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Summary 
 
In acute myeloid leukemia (AML), initiation of tumorigenesis via multiple oncogenic 

mutations occurs throughout various stages of hematopoiesis that disrupt the 

corresponding transcriptomic and epigenetic profiles. The cancer cells that emerge are 

referred to as blasts and share biological features from these disease-specific alterations 

and patterns associated with differentiation and the tumor cell of origin. The resulting blasts 

show a large inter- and intra-tumor heterogeneity within molecularly defined AML 

subgroups that are highly relevant for risk stratification and personalized treatment 

strategies. Sequencing methods that analyze the transcriptome (scRNA-seq) and epigenome 

(scATAC-seq) are ideally suited to resolve tumor cell heterogeneity as well as non-malignant 

cell types in the microenvironment. Additionally, scATAC-seq allows to map the binding of 

transcription factors (TF) and infer cell-specific regulatory networks.  

Here, I dissected inter- and intra-tumor heterogeneity in patients with different genetic 

aberrations representing major subgroups in AML, namely MLL fusions, IDH mutated, and 

FLT3-ITD rearranged AMLs. I established and adjusted the experimental and bioinformatic 

procedures to generate reproducible and scalable data by scRNA/ATAC-seq of peripheral 

blood and bone marrow biopsies from AML patients. I could demonstrate that leukemic 

cells could be successfully distinguished from the microenvironment based on marker gene 

annotation from the human cell atlas and ploidy inference. Furthermore, I used the 

experimental and data analysis framework to analyze specific molecular features of the 

three AML subgroups.  

First, I characterized changes in the transcriptome and classified developmental stages of 

leukemic cells carrying MLL-EDC4 fusions along the hematopoietic stem cell to the myeloid 

trajectory compared to other MLL fusions. Cell type prediction revealed extensive malignant 

cell diversity and a phenotype skewed towards stem- and progenitor-like populations in 

MLL-EDC4 leukemic cells. To further elucidate transcriptomic properties of MLL-EDC4 cells, 

TF activity was inferred. The results agreed with differential gene expression highlighting 

many TFs that play a critical role in hematopoiesis, endothelial-to-hematopoietic transition, 

or leukemic stem cell activation. Second, I developed an approach to resolve the subclone-

specific response during FLT3 inhibition with midostaurin. Analysis from scRNA and scATAC 
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showed different FLT3 activity/chromatin signatures within clusters of leukemic cells in the 

relapse that could be explained by midostaurin resistance and the emergence of distinct 

subclones as detected by scDNA-seq. Third, I characterized how the chromatin accessibility 

landscape was influenced by IDH1 mutated cells treated ex vivo with targeted therapy 

compared to IDH1 wild-type cells. Treatment with the IDH1 inhibitor revealed a partially 

reversible pattern of accessibility while other mutation-induced epigenetic modifications 

could not be reverted. 

The scRNA-seq data acquired for the three different AML subgroups were then exploited to 

perform a cell type prediction analysis. The relative abundance of different malignant cell 

types discovered varied amongst tumors, with some having just two identities and others 

having a wide range of malignant cells. MLL fusions, except for MLL-EDC4, generally 

conferred a more differentiated phenotype predominantly consisting of 

monocytes/macrophage CD14-like and promonocyte-like cells. Both tumor entities 

harboring FLT3-ITDs or IDH1 mutations showed a more complex composition of cell types 

along the myeloid differentiation trajectory than MLL fusions. The composition of cell types 

was generally more skewed to early progenitors at the point of diagnosis when compared to 

their matching relapse sample. This indicates a partial differentiation of AML cells that 

treatment might induce. 

In summary, this thesis provides novel insights into the tumorigenesis process in AML by 

using a systematic and functional analysis approach of the transcriptome and open 

chromatin in single cells for three major genetically defined AML subgroups. A better 

comprehension of cellular hierarchies, epigenetic effects, clonal evolution, and their impact 

on gene regulation might help to understand disease progression, stratify patient risk, and 

help to improve the treatment of hematopoietic malignancies in the future. 
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Zusammenfassung 
 
Bei der akuten myeloischen Leukämie (AML) kann die Tumorgenese durch multiple 

onkogene Mutationen in verschiedenen Stadien der Hämatopoese entstehen. Obwohl 

maligne Transformationen die entsprechenden transkriptomischen und epigenetischen 

Profile beeinflussen, weisen Krebszellen biologische Merkmale auf, die sowohl auf 

krankheitsspezifischen Veränderungen als auch auf Mustern beruhen, die dem Zelltyp der 

Ursprungszelle und der damit verbundenen Differenzierung ähneln. Die sich daraus 

ergebende Zusammensetzung der Blasten und ihrer Ursprungszellen können sowohl die 

Heterogenität zwischen als auch innerhalb des Tumors einer molekular definierten AML-

Untergruppe erklären. Dies ist für die Risikostratifizierung aber auch für personalisierte 

Behandlungsstrategien von großer Bedeutung. Sequenziermethoden, die das Transkriptom 

und Epigenom einzelner Zellen analysieren, wie scRNA-seq und scATAC-seq, sind ideal 

geeignet, um die Heterogenität sowohl von Tumorzellen als auch von nicht-malignen 

Zelltypen in der Mikroumgebung zu untersuchen. Darüber hinaus kann mit scATAC-seq die 

Bindung von Transkriptionsfaktoren (TF) erörtert und auf zellspezifische Netzwerke 

geschlossen werden.  

In dieser Arbeit untersuchte ich die inter- und intratumorale Heterogenität unter 

Einbeziehung subklonaler Merkmale bei Patienten mit verschiedenen genetischen 

Aberrationen, die wichtige Untergruppen der AML darstellen, nämlich MLL-Fusionen, IDH-

mutierte und FLT3-ITDs. Dazu habe ich experimentelle und bioinformatischen Abläufe 

entwickelt und angepasst, um reproduzierbare und skalierbare Daten durch scRNA-seq in 

primären menschlichen Zellen zu erzeugen. Durch die Anwendung dieser Methode konnte 

ich zeigen, dass leukämische Zellen erfolgreich von der Mikroumgebung unterschieden 

werden können, basierend auf der Annotation von Markergenen aus dem „Human Cell 

Atlas“ und Ploidie-Inferenz. Darüber hinaus nutzte ich den experimentellen und 

datenanalytischen Rahmen, um spezifische Merkmale der drei AML-Untergruppen zu 

analysieren.  

Zunächst charakterisierte ich die Veränderungen im Transkriptom und klassifizierte die 

Entwicklungsstadien leukämischer Zellen, die MLL-EDC4-Fusionen tragen, entlang der 

Entwicklung von hämatopoetischen Stammzellen zu myeloischen Zellen im Vergleich zu 
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anderen MLL-Fusionen. Die Vorhersage des Zelltyps ergab eine große Vielfalt maligner 

Zellen und einen Phänotyp, der auf stamm- und vorläuferartige Populationen in MLL-EDC4-

Leukämiezellen ausgerichtet ist. Zur weiteren Charakterisierung der transkriptomischen 

Eigenschaften von MLL-EDC4-Zellen wurde die Aktivität von TFs abgeleitet. Die Ergebnisse 

stimmten mit der differentiellen Genexpression vieler TFs überein, die bei der 

Hämatopoese, dem endothelialen zum hämatopoetischen Übergang oder der Aktivierung 

leukämischer Stammzellen eine entscheidende Rolle spielen. Zweitens habe ich die 

molekularen Merkmale der subklonspezifischen Reaktion während der FLT3-Hemmung mit 

Midostaurin aufgeklärt. Die Analyse von scRNA und scATAC zeigte eine unterschiedliche 

FLT3-Aktivität/Chromatinsignatur innerhalb von Clustern leukämischer Zellen im Rezidiv, die 

durch Midostaurin-Resistenz und die Entstehung verschiedener Subklone, wie durch scDNA-

seq nachgewiesen, erklärt werden konnte. Drittens habe ich untersucht, wie die Landschaft 

der Chromatinzugänglichkeit von IDH1-mutierten Zellen, die ex vivo mit einer gezielten 

Therapie behandelt wurden, im Vergleich zu IDH1-Wildtyp-Zellen beeinflusst wurde. Die 

Behandlung mit dem IDH1-Inhibitor ergab ein teilweise reversibles Muster der 

Zugänglichkeit, während andere mutationsbedingte epigenetische Veränderungen nicht 

rückgängig gemacht werden konnten. 

Die für die drei verschiedenen AML-Untergruppen gewonnenen scRNA-seq-Daten wurden 

anschließend zur Klassifizierung des Zelltyps genutzt. Die relative Häufigkeit der malignen 

Zelltypen variierte von Tumor zu Tumor, wobei einige nur zwei Identitäten aufwiesen und 

andere ein breites Spektrum verschiedener Zelltypen verzeichneten. MLL-Fusionen, mit 

Ausnahme von MLL-EDC4, führten im Allgemeinen zu einem differenzierteren Phänotyp, der 

überwiegend aus Monozyten/Makrophagen CD14-ähnlichen und Promonozyten-ähnlichen 

Zellen bestand. Beide Tumorentitäten, die FLT3-ITDs oder IDH1-Mutationen aufwiesen, 

zeigten im Vergleich zu MLL-Fusionen eine komplexere Zusammensetzung der Zelltypen 

entlang der myeloischen Differenzierungstrajektorie. Die Komposition der Zelltypen war 

zum Zeitpunkt der Diagnose im Vergleich zur entsprechenden Rezidivprobe generell stärker 

auf unreife Vorläuferzellen ausgerichtet. Dies deutet auf eine partielle Differenzierung der 

AML-Zellen hin, die durch die Behandlung induziert werden, könnte. 

Zusammenfassend lässt sich sagen, dass diese Arbeit neue Einblicke in den 

Tumorentstehungsprozess bei AML liefert, indem sie einen systematischen und 

funktionellen Analyseansatz des Transkriptoms und des offenen Chromatins in einzelnen 
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Zellen für drei wichtige genetisch definierte AML-Untergruppen verwendet. Ein besseres 

Verständnis der zellulären Hierarchien, der epigenetischen Effekte, der klonalen Evolution 

und ihrer Auswirkungen auf die Genregulation könnte dazu beitragen, den Krankheitsverlauf 

zu verstehen, das Patientenrisiko zu stratifizieren und die Behandlung von 

hämatopoetischen Erkrankungen in Zukunft zu verbessern. 
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Introduction 
 
1 Deregulation of hematopoiesis 

 
The hematopoietic hierarchy originates from hematopoietic stem cells (HSCs) that primarily 

reside within the bone marrow. HSCs can produce all blood cellular components through 

hematopoietic precursors that ultimately differentiate into mature cells 1 (Figure 1). 

Furthermore, HSCs have the potential to divide asymmetrically, which generates two 

daughter cells with different developmental fates. While one daughter cell will keep the 

possibility of self-renewal and remain in the bone marrow, the other cell will differentiate 

along a specific lineage and enter the bloodstream 2. Initiation of tumorigenesis can happen 

throughout all stages of maturation and lead to various forms of leukemia. Commonly, acute 

leukemias, such as myeloid and lymphoid leukemia (AML and ALL, respectively) confer a 

more undifferentiated phenotype, while chronic leukemias present with high levels of 

differentiated cells in the blood 3. This thesis focusses on the myeloid lineage disorder AML. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagram of normal hematopoiesis. HSCs have broad self-renewal capacity and give rise to distinct 
hematopoietic progenitors. The progenitor cells possess the ability to proliferate but cannot self-renew and are 

committed to one or more cell lineages. These progenitors generate numerous precursor cells which mature 
into differentiated hematopoietic cell types, as shown. Figure adapted from 4. 

Figure 1 
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1.1 Pathogenesis of acute myeloid leukemia (AML) 

 

In AML, the growth and differentiation of HSCs or progenitors become abnormal, leading to 

an accumulation of immature myeloid progenitors in the bone marrow and peripheral blood. 

This expansion of myeloblasts (Figure 1) happens at the expense of normal formation of 

their terminally differentiated counterparts, such as erythrocytes, leukocytes, or platelets 5. 

These biological features are caused by several genetic and epigenetic alterations in AML 

cells. Structural changes such as balanced translocations and chromosomal gains or losses 

occur in around half of all AMLs 6. 

AML is one of the most common types of leukemia and is three to four times more frequent 

in adults than ALL, where differentiation of the lymphoid lineage is disordered.  

The clinical presentation of the disease is very heterogeneous and can range from an 

incidental finding through routine blood work to a severe condition that demands instant 

treatment. Apart from nonspecific symptoms such as decreased appetite and fatigue, bone 

marrow failure is fundamental to the disease. Other characteristic symptoms are shortness 

of breath on execution caused by anemia, a higher tendency of bruising and bleedings due 

to thrombocytopenia, and recurring infections because of neutropenia.  

With a median age of 70 years in the western world, it can be termed a disease of the elderly 
7. For patients below the age of 60, overall survival (OS) has improved considerably in the 

past three decades, but treatment for older age groups has not improved significantly 8. The 

ongoing improvement of OS in younger individuals but not in older patients can be partly 

explained by better tolerance of therapy and less accumulation of multiple poor risk factors. 

Prior to the 1960s, AML was thought to be an incurable disease. In the 1970s, a small 

percentage of patients – primarily those below the age of 60 years— survived thanks to 

advancements in chemotherapy, allogeneic hematopoietic stem-cell transplantation (HSCT), 

and supportive care 9. In addition to the factors mentioned above, treatment innovation for 

older patients is restrained by rigorous inclusion and exclusion criteria in clinical trials. This 

results in a skewed selection of individuals based on age, frequently leading to the exclusion 

of older patients with more varied performance statuses and co-morbidities. Consequently, 

the outcomes of clinical studies might not be indicative of AML in the common population 8. 
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AML cells have far fewer coding sequence mutations than solid tumors. More than one 

cooperative aberration is necessary to develop AML, according to experimental findings 

from mouse models 10. These cooperative mutations can be divided into functional groups 

based on how they affect different cellular functions (Table 1) 11. Genome sequencing 

enabled the classification of these cooperating mutations into nine distinct functional 

groups, replacing old models with only three broad categories 11.  

 
Table 1 Functional groups in AML based on genetic aberrations 
Functional group Mutated genes Frequency 
Signaling pathways  FLT3, KIT, KRAS, NRAS and serine/threonine kinases  59%  

DNA methylation  DNMT3A, IDH1, IDH2 and TET2  44%  

Chromatin modifiers  ASXL1, EZH2 and MLL fusions  30%  

Nucleophosmin   NPM1  27%  

Myeloid transcription factors  CEBPA and RUNX1 22%  

Transcription factors  MYH11–CBFB, RUNX1–RUNX1T1 and PML–RARA 18%  

Tumor suppressors  PHF6, TP53 and WT1  16%  

Spliceosome complex  U2AF1 and SRSF2  14%  

Cohesin complex  RAD21, SMC1, SMC3 and STAG2 13%  

 
 

1.2 Genetic subtypes in AML 

 
1.2.1 Aberrations in mixed lineage leukemia (MLL) gene 

 

The MLL gene is located at 11q23 and encodes approximately 4000 amino acids long 

protein12. The N-terminus associates with the nuclear factors Menin (MEN1) and lens 

epithelium-derived growth factor (LEDGF) and allows to bind MLL target genes. While MEN1 

serves as a link between MLL and LEDGF, LEDGF is a binder of dimethylated H3K36 12,13. The 

N-terminal region also consists of AT-hook motifs (DNA binding domains), two repression 

domains (RD1, RD2), with the first harboring an additional CxxC domain, and a speckled 

nuclear localization domain 1 and 2 (SNL-1, SNL-2). The CxxC domain shows homology to 

DNA methyltransferase 1 (DNMT1) and binds non-methylated CpG DNA14. In the middle, 

MLL harbors four plan homeodomain (PHD) fingers that facilitates protein-protein 

interactions and a bromodomain for binding acetylated lysine residues. A transcriptional 

activation- and a SET domain are found at the C-terminus (Figure 2A). Mono-, di-, and 

trimethylation of H3K4 are catalyzed by the SET domain in vitro 15,16. The third PHD finger 
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helps MLL interact with the cyclophilin CYP33, which is critical for negative MLL target gene 

regulation 17.  

In most MLL fusion proteins, the PHD finger, bromo-, activation-, and SET domains are all 

lost 18 (Figure 2B). The endopeptidase taspase-1 proteolytically cleaves wild-type MLL after 

translation. This results in two protein fragments, namely the N-terminal (MLL-N) and the C-

terminal (MLL-C) fragment, that are assembled into a large protein complex that can read 

and write H3K4me3 chromatin signatures, allowing for marking active promoter regions 

within the genome 19,20. RbBP5, Ash2L, and WDR5 are some of the other vital proteins that 

make up the MLL core complex 21. These proteins assemble into a complex which can bind to 

distinct H3K4 methyltransferases that have SET domains, such as MLL 22 (Figure 2C). MLL 

then recruits these proteins along with the histone acetyltransferases CBP/p300 and hMOF, 

to individual target genes 21,23. It was recently demonstrated that recruitment of hMOF and 

other histone modifying proteins is critical for MLL target gene expression, whereas H3K4 

methyltransferase activity of MLL is not required. 
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Structure of the MLL protein and wild-type versus aberrated MLL complexes. A Structure of wild-type MLL 

protein and its functional domains. AT, AT hooks; BCR, breakpoint cluster region; BD, bromodomain; CS1/ CS2, 
cleavage sites of taspase-1; FYRN/FYRC interacting domains of MLL-N and MLL-C after cleavage, MBD, Menin-

binding domain; PHD, PHD fingers; RD, repression domains (black box in the first RD represents the CXXC 
domain); SET, H3K4 histone methyltransferase domain; SNL, speckled nuclear localization domains; TAD, 

transactivation domain. B Chromosomal rearrangements lead to in-frame fusion between the N-terminus in 
MLL and a fusion partner. PHD -, transactivation - and SET domains are lost. C Proteins interact with the two 

MLL-N and MLL-C fragments. Proteins conferring repressive functions are depicted above the MLL protein, 
whereas activating proteins are grouped below 24. 

 
These epigenetic functions are exerted in a cell type-specific fashion by the MLL complex and 

are critical for the maintenance of stem cells and developmental processes, including mature 

cells. By retaining transcriptional memory, MLL complex ensures tissue identity 25. 

To sustain the activation of essential regulatory genes in embryonic development 26 or 

hematopoiesis27, MLL epigenetically maintains gene activation partly by H3K4 methylation 
15. For example, MLL regulates the expression of HOX genes throughout hematopoiesis. 

Figure 2 
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While stem and early progenitors show high expression of HOX genes, there is a gradual 

decrease during cell maturation28. Thus, aberrations in MLL and subsequent changes in HOX 

expression have a robust oncogenic potential in leukemia 29. 

AML gene rearrangements, usually balanced chromosomal translocations, have all been 

linked to the development of ALL or AML30. This is not a rare occurrence since chromosomal 

translocations are regularly linked to the development of human cancers. More than 350 

recurring chromosomal translocations have been linked to various forms of human cancer. 

MLL translocations, on the other hand, are notable for their vast frequency; more than 80 

distinct direct and 130 reciprocal MLL fusions have been detected in acute leukemias. Thus, 

the MLL gene is critical, as fusion genes of this gene appear to be sufficient for developing 

hemato-malignancies. However, most of these specific leukemias are caused by a small 

number of MLL fusions 30. In more than 90% of all fusion partners the chromosomal 

translocations t(4;11) [AFF1/AF4], t(9,11) [MLLT3/AF9], t(10;11) [MLLT10/AF10], and t(11;19) 

[MLLT1/ENL] occurred in ALL while 48% of cases were caused by t(9;11) [MLLT3/AF9], 

t(10;11) [MLLT10/AF10], t(11;19) [MLLT1/ENL], and t(11;19) [MLL/ELL] in AML. As a result, 

the majority of diagnosed MLL rearranged leukemias are driven by a small fraction of MLL 

translocation partner genes. The cooperation of these most common fusion partners in a 

super elongation regulatory complex led to the hypothesis that translocations involving AF4, 

AF5, AF9, AF10, AF17, ELL, ENL, pTEFb, or DOT1L could induce deregulated transcriptional 

elongation or comparable phenotypes. However, mutually exclusive binding of numerous 

members was discovered, implying the existence of various smaller, instead of one large 

complex 31-35 (Figure 3).  

Furthermore, this explanation failed to account for the various clinical phenotypes in relation 

to the fusion partner. Additionally, MLL fusions with partners such as septins, MLL partial 

tandem duplications (PTDs), or cytosolic coiled coil domain protein were not taken into 

consideration for this hypothesis. Until now, MLL rearrangements lack a simple and unified 

understanding of how they cause leukemia 24. 
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Protein complexes and nuclear proteins involved in transcriptional elongation and histone modifications. AF4, 

AF5, AF10, AF17, ENL and ELL have all been reported to fusion not only with MLL but also with each other. 

pTEFb and DOT1L probably do not assemble within one complex. Numbers display occasions for targeted 
inhibition. (1) Protein-protein: MEN1-MLL interaction. (2) Chromatin: LEDGF-K3K36me2 (inhibiting reader 

domain or ASH1L) (3) AF10 – unmodified H3K27 interaction (inhibiting reader domain or demethylases) (4) 
DOT1L – placement of H3K79me2/me3 (inhibiting methyltransferase domain). Pol II phosphorylation: (5) 

Blocking of pTEFb 24. 
 
However, a comparison of genome-wide gene expression analyses in MLL-rearranged (MLL-

r) versus MLL wild-type leukemias has shown that this subtype of leukemia exerts a distinct 

gene expression signature regardless of translocation partner and lineage differentiation 36-

38. HOX cluster genes, especially HOXA7-HOXA10 and the HOX cofactor MEIS1, are the most 

frequently upregulated genes in MLL-r leukemias 39,40. The transcription factors (TF) encoded 

by HOX genes regulate developmental processes such as segmentation and hematopoiesis 
39,41-43. Expression of HOX genes and MEIS1 is uppermost in hematopoietic stem cells and 

early progenitors and decreases with differentiation 41,44. The developmental regulators 

seem to play a pivotal role in MLL-r leukemias and maintain or confer cell growth, self-

renewal abilities, and advantages in survival. These properties might cause high levels of 

treatment resistance and an overall poor prognosis 45-47.  

 

Figure 3 
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1.2.2 Aberrations in FMS-like tyrosine kinase 3 (FLT3)  
 
FLT3 is a transmembrane tyrosine kinase receptor of the class III family and is encoded by 

the FLT3 gene, which is located on chromosome 13q12. FLT3 consists of an extracellular 

region harboring five immunoglobulin(Ig)-like domains, following a transmembrane domain 

(TM) and an intracellular domain containing the juxtamembrane (JM) and two kinase 

domains, which are separated by a kinase insert domain 48 (Figure 4). 

Figure 4 
Domain structure of FLT3. The extracellular domain consists of five IG-like domains. Following the TM the 
intracellular region contains the JM and two kinase domains, separated by the KID 49. IG, immunoglobulin; TM, 
transmembrane; JM, juxtamembrane; KID, kinase insert domain.  

 

FLT3 plays a crucial role in hematopoietic cell survival and proliferation 50. The ubiquitously 

expressed FLT3 ligand binds to FLT3, which operates as a cytokine receptor. FLT3 dimerizes 

and changes conformation after binding to its ligand, allowing auto-phosphorylation of the 

ATP-binding pocket. Through the PI3K/AKT, MAPK/ERK, and STAT signaling cascades, FLT3 

receptor activation results in decreased apoptosis, enhanced cell proliferation, and impaired 

hematopoietic cell differentiation 51 (Figure 5). FLT3 mutations are found in about 30% of 

AML patients, making it the most prevalent molecular abnormality in the disease 52. These 

molecular mutations can be divided into tyrosine kinase domain (TKD) mutations and 

internal tandem duplications (ITDs). FLT3-ITDs are found in around 25% of individuals with 

de novo AML and occur in the auto-inhibition regulating the juxtamembrane domain of the 

FLT3 receptor in exons 14 and 15 53. The length of the duplication can range from only three 

to up to more than 400 base pairs (bp). At the same time, the transcriptomic reading frame 

is preserved, either by nucleotide insertion at the ITD junction to retain the original reading 

frame or by in-frame duplication 54. Thus, the FLT3 receptor becomes more sensitive to its 

ligand, resulting in enhanced leukemic cell proliferation. Point mutations usually occur at 
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aspartic acid residue D835 in the activating loop of the tyrosine kinase domain (FLT3-TKD) in 

approximately seven percent of de novo AML cases 54.  

Both FLT3 TKDs and ITDs produce aberrant signaling via the ERK, PI3-kinase, while the latter 

alters STAT5 signaling, leading to stem cell transformation 55,56. While the prognostic 

relevance of FLT3-TKD is unclear, FLT3-ITD mutations are associated with an unfavorable 

outcome 57. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Schematic overview of tyrosine-protein kinase and its interactions. Activating mutations of FLT3 caused ITDs or 
point mutations in TKD lead to a constitutive signaling of tyrosine kinase. FLT3 signaling recruits pathways, such 
as Ras/Raf, PI3K, and STAT5, promoting cellular proliferation and chemoresistance 58. ITD, internal tandem 
duplication; TKD, tyrosine kinase domain; P3K, PI3-kinase.  
  

Figure 5 
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1.2.3 Aberrations in Isocitrate dehydrogenase (IDH) 
 

The IDH1 gene and its mitochondrial homolog IDH2 are located on chromosomes 2q33 and 

16q26 and encode catalytic enzymes IDHs 1 and 2, respectively 59. IDHs belong to the family 

of homodimeric enzymes with roles in hypoxia adaption and cellular metabolism 60-63. 

Additionally, they are one of the epigenetic regulators that have been found to be 

functionally disrupted in leukemia. The IDH enzymes are involved in the citric acid cycle and 

normally function to catalyze the oxidative decarboxylation of isocitrate, resulting in a-

ketoglutarate (a-KG) to generate NADPH from NADP+. For the proper action of numerous 

dioxygenases involved in metabolic and epigenetic control, appropriate cellular levels of a-

KG are required 64-67 (Figure 6A).  

Aberrations of those enzymes promote the conversion of a-KG to the oncometabolite (R)-2-

hydroxyglutarate (R-2HG) (Figure 6B). This product shift is caused by a decreased affinity for 

isocitrate and increased affinity for a-KG, probably due to conformational and biochemical 

changes 68-70. The structural similarity of R-2-HG to a-KG, except for the oxidation state on 

the C-2 carbon position, leads to competitive inhibition of a-KG-dependent dioxygenases 

regulating a variety of cellular mechanisms like DNA demethylation, hydroxylation and 

degradation of hypoxia-inducible factor 1a (HIF1A) or histone to protein hydroxylation 71-73. 

Especially dioxygenases such as the TET family of DNA hydroxylases and the JmjC-domain-

containing histone demethylases are most crucial. TET2 promotes DNA demethylation by 

converting 5-methylcytosine to 5-hydroxymethylcytosine 67,74, and its hydroxylase activity 

has been demonstrated to affect other epigenetic processes besides methylation alterations 
75,76. The mechanism for TET2-mediated leukemogenesis, such as enhanced proliferation and 

self-renewal properties that might be associated with a deregulation of HOXA genes, 

indicates tumor-suppressing properties in wild-type TET2 74,77-80.  

Besides functional inhibition of TET2 creating a hypermethylation profile, other R-2-HG-

dependent epigenetic mechanisms have been demonstrated. These effects include histone 

modifications, transcriptional deregulation caused by impairment of histone lysine 

demethylases (KDMs) 64,75,76,81	 , and altered splicing involving modulation of RNAPII by 

CCCTC-binding factor (CTCF) and methyl-CpG binding protein 2 (MeCP2) due to changes in 

DNA methylation 82.  
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IDH1 and IDH2 somatic mutations occur in around 20% of AML patients and arise as early 

clonal events in disease progression 83. Additionally, the mutations are relatively stable 

throughout disease progression, probably because these mutations represent early genomic 

events 84. IDH2 mutations have a higher incidence in older patients and intermediate risk 

groups and around 8–19% of AML patients are affected 11,83,85. Patients with IDH mutations 

generally have a higher blast and platelet count, and more often neutropenia 86-88. The 

mutation usually occurs in one of two arginine hotspots inside the enzymatic active site, 

either at residue R140 or R172. R140 is altered in about 80% of cases while the latter one is 

mutated in about 20% of instances. IDH1 mutations are seen in 7–14% of AML patients, and 

the most prevalent mutation is a cysteine or histidine substitution for arginine, R132C and 

R132H, respectively 83,85,89.  

Numerous studies have investigated the role of IDH1 and IDH2 mutations on prognosis in 

multiple myeloid malignancies, such as AML, with varied outcomes 90. A recent meta-study 

indicates worse overall survival for AML patients with mutations in IDH1, whereas IDH2 

mutations had a favorable prognostic impact 91. Another study focusing on IDH mutation 

ancestry could link ancestral IDH1 aberrations to a worse prognosis than subclonal IDH1 

mutations. In contrast, survival of patients with IDH2 mutations could not be associated with 

clonal hierarchy 84. These findings show that clonal dominance of mutations in IDH, which is 

at least applicable for IDH1, might play a role in these individuals' outcomes.  
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Figure 6 
The role of IDH in metabolism. (A) Normal function of wild-type IDH in the tricarboxylic acid cycle (TCA). While 
IDH1 is in the cytoplasm and peroxisomes, IDH2 resides in the mitochondria. IDH catalyzes the oxidative 
decarboxylation of isocitrate to a-ketoglutarate, producing NADPH in the process. A proline hydroxylase-
mediated mechanism controls the degradation of hypoxia-inducible factor alpha (HIF1A) by a-ketoglutarate. 
Dioxygenases, such as histone lysine demethylase and the TET enzymes, control epigenetic modifications and 
use a-ketoglutarate as a co-substrate. NADPH contributes to the glutathione reductase and thioredoxin 
systems, which protect cells from oxidative and radiation-induced damage. (B) The presence of mutant IDH1 
causes the generation of a neomorphic oncometabolite R-2-hydroxyglutarate which is produced from a-
ketoglutarate. This causes inhibition of histone lysine methylase and TET enzymes, which are required for 
proper epigenetic control. Simultaneously, the production of a-ketoglutarate and NADPH is reduced. This 
prevents HIF1A from degrading properly and increases cell survival. Reduced NADPH production raises the risk 
of oxidative stress and mutagenesis 92.  
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1.3 Therapy of AML 

 
1.3.1 Standard therapy 

 
AML treatment is usually divided into induction, consolidation, and maintenance. During 

induction, cytotoxic chemotherapy is used to induce complete remission, favorably without 

the measurable residual disease (MRD). In most cases, consolidation therapy is less intense 

than induction therapy unless HSCT is used. Maintenance therapy doses are frequently 

considerably lower than those used during induction 93. The amount of cytotoxic 

chemotherapy that can be administered strongly depends on the patient's overall health, 

which is directly tied to age. Patients with AML require extensive supportive care, including 

blood and platelet transfusions, as well as an antimicrobial medication due to treatment and 

immunocompromisation. Since the 1960s, a chemotherapeutic drug called cytarabine has 

been used for routine therapies of patients with lymphoma or leukemia 94. Cytarabine is an 

S-phase specific antimetabolite that incorporates into the DNA, subsequently impairing DNA 

polymerase and synthesis95. 

In patients <60 years, standard remission induction therapy usually comprises 7–10 days of 

cytarabine in combination with three days of an anthracycline, a DNA intercalating drug that 

interferes with DNA metabolism and binds topoisomerase II 96. Consolidation therapy usually 

entails numerous sessions of high-dose cytarabine 97. In younger individuals with AML, this 

regime results in long-term cures in 30-40% 98 whereas 5-year survival of patients >60 years 

is less than 15% 99. Dissecting the heterogeneity of AML at the cytogenetic, molecular, and 

clinical levels resulted in enhanced predictive and prognostic capacities, as well as the 

development of targeted therapies for specific AML subsets 100. 

 
1.3.2 Midostaurin as targeted therapy for patients with FLT3-ITDs 

 

Although genetic factors influence AML prognosis 93,101, therapeutic targeting of recurrently 

altered genes is difficult 102. Aberrations in epigenetic regulator genes like ASXL1 or DNMT3A 

are frequently found in AML 103 and are associated with a poor prognosis 83,104; the same 

alterations are also seen in hematopoietic stem cells of healthy older adults with clonal 

hematopoiesis 105,106. Although mutations associated with age-related clonal hematopoiesis 

appear to be essential drivers of clonal development toward AML 103,106, their presence does 
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not automatically make them therapeutic targets 107. Mutant oncoproteins only qualify as 

therapeutic targets if their inhibition causes growth restriction, differentiation, or a 

reduction in the viability of AML blasts. The constitutively active FLT3 receptor tyrosine 

kinase, caused by mutations in the FLT3 gene, is a perfect target oncoprotein in AML. FLT3 

mutations usually appear late in the course of AML pathogenesis 83,108. FLT3 oncoproteins 

hijack the signal transduction machinery of leukemic cells, resulting in a significant reliance 

on FLT3-signaling pathways for survival. When FLT3 signaling is disrupted by a tyrosine 

kinase inhibitor (TKI), apoptosis is induced both in vitro and in vivo 109,110. Due to the 

dependence of FLT3 mutated AML cells on FLT3 oncoproteins, clinical development of FLT3 

inhibitors represents an immense potential to fight this subtype of AML.  

Midostaurin is a multikinase inhibitor that targets FLT3 and was authorized by the FDA as the 

first targeted therapy for AML patients harboring FLT3 mutations 111. This first-generation 

inhibitor is relatively nonspecific (in contrast to second generation inhibitors) with additional 

activity against receptor targets, including platelet-derived growth factor receptor (PDGFR), 

protein kinase C (PKC), vascular endothelial growth factor receptor (VEGFR), CDK1, c-Syk,c- 

Src, c-Kit and c-Fgr 112,113 ( 

Figure 7). FLT3 inhibitors are further divided into two groups based on their receptor-

interaction mechanism. All FLT3 inhibitors block FLT3 receptor phosphorylation and 

activation by preventing ATP binding to the tyrosine kinase domain (TKD) 114. Type I 

inhibitors such as midostaurin or gilteritinib can interact with FLT3 both in the active or 

inactive conformation. In contrast, type II inhibitors only can bind to FLT3's hydrophobic 

region, that is accessible in the inactive conformation only. FLT3 D835 mutations at the TDK 

consequences an active conformation, preventing type II inhibitor-FLT3-TKD interaction. 

Inhibitors of the type II might select for D835 mutations over time, resulting in acquired 

resistance, but inhibitors of type I can sustain efficacy at both FLT3-TKD and FLT3-ITD 

mutations 115. In the RATIFY placebo-controlled phase III trial, administration of midostaurin 

versus placebo combined with 3+7 induction, consolidation, and maintenance for previously 

untreated FLT3+ AML were studied. Median OS and event-free survival (EFS) were 

significantly improved regardless of FLT3 mutation or tumor burden. However, the 

midostaurin and placebo groups´ complete remission (CR) rates were nearly identical. The 

most common adverse effects of midostaurin treatment were anemia, nausea, and rash 111. 
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Figure 7 
Multitarget tyrosine kinase-inhibitor midostaurin. Midostaurin binds to the catalytic domains of the 
proliferation-promoting tyrosine kinases FLT3, c-KIT, PDGFR, VEGFR-2, and serine/threonine kinase family PKC. 
Leukemia cells with FLT3-ITD and TKD mutations are susceptible to midostaurin. As a result, there is a reduction 
in the function, proliferation, and survival of these cells, as well as decreased angiogenesis 116.  
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1.3.3 Targeted therapy for patients with IDH mutations 
 

Mutant IDH inhibitors embody a new class of metabolic cancer therapy that induces tumor 

cell differentiation. Among these, the two orally available and selective small molecular 

inhibitors, ivosidenib (AG-120) and enasidenib (AG-221), target recurrent mutations in the 

isocitrate dehydrogenase genes IDH1 and IDH2, respectively 117. Both IDH inhibitors have 

been linked to IDH inhibitor differentiation syndrome (IDH-DS), an uncommon yet fatal 

adverse side effect. The onset of IDH-DS can range from 7 to up to >120 days after initiation, 

and symptoms include fever, pulmonary infiltrates, pericardial effusion, weight gain, acute 

kidney injury, or skin rash. To counteract these symptoms, treatment interruption alone 

might not be sufficient, necessitating corticosteroid therapy 118.  

 

Enasidenib is FDA approved for treating patients with IDH2mut relapsed or refractory (R/R) 

AML, that are unfit for intensive chemotherapy. This agent inhibits the formation of the 

mutant enzyme by binding to its allosteric site and maintaining a homodimer conformation, 

preventing a conformation change required for its catalysis and subsequent generation of R-

2-HG 119. Even though enasidenib monotherapy is not licensed for this use, there has been 

increased interest in using it as a first-line treatment for older patients with newly diagnosed 

IDH2mut AML who are not suitable for intensive chemotherapy. However, the exceptionally 

high overall response rates seen with azacitidine and venetoclax argue against monotherapy 

with enasidenib. However, new trials 120 investigating the effects of IDH inhibitors combined 

with venetoclax and/or azacytidine will show whether there is an overall survival benefit for 

newly diagnosed IDH1 mutant AML. 

 

Ivosidenib (AG-120) is an IDH1 inhibitor that has been approved by the FDA for treatment of 

individuals with untreated and R/R IDH1mut AML who are not candidates for intensive 

chemotherapy. The FDA first approved this drug due the findings of a phase I trial which 

showed ivosidenib treatment resulted in a 41.6 percent overall response rate in patients 

with IDH1-mutant R/ R AML, with a third of patients reaching complete remission/ complete 

remission with partial recovery of peripheral blood counts (CR/CRh) 121. Even though this 

was a single-arm study, a significant clinical benefit associated with ivosidenib therapy was 

shown, including fewer infections in responders and extinction of detectable IDH1mut in a 
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quarter of patients. Most adverse effects included diarrhea, nausea, fatigue, leukocytosis, 

decreased appetite, thrombocytopenia, anemia, peripheral edema and IDH-DS was reported 

in 18%. Because of the superior response rates achieved with upfront venetoclax and 

azacytidine therapy in elderly patients with newly diagnosed IDH1mut AML, numerous 

clinicians are preceding monotherapy with AG-120 in the frontline context 120. In October 

2020, the company Agios withdrew its European marketing authorization application after 

the European Medicinal Agency's (EMA) Committee for Medicinal Products for Human Use 

determined that results from Agios' single-arm, uncontrolled phase I study did not not 

provide enough evidence to establish a favorable benefit-risk balance for the suggested 

indication. The company stated to advance their ongoing phase III randomized controlled 

trials evaluating ivosidenib combinations in newly diagnosed AML with the goal of successful 

approval both in Europe and in the United States 122. 

