
INAUGURAL - DISSERTATION

zur
Erlangung der Doktorwürde

der
Gesamtfakultät für Mathematik, Ingenieur- und Naturwissenschaften

der
Ruprecht-Karls-Universität

Heidelberg

vorgelegt von
Chaiyod Kamthorncharoen, M. Sc.

aus Bangkok, Thailand

Tag der mündlichen Prüfung:

Two-level Restricted Additive Schwarz

Preconditioned Exact Newton with Applications

Betreuer: Prof. Dr. Peter Bastian
Prof. Dr. Kurt Roth

ABSTRACT

We study on Restricted Additive Schwarz Preconditioned Exact Newton
method (RASPEN), a nonlinear preconditioning of Newton’s method for
solving the nonlinear algebraic systems of equations which result from the
discretisation of partial differential equations (PDEs). The preconditioned
system is created by the help of additive Schwarz method to enable the par-
allel computation and is supposed to be more suitable for Newton’s method.
We also propose the coarse grid correction for RASPEN due to the fact that
the one-level scheme has a scalability concern when doing a large-scale com-
putation. Adding the second level would remedy this drawback. Our coarse
space is based on the idea of Nicolaides coarse space with some extensions.
It does not need an explicit coarse mesh and can be constructed in the
purely algebraic manner. Furthermore, the setup of the coarse problem can
be done in parallel. We apply RASPEN on various scenarios in order to
investigate the flexibility of RASPEN and the effectiveness of the two-level
approach.

ZUSAMMENFASSUNG

Wir untersuchen die Restricted Additive Schwarz Preconditioned Ex-
act Newton-Methode (RASPEN), eine nichtlineare Vorkonditionierung der
Newton-Methode zur Lösung nichtlinearer algebraischer Gleichungssysteme,
die aus der Diskretisierung partieller Differentialgleichungen (PDEs) resul-
tieren. Das vorkonditionierte System wird mit Hilfe der additiven Schwarz-
Methode erstellt, um eine parallele Berechnung zu ermöglichen, und die
Newton-Methode zu beschleunigen und zu robustifizieren. Wir schlagen
auch eine Grobgitterkorrektur für RASPEN vor, da das einstufige Schema
bei großen Berechnungen ein Problem mit der Skalierbarkeit hat. Die
Hinzufügung der zweiten Ebene beheft diesen Nachteil. Unser Grobraum
basiert auf der Idee des Nicolaides-Grobraums mit einigen Erweiterungen.
Er benötigt kein explizites Grobnetz und kann auf rein algebraische Weise
konstruiert werden. Außerdem kann der Aufbau des groben Problems par-
allel erfolgen. Wir wenden RASPEN auf verschiedene Szenarien an, um die
Flexibilität von RASPEN und die Wirksamkeit des zweistufigen Ansatzes
zu untersuchen.

v

ACKNOWLEDGMENTS

First of all, I would like to express my sincere thanks to my supervisors,
Prof. Dr. Peter Bastian and Prof. Dr. Kurt Roth for their valuable
advice and heartfelt encouragement throughout my doctoral study. The
completion of this dissertation would not have been possible without all
support from them.

I am thankful to all my colleagues at the Interdisciplinary Center for
Scientific Computing (IWR) of Heidelberg University, especially in our
Parallel Computing group for a wonderful working environment and
supportive contribution during my PhD journey. Furthermore, I would
like to thank the Thai community in Heidelberg for making my stay in
Germany a great experience.

I am grateful to the Development and Promotion of Science and Technology
Talents Project (DPST) for financial support since my undergraduate
study. In addition, I would like to thank the Graduate Academy of
Heidelberg University for the completion grant I received throughout the
final arc of my doctoral study.

At last, I wholeheartedly express my deepest gratitude to my family, espe-
cially my better half, for her constant love, endless tolerance, and under-
standing. I have been blessed to have them beside me through my ups and
downs.

vii

Contents

1 Introduction 1
1.1 Thesis Outline . 2
1.2 Major Achievements . 4

2 Numerical Solution of PDEs 6
2.1 Problem Formulation . 6
2.2 Finite Element method . 7
2.3 Discontinuous Galerkin method . 14
2.4 Newton’s Method for Nonlinear System of Equations 20
2.5 Methods for Solving Linear System 23
2.6 Domain Decomposition . 24

3 Restricted Additive Schwarz Preconditioned Exact Newton 31
3.1 One-level RASPEN . 31
3.2 Two-level RASPEN . 35

3.2.1 Additive Approach . 35
3.2.2 Multiplicative Approach . 37
3.2.3 Our Approach . 42

3.3 Algorithm Description . 43

4 Implementation of RASPEN in DUNE 45
4.1 Overview of DUNE . 45
4.2 Overview of DUNE-PDELab . 46
4.3 RASPEN Implementation . 47
4.4 Two-level RASPEN Implementation 49
4.5 Parallel Computation . 51

5 Numerical Expriments 55
5.1 Overview . 55
5.2 Nonlinear Poisson Equation . 55
5.3 P-Laplace Equation . 66

5.3.1 First Scenario . 66
5.3.2 Second Scenario . 70

5.4 Diffusive Wave Approximation . 71
5.5 Richards’ Equation . 76
5.6 Leaching and Carbonation of Concrete 80

ix

6 Conclusion 86
6.1 Summary . 86
6.2 Future Works . 87

List of Figures 90

List of Tables 92

List of Algorithms 93

Bibliography 94

x

1 Introduction

In this work we consider the solution of nonlinear algebraic systems of equations
arising from the discretization of partial differential equations (PDEs). It is com-
monly accepted that Newton’s method is the most popular tool for solving those
systems. Newton’s method has a beneficial property that it is converging quadrati-
cally but it is only locally convergent. Accordingly, the starting point must not be
too far away from the true solution. So, it requires a globalization technique such
as line-search or trust-region method to enhance the robustness. In each Newton it-
eration a linearized system needs to be solved. A Krylov iterative solver is typically
chosen for solving that system. Its important benefit is the Jacobian-free compu-
tation. Consequently, the true Jacobian could be never stored which would reduce
memory requirement. But a Krylov method sometimes takes an incredibly huge
number of iterations, if the Jacobian is ill-conditioned. A domain decomposition
technique such as additive Schwarz could take part here as a preconditioner for a
linearized system. Therefore, it enables parallelization in the nonlinear solver. This
strategy is so-called Newton-Krylov-Schwarz. However, the nonlinear system itself
is not preconditioned anyway.

One can do another approach by applying the domain decomposition method in
the context of "Nonlinear Preconditioning". Cai and Keyes [CK02] have introduced
Additive Schwarz Preconditioned Inexact Newton (ASPIN) in the early 2000s. The
idea is instead of solving the original nonlinear system, the new system is constructed
with the help of the additive Schwarz method. Then, we solve the new system by
Newton’s method. The resulting system is called the "preconditioned nonlinear sys-
tem". Nonlinear preconditioning could increase the robustness and may find the
solution faster. Domain decomposition also plays an important role in which the
nonlinear problem is subdivided into nonlinear subproblems on subdomains. Since
Newton’s method is a global solver, it is hindered if the problem is hard to solve in
some parts of the domain. It would slow down or ruin the convergence of the solver.
With ASPIN strategy, one can distribute the workload based on the difficulty of
subproblems.

Restricted Additive Schwarz Preconditioned Exact Newton (RASPEN), an AS-
PIN variant, is developed by Dolean et. al. [Dol+16] with the idea of using the
restriction (and prolongation) operators that satisfy the partition of unity property
and using the exact Jacobian instead of inexact one. Note that both ASPIN and
RASPEN are derived based on overlapping subdomains, but nonlinear precondition-
ing can work for the nonoverlapping case as well. Many researchers also work in
that direction and propose methods like Balancing Domain Decomposition method
(BDD) from Bordeu, Boucard, and Gosselet [BBG09], nonlinear Dual-Primal Finite

1

Element Tearing and Interconnecting (FETI-DP), and nonlinear Balancing Domain
Decomposition by Constraints methods (BDDC) from Klawonn, Lanser, and Rhein-
bach [KLR14]. RASPEN also has its version for nonoverlapping called SRASPEN
[Cha+21]. But we do not consider it in this study.

