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Abstract

Abstract

Obtaining spatial-temporal information of virus particles in fluorescence microscopy

images is a prerequisite to gain insights into viral pathogens at a microscopic level

about virus replication and assembly, but also at a macroscopic level to understand

virus spread and infection in tissue-like structures. To obtain spatial-temporal

information of virus particles, these structures need to be detected and tracked

over time in time-lapse fluorescence microscopy image data. Since accurate manual

determination of the position of many particles for all time points in microscopy

image data is not feasible and introduces human bias, automatic computer vision

methods for particle tracking and trajectory analysis are required.

In this thesis, new methods for probabilistic particle tracking are introduced based

on data fusion and Bayesian smoothing. We propose data fusion approaches to

incorporate image intensity and position as well as motion information and use a

Bayesian framework to exploit uncertainties introduced by image noise and integrate

a priori knowledge. To exploit image intensity and position information, we consider

multiple measurements for each particle and fuse them by taking into account differ-

ent uncertainties. Further, we developed a novel intensity-based probabilistic fusion

approach which fuses results from multiple detectors and yields a consistent estimate

of multiple fused detections to improve particle detection and localization. This

approach integrates detections from classical and deep learning methods as well as

exploits single-scale and multi-scale detections. To improve particle tracking by incor-

porating temporal information, we developed a novel Bayesian smoothing approach

which integrates information from past and future time points. The covariance

intersection algorithm is used to fuse position information and to obtain consistent

trajectory estimates. In addition, motion information based on displacements from

past and future time points is used to improve correspondence finding.

The novel methods were applied and evaluated on image data consisting of state-

of-the-art benchmark data sets as well as live cell fluorescence microscopy image

data showing immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV).

It turns out, that the developed novel methods yield competitive or improved results

compared to existing methods. We also applied the methods to quantify the motion

and colocalization of HIV-1, HCV, and chromatin structures. Insights into viral and

chromatin structures were obtained to better understand virus replication, assembly,

spread and infectivity in tissue-like structures, as well as nuclear organization in

mammalian cells.
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Zusammenfassung

Zusammenfassung

Die Gewinnung räumlich-zeitlicher Informationen über Viruspartikel in Fluoreszenz-

mikroskopiebildern ist eine Voraussetzung zur Erlanungung von Erkenntnissen über

virale Krankheitserreger auf mikroskopischer Ebene in Bezug auf Virusreplika-

tion und das Zusammenfügen, aber auch auf makroskopischer Ebene über das

Verständnis der Virusausbreitung und Infektion in gewebeähnlichen Strukturen. Um

räumlich-zeitliche Informationen von Viruspartikeln zu erhalten, müssen subzelluläre

Strukturen in zeitlich aufgelösten fluoreszenzmikroskopischen Bilddaten detektiert

und zeitlich verknüpft werden. Da eine genaue manuelle Bestimmung der Position

einer großen Anzahl von Partikeln für alle Zeitpunkte in mikroskopischen Bilddaten

nicht durchführbar ist und eine menschliche Verzerrung beinhaltet, sind automa-

tische Methoden der Bildanalyse zur Partikelverfolgung und Trajektorienanalyse

erforderlich.

In dieser Arbeit werden neue Methoden zur probabilistischen Partikelverfolgung

vorgeschlagen, die neuartige Datenfusions- und Bayes’sche Glättungsansätze ver-

wenden. Wir schlagen Datenfusionsansätze vor, um Bildintensitäts- und Positions-

sowie Bewegungsinformationen einzubeziehen, und verwenden einen Bayes’schen

Ansatz, um Unsicherheiten zu nutzen, die durch Bildrauschen entstehen und inte-

grieren a-priori-Wissen. Um Bildintensität und Positionsinformationen zu nutzen,

betrachten wir mehrere Messungen für jedes Partikel und fusionieren diese unter

Berücksichtigung verschiedener Unsicherheiten. Zur Verbesserung der Partikeldetek-

tion und -lokalisation haben wir einen neuartigen intensitätsbasierten probabilistis-

chen Fusionsansatz entwickelt, der die Ergebnisse mehrerer Detektoren vereinigt und

eine konsistente Schätzung für die Partikelerkennung liefert. Darüber hinaus führt

der neuartige Fusionsansatz eine Datenfusion von Detektionen von klassischen und

Deep-Learning-Methoden durch und nutzt ein- und mehrskalige Detektionen. Um

die Partikelverfolgung durch Einbeziehung zeitlicher Informationen zu verbessern,

haben wir einen neuartigen Bayes’schen Glättungsansatz entwickelt, der Informa-

tionen aus vergangenen und zukünftigen Zeitpunkten fusioniert. Der Covariance-

Intersection-Algorithmus wird verwendet, um Positionsinformationen zu fusionieren

und konsistente Trajektorienschätzungen zu erhalten. Darüber hinaus werden Be-

wegungsinformationen, die auf Verschiebungen von vergangenen und zukünftigen

Zeitpunkten basieren, zur Verbesserung der Korrespondenzfindung verwendet.

Die neuen Methoden wurden auf Bilddaten angewandt und ausgewertet, die

aus Benchmark-Datensätzen sowie aus realen fluoreszenzmikroskopischen Bilddaten

bestehen, die das Humane Immundefizienz-Virus Typ-1 (HIV-1) und das Hepatitis-

C-Virus (HCV) zeigen. Es zeigt sich, dass die neu entwickelten Methoden im

Allgemeinen konkurrenzfähige oder verbesserte Ergebnisse im Vergleich zu beste-

henden Methoden liefern. Wir haben die Methoden auch auf Bilddaten von HIV-1,

HCV und Chromatin Strukturen angewendet, um die Bewegung und Kolokalisierung

zu analysieren. Dadurch konnten Einblicke in Virus- und Chromatinstrukturen
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erhalten werden um die Virusreplikation, die Virusausbreitung und Infektiosität in

gewebeähnlichen Strukturen, sowie die Zellkernorganisation in Säugetierzellen besser

zu verstehen.
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1 Introduction

1.1 Motivation

Viruses have the potential to affect all forms of life starting from simple life forms

such as bacteria to complex organisms such as humans where a virus infection might

represent a threat to life. Furthermore, viruses have the potential to spread fast and

therefore infect a large population of people which can lead to pandemic situations

such as the current global COVID-19 pandemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Other pandemic situations are caused by

the outbreak of other viruses such as the human immunodeficiency virus type-1

(HIV-1) and the hepatitis C virus (HCV).

An HIV-1 infection causes the acquired immune deficiency syndrome (AIDS)

and is therefore a major global public health issue. As reported by the WHO, 36

million people have lost their lives and approximately 37.7 million people live with

HIV at the end of 2020 [1]. An HIV-1 infection can be caused by the exchange of

a variety of body fluids from infected people such as blood, breast milk, semen,

and vaginal secretions. Further, HIV-1 can also transmitted from the mother to

her child during pregnancy and delivery. HIV-1 is an enveloped virus with a lipid

membrane which embeds spikes of glycoprotein complexes and two copies of genomic

single stranded RNA are encapsulated by the cone-shaped capsid [2]. During virus

replication, the virus genomic information is integrated into the host-cell DNA [3].

As virus-host interactions that govern the infection of individual cells with HIV-1,

the host receptor (CD4), the chemokine receptor CC5, and the CXC-chemokine

receptor 4 (CXCR4) are identified and the main target cells for infection are CD4+

T cells and macrophages [4, 5].

The infection with HCV can cause both acute and chronic hepatitis which is an

inflammation of the liver ranging from mild to serious progressions with lifelong illness

including liver cirrhosis and cancer. The WHO estimates that globally 58 million

people have a chronic hepatitis C virus infection and about 1.5 million infections

occur per year [6]. An HCV infection can be caused by inadequate sterilization of

medical equipment (e.g., syringes, needles), transfusion of HCV infected blood and

blood products, but also due to drug injection with shared injection equipment which

is HCV infected. The existence of HCV was demonstrated in mid-1970s since patients

with hepatitis after blood transfusion have been reported which was not caused by

hepatitis A or B viruses [7]. The hepatitis C virus is an enveloped plus-stranded

RNA virus with a lipid membrane which embeds two glycoproteins, E1 and E2,
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and consists of non-structural proteins (e.g., NS5A) which are important in virus

replication and assembly [8]. In contrast to HIV-1, HCV genomic information is

released into the cytoplasm and exploited for replication and assembly which takes

place at the endoplasmic reticulum aided by lipid droplets [9].

However, the replication and assembly of HCV is not fully understood. Especially,

spatial-temporal knowledge in conjunction with information on virus-host interaction

is still missing to fully understand HCV assembly. Concerning HIV-1, knowledge

about the HIV-1 post-entry phase consisting of nucleus entry and capsid uncoating

could be achieved in recent works [10, 2]. However, a functional understanding in

conjunction with a spatial-temporal view is still incomplete. As for the microscopic

level, virus spread and infection on a macroscopic level with complex biological

systems taking into account tissue characteristics is not fully understood.

To gain insights into virus replication or virus spread, time-lapse live cell fluores-

cence microscopy in conjunction with virus particle detection and tracking allows

quantification of viral structures at a high spatial-temporal resolution. Insights into

virus assembly can be obtained by colocalization analysis of tracked viral structures.

To understand virus-host interactions, cell tracking is required as an additional step,

and cell dependent genome organization can be studied by tracking and motion

analysis of chromatin structures. In order to draw sound statistical conclusions, a

large number of correctly detected and tracked virus particles are required. However,

manual annotation of image sequences consisting of a large number of frames is not

feasible and additionally prone to errors since human bias is introduced. Therefore,

automatic computer vision methods and complex image analysis pipelines with

optimized hyperparameters are required. To deal with uncertainties in the image

data caused by noise and to exploit available a priori knowledge, this thesis presents

methods based on a Bayesian framework.
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1.2 Contributions and Organization of the Thesis

This thesis introduces methods based on data fusion and Bayesian smoothing for

integrating spatial and temporal information to determine trajectories of virus and

chromatin structures in live cell fluorescence microscopy images. The proposed

methods improve main tasks of trajectory determination, namely object detection

and tracking. The methods were applied to real fluorescence microscopy image data

for infectious disease and genome organization research projects involving motion

and colocalization analysis of HIV-1 and HCV as well as chromatin structures. The

main contributions of this thesis are:

• Two-Filter Probabilistic Data Association for Particle Tracking: A novel

particle tracking method for microscopy images is proposed which is based on a

two-filter smoothing approach and probabilistic data association. The approach

exploits spatial and temporal information by fusing information from past and

future time points, integrates multiple measurements, and combines Kalman

filtering and particle filtering. The novel tracking method was applied to data of

the Particle Tracking Challenge and fluorescence microscopy data of HCV proteins

and HIV-1. The tracking method improved the results compared to previous

methods. The work was published in [11].

• Bayesian Smoothing using Covariance Intersection for Particle Tracking:

A novel method for particle tracking in microscopy images is proposed based

on Bayesian smoothing using covariance intersection to incorporate temporal

information by fusing information from past and future time points. Predictions

are obtained by two filters running in opposite temporal directions and fused

in the state space by the covariance intersection algorithm which is a general

multi-sensor data fusion method for unknown cross-covariances. In addition,

motion information is exploited by fused displacements from past and future time

points and integrated in the cost function for correspondence finding. Further, a

multi-sensor data fusion approach with probabilistic data association is used which

fuses multiple measurements from separate measurement processes by integrating

detection-based and prediction-based measurements. The approach allows taking

into account different uncertainties to improve update estimation. Both detection-

based and prediction-based measurements are obtained from a Kalman filter using

probabilistic data association with elliptical sampling. The novel tracking method

was applied to data of the Particle Tracking Challenge and fluorescence microscopy

data of HIV-1 and HCV proteins acquired with different types of microscopes

and spatial-temporal resolutions. It turned out that the tracking method yielded

state-of-the-art results or outperformed previous methods. The work was published

in [12].
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• Multi-Detector Fusion and Bayesian Smoothing for Particle Tracking:

A novel probabilistic tracking approach for multiple particle tracking based on

multi-detector data fusion and Bayesian smoothing is proposed. The approach

fuses results from multiple detectors using a novel intensity-based covariance

intersection method which takes into account information about image intensities,

positions, and uncertainties. The method ensures a consistent estimate of multiple

fused particle detections and does not require an optimization step. The tracking

approach performs data fusion of detections from classical and deep learning

methods as well as exploits single-scale and multi-scale particle detections. Further,

for each particle a time-varying estimate of the measurement noise covariance

is computed to improve update estimation for particle tracking. In addition,

Bayesian smoothing is used to fuse predictions obtained from both past and future

time points. The novel tracking method was evaluated using data of the Particle

Tracking Challenge and achieved state-of-the-art results or outperformed previous

methods. Further, the method was applied to challenging time-lapse fluorescence

microscopy image data of HCV associated proteins and chromatin structures and

outperformed existing methods. The work has been submitted for publication [13].

• Deep Learning for Particle Detection and Tracking: For particle tracking, a

novel approach is proposed which combines deep learning and Bayesian sequential

estimation by using a domain adapted network for particle detection in conjunction

with probabilistic data association for tracking. Data association parameters that

depend on the detection result are identified and automatically determined by

hyperparameter optimization. Further, an extension is introduced which uses deep

learning for both particle detection and particle association by combining a domain

adapted network for detection with an LSTM-based recurrent neural network for

tracking. The work was published in [14], [15], and [16].

• ColocQuant and ColocJ - Colocalization Analysis for Multi-Channel

Microscopy Images: A novel colocalization analysis approach for multi-channel

microscopy images is proposed which consists of object-based detection, quantifi-

cation, and visualization of colocalizations of virus structures in multi-channel

fluorescence microscopy images. The approach uses a multi-dimensional graph-

based method to efficiently identify multi-channel colocalized particles and visu-

alizes the color composition of colocalizations by a Maxwell color triangle. The

approach has been implemented in a software suite with integrated graphical user

interface and was applied to three-channel fluorescence microscopy images of HCV

to characterize HCV assembly sites [17].
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• Motion Analysis of Subcellular Structures: The developed probabilistic

tracking methods were applied to time-lapse fluorescence microscopy image se-

quences of HIV-1 particles. Diffusion parameters of HIV-1 particles were quantified

and used for mathematical modeling of virus spread kinetics in suspension and 3D

collagen structures. Further, probabilistic tracking was applied to time-lapse con-

focal microscopy image sequences of chromatin within mammalian cells. Diffusion

parameters of chromatin were quantified and correlated to sites in proximity of

active DNA replication based on colocalization analysis. The work was published

in [18], [19], and has been submitted for publication [20].

Organization of the Thesis Chapter 2 describes fundamentals of fluorescence

microscopy imaging, data fusion, and Bayesian smoothing. Further, previous work

on particle detection and tracking within the field of computer vision for biological

images is reviewed. In Chapter 3, novel Bayesian smoothing approaches for particle

tracking in microscopy images are proposed which incorporate temporal information

by fusing information from past and future time points. Chapter 4 introduces a

novel multi-detector fusion approach with intensity-based covariance intersection for

particle detection and proposes a multi-detector tracking approach based on Bayesian

smoothing. Chapter 5 describes novel methods for particle tracking which integrate

deep learning methods for particle detection and tracking. Chapter 6 presents the

experimental results of the proposed methods described in Chapters 3 to 5. The

methods were applied to data of the Particle Tracking Challenge as well as for live

cell real fluorescence microscopy image data displaying different types of viral and

chromatin structures. In Chapter 7, a framework for hyperparameter optimization

is described and used to optimize hyperparameters for particle detection in multi-

channel microscopy images. Further, a novel probabilistic cell tracking approach with

integrated cell division detection is introduced. In Chapter 8, a novel colocalization

analysis approach for multi-channel microscopy images is proposed. The developed

probabilistic particle tracking methods were applied to real fluorescence microscopy

image data and motion as well as colocalization analysis of virus and chromatin

structures was performed. A summary and outlook with suggestions for future work

are given in Chapter 9.
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2 Fundamentals and Previous Work

This chapter introduces fundamental concepts essential for this thesis. First, fun-

damentals of microscopy imaging such as fluorescence microscopy and fluorescence

labeling are reviewed. Then, data fusion concepts such as multi-sensor data fusion

algorithms, Kalman filtering, and Bayesian smoothing are described. Afterwards, a

brief introduction of deep learning for biomedical computer vision is given. Further,

approaches for particle tracking in microscopy images are presented and discussed,

followed by introducing methods for colocalization and motion analysis.

2.1 Microscopy Imaging

Virus and chromatin structures have a small size and require a magnified image

provided by microscopy techniques for observation. To gain insights into cellular

processes, the subcellular structures need to be observed in situ to conduct mea-

surements directly and dynamically in live cells. Time-lapse fluorescence microscopy

capture such structures and is able to uncover mechanisms of virus infection, assembly,

release, or cell proliferation in high spatial and temporal resolution [21, 22, 23].

Fluorescence Microscopy

Fluorescence microscopy belongs to optical microscopy techniques and utilizes the

principle of fluorescence which is the emission of light occurring after the absorption

of light with a shorter wavelength [21, 22]. The subcellular structure of interest is

labeled with a fluorescent protein (e.g., green fluorescent protein (GFP)) which is a

fluorophore of small size and consisting of electrons which can reach an excited state

with higher energy due to absorption of light (photons) with a specific wavelength.

Due to vibrations, the electrons lose energy and when falling back to ground state

the released energy during this process is emitted as light. The wavelength of the

emitted light is larger than the wavelength of the absorbed light, which means that

the energy of the emitted photons is smaller than that of the absorbed photons.

This shift of wavelengths (energies) is denoted as Stokes shift. The main task is to

separate the spectrum of emission and stimulation light efficiently and accurately

obtain high quality signals from the subcellular structure of interest. The stimulation

light is usually generated by high pressure metal halide lamps (with mercury and/or

xenon) or by light-emitting diodes (LED). However, if high intensity of light in
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Figure 2.1: Overview of fluorescence microscopes and detectors.

a small area of the specimen is required, lasers are used as light sources [22]. An

overview of fluorescence microscopes and detectors is given in Fig. 2.1.

Wide-field fluorescence microscopy (WF) illuminates a large field of the specimen,

generates a large field of view, and uses a highly sensitive camera [23]. WF has

been used to investigate virus-cell interaction for the HIV-1 entry process [24] and to

study HIV-1 assembly and release [25]. However, in WF the fluorophores above and

below the image plane in focus are excited. This is suboptimal for thick and highly

scattering specimen, as the focused image is overlaid by blurred images, resulting in

low image contrast and resolution. [22].

Confocal microscopy (CM) reduces these perturbations, and thick specimen like

living samples can be observed. CM exploits the principle of pinholes to eliminate

out-of-focus signals [22, 23] produced by fluorophores outside the image plane in

focus. A pinhole in front of the detector is used to eliminate emission light generated

outside the image plane in focus and a second pinhole placed after the light source

prevents the stimulation of fluorophores outside the image plane in focus. For CM,

two types of systems exist (see Fig. 2.1), laser scanning confocal microscopy (LSCM)

and spinning disk confocal microscopy (SDCM) [26]. LSCM uses lasers as light

sources and scans the specimen point-by-point due to a scanning unit either by

moving scanning mirrors or moving specimen slide. The data is collected one pixel at

a time by a photomultiplier tube as detector. Disadvantages are that the microscopy

system is limited in scanning speed and by the number of photons available per

pixel [23]. In contrast, SDCM scans multiple positions simultaneously by using a

mechanically spinning Nipkow disk which consists of multiple pinholes arranged in a

specific pattern. Both LSCM and SDCM use dichroic mirrors to separate emission

and stimulation light. In contrast to LSCM, SDCM uses an electron multiplying

charge-coupled device (EMCCD) camera as detector to collect the emission light

which leads to higher quantum efficiency, higher image quality, and faster read
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out [23]. Combing SDCM with a scan device for the z-coordinate, the system allows

fast recording of three-dimensional (3D) images which has been intensively used for

3D live cell imaging to study viral replication (e.g., [10, 2, 18, 27]).

The most common sensitive detectors for modern fluorescence microscopes are

camera systems based on modern semiconductor technologies [28, 29, 23] (see Fig. 2.1).

The most commonly used cameras are based on charge-coupled devices (CCD) which

exploit the inner photoelectric effect and measure the amount of electrical charges

that has built up during the time that the CCD was illuminated [30]. Intensified

charge-coupled device (ICCD) cameras use an image intensifier in front of the CCD

to improve quantum efficiency which leads to a higher sensitivity [28, 29]. The

image is transferred with fiber optics to a microchannel plate which converts the

emission photons to electrons, multiplies them by impact ionization, and converts

the enhanced electron signal back to photons. The multiplied emission photons

are measured by CCD behind the image intensifier. The electron-multiplied charge-

coupled device (EMCCD) camera exploits a shift register and high voltage electron

multiplying register to perform electron amplification on chip before the detected

signal is read-out [29, 23]. EMCCD cameras simultaneously achieve a fast read-out

speed and high sensitivity due to high quantum efficiency. Compared to CCD-based

camera systems, scientific complementary metal oxide semiconductor (sCMOS) use

semiconductor-based electronic circuits directly integrated into each pixel and thus

only parts of the pixel are photon sensitive [29]. sCMOS cameras have a very fast

read-out speed with several hundred frames per second compared to CCD-based

cameras with frame rates of around one hundred frames per second [31, 29, 23].

Fluorescence Labeling

Cell structures can be fluorescently imaged after the specimen is stained or viral

components are labeled by fluorophores. An overview and classification of fluores-

cence labeling is given in Fig. 2.2. Cell nuclei can be imaged with 4’,6-diamidino-2-

phenylindole (DAPI ) staining. DAPI binds to deoxyribonucleic acid (DNA) regions

rich in adenine-thymine and has the advantage that it can be combined with other

dyes (e.g., GFP, Cy3, Cy5, Alexa Fluor 488) [22]. Example images of DAPI staining

are given in Fig. 2.3 acquired at the Infectious Diseases Imaging Platform at the

Center for Integrative Infectious Diseases Research (CIID), Heidelberg University Hos-

pital. Directly labeling viral components is a challenging task, since viral structures

are densely packed and therefore are limited in size and location for the fluorophore.

The fluorophores are required to not inhibit the functionality of the viral structure

as well as not hamper the infectivity of the virus [23]. The fluorophores are desired

to be bright with a strong ability to capture photons by a large molecular absorption

coefficient and high fluorescence quantum yield in order to obtain a high spatial

resolution and fast image acquisition. Further, a high photostability is required for

many excitation-deexcitation cycles.
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Figure 2.2: Overview and classification of fluorescence labeling techniques and used
fluorophores.

Figure 2.3: Live cell microscopy images of DAPI stained cell nuclei imaged with a
spinning disk confocal microscope.

There exist several types of fluorophores including organic dyes and fluorescent

proteins. Organic dyes are small fluorescent labels with good photophysical properties

and many reactive groups are available for various labeling strategies with a wide

spectral range. Depending on their virus labeling strategy, organic dyes can be

subdivided in covalent labeling dyes, lipophilic dyes, and intercalating dyes. Covalent

labeling dyes bind to the viral component by a covalent bond and often used labeling

dyes are, e.g., Cy3 (orange), Cy5 (far-red), or Alexa Fluor 488 (green). For example,

Alexa Fluor 488 has been applied for labeling the capsid and envelope of human

papillomavirus (HPV) to study the kinetics of the viral entry process [32]. Lipophilic

dyes are able to bind to the lipid membrane of enveloped viruses (e.g., HIV [33, 34],

HCV [35]) due to the incorporation into the envelope by hydrophobic-lipophilic

interactions [23]. Intercalating dyes are able to penetrate the outer virus components

in order to label the encapsulated virus genome to a certain extent. However, the
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Figure 2.4: Overview of main challenges of fluorescence techniques and image acqui-
sition for image analysis.

dyes have the disadvantage that they can interact with the viral RNA and thus

inactivate the viral RNA during illumination [23].

Fluorescent proteins are a type of fluorophores which are genetically encodable

such that the fluorescent protein DNA can be fused with the protein DNA of

interest (target protein to be labeled). The host cell can be transfected with the

fusion product and the expression level of the fluorophore is related to transcription

and transfection efficiency. Types of fluorescent proteins can be classified into

autofluorescence proteins, pH-sensitive fluorescent proteins, and phototransformable

fluorescent proteins [23]. The green fluorescent protein (GFP) and GFP-like proteins

are autofluorescence proteins, and the property of fluorescence is directly encoded

in the sequence and preserved when fused with the DNA of proteins of interest.

The pH-sensitive fluorescent proteins change their optical property when the pH

(potential of hydrogen) of the enviroment changes. These proteins can be used to

detect pH changes in the cell and have been applied to HIV to study the fission of

newly assembled virus particles [36]. Phototransformable fluorescent proteins can be

activated or their spectrum can be shifted using light.

Challenges of Fluorescence Microscopy Imaging for Image Analysis

In live cell time-lapse fluorescence microscopy imaging, various challenges of fluo-

rescence techniques and image acquisition for image analysis exist, e.g., autofluo-

rescence, photobleaching, quenching, crosstalk, bleed-through, phototoxicity, or focus

drift [21, 22]. An overview and classification of the challenges is given in Fig. 2.4. The

image contrast is reduced due to background noise generated by autofluorescence

which is the natural emission of photons by biological structures within the specimen

to be observed (e.g., mitochondria, lysosomes) [37]. Photobleaching is caused by

destruction of the fluorophores due to the light source and bleaches the fluorescence

signal. It can be prevented by using lower stimulation light intensity and/or faster
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acquisition which reduces the degradation of the fluorescent proteins. After stimula-

tion by light, the energy of fluorophores in excited state (donator) can be given to a

second fluorophore (acceptor) due to Förster resonance energy transfer (FRET). This

reduces the fluorescence of the molecules and is denoted as quenching. Challenges

arise if multiple fluorophores are used. Fluorophores with overlapping stimulation

light spectra lead to simultaneous illumination (crosstalk) and fluorophores with

overlapping emission spectra can not be separated by filters (bleed-through). During

live cell imaging, phototoxicity is the damaging effect of living cells due to illumina-

tion by stimulation light (e.g., laser). The fluorophores in excited state react with

molecular oxygen and produce cell-damaging free radicals. Low stimulation light

intensity and short image acquisition time can prevent phototoxicity. Focus drift

in time-lapse fluorescence microscopy is a major challenge induced by the inability

of a microscopy system to maintain the selected focal plane over the time period

of data acquisition. It leads to artifacts in the image sequence and wrong focus

position caused by several faults (e.g., specimen movement, vibrations and thermal

drift, lateral observation stage movement, mechanically instability of components in

the microscope).

2.2 Data Fusion

Data fusion is a framework comprising techniques and methods that combine data

from multiple sensors in order to achieve improved accuracy and more specific

inferences compared to using a single sensor. The quality of the requested information

can be improved by using multiple sensors or using data from various sources of

different nature [38, 39, 40, 41]. A sensor is typically a physical device that is sensitive

to a physical property in order to provide a measurement as primary output [42, 40].

Also, the term sensor can be more general and refers to mechanisms that derive

measurements which can be signals or images [38, 40]. However, environmental factors

lead to systematic errors in the measurement which are considered by uncertainty of

the sensor measurements. Measurements from multiple sensors can be interpreted

as estimates of the state of a common system and can be fused by multi-sensor

data fusion approaches. However, determining the best procedure (estimator) to

combine estimates (measurements) obtained by multiple sensors is challenging. Using

a probabilistic framework for data fusion has the advantage that explicit probabilistic

models are employed which consider the uncertainty of the estimates.

The aim of multi-sensor data fusion is to fuse multiple estimates to obtain a

consistent estimate with mean mf ∈ R
n×1 and covariance Pf ∈ R

n×n for which the

actual error covariance E[m̃ m̃T ] is bounded by the estimated covariance Pf , i.e.,

Pf ≥ E[m̃ m̃T ], where m̃ = mf −m is the error with respect to the (true) mean

m ∈ R
n×1 [43]. Further, the inequality of the estimated and actual error covariance

Pf ≥ E[m̃ m̃T ] means that Pf − E[m̃ m̃T ] is positive semidefinite. Consistency

implies that Pf is an upper bound of the actual error covariance matrix.

12
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Figure 2.5: Comparison of different multi-sensor network typologies.

Multi-Sensor Network Topology

Fusing the information obtained by multiple sensors depends on the topology of

the fusion nodes. A fusion node obtains data provided by multiple sensors and

applies data fusion based on the used data fusion approach. Generally, the fusion

nodes and sensors can be arranged in three different multi-sensor network topologies,

centralized, decentralized, and hierarchical network topology [40, 41]. The different

network topologies are schematically depicted in Fig. 2.5.

A centralized network topology exploits a central fusion node as central processor

that collects all information provided from different sensors. Multi-sensor data fusion

is done in the central fusion node and provides the fusion result. In principle, the

central fusion node as single fusion node yields the best performance under the

assumption that all sensors are accurately aligned. Sensor alignment requires a single

common representational format of the sensory data and considers spatial, temporal,

or semantic alignment or data normalization. Therefore, a disadvantage of centralized

network topologies is that small errors in sensor alignment can cause strong reduction

in the fusion performance. Further, all sensors are required to communicate with the

central fusion node which may cause a communication bottleneck. The centralized

network topology is also hard to scale in structure since new sensors with new sensor

data can not directly be added to the centralized system.

A decentralized network topology fuses multiple sensors with multiple local fu-

sion nodes compared to a single central fusion node. The main advantage of the

decentralized network topology is the absence of the requirement of sensor alignment.

Further, the communication and data processing is distributed over the network.

The decentralized network is also scalable since the structure is not constrained by a

central processor and the communication bandwidth limit, and a modular design of

the network structure can be accomplished. As shown in Fig. 2.5, the local fusion

nodes are only able to compute partial results which need to be combined in order

to obtain a result representation similar to the centralized network topology. Often

the network structure needs to be known in order to combine the partial results.

However, a main disadvantage of decentralized networks is the effect of redundant

information wrongly decreasing the uncertainty in the fused estimate which occurs if

information is fused under the (wrong) assumption of independence.
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Figure 2.6: Overview and classification of multi-sensor data fusion algorithms.

A hybrid network topology combining centralized and decentralized network

topology is the hierarchical network topology. This topology exploits local fusion

nodes and uses a central fusion node in order to fuse the information to obtain the

result. As with the decentralized network topology, the hierarchical network has the

disadvantage that it may suffer from the negative effect of redundant information

(e.g., data incest) which wrongly decreases the uncertainty of the fused estimate.

Multi-Sensor Data Fusion Algorithms

An optimal fusion method requires a centralized network topology with a central

fusion node which has the disadvantage of a high communication demand and needs

sensor alignment with a common representational format of the data [40, 44, 43].

Therefore, in multi object tracking a decentralized network topology is preferred [45,

44] and has also been applied to particle tracking in microscopy image data (e.g.,

[13, 12, 11, 46, 47, 48, 49]). The treatment of cross-correlations between the sensor

estimates to be fused is challenging and has received strong attention in the field of

multi-sensor data fusion.

In this section, multi-sensor data fusion algorithms for decentralized network

topologies are reviewed and a classification of the fusion algorithms is given as an

overview chart in Fig. 2.6. The data fusion methods are considered to solve as a

two-sensor data fusion problem of two unbiased estimates provided by sensor A and

B with mean mA ∈ R
n×1 and mB ∈ R

n×1 and with covariance matrix PA ∈ R
n×n
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and PB ∈ R
n×n. The mean of the fused estimate mf can be generally obtained by a

linear combination [50, 40]

mf = Kf mA + Lf mB (2.1)

with the fusion gain matrices Kf ∈ R
n×n and Lf ∈ R

n×n. The corresponding

covariance Pf of the fused estimate is

Pf = Kf PA KT
f +Kf PAB LT

f + Lf PBA KT
f + Lf PB LT

f (2.2)

where PAB ∈ R
n×n and PBA ∈ R

n×n are the cross-covariances. The fusion gain

matrices Kf and Lf can be computed by minimizing a cost function J(Pf) of the

fused covariance Pf with respect to Kf and Lf. J(Pf) can be any arbitrary strictly

monotonically increasing cost function such as the trace or determinant of Pf [51, 52]

which corresponds to minimizing the mean squared error m̃ = mf −m [45, 50]. The

equations (2.1) and (2.2) are denoted as Generalized Millman’s formulas.

Millman’s formulas

For known cross-covariances and assuming independent estimates for which the

cross-covariances are PAB = PBA = 0, the Millman’s formula is a special case of the

generalized Millman’s formulas. The fused estimate mean mf can be computed by

mA and mB using [50, 40]

mf =
PB

PA +PB

mA +
PA

PA +PB

mB (2.3)

where the gain matrices are Kf =
PB

PA+PB
and Lf =

PA

PA+PB
. The fused covariance Pf

is

Pf =
(

(PA)
−1 + (PB)

−1)−1
(2.4)

Bar-Shalom-Campo formulas

If the cross-covariances are known and the estimates from sensor A and B are

correlated (PAB = PBA ̸= 0), the fused estimate can be computed by the Bar-

Shalom-Campo formulas [53]. Compared to Millman’s formula, the Bar-Shalom-

Campo formulas consider the cross-covariances PAB and PBA, and the estimated

fused mean mf is computed by

mf =
PB −PBA

PA +PB −PAB −PBA

mA +
PA −PAB

PA +PB −PAB −PBA

mB (2.5)
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where the optimal gain matrices are Kf =
PB−PBA

PA+PB−PAB−PBA
and Lf =

PA−PAB

PA+PB−PAB−PBA
.

The covariance Pf of the fused estimate is

Pf = PA − (PA −PAB) (PA +PB −PAB −PBA)
−1 (PA −PBA) (2.6)

A geometric interpretation of the Bar-Shalom-Campo formulas is that the optimal

fused covariance Pf is located in the intersection of the covariances PA and PB [51].

Covariance Intersection

Covariance intersection is an optimal fusion method if the estimates are correlated

(PAB = PBA ̸= 0) and the cross-covariances are not known [54]. A consistent

estimate by fusing the two estimates with mean mA and mB is only feasible if a

covariance matrix P∗
f ∈ R

n×n bounds Pf in the intersection of PA and PB [55, 51].

The best optimal fused covariance P∗
f (which holds for all possible PAB and PBA) is

a representative from the possible set of optimal ellipsoids that tightly circumscribe

the intersection of the two centered ellipsoids [56]. Therefore, P∗
f provides the

smallest upper bound on the actual error covariance E[m̃ m̃T ]. Using set theory, the

intersection can be characterized by convex combination of the covariances, and the

covariance intersection algorithm [55, 52, 51] is defined by

mf = Kf mA + Lf mB (2.7)

P∗
f =

(

ω (PA)
−1 + (1− ω) (PB)

−1)−1
(2.8)

Kf = ωP∗
f (PA)

−1 (2.9)

Lf = (1− ω)P∗
f (PB)

−1 (2.10)

with ω ∈ [0, 1]. The optimal parameter ω∗ ∈ [0, 1] can be obtained by numerical

optimization [54]

ω∗ = argmin
ω

J(P∗
f ) (2.11)

with an arbitrary strictly monotonically increasing cost function J(P∗
f ) (e.g., trace

or determinant of P∗
f ). There exist suboptimal but fast solutions [57, 58] for ω∗,

novel optimization criteria [59], or even closed-form solutions for low dimensional

matrices [60]. It has been proofed in [52, 51] that covariance intersection yields the

optimal fusion approach for unknwon and not exploitable cross-covariances, however,

it yields conservative fusion results [54].