 

BAY1436032 is an oral small-molecule inhibitor of mutant IDH1 that also interacts with an 

allosteric site on the mutant enzyme 123. Preclinical studies showed that BAY1436032 

suppresses R-2HG synthesis and colony formation in vitro while increasing myeloid 

differentiation, clearance of leukemic blasts, and survival in mouse models 124. Based on 

these promising results, a clinical phase I study was initiated to evaluate four different dose 

levels of BAY1436032 in individuals harboring a mutation in IDH1. BAY1436032 scored an OR 

rate of 15% and a substantially lower OS than other mutant IDH1 inhibitors in R/R AML 121. 

The low response rate could be caused by incomplete target inhibition and a shorter half-life 

compared to ivosidenib. The extent to which differences in target inhibition, as seen by 

lower R-2-HG levels and clinical response rates attained by BAY1436032 compared to 

ivosidenib, are attributed to pharmacokinetic properties is unclear 125. Some oncogenic 

qualities of mutant IDH are independent of R-2H-G 72, and it is unknown how effective 

BAY1436032 and ivosidenib are in inhibiting R-2HG-independent oncogenic effects. 

Currently, there is another non-randomized, open-label, phase I study to define the 

maximum tolerated and/or recommended phase II dose to characterize its safety, 

tolerability, pharmacokinetics, and pharmacodynamics 126. 
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2 Mechanisms of cancer progression 
 

2.1  Developmental hierarchies in AML 

 

AML pathogenesis has been studied extensively to determine how closely AML populations 

resemble the hierarchical developmental process seen in normal hematopoiesis 127-129. 

Studies have shown that leukemic cells have a hierarchical structure resembling the 

differentiation hierarchy of non-malignant hematopoiesis 127-129. The subclonal environment 

can contain both cells that hold stem-cell properties and highly developed cells without self-

renewal capacity. The former ones are termed leukemic stem cells (LSCs) and are 

characterized to initiate, propagate, and sustain leukemia after transplantation 127-129. LSCs 

possess infinite self-renewal capacity and constantly create immature blood cells. Naive 

leukemic blasts accumulate due to the block of the hematopoietic differentiation 

mechanism, one of the hallmarks of AML127-129. Although leukemic blasts lack the ability to 

self-renew, they may drive pathologic effects on hematopoietic function or tumor 

microenvironment 130. Non-malignant cells of the microenvironment also have an impact on 

disease progression. The immune system is able to defend expansion of cancer cells until 

subclones emerge that decrease or evade host immunity. Extrinsic microenvironmental 

alterations and intrinsic features of leukemic cells, such as the production of 

immunomodulatory proteins, might cause accumulation of suppressive T regulatory cells 

and hinder cytotoxic T lymphocyte activation 130. 

 

The existence of cancer stem cells was first experimentally proven in AML, and it is now 

widely accepted that AML relies on stem cells with self-renewing ability for maintenance of 

AML clones, primarily poorly differentiated blasts 1.  

Early research revealed that a fraction of CD34+ CD38- show LSC characteristics, suggesting a 

similar immunophenotype to non-malignant HSCs 131. These cells evolved into AML blasts 

after being transplanted into NOD/SCID mice, illustrating a hierarchical structure of a 

misdirected hematopoiesis originating from the stem cell level. This seemed true for most 

AML subtypes at the time, except for acute promyelocytic leukemia, where CD34+ CD38- cells 

could not confer leukemia in xenograft models.132. The expression pattern of several surface 

markers was then used to characterize the phenotype of human AML LSCs better. Markers 
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such as CD123 (IL3RA) 133, CD96 134,135, C-type lectin-like molecule-1 (CLEC12A, CLL-1) 136-138 , 

and TIM-3 20 are thought to be unique for LSCs and are being explored as targeted therapy 

for leukemia139. Recent research has discovered that AML LSCs are significantly more 

heterogeneous than previously thought. LSCs can also be found in the CD34- and CD38+ 

compartments 140,141 or in populations expressing markers of committed progenitors such as 

CD38 or CD45RA 142.  

Additionally, it was shown that in AML samples with an increased fraction of CD34+ cells, the 

activity of LSCs could also be determined in expanded subgroups with an immuno-

phenotypical progenitor state. These findings revealed that LSCs immunophenotype could 

be similar to those of granulocyte-macrophage progenitors (GMP) (Figure1) and lymphoid-

primed multipotential progenitors (LMPP), indicating a wide phenotypic variety 143. In 

addition to possessing infinite self-renewal capacity, LSCs have been thought to share many 

biological traits with non-malignant HSCs, including being predominantly in the quiescent G0 

phase of the cell cycle, and higher drug efflux pump activity, and only accounting for a small 

percentage of total leukemic cells 144. It is hypothesized that while leukemic blasts are 

eradicated during conventional chemotherapy, LSCs survive this regimen due to their 

quiescent cell cycle state leading to relapse. Because driver mutations in AML are so 

heterogeneous, the biological features such as LSC frequency, immunophenotype, and cell 

cycle vary substantially amongst leukemias 145. It was also discovered that the frequency of 

LSCs varies substantially between leukemias 132,146. Recent studies highlighted that the LSC 

frequency could change over time, with up to two logs greater LSC frequency detected in 

particular relapses compared to their matching sample at diagnosis 145. LSC frequency is vital 

for the clinical course of AML, with studies indicating that a greater LSC frequency confers 

poor prognosis and shorter relapse-free survival 147,148. 

Despite these challenges, the benefits of LSC-targeted therapeutics are appealing enough 

that extensive research is being conducted to find features that discriminates LSCs from 

HSCs and can be used to synthesize LSC-targeted agents 144. LSC-specific antigens like CD123 

or metabolic vulnerabilities such as the reliance on enhanced oxidative phosphorylation, 

more significant oxidative stress, increased activation of stress response pathways such as 

NF-kB signaling, or dependency on unfolded protein response pathways are promising 

features that could be exploited for therapeutic intervention 139. 
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However, Van Galen et al. showed that undifferentiated cells with self-renewal properties 

could be of broad interest. Also, differentiated malignant populations drive the clinical 

presentation of AML 149. Monocyte-like leukemic cells found in varying abundances in AML 

patients effectively suppressed T-cell activation in vitro. This indicates a potential role in 

altering T-cell phenotypes and creating an immunosuppressive microenvironment 130. Thus, 

characterization of mechanisms and functions of immunomodulatory subcompartments and 

assessing their connection with myeloid-derived suppressor cells could be used to alter their 

activity for therapeutic adjustments 150,151. 

 

2.2  The cell of origin in AML 

 

The normal hematopoietic cell from which the LSC develops through a series of changing 

events is known as the cell of origin of leukemia (COL). LSCs can either arise from a non-

malignant cell by a gain of proliferation of an HSC or a gain of self-renewing abilities of a 

committed progenitor (Figure 8).  

Usually, the phenotype of LSCs will reflect the consequence of numerous subsequent 

oncogenic mutations, which can result in a phenotype that does not necessarily resemble 

the COL. Since most AMLs harbor four to eight genetic abnormalities that can be identified 

as driver mutations, this malignancy is genetically extremely heterogeneous 11. 

Understanding the features of the COL is vital for understanding the origins of leukemia and 

for fathoming the underlying LSC biology. This insight might help to stratify risk factors for 

disease development and to improve LSC-targeted therapies 139.  

The human hematopoietic system is not very receptive to experimental manipulations; 

hence progress in finding the COL in human AML has been gradual over many years. A body 

of research has shown that the expression of selected MLL-X fusions is potent inducing a 

leukemic phenotype in mice 152,153. MLL-ENL and MLL-AF9 fusions expressed in lineage 

marker-depleted (Sca-1 and c-Kit-positive) bone marrow stem and progenitor (LSK) cells, 

CMPs, or GMPS, were associated with a similar phenotype 47,154,155. However, HSC-derived 

clones were more likely to initiate AML than GMP-derived clones in mice. Moreover, 

leukemias with stem cell-derived COL were less responsive to chemotherapy than the GMP-

derived leukemias. These findings show the impact of the origin of a cell on gene expression, 
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epigenetic state, and treatment responsiveness in AML. The differences in COL might explain 

clinical heterogeneity within molecularly characterized AML subgroups 47. 

 

Better insight into the COL in human AML arose with the introduction of next-generation 

sequencing (NGS) tools and their broad use to analyze AML genetics in detail. The 

identification of DNMT3A aberrations associated with AML found in lymphocytes, collected 

at remission, indicates the existence of a preleukemic HSC clone 156. Since most 

hematopoietic cells are short-lived, the acquisition of numerous mutations in a particular 

clonal lineage demonstrates a gradual accumulation, beginning with HSCs that have self-

renewal abilities 157. 

Without self-renewal properties, any obtained mutation will be lost in a short period 

because the progenitor cells exhaust their replicative potential after a finite number of 

divisions and daughter cells differentiate. AML, like most malignancies, becomes more 

common as people get older. After finding somatic mutations in HSCs and differentiated 

blood cells of older adults without hematological impairment, a precursor condition called 

age-related clonal hematopoiesis (CH) was defined. DNMT3A, TET2, and ASXL2 were the 

most prevalent CH-associated alterations, and patients with these mutations had a 

considerably greater probability of developing myeloid malignancies, including AML. As a 

result, myeloid cells in the CH compartment might have a clonal advantage over their regular 

counterparts in terms of survival and the ability to acquire further mutations, resulting in the 

formation of LSCs. Since preleukemic clones arise long periods before the onset of disease, 

only a small number of people with CH progress to AML, strengthening the assumption that 

HSCs are the COL 158,159. Nevertheless, patterns of sequential mutation accumulation from 

self-renewing CH stem cells to LSCs, and then to progenitors without self-renewal properties 

should be characterized for better understanding of clonal expansion mechanisms and 

future intervention of developing AML. The low frequency of LSCs hinders proper 

identification and genetic characterization.  

Similarly, following AML treatment, a small yet persistent cell population, known as 

measurable residual disease (MRD), is frequently enriched with hard to track LSCs . 

Surveillance is vital because MRD can arise from the therapy itself, and specialized targeted 

therapy could counteract this phenomenon. Most MRD monitoring and clinical DNA 

sequencing approaches such as NGS or flow cytometry rely on bulk tumor cells and do not 
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allow for easy clonal evolution tracking in rare tumor cells 160. However, single-cell multi-

omic approaches have demonstrated their superiority in characterizing AML stem cells or 

hierarchies 149,156,161. Gene expression distinguishes between stem cells and other leukemic 

cells, whereas genetic status can discriminate between cancer and healthy populations. 

 

Comparison of normal versus malignant hematopoiesis in AML. Two different scenarios are depicted for the cell 
of origin. In the first, HSC acquires mutation (mut) 1a, mut 2, and mut 3, leading to a leukemic stem cell with 
self-renewal properties. LSCs generate blasts without the ability of self-renewal and terminal differentiation. 
Thus, cells in the right rectangle only mimic normal hematopoiesis but do not produce functional blood cells 139. 
CLP, common lymphoid progenitor; COL, cell of origin for leukemia; GMP, granulocyte macrophage progenitor; 
HSC, hematopoietic stem cell; CMP, common myeloid progenitor; LSC, leukemic stem cell; MEP, megakaryocyte 
erythroid progenitor; mut, mutation; MPP, multipotent progenitor 
  

Figure 8  
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3 Single-cell (sc) approaches to define inter and intra-tumoral 

heterogeneity  

 
Traditional sequencing methods can only retrieve the average of numerous cells, making it 

impossible to evaluate a small number of cells and resulting in the loss of cellular 

heterogeneity information. Single-cell methods (Figure 9) offer the benefits of identifying 

variability among individual cells, detecting rare cell populations, and outlining cell maps 

compared to classical sequencing technique 162. 

The expression of a limited group of uniquely expressed marker genes has traditionally been 

used to define cell types, including the cell of origin. On the other hand, single-cell genomic 

analyses reveal a vast range of cell states based on more prominent regulatory traits found 

within generally well-defined cell identities. Various cellular programs, including 

inflammatory signaling, stochastic fluctuations in gene regulation inside a cell and the cell 

cycle, are reflected in variations in the state of a cell 163. Cell states may be identified by 

single-cell transcriptomic and epigenomic techniques, and transcription factor activity can be 

further used to define them.  
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Figure 9 
Schematic overview of used single-cell methods. For scRNA-seq, cells are loaded and partitioned on a 
microfluidic chip in the presence of oil and barcoded gel bead to create GEMs. Amplification and library 
preparation is performed in bulk after GEMS are broken. For scATAC, nuclei incubated with a transposase 
enzyme pre-loaded with sequencing adapters, are loaded onto a microfluidic chip in the presence of oil and 
barcoded gel bead to create GEMs. DNA fragments are then isolated and amplified by PCR. For targeted 
scDNA-seq, cells are loaded and partitioned on a microfluidic cartridge along with a protease enzyme mix. Cells 
are lysed, and protease is digested, enabling access to DNA. In a second encapsulation step, cell lysates are 
combined with primers, barcoded beads, and reagents. The specific regions are then amplified with a unique 
cell barcode. Amp, amplified; GEM, gel beads in emulsion; RT, reverse transcription; sc, single-cell. 

 

3.1  Single cell RNA sequencing 

 

Transcriptome analysis is a powerful methodology for solving the problem of mapping genes 

to phenotypes, which has been a long-standing barrier in biology and medicine. Although all 

cells within an organism have almost identical genomes, transcriptomic information of any 

cell only represents the activity of a selection of genes. Classical bulk sequencing only 

produces an average signal of expression from all cells, although different cell types express 
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a distinct transcriptome. Increasing data reveals that gene expression varies even within cell 

types 164-166, and that stochastic expression reflects the compositionof cell types and 

influences cell fate 167,168. The bulk of transcriptomic analysis continues to be conducted on 

the premise that cells from a particular tissue are homogenous, meaning that considerable 

cell-to-cell heterogeneity is likely to be missed. A more accurate knowledge of individual 

cells’ transcriptome will be vital for evaluating their involvement in cellular activities and 

how gene expression might drive positive or detrimental states to comprehend stochastic 

biological processes better. Since the first single-cell transcriptome analysis 169 there has 

been a global boom in interest in acquiring high-resolution pictures of single-cell 

heterogeneity. Researchers have recently deconvoluted distinct immune cell populations in 

healthy and disease conditions through significant developments in accessible experimental 

methods and bioinformatics pipelines 170. scRNA-seq (Figure 9) is also used to characterize 

cell lineage relationships in early development 171, cell differentiation 172, or cell fate 

determination 173. Additionally, scRNA-seq enables inference of gene regulatory networks 

(GRNs) that can dissect complex biological processes by revealing regulatory interactions 

between proteins and genes 174,175. Especially multimodal studies that combine single-cell 

epigenomic and transcriptome data will enable the creation of GRNs that provide more 

insight into regulatory programs and dynamics in cancer progression 176. 

 

Tumor heterogeneity is a specific event that may occur within and between tumors. 

Unknown tumor characteristics, that have been missed by bulk transcriptome investigations, 

can be revealed using scRNA-seq 177. Furthermore, it can be used to examine expression 

patterns of individual pathways or assess gene programs during drug treatment that might 

give insights into therapy resistance in cancer cells 178,179. Individual cells are constantly going 

through dynamic processes and reacting to a variety of external stimuli. Some of these 

reactions are quick, while others are more gradual and might take years to manifest. The 

molecular profile of a cell, including its protein and RNA composition, reflects this dynamic 

process 180. Single-cell approaches allow the collection of distinct instantaneous timepoints 

along a trajectory. Bioinformatic algorithms are then applied to reconstruct dynamic cellular 

trajectories based on cell cycle and differentiation 172. Several studies have shown that this 

pseudo-time assessment can infer cell fate dynamics in cancer 181,182. However, pseudo-time 

models may not be well suited to truly depict complex cell trajectories by which cells migrate 
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between cell states. Actual trajectories can include dead ends that are incompatible with a 

metastatic progressions, such as quiescent, or senescent cell populations, reversible routes 

that are consistent with trans- and dedifferentiation183 or a combination of these dynamics 
181,182. Thus, pseudotime and its accompanying bioinformatic techniques might not be 

applicable to all cancer lineage trajectories. 

Van Galen et al. demonstrated that scRNA-seq data is consistent with clinical parameters 

such as cell-surface markers by exploring transcriptomes of AML patients and a machine 

learning classifier to distinguish malignant from normal cells 149. Cells from AML samples 

were projected onto a trajectory of healthy bone marrow along the HSC to myeloid 

differentiation axis based on their similarity. Their classifier identified six malignant cell types 

that resembled one of six normal cell types along the HSC to myeloid trajectory. They were 

labeled as HSC-like, progenitor-like, GMP-like, promonocyte-like, monocyte-like or, cDC-like. 

This method has the advantage of an unbiased transcriptional classification that provides 

more complex information on AML cell types and hematopoietic differentiation and is not 

restricted to a limited number of predefined markers. Investigation of subclonal 

transcriptomic expression revealed immunomodulatory properties of monocyte-like blasts, 

whereas HSC-like cells showed dysregulated transcriptomic patterns. The combination of 

single-cell genetic and transcriptomic data not only allowed the characterization of the 

tumor ecosystems in AML, the distinguishment between healthy and malignant cells, but 

also for definition of AML hierarchies. This study also depicts the potential for scRNA-seq to 

elucidate LSC evolution or characterization of pre-malignant clones in the future. 

 

3.2 Single cell ATAC sequencing 

 
The human epigenome involves various molecular processes that control the accessibility of 

genomic information. While genes, that are crucial to maintain particular cell type states, are 

kept accessible, dispensable genes will be epigenetically silenced. Hence, epigenetic 

variation provides gene regulatory mechanisms relevant during physiological cell maturation 
184,185. Epigenetics, on the other hand, are not only involved in physiological development 

but also in disease etiology, including cancer. In disorders like cancer, these gene regulatory 

mechanisms are disrupted, resulting in altered gene expression that promotes cancer 

initiation, growth, and metastasis 186,187. Oncogenic mutations in a putative cell of origin 
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cause regulatory program disruption, culminating in a cascade of cellular phenotypic 

modifications and abnormal cell function 188,189. However, tumor cells maintain an epigenetic 

memory that reflects their cell-of-origin 190. It is becoming evident that the epigenetic 

environment influences the mutational processes that lead to cancer. Thus, genetic and 

epigenetic variation are strongly intertwined and cannot be treated as independent 

occurrences 47,190,191.  

The fast advancement of single-cell genomic technologies in recent years revealed the range 

of cell states that exist during cancer formation, maintenance, and therapy resistance 192. 

Enhanced cellular plasticity mediates these cellular phenotypes, resulting in progressively 

evolving changes in chromatin landscape, similar to gene regulation during development, 

and increased intratumoral heterogeneity (ITH) 193. Due to this heterogeneity, bulk assays 

fail to characterize distinct mechanisms of gene regulation that have an impact on tumor 

progression. Profiling of heterogeneous cancer cell states was improved by single-cell 

epigenomics 194-198. Single-cell studies have shown substantial differences in cell identity 

within tumors, and tumor cells were reported to acquire developmental programs and 

distinct cell fates 181,199,200. These losses or shifts of lineage identity contribute to ITH and 

seem continuous, with no distinct subpopulations in the tumor 200. Single-cell epigenomic 

approaches, such as coupled single-cell transcriptomic and epigenomic readouts to identify 

regulatory dynamics of TFs, can can shed light into the molecular processes that modulate 

trans- and dedifferentiation fates 201-203. By exploiting the association of chromatin 

accessibility with gene expression across single cells, computational tools employing multi-

omic single-cell technologies, such as scATAC-seq combined with scRNA-seq, can connect 

distant enhancers to genes. These methods can detect regulatory chromatin domains that 

characterize chromatin areas with a high density of enhancer-gene interactions. Lineage-

determining genes are usually enriched in domains of regulatory chromatin which highly 

overlap with regulatory regions termed super enhancers 203,204. Accessibility at of regulatory 

chromatin domains precedes gene expression, implying that alterations may prime cells for 

lineage commitment. The development of single-cell methods that assess chromatin 

accessibility allows to discover deregulated TFs that enhance the activation of lineage-

skewing regulatory elements, exposing processes that drive cell lineage infidelity. 

  



Introduction 
 

 28 

3.3 Single cell DNA sequencing 

 
scDNA-sequencing (Figure 9) overcomes the limits of bulk sequencing to capture DNA 

mutations that are only present in a small fraction of cells 205. Sequencing error a fixed 

proportion of total sequencing coverage, limits bulk DNA sequencing. Although deeper 

sequencing coverage can improve sensitivity for low-frequency mosaic DNA characteristics, 

sequencing error further increases. This means that mosaic features lower than 0.5% 

mosaicism cannot be discriminated from sequencing errors and are not detected 205,206. 

scDNA-seq, however, is not restricted by sequencing error because it is substantially less 

than the anticipated 50% score for heterozygous features. Nonetheless, single-cell DNA 

amplification errors can sometimes outperform actual genetic traits, necessitating the 

continual development of innovative technologies for high-fidelity single-cell genome 

amplification 207. Additionally, scDNA-seq is capable of detecting co-presence of two 

different low-level mosaic genetic variants in the same cells or if they are mutually exclusive. 

Prior to sequencing, bulk procedures homogenize materials, obliterating information on 

mosaic DNA features within the same cell or other cellular subsets. scDNA-seq, on the other 

hand, keeps this information. Especially in cancer research, scDNA-seq has paved the way to 

analyze the evolutionary mechanisms that evolve due to selection forces throughout 

oncogenesis, proliferation, and therapy 208-210. Cancer produces genetically heterogeneous 

lineages throughout time, and the resulting ITH is critical in tumor growth, metastasis, and 

response to therapy 211. The ITH is determined by its driver mutations and the subclonal 

structure of its lineages which are both crucial for understanding its biology. Most cancers 

harbor more than one main subclonal lineage and many also show a higher number of low-

frequency clones 212-215. Subclonal diversity discovered by scDNA-seq has been linked to 

tumor subtype in some circumstances; for example, AML patients with FLT3 mutations show 

higher clonal diversity than in FLT3 wild-type AML 216. One study also highlighted that the 

presence of four or more subclonal lineages correlates with poor prognosis, indicating 

subclonal diversity might function as a prognostic marker 217. While bulk DNA sequencing 

data may infer ITH 218, scDNA-seq gives a more complete and high-resolved perspective of 

clonal development and ITH 208. Subclonal patterns obtained from scDNA-seq and bulk DNA 

are mostly consistent. However, the first frequently discloses subclones not seen in bulk 
215,216,219. Additionally, scDNA-seq is less impaired by a small sample size or low tumor purity. 
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Information on cancer onset and its mutational processes could be revealed using 

phylogenetic studies of ITH profiles acquired by scDNA-seq. There, the occurrences of 

mutation types and certain driver mutations that arise can be ordered and dissected. Many 

structural variants, such as copy number aberrations or aneuploidies, are acquired early 

within a short time frame during tumor evolution, a term called punctual clonal evolution. 

On the contrary, point mutations can occur continuously with a few later-accumulating focal 

copy number aberrations that involve specific driver genes 210,219-223. This indicates that the 

origins of certain occurrences of many cancers are due to genome-wide, high-impact 

mutational bursts rather than a gradual accumulation of mutations. Surprisingly, some 

studies found cell populations within the same patient that could not be linked to the 

expected tumor lineage yet possessed a modest amount of copy number aberrations or just 

one driver mutation. This probably represents driver gene anomalies and baseline copy 

number aberrations in normal cells 216,223,224. The association between these cells and the 

onset of cancer is currently unknown. Therefore, it is a significant area for future 

investigation. scDNA-seq may one day enable the determination of the cells of origin, 

resolving long-standing arguments over the presence and significance of tumor stem cell 

hierarchies 208,225. scDNA-seq has also shown that ITH changes throughout clinical therapy 

and mutant blasts acquire resistance to treatment. While one study could detect therapy-

resistant subclones prior to treatment 226, another study employed targeted scDNA-seq 

combined with immunological profiling to examine the phenotypic shifts that malignant cells 

were exposed to after being treated with a medication stimulating erythroid differentiation 
227. The ability of scDNA-seq to reveal different responses of tumor cells with individual 

genotypes to the same therapy is highlighted in this work. This method will be a crucial guide 

for converting subclonal genotypes into treatment response predictions if widely adopted. 

However, there are two drawbacks to using scDNA-seq for therapy monitoring. To begin 

with, tumor collection during therapy is typically only achievable at discrete, sporadic 

intervals. Second, ITH and treatment resistance are not solely caused by genetics; epigenetic 

heterogeneity also influences tumor cell biology 226,228. Especially when combined with other 

multi-omics, spatial or high-throughput capabilities, scDNA-seq is a powerful tool to alter 

cancer research. Genotype-phenotype correlations may be built using multi-omic scDNA-seq 

to learn how certain subclonal genotypes are linked to cellular phenotypes, invasiveness, 

therapy responsiveness, and more 227,229-231. 
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4 Scope of the thesis 

 
This thesis aimed to develop a framework that dissects AML intra-tumor heterogeneity in 

patients with different genetic aberrations that represent major AML subgroups (MLL, 

IDHmut, and FLT3-ITD rearranged AMLs). I investigated AML pathogenesis from different 

perspectives (transcriptome, open chromatin, and genetic lesions) using a multi-omics 

approach.  

The first aim of the thesis was to establish an experimental and bioinformatic workflow 

needed for the identification and classification of myeloid leukemic cells. Various tools for 

leukemic cell determination, integration, and pseudotime analysis were employed to 

generate a framework that could be used for all further AML patient samples.  

The second aim was to dissect inter- and intra-tumoral heterogeneity and classify 

developmental stages of leukemic cells carrying MLL-EDC4 fusions along the hematopoietic 

stem cell to the myeloid trajectory compared to other MLL fusions. I could identify the 

differential stages of AML blasts and uncover a unique phenotype of leukemic cells with an 

MLL-EDC4 fusion.  

The third aim was to gain mechanistic insight into why responsiveness to midostaurin 

treatment is lost in FLT3-ITD rearranged AMLs. This was addressed by performing a scRNA-

seq, scATAC-seq, and targeted scDNA-seq analysis. It revealed links of aberrant FLT3 activity 

to gene expression and chromatin accessibility changes of leukemic cells during relapse that 

the emergence of resistant subclones could explain. 

The fourth aim was to assess the ability of mutant IDH inhibitors to revert chromatin 

accessibility changes and aberrant transcription factor binding induced by the mutation. 

Both experiments using cell lines and primary samples were conducted to explore this 

epigenetic scarring. A partially reversible pattern of accessibility after treatment of IDH1mut 

with the inhibitor was observed. Similarly, the scATAC-seq analysis of the TF1 cell line 

carrying IDH2mut treated with AG-221 could identify partial response to treatment as well.  

The fifth aim was to stratify patient-specific AML blasts based on the scRNA-seq analysis 

along the HSC to myeloid differentiation axis across the three AML subgroups (MLL fusions, 

FLT3 mutations, and IDH mutations) and to compare the influence of treatment on cell type 

abundance. The analysis revealed an extensive malignant cell diversity and provided detailed 

information on AML cell types and differentiation states.  
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By addressing these five aims, my thesis work introduces an integrative single-cell analysis of 

the transcriptome, open chromatin, and genome to dissect AML cell types. It provides 

detailed knowledge of cellular hierarchies, epigenetic changes, and their impact on gene 

regulation. It is concluded that extending this approach to a larger number of patient 

samples will provide valuable insight into disease heterogeneity and treatment response for 

clinical decision-making. 
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Materials and Methods 
 
1  Materials 
 
1.1 Custom buffers 

 

Table 2 Buffer composition 

 
1.2  Commercial kits and reagents 

 

Table 3 Commercial kits and reagents 

Buffer Composition 

20× PBS 45 mM Na2HPO4; 181 mM NaH2PO4; 3 M NaCl (pH 7.4) 

Elution buffer  50 mM Tris (pH 8.0), 1 mM EDTA, 1 % SDS, 50 mM NaHCO3  

Erythrocyte lysing buffer (pH 7.2) 50 mM Tris (pH 8.0), NH₄Cl, ddH2O, 1 M HCl 

Freezing medium  90 % FBS, 10 % DMSO 

TE buffer  10 mM Tris pH 8.0, 1 mM EDT 

Kit/reagent Item number Company 

10% tween-20 1662404 Bio-Rad, USA 

1x penicillin-streptomycin, 10,000 U/mL penicillin, 10 
mg/mL Streptomycin 

P06-07050 PAN-Biotech, Germany 
 

Agilent high sensitivity DNA kit 5067-4626 Agilent Technologies, USA 

Cell titer glo G7571 Promega, USA 

Chromium chip E single cell ATAC kit, 16 reactions PN-1000086 10x Genomics, USA 

Chromium i7 multiplex kit PN-120262  10x Genomics, USA 

Chromium next GEM nhip J single cell kit, 16 reactions PN-1000230 10x Genomics, USA 

Chromium next GEM single cell multiome ATAC kit A, 
16 reactions 

PN-1000280 10x Genomics, USA 

Chromium next GEM single cell multiome reagent kit 
A, 16 reactions  

PN-1000282 10x Genomics, USA 

Chromium single cell 3’ library & gel bead kit v2  PN-120237  10x Genomics, USA 

Chromium single cell 3ʹ GEM, library & gel bead kit 
v3,16 reactions 

PN-1000075 10x Genomics, USA 

Chromium single cell A chip kit  PN-1000009 10x Genomics, USA 

Chromium single cell ATAC library & gel bead kit, 16 
reactions 

PN-1000110 10x Genomics, USA 

Chromium single cell B chip kit, 16 reactions PN-1000074 10x Genomics, USA 

D1000 ladder 5067-5586 Agilent Technologies, USA 

D1000 reagents 5067-5583  Agilent Technologies, USA 

D1000 sample buffer 5067-5602  Agilent Technologies, USA 

D5000 ladder 5067-5590   Agilent Technologies, USA 
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D5000 reagents 5067-5589    Agilent Technologies, USA 

D5000 ScreenTape 5067-5588   Agilent Technologies, USA 

Deoxynucleotide (dNTP) solution mix N0447S New England Biolabs, USA 

Digitonin  D141-100MG Merck Sigma-Aldrich, Germany 

Dimethyl sulfoxide (DMSO) D2650  Sigma-Aldrich, Germany 

DTT 646563  Millipore Sigma, USA 

Dual index kit TT set A, 96 reactions PN-1000215 10x Genomics, USA 

Enasidenib 21277 Cayman Chemical, USA 

Ethanol, pure (200 proof, anhydrous)  E7023-500ML  Millipore Sigma, USA 

Fast DNA ladder N3238S New England Biolabs, USA 

Fast SYBR green master mix (2x) 4385612 Thermo Fisher Scientific, USA 

Fetal bovine serum P30-3602 PAN-Biotech, Germany 

Gibco RPMI 1640 (ATCC Modification), 500mL  A1049101 Fisher Scientific, USA 

Glycerin (glycerol), 50% (v/v) aqueous solution PN-3290-32 Ricca Chemical Company, USA  

High sensitivity D1000 ScreenTape 5067-5584  Agilent Technologies, USA 

Human GM-CSF Recombinant Protein PHC2011 Thermo Fisher Scientific, USA 

Library construction kit, 16 reactions PN-1000190 10x Genomics, USA 

MgCl2 (25 mM) R0971  Thermo Fisher Scientific, USA 

NEBnext HF 2x PCR master mix M0541S  New England Biolabs, USA 

Nuclei EZ Lysis Buffer N3408 Sigma-Aldrich, Germany 

Protease inhibitor cocktail (100X) 5871 Cell Signaling Technology, USA 

Proteinase K solution (20 mg/mL) M3037.0005  Genaxxon bioscience, USA 

Q5® HF DNA polymerase M0491S New England Biolabs, USA 

Qubit dsDNA HS assay kit Q32851 Thermo Fisher Scientific, USA 

Qubit RNA HS assay kit Q32852  Thermo Fisher Scientific, USA 

Recovery™ cell culture freezing medium 12648010 Thermo Fisher Scientific, USA 

Sigma protector RNase inhibitor  3335399001  Millipore Sigma, USA 

Single index kit N set A, 96 reactions PN-1000212 10x Genomics, USA 

SPRIselect reagent kit B23318  Beckman Coulter, USA 

ß-mercaptoethanol  63689 Sigma-Aldrich, Germany 

Tagment DNA buffer (TD-buffer; 2x) 15027866 Illumina, USA  

Tagment DNA enzyme (Tn5 transposase) 15028212 Illumina, USA  

Tapestri single-cell cartridge kit MB02-0001 Mission Bio, USA 

Tapestri single-cell DNA kit v1 MB03-0017 Mission Bio, USA 

Tapestri single-cell DNA myeloid kit v2 MB03-0017 Mission Bio, USA 

Triton X-100 1.08643.1000 Merck Sigma/Aldrich, Germany 

Venor GeM advance kit 11-7024 Minerva Biolabs, Germany 

Wizard SV gel and PCR clean-up system  A9281 Promega, USA 
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1.3  Instruments 

 

Table 4 Instruments 

 
1.4  Software 

 

 Table 5 Software 

 
 
 
 
  

Instrument Company 

2100 Bioanalyzer instrument  Agilent Technologies, USA 

ChemiDoc MP imaging system Bio-Rad, Germany 

E-Gel Safe Imager Invitrogen, USA 

HiSeq 4000 sequencing system Illumina, USA 

LUNA automated cell counter  Logos Biosystems, South Korea 

Mission Bio Tapestri platform   Mission Bio, USA   

NovaSeq 6000 system Illumina, USA 

Qubit 2.0 fluorometer  Thermo Fisher Scientific, USA 

StepOnePlus real-time PCR system   Thermo Fisher Scientific, USA 

T100 thermo cycler   Bio-Rad, Germany  

Tapestation 4200 Agilent Technologies, USA 

NanoDrop One Thermo Fisher Scientific, USA 

Software Version Source 

Affinity Designer 1.10.4 Serif (Europe) Ltd., UK 

BED Tools 2.25.0 Quinlan & Hall, 2010 232 

Biorender last accessed: March 2022 Biorender, USA 233 

DiffBind 2.12.0 Ross-Innes et al., 2012 234 

FastQC 0.11.9  Andrews, 2010 235 

IGV Tools 2.3.23 Robinson et al., 2011 236 

Integrative Genomics Viewer  2.6.2 Robinson et al., 2011 236 

Macs2 2.1.2 Zhang et al., 2008 237 

MultiQC  1.7  Ewels et al., 2016 238 

RStudio  1.0.153 RStudio, USA 

SAMtools 1.3  Li et al., 2009 239 

Tapestri Insights 2.1  Mission Bio, USA 

Trimmomatic 0.36 Bolger et al., 2014 240 
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1.5  R packages 

 

Table 6 R and Python packages 

 
1.6  Patient samples 

 

Written informed permission from all patients in this study was obtained from clinical 

partners. Cells of MLL-X patients were kindly provided by Prof. Dr. Michael Lübbert 

(Department of Internal Medicine I, University of Freiburg). These cells were collected from 

peripheral blood or bone marrow and enriched for mononuclear cells (MNCs) via Ficoll-

Hypaque. EDC4-MLL fusion cells were additionally depleted from CD3+ cells using autoMACS 

(Miltenyi Biotec), as described previously 264. Cells of FLT3-ITD or IDH1mut patients were 

kindly provided from Prof. Dr. Konstanze Döhner and Prof. Dr. Hartmut Döhner (Department 

Package Source 

Bioconductor Gentleman RC et al., 2004 241 

Complex heatmap Gu et al., 2016 242  

Copykat Gao et al., 2021 243  

Cytoscape Gustavsen et al., 2019 244 

Data.table Dowle et al., 2021 245 

Dorothea Garcia-Alonso et al., 2019 246 

Escape Borcherding et al., 2021 247 

Ggplot2 Hadley Wickham, 2016 248 

Ggpointdensity Kremer et al., 2019 249 

Harmony  Korsunsky et al., 2019 250  

Hyperr Federico et al., 2020 251  

Numpy Harris et al., 2020 252 

Paga Wolf et al., 2019 253 

Pandas Pandas Development Team, 2020 254 

Scanpy Wolf et al., 2018 255 

Scrublet  Wolock et al., 2019 256  

Sctransform Hafemeister et al., 2019 257  

Scvelo Bergen et al., 2020 258 

Seurat Satija et al., 2015259  

Singler Aran et al., 2019 260  

Slingshot Street et al., 2018 261 

Velocyto.R La Manno et al., 2018 262 

Viridis Garnier et al, 2021 263 
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of Internal Medicine III, University Hospital Ulm). These samples were obtained from bone 

marrow aspirates from of the respective patients. 

