complexes are the total complexes of the double complexes

M [r,1) M [r1/q ,1)

M [r,1) M [r1/q ,1)

ϕL−1

Z −Z

ϕL−1

(resp. for M [r,s])). By the Acyclic Assembly Lemma A.15 together with 3.15 we
conclude that these total complexes are quasi-isomorphic.

Definition 3.17. Let R be a topological ring complete with respect to a submulti-
plicative semi-norm containing a topologically nilpotent unit. A map between two
R-Banach modules f : M → N is called completely continuous if there exists a
sequence of finitely generated R-submodules Ni ⊂ N such that operator norms of

fi : M
f−→ N → N/Ni converge to zero with respect to fixed Banach norms on M,N

and the quotient seminorm on N/Ni.

Lemma 3.18. Let R → S be a bounded morphism of Banach-algebras over A, that
is completely continuous when viewing R, S as Banach modules over A. Let M be a
finitely generated R-Banach module such that S ⊗RM is an S-Banach module, then

M →M ⊗R S

is completely continuous as a morphism of A-Banach modules.

Proof. See [KL16, Remark 1.7].

Lemma 3.19. Let [r′, s′] ⊂ [r, s] ⊂ (0, 1) with r′ > r, s′ < s and r, r′, s, s′ ∈ |K×|.
The natural inclusions

R[0,s]
A → R[0,s′]

A

and
R[r,s]
A → R[r′,s′]

A

are completely continuous. 2

Proof. The first case is proved analogously to the second case with a slightly simpler
proof. By assumption there exist elements ρ, σ, ρ′, σ′ ∈ K attaining the absolute

values r, s, r′, s′ respectively. Write R[r,s]
A = A〈T/σ, ρ/T 〉 and take as Ni ⊂ R[r′,s′]

A

the subspace generated by the monomials T−i, . . . , 1, T, . . . T i. By expressing a series

2The assumption r, s, r′, s′ ∈ |K×| can be weakened to r, s, r′, s′ ∈
√
|K×| without any difficulties.

In our application K carries a non-discrete valuation and cofinality arguments allow us to choose
suitable intervals.
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f ∈ R[r,s]
A as an element of A〈T/σ′, ρ′/T 〉 and projecting modulo Ni we obtain the

estimate

|f |A〈T/σ′,ρ′/T 〉/Ni ≤ max

(
r

r′
,
s′

s

)i+1

|f |A〈T/σ,ρ/T 〉.

By our assumption on the intervals max
(
r
r′
, s
′

s

)
< 1 and therefore the operator norms

of the composed maps R[r,s]
A → R[r′,s′]

A /Ni tend to zero.

Lemma 3.20. Let M [r,1) be a (ϕL,ΓL)-module over R[r,1)
A and let 0 < r < r′ ≤ s′ <

s < 1. Then the restriction M [r,s] →M [r′,s′] is completely continuous.

Proof. By definition M [r,s] is a finitely generated module over the Banach algebra

R[r,s]
A and M [r′,s′] = R[r′,s′]

A ⊗R[r,s]
A

M [r,s]. The result follows from 3.18 because the

natural inclusion R[r,s]
A → R[r′,s′]

A is completely continuous.

Theorem 3.21. Let A be K-affinoid and let M be an L-analytic (ϕL,ΓL)-module
over RA. Then the cohomology groups

H i
ϕL,Z

(M)

are finitely generated over A.

Proof. By Lemma 3.16 the cohomology can be computed on the level of M [r,s] for
r ≥ r1 and any s ∈ [r1/q, 1). Choose any subinterval [r′, s′] ⊂ [r, s] like in Lemma
3.20 satisfying in addition s ∈ [r′1/q, 1). The restriction M [r,s] → M [r′,s′] induces
completely continuous maps in each degree of CϕL,Z,[r,s] → CϕL,Z,[r′,s′] that are quasi-
isomorphisms by Lemma 3.16. By Lemma 1.10 in [KL16] the cohomology groups are
contained in a finitely generated A-module and hence themselves finitely generated
because A is Noetherian.

Theorem 3.22. Let A,B be K-affinoid and let M be an L-analytic (ϕL,ΓL)-module
over RA. Let f : A→ B be a morphism of K-affinoid algebras. Then:

(1) CϕL,Z(M) ∈ D
[0,2]
perf (A).

(2) The natural morphism CϕL,Z(M)⊗L
AB → CϕL,Z(M⊗̂AB) is a quasi-isomorphism.

Proof. By 3.21 the cohomology groups of CϕL,Z(M) are finitely generated and because
A is Noetherian quasi-isomorphic to a bounded above complex of finitely generated
projective A-modules by [Sta21, Tag 05T7] using that the category of finitely gener-
ated modules over a Noetherian ring is abelian. By A.5 RA is flat over A and hence
CϕL,Z(M) consists of flat A-modules. Combining both points we see that CϕL,Z(M)
is quasi-isomorphic to a complex

X → P1 → P2,
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where P1, P2 are projective and X = ker(P1 → P2) is flat using A.16. Then X is a
finitely generated submodule of a finitely generated module over a Noetherian ring
and hence even finitely presented. We conclude that X is finitely generated and
projective by [Sta21, Tag 00NX] and therefore CϕL,Z(M) ∈ D

[0,2]
perf (A). For the second

statement the proof of [KPX14] carries over verbatim using 1.56.

Remark 3.23. More precisely 3.22, 3.21 hold for CϕL,Z,I(M) for any I = [r, s] or
I = [r, 1) with r ≥ r1 and s ∈ [r1/q, 1).

Proof. The analogues of 3.21 and 3.22 (1) were proved implicitly. For 3.22 (2) the
same proof works when we replace M by M I the only subtlety being that in order
to apply [KPX14, 4.1.5] we need CϕL,Z,I(M⊗̂AB) ∈ D−perf (B), which we deduce by
using 3.21 requiring r ≥ r1, with r1 depending on M ! One can check that the same
r1 works for M⊗̂AB using that the (ϕL,ΓL)-action on B is trivial.

For the full analytic Herr cohomology we obtain a variant of 3.22. Because the
cohomology is defined by taking the invariants of the (ϕL, Z)-cohomology we cannot
formulate similar perfectness results (outside of the case e < p − 1) and we only
obtain a base change result in the flat case.

Remark 3.24. Let R → S be a flat morphism of commutative rings, G be a finite
group and W an R[G]-module. Then (S ⊗RW )G = S ⊗RWG

Proof. We can rewrite WG as WG = ker(W
⊕

(g−1)−−−−→
⊕

g∈GW ) and apply the exact
functor S ⊗R −.

Corollary 3.25. Let A,B be K-affinoid and let M be an L-analytic (ϕL,ΓL)-module
over RA. Let f : A→ B be a flat morphism of K-affinoid algebras. Then:

(1) The groups H i
ϕL,D(ΓL,A)(M) = H i

ϕL,Z
(M)ΓL are finitely generated and vanish

for i 6= 0, 1, 2.

(2) The natural morphism H i
ϕL,D(ΓL,A)(M)⊗AB → H i

ϕL,D(ΓL,A)(M⊗̂AB) is an iso-
morphism.

Proof. The first statement follows from 3.21 because A is Noetherian. For the second
statement we use 3.22 to conclude H i

ϕL,Z
(M)⊗A B = H i

ϕL,Z
(M⊗̂B) and taking ΓL-

invariants we obtain

H i
ϕL,D(ΓL,A)(M⊗̂AB) = (B ⊗A H i

ϕL,Z
(M))ΓL ,

using 3.24 and the fact that the ΓL action factors over Γn we have

(B ⊗A H i
ϕL,Z

(M))ΓL = B ⊗A H i
ϕL,Z

(M)ΓL = B ⊗A H i
ϕL,D(ΓL,A)(M).
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Corollary 3.26. Let M be an L-analytic (ϕL,ΓL)-module over RA. Assigning to an
affinoid subdomain Sp(A′) ⊂ Sp(A) the cohomology groups H i

ϕL,Z
(M⊗̂AA′) (resp.

H i
ϕL,D(ΓL,A)(M⊗̂AA′)) defines a coherent sheaf on Sp(A).

Proof. By [Bos14, 4/Corollary 5 p. 68] the map A′ → A is flat. Theorem 3.21 and
the base change property 3.22(2) assert that the sheaf is associated to the finitely
generated module H i

ϕL,Z
(M) and hence coherent. The second case is treated in the

same way with the base change formula from Corollary 3.25.
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3.4 ψ-cohomology of M/tLTM.

The following section is based on Sections 3.2 and 3.3 in [KPX14]. We adapt their
methods to our situation. The main results are Lemmas 3.29 and 3.30. The proofs
are adaptations of their counterparts Propositions 3.2.4 and 3.2.5 in [KPX14]. They
turn out to be more complicated due to the implicit nature of “the” variable Z
and the fact that by extending scalars to K some care is required when studying
the quotients R+

K/ϕ
n(T ) since K could contain non-trivial πnL-torsion points while

having the trivial ΓL-action. In the appendix we elaborate on crucial parts of the
argument whose details are left out in loc. cit.. Let Q1(T ) = ϕL(T )/T and Qn(T ) :=

ϕn−1(Qn−1(T )) for n ≥ 1. We will show in A.11 that R[r,s]
L /Qn can be identified with

the field Ln whenever the zeroes of Qn (i.e. the πnL-torsion points of the LT group
that are not already πn−1

L -torsion) lie in the annulus [r, s]. This is ΓL-equivariant

for the Galois action on Ln and ϕ : R[r,s]
L /Qn → R[rq ,sq ]

L /Qn+1 corresponds to the
inclusion Ln ↪→ Ln+1. When we extend coefficients to K we let ΓL act trivially

on the coefficients on RK . One has to be careful since R[r,s]
K /Qn is not necessarily

a field extension of K. It is in general only some finite étale K-algebra, which we
denote by En. It carries a ΓL-action induced from the action on RK . We can write
Qn = GnUn with some polynomial Gn, that is necessarily irreducible3 over L with
splitting field Ln and a unit Un ∈ (R[r,s]

K )×. En can now be explicitly described as

En = R[r,s]
K /Qn

∼= K[T ]/Gn
∼= K⊗LL[T ]/Gn

∼= K⊗LLn. Here R[r,s]
K carries its usual

ΓL-action while ΓL acts on the right-hand side via the right factor. We also need
similar elements on the level of D(Γ, K). For n ≥ n0 we define

Ln := Zn
∏
m

π−1
L Qm(Zn) = logLT (Zn).

Corollary 1.36 asserts that the ideal generated by ϕL(Zn) in D(Γn, K) does not
depend on the choice of variable and hence neither does the ideal generated by
ϕkL(Zn) = Zn

∏k
m=1Qm(Zn) nor the ideal generated by Ln.

Lemma 3.27. Let M r0 be a (ϕ,Γ)-module over Rr0
A . Let n1 = n1(r0) ∈ N0 be minimal

among n ∈ N such that |πL|
1

qn−1(q−1) ≥ r0. then:

� M r0/tLTM
r0 ∼=

∏
n≥n1

M r0/QnM
r0 .

� ϕm induces an A[Γ]-linear isomoprhism ϕm⊗1 : M r0/Qn⊗EnEn+m →M r0/Qn+m

Proof. The zeros of Qn are precisely the πnL-torsion points of the LT-group, which

are not already πn−1
L -torsion. Hence Qn is a unit in R[r,s]

K if and only if

v(n) := |πL|
1

qn−1(q−1) /∈ [r, s].

3Since it is the minimal polynomial of the πnL-torsion points of the Lubin-Tate group.
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Let w(s) be the largest integer n satisfying v(n) ≤ s. For a closed interval we obtain
from the Chinese remainder theorem

R[r0,s]
K /tLTR[r0,s]

K =
⊕

n1≤n≤w(s)

R[r0,s]
K /QnR[r0,s]

K

and
R[r0,s]
A /tLTR[r0,s]

A =
⊕

n1≤n≤w(s)

R[r0,s]
A /QnR[r0,s]

A .

The first statement follows by passing to the limit s→ 1. The second statement fol-
lows inductively from the case m = 1. Because the linearised map is an isomorphism
we have

M r0/Qn+1 = M r
1/q
0 /Qn+1 (3.1)

∼= ϕ∗L(M r0)/ϕL(Qn) (3.2)
∼= M r0/Qn ⊗En En+1, (3.3)

where for the last isomorphism we use Rr
1/q
0
K /Qn+1 = En+1 since the zeros of Qn+1 are

the preimages of the zeros of Qn under ϕ and we assumed that the latter are contained
in [r0, 1). We further used that ϕ induces the canonical inclusion En → En+1 and

that the identification R[r,s]
K /Qn

∼= En is Γ-equivariant as described in the beginning
of the chapter.

To keep notation light we define Mn := M r
n := M r/QnM

r and suppress the de-
pendence on r. This poses no problem as long as M admits a model over [r, 1) and
n ≥ n0(r) satisfying the conditions of 3.27.

Corollary 3.28. With respect to the decomposition

M r0/tLTM
r0 ∼=

∏
n≥n1

M r0/QnM
r0 =

∏
n≥n1

Mn

the map ϕL : M r0/tLTM
r0 →M r

1/q
0 /tLTM

r
1/q
0 takes (xn)n to (xn−1)n. The map ψLT :

M r
1/q
0 /tLTM

r
1/q
0 →M r0/tLTM

r0 takes (xn)n to (π−1 trEn/En−1(xn))n. Where

trEn/En−1 : M r0
n = M r0

n−1 ⊗En−1 En →M r0
n−1

is given by the trace induced from the trace Ln → Ln−1 on the second factor of
En ∼= K ⊗L Ln.

Proof. The statement for ϕL follows by combining both points in 3.27. The statement
for ψLT follows from A.11.

Lemma 3.29. Let M be an L-analytic (ϕL,ΓL)-module over RA. Then the cohomol-
ogy groups H i

ϕ,Z(M/tM) vanish outisde of degrees 0 and 1 and are finitely generated
A-modules.
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Proof. Assume M is defined over [r0, 1) and let n1 ∈ N such that M r0/tM r0 ∼=∏
n≥n1

Mn. We claim that ϕ − 1 is surjective which implies the vanishing of H2.
Let (xn) ∈

∏
n≥n1+1Mn. Set yn := −xn + xn−1 − xn−2 + · · · + (−1)n−n1xn1+1. Then

(ϕL − 1)(yn−1) = xn. On the other hand ker((ϕ − 1)[r,1)) = (M r/tM r)ϕ=1 ∼= Mn1(r)

and thus
ker(ϕ− 1) = lim−→

r>0

(M r/tM r)ϕ=1 ∼= lim−→
n

Mn.

Next consider the complex

(lim−→
n

Mn)
Z−→ (lim−→

n

Mn).

Using 3.27 we can explicitly describe each module appearing in the direct limit as
Mn1 ⊗Ln1

Lm, where W := Mn1 is an A-module of finite type with a continuous
L-analytic A-linear ΓL-action and ΓL acts on the right factor via its natural action.
We claim that for m� 0 the natural map

[Mm
Z−→Mm]→ [(lim−→

n

Mn)
Z−→ (lim−→

n

Mn)]

is a quasi-isomorphism. By the normal basis theorem and Maschke’s theorem there
is for any pair m ≥ m′ an isomorphism of representations Lm ∼= Lm′ [Γm′/Γm] ∼=∏

η Lm′(η), where the product runs over all characters of Gal(Lm/Lm′). Hence for
n ≥ m as representations

Mn1 ⊗Ln1
Ln ∼=

⊕
ρ

Mn1(ρ) =
⊕

ρ(Γm)=1

Mn1(ρ)⊕
⊕

ρ(Γm)6=1

Mn1(ρ),

where ρ runs through the characters of Γn1/Γn.
It suffices to show that there exists a m such that for any ρ with ρ(Γm) 6= 1 the action
of Z is invertible meaning that the only contribution to the cohomology comes from
the components corresponding to characters vanishing on Γm hence the claim. It
suffices to show that the action of Zm is invertible for some m � 0 hence we may
assume that Mn1 satisfies the estimates of A.14 with respect to the action of Γm. But
then A.14 asserts that the action of Zm on Mn1(ρ) is invertible for any ρ that is not
trivial on Γm. Since Mm is finitely generated over A we conclude that the complex
computing H i

ϕ,Z(M/tLTM) is quasi-isomorphic to a complex of finitely generated A-
modules and because A is Noetherian we conclude that the cohomology groups are
finitely generated.

Lemma 3.30. Let M be an L-analytic (ϕL,ΓL)-module over RA. Then

πL
q
ψLT − 1 : M/tLTM →M/tLTM

is surjective and its kernel viewed as a D(Γn, A)-module admits a 2-term finite pro-
jective resolution for any n ≥ n0.
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Proof. Let M r0 be a model of M with r0 >

∣∣∣∣π 1

qn0−1(q−1)

L

∣∣∣∣ such that n1(r0) ≥ n0. Con-

sider the decomposition M r0/tLTM
r0 ∼=

∏
n≥n1

Mn from 3.27 and let x = (xn)n≥n1 ∈∏
n≥n1

Mn. If z ∈ Mn+1 belongs to the image of Mn then its trace is qz since due
to our assumptions on r0 we have [Ln+1 : Ln] = q for every n ≥ n1. In particular
πL
q
π−1
L Tr(z) = z which via the explicit description of the ψLT -action in Corollary 3.28

should be read as “πL
q
ψLT (z) = z”. Using the explicit description of M r0/tLTM

r0

from 3.28 we shall in the following define a tuple y = (yn)
n≥n0(r

1/q
0 )
∈M r

1/q
0 /tLTM

r
1/q
0

with yn0(r1/q) = 0 such that (πL
q
ψLT − 1)y = x. This notation is abusive since in order

to make sense of πL
q
ψLT − 1 we need to view ψLT as a map

M r
1/q
0 /tLTM

r
1/q
0

πL
q
ψLT

−−−−→M r0/tLTM
r0 res−→M r

1/q
0 /tLTM

r
1/q
0

i.e. via the description from 3.28 a map∏
n≥n0(r

1/q
0 )

Mn

(
πL
q
π−1
L Tr)n

−−−−−−−→
∏

n≥n1(r0)=n0(r
1/q
0 )−1

Mn
res−→ 0×

∏
n≥n1(r

1/q
0 )

Mn →
∏

n≥n1(r
1/q
0 )

Mn.