Common Information

Even though the covariance intersection algorithm yields consistent estimates and is

proofed to be the optimal fusion method for estimates with unknown cross-covariances,

it yields conservative fusion results. In recent works, novel data fusion methods are
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introduced which demonstrated to provide less conservative fusion results compared

to covariance intersection [61, 43]. Both, ellipsoidal intersection [61] and inverse

covariance intersection [43] exploit a structure of correlation denoted as common

information [62] which is shared between the sensors and is incorporated in the

cross-covariances PAB and PBA. In [61], a decomposition of the estimates to be fused

is proposed:

mA = PA

(

(

PI
A

)−1
mI

A + Γ−1
γ

)

(2.12)

mB = PB

(

(

PI
B

)−1
mI

B + Γ−1
γ

)

(2.13)

with

PA =
(

(

PI
A

)−1
+ Γ−1

)−1

(2.14)

PB =
(

(

PI
B

)−1
+ Γ−1

)−1

(2.15)

where the common estimate with mean γ ∈ R
n×1 and covariance Γ ∈ R

n×n is shared

by the sensors and each sensor A and B contains exclusive information represented by

the means mI
A ∈ R

n×1 and mI
B ∈ R

n×1 and covariances PI
A ∈ R

n×n and PI
B ∈ R

n×n ,

respectively. Each of the errors m̃I
A ∈ R

n×1, m̃I
B ∈ R

n×1, and γ̃ ∈ R
n×1 have zero

mean and are assumed to be mutually correlated

E[m̃I
A

(

m̃I
B

)T
] = E[m̃I

A γ̃
T ] = E[m̃I

B γ̃
T ] = 0 (2.16)

Based on the decomposition of estimates to be fused into common and exclusive

information, consistent fusion of two estimates is obtained by a linear combination

(similar to (2.1))

mf = Kf m
I
A + Lf m

I
B +Mf γ (2.17)

which correspondence to fusing three independent estimate means mI
A, m

I
B, and γ.

The fused estimate mean can be computed similar to Millman’s formulas

mf = Pf

(

(

PI
A

)−1
mI

A +
(

PI
B

)−1
mI

B + Γ−1
γ

)

(2.18)

= Pf

(

(PA)
−1

mA + (PB)
−1

mB − Γ−1
γ
)

(2.19)

where the fused covariance is

Pf =
(

(

PI
A

)−1
+
(

PI
B

)−1
+ Γ−1

)−1

=
(

(PA)
−1 + (PB)

−1 − Γ−1
)−1

(2.20)
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Ellipsoidal Intersection

The ellipsoidal intersection method exploits the representation of the estimates to be

fused in (2.12) to (2.15) which implies that for the covariance matrix of the common

information Γ the inequalities PA ≤ Γ and PB ≤ Γ hold, since the covariances of the

exclusive information of sensor A and B must satisfy
(

PI
A

)−1
= (PA)

−1−Γ−1 ≥ 0 and
(

PI
B

)−1
= (PB)

−1−Γ−1 ≥ 0 [61]. Ellipsoidal intersection obtains the best fused result

by computing the common information that has the maximum possible Γ−1 (highest

certainty) which corresponds to the smallest ellipsoid that encloses the covariance

ellipsoids belonging to the covariances PA and PB of sensor A and B [61, 63]. It

has been proven that the smallest ellipsoid is the Löwner-John ellipsoid [64, 61] and

therefore the covariance of the common information can be computed by

Γ = T−1 D
(

T−1
)T

(2.21)

where T ∈ R
n×n is a transformation matrix obtained by an eigenvalue decomposition

of PA and PB, and a diagonal matrix D ∈ R
n×n where each diagonal component is

obtained by a component-wise maximum Dii = max{(DA)ii, (DB)ii} of the jointly

transformed ellipsoids DA = TPATT and DB = TPBT
T corresponding to sensor

A and B. The mean of the common information is computed by

γ =
(

(PA)
−1 + (PB)

−1 − 2Γ−1 + 2 η I
)−1

(2.22)
[(

(PA)
−1 − Γ−1 + η I

)

mA +
(

(PB)
−1 − Γ−1 + η I

)

mB

]

Even though ellipsoidal intersection obtains less conservative fusion results compared

to the covariance intersection method [61], it has been shown that the fused estimate

is general not a consistent estimate [43].

Inverse Covariance Intersection

The inverse covariance intersection method also exploits the decomposition of the

estimates to be fused in (2.12) to (2.15) and aims to find the maximum possible Γ−1

(highest certainty of the common information) [43, 54]. In [43] it has been shown

that all ellipsoides related to Γ−1 which provide a decomposition in (2.12) to (2.15)

are bounded by the intersection of the inverse covariances (PA)
−1 and (PB)

−1 of

sensor A and B. Hence, the maximum possible ellipsoid related to Γ−1 is obtained

by covariance intersection of the inverse covariances (PA)
−1 and (PB)

−1, and is

computed by

Γ−1 =
(

ω
(

(PA)
−1)−1

+ (1− ω)
(

(PB)
−1)−1

)−1

(2.23)

= (ωPA + (1− ω)PB)
−1 (2.24)
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where ω ∈ [0, 1]. As in the covariance intersection algorithm, the optimal parameter

ω can be obtained by numerical optimization with an arbitrary strictly monotonically

increasing cost function of the fused covariance

Pf =
(

(PA)
−1 + (PB)

−1 − (ωPA + (1− ω)PB)
−1)−1

(2.25)

(e.g., trace or determinant of Pf). Based on Pf, the fused estimate mean mf is

computed by [43, 54]

mf = Kf mA + Lf mB (2.26)

Kf = Pf

(

(PA)
−1 − ω (ωPA + (1− ω)PB)

−1) (2.27)

Lf = Pf

(

(PB)
−1 − (1− ω) (ωPA + (1− ω)PB)

−1) (2.28)

where ω ∈ [0, 1]. Compared to ellipsoidal intersection, it has been proven that

the inverse covariance intersection algorithm yields a consistent estimate and a

less conservative fusion result compared to covariance intersection [43]. However,

a disadvantage compared to covariance intersection is that the inverse covariance

intersection algorithm is tailored to a specific correlation structure between the sensor

estimates (cf. (2.12) to (2.15)) which is the common information [54] shared between

sensor A and B.

Kalman Filter and Bayesian Smoothing

In many applications, sensors are the source of input data in a multi-sensor data

fusion system [42, 40]. The actual sensor element is a physical element which directly

interacts with the environment and can be any device sensitive to a physical property

or environmental attribute in order to measure, e.g., light intensity, temperature,

pressure, or motion. However, a sensor can only measure the physical property with

a sensor specific certainty which means that the measurements include uncertainty.

Also, the sensor is directly affected by environmental factors leading to systematic

errors in the measurement and thus, a measurement is only an estimate of the

system state (e.g., physical property). However, application specific knowledge of the

environment or physical property is available and can be integrated in a multi-sensor

system.

Bayesian inference is a powerful method for data fusion where information about

the estimate (measurement) and the environment with their physical property are

fused in order to obtain an estimate of the unknown quantity of interest (system

state). Such a quantity can be, e.g., the position and velocity of an object in object

tracking or the electrical activity in the brain. In many applications the unknown

quantity might not be fully observable and therefore is not directly measurable by any

sensor. In general, the unknwon quantity is described by an hidden state xt ∈ R
n×1

and the measurement by yt ∈ R
m×1 at time point t. Bayesian inference has the aim

to compute the joint posterior distribution of all the (hidden) states x0:t given all
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the measurements y1:t up to time point t by using Bayes’ theorem [65]

p (x0:t|y1:t) =
p (y1:t|x0:t) p (x0:t)

p (y1:t)
(2.29)

where p (x0:t) is the prior distribution of the state vector at time point t = 0,

p (y1:t|x0:t) is the likelihood model for the measurements, and p (y1:t) is a normaliza-

tion constant defined by

p (y1:t) =

∫

p (y1:t|x0:t) p (x0:t) dx0:t (2.30)

In this case, Bayesian inference is used for single-sensor multi-temporal data fusion

(fusion of data from a single sensor over multiple time points) to compute the

posterior distribution. However, computing the full posterior distribution p (x0:t|y1:t)

in (2.29) is not tractable since when new measurements are obtained a recomputation

is required. Instead of computing the full posterior distribution, Bayesian filtering

relaxes the estimation of hidden states by computing only the marginal distribution

p (xt|y1:t) of the current state xt given the current and all previous measurements

y1:t [65]. Two properties are assumed, namely the Markov property of states and the

conditional independence of measurements. The Markov property of states assumes

that a state xt at time point t given xt−1 at time point t− 1 is independent of all

states and measurements until time point t− 1 [65, 66]

p (xt|x1:t−1,y1:t−1) = p (xt|xt−1) (2.31)

Conversely, the past state is also independent of the future state when the present

state is given. The conditional independence of measurements assumes that the

current measurement yt given the current state xt is conditionally independent of all

states and measurements until time point t [65]

p (yt|x1:t,y1:t−1) = p (yt|xt) (2.32)

Due to the Markov property, the joint distribution of the current state xt and the

previous state xt−1 given y1:t−1 is

p (xt,xt−1|y1:t−1) = p (xt|xt−1,y1:t−1) p (xt−1|y1:t−1) (2.33)

= p (xt|xt−1) p (xt−1|y1:t−1) (2.34)

Integrating the joint distribution p (xt,xt−1|y1:t−1) over xt−1 gives the marginal

distribution p (xt|y1:t−1) which is denoted as the Chapman–Kolmogorov equation

p (xt|y1:t−1) =

∫

p (xt|xt−1) p (xt−1|y1:t−1) dxt−1 (2.35)
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The probability distribution p (xt|xt−1) is denoted as dynamic model describing the

temporal evolution of the state. The Chapman–Kolmogorov equation is a recursive

equation for computing the predicted distribution p (xt|y1:t−1) and denotes the

state prediction step of Bayesian filtering. The step of update estimation is defined

by computing the posterior distribution of the current state xt given all previous

measurements y1:t and can be obtained by Bayes’ theorem in conjunction with the

property of conditional independence of measurements [65]

p (xt|y1:t) =
p (yt|xt,y1:t−1) p (xt|y1:t−1)

Zk

(2.36)

=
p (yt|xt) p (xt|y1:t−1)

Zk

(2.37)

with

Zk =

∫

p (yt|xt) p (xt|y1:t−1) dxt (2.38)

p (yt|xt) is the measurement model and describes the distribution of the measurement

yt given the state xt. For time point t = 0, no measurement can be obtained which

is denoted as initialization step and the prior probability distribution p (xt|y1:t−1) is

p (xt|y1:t−1) = p (x0) (2.39)

and contains prior information about the hidden state. The Kalman filter is the

closed form solution to the Bayesian filtering equations and computes the poste-

rior distribution p (xt|y1:t) ∼ N (xt;mt,Pt) with mean mt ∈ R
n×1 and covariance

Pt ∈ R
n×n [67, 65, 66, 68], and assumes linear and Gaussian models for the dynamic

and measurement model:

p (xt|xt−1) ∼ N (xt;Fmt−1,Q) (2.40)

p (yt|xt) ∼ N (yt;Hmt,R) (2.41)

The dynamic model includes the transition matrix F ∈ R
n×n and the covariance

matrix Q ∈ R
n×n which reflects the uncertainty of the dynamic model. The mea-

surement model yt = Hmt contains the measurement matrix H ∈ R
m×m and the

covariance matrix R ∈ R
m×m which reflects the uncertainty of the measurement

model. The mean m̂t ∈ R
n×1 and covariance P̂t ∈ R

n×n of the predicted state

x̂t ∈ R
n×1 is computed using the state estimate xt−1 at time point t− 1:

m̂t = Fmt−1 (2.42)

P̂t = FPt−1 F
T +Q (2.43)

The update estimate of the mean mt ∈ R
n×1 and covariance Pt ∈ R

n×n of the state
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xt is computed by

mt = m̂t +K (yt −Hm̂t) (2.44)

Pt = (I−KH) P̂t (2.45)

with the Kalman gain K ∈ R
n×m

K = P̂t H
T
(

HP̂t H
T +R

)−1

(2.46)

and the identity matrix I ∈ R
n×n.

Bayesian smoothing has the aim to compute the posterior probability distribution

p (xt|y1:T ) conditionally on all measurements y1:T ∈ R
m×T up to time point T , where

T > t is a future time point [69, 65]:

p (xt|y1:T ) = p (xt|y1:t)

∫

p (xt+1|xt) p (xt+1|y1:T )

p (xt+1|y1:t)
dxt+1 (2.47)

Note that the distribution p (xt|y1:t) is the filtering distribution of time point t. A

closed form solution to Bayesian smoothing is the Rauch–Tung–Striebel smoother [70]

or a two-filter smoothing approach introduced by Fraser and Potter [71] with two

independent Kalman filters running forward and backward in time.

2.3 Deep Neural Networks for Biomedical Computer

Vision

In this section, fundamentals of deep learning are briefly introduced and basic

network architectures used for biomedical computer vision (e.g., particle detection

and tracking, cell segmentation and classification) are reviewed.

Artificial neural networks (ANN) are inspired by biological neural networks of

brains (e.g., perceptron [72]) and consist of a collection of connected artificial neurons

which are able to receive a signal, process it, and transmit signals to other connected

neurons. In an ANN, q neurons form a layer which is parameterized by weights

W ∈ R
p×q and bias b ∈ R

q, where p is the number of neurons of the previous layer.

The activation yi ∈ R of the i-th neuron in a layer is obtained by a weighted sum of

the neuron activations of the previous layer x ∈ R
p×1 using the weights wi ∈ R

p×1

and the bias bi ∈ R, given as input to an activation function σ(·) [73, 74, 75]:

yi = σ
(

(wi)
T x+ bi

)

(2.48)

For σ(·), linear functions (e.g., identity function) or non-linear functions (e.g., sig-

moid, hyperbolic tangent function) are used [74]. Loss functions are used during

training phase, where ANNs learn to perform a defined task by changing the network
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Figure 2.7: Simplified schematic of the Encoder-Decoder Network and U-Net ar-
chitecture. Green boxes represent convolutional layers and blue layers
are pooling layers. The black arrows in the U-Net show the skipping
connections between opposed convolutional layers.

parameters (e.g., weights) using optimization algorithms [73]. If the ANN consists of

multiple consecutive hidden layers, the network is denoted as Deep Neural Network

(DNN). With an increased number of neurons, feed-forward neural networks are able

to approximate any continuous function in a compact set Ω ∈ R
n with an decreasing

error bound [75].

Convolutional Neural Networks

For microscopy applications such as image segmentation [76, 77, 78, 79], object

detection [80, 81, 82, 83, 84, 85], and object classification [86, 87], convolutional

neural networks (CNNs) have been employed. CNNs are based on convolutional

layers where each layer is a series of 2D learnable filters which perform convolution

operations on images and output a series of feature maps y [74, 88]. Therefore, a

convolutional layer is represented by a convolution (∗) with filter W ∈ R
k×k×p×q

subjected to an element-wise non-linear activation function σ(·):

y = σ (W ∗ x+ b) (2.49)

where k × k is the window size of the convolutional kernel, p the number of input

feature maps, and q the number of output feature maps. Note that in many CNN

implementations, flipping of the convolutional kernel is omitted which results in

computing the cross-correlation instead of convolution [89]. The feature maps can be

reduced in dimensionality by applying pooling operators (e.g., max pooling, average

pooling) and make the representation approximately invariant to small shifts and

distortions which can be helpful for classification when only the presence of features

is important and not their position [73, 89].

Encoder-Decoder architectures are composed of a contracting (encoder) and an

expanding (decoder) path [88]. A schematic of the Encoder-Decoder architecture is

shown in Fig. 2.7. The encoder reduces the dimensionality of the input through a
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sequence of convolutional and pooling layers. Thus, the information of the input image

is encoded into features of low dimensionality which is a compression of the input

image. The decoder exploits the encoded input information in order to reconstruct

the original image or determines a representation of an image (e.g., binary image

for segmentation). Upsampling within the decoder path can either be performed

by techniques which are predefined and not learnable from the data such as nearest

neighbor interpolation, bi-linear interpolation, bed of nails, and max unpooling, or

can be done by transposed convolutions with learnable parameters [90]. However,

transposed convolution can produce uneven overlap at some parts of the feature

maps causing checkerboard artifacts in the resulting feature maps [91]. Transposed

convolution has been used in the Fully Convolutional Network (FCN) proposed for

semantic segmentation [90]. In comparison, the U-Net displayed in Fig. 2.7 exploits

additionally long-range skip connections between directly opposed convolutional

layers of the contracting and expanding path [76]. This has the advantage that finer

image details are maintained during upsampling within the expanding path.

A CNN can be trained (supervised) by performing a specific task (e.g., detection,

classification) where the network is shown an image and produces an output (e.g,

an image, binary image, vector of scores) which is compared to the desired output.

The error between the predicted network output and the desired output is measured

by an application specific objective function (loss function). The derivative of

the loss function is exploited by propagating it backwards through the network

(Backpropagation) by applying the chain rule for derivatives in order to compute

a (negative) gradient for each weight indicating its adjustment [73]. In conjunction

with stochastic gradient descent (SGD), the weights of the CNN can be updated

in order to obtain the smallest prediction error of the network measured by the

loss function. Often used loss functions for CNNs are pixel-wise cross-entropy and

soft Dice which are utilized for classification or binary image segmentation (binary

classification between foreground and background pixels). For classification, the

pixel-wise cross-entropy (CE) examines each pixel individually by comparing the

class prediction vector xi ∈ R
n to a target vector yi ∈ R

n which encodes the expected

class as on-hot vector. Averaging the pixel-wise CE over all M image pixels by

computing

LCE =
1

M

M
∑

i=1

−yi log (xi) (2.50)

performs equal learning for all pixels in an image. However, in the case of class

imbalance, LCE has the disadvantage that the training is dominated by the most

prevalent class. A solution is provided in [90] where the loss is weighted for each

output channel to avoid class inbalance. For binary image segmentation, the soft

Dice loss is a smooth approximation of the Dice coefficient and can be computed
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by [92]

LDice = 1−
2
∑M

i=1 yi xi
∑M

i=1 y
2
i +

∑M
i=1 x

2
i

(2.51)

using the pixel prediction probability xi ∈ [0, 1] and the pixel target probability

yi ∈ [0, 1]. An advantage of the soft Dice loss is that the denominator incorporates

the quantity of activations which avoids the challenges of class imbalance.

During training of DNNs, the distribution of the activations of each layer is changing

(covariate shift [93]) so that the layers should be adjusted in each training step. This

change can be large since in deep networks many layers are updated simultaneously

and small changes in one layer can have large effects on subsequent layers. Thus, a

small learning rate is needed and slows down training. DNN training can be improved

by using Batch Normalization [94], which normalizes the distribution of activations of

each layer to zero mean and unit variance calculated by the mean and variance of the

training mini-batch. To maintain the layer representation, the normalized activation

distributions of each layer are shifted and scaled by learnable parameters [94, 89].

Due to Batch Normalization, the DNN can be trained with a much higher learning

rate leading to accelerated training and the normalization also acts as a regularizer

which supersedes Dropout in some cases [94]. In comparison, Instance Normalization

normalizes the distribution of each activation using the mean and variance of each

feature map (channel) of each instance of a batch individually [95].

Additional, challenges of training a DNN are the vanishing gradient problem [96]

and the problem of degradation, where the network suffers from a higher training

error when adding more layers [97]. A solution is provided in [97] by introducing

residual learning which is able to skip layers by connecting the output of one layer

with the input of an earlier layer. This reduces the effect of gradient vanishing

since there are fewer layers to propagate through. Another advantage is that during

the initial training phase, the network is simplified due to the skipping connections

leading to an accelerated training.

Recurrent Neural Networks

To process sequential data (e.g., image series) the Recurrent Neural Network (RNN)

was developed. The RNN passes information between consecutive time points by

giving a hidden state ht ∈ R
p which is the output of a non-linear mapping from

xt ∈ R
n and the previous hidden state ht−1 as input to the RNN block in order

to produce an output ot ∈ R
p [74]. Thus, the RNN forms a cycled computation

graph whose gradients are calculated via unfolding which is illustrated in Fig. 2.8.

It has been stated in [98] that an RNN suffers from similar challenges in network

training compared to regular DNN since the gradient from the output is required to

be backpropagated over time which makes the RNN inherently deep.

Implementations of RNN units, which are specialized memory units, are the Long
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Figure 2.8: Illustration of unfolding the RNN with observations x as well as the
LSTM and GRU architecture as popular implementations of RNN units.
For the LSTM and GRU, σ indicates the sigmoid function, tanh is the
hyperbolic tangent, ⊙ denotes the Hadamard product (element-wise
multiplication), + signifies the element-wise addition, and • is vector
concatenation.

Short-Term Memory (LSTM) [99] and the Gated Recurrent Unit (GRU) [100]. The

LSTM and GRU are illustrated in Fig. 2.8. To avoid gradient vanishing and exploding

in RNNs, the LSTM has been proposed which exploits core components to regulate

the flow of information. In principle, the gates are able to learn which information

in a sequence is important to be kept or being discarded. The previous hidden state

ht−1, the current input xt, and the previous cell state ct−1 ∈ R
m are given as input

to the LSTM unit. The forget gate discards previous and current information by

using ht−1 and xt as input to a sigmoid function and therefore regulates the reset of

the cell state (memory). The input gate decides which input information is relevant

and added to the cell state ct. The output gate regulates the output activation which

is exploited for calculating the new hidden state ht. Compared to LSTM, GRU does

not exploit a cell state and uses instead the hidden state to regulate the memory of

the unit (see Fig. 2.8). The GRU reset gate is used in order to decide which previous

information can be discarded, whereas the update gate is similar to the forget and

input gate. The output of the GRU is only the hidden state ht.
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2.4 Methods for Particle Tracking in Microscopy

Images

In this section, fundamentals of particle tracking in microscopy images and main

approaches are described. We distinguish between deterministic, probabilistic, and

deep learning approaches.

2.4.1 Deterministic Approaches

Deterministic approaches follow a two step-paradigm consisting of particle detection

and correspondence finding (e.g., [101, 102, 103, 47, 104]). Some approaches determine

correspondences by minimal cost paths in a spatial-temporal volume (e.g., [105, 106,

107]). In this section, first, particle detection approaches are discussed and second,

motion correspondence approaches are introduced.

Particle Detection

Particle detection methods can be subdivided into single-scale and multi-scale ap-

proaches. Performance evaluations of different methods were carried out in [108, 109,

110]. Single-scale approaches exploit information from only one image scale (e.g.,

[111, 112, 113, 106, 114, 115, 116]). The spot-enhancing filter (SEF) [106] enhances

particles while reducing noise and applies a Laplacian-of-Gaussian (LoG) filter. The

standard deviation of the LoG needs to be adjusted according to the size of the

particles. Model fitting approaches that fit Gaussian models to the image intensi-

ties [113, 47, 115] and detection approaches based on grayscale morphology using

h-dome transformation were also proposed [117, 114, 116]. These approaches assume

a relatively simple appearance model of particles (Gaussian functions). Top-hat filters

for particle detection [111, 112] exploit the mean intensities in local neighborhoods.

The size of the local neighborhoods needs to be adjusted according to the size of

the particles. Multi-scale approaches use information from multiple image scales to

detect particles with varying size (e.g., [118, 119, 120, 84, 83, 14]). [118] proposed a

detection method based on Wavelet transformation which employs wavelet multi-scale

products. [120] proposed a multi-scale SEF approach (MSSEF) which iteratively

exploits multiple scales. [119] introduced ATLAS which is an adaptive thresholding

scheme with autoselected scale selection. All these multi-scale detection approaches

use only a single detection method.

Correspondence Finding

Once particles are detected, a set of N measurements Yt = {y1
t ,y

2
t , . . . ,y

N
t } is

obtained for an image at time point t. A measurement yk
t ∈ R

m×1 represents a

particle k in frame t typically defined by its position pk
t = (xk

t , y
k
t , z

k
t ). However, errors

in particle detection lead to missed objects or false positive detected objects in Yt.
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Motion correspondence algorithms determine which two measurements yk
t and yl

t+1

originate from the same object and therefore define a track I = {(t, k,pk), (t+1, l,pl)}

consisting of triples with time point, object index, and position [101, 121]. In order

to ensure obtaining feasible correspondences, two assumptions are typically made: (i)

A particle can generate at most one detection, and (ii) a detection can be associated

with at most one particle [121]. Using a distance function d(·) to quantify the

degree of correspondence, most frequently a nearest neighbor approach is used, which

determines correspondences by considering one measurement at time point t and all

measurements at time point t+ 1 by optimizing [121]:

min
yl
t+1

d(yk
t ,y

l
t+1) with d(yk

t ,y
l
t+1) = ||pk

t − pl
t+1||2 (2.52)

Gating can improve motion correspondence by considering only the most likely

associations which have a distance less or equal to a distance threshold dmax [47, 121].

The nearest neighbor approach can yield conflicting correspondences when two

measurements yk
t and ym

t (with k ̸= m) are associated with yl
t+1 , since only a single

measurement of time point t is considered in (2.52) without taking into account the

remaining measurements at time point t.

To consider all measurements of time point t, the motion correspondence problem

can be extended by using a weighted bipartite graph G = (V,E) with vertices

V = {Yt,Yt+1}. An edge ek,l = (yk
t ,y

l
t+1) ∈ E represents a possible correspondence

between measurements yk
t and yl

t+1, and is weighted by wk,l = d(yk
t ,y

l
t+1). A set of

valid correspondences (ek,l ∈ M) is denoted as matching set M, if the set consists

of edges with no shared vertices (see the assumptions for feasible correspondences

mentioned above). A valid edge ek,l ∈ M is indicated by a binary assignment variable

ak,l = 1 compared to non-valid edges with ak,l = 0. Therefore, motion correspondence

finding between two sets of measurements obtained from two consecutive frames can

be formulated as assignment problem [121]:

min
ak,l

K
∑

k=0

L
∑

l=0

ak,l wk,l (2.53)

subject to
K
∑

k=0

wk,l = 1, l = 1, . . . , L and
L
∑

l=0

wk,l = 1, k = 1, . . . , K

where wk,l represents the cost of assigning measurement yk
t to yl

t+1. Since the

assignment problem considers all correspondences of all measurements it is denoted

as global nearest neighbor approach [47]. For ak,0 = 1 and a0,l = 1 in (2.53) the

measurements are assigned to dummy particle detections. Assigning a measurement

yk
t to a dummy detection represents track termination, whereas assigning yl

t+1 to a

dummy detection corresponds to track initialization. Since there are no constraints on

the dummy detections, multiple measurements can be assigned to a dummy detection.
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The optimal assignments can be obtained by using optimization algorithms for (2.53),

such as the Hungarian algorithm [122], the Munkres algorithm which is an extended

version of the Hungarian algorithm [123], the Jonker-Volgenant shortest augmenting

path algorithm [124], or algorithms based on a graph-theoretical approach for the

transportation problem [102, 47].

Since missing detections can lead to too early track termination, or false posi-

tive detections can cause false track initialization or false track continuation, the

assignment problem in (2.53) for two time points can be extended to the generalized

multi-frame assignment problem for multiple time points [121]:

min
ak,l,...,m,n

K
∑

k=0

L
∑

l=0

. . .
M
∑

m=0

N
∑

n=0

ak,l,...,m,n wk,l,...,m,n (2.54)

subject to
K
∑

k=0

. . .
M
∑

m=0

wk,l,...,m,n = 1, m = 1, . . . ,M

...
L
∑

l=0

. . .
N
∑

n=0

wk,l,...,m,n = 1, k = 1, . . . , K

For particle tracking, the generalized multi-frame assignment problem was used

in [104] and the optimal assignments are determined by an integer programming

framework where tracks are extended by gated detections within a sliding window of

multiple frames.

Compared to the generalized multi-frame assignment problem, the two-step linear

assignment procedure (LAP) introduced in [103] determines the optimal assignments

by combinatorial optimization in two steps and also exploits measurements obtained

from multiple time points. In the first step, LAP assigns measurements in consecutive

frames by solving the assignment problem in (2.53) using a distance-based cost

function. In the second step, the obtained tracklets are linked in order to close gaps

and deal with events of track splitting and merging by using application specific

closing, splitting, and merging cost function.

The approaches in [105, 106, 107] formulate tracking as finding trajectories in

a 3D volume, where a temporal sequence of 2D images is represented by a 3D

spatial-temporal volume. Motion correspondence is solved by minimizing energy

functions which consider the image data as well as prior constraints on the particle

displacements on a frame-to-frame level.
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2.4.2 Probabilistic Approaches

Deterministic approaches are computationally efficient but do not take into account

uncertainties. Often, they suffer from low signal-to-noise ratio (SNR) for detection

or challenging object constellations for correspondence finding (e.g., high object

density, spurious objects). In comparison, probabilistic tracking approaches consider

spatial-temporal uncertainties and are formulated within a Bayesian framework (e.g.,

[125, 46, 48, 120, 49, 126]). Based on Bayesian sequential estimation, the approaches

robustly determine the position of a particle from the posterior distribution using noisy

particle detections. Probabilistic approaches for correspondence finding determine a

probability of possible assignments between particle predictions and measurements.

Below, we review such approaches including probabilistic data association, joint

probabilistic data association, and multiple hypothesis tracking.

Probabilistic Data Association

The basic idea of the probabilistic data association (PDA) filter [45, 127] is to exploit

a decomposition of state estimation based on the origin of each measurement in Yt.

Each measurement yi
t in Yt is examined if the measurement may have originated from

a particle k by using an elliptical region denoted as validation region (gating) [45, 127]

V(t, γ) =
{

yi
t

∣

∣

∣

(

yi
t − ŷ

)T
(St)

−1 (
yi
t − ŷ

)

≤ γ2
}

(2.55)

which is centered around the predicted measurement ŷ ∈ R
m×1 of particle k, and

St = HP̂t H+Rt is the innovation covariance obtained from the predicted covariance

P̂t ∈ R
n×n (cf. Section 2.2). The parameter γ2 ∈ R is the gate threshold. All yi

t

within the validation region form a set Yk
t = {yi

t}
K
i=1 of validated measurements

associated with particle k. A sequence of sets containing validated measurements up

to time point t is defined as Y1:t = {Yk
t }

t
t=1. The PDA filter computes the updated

estimate of the mean by [45]:

mt =
K
∑

i=0

E[xt|Ai,Y1:t]P (Ai|Y1:t) =
K
∑

i=0

mi,t βi,t (2.56)

where mi,t ∈ R
n×1 is the mean update estimate conditioned that the measurement yi

t

associated to particle k has an association probability βi,t ∈ [0, 1]. Ai is an association

event indicating whether the measurement yi
t has originated from the particle. Using

a Kalman filter approach, the closed form solution for the update estimation of the

PDA filter is [127]

mt = m̂t +Kvt (2.57)

Pt = β0,t P̂t + (1− β0,t) (P̂t −KSt K
T ) + P̃t (2.58)
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where vt ∈ R
m×1 is the combined innovation

vt =
K
∑

i=1

βi,t vi,t (2.59)

vi,t = yi
t − ŷt (2.60)

and the association probability β0,t represents that none of the measurements is

correct and therefore mt = m̂t. P̃t ∈ R
n×n is the spread of the innovation term [45],

which represents the effect of the measurement origin uncertainty (similar to the

spread of the means term in a mixture of probability density functions [128]).

The association probabilities βi,t for i = 0, 1, . . . , K are determined based on K

measurements (number of measurements in V(t, γ)) and their location by [45]

βi,t = P (Ai|Y1:t) = P (Ai|Y
k
t , K,Y1:t−1) (2.61)

=
1

c
P (Ai|K,Y1:t−1) p(Y

k
t |Ai, K,Y1:t−1) (2.62)

p(Yk
t |Ai, K,Y1:t−1) is the joined density of Yk

t conditioned on Ai and is computed

as product of the Gaussian probability density function of the target originated

measurements and the independent identically distributed measurements originated

from clutter (false measurements) with uniform spatial distribution

p(Yk
t |Ai, K,Y1:t−1) =

{

V −K+1
t P−1

G N (yi
t; ŷt,St) i = 1, . . . , K

V −K
t i = 0

(2.63)

P−1
G ∈ R is a factor which restricts N (yi

t; ŷt,St) to the validation region V(t, γ) and

Vt ∈ R
m is the volume of V(t, γ). The probabilities of the assignment Ai are only

conditioned on the number of measurements within V(t, γ) and computed by [45]

P (Ai|K,Y1:t−1) = P (Ai|K) (2.64)

=







1
K
PD PG

(

PD PG + (1− PD PG)
µ(K))
µ(K−1)

)−1

i = 1, ..., K

(1− PD PG)
µ(K))
µ(K−1)

(

PD PG + (1− PD PG)
µ(K))
µ(K−1)

)−1

i = 0
(2.65)

where µ(·) is the probability mass function of the number of false measurements in

V(t, γ). Note, µ(K) means that a particle is not detected and all measurements in

V(t, γ) are false measurements, whereas µ(K − 1) implies that a particle is detected

and at most one of the measurements has originated from the particle [45]. µ(·) can

either be modeled by a Poisson model or a diffuse prior model. For the Poisson

model, assuming N discretized (independent) positions within V(t, γ), the occurrence

of a false measurement at a position in V(t, γ) can be obtained by a Bernoulli process

with probability PF ∈ [0, 1] and thus, the number of false measurements mF follows
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a binomial distribution [128]

P (K = mF) =

(

N

mF

)

Pmf

F (1− PF)
N−mF (2.66)

In the continuous case (N → ∞), the binomial distribution becomes a Poisson

distribution

µ(K = mF) = exp−λV (λV )mF

mF!
(2.67)

with spatial density λ and leads to the parametric PDA filter. The diffuse prior

model yields the non-parametric PDA with λ = K
Vt
[45].

The particle tracking approach in [48] extends the PDA filter by using probabilistic

data association with elliptical sampling (PDAE). The PDAE exploits multiple

measurements as in a particle filter generated by elliptical sampling around the

positions of particle detection and prediction, and integrates them via combined

innovations. Thus, the PDAE performs probabilistic tracking based on a combination

of Kalman filter and particle filter.

Joint Probabilistic Data Association

The joint probabilistic data association (JPDA) filter [45] is an extension of the

PDA filter, which determines the association probabilities βi,j,t jointly across the

particles detected at time point t [127]. The joint association event is defined by

A =
⋂K

i=1 Ai,j [129, 45], where Ai,j is the association event that measurement yi
t

originated from a particle is associated with particle j with j = 1, . . . , NP and NP is

the (known) number of particles at time point t. The association probabilities βi,j,t

are jointly computed over A by

βi,j,t = P (A|Y1:t) =
1

c
P (A|K) p(Yk

t |A,K,Y1:t−1) (2.68)

where the likelihood of the measurements is

p(Yk
t |A,K,Y1:t−1) =

K
∏

i=1

p(yk
i |Ai,j,Y1:t−1) (2.69)

with K being the number of measurements yi
t in the union of validation regions. The

decomposition of the likelihood function is based on the assumption that the states

of the particles conditioned on the past observations are mutually independent. The

probability distribution p(yk
i |Ai,j,Y1:t−1) of a measurement is

p(yk
i |Ai,j,Y1:t−1) =

{

N (yi
t; ŷ

j
t ,S

j
t) yi

t associated with particle j

V −1
t yi

t not associated with a particle
(2.70)
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where ŷ
j
t is the predicted measurement with innovation covariance S

j
t for particle j.