 
Table 7 Overview of MLL-X patients 

 
 
Table 8 Overview of FLT3-ITD and IDH1mut patients 

  

Patient 1 2 3 4 

Aberrations MLL-EDC4  MLLT3-MLL MLLT3-MLL MLL-ELL 
Sex/age F/56 F/28 F/58 F/57 

AML type Secondary AML 
evolving from MDS 
(no prior CTx) 

T-AML (after 
RCTx for 
Hodgkins 
lymphoma), no 
MDS phase 

De-novo AML, 
no MDS phase 

T-AML (after 
RCTx for ovarian 
cancer), no MDS 
phase 

Prior AML treatment Dezitabine (DAC) - - - 

Timepoint Before 4th cycle of 
DAC, 7 weeks no 
treatment 

Diagnosis 

 

Diagnosis 

 

Diagnosis 

 

Karyotype 46, XX,  
t(11;16)(q23;q12)  

46, XX, 
t(9;11)(p22;q23) 

46, XX, 
t(9;11)(p22;q23) 

46,XX, 
t(11;19)(q23;p13) 

% of fusion cells  85% 90% 95% 82% 

Cell source PBMC CD3 depleted BM MNC BM MNC PBMC 

% blasts (% nuclei with MLL 
fusion detected by FISH) 

90 (85) 
 

78 (90) 
 

95 (95) 
 

57 (82) 
 

scRNA-seq #cells 4 974 1 928 3 906 5 502 

scRNASeq median 
genes/cell 951 624 856 1 225 

 
Patient 

 
FLT3-ITD AML-1 

 
FLT3-ITD AML-2 

 
IDH1mut AML 

Timepoint Diagnosis Relapse Diagnosis Remission Relapse Diagnosis Remission Relapse 

Treatment Untreated Midostaurin Untreated Midostaurin Midostaurin Untreated AG-120 AG-120 

scRNA 
# cells 
# filtered cells 
# median 
genes/cell 

 
7 601 
3855 
1 960 

 

 
1 244 
413 

2 649 
 

 
5 445 
4 918 
3 589 

 

 
5 172 
2 700 
1 681 

 
8 315 
7 011 
2 969 

 
1 194 
485 
387 

 
3 610 
2 673 
991 

 

 
2 678 
1712 
1350 

scATAC 
# cells 
# filtered cells 
# median 
fragments/cell 

 
1 709 
1 493 
6 987 

 
3 970 
3 647 
4 610 

 

 
2 911 
2308 
6 828 

 

 
212 
55 

6 688 
 

 
2 329 
1 552 
7 593 

 
1 122 
505 

6 234 

 
1 746 
782 

3 652 

 
 

-- 

scDNA 
#cells 
#toal reads 
#reads/amplicon/
cell 

 
1 169 
28M 
36 

  
3370 
35M 
30 

  
686 
42M 
124 

  
3 384 
110M 

18 

 
2 767 
117M 

13 

 
765 
32M 
110 

 
4 327 
62M 
37 

 
1 275 
85M 
19 
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2 Oligonucleotide sequences 
 
Table 9 Sequencing primers 

 
  

Oligo name Sequence (5´à 3´) Application Reference 

1 GACTTCTT scDNA-seq, myeloid V1 Mission Bio, USA 

2 TTATTCTT scDNA-seq, myeloid V1 Mission Bio, USA 

3 CGCGGCTT scDNA-seq, myeloid V1 Mission Bio, USA 

4 AGGAGCTT scDNA-seq, myeloid V1 Mission Bio, USA 

5 CCTTCATT  scDNA-seq, myeloid V1 Mission Bio, USA 

6 CAGCTCGT scDNA-seq, myeloid V1 Mission Bio, USA 

7 TAGGACGG  scDNA-seq, myeloid V1 Mission Bio, USA 

8 TTCCTAGG  scDNA-seq, myeloid V1 Mission Bio, USA 

Nextera index PCR primers 

Index 1 read (custom) 

CAAGCAGAAGACGGCATACGAGA 
T[i7]GTCTCGTGGGCTCGG 

ATAC-seq Adapted from 
Illumina, USA 

Nextera index PCR primers 

Index 2 read (custom) 

AATGATACGGCGACCACCGAGAT 
CTACAC[i5]TCGTCGGCAGCGTC 

ATAC-seq Adapted from 
Illumina, USA 

Nextera transposase 
adapter read 1 

TCGTCGGCAGCGTCAGATGTGTA 
TAAGAGACAG 

ATAC-seq Illumina, USA 

Nextera transposase 

adapter read 2 

GTCTCGTGGGCTCGGAGATGTGT 
ATAAGAGACAG 

ATAC-seq Illumina, USA 

IDH2 forward primer AATTTTAGGACCCCCGTCTG Sanger sequencing Merck, Germany 

IDH2 reverse primer TGTGGCCTTGTACTGCAGAG Sanger sequencing Merck, Germany 
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3 Experimental procedures 
 
3.1 Cell culture, treatment and sample preparation 

 
3.1.1 Cell lines and cell culture material 
 

Table 10 AML cell lines 

 
 
Table 11 Cell culture material 

 
 
3.1.2 Cell culture of TF-1 cells 
 
Cells were cultured in ATCC modified Gibco RPMI 1640 medium (Table 11). For cultivation, 

TF-1 cells (Table 10) were seeded at a density of 1-4 x105 cells/mL in T-25 flasks suitable for 

suspension cells. Cells were split alternating every second or third day or at densities over 

1x106 cells/mL. Treatment with Enasidenib was conducted for 6 days at 37°C and 5% CO2. 

Enasidenib was freshly diluted with dimethyl sulfoxide (DMSO) in a serial dilution from a 10 

mM stock. For control conditions, DMSO was added to the media in equal volumes. 

Incubation with Enasidenib was refreshed by medium exchange after 3 days, ensuring 

constant drug concentration. For this, cells were spun down, old media was discarded and 

fresh media containing the drug or DMSO alone was added. Cells were counted in 

combination with trypan blue using a Luna cell counter and directly processed or frozen in 1 

mL freezing medium (Table 11).  

Cell line RRID Growth medium Reference 

TF-1 CVCL 0559 Gibco RPMI 1640 ATCC  Kitamura et al., 1989 265 

TF-1 IDH2 R140mut CVCL 0559 Gibco RPMI 1640 ATCC Kitamura et al., 1989 265 

Medium / supplement Company 

Gibco RPMI 1640 (ATCC Modification), 500mL Thermo Fisher Scientific, USA 

1x Penicillin-streptomycin, 10,000 U/mL penicillin, 10 mg/mL 
streptomycin 

PAN-Biotech, Germany 
 

Fetal bovine serum PAN-Biotech, Germany 

Human GM-CSF cecombinant protein Thermo Fisher Scientific, USA 

Recovery™ cell culture freezing medium Thermo Fisher Scientific, USA 
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3.1.3 Freezing of viable cells 
 

Viable cells were frozen by resuspension of the cell pellets containing a minimum of 1x106 

cells. The commercially available recovery cell culture freezing medium (Table 11) was used. 

The cell suspension was carefully homogenized by pipetting up and down 10 times and 

gently chilled to -80 °C overnight before being transferred to -120°C.  

 

3.1.4 Mycoplasma test 
 

Venor GeM advance kit was used to test cell lines for mycoplasma contamination on a 

regular basis, according to the manufacturer's instructions. For this, 500 µl of confluent cell 

culture medium was transferred and heated to 95°C for 10 minutes. The sample was 

centrifuged at 13,000 rpm for 10 minutes at room temperature, and the supernatant was 

moved to a new tube. 2 µl of sample and 23 µl of rehydration buffer were added to the PCR 

tube which was included in the kit. For positive controls, 25 µl of rehydration buffer were 

added. PCR was carried out according to manufacturer’s instructions, then 5 µl of each 

sample were put onto a E-Gel (2%) and run twice for 8 minutes using the E-Gel safe imager. 

ChemiDoc XRS+ system was used to examine the gel. 

 

3.1.5 Luminescent cell viability assay 
 

1 200 cells were counted via Luna cell counter and seeded into sterile 96 well-corning plates 

in 100 µl in medium in total. One row of wells was reserved for medium only accounting for 

background signal. Serial dilution of Enasidenib was performed, starting with a concentration 

of 50 µM into row 11, yielding concentrations from 0.1 µM – 25 µM. Next, cells were 

incubated for six days at 5% CO2 at 37°C. Media was exchanged after three days, ensuring 

constant treatment concentrations. DMSO was present in identical levels in all treatment 

dosages, and the maximal DMSO content in the medium was less than 0.1%. Cell viability 

was assessed by measuring luminescence generated due to ATP release using cell-titer glo. 

The manufacturer's instructions were followed accordingly. Before measurement, cells were 

transferred into a white opaque flat bottom 96 well plate and equilibrated at room 

temperature for 20 minutes. The lysis reagent was made from a 1:1 solution of complete 
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medium and equilibrated at room temperature for 30 minutes. The plate's supernatant was 

discarded, and 200 µL of lysis medium mixture was administered to each well. A plate shaker 

was used to agitate the plate for 6 minutes at 600 rpm. Wells were resuspended with a 

multichannel pipette with extreme caution to avoid forming bubbles. Luminescence was 

measured using a Tecan plate reader via the luciferase program with an integration time of 

1ms. After averaging each condition, the background signal was removed, and each cell 

line's signal was standardized to DMSO controls. 

 

3.1.6 Sanger sequencing of TF-1 cells  
 

To ensure presence of IDH2wt and IDH2mut in TF-1wt and TF-1 IDH2mut, respectively, 

sanger sequencing of the IDH2 amplicon was performed. Therefore, 1x105 were collected 

and spun down for 5 minutes at 10 000 rpm. Media was flicked off and 200 µl direct PCR 

buffer was added to the samples and resuspended. 1/100 of 0.2 mg/mL proteinase K was 

then added to break proteins and incubated overnight on a heat block at 55°C. The next day 

proteinase K was inactivated by heating the mixture at 85°C for 45 minutes. Using a 

Nanodrop concentration was measured. Subsequently, a PCR was performed with 2 µl of the 

mixture. Annealing temperature of 65°C was calculated based on the NEB Q5 Tm calculator. 

 
Table 12 Reagents for direct PCR 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Reagent Volume 

10 ng gDNA x µl 

25 mM dNTP‘s 0.4 µl 

5x Q5 reaction buffer 10 µl 

10 µM forward primer 2.5 µl 

10 µM reverse primer 2.5 µl 

Q5 Polymerase 0.5 µl 

H20 x µl 

Total 50 µl 
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Table 13 PCR for sanger sequencing 
 
 
 
 
 
 
 
 

 
PCR products were then cleaned up using Wizard SV gel and PCR clean-up system. 

Subsequently the samples and the fast DNA ladder were transferred onto a 2% E-Gel and run 

twice for 8 minutes using the E-Gel safe imager. ChemiDoc XRS + system was used to 

examine the gel and the expected band at a size of 357 bp. The PCR products were then 

diluted with nuclease free water to a concentration of 7.5 ng/µl into two fresh 1.5 mL tubes. 

The tubes were then labeled with pre-bought barcodes for Sanger sequencing at Microsynth. 

Together with a tube of 4 µM IDH2 primer the amplicons were shipped to Microsynth and 

sequenced overnight. Sequencing data was then examined in IGV browser track.  

 

3.2 ATAC-seq 

 

ATAC-seq of AML patients treated ex vivo with BAY-1436032 was performed using 50 000 

cryopreseved cells per technical replicate. After thawing a frozen vial, technical duplicates 

were created by dividing cells and performing ATAC-seq sequencing library preparation in 

parallel. Cells were spun down at 500 g for 5 minutes at 4°C and supernatant was discarded. 

Cells were lysed with a tagmentation mix consisting of 9.75 µl H2O, 12.50 µl 2x transposase 

buffer, 0.50 µl protease inhibitor cocktail, 2 µl Tag DNA enzyme and 0.25 µl of 1% digitonin. 

After carefully resuspending the cell pellet with the tagmentation mix, samples were 

incubated for 30 minutes at 37°C and the reaction was then halted by transferring the 

samples on ice. The tagmented DNA was purified using Qiagen MinElute kit and were eluted 

in 12 µl of EB-buffer. Next, a qPCR was performed to obtain optimal cycle numbers for each 

sample. For the enrichment PCR 2.9 µl nuclease-free water, 2.5 µl each of custom Nextera 

index PCR primers 1 and 2, 25 µl NEBnext HF 2x ready master mix and 10 µl of tagmented 

sample was added. Following, libraries were purified using AMPure beads with a ratio of 

Direct PCR Temperature Time Cycles 

Initial denaturation 98°C 30 sec  1x 

Denaturation 98°C 10 sec  

30x Annealing 65°C 30 sec 

Extension 72°C 20 sec 

Final extension 72°C 2 min 1x 

Hold 4°C ∞ 1x 
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1:1.6 and samples were eluted in 50 µl EB-buffer. Then a right sided AMPure beads selection 

with 1:0.5/1.4 was performed to get rid of high molecular peaks. Samples were then eluted 

in 15 µl of EB-buffer. DNA was quantified via Qubit 2.0 fluorometer and the Qubit dsDNA HS 

assay kit. The mean peak sizes were assessed via TapeStation system. Samples were pooled 

at equimolar concentrations and sequenced at the DKFZ Genomics Core Facility. 

 

Table 14 Reagents for ATAC tagmentation mix 
 

 

 

 

 

 

 

Table 15 Reagents for ATAC qPCR 
 

 

 

 

 

 

 

 

Table 16 Settings for ATAC qPCR 
 

 

 

 

 

 

 

 

 

Reagent Volume 

H2O 9.75 µl 

2x Transposase buffer 12.50 µl 

Protease inhibitor cocktail 0.50 µl 

Tag DNA enzyme 2.00 µl 

1% Digitonin 0.25 µl 

Total 25 µl 

Reagent Volume 

H2O 2.9 µl 

Index primer 1 0.5 µl 

Index primer 2 0.5 µl 

100x SYBR green 0.1 µl 

NEBnext HF 2x ready MM 5 µl 

Tagmented sample 1 µl 

Total 10 µl 

qPCR Temperature Time Cycles 

Initial annealing 72°C 5 min  1x 

Initial denaturation 98°C 30 sec  1x 

Denaturation 98°C 10 sec  

25x Annealing 63°C 30 sec 

Extension 72°C 1 min 

Hold 4°C ∞ 1x 
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Table 17 Reagents for ATAC enrichment PCR 
 

 

 

 

 

 

 

Table 18 Settings for ATAC Enrichment PCR 
 

 

 

 

 

 

 

 

3.3 scRNA-seq of primary AML samples 

 

The experiment was conducted according to the manufacturer's standard procedure for 

Chromium single cell 3' reagent kits v2 or v3. Frozen viable cells were thawed for 30 seconds 

in a water bath with a temperature of 37°C. Cells were then washed twice with 1xPBS and 

counted using the Luna cell counter. Cell numbers were chosen based on the manual to 

recover around 8 000 cells per condition and/or patient. A master mix consisting of 50 μl of 

RT reagent mix, 3.8 μl of reverse transcriptase (RT) primer, 2.4 μl of additive A and 10.0 μl of 

RT was generated and added to the samples resulting in a total of 90 μl. 90 μl of the 

cell/master mix suspensions were then added to the according wells of the 10x chips. A 40 µl 

solution of single cell 3' gel beads was vortexed for 30 seconds before being transferred to 

the respecting bead row. In the remaining row partitioning oil in a volume of 270 μl was 

added and then the rubber gasket was fixated on the chip. With the default settings, the 

chromium controller was run for approximately seven minutes. The chip holder was 

Reagent Volume 

H2O 10 µl 

Index primer 1 2.5 µl 

Index primer 2 2.5 µl 

NEBnext HF 2x ready MM 25 µl 

Tagmented sample 10 µl 

Total 50 µl 

Enrichment PCR Temperature Time Cycles 

Initial annealing 72°C 5 min  1x 

Initial denaturation 98°C 30 sec  1x 

Denaturation 98°C 10 sec according 

to qPCR 

results 

Annealing 63°C 30 sec 

Extension 72°C 1 min 

Final extension 72°C 1 min 1x 

Hold 4°C ∞ 1x 
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positioned at a steep angle, and 100 µl of GEMs were transferred into a PCR tube, followed 

by GEM RT incubation. Subsequently, 125 µl of recovery agent was gradually added. The red 

agent-oil mixture was taken from the bottom of the reaction tube after one minute. After 

vortexing the DynaBeads for 30 seconds, 200 µl of water was added to the remaining 

samples in the PCR tubes. The samples were carefully pipetted up and down several times 

before a 10 minutes incubation at room temperature. The first elution solution was 

prepared by mixing 98  µl of EB buffer, 1 µl additive A and 1 µl of 10% tween-20. 

Supernatant was discarded after placing the samples on the 10x magnetic rack. Then the 

beads were thoroughly washed with 80% ethanol. The beads were air dried shortly, then 

tubes were removed from the magnet and DNA was eluted from the magnetic beads using 

35.5 µl elution solution. After an incubation time of 2 minutes, the purified sample could be 

transferred into fresh tubes. 

 

Table 19 Settings for GEM RT incubation 
 

 

 

 

 

Amplification of cDNA was carried out by pipetting 8 µl of nuclease free water, 50 µl of 

amplification master mix, 5 µl of cDNA additive, and 2 µl of cDNA primer mixed together 

with 35 µl purified GEM-RT product. 13 cycles were used to amplify the PCR products. 

 

Table 20 cDNA amplification 
 
 
 
 
 
 
 
 
 
  

GEM RT Incubation Temperature Time 

Step 1  53°C 45 min  

Step 2 85°C 5 min 

Hold 4°C ∞ 

PCR Temperature Time Cycles 

Initial denaturation 98°C 3 min  1x 

Denaturation 98°C 15 sec  

13x Annealing 65°C 20 sec 

Extension 72°C 1 min 

Final extension 72°C 1 min 1x 

Hold 4°C ∞ 1x 
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The PCR products were cleaned-up using AMPure beads with a 0.6x ratio end eluted in 40 µl. 

Qubit dsDNA HS assay kit was used to quantify the concentration of purified GEM-RT 

products, and TapeStation D5000 ScreenTape was used to assess mean peak sizes. For 

library preparation, a fragmentation mix was produced by mixing 10 µl of fragment enzyme 

together with 5 µl fragmentation buffer. This mix was added to the cleaned-up GEM-RT 

product and end repair and A-tailing was conducted. Afterwards two AMPure bead size 

selections with a ratio of 0.6x and 0.8x, respectively, were performed. The samples were 

eluted in 50 µl EB buffer. 20 µl of ligation buffer, 10 µl of DNA ligase, and 2.5 µl of adaptor 

mix were combined and then added to 50 µl of sample. The samples were then incubated at 

20°C for 15 minutes before being purified using 0.8x AMPure beads. Then samples were 

again eluted in 30 µl of EB buffer. 

 
Table 21 Settings for end repair and A-tailing 

 
 
 
 
 
 
 

 
For indexing, 2µl of SI-PCR primer, 8 µl nuclease free water and 50 µl amplification master 

mix were spiked to the 30 µl of cleaned-up samples. In addition, 10 µl of a distinct chromium 

i7 sample index was added ensuring successful multiplexing. The index PCR was run with 10 

cycles and followed by 0.9x AMPure beads purification. After eluting in 35 µl of EB buffer, 

the concentration of the scRNA libraries were quantified via Qubit dsDNA HS assay kit and 

mean peak sizes were assessed by TapeStation D5000 ScreenTape. Samples with fragment 

sizes over 650 bp were purified once more using AMPure beads with a 0.9x ratio. The 

libraries were then pooled equimolar and sequenced by the DKFZ Genomic Core Facility. 

 

 

 

 

 

  

End repair and A-tailing Temperature Time 

Pre-cool block  4°C ∞ 

End repair 32°C 5 min 

A-tailing 65°C 30 min 

Hold 4°C ∞ 
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Table 22 Sample index PCR 
 
 
 
 
 
 
 
 
 

 

3.4 scATAC-seq of primary samples and cell lines 

 

The experiment was conducted based on manufacturer’s instructions. For primary samples, 

frozen viable cells were thawed for 30 seconds in a water bath with a temperature of 37°C. 

Cells were then washed twice with 1x PBS and counted using the Luna cell counter. For TF-1 

cell lines, cells were harvested after 6 days of treatment with 5 µM of Enasidenib or 

concentration matched DMSO. After cell count, roughly a million cells were pipetted into a 

new 2 mL tube, topped up to 1 mL of volume with 1x PBS and then centrifuged at 300 g for 5 

minutes at 4°C. Supernatant was removed and cells were resuspended in 100 µl chilled lysis 

buffer. Samples were then incubated on ice for 5 minutes prior adding 1 mL of cold 1x wash 

buffer and centrifuging at 4°C for 5 minutes at 500 g. Supernatant was then discarded, and 

nuclei were counted using the Luna cell counter. The needed volume of nuclei suspension 

for an output of approximately 8000 cells was calculated for each sample based on the 

nuclei stock concentration table provided by 10x Genomics. 5 µl of the stock concentrations 

were then used to proceed with the scATAC protocol. 

 

 

 

 

 

 

 

 

  

PCR Temperature Time Cycles 

Initial denaturation 98°C 45 sec  1x 

Denaturation 98°C 20 sec  

10x Annealing 54°C 30 sec 

Extension 72°C 20 sec 
Final extension 72°C 1 min 1x 

Hold 4°C ∞ 1x 
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Table 23 scATAC-seq buffers for nuclei isolation  
 

 

 

 

 

 

 

 

 

 

 

 

By combining 7µl of ATAC buffer with 3µl of ATAC enzyme on ice, a transposition mixture 

was made. Based on the sample stock concentration, 1 µl of diluted nuclei buffer was added 

to 4 µl of nuclei suspension and 10 µl of transposition mix. The mixes were combined and 

incubated for 60 minutes in a thermocycler at 37°C with a lid temperature of 50°C. The 

master mix was made up of 61.5 µl of barcoding reagent, 1.5 µl of reducing agent B, and 2 µl 

of barcoding enzyme. 65 µl of the master mix was added put to 15 µl transposed nuclei and 

this mixture was then transferred into row 1 of the chromium chip E. 40 µl of the gel beads 

were pipetted to row 2 after being vortexed for 30 seconds and spun down. Then 240 µl 

partitioning oil was transferred to the remaining row and followingly the rubber gasket was 

fixed onto the chip. After insertion of the chip into the 10x controller, the scATAC program 

was initiated and completed in 7 minutes. The chip was then positioned at a 45° angle and 

100 µl of GEMs were aspirated using a multichannel pipette and transferred into fresh PCR 

strips. Then amplification of the GEMs was conducted. 

  

Buffer Component Stock Final Volume 

Diluted nuclei buffer Nuclei buffer 
Nuclease-free H20 

20x  1x 50 µl 
90 µl 

Wash buffer Tris-HCl (pH7.4) 
NaCl2  
MgCl2  
BSA  
Tween-20  
Nuclease-free H2O 

1 M 
5 M 
1 M 
10% 
10% 

10 mM 
10 mM 
3 mM 
1% 
0.1% 

100 µl 
20 µl 
30 µl 
1 mL 

100 µl 
0.75 mL 

Lysis buffer Tris-HCl (pH7.4) NaCl2  
MgCl2  
Tween-20  
NP-40 
Digitonin 
BSA  
Nuclease-free H2O 

1 M 
5 M 
1 M 
10% 
10% 
5% 
10% 

10 mM 
10 mM 
3 mM 
0.1% 
0.1% 
0.01% 
1% 

50 µl 
10 µl 
15 µl 
50 µl 
50 µl 
10 µl 

500 µl 
4.315 mL 
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Table 24 Settings for scATAC enrichment PCR 
 

 

 

 

 

 

 

Each sample was diluted with 125 µl recovery agent and the tube was inverted fifteen times. 

Samples showed a separation of a hydrophobic and hydrophilic layer. The bottom 125 µl 

which represented the recovery agent were carefully removed. Into each sample, 200 µl of 

cleanup mix consisting of 182 µl cleanup buffer, 8 µl dynabeads MyOne SILANE and 5 µl 

reducing agent B was pipetted. At room temperature, the samples were incubated for 10 

minutes. The samples were then put on a magnet, supernatant was carefully discarded, and 

beads were washed twice with 80% ethanol. Subsequently 40.5 µl elution buffer comprising 

of 98 µl of EB buffer, 1 µl 10% tween-20 and 1 µl reducing agent B was pipetted to the beads 

and the mixture was set aside for 2 minutes at RT. Then the samples were returned to the 

magnet and 40 µl of supernatant were moved to new tubes. To the purified samples 48 µl of 

SPRIselect reagent was added and incubated for 5 minutes at room temperature. Samples 

were placed on the magnet and supernatant was removed. The beads were thoroughly 

washed with fresh 80% ethanol. DNA was then eluted from the magnetic beads in 40.5 µl 

EB-buffer and incubated for 2 minutes. Next 40 µl of purified sample was transferred to a 

fresh tube. Samples were kept overnight at 4°C and library preparation was proceeded the 

next day.  

  

PCR Temperature Time Cycles 

Initial annealing 72°C 5 min  1x 

Initial denaturation 98°C 30 sec  1x 

Denaturation 98°C 10 sec  

13x Annealing 59°C 30 sec 

Extension 72°C 1 min 
Hold 4°C ∞ 1x 
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Table 25 Settings for scATAC library PCR 
 

 

 

 

 

 

 

For library preparation, 50 µl AMP mix and 7.5 µl SI-PCR primer B were mixed. 57.5 µl of this 

mixture was transferred to 40 µl of purified sample. Then 2.5 µl sample specific chromium i7 

sample index N was spiked in individually. The library was generated running a library 

specific thermocycler program. After that 40 µl of SPRIselect reagents were added and a 5 

minutes incubation at room temperature was conducted. The supernatant was moved into 

new PCR tubes and 74 µl of SPRIselect reagent were added to the supernatant while the 

beads from the first tube were discarded. The samples in the fresh tubes were then put on a 

magnetic rack and incubated for 5 minutes. Then supernatant was discarded and beads were 

washed twice with 80% ethanol. After air-drying, the beads were eluted with 20.5 µl EB-

buffer. Samples were put back on the magnet and after 2 minutes 20 µl of eluted DNA was 

transferred to a new tube. The library quality and size distribution were assessed by 

TapeStation D5000 ScreenTape and concentration were measured via Qubit dsDNA HS Assay 

kit. Then, all libraries were pooled in equimolar concentrations and sequenced by the DKFZ 

Genomics Core Facility.  

 

 

  

Library PCR Temperature Time Cycles 

Initial denaturation 98°C 45 sec  1x 

Denaturation 98°C 20 sec  

12x Annealing 67°C 30 sec 

Extension 72°C 20 sec 
Final extension 72°C 1 min 1x 

Hold 4°C ∞ 1x 
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3.5 Targeted single cell DNA-seq  

 
Both the Tapestri Single-Cell DNA kit V1 and V2 and the Mission Bio myeloid panel were used 

to perform targeted single-cell sequencing on the Mission Bio Tapestri Platform. The myeloid 

panel covered 45 genes with 330 amplicons for V1 and 312 amplicons for V2 (amplicon 

length range: 375-550 bp). The experiment was conducted based on manufacturer’s 

instructions. Frozen viable cells were thawed in a water bath with 37°C. Then the cell 

suspension was washed twice with 1x PBS and centrifuged at 400 g for 5 minutes at 4°C. The 

cell pellet was then resuspended in 40-100 µl cell buffer that was provided by the kit. Cells 

were counted using the Luna cell counter and cell suspension was further diluted to a 

concentration of 2000-4000 cells/µl. Then 35 µl of the diluted cell mix were loaded on the 

cartridge of the Tapestri platform. For library preparation cells were encapsulated, lysed and 

barcoded. After cleavage of the barcoding primers using a UV light for 8 minutes, the target 

PCR amplification was started. For V1 a UV lamp from CellenONE (Cellenion, France) was 

used, for V2 the UV light was implemented in a newer version of the Mission Bio Tapestri 

platform. The PCR products were purified and then sequencing adaptors were added 

individually in a second library PCR. The size distribution of the libraries were determined via 

High Sensitivity D5000 ScreenTapes using a TapeStation. Samples that did not show the 

desired library profiles were processed several times with different approaches (see Results). 

DNA was measured via Qubit 2.0 fluorometer and the Qubit dsDNA HS assay kit. The 

samples were then pooled equimolar and submitted to sequence. Libraries generated from 

the V1 kit were sequenced at the Genomics Core Facility at EMBL whereas libraries 

generated from V2 were sequenced by the DKFZ Genomic Core Facility. 
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3.6 Sequencing 

 
Table 26 Sequencing of AML samples 

 
3.7 Data analysis 

 
3.7.1 Analysis of bulk ATAC samples 

 
Dr. Lara Klett oversaw development and maintenance the ATAC pipeline. Trimmomatic was 

used to remove adaptor sequences from demultiplexed reads, and Bowtie2 was used to map 

the remaining reads using indices for the human genome hg38. Samtools sorted, indexed, 

and excluded PCR duplicates from the mapped reads. BEDTools was used to eliminate reads 

mapped into blacklisted areas, and Samtools was used to apply a quality threshold. At the 

positive strand, each read was shifted by four basepairs, and at the negative strand, it was 

shifted by five. This was necessary since the transposase's integration site was a few 

nucleotides distant from the eventually discovered fragment start point. The bam files were 

then converted to a bed format. Reads mapping to the mitochondrial genome were deleted 

with the bash code awk. The filtered reads were utilized for peak calling using MACS2 and 

visualization via IGVtools. FastQC, MultiQC, NSC, RSC, and FRiP score computations were 

used to assess quality at various stages. 

 

Samples Experiment Sequencing type Instrument model 

AML samples 
treated ex vivo 

with 
BAY1436032 

ATAC-seq 75 bp PE NextSeq 550 (Illumina) 

Primary AML 
samples (IDH1, 
FLT3-ITD) 

scDNA-seq 150 bp PE NovaSeq 6000 (Illumina) 

Primary AML 
samples (IDH1, 
FLT3-ITD) 

scDNA-seq 150 bp PE  

Primary AML 
samples (IDH1, 
FLT3-ITD) 

scATAC-seq 49+8+16+49 bp PE NovaSeq 6000 (Illumina) 

Primary AML 
samples (IDH1, 
FLT3-ITD) 

scRNA-seq 28+94 bp PE NovaSeq 6000 (Illumina) 

Primary AML 
samples (MLL) 

scRNA-seq 28+94 bp PE NovaSeq 6000 (Illumina) 

TF1-cell line scDNA-seq 150 bp PE NovaSeq 6000 (Illumina) 

TF-1 cell line scATAC-seq 50+8+16+50 bp PE NovaSeq 6000 (Illumina) 
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3.7.2 Annotation of scRNA-seq and scATAC-seq with CellRanger 
 
Demultiplexing and alignment to the human genome hg38 of scRNA-seq and scATAC-seq raw 

data was performed using Cellranger, a tool provided by 10x Genomics. It was used with 

default settings and the parameter --jobmode=torque was chosen for quicker analysis.  

 
3.7.3 Quality control of scRNA-seq data 

 
Raw expression data was transferred into R version 4.0.2 and analyzed via Seurat 259 

following the recommended parameters. Single-cell profiles with fewer than 500 identified 

genes (showing dying cells or no cell in a droplet), over 3 000 detected genes (indicating cell 

doublets), or over 15% of UMIs originating from mitochondrial reads were not considered 

for further analysis. The following settings were used to eliminate cells having a doublet 

score >0.4 obtained using the Python program Scrublet 256 : sim doublet ratio = 2; n 

neighbors = 30; expected doublet rate = 0.1. Raw-counts from scRNA-seq bone marrow data 

from eight healthy persons were acquired through the HCA portal 266 for comparison of 

leukemic cells with healthy hematopoietic progenitors. The HCA dataset's gene symbols 

were translated from GENCODE v27 to v28 for compatibility and the 3’ reagent v2 chemistry 

was used. 

 
3.7.4 Cell type annotation of microenvironment based on marker expression profiles 

 
After determining the number of principal components used for downstream clustering 

using ElbowPlot, UMI counts were normalized via single cell transform. The percentage of 

mitochondrial reads per cell and the number of UMIs per cell were regressed out as part of 

the standard Seurat workflow. Then unsupervised dimensionality reduction using UMAP 

technique was performed to integrate the transcriptomes . Genes, that were differentially 

expressed, were identified using Wilcoxon Rank Sum test (padj < 0.05, log2FoldChange > 0.1) 

via the command FindMarkers implemented by Seurat. In the scRNA-seq data, cell type 

specific marker genes such as MS4A1, HBB, CD14, NKG7 and CD3D were evidently 

identifiable, allowing for a robust marker-based assignment of non-malignant cell types. 
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3.7.5 Annotation of leukemic cells 
 
Leukemic cells of patient samples harboring a FLT3-ITD could be detected by their 

overexpression of FLT3, making FLT3 expression a robust tumor marker in these entities. For 

other AML subtypes cell clusters with unusual transcriptome signatures that could not be 

attributed to the microenvironment with confidence were defined as leukemic cells. 

Additionally, healthy microenvironment within different patients and timepoints clustered 

together, whereas malignant cells did not. Aneuploidy of AML cells was validated for each 

sample individually using the R package copyKat 243 using “Monocytes” and “T-cells/NK-cells” 

as diploid reference. The following settings were used to infer ploidy: n.gene.chr=5, 

win.size=25, KS.cut=0.2, distance=”euclidean”. 

 
3.7.6 Cell type prediction to infer differentiation state of leukemic cells 

 
Utilizing a down-sampled HCA data set (1 000 cells per cell type) and associated cell identity 

labels as training data set, cell type prediction of leukemic cells was determined using 

automated cell type annotation through the SingleR 260 tool. Specifically for each test cell; 

(i) Spearman correlation between the cell’s expression profile and that of each reference 

sample was calculated. This was done across the union of marker genes identified between 

all annotated labels. (ii) A per-label score was defined as fixed quantile of the distribution of 

correlations. (iii) Steps i and ii were repeated for all labels until the cell was annotated with 

the highest scoring label. Default settings were used. As a verification, module scores for six 

cell types along the HSC to myeloid trajectory, namely HSC-, GMP, MPP-, Monocytes, preDC- 

and cDC2 genes, were calculated. This was conducted using AddModuleScore from Seurat 

and a signature gene list which was derived from the HCA data set (see Appendix). 

 

3.7.7 Gene set enrichment analysis 
 
For gene set enrichment analysis Hallmark, Biocarta, KEGG, Reactome, GO:BP, GO:CC and 

GO:MF sets were downloaded with the R package msigdbr and the command msigdb gsets. 

The gene signatures from the distinct AML clusters and the listed gene sets were then used 

for downstream analysis, either by using the R packages hypeR 251 or escape 247. For hypeR a 

hyp object was generated using the hypeR command and top enriched gene sets were 
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plotted using hyp dots. For escape a data frame was produced using the enrichIt command 

with the parameter group=1000. Visualization was conducted with complex heatmap 242. 

 

3.7.8 Inference of transcription factor activity 
 
Transcription factor activity was inferred from scRNA-seq data by using Bioconductor’s 

DoRothEA package 246. DoRothEA is a comprehensive resource that includes a well curated 

list of TFs and their transcriptional targets. A regulon is a collection of genes controlled by a 

particular transcription factor. DoRothEA regulons were coupled with the statistical method 

VIPER 267 and the TF activities were calculated based on the target’s mRNA expression. As a 

result, TF activity was used as a proxy for a certain transcriptional states. This program 

classifies TF-target interactions in five confidence levels ranging from A to E, with A having 

the highest confidence. Human regulons were downloaded using get(data("dorothea hs", 

package = "dorothea")). For my analysis only confidence levels A and B were chosen using 

the command filter(confidence %in% c(“A”,”B”)). A list of the top 30 TFs depicted on the 

heatmaps that were shown to be regulated by each other were then imported to Cytoscape 
268 for a network based visualization.  

 

3.7.9 Trajectory inference  
 
To determine the pattern of dynamic process within AML cells and subsequent arrangement 

of leukemic cells based on their differentiation state different packages were tested.(i) 

Velocyto 262 generates a trajectory by estimating spliced and unspliced counts by 

enumerating reads that incorporate within intronic sequence. To keep the metadata of 

predicted cells using singleR, a Seurat object was created in R from the python derived loom 

file. This object was then subsetted (e.g. unspliced cells were removed) so that singleR 

metadata could be added to the Seurat object. The object was then saved in .h5ad format 

using the commands saveH5Seurat and Convert(Seurat object, overwrite=TRUE, 

dest=”h5ad”). This converted file and the original loom file were then read into python as 

annotated data matrices and merged. Filtering, normalization and velocity computing was 

then performed according to standard workflow. (ii) Partition-based graph abstraction 

(PAGA)253 estimates connectivity of manifold partitions while preserving the global topology 

of data. For analysis, the saved h5ad embedding generated prior with velocyto was used. 
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Denoising, clustering and recomputing the embedding using PAGA initialization were 

conducted using the default settings.  

 
(iii) Slingshot 261 accepts cluster labels as input and creates a minimal spanning tree to 

organize these clusters into lineages. Paths across the tree were smoothed by simultaneous 

principal curve fitting. The pseudotime value of a cell was derived by its projection onto one 

or more of these curves. The option to determine initial or terminal clusters was omitted for 

the analysis, otherwise default settings were used. 

 

3.7.10 Integrating primary AML samples with healthy bone marrow controls 
 
For the 8 healthy bone marrow samples the SCTransform-based workflow implemented in 

Seurat was chosen and run with the default parameters. For integrating individual AML 

samples with a healthy bone morrow control from the HCA dataset, different approaches 

were tested. (i) Integration was performed using harmony according to standard settings 

with lambda=0.05. (ii) For integration with the R package FNN embeddings both from the 

healthy control as well as from the AML sample were extracted. Then nearest neighbors 

were calculated using the command get.knnx(embedding1, embedding2, k=1, algorithm=”kd 

tree).  

The resulting column of the nearest neighbor index nn.index was extracted as a data frame 

with the column name position. The knn data frame and the data frame extracted from the 

healthy control embedding were then merged using left join and by=”position”. The cell ids 

from this data frame were vectorized and filtered using make.unique . Finally, the 

embedding of the healthy control was plotted using DimPlot and the cells of the distinct AML 

samples were highlighted with the vectorized unique cell ids parameter cells.highlight . 

(iii) By using the SCTransform-based workflow features for downstream integration were 

selected using a gene list published by van Galen et al. 149 with the command 

SelectIntegrationFeatures. Then PrepSCTIntegration was executed to ensure that all 

necessary Pearson residuals had been calculated. Integration anchors were computed using 

FindIntegrationAnchors by adding the “Bernstein signature” again as anchor.features. 

Visualization of these UMAPs was performed via the utilization of the R packages 

ggpointdensity and viridisLite.  



 

 56 

Results 
 
1 Workflow for experimental approaches and data analysis methods 

for multi-omics analysis of primary AML cells 
 
1.1 Development of a workflow for handling and quality assessment of 

primary human cells 

 
The proper handling of patient samples is critical to preserve the integrity of cells for 

subsequent single cell sequencing analysis. Single-cell approaches not only require a certain 

number of cell input, but cells must also be intact, and their membrane should not be 

damaged before processing. Parameters such as the time between sample collection and 

processing/freezing, the chosen freezing method, density of cells, or the thawing process 

need to be adjusted due to their impact on the cell’s state. Additionally, extensive treatment 

with chemotherapeutic drugs can lead to an increase in apoptosis that influences cell 

viability and consequently, sample quality. 

I received viable frozen cells from the clinic that were either collected from peripheral blood 

or bone marrow. When assessing the quality of my samples, I first investigated the color of 

the cell pellet. Depending on the used freezing medium, a red, non-see-through color 

instead of a clear yellow to pink color, indicated that MNCs were contaminated with other 

blood components. Although it is possible to wash these samples with 1x PBS rigorously, 

many precious cells are lost during this step. Additionally, evaluation of the size distribution 

of cells using a Luna cell counter still showed a presence of more than 50% being 

erythrocytes. High numbers of erythrocytes distort cell counts, contributing to the total 

number of loaded cell input for the various droplet-based single-cell experiments. Although 

it would be possible to remove red blood cells during data analysis, this would unnecessarily 

increase the needed amount of sequencing reads per sample. Thus, I decided to deplete red 

blood cells using a self-made erythrocyte lysing buffer (Table 2) with an optimized protocol 

(Figure 10). This lysis step successfully removed the majority of erythrocytes in the samples, 

without affecting the quality of MNCs.  