The restriction map is given by mapping (xn mod Qn)n to (res(xn) mod Qn)n and
one can see that by the choice of n1(r0) the element Qn1 becomes invertible when

restricted to [r
1/q
0 , 1). In particular the n1(r0)-th component is mapped to zero and

the last map is given by ommiting this component. We define yn1(r0) = 0 and yn =∑n−1
j=n1

xj. One can see inductively that (πL
q
ψLT − 1)(y) = x. Indeed the map π

q
ψLT

corresponds to shifting indices and applying 1
q
-times the trace map by 3.28. Hence

we obtain (πL
q
ψLT − 1)(y) = (1

q
Tr(yn+1)− yn)n, which turns out to be (xn)n since in

every component Mn+1 we apply 1/qTr to elements in the image of Mn such that all
terms but xn+1 cancel out. Using the description of M r0/tLTM

r0 and the ψLT -action
we obtain

ker

(
πL
q
ψLT − 1

)
=

{
(mn)n |

1

q
Tr(xn+1) = xn

}
= lim←−

1
q

Tr(Ln+1/Ln)

Mn ⊗Ln Ln+1.

By 1.36 (after base change from K to A) we have D(Γn1 , A)/Zn ∼= A[Γn1/Γn] and we
obtain

lim←−
1
q

Tr(Ln+1/Ln)

Mn ⊗Ln Ln+1
∼= lim←−

n

Mn1 ⊗A D(Γn1 , A)/Zn (3.4)

= Mn1 ⊗A lim←−
n

D(Γn1 , A)/Zn (3.5)

= Mn1 ⊗A D(Γn1 , A)/Ln1 . (3.6)

using that Mn1 is finitely presented over A due to being finitely generated over a
Noetherian ring and that (A[Γn1/Γn])n≥n1 is Mittag-Leffler due to having surjective
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transition maps consisting of free and hence flat A-modules to apply A.12. In the last
equality we use the relationship (1.3) and use 1.57 via transport of structure along
R+
A
∼= D(Γn1 , A) since under the map T 7→ Zn1 the element tLT is mapped precisely

to Ln1 . This isomorphism is Γn1-equivariant with respect to the diagonal action. We
have a naive resolution

Mn1 ⊗A D(Γn1 , A)/Ln1 = cok(Mn1 ⊗A D(Γn1 , A)
id⊗Ln1−−−−→Mn1 ⊗A D(Γn1 , A)).

We shall prove that each factor of this resolution is finite projective with respect to
the diagonal action, which will complete the proof. Using A.21 applied to the algebras
D(Γm, A) ⊂ D(Γn1 , A) ⊂ D(Γn0 , A) we are reduced to proving that each factor is
finite projective over D(Γm, A) for some m ≥ n0. We remark at this point that
Mn1 is projective over Rr0

A /Qn due to the projectivity of M r0 and hence projective
over A since Rr0

A /Qn is free over A. Because Mn1 is finitely generated projective
over A, we can choose some finitely generated projective complement Nn1 which we
view with the trivial ΓL-action, such that Mn1 ⊕ Nn1

∼= Ad and we endow the left-
hand side with the norm corresponding to the sup-norm of the Banach norm on
the right side with respect to some basis e1, . . . , ed. By an analogue of Lemma 1.71
for finitely generated A-modules with A-linear L-analytic ΓL-action we may assume
that ||Zm||Mn1⊕Nn1

< ε < 1 after eventually enlarging m and the D(Γm, K)-action
extends to an action of Drl(Γm, K) for any l ≥ l0 with a suitable l0 ∈ N. By the
same reasoning as in the proof of 2.10 the action extends to a continuous action of
Drl(Γm, A) := A⊗̂KDrl(Γm, K).4 Consider the maps

d⊕
i=1

D(Γm, A)ei → (Mn1 ⊕Nn1)⊗A D(Γm, A) (3.7)

Φ : f(Zm)ei → f(Zm) · (ei ⊗ 1) (3.8)

Ψ : f(Zm)ei → ei ⊗ f(Zm) (3.9)

By construction Φ is equivariant for the diagonal action while Ψ is a topological
isomorphism. It remains to conclude that Φ is an isomorphism and for that purpose
it suffices to show that

Φ ◦Ψ−1 : D(Γm, A)d → D(Γm, A)d

is an isomorphism. By passing to the limit it suffices to show that for any rl > ε the
induced map

Φ ◦Ψ−1 : Drl(Γm, A)d → Drl(Γm, A)d

is an isomorphism. We henceforth assume rl > ε in particular we may find δ < 1
such that ε = rlδ.

5 Let λ = (λ1, . . . , λd) ∈ Drl(Γm, A)d and let λi ∈ DQp,rl(Γm, A)

4The precise value rl = p
− 1

pl is not relevant in the following. One could replace rl by any sequence
converging to 1, that is bounded below by rl0 .

5This choice of δ is a technicality in order to obtain a strict bound with respect to the quotient
topology in (3.15).
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be lifts. We wish to show ‖Φ ◦ Ψ−1 − id‖Drl
(Γm,A)d < 1. For that purpose we view

the D(Γm, A)-action as a DQp(Γm, A) action that factors over the natural projection
DQp(Γm, A)→ D(Γm, A). This allows us to define analogously

ΦQp ,ΨQp :
d⊕
i=1

DQp(Γm, A)ei → Ad ⊗A DQp(Γm, A),

given on Dirac distributions by ΦQp(γei) = γ(ei ⊗ 1) and ΨQp(ei ⊗ γ) = γei. Ev-
idently ΨQp is an isomorphism. We denote by ‖·‖rl the norm introduced in 1.45.
Let γ1, . . . , γh be a Zp-Basis of oL and let b = (γj − 1)j. Recall that we have
‖γj − 1‖rl = rl < 1 by definition and hence also ‖γj‖rl = 1. We first show

‖ΦQp ◦Ψ−1
Qp(ei ⊗ bk)− ei ⊗ bk‖ ≤ εr

|k|−1
l ≤ δr

|k|
l < r

|k|
l

for any k ∈ Nh
0 . The assumption on ε guarantees

(γi − 1)(x⊗ y) = (γi − 1)x⊗ γiy + x⊗ (γi − 1)y

has operator norm ≤ rl, which allows us to reduce the computation by induction on
|k| (the case k = 0 being trivial) . Assume bk = (γj − 1)bk′ with |k′|+ 1 = |k|. We
compute

ΦQp ◦Ψ−1
Qp(ei ⊗ bk)− ei ⊗ bk (3.10)

= bk(ei ⊗ 1)− ei ⊗ bk (3.11)

= (γj − 1)bk′(ei ⊗ 1)− ei ⊗ (γj − 1)bk′ (3.12)

= (γj − 1)(ΦQp ◦ΨQp)(ei ⊗ bk′)− (γj − 1)(ei ⊗ (bk′))− (γj − 1)ei ⊗ γjbk′ (3.13)

= (γj − 1)([ΦQp ◦Ψ−1
Qp − id](ei ⊗ bk′))− ((γj − 1)ei)⊗ γjbk′ . (3.14)

Assuming that the corresponding estimate holds for bk′ we obtain

‖(ΦQp ◦Ψ−1
Qp − id)(ei ⊗ bk)‖ ≤ sup(rl‖(ΦQp ◦Ψ−1

Qp − id)(ei ⊗ bk′)‖, εr|k
′|

l ) ≤ δr
|k|
l .

In conclusion for each λi and any lift λi thereof we have

‖(ΦQp ◦ΨQp
−1 − id)(ei ⊗ λi)‖ < ‖λi‖rl .

More precisely our proof shows

‖(ΦQp ◦ΨQp
−1 − id)(ei ⊗ λi)‖ ≤ δ‖λi‖rl .

Hence the corresponding estimate with respect to the quotient norm ‖·‖rl of ‖·‖rl on
D(Γm, A) namely

‖(Φ ◦Ψ−1 − id)(ei ⊗ λi)‖ ≤ δ‖λi‖rl < ‖λi‖rl (3.15)

remains valid. By a geometric series argument Φ ◦Ψ−1 is an isomorphism forcing Ψ
to also be an isomorphism.
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Lemma 3.31. Let m ∈ N, C0 := |p|q/(q−1)e and C0 ≤ r ≤ s < 1. We denote by |·|s
the s-Gauss norm on R[r,1]

K . Then there exists a constant such that

|ψ(T−m)|s ≤ C|T−m/q|s.

Proof. By [FX12, Lemma 2.7] there exists a constant C such that |ψ(T−m)|s ≤
C|T−m|s1/q ≤ C|T |−m/qs .

Theorem 3.32. Let M be a (ϕ,Γ)-module over RA. Then M/(ψ − 1) is a finitely
generated A-module.

Proof. Let M r0 be a model of M over [r0, 1) with r0 ≥ C0. Define r := r
1/q2

0 . Let
e′1, . . . e

′
n be generators of M r. By assumption M rq is a projective module generated

by ei := ϕ(e′i). We can hence find N rq satisfying N rq ⊕ M rq ∼=
⊕

iRrq

A ei =: E.
We denote by |·|s the s-Gauss norm on the free module E and denote by the same
symbol the restriction of said norm to M rq viewed as a submodule of E. Let Cs
be the operator norm of the canonical projection E → M rq with respect to the s-
Gauss norm. Because the ei and e′i generate M rq we may find a Rrq

A valued matrix
F ′ satisfying ej =

∑
i F
′
ije
′
i. Similarily we can chose a matrix G with values in Rrq

A

satisfying e′j =
∑

iGijei. Setting F := ϕ(F ′) we compute

ϕ

(∑
i

ciei

)
=
∑
i

ϕ(cj)ϕ(ei) =
∑
i

(
ϕ(ci)ϕ

(∑
j

F ′ije
′
i

))
=
∑
i

(∑
j

Fijϕ(cj)

)
ei

(3.16)

ψ

(∑
i

ciei

)
=
∑
i

ψ

(
ci

(
ϕ

(∑
j

Gijei

)))
=
∑
i

(∑
j

ψ(ci)Gijei

)
. (3.17)

Let 0 < ε, let a, b ∈ R and let I ⊂ R∪{±∞} be an interval. Any element of the free
module E can be written as a convergent series v =

∑n
j=1

∑
i∈Z aijT

iej. This allows
us to define the A-linear map

PI(v) :=
∑
j

∑
i∈I∩Z

aijT
iej.

By abuse of notation we denote the induced map

M rq ι
↪−→ E

P[a,b]−−−→ E
proj−−→M rq

by the same symbol. The image of P[a,b] is clearly a finitely generated A-submodule
of M rq generated by the elements T iej with j = 1, . . . , n and i ∈ [a, b] ∩ Z. Given
v ∈ F we can write

v =
∑
j

∑
i<a

aijT
iej +

∑
j

∑
i∈[a,b]∩Z

aijT
iej +

∑
j

∑
i>b

aijT
iej

= P[−∞,a)(v) + P[a,b](v) + P(b,∞](v).
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Define v− := P[−∞,a)(v) and v+ := P(b,∞](v). The decomposition above becomes

v = v− + P[a,b](v) + v+.

We now define λ : M rq →M rq via

λ(v) := proj v− − π

q
proj(ϕ(v+)).

We compute

v − P[a,b](v) + (ψ − 1)(λ(v)) (3.18)

= proj(v− + v+) + (ψ − 1)(proj v− − π

q
proj(ϕ(v+))) (3.19)

= projψ((v−)) + proj(
π

q
ϕ(v+)) (3.20)

= proj

(∑
lj

∑
i<a

Gljψ(aijT
i)ej

)
+ proj

(∑
lj

∑
i>b

π

q
Fljϕ(aijT

i)ej

)
. (3.21)

Next we shall estimate both summands of (3.21). For the left-hand side

Cr max
lj

sup
i<a
|Gljψ(aijT

i)|r ≤ max
j

sup
i<a

C||G||r|aijψ(T i)| (3.22)

≤ C max
j

sup
i<a
|aij||q2T i/q|r (3.23)

(3.24)

≤ CC1 max
j

sup
i<a
|aijT iT i(q

−1−1)| (3.25)

≤ CC1|v|r|T a(q−1−1)|r (3.26)

≤ C̃|v|rra(q−1−1) (3.27)

where C is a suitable constant, C1 is the constant from 3.31 and C̃ = CC1. For a
small enough we have

C̃|v|rra(q−1−1) ≤ |v|rε. (3.28)

For the right-hand side of (3.21) we have

Cr max
lj

sup
i>b
|π
q
Fljϕ(aijT

i)|r ≤ max
j

sup
i>b

C||F ||r|aijϕ(T i)|r

≤ C max
j

sup
i>b
||F ||r|aijT i|r

≤ C||F ||r|v|r|T b|r

where again C is some suitable constant (not necessary equal to the previous con-
stant) and we use the estimate |ϕ(T i)|r ≤ |T i|rq ≤ |T iq|r since ϕ(T ) ∈ T + oL[[T ]].
For b large enough we can have

C||F ||r|v|r|T b|r ≤ |v|rε. (3.29)
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We now show that the series w :=
∑

k vk with v0 = v and vn+1 = vn − P[a,b](vn) +
(ψ − 1)λ(vn) converges and satisfies

v − P[a,b](w) + (ψ − 1)(λ(w)) = 0.

By choosing a small enough and b large enough we can ensure that |vn+1|r ≤ |vn|rε.
Because we chose ε < 1 this means that vk is a zero-sequence with respect to the
r-Gauss norm. We next show that this series converges with respect to any s-Gauß
norm for s ∈ (r1/q, 1). Arguing analogously for the constants Cs and the operator
norms ‖G‖s (resp. ‖F‖s) one concludes that we may find a′ < a and b′ > b (depending
on s but independent of v) such that the analogues of (3.28) and (3.29) hold. By
splitting the summands in (3.21) into four parts namely the partial sums i < a′, a′ ≤
i < a and respectively i > b′ and b′ ≥ i > b, it remains to estimate the summands
corresponding to the intervals [a′, a) and [b, b′). One checks that the s-Gauß norm of
these summands can be bounded by C(s)|v|r with a suitable constant C(s) independent
of v. Hence we obtain |vn+1|s ≤ max{ε|vn|s, C(s)|vn|r}, which means that vn is also
a zero-sequence with respect to the s-Gauß norm for s ∈ (r1/q, 1). This means that
vn tends to zero with respect to the [r, s]-norms for any s ∈ (r1/q, 1). Therefore w
converges with respect to the Fréchet topology on M rq . We compute

P[a,b](w)− (ψ − 1)λ(w) =
∑
n≥0

P[a,b](vn)− (ψ − 1)λ(
∑
n≥0

vn) (3.30)

=
∑
n≥0

vn − vn+1 (3.31)

= v0 = v. (3.32)

This in turn implies that any v ∈M rq can be represented modulo ψ−1 by an element
in the image of P[a,b]. This implies that M rq/(ψ−1) is finite over A. Finally let v ∈M.
Then v belongs to some M s with 1 > s ≥ r0. Then take m large enough such that
ψmv belongs to M rq . We deduce that ψmv and v are congruent modulo ψ − 1 and
ψmv is represented by an element in the image of P[a,b]. Therefore M/(ψ− 1) is finite
over A.

Remark 3.33. The same result holds for cψ for any constant c.

Proof. Apply 3.32 to a module with ϕL-action twisted by c−1.

Lemma 3.34. There exists n� 0 such that ψ − 1 : t−nLTM → t−nLTM is surjective.

Proof. Because M is projective and hence torsion-free, t−nM can be viewed as a RA

submodule (isomorphic to M) of M [1/t]. Furthermore the formula ϕ(tLT ) = πLtLT
allows us to extend ϕ and ψ to t−nM. We use the notation from the proof of theorem
3.32. Note that replacing M with t−nM replaces the matrices F and G with π−nL F
and πnLG. In the proof of 3.32 we implicitly showed that M is generated by #Z∩ [a, b]
elements. This number is evidently zero, if a = b /∈ Z. Hence it suffices to show that
there exists a choice of a such that

C1|πnL|||G||ra(q−1−1) ≤ ε (3.33)
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and
C2|π−nL |||F ||rr

a ≤ ε (3.34)

with some suitable constants Ci independent of n and a. We can replace the first
inequality by

Cq
1 |π

qn
L |||G||

qra(1−q) ≤ εq (3.35)

and multiply it with the second inequality to obtain

Cq
1C2|πL|(q−1)n||G||q||F ||ra(2−q) ≤ εq+1. (3.36)

Chosing any a /∈ Z such that (3.33) is satisfied for any n ∈ N, we can see that (3.36)
is satisfied for n � 0, because |πL|(q−1)n converges to 0 for n → ∞ and all other
terms are independent of n. Obviously (3.33) implies (3.35) while (3.36) and (3.35)
imply (3.34).

3.5 Comparison between H1
ϕL,Γn

and Ext1
an

In this section we simplify the notation and consider U = Γn for an n ≥ n0 and write
Z for the variable Zn ∈ D(ΓL, K). We denote by α(−) := log(χLT (−))/πnL the chart
used to indentify U with oL.

Theorem 3.35. Let M,E be L-analytic (ϕL,ΓL)-modules over RA that fit in an
exact sequence

0→M → E → RA → 0.

Let e be a preimage of 1 in E then e 7→ ((ϕL− 1)e, Ze) gives a well-defined injection

Θ : Ext1
an(RA,M)→ H1

ϕL,Z
(M),

whose image is contained in H1
ϕL,D(ΓL,K)(M) inducing a bijection

Ext1
an(RA,M)→ H1

ϕL,D(ΓL,K)(M).