The probability of joint association events is computed by [45]

P (A|K) =
mF!

K!
µ(mF)

NP
∏

j

(P j
D)

δj (1− P j
D)

1−δj (2.71)

and exploits all combinations of measurement-to-particle assignments (equally likely)

such that (i) each measurement is assigned to at most one particle, and (ii) each

particle is uniquely associated to a measurmeent [130]. P j
D is the detection probability

for particle j and µ(mF) is the probability mass function of the number of false

measurements mF (cf. PDA filter).

Multiple Hypothesis Tracking

While most Bayesian filtering approaches consider only two frames for correspondence

finding, multiple-hypothesis tracking (MHT) uses multiple frames (e.g., for particle

tracking [131, 132, 133] and cell tracking [134, 135]). MHT approaches seek globally

optimal solutions, but may not determine locally best associations. MHT exploits

multiple association hypothesis in order to solve ambiguities of motion correspon-

dences by using more information from subsequent image frames [136]. The posterior

distribution p(Xt|Y1:t) for multiple objects can be obtained by conditioning over all

possible association hypotheses A [131]

p(Xt|Y1:t) =
∑

A

p(Xt|Y1:t,A) p(A|Y1:t) (2.72)

where Xt = {xi
t}

K
i=1 is a set of states of K particles at time point t and Y1:t is a set

of measurements until time point t. MHT obtains the (best) particle state estimates

X ∗
t based on the maximum a posteriori (MAP) globally best hypothesis A∗ [131]

A∗ = argmax
A

p(A|Y1:t) (2.73)

X ∗
t = argmax

Xt

p(Xt|Y1:t,A
∗) (2.74)

MHT algorithms can be categorized into hypothesis-oriented MHT (HOMHT)

and track-oriented MHT (TOMHT). The HOMHT approach was proposed in [136]

and exploits a single tree of association hypotheses in order to compute the globally

optimal assignment solution. The TOMHT approach was introduced in [137, 138] and

maintains a set of track trees where a node in each tree represents a measurement

and branches corresponds to possible tracks. For each time point t, the track

trees are expanded by using all feasible measurement-to-particle associations and

each track hypothesis is assigned a track score [139]. TOMHT obtains the globally

optimal assignments by representing correspondence finding as maximum weighted

independent set (MWIS) problem [140] where the highest scoring set of compatible
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track hypothesis is determined. A set of track hypotheses is compatible if the track

hypotheses do not share any measurement at any time point t. TOMHT was proved

to be mathematically equivalent to HOMHT [138].

The particle tracking approach in [131] uses a multi-stage TOMHT approach where

the first stage forms tracklets based on a low number of measurements and the second

stage performs track fusion with the retained measurements. The approach in [133]

solves MHT as integer programming problem and exploits tracking in forward and

backward temporal direction to determine particle merging and splitting. However,

the correspondence space is explored over multiple time points and therefore the

computational complexity is generally high for high object density. The particle

tracking approach in [132] and the cell tracking approach in [135] focus on non- or

weakly interacting objects and do not address object division events. The cell tracking

MHT approach in [134] was used to investigate cell behavior during angiogenesis,

however, cell division events are detected by a deterministic (distance-based) approach

which does not take into account uncertainties.

2.4.3 Deep Learning Approaches

In recent years, deep learning approaches have been introduced for particle detection

in microscopy images [84, 83, 14]. Approaches based on convolutional neural networks

(CNNs) have been proposed [84, 83]. These methods require a relatively large number

of parameters or are based on a sliding window scheme. [14] proposed an hourglass-

shaped Deconvolution Network denoted as DetNet which has a significantly reduced

number of parameters and does not require a sliding window scheme.

For particle tracking, deep learning methods were presented (e.g., [141, 142, 143,

144, 145, 146]). These supervised methods can yield good results but have the

disadvantage that they require ground truth data for training, and interpretability is

lacking. For tracking objects in a sequence of images, RNNs are typically employed

to compute assignment scores for correspondence finding (e.g., [147]) by exploiting

appearance features (e.g., [148]). However, a main challenge in particle tracking is

the lack of prominent shape and appearance characteristics. Therefore, RNNs have

been used to learn particle dynamics or compute assignment probabilities based on

particle motion prediction. The approaches in [141, 144] exploit handcrafted and

learned features. In [143], the motion model within a classical MHT framework

is learned by exploiting a denoising autoencoder and score matching. In [142], an

LSTM-based RNN is used to compute assignment probabilities jointly across multiple

detections by exploiting only past temporal information. This method has been

extended in [145] by exploiting a bidirectional RNN (stacked bidirectional LSTMs)

which integrates past and future information as well as multiple track hypotheses

for correspondence finding. The assignment probabilities are directly determined

and computed jointly across multiple detections, and also probabilities of missing

detections are computed. Recently, a probabilistic deep learning approach for particle
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tracking has been introduced which mimics Bayesian filtering by using Bayesian layers

and considering aleatoric and epistemic uncertainty [146]. The aleatoric uncertainty

reflects the noise in the data (e.g., particle detection noise, particle motion noise)

and the epistemic uncertainty the model uncertainty.

2.5 Colocalization and Motion Analysis in Microscopy

Images

In this section we describe methods for colocalization and motion analysis of particles

in microscopy image sequences. First, approaches for colocalization analysis are

reviewed which provide information of spatial relationships of particles in multi-

channel fluorescence microscopy images. Second, an approach for motion analysis

is described which uses the mean squared displacement for computing diffusion

parameters to characterize particle kinetics.

Colocalization Analysis

To gain insights into virus-host interactions at high spatial resolution, intensive

research is carried out using multi-channel fluorescence microscopy images in combi-

nation with automatic object detection and quantification. For the hepatitis C virus,

subcellular locations of RNA replication and virus particle components are known,

but the exact location of virus assembly and the spatio-temporal coupling of the

relevant processes remains unclear[149, 18, 150]. The location of viral proteins in

the cell and their spatial relationship with subcellular structures can be accessed by

colocalization analysis of fluorescently labeled proteins.

Previous work on colocalization analysis can be subdivided into intensity-based

(pixel-based), object-based, and track-based approaches. Intensity-based approaches

perform correlation analysis of the image intensities [151, 152, 153, 154, 155, 156,

157, 158, 159]. A correlation between the intensities of two-channel images can be

calculated by the Pearson correlation coefficient [154] ranging from −1 to 1. However,

the negative values are hard to interpret [155]. Therefore, the Manders overlap

coefficient was introduced which ranges from 0 to 1 [155]. This coefficient does not

consider the average intensity values of the two channels compared to the Pearson

correlation coefficient. Another extension of the Pearson correlation coefficient

determines a cross-correlation function by shifting one channel relative to the other

channel [156]. However, this approach requires cross-correlation analysis for each

image dimension. The approach by Costes uses a statistical significance algorithm

based on the Pearson correlation coefficient and image randomization to exclude

image points with random colocalization [157]. The approach by Li is based on an

intensity correlation analysis and assesses the difference of pixel intensities to the

mean intensity for each channel to determine segregated or dependent staining in
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image channels [158]. To exclude colocalizations by chance, a threshold overlap score

was proposed which classifies the intensity distributions between colocalization, anti-

colocalization, and non-colocalization [159]. However, the intensity-based approaches

do not consider spatial information (e.g., positions) of the colocalization and do not

perform colocalization for a particular object of interest. In comparison, object-based

colocalization approaches localize objects of interest and perform a colocalization

on the object level (e.g., nearest-neighbour distance, intensity model). Since these

approaches determine colocalization for individual objects (e.g., proteins, cells),

they are more appropriate to determine molecular interaction in order to gain

insights into virus assembly. Different object-based colocalization approaches have

been introduced [160, 161, 162, 163, 164, 165, 166, 167]. Often, colocalization is

determined by a nearest-neighbour approach which compares the positions of object

centroids between two channels [160, 162, 164]. The approach of Jaskolski [161]

combines binary images obtained by object segmentation using a Boolean operation

(disjunction) and determines colocalization within region-of-interests by the difference

of image intensities to the mean intensity. Statistical colocalization approaches have

also been introduced which use distance-based multiple hypothesis tests [163] or

exploit statistical tests to compare detected objects with objects within a region-of-

interest [166]. For 3D multi-channel microscopy images, the approach by Wörz et

al. [165] uses different 3D parametric intensity models and determines colocalization

based on the estimated geometry of the subcellular structures. Another colocalization

approach is based on two channel 3D image cross-correlation, which is determined at

each object position obtained by single-particle tracking [167]. A temporal extension

of object-based colocalization are track-based approaches which combine spatial and

temporal information [168, 169, 170]. Single-particle tracking and colocalization by

trajectory correlation was used in [168]. Trajectory correlation within a window

and adaptive thresholding based on the Pearson correlation coefficient was also

employed [169]. In recent work, a probabilistic tracking approach with integrated

colocalization analysis was introduced [170]. This approach is based on a combination

of the Kalman filter and particle filter for tracking, and jointly performs tracking and

colocalization analysis. However, the track-based colocalization approaches described

above determine colocalization only based on two-channel fluorescence microscopy

images. To gain further insights into virus assembly, more than two fluorophores

could be used for labelling structures of interest and therefore colocalization needs

to be determined in multi-channel fluorescence microscopy images with more than

two channels.

A broad diversity of publicly available plugins and software suites for colocalization

analysis are available to support biologists in image analysis, such as JACoPv2.0 [151],

Squassh [171], DiAna [172], EzColocalization [173], and Colocalization Colormap [174].

Further, the ImageJ [175] platform provides plugins such as Coloc 2, Colocalization

Finder, and ComDet. Intensity-based colocalization analysis can be performed

with JACoPv2.0, Squassh, EzColocalization, Coloc 2, and Colocalization Finder.
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Object-based colocalization can be performed by JACopv2.0, Squassh, DiAna,

Colocalization Colormap, and ComDet. The ImageJ plugins JACoPv2.0, Squassh,

DiAna, Colocalization Colormap, Coloc 2, and Colocalization Finder determine

colocalization only for two-channel images. Only EzColocalization and ComDet are

able to analyse multi-channel images with more than two channels. However, all

publicly available plugins and software suites for colocalization analysis contain a

visualization of colocalization statistics (e.g., scatterplot, histogram, tables), but do

not provide a quantification and visualization of the color distribution and spatial

distribution for each colocalized object, respectively.

Motion Analysis

To understand viral replication and infection in a spatial-temporal context, studying

the kinetics of labeled viral compartments in order to extract motion properties

of the particles to infer diffusion parameters is important [176, 25, 177, 19, 178].

Diffusion of particles is a stochastic process and can be mathematically modeled by

random walk (e.g., Brownian motion) [179]. It has been derived by Einstein in 1905

that the fundamental quantity of random walk is the mean of the quadratic spatial

shifts over time [180] which corresponds to the variance of the Gaussian distributed

increments of a Wiener process [181]. Hence, a particle can be assumed to perform

random walk and the explored space over time can be measured by the mean square

displacement (MSD). The MSD can be obtained based on the particle trajectory by

computing [182, 183]

MSD(∆t) =
1

N

N
∑

i=1

||x(ti +∆t)− x(ti)||
2 (2.75)

where x ∈ R
n are the particle position coordinates measured at N discrete time lags

∆t. In order to quantify diffusion parameters for a whole system of j = {1, 2, ..., L}

moving particles, the MSD can be computed as mean over a set of L trajectories

with [179]

MSD(∆t) =
1

L

L
∑

j=1

1

N

N
∑

i=1

||xj(ti +∆t)− xj(ti)||
2 (2.76)

The motion type and diffusion coefficient can be characterized and estimated from

the measured MSD values by fitting a diffusion model to the MSD values. For

Brownian motion, the MSD values grow linearly in time (MSD ∼ t) and the diffusion

model

MSD(∆t) = 2nD t (2.77)
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is fitted to the MSD values from the particle coordinates x ∈ R
n in order to obtain

the diffusion coefficient D ∈ R. For anomalous diffusion the MSD values show a

power scaling (MSD ∼ tα) and are fitted to an anomalous diffusion model

MSD(∆t) = 2nΓ tα (2.78)

with the anomalous diffusion exponent α ∈ R and the transport coefficient Γ ∈ R [182].

Based on the anomalous diffusion exponent α, the motion type can be classified into

confined diffusion with α ≤ 0.1, obstructed diffusion with 0.1 < α < 0.9, and normal

diffusion with α ≥ 0.9 [184]. For α = 1, the anomalous diffusion model is equal to

the diffusion model for Brownian motion

2nD t = 2nΓ tα (2.79)

D = Γ tα−1 = Γ (2.80)

and the diffusion coefficient D is equal to the transport coefficient Γ.
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Tracking

In this chapter, methods for integrating temporal information for particle tracking

are proposed. We formulate particle tracking as a Bayesian smoothing problem.

First, we introduce a novel two-filter probabilistic data association approach for

particle tracking. Second, a novel Bayesian smoothing approach which uses the

covariance intersection algorithm is described. The proposed methods have been

published in Ritter et al. [11, 12].

3.1 Particle Tracking as Bayesian Smoothing Problem

Particle tracking can be formulated as Bayesian sequential estimation problem.

In our approach, we assume that a fluorescently labeled particle is represented

by a state vector xt = (px, ṗx, py, ṗy, Imax, σxy)
T at time point t. The state xt

contains the position pt = (px, py)
T , velocity vt = (ṗx, ṗy)

T , and intensity information

It = (Imax, σxy)
T consisting of the maximum intensity Imax and the width σxy of a

Gaussian appearance model gGauss(x, y;xt) = Ib + (Imax − Ib) exp
(

− (x−px)2+(y−py)2

2σ2
xy

)

for a spot-like structure (Ib denotes the background intensity). The temporal

evolution of the state xt can be formulated by a dynamic model p (xt|xt−1). Further,

it is assumed that the noisy measurement yt = (px, py, Imax, σxy)
T reflects the state

xt. The measurements can be incorporated via a measurement model p (yt|xt).

Bayesian estimation determines the posterior distribution p (xt|y1:t) conditionally on

all measurements y1:t ∈ R
4×t up to time point t using Bayes’ theorem [65]

p (xt|y1:t) =
1

Zk

p (yt|xt) p (xt|y1:t−1) (3.1)

where

p (xt|y1:t−1) =

∫

p (xt|xt−1) p (xt−1|y1:t−1) dxt−1 (3.2)

Zk =

∫

p (yt|xt) p (xt|y1:t−1) dxt (3.3)
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By assuming linear and Gaussian models, the posterior distribution

p (xt|y1:t) ∼ N (xt;mt,Pt) (3.4)

with mean mt ∈ R
6×1 and covariance matrix Pt ∈ R

6×6 can be resolved in a closed

form via the Kalman filter. For the dynamic model

p (xt|xt−1) ∼ N (xt;Fmt−1,Q) (3.5)

which includes the transition matrix F ∈ R
6×6 we assume a random walk model with

F = diag(1, 1, 1, 1, 1, 1). The uncertainty of the dynamic model is reflected by the

covariance matrix Q = diag(qpx , qṗx , qpy , qṗy , qImax
, qσxy

). The measurement model

p (yt|xt) ∼ N (yt;Hmt,R) (3.6)

with

yt = Hmt (3.7)

is given by the measurement matrix

H =











1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1











(3.8)

and the covariance matrix R = diag(rpx , rpy , rImax
, rσxy

). The Kalman filter consists

of two main steps, state prediction and update estimation [65]. The mean m̂t ∈ R
6×1

and covariance P̂t ∈ R
6×6 of the predicted state x̂t ∈ R

6×1 is computed using the

state estimate xt−1 at time point t− 1:

m̂t = Fmt−1 (3.9)

P̂t = FPt−1 F
T +Q (3.10)

The update estimate of the mean mt ∈ R
6×1 and covariance Pt ∈ R

6×6 of the state

xt is computed by

mt = m̂t +K (yt −Hm̂t) (3.11)

Pt = (I−KH) P̂t (3.12)

with the identity matrix I ∈ R
6×6 and the Kalman gain K ∈ R

6×4

K = P̂t H
T
(

HP̂t H
T +R

)−1

(3.13)
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However, when calculating the posterior probability distribution p (xt|y1:t), only

information from past time points (and the current time point) is used. To improve

the estimation of xt, a smoothing approach can be used which also incorporates

information from future time points. Thus, both past and future time points are

exploited. The smoothing approach determines the posterior probability distribution

p (xt|y1:T ) conditionally on all measurements up to time point T , where T > t is a

future time point [65]:

p (xt|y1:T ) = p (xt|y1:t)

∫

p (xt+1|xt) p (xt+1|y1:T )

p (xt+1|y1:t)
dxt+1 (3.14)

3.2 Two-Filter Probabilistic Data Association for

Particle Tracking

Tracking subcellular structures displayed as small spots in fluorescence microscopy

images is important to determine quantitative information of biological processes. In

previous work, different types of particle tracking approaches have been introduced

(e.g., [106, 102, 185, 186]). Probabilistic tracking approaches based on Bayesian

filtering have the advantage that spatial and temporal uncertainties are taken into

account (e.g., [132, 48, 49]). Godinez et al. [48] introduced a probabilistic particle

tracking approach based on probabilistic data association. There, information from

past time points is used to find correspondences between detected particles in

consecutive image frames. However, incorporation of information from future time

points can improve the tracking results. Roudot et al. [49] described an approach

based on piecewise-stationary motion smoothing to recover heterogeneous motion

of particles. Past and future information are exploited to select the motion model,

which is represented by an additional random variable.

We have developed a new approach for tracking multiple particles in time-lapse

microscopy images which is based on smoothing and probabilistic data association.

We propose a two-filter smoothing method, where two filters run in opposite temporal

directions, and which integrates a localization scheme based on probabilistic data

association. Compared to [49], our approach incorporates past and future information

directly in the state space by exploiting multiple measurements as in a particle filter.

The measurements are integrated into a Kalman filter via combined innovation.

In our approach, fluorescently labeled particles are represented by a state vector

xt which is reflected by the noisy measurement yt. For time point t, the aim is

to estimate the true state xt given a series of measurements y1:t. However, when

calculating the posterior probability distribution p (xt|y1:t), only information from

past time points (and the current time point) is used. To improve the estimation of xt,

a smoothing approach can be used which also incorporates information from future

time points. Thus, both past and future time points are exploited. The smoothing

approach determines the posterior probability distribution p (xt|y1:T ) conditionally
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on all measurements up to time point T , where T > t is a future time point [65].

Fraser and Potter [71] introduced a two-filter smoothing approach by fusing two

independent Kalman filters running forward and backward in time. In our new

approach, we suggest combining this idea with the PDAE filter [48]. The PDAE

filter is based on probabilistic data association [187] with elliptical sampling and

exploits multiple measurements similar to a particle filter. However, only information

from past time points is exploited. In our approach, we extend the PDAE filter by

two-filter smoothing and taking into account information from past and future time

points. We denote our approach by S-PDAE. Assuming linear and Gaussian models,

the state space equations for the forward and backward PDAE filters can be defined

as:

xt+1 = Fxt (3.15)

yt = Hxt (3.16)

For the motion model represented by F ∈ R6×6 we assume random walk and for the

measurement model we use the identity matrix H ∈ R4×6.

At time point t, the forward PDAE filter provides a measurement yt based on the

spot-enhancing filter (SEF) [106] and an uncertainty represented by the covariance

matrix R. These measurements are referred to as bottom-up measurements. In

addition, using the predicted state x̂t and the measurement model in (3.16), the

measurement ŷt with the covariance matrix Ŝ is determined. The backward PDAE

filter starts from a future time point T and yields the measurement ỹt using the

predicted state x̃t with covariance matrix S̃. The measurements ŷt and ỹt are denoted

as top-down measurements.

For the forward and backward predicted states x̂t and x̃t, validation regions are

defined based on the covariance matrices Ŝ and S̃. With the submatrices Ŝp and S̃p,

including only the position variables, and the predicted positions p̂ and p̃, elliptical

validation regions are determined by

Vp̂,Ŝp
(γ) ≡ {p | (p− p̂)T Ŝ−1

p (p− p̂) ≤ γ2} (3.17)

Vp̃,S̃p
(γ) ≡ {p | (p− p̃)T S̃−1

p (p− p̃) ≤ γ2} , (3.18)

where the sampling positions p have a Mahalanobis distance to p̂ and p̃ which is

less than or equal to γ2. Through diagonalizing Ŝp and S̃p, the semi-axes of the

validation regions Vp̂,Ŝp
and Vp̃,S̃p

are obtained by

r̂i = γ

√

λ̂iêi (3.19)

r̃i = γ

√

λ̃iẽi , (3.20)

where λ̂i and êi are the eigenvalues and eigenvectors of Ŝp, and λ̃i and ẽi are defined
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analogously. Nj measurements based on p̂ and Nl measurements based on p̃ are

generated in the validation regions respectively by sampling positions p along Nc

concentric ellipsoidal contours with:

pj,c = p̂+
c

Nc

Âuj (3.21)

pl,c = p̃+
c

Nc

Ãul (3.22)

The elliptical contours are centered around the positions p̂ and p̃ of the forward and

backward PDAE filter, respectively. Â and Ã are rotation matrices containing the

eigenvectors êi or ẽi as column vectors. The factor c = 1, 2, . . . , Nc is the concentric

index and regulates the density of measurements within both validation regions. The

assignment of the validation regions in (3.17) and (3.18) is performed by a global near-

est neighbor method based on an graph-theoretical approach for the transportation

problem [102]. At the current time point t, Nk bottom-up measurements are incorpo-

rated analogously. In total, our approach incorporates Nm = Nc (Nj +Nk +Nl) + 3

measurements. All measurements are taken into account via combined innovation

ν =
∑Nm

k=1 βk νk with νk = yk − ŷ and
∑Nm

k=1 βk = 1 as in [48]. The measurements

yk are determined at the elliptical samples. The association probabilities βk are

computed based on the image likelihood p (z|x) using the Euclidean distance between

the image intensities z within a region-of-interest around the position of the state x

and a Gaussian appearance model for particles.

3.3 Bayesian Smoothing and Multi-Sensor Data

Fusion for Particle Tracking

In previous work, different methods for particle tracking have been proposed, which

can be subdivided into deterministic, probabilistic, and supervised deep learning ap-

proaches. Deterministic approaches follow a two step-paradigm consisting of particle

detection and correspondence finding [101, 102, 103, 47]. Some approaches determine

correspondences by the minimal cost paths in a spatial-temporal volume [105, 107].

However, being computationally efficient, deterministic approaches do not take into

account uncertainties. Often, they suffer from low signal-to-noise ratio (SNR) for

detection or challenging object constellations for correspondence finding (e.g., high

object density, spurious objects). In comparison, probabilistic tracking approaches

consider spatial-temporal uncertainties and are formulated within a Bayesian frame-

work [125, 46, 48, 120, 49, 11, 126]. Based on Bayesian sequential estimation, the

approaches robustly determine the position of a particle from the posterior distri-

bution using noisy particle detections. While most Bayesian filtering approaches

consider only two frames for correspondence finding, multiple-hypothesis tracking

uses multiple frames [131, 132, 133]. These approaches seek globally optimal solutions,

but may not determine locally best associations. Further, the correspondence space

43



3 Bayesian Smoothing for Particle Tracking

is explored over multiple time points and therefore the computational complexity is

generally high for high object density.

Bayesian smoothing approaches for particle tracking that take into account past

and future information have recently been introduced in [49, 11]. In [49] an iterative

approach was presented which is based on piecewise-stationary motion smoothing to

cope with heterogeneous movements. The approach uses a Kalman filter with single

measurements. In our previous work [11] described in Section 3.2, we introduced a

two-filter smoothing approach that exploits multiple measurements using probabilistic

data association with elliptical sampling (PDAE) [48]. However, detection-based

and prediction-based measurements are not treated separately, and uncertainty

information is not used to combine the measurements. In recent work, deep learning

methods for particle tracking were presented [141, 142, 143, 145]. However, these

supervised methods have the disadvantage that they require ground truth data for

training, and interpretability is lacking.

We have developed a novel probabilistic approach for particle tracking in fluo-

rescence microscopy images based on multi-sensor data fusion, which integrates

multiple measurements from separate measurement processes. Our approach in-

tegrates detection-based and prediction-based measurements by separate sensor

models which allows taking into account different uncertainties to improve update

estimation. The approach combines the principle of a particle filter exploiting mul-

tiple measurements [188] with Kalman filter predictions [67]. For the measurement

process, probabilistic data association with elliptical sampling (PDAE) [48] is used.

In addition, predictions from both past and future time points are exploited by a

Bayesian smoothing method. Predictions are obtained by two filters running in op-

posite temporal directions and fused in the state space by the covariance intersection

algorithm. This algorithm is a general multi-sensor data fusion method for unknown

cross-covariance to ensure a consistent estimate of the fused prediction. Smoothing

and covariance intersection yield improved state prediction and track initialization.

Also, our approach exploits motion information based on displacements from past

and future time points instead of using positions, and integrates them in the cost

function for correspondence finding.

The proposed particle tracking approach is the first that combines multi-sensor data

fusion and Bayesian smoothing methods as well as integrates multiple measurements

with different uncertainties. Both main steps of Bayesian sequential estimation,

namely update estimation and prediction are addressed.

3.3.1 Multi-Sensor Data Fusion with Probabilistic Data

Association

Typical Kalman filter-based approaches for biological particle tracking (e.g., [125, 132,

49]) use single measurements yt to determine the predictions. Instead, probabilistic

data association with elliptical sampling (PDAE) [48] exploits multiple measurements
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as in a particle filter. With this approach, detection-based and prediction-based

measurements are combined using combined innovation. However, detection-based

and prediction-based measurements are not treated separately, and uncertainty in-

formation is not exploited for combining the measurements. We propose a tracking

approach based on a sequential multi-sensor data fusion method, which integrates

detection-based and prediction-based measurements by exploiting separate uncer-

tainties to improve update estimation. Since the measurements are generated using

PDAE we denote this approach as Multi-Sensor PDAE (MS-PDAE). For the mea-

surements, detections from a spot detector (e.g., the spot-enhancing filter, SEF, [106])

and Kalman filter predictions are employed. Detection-based measurements and

prediction-based measurements of the image intensities are determined within local

elliptical regions around the detections and predictions, respectively. We represent

the measurement processes by two different sensor models, one for the detection-based

measurements and one for the prediction-based measurements, and integrate the

measurements by a multi-sensor data fusion method [45]. Such methods integrate

measurements from multiple sensors to reduce the overall uncertainty and increase

the accuracy [189, 40]. In previous work, multi-sensor data fusion with multiple

measurements has been used for radar applications(e.g., [190]), vehicle navigation

(e.g., [191, 192]), and remote sensing applications (e.g., [193]), but not yet for ob-

ject tracking in microscopy images. Note that the term sensor is typically used

for physical devices, but also refers to mechanisms that derive data from sensory

data [40]. We here use the term in the latter more general sense. The sensors are

the algorithms that determine the detection-based and prediction-based multiple

measurements from the image data.

Multi-Sensor Data Fusion

In our application, the detection-based and prediction-based measurements have

different uncertainties, and can be assumed to be independent from each other. The

detection-based measurements yi,Det,t at time point t given the current state xt are

independent of the detection-based measurement history, state history, and state

prediction [65]. Thus, yi,Det,t are independent of the prediction x̂t and independent

of the prediction-based measurements yj,Pred,t. Therefore, the update estimation

of our MS-PDAE can be computed sequentially [45, 189]. The MS-PDAE first

determines the update estimate with the measurements yi,Det,t and second with

yj,Pred,t. This is a main difference to the previous PDAE approach [48, 11], where

multiple measurements are combined using combined innovation. There, detection-

based and prediction-based measurements are not treated separately, and uncertainty

information is not exploited for combining the measurements. The difference between

PDAE and MS-PDAE is illustrated in Fig. 3.1.

In the first step, the MS-PDAE updates the state xDet,t ∈ R
6×1 (with mean

mDet,t ∈ R
6×1 and covariance PDet,t ∈ R

6×6) based on the predicted state x̂t (with
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(a) PDAE

(b) MS-PDAE

Figure 3.1: Flowchart illustrating the difference between PDAE and MS-PDAE.

mean m̂t and covariance P̂t) and the detection-based measurements yi,Det,t using

mDet,t = m̂t +KDet,t vDet,t (3.23)

PDet,t = (I−KDet,t H) P̂t (3.24)

where vDet,t ∈ R
4×1 is the combined innovation

vDet,t =

NDet
∑

i=1

βi,Det,t vi,Det,t (3.25)

consisting of the association probabilities βi,Det,t ∈ [0, 1] (based on a Gaussian
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appearance model for spot-like particles, see Section 3.1) and the innovations vi,Det,t ∈

R
4×1

vi,Det,t = yi,Det,t −Hm̂t (3.26)

The matrix KDet,t ∈ R
6×4 is the Kalman gain for yi,Det,t:

KDet,t = P̂t H
T (SDet,t)

−1 (3.27)

SDet,t = HP̂t H
T +RDet (3.28)

and consists of the innovation covariance SDet,t ∈ R
4×4, which represents the uncer-

tainty of the innovation vDet,t. The uncertainty of yi,Det,t is reflected by the covariance

matrix RDet ∈ R
4×4.

In the second step, the MS-PDAE updates the state xt (with mean mt and

covariance Pt) based on the estimate xDet,t (with mean mDet,t and covariance PDet,t)

and the prediction-based measurements yj,Pred,t by

mt = mDet,t +KPred,t vPred,t (3.29)

Pt = (I−KPred,t H) PDet,t (3.30)

where vPred,t ∈ R
4×1 is the combined innovation

vPred,t =

NPred
∑

j=1

βj,Pred,t vj,Pred,t (3.31)

with the association probabilities βj,Pred,t ∈ [0, 1] (based on a Gaussian appearance

model) and the innovations vj,Pred,t ∈ R
4×1

vj,Pred,t = yj,Pred,t −HmDet,t (3.32)

KPred,t ∈ R
6×4 is the Kalman gain for yj,Pred,t:

KPred,t = PDet,t H
T (SPred,t)

−1 (3.33)

SPred,t = HPDet,t H
T +HP̂t H

T (3.34)

The prediction-based innovation covariance SPred,t is determined using the covariance

RPred,t = HP̂t H
T of yj,Pred,t, which is changing over time.

The detection-based measurements yi,Det,t are determined within an elliptical

sampling region VDet,t (γ) at the position pDet,t =
(

pDet,x, pDet,y

)T
defined by the

covariance matrix Rp in the position space P ∈ R
2×2 by taking only the position

information of RDet. Therefore, multiple measurement at positions pl,c,t are obtained
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within the validation region [48]

VDet,t (γ) ≡
{

pl,c,t

∣

∣

∣

(

pl,c,t − pDet,t

)T
(Rp)

−1 (
pl,c,t − pDet,t

)

≤ γ2
}

(3.35)

where the sampling positions pl,c,t have a Mahalanobis distance to pDet,t less or

equal to a constant γ2. The pl,c,t measurements are determined by sampling Nl posi-

tions along Nc concentric elliptical contours centered around pDet,t. In total, we use

NDet = Nl Nc+1 detection-based measurements and incorporate them in (3.26). Anal-

ogously, the prediction-based measurements yj,Pred,t at positions pm,c,t are obtained

within a validation region VPred,t (γ), and we incorporate NPred = Nm Nc + 1 measure-

ments in (3.32). In total, our MS-PDAE uses N = NDet +NPred = Nc (Nl +Nm) + 2

measurements.

For the combined innovation in (3.25) the association probabilities βi,Det,t are

interpreted as weights that quantify the probability that the image intensities within

a region-of-interest (ROI) around pl,c,t conform to the intensities synthesized with

the used Gaussian appearance model (cf. Section 3.1). Therefore, we query the image

likelihood defined by the ratio [48]:

p
(

IROI

(

pl,c,t

)∣

∣IgGauss

(

pl,c,t

))

≜
po
(

IROI

(

pl,c,t

)∣

∣IgGauss

(

pl,c,t

))

pb
(

IROI

(

pl,c,t

)∣

∣IROI (pm̂t
)
) (3.36)

The image object likelihood po(·) is computed using the Euclidean distance between

the ROI image intensities around pl,c,t and the intensities synthesized with the

appearance model of a particle. The image background likelihood pb(·) is computed

analogously using the ROI background value Ib. The weights βi,Det,t represent a

probability and need to fulfill the property:

β0,t +

NDet
∑

i=1

βi,Det,t = 1 (3.37)

where β0,t ∈ [0, 1] is the probability that none of the measurements correspond to

the tracked particle. The weights for yj,Pred,t must fulfill the same property.

3.3.2 Bayesian Smoothing Using Covariance Intersection

The MS-PDAE described above uses information from past time points. We extend

this approach by introducing a Bayesian smoothing method which exploits informa-

tion from both past and future time points. We denote this extension as Smoothing

MS-PDAE (SMS-PDAE) (see Fig. 3.2 for a flowchart). The SMS-PDAE computes

the posterior probability distribution p (xt|y1:T ) conditionally on all measurements

y1:T ∈ R
4×T up to time point T , where T > t is a future time point [65]. To com-

pute p (xt|y1:T ), Fraser and Potter [71] introduced a two-filter smoothing approach

with two independent Kalman filters running forward and backward in time. For
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Figure 3.2: Flowchart of SMS-PDAE.

the SMS-PDAE, we exploit this idea, however, we use two MS-PDAE filters (cf.