There is a concern about scalability because RASPEN also has to solve a global
linear system in which the condition number heavily depends on the number of sub-
domains. That means the purely single level does not provide good performance
when we do scaling. A coarse grid correction plays a role to remedy that issue.
ASPIN and RASPEN propose their own approach for coarse grid correction to over-
come the scaling issue [MC05; Dol+16]. Both of them apply the second level with
the coarser mesh which we believe that on some kinds of problems, for example,
the highly heterogeneous problem, rediscretization the coefficients from fine mesh
to coarser mesh cannot represent a good approximation. We will provide a coarse
problem based on Nicolaides coarse space which basically does not need to explicitly
construct a coarse mesh and can be done algebraically.

1.1 Thesis Outline

This thesis is separated into several chapters structured in the following:

Chapter 2: Numerical Solution for PDEs

We provide numerical tools for solving nonlinear partial differential equations (PDEs).
We start at a weak formulation. After that, we describe the discretization schemes
used in this study, Finite Element (FE) and Discontinuous Galerkin (DG) to obtain
the algebraic system of equations. Then, we talk about Newton’s method which is
exploited to solve the resulting system, and linear solvers for solving a linearized
equation appearing in each Newton iteration. The last part is the domain decom-
position which plays a key role in our main method, RASPEN.

Chapter 3: Restricted Additive Schwarz Preconditioned Exact
Newton

We provide the information on RASPEN e.g., how the method is derived, relation to
ASPIN, and relation to the linear case. Its two-level approaches are also discussed.
We explain our two-level approach which is an extension based on Nicolaides coarse
space. And the last section would give the description of the RASPEN algorithm.

Chapter 4: Implementation of RASPEN in DUNE

We introduce software used throughout this study, DUNE, a software framework for
solving PDEs with grid-based methods. We explain the RASPEN implementation

2

Ordinary Newton

determine initial guess

compute residual

check
convergence?

solve global
linear system

update solution

stop

no

yes

Nonlinear Preconditioning

determine initial guess

compute residual
(involves local

nonlinear solves)

check
convergence?

solve global
linear system

(in matrix-free way)

update solution

stop

no

yes

Figure 1.1: Diagrams of ordinary Newton and nonlinear preconditioning.

in DUNE style. And we also explain how to deal with parallel computation involved
in many parts of our algorithm.

Chapter 5: Application of RASPEN to Model Problems

This chapter would provide the applications of RASPEN to several problems with
discretization schemes. The numerical results of one-level and two-level RASPEN
would be compared to Newton’s method to show the convergence behavior of each
method. The scalability would also be presented and compared between one-level
and two-level versions.

3

Chapter 6: Conclusions

We finally summarize and discuss the outcomes of our study. Also, the future works
will be mentioned.

1.2 Major Achievements

This section is dedicated to expressing what we achieve in this study

1) Flexible implementation of RASPEN in DUNE
We provide a flexible implementation of RASPEN in DUNE. It is a software
framework for solving PDEs developed by our research group. ASPIN and
RASPEN have worked successfully on various nonlinear problems but mainly for
Finite Difference (FD) and Finite Element (FE) discretization schemes [CKY01;
CKM02; HC05; LKS13; Dol+16; SKN16]. We would show that the nonlinear
preconditioning performs well with Discontinuous Galerkin (DG). RASPEN is
tested on different discretizations like Finite Element (FE), Finite Volume (FV),
and Discontinuous Galerkin (DG). It is also applied to many types of problems
e.g., instationary problems, Richards’ equation which has the nonlinearity on
both spatial and temporal derivatives, and nonlinear systems of equations de-
scribing the reactive multiphase flow.

2) Detailed investigation of robustness aspect
We present that RASPEN is more robust than Newton’s method in several as-
pects. For stationary problems, RASPEN basically takes less number of Newton
iterations to converge to the solution. Moreover, we apply RASPEN to the
problem so that we can increase the (local) nonlinearity. In the end, we see
that RASPEN can solve the higher nonlinearity problems compared to Newton’s
method.
For instationary problems, RASPEN can handle a larger time step size which
means it could take fewer steps to complete the simulation. We also provide
an additional feature of RASPEN where we are allowed to divide the time step
locally. It turns out that RASPEN could handle even a larger global time step
size.

3) Formulation of almost fully algebraic coarse correction
We introduce a coarse grid correction based on the extension of Nicolaides coarse
space. The coarse space constructed from rediscretization of the fine grid does
not represent a good coarse problem, especially in heterogeneous problems. We
exploit the extended Nicolaides coarse space to construct the coarse problem in
a way of Galerkin projection which can be done in an algebraic manner. In other
words, we do not need an explicit coarse mesh to generate a coarse problem.

4) Parallel implementation of two-level scheme and evaluation of its scalability
Although a coarse grid correction itself is a global problem, many parts of the

4

computation in our scheme can be done in parallel such as restriction and pro-
longation for the coarse problem, and coarse matrix assembly. Their details are
explained in Chapter 4.
We apply the two-level schemes to evaluate the scalability. We do a weak scaling
test running from 2 × 2 to 64 × 64 subdomains on the nonlinear Poisson prob-
lem. Using our coarse grid correction displays that the number of global linear
iterations remains asymptotically constant which satisfies our expectation. For
a strong scaling test, the schemes also provide a good scaling factor.

5

2 Numerical Solution of PDEs

In this chapter, we provide the recapitulation of a nonlinear system of equations
arising from the discretization of the partial differential equations and how to solve
that system. We start describing about problem formulation in strong and weak form
with the example of (nonlinear) Poisson equation. After that, the Finite Element
(FE) and Discontinuous Galerkin (DG) methods, the main discretization schemes
in this work, are presented. The resulting nonlinear system of equations obtained
after discretization of the weak formulation is typically solved by Newton’s method.
Hence, we talk about it thereafter and also the solvers for the linear system. The last
section of this chapter would introduce the domain decomposition methods which
play a key role in the next chapter.

2.1 Problem Formulation

We consider introducing the elliptic partial differential equation, for instance, the
nonlinear Poisson equation which is commonly a starting point to explain

−∇ · (ϕ(u, ‖∇u‖)∇u) = f in Ω, (2.1a)
u = g on ΓD ⊆ ∂Ω (2.1b)

−ϕ(u, ‖∇u‖)∇u · ν = j on ΓN = ∂Ω \ ΓD (2.1c)

where Ω ⊂ Rn is a bounded domain, f : Ω → R denotes the source term, ϕ
determines, in general, the diffusivity which is a (nonlinear) function, ν is a unit
outer normal vector to the domain Ω, and (2.1b) and (2.1c) represent the Dirichlet
and Neumann boundary conditions respectively.

In the case of the pure Dirichlet problem, a strong solution is a function u ∈
C2(Ω) ∩ C0(Ω̄) which satisfies the condition (2.1a), and (2.1b). And in the case
of the pure Neumann problem, a strong solution is a function u ∈ C2(Ω) ∩ C1(Ω̄)
which satisfies the condition (2.1a), and (2.1c). But in general, a strong solution is
difficult to achieve or impossible in some problems. The less restrictive conditions
can be allowed in the weak formulation [Eva10; EG04] which gives you the weak
solution instead. It resolves the limitations of the strong form because only the first
derivative, in the weak sense is required. Moreover, it is an important basis of the
Finite Element method which we would explain in the next section.

Let us start with multiplying the nonlinear Poisson equation (2.1a) by any test
function v ∈ C1(Ω) ∩ C0(Ω̄) with v = 0 on ΓD and then integrating by parts∫

Ω

ϕ(u, ‖∇u‖)∇u · ∇v dx+

∫
ΓN

jv ds =

∫
Ω

fv dx. (2.2)

6

By the property of space V that v = 0 on ΓD, we see that the term
∫

ΓD
∇u · νv ds

vanishes. We also assume that f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω). We seek a function

u ∈ Vg = {u ∈ V |u = g on ΓD} such that it satisfies (2.2) for the appropriate test
functions v ∈ V .