Proof. Since all modules involved are L-analytic, the morphisms between them are
evenD(ΓL, K)-linear. Because 1 is invariant under the action of ϕL and U the element
((ϕL−1)e, Ze) lies in M×M and it is clear that ∂2((ϕL−1)e, Ze) = 0. If ẽ is another
preimage of 1 then e− ẽ lies in M and therefore ((ϕL − 1)e, Ze)− ((ϕL − 1)ẽ, Zẽ) =
((ϕL − 1)(e − ẽ), Z(e − ẽ)) = ∂1(e − ẽ). Note that for any γ ∈ ΓL the element γe is
yet another preimage of 1 and the above computation shows that the cocycles (ϕL−
1)e, Ze) and γ(ϕL − 1)e, Ze) differ by a coboundary, which proves the ΓL-invariance
of ((ϕL − 1)e, Ze)). For the injectivity let E be an extension such that ((ϕL−1)e, Ze)
vanishes in H1. Then there exists d ∈ M such that ((ϕL − 1)(e− d), Z(e− d)) = 0.
That means e − d ∈ E is a preimage of 1 ∈ RA fixed by ϕL and U, which can be
modified to be (ϕL,ΓL)-invariant by replacing it with 1

[ΓL:U ]

∑
γ∈ΓL/U

γ(e − d) and
therefore induces a section of E → RA, which shows injectivity.
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For the surjectivity let (a, b) ∈ H1
ϕL,D(ΓL,K)(M). We first explain how to construct

an L-analytic coycle of the semigroup ϕN0
L × ΓL with values in M. In the following

we identify σ with its corresponding Dirac distribution. We obtain σ − 1 = ZGσ(Z)
with a suitable power series Gσ ∈ oKJZK. Note that the map σ 7→ Gσ(Z)b defines a
1-cocycle c : U →M as for τ ∈ U we have

στ − 1 = σ(τ − 1) + (σ − 1) = ZδσGτ (Z) + ZGσ(Z).

We extend it to the whole group ΓL using 1
[ΓL:U ]

-times the corestriction (defined

in [BF17, Definition 2.1.2]) such that the restriction of c to U is the cocycle we
started with. Finally we define an extension of M by RA by setting E = M ×RA as
RA-modules with actions σ((m, r)) = (σm+(σr)c(σ), σr) and (ϕE(m, r) = (ϕM(m)+
ϕL(r)a, ϕL(r))). In order to show that this extension is L-analytic we need to show
that the function σ 7→ c(σ) is L-analytic. It suffices to show that for m ∈ M [r,s]

for any interval [r, s] and a sufficiently small open subgroup U ′ ⊂ U the orbit map
σ 7→ σm restricted to U ′ is L-analytic. Recall that σ acts on m via the operator

η(α(σ), Z)

for some fixed n ∈ N depending on U and we abbreviate x := α(σ). We wish to show
that the series

Gσ(Z)m = (η(x, Z)− 1)/Zm =
∞∑
k=1

(xΩ logLT (Z))k

k!Z
m

converges on some ball |x| ≤ πjL, which via the chart χLT corresponds to the desired

subgroup U ′. For that purpose choose j such that || (Ω logLT (Z)πjL/Z)k

k!
||M [r,s] converges to

zero for k →∞. The choice of j is possible because the series exp(T ) has non-trivial
radius of convergence and the operator norm of logLT (Z)/Z ∈ D(U,K) acting on
M [r,s] is bounded. It remains to show that the image of E is the original element (a, b).
We may choose e = (0, 1) as an explicit preimage of 1. By construction (ϕ − 1)e =
(a, 0). It remains to show Ze = (b, 0). For σ ∈ U we compute (σ−1)(e) = (Gσ(Z)b, 0).
Recall that the action of D(ΓL, K) is obtained by continuous extension of the K[ΓL]
action and that the action of Z ∈ D(U,K) agrees with the action of any X ∈
DQp(U,K) that projects to Z. Choose such an element and express it as a convergent
series

X =
∑
k∈Nd0

akb
k,

where b = (γi − 1, . . . , γd − 1) is a Zp-basis of U. The series defining X converges a
fortiori in D(U,K) by definition of the quotient topology and since γi− 1 is given by
the power series η(α(γi), Z) − 1 evaluating at Z = 0 shows that necessarily a0 = 0.
We set Gi(Z) := Gγi(Z). Let G := (G1, . . . , Gd) such that the image of bk under the
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projection proj : DQp(U,K)→ D(U,K) is (ZG1(Z), . . . , ZGd(Z))k. We compute

Z = proj(X) (3.37)

=
∑

06=k∈Nd0

akZ
|k|Gk (3.38)

= Z(
∑

06=k∈Nd0

akZ
|k|−1Gk) (3.39)

We claim that the inner sum µ :=
∑

06=k∈Nd0
akZ

|k|−1Gk converges with respect to the

Fréchet topology to an element of D(U,K) which satisfies µZ = Z by construction
and hence has to be 1 since D(U,K) is a domain. For the convergence we remark
that the map λ 7→ Zλ is an injective continuous operator with finite-dimensional
(hence Hausdorff by 1.10) cokernel.
In particular ZD(U,K) is itself a Fréchet space and we conclude that λ 7→ λZ is
a continuous surjection D(U,K) → ZD(U,K) between Fréchet spaces and thus a
homeomorphism by the open mapping theorem. We further compute for k 6= 0

bk(e) = (Z |k|−1Gkb, 0),

which can be seen as follows. Without loss of generality assume k1 6= 0. Since U
is commutative we may first apply γ1 − 1 and obtain (γ1 − 1)(e) = (G1(Z)b, 0) by
construction. The resulting element belongs to the image of M under the natural
inclusion M → E and hence γi − 1 acts via multiplication by ZGi(Z). Putting
everything together we conclude

Ze =

 ∑
06=k∈Nd0

akZ
|k|−1Gkb, 0

 = (µb, 0) = (b, 0).
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Chapter 4

Lubin-Tate deformations and
Iwasawa cohomology

In this chapter we study deformations of (ϕL,ΓL)-modules with the distribution alge-
bra and their relationship to Iwasawa cohomology. We shall establish a comparison
between the (Ψ, Z)-cohomology of Dfm(M) and the Iwasawa cohomology ofM which
is defined as the cohomology of the complex

CΨ(M) : M
Ψ−1−−→M

concentrated in degrees [1, 2]. This is motivated by the fact that for an étale module
(coming from a representation V ) this cohomology is closely related to the Iwasawa
cohomology of V. Roughly speaking the deformation is a family of (ϕL,ΓL)-modules
parametrised by the Fréchet-Stein algebra D(ΓL, K) and specialising to a point mx ∈
Sp(D(ΓL, K)) corresponds to twisting the module at x = 0 by an analytic character.
As before we run into the problem that, contrary to the cyclotomic case, the inclusion
Γn0 ⊂ ΓL does not split and hence we restrict a priori to this subgroup.

4.1 Basic definitions

For now fix U := Γm for some m ≥ n0. We shorten our notation and write D :=
D(U,K) and pick an affinoid cover D = lim←−nDn that arises as a base change of
an affinoid cover of D(U,L) with U -stable terms (e.g. Dn := Drn(U,K) for a non
trivial sequence rn converging to 1 from below). We further abbreviate D(ΓL) :=
D(ΓL, K) = Z[ΓL] ⊗Z[U ] D(U,K) and Dn(ΓL) := Z[ΓL] ⊗Z[U ] Dn. In this chapter let
M be an L-analytic (ϕL,ΓL)-module over RA with a model over [r0, 1). As before
we denote by Z the preimage of a coordinate T under the Fourier isomorphism. We
denote by Ψ the left-inverse operator to ϕL i.e. Ψ = πL

q
ψLT . We henceforth omit the

subscript ψLT and write ψ := ψLT .

Definition 4.1. We define for r ≥ r0

Dfmn(M r) := Dn⊗̂K,πM r
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and
Dfm(M r) := lim←−

n

Dfmn = D⊗̂K,πM r.

We endow Dfmn(M r) (resp. Dfm(M r)) with an action of ϕL and U via γ(a⊗m) =
δγ−1a ⊗ γm and ϕL(a ⊗ m) := a ⊗ ϕL(m). We further define DfmΓL

n (M r) (resp.
DfmΓL

n (M r)) as Dn(ΓL)⊗̂M r (resp. D(ΓL)⊗̂M r) with analogously defined actions.

In particular Dfm(M r) can be viewed as a sheaf on (the rigid analytic space associ-
ated to) D. We can also define

Dfmn(M) := Dn⊗̂K,iM

but passing to Dfm poses a problem, since inductive tensor product topologies do not
necessarily commute with projective limits. However the inductive tensor product
topology is the most reasonable choice for a tensor product of an LF-space and a
Fréchet space. We shall avoid this problem by working on the level of models.

Proposition 4.2. DfmΓL
n (M r) is an L-analytic family of (ϕL,ΓL)-modules over

Sp(Dn(ΓL))×K Sp(A) i.e. an L-analytic (ϕL,ΓL)-module over R[r,1)

Dn(ΓL)⊗̂A.

Proof. By construction DfmΓL
n (M r) is finite projective of the same rank as M. The

actions are semi-linear (in particular Dn⊗̂A-linear) because

γ(λµ⊗ am) = (λ⊗ a)(δ−1
γ µ⊗m)

for any λ ∈ D,µ ∈ Dn, a ∈ A and m ∈ M r. Note that semi-linearity refers to the
action of λ⊗a⊗f ∈ RDn⊗̂A via multiplication (λ⊗a⊗f)(µ⊗m) = λµ⊗afm, where
λ ∈ D,µ ∈ Dn, a ∈ A, f ∈ RK ,m ∈M r. L-analyticity (and hence continuity) follows
from 1.43 once we establish that the U -action on Dn (via inverted multiplication)
is locally L-analytic. By our assumptions the Dirac distribution corresponding to
u ∈ U admits an expansion δu = η(a(u), Z) with a suitable a(u) ∈ oL. Fixing λ ∈ Dn

its orbit map is given by u 7→ η(−a(u), Z)λ. Expanding out the terms shows that
the orbit map is locally L-analytic. The ϕL and ΓL-actions clearly commute and the
linearised ϕL-map is invertible, since it is the linear extension of ϕMr .

Remark 4.3. Dfm(M r),Dfmn(M r) carry two different D-actions. One induced
by the scalar action in the left tensor component, that we shall call scalar action.
The other one induced by the L-analytic action defined in 4.1, which we shall call
diagonal action. Note that Dfm(M r) is only a (ϕL, U)-module but not a (ϕL,ΓL)-
module. (Because there is no action of the full group ΓL.) Instead we can restrict the
action to the subgroup U ⊂ ΓL which is still enough to make sense of the operator
Z ∈ D(U,K) and the complex Cϕ,Z(Dfm(M r)) (resp. Cϕ,Z(Dfmn(M r))). We use
a subscript (−)diag to emphasize that the action is given diagonally when ambiguity
can arise.
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Another subtlety is the fact that the induced diagonal action of D on Dfm(M r), in
particular, the diagonal action of Z is harder to understand. It is neither given by
Z ⊗ Z nor by Zi ⊗ Z, where Zi denotes the action induced by the inversion on U .
This problem already occurs in the cyclotomic case where Z = γ − 1 and

(γ − 1)diag(a⊗m) = δγ−1a⊗ γm− a⊗m

while

(γ − 1)a⊗ (γ − 1)m = δγ−1a⊗ γm− a⊗ γm− δγ−1a⊗m+ a⊗m.

4.2 Coadmissibility of Iwasawa cohomology CΨ(M) over a
field.

For technical reasons that will become clear in the proof of 4.24 we require that
the complex of D-modules CΨ(M) has coadmissible cohomology groups to obtain a
comparison between the Iwasawa cohomology and the cohomology of Dfm(M). Our
Theorem 5.8 asserts that this perfectness holds for so-called trianguline modules. In
chapter 6 we shall explore conjecturally how the étale case can be incorporated into
the picture. More precisely we show that it suffices to proof the statement in the
étale case to conclude that it holds for every (ϕL,ΓL)-module coming from RL.

Remark 4.4. The rings R+
K ,R

[r,1)
K ,RK , D(oL, K), D(oL, L) are Prüfer-domains (i.e.

every finitely generated ideal is invertible). In particular a module over the above rings
is flat if and only if it is torsion-free and any finitely generated torsion-free module
is projective.

Proof. Using the Fourier isomorphism [ST01, Theorem 2.3] this is [BSX20, Corollary
1.1.8].

Definition 4.5. We define the heart of M as

C(M) := (ϕM − 1)MΨ=1.

If there is no possibility of confusion we omit M and simply write C := C(M). For
each c ∈ K× we define a variant of the heart as

Cc(M) := (ϕM − c)M cΨ=1.

Remark 4.6. C is a D(ΓL, K)-submodule of MψLT=0, in particular C is D(ΓL, K)-
torsion-free. Furthermore we have for every c ∈ K× an exact sequence

0→Mϕ=c ι−→M cΨ=1 ϕ−c−−→ Cc(M)→ 0,

where ι is the inclusion.
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Proof. Cc(M) is a K[ΓL]-submodule since the actions of ΓL and ϕ (resp. Ψ) commute
and by continuity considerations it is also a D(ΓL, K)-submodule of M. Using Ψ◦ϕ =
id one concludes that Cc(M) is contained in MΨ=0 which is projective over RK(ΓL)
by 2.19 and, in particular, D(ΓL, K)-torsion-free. The exactness of the sequence on
the right is given by definition. It remains to see Mϕ=c∩M cΨ=1 = Mϕ=c i.e. Mϕ=c ⊂
M cΨ=1 for this purpose let m ∈ Mϕ=c then cm = ϕ(m) implies Ψ(ϕ(m)) = cΨ(m)
but then cΨ(m) = m.

The following lemma is a strengthening of [KPX14, Lemma 4.1.6]. We elaborate on
the proof for the convenience of the reader.

Lemma 4.7. Let r ∈ [0, 1). Any R[r,1)
K -module V of finite K-dimension admits a

resolution of the form
0→ F1 → F2 → V → 0,

where Fi are finite free R[r,1)
K -modules.

Proof. Let v1, . . . , vd be a K-basis of V. Consider the surjection (R[r,1)
K )d → V

mapping ei to vi. Since for each i the elements vi, T vi, T
2vi, . . . have to be lin-

early dependent we observe that there exists a polynomial f ∈ K[T ] such that

the structure map R[r,1)
K → End(V ) factors over R[r,1)

K /(f). Now take a factorisa-
tion of f viewed as an element in K〈T 〉 of the form ug, where u is a unit and
g is a Weierstraß polynomial and rewrite this decomposition as ug1g2, such that
the zeroes of g1 lie outside the annulus [r, 1) (i.e. g1 becomes a unit in R[r,1)

K )
and the zeroes of g2 are contained inside the annulus. Without loss of generality
we assume g2 = g. By the coadmissibility of R[r,1)

K and gR[r,1)
K
∼= R[r,1)

K we have

R[r,1)
K /(g) = cok(R[r,1)

K

g−→ R[r,1)
K ) = lim←−s cok(R[r,s]

K

g−→ R[r,s]
K ). For s large enough (such

that the zeroes of g are contained in the annulus [r, s]) we have by [Bos14, 3.3 Lemma

10] and the chinese remainder theorem R[r,s]
K /(g) ∼= K〈T 〉/(g). In particular the limit

stabilises for s large enough and we obtain R[r,1)
K /(g) ∼= K〈T 〉/(g). Recall that K〈T 〉

is a principal ideal domain by [Bos14, 2.2 Corollary 10]. By the elementary divisor
theorem we may find a free resolution of V as a K〈T 〉-module of the form

0→ K〈T 〉d1 → K〈T 〉d2 → V → 0

with some di ∈ N. Since K〈T 〉 is a principal ideal domain and R[r,1)
K is torsion free

we get via base change along the flat map K〈T 〉 → R[r,1)
K a resolution

0→ (R[r,1)
K )d1 → (R[r,1)

K )d2 → R[r,1)
K ⊗K〈T 〉 V → 0.

Because V is a R[r,1)
K /(g)-module we obtain R[r,1)

K ⊗K〈T 〉 V = R[r,1)
K /(g) ⊗K〈T 〉 V =

K〈T 〉/(g)⊗K〈T 〉V = V. We have therefore constructed the desired resolution of V.

Remark 4.8. Let N be a not necessarily L-analytic (ϕL,ΓL)-module over RK and
let n ≥ n0 such that Γn ∼= oL. Then

79



1. N cϕ=1 has finite K-dimension for any c ∈ K×.

2. If N is L-analytic and c ∈ K× then N cϕ=1[0] belongs to Db
perf(D(Γn, K)).

3. If N is L-analytic and c ∈ K× then N/(cψLT−1)[0] belongs to Db
perf(D(Γn, K)).

Proof. Restricting the residue pairing from 1.75 to N cϕ=1 we see that the pairing
factors over Ň/(cψLT − 1) which is finite-dimensional by 3.32. If N is L-analytic,
then Nϕ=1 and N/(cψLT−1) carry natural D(Γn, K)-module structures and are finite
dimensional over K by the above (resp. 3.32). Hence 2. and 3. follow from 4.7 by
transport of structure along R+

K
∼= D(Γn, K).

Proposition 4.9. Let c ∈ K×. The following are equivalent.

(i.) CcΨ(M) ∈ Db
perf(D(U,K)).

(ii.) M cΨ=1 is coadmissible and finitely generated as a D(U,K)-module.

(iii.) M cΨ=1 is finitely generated as a D(U,K)-module.

(iv.) Cc(M) is finitely generated as a D(U,K)-module.

Proof. (i.) =⇒ (ii.) follows from the fact that finite projective modules are au-
tomatically coadmissible and the latter form an abelian category. Hence MΨ=1 is
coadmissible as a cohomology group of a complex of coadmissible modules. Finite
generation follows from [BSX20, Lemma 1.1.9]. The implication (ii.) =⇒ (iii.) is
trivial. (iv.) follows immediately from (iii.) via the exact sequence from 4.6. Lastly
assume (iv.) then Cc(M) is a torsion-free module which is finitely generated. Since
D(U,K) is a Prüfer-domain we conclude that Cc(M) has to be finitely generated pro-
jective by Remark 4.4. From the exact sequence in 4.6 and by 4.8 2.) we conclude
that the bounded complex CcΨ(M) has cohomology groups belonging to Db

perf(D).