Section 3.3.1) running forward and backward in time. At time point t, the forward

MS-PDAE provides a predicted state x̂t|t−1 ∈ R
6×6 based on the state at time point

t− 1. The backward MS-PDAE provides a predicted state x̂t|t+1 ∈ R
6×6 based on

the state at time point t+1. Note that the predicted state of the forward MS-PDAE

forms a Markov sequence and therefore x̂t|t−1 only depends on xt−1 [65]

p
(

x̂t|t−1

∣

∣x1:t−1,y1:t−1

)

= p
(

x̂t|t−1

∣

∣xt−1

)

(3.38)

even though measurements y1:t−1 ∈ R
4×(t−1) and states x1:t−1 ∈ R

6×(t−1) up to

time point t− 1 are used. Analogously, the predicted state x̂t|t+1 of the backward

MS-PDAE only depends on xt+1

p
(

x̂t|t+1

∣

∣xt+1:T ,yt+1:T

)

= p
(

x̂t|t+1

∣

∣xt+1

)

(3.39)

even though measurements yt+1:T ∈ R
4×(T−t) and states xt+1:T ∈ R

6×(T−t) from

future time points t + 1 until T with T > t are used. The fused predicted state

x̂f,t ∈ R
6×1 at time point t

p
(

x̂f,t

∣

∣x̂t|t−1, x̂t|t+1

)

∼ N
(

x̂f,t; m̂f,t, P̂f,t

)

(3.40)

using the predicted states x̂t|t−1 and x̂t|t+1 can be computed based on the unbiased

linear combination of the predicted means m̂t|t−1 ∈ R
6×1 and m̂t|t+1 ∈ R

6×1 [55, 51]

m̂f,t = K1 m̂t|t−1 +K2 m̂t|t+1 (3.41)
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(a) Known cross-covariances (b) Unknown cross-covariances

Figure 3.3: Illustration of two different optimal fusion approaches for two states. The
two green centered ellipses represent the covariances P1 and P2 of the
two states to be fused. The intersection P1 ∩ P2 is marked as green
hatched area. a) Known cross-covariances P12 = P21 = 0: The optimal
fused covariance Pf lies within the intersection of P1 and P2 (red dashed
ellipse). b) Unknown cross-covariances P12 and P21: The optimal fused
covariance Pf tightly circumscribes the intersection of P1 and P2 (red
dashed ellipse).

with the gain matricesKi ∈ R
6×6. The gain matricesKi are determined by optimizing

a cost function J(P̂f,t) of the covariance matrix P̂f,t of the fused state x̂f,t given as

P̂f,t =
[

K1 K2

]

[

P̂t|t−1 P̂t|t−1 ; t|t+1

P̂t|t+1 ; t|t−1 P̂t|t+1

]

[

K1

K2

]

(3.42)

with K1 +K2 = I, where I is the identity matrix. J(P̂f,t) is a strictly monotonically

increasing function such as the trace or determinant of P̂f,t [51, 52]. If the cross-

covariances P̂t|t−1 ; t|t+1 ∈ R
6×6 and P̂t|t+1 ; t|t−1 ∈ R

6×6 of x̂t|t−1 and x̂t|t+1 are

known, the optimal gain matrices Ki are determined by the Bar-Shalom/Campo

formulas [53]. If the cross-covariances are known and there is no cross-correlation,

i.e. P̂t|t−1 ; t|t+1 = P̂t|t+1 ; t|t−1 = 0, the optimal ellipsoid corresponding to the fused

covariance P̂f,t lies within the intersection of the ellipsoids corresponding to the

covariances P̂t|t−1 ∈ R
6×6 and P̂t|t+1 ∈ R

6×6 of x̂t|t−1 and x̂t|t+1 (see Fig. 3.3 a).

Covariance Intersection Algorithm for Unknown Cross-Covariances

In our SMS-PDAE approach, the same motion and noise model is used for the

forward and backward MS-PDAE. The measurement processes are not independent,

i.e. the cross-covariances in (3.42) are not zero (P̂t|t−1 ; t|t+1 = P̂t|t+1 ; t|t−1 ̸= 0) and

unknown. In particular, the estimation errors of the forward predicted state x̂t|t−1 and

the backward predicted state x̂t|t+1 are correlated due to the common motion model

noise [53, 194]. When fusing the two predicted states x̂t|t−1 and x̂t|t+1, a consistent
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estimate (the probability of the estimate being arbitrarily close to the true parameters

converges to one as the sample number increases) is only feasible if the ellipsoid

corresponding to the fused covariance P̂f,t ∈ R
6×6 bounds the intersection of the

ellipsoids of P̂t|t−1 and P̂t|t+1 [55, 51]. Using set theory, the intersection for unknown

cross-covariances can be characterized by a convex combination of the covariances,

and the covariance intersection algorithm [55] allows computing an optimal fused

mean m̂f,t = K1 m̂t|t−1 +K2 m̂t|t+1 with

(

P̂f,t

)−1

= ω
(

P̂t|t−1

)−1

+ (1− ω)
(

P̂t|t+1

)−1

(3.43)

K1 = ω P̂f,t

(

P̂t|t−1

)−1

(3.44)

K2 = (1− ω) P̂f,t

(

P̂t|t+1

)−1

(3.45)

where ω ∈ [0, 1] and Ki are the optimal gain matrices. The ellipsoid of the optimal

fused covariance P̂f,t from the possible set of covariances tightly circumscribe the

intersection of the two centered ellipsoids corresponding to P̂t|t−1 and P̂t|t+1 (see

Fig. 3.3 b). The covariance intersection algorithm for fusing the two states x̂t|t−1

and x̂t|t+1 yields a consistent estimate x̂f,t (with mean m̂f,t and covariance P̂f,t)

which has been proofed in [55] as well as in [52, 51] for more general situations.

Covariance intersection is a completely general data fusion method (for any cross-

correlation), which is optimal when the cross-covariances are not exactly known.

Using in this case instead the data fusion approach with known cross-covariances

by the Bar-Shalom/Campo formulas [53] (cf. Fig. 3.3 a), then the uncertainties are

underestimated, and an inconsistent and suboptimal estimate is generally obtained

(e.g., [55, 39]). In our initial experiments, we had used the latter approach and

empirically found that the uncertainties for the fused state were too low which

deteriorated the tracking results.

Assignment Between Forward and Backward Predictions

The forward and backward MS-PDAE predicted states x̂t|t−1 and x̂t|t+1 in the SMS-

PDAE are assigned by a global nearest neighbor method based on a graph-theoretical

approach for the transportation problem [102]. If a forward predicted state x̂t|t−1 is

not assigned to a backward MS-PDAE predicted state x̂t|t+1 (K1 = I and K2 = 0),

the fused mean is m̂f,t = m̂t|t−1 with covariance P̂f,t = P̂t|t−1. If a backward predicted

state x̂t|t+1 is not assigned to a forward predicted state x̂t|t−1 (K1 = 0 and K2 = I),

the fused mean is m̂f,t = m̂t|t+1 with covariance P̂f,t = P̂t|t+1, where I ∈ R
6×6 is the

identity matrix.
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(a) Position-based approach (nearest neighbor) (b) Displacement-based approach

Figure 3.4: Illustration of the two different correspondence finding approaches for
a random walk motion model. The Euclidean distances are indicated
by black arrows and represent the costs for correspondence finding. a)
The position-based approach determines the closest point (green) which
is an incorrect correspondence. b) The displacement-based approach
uses the displacement d̃t between the previous and current position (blue
arrow) to define a circle with the expected displacement (blue circle) and
determines the closest point (green) to the circle which is the correct
correspondence.

Displacement-based Correspondence Finding Between Predictions

and Measurements

To determine correspondences between predictions and measurements in the MS-

PDAE we use a displacement-based approach. In previous work, often a nearest-

neighbor approach with a cost function based on the Euclidean distance between the

predicted position and the measurement position is used (e.g., [106, 132, 48, 120, 121,

49]). In contrast to this position-based approach, in the MS-PDAE we exploit motion

information in form of displacements in the cost function for correspondence finding.

We use the expected displacement at a certain time point, which is the mean of all

displacements obtained in the past. The difference between position-based (nearest

neighbor) and displacement-based correspondence finding is illustrated in Fig. 3.4.

We consider a random walk model, for which the predicted position is equal to the

current position (e.g., [195]). The position-based approach determines the closest

point (green) and yields an incorrect correspondence. In contrast, the displacement-

based approach takes into account the expected displacement (displacement between

previous and current position) with a uniformly distributed direction (indicated by

the blue circle) and determines the closest point (green) to the circle which is the

correct correspondence.
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Data Fusion for Displacement-based Correspondence Finding

To determine correspondences between predictions and measurements in the SMS-

PDAE we use a displacement-based approach. In the SMS-PDAE we exploit motion

information in form of displacements in the cost function for correspondence finding.

We use the expected displacement at a certain time point, which is determined based

on displacements in both forward and backward direction. We exploit displacements

for both the forward and backward MS-PDAE and fuse them for correspondence

finding. We define the cost function J based on the displacement dt = ||p̂t|t−1 −pt||2
between the predicted position p̂t|t−1 from the forward MS-PDAE and a measurement

position pt:

J = |d̃f,t − dt| (3.46)

with the expected fused displacement d̃f,t, which is determined by a linear combination

of the expected displacements for the forward and backward MS-PDAE, d̃fwd,t and

d̃bwd,t, respectively:

d̃f,t =
σbwd,t

σfwd,t + σbwd,t

d̃fwd,t +
σfwd,t

σfwd,t + σbwd,t

d̃bwd,t (3.47)

where d̃fwd,t ∈ R denotes the mean displacement over the past displacements at time

points t − (T − t) to t − 1, d̃bwd,t ∈ R is the mean displacement over the future

displacements at time points t+ 1 to T , and σfwd,t and σbwd,t are the corresponding

standard deviations. In (3.47), the weight for the first term is large for small σfwd,t

(high certainty) relative to σbwd,t, and thus d̃fwd,t has a large influence. This can be

seen by rewriting the weight as 1
(σfwd,t/σbwd,t)+1

. The weight for the second term can

be interpreted analogously. A graph-theoretical approach [102] is used to optimize

the cost function in (3.46).
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Figure 3.5: SMS-PDAE track initialization for synthetic data. Ground truth de-
tections are indicated by a red circle. For t = 1, the particle was not
detected and the SMS-PDAE uses only prediction-based measurements
(yellow). For t = 2, the particle was detected and the SMS-PDAE uses
detection-based (green) and prediction-based measurements (yellow).

Track Initialization using Information from Future Time Points

For track initialization, the SMS-PDAE exploits information from future time points

by employing unassigned predicted states x̂t|t+1 of the backward MS-PDAE. For an

unassigned x̂t|t+1, prediction-based measurements around pPred,t|t+1 are generated

and the association probabilities βj,Pred,t|t+1 ∈ [0, 1] are determined according to

(3.36). If the sum over all βj,Pred,t|t+1 is above a threshold, a track is initialized with

xt = x̂t|t+1. Exploiting future information enables starting tracking earlier when

particles have not been detected due to low visibility. An example is shown in Fig. 3.5.

At time point t = 1, the particle was not detected and thus only prediction-based

measurements are used, while for t = 2, the particle was detected and thus both

detection-based (green) and prediction-based (yellow) measurements are exploited.
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4 Multi-Detector Fusion and Bayesian

Smoothing for Particle Tracking

In this chapter, a novel method for particle tracking based on multi-detector fusion

and Bayesian smoothing is described. Multi-detector fusion is achieved by a novel

intensity-based covariance intersection algorithm which exploits image intensity

information for data fusion. First, an overview of the particle tracking approach is

given, followed by introducing the novel multi-detector fusion approach. Afterwards,

the Bayesian smoothing approach for tracking is described. The work has been

submitted for publication (Ritter et al. [13]).

4.1 Overview of the Approach

Due to the limited spatial resolution of optical microscopy, such structures have a spot-

like appearance in the image data. The main steps of particle tracking are particle

detection and association. Reliable detection and accurate localization of particles are

important since errors are propagated to the association step and generally degrade

the tracking performance. The main challenges for particle detection and tracking

are low signal-to-noise ratio (SNR), small particle size, heterogeneity in particle size,

high object density, lack of prominent particle shape, complex motion, and clutter.

We have developed a novel probabilistic approach for particle tracking in flu-

orescence microscopy images based on multi-detector multi-scale data fusion and

Bayesian smoothing. Our approach integrates multiple measurements (detections)

from multiple detectors using multiple image scales by a novel intensity-based co-

variance intersection method. Covariance intersection is a data fusion method for

unknown cross-covariances which ensures a consistent estimate. Existing covari-

ance intersection methods are position-based, and were applied to synthetic and

remote sensing images [196, 193, 191] and microscopy images [12]. In comparison, the

proposed intensity-based covariance intersection method exploits image intensities

besides positions and uncertainties, and does not require an optimization step. In

addition, we integrate detections from different methods, both classical and deep

learning methods as well as exploit detections in multiple image scales. Further,

for each particle a time-varying estimate of the measurement noise covariance is

computed to improve update estimation. False positive detections are rejected using

image likelihoods that represent the image intensities in the local neighborhood of

detections. Information from future time points are integrated by Bayesian smooth-
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Figure 4.1: Overview of our multi-detector intensity-based covariance intersection
method (MD-iCI).

ing. We fuse predictions as well as motion information from past and future time

points obtained by two filters running in opposite temporal directions.

4.2 Multi-Detector Fusion for Particle Detection

Probabilistic particle tracking approaches based on Bayesian filtering often use the

Kalman filter and exploit single measurements for prediction and update estima-

tion (e.g., [125, 132, 49]). Multiple measurements (via elliptical sampling around the

detection and prediction) were used in the probabilistic data association with elliptical

sampling (PDAE) approach [48]. The Smoothing Multi-Sensor PDAE (SMS-PDAE)

approach [12] described in Section 3.3 integrates multiple measurements and exploits

separate uncertainties to improve update estimation. However, PDAE and SMS-

PDAE employ a single detection method and use a single image scale. In contrast,

the proposed tracking approach integrates detections from multiple methods (with

separate uncertainties) and uses multiple image scales to improve measurement and

update estimation. Particles are detected by different methods and the detections are

fused to reduce the overall uncertainty and increase the accuracy. A consistent fused

estimate can be obtained by the covariance intersection (CI) algorithm [55], which

determines the optimal weighting coefficients of each detection on the fused result.

However, an iterative optimization scheme is required and intensity information

is not used. We suggest a different approach, where the calculation of weighting

coefficients by optimization is replaced by computing image likelihoods directly from

the image intensities. The proposed intensity-based covariance intersection (iCI)

approach for multi-detector (MD) data fusion is denoted by MD-iCI and takes into

account image intensities, positions, and uncertainties from multiple detectors. An

overview is given in Fig. 4.1.

For each detector i ∈ {1, 2, ..., n} at time point t, a measurement yi,t ∈ R
4 with
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uncertainty Ri ∈ R
4×4 is obtained. The fused measurement yf,t ∈ R

4×1 at time point

t (corresponding to one object in an image) can be determined by the unbiased linear

combination of the measurements yi,t [55]

yf,t =
n
∑

i=1

Ki yi,t (4.1)

with the gain matrices Ki ∈ R
4×4. The Ki are determined by optimizing a cost

function J(Rf) of the covariance matrix Rf ∈ R
4×4 of the fused measurement

Rf =
[

K1 · · · Kn

]







R1
1 · · · Rn

1
...

. . .
...

R1
n · · · Rn

n













K1

...

Kn






(4.2)

with
∑n

i=1Ki = I, and I is the identity matrix. J(Rf) is a strictly monotonically

increasing function such as the trace or determinant of Rf [51, 52, 57]. The matrices

Ri
i in (4.2) represent the covariances of measurement yi,t, and the matrices R

j
i

represent the cross-covariances of measurement yi,t from detector i based on the

measurement yj,t from detector j.

4.2.1 Multi-Detector Fusion with Intensity-based Covariance

Intersection (MD-iCI)

In our MD-iCI, all detectors are applied to the same image. Therefore, the mea-

surement errors can be assumed to be correlated due to common image noise, and

the measurement processes are not independent, i.e. the cross-covariances in (4.2)

are not zero (Rj
i ̸= 0 for i ̸= j) and unknown. Fusing multiple measurements yi,t,

a consistent estimate of the fused measurement yf,t is represented by the ellipsoid

corresponding to the fused covariance matrix Rf which bounds the intersection of

all ellipsoids of Rj
i [55, 51]. An estimate is consistent if it converges to the true

parameter and the covariance of the estimation error converges to zero as the sample

number increases. Using the CI algorithm [55, 57], the intersection for unknown

cross-covariances can be characterized by a convex combination of the covariances

and allows computing an optimal fused measurement

yf,t = Rf,t

n
∑

i=1

ωi (Ri)
−1

yi,t Rf,t =

(

n
∑

i=1

ωi (Ri)
−1

)−1

(4.3)

0 ≤ ωi ≤ 1 and
n
∑

i=1

ωi = 1

Existing CI algorithms (e.g., [196, 191]) are position-based (i.e. they use the positions

of detections) and determine the optimal weighting coefficients ωi by minimizing the
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trace (or determinant) of Rf with respect to ωi [51]. However, this is a nonlinear opti-

mization problem with constraints, which requires high computation costs [191]. Also,

intensity information is not exploited. In contrast, we suggest a different approach

to compute ωi by exploiting image intensities besides positions and uncertainties.

Since the weighting coefficients are constrained to ωi ∈ [0, 1] and
∑n

i=1 ωi = 1, we

interpret them as probabilities. We propose using the probabilities of how well

the image intensities within a region-of-interest (ROI) around each detection yi,t

represent particle intensities synthesized with the used Gaussian appearance model

(cf. Section 3.1). The probabilities are computed based on the image likelihood which

was previously used in [48] for computing association weights to solve correspondence

finding. Instead, we here use the probabilities based on the image likelihood to

incorporate information of the image intensities around the position pi,t =
(

px, py
)

of yi,t to determine the intensity-based weighting coefficients for fusing detections.

The image likelihood αi is defined by

αi =
po
(

IROI

(

pi,t

)∣

∣IgGauss

(

pi,t

))

pb
(

IROI

(

pi,t

)∣

∣IIb
(

pi,t

)) (4.4)

where po(·) is the image object likelihood defined as the Euclidean distance between

the image intensities within the ROI around pi,t and the image intensities synthesized

with the Gaussian appearance model of a particle. pb(·) is the background image

likelihood which is defined analogously using the ROI background value Ib. Since we

interpret the weighting coefficients as probabilities, we use the normalization

ωi =
αi

∑n
i=1 αi

(4.5)

Thus, since the constraints for ωi of the existing CI algorithms in (4.3) are fullfilled, our

MD-iCI yields a consistent estimate. This was proofed in [55] for arbitrary weighting

coefficients. MD-iCI determines the fused measurement yf,t using the computed

intensity-based ωi and incorporates uncertainties by the covariance matrices Ri of

measurements yi,t by

yf,t = Rf,t

n
∑

i=1

(

αi
∑n

i=1 αi

)

(Ri)
−1

yi,t (4.6)

The ωi are computed for each time point t, thus the fused measurement covariance

matrix

Rf,t =

(

n
∑

i=1

(

αi
∑n

i=1 αi

)

(Ri)
−1

)−1

(4.7)

is changing over time and is a time-varying estimate of the measurement noise

covariance. In contrast, previous probabilistic tracking approaches (e.g., [125, 47,

58



4 Multi-Detector Fusion and Bayesian Smoothing for Particle Tracking

Figure 4.2: MD-iCI and measurement rejection for synthetic data. Ground truth
and MD-iCI detections are shown by green circles. For detector 1 and
2, orange circles represent false positive and rejected detections, green
circles represent detections used by MD-iCI, and the corresponding table
shows the image likelihood and weighting coefficients. The white dotted
ellipses depict assigned and fused detections by MD-iCI. Detector 1 is
sensitive for large particles leading to a false positive detection for two
small particles located close together. Detector 2 is sensitive to small
particles and yields a false positive detection for the large particle. MD-
iCI fuses the detections of detector 1 and 2 and obtains the best F1 score
and RMSE compared to the single detectors.

131, 120, 48, 49, 12]) used a fixed measurement covariance matrix or an uncorrelated

matrix (white Gaussian noise), and did not exploit image intensity to determine the

measurement noise.

Measurement Rejection and Assignment

In our MD-iCI, we use the image likelihood αi in (4.4) to identify false positive

detections and reject them from fusion. The αi quantify how well the intensities

around measurement yi,t from detector i agree with the intensities of a particle

synthesized with the Gaussian appearance model (cf. Section 3.1). If αi is below

a threshold, yi,t is classified as false positive detection and rejected for fusion (see

Fig. 4.2 for an example). When applying Nd detectors to an image with multiple

particles, each detector yields a set of detections. For time point t, the detector with

the largest number of detections is identified and a one-to-one correspondence with

detections from the other detectors is found by a global nearest neighbor method
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Figure 4.3: Overview of our MD-BS tracking approach. The approach combines
our MD-iCI for multi-detector fusion (spatial information) and Bayesian
smoothing with covariance intersection for prediction fusion (temporal
information).

based on a graph-theoretical approach for the transportation problem [102]. We use

the detector with the largest number of detections to obtain the maximum number

of one-to-one correspondences. Next, among the Nd − 1 detectors with unassigned

detections, the detector with the largest number of detections is identified and one-to-

one correspondences between detections are determined. This sequential procedure is

completed after maximum Nd− 1 iterations and the remaining unassigned detections

are used for track initialization.

4.3 Bayesian Smoothing with Multi-Detector Fusion

Our MD-iCI approach uses spatial information from multiple detectors. For tracking,

we also exploit temporal information using Bayesian smoothing and incorporate

past and future time points. We denote our tracking approach as multi-detector

Bayesian smoothing (MD-BS). An overview of MD-BS is shown in Fig. 4.3. The

posterior probability distribution p (xt|yf,1:T ) is computed conditionally on all fused

measurements yf,1:T ∈ R
4×T up to time point T , where T > t is a future time

point [65]:

p (xt|yf,1:T ) = p (xt|yf,1:t)

∫

p (xt+1|xt) p (xt+1|yf,1:T )

p (xt+1|yf,1:t)
dxt+1 (4.8)
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We solve (4.8) by using two MS-PDAE (Multi-Sensor PDAE, [12]) in conjunction

with the proposed MD-iCI running forward and backward in time analogously to the

two-filter smoothing approach by Fraser and Potter [71]. At time point t, forward

tracking provides a predicted state x̂t|t−1 ∈ R
6×6 based on the state at time point

t− 1 due to the Markovian property [65]. Analogously, backward tracking provides

a predicted state x̂t|t+1 ∈ R
6×6 based on the state at time point t + 1. The two

predicted states are fused as described below.

Prediction Fusion with Covariance Intersection Algorithm

Our MD-BS computes the state xt based on the fused predicted state x̂f,t determined

from the forward predicted state x̂t|t−1 and the backward predicted state x̂t|t+1. Two

filters are running forward and backward in time and both use the same motion

and noise model. Thus, the estimation errors of x̂t|t−1 and x̂t|t+1 are correlated due

to common noise models [53, 194]. Further, the cross-covariances P̂t|t−1 ; t|t+1 and

P̂t|t+1 ; t|t−1 are not zero and unknown. In this case, a consistent estimate of x̂f,t with

mean m̂f,t and covariance P̂f,t can be obtained by the CI algorithm [55]:

m̂f,t = P̂f,t

[

ω
(

P̂t|t−1

)−1

m̂t|t−1 + (1− ω)
(

P̂t|t+1

)−1

m̂t|t+1

]

(4.9)

P̂f,t =

[

ω
(

P̂t|t−1

)−1

+ (1− ω)
(

P̂t|t+1

)−1
]−1

(4.10)

where m̂t|t−1 and m̂t|t+1 are the mean of the predicted states x̂t|t−1 and x̂t|t+1,

respectively. In the MD-BS, we equally weight the information from the forward

and backward filters using ω = 0.5. Note that the prediction is a coarse estimate

of the position of a particle and generally not exactly located at a particle. Thus,

exploiting intensity information at the predicted position generally does not improve

the result. x̂t|t−1 and x̂t|t+1 are assigned by a global nearest neighbor method [102].

Multi-Sensor PDAE with Multi-Detector Fusion

MD-BS uses forward and backward MS-PDAE filters in conjunction with MD-iCI.

Both MS-PDAE filters exploit multiple measurements by generating detection-

based and prediction-based measurements within local elliptical regions around

the detections and predictions. The two different measurement processes have

separate uncertainties and the multiple measurements are integrated by a sequential

multi-sensor data fusion approach consisting of two steps to determine the state xt.

First, the state xDet,t ∈ R
6×1 (with mean mDet,t ∈ R

6×1 and covariance matrix

PDet,t ∈ R
6×6) is determined using the fused predicted state x̂f,t (with mean m̂f,t and
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4 Multi-Detector Fusion and Bayesian Smoothing for Particle Tracking

covariance matrix P̂f,t) and the detection-based measurements yf,i,Det,t by computing

mDet,t = m̂f,t +KDet,t vDet,t (4.11)

PDet,t = (I−KDet,t H) P̂f,t (4.12)

where vDet,t =
∑NDet

i=1 βi,Det,t vi,Det,t is the combined innovation consisting of the

association probabilities βi,Det,t ∈ [0, 1] (based on a Gaussian appearance model for

spot-like particles, see Section 3.1) and the innovations vi,Det,t = yf,i,Det,t − Hm̂t.

yf,i,Det,t are determined within elliptical regions around the fused detection yf,t

obtained by our MD-iCI. The Kalman gain matrix for yf,i,Det,t is given by:

KDet,t = P̂f,t H
T (SDet,t)

−1 (4.13)

SDet,t = HP̂f,t H
T +Rf,Det,t (4.14)

The innovation covariance matrix SDet,t ∈ R
4×4 reflects the uncertainty of the inno-

vation vDet,t and the uncertainty of yf,i,Det,t is represented by the covariance matrix

Rf,Det,t ∈ R
4×4 obtained by MD-iCI. Note that the covariance matrix Rf,Det,t is

changing over time in contrast to [12] where a fixed covariance matrix was used.

Second, the state xt (with mean mt and covariance matrix Pt) is determined

by the estimate xDet,t (with mean mDet,t and covariance matrix PDet,t) and the

prediction-based measurements yj,Pred,t with

mt = mDet,t +KPred,t vPred,t (4.15)

Pt = (I−KPred,t H) PDet,t (4.16)

where vPred,t =
∑NPred

j=1 βj,Pred,t vj,Pred,t is the combined innovation with the association

probabilities βj,Pred,t ∈ [0, 1] (based on a Gaussian appearance model) and the

innovations vj,Pred,t = yj,Pred,t −HmDet,t. The Kalman gain matrix for yj,Pred,t is

given by:

KPred,t = PDet,t H
T
(

HPDet,t H
T +HP̂f,t H

T
)−1

(4.17)

The detection-based measurements yf,i,Det,t are determined within an elliptical

sampling region centered at the position of the fused detection obtained by MD-iCI.

The prediction-based measurements yj,Pred,t are obtained analogously using the

position of the predicted state.

For the assignment between predictions and measurements, we use a displacement-

based correspondence finding approach [12], which exploits motion information from

past and future time points. We employ displacements obtained by the two MS-PDAE

with MD-iCI running in opposite temporal directions and use a graph-theoretical

approach [102] to solve the correspondence problem.
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5 Deep Learning for Particle

Detection and Tracking

In this chapter, novel methods for particle detection and tracking based on deep

neural networks are described. First, we present a novel approach which combines a

convolutional neural network for particle detection with probabilistic data association

for tracking. Second, we have developed a novel approach which uses deep learning

for both particle detection and particle association. The approach combines a

convolutional neural network for particle detection with an LSTM-based recurrent

neural network for tracking. The work has been published in Wollmann/Ritter et

al. [14] and Ritter et al. [15, 16].

5.1 Deep Learning-Based Detection and Bayesian

Particle Tracking

We combine deep learning-based particle detection with Bayesian sequential esti-

mation for tracking. Particles are detected by an hourglass-shaped deep learning

network denoted as DetNet [14]. Associations between particles are determined by

probabilistic data association with elliptical sampling (PDAE) which is based on

Kalman filtering and particle filtering [48]. Our method is denoted as DetNet-PDAE.

To increase the tracking performance, data association parameters that depend on the

detection result are automatically determined using the hyperparameter optimization

framework HyperHyper [197] described in Section 7.1.

Deep Learning for Particle Detection

Detection of fluorescent particles is performed by DetNet which uses a Deconvolution

Network consisting of a contracting (pooling) and an expanding (unpooling) path and

can handle objects at multiple scales naturally by its hourglass-shape. The DetNet

architecture is outlined in Figure 5.1. A challenge in particle detection is the small

object size and lack of complex shape information, and thus, data augmentation

does not significantly increase the training data variability. Therefore, overfitting is

likely to occur. With DetNet, we significantly decrease the number of parameters by

reducing the number of extracted feature maps and reduce the size of the receptive

field by employing pooling only two times instead of five times. Further, we do not
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5 Deep Learning for Particle Detection and Tracking

Figure 5.1: Deep neural network architecture of DetNet. The configurations of the
specific layers are given above each layer.

exploit skipping connections as in [76] since detailed boundary information is not

relevant for particle detection. We use instance normalization [95] since the batch

normalization [97] requires a representative dataset, which is hardly available when

using only few training samples. The convolutional layers are replaced by residual

blocks [97], where the input x ∈ R
b×m×n×i of two consecutive convolutional layers F

with parameters W ∈ R
k×k×i×j is added to the output to form a residual, where b is

the batch size, m×n the spatial feature map size, i the number of input feature maps,

j the number of output feature maps, and k the window size of the convolutional

kernel:

xl = xl−1 + F (xl−1;Wl) (5.1)

We use residual blocks since the problem of gradient vanishing is reduced, which

improves the efficiency of training deep architectures. The number of parameters

is further reduced and checkerboard artifacts are avoided by employing bilinear

upsampling (expanding path) instead of transposed convolutions.

DetNet was trained using a soft Dice loss and early stopping with the AMSGrad

optimizer [198] and a learning rate of linit = 0.001 as well as β1 = 0.9 and β2 = 0.999.

The soft Dice loss L(X,Y) for the ground truth Y and prediction X performs implicit

class balancing and penalizes easy samples compared to the Cross-Entropy (CE) loss:

L(X,Y) = −

∑N
i=1 2 ·Xi · Yi + ϵ
∑N

i=1 Xi + Yi + ϵ
(5.2)

where N is the number of image pixels, and the constant ϵ is employed to avoid

division by zero (we used ϵ = 10−6). The stability of the training was found to be

improved by calculating the Dice loss over all N pixels in a batch instead of averaging

the Dice loss over the single images. In contrast, training was not successful when
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using standard CE due to the heavy class imbalance. We augmented the training

data using random flipping, rotation, and cropping.

Bayesian Estimation for Particle Tracking

After particle detection, tracking of particles in our method is formulated as Bayesian

sequential estimation problem. A particle at time point t is represented by a state

xt = (px, ṗx, py, ṗy, Imax, σxy)
T with position pt = (px, py)

T , velocity vt = (ṗx, ṗy)
T ,

and intensity information It = (Imax, σxy)
T , where Imax is the maximum intensity

and σxy the width of a spot-like structure. The state xt is reflected by a noisy

measurement yt =
(

px, py, Imax, σxy

)T
. Using a dynamic model p (xt|xt−1) and a

measurement model p (yt|xt), the aim of Bayesian sequential estimation is to calculate

the posterior distribution p (xt|y1:t) by Bayes’ theorem [65]. The posterior distribution

can be resolved in a closed form via the Kalman filter by assuming linear and Gaussian

models. For time point t, DetNet provides a measurement yt. The uncertainty of yt

is reflected by the covariance matrix R ∈ R
4×4. For particles that undergo directed

motion or random walk, we use the dynamic models as in [48] with the covariance

matrix Q ∈ R
6×6 to compute the prediction x̂t. An estimate for the mean xt of

p (xt|y1:t) is calculated by:

xt = x̂t +Kt νt (5.3)

with the combined innovation νt =
∑Nm

i=1 βi,t νi,t and the Kalman gain

Kt = P̂t H
T
(

HP̂t H
T +R

)−1

(5.4)

The combined innovation νt includes the association probabilities βi,t and innovations

νi,t = yi,t − ŷt for Nm samples. The predicted measurement ŷt = Hx̂t is based on

the predicted state x̂t and the measurement model H ∈ R
4×6. The measurements

yi,t are determined by elliptical sampling. For the association probabilities, we

have β0,t +
∑Nm

i=1 βi,t = 1, where β0,t reflects the probability that no measurement

corresponds to a tracked particle. The association probabilities βi,t can be interpreted

as weights for the measurements yi,t and depend on the expected degree of image

noise σn. Therefore, σn depends on the detection performance of DetNet and has

an influence on the tracking performance. In our approach, σn is automatically

determined by hyperparameter optimization. The covariance matrix of the prediction

P̂t ∈ R
6×6 in (5.4) can be computed using a directed or random walk motion model

F ∈ R
6×6:

P̂t = FPt−1 F
T +Q (5.5)

Combining (5.4) and (5.5) shows that the update state in (5.3) and therefore the

tracking performance depends on the covariance matrix Q of the motion model
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and the covariance matrix R of the measurement model. In our approach, we use

the elements of Q and R as hyperparameters and optimize them automatically.

To optimize the hyperparameters σn, Q, and R, we use the distributed black-box

optimization framework HyperHyper [197] (cf. Section 7.1). HyperHyper consists

of a hyperparameter space definition, an optimizer that includes a hyperparameter

candidate sampler and an optimization strategy, and an evaluation loop.

5.2 Deep Learning for Particle Detection and Tracking

We introduce a novel tracking approach for fluorescent particles in microscopy images

which uses deep learning for both particle detection and particle association. We

combine a convolutional neural network for particle detection with a long short-term

memory (LSTM)-based recurrent neural network (RNN) for tracking. To the best

of our knowledge, we are the first that suggest a deep learning approach for both

particle detection and tracking. Particle detection is performed with the domain

adapted Deconvolution Network DetNet [14]. This network has the advantages that

it does not require a sliding window scheme (compared to [83]), all particles are

detected at once, and it has a much lower number of parameters (compared to [84]).

For correspondence finding we use a deep RNN with bidirectional LSTMs, denoted

as DPHT [145]. This network exploits past and future information in both forward

and backward direction as well as uses multiple track hypotheses. Assignment

probabilities are determined jointly across multiple detections. Manual tuning of

model parameters is not required, and manually labeled data is not needed for

network training.

DetNet-DPHT combines a convolutional neural network for particle detection with

a bidirectional RNN for tracking. Fluorescently labeled particles in microscopy images

are detected using DetNet [14]. This network has an hourglass-shape architecture

and can handle objects at multiple scales and does not require a sliding window

scheme. All particles share full-image convolutional features and can be detected at

once within an image. We trained DetNet using a soft Dice loss

L(X,Y) = −

∑N
i=1 2 ·Xi · Yi + ϵ
∑N

i=1 Xi + Yi + ϵ
(5.6)

where Y is the ground truth, X the prediction, ϵ is a constant used to avoid division

by zero (ϵ = 10−6), and N denotes the number of pixels in an image. With the soft

Dice loss, we perform implicit class balancing and penalize easy samples. We used

the AMSGrad optimizer [198] with early stopping and a learning rate of linit = 0.001

with β1 = 0.9 and β2 = 0.999.

The position information of the detected particles is used for association finding

using a deep RNN denoted as Deep Particle Hypotheses Tracker (DPHT) [145].

Assignment probabilities are determined jointly across multiple detections, and
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probabilities of missing detections are also computed. The network employs track

hypotheses in consecutive frames and exploits information from past and future time

points in both forward and backward direction by stacked bidirectional LSTMs. In

addition, the network consists of fully-connected layers, 1D max-pooling layers, and

temporal convolution layers. Training is performed using the loss function

L = La(a, ã) + Lρ(ρ, ρ̃) (5.7)

with the cross-entropy loss La(a, ã) = −
∑M

j=0 ãj ·log(aj) which measures the deviation

between the computed assignment probabilities a of M detections and ground truth

ã, and the cross-entropy loss Lρ(ρ, ρ̃) = −(ρ̃alive log(ρalive) + ρ̃dead log(ρdead)) which

quantifies the deviation between the predicted existence probabilities ρalive and ρdead
and the ground truth ρ̃alive and ρ̃dead, respectively. We used the Adam optimizer [199]

with early stopping, Gaussian dropout with a rate of p = 0.25, and a learning rate of

linit = 0.001 with β1 = 0.9 and β2 = 0.999.
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6 Experimental Results

In this chapter, experimental results of extensive evaluations of the detection and

tracking methods in Chapter 3, 4, and 5 are presented. The developed methods

are benchmarked on data of the Particle Tracking Challenge as well as live cell

fluorescence microscopy image sequences displaying HCV proteins, HIV-1 particles,

and chromatin structures. The experimental results show that the developed methods

obtain state-of-the-art results or outperform existing methods.