With V = {v ∈ H1(Ω) : v = 0 on ΓD}, we can ensure the existence and
uniqueness if some conditions are fulfilled. More precise statements and proofs can
be found in [AL83]. We assume that ϕ is defined in such a way that there exists a
unique solution for (2.2). One precise example of ϕ is |∇u|p−2 where p > 1. There
is a guaranteed (weak) solution u ∈ W 1,p

0 (Ω) to the Dirichlet problem

−∇ ·
(
|∇u|p−2∇u

)
= 1 in Ω,

u = 0 on ∂Ω,

see [Sak87] for details and reference therein. We would like to rewrite the problem
into "residual form", that is

Find u ∈ U s.t. : r(u, v) =

∫
Ω

ϕ(u, ‖∇u‖)∇u ·∇v−fv dx+

∫
ΓN

jv ds = 0 ∀v ∈ V

(2.3)

where we usually exploit this expression throughout this thesis.

2.2 Finite Element method

is basically the discretization idea to solve the weak formulation (2.3) numerically by
substituting the function space V by the finite dimensional function space Vh (where
h refers actually to mesh size) defined on finite element mesh Th which subdivides the
domain Ω into cells or elements. Cells can be an arbitrary shape but in this thesis,
we generally choose a cube element (which is a quadrilateral in 2d). Some useful
materials for the introduction of Finite Element are provided in [EG04; Bra07].

Basis Representation and Algebraic problem

This subsection would describe the algebraic problem arising after inserting the basis
representation. We assume that our trial and test spaces are spanned by global basis
functions (we will describe how to construct them in the following subsections), i.e.
Vh = span{φ1, . . . , φn}. We can expand the solution uh =

∑n
j=1(z)jφj as a linear

combination of basis functions φj and z ∈ Rn is the coefficient vector. Hence, the
residual form (2.3) becomes

Find uh ∈ Vh s.t.: r(uh, v) = 0 ∀v ∈ Vh

⇔ r

(
n∑
j=1

(z)jφj, φi

)
= 0 ∀i = 1, . . . , n (2.4)

⇔ R(z) = 0,

7

where R : Rn → Rn is a nonlinear map resulting in a nonlinear algebraic equation
and Ri(z) = rh

(∑n
j=1(z)jφj, φi

)
. Newton’s method typically solves this resulting

nonlinear system of equations which would be described in Section 2.4.
The next question might be how to construct the finite dimensional function

space Vh. We introduce the basic tools to construct the finite element mesh Th and
also its basis function here

1) set of vertices Xh = {x1, . . . , xN} and elements Th = {T1, . . . , TM}, that is, a
nonoverlapping subdivision of the domain Ω into a union of element T

⋃
T∈Th

T = Ω

where each element T ∈ Th is closed, T̊i ∩ T̊j = ∅ ∀Ti, Tj ∈ Th, and where
each of the vertices of element T coincides with a vertex belonging in Xh.
A face of an element T is denoted by F . It is a vertex, edge, or face in 1d, 2d,
and 3d, respectively. A mesh is called conforming if each face F ⊂ ∂T of
element T ∈ Th is either a face of another element T ′ or a subset of ∂Ω

2) the index set of vertices Ih = {1, . . . , N}. We can also categorize it into the
index set of interior and boundary vertices:

Ih = I inth ∪ I∂Ω
h , I inth = {i ∈ Ih : xi ∈ Ω}, I∂Ω

h = {i ∈ Ih : xi ∈ ∂Ω}.

3) a local-to-global index map

gT : {0, . . . , nT − 1} → Ih

for every T ∈ Th and nT is a number of vertices of element T . It maps a local
number of vertices of element T to a global vertex number.

4) last but not least, we introduce an element transformation map

µT : T̂ → T

which maps a point from corresponding reference element T̂ to a point in
physical (real) element T . It is assumed to be sufficiently differentiable with
invertible Jacobian as well as consistent with the local numbering map gT in
such a way that µT (x̂i) = xgT (i).

8

gT1(0) = 4, gT1(1) = 5, gT1(2) = 2, gT1(3) = 1

gT2(0) = 5, gT2(1) = 6, gT2(2) = 3, gT2(3) = 2

gT3(0) = 7, gT3(1) = 8, gT3(2) = 5, gT3(3) = 4

gT4(0) = 8, gT4(1) = 9, gT4(2) = 6, gT4(3) = 5.

Figure 2.1: Example of local-to-global index map.

Reference Elements on Cube

As already mentioned in the previous lines, we have proposed an element transfor-
mation map from reference element to physical element. Therefore, in this subsec-
tion, we would describe what is the reference element, especially for cube form. A
reference cube in d-dimension is defined by

Q̂d := {(x1, . . . , xd) ∈ Rd : 0 ≤ xi ≤ 1}

Figure 2.2: Illustrations of 2-d reference element on cube T̂ = Q̂2 and element trans-
formation map µT .

The benefit of the reference element is while we deal with the integration over
elements or faces from the weak formulation, it is typically expensive to do it over
each physical element. We can easily apply the simple map from the physical ele-
ment to the reference element where we already had the basis function evaluation
precomputed. Moreover, the formula for the Jacobian of transformation map (also
its inverse) as well as the integration domain remains the same for all elements.
Note that in the case of a parallelepiped in Rd, µT is an affine linear map which
means the Jacobian of transformation map µT at point x̂, JµT (x̂) is constant for all

9

x̂ ∈ T̂ . With the notation we purposed in this and previous section, we can define
the conforming space of degree k in d dimension on mesh Th by

V k,d
h (Th) = Qk,dh (Th) :=

{
v ∈ C0(Ω) : ∀T ∈ Th : v|T = µT ◦ pT ∧ pT ∈ Qk,d

h

}
(2.5)

where µT : Q̂ → T , and Qk,d
h =

{
p ∈ C∞(Rd) =

∑
0≤‖α‖∞≤k

cαx
α1
1 · . . . · x

αd
d

}
represents the sets of polynomial whose maximal degree is k in d dimension and
dim Qk,d

h = nk,d
T̂

= (k + 1)d.

Lagrange Basis

Up to this point, we do not yet declare any basis function on our constructed finite
element space But the key point of finite element is inserting the basis representation
of the finite element solution. We start with constructing Lagrange basis function
on reference (cube) element T̂ by using the idea of Lagrange points and Lagrange
polynomials as following definitions

LT̂ =

{
x̂T̂0 , . . . , x̂

T̂

nk,d

T̂
−1

}
PT̂ =

{
pT̂0 , . . . , p

T̂

nk,d

T̂
−1

}
such that

pT̂i (x̂T̂j) = δij.

Note that from now on, we can extend the local-to-global index map gT in such a
way that it maps from local numbering of Lagrange points (in physical element) to
global numbering of Lagrange points (in physical element)

gT : {0, . . . , nk,d
T̂
− 1} → I

(
V k,d
h (Th)

)
=
{

0, . . . , dimV k,d
h (Th)− 1

}
.

Then, the inversion of the map is defined by

C(i) = {(T,m) ∈ Th × N : gT (m) = i}

where it illustrates all possible elements T and its corresponding local index m that
maps to the global vertex i. We eventually define the global Lagrange basis function
by

φi(x) =

{
pT̂m(µ−1

T (x)) x ∈ T ∧ (T,m) ∈ C(i)
0 else

, i ∈ I
(
V k,d
h (Th)

)
where each global basis function φi is corresponding to a global Lagrange point xi.

We emphasize here that this definition is defined on continuous space so that, for
instance, one can evaluate the basis function φi(x) from either (T,m) or (T ′,m′) ∈
C(i) if x is on the intersection of T and T ′ but there can also be discontinuous basis
function space where we cannot do that. In that case, we need to be aware that on
which element we are evaluating.