Then [Sta21, Tag 066U] implies that CcΨ(M) itself belongs to Db
perf(D).

In chapter 6 we will require some flexibility concerning the constant c.

Lemma 4.10. Let c ∈ K× and define a character ρ : L× → K× by ρ(πL) = c and
ρ|o×L

= 1. Then the identity induces a ΓL-equivariant isomorphism.

CΨ(M) ∼= CcΨ(M(ρ)).

Furthermore if M is L-analytic then so is M(ρ) and the isomorphism above is
D(ΓL, K)-equivariant.

Proof. Since the character ρ is trivial on o×L the identity is ΓL-equivariant. Further-
more we have ϕM(ρ)(m) = cϕM(m) and hence ΨM(ρ) = c−1ΨM which shows that the
identity induces a morphism of complexes. The second part of the statement follows
from the fact that ρ does not change the ΓL-action and hence it remains L-analytic
on M(ρ). The D(ΓL, K)-equivariance follows from continuity.
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Corollary 4.11. Let M be an L-analytic (ϕL,ΓL)-module over RK. Then the com-

plex CcΨ(M/tLT ) = [M/tLT
cΨ−1−−−→M/tLT ] is perfect.

Proof. Since twisting by a character that is trivial on o×L preserves the property that
M is L-analytic by 4.10 we may without loss of generality assume c = 1. Because the
complex is bounded it suffices to show that the cohomology groups are perfect. The
cohomology groups are precisely kernel and cokernel of Ψ−1 for which the statement
has been shown in 3.30.

4.3 Consistent complexes

When studying the Iwasawa cohomology CΨ(M) the conceptual approach is to view
the cohomology groups H i

Iw(M) as coherent sheaves on D(U,K). We do however
not know if M itself can be viewed as a sheaf on D(U,K) in a suitable sense and we
instead study the “sheaf” Dn 7→ CΨ(Dn⊗DM). We describe a framework for studying
complexes of D modules whose cohomology groups are coadmissible D modules. A
similar situation was studied by Berthelot and Ogus (cf. Appendix B in [BO78]) in
the case where A is a noetherian ring that is I-adically complete and An := A/In.
We adapt their setup for our purpose following [Pot13]. One can view a projective
system of Dn modules as a sheaf on the ringed site N (where O(n) = Dn) with
the indiscrete topology (such that only isomorphism are coverings and thus every
presheaf is a sheaf). In overblown terms given a projective system (An) of rings with
A := lim←−nAn we have a canonical morphism of topoi f : Sh(N, A•) → Sh(pt, A).
Where f∗ is just lim←−n and f ∗ will be described below. In order to describe the
cohomology groups of complexes of sheaves on both sides we need to understand the
respective derived functors. Fix a countable projective system (An)n∈N of rings and
denote by A their limit. We denote by mod(N, A) the abelian category of inverse
systems (Mn)n of abelian groups indexed by N such that each Mn is a An-module
and the transition maps Mn+1 → Mn are An+1-linear. Denote by Rlim the right-
derived functor of the functor (Mn) 7→ lim←−nMn taking values in D(A). Observe
that a morphism of complexes in mod(N, A) is a quasi-isomorphism if and only if
this is the case on every level and hence the projection to the n-th degree of the
projective system induces a functor D(mod(N, A)) → D(An). We denote the image
of C ∈ D(mod(N, A)) by Cn.

Lemma 4.12. Given C = (C•n)n ∈ D(mod(N, An)) we have a canonical distinguished
triangle

RlimC →
∏
n

C•n →
∏
n

C•n → RlimC[1]

in D(A). Its long exact sequence splits into short exact sequences

0→ R1 lim←−
n

H i−1(C•n)→ H i(RlimC)→ lim←−
n

H i(C•n)→ 0

Proof. See [Sta21, Tag 0CQD] together with [Sta21, Tag 0CQE].
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Now let M be an A module and consider S(M) := (An ⊗A M)n. By taking the
component wise base change of a morphism along A→ An this defines a right-exact
functor to mod(N, A) and we denote by LS : D−(A) → D−(mod(N, A)) its left-
derived functor. Here we remark that a complex in mod(N, A) is bounded above if for
some i0 the cohomology groups vanish in degree i ≤ i0 in every step of the projective
system. By construction (LSC)n ' An ⊗L

A Cn. We have constructed functors

D−(A)
LS−→
Rlim←−−−

D−(mod(N, A)).

One can check that lim←− and S(−) are adjoint and hence by [Sta21, Tag 0DVC] so
are their derived functors (restricted to the respective D−). Assume henceforth that
each An (but not necessarily A) is Noetherian. In this case it makes sense to speak
of the full triangulated subcategory Dft(An) of objects in D(An) whose cohomology
groups are An-finitely generated (cf. [Sta21, Tag 06UQ]).

Definition 4.13. Let C ∈ D−(mod(N, A)).

1. We call C quasi-consistent if An ⊗L
An+1

Cn+1 → Cn is an isomorphism (in
D(An)) for every n ∈ N.

2. C is called consistent if it is quasi-consistent and Cn ∈ Dft(An).

We denote by D−con(mod(N, A)) the full subcategory of D−(mod(N, A)) of consistent
objects.

The following result is [BO78, Corollary B.9].

Remark 4.14. If A is Noetherian and I-adically complete for some ideal I, then LS
and Rlim induce an equivalence of categories

D−ft(A) ∼= D−con(mod(N, A)).

We now specialise to the situation where A is a Fréchet-Stein algebra. We denote
by D−C (A) the full triangulated subcategory of objects in the bounded above derived
category whose cohomology groups are coadmissible A-modules. This makes sense
by [Sta21, Tag 06UQ] because an extension of two coadmissible modules is again coad-
missible and hence the category of coadmissible modules is a weak Serre-subcategory
of the category of all A-modules.

Proposition 4.15. Let A = lim←−An be a Fréchet-Stein algebra then the functor S is
exact and the adjoint pair S a Rlim restricts to an equivalence of categories

D−C (A) ∼= D−con(mod(N, A))

Proof. By Lemma 1.55 A → An is flat and hence S is exact. Flatness also implies
that the functors are well-defined since for a complex C of modules with coadmissible
cohomology we have An ⊗A H i(C) ∼= H i(An ⊗A C) and the left-hand side is finitely
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generated by assumption. On the other hand if we have (Cn)n representing an object
in D−con(mod(N, A)) then due to flatness of An over An+1 and quasi-consistency the
natural morphism An⊗An+1 H

i(Cn)→ H i(Cn+1) is an isomorphism for every n. The
assumption that (Cn)n is consistent asserts that (H i(Cn))n is a coherent sheaf in the
sense of Schneider and Teitelbaum and thus lim←−n(H i(Cn)) is a coadmissibleA-module.

The key observation of the proof is that lim1(H i(Cn)) = 0 for any quasi-consistent C
and any i by 1.55. This applied to the exact sequence in 4.12 shows that H iRlim(Cn)
is coadmissible and hence the functor is well-defined. The same observation allows
us to conclude that the natural maps (obtained from the adjunction) S(RlimCn)→
(Cn)n and M → Rlim(S(M)) are quasi-isomorphism. We have

H i(S(RlimCm)) = (An ⊗A H iRlimCm)n = (An ⊗A lim←−
m

H i(Cm))n = (H i(Cn))n

using flatness in the first, 4.12 in the second and 1.55 in the last equation. For the
second quasi-isomorphism we have

H i(Rlim(S(C))) = lim←−
n

H i(An ⊗A C) = lim←−
n

An ⊗A H i(C) = H i(C)

using similar arguments and coadmissibility in the last equation.

4.4 Comparison to Iwasawa cohomology.

Proposition 4.15 gives us the correct framework to describe a comparison between
Iwasawa cohomology and analytic cohomology of the Lubin-Tate deformation.

Remark 4.16. The projective system (CΨ,Z(Dfmn(M)))n defines a consistent object
in D(mod(N, Dn)). In particular the cohomology groups H i(Rlim(CΨ,Z(Dfmn(M))))
are coadmissible D-modules for every i and

H i(Rlim(CΨ,Z(Dfmn(M)))) ∼= lim←−
n

H i
Ψ,Z(Dfmn(M)).

Proof. Consistency follows from 3.22 together with the fact that D is a Fréchet-Stein
algebra. The latter cohomology groups are coadmissible by 4.15. The isomorphism
follows from 4.12 using again 3.22.

Lemma 4.17. Let V be a finite dimensional K-linear U-representation. Then for
W = Dn ⊗K V we have H0(U,W ) = 0 with respect to the U-action via γ(1 ⊗m) =
δγ−1 ⊗ γm.

Proof. Fix a basis w1, . . . wd of W let w ∈ WU and write w =
∑d

i=1 λi⊗wi. Let g ∈ U
and define G ∈MdimK V (K) via gwj =

∑
iGijwi. We compute

gw =
d∑
j=1

(g−1λj ⊗ gwj) =
d∑
j=1

d∑
i=1

Gij(g
−1λj ⊗ wi).
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Since we assumed that w is fixed by g and the decomposition with respect to the
basis wi is unique we conclude

λj =
d∑
i=1

Gjig
−1λi.

Multiplying both sides by g we see gλj ∈ spanK(λi). Since this works for any choice
of g we conclude that the λi span a finite-dimensional U -stable subspace of Dn. This
is only possible if λ1 = · · · = λd = 0.

Lemma 4.18. Let m ∈ N then for the diagonal action of U we have H0(U,Dm⊗̂KM r) =
0. In particular the kernel of Z acting diagonally is trivial.

Proof. It suffices to show that there are no non-trivial U -invariant elements. By
1.78 there exists n � 0 such that M r can be embedded into D+

dif,n(M r) which is
a projective finitely generated (K ⊗L Ln)JtLT K-module. We claim that we have an
injection

Dm⊗̂KM r → D := Dm⊗̂KD+
dif,n(M r).

Since we do not know whether ιn is strict we instead make use of [Eme17, 1.1.26] by

rewriting Dm⊗̂K− = D
(L)
m ⊗̂LK⊗̂K− with a suitable Banach algebra D

(L)
m over L and

using the associativity of projective tensor products from [BGR84, 2.1.7 Proposition
7] after reducing to the Banach case via 1.15. By applying again 1.15 it suffices to
show that D/tkLTD has no non-trivial U -invariants for each k ≥ 0. Dévissage using
the exact sequence

0→ D/tLTD→ D/tkLTD→ D/tk−1
LT D→ 0,

induction on k and passing to the limit D = lim←−k D/t
k
LTD shows that it suffices to

prove the statement for D/tLTD = Dm ⊗K (D+
dif,n(M r)/tLTD

+
dif,n(M r)), where we

use 1.11 and can omit the completion since the right-hand side is finite-dimensional
Hausdorff. The statement now follows from 4.17.

Lemma 4.19. The natural map

I : Dfm(M r)→M r

λ⊗m 7→ λm

is surjective and its kernel is the image of Z ∈ Dn (acting diagonally).

Proof. Surjectivity is clear by definition. Observe that for any y ∈ Dfm(M r) and
any γ ∈ U the element (γ − 1)y lies in the kernel of I. Since Z lies in the closure
of the augmentation ideal in D we conclude that Im(Z) ⊆ ker(I). In order to show
ker(I) ⊆ Im(Z) we will reduce to the case of elementary tensors via a series of
technical arguments. We will show that an element of the form λ ⊗ m − 1 ⊗ λm
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belongs to the image of Z and its preimage can be bounded for each norm defining
the Fréchet topology of Dfm(M r) which, in particular, implies strictness with respect
to the Fréchet topology. Note that the map I admits a section S : m 7→ 1⊗m and
any element y of the kernel can be written as z−SI(z) for some z. As an intermediate
step we consider an element of the form λ ⊗ m ∈ ker(I) with λ ∈ D. Fix a R[r,s]-
module norm on M [r,s] and consider the tensor product norm induced by the norm
on Dm and said norm on Dm⊗̂KM [r,s] for m ∈ N0 We will show that there exists a
constant C depending only on m and ‖−‖M [r,s] such that λ⊗m− 1⊗ λm = Zdiagx
and ‖x‖ ≤ C‖λ̃ ⊗m‖Dm,Qp ⊗̂KM [r,s] , where λ̃ is any lift of λ in DQp,m(U,K). Since Z

is injective by 4.18 we obtain that x is uniquely determined and hence satisfies this
bound with respect to the quotient norm on Dm. Let ε = supγ∈U‖γ − 1‖Dm . Choose
n� 0 such that ‖γ−1‖M [r,s] < ε for γ ∈ Γn. Before treating the general case assume
that λ belongs to D(Γn, K). Fix a Zp-Basis γi of Γn and set b := (δγi−1)i. By taking
a preimage in DQp(Γn, K) we can express λ as a convergent series

λ =
∑
k∈Nd0

akb
k

We compute

λ⊗m− 1⊗ λm =
∑
k∈Nd0

ak(b
k ⊗m− 1⊗ bkm)

The terms in degree k = 0 cancel out and we shall estimate bk ⊗ m − 1 ⊗ bkm.
Without loss of generality we can assume k 6= 0 i.e. at least one term δγi − 1 appears
in bk. We will show that each summand is in the image of the diagonal Z-map and
estimate the norm of its Z-preimage. We first explain a dévissage procedure to arrive
at a situation where we estimate terms of the form

(γ − 1)a⊗ b− a⊗ (γ − 1)b = γa⊗ b− a⊗ γb (4.1)

= (γ−1 − 1)(a⊗ γb) (4.2)

= ZG(Z)(a⊗ γb) (4.3)

Where γ ∈ {γ1, . . . γd} and the assumption on the operator norm of γ − 1 acting on
M [r,s] asserts that ‖γb‖[r,s] = ‖b‖[r,s] and hence

‖G(Z)(a⊗ γb)‖ ≤ C(γ)‖(γ − 1)a⊗ b‖

with C(γ) depending on γ and [r, s].Without loss of generality assume k = (k1, . . . , kd)
with k1 6= 0 and let k′ = (k1 − 1, . . . , kd). We rewrite

bk ⊗m− 1⊗ bkm = (γ1 − 1)bk′ ⊗m− 1⊗ (γ1 − 1)bk′m

= (γ1 − 1)bk′ ⊗m− bk′ ⊗ (γ1 − 1)m

+ bk′ ⊗ (γ1 − 1)m− 1⊗ (γ1 − 1)bk′m (4.4)
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We see that (γ1 − 1)bk′ ⊗ m − bk′ ⊗ (γ1 − 1)m is an expression of the form (4.1).
While the remainder i.e. bk′ ⊗ (γ1 − 1)m− 1⊗ (γ1 − 1)bk′m can be rewritten as

bk′ ⊗m′ − 1⊗ bk′m′,

where m′ = (γi − 1)m and by the assumption on the operator norm we have

‖bk′ ⊗m′‖ ≤ ‖bk ⊗m‖.

The remainder vanishes as soon as k′ = 0 and if k′ 6= 0 we may again find an index,
that is not zero and apply the same procedure to, in the end, express bk⊗m−1⊗bkm
as a finite sum of elements of the form from (4.1) more explicitly we can group them
as

bk ⊗m− 1⊗ bkm =
d∑
i=1

ei∑
j=1

(γi − 1)aij ⊗ bij − aij ⊗ (γi − 1)bij,

Where the elements aij, bij are not canonical and depend on the order in which we
reduce the components of k in the inductive procedure. Nonetheless our construction
asserts that each (γi − 1)aij ⊗ bij is bounded above by bk ⊗m. Using (4.1) we can
write

bk ⊗m− 1⊗ bkm = Zxk,

where
‖xk‖Dn⊗̂M [r,s] ≤ C‖bk ⊗m‖Dn(Qp)⊗̂M [r,s]

with a suitable constant C depending only on [r, s]. By Lemma 4.18 Z is injective
and hence the element xk is uniquely determined. Note that a priori (4.1) produces
constants for each γi but we can take the supremum over all those constants. In
particular

x :=
∑
k∈Nd0

akxk

converges to an element inDn⊗̂KM r satisfying Zx = λ⊗m−1⊗λm and ‖x‖Dn⊗̂M [r,s] ≤
C‖λ ⊗ m‖Dn(Qp)⊗̂M [r,s] and because this estimate holds for any preimage of λ and
x is uniquely determined by the injectivity of Z we also obtain ‖x‖Dn⊗̂M [r,s] ≤
C‖λ ⊗ m‖Dn⊗̂M [r,s] . Now assume λ ∈ D(U,K) and decompose λ =

∑
g∈U/Γn gλg

with λg ∈ D(Γn, K) we obtain

gλg ⊗m− 1⊗ gλgm = gλg ⊗m− λg ⊗ gm+ λg ⊗ gm− 1⊗ λggm
= (g−1 − 1)diag(λg ⊗ gm) + λg ⊗ gm− 1⊗ λggm (4.5)

The case λg⊗gm−1⊗λggm has been treated above and recall that g−1−1 is divisible
by Z in D (and hence also in every Dm). Combining the case treated above with
an argument similar to the one after (4.1) we conclude that there exists a unique
element x such that λ ⊗ m − 1 ⊗ λm = Zx and a constant C depending on [r, s]
such that ‖x‖Dn⊗̂M [r,s] ≤ C‖λ ⊗ m‖Dn⊗̂M [r,s] . If we pass from M [r,s] to M [r,s′] the n
that we chose before might no longer satisfy the desired bound on the operator norm
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and we might be required to pass to a subgroup satisfying the corresponding bound.
Similarly if we pass from Dm to Dm+1 we have ‖γ − 1‖Dm+1 ≤ ‖γ − 1‖Dm and given
[r, s] we might need to pass to a smaller subgroup Γñ ⊂ U in order to achieve the
estimate ‖γ − 1‖M [r,s] < ‖γ − 1‖Dm+1 that we used in the preceding computations.
In both those cases a consideration analogous to (4.5) leads to the existence of a
constant C(m, [r, s′]) such that

‖xk‖Dm⊗̂M [r,s′] ≤ C(m, [r, s′])‖bk ⊗m‖Dm(Qp)⊗̂M [r,s′]

implying the convergence of x with respect to the Fréchet topology and the estimate

‖x‖Dm⊗̂M [r,s] ≤ C(m, [r, s′])‖λ⊗m‖Dm⊗̂M [r,s] . (4.6)

Now consider a general element y of the kernel of I and write it as a convergent series

y =
∞∑
i=0

λi ⊗mi.