6.1 Bayesian Smoothing for Particle Tracking

This section presents experimental results of the particle tracking methods proposed

in Chapter 3 which are a two-filter probabilistic data association approach (S-PDAE,

Section 3.2) and a Bayesian smoothing approach with multi-sensor data fusion

(SMS-PDAE, Section 3.3).

6.1.1 Two-Filter Probabilistic Data Association for Particle

Tracking

We evaluated our two-filter probabilistic data association approach (S-PDAE) (cf. Sec-

tion 3.2) based on data of the Particle Tracking Challenge [185] for low signal-to-noise ratios.

We also applied our approach to live cell microscopy images of human immunodefi-

ciency virus type 1 (HIV-1) particles and hepatitis C virus (HCV) proteins.

6.1.1.1 Particle Tracking Challenge Data

We assessed the performance of the proposed S-PDAE approach based on data

from the Particle Tracking Challenge [185] and performed a comparison with the

overall top-three methods (Methods 5, 1, 2). Method 5 uses SEF [106] for particle

localization and probabilistic data association with elliptical sampling (PDAE) [48].

Method 1 localizes particles by iterative centroid calculation and particle assignment

is performed by combinatorial optimization [102]. Method 2 localizes particles by

convolution with a disk shaped object model and performs track linking by MHT [131].

For our S-PDAE approach we use SEF [106] for particle localization.

We evaluated the tracking methods on data of the vesicle scenario for low signal-

to-noise ratios of SNR=1 and SNR=2 as well as low and medium particle densities.

Note that in [49] only high SNRs were considered. The time-resolved image sequences
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Table 6.1: Performance metrics for vesicle scenario with SNR=1 and different particle
densities.

Metric α β JSCθ JSC RMSE

Low
Method 5 0.211 0.112 0.185 0.179 2.119
Method 1 0.022 0.018 0.115 0.024 1.568

Method 2 0.175 0.104 0.281 0.178 2.423
S-PDAE 0.225 0.102 0.155 0.166 2.150

Medium
Method 5 0.162 0.142 0.458 0.225 2.172
Method 1 0.027 0.026 0.300 0.034 1.533

Method 2 0.198 0.111 0.335 0.192 2.386
S-PDAE 0.174 0.148 0.450 0.240 2.188

consist of 100 images with 512×512 pixels. We computed the performance metrics

α, β, JSCθ, JSC, and RMSE as in [185]. α ∈ [0, 1] reflects the overall matching

of ground truth with computed trajectories. Spurious tracks are quantified with

β ∈ [0, α]. The Jaccard similarity coefficient JSC ∈ [0, 1] represents the overall

performance of particle detection, and JSCθ ∈ [0, 1] reflects the similarity of the

entire tracks. RMSE indicates the overall localization accuracy.

The results for SNR=1 are shown in Table 6.1 and for SNR=2 in Table 6.2. Bold

numbers highlight the best result among the evaluated approaches. An italic score

indicates an improvement of S-PDAE compared to PDAE (Method 5). It can be seen

that our S-PDAE approach yields state-of-the-art results and best results in several

cases. Considering the overall matching performance α for SNR=1 and 2 and low

particle density, S-PDAE yields the best result compared to all other methods. For

SNR=1 with medium density, S-PDAE achieves a better result for α than PDAE.

Regarding β and JSCθ, S-PDAE yields comparable results as PDAE for SNR=1

and 2. RMSE is slightly larger for S-PDAE compared to PDAE.

6.1.1.2 Evaluation on Live Cell Microscopy Images

We also evaluated the proposed S-PDAE approach based on live cell microscopy

image sequences displaying fluorescently labeled human immunodeficiency virus

type 1 (HIV-1) particles and hepatitis C virus (HCV) proteins. We used two image

sequences with labelled HIV-1 particles [24] acquired from a focal plane in a 3D

collagen structure [5] with an Ultra-View ERS spinning disk confocal microscope

using a Hamamatsu C9100-50 camera. Both image sequences consist of 50 images

with 1000×1000 pixels (Sequence 1 and 2). We also used one HCV image sequence

with ApoE particles comprising 34 live cell images with 512×512 pixels, which was

acquired with an Ultra-View ERS spinning disk confocal microscope mounted on a

Nikon TE2000-E (Sequence 3).
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Table 6.2: Performance metrics for vesicle scenario with SNR=2 and different particle
densities.

Metric α β JSCθ JSC RMSE

Low
Method 5 0.652 0.590 0.763 0.717 1.118
Method 1 0.225 0.155 0.232 0.178 0.796

Method 2 0.661 0.607 0.792 0.742 1.219
S-PDAE 0.706 0.652 0.750 0.800 1.163

Medium
Method 5 0.448 0.391 0.664 0.489 1.325
Method 1 0.398 0.298 0.411 0.340 0.840

Method 2 0.517 0.417 0.629 0.510 1.254
S-PDAE 0.443 0.383 0.653 0.489 1.368

Table 6.3: Results for PTrack for live cell microscopy data.

Seq. PT KF PDAE S-PDAE

1 0.075 0.087 0.110 0.119

2 0.137 0.129 0.156 0.200

3 0.309 0.411 0.623 0.630

We compared the S-PDAE approach with ParticleTracker (PT) [102], a Kalman

filter approach (KF) [200], and PDAE [48]. KF uses an LoG filter for particle

localization and links tracks by linear assignment similar to u-track [103]. For all

approaches, optimal parameters were determined by grid search.

For performance evaluation we calculated the tracking accuracy Ptrack, which

quantifies the percentage of correctly computed trajectories relative to the number

of true trajectories as in [48]. Ground truth trajectories were determined by manual

annotation using the Manual Tracking plug-in in ImageJ. Sequences 1 and 2 contain

16 ground truth trajectories, and Sequence 3 comprises 108 ground truth trajectories.

Table 6.3 shows the result for Ptrack for all evaluated approaches. It turns out that

S-PDAE outperforms the other methods for all image sequences. The improvement is

clearly visible for an example trajectory from Sequence 1 with complex motion shown

in Fig. 6.1. The data is challenging due to image noise, low contrast, and clutter. It

can be seen that KF yields a broken trajectory, whereas PDAE and S-PDAE can

track the particle over all time points. S-PDAE yields the best result compared to

ground truth.
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(a) Ground truth (b) KF (c) PDAE (d) S-PDAE

Figure 6.1: Ground truth and computed trajectories for a HIV-1 particle from Se-
quence 1 using different tracking methods.

Summary For data of the Particle Tracking Challenge with low SNR values, our

approach achieved state-of-the-art results and best results for several cases. For live

cell HIV-1 and HCV microscopy image data it turned out that S-PDAE outperformed

existing methods.

6.1.2 Bayesian Smoothing and Multi-Sensor Data Fusion for

Particle Tracking

We evaluated our SMS-PDAE (Section 3.3) approach on the Particle Tracking Chal-

lenge data as well as using different time-lapse fluorescence microscopy images of

human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) proteins.

SMS-PDAE consists of multi-sensor data fusion with probabilistic data associa-

tion (cf. Section 3.3.1) and Bayesian smoothing using covariance intersection (cf.

Section 3.3.2).

6.1.2.1 Particle Tracking Challenge Data

We used data from the Particle Tracking Challenge [185] and performed a compar-

ison of the SMS-PDAE approach with the overall top-three performing methods

(Method 5, 1, 2) of the challenge. Method 5 uses the spot-enhancing filter (SEF) for

particle detection and PDAE for particle linking [48]. Method 1 localizes particles

by iterative centroid calculation and assigns particles by combinatorial optimiza-

tion [102]. Method 2 detects particles by convolution with a disk shaped object and

uses multiple-hypothesis tracking for correspondence finding [131]. We also compared

our approach with the piecewise-stationary motion model smoother (PMMS) [49]

and our previous two-filter smoothing approach based on PDAE (S-PDAE) [11]. The

PMMS approach detects particles by a blob detector using the difference of Gaussians

and employs piecewise-stationary motion modeling for correspondence finding [49].

The S-PDAE detects particles by SEF and uses a two-filter smoothing approach

for correspondence finding [11]. In addition, we compared the SMS-PDAE with

different variants of it, the (non-smoothed) MS-PDAE with position-based correspon-
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dence finding (MS-PDAE (Pos)) and with displacement-based correspondence finding

(MS-PDAE (Displ)). For all variants we used SEF [106] for particle detection. SEF

consists of applying a Laplacian-of-Gaussian (LoG) filter with standard deviation

σLoG, followed by thresholding using the mean of the absolute values of the filter

responses plus a factor c times the standard deviation and determination of local

maxima. For the approaches based on PDAE, we used the same parameters for

σLoG (typically 3 pixels for low SNR levels and 1.5 pixels for high SNR levels) and c

(typically 3 for low SNR levels and 5 for high SNR levels).

We assessed the different tracking approaches for the vesicle scenario from the

Particle Tracking Challenge data consisting of 12 time-lapse image sequences. We

considered all SNR levels (SNR=1, 2, 4, 7) and all object densities (low, medium,

high). The number of particles ranges from around 100 for low object density to

around 1000 for high object density. Each of the 12 image sequences consists of 100

images with an image size of 512× 512 pixels.

The performance was quantified using the metrics α, β, JSCθ, JSC, and RMSE

from the Particle Tracking Challenge [185]. The metrics α and β account for as-

sociation errors and localization errors at position level. α ∈ [0, 1] quantifies the

overall matching quality between ground truth and computed trajectories. A perfect

matching is reflected by α = 1, whereas α = 0 indicates no matching. β ∈ [0, α] con-

siders additionally spurious trajectories. The performance at track level is evaluated

by the Jaccard similarity coefficient JSCθ ∈ [0, 1]. The detection performance is

quantified by the Jaccard similarity coefficient JSC ∈ [0, 1], whereas the localization

performance is evaluated by the root mean-square error (RMSE). Note that for the

PMMS [49] the results are provided for SNR=4 and 7, but not for SNR=2 and 1,

and RMSE has not been given. Further, all performance values for the PMMS are

given only up to two decimal digits, whereas here the values are reported up to three

decimal digits.

Table 6.4 provides for the different tracking methods the mean values of all

performance metrics over all object densities for low SNR levels (SNR=1 and 2) and

high SNR levels (SNR=4 and 7). The best performing method is marked in bold.

The SMS-PDAE outperforms all methods for all SNR levels for the tracking score β

and the detection score JSC. For low SNR levels, SMS-PDAE yields the best result

for three of the five metrics (β, JSCθ, JSC). For high SNR levels, SMS-PDAE

outperforms PMMS, Method 2, and S-PDAE for all metrics. MS-PDAE (Displ)

yields improved results compared to Method 5 (PDAE) for β, JSCθ, and JSC for

low SNR levels, and for β and RMSE for high SNR levels. Further, MS-PDAE

(Displ) yields better results than MS-PDAE (Pos) for the tracking scores α and β

for all SNR levels.

Table 6.5 shows the mean value of all metrics over all SNR levels for different

object densities. The mean values for PMMS were not computed since values are

only available for high SNR levels (SNR=4 and 7). The SMS-PDAE outperforms

all methods for all object densities for β. For medium and high object density,
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Table 6.4: Mean performance metrics over all object densities for low SNR levels
(SNR=1 and 2) and high SNR levels (SNR=4 and 7) for the Particle
Tracking Challenge data.

Metric α β JSCθ JSC RMSE

Low SNR levels
Method 5 0.327 0.275 0.523 0.365 1.752
Method 1 0.176 0.130 0.278 0.154 1.281

Method 2 0.345 0.261 0.479 0.350 1.899
PMMS – – – – –
S-PDAE 0.334 0.276 0.489 0.372 1.797

MS-PDAE (Pos) 0.316 0.272 0.530 0.359 1.757
MS-PDAE (Displ) 0.323 0.277 0.527 0.367 1.777

SMS-PDAE 0.335 0.286 0.530 0.376 1.699

High SNR levels
Method 5 0.685 0.627 0.796 0.677 0.694
Method 1 0.698 0.625 0.758 0.664 0.561

Method 2 0.610 0.555 0.778 0.627 0.900
PMMS 0.688 0.632 0.783 0.667 -
S-PDAE 0.648 0.588 0.775 0.645 0.788

MS-PDAE (Pos) 0.683 0.630 0.791 0.672 0.649
MS-PDAE (Displ) 0.685 0.631 0.781 0.672 0.674

SMS-PDAE 0.691 0.637 0.785 0.678 0.663

SMS-PDAE yields the best results for three of the five metrics (α, β, JSC). MS-

PDAE (Displ) yields better results than MS-PDAE (Pos) for all object densities for

α, β, and JSC. For low object densities, MS-PDAE (Displ) and MS-PDAE (Pos)

obtain improved results for β, JSCθ, and JSC compared to Method 5 (PDAE).

For medium and high object densities, MS-PDAE (Displ) and MS-PDAE (Pos)

outperform Method 5 for RMSE.

The overall performance as mean value of the performance metrics over all SNR

levels and all object densities is provided in Table 6.6. The mean values for PMMS

were not computed since values are only available for high SNR levels (SNR=4 and

7). As can be seen in Table 6.6, SMS-PDAE yields the best results for three of the

five metrics. SMS-PDAE outperforms all methods for the tracking metrics α and

β, which represent the performance of correspondence finding, and the metric JSC,

which reflects the detection performance. MS-PDAE (Displ) yields better results

than MS-PDAE (Pos) for α, β, and JSC. MS-PDAE (Pos) yields the best result for

JSCθ.

We also determined the computation time of our approach. We used an image

sequence of the vesicle scenario consisting of 100 images (512 × 512 pixels) with

SNR=4 and medium object density. PDAE, MS-PDAE (Pos), and MS-PDAE (Displ)

took 2.11min, 2.13min, and 2.04min, respectively. For S-PDAE and SMS-PDAE

the computation time was 3.46min and 7.23min, respectively. Computations were
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Table 6.5: Mean performance metrics over all SNR levels for different object densities
(low, medium, high) for the Particle Tracking Challenge data.

Metric α β JSCθ JSC RMSE

Low
Method 5 0.654 0.603 0.699 0.675 1.011
Method 1 0.483 0.439 0.512 0.467 0.774

Method 2 0.602 0.557 0.723 0.650 1.252
PMMS – – – – –
S-PDAE 0.664 0.609 0.689 0.685 1.050

MS-PDAE (Pos) 0.649 0.608 0.705 0.675 1.018
MS-PDAE (Displ) 0.649 0.608 0.714 0.678 1.034

SMS-PDAE 0.658 0.615 0.719 0.683 0.984

Medium
Method 5 0.486 0.432 0.670 0.500 1.752
Method 1 0.453 0.388 0.559 0.419 0.881

Method 2 0.477 0.397 0.620 0.475 1.360
PMMS – – – – –
S-PDAE 0.470 0.412 0.659 0.488 1.288

MS-PDAE (Pos) 0.477 0.427 0.671 0.490 1.217
MS-PDAE (Displ) 0.479 0.428 0.662 0.493 1.250

SMS-PDAE 0.490 0.438 0.665 0.503 1.194

High
Method 5 0.378 0.319 0.609 0.387 1.429
Method 1 0.375 0.304 0.484 0.340 1.108

Method 2 0.354 0.270 0.538 0.341 1.587
PMMS – – – – –
S-PDAE 0.340 0.273 0.548 0.351 1.540

MS-PDAE (Pos) 0.373 0.319 0.606 0.381 1.373
MS-PDAE (Displ) 0.385 0.326 0.586 0.388 1.394

SMS-PDAE 0.391 0.332 0.588 0.395 1.365

Table 6.6: Mean performance metrics over all SNR levels and all object densities for
the Particle Tracking Challenge data.

Metric α β JSCθ JSC RMSE

Method 5 0.506 0.451 0.659 0.521 1.223
Method 1 0.437 0.377 0.518 0.409 0.921

Method 2 0.478 0.408 0.629 0.489 1.399
PMMS – – – – –
S-PDAE 0.491 0.432 0.632 0.508 1.292

MS-PDAE (Pos) 0.500 0.451 0.660 0.516 1.203
MS-PDAE (Displ) 0.504 0.454 0.654 0.520 1.226

SMS-PDAE 0.513 0.461 0.657 0.527 1.181
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(a) SNR=1 (b) SNR=2

(c) SNR=4 (d) SNR=7

Figure 6.2: Impact of the smoothing window size of SMS-PDAE on the performance
metrics α and β for different SNR levels.

performed on a workstation with Intel Core i7-6700K CPU (four cores with 4GHz)

and 32GB RAM running Linux.

6.1.2.2 Impact of Smoothing Window Size on Tracking Performance

The tracking performance of the SMS-PDAE depends on the smoothing window size,

which defines the number of used future time points (equal to the number of past

points) for state estimation and correspondence finding. We analyzed the impact of

the window size on the tracking performance metrics α and β for the vesicle scenario

for all SNR levels (SNR=1, 2, 4, 7) with low object density which we choose to focus

on state estimation using covariance intersection. For each SNR level we varied the

window size from 1 to 19 frames.

The results are shown in Fig. 6.2. For SNR=1, best results for α and β are

obtained with a window of 4 frames. Using more frames leads to a decrease in

tracking performance. For SNR=2, best results for α are obtained with a window

of 1 or 3 frames while best results for β are achieved using 5 or 6 frames. For high

SNR levels (SNR=4 and 7), the best results are obtained with a window size of

11 frames. In our experiments, we set the smoothing window size mainly according

to the SNR level in the image data. For low SNR levels (SNR=1, 2) we typically

used window sizes of 4 or 5. For high SNR levels (SNR=4, 7) we typically employed

larger window sizes of 7, 10, or 11. For the HIV-1 and HCV time-lapse microscopy

data we typically used window sizes of 3, 5, and 7.

6.1.2.3 Evaluation on Time-Lapse Fluorescence Microscopy Images

We also evaluated the SMS-PDAE using challenging time-lapse microscopy data

sets containing human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus

(HCV) proteins imaged with different types of fluorescence microscopes and different
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spatial-temporal resolutions. In total, we used 12 microscopy image sequences and

compared the results with those of previous methods.

HIV-1 Live Cell Widefield Microscopy Images We applied the SMS-PDAE to

nine HIV-1 live cell microscopy image sequences displaying double labeled HIV-1

particles within incubated HeLa cells [24]. All image sequences were acquired using

a fluorescence widefield setup based on a Zeiss Axiovert 200 M microscope with

a Roper Scientific Cascade II EM-CCD camera. The image size for the first four

sequences is 256×256 pixels and for the last five sequences 512×512 pixels. The

spatial resolution is 160 nm/pixel and the temporal resolution is 100ms/frame. The

videos comprise 150 up to 400 images. The data is challenging due to low SNR,

clutter, cellular autofluorescence, and out of focus movement.

We performed a comparison with the ParticleTracker (PT) [102], the uTrack

approach [103], a multiple-hypothesis tracking approach (MHT) [201], and a Kalman

filter approach (Kalman) [48]. PT assigns particles by combinatorial optimization,

and uTrack is based on a linear assignment method. MHT is based on a Kalman

filter with multiple motion models [185, 201]. ”Kalman” uses a global nearest

neighbor (GNN) scheme for correspondence finding [102]. Further, we compared the

SMS-PDAE with the PDAE using a random walk motion model and the PDAE

using an interacting motion model (IMM) including both a random walk motion

model and a directed motion model. We also included the S-PDAE [11], MS-PDAE

(Pos) and MS-PDAE (Displ) in the comparison.

We quantified the methods by the tracking accuracy measure Ptrack ∈ [0, 1]

Ptrack =
ntrack,correct

ntrack,total

(6.1)

where ntrack,correct is the number of correctly computed trajectories determined as

Gaussian weighted sum of the percentage of correctly tracked time steps (positions

within an Euclidean distance of five pixels to the ground truth). ntrack,total represents

the number of ground truth trajectories [48]. Ground truth was obtained by manual

annotation between five and 43 ground truth trajectories for each image sequence

using MetaMorph. Since annotating all trajectories in all sequences is not feasible,

the performance metrics of the Particle Tracking Challenge cannot be computed.

The results of the different approaches for all nine image sequences is shown in

Table 6.7. Besides Ptrack, we also determined its standard deviation as a measure

of robustness. The best performing method is marked in bold. It turns out that

the SMS-PDAE yields the overall best performance with a mean Ptrack of 90%.

SMS-PDAE outperforms all methods for four image sequences and yields the best

performance together with other methods for additionally four image sequences.

Further, SMS-PDAE, MS-PDAE (Displ), PDAE, and PDAE (IMM) yield the lowest

standard deviation of 8% (highest robustness). The second best overall result is

obtained by PDAE (IMM) with a mean Ptrack of 89%, however, this method uses a
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Table 6.7: Tracking results for HIV-1 live cell widefield image sequences in terms of
the tracking accuracy Ptrack [%].

Seq. 1 2 3 4 5 6 7 8 9 Mean Std. dev.

PT 73 55 63 67 94 64 82 74 70 71 11
Kalman 96 81 90 82 94 68 86 77 81 84 9
uTrack 75 64 52 66 93 66 85 75 66 71 12
MHT 91 68 91 78 94 71 87 77 83 82 9
PDAE 97 90 98 88 94 76 87 79 83 88 8

PDAE (IMM) 98 92 99 89 94 75 88 79 84 89 8

S-PDAE 98 92 90 89 94 74 84 71 80 86 9
MS-PDAE (Pos) 96 88 97 87 94 73 82 68 70 84 12
MS-PDAE (Displ) 99 92 97 89 94 78 88 76 82 88 8

SMS-PDAE 99 92 100 91 94 79 92 78 84 90 8

multiple motion model compared to the other PDAE approaches. MS-PDAE (Displ)

yields a same mean Ptrack of 88% as PDAE, but outperforms PDAE for five of nine

image sequences. MS-PDAE (Displ) performs better than MS-PDAE (Pos) (mean

Ptrack of 84%).

In Fig. 6.3, two example trajectories for different tracking approaches are shown.

Only the SMS-PDAE yields two complete trajectories. By using information from

both past and future time points, the SMS-PDAE is able to correctly determine the

correspondence for the yellow trajectory. The other approaches (except Kalman)

yield a complete red trajectory, but the yellow trajectory has gaps.

HIV-1 Time-Lapse Spinning Disc Confocal Microscopy Images The second

HIV-1 time-lapse imaging data set consists of two image sequences with labeled HIV-1

particles imaged from a confocal plane in a 3D collagen matrix [19, 5] with an Ultra-

View ERS spinning disc confocal microscope using a Hamamatsu C9100-50 camera.

Both image sequences comprise 50 images with an image size of 1000×1000 pixels.

The spatial resolution is 167 nm/pixel and the temporal resolution is 200ms/frame.

The image sequences are challenging due to low SNR, out of focus movement, and

complex motion of the viral particles.

We compared the SMS-PDAE with PT, uTrack, MHT, KF [200], PDAE, S-PDAE,

MS-PDAE (Pos), and MS-PDAE (Displ). KF is a Kalman filter approach with an

LoG filter for particle detection and linear assignment for correspondence finding. 16

ground truth trajectories for each image sequence were manual annotated using the

Manual Tracking plug-in in ImageJ [202].

The tracking results for all approaches are shown in Table 6.8, and the best

performing method is marked in bold. It can be seen that the SMS-PDAE obtains

the best result for both image sequences. MS-PDAE (Displ) yields a better result

than MS-PDAE (Pos), and both approaches outperform the previous PDAE method.

An example trajectory is shown in Fig. 6.4. Only the SMS-PDAE obtains a complete
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(a) Ground truth (b) Kalman (c) PDAE

(d) PDAE (IMM) (e) S-PDAE (f) MS-PDAE (Pos)

(g) MS-PDAE (Displ) (h) SMS-PDAE

Figure 6.3: Ground truth and tracking results for HIV-1 live cell widefield microscopy
images (time point t = 297). Only the SMS-PDAE yields a complete
yellow trajectory and correct correspondences.

trajectory.

HCV Live Cell Spinning Disc Confocal Microscopy Images We also evaluated

the SMS-PDAE for challenging live cell microscopy data displaying fluorescently

labeled ApoE proteins within HCV proteins expressing Huh7/LunetCD81H cells [18].

The considered image sequence comprises 34 images with an image size of 512×512
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(a) Ground truth (b) PT (c) MHT

(d) PDAE (e) S-PDAE (f) MS-PDAE (Pos)

(g) MS-PDAE (Displ) (h) SMS-PDAE

Figure 6.4: Ground truth and tracking results for HIV-1 time-lapse spinning disc
confocal microscopy images of fluorescently labeled HIV-1 particles em-
bedded in a 3D collagen matrix (time point t = 34). Only the SMS-PDAE
yields a complete trajectory and correct correspondences.
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Table 6.8: Tracking results for HIV-1 time-lapse spinning disk confocal image se-
quences in terms of the tracking accuracy Ptrack [%].

Seq. PT KF uTrack MHT PDAE S-PDAE MS-PDAE MS-PDAE SMS-PDAE
(Pos) (Displ)

1 7.5 8.7 2.5 9.8 11.0 11.9 11.4 11.5 13.3

2 13.7 12.9 10.3 19.8 15.6 20.0 17.0 18.4 21.0

Table 6.9: Tracking results for HCV live cell spinning disk confocal image data in
terms of the tracking accuracy Ptrack [%].

PT KF uTrack MHT PDAE S-PDAE MS-PDAE MS-PDAE SMS-PDAE
(Pos) (Displ)

30.9 41.1 39.6 61.3 62.3 63.0 64.9 69.0 69.3

pixels, and was acquired with an Ultra-View ERS spinning disk confocal microscope

mounted on a Nikon TE2000-E. The spatial resolution is 220 nm/pixel and the

temporal resolution is 37 s/frame. The data is challenging due to clutter, high object

density, and low SNR.

We compared the SMS-PDAE with PT, uTrack, MHT, KF, PDAE, S-PDAE,

MS-PDAE (Pos), and MS-PDAE (Displ). We manually annotated 108 ground truth

trajectories using the Manual Tracking plug-in in ImageJ [202].

The tracking results for all approaches are shown in Table 6.9. The SMS-PDAE

outperforms all other methods. MS-PDAE (Displ) yields a better result than MS-

PDAE (Pos), and both approaches outperform PDAE and S-PDAE. Example results

for different tracking approaches are shown in Fig. 6.5. Only SMS-PDAE yields a

complete trajectory due to incorporating information from both past and future time

points. The S-PDAE yields an incomplete trajectory with a false correspondence

at the end of the trajectory (left side in the image). All other methods obtain

broken trajectories. In Fig. 6.6, tracking results for a 96×96 pixels image section for

MS-PDAE (Displ) and SMS-PDAE are shown. SMS-PDAE yields more complete

trajectories which are less often broken.

Summary A quantitative evaluation on the Particle Tracking Challenge data re-

vealed that the SMS-PDAE obtains state-of-the-art results or outperforms previous

methods. In particular, we demonstrated that the sequential multi-sensor data fusion

approach combined with Bayesian smoothing and displacement-based correspon-

dence finding improves tracking compared to the previous PDAE method. We also

benchmarked the SMS-PDAE approach on 12 challenging time-lapse fluorescence

microscopy image sequences acquired with different types of microscopes, different

spatial-temporal resolutions, and different types of viruses. We found that our

approach outperforms previous methods for both HIV-1 and HCV microscopy data

including high object density, low SNR, clutter, complex motion, and out of focus

motion.
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(a) Ground truth (b) MHT (c) PDAE

(d) S-PDAE (e) MS-PDAE (Displ) (f) SMS-PDAE

Figure 6.5: Ground truth and tracking results for different methods for HCV live
cell spinning disk confocal microscopy images of fluorescently labeled
ApoE proteins (time point t = 27). Only SMS-PDAE yields a complete
trajectory and correct correspondences.

(a) MS-PDAE (Displ) (b) SMS-PDAE

Figure 6.6: Tracking results for MS-PDAE (Displ) and SMS-PDAE for a 96×96
pixels section of the HCV live cell spinning disk confocal microscopy
images of fluorescently labeled ApoE proteins (time point t = 21).
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6.2 Multi-Detector Fusion and Bayesian Smoothing

for Particle Tracking

This section presents experimental results of the novel particle tracking method

MD-BS which is based on multi-detector fusion and Bayesian smoothing. MD-BS is

described in Chapter 4 and employs multi-detector fusion with the novel intensity-

based covariance intersection approach MD-iCI (cf. Section 4.2). We assessed our

MD-iCI on synthetic image data displaying particles with heterogeneous size and

demonstrated that MD-iCI improves particle detection and localization compared to

existing detection methods. Our MD-BS for particle tracking is evaluated using data

from the Particle Tracking Challenge and yielded state-of-the-art results or better

results than previous methods. Further, we performed a quantitative evaluation for

challenging live cell time-lapse microscopy image data showing different subcellular

structures, namely hepatitis C virus (HCV) associated proteins and fluorescently

labeled chromatin structures acquired at different spatial-temporal resolutions. Our

approach obtained superior results compared to existing methods.

Synthetic Data

We assessed the detection and localization performance of MD-iCI on synthetic image

data showing particles with heterogeneous size. We generated synthetic images with

512×512 pixels that display 100 particles represented by a 2D Gaussian function. For

each image, a particle has a radius (standard deviation of the 2D Gaussian function)

between rmin and rmax, sampled from a uniform distribution. For rmin we used 4

pixels, while rmax = rmin + roffset,max and roffset,max varies for the different images

(from 0 to 24 pixels) and defines the variation of particle sizes (heterogeneity) in an

image. To simulate camera noise (e.g., CCD) the images are corrupted by Poisson

noise [102].

We compared MD-iCI with two different single-scale spot-enhancing filters (SEF) [106].

SEF uses a Laplacian-of-Gaussian (LoG) filter with standard deviation σLoG followed

by thresholding. The threshold is determined by the mean of the absolute values

of the filter responses plus a factor c times the standard deviation. This method is

often used for particle detection.

The detection performance is quantified by the F1 score∈ [0, 1], where a value

of 1 represents a perfect result. The localization performance is quantified by the

mean RMSE ∈ [0, 5] between detected particles and ground truth. The assignment

between detected particles and ground truth was determined by the Munkres algo-

rithm [122] with a maximal gating distance of 5 pixels. To compare the detection

approaches, we considered the RMSE of true positive as well as false negative

detections. This has the advantage that the number of considered detections is the

same for all methods. If a ground truth particle is not matched with a computed

detection, a localization error of 5 pixels (maximal gating distance) is used.

83



6 Experimental Results

(a) Detection performance (b) Localization performance

Figure 6.7: Performance of MD-iCI (red curve) compared to two SEFs with σLoG =
3.0 (blue) and σLoG = 8.0 (green) for images with increasing roffset,max

(maximum particle radii offsets) corresponding to increasing particle size
heterogeneity. MD-iCI fuses the detections of the two SEFs. a) Detection
performance by the F1 score. b) Localization performance by RMSE.

(a) Ground truth (b) SEF σLoG = 3.0 (c) SEF σLoG = 8.0 (d) MD-iCI

Figure 6.8: Ground truth and detection results for two SEFs (σLoG = 3.0 and σLoG =
8.0) and MD-iCI for a synthetic image with roffset,max = 16 pixels. Only
MD-iCI correctly detects all particles.

First, we studied images with an increasing roffset,max (maximum particle radii

offset) from 0 to 24 pixels. We used SNR=1.89. The detection performance is shown

in Fig. 6.7 a and the localization performance is displayed in Fig. 6.7 b. It turns out,

that MD-iCI performs best. MD-iCI yields for all images an F1 score above 98%

compared to two single-scale SEFs (σLoG = 3.0 and 8.0) which obtain F1 scores above

78%. MD-iCI yields for all images an RMSE below 1.1 pixels, whereas both SEFs

obtain RMSEs up to 3.08 and 3.17 pixels. An example detection result is shown in

Fig. 6.8 for roffset,max = 16 pixels (yielding particle radii between 4 and 20 pixels). It

can bee seen, that MD-iCI detects all particles with various sizes compared to both

SEFs.

Second, we considered different SNR levels (SNR=1 to 7) and used roffset,max = 12

pixels as well as roffset,max = 16 pixels. The result is shown in Fig. 6.9. For both

roffset,max, MD-iCI yields for all SNR levels an F1 score above 97% and an RMSE

below 1.4 pixels. In contrast, the first SEF (with σLoG = 3.0) obtains an F1 score
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(a) roffset,max = 12 pixels

(b) roffset,max = 16 pixels

Figure 6.9: Performance of MD-iCI (red curve) compared to two SEFs with σLoG =
3.0 (blue) and σLoG = 8.0 (green) for images with different SNR levels
for (a) roffset,max = 12 and (b) roffset,max = 16 pixels.

above 90% for roffset,max = 12 pixels, and above 78% for roffset,max = 16 pixels. The

second SEF (σLoG = 8.0) yields an F1 score above 78% both roffset,max. Further,

the first SEF yields an RMSE below 2.5 pixels for roffset,max = 12 pixels and below

3.4 pixels for roffset,max = 16, whereas the second SEF yields an RMSE below 3.1

pixels for both roffset,max. It also turns out that for a larger roffset,max (larger size

heterogeneity) the performance of the SEFs is reduced while the performance of

MD-iCI is not affected.

Particle Tracking Challenge Data

We assessed our multi-detector fusion approach MD-iCI and our tracking approach

MD-BS on image data from the Particle Tracking Challenge [185]. We used time-

lapse image sequences of the vesicle scenario with all object densities and all low

SNR levels. We focus on low SNR levels, since it is known from previous studies

that these SNR levels are challenging for particle detection and tracking [185]. The

number of particles ranges from around 100 for low object density to around 1000
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Table 6.10: Detection performance for all object densities for low SNR levels for the
Particle Tracking Challenge data in terms of the F1 score [%].

Seq. SEF1 SEF2 DetNet MD-iCI 1 MD-iCI 2
SNR=1
Low 26.06 18.53 25.90 26.19 26.82

Medium 36.55 21.18 49.75 38.68 50.42

High 38.40 34.82 48.56 44.61 55.79

SNR=2
Low 79.96 72.50 90.18 80.08 82.49

Medium 80.82 78.33 90.61 85.74 90.94

High 79.27 81.69 84.76 86.40 87.39

Mean 56.84 51.18 64.96 60.28 65.64

Std. dev. 11.51 13.20 12.19 11.99 11.37

for high object density. Each of the six image sequences consists of 100 images with

512×512 pixels.

For particle detection and localization, we compared MD-iCI with two single-scale

SEFs [106]. For SEF1 we used a standard deviation σLoG = 3 pixels for low and

medium object density as well as for high object density and SNR=1, and we

employed σLoG = 2 pixels for high object density and SNR=2. For SEF2 we used

σLoG = 4 pixels for low object density, σLoG = 2 pixels for medium object density, and

σLoG = 4 pixels for high object density and SNR=1 and σLoG = 2 pixels for SNR=2.

These parameter choices yielded the best result. Besides the classical method SEF,

we also compared MD-iCI with the multi-scale deep learning method DetNet [14].

DetNet is an adapted Deconvolution Network which naturally handles objects at

multiple scales by the hourglass-shape of the network. For each image sequence,

we used the last image for training DetNet and the first image for validation. We

investigated two variants of MD-iCI, one which fuses the detections of two SEFs

(MD-iCI 1) and one which fuses the detections of DetNet and two SEFs (MD-iCI 2).