10

Finite Element Space

By this construction of global Lagrange basis function, we can incorporate the
Dirichlet boundary condition on the corresponding global Lagrange points which
lie on Dirichlet boundary ΓD and evaluate Dirichlet function g or use it as a coeffi-
cient of a basis function. Let us define the index set of the Lagrange points on the
Dirichlet boundary

ID
(
V k,d
h (Th)

)
=
{
i ∈ I

(
V k,d
h (Th)

)
: xi ∈ X k,d

h ∧ xi ∈ ΓD

}
where X k,d

h is set of global Lagrange points. We already defined earlier that the test
space V would fulfill the zero Dirichlet boundary condition. Then, it becomes

V k,d
h,0 (Th) =

{
v ∈ V k,d

h (Th) : v(xi) = 0 ∀i ∈ ID
(
V k,d
h (Th)

)}
.

For the trial space, it gets more complicated to define. We start with

uh,g =
∑

i∈I(V k,d
h (Th))

g(xi)φi for all i ∈ ID
(
V k,d
h (Th)

)
.

Then the trial space is

Uk,d
h (Th) =

{
u ∈ V k,d

h (Th) : u = uh,g + w ∧ w ∈ V k,d
h,0 (Th)

}
which is actually not a function space because it is not closed under addition. But in
practice, we can explicitly include the Dirichlet boundary on the degree of freedom
in an algebraic problem. And also, our implementation in Dune can construct a
subspace of finite element space in which we can leave out the basis functions that
are corresponding to the Dirichlet boundary.

Element-wise Computations

This subsection would introduce the element-wise evaluations as well as some impor-
tant notations we suppose to use for the rest of this thesis. We look into each term in
R(z) from (2.4) in order to see the element-wise computations. Let us denote some
notations regarding the classification of element-wise computation in Dune sense.

1) The superscript V,B, and S would be assigned for Volume Integrals, Boundary
Integrals, and Skeleton Integrals respectively.

2) The α-terms refer to the integrals which depend on both trial and test spaces.
On the other hand, the λ-terms refer to the integrals which depends only on
test space.

11

3) The set of faces (or codimension 1) of the elements is denoted by Fh. It can be
partitioned into F ih,FNh , and FDh . F ih is called a set of interior skeleton which
is the intersection of elements. FNh and FDh are formed by the intersections of
elements and domain boundaries which FNh is called a set of Neumann bound-
ary intersections and FDh is called a set of Dirichlet boundary intersections.
Carefully looking at the face F , that is, the intersection of an element with an-
other element or domain boundary ∂Ω, we propose further notation regarding
the associated element. In Dune language, we denote the terms inside element
T−F and outside element T+

F with respect to the direction of the outer normal
vector νF that always points from inside to outside element and from inside
element to outside of the domain. There would be more explanation in Section
2.3

Figure 2.3: Illustrations of inside element T−F , outside element T+
F , and outer normal

vector νF .

Thereby, our residual form (2.3) can be a summation of these following labeled terms

r (u, v) =
∑
T∈Th

αVT (u, v) +
∑
T∈Th

λVT (v) +
∑
F∈FN

h

λBF (v) (2.6)

where

αVT (u, v) =

∫
T

ϕ(u, ‖∇u‖)∇u · ∇v dx, λVT (v) = −
∫
T

fv dx, λBF (v) =

∫
F

jv ds.

We start with the α-Volume term: For any (T,m) ∈ C(i) we get

αVT (uh, φi) =

∫
T

ϕh∇uh · ∇φi dx

=

∫
T

ϕh

(∑
j

(z)j (∇φj · ∇φi)

)
dx

=

∫
T̂

ϕ̂h

(∑
n

(z)gT (n)(J
−T
µT

(x̂)∇̂pT̂n (x̂)) · (J−TµT (x̂)∇̂pT̂m(x̂))

)
|detJµT (x̂)| dx̂.

12

Note that the integral can be computed by numerical integration in appropriate
order and the gradient of functions can also be computed in reference element by
this chain rule property:

∇w(µT (x̂)) = J−TµT (x̂)∇̂ŵ(x̂).

We also remark that

ϕh := ϕ(uh, ‖∇uh‖) = ϕ

(∑
j

(z)jφj,

∥∥∥∥∥∑
j

(z)j∇φj

∥∥∥∥∥
)
,

and

ϕ̂h := ϕ

(∑
n

(z)gT (n)p
T̂
n (x̂),

∥∥∥∥∥∑
n

(z)gT (n)(J
−T
µT

(x̂)∇̂pT̂n (x̂))

∥∥∥∥∥
)

Next, we go to λ-Volume term:
For any (T,m) ∈ C(i) we have

λVT (φi) = −
∫
T

fφi dx = −
∫
T̂

f(µT (x̂))pT̂m(x̂)|detJµT (x̂)| dx̂.

Lastly, the λ-Boundary term:
For F ∈ FNh and (T−F ,m) ∈ C(i) we obtain

λBF (φi) =

∫
F

jφi ds =

∫
F̂

j(µF (x̂))pT̂m(ηF (x̂))
√
|det(JTµF (x̂)JµF (x̂))| ds

Here, we need to introduce two more mappings because the integration is over a
face not an element as we did before.

µF : F̂ → F maps a point from reference (element of the) face F̂ to a corre-
sponding point in physical face F in global coordinate

ηF : F̂ → T̂ maps a point from reference (element of the) face F̂ to a corre-
sponding point in reference element T̂

13

Figure 2.4: Illustrations of additional map µF and ηF .

With these element-wise computations we have shown above, we are eventually able
to evaluate the algebraic residual R(z). In order to solve the algebraic problem
R(z) = 0 with Newton’s method, the information of the Jacobian of R is required
which we observe that

1) the entries of the Jacobian can be computed element by element

2) it depends only on α-terms

3) it can be achieved numerically by finite differences.

2.3 Discontinuous Galerkin method

We carry on with another discretization scheme with a slightly different idea. Dis-
continuous Galerkin method (DG) is also working based on discretizing the weak
formulation as in finite element. The discontinuity is allowed at the element bound-
aries. Therefore, the basis functions could be constructed in such a way that their
support is only in their element. Then, the finite element solution might have differ-
ent values across the faces and edges. In addition, DG approach takes the Dirichlet
boundary condition as additional terms in the weak formulation as so-called penalty
terms following the idea of Nitsche’s method [Nit71]. A variety of penalty terms
would be described in this section. For more explanations, see [Riv08].

Let us start with the same model problem (2.1) but consider a slightly different
test space V = H1(Ω) without any restriction to zero at Dirichlet boundary ΓD
as before. Multiplying equation (2.1a) again by any function v ∈ V and then
integrating by parts, we obtain∫

Ω

ϕ∇u · ∇v dx−
∫
∂Ω

ϕ∇u · νv ds =

∫
Ω

fv dx. (2.7)

14

Here, we see that the boundary integral
∫
∂Ω
ϕ∇u · ν v ds is not vanished. We pur-

posely keep it so that the boundary conditions can be built in the weak sense. Note
that we write ϕ := ϕ(u, ‖∇u‖) in short here.

Before we go any further, we would like to introduce the finite element space
for DG first. Since we are working on the cube element as the same in the previous
section, but relaxing the continuity constraint, the finite element space V k,d

h (Th) of
degree k in d dimension on mesh Th would be defined by

V k,d
h (Th) = Qk,dh (Th) :=

{
v ∈ L2(Ω) : ∀T ∈ Th : v|T = µT ◦ pT ∧ pT ∈ Qk,d

h

}
. (2.8)

The only difference is v ∈ L2(Ω). Consequently, v is piecewise continuous on an
element and could be discontinuous at the interfaces. Then, a unique value might
not be defined on face F . Thus, we have to define the average and jump of v at the
face F by

{{v}} =
1

2

(
v|T−F + v|T+

F

)
, [[v]] = v|T−F − v|T+

F
.