Cell viability was then assessed using the Luna cell counter combined with trypan blue, 

which stains dead cells. Both 10x Genomics and Mission Bio recommend processing samples 
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with viability higher than 70%. However, the quality of some samples did not match this 

criterion. Due to limitations in sample availability and time, it was impossible to perform a 

live/dead exclusion using flow cytometry. For further experiments, I would strongly advise 

not to skip this step to optimize sample quality.  

Visualization with the Luna counter showed the ratio of live/dead cells and whether cells 

were building a clump or other debris was present. Debris was removed using a cell strainer 

with an appropriate pore size, and when cell clumps were observed, by gently mixing the 

cells by pipetting up and down 15 times. To decrease the formation of lumps, I started to 

add 0.1% BSA to every sample when washing the cells after thawing and when resuspended 

in a working solution. The remaining steps for sample preparation were performed as 

described in Materials and Methods. 

Schematic overview to lyse red blood cells. First, the cell pellet containing erythrocytes is resuspended in RBC 
lysis buffer and then incubated for 10 minutes at 4°C. Then cells are spun down at 300 rcf for 10 minutes at 4°C. 
The supernatant is then discarded, and the pellet is resuspended with chilled wash buffer. Cells are then 
counted with a hemocytometer or an automated cell counter, and the appropriate amount of wash buffer is 
added to obtain optimal cell concentrations needed for further experiments. Proceed with a droplet-based 
single-cell experiment. RBC; red blood cell. 
 

In the present study, some whole blood samples were sent or incubated at room 

temperature before MNCs were isolated, processed or frozen down. Since RNA is very 

unstable and the transcriptome is severely affected by this, reliable scRNA-seq results 

obtained from these samples were not possible (see below). Usually, scRNA-seq sequencing 

data with mitochondrial reads over 20% indicate that samples were not adequately handled 

Figure 10 
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from the clinics and thus should not be considered reliable for further bioinformatic 

downstream analysis.  

 

1.2 scDNA-seq library protocol with increased ratio of on-/off target fragments 

 
Since the sample quality varied, I adapted the protocol provided by Mission Bio to improve 

the quality scDNA-seq libraries that had too many off-target fragments and too few on-

target amplicons. Expected library sizes differed depending on the used panel to target 

regions of interest. For this experiment, the commercially available myeloid panel from 

Mission Bio (see Materials and Methods) was used. Usually, these libraries should depict one 

prominent peak between 350-550 bp in size. Yet, large off-target fragments can be present 

in libraries generated with panels containing more than 300 amplicons. These fragments 

must be considered when quantifying library concentrations.  

Additionally, fragments smaller than the target size, e.g., excess primer dimers, severely 

influence cluster efficiency on Illumina flow cells and have to be removed prior to 

sequencing 269. Different scenarios arose during library generation for scDNA-seq and were 

addressed as following: Library preparation for the cell line TF-1 with wild-type IDH2 

generated high-quality on-target amplicons but high excess primer dimers around with a 

peak at 219 bp were present (Figure 11A). Thus, I performed another 0.69x clean-up using 

magnetic beads as described above. This procedure was sufficient to remove low off-target 

fragments without interfering without affecting the quality of the desired peak, around 450 

bp in this case. For the relapse samples FLT3-ITD AML2 and IDH1mut, the size distribution of 

the libraries generated with the standard protocol already indicated that large off-target 

fragments are present in addition to primer dimers. An additional clean-up led to a massive 

loss of amplicons at the target site (Figure 11B, Figure 11C). This indicates that the normally 

distributed fragments on the left panel do not display actual large fragments but might 

instead be daisy chains 270, a phenomenon when DNA forms tangles when being amplified 

during PCR. This prompted me to further compare size distributions from the target PCR of 

the samples, which are usually not checked before proceeding with library PCR according to 

the manufacturer’s protocol. 
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Figure 11 
Size distribution of scDNA-seq libraries. (A) Size distribution of TF-1 wt library after the standard procedure 
(left) and after an additional 0.69x bead clean-up (right). (B) Size distribution of FLT3-ITD relapse AML2 library 
after standard procedure (left) and after an extra 0.69x bead clean-up (right). (C) Size distribution of IDH1mut 
relapse library after the standard procedure (left) and after an additional 0.69x bead clean-up (right). 

 
It became evident that some samples like FLT3-ITD AML2 relapse and IDH1mut relapse 

contained an excess amount of primer dimers (Figure 12). Thus, another 0.66x clean-up was 

performed for these two samples to eliminate small size off-target fragments. Size selection 

for the FLT3-ITD AML2 relapse sample resulted in a peak at the desired length between 350-

500 bp with hardly any primer dimers evident (Figure 12). However, for the IDH1mut relapse 

sample, hardly any on-target amplicons were visible, and the largest proportion of amplicons 

was around 150-200 bp (Figure 12). Library PCR was then conducted according to standard 

protocol. As expected, library construction scored better results for FLT3-ITD AML2 relapse 

sample compared to IDH1mut relapse, displaying a sharp peak at 470 bp. IDH1mut relapse 

sample again showed a normal distribution in amplicons of rather large fragments instead of 

a sharp peak at the expected size (Figure 12). 
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Figure 12 
Size distribution of scDNA-seq target PCR products and libraries after adjustments. Size distribution of 
TF-1 wt target PCR product as a reference compared to FLT3-ITD AML2 relapse and IDH1mut relapse. The 
following steps were then only performed for FLT3-ITD AML2 relapse and IDH1mut relapse. 
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To remove excess primer dimers, an additional 0.66x clean-up with magnetic beads was 

performed. The quality of the size distribution for FLT3-ITD AML2 relapse library was good, 

containing mainly on-target amplicons and hardly any primer dimers. Again, clean-up of 

IDH1mut relapse library showed loss of the fragments between 400-500 bp. In conclusion, 

an additional clean-up of the target PCR products and after library PCR could recover one 

sample. To recover the last sample, IDH1mut relapse, I then decided to take all 15µl of the 

remaining cleaned-up library from Figure 12 and rerun another PCR with the same settings 

as indicated in the protocol using the same index primer for 5 more cycles. After this 

additional step, an on-target peak at around 460 bp and a large off-target primer peak were 

visible (Figure 13). Another 0.66x clean-up reduced primer dimers extensively, resulting in a 

high-quality library, ready for sequencing. 

 

 

Figure 13 
Size distribution of IDH1mut relapse libraries. Size distribution for IDH1mut relapse sample after rerunning 
the library with 5 additional PCR cycles and one additional 0.66x magnetic beads clean-up. 
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1.3 Development of a bioinformatic workflow for multi-omics approaches 

 
In the presented thesis, primary AML samples were analyzed, focusing on the following 

readouts: scATAC-seq, scRNA-seq, and targeted scDNA-seq. Various methods to obtain gene 

expression information, especially in the context of blast heterogeneity from scRNA-seq, 

were evaluated and optimized individually. For AML samples with FLT3-ITD or IDH1 

mutations, all three readouts could be performed, and therefore, an additional integration 

of scRNA and scATAC-seq data was possible. Analysis was focused on scRNA-seq for samples 

harboring MLL fusions. For bulk ATAC-seq sequencing, primary samples, comparing IDH1 wt 

and mutated, were treated ex vivo with BAY143603. The three key aspects of the 

computational analytic workflow were preprocessing and quality control, individual analysis, 

and integrated analysis (Figure 14). First, sequencing data was either preprocessed using 

publicly available or an in-house pipeline. Quality control was conducted separately for each 

AML sub-type. Second, scATAC-, scRNA- and scDNA-seq data were examined, evaluated, and 

optimized individually. Lastly, scATAC and scRNA data were integrated whenever possible.  
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Figure 14 
Schematic overview of bioinformatics workflow. ATAC-seq is depicted in yellow, RNA-seq in blue, and DNA-seq 
in purple. The computational workflow is categorized into preprocessing & QC, individual, and integrative 
analysis. QC, quality control; TF, transcription factor; VAF, variant allele frequency 
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1.4 Integration of AML cells with healthy bone marrow donors 

 
Cell surface markers have been used extensively to investigate intra-tumoral heterogeneity 
271. It has recently been shown that scRNA-seq reveals malignant cell variety to a greater 

extent than it is possible from a limited number of cell markers 149. Single-cell transcriptomes 

of leukemic cells can be used to project AML cells onto a myeloid trajectory of healthy 

reference cells based on similarity 149. This approach not only characterizes distinct cell type 

compositions of each AML patient, but also might give insights into the cell of origin, 

presence of subclones, or to what extent treatment induces differentiation. This prompted 

me to find the best method to classify AML blasts with MLL-r. The following benchmarked 

the performance for integrating individual AML samples with healthy bone marrow donors 

using different tools.  

 
1.4.1 Integration of various healthy bone marrow donors  

 
The phenotype of AML blasts can resemble all cells along the HSC to myeloid differentiation 

axis. Thus, a suitable reference data set containing mature and myeloid progenitor cells was 

necessary. I chose a publicly available data set from the HCA266 collected from eight healthy 

bone marrow donors while the AML cells used were collected from peripheral blood. Since 

AML blasts represent early progenitors of blood-forming cells that usually would be found in 

the bone marrow only, comparison to healthy peripheral blood samples was not suitable. 

Before integrating AML samples with healthy control, I tested the integration of donors 

alone to establish a work frame and to validate if trajectories would be adequately depicted. 

Therefore, I used two different integration methods, harmony 250 and reciprocal principal 

component analysis (rPCA) integration 259. In total, ~70,000 cells, that had been annotated 

by Dr. Stephan Tirier, were used. Both harmony and the rPCA method successfully 

integrated myeloid cells of the bone marrow donors (Figure 15A-H). The various cell types 

were present in all donors (Figure 15A-B, Figure 15E-F), and cell cycle states were assessed 

(Figure 15C, Figure 15G). The stem cell marker AVP was highlighted (Figure 15D, Figure 15H) 

for better visualization of the HSC compartment. Generally, both methods revealed a 

differentiation trajectory ranging from HSCs to mature CD16+ monocytes with distinct 

intermediate states. However, integration using harmony was significantly faster. This 
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analysis verified that both methods are suitable for hematopoietic cell data sets, and 

subsequently, integration with AML samples was performed.  

 
Figure 15 
Integration of distinct bone marrow donors. (A) UMAP embedding of integrated data using harmony colored 
per cell type. (B) UMAP embedding of integrated data using harmony colored per sample. (C) UMAP 
embedding of integrated data using harmony colored per cell cycle. (D) Expression of HSC marker AVP. (E) 
UMAP embedding of integrated data using rPCA colored per cell type. (F) UMAP embedding of integrated data 
using rPCA colored per sample. (G) UMAP embedding of integrated data using rPCA colored per cell cycle. (H) 
Expression of HSC marker AVP. HSC, hematopoietic stem cell; MPP, multipotent progenitor; GMP, granulocyte 
monocyte progenitor; prMono, Monocyte; Mono/Macro CD14, Monocyte/Macrophage CD14+; Mono/Macro 
CD16, Monocyte/Macrophage CD16+; MkP, Megakaryocyte progenitor; prMa, mast cell precursor; ERP, 
erythroid progenitor; Er, Erythrocyte; preDC, pre dendritic cell; cDC1, conventional dendritic cell type 1; cDC2, 
conventional dendritic cell type 2; pDC, plasmacytoid dendritic cell.  
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1.4.2 Integration of AML samples with healthy bone marrow control 
 
Next, several integration methods were tested to project AML blasts on a healthy myeloid 

trajectory. In particular, harmony, rPCA, and the fast nearest neighbor (FNN) approach were 

employed (Figure 16). To test which method is most suitable, AML cells from a patient with 

an MLL-EDC4 fusion were subset from a healthy microenvironment and used to integrate 

with the healthy bone marrow control. Harmony was not able to incorporate the AML 

sample with bone marrow control. While there was still a trajectory of non-malignant 

myeloid cells evident (Figure 16A) and healthy donors integrated well (Figure 16B), the AML 

cells accumulated rather between the clusters of MPPs and plasmacytoid dendritic cells 

instead of being projected on the bone marrow. Similar results were shown for the 

integration using rPCA with standard parameters (Figure 16C, Figure 16D). However, rPCA 

seemed to work slightly better since the AML cluster was divided into two distinct subgroups 

indicating differences in the composition of AML cell types. While one AML subset clustered 

in proximity to HSCs and MPPs, the second one clustered next to CD14+ 

monocytes/macrophages. This prompted me to refine integration parameters for rPCA 

further. Next, using the FNN tool, calculated the nearest neighbors of the AML samples 

based on the extracted embedding of the healthy donors (Figure 15F, Figure 16E) and then 

highlighted AML cells on the bone marrow embedding in red (Figure 16F). However, this 

method was only used with the parameter of k=1. Thus, AML cells were only projected onto 

the map based on one similar cell.  

Additionally, further validation using the R tool SingleR and computation of module scores 

(see Classification of cell type abundance in MLL-r AML blasts) did not show matching 

results. Thus, I decided to proceed with rPCA integration using a specified gene signature as 

a list (see Appendix) for integration anchors. These genes were published by Van Galen et al. 

149 and generated by a machine learning classifier for AML cellular hierarchies. AML cells 

were successfully integrated with healthy bone marrow controls using this approach (Figure 

16G, Figure 16H). Thus, this method was used for further analysis.  
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Figure 16 
Integration of AML cells with healthy bone marrow control. (A) UMAP embedding of integrated data using 
harmony colored per cell type. (B) UMAP embedding of integrated data using harmony colored per sample. (C) 
UMAP embedding of integrated data using rPCA with standard parameters colored per cell cycle. (D) UMAP 
embedding of integrated data using rPCA with standard parameters colored per sample. (E) UMAP embedding 
of integrated data using rPCA in combination with FNN. AML cells are highlighted in red, whereas healthy bone 
marrow samples are colored grey. (F) UMAP embedding of integrated data using rPCA with standard 
parameters colored per sample. (G) UMAP embedding of integrated data using rPCA with a specified anchors 
list for integration colored per cell cycle. (H) UMAP embedding of integrated data using rPCA with a specified 
anchors list for integration colored per sample. HSC, hematopoietic stem cell; MPP, multipotent progenitor; 
GMP, granulocyte monocyte progenitor; prMono, Monocyte; Mono/Macro CD14, Monocyte/Macrophage 
CD14+; Mono/Macro CD16, Monocyte/Macrophage CD16+; MkP, Megakaryocyte progenitor; prMa, mast cell 
precursor; ERP, erythroid progenitor; Er, Erythrocyte; preDC, pre dendritic cell; cDC1, conventional dendritic 
cell type 1; cDC2, conventional dendritic cell type 2; pDC, plasmacytoid dendritic cell  
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1.5 Pseudotime analysis of leukemic myeloid cells 

 
Single-cell transcriptomics can track dynamic changes in cell fates and understand temporal 

transitions of cell states by inferring trajectories. This approach has been used to analyze 

numerous biological processes such as cell cycle, cancer formation, and cell differentiation 

by displaying transcriptional changes along the calculated trajectory or pseudo-time 272. 

However, it remains challenging to reliably model high-resolution cell trajectories and 

automatically recognize the relevant cell fates and lineage 273. Prior knowledge of gene 

expression signatures can facilitate determining the directionality of differentiation 

trajectories in physiological conditions. In healthy individuals, stem cells would be expected 

to represent a starting point spanning a trajectory over progenitor cells that ends with highly 

differentiated cell states 274. In cancer, trajectories can contain many bifurcations, dead 

ends, or reversible paths reflecting trans- and dedifferentiation. Using scRNA-seq data from 

two patients with distinct MLL fusions, I tested three different approaches to infer myeloid 

leukemic cell trajectories.  

First, RNA velocity analysis was performed using sc-velocyto (Figure 17), which uses the 

relative ratio between intronic and exonic reads to infer dynamics in transcript abundance to 

anticipate future transcriptional cell states 262. For MLLT3-MLL AML-2, velocity streams were 

estimated to wander towards two different directions (Figure 17A), with a breaking point 

between the transition of promonocytes and CD14+ monocytes. Pseudotime analysis of this 

patient determined the root of cells at CD16+ monocytes and the stop point at GMPs and 

promonocytes (Figure 17C), which is counter-intuitive under physiological conditions but 

could still represent dedifferentiation processes which is a common hallmark in cancer 275. 

Visualization of PAGA graph with velocity-directed edges depicted connectivities between all 

cell types (dashed lines) but no transitions (solid lines) (Figure 17E). Similar results were 

obtained for leukemic cells from MLL-ELL AML regarding velocity streams and connectivities 

(Figure 17B, Figure 17F). Nonetheless, pseudotime analysis marked the cluster of 

undifferentiated promonocytes as starting cells and CD14+ monocytes as the endpoint 

(Figure 17D). Subsequently, data from the same samples as analyzed with PAGA and 

slingshot (Figure 18). In contrast to sc-velocyto, PAGA 253 uses a cluster-graph representation 

to capture the underlying topology. Slingshot 261 employs a minimum spanning tree to 

connect clusters following principal curves are fitted for detected branches.  
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Figure 17 
Trajectory inference of myeloid leukemic blasts using sc-velocyto. (A) Velocities of leukemic cells from patient 
MLLT3-MLL AML-2 projected onto UMAP embedding. (B) Velocities of leukemic cells from patient MLL-ELL AML 
projected onto UMAP embedding. (C) Computed velocity pseudotime of MLLT3-MLL AML-2 cells. Root cells and 
end points are colored based on pseudotime color scale. (D) Computed velocity pseudotime of MLL-ELL AML 
cells. Root cells and end points are colored based on pseudotime color scale. (E) PAGA graph on UMAP 
embedding with velocity-directed edges for MLLT3-MLL AML-2 cells. (F) PAGA graph on UMAP embedding with 
velocity-directed edges for MLL-ELL AML cells. 
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Figure 18  
Trajectory inference of myeloid leukemic blasts using PAGA and slingshot. (A) Recomputed FA embedding using 
PAGA-initialization of MLLT3-MLL AML-2 cells colored by detected clusters. (B) Recomputed FA embedding 
using PAGA-initialization of MLL-ELL AML cells colored by detected clusters. (C) FA embedding of MLLT3-MLL 
AML-2 cells colored by predicted cell types. (D) FA embedding of MLL-ELL AML cells colored by predicted cell 
types. (E) FA embedding of MLLT3-MLL AML-2 cells colored by pseudotime. (F) FA embedding of MLL-ELL AML 
cells colored by pseudotime. (G) UMAP embedding of MLLT3-MLL AML-2 cells for trajectory inference using 
slingshot. Principal curves depict smoothed representations of different cell types. (H) UMAP embedding of 
MLL-ELL AML cells for trajectory inference using slingshot. Principal curves portray smoothed representations 
of varying cell types. FA, factor analysis. 
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For patient MLLT3-MLL AML-2, PAGA detected three clusters and cell types were aligned in a 

linear differentiation trajectory with terminal states being predicted at the monocytic 

compartment (Figure 18A, Figure 18C, Figure 18E). In contrast, slingshot added additional 

branches visualized by smoothed principal curves (Figure 18G). PAGA detected 5 clusters for 

leukemic cells from MLL-ELL AML, with cluster 0 having the most connectivities to other 

clusters (Figure 18B). Cells from this cluster might represent intermediate cells transitioning 

between the stated from promonocytes to more differentiated monocytes, according to 

their marker profile (Figure 18D). For pseudotime analysis inferred from PAGA, starting and 

end points were again contrary to results obtained from sc-velocyto (Figure 18F). Trajectory 

inference using slingshot resulted in one branch along the classical myeloid differentiation 

axis (Figure 18H). In conclusion, all tested tools led to distinct outcomes of trajectory and 

pseudotime inference, impeding estimation of accurate trajectories. Although there is a 

plethora of tools to infer the temporal dynamics of cells, there is still an opportunity to 

refine algorithms for precise trajectory detection.  
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2 Cell type analysis of MLL-r 
 
MLL rearrangements generally confer a poor prognosis in AML 30. Recently, the enhancer of 

mRNA decapping 4 (EDC4) gene was described as a new MLL fusion partner (MLL-EDC4)276. 

EDC4 is pivotal for the decapping process and required for the assembly of RNA binding 

proteins into higher-order complexes termed processing (P)-bodies 277. P-bodies contain 

untranslated mRNAs, exonucleases, the mRNA decapping machinery, and translational 

repressors 278. Stabilization or decay of P-body associated mRNA is regulated in a context-

dependent manner or can be stress-induced 279. 

EDC4 plays a critical role in the posttranscriptional modulation of the pro-inflammatory 

cytokine IL-6 in leukemic macrophage cell lines 280 and IkB kinase-EDC4 interaction has been 

connected to P-body formation and control of mRNAs encoding inflammatory cytokines281. 

Since MLL-r AML usually occurs de novo, the clinical presentation of the patient with a 

preceding myelodysplastic syndrome before developing secondary AML was quite unusual. 

Additionally, it was hypothesized that these features combined with an indolent clinical 

course, could relate to a more stem-cell-like disease. Thus, I wanted to predict 

developmental stages of AML blasts inferred from the respective transcriptome changes and 

compare them to three other patients (2 patients with MLL-MLLT3, 1 patient with MLL-ELL) 

with initial presentations typical for MLL rearranged AMLs, e.g., without a preceding MDS 

phase. Only a few single-cell RNA-seq analyses on AML cases with rearranged MLL have been 

performed so far. Thus, this project serves as an additional single-cell reference to better 

characterize different MLL-r AMLs. 

 

2.1 scRNA-seq resolves the intratumor heterogeneity in samples of different 

MLL fusions 

 

Sequencing data were preprocessed, and quality was assessed as indicated in Material and 

Methods. The UMAP approach for unsupervised dimensionality reduction and clustering was 

used to integrate ~16 000 single cell transcriptomes into a two-dimensional map. UMAP 

visualization of the four merged patient samples revealed intra-tumoral heterogeneity for 

patient 2 with MLLT3-MLL AML and the patient carrying MLL-ELL fusion cells, whereas EDC4-

MLL AML and patient 1 with MLLT3-MLL AML showed a more homogenous phenotype 
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(Figure 19A). Non-malignant microenvironment clustered per cell type independently, 

whereas AML blasts clustered individually (Figure 19B). Thus, a further batch correction was 

not necessary. Manual marker-based assignment of cell identities was distinguishable for the 

microenvironment (Figure 19C). A limited set of predefined markers may not accurately 

distinguish tumors from normal cells, due to the diversity of malignant myeloid 

differentiation states in AML and the possibility of transcriptional expression in healthy cells 
282. To further validate the separation between healthy and cancer cells, I employed 

CopyKAT, an R package that identifies genome-wide aneuploidy using an integrative 

Bayesian approach 243. CopyKAT successfully inferred leukemic cells that matched my 

annotation based on marker gene expression profiles (Figure 19D). 

 

Figure 19 
Annotation of patients with MLL-r AML. (A) UMAP embedding of merged AML samples colored by patient. (B) 
UMAP embedding of merged AML samples colored by cell types. Non-malignant cell types from all samples 
cluster together, whereas AML cells form distinct clusters for each patient (dashed line). (C) UMAP embedding 
of cell type specific markers. NK-Cells, Natural Killer -Cells. 
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2.2 Characterization of transcriptome profiles  

 
Next, I performed differential gene expression analysis to assess inter and intra-patient 

tumor heterogeneity on a transcriptomic level. The transcriptional patterns of the leukemic 

cells of MLL-MLLT3 and MLL-ELL fusions depicted many commonalities in the upregulation of 

classical monocytic markers, while there were great transcriptional differences evident in 

comparison to the MLL-EDC4 fusion. Differential gene expression analysis identified both a 

significant upregulation of transcription factors and genes that are known to have an impact 

on cell-fate decision and cellular differentiation (NPM1, CDK6, SOX4, GATA2, MYC, DACH1) 

and upregulation of a set of genes that were described to play a critical role in 

hematopoiesis or leukemic stem cell activation (FLT3, HOPX, HOXA9, RUNX1) 283-288 (Figure 

20A). Additionally, the expression of several downstream targets of the hematopoietic key 

regulator RUNX1 (UBB, PSNE1, ARID1B, KIAA0125) which are reported to be involved in the 

differentiation of myeloid cells were upregulated 289. Interestingly, the most differentially 

expressed gene in patient MLL-EDC4 was lactate dehydrogenase B (LDHB), an enzyme 

mediating the switch on the anaerobic glycolysis and lactate production after hypoxia 

challenge 290,291. Analysis of the microenvironment showed high expressions of CD36, 

cathepsins, and CLEC receptors in the monocytic compartment (Figure 20B). 

Gene set enrichment analysis (GSEA) also showed a downregulation of the innate immune 

system, myeloid leukocyte mediated immunity, and activation in the leukemic population of 

MLL-EDC4 (Figure 20D). Conversely, MYC targets, interferon-alpha response, and genes 

involved in eukaryotic translation initiation and elongation were upregulated (Figure 20C, 

Figure 20D). Additionally, GSEA highlights an upregulation of EIF2AK4 response to amino acid 

deficiency. Furthermore, pathways linked to oxidative phosphorylation and reactive oxygen 

species (ROS) were upregulated in MLL-EDC4 aberrated cells. 
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Figure 20 
Differential gene expression in MLL-EDC4 compared to MLL fusions with MLLT3 and ELL. (A) Clustered single-cell 
transcriptomic heatmap for the most differentially expressed genes between all AML clusters. (B) Clustered 
single-cell transcriptomic heatmap for the most differentially expressed genes between non-malignant cell 
types. (C) Dot plot of genes involved in translational initiation and elongation expressed in distinct AML 
clusters. (D) Dot plot of up and down regulated gene sets of MLL-EDC4 AML cells compared to all other AML 
clusters. Gene sets from Hallmark, Reactome, and GO:BP were used. 
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2.3 Transcription factor activity in MLL-EDC4 
 
The specific upregulation of well-established master regulators of stem cell programs such as 

SOX4, GATA2, MYC, and RUNX1 in EDC4-MLL led to a systematic evaluation of TF expression 

and their activity based on target gene expression. This analysis highlighted an upregulation 

of interferons such as STAT1, STAT2, and IRF9, the oncogenes MYB ,MYC as well as other TFs 

like E2F1, E2F4, ETS1, GATA1, NFYA, POU2F1, SPI1, TAL1 that have been linked to stemness 

in hematopoietic cells 292-294 (Figure 21A). 

A network of interacting TFs was created using this information (Figure 21B). Based on 

unsupervised clustering, MYC was visualized as a central node in the network related to 

numerous TFs as a first or second edge. MYC plays a crucial role in cell proliferation, growth, 

and tumorigenesis 295. In addition, POU2F1 TF activity was shown to be high in MLL-EDC4 

cells, which was reported to control cell growth, stem cell identity, cellular stress response, 

and immune regulation 296. Furthermore, a signature of high transcription factor activity in 

MLL-EDC4 was detected for TFs such as E2F1, E2F4, ETS1, MYB, MYC, GATA1, and TAL1 that 

could potentially be linked to a more stemlike phenotype 292-294. 
 

Figure 21 
Transcription factor activity in MLL-EDC4 compared to MLL fusions with MLLT3 and ELL. (A) Heatmap depicting 
TF activities of distinct AML clusters inferred from scRNA-seq data. (B) TF network colored by TF activities 
obtained from A.  
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2.4 Classification of cell type abundance in MLL-r AML blasts 

 
I employed automated cell type prediction 260 using the HCA 266 bone marrow dataset from 

eight healthy donors as a training dataset to further characterize the leukemic cells’ 

differentiation states and to dissect intra-tumoral heterogeneity. This cell type prediction 

showed a distinct phenotype for MLL-EDC4 cells compared to other MLL fusions (Figure 22A, 

Figure 22B). Leukemic cells with MLL-EDC4 translocation were almost exclusively classified as 

HSCs, MPPs, or ERPs. While differentiated monocytes predominated in MLLT3-MLL AML-2 

and MLL-ELL AML subclusters I and MLLT3-MLL AML-1, cell type abundance in MLLT3-MLL 

AML-2 and MLL-ELL AML subclusters II was more diverse. MLLT3-MLL AML-2 and MLL-ELL 

AML subclusters II composed of cells like GMPs and promonocytes, respectively.  

Metadata of the predicted cell types were then plotted onto the UMAP embedding 

previously shown (Figure 22C). This revealed a trajectory from myeloid progenitors to 

monocyte-like cells for MLLT3-MLL AML patient 2 subcluster II to subcluster I and MLL-ELL 

subcluster II to subcluster I, respectively (Figure 22D).  

 
Then, I constructed gene signatures (see Appendix) for the distinct cell types based on the 

highest expressed cell type indicators from the HCA data set, which was conceptually similar 

to a prior approach 149. These signatures were used to stratify leukemic cells of all four 

patients by calculating the average expression levels of each tumor cluster on a single cell 

level, subtracted by the aggregated expression of control feature sets. HSC- and MPP-gene 

module scores were raised in the MLL-EDC4 patient, but there was no elevation in monocytic 

CD14 genes (Figure 22E). Leukemic cells from MLLT3-MLL AML patients and cluster I from 

MLL-ELL AML patients, on the other hand, displayed an entirely reversed pattern. Only 

cluster II from MLL-ELL AML revealed elevated progenitor module scores compared to MLL-

MLLT3 fusions. However, MLL-EDC4 ranked highest scores in the stem cell and progenitor 

compartments. 
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Figure 22 
Cell type prediction of AML samples with MLL fusions. (A) Clustered single-cell heatmap showing prediction 
scores for all MLL samples. (B) Pie charts of relative abundance of predicted cell types. (C) UMAP embedding of 
malignant cells with MLL-fusions, colored by intratumoral clusters. (D) UMAP embedding of malignant cells 
with MLL-fusions, colored by predicted cell type. (E) Violin plots showing module scores for different gene 
signatures. HSC, hematopoietic stem cell; MPP, multipotent progenitor; GMP, granulocyte monocyte 
progenitor; prMono, Monocyte; Mono/Macro CD14, Monocyte/Macrophage CD14+; Mono/Macro CD16, 
Monocyte/Macrophage CD16+; ERP, erythroid progenitor; preDC, pre dendritic cell; cDC2, conventional 
dendritic cell type 2.  
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2.5 Integration of MLL-r cells with healthy bone marrow donors 

 
AML cells were projected along a myeloid trajectory, based on the empirical finding that 

integration using rPCA with modified anchors worked best for this data set. All eight healthy 

bone marrow donors were integrated with the four AML samples with distinct MLL fusions 

(Figure 23). After integration, visualization using UMAP depicted a clear separation of each 

cell type along a differentiation trajectory, and leukemic cells were speckled along this HSC 

to monocyte axis rather than forming their own independent AML clusters (Figure 23A). AML 

blasts were highlighted individually for better visualization, and cells were colored based on 

density. MLL-EDC4 cells seemed to accumulate especially at the HSC to MPP and the pro 

monocyte to CD14+ monocyte compartments (Figure 23B), indicating great heterogeneity 

within blasts. Additionally, this analysis supports the hypothesis that MLL-EDC4 AML cells 

confer a more progenitor-like phenotype. In contrast, cells from MLLT3-MLL AML-1 (Figure 

23C) and MLL-ELL AML (Figure 23E) showed the highest density at the cluster of monocytes, 

implying that the phenotypes of these tumors are more differentiated. Cells from MLLT3-

MLL AML-2 were shown to be spread around the myeloid trajectory with high densities in 

the GMP, promonocyte, and monocyte clusters (Figure 23D). These data integration results 

are in accordance with outcomes obtained from cell type prediction as described above. This 

analysis underlines intra-tumoral heterogeneity by the presence of various subgroups of 

blasts with distinct differentiation states within one AML entity. 
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Integration of MLL-r AML cells with healthy bone marrow control. (A) UMAP embedding of integrated bone 
marrow samples with all four AML patients colored by cell type. (B) Density plot of MLL-EDC4 AML cells on a 
UMAP embedding of integrated data. (C) Density plot of MLLT3-MLL AML-1 cells on a UMAP embedding of 
integrated data. (D) Density plot of MLLT3-MLL AML-2 cells on a UMAP embedding of integrated data. (E) 
Density plot of MLL-ELL AML cells on a UMAP embedding of integrated data. HSC, hematopoietic stem cell; 
MPP, multipotent progenitor; GMP, granulocyte monocyte progenitor; prMono, Monocyte; Mono/Macro 
CD14, Monocyte/Macrophage CD14+; Mono/Macro CD16, Monocyte/Macrophage CD16+; MkP, Megakaryocyte 
progenitor; prMa, mast cell precursor; ERP, erythroid progenitor; Er, Erythrocyte; preDC, pre dendritic cell; 
cDC1, conventional dendritic cell type 1; cDC2, conventional dendritic cell type 2; pDC, plasmacytoid dendritic 
cell. 
  

Figure 23 
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3 Multi-omics analysis of AML patients harboring FLT3-ITDs 
 

AML drug therapy has the ability to modify dysregulated epigenetic signaling as an important 

aspect of the disease. Treatment with midostaurin, which displays one of the new target 

therapy alternatives for FLT3 aberrations, has a lot of promise for AML patients. However, 

midostaurin resistance may emerge. Intra-tumoral genetic heterogeneity is common in 

malignancies and significantly influences tumor growth and therapy response. Although 

midostaurin is classified as targeted therapy, it also interacts with other kinases. Thus, 

treatment can impact clonal genetic structures, epigenome, and transcriptome, among other 

molecular layers. As a result, the multi-omics effects of midostaurin in AML patients with 

FLT3-ITDs during treatment were investigated. Using longitudinal samples collected at 

diagnosis, remission, and relapse from two patients, I assessed the induced impacts on gene 

expression, chromatin accessibility, and clonal composition throughout treatment 

 

3.1 Gene expression signature changes during midostaurin treatment 

 

First, the effect of midostaurin treatment in two FLT3-ITD AML patients on transcriptomic 

alterations was studied. A scRNA-seq analysis was performed to dissect intra-tumoral 

heterogeneity further. In total, 23 210 cells from five timepoints passed stringent quality 

filtering criteria. Internal tandem duplications lead to constitutive expression of FLT3 gene 

and thus FLT3 expression serves as an excellent tumor marker in these identities (Figure 24C, 

Figure 24D). The microenvironment from all timepoints clustered together, and AML blasts 

from the relapse sample clustered with the diagnosis cluster for patient FLT3-ITD AML-1 

(Figure 24A). Cells were then annotated using SingleR as previously described. Most tumor 

cells composed of GMPs and mast cell precursors (prMa) at timepoint of diagnosis and 

erythroblasts and prMas at relapse (Figure 24E). For patient FLT3-ITD AML-2, tumor cells 

clustered individually per timepoint, and the relapse sample was divided into two major 

subclusters based on their levels of FLT3 expression (Figure 24B, Figure 24D). However, some 

overlapping cells were evident between the diagnosis and relapse I cluster. While the 

diagnosis cluster contained primarily undifferentiated cells, a differentiation trajectory was 

displayed along the two relapse clusters (Figure 24F). Further analysis of AML blast 

composition was performed in chapter 5.  
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Figure 24 
Annotation of FLT3-ITD AML samples. (A) UMAP embedding of patient FLT3-ITD AML-1 colored by timepoint (B) 
UMAP embedding of patient FLT3-ITD AML-2 colored by timepoint (C) Feature plot of patient FLT3-ITD AML-1 
depicting FLT3 expression (D) Feature plot of patient FLT3-ITD AML-2 depicting FLT3 expression (E) UMAP 
embedding of patient FLT3-ITD AML-1 colored by predicted cell type (F) UMAP embedding of patient FLT3-ITD 
AML-2 colored by predicted cell type. HSC, hematopoietic stem cell; MPP, multipotent progenitor; GMP, 
granulocyte monocyte progenitor; prMono, Monocyte; Mono/Macro CD14, Monocyte/Macrophage CD14+; 
ERP, erythroid progenitor; preDC, pre dendritic cell; cDC, conventional dendritic cell type, prMa; mast cell 
precursor.  
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Next, I determined the 10 most up and down regulated marker genes per timepoint and 

visualized their expression in two heatmaps (Figure 25). Gene expression programs showed 

a dynamic change between diagnoses and relapses for both patients. During diagnosis, 

especially STAT genes were upregulated in FLT3-ITD AML-1 (Figure 25A). STAT transcription 

factors, especially STAT3, STAT5A, and STAT5B, which are downstream of FLT3 were 

reported to have strongest connections to the most common AML drivers, highlighting their 

role in AML pathogenesis 297. At relapse, however, STAT genes were downregulated while 

TFs such as POU2F2, RELB, FOXA2, NFE2L2, PAX8 were upregulated. As expected, GSEA 

analysis also highlighted the upregulation of genes involved in STAT signaling when 

comparing diagnosis to relapse (Figure 26A). Pathways linked to ROS, apoptosis, or the 

proto-oncogene p53 were upregulated at the time of relapse (Figure 26B). 

For patient FLT3-ITD AML-2 gene expression signature of diagnosis and relapse cluster II 

showed large similarities, whereas relapse cluster I showed an opposite pattern (Figure 25B). 

In addition to upregulation of STAT TF, the hematopoietic master regulator RUNX1 was 

highly expressed in relapse cluster II. Moreover, molecular regulators of HOXA9, such as 

USF2, USF1, and the proto-oncogene CREB1 and other FOX genes implicated in 

differentiation, proliferation, and senescence, were significantly expressed 298-301.   

 

 
Figure 25 
Differential gene expression of FLT3-ITD AML samples. (A) Clustered single-cell heatmap showing prediction 
scores for FLT3-ITD AML-1 at timepoints of diagnosis and relapse. (B) Clustered single-cell heatmap showing 
prediction scores for FLT3-ITD AML-2 at timepoints of diagnosis and relapse. 
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Figure 26 
Gene set enrichment analysis of FLT3-ITD AML-1. (A) Dot plot of up regulated gene sets of AML cells collected at 
diagnosis compared to relapse. Gene sets from Hallmark and Reactome were used. (B) Dot plot of down 
regulated gene sets of AML cells collected at diagnosis compared to relapse. Gene sets from Hallmark and 
Reactome were used. The dashed line depicts significance threshold. 
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When comparing diagnosis to both relapse clusters, pathways associated, the proto-

oncogene p53 and responses to inflammation were up regulated (Figure 27A). Genes linked 

to the innate immune system or ROS response, were down regulated. Gene sets such as 

TNFa signaling via NFkB, mTOR signaling, or STAT signaling, were highly expressed in both 

timepoints (Figure 27A, Figure 27B). These pathways are linked to STAT signaling and 

promote cell proliferation and contribute to tumor initiation and progression 302-304. 