Since it belongs to the kernel we have

y = y −S(I(y)) =
∞∑
i=0

(λi ⊗mi − 1⊗ λimi)

and the preceding discussion shows that each λi⊗mi−1⊗λimi belongs to the image
of Zdiag and can be written as

λi ⊗mi − 1⊗ λimi = Zxi.

Clearly if x =
∑∞

i=0 xi converges then it satisfies Zx = y. The convergece of x with
respect to the Fréchet topology defined by the tensor product norms on Dm⊗̂KM [r,s]

follows from the convergence of the series defining y and the estimates (4.6).

Definition 4.20. Let F be a topological D-module whose underlying K-vector space
is Fréchet. We define

Dn⊗̂DF

as the completion of Dn⊗D F with respect to the quotient topology of Dn⊗K,π F. For
a D-module whose underlying K-vector space is an LF-space E = lim−→En we define

Dn⊗̃DE := lim−→
r

Dn⊗̂DEr.

We do not know whether Dn⊗̃DM is complete for a (ϕL,ΓL)-module M. Even if we
knew that it was complete, we would run into subtleties concerning commutation of
completion and cohomology since these spaces are in general not metrizable.
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Lemma 4.21. We have for each r ∈ [r0, 1) a strict exact sequence of D-modules

0→ D⊗̂KM r Z−→ D⊗̂KM r µ−→M r → 0, (4.7)

where the D⊗̂KM r is viewed as D-module via the left tensor component and µ is
given by µ(λ⊗m) = λm. Which induces for every m compatible exact sequences

0→ Dm ⊗D (D⊗̂KM r)
id⊗Z−−−→ Dm ⊗D (D⊗̂KM r)

id⊗µ−−−→ Dm ⊗D M r → 0, (4.8)

0→ Dm⊗̂KM r Z−→ Dm⊗̂KM r µ−→ Dm⊗̂DM r → 0 (4.9)

and
0→ Dm⊗̂KM

Z−→ Dm⊗̂KM
µ−→ Dm⊗̃DM → 0. (4.10)

The sequence 4.9 is strict for every m.

Proof. One first checks that all maps are D-linear. The exactness of the first sequence
was proved in 4.19. On the one hand the operator µ is a continuous surjection
of Fréchet spaces and hence strict. On the other hand, since the image of Z is
the kernel of a continuous map of Fréchet spaces, it is closed and hence itself a
Fréchet space. By the same argument Z is a continuous surjection onto Im(Z)
and hence a homeomorphism on its image. The exactness of the second sequence
is clear because Dn is flat over D. The modules appearing in (4.8) endowed with
the quotient topology from a surjection from Dm⊗K,π (D⊗̂KM r) are not necessarily
hausdorff (hence in particular not necessarily metrizable). Nonetheless the Hausdorff
completion of Dm ⊗D (D⊗̂KM r) can naturally be identified with Dm⊗̂KM r and we
can argue using the maximal Hausdorff quotients 1 as follows. The Hausdorff quotient
X of Dm ⊗D (D ⊗M r) can be embedded into Dm⊗̂KM r and the map induced by
id⊗Z is continuous and strict on the dense subset D⊗̂KM r by the preceding (4.7)
and hence strict by 1.9. As a quotient of a metrizable space by a closed space X is
again metrizable and we conclude using 1.8 that

Dm⊗̂KM r Z−→ Dm⊗̂KM r

is strict, injective and its cokernel is the Hausdorff completion of Dm ⊗DM r since a
strict map of Fréchet spaces has closed image. This gives the desired (4.9). Fi-
nally passing to direct limits produces the sequence 4.10 using 1.23 to see that
lim−→r

Dm⊗̂KM r is complete.

Definition 4.22. We define the complex

CΨ(M) : M
Ψ−1−−→M

concentrated in degrees 1, 2 and we call its cohomology groups the Iwasawa
cohomology of M. Analogously we define CcΨ(M) and CcΨ(M r) for r ∈ [0, 1),
c ∈ K×.

1For a topological group G the maximal Hausdorff quotient is defined as G/{1G}.
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Lemma 4.23. Assume CΨ(M) has coadmissible cohomology groups. Then
the natural map

Dn ⊗D M → Dn⊗̃DM

induces a quasi-isomorphism

Dn ⊗D CΨ(M) = CΨ(Dn ⊗D M)→ CΨ(Dn⊗̃DM)

Proof. Taking cohomology commutes with colimits and thus it suffices to show that

Dn ⊗D M r → Dn⊗̂DM r

is a quasi-isomorphism for sufficiently large r. The groups Dn⊗̂DM r are metrizable
and by 1.8 and strictness of Ψ − 1 taking kernels and cokernels commutes with
completion i.e. H i

Ψ(Dn ⊗D M r) ∼= H i
Ψ(Dn⊗̂DM r) . By assumption the cohomology

groups are coadmissible and thus Dn ⊗D H i
Ψ(M) is Dn-finite, complete and any

submodule is itself Dn finite and complete by 1.6 because Dn is Noetherian. This
implies Dn⊗DH0

Ψ(M r) ∼= Dn⊗̂DH0
Ψ(M r). Regarding H1 the proof of 3.32 shows that

for all sufficiently large r we have that M r/(Ψ − 1) is K-finite therefore D-finitely
generated and is in addition Hausdorff by the strictness of Ψ − 1. We conclude
Dn ⊗D H1

Ψ(M r) ∼= Dn⊗̂DH1
Ψ(M r) (for r � 0 as in the proof of 3.32).

Theorem 4.24 (Comparison between Herr- and Iwasawa-cohomology). Consider
the complexes

(CΨ,Z(Dfmn(M)))n∈N

and
(CΨ(Dn⊗̃DM))n∈N

in mod(N, D). There is a canonical compatible family of morphisms

CompIW (CΨ,Z(Dfmn(M)))n∈N → (CΨ(Dn⊗̃DM))n∈N

induced by the exact sequences (4.8). If the cohomology groups of CΨ(M) are coad-
missible as D-modules we further obtain canonical compatible quasi-isomorphisms

CΨ,Z(Dfmn(M)) ' CΨ(Dn⊗̃DM),

which together with the maps induced by the natural maps CΨ(M)→ Rlim(CΨ(Dn⊗D
M)) and (CΨ(Dn ⊗D M))n → (CΨ(Dn⊗̃DM))n induce an isomorphism in D(D)

RlimCΨ,Z(Dfmn(M)) ' CΨ(M)

and, in particular, isomorphisms

lim←−
n

H i
Ψ,Z(Dfmn(M)) ∼= H i

Iw(M).
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Proof. We have seen in 4.9 that there exists a compatible family of surjections µn :
Dfmn(M) → Dn⊗̃DM whose kernel is the image of the diagonal Z-map. Rewrite
CΨ,Z(Dfmn(M)) as a total complex of the double complex

Dfmn(M) Dfmn(M)

Dfmn(M) Dfmn(M)

Ψ−1

Z −Z

Ψ−1

(4.11)

and consider CΨ(Dn⊗̂DM) as the total complex of the “double complex”

0 0

Dn⊗̃DM Dn⊗̃DM

Ψ−1

Z −Z

Ψ−1

Applying µn in the lower row and zero in the upper row of (4.11) induces a surjective
morphism of double complexes with kernel

Dfmn(M) Dfmn(M)

Im(Z) Im(Z)

Ψ−1

Z −Z

Ψ−1

.

The kernel double-complex has exact columns and hence acyclic total complex by
A.15. Since passing to total complexes is exact we obtain the desired compatible
family of quasi-isomorphisms. By 4.23 the natural map

Dn ⊗D CΨ(M)→ CΨ(Dn⊗̃DM)

is a quasi-isomorphism.
Composing the first quasi-isomorphism with the inverse of the latter gives isomor-
phism in D(D)

RlimCΨ,Z(Dfmn(M)) ' RlimCΨ(Dn ⊗D M).

Using the coadmissibility assumption on CΨ(M) by 4.15 the natural map

CΨ(M)→ Rlim((CΨ(Dn ⊗D M))n)

is an isomorphism in D(D).
By Remark 4.16 we have H i(RlimCΨ,Z(Dfmn(M))) ∼= lim←−nH

i
Ψ,Z(Dfmn(M)) and

putting everything together we obtain

H i(RlimCΨ,Z(Dfmn(M))) ∼= lim←−
n

H i
Ψ,Z(Dfmn(M)) ∼= lim←−

n

Dn ⊗D H i
Ψ(M) ∼= H i

Ψ(M).
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Chapter 5

Explicit results in the rank one
and trianguline case

In this chapter we study MΨ=1 for rank one modules of the formRK(δ). The ideas are
based on [Col08], [Col16], [FX12] and [Che13]. Some small adjustments are required
in order to incorporate 2.19. We are mostly interested in showing that MΨ=1 is
finitely generated and coadmissible.

Definition 5.1. An L-analytic (ϕL,ΓL)-module over RK is called trianguline if it is
a successive extension of modules of the form RK(δ) with locally L-analytic characters
δ : L× → K×.

Fix as usual a subgroup U ⊂ ΓL isomorphic to oL. Recall that the space Can(U,K)
of locally L-analytic functions U → K is reflexive (see proof of 1.31) and its strong
dual is by definition D(U,K). On the other hand R+

K is reflexive and its strong dual
is RK/R+

K via the residue pairing from Proposition 1.75.

Lemma 5.2. By transport of structure along R+
K
∼= D(U,K) we obtain a (ϕL, U)-

semi-linear strict exact sequence

0→ D(U,K)→ RK → Can(U,K)⊗ χ−1 → 0,

where χ(π) = π
q

and χ(a) = a for a ∈ o×L .

Proof. See [Col16, Théorème 2.3].

Remark 5.3. Let δ : L× → K× be a locally L-analytic character and RK(δ) = RKeδ
the corresponding free rank 1 module. Then R+

K(δ) := R+
Keδ is a (ϕL,ΓL)-stable

submodule and fits into a short exact sequence

0→ R+
K(δ)→ RK(δ)→ Can(U,K)⊗ χ−1δ → 0,

where χ(π) = π
q

and χ(a) = a for a ∈ o×L .
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Proof. The stability follows because the image of δ is contained in (R+
K)×. The se-

quence is obtained by twisting the sequence from 5.2.

Lemma 5.4. Any element ζ ∈ Can(oL, K) admits a unique expansion of the form

ζ =
∑
k≥0

ak

[
x
k

]
,

where

[
x
k

]
: oL → K is the polynomial function in x defined via

η(x, T ) =
∑
k≥0

[
x
k

]
T k

and the coefficients satisfy limk→∞|ak|rk for some r > 1.

Proof. See [ST01, Theorem 4.7].

The following lemmas are essentially an L-analytic version of [Che13, Lemme 2.9].
We let Ψ act on Can(oL, K) as Ψ(f)(x) = f(πLx).

Lemma 5.5. Let α ∈ K×. Denote by x ∈ Can(oL, K) the function x 7→ x.

1. If N is such that |απNL | < 1 then 1− αΨ is bijective on xNCan(oL, K).

2. The cokernel of 1− αΨ acting on R+
K is at most one-dimensional over K.

3. The cokernel of the inclusion (R+
K)αΨ=1 → RαΨ=1

K is finite dimensional over
K.

Proof. For h ∈ N0 denote by Can
h the subspace of functions that are globally analytic

on a + πhLoL for each a ∈ oL/πhLoL. Every element f ∈ Can(oL, K) belongs to some
Can
h and from the definitions one has Ψ(xNCan

h ) ⊂ xNCan
h−1 for h ≥ 1. If f ∈ xNCan

0

then expanding f as a power series yields

|Ψ(f)|oL ≤ |πNL ||f |oL (5.1)

with respect to the sup-norm on oL. Let f ∈ xNCan
h then Ψh(f) ∈ Can

0 and the
estimate (5.1) together with the assumption on N shows that the series

∞∑
k=0

αmΨm

converges to an inverse of 1−αΨ on xNCan
h . The claim follows because Can(oL, K) =

lim−→h
Can
h .

For the second statement choose N � 0 such that

F :=
∞∑
i=0

α−iϕi
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converges to a continuous operator on TNR+
K . The existence of such N can be seen

using that TN tends to zero as N →∞ and that ϕL is contractive with respect to the
norms |−|[0,r] for any 0 < r < 1 as a consequence of Remark 1.70. Given h ∈ T nR+

K

we observe that (1− αΨ)(F (h)) = αΨ(h). Using that Ψ is surjective on R+
K , we can

deduce that h belongs to the image of 1−αΨ. By writingR+
K =

⊕N−1
k=0 Kt

k
LT⊕TKR+

K

we conclude that it remains to show that at most one tkLT is not contained in the
image of 1 − αΨ. Because Ψ(tiLT ) = π−iL t

i
LT there can be at most one i0 such that

(1 − αΨ)(ti0LT ) = 0. For every i 6= i0 we have (1 − αΨ)(tiLT ) = (1 − απ−iL )tiLT with
(1− απ−iL ) ∈ K×.
For the third statement observe that Lemma 5.2 and the Snake Lemma gives a short
exact sequence

0→ (R+
K)αΨ=1 → RαΨ=1

K → Can(U,K)α
q
π

Ψ=1.

The image of the last map is finite dimensional by 1.) because any element in Can

can be written as a sum of a polynomial of degree ≤ N − 1 and an element of
xNCan(oL, K) by Lemma 5.4.

Lemma 5.6. Let δ : L× → K× be a locally L-analytic character and M := RK(δ)
the corresponding free rank 1 module. Let M+ := R+

K(δ).

1. We have (M+)ψ=0 = D(ΓL, K)η(1, T )ϕ(eδ). In particular (M+)Ψ=0 is free of
rank 1 over D(ΓL, K).

2. The map 1 − ϕ : (M+)Ψ=1 → (M+)Ψ=0 has finite dimensional kernel and co-
kernel.

Proof. 1. follows from the explicit description in Corollary 2.21.
For 2. let η(1, T )ϕ(m) ∈ (M+)Ψ=0 with some m = feδ ∈ M+. Let N ∈ N and write
f = f0 + TNg according to the decomposition R+

K =
⊕N−1

k=0 t
k
LT + TNR+

K . Choosing
N large enough (like in the proof of Lemma 5.5) we can ensure that

h :=
∞∑
k=0

δ(πL)kϕk(η(1, T )ϕ((TNg))

converges independently of g ∈ R+
K . The element m′ := heδ ∈ M+ satisfies (ϕ −

1)(m′) = η(1, T )(ϕ(TNg)eδ). In particular (ϕL−1)(m′) ∈MΨ=0 and hence necessarily
Ψ(m′) = m′. Finite dimensionality of the kernel is immediate from Remark 4.8. For
the codimension of the image (M+)Ψ=1 in (M+)Ψ=0 our proof thus far shows that
any element in η(1, T )(ϕ(TNM+)) lies in the image of ϕL − 1. We use the analogue
of the decomposition from Proposition 2.8 for M+ to conclude that the codimension
of the image is at most N [ΓL : Γ1] = N(q − 1).

Proposition 5.7. Let δ : L× → K× be a locally L-analytic character and let M =
RK(δ) then MΨ=1 is a finitely generated coadmissible D(U,K)-module of rank [ΓL : U ].
In particular, CΨ(M) is perfect.
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Proof. Applying Lemma 5.5 and Lemma 5.6 we conclude that MΨ=1 fits into an
exact sequence

0→ (M+)Ψ=1 →MΨ=1 → V → 0,

with a D(U,K)-module V whose underlying K-vector space is finite-dimensional. By
Lemma 4.7 V is coadmissible and evidently torsion as a D(U,K)-module. Because
the category of coadmissible module is abelian we conclude that it suffices to show
that (M+)Ψ=1 is coadmissible of the desired rank. For M+ we have by Lemma 5.6
an exact sequence of the form

0→ V1 → (M+)Ψ=1 ϕ−1−−→ (M+)Ψ=0 → V2 → 0

with two D(U,K)-modules whose underlying K-vector-spaces are finite-dimensional.
From this exact sequence and Lemma 5.6 it is clear that the rank is precisely [ΓL : U ].
Again V2 is coadmissible by Lemma 4.7 and the image of (M+)Ψ=1 is the kernel of a
map between coadmissible modules and hence coadmissible. By [ST03, Lemma 3.6]
the image is closed in the canonical topology. Because (M+)Ψ=0 is finitely generated
projective we obtain that (1−ϕ)((M+)Ψ=1) is finitely generated by [BSX20, Lemma
1.1.9]. Now the short exact sequence

0→ V1 → (M+)Ψ=1 → (1− ϕ)((M+)Ψ=1)→ 0

proves that (M+)Ψ=1 is finitely generated and coadmissible. Perfectness follows from
Proposition 4.9.

Theorem 5.8. Let M be a trianguline L-analytic (ϕL,ΓL)-module over RK . Then
CcΨ(M) is a perfect complex of D(ΓL, K)-modules for any constant c ∈ K×.