The detection performance is quantified by the F1 score∈ [0, 1] computed as

the mean F1 score over all images of a sequence. The localization performance is

quantified by the mean RMSE ∈ [0, 5] (cf. Section 6.2). The assignment between

detected particles and ground truth was determined by the Munkres algorithm [122]

with a maximal gating distance of 5 pixels. The detection performance for all object

densities and all SNR levels is shown in Table 6.10, and the best performing method is

marked in bold. MD-iCI 2 outperforms the other methods for SNR=1 for all object

densities, and for SNR=2 for the challenging high and medium density. For SNR=2

and low density, DetNet yields the best result. Further, MD-iCI 1 performs better for

all SNR levels and all object densities than the single-scale SEFs. The localization

performance is given in Table 6.11. MD-iCI 2 obtains the best localization results for

all SNR levels and all object densities. Further, MD-iCI 1 yields better localization
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Table 6.11: Localization performance for all object densities for low SNR levels for
the Particle Tracking Challenge data in terms of the RMSE.

Seq. SEF1 SEF2 DetNet MD-iCI 1 MD-iCI 2
SNR=1
Low 4.38 4.76 4.67 4.37 4.36

Medium 4.43 4.70 4.24 4.36 4.15

High 4.42 4.52 4.24 4.30 4.00

SNR=2
Low 2.29 3.37 2.40 2.28 2.16

Medium 2.93 3.03 2.45 2.55 2.23

High 2.99 2.92 2.84 2.54 2.47

Mean 3.57 3.88 3.47 3.40 3.23

Std. dev. 0.42 0.39 0.46 0.46 0.47

results compared to both single-scale SEFs for all SNR levels and all object densities,

and performs better than DetNet for all SNR levels and low object density.

For particle tracking, we performed a comparison of MD-BS with the overall

top-three performing methods (Method 5, 1, 2) of the Particle Tracking Challenge.

Method 5 uses SEF for particle detection and PDAE for particle linking [48]. Method 1

employs iterative centroid calculation for particle localization and assigns particles

by combinatorial optimization [102]. Method 2 detects particles by convolution with

a disk shaped object and finds correspondences by multiple-hypothesis tracking [131].

We also compared MD-BS with the recent SMS-PDAE method [12]. SMS-PDAE uses

SEF for particle detection and temporal multi-sensor data fusion with covariance

intersection for tracking. For SMS-PDAE and Method 5 we used SEF1, since it

yielded a better detection and localization performance than SEF2 (cf. Table 6.10

and 6.11). We investigated two variants of MD-BS, one which fuses the detections of

two SEFs (SEF 1 and SEF 2) denoted as MD-BS 1 and one which fuses the detections

of DetNet and two SEFs (SEF1 and SEF2) denoted as MD-BS 2.

The tracking performance is evaluated by the metrics α, β, JSCθ, JSC, and

RMSE from the Particle Tracking Challenge [185]. α and β quantify association

and localization errors. α ∈ [0, 1] provides the overall matching quality between

ground truth and computed trajectories where a perfect matching is given by α = 1

and no matching is reflected by α = 0. β ∈ [0, α] considers additionally spuri-

ous trajectories compared to α. The similarity at the track level is evaluated by

the Jaccard similarity coefficient JSCθ ∈ [0, 1]. The Jaccard similarity coefficient

JSC ∈ [0, 1] quantifies the detection performance, and the root mean-square error

RMSE evaluates the localization performance. Table 6.12 shows the mean values

of all tracking performance metrics over all object densities and all low SNR levels.

MD-BS 2 outperforms all methods for three out of five metrics, namely α, β, and

JSC. Further, MD-BS 1 shows improved results for α, β, and JSC compared to
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Table 6.12: Mean performance metrics over all object densities for low SNR levels
for the Particle Tracking Challenge data.

Metric α β JSCθ JSC RMSE

Method 5 0.327 0.275 0.523 0.365 1.752
Method 1 0.176 0.130 0.278 0.154 1.281

Method 2 0.345 0.261 0.479 0.350 1.899
SMS-PDAE 0.338 0.288 0.527 0.376 1.674
MD-BS 1 0.351 0.293 0.526 0.391 1.695
MD-BS 2 0.360 0.296 0.523 0.404 1.833

(a) Ground truth (b) PDAE (c) SMS-PDAE (d) MD-BS

Figure 6.10: Ground truth and tracking results for different methods for the vesicle
scenario from the Particle Tracking Challenge data with SNR=2 and
medium density (time point t = 70). Only MD-BS yields three complete
trajectories.

SMS-PDAE and Method 5. In Fig. 6.10, three example trajectories for SNR=2 and

medium object density for different tracking approaches are shown. Only MD-BS

(we used MD-BS 2) yields three complete trajectories. By fusing multiple detection

results and exploiting information from both past and future time points, MD-BS

is able to obtain three complete trajectories (orange, blue, and purple). The other

approaches yield one complete trajectory (orange), but other trajectories are not

complete (blue) or are missing (purple).

Evaluation on Time-Lapse Fluorescence Microscopy Images

We also evaluated our multi-detector fusion approach MD-iCI as well as our tracking

approach MD-BS on challenging time-lapse microscopy data sets containing hepatitis

C virus (HCV) associated proteins and chromatin structures. The images are acquired

with confocal fluorescence microscopes using different spatial-temporal resolutions.

In total, we used nine live cell microscopy image sequences and compared the results

for both object detection and localization as well as for object tracking with those of

previous methods.
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Table 6.13: Detection results for HCV live cell image sequences, F1 score [%].

Seq. SEF1 SEF2 DetNet MD-iCI 1 MD-iCI 2

1 75.40 39.00 82.35 77.50 83.38

2 56.63 3.75 66.67 57.14 69.83

3 69.84 78.62 81.48 75.24 84.08

Mean 67.29 40.46 76.83 69.96 79.10

Std. dev. 6.82 26.49 6.23 7.89 5.68

HCV Live Cell Confocal Microscopy Images

We applied our MD-iCI to three live cell microscopy image sequences displaying

HCV-infected cells with mCherry-labeled host cell protein ApoE, mCherry-labeled

viral protein NS5A, or mTurquoise2-labeled ApoE, respectively [18]. The first two

image sequences consist of 34 images with 225×194 and 177×249 pixels. The spatial

resolution is 220 nm/pixel and the temporal resolution is 37 s/frame and 1.5 s/frame,

respectively. The third image sequence consists of 91 images with 726×396 pixels.

The spatial resolution is 90 nm/pixel and the temporal resolution is 2 s/frame. The

image data was acquired with a PerkinElmer UltraVIEW ERS or VoX spinning disk

confocal microscope mounted on a Nikon TE2000-E or TiE. The data is challenging

due to heterogeneous object size, clutter, high object density, and complex motion.

For particle detection and localization, we performed a comparison of MD-iCI

with SEF [106] and DetNet [14]. For SEF we used two variants with different values

for σLoG. For SEF1 we used σLoG = 2 pixels for all videos, and for SEF2 we used

σLoG = 2.6 pixels for the first two videos and σLoG = 3 pixels for the third video.

These parameter choices yielded the best result. We trained DetNet on the last

image of a video and used the first image for validation. Further, we investigated

two variants of MD-iCI, one which fuses detections of two SEFs (MD-iCI 1) and one

which fuses the detections of DetNet and two SEFs (MD-iCI 2).

For the detection performance, we computed the F1 score∈ [0, 1] for time point

five for each image sequence. The localization performance is evaluated by the mean

RMSE ∈ [0, 5] between detected particles and ground truth (cf. Section 6.2). The

assignment between detected particles and ground truth was determined by the

Munkres algorithm [122] with a maximal gating distance of 5 pixels. Each image

sequence contains between 157 and 194 ground truth detections manually annotated

using the Manual Tracking plug-in in ImageJ [202]. The detection performance

is shown in Table 6.13 and the localization results are given in Table 6.14. For

both detection and localization, MD-iCI 2 yields the best results for all three image

sequences. Further, MD-iCI 1 outperforms both single-scale SEFs. Example

detection results for MD-iCI 2 are displayed in Fig. 6.11 which show that our

approach yields better results than SEF and DetNet.

For tracking of particles, we performed a comparison of MD-BS with a Kalman

89



6 Experimental Results

Table 6.14: Localization results for HCV live cell image sequences, RMSE.

Seq. SEF1 SEF2 DetNet MD-iCI 1 MD-iCI 2

1 3.21 4.37 2.93 3.10 2.71

2 3.63 4.95 3.55 3.62 2.64

3 3.23 3.25 3.36 3.08 2.90

Mean 3.36 4.19 3.28 3.27 2.75

Std. dev. 0.17 0.61 0.22 0.22 0.10

(a) Orig. image (b) Ground truth (c) SEF 2 (d) DetNet (e) MD-iCI

Figure 6.11: Original image and detection results for HCV live cell microscopy data
of fluorescently labeled ApoE proteins (time point t = 5).

filter tracking approach (KF) [200], the ParticleTracker (PT) [102], a multiple-

hypothesis tracking approach (MHT) [201, 185], and the Smoothing Multi-Sensor

PDAE (SMS-PDAE) [12]. KF uses an LoG filter for particle detection and linear

assignment for correspondence finding. PT employs intensity-weighted centroid cal-

culation for particle localization and assigns particles by combinatorial optimization.

MHT localizes particles by a wavelet-based detection scheme and uses a Kalman

filter with multiple motion models.SMS-PDAE employs a single-scale SEF, and we

used SEF1 since it yielded better results than SEF2 (cf. Tables 6.13 and 6.14). We

also investigated two variants of MD-BS, one which fuses the detections of two SEFs

(SEF 1 and SEF2) denoted as MD-BS 1 and one which fuses the detections of DetNet

and two SEFs (SEF1 and SEF2) denoted as MD-BS 2.

The tracking accuracy is evaluated by the measure Ptrack ∈ [0, 1]:

Ptrack =
ntrack,correct

ntrack,total

(6.2)

ntrack,total is the number of ground truth trajectories and ntrack,correct the number of

correctly computed trajectories. ntrack,correct is determined as Gaussian weighted sum

of the percentage of correctly tracked time steps, and we used a maximal gating

distance of 5 pixels [48]. Ground truth was obtained by manual annotation using

the Manual Tracking plug-in in ImageJ (29, 32, and 108 trajectories for the different
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Table 6.15: Tracking accuracy for HCV live cell image sequences, Ptrack [%].

Seq. 1 2 3 Mean Std. dev.

KF 41.14 40.03 48.93 43.57 3.43
PT 30.88 33.35 29.22 31.15 1.47

MHT 61.46 72.32 41.51 58.43 11.05
SMS-PDAE 69.35 74.67 51.68 65.23 8.51
MD-BS 1 70.00 75.10 52.74 65.95 8.29
MD-BS 2 70.25 77.34 54.42 67.34 8.30

(a) Ground truth (b) MHT (c) SMS-PDAE

(d) MD-BS 1 (e) MD-BS 2

Figure 6.12: Ground truth and tracking results for different methods for HCV live
cell confocal microscopy images of fluorescently labeled ApoE proteins
(time point t = 34).

videos). The results are shown in Table 6.15. We also determined the mean Ptrack

value as a measure of the overall performance. It turned out, that MD-BS 2 yields the

best result for all image sequences and achieves a mean Ptrack of 67.34%. MD-BS 1 is

somewhat worse and obtains better results than SMS-PDAE for all image sequences.

In Fig. 6.12, example results are shown. MD-BS 2 yields more complete and correct

trajectories than SMS-PDAE and MD-BS 1.MHT obtains a broken trajectory.
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Table 6.16: Detection results for chromatin live cell image sequences, F1 score [%].

Seq. SEF1 SEF2 DetNet MD-iCI 1 MD-iCI 2

1 82.18 83.08 85.71 82.35 86.49

2 82.19 75.76 88.31 86.84 89.74

3 87.80 64.00 89.60 89.60 91.34

4 72.09 70.11 76.36 78.35 79.30

5 63.67 31.63 79.60 64.78 80.67

6 66.67 44.44 74.07 71.58 74.47

Mean 75.77 61.50 82.28 78.92 83.67

Std. dev. 9.69 8.79 6.50 9.41 6.58

Chromatin Live Cell Confocal Microscopy Images

We also evaluated MD-iCI and MD-BS using six challenging live cell microscopy

image sequences with fluorescently labeled chromatin structures of HeLa Kyoto cells.

The image sequences consist of 63 images with 512×512 pixels. The spatial resolution

is 48 nm/pixel for four videos, and 31 nm/pixel and 49 nm/pixel for the remaining

videos. The temporal resolution is 0.985 s/frame for all videos. The images were

acquired with a PerkinElmer UltraVIEW VoX confocal microscope. The data is

challenging due to high heterogeneity in object size, high object density, and low

SNR.

For chromatin detection and localization, we performed a comparison of MD-iCI

with SEF and DetNet. For SEF we used two different variants, SEF 1 with σLoG = 2.7

pixels for all videos, and SEF2 with σLoG = 3.5 pixels for two videos (videos 3 and

6) and σLoG = 3 pixels for the remaining videos. For DetNet, for each video we

randomly splitted the remaining five videos into three videos for testing and two for

validation. DetNet was trained on the last image of the training videos and evaluated

on the first image of the validation videos. We assessed two variants of MD-iCI

as for the HCV data above. The results are given in Table 6.16. It turned out

that MD-iCI 2 outperforms the other methods for all image sequences and obtains a

mean F1 score of 83.67%. MD-iCI 1 performs better than both singe-scale SEFs and

obtains a mean F1 score of 78.92% compared to SEF 1 with 75.77% and SEF 2 with

61.50%. DetNet and MD-iCI 2 yield the lowest standard deviation for the F1 score

(highest robustness). The localization performance is given in Table 6.17. MD-iCI 2

outperforms all methods for five out of six videos. MD-iCI 1 obtains the best result

for one video and better results than both single-scale SEFs for all videos.

For chromatin tracking, we compared MD-BS with the same methods as for the

HCV data above. We manually annotated for each image sequence between 20 and

22 ground truth trajectories. The tracking results for all approaches are shown in

Table 6.18. MD-BS 2 outperforms all other methods for all image sequences and

achieves a mean Ptrack of 45.63%. MD-BS 1 obtains for all image sequences a better
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Table 6.17: Localization results for chromatin live cell image sequences, RMSE.

Seq. SEF1 SEF2 DetNet MD-iCI 1 MD-iCI 2

1 2.58 2.70 2.29 2.55 1.89

2 2.94 3.31 2.36 2.60 2.19

3 2.67 3.71 2.39 2.46 2.22

4 3.40 3.47 2.95 2.96 2.69

5 3.77 4.55 3.09 3.73 3.01

6 3.33 4.04 3.26 2.64 2.72

Mean 3.12 3.63 2.72 2.82 2.45

Std. dev. 1.04 0.28 0.95 1.06 0.94

Table 6.18: Tracking accuracy for chromatin live cell image sequences, Ptrack[%].

Seq. 1 2 3 4 5 6 Mean Std. dev.

KF 22.01 23.47 35.39 11.23 23.74 24.50 23.39 7.68

PT 39.68 24.76 31.09 6.37 36.99 20.00 26.48 12.29
MHT 38.06 26.87 48.87 24.30 40.99 42.64 36.96 9.53

SMS-PDAE 47.85 30.16 49.60 13.29 44.67 30.31 35.98 14.02
MD-BS 1 48.71 36.98 49.85 22.37 46.85 38.12 40.48 10.41
MD-BS 2 53.94 47.21 55.64 24.44 49.72 42.80 45.63 11.36

Figure 6.13: Results for chromatin live cell microscopy data. (Left) Detection results
of MD-iCI 2 (time point t = 5). (Right) Tracking results of MD-BS 2
for a region-of-interest (time point t = 25).

result than SMS-PDAE. Example detection results of MD-iCI 2 and tracking results

of MD-BS 2 are shown in Fig. 6.13. It can bee seen, that the detections are close to

the ground truth for the challenging data with heterogeneous object size and that

complete trajectories are obtained.
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Summary We quantitatively evaluated MD-BS using data from the Particle Track-

ing Challenge and obtained state-of-the-art results or outperformed previous methods.

We also demonstrated that MD-iCI improves particle detection and localization com-

pared to existing detection methods. In addition, we benchmarked MD-BS and

MD-iCI on nine challenging live cell fluorescence microscopy image sequences ac-

quired with microscopes using different spatial-temporal resolutions, and different

types of subcellular structures. We found, that our approach outperforms previous

methods for microscopy data of HCV associated proteins and chromatin structures

including high object density, low SNR, heterogeneous object size, and complex

motion.
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6.3 Deep Learning for Particle Detection and Tracking

This section presents experimental results of the particle tracking methods proposed

in Chapter 5. First, DetNet-PDAE (Section 5.1) is evaluated which combines deep

learning-based particle detection with Bayesian sequential estimation for tracking.

Second, DetNet-DPHT (Section 5.2) is evaluated which exploits deep learning for

both particle detection and tracking.

6.3.1 Deep Learning-Based Detection and Bayesian Particle

Tracking

We provide insight on the interaction of particle detection and association by com-

paring the optimized and non-optimized DetNet-PDAE method. We evaluated

DetNet-PDAE (Section 5.1) using data of the Particle Tracking Challenge [185] with

different SNR levels. Further, we assessed the method on live cell microscopy images

of hepatitis C virus (HCV) proteins. It turned out that our method improves the

results compared to existing methods.

6.3.1.1 Particle Tracking Challenge Data

We evaluated DetNet-PDAE using the microtubule data from the Particle Tracking

Challenge [185]. We compared DetNet-PDAE with the overall top-three tracking

methods (Methods 5, 1, 2) and a spot-enhancing filter (SEF)-based tracking approach.

Method 5 consists of applying Gaussian fitting (GF) for particle detection and PDAE

for tracking [48]. Method 1 uses iterative centroid calculation for particle detection

and performs combinatorial optimization for tracking [102]. Method 2 detects particles

using a disk shaped object and employes MHT for tracking [131]. The SEF-based

tracking approach (SEF-PDAE) applies a LoG filter followed by thresholding for

particle detection and uses PDAE for tracking. To show the influence of the data

association hyperperparameters σn, Q, and R, for our DetNet-PDAE method, we

computed the results without and with hyperparameter optimization with Covariance

Matrix Adaption Evolution Strategy (CMA-ES) in HyperHyper [197] (DetNet-PDAE

vs. DetNet-PDAE (opt)). DetNet uses optimized detection hyperparameters from

training as in [14]. For Method 5, SEF-PDAE, and DetNet-PDAE, a directed motion

model is used for F.

First, we evaluated the detection performance of DetNet, GF, and SEF. We

computed the F1 score ∈ [0, 1] which measures the similarity between detections

and ground truth. The assignment between particle detections and ground truth

is determined by the Munkres algorithm [122] with a maximal gating distance of

5 pixels. Second, the tracking performance was evaluated using all SNR levels

of the microtubule scenario and low density. The image sequences comprise 100

images with 512×512 pixels each. We computed for each method the performance

metrics α, β, JSCθ, JSC, and RMSE. The overall matching quality of ground
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Table 6.19: Detection performance (F1 score) for the first frame of the microtubule
image sequences for all SNR levels.

GF SEF DetNet

SNR1 0.048 0.143 0.437
SNR2 0.865 0.817 0.889
SNR4 0.943 0.892 0.955
SNR7 1.000 0.987 1.000

truth with computed trajectories is represented by α ∈ [0, 1], whereas β ∈ [0, α]

quantifies additionally spurious tracks. The similarity of entire tracks is represented

by the Jaccard similarity coefficient JSCθ ∈ [0, 1] and the detection performance by

JSC ∈ [0, 1]. The localization is evaluated by RMSE.

In Table 6.19, the detection performance for the first frame of the image sequences

for all SNR levels is shown. The best performing method is highlighted in bold. It

can be seen that DetNet outperforms GF and SEF. Interestingly, the tracking results

in Table 6.20 reveal that directly using the DetNet detections for DetNet-PDAE does

hardly improve the results compared to the previous top-performing Method 5 (e.g.,

for SNR=2 and 4). However, using our method with optimized hyperparameters

(DetNet-PDAE (opt)) outperforms the non-optimized DetNet-PDAE for almost all

performance measures and all SNR levels, and yields better results than Method 5.

For SNR=1, 4, and 7, DetNet-PDAE (opt) is the overall best method. For SNR=2,

DetNet-PDAE (opt) yields the best results for α and JSCθ compared to all methods.

6.3.1.2 Evaluation on HCV Live Cell Microscopy Data

We also evaluated our method using live cell microscopy image sequence displaying

fluorescently labeled HCV NS5A proteins. The data consists of 34 live cell images with

512×512 pixels, for which 108 ground truth trajectories were determined manually.

The data was acquired with an Ultra-View ERS spinning disk confocal microscopy

mounted on a Nikon TE2000-E. DetNet was trained on a different single image from

a different dataset using a section of 147×280 pixels corresponding to one cell with

only 66 ground truth detections.

We compared DetNet-PDAE with SEF-PDAE, the ParticleTracker (PT) [102], and

a Kalman filter approach (KF) [200]. For DetNet-PDAE and SEF-PDAE, a random

walk motion model was used for F.We evaluated the detection performance for all

methods using the F1 score ∈ [0, 1] for the first frame of the HCV live cell data. For

the tracking performance, we employed the measure Ptrack ∈ [0, 1], which quantifies

the percentage of correctly computed trajectories relative to the number of true

trajectories [48].

In Table 6.21, the detection results for the first frame of the HCV live cell data

are shown. DetNet achieves the best F1 score followed by SEF. In addition, DetNet

yields a higher number of true positives than SEF (56 vs. 52). Example detection

96



6 Experimental Results

Table 6.20: Tracking performance of different methods for the microtubule scenario
for all SNR levels.

Metric α β JSCθ JSC RMSE

SNR=1
Method 5 0.058 0.057 0.194 0.092 2.188
Method 1 0.043 0.034 0.168 0.056 2.253
Method 2 0.117 0.061 0.213 0.122 2.717
SEF-PDAE 0.079 0.038 0.142 0.069 2.445

DetNet-PDAE 0.165 0.071 0.187 0.144 2.724
DetNet-PDAE (opt) 0.137 0.082 0.248 0.171 2.867

SNR=2
Method 5 0.518 0.485 0.732 0.652 1.570
Method 1 0.319 0.250 0.488 0.397 2.100
Method 2 0.418 0.300 0.503 0.479 2.226
SEF-PDAE 0.391 0.356 0.646 0.530 2.050

DetNet-PDAE 0.479 0.410 0.708 0.562 1.842
DetNet-PDAE (opt) 0.519 0.470 0.742 0.630 1.754

SNR=4
Method 5 0.750 0.728 0.917 0.874 1.086
Method 1 0.541 0.495 0.874 0.792 1.951
Method 2 0.562 0.259 0.356 0.369 1.911
SEF-PDAE 0.570 0.511 0.790 0.777 1.928

DetNet-PDAE 0.754 0.732 0.903 0.889 1.148
DetNet-PDAE (opt) 0.807 0.782 0.916 0.896 0.836

SNR=7
Method 5 0.803 0.787 0.939 0.894 0.844
Method 1 0.657 0.621 0.902 0.837 1.375
Method 2 0.694 0.686 0.959 0.954 1.520
SEF-PDAE 0.513 0.492 0.924 0.875 2.256

DetNet-PDAE 0.810 0.784 0.910 0.910 0.908
DetNet-PDAE (opt) 0.850 0.830 0.930 0.930 0.705

Table 6.21: Detection performance (F1 score) for the HCV live cell data.

PT KF SEF DetNet

0.507 0.549 0.635 0.642

Table 6.22: Tracking performance Ptrack for the HCV live cell data.

PT KF SEF-PDAE DetNet-PDAE DetNet-PDAE (opt)

0.309 0.411 0.623 0.579 0.646

results for SEF and DetNet are displayed in Fig. 6.14 c, d. In Table 6.22, the tracking

results for the HCV live cell data are presented. Analogously to the data from the
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(a) Original data (b) Ground truth

(c) SEF (d) DetNet

Figure 6.14: Detection results for the first frame of the HCV live cell microscopy
data. a) Original data. b) Ground truth detections indicated by red
circles. c) SEF. d) DetNet.

Particle Tracking Challenge, it can be seen that the non-optimized DetNet-PDAE

method yields a worse result compared to the previous SEF-PDAE method, while

the optimized DetNet-PDAE (opt) outperforms all methods.

Summary DetNet-PDAE was evaluated using data of the Particle Tracking Chal-

lenge as well as live cell microscopy images of HCV viral proteins. Data association

parameters that depend on the detection result were automatically determined by

hyperparameter optimization. It turned out, that the optimized DetNet-PDAE

yields better tracking results and generally outperforms previous methods.
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6.3.2 Deep Learning for Particle Detection and Tracking

We evaluated the proposed approach denoted as DetNet-DPHT (Section 5.2) using

data of the Particle Tracking Challenge [185] with different SNR levels. In addition, we

determined the performance for live cell fluorescence microscopy images of hepatitis

C virus (HCV) proteins. It turned out that our approach yields state-of-the-art

results or improves the results compared to previous methods. We also found that

using deep learning for particle detection instead of classical methods improves the

result of deep learning-based tracking.

6.3.2.1 Particle Tracking Challenge Data

We evaluated the proposed DetNet-DPHT approach using data from the Parti-

cle Tracking Challenge [185], and compared it with the overall top-three methods

(Method 5, 1, 2) of the challenge. Method 5 localized particles by determining local

intensity maxima followed by Gaussian fitting (GF) and uses probabilistic data

association with elliptical sampling (PDAE) for tracking [48]. Method 1 performs

iterative centroid calculation for particle detection and uses combinatorial opti-

mization for tracking [102]. Method 2 detects particles by convolution with a disk

shaped object model and performs MHT for tracking [131]. In addition, we compared

our approach with the previous methods SEF-PDAE [48], DetNet-PDAE [15], and

SEF-GF-DPHT [145]. SEF-PDAE employs the spot-enhancing filter (SEF) [106] for

particle detection and PDAE for tracking. DetNet-PDAE uses DetNet for particle

detection and PDAE for tracking. SEF-GF-DPHT [145] uses SEF and GF for particle

detection and DPHT for tracking.

We evaluated the tracking performance using data of the microtubule scenario

with all SNR levels and low density. Each of the image sequences comprises 100

images with 512×512 pixels. The tracking performance is quantified by the metrics

α, β, JSCθ, JSC, and RMSE. α ∈ [0, 1] represents the overall matching quality of

ground truth with computed trajectories, whereas β ∈ [0, α] takes additionally into

account spurious tracks. The similarity of entire tracks is represented by the Jaccard

similarity coefficient JSCθ ∈ [0, 1]. JSC ∈ [0, 1] represents the overall detection

performance, whereas the localization performance is evaluated by RMSE.

In Table 6.23, the tracking results are shown and the best results are highlighted

in bold. It turns out, that DetNet-DPHT yields the best results for three out of five

metrices for SNR=1, 4, and 7. Our approach outperforms all methods for JSCθ

for low SNR levels (SNR=1, 2). For high SNR levels (SNR=4, 7), our approach

outperforms all methods for α, β, and RMSE. Further, it performs better than SEF-

GF-DPHT for α and β for all SNR levels. Fig. 6.15 shows example tracking results for

DetNet-DPHT and SEF-GF-DPHT for SNR=2. It can be seen that deep learning

for particle detection improves the tracking result compared to a classical detection

method (see the red trajectory in the middle). Fig. 6.16 compares DetNet-DPHT

with DetNet-PDAE. We used SNR=7 to focus on the task of correspondence finding.
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Table 6.23: Tracking performance of different methods for data of the microtubule
scenario for all SNR levels.

Metric α β JSCθ JSC RMSE

SNR=1
Method 5 0.058 0.057 0.194 0.092 2.188
Method 1 0.043 0.034 0.168 0.056 2.253
Method 2 0.117 0.061 0.213 0.122 2.717
SEF-PDAE 0.079 0.038 0.142 0.069 2.445

DetNet-PDAE 0.137 0.082 0.248 0.171 2.867
SEF-GF-DPHT 0.101 0.080 0.290 0.121 2.143

DetNet-DPHT 0.135 0.101 0.342 0.202 2.603

SNR=2
Method 5 0.518 0.485 0.732 0.652 1.570
Method 1 0.319 0.250 0.488 0.397 2.100
Method 2 0.418 0.300 0.503 0.479 2.226
SEF-PDAE 0.391 0.356 0.646 0.530 2.050

DetNet-PDAE 0.519 0.470 0.742 0.630 1.754
SEF-GF-DPHT 0.477 0.443 0.737 0.569 1.602
DetNet-DPHT 0.506 0.476 0.747 0.606 1.477

SNR=4
Method 5 0.750 0.728 0.917 0.874 1.086
Method 1 0.541 0.495 0.874 0.792 1.951
Method 2 0.562 0.259 0.356 0.369 1.911
SEF-PDAE 0.570 0.511 0.790 0.777 1.928

DetNet-PDAE 0.807 0.782 0.916 0.896 0.836
SEF-GF-DPHT 0.803 0.776 0.928 0.890 0.888
DetNet-DPHT 0.811 0.788 0.915 0.884 0.666

SNR=7
Method 5 0.803 0.787 0.939 0.894 0.844
Method 1 0.657 0.621 0.902 0.837 1.375
Method 2 0.694 0.686 0.959 0.954 1.520
SEF-PDAE 0.513 0.492 0.924 0.875 2.256

DetNet-PDAE 0.850 0.830 0.930 0.930 0.705
SEF-GF-DPHT 0.861 0.848 0.970 0.936 0.671
DetNet-DPHT 0.870 0.852 0.945 0.936 0.556

It can be seen that our approach yields a better result.

6.3.2.2 HCV Live Cell Microscopy Data

We also evaluated DetNet-DPHT using live cell microscopy data showing fluorescently

labeled hepatitis C virus (HCV) proteins NS5A within Huh7/LunetCD81H cells [18].

The image sequence comprises 34 images with 177×249 pixels and we manually

determined 28 ground truth trajectories. The considered data was acquired with a
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(a) Ground truth (b) SEF-GF-DPHT (c) DetNet-DPHT

Figure 6.15: Ground truth and tracking results for data of the microtubule scenario
with SNR=2 (t= 65).

(a) Ground truth (b) DetNet-PDAE (c) DetNet-DPHT

Figure 6.16: Ground truth and tracking results for data of the microtubule scenario
with SNR=7 (t= 100).

Table 6.24: Tracking performance Ptrack for the HCV live cell data.

PT KF SEF-
PDAE

DetNet-
PDAE

SEF-GF-
DPHT

DetNet-
DPHT

0.334 0.400 0.605 0.660 0.567 0.662

spinning disk confocal microscope. DetNet was trained using only one frame of the

image sequence.

We compared our approach with the ParticleTracker (PT) [102], a Kalman filter

approach (KF) [200], SEF-PDAE [48], DetNet-PDAE [15], and SEF-GF-DPHT [145].

The tracking performance is evaluated with the measure Ptrack ∈ [0, 1], which

quantifies the percentage of correctly computed trajectories relative to the number

of true trajectories [48].

In Table 6.24, the tracking results are shown. It can be seen that DetNet-DPHT

performs best. In addition, particle detection using deep learning (DetNet) improves

the tracking result compared to a classical detection method (SEF-GF). Fig. 6.17

shows example tracking results for DetNet-DPHT and SEF-GF-DPHT compared to
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(a) Ground truth (b) SEF-GF-DPHT (c) DetNet-DPHT

Figure 6.17: Ground truth and tracking results for the HCV live cell data (t= 34).

the ground truth. Our approach yields a better result (unbroken yellow trajectory,

green trajectory at the bottom).

Summary We evaluated our DetNet-DPHT approach using data of the Particle

Tracking Challenge and live cell microscopy data of HCV proteins. We found that our

approach yields state-of-the-art or improved results compared to previous methods.
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7 Hyperparameter Optimization and

Cell Tracking

In this chapter, methods for hyperparameter optimization and cell tracking are pre-

sented. First, a hyperparameter optimization framework for HCV particle detection

is described and evaluated. Second, a novel method for double-labeled HIV-1 particle

detection in multi-channel fluorescence microscopy images based on hyperparameter

optimization is proposed. Third, a novel MHT-based cell tracking approach with

integrated cell division detection is proposed. Cell tracking in microscopy image data

is crucial to gain insights into cellular processes to further determine virus-host inter-

action. The work has been published in Ritter et al. [197, 203] and Schacherer/Ritter

et al. [204].

7.1 Hyperparameter Optimization for Particle

Detection

Automatic analysis of microscopy data typically requires complex pipelines comprising

multiple methods to solve different image analysis tasks (e.g., particle tracking [185],

cell tracking [205], track analysis [206, 207, 208]). However, most methods suffer from

determining application dependent hyperparameters to obtain the best performance.

For complex analysis pipelines, manual optimization of hyperparameters is generally

very time-consuming and difficult for a high-dimensional hyperparameter space.

Thus, automated optimization is required. However, computation of the gradient of

the loss function is analytically or computationally infeasible, which prevents the use

of first or higher order optimization methods. This limitation can be overcome by

using zero-order optimization also known as black-box optimization [209], which does

not require gradient information of the loss function. Black-box optimization uses

only a limited number of evaluations (hyperparameter configurations) to determine

a (local) optimum of the generally non-convex optimization problem.

We have developed a framework for black-box hyperparameter optimization for

biomedical image analysis pipelines called HyperHyper. This framework has several

advantages compared to existing hyperparameter optimization frameworks such

as Google Vizier [210], Sherpa [211], Auto-WEKA [212], Spearmint [213], and Hy-

perOpt [214]. Existing frameworks lack certain features (e.g., modular optimizer,

job wrapper, and integrated scheduler), which are essential to optimize complex
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Figure 7.1: Schematic representation of HyperHyper software architecture.

image analysis pipelines using different computing paradigms and environments.

To determine optimal solutions, our HyperHyper framework employs more than 40

different optimization methods, while existing frameworks include significantly less

methods (e.g., up to five methods as in Sherpa, Spearmint, and HyperOpt). The

high number of optimizers in HyperHyper was realised by separation of hyperparam-

eter sampling and optimization strategy. To optimize hyperparameters on different

cluster computing infrastructures, we implemented an integrated scheduler which is

advantageous when deploying image analysis methods on heterogeneous computing

infrastructures.

The HyperHyper framework subdivides hyperparameter optimization in a hy-

perparameter space definition, a general optimizer containing a hyperparameter

candidate sampler and optimization strategy, and an evaluation loop (Figure 7.1).

The candidate sampler and optimization strategy can be selected from a model zoo

to design an optimizer for a specific application. In addition, the hyperparameter

space definition incorporates prior distributions, bounds, and the sampling resolution.

The candidate sampler and optimization strategy can exploit the structure of the

hyperparameter space to improve convergence of the optimization. To find the

global optimum, Grid Search can be used. Moreover, by design the execution of the

evaluation loop can be performed highly distributed and is programming language

agnostic. We integrated modules for monitoring and visualization to analyse the

optimization problem. These visualizations including an infimum projection can

reveal insights into, for example, the performance of the optimization process and

the dependencies of the hyperparameters.

Optimizer

To perform optimization, constraints on the hyperparameter space have to be specified.

This includes the bounds and hierarchy of each parameter, the sampling resolution,

and additional prior distributions (e.g., discrete or continuous uniform, Gaussian,

log Gaussian, exponential distributions). In our experiments we used pipelines that
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Table 7.1: Results for the HCV protein detection pipeline with different optimizers.
The table shows the improvement ∆F1 (mean ± std.) after the warm-up
phase and the absolute F1 score (mean ± std.). The best results are
highlighted in bold.