 

 
Figure 27 
Gene set enrichment analysis of FLT3-ITD AML-2. (A) Dot plot of up regulated gene sets of AML cells collected at 
diagnosis compared to relapse. Gene sets from Hallmark and Reactome were used. (B) Dot plot of down 
regulated gene sets of AML cells collected at diagnosis compared to relapse. Gene sets from Hallmark and 
Reactome were used. The dashed line depicts significance threshold. 
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I then compared AML cells from relapse cluster II to relapse cluster I (Figure 28). Again, 

relapse cluster II displayed upregulation of genes linked to STAT such as TNFa signaling via 

NFkB, mTOR signaling, or STAT signaling (Figure 28A). Relapse cluster I however, showed 

upregulation of pathways linked to p53, ROS, MYC targets, and eucaryotic translation 

initiation and elongation (Figure 28B). 

 
 

 
Figure 28 
Gene set enrichment analysis of FLT3-ITD AML-1. (A) Dot plot of up regulated gene sets of AML cells from 
relapse cluster II compared to relapse cluster I. Gene sets from Hallmark and Reactome were used. (B) Dot plot 
of down regulated gene sets of AML cells from relapse cluster II compared to relapse cluster I. Gene sets from 
Hallmark and Reactome were used. The dashed line depicts significance threshold. 
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Analysis of transcription factor analysis highlighted many TFs involved in JAK/STAT signaling, 

NFkB signaling, hematopoiesis, cell cycle, proliferation, leukemogenesis and tumor 

progression in both FLT3-ITD patients (Figure 29). At the time of relapse in FLT3-ITD AML-1, 

most TFs showed decreased activity compared to diagnosis (Figure 29A). However, single TFs 

are linked to leukemogenesis or NFkB signaling had enhanced activity.  

TF activity signature in patient FLT3-ITD AML-2 drastically changed during midostaurin 

treatment (Figure 29B). Cluster relapse I showed a completely opposite pattern compared to 

diagnosis, with most TF activity being down regulated. Relapse cluster II resembled more TF 

signature as observed in diagnosis, but genes involved in STAT signaling, cell fate and 

hematopoiesis showed significantly higher activity.  

 
Figure 29 
Transcription factor activity in patients with FLT3-ITD. (A) Heatmap depicting TF activities at diagnosis and 
relapse in patient FLT3-ITD AML-1 inferred from scRNA-seq data. (B) Heatmap depicting TF activities at 
diagnosis and relapse in patient FLT3-ITD AML-2 inferred from scRNA-seq data. 
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3.2 Chromatin accessibility changes during midostaurin treatment 

 
Chromatin accessibility measured by scATAC-seq gives insights on the activity states of cis- 

regulatory elements and makes it possible to connect them to TF occupation 194. Here, I 

examined the enrichment of TF binding motifs in significant differentially accessible peaks 

between of relapse compared to diagnosis. For both patients carrying FLT3-ITDs, scATAC-seq 

was performed for samples collected at diagnosis and relapse. For FLT3-ITD AML-1, diagnosis 

and relapse formed two distinct clusters (Figure 30A). Subsequently, DNA sequence motif 

analysis was performed by Signac, detecting overrepresented motifs of differentially 

accessible peaks between timepoints (Figure 30B). At diagnosis, STAT1/STAT2 and SP 

transcription factors were overrepresented. Overrepresentation of the SP TF family was 

even more prominent at the timepoint of relapse.  

 
Figure 30 
Chromatin accessibility in patient FLT3-ITD AML-1 determined by Signac. (A) UMAP embedding colored by 

timepoint (B) Overrepresented motifs of at diagnosis and relapse derived from the JASPAR database   
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Data analysis using ArchR also resulted in two divided clusters for diagnosis and relapse and 

one cluster comprising cells from both timepoints (Figure 31A, Figure 31B). Unique marker 

peaks within the whole dataset only generated 25 significant features (Figure 31C). Thus, 

pairwise testing between the relapse (C3) and diagnosis (C2) cluster without cluster 3 was 

performed. Differential testing identified ~0.5% upregulated and 0.01% downregulated 

significant marker features in relapse compared to diagnosis (Figure 31D). Then motifs 

enriched in these peaks were investigated. The TF motifs found in the Signac analysis, were 

also present in the analysis using Signac. However, Signac predicted other motifs such as 

SMAD5, WT1 or DNMT1 to be more upregulated in relapse compared to diagnosis with 

higher p values than the SP1 motifs (Figure 31E). While Signac mainly found KLF motifs 

upregulated in diagnosis, ArchR found motifs such as SOX10, BCL, GATA, HOXA3 and RUNX3 

(Figure 31F). Differences in motif analysis obtained from Signac and ArchR might be 

explained by the usage of different motif databases, JASPAR and CIS-BP, respectively.  
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Figure 31 
Chromatin accessibility in FLT3-ITD AML-1 determined by ArchR. (A) UMAP embedding colored by timepoint (B) 
UMAP embedding colored by clusters (C) Peak marker heatmap (D) Volcano plot of differential peaks (relapse 
vs diagnosis) (E) Upregulated motifs in relapse obtained from CIS-BP database (F) Downregulated motifs in 
relapse obtained from CIS-BP database   
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For FLT3-ITD AML-2, the relapse sample was divided into two distinct clusters, relapse 

cluster I was in proximity to diagnosis (Figure 32A). Additionally, a small cluster containing 

cells from both timepoints was present. Motif analysis revealed an overrepresentation of 

motifs downstream of FLT3 signaling, such as TFs from CEB/P family, IRF1, STAT1/2, and 

GATA for relapse cluster II (Figure 32B).  

 

 
Figure 32 
Chromatin accessibility in patient FLT3-ITD AML-2 determined by Signac. (A) UMAP embedding colored by 
timepoint (B) Overrepresented motifs of at diagnosis and relapse derived from the JASPAR database 
 

To further evaluate and integrate with scRNA-seq data, ArchR was employed. Again, cells 

from both timepoints were visualized using UMAP, forming two primary and one small 

cluster (Figure 33A). The upper main cluster consisted of cells both from diagnosis and 

relapse (relapse cluster I) that seemed to follow a trajectory, while the second main cluster 

only comprised cells from the relapse sample (relapse cluster II). The minor cluster contained 

cells from both timepoints and did not seem to be in a specific order. Cell types and relapse 
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clusters were annotated by integration with scRNA-seq data (Figure 33C). This integration 

compares the scATAC-seq gene score matrix with the scRNA-seq gene expression matrix to 

directly link cells from scATAC-seq with cells from scRNA-seq. Based on this integration, the 

minor cluster represents non-malignant microenvironment while the other two main 

clusters represent leukemic blasts. Relapse cluster II comprised mainly differentiated 

monocytes, while cells from relapse cluster I were more undifferentiated MPPs. Marker 

peaks were identified using pairwise differential testing between relapse cluster II vs relapse 

cluster I and diagnosis (Figure 33D).  

In total, 192 635 peaks were detected, of which ~1 % were significantly upregulated and 

0.5 % downregulated in relapse cluster II. After differential peak set identification, motif 

enrichment analysis was performed to predict what TFs might mediate the binding events 

responsible for the accessible chromatin sites. 

Peaks that gained accessibility in relapse cluster II compared to the other main cluster 

showed an enrichment of binding motifs for BACH1/2, C/EBP, BCL-X, IRFs, and RUNX1 (Figure 

33E). RUNX1 and C/EBP motifs were previously reported to be the most common binding 

motifs in FLT3-ITDs 305, and BACH1 306 were linked to mediating FLT3-dependent gene 

expression. While BCL11A has been shown to control FLT3 expression in early hematopoietic 

progenitors 307, IRFs are common mediators of receptor signaling. The highest enriched 

motifs in sites with lost accessibility were motifs from the Krüppel-like family of transcription 

factors (KLFs).  
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Figure 33 
Chromatin accessibility in FLT3-ITD AML-2 determined by ArchR. (A) UMAP embedding colored by timepoint (B) 
UMAP embedding colored by clusters (C) UMAP embedding colored by predicted cell type (D) Volcano plot of 
differential peaks (E) Upregulated motifs obtained from CIS-BP database (F) Downregulated motifs obtained 
from CIS-BP database   
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3.3 Resolution of clonal evolution in midostaurin-treated AML patients by 

targeted scDNA-seq 

 
The malignant cell population is frequently very heterogeneous, harboring several distinct 

subclones. Clonal dynamics might alter over time, notably during treatment and resistance 

development 308. Using targeted scDNA-sequencing, I evaluated the clonal evolution of two 

AML patients carrying FLT3-ITDs, that were treated with midostaurin. FLT3-ITD AML-1 was 

shown to carry five different subclones with distinct FLT3-ITDs, four harboring an additional 

TET2 mutation (Figure 34A). However, this patient did not show great changes in clonal 

diversity during treatment, and variant alleles frequencies were not altered significantly.  

For patient FLT3-ITD AML-2 the highest proportion of subclones harbored mutations in BCOR 

(chrX:39933339:A/G), DNMT3A (chr2:25457242:C/T), KDM6A (chrX:44833841) and an ITD in 

FLT3 (chr13:28608271) (Figure 34B). Another smaller clone only carried mutations in BCOR 

and KDM6A but not in DNMT3A and FLT3. This indicates that the larger clone developed 

from, the smaller one, and the additional DNMT3A and FLT3 mutations presented a clonal 

advantage. At remission, all subclones carrying an additional FLT3 mutation were eradicated 

while the small clone expanded until it represented more than 98% of cells analyzed. 

However, at relapse, subclones seemed to develop resistance against midostaurin and clonal 

dynamics shifted rigorously towards subclones harboring a FLT3-ITD replacing the large 

clonal population during remission. At relapse, the FLT3-ITD clone expanded again, indicating 

an acquired treatment resistance. 

This prompted me to investigate these results further. Therefore, the results of scDNA-seq 

were compared to getITD analysis, a tool to identify ITDs in bulk performed by collaborators 

in Ulm. The comparison revealed that this patient harbored four different ITDs, whereas only 

of them was fully covered by the used myeloid panel (Table 27).  

In conclusion, targeted scDNA-seq was used to detect rare subclones and resolve mutational 

co-occurrences within the same cell during midostaurin treatment. Although scDNA-seq 

could detect small sub clones, issues with the proper detection of FLT3-ITDs were evident. 

To further enhance detection efficiency, I generated a custom panel with a focus on 

targeting FLT3-ITDs. 
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Figure 34 
Clonal evolution during midostaurin treatment in FLT3-ITD patients. (A) Left: Dodge-plot depicting the clonal 
composition of AML cells before treatment and at relapse. Right: Aggregated variant allele frequency (VAF) 
calculated from single-cell data visualized as line plot. (B) Top: FISH-plot depicting the clonal composition of 
AML cells before treatment, during remission, and at relapse. Bottom left: Clonal phylogeny tree of clonal 
evolution. Bottom right: Aggregated VAF calculated from single-cell data visualized as line plot. 
 

Table 27 Detected ITDs in FLT3-ITD AML-2 in bulk 

 

 

  

ITD ITD size Insertion site Timepoint Covered by myeloid panel 
ITD 1 141bp 28608129 Diagnosis, Remission, Relapse No 

ITD 2 197bp 28608110 Diagnosis No 

ITD 3 36bp 28608225 Diagnosis Yes 

ITD 4 39bp 28608277 Diagnosis, Relapse Partially 
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3.4 Design of a custom-targeted scDNA-seq panel to optimize coverage of 

FLT3-ITDs in AML patients 

 
To overcome the problem that some FLT3-ITDs present in the samples used, a custom DNA 

panel was designed in collaboration with Mission Bio. To ensure to cover as many ITDs as 

possible, a list of unique ITDs found in 110 patients from the University clinics in Freiburg 

was generated (see Appendix). In total, 247 distinct ITDs ranging from 9 to more than 200 bp 

were found. To successfully call an ITD, the whole ITD must be covered either by read 1 or 

read 2 of the designed amplicons 309 (Figure 35). ITDs with an overlap between the primer 

region or a gap between read 1 and 2 will only lead to partial amplicon coverage, impeding 

scDNA-seq analysis.  

 

 
Figure 35 
Schematic overview of amplicon. Amplicons for targeted scDNA-seq consist of a barcode and primer site on the 
3’ end and a primer site on the 5’ end. Around 80 bp of the insert are covered by read 1 and 130 bp by read 2. 
ITDs only are covered when they do not overlap between primer and insert region or lie within the gap of 
primers 1 and 2. 
 

Analysis can fail to identify amplicons based on two categories: amplicon or sequence-

related targets (Table 28). In the first category, prioritization can frequently save the most-

relevant targets. The second category is associated with the target's sequence. It poses a 

problem because any potential rescue requires lowering design constraints (e.g., GC 

percentage), which may influence amplicon performance. As already mentioned above, 

amplicons are not detected if primers cover region. To overcome this, new amplicons can be 

created by adding additional targets near the original target. Center gap regions usually 

occur for amplicons longer than 250bp. Since ITDs can vary tremendously in size, large ITDs 

are at risk of lacking coverage. However, these targets could be recovered using 250bp PE 
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sequencing instead of the recommended 150bp PE. In some cases, the addition of one more 

target could help to solve this issue as well.  

Additionally, coverage will be lost when targeting complete genes or exons due to primer 

regions and gaps between neighboring amplicons. This happens due to Mission Bio’s design 

of tiled amplicons that never overlap. To ensure that the most desired targets are not 

missed, targets should be broken into smaller parts. Usually, for all these amplicon-related 

issues, there are easy solutions to recover the target. However, recovering targets that are 

missed due to sequence-related characteristics, recovery is more challenging. Primers for 

scDNA-seq are limited to a GC content between 27-62%. Regions outside this range are 

harder to amplify using PCR, and their resulting amplicons are more likely to underperform 

regarding sequencing depth. Although the design of amplicons with a GC content of up to 

74% is possible, the performance of these amplicons will be poor. Sequences at centromeres 

or telomeres, often display the base N instead of A, T, C, G making them so-called masked 

regions. If a single target has a masked zone, the entire panel may fail to produce, rather 

than showing as missing coverage. Masked regions can be restored by supplying missing 

sequence information with a custom reference genome. The same solution applies to 

homologous regions. Additionally, standard sequencing cannot generate amplicons in highly 

repetitive regions. To address this, 250bp PE sequencing must be used instead of 150bp. 

Then the new custom panel was designed to miss as few targets while keeping a number of 

amplicons and resulting sequencing costs as low as possible. 

 

Table 28 Interpreting missed targets 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Category Reason Solution 

Am
pl

ic
on

 
re

la
te

d 

Primer region Adding new target 

Center gap region 250bp PE-sequencing, Adding new target 

Amplicon tiling Break up longer targets 

Se
qu

en
ce

 
re

la
te

d 

High GC content Targets with GC content >74% can’t be rescued 

Masked region Custom reference genome 

Repetitive region 250bp PE-sequencing 

Homologous region Custom reference genome 
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All 247 distinct ITDs found in the 100 patients were in a small range covering exome 14 – 

intron 14 – exome 15 (see Appendix). When comparing the commercially available myeloid 

to the custom panel, the intronic region between exome 14 and 15 lacks coverage of an 

amplicon (Figure 36). By adding one amplicon in this region, 70-95% of ITDs from the patient 

list can be tracked, depending on the selection of sequencing chemistry. In addition, 8 

amplicons to target 33 more hot spot mutations in the FLT3 genes were designed. In 

summary, the new custom panel comprises most amplicons from the myeloid panel, 9 

amplicons to detect FLT3-ITDs, and selected hot-spot mutations for ANKRD26, ASXL2, 

BCORL1, CEBPA, DDX41, and ZBTB7A (Table 29). This panel will be used for a future study to 

determine treatment-relevant off-target effects and differences in molecular events induced 

by FLT3 inhibition either by midostaurin or gilteritinib. 
 

 
Figure 36 
Amplicon design for a custom scDNA-seq panel. Targets (blue), inserts (green), and missed targets (red) are 
shown in IGV browser both for the myeloid and custom panel at location of exon 14–exon 16 in the FLT3 gene. 

 
Table 29 Genes covered in the custom panel 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Genes 

ANKRD26 DNMT3A KMT2A SETBP1 

ASXL1 ETV6 MPL SF3B1 

ASXL2 EZH2 MYC SMC1A 

BCOR FLT3 NF1 SRSF2 

BCORL1 GATA2 NPM1 STAG2 

BRAF IDH1 NRAS TET2 

CALR IDH2 PHF6 TP53 

CBL JAK2 PPM1D U2AF1 

CEBPA KDM6A PTPN11 WT1 

CSF3R KIT RAD21 ZBTB7A 

DDX41 KRAS RUNX1 ZRSR2 
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4 Multi-omics analysis of IDHmut in AML 
 
IDH genes play critical roles in the Krebs cycle and in maintaining cellular homeostasis. 

Mutations in IDH1/2 lead to the conversion of a-KG to the oncometabolite R-2HG, which 

inhibits histone lysine demethylases and DNA demethylases, resulting in large-scale 

epigenetic alterations. IDHmut inhibitors that counteract hypermethylation have recently 

emerged as promising clinical studies or have been licensed for the treatment of AML and 

glioblastoma 124,310-312. Here, I investigated the effects of targeted IDH inhibitors, namely 

BAY1436032, AG-120, and AG-221, either on myeloid leukemia cell lines or in one primary 

AML patient harboring an IDH1 mutation. For this patient, longitudinal samples were 

collected at diagnosis, remission, and relapse.  

 

4.1 Partial reversion of epigenetic changes caused by IDH1mut with 

BAY1436032 

 
AML cells of one patient carrying an IDH1 R132C mutation and one patient with IDH WT 

were isolated from peripheral blood. Both were treated ex vivo with the hypomethylating 

pan-mutant-IDH1 inhibitor BAY1436032 over a period of 14 days 124. As a negative control, 

samples were treated with DMSO for 14 days. Upon inhibitor treatment, cells with IDH1mut 

showed a global decrease in H3K4me3, H3K6me3, H3K9me3, and H3K27me3 whereas this 

phenomenon was not present in IDHWT cells treated with inhibitor. This prompted me to 

evaluate reversible and self-sustained epigenetic changes caused by mutant IDH1 on 

chromatin accessibility using ATAC-seq. Dr. Lara Klett provided frozen viable cells that had 

already been treated with the inhibitor. ATAC-seq libraries were processed in technical 

duplicates. Apart from technical replicate 1 of IDH1mut +DMSO, samples had FRiP-scores 

between 12-23%, and more than 100 000 peaks were called (Figure 37). Due to the low 

quality of technical replicate 1 of IDH1mut + DMSO, technical replicate 2 of IDH1mut + DMSO 

was split into two pseudoreplicates and used for further analysis. In all four treatment 

conditions, high chromatin accessibility sites were discovered. The ChromHMM 313 

annotation by ENCODE 314, which is based on the myelogenous leukemia cell line K562, 

displayed that these locations mostly appeared at transcription start sites or enhancers. 
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Figure 37 
Quality control parameters for ATAC-seq pipeline. (A) Sequencing reads per million (B) The number of called 
peaks x1000 (C) FRiP score for each replicate. 
 

When IDH1mut cells were compared to wild-type cells, several regions showed enhanced 

accessibility, which were reversed when the mutant-IDH1 inhibitor was used to restore the 

wild-type level (Figure 38A). However, other regions displayed irreversible patterns of 

accessibility after treatment with BAY1436032 (Figure 38B). As expected, differential binding 

analysis using DiffBind 234 showed that treatment with BAY1436032 did not alter binding 

affinity in IDH1 wild-type samples (Figure 38C), whereas IDH1mut samples showed partial 

reversibility when compared to their counterparts treated with DMSO. IDH1 mutated 

samples treated with DMSO showed the highest correlation with IDH1mut treated with 

inhibitor (Figure 38D). Nevertheless, IDH1mut treated with inhibitor also yielded high 

correlations with IDH1 wild-type samples. For a better comprehension and more reliable 

identification of significant changes in accessibility caused by IDH1mut or the inhibitor's 

action, more biological and technical replicates would be required. Nevertheless, this 

analysis demonstrates the ability of ATAC-seq to map the chromatin state of primary human 

AML patients and the potential of BAY1436032 to reverse epigenetic changes caused by 

mutant IDH1 on chromatin accessibility. 
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Figure 38 
Differential chromatin accessibility assesses by ATAC-seq. (A)Example of called peaks in KDM4C (B) Example of 
called peaks in IFIT3 (C) Binding affinity heatmap showing affinities for differentially bound sites across all 
treatment conditions (D) Correlation heatmap plot for all treatment conditions.   
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4.2 Chromatin changes in IDH2mut cell lines after AG-221 treatment 

 

Cancer-induced changes in chromatin accessibility are potentially reversible. The IDH1 

mutant inhibitor BAY1436032 partially reverted chromatin signatures. Similarly, the IDH2 

mutant inhibitor AG-221 has the potential to revert deregulated epigenetic patterns. Thus, I 

investigated the impact of AG-221 on the chromatin state of TF-1 cell lines with or without 

IDH2 mutations. Cell lines were collected from HI-STEM laboratories (DKFZ Heidelberg), and 

subsequently, presence of IDH2mut was assessed via Sanger sequencing (Figure 39A). As 

expected, TF-1 wt did not show mutations in the IDH2 genes, whereas TF-1 IDH2mut harbored 

three additional point mutations to the anticipated R140 mutation. 

Then, sc-DNA was performed to validate Sanger sequencing results and the sensitivity of the 

myeloid panel to target all IDH2 mutations observed. Sc-DNA seq detected all four mutations 

in the IDH2 gene in erythroblasts from TF-1 IDH2mut (Figure 39B). In addition, mutations in 

EZH2 and WT1 were found in both cell lines. 

 

Next, cells from both cell lines were treated with concentrations ranging from 0.06 to 32 µM 

for six days to assess toxicity. As a control, cells were treated with DMSO in matching 

volumes. Viability measured via trypan blue staining on a Luna counter showed viabilities 

around 90% for all cells treated with concentrations up to 10 µM (data not shown). Cell 

viability measured via luciferase assay obtained similar results, with AG-221 showing no 

impairment of viability up to 8µM while concentrations of 32µM decreased viability by 80% 

(Figure 39C). After ensuring that AG-221 does not kill cells at a concentration of 5µM, cells 

were treated with 5µM of AG-221 or DMSO for six days. Then, scATAC-seq was performed to 

evaluate reversible and self-sustained epigenetic changes caused by mutant IDH on 

chromatin accessibility. 
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Figure 39 
Mutations and viability in TF-1 cell lines. (A) Snapshot of point mutations in IDH2 gene visualized in UCSC 
Genome Browser (B) scDNA-seq of both TF-1 wt and TF-1 IDH2mut (C) Viability of cells upon treatment with AG-
221 for 6 days, normalized to DMSO control.  
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For the scATAC-seq run, wild-type and IDH2mut cells were treated for 6 days with 5µM AG-

221. As a negative control, both cell lines were treated with DMSO in same volumes. Wild-

type and mutated cells formed two distinct clusters independent of treatment and once 

minor cluster with cells from all four conditions (Figure 40A). However, heterogeneity in 

chromatin accessibility was higher in the population of treated IDH2mut cells (Figure 40B). As 

expected, treatment with AG-221 did not seem to have an impact on chromatin accessibility 

in wt cells. Cluster 2 comprised cells from wt and IDH2mut cells while cluster 4 only contained 

IDH2mut cells (Figure 40C). This led to the hypothesis that cluster 2 might confer non-

responding cells to treatment whereas cells from cluster 4 might be sensitive to AG-221. 

Peak distribution was similar for all clusters and most peaks were found in intronic regions 

(Figure 40D). 22935 unique peaks were found that were visualized in a heatmap (Figure 40E) 

and cluster 4 showed distinct changes in accessibility compared to cluster 2. Then pairwise 

differential testing was performed between cluster 4 and cluster 2 alone (Figure 41A). Out of 

207178 features ~1.2% were up and ~0.5% were downregulated. Enriched motifs that were 

found in these upregulated peaks mainly comprised TFs such as GATA, STAT and RUNX1 

(Figure 41B). Especially GATA1 and GATA2 play a crucial role in erythrocyte differentiation 

and regulation of HSC activity 315. Since TF-1 cells are derived from a human erythroleukemia 

sample and AG-221 is known to induce differentiation 316 cluster 4 might indeed represent 

cells responding to treatment while cells from cluster 2 chromatin state is self-sustained. The 

TFs downregulated in cluster 4 were JUN, FOS, BACH and CEBPA and RUNX3 which are all 

involved in hematopoiesis or cell differentiation as well 317-320. Lastly, per-cell deviations 

across all motif annotations for all clusters were computed using chromVAR. The most 

variable TF motifs across the whole dataset were JUNB and FOSL, whereas the most 

enriched motif in cluster 4 was GATA2 (Figure 41). 
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Figure 40 
Chromatin changes in TF-1 cells after AG-221 treatment 
(A) UMAP embedding colored by condition (B) UMAP embedding colored by clusters (C) UMAP embedding 
seperated by condition (D) Dodge plot of peak distribution (E) Heatmap of unique marker peaks 
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Figure 41 
Motif enrichment in TF-1 IDH2mut cells treated with AG-221 
(A) Volcano plot of up and downregulated features in C4 vs C2 (B) Motif enrichment in upregulated differential 
peaks in C4 compared to C2 (C) Motif enrichment in dowregulated differential peaks in C4 compared to C2 (D) 
Violin plot depicting the distribution of chromVAR deviation scores of GATA2 for each cluster 
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4.3 Multi-omics response of AG-120 in one IDH1mut AML patient 

 
To further investigate the effects of targeted IDHmut treatment, one patient harboring a 

confirmed IDH1 mutation was examined on multi-omics levels. I assessed the effect of AG-

120 on gene expression, and shifts in clonal evolution and accompanied treatment 

sensitivities by targeted scDNA-seq. Further, I assessed the impact of this inhibitor on 

chromatin accessibility patterns. Data was collected during diagnosis, remission, and relapse 

at the single-cell level for analysis. 

 

4.3.1 Dynamic changes in gene expression programs caused by AG-120 treatment 
 
At first, the effect of AG-120 concerning transcriptomic changes was studied using scRNA-

seq. In total, 4870 cells distributed over three timepoints passed stringent quality control. 

Cells were visualized with a two-dimensional representation using UMAP. Cell types were 

automatically annotated via singleR 260 (Figure 42). Non-malignant cell types clustered by cell 

type, whereas AML cells clustered independently (Figure 42). Cell at relapse formed two 

distinct clusters with cells overlapping from diagnosis. To further investigate changes in 

transcription, I determined the 15 most essential marker genes of each tumor cluster, and 

their expression values were plotted onto a heatmap (Figure 43A).  

 

 
Figure 42 
Annotation of IDH1mut AML sample. UMAP embeddings are colored by predicted cell type and timepoint. 
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Figure 43 
Differential gene expression and transcription factor activity in one AML patient. (A) Single-cell heatmap 
depicting top markers for each tumor cluster. (B) Transcription factor activities grouped by tumor cluster. 

 
Differential gene expression looked similar between diagnosis and relapse cluster II, with 

upregulation of various ribosomal proteins. Aside from protein synthesis, ribosomal proteins 

are engaged in a variety of biological tasks, including cell cycle arrest and apoptosis, as well 

as proliferation 321. In relapse cluster I, especially genes that are known as monocytic 

markers or play a role in antigen presentation or inflammation, such as LYZ, HLA-DRA 322, 

S100A8, S100A9, S100A12, or VCAN, were highly expressed (Figure 43A). This result is in line 

with predicted cell type annotation with relapse cluster II mainly composed of monocyte-like 

cells, while cluster I resembles more undifferentiated cells such as HSC, MPPs, or 

erythroblasts (Figure 42). TF analysis revealed high activity in TFs that were documented to 

be involved in JAK/STAT signaling, cell cycle, proliferation, NFkB signaling, HSC maintenance, 

and leukemogenesis (Figure 43B). Contrary, these TFs had shallow activity in relapse cluster 

II, and mainly, TFs of the E2F family showed high activity. These TFs play a vital role during 
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the G1/S transition in mammalian cells, and deregulated activity or expression of TFs from 

the E2F family were reported in many human cancers 323. 

I then performed GSEA, which revealed significant upregulation of MYC targets at diagnosis 

compared to both relapse clusters (Figure 44A). As seen in TF activity analysis, JAK/STAT and 

NFkB signaling was downregulated in GSEA at timepoint of diagnosis (Figure 44B). In 

addition, a decrease in the innate immune system, inflammatory response and oxidative 

phosphorylation was detected. 

 

 
Figure 44 
Gene set enrichment analysis of IDH1mut AML. (A) Dot plot of up regulated gene sets of AML cells from diagnosis 
compared to both relapse clusters. Gene sets from Hallmark and Reactome were used. (B) Dot plot of down 
regulated gene sets of AML cells from diagnosis compared to both relapse clusters. Gene sets from Hallmark 
and Reactome were used. Dashed line depicts the significance threshold. 
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For relapse cluster II, GSEA also detected upregulation of MYC targets and E2F targets when 

compared to relapse cluster I (Figure 45A), confirming the finding of TF activity analysis. On 

the other hand, relapse cluster I, showed upregulation in interferon-gamma and 

inflammation response, TNFa signaling via NFkB, p53 pathway and JAK/STAT signaling 

(Figure 45B).  

 
Figure 45 
Gene set enrichment analysis of IDH1mut AML. (A) Dot plot of up regulated gene sets of AML cells from relapse 
cluster II compared to relapse cluster I. Gene sets from Hallmark and Reactome were used. (B) Dot plot of 
down regulated gene sets from relapse cluster II compared to relapse cluster I. Gene sets from Hallmark and 
Reactome were used. Dashed line depicts significance threshold. 
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4.3.2 Emergence of therapy-resistant clones detected with scDNA-seq 
 
AML is a heterogeneous disease and, AML blasts can be composed of several subclones with 

distinct genetic lesions. Especially during treatment, the frequency and composition of 

subclones can shift, or new genetic aberrations can arise. To investigate the effects of a drug 

targeting IDH1mut cells and to track clonal evolution during the therapy course, I used scDNA-

seq for three longitudinal samples collected from bone marrow.  

At diagnosis, three distinct clones were prominent. Most likely, all clones originated from 

one clone with a heterozygous CSF3R (chr1:36933097:T/C) mutation (Figure 46). The most 

prominent subclone at diagnosis had an additional heterozygous IDH1 mutation. In contrast, 

the third clone comprised less than 1% of all subclones and harbored a JAK2 mutation 

(chr9:50773770:G/T) in addition to the CSF3R mutation. Subclones with IDH1mut were shown 

to be very sensitive to treatment with AG-120, and no IDH1mut cells were detected during 

remission. However, two clones with either a hetero- or homozygous JAK2 mutation 

emerged. These clones were resistant to AG-120 and proliferated until they became 

dominating subclones at the time of relapse.  

 
Figure 46 
Clonal evolution during AG-120 treatment in IDH1mut patient. Top: FISH-plot depicting the clonal composition of 
AML cells before treatment, during remission, and at relapse. Bottom left: Clonal phylogeny tree of clonal 
evolution. Bottom right: Aggregated variant allele frequency (VAF) calculated from single-cell data visualized as 
line plot.  
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4.3.3 Changes in chromatin state caused by IDH1mut 
 

To investigate the changes of chromatin accessibility caused by IDH1mut healthy cells from 

remission were compared to AML blasts carrying an IDH1mut (Figure 47A). Cluster identities 

were defined by integration with scRNA-seq data obtained from the same patient (Figure 

47B). Cells from remission were mainly assigned as monocytes/macrophages CD14+ and T-

Cells. Cells collected at diagnosis mainly comprised erythrocyte-like AML blasts and T-Cells as 

well. Peaks were called with MACS2 and 628 unique peaks were plotted in a marker peak 

heatmap (Figure 47C). CD14 positive monocytes/macrophages showed high chromatin 

accessibility compared to erythrocyte-like blasts and T-Cells. Then pairwise testing of 

erythrocyte-like blasts to monocytes/macrophages CD14+ was conducted. In total, ~0.1% of 

21936 marker features were upregulated and ~1.5% downregulated in erythrocyte-like 

blasts (Figure 46D). Mutations in IDH have been shown to promote hypermethylation 324, 

inducing chromatin condensation 325. Thus, decreased chromatin accessibility in IDHmut blasts 

would be expected. Then motifs enriched in peaks found in IDH1mut erythrocyte-like cells 

were investigated. Many of the upregulated motifs were part of the SOX and forkhead box 

(FOX) transcription factor families and the most enriched motifs was SMAD1 (Figure 47E). 

SMAD1 is a key mediator in TGF-b signaling and is linked to a variety of malignancies. This TF 

is associated in a wide range of biological processes, such as apoptosis, cell proliferation, 

development, and immune response 326. SOX genes are involved in oncogenesis 327, 

embryonic development, and epigenetic reprogramming of stem cells 328. In addition, they 

can play distinct pathogenetic roles in AML 329. FOX TFs are also linked to differentiation, 

senescence, and proliferation. Further, leukemogenesis, relapse and treatment sensitivities 

in AML are often influenced by FOX proteins298. Downregulated motifs were found for TFs 

such as JUN, FOS, BACH and CEBPA (Figure 47F). JUN and FOS are proto-oncogenes that have 

been linked to promoting myeloid differentiation 319. CEBPA is essential for the 

differentiation of myeloid progenitors and mutations in this genes are linked to acute 

myeloid leukemia 318. BACH1 is a master regulator of oxidative stress 320 and its upregulation 

was suggested as potential antileukemic therapy strategy330. 
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Figure 47 
Chromatin accessibility in IDH1mut 

(A) UMAP embedding colored by timepoint (B) UMAP embedding colored cell type inferred from scRNA-seq (C) 
Peak matrix heatmap (D) Volcano plot of up and down regulated features in erythrocyte-like AML blasts 
compared to monocytes/macrophages (E) Motif enrichment in upregulated differential peaks in erythrocyte-
like AML blasts compared to monocytes/macrophages (F) Motif enrichment in downregulated differential 
peaks in erythrocyte-like AML blasts compared to monocytes/macrophages 
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5 Stratification of leukemic blasts across three AML subgroups 
 
Leukemic cells have a hierarchical structure that mirrors the differentiation hierarchy of non-

malignant hematopoiesis 127-129. Hence, the phenotype of a leukemic blast can resemble 

naïve myeloid progenitors, differentiated myeloid blood cells, or express features from 

distinct differentiation stages. Besides genetic factors, this may partly account for 

heterogeneity observed in AML. Insights on the composition of AML blasts might help 

explain differences in therapy responses, develop targeted therapies, and predict treatment 

outcomes 139. 

Thus, I wanted to stratify patient-specific AML blasts along the HSC to myeloid 

differentiation axis across the three AML subgroups studied in the thesis (MLL fusions, FLT3, 

and IDH mutations) and compare the influence of treatment on cell type abundance. 

Therefore, module score and cell type prediction analysis were performed using scRNA-seq 

data. The investigation revealed extensive malignant cell diversity and provided detailed 

information on AML cell types and differentiation states (Figure 48, Figure 49). The relative 

abundance of distinct malignant cell types found in tumors varied; in some, just one or two 

identities predominated, while others were composed of a wide range of malignant cell 

types. MLL fusions conferred a highly differentiated phenotype, with monocyte/macrophage 

CD14-like and promonocyte-like cells predominating. MLL-EDC4 cells were an outlier in this 

categorization, with elevated scores for HSC and MPP signatures (Figure 48). Automated cell 

type annotation also predicted a relative abundance of more than 90% in progenitor-like 

cells, such as HSC-, MPP-, and ERP-like cells (Figure 49). However, compared to cell 

composition samples harboring FLT3-ITDs collected at diagnosis, module scores for HSC and 

progenitor cells were lower in MLL-EDC4 AML. Generally, AML samples with FLT3-ITDs or 

IDH1 mutations were composed of a more diverse makeup of cells along the myeloid axis in 

comparison to MLL fusions. The diversity of cell types in relapse was remarkably high and 

displayed elevated differentiation signatures in tumoral subclusters while the corresponding 

other intra-tumoral subclusters maintained a high abundance of progenitor cells.  
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Figure 48 
Gene signature scores of malignant cells across AML subgroups. Violin plots depicting module scores for HSC-, 
GMP, MPP, Mono CD14-, preDC- and cDC2 genes. 
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Figure 49 
Cell type abundance of malignant cells across AML subgroups. Pie charts depicting the relative abundance of 
AML blast classification based on transcriptomic similarity to healthy myeloid cells. HSC, hematopoietic stem 
cell; MPP, multipotent progenitor; GMP, granulocyte monocyte progenitor; prMono, Monocyte; Mono/Macro 
CD14, Monocyte/Macrophage CD14+; Mono/Macro CD16, Monocyte/Macrophage CD16+; prMa, mast cell 
precursor; ERP, erythroid progenitor; Er, Erythrocyte; preDC, pre dendritic cell; cDC2, conventional dendritic 
cell type 2. 
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Discussion 
 
A hallmark of cancer are genetic alterations that lead to the deregulation of transcriptional 

programs that involve oncogenes and tumor suppressors. Thus, it is crucial to identify tumor 

specific dysregulated transcriptional signatures to dissect the patho-mechanisms and to 

identify new treatment options 331. From genomic sequencing of cancer cells alone these 

transcriptional dependencies can only partly be understood 332. Furthermore, tumor cells 

frequently show deregulated gene expression that leads to abnormal developmental 

patterns and may be caused by differentiation block or epigenetic reprogramming 333,334. 

Thus, the phenotypic effects of a genetic aberration may depend on the cells' underlying 

epigenetic landscape and vary depending on the stage of differentiation at which it occurs 
191. Single-cell approaches provide tremendous possibilities to address these issues and 

reveal molecular mechanisms responsible for tumor heterogeneity and drug sensitivities. 

Multiple single-cell sequencing readouts offer complementary information to explore tumor 

composition, mutational co-occurrences, and clonal evolution during treatment in thousands 

of cells in a particular sample. Especially the emergence of targeted epigenetic drugs and the 

potential reversibility of deregulated epigenetic events highlights the significance of studying 

these changes in AML 72,117. This thesis explored how genetic mutations, transcription, and 

epigenetic programs are altered in acute myeloid leukemia (Figure 50). 