And we extend for the special case that the average and jump at the domain bound-
ary ∂Ω

{{v}} = [[v]] = v

Next, we return to the weak formulation of the problem (2.1a) but this time we
multiply by the test function v ∈ V k,d

h (Th) and then integrate over the whole domain
Ω. Note that we can only do cell-wise integration by parts for the reason that v is
piecewise continuous on an element. We obtain∑

T∈Th

∫
T

ϕ∇u · ∇v dx −
∑
F∈Fh

∫
F

[[ϕ∇u · ν v]] ds =
∑
T∈Th

∫
T

fv dx. (2.9)

We already denoted in the previous section that Fh = F ih ∪ FNh ∪ FDh . Hence, we
have

∑
F∈Fh

∫
F

[[ϕ∇u·ν v]] ds =
∑
F∈Fi

h

∫
F

[[ϕ∇u·ν v]] ds−
∑
F∈FN

h

∫
F

jv ds+
∑
F∈FD

h

∫
F

ϕ∇u·ν v ds.

(2.10)

Using the property that [[ϕ∇u · νv]] = {{ϕ∇u · ν}}[[v]] + [[ϕ∇u · ν]]{{v}} and due to
the fact that the exact solution u satisfies [[ϕ∇u · ν]] = 0 across the interfaces, the
equation (2.10) becomes

∑
F∈Fh

∫
F

[[ϕ∇u·ν v]] ds =
∑
F∈Fi

h

∫
F

{{ϕ∇u·ν}}[[v]] ds−
∑
F∈FN

h

∫
F

jv ds+
∑
F∈FD

h

∫
F

ϕ∇u·ν v ds.

(2.11)

15

Substituting (2.11) into (2.9) and subtract
∑
T∈Th

∫
T

fv dx from both sides. We get

∑
T∈Th

∫
T

ϕ∇u · ∇v dx −
∑
T∈Th

∫
T

fv dx

−
∑
F∈Fi

h

∫
F

{{ϕ∇u · ν}}[[v]] ds = 0. (2.12)

+
∑
F∈FN

h

∫
F

jv ds −
∑
F∈FD

h

∫
F

ϕ∇u · ν v ds

Next, in order to symmetrize
∑
F∈Fi

h

∫
F

{{ϕ∇u · ν}}[[v]] ds term we add the additional

term ε
∑
F∈Fi

h

∫
F

{{ϕ∇v · ν}}[[u]] ds. Also, in order to symmetrize
∑

F∈FD
h

∫
F

ϕ∇u · ν v ds

term we try to do the same way by adding ε
∑

F∈FD
h

∫
F

ϕ∇v · ν u ds but it would make

the system inconsistent. Then, we remedy it by subtracting by ε
∑

F∈FD
h

∫
F

ϕ∇v ·ν g ds

because we know that u− g = 0 on Dirichlet boundary ΓD. So in the end, we have
added the productive zero term theoretically. Then, we achieve

∑
T∈Th

∫
T

ϕ∇u · ∇v dx −
∑
T∈Th

∫
T

fv dx

−
∑
F∈Fi

h

∫
F

{{ϕ∇u · ν}}[[v]] ds + ε
∑
F∈Fi

h

∫
F

{{ϕ∇v · ν}}[[u]] ds = 0

(2.13)

+
∑
F∈FN

h

∫
F

jv ds −
∑
F∈FD

h

∫
F

ϕ∇u · ν v ds + ε
∑
F∈FD

h

∫
F

ϕ (u− g)∇v · ν ds

where ε plays a role in classifying the interior penalty methods. Here, we can see that
we are able to enforce the Dirichlet boundary condition on our weak formulation.
Last but not least, the penalty term comes up to penalize the interface jumps

γ
∑

F∈Fi
h∪F

D
h

∫
F

[[u]][[v]] ds

where γ is a mesh-dependent penalty parameter that has to be sufficiently large
enough in practice. We add the term γ

∑
F∈FD

h

∫
F

g v ds in similar way for consistency

16

reason. Eventually, our weak formulation for DG has become

∑
T∈Th

∫
T

ϕ∇u · ∇v dx

−
∑
F∈Fi

h

∫
F

(
{{ϕ∇u · ν}}[[v]] − ε {{ϕ∇v · ν}}[[u]] − γ[[u]][[v]]

)
ds

−
∑
F∈FD

h

∫
F

(
ϕ∇u · ν v − ε ϕ (u− g)∇v · ν − γ uv

)
ds = 0. (2.14)

−
∑
T∈Th

∫
T

fv dx

+
∑
F∈FN

h

∫
F

jv ds−
∑
F∈FD

h

∫
F

γ gv ds

Or it can be rewritten in our acquainted residual form, that is

Find u ∈ V k,d
h (Th) s.t. : r(u, v) = 0 ∀v ∈ V k,d

h (Th) (2.15)

where r(u, v) represents the LHS of equation (2.14). We intentionally rearrange
terms like this in order that we can easily separate the residual form into our no-
tations α-Volume, α-Skeleton, α-Boundary, λ-Volume, and λ-Boundary, re-
spectively.

α-Volume, and λ-Volume terms were already shown in finite element sec-
tion. For λ-Boundary, the integral term depending on the chosen interior penalty
method on the Dirichlet Boundary is supplemented. α-Skeleton and α-Boundary
appear for the first time here. Thus, the residual form can be expressed in the
following way

r (u, v) =
∑
T∈Th

αVT (u, v)+
∑
F∈Fi

h

αSF (u, v)+
∑
F∈FD

h

αBF (u, v)+
∑
T∈Th

λVT (v)+
∑

F∈FN
h ∪F

D
h

λBF (v)

(2.16)

Due to the lack of continuity on mesh faces, this leads to the fact that DG has more
degrees of freedom (unknowns) compared to the continuous case (see Figure 2.5).
But this also leads to the advantage that we have more flexibility of basis functions.
We can choose the basis functions which are locally defined on each element and have
support only in their own element. The local Lagrange basis we have introduced in
the previous section can also be reused.

17

gT1(0) = 5, gT1(1) = 6, gT1(2) = 2, gT1(3) = 1

gT2(0) = 7, gT2(1) = 8, gT2(2) = 4, gT2(3) = 3

gT3(0) = 13, gT3(1) = 14, gT3(2) = 10, gT3(3) = 9

gT4(0) = 15, gT4(1) = 16, gT4(2) = 12, gT4(3) = 11.

Figure 2.5: Example of local-to-global index map for discontinuous case.

ε denotes an interior penalty parameter which can separate several approaches
for penalty methods as the following

- If ε = −1 and γ is large enough, this method is called symmetric interior
penalty Galerkin method (SIPG). Note that it is our default approach for the
interior penalty method in this thesis.

- If ε = 0 and γ is large enough, this method is called incomplete interior penalty
Galerkin method (IIPG).

- If ε = +1 and γ is a nonnegative number, this method is called nonsymmetric
interior penalty Galerkin method (NIPG).

The following part would show the element-wise computation for this DG approach
with symmetric interior penalty Galerkin method (SIPG). There is one term that will
appear in this computation which is unit normal vector ν which can be computed
in the reference element by the following formula

ν(x) = J−TµT (x̂) ν̂(x̂).

And we denote that our notations for the function v on the face F of the inside
element T−F and the outside element T+

F are written as v− and v+ instead of v|T−F
and v|T+

F
. Note that the element-wise computation for α-Volume and λ-Volume

are identical to ones in finite element.
We would like to start with λ-Boundary:∑

F∈FN
h ∪F

D
h

λBF (v) =
∑
F∈FN

h

λB,NF (v) +
∑
F∈FD

h

λB,DF (v)

For F ∈ FNh , we have already explained. Then, we would illustrate only F ∈ FDh .

18

For (T−F ,m) ∈ C(i) we obtain

λB,DF (φi) = −
∫
F

γgφi ds

= −
∫
F̂

γ g(µF (x̂)) pT̂m(ηF (x̂))
√
|det(JTµF (x̂)JµF (x̂))| ds.