Optimizer ∆F1 (Improvement) F1

Random 0.043±0.033 0.871±0.002
TPE 0.041±0.023 0.867±0.000

CMA-ES 0.022±0.008 0.871±0.001
SMAC-RF 0.050±0.037 0.872±0.000

SMAC-XGBoost 0.041±0.037 0.872±0.000

Grid Search - 0.872

involve non-ordinal parameters. Therefore, we decided to choose optimizers which

can handle variables without a natural order.

The most naive optimization strategy is to perform Random Search (Random) by

random sampling from the prior distributions. In Sequential Model-based Optimiza-

tion (SMBO) like SMAC [215], a surrogate model is fitted to the best performing

hyperparameters. We investigated SMAC with the original random forest (SMAC-

RF), and with XGBoost [216] as surrogate model. We decided to use XGBoost, since

it is currently one of the most popular decision tree based models. Moreover, we

investigated the Tree of Parzen Estimator (TPE), which performs a nonparametric

density approximation of the best performing hyperparameter configurations [217].

Finally, we use Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which

is a generic population-based meta-heuristic based optimizer [218]. In CMA-ES

feature sets are assumed as ”genomes”, which undergo evolutionary processes like se-

lection, recombination, or mutation to increase the probability for sampling promising

hyperparameter configurations.

Detection of HCV Proteins

We evaluated HyperHyper for live cell fluorescence microscopy data displaying

fluorescently labeled HCV NS5A as small round particles. The live cell data was

acquired by an Ultra-View ERS spinning disk confocal microscope with an image

size of 355× 447 pixels. To detect HCV proteins, we used the spot-enhancing filter

(SEF) [106] which consists of applying a Laplacian-of-Gaussian filter (LoG) with

standard deviation σLoG, followed by thresholding the filtered image. The threshold

is based on the mean intensity of the filtered image plus a factor c times the standard

deviation of the filtered image intensities [48, 11]. To detect HCV proteins, the

hyperparameters σLoG and c have to be optimized.

We used Random, TPE, CMA-ES, SMAC-RF, and SMAC-XGBoost for hyperpa-

rameter optimization and performed 10 runs per optimizer with 3.500 evaluations

distributed on 20 compute nodes (total: 175.000 evaluations). To determine the
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Figure 7.2: Detection results for HCV live cell microscopy data with different hy-
perparameter optimizations. a) Ground truth annotated by an expert.
b) Experiment 2 using Grid Search c) Experiment 2 using SMAC-RF. d)
Experiment 3 using Grid Search.

global optimum, we used dense Grid Search with 35.000 evaluations distributed on

20 compute nodes. The performance of SEF detection was optimized and evaluated

using the F1 score (balancing precision and sensitivity) and 128 ground truth anno-

tations. The assignment between the ground truth annotations and SEF detections

was determined using the Munkres algorithm [122] and a gating distance of 5 pixels.

We computed the mean and standard deviation of ∆F1 showing the difference to

the F1 score after the warm-up phase.

The results for the different optimizers are shown in Table 7.1. The best perfor-

mance is obtained by SMAC-RF and SMAC-XGBoost with an F1 score of 0.872,

which are the only optimizers reaching the global optimum. The largest improvement

∆F1 is obtained by SMAC-RF with 0.050. In Figure 7.2 c) the result for SMAC-RF

(green circles) is shown together with the ground truth (red circles) in Figure 7.2 a)

and the global optimum (Grid Search) in Figure 7.2 b). The F1 score as a function

of the number of iterations for all optimizers is depicted in Figure 7.3. The fastest

convergence is obtained by SMAC-RF and SMAC-XGBoost, whereas TPE is slowest.

Image Pre-Processing for Detection of HCV Proteins

With this experiment we show the importance of an infimum projection as vi-

sualization of the loss function to gain further insight on the dependency of the

hyperparameters. We study an additional image pre-processing step for HCV protein

detection by smoothing the image with a Gaussian filter with standard deviation

σGauss followed by subtracting the filtered image from the original image to enhance

the particles and suppress background noise. We now have a 3D hyperparameter

space containing σGauss, σLoG, and c.

We computed the global optimum with Grid Search (total: 175.000 evaluations).

The F1 score using pre-processing is 1.6% higher compared to the result without
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Figure 7.3: Convergence of different optimizers as a function of the number of
iterations.

Table 7.2: Results of PCA for the whole loss surface data. The table provides
the eigenvectors and eigenvalues of the four principal components (PC)
together with the ratio between the cumulative variance and the total
variance in [%].

PCA Variable PC1 PC2 PC3 PC4

Eigenvectors c 0.224 -0.948 0.001 · 10−13 0.224
σLoG -0.668 -0.316 -0.081 -0.668
σGauss -0.054 -0.026 0.997 -0.054
loss -0.707 -0.002 · 10−12 0.003 · 10−14 0.707

Eigenvalues 1.692 1.000 1.000 0.308
Cumulative
variance ratio 42.3% 67.3% 92.3% 100.0%

pre-processing. To obtain insights into the optimization process and to quantify the

dependency of the hyperparameters, we conducted a principal component analysis

(PCA) [40] of the loss function. The results are shown in Table 7.2. The values of the

loss function were normalized (zero mean and variance of one), and the eigenvectors

with corresponding eigenvalues were computed (principal components, PCs). It can

be seen that in order to represent 90% of the variance, the first three PCs need

to be taken into account. For the first PC the hyperparameter σGauss has a more

than ten times smaller influence than c and σLoG. In addition, the other two PCs

have a minor influence on the loss. Therefore, the influence of σGauss on the loss is

relatively small. However, pre-processing by a Gaussian filter improved the detection

performance by 1.6%.

To further investigate the dependencies of the hyperparameters we propose to

generate infimum projection visualizations. The infimum projection of a countable

finite n-dimensional loss L : Q1 × ...×Qn → R into a lower dimensional projection

P onto the index set I ⊆ [#Q] of features Q = {Q1, ..., Qn} with m elements can be
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Figure 7.4: Infimum projections of the loss surface from experiment 3 for the 3D
hyperparameter space (c, σLoG, and σGauss) sampled with Grid Search.
The global optimum is marked with a blue star.

performed by:

P(I; q1, ..., qn) = min
qk∈Qk

k ̸∈I

{L(q1, ..., qn)} (7.1)

In Figure 7.4 a)-c) the infimum projections between the three hyperparameters are

shown. From the loss surfaces in Figure 7.4 b) and c) one can see that both the

hyperparameters c and σLoG seem to be independent from the hyperparameter σGauss

due to the homogeneous structures of the loss surfaces (compare with Figure 7.4 a)).

Thus, the infimum projection yields additional information to the PCA analysis and

indicate that the optimization problem can be restructured by optimizing separately

σGauss and c along with σLoG. This sequential optimization procedure reduces the

3D hyperparameter optimization to a 1D optimization along with a 2D optimization.
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(a) Low SNR channel 1 (b) High SNR channel 2

Figure 7.5: Two-channel microscopy image of HIV-1 particles showing different pro-
teins in different channels.

Hyperparameter Optimization for Particle Detection in

Multi-Channel Microscopy Images

In previous work, different classical methods (cf. Section 2.4.1) as well as deep neural

networks (cf. Section 2.4.3) were introduced for particle detection in fluorescence

microscopy data. A disadvantage of these methods is that several parameters need

to be tuned and that supervised deep learning methods require manually labeled

ground truth. However, manual annotation is tedious, time consuming, and error

prone, and often not feasible due to low SNR, background noise, and high object

density (see Fig. 7.5 a).

We have developed a novel method to optimize hyperparameters for particle

detection in the lower SNR channel of multi-channel microscopy data (see Fig. 7.5).

Our method exploits the information from two-channel fluorescence microscopy

images, is weakly supervised, and does not require labeled ground truth. Typically,

particle detection approaches are optimized using a metric such as the F1 score,

which measures the similarity between the detections and the ground truth [108, 110].

In contrast, we propose exploiting colocalization information using a novel measure

based on the double labeling efficiency (DLE). The DLE quantifies the labeling

efficiency of double-labeled virus proteins [24] in two-channel microscopy images.

Often, one channel has a lower SNR and the other a higher SNR (see Fig. 7.5). Our

approach exploits the colocalization information in both channels by a novel measure

based on the DLE to optimize the detections in the challenging low SNR channel,

for which ground truth is difficult to determine. For the high SNR channel, ground

truth can be relatively easily determined and used for optimization. Due to the

labeling procedure, not all particles show a fluorescence signal in both channels.

Therefore, for example, the high SNR channel cannot be used as ground truth to

optimize the detection result based on the F1 score for the low SNR channel. Instead,
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in our method we exploit in the high SNR channel only the information, where

colocalization with the low SNR channel exists.

We evaluated our method based on synthetic data and found that our method

(without requiring ground truth) yields comparable results to using the F1 score with

ground truth. We also applied our method to challenging live cell images of human

immunodeficiency virus type 1 (HIV-1) and obtained an improvement compared to

the F1 score.

Double Labeling Efficiency for Particle Detection

Our proposed method exploits the colocalization of particles in two-channel fluores-

cence microscopy data, which is important to study virus-cell interactions [24]. The

colocalization of double-labeled particles in channel 1 and channel 2 of a microscopy

image can be quantified by the double labeling efficiency (DLE). The DLE is a

measure for the fluorescent labeling of virus proteins. For channel k (with k∈ {1, 2}),

the measure is defined by

DLEk =
ncoloc,k

ntotal,k

(7.2)

where ncoloc,k is the number of colocalized particles and ntotal,k the total number of

detected particles in channel k. DLEk yields values in the interval [0, 1]. DLEk =1

means that all detected points in channel k are colocalized. If no particles are detected

in channel k, then DLEk =0. Without loss of generality we assume that channel 1 has

a lower SNR than channel 2. To determine suitable hyperparameters of a detection

method for the low SNR channel, DLE1 in (7.2) could be optimized. However, doing

this yields multiple global optima with DLE1=1 due to multiple combinations of

ncoloc,1=ntotal,1. In addition, (7.2) includes only the DLE from one channel. To

optimize the detection hyperparameters for the low SNR channel without requiring

ground truth, we suggest fusing the information of both channels by a new measure

that weights the DLEk of the two channels by the harmonic mean:

DLEharm =
2 ·DLE1 ·DLE2

DLE1 +DLE2

·min

{

r ,
1

r

}

(7.3)

where the ratio r =
ntotal,2

nest,2
is defined by the total number of detected particles divided

by the estimated number of particles in the high SNR channel. A (rough) estimate

of the number of particles nest,2 in the high SNR channel can straightforwardly be

determined (e.g., by visual assessment or using a standard thresholding scheme). In

(7.3), min
{

r , 1
r

}

∈ [0, 1] is used to restrict the values of DLEharm in the interval

[0, 1]. Further, this term also ensures for multiple combinations of ncoloc,1=ntotal,1

(i.e. DLE1=1) along with ncoloc,2=ntotal,2 (i.e. DLE2=1) that DLEharm=1 only for

ntotal,2=nest,2 (nest,2 is a fixed value). Therefore, DLEharm contains only one global

optimum with DLEharm=1. If no particles are detected in any of the two channels,
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then DLEharm=0.

Interestingly, optimizing DLEharm in (7.3) can be interpreted as optimizing the F1

score. The F1 score is often used to assess the performance of detection methods,

but requires ground truth. The score quantifies the similarity between two data sets

by combining Precision and Recall using the harmonic mean [108, 110]:

F1 =
2 · Precision · Recall

Precision + Recall
(7.4)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(7.5)

where TP are true positive, FP false positive, and FN false negative detections. In

contrast to the F1 score, DLEharm exploits the information about the position due

to utilizing colocalization properties and takes into account information about the

number of particles due to the ratio r. If r=1 (ntotal,2=nest,2), then DLE1 of the

lower SNR channel is equal to the Precision in (7.5). Assuming the fluorophores

in the higher SNR channel perfectly label all particles, then DLE2 is equal to the

Recall in (7.5), with ntotal,2 being the sum of TP and FN detections in the lower

SNR channel.

Experimental Results

We quantitatively compared our proposed method based on DLEharm (without ground

truth) to the F1 score (with ground truth) using generated synthetic two-channel

images. For both measures in (7.3) and (7.4), we used the spot-enhancing filter

(SEF) [106] for particle detection. SEF is based on a Laplacian-of-Gaussian filter

with standard deviation σLoG, followed by thresholding the filtered image with a

parameter c. To optimize σLoG and c for the low SNR channel based on DLEharm

and F1, we used the hyperparameter optimization framework HyperHyper [197] with

Covariance Matrix Adaption Evolution Strategy. The detection performance for

both measures is determined by the F1 score (which favors the method based on the

F1 score compared to our method).

In the first experiment, we evaluate the influence of particle density (number of

particles) on the detection performance of DLEharm and F1 score for five two-channel

images containing 100 up to 500 particles per channel. The data is challenging due to

possible particle overlap for increasing particle density. The images of both channels

contain the same number of particles located at the same position. The results are

shown in Fig. 7.6. It can be seen that DLEharm and F1 yield very similar results.

Both measures show a slight performance decrease for increasing particle density due

to particle overlap resulting in detection errors.

The second experiment examines the impact of chromatic aberration of the micro-

scope on the detection performance. We used 50 particles in both channels which
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Figure 7.6: Influence of particle density in ch. 1 and ch. 2 on the detection performance
for optimized DLEharm and F1 score.

(a) Influence of shifted particles (b) Influence of missing particles

Figure 7.7: a) Influence of shifted particles in ch. 2 on the detection performance for
optimized DLEharm and F1 score. b) Influence of missing particles in
ch. 2 on the performance for optimized DLEharm and F1 score.

were initially at the same position. Then, a certain percentage of the particles in the

high SNR channel 2 were randomly shifted by a distance of more than the maximum

distance used for colocalization (5 pixels). This reduces the number of colocalizations

that can be exploited by DLEharm to optimize the parameters. We increased the

percentage of randomly shifted particles from 0% to 100%. The results are shown

in Fig. 7.7 a). DLEharm yields very similar results as the F1 score even for a high

percentage of shifted points.

The third experiment evaluates the influence of missing particles in the high SNR

channel 2 on DLEharm. Missing particles simulate the case when the fluorophores

do not perfectly label all particles. We used 50 particles for channel 1 and increased

the number of missing particles in channel 2 from 0% to 100%. Particles in channel 1

and 2 are located at the same position. The results are shown in Fig. 7.7 b). The

performance of DLEharm is close to the F1 score up to 90% of missing particles

yielding a detection performance above 85%.

We also evaluated our method using six two-channel live cell microscopy images of

double-labeled HIV-1 particles, which were selected as an example for challenging
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Table 7.3: Detection performance for six two-channel HIV-1 live cell microscopy
images.

Image data Method F1 RMSE min. Dist. max. Dist.

1
F1 score 0.721 0.529± 0.254 0.001 1.003

DLEharm 0.694 0.543± 0.264 0.001 1.515

2
F1 score 0.630 0.580± 0.298 0.001 1.168

DLEharm 0.606 0.562± 0.312 0.0004 1.182

3
F1 score 0.602 0.902± 0.459 0.002 1.803

DLEharm 0.479 1.060± 0.648 0.002 4.626

4
F1 score 0.630 0.992± 0.641 0.001 4.677

DLEharm 0.570 0.802± 0.626 0.001 4.998

5
F1 score 0.473 1.035± 0.589 0.004 2.857

DLEharm 0.389 0.905± 0.630 0.001 4.124

6
F1 score 0.615 1.123± 0.794 0.004 4.727
DLEharm 0.595 0.705± 0.463 0.002 2.001

Mean F1 score 0.612± 0.080 0.860 ± 0.257 0.002 ±0.001 2.706± 1.342

± Std. Dev. DLEharm 0.556 ± 0.107 0.763± 0.201 0.001± 0.001 3.074 ± 1.696

data sets. The data is challenging since channel 1 has a very low SNR and includes

inhomogeneities due to uneven illumination (see Fig. 7.5). The images have a size

of 512×512 pixels. The maximum Euclidean distance for colocalization was set to 5

pixels. For the quantitative evaluation, ground truth was manually annotated for

the low SNR channel 1. By visual assessment we determined a rough number of

150 particles in the high SNR channel 2 for all six images. For particle detection,

we used the SEF filter. To quantify the detection performance for channel 1, we

computed the F1 score, RMSE as well as the minimum and maximum distance to

the ground truth. The results are shown in Tab. 7.3. It can be seen that DLEharm

yields comparable results as the F1 score, though the number of particles in channel 2

was only coarsely determined and fixed for all images. The localization performance

quantified by RMSE and minimal distance is improved by DLEharm compared to F1.

Examples of the image data are shown in Fig. 7.8 a. The ground truth of channel 1

is depicted in Fig. 7.8 b. Detection results obtained by optimizing the F1 score and

DLEharm are shown in Fig. 7.8 c and d, respectively. It can be seen that the result

for DLEharm agrees well with that for the F1 score.
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(a) Original image (ch. 1) (b) Ground truth (ch. 1) (c) Opt. F1 score (ch. 1)

(d) Opt. DLEharm (ch. 1)

Figure 7.8: Example detection results for the live cell HIV-1 data.

Summary We introduced a novel method for optimizing the detection performance

in two-channel fluorescence microscopy images without requiring ground truth. Our

approach exploits colocalization properties and requires only a rough estimate of the

number of particles for the channel with higher SNR. We proposed a new measure

DLEharm (without using ground truth) and compared it with the F1 score (using

ground truth) on synthetic as well as on challenging live cell microscopy images of

HIV-1 particles. We found that DLEharm yields comparable detection results as the

F1 score and improves particle localization for live cell microscopy images. In our

work, we used SEF as detection method, however, our method is also applicable to

other particle detection methods.
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7.2 Multiple Hypothesis Tracking with Integrated Cell

Division Detection

Cell tracking is essential for understanding complex biological processes including

immune response, tissue repair, embryonic development, tumor metastasis, and

vascular diseases [219]. Besides varying cell densities and low signal-to-noise ratio of

microscopy images, a particular challenge encountered in cell tracking is cell division.

Most existing cell tracking approaches rely on the paradigm of detection-based

data association [220, 221, 205]. Cells are first detected independently in each image

frame and then associated between consecutive frames using a scoring function (e.g.,

spatially closest cells in two consecutive frames). Cell division is incorporated either

by assigning one cell to two cells or by post-processing. Recently, graph-theoretical

approaches were introduced that use information from two or more frames based

on probability estimates for cellular events [222, 223, 224]. However, the probability

estimates often require manually annotated data for training. Multiple Hypothesis

Tracking (MHT) [136] uses information from multiple frames and has been applied

to biological particle tracking [132] and cell tracking [135, 134]. Yet, [132, 135] focus

on non- or weakly interacting objects and do not address division events. [134] used

MHT to investigate cell behavior during angiogenesis. However, cell divisions are

detected by a deterministic (distance-based) approach.

We have developed a novel MHT-based approach for cell tracking which integrates

cell division detection, and is denoted as MHT-CD. Our probabilistic approach

exploits information from multiple frames and considers uncertainty information for

cell division detection. In addition, MHT-CD does neither require training nor post-

processing for detecting cell divisions. The data association problem is translated

to a graph-theoretical maximum weighted independent set (MWIS) problem. Cell

divisions are integrated by remodelling the MWIS graph to resolve the incompatibility

between certain track hypotheses. We evaluated our method using synthetic data as

well as data from the Cell Tracking Challenge [221, 205] and obtained state-of-the-art

or better results than previous methods.

MHT-CD

The proposed MHT-CD approach is based on Multiple Hypothesis Tracking (MHT)

and integrates cell division detection. MHT is a probabilistic tracking approach that

uses Kalman filtering for state estimation and exploits information from multiple

frames to solve the data association problem [136, 138]. We here use a track-oriented

MHT, where the data association problem can be represented as maximum weighted

independent set (MWIS) problem, which is not possible for a hypothesis-oriented

MHT. Our approach maintains multiple track trees, one for each cell. Nodes in

each tree represent cell detections and branches correspond to possible tracks (track

hypotheses). For each frame, the trees are extended using all feasible detection-

115



7 Hyperparameter Optimization and Cell Tracking

to-track associations and each track hypothesis is assigned a track score. Two

track hypotheses are compatible if they do not share any detection at any frame.

The solution to the data association problem (the best global hypothesis) can be

determined as the highest scoring set of compatible track hypotheses by solving

an MWIS problem [140]. To avoid extending trees with unlikely detection-to-track

associations, gating is performed [139]. Each track hypothesis is then extended using

all detections within its gating region and a dummy detection which indicates a

missing detection. Each detection also initializes a new track tree representing

the possibility of an appearing cell. In each frame, each cell can give rise to at

most one detection, thus only one-to-one assignments are allowed. The track score

L(T i
k) [139] of the i-th track hypothesis T at time point k is computed recursively as

L(T i
k) = L(T i

k−1) + ∆L(T i
k) with

∆L(T i
k) =

{

ln(1− pD) if no detection assigned

ln
(

A
2π

)

− 1
2
ln |Σi

k| −
1
2
d2 otherwise

(7.6)

where pD ∈ [0, 1] is the detection probability, d2 the gating distance, Σi
k the covariance

matrix of the estimated position of the track hypothesis, and A the image area.

The data association problem in our MHT-CD approach is translated to an MWIS

problem by constructing an undirected graph G = (V,E) with vertices V = {1, ..., n}

and edges E ⊆ V × V . Each vertex i represents a track hypothesis and has a weight

wi equal to the corresponding track score. An edge (i, j) connects vertex i and j if

track hypothesis i is incompatible with track hypothesis j. Given the binary decision

variable xi, the MWIS problem is to find an independent set U ⊆ V which maximizes

the sum of weights

max
x

n
∑

i=1

wi xi s.t. xi + xj ≤ 1 ∀ (i, j) ∈ E , xi ∈ {0, 1} (7.7)

The MWIS problem is solved by the exact Bron-Kerbosch algorithm [225] or the

approximate Greedy Randomized Adaptive Search Procedure (GRASP) [226].

A cell division is defined as an event in which a cell divides into at least two

daughter cells, implying that more than one track hypothesis within a single track

tree is correct. We use three parameters to identify cell divisions in track trees: a

quantile threshold qdiv, a distance threshold ddiv, and the number nchildren of cells

that may result at most from a cell division. Cell divisions are identified based on

the distribution of track scores in each track tree. If there exist two or more track

hypotheses associated with a track score larger than qdiv, the mother cell and the

daughter cells are required to be in close distance (lower than ddiv). In MHT, all track

hypotheses of the same tree are incompatible since they share at least one detection

and are therefore connected by an edge in the MWIS graph. As shown in Fig. 7.9,

MHT-CD identifies cell divisions in the track trees and removes the corresponding
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7 Hyperparameter Optimization and Cell Tracking

Figure 7.9: Cell division modelled by a removed edge in the MWIS graph.

edges from the MWIS graph. This resolves the incompatibility between the cell

division track hypotheses and makes it possible to include them all in the solution of

the MWIS problem, i.e. in the best global hypothesis.

Within an image sequence, not only single but also sequential cell divisions may

occur if a daughter cell that has emerged from a previous cell division divides again.

A specific property of cancer cells is the formation of more than two daughter cells,

denoted as multipolar cell division. Sample track trees for a single, sequential, and

multipolar cell division are shown in Fig. 7.10 a) to c). By identifying multiple track

hypotheses with a high track score within one track tree, MHT-CD is able to remove

all corresponding edges from the MWIS graph thereby representing also sequential

and multipolar cell division events. We do not allow dummy detections to be involved

in a cell division neither as dividing cell nor as a daughter cell. This is shown in

Fig. 7.10 d) and e). Further, as shown in Fig. 7.10 f), we require for any time point

after a cell division that no detection (except dummy detections) may be shared.

Experimental Results

We evaluated our approach using synthetic image sequences displaying challenging

scenarios of cell divisions. To assess the impact of the developed cell division

detection scheme, we compared our MHT-based approach with cell division detection

(MHT-CD) to MHT without cell division detection (MHT). The tracking performance

was quantified by the TRA score∈ [0, 1] of the Cell Tracking Challenge [227, 221].

Fig. 7.11 shows the tracking results for MHT-CD and MHT for a single, sequential,

and multipolar division event together with the TRA score. It can be seen that all

cell divisions are detected and resolved correctly by MHT-CD. In comparison, MHT

performed well in tracking but cell divisions are considered as newly appearing cells,

yielding a lower TRA score.
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7 Hyperparameter Optimization and Cell Tracking

Figure 7.10: Valid and invalid cell division events. Filled nodes are detections,
unfilled nodes are dummy detections. Nodes with an arrow correspond
to dividing cells. a)-c) Valid cell divisions in green (single, sequential,
multipolar). d)-e) Invalid cell divisions in red with dummy detections.
f) Invalid cell division in red with identical detections (blue boxes).

(a) Single (b) Sequential (c) Multipolar

Figure 7.11: Tracking results for different cell division scenarios obtained by MHT
(top) and MHT-CD (bottom).

We also evaluated our approach using 8 image sequences with annotations from the

Cell Tracking Challenge [221, 205]. We used the Fluo-N2DH-SIM and Fluo-N2DH-

SIM+ datasets comprising 50 up to 150 image frames with 480× 270 up to 739× 773
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(a) Ground truth (b) KTH-SE (c) UZH-CH

(d) UP-PT (e) MHT-CD

Figure 7.12: Tracking results for a section of the SIM-02 image sequence. Tracks
originating from cell division have the same hue (e.g., light and dark
red).

pixels each. We compared MHT-CD with a graph-based approach (KTH-SE [223])

and two distance-based approaches (UP-PT [220], UZH-CH [205]), which were used

in the Cell Tracking Challenge [205]. Further, we compared MHT-CD with MHT

without cell division detection. KTH-SE uses the Viterbi algorithm to select tracks

from a state space diagram using information from multiple frames. Cell divisions

are detected with a trained classifier. UP-PT and UZH-CH perform frame-by-frame

nearest neighbour association based on Euclidean distances. UZH-CH detects a

cell division if there are at least two nearest neighbour cells in the following frame.

UP-PT detects cell divisions with a post-processing approach, which merges each

track that does not start in the first image with the closest track starting at a previous

time point. We quantified the tracking performance by the TRA score∈ [0, 1], and

the cell division detection performance by the F1 score∈ [0, 1] as well as the number

of true positives (TP) and false positives (FP). A detected cell division is considered

to be correct if both the mother and daughter cells are correctly identified and the

division occurs at the correct time point. In Table 7.4, the performance values for

tracking and cell division detection are shown. The best method is highlighted in

bold. MHT-CD yields state-of-the-art or better tracking results, and best results

for four image sequences. Further, MHT-CD yields the best result for cell division

detection for 6 out of 8 image sequences and ranks second for the two remaining

sequences. Fig. 7.12 shows sample tracking results for a section of the SIM-02 image

sequence. It can be seen that only MHT-CD identifies all cell divisions correctly.

Fig. 7.13 shows the result of MHT-CD for a challenging section of the SIM-02+

sequence.
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Table 7.4: Tracking performance of different methods for the Fluo-N2DH-SIM and
Fluo-N2DH-SIM+ data.

Seq. Method TRA F1 TP FP

SIM-01

4 cell divisions

KTH-SE 0.9967 1.000 4 0
UZH-CH 0.9853 0.500 3 5
UP-PT 0.9782 0.000 0 4
MHT 0.9947 – – –

MHT-CD 0.9998 1.000 4 0

SIM-02

5 cell divisions

KTH-SE 0.9967 0.000 0 0
UZH-CH 0.9873 0.889 4 0
UP-PT 0.9699 0.000 0 4
MHT 0.9286 – – –

MHT-CD 0.9664 1.000 5 0

SIM-03

4 cell divisions

KTH-SE 0.9885 0.750 3 1
UZH-CH 0.9804 0.400 2 4
UP-PT 0.9917 0.000 0 4
MHT 0.9838 – – –

MHT-CD 0.9998 1.000 4 0

SIM-04

5 cell divisions

KTH-SE 0.9873 0.889 4 0
UZH-CH 0.9821 0.727 4 2
UP-PT 0.9789 0.000 0 8
MHT 0.9819 – – –

MHT-CD 0.9976 0.889 4 0

SIM-05

6 cell divisions

KTH-SE 0.9840 0.250 1 1
UZH-CH 0.9658 0.334 4 14
UP-PT 0.9405 0.000 0 18
MHT 0.7824 – – –

MHT-CD 0.8438 0.667 4 2

SIM-06

4 cell divisions

KTH-SE 0.9936 1.000 4 0
UZH-CH 0.9827 0.545 3 4
UP-PT 0.9696 0.000 0 8
MHT 0.8921 – – –

MHT-CD 0.9046 0.571 2 1

SIM-01+

28 cell divisions

KTH-SE 0.9860 0.519 14 12
UZH-CH 0.9859 0.912 26 3
UP-PT 0.9571 0.103 3 27
MHT 0.8941 – – –

MHT-CD 0.9392 0.809 19 0

SIM-02+

44 cell divisions

KTH-SE 0.9052 0.145 6 33
UZH-CH 0.8541 0.336 22 65
UP-PT 0.8747 0.132 5 27
MHT 0.6487 – – –

MHT-CD 0.9376 0.782 34 9
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Figure 7.13: MHT-CD tracking results for a section of SIM-02+. Tracks originating
from cell division have the same hue.

Summary We introduced a novel MHT-based approach for cell tracking with

integrated cell division detection (MHT-CD). Our probabilistic approach exploits

information from multiple frames. It remodels the MWIS graph to resolve the

incompatibility of track hypotheses and automatically detect cell division. MHT-CD

was evaluated using data from the Cell Tracking Challenge and yields state-of-the-art

or better results for cell tracking and cell division detection compared to previous

methods.
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8 Colocalization and Motion Analysis

of Subcellular Structures

In this chapter, methods for colocalization and motion analysis of subcellular struc-

tures are presented. The methods were applied to fluorescence microscopy image

data displaying HIV-1 and HCV particles as well as chromatin structures. To support

biologist during live cell experiments in determining spatial relationships of viral

particles in multi-channel fluorescence microscopy images, a novel colocalization

analysis approach was developed and integrated in a software suite. The multi-

channel colocalization approach was evaluated for HCV particles. To determine

HIV-1 infection and spread kinetics on a macroscopic level, motion analysis of HIV-1

in 3D collagen structures was performed and diffusion parameters were computed. In

addition, to understand spatio-temporal nuclear organization of the genome during

active DNA synthesis, motion and colocalization analysis of chromatin structures in

confocal microscopy images was performed.

The work was published in Lee/Ritter et al. [18] and Imle/Ritter et al. [19], and

has been submitted (Pham/Ritter et al. [20]) or is in preparation for publication

(Ritter et al. [17]).

8.1 Colocalization Analysis of HCV in Multi-Channel

Microscopy Images

HCV replication and assembly sites have been studied in two-channel time-lapse

fluorescence microscopy images in conjunction with colocalization analysis of tracked

HCV particles [18]. Further, the HCV motility of colocalized HCV proteins (envelope

glycoprotein E2 and non-structural protein NS5A) has been analyzed for correlation

with virus replication and assembly. It turned out, that a steady increase of the

number of E2-NS5A double positive puncta was observed. Further, the velocity of

E2 and NS5A was higher if the HCV proteins were not colocalized and reduced for

E2-NS5A double positive puncta. The results are in accordance with the assumption

that colocalized E2-NS5A corresponds to HCV assembly sites where the structural

proteins indicated by E2 and the replicase indicated by NS5A become trapped in

order to perform virus particle assembly. However, the characterization of temporal

aspects of the HCV protein E2 recruitment to assembly sites was studied only in

relation to the HCV protein NS5A and without an relation to virus-host proteins (e.g.,
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8 Colocalization and Motion Analysis of Subcellular Structures

ApoE [149]). Thus, colocalization analysis was performed for two-channel fluorescence

microscopy image data and requires an extension to three-channel colocalization

analysis for additionally taking into account virus-host proteins.

We have developed a software suite with a graphical user interface (GUI) for

object-based detection, quantification, and visualizations of colocalizations of sub-

cellular structures in multi-channel fluorescence microscopy images. The software

enables to detect and colocalize particle-like spots in two-channel and three-channel

fluorescence microscopy images. Colocalization is determined by the Python-based

software ColocQuant which is based on a multi-dimensional graph-based k-d-tree

approach to efficiently identify colocalized particles between two channels (double

colocalization) or three channels (triple colocalization). In addition, colocalization

parameters are quantified such as particle position, channel intensity, and object size

for each channel. Visualization of colocalization is possible by the developed ImageJ

macro ColocJ. This software visualizes the detections of double or triple colocalized

objects. In addition, we propose an efficient and intuitive visualization of the color

composition of colocalizations by a Maxwell color triangle (triple colocalization) and

a color ribbon (double colocalization). Further, the spatial distribution of a triple

colocalization is represented by a triangle visualizing the location and distances of

particles participating in the triple colocalization. Global statistics of the intensity

values, object size, and number of colocalizations over time are provided as box plots,

bar plots, or table and can be exported and used in other software. ColocJ can be

used for an entire image as well as for a manually selected region-of-interest (ROI)

annotated with ImageJ built-in tools.

We illustrate the application of ColocQuant and ColocJ on data of multi-channel

live cell microscopy images of hepatitis C virus (HCV) associated proteins. We

performed colocalization in two as well as in three channels. Further, we show the

visualization of the spatial distribution for triple colocalization and demonstrate

color composition analysis for double and triple colocalization. The software suite

was also applied in [20] to study intercellular transmission of viral RNA by ApoE

associated extracellular vesicles.

Multi-Channel Colocalization with ColocQuant

ColocQuant is a Python-based software which uses a multi-dimensional graph-based

approach to determine colocalized objects in two-channel (double colocalization)

or three-channel (triple colocalization) fluorescence microscopy images. We use a

k-d-tree [228] to perform a nearest neighbor search over two or three channels. In our

approach, a triple colocalized particle is represented by a vector vtriple = (p1,p2,p3)
T

which contains position vectors pi = (xi, yi)
T for each channel i. pi represents

the position of a particle (viral structure) in channel i which is detected by the

spot-enhancing filter (SEF) [106]. Particle detection by SEF consists of applying

a Laplacian-of-Gaussian (LoG) filter with standard deviation σLoG,i (filter size),
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8 Colocalization and Motion Analysis of Subcellular Structures

Figure 8.1: Overview of ColocQuant.

followed by thresholding the filtered image using the mean intensity plus a factor

ci (detection threshold) times the standard deviation. After particle detection, a

k-d-tree for all particle positions pi ∈ R
k with k = 2 of channel i is constructed

which is a binary tree in which each non-leaf node represents a splitting hyperplane

that divides the search space into two parts. The root node proot of the tree splits

all points pi into two subspaces according to one of the dimensions (xi or yi). The

hyperplane is perpendicular to the chosen dimension (xroot or yroot) and all points pi

with {(xi, yi)|xi < xroot} (or {(xi, yi)|yi < yroot} for splitting along the y-dimension)

are represented by the left subtree, whereas the remaining points are represented

by the right subtree. Afterwards, the subtrees are split in a similar fashion and

along alternating dimensions of pi. Once the k-d-tree is build, a nearest neighbor

query between a point pi in channels i and points pj in channel j is defined as

{(pj,1 ̸= pj,2) ⇒ [D(pi,pj,2) ≥ D(pi,pj,1)]} where D(·) is the Euclidean distance

and pj,1 is the nearest neighbor of pi and pj,2 is the second nearest neighbor. We

further assume that the nearest neighbor is within a distance D(pi,pj,1) ≤ Dmax,i,j,

which can be chosen in the GUI of ColocQuant by the user. The construction of a

k-d-tree and the representative search space for querying the k-d-tree to determine

the nearest neighbor is shown in Fig. 8.1.