 

 
Figure 50 
Different single cell sequencing readouts used to dissect heterogeneity and molecular profiles of AML subtypes. 
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1 Workflow for experimental approaches and data analysis methods 
for multi-omics analysis of primary AML cells 

 
My thesis work illustrates how the quality of sequencing libraries is crucial for successful 

downstream analysis. Factors that could interfere with sample quality were identified and 

strategies to rescue libraries have been developed. The cell integrity and RNA quality are 

essential prerequisites, for single-cell transcriptome sequencing studies 335. Sampling time 

has a strong effect on single-cell gene expression profiles. Significant changes were observed 

after 2 hours which increased in a time-dependent manner 336. Additionally, sampling 

duration surpassed batch and donor for various cell types and came in third behind cell type 

and patient variability as the biggest drivers of variance. Thus, comparable sampling times 

within a dataset are necessary for reliable results. The cryoprotectant dimethyl-sulfoxide 

(DMSO) was shown to conserve intact and viable cells without altering transcriptional 

profiles. Thus, this cryopreservation method should be implemented into common single-cell 

workflows 335.  

Furthermore, clinical samples are frequently fundamentally limited, and benchmarking or 

technological development can only be done on cell lines beforehand. Since every patient 

and sample is unique, it is important to find a balance between a standard protocol and 

reasonable expectations for successful experiments. First, cell viability and the extent of 

dissociation into a single-cell suspension should be evaluated 337. Only samples that pass 

stringent quality control (QC) should move on to single cell multi-omics sequencing 

procedures. FACS might potentially be utilized as an extra QC before profiling. 

Further, I explored distinct tools to investigate tumor populations in AML. AML blasts share 

antigen expression patterns found in healthy immature myeloid cells, such as the common 

differentiation markers CD13, CD33, and CD34 338. Other cell markers, including monocytic, 

megakaryocyte, or erythroid markers, are expressed based on the genetic AML subtype and 

differentiation state. This makes the disease very heterogeneous, and there is no defined 

marker to reliably determine AML blasts for all subtypes in scRNA-seq data sets. My study 

shows that FLT3 expression is sufficient to distinguish leukemic cells from non-malignant 

microenvironment for patients carrying FLT3-ITDs. However, this method is not applicable to 

other genetic AML subtypes. 
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Previous research on intra-tumor heterogeneity has shown that single-cell copy number 

alterations can be inferred from scRNA-seq 339-341. Thus, the tumor subclone composition of 

a given sample can be resolved from a copy number alteration (CNA) analysis. However, 

these tools are unsuitable for some hematopoietic diseases, especially AML, that have a low 

frequency of CNAs 342. Additionally, previously used methods, such as inferCNV 342 or 

Honeybadger 341, were created to interpret datasets from first-generation scRNA-seq 

techniques with deeper sequencing and fewer cell throughput. scRNA-seq data generated 

with nano well or microdroplet platforms might not be suitable for these tools 243. In this 

thesis, I optimized the parameters of tools designed for other sample types. My findings 

confirm that CopyKat 243 is applicable to distinguish normal from AML cells by inferring 

ploidy. Additionally, I empirically tested different tools to integrate leukemic cells with a 

healthy bone marrow reference and to infer pseudotime. I demonstrate that integration 

with custom-specified anchors works best and that the tested velocities might not be 

appropriate for acute myeloid leukemia samples. Establishing a framework to produce high-

quality sequencing libraries and analyze the generated data sets enables a fast and 

reproducible analysis for further samples to come.  

 
2 Cell type analysis of MLL-r 
 

I compared the peripheral blood transcriptomic profile of a novel MLL-EDC4 fusion in AML to 

MLLT3-MLL and MLL-ELL fusions representing two of the most common MLL fusion partners 

in AML. I hypothesized that investigating these transcriptomic patterns would elucidate 

profound differences that might be disease relevant like aberrant signalling pathways that 

can be used to stratify patient risk 343,344.  

Subsequent analysis of these four patients revealed an overlap of upregulated gene subsets 

in MLLT3-MLL and MLL-ELL AML, whereas MLL-EDC4 AML showed a distinct transcriptomic 

profile. 

Stratification of differentiation states of all patients led to the identification that MLL-EDC4 

leukemic cells are more stem cell and progenitor-like than the other AML fusions. These cells 

were predicted to comprise more monocyte-like cells. Leukemic cells carrying an MLL-EDC4 

fusion might cause a more stem-like cell stage either by blocking myeloid differentiation or 

leading to dedifferentiation of a more developed cell of origin. Many genes upregulated in 
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MLL-EDC4 compared to the other MLL-fusions are crucial in hematopoiesis or leukemic stem 

cell activation. Additionally, increased expressions of the genes HOXA9, RUNX1, MYB, and 

GATA2 were documented in endothelial-to-hematopoietic transition, leukemic stem cell 

activation, or cell-fate decision 283,284,286-288. 

The analysis of the microenvironment indicated the presence of immunosuppressive 

monocytes in MLL-EDC4. The expression of CD36, cathepsins, and CLEC receptors have been 

described to infer immune or T-cell response 345,346. Seto et al. showed that EDC4 is vital in 

the posttranscriptional regulation of the pro-inflammatory cytokine IL-6 leukemic 

macrophage cell lines 280. Another study linked IkB kinase-EDC4 interaction with P-body 

formation and regulation of mRNAs encoding inflammatory cytokines 347. An 

immunosuppressive milieu typically consists of cellular and soluble elements, supporting 

cancer immune escape and tumor development 348. 

The aberration of EDC4 might also be the driver of upregulation of various ribosomal 

proteins linked to initiation, elongation, or termination of protein translation. RPs have also 

been involved in embryonic development and malignant transformation of cells 349. Various 

studies confirm that genes that are clinically important for MLL-mediated acute leukemias 

intervene in processes of transcription resulting in either extended or incorrect chromatin 

signatures at transcribed gene loci 125,350,351. 

Differential gene set enrichment analysis in MLL-EDC4 AML revealed upregulation of 

pathways associated with eucaryotic translation or elongation, RNA metabolism, MYC 

targets, or redox-related bioenergetic pathways. Upregulation of redox metabolism 

pathways has been demonstrated to infer hematopoiesis due to an increase in oxidative 

stress causing genomic instability 352,353. Additionally, cancer cells exhibit high metabolic 

plasticity to cope with variable resource availability. While hypoxic tumor cells are restricted 

to glucose-dependent anaerobic glycolysis, oxidative cancer cells can use glutamine, lactate, 

and lipids in addition to glucose to fuel oxidative phosphorylation 354,355. This biosynthetic 

and bioenergetic balance is fine-tuned at an enzymatic level to meet cell demands 356,357. 

LHBD, a key glycolytic enzyme catalyzing the interconversion of lactate to pyruvate, was 

most significantly expressed in MLL-EDC4 AML 358. The overexpression of LDHB warrants 

metabolic plasticity and facilitates the adaption of cancer cells to specific cellular conditions 
359. So far, not many studies have investigated the role of LDHB in AML 291. However, LDHB 

was shown to regulate autophagy in oxidative and glycolytic cancer cells 359. Autophagy 
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promotes the proliferation and survival of cancer cells. This is achieved by recycling 

organelles and damaged proteins in the event of oxidative stress and providing metabolite 

replacement in the case of nutrient deprivation. A study showed that cancer proliferation is 

inhibited after selective inhibition of LDHB 359. Thus, the inhibition of LDHB could be a 

promising target for treating MLL-EDC4 AML 290,291.  

The upregulation of the pathway "EIF2AK4 response to amino acid deficiency" indicates 

mechanisms of cancer glycolysis. Glucose starvation is known to have implications in cancer 

by interfering with the initiation phase of translation. Concomitantly, translationally 

repressed mRNAs can relocate to cytoplasmic foci such as P-bodies, stress granules, or eIF2B 

bodies, where they can be stabilized, decapped, or degraded 278.  

The proto-oncogene MYC is crucial to mediate cell growth, proliferation, and tumorigenesis. 

It is also one of the four "Yamanaka genes" that jointly reprogrammed fibroblasts to a 

pluripotent stem cell state 295,360. In addition, TF activity showed an upregulation of POU2F1 

in MLL-EDC4 AML, which can function in cell growth control, cellular stress response, stem 

cell identity, and immune regulation and belongs to the same POU-family as Oct-3, which is 

also part of the Yamanaka factors 296. A signature of high transcription factor activity in MLL-

EDC4 was detected for TFs such as E2F1, E2F4, ETS1, MYB, MYC, GATA1, and TAL1 that could 

potentially be linked to a more stem-like phenotype 292-294. 

The emphasis on an upregulation of PARP1 and other genes part of the MRN complex, could 

not be validated 276. However, first approaches to characterize this unique patient with an 

MLL-EDC4 fusion using scRNA-seq were limited to a defined set of candidate genes. 

Furthermore, aberrant gene expression was not set into context with other AML samples, 

which are required to draw conclusions regarding distinct patho-mechanisms in AML.  

Since these data are based on a small number of patients carrying MLL fusions, further 

studies will be required to determine to which extent these findings can be applied in 

general to this newly detected fusion partner.  
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3 Multi-omics analysis of AML patients harboring FLT3-ITDs 
 

Internal tandem duplications of the FLT3 gene occur in around 30% of AML patients, and 

they generally confer a poor prognosis and enhanced risk of relapse 361,362. The multi-kinase 

inhibitor midostaurin can be used therapeutically to address the ensuing constitutive FLT3 

activation, which promotes carcinogenesis. AML with FLT3 mutations is very heterogeneous, 

similar to other subtypes of AML. The disease evolves by clonal selection, and the number of 

concurrent mutations influences the course of treatment. This poses difficulties for 

successful therapeutic intervention given the ongoing selection pressure towards medication 

resistance 363,364. Accordingly, there is an urgent need to resolve clonal evolution patterns 

when using novel anti-leukemic drugs, such as the tyrosine kinase inhibitor midostaurin.  

A study showed that almost 50% of FLT3-ITD patients treated with midostaurin acquired 

mutations in signaling pathways that allowed tumor clones to escape from treatment 365. 

Bulk sequencing is not suitable for detecting rare subclones that may gain proliferative 

advantage through targeted therapy, and it is possible that these clones already existed 

before treatment. In contrast, the presence of different subclones and the co-occurrence of 

mutations on a single-cell level in a given patient sample may inform about drug sensitivities 

of certain subclones and direct treatment choices 366,367. Thus, I used a targeted single-cell 

DNA-sequencing approach to analyze the clonal evolution of two AML patients carrying ITDs 

in the FLT3 gene. Both patients were treated with midostaurin after diagnosis. Although the 

composition of subclones did not alter extensively after treatment for patient FLT3-ITD AML-

1, scDNA-seq could resolve mutational co-occurrence of a mutation in TET2 in four FLT3-

clones, which would not be achievable with bulk sequencing. However, the possibility that 

these FLT3 clones acquired additional FLT3-TKD mutations, not covered by the used myeloid 

panel, cannot be excluded. AML patients with FLT3-ITDs treated with selective FLT3 

inhibitors were shown to develop drug resistances caused by the emergence of FLT3-TKD+ 

subclones at relapse 368. Amongst other genes, such as BRAS; NRAS or IDH1/IDH2, the rise of 

TET2 clones in relapse samples was linked to FLT3 inhibitor-induced selection pressure 363,369. 

Treatment with midostaurin eliminated FLT3 clones at remission for patient FLT3-ITD AML-2, 

and scDNA-seq could detect a subclone population with BCOR/KDM6A/DNMT3A mutations. 

These subclones were only present at a frequency of less than 1% at diagnosis and 

remission, highlighting the great sensitivity of targeted scDNA-seq. Since midostaurin is 
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primarily designed to eradicate FLT3 clones, this clone might have had a clonal advantage 

leading to accumulation at the time of relapse 370. The reemergence of the FLT3 clone is 

probably caused by acquired resistance through further mutations in the FLT3 genes that 

could not be detected via scDNA-seq. Comparing the scDNA-seq results with bulk 

sequencing data showed the need to optimize the used scDNA panel further to target all 

FLT3-ITDs in this patient reliably.  

The presence of two distinct subclones at relapse might also explain the observed 

transcriptomic differences in the relapse sample obtained by scRNA-seq. scRNA-seq resolves 

(non-) responding cell subgroups based on their molecular transcriptomic signature, giving 

valuable insights into AML cell states and tumoral heterogeneity. High FLT3 expression levels 

were observed in all leukemic cells, especially in relapse cluster II in patient FLT3-ITD AML-2. 

Differential gene and gene set expression analysis showed upregulation of STAT and CEBP 

genes, implicating enhanced FLT3 downstream activity. For this patient, the scRNA-seq 

analysis revealed two different routes of FLT3 signaling within the same tumor sample, 

underlining the power of single-cell sequencing. This result is in accordance with recent 

findings that FLT3+ AML cells can either develop resistance by acquiring new mutations or 

bypass FLT3 inhibition through certain molecular processes 370. The underlying mechanisms 

comprise of changes in the acidity of the intracellular environment 371, elevated levels of 

FLT3 ligand 372, and an increase of certain kinases, such as PIM 373or AXL receptor tyrosine 

kinase 374. Additionally, the expression of MAPK/ERK and PI3K/AKT/mTOR pathways 

persisted or increased in resistant FLT3-ITD leukemic cells, indicating FLT3 independent 

signaling that drives resistance 375,376. Interestingly, the scRNA-seq analysis did not detect 

broad differences in FLT3 signaling for patient FLT3-ITD AML-1 but upregulation of genes 

involved in NFkB signaling or leukemogenesis and tumor progression. Thus, In this case, 

plasticity in transcription might be the driver for midostaurin resistance rather than a genetic 

driver 370.  

For patient FLT3-ITD AML-2, the scATAC-seq analysis yielded comparable results to the 

scRNA-seq. The data showed that chromatin signature, initially present at diagnosis, is 

maintained in relapse cluster I, and relapse cluster II has a distinct chromatin accessibility 

pattern. Integration of these two read-outs confirmed that cluster II in scATAC-seq is indeed 

the same as in scRNA-seq. A transcription factor motif analysis validated that relapse II is 

enriched for binding motifs linked to FLT3 downstream targets, such as CEPB, IRF, SPI1 



Discussion 

 124 

(PU.1), and STAT 377,378. This further strengthens the assumption, that relapse cluster II 

circumvents FLT3 inhibition by upregulation of other molecular pathways while cluster I 

might confer resistance through acquisition of additional mutations.  

In conclusion, this multi-omics approach combined the transcriptome analysis, mapping 

epigenetic patterns of open chromatin, and dissecting the tumor subclone structure and its 

evolution. By doing this, I obtained a comprehensive data set that characterized leukemic 

subgroups, their response to therapy, and molecular deregulation patterns that might drive 

resistance during midostaurin treatment. 

 
4 Multi-omics analysis of IDHmut in AML 
 
Enzymatic control of epigenetic processes holds the promise of novel and intriguing 

therapeutic targets for cancer treatment. Drugs may directly or indirectly impact a tumor 

cell's dysregulated epigenetic state 379. Here, I demonstrated that targeted therapy for AML 

patients/cell lines might mitigate some of the accessibility alterations brought on by these 

mutations. Nevertheless, only a fraction of regions displayed significant changes in 

reversibility, while other sustained irreversible. Therefore, the question emerges whether 

long exposure to the trigger (such as inhibiting histone or DNA demethylases) leads to self-

sustaining regions that cannot be reverted even after trigger removal. Although epigenetic 

alterations in cancer are in principle reversible by drugs 379, a complex interplay of numerous 

factors might interfere with the reversion of aberrant activities 380,381. Further research, such 

as identifying specific deregulated events and targeting these with more specific drugs, 

would be a possibility to answer this question. Despite encouraging preliminary results, 

epigenetic drugs did not meet the high expectations yet, which is ascribed to their poorly 

studied pleiotropic and global effects 382,383. A deeper understanding of the molecular 

mechanisms behind medication activity would be necessary to overcome this issue. I could 

demonstrate that the epigenetically acting drug AG-221 induced alterations in chromatin 

accessibility and enrichment of TF motifs indicating myeloid cell differentiation when 

treating IDH2mut cell lines. Further, I investigated changes in chromatin state caused by 

IDH1mut in one AML patient. The most upregulated TF motif found at diagnosis was SMAD1, a 

key regulator of TGF-β signaling 384. One study demonstrated that downregulation of IDH1, 

and subsequent increase in a-KG, inhibits TGF-β receptor degradation via the TGFBR-IDH1-
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Cav1 axis. This, in turn, promoted TGF-β signaling in cancer-associated fibroblasts 385. 

However, the influence of AG-120 treatment on IDH1mut cells could not be assessed since 

scDNA-seq revealed successful elimination of IDH1mut cells and emergence of new clones 

without this aberration. This highlights that drug therapy affects the transcriptomic and 

epigenetic landscape and the clonal genetic composition. Thus, clonal detection is relevant 

for clinical assessment to adapt treatment regimens. This conclusion is in line with other 

findings stating clonal evolution due to treatment pressure 386. 

 

5 Stratification of leukemic blasts across three AML subgroups 
 

In AML, tumorigenesis can happen at every stage of myeloid cell differentiation, and the 

clinical presentation is quite heterogeneous 139. Heterogeneity in AML may result from both 

epigenetic memory of the cell-of-origin as well as genetic lesions that lead to a deregulated 

transcriptional regulatory circuitry 139,387. Different methods have so far been employed to 

analyze the differentiation state. To reliably characterize molecular programs and stratify 

patient risk, identification of the cell-of-origin is pivotal 47,388. This was emphasized by a study 

employing a model for a cytogenetically homogeneous yet clinically heterogeneous AML 

subgroup. The transcriptome and DNA methylation patterns were distinct in malignant cells 

with an introduced MLL-AF9 fusion, depending on the cell-of-origin. More immature stem 

cell-derived leukemic blasts were associated with a worse prognosis and a reduced 

sensitivity to medication therapy47. 

Chromatin accessibility in AML revealed distinct regulatory evolution in leukemic cells with a 

successively higher mutation burden. Individual AML cells were shown to have unique mixed 

regulome patterns that reflect various maturation differentiation stages 389. The presence of 

distinct open chromatin loci in leukemic blasts, which represent the transformed cell-of-

origin, raises the possibility that open chromatin patterns might be used as prognostic 

indicators in AML 190. 

Transcriptomic readouts can reveal AML hierarchies as well. A study showed that AML cells 

could be classified via a machine-learning approach by integrating transcriptional with 

genetic data 149. Their computer-generated classifier found six malignant myeloid-like cell 

identities that could be projected along the axis of HSC to myeloid development and 
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separated leukemic from normal cells. The tool used in this thesis has the advantage of 

distinguishing AML subclones in a higher resolution than six subtypes and is easier to use for 

scientists, non-familiar with machine-learning approaches. This method aims to stratify 

transcriptomic profiles of various myeloid-like tumor cell types. Although leukemic cells do 

not express gene signatures seen during typical development but rather a combination of 

regulatory characteristics, the scoring system based on similarity allows for dissecting 

heterogeneous blast composition in AML. However, this approach is not intended for 

annotating intermediate cell states. While the present differentiation state of blasts provides 

valuable information on tumor heterogeneity and possible treatment options, the 

annotation of the leukemic blast might not be identical to the cell-of-origin. Tumor initiating 

cells can lose lineage-determining transcription factors, such as PU.1, leading to 

dedifferentiation 390. Conversely, leukemic cells may continue to differentiate along the 

myeloid trajectory after an oncogenic event at an early developmental stage 391. These cells 

might then differentiate further to various degrees 392, affecting the accurate prediction of 

the cell-of-origin. 

 

6 Conclusion 
 
I dissected transcriptomic and epigenetic deregulation in major AML subgroups by analyzing 

gene expression and chromatin accessibility patterns. By advancing the necessary 

experimental and bioinformatic methodologies I could exploit these data to gain insight on 

deregulated molecular features of AML on various levels. I demonstrated that leukemic cells 

carrying MLL-EDC4 exert a unique transcriptomic signature and that scRNA-seq could be 

used to determine the developmental stages of leukemic blasts. The latter approach is 

generally applicable and allows to stratify patients based on a cell type assignment of blast 

and provides an alternative approach to machine learning tools as previously described 149. 

Further, genetic lesions in AML were investigated on a sub-clonal level, and functional 

implications during tumorigenesis and therapy were assessed. My thesis illustrates how 

tumorigenic and treatment-induced features alter gene regulatory programs. Using an 

integrative omics approach, I resolved the subclone-specific response during FLT3 inhibition 

with midostaurin. The drug treatments' effects on clonal evolution differed for the two 

patients investigated, which might be caused by different coping strategies to bypass FLT3-
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inhibition. The generation of a new scDNA-panel to specifically target hundreds of distinct 

FLT3-ITDs will resolve tumor evolution in unprecedented detail for a future study which aims 

to dissect molecular differences between midostaurin and gilteritinib treatment in FLT3-ITD 

patients. 

I further exposed that treatment with drugs targeting mutant IDH led to partial reversibility 

of chromatin accessibility. TFs such as JUN, FOS and CEBPA seemed to be involved in these 

mutant-specific changes in chromatin accessibility. Regions that were sensitive to treatment 

showed signs of differentiation indicated by the enrichment of GATA TFs. TFs maintain and 

shape cancer cell identity and are promising therapeutic targets. The discovery of TFs driving 

oncogenesis could be exploited for the design of drug candidates that inhibit aberrant TF 

activity and improve current treatment options 393. 

Lastly, leukemic cells of three AML subtypes were classified along the myeloid hematopoietic 

differentiation axis. The development of cell type prediction of AML blasts based on 

transcriptomic expression revealed a higher variety of cell populations and a shift in 

differentiation in relapse compared to diagnosis samples. It has been observed that novel 

targeted therapeutics can cause leukemic blast maturation 118,227,394. However, further 

research is necessary to determine how these differentiation patterns affects clinical 

outcomes 395.  

The genomic, epigenomic, and transcriptomic layers, were studied as distinct readouts from 

the same sample. They revealed complementary information on epigenetic alterations, 

cellular hierarchies, and the effects on deregulated gene expression in AML after their 

bioinformatical integration. Recent advancements allow the simultaneous readout of 

transcriptome, epigenome, and genome in various combinations from the same cell 
227,396,397. This enables the unbiased exploration of regulatory relationships, such as the 

connections of regulatory genomic states and their causal changes in transcription. Thus, by 

applying single cell multi-omics analysis, it is anticipated that our understanding of cell 

functionalities can be further improved. For example single-cell approaches have the 

potential to address challenges such as characterization of pre-malignant myeloid cells and 

the dissection of clonal evolution in LSCs 149 or myeloid-derived suppressor cells 398 (MDSCs) 

within AML patients.  

 The implementation of the type of analysis described in this thesis, without the need to 

infer linkages through computer simulations, will offer insightful information on intra-tumor 
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heterogeneity in leukemia. Furthermore, my workflow to characterize AML blasts, their 

myeloid-like sub types and consequently unique TF programs holds great potential for 

clinical application when extended to larger sample size. While bulk DNA-sequencing is 

already utilized in clinical practice to identify treatment relevant mutations, the single cell 

methods described here, have the great potential to detect rare subclones or mutational co-

occurrences and link them to regulatory programs that can differ within the same tumor. 

Dissecting disease- and drug-induced transcriptomic changes and linkage to transcription 

factor deregulation and chromatin accessibility will extend the usage and significance of 

sequencing-based techniques for clinical decision-making. Apart from hurdles such as the 

implementation of adequate preprocessing protocols, the development of analysis 

workflows and the storage of patient data, costs for single-cell omics experiments might 

prohibit the study of large patient cohorts 266. However, it is noted that treatments with new 

therapeutic agents can easily reach 100 000 € per year and patient and thus quickly exceed 

the costs of these analysis methods. One study also demonstrated cost reductions and 

clinical significance for AML patients by combining clinical and genomic data 399. Further 

development of combined omics approaches will decrease experimental costs in the next 

decade that may facilitate the implementation into the clinics and increase treatment 

effectiveness. The work in this thesis supports the inclusion of single cell omics in such an 

approach. It illustrates how a more profound understanding of AML disease pathology and 

drug response was obtained that could be applied in subsequent studies to enhance 

personalized patient therapies.  
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Suppl. table 1 Gene list for integration 
Genes 

ABCA9 CD14 CST3 EMP1 HIST1H2BK JUN MRPL33 PIWIL4 S100A8 SRSF6 
ABCB1 CD163 CSTA EP400NL HLA-DMA KBTBD11 MRPL57 PKIB S100A9 ST3GAL1 
ACSL1 CD300E CTSC EPS8 HLA-DMB KIF2A MS4A10 PLAC8 S100B TAPT1-AS1 
ACTB CD68 CTSG F13A1 HLA-DPA1 KMT2A MS4A3 PLBD1 SAMHD1 TFDP2 
AK2 CD70 CTSS FAM107B HLA-DPB1 LGALS2 MSI2 PLCB4 SCRN1 THBS1 

ALDH2 CD74 CXCL2 FAM30A HLA-DPB2 LILRB3 NACA2 PLD3 SELENOP TLR4 
ANKRD28 CDK6 CXCL8 FAM74A4 HLA-DQA1 LINC01623 NAMPT PRDX6 SELL TMEM25 

APOBEC3A CDKN2A CYP1B1 FCER1A HLA-DQA2 LINC01770 NAP1L1 PRLR SERPINA1 TMEM70 
AQP9 CEBPB DBI FCN1 HLA-DQB1 LOC107984974 NAPSB PROK2 SERPINB10 TMEM74 

ATP5G2 CFAP61 DDIT3 FEZ1 HLA-DQB2 LOC643802 NCF1 PSAP SERPINB2 TMSB10 
ATP8B4 CLEC10A DEFB1 FPR1 HLA-DRA LOC644936 NCF2 PSME1 SESN3 TNFAIP2 

B4GALT6 CLEC4A DHRS9 FRMD3 HLA-DRB1 LPL NEAT1 PTGFR SH3BGRL3 TP53INP2 
BCL2A1 CLEC4E DSE FTH1P3 HLA-DRB5 LRP1 NFKBIA PTPRCAP SLC11A1 TPM4 

BCL6 CLEC7A DST FTL HLA-DRB6 LRRC75A-AS1 NOP53 PYCARD SLC24A4 TPSB2 
C20orf203 CLNK DUSP1 FUT4 HNRNPA1 LRRK2 NPDC1 RACK1 SLC44A1 TPSD1 

C5AR1 CLU EAF2 GABARAP HOPX LY86 NPTX2 RBPMS SLC6A13 TPT1 
CACNB4 CMTM2 EBPL GABRA4 HOXB-AS3 MAFB NRIP1 RETN SLPI TSC22D1 
CALCRL COTL1 ECRP GNG11 HSH2D MECOM PAK1 RFLNB SMIM24 TTLL10 
CAP1 CPA3 EEF1A1 GNPTAB HSP90AB1 MEF2C PALLD RFX8 SNHG6 UMODL1-AS1 

CCDC144N
L-AS1 CPVL EEF1B2 GPR183 HSPA5 MEFV PARP1 RNASE2 SNHG8 VCAN 

CCDC152 CR1 EEF1G GPX1 IFNGR1 MEGF9 PCNP RNASE3 SOX4 VNN2 
CCDC18-

AS1 CRHBP EGFL7 GRB2 IGSF6 MEIS1 PDLIM1 RNF217 SPINK2 XIRP2 
CCL23 CRIP1 EIF4B H1F0 IL31RA MEST PDZRN4 RNVU1-6 SPN ZBTB20 
CCR2 CRISPLD2 ELF1 H2AFY ITGB7 MPPED2 PEBP1 S100A10 SPON1 ZFR 
CCS CSF1R EMB HINT1 JAML MRC1 PHACTR3 S100A12 SRGN ZPBP 
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HSC MPP GMP Mono preDC cDC 
ANKRD28 RPS5 BTF3 RPSA AC020656.1 CD14 ACTG1 SPINK2 ACTB RGS10 

AVP RPS6 C1QTNF4 SMIM24 AREG CSTA C12orf75 SRP14 ACTG1 S100A10 

C6orf48 RPS8 DUT SPINK2 AZU1 CTSS CCDC50 STMN1 ARPC2 SNX3 
CD164 RPSA EEF1B2 STMN1 CALR CXCL8 CD74 TCF4 C1orf162 TAGLN2 
EEF1B2 SNHG8 EEF2 TUBA1B CLEC11A DUSP1 H2AFZ TUBA1B C1orf54 TMSB4X 
EEF2 SPINK2 EIF3E TUBB CST7 FCN1 HIST1H4C TUBB CD74 TUBA1B 
EIF3E ZFAS1 ENO1 UBB CTSG FOS HMGB1 UBB CLEC9A TXN 
FAM30A  GYPC  DUT FTL HMGB2  CPNE3  
HINT1  HINT1  ELANE G0S2 HMGN1  CPVL  
HNRNPA1  HIST1H4C  FABP5 NAMPT HMGN2  CST3  
HOPX  HMGA1  H2AFZ NEAT1 HNRNPA1  DNASE1L3  
HSP90AB1  HMGB1  HMGN1 NFKBIA HNRNPA2B1  EEF1B2  
LDHB  HNRNPA1  HSP90B1 RGS2 HSP90AA1  GSTP1  
NOP53  HSP90AA1  HSPB1 S100A12 IGLL1  HLA-C  
NPM1  HSP90AB1  IGLL1 S100A4 IRF8  HLA-DMA  
PRDX1  IGLL1  LDHB S100A6 ITM2C  HLA-DMB  
RACK1  LDHB  MPO S100A8 LDHB  HLA-DPA1  
RPL10A  NPM1  MS4A3 S100A9 NPM1  HLA-DPB1  
RPL15  NUCB2  NPM1 SLC2A3 NUCB2  HLA-DQA1  
RPL3  PRDX1  NUCB2 TYROBP NUCKS1  HLA-DQA2  
RPL30  PRSS57  PLAC8 VCAN PCLAF  HLA-DQB1  
RPL31  RPL10A  PRSS57 ZFP36L1 PCNA  HLA-DRA  
RPL4  RPL3    PLAC8  HLA-DRB1  
RPL5  RPL4    PLD4  HLA-DRB5  
RPL7A  RPL5    PLP2  ID2  
RPLP0  RPL7A    PPIB  IRF8  
RPS12  RPLP0    RPSA  LMNA  
RPS18  RPS18    SCT  LSP1  
RPS2  RPS3    SEC61B  NAP1L1  
RPS23  RPS4X    SEPT6  PPA1  
RPS3  RPS5    SLC25A5  PPT1  
RPS4X  RPS6    SOX4  PSMB9  

Suppl. table 2 Gene list for module score calculation 
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 Suppl. table 3 List of unique ITDs  

ITD length [bp] Insertion site chr 13 [bp] Insertion site domain 
48 28608292 exon 14 JMD switch motif 
33 28608291 exon 14 JMD switch motif 
27 28608288 exon 14 JMD switch motif 
45 28608288 exon 14 JMD switch motif 
30 28608286 exon 14 JMD switch motif 
36 28608286 exon 14 JMD switch motif 
39 28608286 exon 14 JMD switch motif 
42 28608286 exon 14 JMD switch motif 
54 28608286 exon 14 JMD switch motif 
42 28608279 exon 14 JMD zipper motif 
30 28608278 exon 14 JMD zipper motif 
30 28608277 exon 14 JMD zipper motif 
36 28608277 exon 14 JMD zipper motif 
39 28608277 exon 14 JMD zipper motif 
51 28608277 exon 14 JMD zipper motif 
60 28608277 exon 14 JMD zipper motif 
66 28608277 exon 14 JMD zipper motif 
33 28608276 exon 14 JMD zipper motif 
36 28608276 exon 14 JMD zipper motif 
63 28608276 exon 14 JMD zipper motif 
24 28608275 exon 14 JMD zipper motif 
33 28608275 exon 14 JMD zipper motif 
60 28608275 exon 14 JMD zipper motif 
27 28608274 exon 14 JMD zipper motif 
39 28608274 exon 14 JMD zipper motif 
45 28608274 exon 14 JMD zipper motif 
36 28608273 exon 14 JMD zipper motif 
54 28608273 exon 14 JMD zipper motif 
69 28608273 exon 14 JMD zipper motif 
42 28608272 exon 14 JMD zipper motif 
9 28608271 exon 14 JMD zipper motif 
36 28608271 exon 14 JMD zipper motif 
39 28608269 exon 14 JMD zipper motif 
12 28608268 exon 14 JMD zipper motif 
15 28608268 exon 14 JMD zipper motif 
18 28608268 exon 14 JMD zipper motif 
30 28608268 exon 14 JMD zipper motif 
33 28608268 exon 14 JMD zipper motif 
36 28608268 exon 14 JMD zipper motif 
42 28608268 exon 14 JMD zipper motif 
57 28608268 exon 14 JMD zipper motif 
66 28608268 exon 14 JMD zipper motif 
72 28608268 exon 14 JMD zipper motif 
21 28608267 exon 14 JMD zipper motif 
27 28608267 exon 14 JMD zipper motif 
30 28608267 exon 14 JMD zipper motif 
33 28608267 exon 14 JMD zipper motif 
54 28608267 exon 14 JMD zipper motif 
24 28608266 exon 14 JMD zipper motif 
48 28608266 exon 14 JMD zipper motif 
18 28608265 exon 14 JMD zipper motif 
21 28608265 exon 14 JMD zipper motif 
33 28608265 exon 14 JMD zipper motif 
18 28608264 exon 14 JMD zipper motif 
21 28608264 exon 14 JMD zipper motif 
57 28608264 exon 14 JMD zipper motif 
57 28608263 exon 14 JMD zipper motif 
15 28608262 exon 14 JMD zipper motif 
18 28608262 exon 14 JMD zipper motif 
21 28608262 exon 14 JMD zipper motif 
24 28608262 exon 14 JMD zipper motif 
27 28608262 exon 14 JMD zipper motif 
30 28608262 exon 14 JMD zipper motif 
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39 28608262 exon 14 JMD zipper motif 
45 28608262 exon 14 JMD zipper motif 
48 28608262 exon 14 JMD zipper motif 
51 28608262 exon 14 JMD zipper motif 
54 28608262 exon 14 JMD zipper motif 
60 28608262 exon 14 JMD zipper motif 
63 28608262 exon 14 JMD zipper motif 
78 28608262 exon 14 JMD zipper motif 
21 28608261 exon 14 JMD zipper motif 
54 28608261 exon 14 JMD zipper motif 
63 28608261 exon 14 JMD zipper motif 
9 28608260 exon 14 JMD zipper motif 
21 28608260 exon 14 JMD zipper motif 
27 28608260 exon 14 JMD zipper motif 
36 28608260 exon 14 JMD zipper motif 
48 28608260 exon 14 JMD zipper motif 
51 28608260 exon 14 JMD zipper motif 
27 28608259 exon 14 JMD zipper motif 
54 28608258 exon 14 JMD zipper motif 
69 28608258 exon 14 JMD zipper motif 
24 28608257 exon 14 JMD zipper motif 
45 28608257 exon 14 JMD zipper motif 
51 28608257 exon 14 JMD zipper motif 
57 28608257 exon 14 JMD zipper motif 
54 28608256 exon 14 JMD zipper motif 
66 28608256 exon 14 JMD zipper motif 
78 28608256 exon 14 JMD zipper motif 
21 28608255 exon 14 JMD zipper motif 
36 28608255 exon 14 JMD zipper motif 
42 28608255 exon 14 JMD zipper motif 
39 28608254 exon 14 JMD zipper motif 
63 28608254 exon 14 JMD zipper motif 
72 28608254 exon 14 JMD zipper motif 
18 28608253 exon 14 JMD zipper motif 
36 28608253 exon 14 JMD zipper motif 
66 28608253 exon 14 JMD zipper motif 
69 28608253 exon 14 JMD zipper motif 
75 28608253 exon 14 JMD zipper motif 
30 28608252 exon 14 JMD zipper motif 
33 28608252 exon 14 JMD zipper motif 
63 28608252 exon 14 JMD zipper motif 
66 28608252 exon 14 JMD zipper motif 
78 28608252 exon 14 JMD zipper motif 
21 28608251 exon 14 JMD zipper motif 
24 28608251 exon 14 JMD zipper motif 
21 28608250 exon 14 JMD zipper motif 
27 28608250 exon 14 JMD zipper motif 
33 28608250 exon 14 JMD zipper motif 
36 28608250 exon 14 JMD zipper motif 
18 28608249 exon 14 JMD zipper motif 
21 28608249 exon 14 JMD zipper motif 
39 28608249 exon 14 JMD zipper motif 
60 28608249 exon 14 JMD zipper motif 
75 28608249 exon 14 JMD zipper motif 
18 28608248 exon 14 JMD zipper motif 
27 28608247 exon 14 JMD zipper motif 
66 28608247 exon 14 JMD zipper motif 
27 28608246 exon 14 JMD hinge region 
69 28608246 exon 14 JMD hinge region 
27 28608245 exon 14 JMD hinge region 
30 28608245 exon 14 JMD hinge region 
60 28608245 exon 14 JMD hinge region 
66 28608245 exon 14 JMD hinge region 
24 28608244 exon 14 JMD hinge region 
42 28608244 exon 14 JMD hinge region 
96 28608244 exon 14 JMD hinge region 
66 28608243 exon 14 JMD hinge region 
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75 28608243 exon 14 JMD hinge region 
24 28608242 exon 14 JMD hinge region 
30 28608242 exon 14 JMD hinge region 
78 28608242 exon 14 JMD hinge region 
27 28608241 exon 14 JMD hinge region 
72 28608241 exon 14 JMD hinge region 
69 28608240 exon 14 JMD hinge region 
78 28608238 exon 14 JMD hinge region 
90 28608238 exon 14 JMD hinge region 
33 28608237 exon 14 JMD hinge region 
66 28608237 exon 14 JMD hinge region 
72 28608237 exon 14 JMD hinge region 
30 28608236 exon 14 JMD hinge region 
36 28608236 exon 14 JMD hinge region 
72 28608236 exon 14 JMD hinge region 
78 28608236 exon 14 JMD hinge region 
81 28608235 exon 14 JMD hinge region 
45 28608234 exon 14 JMD hinge region 
87 28608233 exon 14 JMD hinge region 
24 28608232 exon 14 JMD hinge region 
27 28608232 exon 14 JMD hinge region 
45 28608232 exon 14 JMD hinge region 
51 28608232 exon 14 JMD hinge region 
30 28608231 exon 14 JMD hinge region 
36 28608231 exon 14 JMD hinge region 
48 28608231 exon 14 JMD hinge region 
54 28608231 exon 14 JMD hinge region 
57 28608231 exon 14 JMD hinge region 
72 28608231 exon 14 JMD hinge region 
90 28608231 exon 14 JMD hinge region 
45 28608230 exon 14 JMD hinge region 
81 28608230 exon 14 JMD hinge region 
84 28608230 exon 14 JMD hinge region 
54 28608229 exon 14 JMD hinge region 
51 28608228 exon 14 TKD1 beta 1 sheet 
69 28608228 exon 14 TKD1 beta 1 sheet 
75 28608228 exon 14 TKD1 beta 1 sheet 
81 28608228 exon 14 TKD1 beta 1 sheet 
87 28608228 exon 14 TKD1 beta 1 sheet 
84 28608227 exon 14 TKD1 beta 1 sheet 
90 28608227 exon 14 TKD1 beta 1 sheet 
48 28608226 exon 14 TKD1 beta 1 sheet 
60 28608226 exon 14 TKD1 beta 1 sheet 
66 28608226 exon 14 TKD1 beta 1 sheet 
96 28608226 exon 14 TKD1 beta 1 sheet 
36 28608225 exon 14 TKD1 beta 1 sheet 
42 28608225 exon 14 TKD1 beta 1 sheet 
51 28608225 exon 14 TKD1 beta 1 sheet 
66 28608225 exon 14 TKD1 beta 1 sheet 
72 28608225 exon 14 TKD1 beta 1 sheet 
90 28608225 exon 14 TKD1 beta 1 sheet 
48 28608224 exon 14 TKD1 beta 1 sheet 
84 28608224 exon 14 TKD1 beta 1 sheet 
90 28608224 exon 14 TKD1 beta 1 sheet 
96 28608224 exon 14 TKD1 beta 1 sheet 
33 28608223 exon 14 TKD1 beta 1 sheet 
54 28608223 exon 14 TKD1 beta 1 sheet 
60 28608223 exon 14 TKD1 beta 1 sheet 
75 28608223 exon 14 TKD1 beta 1 sheet 
87 28608223 exon 14 TKD1 beta 1 sheet 
93 28608222 exon 14 TKD1 beta 1 sheet 
69 28608221 exon 14 TKD1 beta 1 sheet 
81 28608221 exon 14 TKD1 beta 1 sheet 
93 28608221 exon 14 TKD1 beta 1 sheet 
93 28608221 exon 14 TKD1 beta 1 sheet 
48 28608220 exon 14 TKD1 beta 1 sheet 
66 28608220 exon 14 TKD1 beta 1 sheet 
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93 28608220 exon 14 TKD1 beta 1 sheet 
108 28608220 exon 14 TKD1 beta 1 sheet 
21 28608219 exon 14 TKD1 beta 1 sheet 
48 28608219 exon 14 TKD1 beta 1 sheet 
57 28608219 exon 14 TKD1 beta 1 sheet 
60 28608219 exon 14 TKD1 beta 1 sheet 
78 28608219 exon 14 TKD1 beta 1 sheet 
36 28608218 intron 14 splice donor 
42 28608218 intron 14 splice donor 
48 28608218 intron 14 splice donor 
51 28608218 intron 14 splice donor 
54 28608218 intron 14 splice donor 
57 28608218 intron 14 splice donor 
60 28608218 intron 14 splice donor 
66 28608218 intron 14 splice donor 
84 28608218 intron 14 splice donor 
87 28608218 intron 14 splice donor 
80 28608218 intron 14 splice donor 
81 28608218 intron 14 splice donor 
137 28608217 intron 14 splice donor 
179 28608217 intron 14 splice donor 
186 28608216 intron 14 
197 28608216 intron 14 
188 28608216 intron 14 
240 28608216 intron 14 
34 28608216 intron 14 
176 28608216 intron 14 
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Suppl. table 4 Overview of amplicons for custom scDNA-seq panel 