Next, we proceed to α-Boundary:
For F ∈ FDh and (T−F ,m) ∈ C(i) we obtain

αBF (uh, φi) = −
∫
F

((ϕh∇uh · ν)φi + ϕh (uh − g) (∇φi · ν) − γuhφi) ds

= −
∫
F

(
ϕh
∑
j

(z)j (∇φj · ν)φi + ϕh

((∑
j

(z)jφj

)
− g

)
(∇φi · ν)

− γ

(∑
j

(z)jφj

)
φi

)
ds

= −
∫
F̂

(
ϕ̂−h

(∑
n

(z)g
T−
F

(n)

(
(J−Tµ

T−
F

(ηF (x̂))∇̂pT̂n (ηF (x̂))) · (J−Tµ
T−
F

(ηF (x̂))ν̂(ηF (x̂)))

))
pT̂m(ηF (x̂))

+ ϕ̂−h

(∑
n

(z)g
T−
F

(n)p
T̂
n (ηF (x̂))− g(µF (x̂))

)(
(J−Tµ

T−
F

(ηF (x̂))∇̂pT̂m(ηF (x̂))) · (J−Tµ
T−
F

(ηF (x̂))ν̂(ηF (x̂)))

)

− γ

(∑
n

(z)g
T−
F

(n)p
T̂
n (ηF (x̂))

)
pT̂m(ηF (x̂))

)√
|det(JTµF (x̂)JµF (x̂))| ds.

Here, we remark that ϕh is already denoted in the finite element section. And we
introduce

ϕ̂−h := ϕ

(∑
n

(z)g
T−
F

(n)p
T̂
n (ηF (x̂)),

∥∥∥∥∥∑
n

(z)g
T−
F

(n)(J
−T
µ
T−
F

(ηF (x̂))∇̂pT̂n (ηF (x̂)))

∥∥∥∥∥
)

and

ϕ̂+
h := ϕ

(∑
n

(z)g
T+
F

(n)p
T̂
n (ηF (x̂)),

∥∥∥∥∥∑
n

(z)g
T+
F

(n)(J
−T
µ
T+
F

(ηF (x̂))∇̂pT̂n (ηF (x̂)))

∥∥∥∥∥
)

which would be employed in the next part.
We go forward to the last term, α-Skeleton:
For (T−F ,m) ∈ C(i) and F ∈ ∂T−F ∩ F ih. As the average and jump involve in this
part, we note that in element T−F , we have chosen the basis functions φ which have
support only on T−F so that {{φ}} = 1

2
φ and [[φ]] = φ.

αSF (uh, φi) = −
∫
F

({{∇uh · ν}}[[φi]] + {{∇φi · ν}}[[uh]] − γ[[uh]][[φi]]) ds

19

We split it into three terms for more comprehensible realization.∫
F

{{ϕh∇uh · ν}}[[φi]] ds

=

∫
F

1

2

(
ϕ−h
∑
j

(z−)j (∇φj · ν) + ϕ+
h

∑
j

(z+)j (∇φj · ν)

)
φi ds

=

∫
F̂

1

2

(
ϕ̂−h
∑
n

(z−)g
T−
F

(n)

(
J−Tµ

T−
F

(ηF (x̂))∇̂pT̂n (ηF (x̂))

)
+

ϕ̂+
h

∑
l

(z+)g
T+
F

(l)

(
J−Tµ

T+
F

(ηF (x̂))∇̂pT̂l (ηF (x̂))

))

·
(
J−Tµ

T−
F

(ηF (x̂))ν̂(ηF (x̂))

)(
pT̂m(ηF (x̂))

)√
|det(JTµF (x̂)JµF (x̂))| ds.

∫
F

{{ϕh∇φi · ν}}[[uh]] ds

=

∫
F

1

2
(∇φj · ν)

(
ϕ−h
∑
j

(z−)jφj − ϕ+
h

∑
j

(z+)jφj

)
ds

=

∫
F̂

1

2

((
J−Tµ

T−
F

(ηF (x̂))∇̂pT̂m(ηF (x̂))

)
·
(
J−Tµ

T−
F

(ηF (x̂))ν̂(ηF (x̂))

))
(
ϕ̂−h
∑
n

(z−)g
T−
F

(n)p
T̂
n (ηF (x̂)) − ϕ̂+

h

∑
l

(z+)g
T+
F

(l)p
T̂
l (ηF (x̂))

)√
|det(JTµF (x̂)JµF (x̂))| ds.∫

F

γ[[uh]][[φi]] ds

=

∫
F

γ

(∑
j

(z−)jφj −
∑
j

(z+)jφj

)
φi ds

=

∫
F̂

γ

(∑
n

(z−)g
T−
F

(n)p
T̂
n (ηF (x̂))−

∑
l

(z+)g
T+
F

(l)p
T̂
l (ηF (x̂))

)(
pT̂m(ηF (x̂))

)
√
|det(JTµF (x̂)JµF (x̂))| ds

which complete all contributions for DG with SIPG method.

2.4 Newton’s Method for Nonlinear System of
Equations

As the discretization schemes from the previous section typically result in the (non-
linear) algebraic system of equations, the further work is to solve that system. New-
ton’s method is a powerful and well-known technique to solve the arisen (nonlinear)

20

system of equations. We assume the system is given in the form

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,

...
fn(x1, . . . , xn) = 0,

(2.17)

where we can write in the compact form by defining the vector-valued function

F (x) =

f1(x)
f2(x)
...

fn(x)

 =

f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

 (2.18)

where x = [x1, x2, . . . , xn]T . So, we obtain F (x) = 0.
The idea behind Newton’s method is based on the linear approximation of F

at the current solution xk ∈ Rn. Let us start with the initial approximation x0 ∈ Rn

(assumably close to the solution x)

F (x) ≈ F (x0) +DF (x0)(x− x0)

where DF (x) is an n× n Jacobian matrix, defined as

DF (x) =

∂f1

∂x1

(x)
∂f1

∂x2

(x) . . .
∂f1

∂xn
(x)

∂f2

∂x1

(x)
∂f2

∂x2

(x) . . .
∂f2

∂xn
(x)

...
...

∂fn
∂x1

(x)
∂fn
∂x2

(x) . . .
∂fn
∂xn

(x)

. (2.19)

Since we want to find x such that F (x) = 0 and assume that the Jacobian matrix
DF is invertible, we have a better approximate solution x1

x1 = x0 −
[
DF (x0)

]−1
F (x0).

Continuing in this way, we obtain even better approximate solutions. Then, it leads
to the following iteration

xk+1 = xk −
[
DF (xk)

]−1
F (xk).

This iteration is called "Newton Iteration". It is expected to give a quadratic
convergence rate if the initial solution x0 is adequately close to the true solution. The

21

Algorithm 1 Newton’s Method for Nonlinear Systems
for k = 0, 1, . . . , convergence do

evaluation F (xk) and DF (xk)
solve the linear system DF (xk)vk = F (xk)
update xk+1 = xk − vk

end for

burdensome of each Newton iteration arises from the computation of the inverse of
the Jacobian matrix at every iteration. But, in practice, it can be done by solving a
linear system, i.e., For each step k, find a vector vk that satisfies DF (xk)vk = F (xk).
Thus, the new approximate solution can be obtained by xk+1 = xk − vk.

In fact, the standalone Newton method is locally convergent. To enhance the
robustness of Newton when we are not sure whether our initial guess is close to the
solution, the globalization techniques e.g. line-search (adjust the step length) and
trust-region method (ideally choose a good direction) are invented to overcome this
drawback. Note that we do not use the trust-region method in this study but more
details and recent advances in trust-region methods can be found in [Yua94; Yua15].
Here, we would give a brief description only of the line-search method.

Line-Search Method

The method is to adjust the step length in an appropriate way (usually shorten).
After getting the direction vk to the next solution, we can restrict how far the current
solution goes in that direction. The update step in Algorithm 1 can be written as

xk+1 = xk − αkvk (2.20)

where α is sometimes called a damping parameter and (2.20) is called a damped
Newton iteration. The parameter αk can be chosen by the backtracking line search
strategy. The technique we used in this study is from [HR89].