To detect double colocalized objects vdouble = (p1,p2)
T , the k-d-tree of channel 1

needs to be queried only once with points from channel 2 using Dmax,1,2. For a

triple colocalization, the k-d-tree of channel 1 needs to be queried by channel 2 (with

Dmax,1,2) and 3 (with Dmax,1,3) as well as a second k-d-tree needs to be build based

on points from channel 2 and queried by channel 3 (with Dmax,2,3). Afterwards, the

intersection of all nearest neighbor queries is computed, which determines triple
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colocalization within all three channels. Due to the data structure of k-d-trees, the

nearest neighbor queries have an average running time of O(log(n)) where n is the

number of particles in a channel [228, 229]. Therefore, this data structure is efficient,

easy to construct, and well suited for finding nearest neighbors in order to determine

triple colocalization.

Color Composition Analysis with ColocJ

Besides the spatial information of double or triple colocalized objects (e.g., position,

size) determined by ColocQuant, intensity information is important to quantify

fluorescence signals in each of the channels, or postprocess the identified colocalized

objects by intensity thresholding. Therefore, a color analysis approach is required to

quantify and visualize the color distribution and composition of double as well as

triple colocalization.

In previous work, it was shown that each color c can be obtained by a weighted

mixture of the primary colors within the trichromatic RGB space representation

(R=red, G=green, B=blue) [230, 231] with c = eR + f G + g B. For a better and

simpler comparison of the color composition of double and triple colocalized objects,

ColocJ visualizes the proportions of the three primary colors within a 2D plot. For

double colocalized objects, a color ribbon showing a color gradient between two

colors is used to visualize the proportion of both color values. For a triple colocalized

object, the Maxwell color triangle is suggested to visualize the proportion of the

three primary colors. The Maxwell color triangle consists of three coordinate axes,

one for each color, which are the altitudes of the triangle and ranging from zero

(foot) to one (vertex of the triangle). The value of each primary color expresses its

intensity compared to the intensity of the other two primary colors. To represent

an RGB color value in the triangle, the RGB color value needs to be normalized by

multiplication with a factor a such that 1 = aR + aG+ aB is fulfilled. The factor

a is based on the sum of the primary color values with a = 1/(R+G+ B). As an

example, the Maxwell color triangle value of the 8-bit RGB color red with (R=255,

G=0, B=0) is (RMaxwell=1, GMaxwell=0, BMaxwell=0) with a = 1/255 and located at

the red vertex of the triangle. The 8-bit RGB color white (R=255, G=255, B=255)

is multiplied by a = 1/(255 + 255 + 255) and located at the center of the Maxwell

color triangle. Note that the 8-bit RGB color (R=5, G=5, B=5) is multiplied with

a = 1/(5+5+5) and therefore also located at the center of the Maxwell color triangle.

This is due to the fact that the Maxwell color triangle quantifies and visualizes the

proportion of the three primary colors to each other. Therefore, the Maxwell color

triangle provides additional object-based color information compared to the standard

box plots of image intensities, which provide single channel global intensity statistics.

The computation of the color composition for double and triple colocalization is

illustrated in Fig. 8.2. For a double colocalization, the composite image marks a

double colocalized object by a yellow circle. The image intensities are extracted at
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Figure 8.2: Overview of ColocJ.

the center of the double colocalization (center of yellow circle) for each channel and

the ratio between the two intensities is computed. The intensity ratio determines

the position on the color ribbon and represents the color composition of the double

colocalization. In Fig. 8.2 the color composition analysis is shown for channel 1 and 2.

Note that ColocJ also provides the possibility to analyse the color composition for

colocalization of channel 2 with 3 as well as channel 1 with 3. A triple colocalization

is marked with a yellow circle in the composite image whereas the yellow triangle

vertices represent the position of detected particles in each of the three channels.

The intensity information for each channel can be extracted at the center of the

yellow circle representing the overlap region of the colocalization. After extracting

the intensity values, the ratio for each primary color is determined and the color

composition of a triple colocalization is marked with a black dot in the Maxwell color

triangle.

Three-Channel Colocalization Analysis of HCV in Fluorescence

Microscopy Images

We evaluated our software ColocQuant and ColocJ with live cell fluorescence mi-

croscopy image data displaying different hepatitis C virus (HCV) associated proteins.

The image data consists of a three-channel time-lapse image sequence display-

ing HCV-infected cells with mCherry-labeled host cell protein apolipoprotein E

(ApoE) (channel 1), GFP-labeled HCV envelope glycoprotein E2 (channel 2), and

mTurquoise-labeled HCV non-structural protein 5A (NS5A) (channel 3) within

Huh7/LunetCD81H cells [18]. The image sequence comprises 10 images with an
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Figure 8.3: Visualization of spatial composition for triple colocalization using ColocJ.

image size of 512×512 pixels and a spatial resolution of 220 nm/pixel. Images were

acquired with a PerkinElmer UltraVIEW ERS spinning disk confocal microscope

mounted on a Nikon TE2000-E.

With the GUI of ColocQuant (see Fig. 8.1), we parameterized the SEF filter for

particle detection with a Filter Size (LoG standard deviation σLoG,i) of 2.5 for all

three channels. The Detection Threshold (thresholding the filtered image based on

ci) was set to 4.0 for channel 1 and 2, and to 3.5 for channel 3. For determining a

triple colocalization, the maximum Euclidean distance between detections in the

different channels was set to 7 for Dmax(Ch1,Ch2) and Dmax(Ch1,Ch3), and 5 for

Dmax(Ch2,Ch3).

After calculating and identifying all triple colocalizations for each frame of the

image sequence, the determined objects can be visualized by the ImageJ macro

ColocJ. The visualization of the spatial composition and distribution for a triple

colocalization is shown in Fig. 8.3. ColocJ uses a yellow circle to visualize the position

where a triple colocalization occurs. The triangle vertices show the location of the

detected particles of the triple colocalization in each channel and the edges provide

information about the distances. The analysis and the visualization of the spatial

composition of triple colocalizations can be done for composite images (overlay of all

channels) as well as for each channel separately.

The color composition and statistical analysis of triple colocalizations by ColocJ is

shown in Fig. 8.4. ColocJ provides a bar plot showing the number of colocalizations

in each frame and allows the user to analyse the amount of triple colocalizations

over time. To study viral replication and assembly, the amount of colocalization over

time is an import factor to describe and model the temporal behavior of assembly

processes. In addition, ColocJ visualizes the distribution of the object sizes of
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Figure 8.4: Triple colocalization analysis of HCV live cell image sequence using
ColocJ.

particles for each channel participating in the triple colocalization. The object

size is given in pixels and is determined by counting the pixels which belong to

the connected component [232] representing the detected particle by the SEF filter.

Based on the object sizes, the chemical process of fluorescence labelling as well

as characterization of the viral protein can be evaluated and differences between

channels can be determined. For the used HCV image sequence, all three channels

show a similar object size for each channel and the number of colocalizations is almost

stable over time. To analyze the intensity value distribution of triple colocalizations,

ColocJ provides box plots of the intensity values for each channel as well as the

Maxwell color triangle. The box plots visualize (global) statistics of the absolute

intensity values independently of the remaining two channels. In comparison, the

Maxwell color triangle shows the proportion of intensities between the three channels

for each triple colocalization and represents an object-based statistical visualization.

Therefore, the two visualization approaches display different aspects of the triple

colocalization data and complement each other. In addition, ColocJ provides the

possibility to extract the intensity information for the Maxwell color triangle at the

center of the triple colocalization (center of the yellow circle shown in Fig. 8.3) as

well as at the position of the yellow triangle vertices. The center of the yellow circle

provides information about the area of overlap, whereas the triangle vertices extract

information at the location of the detected particles in each channel contributing to

the triple colocalization. Comparing both Maxwell color triangles for the HCV image

sequence, the color compositions in the area of overlap (Triangle center) seems more

heterogeneous due to the more widespread distribution within the Maxwell color

triangle compared to the color composition based on the location of the particles
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Figure 8.5: Results of triple colocalization analysis of multi-channel live cell HCV
image sequence represented as table by ColocJ. The table provides in-
formation about the number of colocalizations, position, frame number,
intensity, and object size of the particles involved in the triple colocaliza-
tion.

Figure 8.6: Double colocalization analysis of HCV live cell image sequence with
ColocJ.

(triangle vertices). In order to analyze the live cell image data at the single-cell level,

ColocJ provides the possibility to visualize and analyse triple colocalization for a

manually selected ROI (see Fig. 8.4). The ROI can easily be annotated by the ImageJ

built-in area selection tool Polygon and imported to ColocJ. All visualized data of

the colocalization analysis by ColocJ is also provided in a table format shown in

Fig. 8.5. The table can be saved as a CSV (comma-separated values) file in ImageJ

and therefore can easily be imported and exploited by other software.

Besides triple colocalization analysis, ColocQuant and ColocJ are designed to also

analyse double colocalizations of two-channel fluorescence microscopy images. Based

on the selected channels for colocalization analysis in ColocQuant, ColocJ visualizes

the number of double colocalizations as a bar plot shown in Fig. 8.6. As for triple

colocalizations, ColocJ also displays statistics about the object size as box plots. The

color distribution of double colocalizations can be analysed by intensity box plots

showing statistics of the absolute intensity values and the color composition can be
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analysed with a color ribbon for object-based analysis. In Fig. 8.6 the three-channel

HCV image sequence is analysed for double colocalization between channel 1 and

2 as an example. However, as indicated by the different color ribbons in Fig. 8.6,

ColocQuant and ColocJ can analyse and visualize all combinations of channels

selected by the user. In addition, our software suite is also able to quantify double

colocalizations for a manually selected ROI. As for the triple colocalization, the

user can easily import an ROI annotated by the ImageJ built-in area selection tool

Polygon.

Maxwell Color Triangle and Image Intensity Variations

We evaluated the Maxwell color triangle in ColocJ for different typical intensity

variations occurring in multi-channel fluorescence microscopy. Intensity variations

can roughly be separated in additive and multiplicative intensity changes of the

fluorescence channels. An additive intensity change over time means that the intensity

values linearly increase or decrease with a constant factor. An additive intensity

change in the labeled virus associated proteins with decreasing intensity values over

time can occur, for example, due to virus-host cell interactions [25, 167, 233]. A

multiplicative intensity change over time means that the intensity values non-linearly

increase or decrease over time. As an example, photobleaching in fluorescence

microscopy is a process where the number of fluorescence molecules is reduced due

to permanent photochemical destruction and leads to an exponential (non-linear)

intensity decrease over time [234, 235].

We assessed the Maxwell color triangle with a three-channel live cell fluorescence

microscopy image sequence consisting of 10 frames with an image size of 1114×1496

pixels and a spatial resolution of 89 nm/pixel. The image data displays HCV-infected

cells with mCherry-labeled host cell protein ApoE (channel 1), YFP-labeled HCV

protein E2 (channel 2), and mTurquoise-labeled HCV protein NS5A (channel 3) [18].

Images were acquired with a PerkinElmer UltraVIEW VoX spinning disk confocal

microscope mounted on a Nikon TiE.

We evaluated the Maxwell color triangle for the case where intensity values of

channel 1 (ApoE) decrease over time with a constant factor. For every time point,

the original intensity values are decreased by 20 times the time point t (e.g., for t = 9

all intensity values of Ch 1 are decreased by 180). The intensity values of channel 2

(E2) and channel 3 (NS5A) remain unchanged. Fig. 8.7 shows the original composite

images for different time points as well as the composite images with decreased

channel 1 intensity values and images of channel 1. Fig. 8.8 shows the Maxwell color

triangle for the original image sequence as well as for the image sequence with

decreasing channel 1 intensity values. The black dots in the Maxwell color triangles

for both image sequences represent the same triple colocalizations. It can be seen that

the black dots in the Maxwell color triangle tend to shift torwards the blue/green

color region for progressing time points since the red color is decreased in the color
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(a) Original three-channel image sequence at different time points

(b) Three-channel image sequence with decreasing intensity values in channel 1 (red)

(c) Channel 1 with decreasing intensity values

Figure 8.7: Live cell fluorescence microscopy data of HCV. a) Original composite
image sequence. b) Composite image sequence with decreasing channel 1
intensity values over time. c) Decreasing channel 1 intensity values over
time.

composition due to decreasing channel 1 (red) intensity values. For time point t = 0

both Maxwell color triangles are equal since the intensity values for channel 1 are

equal for both image sequences.
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(a) Original image sequence

(b) Image sequence with decreasing intensity values in channel 1 (red)

Figure 8.8: Maxwell color triangles for a live cell fluorescence microscopy image
sequence of HCV. a) Original image sequence. b) Image sequence with
decreasing intensity values for channel 1 over time.

We also evaluated the case when the intensity values of all three channels are

increasing over time with a constant factor. For every time point, the original

intensity values of all three channels are increased by 20 times the time point t

(e.g., for t = 9 all intensity values of all three channels are increased by adding 180).

Fig. 8.9 shows the Maxwell color triangle for the original image sequence as well as

for the image sequence with increasing intensity values in all three channels. The

black dots in the Maxwell color triangles for both image sequences represent the

same triple colocalizations and therefore can be compared. It can be seen that the

general structure of the distributions of the black dots is similar. It can also be

observed that for progressing time points the black dots of the image sequence with

increased intensity values tend to shift torwards the center of the Maxwell color

triangle, although the intensities in all channel are increased by the same value.

Below, we mathematically proof that the positions of black dots within the Maxwell

color triangle (i) change for additive intensity increase (decrease) in all channels

with a constant factor, (ii) generally shift torwards the center of the Maxwell color

triangle for additive intensity increase (decrease) in all channels with a constant

factor, and (iii) are invariant against an equal multiplicative change of the intensity

values of all three channels. To proof (i), it is assumed that R ̸= G ̸= B and that all

intensities of all three channels are changed by an additive value β ∈ R. The RGB
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(a) Original image sequence

(b) Image sequence with increasing intensity values in all channels

Figure 8.9: Maxwell color triangles for a live cell fluorescence microscopy image
sequence of HCV. a) Original image sequence. b) Image sequence with
increasing intensity values in all channels over time.

color values within the Maxwell color triangle fullfill:

R

R +G+B
+

G

R +G+B
+

B

R +G+B
= 1 (8.1)

The position within the Maxwell color triangle for an additive intensity increase

(decrease for β < 0) is not changed if the ratio for the red channel fullfills:

R

R +G+B
=

R + β

R + β +G+ β +B + β
(8.2)

R =
1

2
(G+B) (8.3)

Similar, the ratio for the green channel must fullfill G = 1
2
(R +B) and for the blue

channel applies B = 1
2
(R + G). However, all three ratios are only simultaneously

fullfilled if R = G = B, which is in contrast to the assumption R ̸= G ̸= B. Therefore,

due to the additive intensity increase (or decrease if β < 0) the proportion of the

three intensity values is changed and the position in the Maxwell color triangle as

well. To proof (ii), it is assumed that all intensities of all three channels are changed

by an additive value β ∈ R. If β increases torwards infinity, the ratio for each channel

goes torwards 1/3 (e.g., red channel):

lim
β−>∞

(

R + β

R +G+B + 3 β

)

=
1

3
(8.4)
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A ratio of 1/3 for each of the three channels is represented by the center of the

Maxwell color triangle. For proofing (iii), the intensity values in the original image

sequence in all three channels are multiplied by a constant factor β ∈ R, the positions

of the black dots within the Maxwell color triangle are not changed since

R · β

R · β +G · β +B · β
=

R

R +G+B
(8.5)

Therefore, the Maxwell color triangle is invariant under an equal multiplicative

change of the intensity values of all three channels.

Summary We proposed a new software suite consisting of ColocQuant and ColocJ to

analyze the colocalization of viral structures in multi-channel fluorescence microscopy

image sequences. ColocQuant and ColocJ perform object-based identification of

double or triple colocalization and color composition analysis. ColocQuant uses an

k-d-tree approach to determine double or triple colocalizations. ColocJ is an ImageJ

macro which provides global statistics of the intensity values, object size, number of

colocalizations over time, and a color composition visualization by a Maxwell color

triangle (triple colocalization) or a color ribbon (double colocalization). We applied

ColocQuant and ColocJ to multi-channel live cell microscopy image data of HCV

associated proteins. We provide insights on the color composition of double and

triple colocalizations and demonstrated the different data analysis results given by

ColocJ.

8.2 Motion Analysis of HIV-1 in 3D Collagen

Structures

Pathogen spread in the infected host is a complex process where multifaceted

interactions depending on key parameters can lead to disease or asymptomatic host

control. For intracellular pathogens such as viruses, the intrinsic host cell behavior

and the local tissue environment is important and determines the pathogen spread

efficiency. The global aim is to get insights into complex physiological processes

involving large numbers of heterogeneous cells and tissue. Ex vivo tissue explant based

on knowledge derived from in vivo analysis are used as physiological surrogate [236].

However, organotypic cultures are often hard to refactor concerning experimental

manipulation of tissue organization and composition, whereas complementary efforts

aim at reconstituting complex physiology by assembly of components ex vivo [237].

These novel culture systems have the advantage to study physiological processes

at different levels such as the molecular, single-cell, and cell population level, but

require a system level understanding of the factors involved in order to understand

the contribution of individual process. In conjunction with mathematical and

computational models, experimental data that are generally limited in spatial and/or
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Figure 8.10: INSPECT-3D on the level of single pathogens. Fluorescent viral particles
(green) were incorporated into collagen (orange) or resuspended in
medium overlaying the 3D collagen matrix (suspension). Viral particles
within collagen or in suspension were imaged by spinning disk confocal
microscopy and tracked by probabilistic single particle tracking. Viral
motility is quantified by diffusion parameters obtained from particle
motion analysis (from [19]).

temporal resolution can be connected in order to quantify physiological processes

within multicellular systems (e.g., cancer and immunology research [238, 239]).

For the human immunodeficiency virus type 1 (HIV-1), many aspects on the

molecular level concerning the replication process in isolated target cells have been

clarified including immune mechanisms of the host and viral evasion mechanisms [240].

However, little is known about the influence of the 3D environment on the replication

process and how this affects the virus evasion mechanism [5].

In [19] an Integrative method to Study Pathogen spread by Experiment and

Computation within Tissue-like 3D cultures (INSPECT-3D) has been proposed. An

experimental component of INSPECT-3D is the system of 3D collagen matrices in

order to analyze HIV-1 spread ex vivo in primary human CD4 T lymphocytes. A

computational component is the quantification of HIV-1 diffusion parameters in

order to characterize cell-free virus spread by single particle tracking of HIV-1 in 3D

collagen structures followed by motion analysis (see Fig. 8.10).

With INSPECT-3D it was found that the kinetics of the HIV-1 spread on the

population level was strongly affected by the 3D collagen environment. In order to

understand the HIV-1 spread on the level of single pathogens, we developed computa-

tional approaches to find out if 3D collagen structures affect the availability of cell-free

virus particles for infection. Therefore, we determined the trajectories of fluorescently

labeled HIV-1 particles in medium (suspension) and in 3D collagen structures by

single particle tracking of spinning disk confocal microscopy data, followed by motion

analysis to obtain diffusion parameters. Automatic tracking of multiple fluorescent

HIV-1 particles was performed using a probabilistic particle tracking approach which

is based on Bayesian filtering and probabilistic data association [48]. This approach

exploits multiple measurements and combines Kalman filtering with particle filter-

ing. For particle detection, a Laplacian-of-Gaussian filter was used. The tracking
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(a) MSD (b) Diffusion parameters

Figure 8.11: Motion analysis of HIV-1 in suspension and 3D collagen structures.
a) The MSD for particles in suspension and 3D collagen structures
were computed from the MSD values for at least 20,000 HIV-1 tracks
(mean± SEM). b) Diffusion parameters were computed by fitting a dif-
fusion and an anomalous diffusion model to the MSD values (from [19]).

method yields trajectories of individual HIV-1 particles. Based on the computed

trajectories, the motility of HIV-1 particles under different 3D collagen conditions

and suspension was analyzed and the motion type was determined. We performed a

mean square displacement (MSD) analysis [182]. MSD was computed as a function of

the time interval ∆t for each trajectory of a tracked HIV-1 particle with a minimum

time duration of 0.8 s (corresponding to five time steps). The MSD functions for

all trajectories under one condition were averaged. An anomalous diffusion model

MSD = 4Γ∆tα was fitted to the calculated MSD values which yielded the anoma-

lous diffusion exponent α and the transport coefficient [182]. We used MSD values

from 0 s ≤ ∆t ≤ 7 s. The motion was classified into confined diffusion (α ≤ 0.1),

obstructed diffusion (0.1 < α < 0.9), and normal diffusion (α ≥ 0.9) [184]. We also

fitted the normal diffusion model MSD = 4Γ∆t [182] to the MSD values to determine

the diffusion coefficient D = Γ [µm2 s−1]. In addition, based on the tracking result,

events of particle interaction with the collagen structure were identified (sticking

events). For all tracked HIV-1 particles the velocities were computed and represented

in a velocity histogram. From the histogram we determined a velocity threshold of

vTh = 1.0 [µms−1] to distinguish different subpopulations. The interaction time of

an HIV-1 particle with the collagen structure was calculated as the time duration

for which a particle yielded velocities below vTh. For a consistent comparison of

interaction times between different collagen conditions, we considered trajectories

with a time duration of up to 15 s (corresponding to 76 time steps).

The results for motion analysis of HIV-1 particles in suspension and 3D collagen

structures are shown in Fig. 8.11. For virions in suspension, normal diffusion was

observed (MSD values grow linearly with time, α = 1.03) with a diffusion coefficient

D = 3.35 [µm2 s−1] which is comparable to the theoretical expectation of D = 4.38
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(a) Velocity histogram (b) Sticking events

Figure 8.12: Motility analysis of tracked viral particles in suspension and 3D collagen
structures. a) Distribution of instantaneous velocities obtained from
tracks with durations between 0.8 and 15 s for virus in suspension (blue)
or in collagen (brown). The red box indicates the percentage of tracking
steps with velocities below vTh = 1 [µms−1] (from [19]). b) Events of
particle interaction with the collagen structure were identified (sticking
events). The sticking time was computed as the time duration for which
a particle yielded velocities v ≤ vTh.

[µm2 s−1] based on the Stokes–Einstein equation for virions of 150 nm diameter

at 37 ◦C in water [19]. However, we observed obstructed diffusion (MSD values

grow non-linearly with time, α = 0.86) in collagen with a diffusion coefficient

D = 2.36 [µm2 s−1], which is typical for solute transport in porous media [241].

Due to the reduced diffusion coefficient in collagen and the cell spacing in the 3D

collagen structures, a virion would take almost 1 day (22.6 h) to reach the 19 nearest

neighbours by diffusion starting from a producer cell. Compared to the half-life

of HIV-1 particle infectivity of 17.9 h [242], this means 58% loss of infectivity. In

addition, with single particle tracking we identified events of particle interaction

with the collagen structure (sticking events) which is shown in Fig. 8.12. Within

an observation time of 5min, 7.40% of all particles in collagen have a phase of low

mobility (v ≤ vTh) compared to 1.08% of all particles in suspension. Further, it is

observed in Fig. 8.12 that virions in collagen have no long-lasting collagen interactions

(short sticking times) and that the phase of low virion mobility likely represents

transient contact with collagen fibres. Based on the detected sticking events and their

observed time duration, it can be assumed that all virions will encounter collagen

fibres within their infectivity half-life of 17.9 h.

Summary We applied probabilistic particle tracking for HIV-1 in 3D collagen

structures followed by motion analysis to quantify HIV-1 diffusion parameters. The

results on the level of single pathogens revealed that a 3D collagen environment

reduces virion diffusion rates and restricts particle infectivity as well as production.

Hence, 3D environments can thus pose a significant barrier to cell-free HIV-1 infection.
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Figure 8.13: Image analysis pipeline for motion and colocalization analysis of chro-
matin in 2D confocal microscopy image data.

8.3 Motion and Colocalization Analysis of Chromatin

in Confocal Microscopy Images

We studied chromatin motility for different cell stages and the relationship between

chromatin diffusion and nuclear activity in mammalian cells. Chromatin was fluores-

cently labelled in 2D time-lapse confocal microscopy image data displaying HeLa

cells expressing PCNA labelled with GFP. PCNA is a cell cycle marker and core

component of the replication machinery [243]. To understand the organization of

the genome during DNA replication in a spatial-temporal context, we used the

proposed novel Multi-Sensor PDAE (MS-PDAE) (cf. Section 3.3.1) for tracking
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chromatin structures, motion analysis based on MSD, and colocalization analysis .

The image analysis pipeline for tracking chromatin in 2D confocal microscopy image

data followed by motion and colocalization analysis is depicted in Fig. 8.13.

The motility of fluorescently labelled chromatin structures in live-cell fluorescence

microscopy images was quantified within manually segmented single nuclei. The

background image intensity was adjusted for each image sequence to the computed

mean intensity value over all time points within a manually selected region-of-

interest (ROI) of the background. Automatic tracking of multiple fluorescently

labelled chromatin structures was performed using a probabilistic particle tracking

approach which is based on Bayesian filtering and multi-sensor data fusion [12]

(cf. Section 3.3.1). This approach combines Kalman filtering with particle filtering

and integrates multiple measurements by separate sensor models and sequential

multi-sensor data fusion. Detection-based and prediction-based measurements are

obtained by elliptical sampling [48] and the separate sensor models allow taking

into account different uncertainties. In addition, motion information based on

displacements from past time points is exploited and integrated within the cost

function for correspondence finding. Chromatin structures are detected by the spot-

enhancing filter (SEF) [106] which consists of a Laplacian-of-Gaussian (LoG) filter

followed by thresholding the filtered image and determination of local maxima. The

threshold is automatically determined by the mean of the absolute values of the

filtered image plus a factor times the standard deviation.

Chromatin motility analysis

Based on the computed trajectories, the motility of chromatin structures was an-

alyzed and the motion type was determined for different experimental conditions

corresponding to different cell stages. We performed a mean square displacement

(MSD) analysis [182] and computed the MSD as a function of the time interval

∆t for each trajectory. The MSD curves for all trajectories with a minimum time

duration of 10 s (corresponding to 20 time points) under one condition were averaged.

Considering trajectories with a time duration larger than the minimum time duration

improved the accuracy of the motility analysis. We fitted the anomalous diffusion

model MSD = 4Γ∆tα to the calculated MSD values to obtain the anomalous diffusion

coefficient α and the transport coefficient Γ [µm2 s−α]. The motion was classified into

confined diffusion, obstructed diffusion, and normal diffusion [184]. To determine the

diffusion coefficient D [µm2 s−1], the normal diffusion model with α = 1 was fitted to

the MSD values.

Example chromatin tracking results for cell cycle stages G1 and S-phase as well as

results for motion analysis are shown in Fig. 8.14. We found that chromatin is most

motile in G1/G2 and become more constrained during S-phase which is shown by

higher MSD values of G1/G2 compared to S-phase. Further, the diffusion coefficient

D for chromatin in G1/G2 is higher compared to S-phase. The anomalous diffusion
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Figure 8.14: Tracking and motion analysis results for chromatin in different cell
cycle stages. Based on the MSD analysis, diffusion parameters were
computed.

coefficient α for chromatin in S-phase is lower compared to G1/G2 which further

reflects the more constrained diffusion in S-phase.

Colocalization analysis

Automatic colocalization of chromatin and PCNA was performed using the computed

trajectories of chromatin structures and detected sites of active DNA synthesis

represented by fluorescently labeled PCNA. Only trajectories of chromatin structures

present at the first time point of an image sequence and with a minimum time

duration of 10 s (corresponding to 20 time points) were considered. PCNA foci were

automatically detected in the fluorescence microscopy images by the SEF filter. For

each PCNA image, a single nucleus was manually segmented and the background

intensity was adjusted to the computed mean intensity value within a manually

selected ROI of the background (see Fig. 8.13). Colocalization was determined for

the first time point of the trajectory of a chromatin structure and detected PCNA

foci using our proposed graph-based k-d-tree approach (cf. Section 8.1). Due to the

k-d-tree structure, this approach allows efficient computation of the nearest neighbor

query based on the Euclidean distance between foci in the chromatin and PCNA

channel. If a chromatin structure at the first time point of the image sequence
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Figure 8.15: Results for tracking, colocalization analysis, and motion analysis. The
graph for the diffusion coefficient D represents average diffusion rates of
colocalized and non-colocalized chromatin with increasing colocalization
distance measured between the centers of PCNA and chromatin foci.

has a nearest PCNA neighbor within a maximum distance, the trajectory of a

chromatin structure is considered colocalized. Otherwise, the trajectory is considered

non-colocalized.

Example colocalization results of chromatin with PCNA are shown in Fig. 8.15.

Further, the diffusion coefficient D and the anomalous diffusion coefficient α for

colocalized and non-colocalized chromatin is given. It turned out, that the chromatin

motility is locally restricted at sites of DNA replication (colocalization of chromatin

and PCNA).

Summary Based on our proposed novel Multi-Sensor PDAE (MS-PDAE) for chro-

matin tracking in conjunction with motion and colocalization analysis, we obtained

novel insights into the spatio-temporal organization of the genome during DNA

replication for mammalian systems. We demonstrated that chromatin undergoes

different motility for different cell cycle stages. Further, we showed that during active

replication the chromatin motion is more restricted in order to facilitate the cellular

processes.
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In this thesis, new probabilistic methods for particle tracking in fluorescence mi-

croscopy images were introduced. The proposed methods are based on data fusion

and Bayesian smoothing to determine trajectories with higher accuracy. The methods

have been quantitatively evaluated with state-of-the-art benchmark data sets as

well as real fluorescence microscopy images. Improved results for particle detection,

localization, and tracking compared to existing methods were achieved. Besides

particle detection and tracking, we also performed colocalization and motion analysis

of HCV proteins, HIV-1 particles, and chromatin structures in real fluorescence

microscopy image data to support biologists in image analysis for infectious diseases

and genome organization research projects.

9.1 Summary

The main contributions can be summarized as follows,

Data Fusion for Particle Detection and Tracking

The main challenges for particle detection and tracking in fluorescence microscopy

image data are low signal-to-noise ratio (SNR), small particle size, heterogeneity in

particle size, high object density, complex motion, and clutter. To cope with these

different challenges, we developed novel particle detection and tracking methods which

are based on data fusion approaches to exploit a priori knowledge. We developed

a multi-detector data fusion approach based on a novel intensity-based covariance

intersection algorithm which exploits information about image intensities, positions,

and uncertainties obtained by multiple particle detectors to improve detection and

localization. An advantage of the intensity-based covariance intersection algorithm is

that it ensures a consistent estimate of multiple fused particle detections and does not

require an optimization step. In addition, for each particle a time-varying estimate

of the measurement noise covariance is computed to improve update estimation. We

performed data fusion of detections from classical and deep learning detectors as

well as single-scale and multi-scale particle detectors. Further, we proposed a novel

multi-sensor data fusion approach with probabilistic data association for particle

tracking which fuses multiple measurements from separate measurement processes

and thus takes into account different uncertainties from particle detection and particle

prediction to improve trajectory estimation.
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Bayesian Smoothing for Particle Tracking

We developed particle tracking methods which exploit temporal information based on

Bayesian smoothing approaches. First, we proposed a two-filter Bayesian smoothing

approach with probabilistic data association which fuses information from past and

future time points, integrates multiple measurements, and combines Kalman filtering

and particle filtering. Building on this approach, we developed a particle tracking

method based on Bayesian smoothing which uses covariance intersection for fusing

predictions obtained from past and future time points. An advantage is that this data

fusion approach ensures a consistent estimate of the fused prediction. Smoothing

and covariance intersection yield improved state prediction and track initialization.

Further, motion information is exploited by fusing displacements from past and

future time points and integrated in the cost function for improved correspondence

finding. The method is further extended by the proposed novel multi-detector data

fusion approach based on our intensity-based covariance intersection algorithm to

improve particle detection.

Colocalization and Motion Analysis

To support biologist in image analysis, we developed a colocalization analysis approach

which determines spatial relationships of viral particles in multi-channel fluorescence

microscopy images by a multi-dimensional graph-based approach. The colocalization

analysis approach is integrated in a software suite and visualizes the color composition

for colocalized objects by a Maxwell color triangle. To study pathogen spread in

tissue-like 3D cultures, we applied probabilistic tracking in conjunction with motion

analysis to real fluorescence microscopy image data of HIV-1 particles. Diffusion

parameters were quantified and revealed that HIV-1 has a reduced diffusion rate due

to the 3D environment and restricted infectivity. We also studied chromatin motility

and investigated the relationship between chromatin diffusion and nuclear activity

in mammalian cells. We applied colocalization and motion analysis to quantify

diffusion parameters and correlated chromatin motility to sites of DNA replication.

We demonstrated that chromatin motion is reduced at active DNA replication sites.
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Other Contributions We developed a novel approach which combines a convolu-

tional neural network for particle detection with probabilistic data association for

tracking. Furthermore, we developed a deep learning-based approach for both particle

detection and tracking by combining a convolutional neural network for detection

with an advanced recurrent neural network for tracking. To automatically optimize

complex image analysis pipelines containing several tunable hyperparameters, we

described a hyperparameter optimization framework with a modular architecture and

evaluated the framework on live cell fluorescence microscopy data for HCV particle

detection. Further, we developed a novel method for hyperparameter optimization for

particle detection in multi-channel microscopy images which exploits colocalization

in different channels as a surrogate for ground truth. The approach was evaluated on

real multi-channel fluorescence microscopy images displaying double-labeled HIV-1

particles. We also developed a novel probabilistic cell tracking approach based on

multiple hypothesis tracking with integrated cell division detection. Cell division

is integrated by remodelling the graph of the maximum weighted independent set

problem to resolve incompatibility between certain track hypotheses.

9.2 Outlook

This section provides research questions which could be addressed in future work.

• The proposed Bayesian smoothing approaches for particle tracking as well as the

multi-detector fusion approach for particle detection are based on data fusion

using covariance intersection. To obtain less conservative fusion results, other data

fusion techniques could be investigated. However, consistency of the fusion results

might not be guaranteed as in our methods.

• The particle tracking approaches based on data fusion and Bayesian smoothing

exploit motion information for particle prediction as well as correspondence finding.

The approaches have shown improved results compared to previous methods.

To further increase the tracking performance multiple motion models could be

incorporated in the tracking approaches.

• For double-labeled virus particles, colocalization information is exploited to perform

weakly supervised particle detection. Incorporating information from more than

two microscopy channels using multi-labeled viruses, particle detection might be

improved which could be beneficial for a subsequent particle tracking in multi-

channel fluorescence microscopy image sequences.

• Motion analysis of HIV-1 particles in real fluorescence microscopy image sequences

was performed. Diffusion parameters have been quantified to characterize virus

spread on the level of single pathogens. Learning-based approaches for motion

analysis could be investigated.
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