Proof. By applying Lemma A.21 to the cohomology groups of CΨ(M) we conclude
that perfectness as a complex of D(ΓL, K)-modules follows from perfectness as a
complex of D(U,K)-modules. For c = 1 this is a corollary of Proposition 5.7. Because
twisting by a character preserves the property of M being trianguline the general
statement follows from Lemma 4.10.
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Chapter 6

Towards perfectness of CΨ(M)
and a remark on the

Euler-Poincaré formula

6.1 Perfectness of CΨ(M).

In the cyclotomic case the perfectness of CΨ(M) as a complex of D(U,K)-modules is
obtained by an inductive procedure from the étale case. In the cyclotomic étale case
the heart C = (1−ϕ)(M) is free over DQp(ΓQp ,Qp) of the same rank as M (cf. [Col10,
Proposition V.1.18]) and an induction over the Harder-Narasimhan slopes implies
the general result. In our situation we run into several problems. Most notably the
corresponding result concerning the heart is not known. Furthermore the theory of
slope filtrations makes heavy use of the Bézout property of the coefficient rings. By
passing to the large extension K/L we leave the situation of Kedlaya’s slope theory
and also do not have the equivalence of categories at our disposal for modules of
slope zero. We interpret the passage to K as a technical tool to understand (ϕL,ΓL)-
modules coming from RL employed for example in [BSX20] and [FX12]. Hence we
put a special emphasis on those coming from RL. We show that the induction over
Harder-Narasimhan slopes as in [KPX14] works in essentially the same way. To do
so we require some technical lemmas concerning the (Ψ,∇)-cohomology of M that
might be interesting in their own right.

Conjecture 6.1. Let M0 be an L-analytic (ϕL,ΓL)-module over RL. Then the com-
plex CΨ(K⊗̂LM0) is a perfect complex of D(ΓL, K)-modules.

So far we have not concerned ourselves with the étale picture. Schneider and Venjakob
showed the following

Theorem 6.2. Let V ∈ RepoL(GL), let H i
Iw(L∞/L, V ) := lim←−L⊂F⊂L∞ H

i(F, V ) and

let MLT be the étale Lubin-Tate-(ϕL,ΓL)-module over AL attached to V (χLTχ
−1
cyc)

endowed with its integral ψ-operator (i.e. ψ ◦ ϕ = q
π

).

95



1. H i(L∞/L, V ) vanishes for i 6= 1, 2.

2. H2(L∞/L, V ) is oL-finite.

3. H1(L∞/L, V ) is Λ := oLJΓLK-finite.

4. H i
Iw(L∞/L, V ) is computed by the complex

MLT
ψ−1−−→MLT

concentrated in degrees 1 and 2.

Proof. See [SV15, Lemma 5.12 and Theorem 5.13].

In order to connect this result to the present situation assume first that MLT is
L-analytic and thus a fortiori overconvergent. An analogue of [CC99, Proposition
III.3.2] (cf. [SV20, A.53]) allows us to view Mψ=1

LT [1/p] as a Λ-submodule of D†(V )1

and thus as a Λ-submodule of D†rig(V )ψ=1. Let Mrig := D†rig(V ). Since Mrig is L-

analytic we obtain that Mψ=1
rig is even a D(ΓL, L)-module and thus a natural map

D(ΓL, L)⊗Λ M
ψ=1
LT

comp−−−→Mrig
ψ=1.

This leads us to the following natural conjecture.

Conjecture 6.3. Let MLT = D(V ) be an étale L-analytic (ϕL,ΓL)-module over AL

and let Mrig := D†rig(V ) then the natural map

D(ΓL, L)⊗Λ M
ψ=1
LT

comp−−−→Mrig
ψ=1

is surjective.

A stronger form of this conjecture would be to require bijectivity. In the classical
case the map above is bijective by [Col10, Proposition V.1.18]. We will show that
this weaker version is sufficient for conjecture 6.1. Observe that Theorem 3.32 works
over any base field and hence Mrig/(ψ− 1) is finite L-dimensional. This implies that
ψ−1 is strict by Lemma 1.10 and because K is an L-Banach space of countable type
over L we conclude using Lemma 1.11

(Mrig⊗̂LK)ψ=1 = (Mψ=1
rig )⊗̂LK.

The results of Schneider and Venjakob in the étale case suggest that ψ−1 is the “cor-
rect” operator to study Iwasawa cohomology. This leads us to believe that the com-
plex defined using ψ is well-behaved while in order to obtain a quasi-isomorphism to
the (ϕL, Z)-complex we need to work with the Ψ-complex with the left-inverse opera-
tor. Our philosophy is that the cΨ-complex for some constant c can be reinterpreted
as the Ψ-complex of a module twisted by a (non-étale) character. In particular, if

1D†(V ) was defined in 1.82.
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the analogue of Conjecture 6.1 concerning the ψ-complex is true for all analytic (not
necessarily étale) (ϕL,ΓL)-modules coming from RL, then Lemma 4.10 asserts that
Conjecture 6.1 itself is true.
We require an analogue of the fact that there exists an isoclinic module E of slope
1/d that is a successive extension of RL(x) ∼= RLtLT by d− 1 copies of RL requiring
in addition that the latter module is L-analytic. This allows us to argue inductively
over the slopes of a module. While the (ϕL, Z)-cohomology enjoys a number of nice
properties, its biggest downfall is the fact that it can only be defined over the large
field K that is not discretely valued and hence RK does not fit into the framework
of Kedlayas slope theory. In order to translate known results from the étale case to
more general modules we use the Lie-algebra cohomology of M that can be defined
over L using either the operators (∇, ϕ− 1) or (∇,Ψ− 1). We do not know whether
they give the same cohomology groups in degree 2 and since the cokernel of Ψ− 1 is
better behaved than that of ϕL − 1, we shall work with the Ψ-version.

Definition 6.4. Let M be an L-analytic (ϕL,ΓL)-module over RL. Let ∇ be the
operator defined in 1.50. We define the complex

CLie(M) := [M
(∇,Ψ−1)−−−−−→M ⊕M (Ψ−1)(pr1)−∇(pr2)−−−−−−−−−−−→M ]

concentrated in degrees [0, 2]. Denote by H i
Lie(−) the cohomology groups of the complex

CLie(−) and define H i
an(M) := H i

Lie(M)ΓL . Analogously we define H i
an(M/tLTM).

Remark 6.5. One can show that the residual ΓL-action on H i
Lie(M) is discrete (i.e.

every element has open stabiliser). Since the cohomology groups are L-vector spaces
we can deduce that H i

an(M) takes short exact sequences to long exact sequences in
cohomology.

Remark 6.6. Analogously one can define a version with ϕ−1 instead of Ψ−1. Copy-
ing the proof of [FX12, Proposition 4.1] together with the comparison isomorphism
in [BF17, Theorem 2.2.2] shows that the H0 and H1 agree for the ϕL and Ψ-versions
and agree with the corresponding cohomology groups for L-analytic cocycles studied
by [BF17].

The main reason to use the Ψ-version is the following Lemma.

Lemma 6.7. Let M be an L-analytic (ϕL,ΓL)-module then H2
Lie(M) is finite dimen-

sional and Hausdorff.

Proof. The continuous map Ψ − 1: M → M has finite dimensional cokernel by
Theorem 3.32. The statement follows from Lemma 1.10.

Lemma 6.8. For the L-analytic rank one (ϕL,ΓL)-modules RL(xi) we have

H2
an(RL(xi)) = 0

for every i ∈ Z.
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Proof. Since H2
Lie(RL(xi)) is finite-dimensional Hausdorff, every linear form is con-

tinuous. Suppose
H2

Lie(RL(xi)) = (RL(xi)/(∇, (Ψ− 1)))

admits a (continuous) functional H2
Lie(RL(xi))→ L, then pre-composing it with the

canonical map RL(xi) → H2
Lie(RL(xi)) gives a continuous functional R(xi) → L

which by the duality described in Proposition 1.75 corresponds to a unique element
in m ∈ RL(x−i)(χLT ) killed by ϕL − 1 and ∇ι, where ∇ι denotes the adjoint of
∇. A computation using that the adjoint of γ ∈ ΓL is γ−1 shows ∇ι = −∇ and
that m is also killed by ∇. Hence m is an element in RL(x−i)(χLT )∇=0,ϕ=1, but
RL(x−i)(χLT )∇=0,ϕ=1 = 0 by [FX12, Proposition 5.6] and thus m = 0. We conclude
that H2

Lie(RL(xi)) admits no non-zero functionals and therefore has to be zero.

Lemma 6.9. Let M be an L-analytic (ϕL,ΓL)-module over RL. Then:

1. There is a canonical bijection between H1
an(M) and isomorphism classes of ex-

tensions
0→M → E → RL → 0

of L-analytic (ϕL,ΓL)-modules.

2. For i ∈ N0 the L-dimension of Hj
an(RL(x−i)) in degrees j = 0, 1, 2 is 1, 2, 0

respectively.

3. For i ∈ N the L-dimension of Hj
an(RL(xi)) in degrees j = 0, 1, 2 is 0, 1, 0

respectively.

Proof. For the corresponding results using the ϕL-version see [FX12, Theorem 0.1
(resp. Theorem 4.2)] for the first statement and [Col16, Théorème 5.6] for 2 and 3
under the assumption that the field contains ΩL. The dimensions were computed
without this assumption by Fourquaux and Xie in degrees 0, 1 and agree with the
results of Colmez. By [BF17, Theorem 2.2.2] they can be translated to the Ψ-version.
The computation of H2 over L was done in Lemma 6.8.

The proof of the following Lemma is based on Liu’s proof in [Liu07, Lemma 4.2],
but we need to make some adjustments since we do not know in general whether the
Euler-Poincaré-Characteristic formula holds for analytic cohomology.

Lemma 6.10. There exist an L-analytic (ϕL,ΓL)-module E of rank d that is isoclinic
of slope 1/d and a successive extension of R(xi), where i = 0, 1. It can be chosen such
that H1

an(E) 6= 0 and H2
an(E) = 0.

Proof. We shall construct a sequence (Ed)d of L-analytic modules of rank d ∈ N
isoclinic of slope 1/d such that H1

an(Ed) 6= 0 and H2
an(Ed) = 0. Clearly E1 := R(x) is

L-analytic of rank 1 and isoclinic of slope 1. By Lemma 6.9 E1 satisfies H1
an(E1) 6= 0

and H2
an(E1) = 0. Suppose Ed has been constructed. Take a non-trivial extension

Ed+1 corresponding to a non-zero element in H1
an(Ed) and consider the exact sequence

0→ Ed → Ed+1 → RL → 0.
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Passing to the long exact cohomology sequence we obtain by the second point of
Lemma 6.9 an exact sequence

· · · → H2
an(Ed)→ H2

an(Ed+1)→ 0

and the vanishing ofH2
an(Ed) implies the vanishing ofH2

an(Ed+1).Due to the exactness
of

· · · → H1
an(Ed+1)→ H1

an(RL)→ H2
an(Ed) = 0

we conclude that H1
an(Ed+1) surjects onto a non-zero space and hence has to be non-

zero. The slope of Ed+1 is 1/(d + 1) by construction. It remains to see that Ed+1 is
isoclinic. For the convenience of the reader we reproduce Liu’s argument. Suppose
P ⊂ Ed+1 is a non-zero proper subobject of slope µ(P ) = deg(P )

rank(P )
< 1/(d + 1). Then

its rank is bounded above by d+ 1 and hence deg(P ) ≤ 0 is necessary which implies
µ(P ) ≤ 0. Denote by X the image of P in RL. The exact sequence

0→ P ∩ Ed → P → X → 0

implies by general Harder-Narasimhan-Theory (cf. [Pot20, 4.4]) that the correspond-
ing slopes are given either in ascending or descending order. Since µ(P ) ≤ 0 and
µ(X) ≥ 0 due toRL being isoclinic of slope 0 we conclude that we have µ(P∩Ed) ≤ 0
which together with the fact that Ed is isoclinic of slope 1/d implies that P ∩Ed = 0
holds. This in turn means P is a subobject of RL with slope ≤ 0 and hence isomor-
phic to RL. This contradicts the assumption that the extension Ed+1 is not split.

Theorem 6.11. Assume Conjecture 6.3 is true. Let M0 be an L-analytic (ϕL,ΓL)-
module over RL and let M := K⊗̂L,iM0. Then the complex CψLT (M) of D(U,K)-
modules is perfect.

Proof. We abbreviate ψ = ψLT . By abuse of language we say M is étale if M0 is
étale. Similarily we mean the slopes of M0 when refering to the slopes of M. Since
the complex is bounded it suffices to prove the statement for the cohomology groups
by [Sta21, Tag 066U]. More precisely Proposition 4.9 shows that finite generation of
Mψ=1 is sufficient. Hence if M is étale the statement follows by combining Conjecture
6.3 with Proposition 4.9. Suppose M is isoclinic and has integral slopes. Then MtnLT
is étale for some power n ∈ Z and we argue inductively via the exact sequence of
complexes induced by the sequence

0→MtLT →M →M/tLT → 0.

For negative integers we set N = t−1
LTM and use the corresponding sequence for N.

We obtain a short exact sequence of complexes

0→ Cψ(MtLT )→ Cψ(M)→ Cψ(M/tLT )→ 0.

Here we make implicit use of the exactness of K⊗̂L− for strict sequences of Fréchet
spaces given by Lemma 1.11 and the exactness of filtered colimits to reduce to the
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Fréchet case. The perfectness of the rightmost term holds unconditionally by Corol-
lary 4.11. By induction hypothesis either the middle or the leftmost term are perfect.
In both cases we conclude from [Sta21, Tag 066R] that the third term is also perfect.
This concludes the case of integral slopes. We first show that the theorem holds for
any isoclinic M such that M/(ψ− 1) and M(x)/(ψ− 1) vanishes. Recall that in the
proof of Lemma 6.10 we produced a family of exact sequences

0→ Ei → Ei+1 → RL → 0

such that Ei is isoclinic of slope 1/i starting with E1 = R(x). Tensoring this sequence
with M0 and applying ψ − 1 we get a commutative diagram with exact rows

0 Ei ⊗RL M0 Ei+1 ⊗RL M0 M0 0

0 Ei ⊗RL M0 Ei+1 ⊗RL M0 M0 0

ψ−1 ψ−1 ψ−1

and induction on i together with the Snake Lemma shows that (Ei⊗RLM0)/(ψ− 1)
vanishes for every i. For i = d−1 we obtain a surjection (Ed⊗RLM0)ψ=1 → (M0)ψ=1

and Ed ⊗RL M0 is pure of slope c/d + 1/d = (c + 1)/d. By Proposition 4.9 we are
done if we can show that Mψ=1 is finitely generated. Due to strictness of ψ − 1 we
have Mψ=1 = K⊗̂LMψ=1

0 and it suffices to show that Mψ=1
0 is finitely generated.

Our argument thus far shows that given an isoclinic module M0 of some slope c
d

with
vanishing (ψ − 1)-cokernel there exists an isoclinic module of slope c+i

d
say Xi with

vanishing (ψ − 1)-cokernel such that Xψ=1
i surjects onto Mψ=1

0 . We fix d and argue
inductively “in reverse”, i.e. start with the base case d

d
and from the above deduce

the statement for (d−i)
d

for i ∈ {1, . . . , d− 1}.
Now let M0 be arbitrary isoclinic then t−nLTM0 satisfies t−nLTM0/(ψ− 1) = 0 by Lemma
3.34 and we can thus apply the preceding result and Corollary 4.11. Finally assume
M0 is arbitrary then either M0 is isoclinic or it fits into an exact sequence 0→ N →
M0 →M0/N → 0 with M0/N isoclinic and rank(N) < rank(M). Since every rank 1
module is automatically isoclinic we deduce the general statement by induction over
the rank of M.

Corollary 6.12. In the situation of 6.11 the complex CcΨ(M) is perfect as a complex
of D(ΓL, K)-modules for any c ∈ K×.

Proof. Apply Lemma 4.10 and Theorem 6.11 to conclude perfectness as a complex of
D(U,K)-modules. An application of Lemma A.21 to the cohomology groups implies
perfectness as a complex of D(ΓL, K)-modules. The cohomology groups are coad-
missible because finite projective modules are coadmissible and coadmissible modules
form an abelian category.

Remark 6.13. We do not know whether the corresponding statement is true for the
complex of D(ΓL, L)-modules Cψ(M0) since the results 3.30 and 4.7 made use of the
explicit description of D(U,K) as a power-series ring.
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6.2 Towards the Euler-Poincaré formula

In this section we discuss the Euler-Poincaré characteristic formula for the analytic
Herr complex CΨ,Z(M) for L-analytic (ϕL,ΓL)-modules. From formal arguments
one can deduce a variant of the formula involving the heart C(M) for all L-analytic
(ϕL,ΓL)-modules over RK . Our computations in the trianguline case are sufficient
to prove the expected formula in this case.

Definition 6.14. Let M be an L-analytic (ϕL,ΓL)-module over RA. We define the
Euler-Poincaré characterstic of M as

χ(M) :=
∑
i∈N0

(−1)i rankA(H i
ψ,Z(M)).

Theorem 3.22 asserts that χ(M) is well-defined. Note that this formula depends on
Z or more precisely on the index of the group U ⊂ ΓL used to define Z. We expect

χ(M) = −[ΓL : U ] rankRA(M).

When considering modules over relative Robba rings RA, the validity of such a for-
mula can be checked on each fibre z ∈ Sp(A) and thus there is no harm in assuming
A = K. The classical methods of Herr (cf. [Her98, Section 4.2]) show that the heart
C(M) of M plays an integral role. The following proposition is from [MSVW].

Proposition 6.15. Let M be an L-analytic (ϕL,ΓL)-module over RK . Then C(M)/Z
is finite K-dimensional and χ(M) = − dimK(C(M)/Z).