Algorithm 2 Line Search Method, Hackbusch and Reusken, 1989 [HR89]
Input τ (damping factor), x (current solution), v (Newton direction)
set α = 1, i = 0
while i ≤ max_it do

if F (x− αv) ≤ (1− α/4)F (x) then
break

end if
α = τα
i = i+ 1

end while

22

2.5 Methods for Solving Linear System

This section would describe methods for solving the linear system coming up between
Newton iteration, see Algorithm 1. There are two classical approaches of solver so-
called direct and iterative methods which have their own benefit. Assume that we
want to solve a linear system

Ax = b

where A might represent the n× n Jacobian matrix from the previous section.
Direct solver theoretically provides an exact solution of a linear system after a

finite number of steps. Many commonly known methods are LU, QR, or Cholesky
factorizations. We are fortunate that matrix A which comes up from FEM is typi-
cally a sparse matrix. Hence, we can exploit a sparse direct solver which could reduce
much complexity in terms of time and memory consumption. Nowadays, there are
several softwares for the sparse direct solvers, for example, SuperLU [DGL97], UMF-
PACK [Dav04], and MUMPS [Ame+01; Ame+19] which are basically based on LU
decomposition. However, the number of operations of the sparse direct solver is still
an issue, especially in 3d-problem. So, it might not be appropriate for a large linear
system. But we can reduce it by looking into an alternative approach.

Another class is iterative solver which does not provide an exact but a good
enough result. One starts with an initial guess x0, it then gradually approaches
the exact solution until a specified stopping criterion. It consumes significantly less
memory compared to the direct solver. And the number of operations is much re-
duced. Therefore, it is more appropriate for the large system. In [Bar+94], they
introduce two types of iterative methods so-called stationary and instationary. Sta-
tionary is older, simpler to implement, easier to understand the analysis, but usually
less effective. The renowned ones are Jacobi, Gauss-Seidel, and SSOR method. In-
stationary is more recent and usually more effective. The oldest and best-known
one is the Conjugate Gradient (CG) method which minimizes the energy norm of
error in the Krylov subspace

Kk = span{b, Ab, . . . , Ak−1b}.

The idea of CG starts from the fact that solving a linear system Ax = b is equivalent
to finding a minimizer of the quadratic function

f(x) =
1

2
xTAx− bTx

when A is symmetric positive definite (SPD). Then, in each iteration k, we seek
an A-orthogonal search direction and find an approximated solution xk in Kk which
is (hopefully) closer to the exact solution. A Krylov solver as well as its variants
could become more memory-efficient by taking advantage of the matrix-free strategy
because it needs only the matrix-vector multiplication. The popular extensions for
a nonsymmetric case are Generalized Minimal RESidual (GMRES) [Saa93; SS86]
and BiConjugate Gradient Stabilized (BiCGStab) [Vor92] methods. More variants

23

and details of iterative solvers can be found in [Saa03; DJN15; Bas20; GV13].
All of them can also be implemented for running in parallel. The next concern

is the convergent issue. If matrix A is not well-conditioned, the iterative solver might
not converge. The convergence rate of CG depends on a condition number

κ(A) =
λmax(A)

λmin(A)
.

If it is close to 1 (eigenvalues are clustered), we can say that A is well-conditioned.
So, the linear system is easy to solve by an iterative solver. We can also enhance
this spectral property by preconditioner. It could help to transform the system
and hopefully, the transformed system has a smaller condition number. The stan-
dard approach is to multiply the system with a (nonsingular) matrix B, then the
transformed linear system looks like

BAx = Bb (2.21)

where B is chosen such that BA has a better condition but the transformed system
still has the same solution as the original system. There are several approaches to
apply the preconditioners. One approach we are interested in and would describe in
the next section is using the idea of domain decomposition as a preconditioner.

Algorithm 3 Preconditioned Conjugate Gradient Method (PCG)

Input initial guess x0, tolerance parameter ε, (x, y) stands for dot product xTy
r0 = b− Ax0

z0 = Br0

p0 = z0

i = 0
while ‖r(i)‖/‖r0‖ > ε do
q(i) = Ap(i)

α(i) = (z(i), r(i))/(p(i), q(i))
x(i+1) = x(i) + α(i)p(i)

r(i+1) = r(i) − α(i)q(i)

z(i+1) = Br(i+1)

β(i) = (r(i+1), z(i+1))/(r(i), z(i))
p(i+1) = z(i+1) + β(i)p(i)

i = i+ 1
end while

We note that in our main scheme we would employ both direct and iterative
solvers. For more details, we would explain it in Chapter 3.

2.6 Domain Decomposition

The classical example of domain decomposition would be mostly referred to as a
pioneer work from Schwarz in 1870 [Sch70] where he has proved the existence and

24

uniqueness of the Poisson problem on a union of simple geometries. It was not
initially supposed to be a numerical algorithm at that time. But after that, it inspires
parallel computing and develops this research area a lot. The idea is that instead of
doing computation on the whole considered domain Ω, we can do it on the subdomain
Ωk, which is a partition of Ω so that the local computation is pretty much cheaper.
Then, we communicate the local solutions to glue them up from each subdomain Ωk.
Keep iterating this procedure until the approximate solution is enhanced enough to
reach the stopping criterion. Notably, these subdomain problems are able to be
solved in parallel. Furthermore, this Schwarz algorithm is extended to become an
efficient preconditioner for iterative linear solvers, in particular, the Krylov methods
such as Conjugate Gradient (CG) and GMRES. Note that in this section, we derive
the formulation in an algebraic way.

Let us start with the PDE as the model problem. After that, we insert a basis
representation so that we obtain the nonlinear algebraic equation or ultimately, the
linear system Ax = b where A ∈ Rn×n, and x, b ∈ Rn. n represents the number of
the corresponding nodes or degrees of freedom. Let us define the index set I

I := {1, . . . , n}, |I| := n.

Next, we would like to define the partitioning of the index set Îk ⊂ I
p⋃

k=1

Îk = I Îk ∩ Îl = ∅, k 6= l.

Apparently, Îk ⊂ I. Before we go any further, let us define the graphG(A) = (I, E)
where E = {(i, j) ∈ I × I | aij 6= 0} represents the set of edges. Then, we would
like to introduce the extension operator E

E(I ′) = I ′ ∪ { j | (i, j) ∈ E ∧ i ∈ I ′} .

It interprets that the index set could extend by a layer of nodes. By this operator,
we could achieve the extended index set Ik := Iδk , δ ∈ N where

I i+1
k = E(I ik), and I0

k = Îk

It is also clear to be seen that
⋃p
k=1 Ik = I, and we denote |Ik| = nk. Next, we

would like to introduce restriction operators Rk : Rn → Rnk , in such a way that a
local-to-global map gk : {1, . . . , nk} → I satisfies

(Rkx)i = (x)gk(i)

where i ∈ {1, . . . , nk}. And Rk can be expressed by nk × n matrix. With these
restriction operators, we can define submatrix

Ak = RkAR
T
k .

25

Note that RT
k is so-called prolongation (extension) operator. We can also denote

restriction operators R̂k : Rn → Rnk which fulfill the partition of unity (PU) property

p∑
k=1

RT
k R̂k = I = IT =

p∑
k=1

R̂T
kRk.

One can express R̂k in terms of R̂k = DkRk where Dk can be a particular choice of
a diagonal matrix that fulfills the partition of unity [DJN15]. Thus, we can define
the additive Schwarz (AS) and multiplicative Schwarz (MS) methods as Algorithms
4 and 5.