Amp ID Chr Amp start Insert start Insert end Amp end Forw sequence Rev sequence 

137462 1 36932094 36932118 36932342 36932362 
AACCAGAGGTTCTCAT
AGGACTTG 

GAAAAGAAGCCG
GTGCCCTG 

137463 1 36932363 36932384 36932529 36932552 
ATCCTCCTCCAGCACTG
TGAG 

CCCTTTGTGTTCCA
CCAGTAACA 

121260 1 36933031 36933051 36933262 36933282 
GGGCTGGGACTCTCAG
ACAT 

TAACTTCTTCCGG
CCCTGCC 

222768 1 36933313 36933334 36933539 36933559 
CCTCCGACCAGGGGAT
TCAAA 

CATCCTGAATGCC
TCCTCCC 

3592 1 43814903 43814923 43815083 43815107 
GGGCCGAAGTCTGACC
CTTT 

CGAACCAAGAATG
CCTGTTTACAG 

112922 1 115256292 115256318 115256536 115256561 
TCAAACAACCTAAAAC
CAACTCTTCC 

CTGTTTGTTGGAC
ATACTGGATACA 

113413 1 115258503 115258534 115258748 115258768 
AAAATGAACTGTTCTCT
ATAAACACGTTAAG 

AACTGGTGGTGGT
TGGAGCA 

54970 2 25457110 25457133 25457344 25457363 
TAACTTTGTGTCGCTAC
CTCAGT 

GTGTGGTTAGACG
GCTTCC 

121710 2 25458456 25458476 25458697 25458724 
CCCACTGTTCCCAGGA
CGTT 

GCTTATTCCTCTTT
TCTCCTCTTCATC 

121267 2 25459597 25459617 25459840 25459863 
CGACACTCACCAGGGA
GGAA 

CCACTGTGAATGA
TAAGCTGGAG 

124395 2 25461831 25461853 25462077 25462100 
CTGACTCCTCTTCCTCC
TCAAG 

GTCTCCTGTTTTGT
AGTCCAACC 

198115 2 25463085 25463107 25463317 25463339 
TCCACAATGCAGATGA
GACAGG 

TTTCTCTTCCGACC
TCTCAGAG 

137474 2 25463346 25463366 25463588 25463611 
AGCTGGGGCTGTCTGC
ATAG 

TTATCCTCCCAGAT
CCAGGAGTG 

130080 2 25464311 25464332 25464554 25464575 
TGGGGCAAAGGGTGA
AGAGAA 

GCTCCTGGTGCTG
AAGGACTT 

113843 2 25466552 25466572 25466801 25466821 
GGCTGCTTTACCACCT
GTTT 

GCTGAGAAGAGG
AAGCCCAT 

124400 2 25467008 25467028 25467194 25467213 
CAGGCCCAGCACTCAC
AAAT 

TTCCAGGTGCTTTT
GCGTG 

198120 2 25467264 25467284 25467495 25467515 
GGTGTGCTACCTGGAA
TGGA 

TTTCTGGAGTGTG
CGTACCA 

130084 2 25467961 25467981 25468195 25468217 
GCCCGTGTCATCAGGA
CTCT 

TCCCTCTGCTTTCC
AGACATCT 

137480 2 25468677 25468697 25468892 25468911 
GGAGTCCCACACCCTG
AAGA 

GCAGAAGTGCCG
GAACATT 

222784 2 25469005 25469025 25469173 25469195 
CCTCTCCAGAAGCAGG
CCAA 

CTGCTTTCCTCCTC
CAGAAGAG 

113724 2 25469465 25469485 25469661 25469681 
AGAAAGCTGGGTGCCC
TCAT 

TCCTGACAACCCC
AACCCTG 

113725 2 25469766 25469786 25470011 25470032 
GGAGGAGCGGGATGT
GCATA 

CCCAGGTGTGTGT
TGAGAAGC 

10420 2 25470404 25470425 25470621 25470641 
CCCTGGGATCAAGAAC
CTTCC 

ATTTCTGCTCCTTG
GGGCTC 

121281 2 25470886 25470905 25471109 25471130 
CTGGTGAAGAAGCCGC
TCA 

TTTCCCCAGGCTG
AGAAGAAA 

124408 2 25472308 25472327 25472558 25472577 
CAGACGCCATGCTGGA
GTT 

TGTGAGAAGGAA
TGGGCGC 

121282 2 25505239 25505259 25505485 25505508 
GAGCCAAGTCCCTGAC
TCTC 

GCCTCAGAGCTAT
TACCCAATGG 

137487 2 25536656 25536676 25536899 25536922 
CACACCCTGTCGTGAG
CACT 

ATAATTCCTTCCCC
AAAGCCCAG 

222792 2 25961484 25961509 25961714 25961735 
CCCCATTATAGCAAATC
ACTTCACC 

AAGAGCTGGCAA
ATGGGAAAC 

222793 2 25963429 25963460 25963673 25963698 
GTTCCTTAACCATGACC
TAAATATTATGTAC 

CACACACACACAA
TACAAGACATTT 

222794 2 25966876 25966896 25967087 25967107 
GGGGTTTGCTGTAGTT
GTGC 

GTCCAGGAGAGG
GTGGTGAA 

222795 2 25967126 25967146 25967293 25967315 
CAGGTCCTGGAATGGT
CCCT 

TTTCATCCATCGCA
GGTCTCTC 

222796 2 25967325 25967347 25967489 25967514 
GGAGATTCTGGAGACC
GGGATC 

AACTAGTATTGCT
GTCTCCAAGGTT 

113138 2 25972337 25972360 25972585 25972606 
CCAGGTACCTTCCTTAT
GCAAAC 

AGAGGGGACAGA
ATCCAGGTG 
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192463 2 25972892 25972915 25973138 25973161 
ATTAGAAGCTGTGGTG
AGATGGT 

ATAGTTCCAGTAG
TCTCCCAGTC 

222799 2 25982274 25982304 25982519 25982543 
ACTTAGTACCATTAATA
CCACTTTACAAGT 

GCCCAAACGATTC
TTCTCTGTTTT 

222800 2 26014395 26014428 26014571 26014604 

TGTAAATAATAAGACT
ATCACTAAAGGTTAAC
C 

TAAGATACTATTC
TTCTCTGGAGAGT
TTAATCA 

222801 2 26024007 26024027 26024229 26024260 
AGGCTGGTCCTGGATT
TGAA 

TATAATGTCATAC
GGATGTCAGTTTT
ATGTA 

222802 2 26063315 26063340 26063540 26063572 
GCAACTGTCACCATCA
TCCATCTTT 

TATAAAATTCTGA
TACATGCTACAGT
ATGGAT 

222803 2 26092073 26092095 26092312 26092342 
CCTGTAGTCCCAAGCTT
CTCCA 

TCCTTTAAGACAG
ACTTTCTTTTAAAG
TGT 

222804 2 26099445 26099472 26099682 26099714 
GGTCCAGGTCTGCTTA
CCTATAATTAA 

CAATTTGTATCTCT
CTTAGTTGGAAAT
GTAAA 

222805 2 26101054 26101075 26101301 26101321 
CAGGTCCTGCCCTTCTT
CCTA 

CAATATGGCAGCG
GCGGTAG 

130091 2 198265978 198266007 198266224 198266247 
TGACTAAAATCCATCTC
CTTTCATAATCA 

GGTAAAACAGTGT
TGTGGGACAG 

222807 2 198266413 198266440 198266631 198266664 
TGTTAGAACCATGAAA
CATATCCAGTT 

GGCGACATAAATC
TAAATTACTAAAG
TACATAT 

130093 2 198266669 198266702 198266836 198266858 

CTTTAATGAAGATAAA
TCAAAAGGTAATTGGT
G 

GTAGGTCTTGTGG
ATGAGCAGC 

130094 2 198267299 198267326 198267543 198267568 
TAAACTTCTAAGATGT
GGCAAGATGGC 

TCTTTGTTTACATT
TTAGGCTGCTG 

222810 2 198267571 198267601 198267771 198267797 
GGACAGTCATGAGTTG
GTAATATTAATCTT 

ATGTGAAAGTGTA
GCTTCTTCTCTTT 

113430 2 209113073 209113100 209113322 209113342 
TTATTGCCAACATGACT
TACTTGATCC 

AGTCACCAAGGAT
GCTGCAG 

124414 3 128199949 128199969 128200116 128200138 
GATGTGTCCGGAGTGG
CTGA 

GAAGGAAGGGAT
CCAGACTCGG 

130097 3 128200484 128200504 128200732 128200751 
CACCTCCTGAGCAGAG
GCAA 

TGTCAGACGACAA
CCACCA 

130098 3 128202566 128202589 128202816 128202835 
GACATCCCAGTGCTTTT
CATGAT 

TGTCAACTGTGGG
GCCACA 

222815 4 55561577 55561605 55561801 55561826 
TATTGTAGAGTACACA
GAAGATGGAACT 

ATCCAGGATCTCA
AAAGTCCATTTG 

124418 4 55569682 55569709 55569927 55569951 
AATGACTGTCTTTCAAC
ATAATCCTGT 

GCCTGACGTTCAT
AATTGAAGTCA 

113736 4 55589556 55589575 55589778 55589797 
AGCCTTTCTGGGTTGG
ACC 

GGAGCATGCCATT
CACGAG 

137500 4 55592005 55592032 55592226 55592255 
TTGTTTTCTTCCCTTTA
GATGCTCTGC 

CCTAAACATCCCC
TTAAATTGGATTA
AAA 

121297 4 55593449 55593475 55593691 55593713 
ATGTGCATTATTGTGAT
GATTCTGAC 

CTGACCAAAACTC
AGCCTGTTT 

121298 4 55594013 55594032 55594262 55594282 
TCGGGAAGGTTGTTGA
GGC 

ATGGTGCAGGCTC
CAAGTAG 

137503 4 55599194 55599226 55599360 55599383 
AAATGAATTTAAATGG
TTTTCTTTTCTCCTCC 

TGTCAAGCAGAGA
ATGGGTACTC 

124423 4 55602443 55602468 55602688 55602712 
ATAGTGCTCACATCTTA
AAATGGGG 

CACAGTTGAAAAT
GCTTTCAGGTG 

130114 4 106155020 106155049 106155236 106155260 
AACACATTTTAATTTTT
GTTTCCATGCTC 

CACTTGGTGTCTC
CATTTACTTCT 

124425 4 106155310 106155332 106155557 106155579 
AATAGTCGTGTGAGTC
CTGACT 

AACTGCATTTTCTT
GGGCTACA 

222825 4 106155609 106155629 106155793 106155822 
CTGCAGTGGGCCTGAA
AATC 

CGCAATGGAAACA
CAATCTGGATAAT
ATT 

121302 4 106156002 106156026 106156246 106156271 
TGATAATGCCAGTAAA
CTAGCTGC 

GAATCCTTAGTGA
ACACTGAGCTTT 

121303 4 106156303 106156325 106156547 106156572 
TCACAATTGCTTCTTTC
TCCCC 

CTGTATGTCATTCC
TGTTCACACAA 
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222828 4 106156630 106156650 106156870 106156895 
CACCTCAAGCATAACC
CACC 

TGATTGGAGAGAT
TGGGTTGATACT 

222829 4 106156903 106156930 106157147 106157170 
TCCAAACAATACACTG
GAAATTCCAAC 

TTTGGGAATCTGC
TCTTTGTTGA 

113866 4 106157305 106157327 106157539 106157565 
TCACATCTCCCTCAAAA
CCAGC 

GGTCTGACTATAA
GGGGAATTTCTAC 

113867 4 106157746 106157769 106157995 106158015 
TTTCAAGAACAGGAGC
AGAAGTC 

AGACTCAGTTTGG
GGTTGCT 

222832 4 106158026 106158047 106158275 106158295 
AGATGCACAGGCCAAT
TAAGG 

TCAAAACTGTGAC
TGGCCCT 

222833 4 106158311 106158333 106158473 106158500 
CTGCAGAACTTGATAG
CCACAC 

CTGCAAGATGGG
AAATCATATTGAG
TC 

222834 4 106158501 106158525 106158665 106158690 
ATGTGTAGGTAAGTGC
CAGAAATG 

TCTCTTTCACAAG
ACACAAGCATCG 

130126 4 106162340 106162370 106162586 106162609 
AGATCAGTCCATCAAT
CTACTCATTTTAAA 

CCCTGTGCCTTTG
CGTTAATTAC 

133942 4 106163861 106163889 106164086 106164111 
AATAATAAACCGTTCA
TTTCTCAGGATG 

CCAAAGGCTTTAT
CAAGTCACACTT 

113752 4 106164694 106164714 106164916 106164937 
GGGGTGTTTGGGATG
GAATG 

ACTCTTCATTCAA
GGCACACC 

198161 4 106180686 106180718 106180925 106180954 
ACTCATTTTGCATATAG
ACACCTATAATATCA 

GCGATTATACATC
AGGAAGTAAACA
AACC 

115267 4 106182737 106182770 106182981 106183006 

TACTAGCACATATGAA
ATTAAATGATAGTCAT
G 

CCTGATTATTATAT
GCATCAGGTGC 

137518 4 106190675 106190708 106190877 106190898 

TTTAAAGTTCTAAATG
GTCTAAATACTAGTGA
G 

GCTGCCATTCTGC
ATGTTGTG 

130132 4 106193686 106193714 106193931 106193955 
GTAGTTGAGGCTGTAA
TGTCTTACTTCC 

TCTTGGCTTCTAGT
TTCCTTTGTC 

113876 4 106193962 106193983 106194128 106194153 
CAGCTGAAAAGCTTTC
CTCCC 

GGGGCAAAACCA
AAATAATTTTCAT 

130134 4 106196066 106196091 106196309 106196330 
TGCTCTTATCTTTGCTT
AATGGGTG 

CTGTCTGAGGGTG
ATGTGGCT 

121317 4 106196395 106196422 106196644 106196664 
TAGTCCTTATCCAAACT
CTTCACACAC 

GGGTCTTGGCTTG
GATACCT 

130136 4 106196734 106196764 106196952 106196975 
TACATCTAAATACTTAG
GTTATGGAAACCA 

GAGCTGCACTGTA
GTTATGGATT 

130137 4 106196976 106196996 106197185 106197206 
CGGGCATGTTCAACAG
CTCT 

AGACCTCATCGTT
GTCCTCTG 

222847 4 106197218 106197240 106197444 106197469 
GAGCAGAGCTTTCTGG
ATCCTG 

CTTTTCACACTCTT
CCTCTTTCTCA 

222848 4 106197470 106197490 106197682 106197706 
TATGGCCCAGACTATG
TGCC 

AAGTGAGGTAACC
AACAAAAGGGG 

130140 5 170837363 170837396 170837595 170837627 
AAATTACATCTGAGTA
TAAATTTTCTTGGAGTC 

CTGTTACAGAAAT
GAAATAAGACGG
AAAATTT 

222850 5 176934677 176934697 176934922 176934942 
CCCCAGGCTCACTTCCT
TTT 

GTTGTGAACAGAG
GGAGTCC 

222851 5 176936136 176936158 176936308 176936328 
GCTCAGCCCCTCACCCT
ATTTA 

GAATGGAGTGCG
GGTGTCAG 

222852 5 176936350 176936371 176936596 176936616 
ATCCTCCACCCTGACTC
CCTT 

TGTGAGGAGTTCC
CGTCCAG 

222853 5 176939280 176939300 176939530 176939549 
GGGACCCAGGGAACA
GCTAA 

TGCCATCCAGCAC
GTCATC 

195719 5 176940146 176940164 176940384 176940403 
ATGGCCCGTCATCTGG
AC 

TGACCATCAATGT
GGGGCG 

232466 5 176942746 176942769 176942989 176943010 
CCAGGATGTGGTATTT
CTTCCGC 

AGCCATGTCTCTC
TCTTCAGC 

222855 5 176948486 176948506 176948735 176948755 
CCACGATGTTCACTCA
GGGC 

CTATTACTCCTCCC
TGGGCC 

137612 7 140448975 140449001 140449194 140449218 
AAAATCAAGAAATCTA
TCCTTCACGC 

GCACCAGAAGTCA
TCAGAATGCAA 

115641 7 140452951 140452979 140453193 140453220 
TGATTTTTGTGAATACT
GGGAACTATGA 

TGTTTTCCTTTACT
TACTACACCTCAG 

121337 7 140476580 140476607 140476829 140476849 
CATTAGTTAGCATCCTT
ATGTTCCTGG 

TTCCACAAAGCCA
CAACTGG 
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117899 7 140477615 140477646 140477861 140477883 
TTGCATACTACTTAAAA
GAATGTGGTTAAAG 

CCTTTTAGGTGAT
GTGGCAGTG 

121339 7 140481174 140481194 140481419 140481443 
ATGGTAGGAGTCCCGA
CTGC 

GCAGATTACAGTG
GGACAAAGAAT 

121340 7 140482699 140482731 140482929 140482948 
TATTTAATTATGGGAAT
TCTGTGTCACATATG 

CAGGTTTGTCTGC
TACCCC 

137618 7 140487130 140487159 140487368 140487399 
CCTTTTATGTCCAGTCA
TCTTTTCTACTC 

ACTATTTATTTGTA
GGACTTGATTAGA
GACC 

121342 7 140500014 140500047 140500261 140500283 

GTAAATATCTGAGTGG
TATGATAAGTTATTTG
G 

AGTTTGCTGTTTG
TCTCCAAGT 

222864 7 140501161 140501194 140501389 140501419 

AATTTAAGTGTAAAAT
GGTAGGTAGAAAAGA
GA 

CAGTTTCTAGAAA
GTTTTCTTGTGAG
TTTT 

137621 7 140534372 140534401 140534616 140534641 
AAGAAACAGCAAAATG
GTGATATTAAAAC 

CACTCCAACAAAG
AGAACAACAGTT 

137622 7 140549735 140549764 140549972 140549998 
TTAACAAGTGACACAA
AACAAGATTAAGA 

ACAAATGATTAAG
TTGACACAGGAAC 

130141 7 148504522 148504549 148504766 148504788 
GCATTATTGCAAAAAT
TCACTGGTACA 

GCTGATGCCCTGA
AGTATGTCG 

222868 7 148505936 148505961 148506186 148506205 
GGGCTTTCTGCATGGA
TTTTACTCT 

AGAGAGCCATCCA
GACTGG 

112729 7 148506244 148506267 148506491 148506513 
ATAACTGCAAAGAGAC
ACACTGG 

CACTGGGCTGTGC
TTACTTTTT 

113193 7 148507295 148507316 148507535 148507559 
CCCCATGCCTCTAAGG
AGATC 

CAGGCTTGATCAC
CTTTATCCAAA 

113766 7 148508540 148508564 148508788 148508809 
GCACAATCCAGTTACT
AAGCATGC 

CTATTGCTGGCAC
CATCTGAC 

137629 7 148510962 148510987 148511212 148511231 
CCCCAGCTAAATCATCT
AAGGCAAT 

AGGTCAAAACCGC
TTTCCG 

137630 7 148511851 148511871 148512065 148512084 
GGCCAGGTATGGGGCT
CAAT 

CGGCAGCCTTGTG
ACAGTT 

121353 7 148512377 148512399 148512626 148512646 
CTTCAACTGACTCGGA
CTCACA 

TTTTGCAGGTTGT
GGGCTGC 

137632 7 148513553 148513586 148513791 148513815 
TTTATGACTCTTAACAT
ACCAAATATACTGAAG 

ATGTGGATACTCC
TCCAAGGAAAA 

121355 7 148514226 148514252 148514467 148514492 
ACCAAGAATTTTCTTTG
TTTGGACAA 

GTTTTGTAGAAGC
AAATTCTCGGTG 

121356 7 148514887 148514918 148515137 148515156 
TATTCAATGCATTATAC
ATCCTTAATCCTCA 

ACCAAAACGTCCA
GGAGGC 

117902 7 148516501 148516528 148516722 148516746 
CATTAATGAAGGACTA
AAATGTGCAGT 

AGAACACAGAAAC
AGCTCTAGACA 

121358 7 148523532 148523561 148523772 148523801 
AAATGAAAACGTACAA
TAATTGCACTTAC 

GGAAACCTTTTAG
AAACTGTTTTCAA
AAA 

121359 7 148524108 148524134 148524347 148524377 
CAAGTACACATGTTGC
TTCAAGTATC 

TTCATATTCTCCTG
TTTAGATAAAGAA
AGC 

137638 7 148525664 148525687 148525904 148525931 
GCCACCCTACCTGGCC
ATAATAT 

AATGCCCTTGGTC
AATATAATGATGA
T 

222882 7 148526679 148526702 148526918 148526946 
GGCCCAGGTTCAGTCC
CTTATAG 

TTTTAGGTGGAAG
ATGAAACTGTTTT
AC 

222883 7 148529540 148529565 148529784 148529809 
AAGAGTAATACTGCAC
AGGCCTTAA 

CAAGTCATCCCAT
TAAAGACTCTGA 

137641 7 148543401 148543427 148543643 148543670 
GTGATCTACAGCAGTC
ATTAACAGTT 

TCAGAAAATTTTG
GAAAGAACGGAA
AT 

130154 7 148544197 148544223 148544407 148544440 
AAAAACTTATTGAACTT
AGGAGGGGA 

GCTGGTTAGATTA
GTGATTTTAATAT
GAAACCA 

121365 8 117863977 117864000 117864217 117864238 
AAAAGAGTCAGGAAA
GACTGCAC 

TCAGGGAGTTAAG
CGAAAAGC 

137644 8 117864772 117864796 117864992 117865024 
TTCCAACAGAACAAAC
CGATAACA 

GAAGATAGAAATC
AGTGGTGACTTTT
TAATTA 

222888 8 117868792 117868824 117869003 117869033 AAACTACAACTTTTAGT CTAACTTACATTCC
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TTGTCATCTTCTATG CTATTTCAGATGA
CAA 

222889 8 117869492 117869519 117869728 117869761 
TCATTCCCACATACCTA
ATATTCCACC 

GTGCTATTTCTAAT
CTTTCTAAACTAAT
GACAA 

113199 8 128750505 128750524 128750715 128750733 
GACGATGCCCCTCAAC
GTT 

AACGTAGGAGGG
CGAGCA 

121370 8 128750823 128750843 128751059 128751077 
GCTGGGAGGAGACAT
GGTGA 

TCGATGCACTCTG
AGGCG 

121371 8 128751085 128751105 128751254 128751274 
GTGGTCTTCCCCTACCC
TCT 

TTCGCTTACCAGA
GTCGCTG 

121372 8 128752577 128752610 128752821 128752842 
ATCTGGTAATTGATTAT
TTTAATGTAACCTTGC 

GATAGTCCTTCCG
AGTGGAGG 

55727 8 128752843 128752863 128753016 128753035 
CTGCTGCCAAGAGGGT
CAAG 

AACTCCGGGATCT
GGTCAC 

121374 9 5069814 5069846 5070049 5070080 
GAGTTATTAAGCATTTC
TTATACGTAGAACAC 

AGACAGTAATGAG
TATCTAATGACTT
ACAAA 

121375 9 5073530 5073549 5073773 5073799 
TGATGGCAGTTGCAGG
TCC 

GTAGTTTTACTTAC
TCTCGTCTCCAC 

222897 10 27276651 27276684 27276900 27276920 

AAGCAAATCTTCATAG
AAAGTTAATCTATTGA
C 

AAGTGGAGAAAC
GGCACCTG 

222898 10 27279712 27279744 27279927 27279948 
CATACCAAATTAAAAA
CCTTAACAAAACAAGC 

GGAAGTCGAGCTT
GTCTGCTT 

222899 10 27284890 27284919 27285127 27285157 
TATATCATGTATATTGC
CATTCTCTCCAG 

GATATTCTCTCTTC
TTGATCTCCCAAA
GTG 

222900 10 27286683 27286708 27286928 27286952 
ATGTGTTTCGGAGAAA
ATGCTAAAC 

GCAATTTGTTGGG
GTAATCAGACC 

222901 10 27287313 27287334 27287563 27287582 
TTTGAGCCTGTCTTCTG
GACT 

TCAAAGGCTGAGC
TGCGAA 

222902 10 27288201 27288225 27288449 27288470 
GACAATTCGCCATAAG
CATTTTGC 

CCACATCTTAAGC
CCCTGACA 

222903 10 27288840 27288871 27289088 27289109 
AGAACTCGAATTGTAA
GTAGAAATTAAGACC 

TCTATCTGGGTCC
TCTGCCCA 

222904 10 27289370 27289397 27289570 27289603 
CCAGGAATTGGAAAG
GATACAATACTG 

GATTTATTCCCAG
TTATTTGATACTTT
TGATTC 

222905 10 27289945 27289974 27290164 27290184 
ACAAACAAACAAACAA
AAGACAGAATAAC 

ACTCCAGCCCCTA
ACTCTGG 

222906 10 27290520 27290543 27290712 27290739 
TGCATAGTGCAGAAAA
TCTGGCC 

CTGACATAGATAA
GCAAGCTGAAACC
T 

222907 10 27291759 27291787 27292002 27292028 
TGCAACATTTATTCCTT
GATTTAACACA 

ATGACATATAACA
GAACCAATTTGGC 

222908 10 27293144 27293173 27293366 27293391 
ATGTTAACATTTGGGG
AATAATATCCAAA 

GGGAGGTAATTTG
AGACTATGTACA 

222909 10 27297417 27297450 27297656 27297681 

TGACTTGTATTAAGGA
ACTACTAATGTAATGT
A 

ACCCTTTAAGTGT
TAGGCGAGAAAA 

222910 10 27298986 27299005 27299211 27299244 
GAGCCCCTACCTGTCCT
TT 

AGGTGTTTATTTTT
AGTATTTCTAGAT
AAGCTG 

222911 10 27299380 27299413 27299615 27299641 
TTTTATATTTGCATCAT
GCTTAGTAAGTTACAG 

AACATAGTGAGGC
ATAGTGAGATCTC 

232524 10 27303450 27303483 27303699 27303719 
CTAACTTTTAATTCTTC
TAGATAGAGTTGCTTA 

GCCCTTAGACACC
GAGTAGG 

232525 10 27303732 27303758 27303899 27303921 
AACCCAAACTCCAAAA
AGAGAAAGAT 

TGGGTTGCCAGTC
AGCCTTTAT 

222913 10 27304365 27304390 27304609 27304634 
TTTAACCTTTCCCTAGG
TCTCTTCA 

GTTGTGAGAGTAG
AAAGTCTTCACT 

222914 10 27308735 27308763 27308942 27308961 
TTTTTCTGCTTATTGCT
TCCTAACAAAG 

TCCTTGCCGTTGG
AACCCA 

222915 10 27309324 27309349 27309568 27309593 
CTAGCTCTAATTTGGTA
GCCATCAC 

AGATGTGGTGTAT
ATACAGGATGGA 

222916 10 27309878 27309898 27310046 27310067 
CCGTACCCAGCCACCA
AATC 

AGACGCTGAGGTT
TCCAAGAA 

222917 10 27310091 27310121 27310268 27310296 GTATACACCATATTTTC AATGTGGAGTTTC
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TTTTCCATTGTCT TTCAGAAAACTAA
AA 

222918 10 27310929 27310954 27311177 27311197 
TACTCTGTTGATACTTC
CTTTGCTC 

TCCTCTAGGAGGC
CCCATTG 

222919 10 27312417 27312447 27312659 27312686 
TTCAAAGTAGATAAGA
GACAGGAAAGAAAC 

GCTTTTCTGTTTAT
TTGCTGAGTACTT 

222920 10 27315013 27315037 27315249 27315282 
TGTTTGCCTTTGCTTTC
TTTTGAC 

CAACATCTCAGAA
ATGGAAAATTTAG
TAAAAGT 

222921 10 27315338 27315369 27315584 27315607 
GGAGACTTCATATCAA
TATATTGTCATGTCA 

AACAGGATTCTCT
GGTCATTCAC 

222922 10 27316006 27316034 27316175 27316199 
AGGAACTGTTAAGGTT
TTGAAAGACTGA 

TACAAGCATTCTTT
TCCCCCAAAG 

222923 10 27316787 27316812 27317026 27317056 
GACTTTATAATGGCGT
GAAACCATC 

GATTACATCCTCA
TAAACACATTGTA
AGTT 

222924 10 27317534 27317562 27317693 27317724 
AATTACATAAAAGTAA
CTTCAGGCTACA 

GACAAGTTGAGTA
TCCCTTATTTAAAA
TGCT 

222925 10 27317725 27317757 27317916 27317949 
CTACTAAAGCAATAAA
ATTCCTTTTCAGTACG 

GGTGTTTGCTAAG
AAATTACACAGTA
TTTTAAA 

222926 10 27318127 27318159 27318371 27318396 
ATGATCATAGCTGATA
TAATTCTCATACTACA 

ATATTGAAGGGGT
ATGACTGTGTTC 

222927 10 27320010 27320030 27320235 27320260 
GGGGAATTGTGTGCCA
GGTC 

TGGCTATACCAGT
TATCCATTCATC 

222928 10 27322063 27322090 27322303 27322332 
AAGAAGGCTACCCACT
AAATTAGTATG 

AAATCAGTAACAA
AATGTCTTATCAG
GTT 

222929 10 27322788 27322808 27323025 27323057 
GTAACCTGGCCTCCAC
TTGC 

CCCCAGTGGTATT
TATAATTTACTTTG
AATAT 

222930 10 27324167 27324200 27324409 27324434 
CTTTCAGTTTTAAATAG
TTGTTGAGAAAGAATC 

CAGCTGAGAATGC
AATGCTAAATTC 

222931 10 27325201 27325226 27325447 27325470 
ATCTAGGCATTGTACT
AAGCACTTC 

TGCGACAACAAAT
AATCTCGTGA 

222932 10 27326800 27326829 27327043 27327067 
CTGATTCAAATTACTTT
TTACAGTCCTCA 

ACCAACATACAAA
GCGGCATATCA 

222933 10 27329424 27329444 27329660 27329681 
CTGAGGGAGAGGTGG
CTACA 

CGGCCACTTCCTTT
GTTTCTT 

222934 10 27330868 27330901 27331103 27331123 
ACCATATATGATGTGG
TATGATATTATTTGAAG 

ACTGCATTTGCCA
TTGTGCC 

222935 10 27331850 27331877 27332038 27332067 
CCAGCCTGATTGACAG
AGTGAAATTTT 

TTAATGGTATCTTT
TGAAGAGCAGAA
GTT 

222936 10 27332774 27332797 27333012 27333039 
GCAGTATCGTGACCAT
AGCTCTC 

TTATAAAAGATAA
AGTGGGCTGGGC
AC 

222937 10 27334804 27334837 27335046 27335070 

AACTACATTAATAGAA
GTTCTAAGGACAATTA
G 

GTTTGAGAGAACT
TGGACTGAGAG 

222938 10 27335072 27335092 27335241 27335271 
CCGTCTGTGCCCATCCA
CTA 

TGATTTCTTTATTT
TTCTATGGAGGAA
GGT 

222939 10 27337094 27337125 27337315 27337343 
AGTATACTGAAATGTT
TACATGTACTACAGA 

CACACACACAAGT
TAAGGACATTTAT
TA 

222940 10 27338607 27338636 27338851 27338876 
ACCTCATTATCTACTGA
TTAAATGATCCA 

CCCGGCCAATATT
CTTCTTTAAAAG 

222941 10 27339266 27339296 27339509 27339530 
AAATACTAAATTTCTG
GCTGAGGATTTATG 

TCCCAGCCAAAGG
GATCTTTT 

222942 10 27342549 27342582 27342785 27342817 

AAGAAATACTTCTAAG
TATCAACTTAATGAGG
T 

CCTTGTTAAAAAG
ATACTGTTATAGA
GAACAT 

222943 10 27343600 27343621 27343844 27343869 
GGTAAAGGGCAGGAA
AGGGTA 

TCCAATGCAAATA
GGACCTTGAGTC 

222944 10 27344447 27344469 27344697 27344716 
GATCACATGATTAAGG
GCACCG 

ATAGAGTGGACTG
CCCCGT 

222945 10 27348204 27348237 27348430 27348452 AAAATGGAATACTATA GAGGTAACCAACA
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AAGAACTTAAACCAGA
G 

CGCTGAATT 

222946 10 27349147 27349176 27349316 27349345 
TTTTTAAATCCTTCCAA
CAAATTTGGAGA 

CTACCATTGAAAT
GAAAGATTCTGTT
CCA 

222947 10 27349507 27349539 27349725 27349753 
AATATGACAAAGTCAA
TCATAAATTCATGCAG 

CACATTGGTATAT
GTGCACTTTTCTAT
T 

222948 10 27349822 27349847 27350072 27350091 
AATGTCAAGGCTGATG
GTAAAATGC 

ATGCCAGTAGCCC
ACATGG 

222949 10 27350547 27350570 27350753 27350774 
GGCAAAATCATGGCTC
ATTGCTC 

TTGCCTGTCACTC
AGCACTTT 

222950 10 27352817 27352846 27353053 27353086 
TAATAGGTGATTTTCTT
CGGCTATTAGAA 

GAAAGTGATTAGA
AAATCTTTAGCAA
TTCATTC 

222951 10 27353115 27353144 27353293 27353320 
AGCAATTAGGCTTAAA
AATAAGATAAGCA 

TGATATTAGTTCCT
TGTTGAACTGTGC 

222952 10 27353439 27353467 27353679 27353708 
AATACACTTGCTATAGT
ACAGCGTTAAA 

TGCTTTTCTTTAGA
CATAACATAAAGC
AA 

222953 10 27354082 27354111 27354324 27354351 
CCATTTTGATCCCCATC
CTAACTACAAAC 

AGGAATATAGTGA
ATTGACGCTTGAG
A 

222954 10 27356712 27356736 27356958 27356979 
AATATGAGATTTGGGG
CAGGACAC 

AGCTTCCCAGGTG
GAACTTAC 

222955 10 27356980 27357004 27357187 27357212 
CAGGAAATGATGCAAA
GATAGGGC 

GTATGAGGAACTA
CCAAACACTTGT 

222956 10 27358941 27358961 27359178 27359204 
GAAGCTGAAGCCAGAC
CCAG 

AGTGTGTACTACC
AAACATGGCTAAT 

222957 10 27359334 27359363 27359535 27359562 
ACAAAAGAAAAGAAA
GCTATGATTATCCA 

CCAGCAATGAGGA
CATTTTATATTCTC 

222958 10 27360661 27360681 27360910 27360930 
GCCTCTAGAGTGTGAA
CGGG 

TCTCCACCTGTGA
TGGCAGC 

222959 10 27364577 27364601 27364819 27364846 
TAGTACAGGACTTCAA
CACTCCAC 

TGCTGTGGTCTGA
GAAGATACTTCAT
A 

222960 10 27366873 27366906 27367100 27367125 
TACTATGATATCTGTTC
GATTATTTTCTTAACC 

TGACAGAATAGAA
GCAGCCTATACT 

222961 10 27367137 27367170 27367379 27367404 
ATAAATGATTGTATAA
ATTCAGCTCCTTACAAG 

ACTCGAATGGTCA
TGCCTCTATTTT 

222962 10 27367405 27367432 27367588 27367618 
GTGAGCTTAAGTCAAG
GAAGAAAAGGA 

AGCTTTCAGGTAG
TAGTAGATGATCA
TTTT 

222963 10 27369456 27369481 27369691 27369713 
AAATCTTTACAGGCAC
TCAGATACC 

GCTTGTTTTCCAG
GAGCAGAGA 

222964 10 27369741 27369762 27369987 27370010 
AGCACAGGCATGTTAA
CAACT 

AGTCTCTACAGCC
AGTAGGAATG 

222965 10 27371215 27371241 27371463 27371484 
GTCTGCTTATGTAAAAT
GTATGGCCC 

AATCCCTTCTCTTG
CCCCTCA 

222966 10 27375255 27375282 27375427 27375458 
TTTTTCAGATAGTACCA
TTTGGCATCA 

CCAATAGTGAATT
TCTCTTGGTAATA
GTACC 

222967 10 27375459 27375490 27375631 27375660 
AAGTCTTACCTGAATTA
CTATTTTGAGAAGA 

GGGATAATTAAAA
TTCTGCTGTTAGCT
CT 

222968 10 27375661 27375691 27375842 27375862 
ATACACTTCAAATATGT
AAGCTCTACAAAC 

TGAGCGTAGTGAC
GGGTACC 

222969 10 27376372 27376400 27376619 27376641 
CCAAAGGTTCTAATATT
CAAATGTTGCC 

AGTTTGAGGAGGT
AGAGAAGCA 

222970 10 27377154 27377186 27377372 27377398 
TTTTGTCATGAAAATCA
CAATTTCAATACTGG 

GTTCCATGACTCA
TCAGTATCCATGT 

222971 10 27378150 27378176 27378394 27378419 
TGTCCCCTCCTGATTTA
TAAAAGAGG 

CTCAGGACTTTTA
CGAACTTAATCC 

222972 10 27378425 27378449 27378628 27378649 
AAAATTCTATACCCGG
TTGGACAC 

CCGTGGGCTAAG
GAGATTCTC 

222973 10 27378828 27378856 27379044 27379069 
AAATTACCTGACCCAA
ACTATGAAATCT 

CCCTCATGCCCAC
TATATTTTATGA 

222974 10 27382344 27382368 27382588 27382613 
ATAGACAGCATAGTGA
AGAGCAGT 

GTATATAGTAGCC
AGCTCTTTCAGC 
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222975 10 27382619 27382640 27382864 27382888 
TCAGAGCTGTCCTGTTT
TCGT 