Proof. By the exact sequence from 4.6 it suffices to show that MΨ=1/Z is finite K-
dimensional. Let m ∈MΨ=1. One checks that (0,m) is a 1-cocycle for CΨ,Z(M) and
the coboundary condition (0,m) = ((Ψ − 1)(n), Zn) for some n ∈ M implies n ∈
MΨ=1 and therefore m ∈ ZMΨ=1. We thus have an injection MΨ=1/Z ↪→ H1

Ψ,Z(M)
forcing the left-hand side to be finite K-dimensional by Theorem 3.22 as a subspace of
a finite-dimensional space. Consider the finite filtration of F0CΨ,Z(M) := CΨ,Z(M)
by the complexes

F1CΨ,Z(M) = [MΨ=1 Z−→MΨ=1],

F2CΨ,Z(M) = [MϕL=1 Z−→MϕL=1]

concentrated in degrees [0, 1] and F3CΨ,Z(M) = 0. Clearly

gr2CΨ,Z(M) = [MϕL=1 Z−→MϕL=1]

and the exact sequence from Remark 4.6 shows

gr1CΨ,Z(M) = [C(M)
Z−→ C(M)].
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An argument analogous to [Her98, Lemme 4.2] shows that gr0CΨ,Z(M) is quasi-
isomorphic to the complex

M/(Ψ− 1)
Z−→M/(Ψ− 1)

concentrated in degrees [1, 2]. From the associated convergent spectral sequence (cf.
[Sta21, Tag 012W])

Ep,q
1 = Hp+q(grp(CΨ,Z(M))) =⇒ Hp+q(CΨ,Z(M))

we conclude, using that all terms on the first page are finite-dimensional,

χ(M) =
∑
p,q

(−1)p+q dimK H
p+q(grp(CΨ,Z(M))).

By remark 4.8 the terms for gr2CΨ,Z(M) and gr0CΨ,Z(M) cancel out. Because C(M)
is a subspace of ker(Ψ), the bijectivity of Z on the kernel of Ψ implies that the only
remaining term is − dimK(C(M)/Z).

The expected Euler-Poincaré characteristic formula holds in the trianguline case.

Remark 6.16. Let M be a trianguline L-analytic (ϕL,ΓL)-module over RK , then

χ(M) = −[ΓL : U ] rankRK (M).

Proof. By induction it suffices to treat the case where M = RK(δ) for some locally
L-analytic character δ : L× → K×. In this case by Proposition 5.7 MΨ=1 is finitely
generated and hence C(M) is projective by Remark 4.4. The proof of 5.7 shows
further that rankD(U,K)(C(M)) is precisely [ΓL : U ]. Since D(U,K) is a domain with
maximal ideal (Z), the rank of C(M) is equal to dimK(C(M)/Z). The result now
follows from Proposition 6.15.

Proposition 6.15 shows that the Euler-Poincaré formula would follow from C(M) be-
ing projective as a D(U,K)-module of rank [ΓL : U ] rankRLM. In the cyclotomic case
one uses slope theory to reduce to the étale case where it follows from correspond-
ing results for (ϕ,Γ)-modules over AQp (cf. [Col10, V.1.13, V.1.18]). We run into
various problems because our theory requires the passage to K in order to be able
to define the cohomology groups in the first place and some key structural results
like Theorem 2.19 do not have an analogue over the base field L. Furthermore the
dimension of oLJUK poses a problem when working with an étale module MLT over
BL. The projectivity of (1 − πL

q
ϕL)MψLT=1

LT is unknown to us and does not follow

from a reflexivity argument like in [Col10, I.5.2], because oLJUK can be of dimension
greater than two.
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Appendix

Lemma A.1. ( [Eme17]) Let V → W be a strict surjection with W Hausdorff and V
an LF-space (resp. LB-space) then W is an LF-space (resp. LB-space). In particular
any quotient of an LF-space (resp. LB-space) by a closed subspace is an LF- (resp.
LB-space).

Proof. Let V = lim−→n
Vn with Fréchet spaces Vn (resp. Banach spaces) and denote by

Xn the kernel of Vn → V → W. Since W is assumed to be Hausdorff Xn is closed in
Vn and therefore Vn/Xn =: Wn is a Fréchet space (resp. Banach space). As a result

V → W factors as V
α−→ lim−→n

Wn
β−→ W and with a continuous surjection of LF-spaces

α which has to be open by the open mapping theorem and a continuous bijection β
such that β ◦ α is strict forcing β to be strict as well hence the claim.

A.1 Coherent Sheaves

We would like to prove thatR[r0,1)
A is a Fréchet-Stein algebra in the sense of Schneider-

Teitelbaum. For that purpose we fix a sequence 0 ≤ r0 < r1 < . . . in [0, 1) ∩ |Qp|
converging to 1. We have to show thatR[r0,rn]

A is Noetherian undR[r0,rn+1]
A → R[r0,rn]

A is
flat and has topologically dense image. Recall that a coadmissible module M [r0,1) over
R[r0,1)
A is uniquely determined by its sections along an admissible cover by Remark

1.58.

Lemma A.2. R[r0,rn+1]
A → R[r0,rn]

A is flat and has topologically dense image.

Proof. Assume r0 6= 0 since the case r0 = 0 can be treated analogously. Let I =
[r0, rn]. The Laurent polynomials K[T, T−1] are a dense subset of RI

K and thus the
image of K[T, T−1] ⊗F A is dense in both rings. It remains to show flatness. Let

I ⊂ R[r0,rn]
A be a finitely generated ideal and consider the map I ⊗R[r0,rn]

A

R[r0,rn+1]
A →

R[r0,rn]
A . It remains to show flatness. We can view U := Sp(R[r0,rn]

K ) as an affinoid

subdomain of X := Sp(R[r0,rn+1]
K ). Consider the canonical map p1 : Y = X ×K

Sp(A)→ X then by [BGR 7.2.2. prop 4]. U ×X Y is an affinoid subdomain of Y. By
Definition

U ×X Y = U ×X X ×K Sp(A) = U ×K Sp(A).
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We conclude thatR[r0,rn+1]
A → R[r0,rn]

A is the canonical map induced from the inclusion

of the affinoid subdomain U×KSp(A) = Sp(R[r0,rn+1]
A ) in X×KSp(A). Then by [BGR

Corollary 6 Section 7.3.2.] the coressponding map on the level of rings is flat.

Lemma A.3. R[r0,rn]
A is Noetherian.

Proof. This follows from the fact that the completed tensor product of two affinoid
algebras is again affinoid by [BGR84, 7.1.3. Proposition 4] and hence Noetherian
by [BGR84, 5.2.6 Theorem 1].

Lemma A.4. (cf. [KPX14, 2.1.12]) Let M be a coadmissible module over Rr
A. Sup-

pose M I is generated by f1, . . . , fn. Then there exists an ε > 0 such that any g1, . . . , gn
satisfiying |fi − gi| < ε also generates M I .

Proof. We have a continuous surjection of Banach modules (RI
A)n →M I . Where ei is

mapped to fi. By the open mapping theorem the image of the ball {v ∈ (RI
A)n | |v| <

1/2} contains some ball {m ∈M I | |m| < ε}. Given gi we can write gi−fi =
∑

j aijfj
with |aij| < 1/2. In other words gi = fi +

∑
j aijfj. By a geometric-series-argument

the matrix En + (aij)ij is invertible. We conclude that the gi generate M I .

Lemma A.5. Let r0 ∈ (0, 1) and let f ∈ Rr0
K . Then RA/f, and R[r0,1)

A /f are flat as
A-modules.

Proof. This is analogous to [KPX14, 2.1.5]. The proof carries over to our situation

using that R[r,s]
K is of countable type over K as a quotient of a Tate-Algebra over

K.

The following Lemma is [KPX14, Proposition 2.1.13(i)]. We elaborate on the proof.

Lemma A.6. Let M be a coadmissible module over Rr
A. Suppose there exist global

sections f1, . . . , fn ∈M that generate each M I for any closed interval I. Then the fi
generate M.

Proof. Consider the morphism

θ : (Rr
A)n →M

mapping ei to fi. Then ker(θ) is coadmissible by 1.55(iv). By assumption we have
an exact sequence

0→ ker(θ |[r,s])→ (R[r,s]
A )d →M [r,s] → 0.

Passing to the limit s → 1 and using the fact that lim←−
1 vanishes for coadmissible

modules by 1.55(iii) we obtain that θ is surjective.

Lemma A.7. Let M be coadmissible module over R[r0,1)
A . Then M is finitely gener-

ated if and only if there exists a natural number n and an admissible cover [ri, si], i ∈
N0 of [r0, 1) such that each M [ri,si] is generated by at most n elements.
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Proof. Define Ii := [ri, si]. We treat the non-trivial implication. After eventually
refining a given admissible cover of [r0, 1) we can assume that [ri, si] and [ri+2, si+2]
do not intersect for any i ∈ N0 and that the intervals are ordered in ascending order
i.e. ri < ri+1 and si < si+1. By construction the intervals with even indices [r2i, s2i]
are pairwise disjoint. The same applies for the intervals [r2i+1, s2i+1] with odd indices.
We first show that there exist global sections f1, . . . , fn and g1, . . . , gn such that the
fj generate each M [r2i,s2i] and the gj generate each M [r2i+1,s2i+1]. Since the argument
is symmetric we restrict ourselves to the intervals with even indices. By assumption
for each i we can find sections f2i,1, . . . , f2i,n that generate M [r2i,s2i]. When i = 0 we
can assume that the sections are global sections because M is dense in M I by using
Lemma 1.55(i). When i 6= 0, we can a priori assume that the sections lie in M [1/T ].
But in this case T becomes a unit in M I hence even in this case we can assume that
the sections are global sections. For every interval I2i we can find ε(2i) such that any
f ′2i,j satisfying |f2i,j − f ′2i,j| ≤ ε(2i) generates the same module by A.4. The idea is
to define a convergent series

fj :=
∑
k

pa(k)T b(k)f2k,j.

Satisfying a(0) = 0, b(0) = 0 and the following three conditions

1. for any k < k0 we have |pa(k0)−a(k)T b(k0)−b(k)f2k0,j|[r2k,s2k] ≤ ε(2k)

2. for any k < k0 we have |pa(k)−a(k0)T b(k)−b(k0)f2k,j|[r2k0
,s2k0

] ≤ ε(2k0)

3. for any k < 2k0 − 1 we have |pa(k0)T b(k0)f2k0,j|[rk,sk] ≤ p−k0

The third condition guarantees that fj converges with respect to the Fréchet topology.
We now explain how to chose a(k), b(k) inductively. By our conventions we have for
any interval I : |T |I = sup I, |T−1|I = inf I−1 and |pn|I = p−n. As noted before
we define a(0) = b(0) = 0. Next assume a(2k), b(2k) have been defined up to some
k0 ∈ N. We rewrite 2 the conditions as follows

1. for any k < k0 we have p−a(k0)s
b(k0)
2k ≤ s

b(k)
2k |f2k0,jp

−a(k)|−1
[r2k,s2k]

2. for any k < k0 we have p−a(k0)r
b(k0)
2k0
≥ r

b(k)
2k0
|pa(k)f2k,j|[r2k0

,s2k0
]

3. for any k < 2k0 − 1 we have p−a(k0)s
b(k0)
k ≤ |f2k,j|−1

[rk,sk]p
−k0 .

Because the intervals are disjoint, we have s2k < r2k0
and sk < r2k0

. After replacing
the right-hand side in each inequality with a suitable constant by taking the infimum
(in the first and third inequality) or supremum (in the second inequality) over all
k we can reduce to the subsequent Lemma A.8. It remains to show, that the f ′js
generate M I for every interval I = [r2k0 , s2k0 ]. By A.4 it suffices to show∣∣∣∣fj 1

pa(k0)T b(k0)
− f2i,j

∣∣∣∣
I

≤ ε(2k)

2With the convention 0−1 = +∞.
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We compute∣∣∣∣fj 1

pa(k0)T b(k0)
− f2i,j

∣∣∣∣
[r2k0

,s2k0
]

(A.1)

=

∣∣∣∣∣∑
k<k0

pa(k)−a(k0)T b(k)−b(k0)f2k,j +
∑
k>k0

pa(k)−a(k0)T b(k)−b(k0)f2k,j

∣∣∣∣∣
[r2k0

,s2k0
]

(A.2)

≤ max

(
max
k<k0

∣∣pa(k)−a(k0)T b(k)−b(k0)f2k,j

∣∣
[r2k0

,s2k0
]
,max
k>k0

∣∣pa(k)−a(k0)T b(k)−b(k0)f2k,j

∣∣
[r2k0,s2k0

]

)
(A.3)

≤ ε(2k0). (A.4)

Here we use the second inequality to estimate the left-hand side of (A.3) and apply the
first inequality with the roles of k and k0 interchanged to estimate the right summand
of (A.3). Finally we use lemma A.6 to conclude that M is finitely generated.

Lemma A.8. Let x1, x2, x3 ∈ [0, 1) with x2 > x1, x3 and let 0 < C1, C2, C3 be real
constants. Then there exists a natural number b� 0 such that there exists a natural
number a satisfying the following inequalities

1. paxb1 ≤ C1

2. paxb2 ≥ C2

3. paxb3 ≤ C3.

Proof. By assumption xi/x2 < 1 for i = 1, 3 and thus Y1 := xb1x
−b
2 converges to

0 for large b. The same is true for Y2 := xb3x
−b
2 . Choosing b large enough we can

ensure that Y1 ≤ p−1C1/C2 and Y2 ≤ p−1C3/C2 next choose a to be minimal such
that pa ≥ C2x

−b
2 . By construction pa ≤ pC2x

−b
2 . The second inequality is satisfied by

construction. For the other inequalities we compute

paxb1 ≤ pC2x
b
1x
−b
2 = pC2Y1 ≤ C2(C1/C2) = C1.

The computation for the third inequality is analogous.

A.2 The action on Rr
L/Qn.

Recall the product formula

tLT = logLT (X) = X
∏
n≥1

Qn(X)

πL
,

where Q1(X) = ϕ(X)/X and Qn := ϕ(Qn−1). The zeroes of Qn are precisely the
πnL-torsion points of the LT-group that are not already πn−1

L torsion points. Contrary
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to the cyclotomic situation these Qn are not necessarily polynomials. We denote by
Gn the polynomial

Gn :=
∏

a∈LT [πnL]\LT [πn−1
L ]

(X − a).

By construction Gn ∈ oL[[X]] and Gn | Qn in oL[[X]] and therefore in every R[r,s]
L .

We also observe that Qn/Gn is a unit in R[r,s]
L since it does not have any zeroes in

Cp and therefore is not contained in any maximal ideal of R[r,s]
L by an argument like

in the proof of 1.57.

Lemma A.9. Let z ∈ LT [πnL] ⊂ Ln and let σ ∈ ΓL then

σ(z) = [χL(σ)]φ(z).

Proof. See [Sch17, 1.3.12].

Lemma A.10. Fix a Basis z = (zn) of lim←−n LT [πnL]. By mapping X to zn ∈ LT [πnL]
we obtain a ΓL-equivariant isomorphism

B+
L/Qn

∼= Ln

furthermore the following diagrams commute

B+
L/Qn Ln B+

L/Qn+1 Ln+1

B+
L/Qn+1 Ln+1 B+

L/Qn Ln

ϕL ψLT π−1
L trLn+1/Ln

Proof. Note that L is flat over oL and because Ln over L is totally ramified with
uniformiser zn we have oLn = oL[zn]. Hence it suffices to show the corresponding
statement for A+

L = oL[[X]]. On the one hand the constant term of Qn is πL, on
the other hand the constant term of Gn has valuation val(z)[Ln : L] = val(πL) = 1
Therefore the quotient Qn/Gn is already a unit in oL[[X]]. Evaluation at zn in-
duces oL[[X]]/Qn

∼= oL[[X]]/Gn
∼= oL[X]/Gn

∼= oL[z] using that Gn is a distin-
guished polynomial because it reduces to the monic polynomial Xdeg(Gn) modulo
πL. This isomorphism is ΓL-equivariant by A.9. The desired isomorphism is ob-
tained by tensoring both sides with L. For the commutativity of the first diagram
we observe that ϕL(X) is mapped to [πL](zn) = zn−1 by assumption. For the sec-
ond diagram we first remark that ψLT is well-defined. Let f = g + hQn+1 then
ψLT (f) = ψLT (g) + ψLT (ϕL(Qn)h) = ψLT (g) + QnψLT (h) by the projection for-
mula. The commutativity of the diagram follows from ϕLψLT (x) = 1

πL
trBL/ϕ(BL)(x)

using that the latter trace can be computed as the trace of the multiplication-
by-x-matrix Mx with respect to the basis 1, X, . . . , Xq−1 and said matrix has co-
efficients in B+

L if x ∈ B+
L . Because of the additivity of matrix traces we have

trace(Mx) mod Qn = trace(Mx mod Qn). Finally we use that ϕL induces the in-
clusion Ln ↪→ Ln+1 modulo Qn.
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Corollary A.11. Let [r, s] be an interval with rL < r < s < 1 such that the corre-
sponding annulus contains LT [πnL]. Fix a Basis z = (zn)n of lim←−LT [πnL]. By mapping
X to zn ∈ LT [πnL] we obtain a ΓL-equivariant isomorphism

R[r,s]
L /Qn

∼= Ln

and the following diagrams commute:

R[r,s]
L /Qn Ln R[rq ,sq ]

L /Qn+1 Ln+1

R[rq ,sq ]
L /Qn+1 Ln+1 R[r,s]

L /Qn Ln

ϕL ψLT π−1
L trLn+1/Ln

Proof. By assumption the map in question is well-defined. The commutativity follows
from A.10 by first considering the map B+

L/Qn → Ln, which factors over R[r,s]
L since

Ln is a field and zn lies in the annulus B[r,s](Cp). Note that a priori R[r,s]
L /Qn → Ln

is merely surjective. By writing Qn = UnGn with a unit Un and Gn like in the proof
of A.10 one can see, that the left hand-side is at most [Ln : L]-dimensional over L,
which implies the injectivity.

Lemma A.12. 3 Let M be a finitely presented R-module and (Nn)n∈N either a count-
able projective Mittag-Leffler system of flat R-modules or a countable projective sys-
tem of Artinian modules. Then the natural map

M ⊗R lim←−
n

Nn → lim←−
n

M ⊗R Nn

is an isomorphism.