TACAATTTGGGAT
TTGGTTGGGGA 

222976 10 27383358 27383385 27383592 27383625 
AACTTGGGGTTGAATC
CTACTTTAAGC 

CTGTCAACTAGGT
ATAATTGTATCATT
TCATTT 

222977 10 27384669 27384690 27384915 27384938 
TCTCAACTTGCTCAGGC
TGGG 

GTCAAGTATGAGA
GCTGTTGGTG 

222978 10 27386426 27386453 27386674 27386695 
GCTACATAACAGGTAT
TCAGGTTATGA 

CAGGCAGTAGAAT
AGCGTGCA 

222979 10 27387086 27387111 27387326 27387355 
GCAAGAACAAAGATCT
GCTTTACCT 

AGAGGAATATGA
ATCTTGCACAGAT
AAAA 

222980 10 27389545 27389564 27389776 27389800 
AGCCCTGCGTTCCTGTC
AA 

TGTTAAGTTCTCAT
GGAGACCAGA 

222981 10 27390910 27390930 27391075 27391099 
CTTGGATGGAGACCAC
GACT 

CTACAACTTACCT
GGAGAGTGGTG 

222982 10 27392491 27392512 27392737 27392760 
TCTGCCAGGTTTCAATC
AGGA 

AATCTCTGCTGGG
ATTACAGGTG 

117766 11 32413366 32413392 32413613 32413635 
ATTTAAAGATAGCCAC
GCACTATTCC 

GGCTAGACCTTCT
CTGTCCATT 

130157 11 32414016 32414041 32414263 32414285 
AATGTGGGGTGTTTCC
TTTTCTTTC 

GTGTGACTTCAAG
GACTGTGAA 

117768 11 32417725 32417746 32417953 32417974 
GGTCCTTAGCAGTGTG
AGAGC 

CCTCTTACTCTCTG
CCTGCAG 

124469 11 32421306 32421327 32421542 32421561 
CTCTCTAGGAGAGGAC
ACAGC 

ACACAACGCCCAT
CCTCTG 

117771 11 32438969 32438990 32439209 32439238 
CCAACTAGGGGAAGG
AGGAAA 

TGGTTATGTGTTT
CTAACTCTAGATG
TTT 

137665 11 118343131 118343152 118343381 118343400 
GCGGATCATTAAGACC
CCTCG 

ACTTCAGGGGTAT
CGCTCC 

137666 11 118343758 118343780 118343997 118344027 
GCCACAATACTTTTCCT
CAGCA 

GGCAAGGTTACA
GACTCAAATATTC
TAGAG 

121434 11 118344032 118344055 118344280 118344301 
AATCGAACTTCTGCTG
GAACATC 

AGATTCCCCAGAC
TGAGTCAG 

137668 11 118344359 118344384 118344593 118344614 
TCAAGTAGTCCTACTCC
TCTCTTCC 

CTTTGGAAACCCT
ACCCACAG 

222992 11 118352344 118352373 118352550 118352572 
CTGGATCATATGGTGG
CTCTGTAATTCTA 

ACTACTGCTTTTCT
TTGGGGCA 

137670 11 118354812 118354841 118354997 118355018 
AATTTGTCATTTGCATT
ATTATCTGTTGC 

CTCTGATCCTGTG
GACTCCAT 

137671 11 118355395 118355420 118355644 118355664 
GAGCCTTTTAATAGTCC
GTGTCTGA 

GAAAGCAAACCAC
CCTGGGT 

137672 11 118373676 118373703 118373919 118373945 
CCCTCTTCAGTGTCGTT
TTCTTCTAAA 

ACTGGAATGCTTT
TCTTTGAAAGTTT 

121440 11 118373962 118373982 118374206 118374231 
CTGGTCAGGTGACAAC
TGGT 

GGGCATTTTTGGA
TTGACTCTCATT 

121441 11 118374232 118374256 118374411 118374431 
TGAAAGAAAGTAGTCC
TGCTTCCC 

TTTGGGGCCATCT
GGAAGCA 

121442 11 118374670 118374695 118374913 118374936 
CTAGAACAGTGATTTC
TTCAGGTGG 

GGCCAACAGAACT
CTTAGTGACA 

121443 11 118374941 118374966 118375125 118375150 
AAATGAGCCAAAGATG
GATAACTGC 

AGGATATTCCCAC
AGTCATCACTGT 

121444 11 118375375 118375397 118375621 118375642 
AGTTTGAGTTGCCTCTA
GAGCT 

CAAGGAGGGCTA
GAGATGTGG 

223001 11 118375643 118375664 118375867 118375891 
TGGTTCAGTAGAGCAA
GGTCA 

TGGAGAACATAAA
GTGGCTGCATG 

121446 11 118376077 118376098 118376322 118376346 
TACCCATGTCTCATCAC
CAGC 

CAATGTTTGAAGG
GGTACTAGAGG 

121447 11 118376959 118376982 118377208 118377228 
AACACTATCAGCTTCA
GCATGTG 

GTTTGGGTTTAGT
GGGACCC 

137681 11 119148329 119148362 119148514 119148535 
TTTTGAAGTAAGATTG
ATCTTTATACTTACACC 

TCTTGGGGAGTTG
GTTCACAT 

121449 11 119148751 119148779 119148999 119149019 
CCACTGTTGTGACATTT
TTATATAAGCA 

TTAGATCCGTACC
TGCCAGG 

121450 11 119149043 119149074 119149290 119149312 
AATAACCTTGGAAAAT
TCGGTATTATATAGC 

GCCACTCCCTCTA
GGATCAAAC 
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137684 12 11802933 11802953 11803100 11803123 
CCGGGAGAGATGCTG
GAAGA 

CACGTAGAAGGA
GGGGAGAAGAT 

121452 12 11905300 11905320 11905513 11905532 
CCACCCCGAGATGGTC
TCAT 

TCGGGTCACGAAC
ACTCAC 

121453 12 11991980 11992007 11992223 11992246 
TTGTTAACTATTCAGAG
ACCTTCTCCC 

ACTCTCACCTGAA
TGAGGAGATC 

137687 12 12006217 12006239 12006464 12006486 
CATGAGCTTGGTGAGG
GTAGGA 

GGTTCTGATGCAG
TATGACCTC 

223011 12 12022185 12022214 12022377 12022398 
AAAAATATGCACCCTT
CAAATTGTTAAGC 

ATTATCCACGGAT
GGCCTGGG 

121456 12 12022445 12022467 12022682 12022700 
CACCTATCACGACAAA
TCACCG 

ATCAGCTGGATCA
CGCGT 

137690 12 12022707 12022727 12022878 12022900 
CCCCATCATGCACCCTC
TGA 

CTATTCTCCCAATG
GGCATGGC 

121458 12 12037272 12037292 12037518 12037541 
AACCCAAGCTAGGCAG
AAGC 

GATATCTGCTGCC
CTTTTACCTT 

113093 12 12038758 12038786 12038972 12038997 
GCTGAAGAGCTTTTAT
TTTAATAGCTCC 

CTCCCAAAAGAAG
GAAAGGAGAAAA 

137693 12 12043675 12043702 12043919 12043940 
AGCATTTTACCACTTTT
TAGACAGTCA 

TGGGACTCTAGGT
GCTCCAGA 

137694 12 25378493 25378522 25378720 25378749 
ATAACAGTTATGATTTT
GCAGAAAACAGA 

GTGTTACTAATGA
CTGTGCTATAACT
TTT 

130162 12 25380073 25380106 25380285 25380309 
ATTAAATATTATATGCA
TGGCATTAGCAAAGAC 

CCTGTCTCTTGGA
TATTCTCGACA 

112650 12 25398047 25398077 25398285 25398313 
TAATGGTTACATATAA
CTTGAAACCCAAGG 

TGAATATAAACTT
GTGGTAGTTGGA
GCT 

124474 12 112887982 112888011 112888221 112888243 
TTCTTATAGGGAATAG
GTAAATTCGTTCC 

GCCCGTGATGTTC
CATGTAATA 

124475 12 112890836 112890859 112891085 112891105 
GGATGCAGATTTTCTG
TCTCAGG 

AATCTCCAGGGTG
GCTCTGG 

130166 12 112910605 112910632 112910844 112910874 
CAGATGAACATTCTTG
TAGCTATCGCA 

ACTATTACTGAGC
GGAATATTGATAC
TTAC 

124477 12 112915286 112915307 112915533 112915555 
AGGCAGTGTTCACGTT
ACTGT 

ACTGTGAAAAGCA
AAGCTTACC 

55057 12 112924141 112924163 112924377 112924398 
CTCACGAAGAGGACCT
TTCAGT 

GCTCTCCTGCTTAT
GGTGCAC 

121466 12 112926033 112926054 112926270 112926302 
ACGTTGTACTGGAGAA
GCTGA 

TGATGTCAATAAG
AATATCAATCACA
ATGAAC 

137700 12 112926670 112926694 112926917 112926939 
TTGGTCAGAAGTTCAA
CACTGTAG 

TGCTGGACCGCCA
TATAGATAA 

198211 13 28589567 28589590 28589814 28589836 
GTGAGGAAGACAGGC
TAAAGGAC 

CCGTCTGCCTGTA
AAATGGATG 

130172 13 28592473 28592495 28592704 28592724 
GCAGACTGCTGTGAGG
GTTTTT 

TGTTCACAGAGAC
CTGGCCG 

124483 13 28597315 28597339 28597562 28597584 
ATGCTACTACAATTAG
CCAAGAGC 

TGGAAGAAGAGG
AGGACTTGAA 

124484 13 28601016 28601042 28601257 28601285 
CTCAGCTATAGTACCT
GTACTGAAGG 

AGATTTTCAAGGA
ACACAATTTCAGT
TT 

113272 13 28602165 28602189 28602411 28602434 
TGTCTAATTCCACTTGG
GTTTGAG 

CTTTGACAGAAAA
AGCAGACAGC 

223032 13 28608064 28608089 28608292 28608313 
TTTGCTAATTCCATAAG
CTGTTGCG 

GACCGGCTCCTCA
GATAATGA 

223033 13 28608314 28608335 28608500 28608525 
ACCTGTACCATCTGTA
GCTGG 

AGACAACATCTCA
TTCTATGCAACA 

121472 13 28609516 28609539 28609760 28609785 
CTCACACACTGACCCTA
TACTCT 

GTCTGGAATAGAA
AGGCTAACAGAA 

124489 13 28609911 28609941 28610160 28610180 
GTTATCAGAAACAGTC
TATGACTATTGAGA 

GGAAACCTCAAGT
GCTCGCA 

124743 15 90631705 90631725 90631935 90631960 
CCGGTCTGCCACAAAG
TCTG 

GTGGAAAAGTCCC
AATGGAACTATC 

137750 17 7572743 7572764 7572991 7573012 
ACAACAAAACACCAGT
GCAGG 

ACAGCCACCTGAA
GTCCAAAA 

113790 17 7573800 7573820 7574037 7574057 
GGGCTGGGACCCAATG
AGAT 

TCTCCCCCTCCTCT
GTTGCT 
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113791 17 7576458 7576480 7576628 7576654 
AAAAAGCAGGCTAGG
CTAAGCT 

CAGACCAGCTTTC
AAAAAGAAAATTG 

223040 17 7576666 7576699 7576897 7576917 
TATATATTATGGTATAA
GTTGGTGTTCTGAAGT 

ACAACACCAGCTC
CTCTCCC 

113018 17 7576923 7576944 7577153 7577179 
AGTGCTAGGAAAGAG
GCAAGG 

CTTCTCTTTTCCTA
TCCTGAGTAGTG 

4933 17 7577369 7577389 7577609 7577631 
CCGGGGATGTGATGA
GAGGT 

CTTGGGCCTGTGT
TATCTCCTA 

124310 17 7578045 7578066 7578291 7578314 
ACTTTGCACATCTCATG
GGGT 

CTGATTCCTCACT
GATTGCTCTT 

55074 17 7578333 7578353 7578556 7578579 
CAACCAGCCCTGTCGT
CTCT 

CTCTGTCTCCTTCC
TCTTCCTAC 

121481 17 7579336 7579355 7579585 7579605 
CCCAGAATGCAAGAAG
CCC 

TTCACCCATCTACA
GTCCCC 

591 17 7579680 7579700 7579929 7579949 
AGCCCAACCCTTGTCCT
TAC 

CTCTTGCAGCAGC
CAGACTG 

137761 17 29482905 29482932 29483148 29483173 
TTCCTAAAACGTCATG
ATTTTCAATGG 

CCCCAAAACACAG
TAACCCAAATAC 

120208 17 29508599 29508627 29508842 29508868 
GATAGTTTCACATTCAT
TTTCAGGAAGA 

GGTTTTTATGTCA
CAAGTAGGCATTT 

223049 17 29509359 29509384 29509596 29509625 
ATTGCTTGTCTACTTAC
CAGAATGC 

CACAAGATAAGGA
GAATGATTTGTAG
TGG 

137764 17 29527911 29527932 29528148 29528169 
CCACAGTATGGGTGCT
TTGTG 

GTTGGTTGTTGTG
AGGGCTTA 

121487 17 29528331 29528364 29528569 29528596 
TTTTTAAACTTTCTATTT
GCTGTTCTTTTTGGC 

TGAAAACCAAGAG
TGCATTTCTTAAA
A 

113320 17 29533143 29533165 29533385 29533412 
TGGTCTTAGAAAGTTC
CCGACA 

TCAAAATTCGTGA
TTTATCTTACCGGT 

121489 17 29551982 29552005 29552231 29552251 
CAAGTTGGGGCATAGA
GATTGAG 

TTCCCTTCCGGAG
AGAGGCT 

223054 17 29553481 29553499 29553723 29553747 
CCCCGATTTGCCGACA
AG 

TGCTTTGAGGCAG
ACTGAGTAAAA 

137769 17 29554035 29554065 29554284 29554304 
AATAGCTATTTTATTCT
GTGGACATTGTAG 

TGTTTCCTGCAGT
GGGATGC 

223056 17 29554351 29554374 29554593 29554620 
CCTCAATTTGGAAGCC
TCTTGTT 

CCATCTTCCATTTT
GGCTTTTGGATAG 

121493 17 29556004 29556029 29556248 29556273 
AGGTTTAATTCATGCTT
TGCACAAA 

CACTGAAATCATA
GAACCCTTACGT 

121494 17 29556640 29556661 29556879 29556909 
TTGCCTCTTAGGAACTC
TGGT 

CTTCATTATAGCTA
TGGTTTGTTCTAC
AAA 

223059 17 29557644 29557667 29557890 29557913 
CCATAACTAAGGGCCA
TGATGGA 

GCTTGGTTTGATG
TTCCCATAAC 

121496 17 29559829 29559848 29560076 29560098 
GCACTGTACGGTCCTT
GCA 

TCTGTGCCTTGTT
GAAGGATTT 

113324 17 29562498 29562525 29562747 29562767 
ATCAGTCATCATTTGCC
TTAATTTAGC 

TACTGGCCAAGCT
GTTGCCT 

121498 17 29562771 29562800 29563008 29563033 
TAATGACATTCTGTTTC
AAGGTTTGTATC 

GGATCCACTTCAA
AGCTAACATGTT 

183214 17 29575873 29575902 29576118 29576142 
TTTAAAGATTCCAATG
AAGTCTACACGTT 

CATACCTGGTATA
AACAGTGGCAC 

121500 17 29588506 29588528 29588751 29588775 
AAGCTAAGGGTAAGCA
ATTGGG 

GTGTTGCCATCTT
ATCAAAAGGTC 

137779 17 29652697 29652726 29652912 29652936 
AAAAATGAATCCAGAC
TTTGAAGAATTGT 

AGGTCCACTACAA
TTTCATATGGC 

223066 17 29654424 29654449 29654673 29654693 
TTTGTTTGGTTGGTTG
GTTTCTGGA 

CTGGTGCATGAAG
GTGAGCG 

121503 17 29657135 29657164 29657375 29657404 
GATTAAGGGGTATTTT
GGTTTTACTGTAG 

GATACATAAACCT
GATGTCTCTAGTA
ACT 

121504 17 29663498 29663526 29663748 29663767 
ACTTTTCTTTTGCCTTCT
GTACTATAGC 

GCATCAGCATGTA
GCGTGC 

121505 17 29667283 29667308 29667528 29667549 
AGAAATCAAAGAACAG
GGAGAAGTC 

AAAGAGGGCTTTG
TGCAGAGG 

121506 17 29683873 29683905 29684113 29684135 
AGTATCTACTAAAGAA
AGCTGTTGAATTTTAG 

GGGGACTCAAAA
AGGGGAAATC 
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223071 17 29684139 29684170 29684304 29684330 
CCTCAAATTTTTATTCC
AGTCTACTTTTAGG 

ATTCGTTGATCAA
ACTCATCTGTGGT 

121508 17 29685392 29685417 29685632 29685661 
TAATTTTGGCACATTAT
TCTGGGGA 

TCTCCAGATACAT
TTATTTACTTTGCA
GG 

137788 17 58740204 58740232 58740440 58740465 
TAGTTCAGTAAATAGA
AGGTGAACGAAT 

GCTATCTCAGCTG
AAACCTCTAAAA 

121511 17 58740505 58740530 58740750 58740774 
TCCAGAACCACTTGAA
GAAAATTGC 

CCACTACTTCGAC
TTAAGCCATTT 

55076 17 74732172 74732194 74732410 74732430 
AAAAGACCTACCCCAA
ATCCCA 

CCTCCAAGTCCAG
ATCCGCA 

121514 18 42530222 42530241 42530436 42530456 
CTGAGTGCAACGGGCT
TCA 

CTGGCTGGTGATG
CCTCTTG 

121515 18 42531778 42531798 42532022 42532040 
GGAACCTGGAAGCTGT
CTCC 

TTTGTGCTGGTGT
CGGAC 

110777 18 42532445 42532467 42532693 42532714 
ACTATGCACCCTATGG
AATGCC 

CCTTGGGAGGGTT
CAGAGAAG 

137793 18 42532955 42532975 42533165 42533187 
CCGGCCACAAAGCTTC
TAAG 

GTCACTGTCCCAC
TTGTCATTC 

137794 18 42533188 42533210 42533355 42533377 
GTGAGTGGGAGTAAA
AGGAGGA 

AGATGTGTCTGAG
GTGCAAAGC 

223076 19 4043156 4043176 4043396 4043425 
GGTGTGGACGAGGTG
CTCAA 

GGGAGGGAGAAG
CTTTAAAAGTAAT
AAAA 

223077 19 4044580 4044600 4044767 4044788 
GACCTCACTCCCGCTCT
CTT 

TGAAAGGACACA
GCTCAAAGC 

223078 19 4047174 4047196 4047420 4047438 
GGAGACCCCTCCCTTA
GTAAGT 

AATCCGAGACCCC
GCACA 

232697 19 4048076 4048095 4048324 4048344 
GGACGAAGGTCTTGCA
GCA 

AAGGGTGATGATC
CAGGGCC 

223079 19 4053967 4053986 4054163 4054189 
ACCTGGTGAAGCGGAC
CTT 

GTCATGGACTACT
ACCTGAAGTACTT 

223080 19 4054910 4054929 4055157 4055177 
GATGTCACCCACGTTG
GCT 

CGACATCCTGAGT
GGGCTGA 

223081 19 4059561 4059582 4059780 4059800 
CTGCAGTCCTGGCCTA
AGGAT 

CCTTTCCTTAGGG
GAGGCCT 

223082 19 4063019 4063038 4063270 4063288 
ACCCAAGCTCGTTCCTC
TT 

TTGGATGAGCCCC
GTGAC 

137795 19 13054383 13054405 13054628 13054652 
CATCACCAACGATGAG
GCATAC 

CTCATCTTTGTCCT
CATCATCCTC 

223084 19 33790535 33790555 33790755 33790784 
CCGGGGCAGATAAGA
AGCCT 

AGGTCACATTTGT
AAATAATACAGCA
TTT 

223085 19 33792251 33792270 33792437 33792455 
CAGTTGCCCATGGCCT
TGA 

GCGAGCGCAACA
ACATCG 

223086 19 33795002 33795029 33795245 33795269 
TCAACATAGTCCCAGT
GATTAATAGCC 

CCATTAGTTTTAG
CACCGCAGAAA 

223087 19 33797186 33797207 33797436 33797455 
CAAAGCCAGTCCTAAG
AGCAG 

TCTCGTGGGCCTT
GCATTA 

130201 20 30956629 30956659 30956873 30956898 
TCTGAGTGTGATTTAT
GTGAATTTCATTTG 

GGCAGTTTATAAA
ACAACCCCTCTC 

124506 20 31015701 31015729 31015946 31015966 
GAGGCACCCTATAAAT
GTTTAATGAATG 

TGTAGCTGGATGG
CGAGACC 

124507 20 31021228 31021247 31021477 31021497 
GAAACGCTCTCGGCCA
GAT 

CGTGCCAAGTTGT
CTGGCTC 

124508 20 31021498 31021518 31021671 31021690 
TGCCTCTGCATCTCCAG
ACA 

AGTGGGCTGTGG
CTTTTCG 

223092 20 31022029 31022051 31022277 31022298 
GTGTGGCATATAACAG
CCCTTG 

GGCATATCTGGTA
AGTGGGCT 

121525 20 31022347 31022367 31022556 31022577 
CCAGGACCCTCGCAGA
CATT 

TACACTTTCCAGG
GGTGCTCG 

121526 20 31022689 31022710 31022937 31022958 
GAAAGGAGGAAAGCT
GCCTAC 

GAATGGGACCATT
GTCTGCAG 

121527 20 31022959 31022984 31023132 31023158 
TGTCTCTAGTGGGAGA
TGATACATT 

TCTAGTATCACTTT
CCCTCATAGGAG 

121528 20 31023167 31023188 31023411 31023431 
CTTGAAAACCAAGGCT
CTCGT 

GCCATTGCTGTCA
CTGCCTC 

55833 20 31023499 31023518 31023732 31023753 
ACGGTGAGTCCACGGA
TAC 

GGGAATCTGGGA
TCTTTTGGC 
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121530 20 31023774 31023793 31024021 31024042 
TACCAGCCAAGAGCCG
TGT 

GGCTCCTTCAAAG
CCCTTAAA 

183271 20 31024113 31024134 31024344 31024367 
CCCCAAAAGAATTGCA
AGGCA 

TGGACCAAAGGA
GATCACATTTG 

121532 20 31024537 31024558 31024784 31024806 
GCACAAACTCCATGTC
TGGTG 

GGAGAGAAGAAG
GCTCCAGAGG 

121533 20 31024807 31024828 31025035 31025055 
CCTCCCAACTCAGCATC
AAGC 

TCATGGCTTTCAG
GCTGCAC 

137806 21 36164620 36164642 36164826 36164844 
CCATGGAGAACTGGTA
GGAGCC 

ACCCCCGCATGCA
CTATC 

124514 21 36171492 36171519 36171728 36171748 
ACCATGTTTTACTCAAT
AATGTTCTGC 

ATCCAACCATCCC
CACCGTG 

121537 21 36193742 36193767 36193990 36194010 
TTAATCCTCACAATTGT
CCCATGTG 

ACACATGGCTCCC
TCAGAGG 

55086 21 36206682 36206702 36206892 36206913 
GCAGTGGGCTCCATCT
GGTA 

TGCTCCCCACAAT
AGGACATC 

124516 21 36231626 36231648 36231874 36231894 
ATGCAACTTTTTGGCTT
TACGG 

CTCTATCGTGTCCC
CACAGG 

189368 21 36252782 36252810 36252996 36253017 
TCACTAGAATTTTGAA
ATGTGGGTTTGT 

TGTTTAGGTGGTG
GCCCTAGG 

121541 21 36259133 36259154 36259324 36259342 
CCAGTACCTTGAAAGC
GATGG 

GCAAGATGAGCG
AGGCGT 

137813 21 36420930 36420959 36421175 36421198 
TTTATTAAAACATTTCT
GAAGAGCTTCCA 

CGATGGCTTCAGA
CAGCATATTT 

121544 21 44514609 44514628 44514845 44514870 
GCCGCAGCTCTCTGGA
AAT 

CTGTGATTGACTT
GAATAACCGTTG 

223111 21 44524253 44524274 44524487 44524516 
CTGGAAGTCGATCACC
TGCCT 

ACAGAGTCAACTG
TTCATTTTATTTCA
AA 

121548 X 15808876 15808896 15809123 15809145 
CTGTCTGGGAGTGGGA
GGAT 

GTCCATCACCTGA
GTCTCTCAG 

113960 X 15817775 15817808 15818015 15818040 
TGATTAATTTTTAAATG
TAATGTGCTATCTGCC 

TGTTCTTCAATAA
AAGTGTCCTCCT 

137867 X 15821651 15821674 15821898 15821920 
TGCTCTTCTCGTTCTCT
TACACC 

CCTCTTGTTCTTCT
TGCCGTTT 

223115 X 15822080 15822109 15822319 15822341 
AAAAAGAGTTGCCTAT
CTTGAACTTAAAA 

ACATCCCATGACA
GGAATCACC 

137869 X 15826169 15826199 15826402 15826431 
AAAAGAGAAAAGTCTC
AGCTATATATCCTT 

TTGGTCTCAAATT
ATCAATGTAAGGT
TTT 

137870 X 15827250 15827283 15827433 15827465 
TTAATATACTTTGAAAC
ATTTCGTCTTTCATGG 

ACATGATAAAACA
AAATTAGTTACCT
ATCTCC 

137871 X 15833718 15833740 15833945 15833971 
CCATGCCTGGTCTAAA
GCAGTT 

CACATCCTCATAG
AAGTCTAGGAACT 

121555 X 15838171 15838191 15838419 15838440 
GCTTTGGGAGCTTGAC
CATT 

CCACAAATCGCCA
TTTTCCAC 

137873 X 15840703 15840730 15840948 15840972 
ACATCAATTTATGTAA
GCCCCTTTTAC 

CCGATCTGGAGAC
AAGTAGATGTC 

121557 X 15841060 15841081 15841309 15841329 
AACCCTAGTCCAGACC
ACTCC 

ATTACCCGACCTC
CTCCTGC 

223122 X 39911364 39911386 39911605 39911633 
ACCAGTAGTTGTCTGA
GGCCAG 

TTTCGGATGTCCTT
AAGAAATTGAAAA
T 

137876 X 39912910 39912933 39913153 39913179 
AGTGATGAGGGCAGG
TTTATACC 

CTCTTACCGTGTTA
TAACATCCAAGT 

223124 X 39913263 39913292 39913510 39913532 
CTAAAACATCATAGCC
ACTTTCATCATCT 

ACTTCTATGGCAG
CTCTGTTTG 

121561 X 39914509 39914534 39914756 39914777 
AAGCTTTACAGTTTCA
GCCTTTGTG 

TCTCTTCCTAGGCC
TCTGCAC 

121562 X 39916294 39916315 39916535 39916563 
GTCACCCTCTGTCTTTC
CTCC 

GTACTGCTTAGAG
AACAAGATTTGTG
AT 

137880 X 39921256 39921274 39921504 39921524 
ATCCTGTTGGAGCACC
GG 

ACAGCTGCCATGC
TCAAGTT 

121564 X 39922003 39922022 39922245 39922264 
CCATCGGCATTCTCCAC
GT 

GCAAAAAGCAGG
CTCAGCC 

121565 X 39922851 39922872 39923088 39923113 
CCCCGCATACCTTGTTC
ATTG 

GAATTAACAGGGC
TCCATCCTAAAA 
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121566 X 39923114 39923134 39923293 39923313 
AATGCACACCTTCAGG
TTGG 

AGAGACCAGTGAC
CACACCC 

121567 X 39923467 39923487 39923709 39923727 
CTTCCCCTCACCGACTC
TGT 

TCGGACATGCCTC
ACAGC 

223132 X 39930701 39930730 39930940 39930968 
TGAAGGTAAATAAAAC
AAAACGAAAACAC 

TTGAGTGCCCATT
TTAATTACATAGA
TG 

137886 X 39931428 39931448 39931678 39931697 
TCAGTGCTACCACTCAC
GTT 

AACTCAGCGGGTT
ACGTGG 

223134 X 39931698 39931718 39931909 39931929 
GGCGATTCTCTTTGCCA
GCT 

GAACCTAGGGTTG
CCAGTCT 

121571 X 39932264 39932287 39932513 39932533 
CATCTGGATGTAACTT
GGTGCTG 

GCAGTCTGTTTCC
TGGGCAC 

121572 X 39932548 39932568 39932798 39932817 
ACTGGGTGAGGGTAG
ACAGG 

TATTCAGCACGTG
GGCCAG 

223137 X 39932818 39932839 39933037 39933060 
ACGGATGGTGTGGTTT
CTACA 

GCCAAGTCCTAAC
GAAGAGAACA 

113976 X 39933093 39933123 39933339 39933361 
GATGATTTCAGATCTAT
AGATAGCACAACC 

CAGCGGTTCAAGA
CAGAAAAGA 

121575 X 39933652 39933672 39933872 39933891 
GGAACCCTGGGCTGCT
TACT 

AGTCTGCACCAAT
GGGGAG 

121576 X 39934179 39934200 39934426 39934448 
TTTTCCAGAGACGGCA
GAAGC 

TGTTCTTCTGCAA
AGGTGGATG 

121577 X 44820414 44820443 44820650 44820683 
TTTTCAATATTGACTTC
TTAGGTGATCGA 

CCAACACATGTAT
AAATCAAACAATA
ATGAACA 

223142 X 44833736 44833763 44833974 44833998 
ACCATGGTTTTACGTTT
CTGAACTGAG 

AACACAAACATGA
AATCAGCATGC 

121579 X 44879826 44879858 44880035 44880068 
TAAGATATCTTATGTCT
ATATTCTTTCAGGGC 

CCAACATTTCTCA
ATGCTCTAATATTT
AAGAAA 

121580 X 44896671 44896698 44896915 44896940 
ATAATGACCAACAATG
AATACATGTGG 

ACTTACCTGGGTT
TCATATAAGTGG 

138905 X 44910801 44910832 44911017 44911043 
TGTTAAAGAAACATTC
AATAATGGAATCAGC 

CTGTTGTAAGACA
GTTGCTTTTACTT 

223146 X 44912917 44912947 44913148 44913170 
GAATTGGCAGTTCTAA
ATTTTGGAAATATG 

TTAGGATCTGCTT
CCAAGGACT 

138907 X 44918149 44918178 44918338 44918365 
AAAAATTTGCTGTGAT
ATATAGTCCATCC 

TTATACAAAGGCT
TACCCTATTGAAC
A 

121584 X 44919133 44919160 44919382 44919402 
GTCTTCTAAAGCCCCA
AATTTAGAATC 

CCTGCTGTGCTGT
GTTCATG 

138909 X 44921717 44921745 44921960 44921986 
TTCTCAAGCTTATTAAA
GGACTTCATCT 

TGTTGCATTAAGA
CAAACTGACTTTC 

121586 X 44922797 44922817 44923036 44923063 
TCTCTCAGCCTGGAGT
CCGT 

CCTGAGTGGAGTT
AGATAGTTGGTTT
T 

138911 X 44928929 44928952 44929171 44929190 
CAGAATCAGAACGGAC
ATCCCAC 

GGCTAGGACTGCA
AACAGC 

121588 X 44929240 44929261 44929487 44929509 
CTCTGCCTTGTTGATGG
GAAA 

AGATCTGTTTTCAT
GGGGCTCT 

121589 X 44938199 44938220 44938447 44938468 
GATTCAGGGCTTCAGC
GTATG 

GCAACAACTGTGT
CCTCACTT 

121590 X 44942614 44942638 44942844 44942872 
TCTGATTGGAACACAA
GGGTTTTG 

GTTAGTTCATACA
AATTACCTGGTGT
TC 

121591 X 44948904 44948932 44949124 44949143 
AAAAATTTGTGACATTT
TCTTCCAGTCT 

TTGCACCAGCCAA
TAGCCT 

138916 X 44949848 44949877 44950068 44950093 
TTATAGTGTTTTGAGGT
TTTCAGAATTGA 

GCTTTGGATCTGA
GACCTTGATATT 

138917 X 44966473 44966492 44966717 44966741 
AGGCCTGCTGAGCATT
GTC 

CGCCCATGCCATA
TAATCTCTTTT 

121594 X 44969244 44969275 44969480 44969513 
TAGAATTCCATGATTAT
ACTAAAGCAGTACA 

ACATGTTGATTTG
ACTTACTAATGTA
AATTGGT 

121595 X 53423306 53423325 53423544 53423564 
AAAGGTCCAGGGGCTA
GGT 

TTGTCCTGTTCCCA
CTGCTG 

121596 X 53426368 53426389 53426618 53426637 
TTTTCCCGTTTAGGTCT
TGGT 

TCAGAAGACTCGC
TTGGGC 
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183323 X 53432340 53432363 53432580 53432605 
GAAGAGAGAAGAGGG
GGAGAAGC 

GGTGAAGCCTACA
GATGAGAAACTC 

121598 X 123164719 123164746 123164963 123164988 
GTTATGTACCCTATCAG
CTACTTCTAC 

ACATAAATCTTAC
CTGCATAGCACT 

137931 X 123171168 123171201 123171412 123171437 
AGGTCATTTTGTGTTAT
CAGATAATTGTTTTAC 

GGTCAAGAAGTG
CTATATCTCGGTC 

121600 X 123176266 123176299 123176495 123176527 

TAGAGTATCATGGTAA
AGATTATTAGATGATG
G 

AAGTTATCAAAAC
ACTTAAGGTAGTA
AGTTAC 

137933 X 123178968 123178995 123179212 123179237 
AGTCATGCATTCTAAAT
GAAATTGCTG 

AATATTTCTAAAT
ACCGACCTGCCA 

223166 X 123181156 123181183 123181394 123181424 
TTGTGTCTGTTAGATTA
GTTTCACCAT 

AGTTATATCCTAA
TTAATGGTGACCA
AGTT 

223167 X 123197697 123197719 123197912 123197941 
GCATTTGGATGCCTTAT
TGCGA 

GCTCAACTGACAA
AATACTTGTAATA
GTT 

137936 X 123204988 123205016 123205194 123205225 
TTTTTAAATAGGCCTTC
ACTATTCTGTG 

GTTTGATTTTATG
GTGGACACAGATT
TAATA 

121605 X 123217147 123217177 123217380 123217408 
ATTTTCTATTCCTCAAA
TTAAAAGCTTGGC 

AATACATACACTG
TTCTTTTGTCTTGT
C 

137938 X 123220354 123220382 123220578 123220601 
CAGATTTCTGTATCAAA
GCTAACAGTTT 

CTCAACCACTTTCC
GTTTTCCTG 

232790 X 129148850 129148871 129149098 129149119 
CCTGGGTGAAGAACTC
AACTG 

CAATGCGGGCTG
GAGTATATC 

232791 X 129149333 129149352 129149581 129149602 
CCACCAGCGTTGTTTC
GGA 

CCTCAGGCCCCTG
ATTCATTC 

181123 X 129154859 129154882 129155108 129155128 
CTCATGCCTCTAGGTCA
GAAACG 

TACCTTCCTCGTG
GCTGTCG 

137939 X 133511553 133511586 133511782 133511804 
ACTGATTTTAAAATAA
AATTAACATTGTCGCCC 

TTGCTGCCGGTAT
ACTTACCAT 

137940 X 133527420 133527449 133527637 133527663 
ACTTTTCAATAACCAAT
TTGTTTTCCTTG 

TGTAAATTCCTTGT
GAAGGTTTCTCT 

223173 X 133527738 133527769 133527984 133528007 
CCATTTCAAAGCATTTC
ATCATCATCATAAA 

GCTGAAACGTGGC
TAAATGATGT 

223174 X 133547370 133547397 133547614 133547639 
ATTGGGTGGCTTTATT
GAACATACCAC 

GGTATCTTCTGAC
AGCCCTTTAAAA 

121636 X 133547756 133547788 133547992 133548017 
GGTAAAGTTCATCATTT
GAAATGTTAAGTAAG 

GCTTAAAAGAACC
ATGCTTACCATG 

125816 X 133548947 133548979 133549162 133549195 
TCTTTCTTCGGAAATTA
AATATAACACACTTG 

GCAAATCAAGTGT
AATGTTGCATAAC
AAATATA 

121638 X 133551064 133551089 133551305 133551333 
ATCAAAGTATGGTTTA
AGTTGCAGC 

CTTGTAAATTCCTC
GTGACATATTTTC
A 

121639 X 133559114 133559134 133559350 133559383 
AGTGTGGATGAGGAA
ACCCA 

TCCCATATAATTA
ACTTTCATACCTA
GTTTCCA 
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