Proof. We first treat the flat case. Take a finite presentation Rs → Rr → M → 0
of M. Tensoring with N := lim←−nNn (resp. Nn)) allows us to express M ⊗R N (resp.
M ⊗RNn) as the cokernel of the induced map N s → N r (resp. N s

n → N r
n). But then

the statement follows if we can show cok(N s → N r) = lim←−n cok(N s
n → N r

n). Consider
the extended exact sequence

0→ C → Rs → Rr →M → 0,

where C := ker(Rs → Rr). Since Nn is assumed to be flat we have an exact sequence

0→ C ⊗R Nn → N s
n → N r

n →M ⊗Nn → 0

and one checks that C ⊗ Nn is again Mittag-Leffler. Splitting the above sequence
into two short sequences shows the vanishing of lim1N s

n/(C ⊗Nn) since lim1N s
n = 0

3This is an adaption of an answer to [Cyr]. Commonly this result is stated requiring Nn to be of
finite length, which does not suffice to treat our desired application to R = A affinoid over K
unless A is Artinian.
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surjects onto it, which via the isomorphism between coimage and image implies the
vanishing of lim1(im(N s

n → N r
n)) hence the desired cok(N s → N r) = lim←−n cok(N s

n →
N r
n). In the Artinian case it is well-known that (Nn)n is Mittag-Leffler and since

submodules of Artinian modules are Artinian, we see that (ker(N s
n → N r

n))n is also
Mittag-Leffler. Hence one may proceed with the same arguments as in the first
case.

Lemma A.13. Let n ≥ n0 and let ρ : Γn → K× be a non-trivial character of finite
order. We denote by K(ρ) the corresponding one-dimensional K-linear representa-
tion. Then

‖Z‖K(ρ) ≥ |p|
1
p−1 .

Proof. First of all we remark that any such character is automatically continuous
by [NS03, Théorème 0.1] because Γn is topologically of finite type. K(ρ) is a locally L-
analytic representation since the orbit maps are even locally constant. Since Γn ∼= oL
by assumption, we have ρ(Γp

m

n ) = 1 for some m� 0. By assumption there exists some
γ ∈ Γn such that ρ(γ) 6= 1. In this case ρ(γ) is some non-trivial p-power root of unity.

In particular |ρ(γ)− 1| ≥ |p|
1
p−1 . Since K(ρ) is one-dimensional the operator norm is

multiplicative and because
∑

k≥0 Z
k ∈ D(Γn, K) converges to a well-defined operator

on K(ρ) we necessarily have ‖Z‖K(ρ) < 1. By expressing δγ − 1 as a power series
δγ − 1 = ZF (Z), we conclude ‖Z‖K(ρ) ≥ ‖ZF (Z)‖K(ρ) = ‖γ − 1‖K(ρ) ≥ |p|1/(p−1),
where for the first estimate we use ZF (Z) ∈ ZoKJZK.

Lemma A.14. Let r ∈ (|p|
1
p−1 , 1) and fix a lift Xn of Zn to DQp(Γn, K) of norm

|X|r = C(r). Let W be a finite A-module with an L-analytic Γn-action such that

‖γ − 1‖W < ε := C(r)−1|p|
1
p−1

for any γ ∈ Γn. Then the action of Zn ∈ D(Γn, K) is invertible on W (ρ) = W ⊗K
K(ρ) for any non-trivial character ρ : Γn → K× of finite order.

Proof. It suffices to show that the action of Zm is invertible for some m ≥ n since
Zn+1 = ϕ(Zn) = Q(Zn)Zn. If we fix a Zp-basis γ1, . . . , γd of Γn the images ρ(γi)
have to be p-power roots of unity and by replacing Γn with a small enough subgroup
Γm ⊂ Γn we may and do assume that ρ(γi) 6= 1 for at least one i and ρ(γi) is a p-th
root of unity for every i, i.e. ρ is a non-trivial finite-order character whose values lie in
the goup of p-th roots of unity. By Lemma 2.11 we can replace Zn by Zm and replace
the lift Xn by a lift Xm of Zm whose r-norm is the same. Since K is one-dimensional
the K-linear action of Z on K(ρ) is either zero or invertible. Since ρ is assumed
to be non-trivial it has to be invertible. Let X =

∑
k∈Nd0

akb
k be a preimage of Z

in DQp(Γm, K) of norm ‖X‖r ≤ C(r). Our assumptions guarantee that γi − 1 acts

on W ⊗ K(ρ) with operator norm bounded above by |p|
1
p−1 = |ζp − 1| and Lemma

A.13 asserts that the invertible operator id⊗Z has operator norm bounded below by
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|p|
1
p−1 . We use the notation Zdiag to emphasize that Z acts diagonally and compute

‖Zdiag(a⊗ b)− (id⊗Z)(a⊗ b)‖W (ρ) (A.5)

≤ sup
k
|ak|‖bk(a⊗ b)− a⊗ bk(b)‖W (ρ) (A.6)

< sup
k
|ak|ε|p|

1
p−1
|k|
‖a⊗ b‖W (ρ) (A.7)

< sup
k
|ak|εr|k|‖a⊗ b‖W (ρ) (A.8)

= C(r)−1C(r)|p|
1
p−1‖a⊗ b‖W (ρ), (A.9)

where we use in (A.7) the estimate

‖(γ − 1)(a⊗ b)− a⊗ (γ − 1)b‖ = ‖(γ − 1)a⊗ γb‖ < ε‖a⊗ b‖

and the same inductive argument that we used in the proof of Lemma 2.12 to
treat general multi-indices. We conclude ‖Zdiag − (id ⊗ Z)‖ < ‖id ⊗ Z‖W (ρ) =
(‖id⊗Z‖−1)−1

W (ρ) and using 2.1 that the diagonal action of Z is invertible on W (ρ).

Note that K(ρ) is one-dimensional hence the action of 1 ⊗ Z is given by multipli-
cation by a constant in K× and hence satisfies the last equality ‖id ⊗ Z‖W (ρ) =
(‖id⊗Z‖−1)−1

W (ρ).

A.3 Homological Algebra

In the following R always denotes a commutative unital ring. We recall a useful
result on double complexes which we intend to apply to the Herr complex by viewing
it as a total complex of a double complex. By a double complex of R-modules we
mean a system of R-modules C•,• with horizontal differentials dhp,q : Cp,q → Cp,q+1

and vertical differentials dvp,q : Cp,q → Cp+1,q satisfying 0 = (dh)2 = (dv)2 and
dvdh + dhdv = 0 (i.e. the squares are anti-commutative). The (sum)-total complex
of C is the complex Tot(C)n :=

⊕
p+q=nC

p,q with differentials d = dh + dv.

Lemma A.15 (Acyclic Assembly Lemma). Let C be a bounded double complex with
exact rows or exact columns. Then Tot(C) is exact.

Proof. Cf. [Wei95, Lemma 2.7.3 p. 59f.]

The following Lemma is [KPX14, 4.1.3]. For the convenience of the reader we elab-
orate on the argument.

Lemma A.16. Let C•, D• be complexes of projective (resp. flat) R-modules with
C• concentrated in degrees [0, d] and D• bounded above. Suppose we have a quasi-
isomorphism D → C or C → D. Then D is quasi-isomorphic to the complex

coker(d−1)→ D1 → . . .

and coker(d−1) is projective (resp. flat).
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Proof. Since C and D are quasi-isomorphic the cohomology of D has to vanish in
degrees < 0 which proves first claim. Without loss of generality we replace D by the
complex coker(d−1)→ D1 → . . . . Since the complexes C and D are quasi-isomorphic
the mapping fibre cone(D• → C•)[−1] or cone(C• → D•)[−1] (depending on the
direction of the quasi-isomorphism) is acyclic. In the first case the fibre is a complex
of the form

0→ coker(d−1)→ X1 → · · · → Xn → 0,

where all X i = Ci ⊕ Di−1. are projective (resp. flat) by assumption. Because the
complex is acyclic we can split it into short exact sequences in particular we have a
short exact sequence

0→ ker(Xn−1 → Xn)→ Xn−1 → Xn → 0.

Since Xn−1 and Xn are projective (resp. flat) the module ker(Xn−1 → Xn) =
im(Xn−2 → Xn−1) has to be projective (resp. flat). Inductively we conclude that
coker(d−1) has to be projective (resp. flat).
In the second case the fibre is a complex of the form

0→ Y 0 → Y 1 ⊕ coker(d−1)→ Y 2 → · · · → Y n → 0,

where Y 0 = C0, Y 1 = C1, Y i = Ci ⊕Di−1 are projective (resp. flat) by assumption.
By the same argument as before we arrive at a situation where we have a short
exact sequence 0 → Y 0 → Y 1 ⊕ coker(d−1) → M → 0 with a projective (resp. flat)
module M. Then Y 1⊕ coker(d−1) has to be projective (resp. flat) which implies that
coker(d−1) has the same property as a direct summand.

Lemma A.17. Let Ψ : C• → D• be a morphism of complexes in D−perf(R). Then Ψ
is a quasi-isomorphism if and only if the induced morphism

C• ⊗L
R R/m→ D• ⊗L

R R/m

is a quasi-isomorphism for every maximal ideal m ∈ R.

Proof. This is [KPX14, 4.1.5].

Lemma A.18. Let S be a ring and N an S-module. Then pdS(M) ≤ pdS(N) for
any direct summand M ⊂ N.

Proof. By [Sta21, Tag 065R] we have

ExtiS(N, T ) = 0

for any S-module T and any i > n if and only if pdS(M) ≤ n. Writing N = M ⊕M ′

we conclude that ExtiS(M,T ) = 0 for i > pdS(N), proving that pdS(M) ≤ pdS(N)
using again the characterisation above.
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Definition A.19. A complex of R-module is called pseudo-coherent if it is quasi-
isomorphic to a bounded above complex of finite free modules. An R-module is called
pseudo-coherent if M [0] is pseudo-coherent.

Lemma A.20. Let M be a module over a ring R.

1. M is pseudo-coherent if and only if M admits a resolution

· · · → F1 → F0 →M → 0

of finite free modules.

2. Direct summands of pseudo-coherent complexes are pseudo-coherent.

Proof. See [Sta21, Tag 064T an Tag 064X].

Lemma A.21. Let S be a finite R algebra, that is free as an R-module such that the
inclusion R → S admits an R-linear section and let M be an S-module that admits
(as an R-module) a d-term projective resolution by finitely generated projective R-
modules. Then M admits (as an S-module) a d-term projective resolution by finitely
generated S modules.

Proof. By assumption we have a resolution of M with finitely generated projective
R-modules

0→ Xn → · · · → X0 →M → 0.

Since S is assumed flat over R we obtain an exact sequence of finitely generated
projective S-modules

0→ Xn ⊗R S → · · · → X0 ⊗R S →M ⊗R S → 0.

In particular M ⊗R S is a pseudo-coherent S-module. The R-linear split S = R⊕ S̃
gives a R⊗R S = S linear split M ⊗R S = M ⊕ M̃ hence M is a direct summand in
M ⊗R S. By A.18 the projective dimension of M is bounded by that of M ⊗R S and
by A.20 M is pseudo-coherent and hence admits a (potentially infinte) resolution

. . . F1 → F0 →M → 0

by finite free S-modules. By A.18 the kernel of Fd → Fd−1 is projective and we
may truncate the sequence by replacing Fd with ker(Fd → Fd−1). The latter remains
finitely generated because it is equal to the image of Fd+1 → Fd by construction.

A.4 Analyticity in fibres

In this section we discuss the property of being analytic in Families. As before let
L ⊂ K ⊂ Cp be a complete field extension and let A be K-affinoid. For each
maximal ideal mz ⊂ A corresponding to z ∈ Sp(A) we obtain a (ϕL,ΓL)-module
Mz over RA/mz (cf. Lemma 1.56) and one checks that the latter is L-analytic if the
original module is L-analytic by projecting the orbit maps down to Mz.
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Definition A.22. Let M be a (ϕL,ΓL)-module over RA. We call M fibre-wise
L-analytic if Mz is L-analytic for each z ∈ Sp(A).

We will show that for reduced A fibre-wise L-analyticity is equivalent to L-analyticity.
We collect some preliminaries from commutative algebra.

Definition A.23. Let R be a commutative ring. Let M be an R-module. We define
Rad(M) as the intersection of all maximal submodules of M. As usual we denote by
J(R) the (Jacobson) radical of R.

Lemma A.24. Let R be a commutative ring. Let M, (Mi)i∈I be R-modules. We
have

1. Rad(M) =
⋂

m∈Max(R) mM

2. Rad(
⊕

i∈IMi) =
⊕

i∈I Rad(Mi).

3. Rad(M) = J(R)M for every free R-module.

4. Rad(M) = J(R)M for every projective R-module.

Proof. 1.) and 2.) are well-known, 3.) is clear from 2.), 4.) follows by writing a
projective module as a direct summand of a free module and applying 3.).

Lemma A.25. Let A be K-affinoid then A is Jacobson. In particular if A is reduced
we have J(A) = 0.

Proof. See [BGR84, 3.8 Lemma 9 and 6.1 Proposition 3].

Lemma A.26. Let A,B be K-affinoid and reduced. Then

Sp(A)×K Sp(B) = Sp(A⊗̂KB)

is reduced.

Proof. See [Duc09, Théorème 8.1] for the statement concerning the corresponding
Berkovich spaces using that over a perfect field geometrically reduced and reduced
are equivalent. By [BGR84, 7.3.2. Corollary 9] an affinoid is reduced if and only if
the ring of global sections is reduced. On the other hand for a K-affinoid A (in the
sense of Berkovich) the corresponding Berkovich space M(A) is reduced if and only
if A is reduced as a ring by combining [Ber93, Theorem 2.2.1] and [Ber93, Theorem
2.1.1].

Proposition A.27. Let A be a reduced K-affinoid and M be a fibre-wise L-analytic
(ϕL,ΓL)-module M over RA. Then M is L-analytic.
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Proof. After choosing a model M r we can view M r as a vector bundle on SpA ×K
Sp(R[r,1)

K ). By 1.42 it suffices to show that the derived action Lie → End(M r) is
L-linear. Equivalently it suffices to show that for every m ∈ M r and λ ∈ L we have
λ∇(m)−∇(λm) = 0. This vanishing can be checked on each M [r,s]. In this case M [r,s]

is a projective module over the reduced (by A.26) affinoid X := SpA×K Sp(R[r,s]
K ).

Let m ∈ M [r,s] and λ ∈ L. Then v := λ∇(m) − ∇(λm) belongs by assumption to
mxM

[r,s] for every x ∈ X. More precisely v belongs a priori to
⋂
z∈Sp(A) mzM

[r,s]. By

1.56 mzR[r,s]
A is prime because R[r,s]

A/mz
is a domain as a subring of R[r,s]

Cp . Thus the

ideal generated by mz is a radical ideal and because OX(X) is Jacobson it is the
intersection of all maximal ideals containing it. However every x ∈ Sp(X) lies above
some z ∈ Sp(A) which implies that the intersection is taken over all of X. From A.24
and A.25 we conclude v = 0.
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Errata

Lemma 1.11: The proof of the lemma contains a false claim. Evidently co(K) is
not the completion of

⊕
n∈NK with respect to the product topology, but rather the

completion with respect to the sup-norm topology (which can be viewed as a subset
of the product). Nevertheless co(K)⊗̂KV can be functorially identified with the space
of zero sequences in V and strict maps are preserved (cf. proof of [Eme17, Proposition
2.1.23]).
Lemma 1.43: In the proof there is an inaccuracy. In order to commute the projective
limit and the completed projective tensor product, one has to represent the Fréchet
spaces Vi,Wi as projective limits of Banach spaces with dense transition maps. This
can be done without loss of generality by replacing a countable system of semi-norms
inducing the topology on a given Fréchet space by an ordered system and taking the
projective limit over the corresponding Hausdorff completions.
Proposition 1.74. The line on the top of page 36: As was seen in 1.23 should
be replaced by as was seen in the proof of 1.22. More precisely, the claim follows
from [Sch02, Corollary 18.8] using the reflexivity of E in the known case.
Definition 2.5. The definition in question contains some ambiguities which we
would like to clarify. For n ≥ n0 we define RI

K(Γn) as the ring of I-convergent
Laurent series in the variable Zn. The map (l−1

n )∗ is thus given by mapping T ∈
R+
K
∼= D(oL, K) to Zn. We opted for the complicated notation to keep track of the

charts as the commutativity of the diagrams involved is a consequence of our specific
choices of charts. The commutative diagrams on page 43 contain a typo: ιl+m should
be called ιn+m.
Lemma A.21 is incorrect in the generality stated by us. For our intended application
the following form is sufficient.

Lemma E.1. Let G be a compact L-analytic group, let H ⊂ G be a (finite index)
normal open subgroup, let A be K-affinoid, let S := D(G,A)4, R := D(H,A) and
let M be an S-module that admits (as an R-module) a d+ 1-term (d ≥ 0) projective
resolution by finitely generated projective R-modules. Then M admits (as an S-
module) a d+ 1-term projective resolution by finitely generated S-modules.

Proof. Let T be an S-module. Using that the Dirac distributions δg, where g runs
through a system of representatives of G/H, form a basis of S as an R-module,

4We take D(G,A) := A⊗̂KD(G,K) as a convention.
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we have HomS(M,T ) = HomR(M,T )G/H , where G/H acts on a homomorphism f
via (gf)(−) = gf(g−1−). Because A contains a field of characteristic 0 the functor
(−)G/H is exact on A[G/H]-modules and we obtain corresponding isomorphisms

ExtiS(M,T ) ∼= ExtiR(M,T )G/H .

In particular the assumption on the length of the resolution asserts

ExtiS(M,T ) = 0 (∗)

for every i > d. This implies that the projective dimension of M is bounded by d. By
assumption we have a resolution of M with finitely generated projective R-modules.
From [Sta21, Tag 064U] we obtain that M is in particular pseudo-coherent as an
R-module. The ring S is finite free as an R module and hence pseudo-coherent.
Applying [Sta21, Tag 064Z] we can conclude that M is pseudo-coherent as an S-
module. By Lemma [Sta21, Tag 064T] admits a (potentially infinte) resolution

. . . F1 → F0 →M → 0

by finite free S-modules.
Using (∗) the kernel of Fd → Fd−1 is projective and we may truncate the sequence
by replacing Fd with ker(Fd → Fd−1). The latter remains finitely generated because
it is equal to the image of Fd+1 → Fd by construction.
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