Algorithm 4 Additive Schwarz Method
for i = 0, 1, . . . do

xi+1 = xi + ω

[∑
k

RT
k

(
RkAR

T
k

)−1
Rk

]
(b− Axi)

end for

Algorithm 5 Multiplicative Schwarz Method
for i = 0, 1, . . . do

for k = 1, . . . , p do
xi+

k
p = xi+

k−1
p +

[
RT
k

(
RkAR

T
k

)−1
Rk

] (
b− Axi+

k−1
p

)
end for

end for

One might notice that Algorithm 4 is equivalent to Richardson’s iteration with the
preconditioner

[∑
k R

T
k

(
RkAR

T
k

)−1
Rk

]
. Here, we call B =

∑
k R

T
k

(
RkAR

T
k

)−1
Rk

an additive Schwarz preconditioner for which it is proved that the condition number
is

κ(BA) ≤ c(1 +
H

δ
)H−2 (2.22)

where H ≈ diam(Ω)/p
1
d , δ refers to the overlap size, and c is a constant independent

of H, δ. Note that ω is a damping parameter concerning the convergence issue. But
in practice, it can be omitted, if we employ the additive Schwarz as a precondioner
in the CG method [Bas20]. One can clearly see that the additive Schwarz is quite
a straightforward parallel computing since all subdomain problems can be solved
simultaneously. But in the case of multiplicative Schwarz, it needs some trick. Let us
say that we can appropriately distribute Ik where we can suppose that J = {1, . . . , p}
can be defined by

J =
c⋃

n=1

Jn , Ji ∩ Jj = ∅, i 6= j

26

satisfying that RiAR
T
j = 0 for all i, j ∈ Jn where c refers to color. It is sufficient to

be 4 for structured mesh in two-dimension, and 8 in three-dimension. This technique
is called the coloring technique [CW93]. It interprets that the subproblems with the
same color are independent (more proofs can be found in [Bas20]). So, in the end,
the multiplicative Schwarz method can be parallelized. In addition, we also propose
the restricted additive Schwarz (RAS) and restricted multiplicative Schwarz (RMS)
methods as the following Algorithms 6 and 7.

Figure 2.6: Coloring of a structured mesh in 2D.

Generally, we do not directly employ the Schwarz methods as a solver, but
we preferably employ them as a preconditioner. Note that restricted version would
actually provide a nonsymmetric system if it is used as a preconditioner even when
A is symmetric. Due to that reason, it requires a nonsymmetric Krylov solver like
GMRES or BiCGStab.

Algorithm 6 Restricted Additive Schwarz Method
for i = 0, 1, . . . do

xi+1 = xi + ω

[∑
k

R̂T
k

(
RkAR

T
k

)−1
Rk

]
(b− Axi)

end for

Algorithm 7 Restricted Multiplicative Schwarz Method
for i = 0, 1, . . . do

for k = 1, . . . , p do
xi+

k
p = xi+

k−1
p +

[
R̂T
k

(
RkAR

T
k

)−1
Rk

] (
b− Axi+

k−1
p

)
end for

end for

Coarse Grid Correction

One might notice that the condition number in (2.22) depends heavily on H which
is related to a number of subdomains p, that is, if we increase p (with keeping the

27

global problem size), the convergence rate is diminished. The reason is told from the
Fourier modes analysis that the high-frequency errors are reduced really well. It is
as opposed to the low-frequency parts which are reduced slower. Accordingly, using
purely one-level might be not good for scalability. Thus, the two-level preconditioner
turns up to remedy this issue via a Coarse Grid Correction. The added second level
is for solving a linear system in a coarser grid which is called a coarse problem. It
is typically a global problem but a smaller size which is proportional to the number
of subdomains. So, the extra cost might be negligible if the number of subdomains
is not too large [DJN15]. We would like to extend the definition of the restriction
operator from fine grid to coarse grid R0 : Rn → RnH where nH is a number of
degrees of freedom for a coarse problem.

Let us explain more details on each entry of R0. Assume that Vh is a fi-
nite dimensional subspace and Vh = span{φ1, . . . , φn}. Then in a coarse grid, we
also assume that we have a finite dimensional subspace VH ∈ Vh where VH =
span{ψ1, . . . , ψnH

}. And the relation between two sets of basis functions can be
written as

ψi =
∑
j

(R0)ijφj

where we can see that it is a change of basis functions from fine level to coarse level.
Then, we define A0 = R0AR

T
0 , an nH × nH matrix, represents a coefficient matrix

for a coarse problem. Therefore, the additive Schwarz and multiplicative Schwarz
methods with a coarse grid correction are written in Algorithms 8 and 9. Note that
the multiplicative version can be defined in several ways, but here, we propose the
symmetrized version.

Algorithm 8 Additive Schwarz Method with Coarse Grid Correction
for i = 0, 1, . . . do

xi+1 = xi + ω

[
p∑

k=0

RT
k

(
RkAR

T
k

)−1
Rk

]
(b− Axi)

end for

Algorithm 9 Multiplicative Schwarz Method with Coarse Grid Correction
for i = 0, 1, . . . do

for k = 1, . . . , p do
xi+

k
2p+1 = xi+

k−1
2p+1 +

[
RT
k

(
RkAR

T
k

)−1
Rk

] (
b− Axi+

k−1
2p+1

)
end for
xi+

p+1
2p+1 = xi+

p
2p+1 +

[
RT

0

(
R0AR

T
0

)−1
R0

] (
b− Axi+

p
2p+1

)
for k = p, . . . , 1 do
xi+

2p+2−i
2p+1 = xi+

2p+1−i
2p+1 +

[
RT
k

(
RkAR

T
k

)−1
Rk

] (
b− Axi+

2p+1−i
2p+1

)
end for

end for

28

In [TW05], they have proved that the condition number of the two-level additive
and multiplicative Schwarz becomes

κ(BA) ≤ c(1 +
H

δ
). (2.23)

However, there are several approaches to define a coarse problem. The interesting
example is the Nicolaides coarse space [Nic87] because the coarse system can be
fully constructed in an algebraic way as well as its extension. This means that we
do not explicitly need the coarse mesh to construct the coarse system.

Nicolaides Coarse Space

The simple and cheap coarse space was introduced by Nicolaides in 1987 [Nic87]
in the idea of deflation subspace. We define the restriction operator R0 as a p × n
matrix whose structure looks like

RT
0 =

[
RT

1D1R1t , . . . , R
T
pDpRpt

]
(2.24)

where t is a vector that corresponds to the errors that are not corrected well from
the single level solve. The classical Nicolaides says t is a coefficient vector such
that the corresponding finite element function is the constant function. With this
definition, the coarse space is made of those column vectors which have local support
in one subdomain and its neighbors (in case of overlapping subdomains). The size
of unknowns in a coarse problem equals a number of subdomains which is relatively
small. The coarse problem itself might not be solved in parallel but the construction
of the coarse system can be done in parallel. Suppose that matrix A is known in each
subdomain, A0 = R0AR

T
0 can be computed locally. We consider R0A, whose each

row comes from the partition of unity which is known in its subdomain multiplies
with matrix A. Then, it can obviously be done in parallel. For R0AR

T
0 , it needs

some information of the partition of unity from its neighbor.
In theory, we must concern only about the floating subdomains which do not

touch the global boundary where the Dirichlet boundary condition is imposed. But
in practice, the degrees of freedom that are incorporated with Dirichlet nodes are
already not involved in our system. Due to that reason, we do not need to consider
whether the subdomain is a floating subdomain or not.

Extended Nicolaides Coarse Space

But in many cases, one vector per subdomain from the classical Nicolaides coarse
space does not turn out to be a good enough method to represent the coarse space
when there are jumps of the coefficients, see [Nat+11; Dol+12; Spi+14; XN14].
Basically, t is not necessary to represent only a constant function, it could be an
arbitrary set of vectors {ti} that are linearly independent. The extension of Nico-
laides coarse space would be created in such a way that ti is a coefficient vector such

29

that the corresponding finite element function represents the Cartesian coordinate
function. Let we denote gi : Ω→ R, i = 0, . . . , d

gi(x) =

{
1 , i = 0

xi , i 6= 0

where d depends on the problem or selected basis functions. We could see that the
image of gi is the corresponding Cartesian coordinate in i-th dimension when i 6= 0.
Let φ = {φ1, . . . φN} be the basis functions of our considered finite element space.
Therefore, t0 ... td are defined in a such way that∑

j

(ti)j φj = gi

Then it turns out that the number of unknowns in coarse problem is proportional
to the number of subdomains which could still be relatively small. Therefore, we
can express R0 in the following form.

RT
0 = [RT

1D1R1t0, . . . , R
T
1D1R1td, . . . , R

T
pDpRpt0, . . . , R

T
pDpRptd] (2.25)

30

3 Restricted Additive Schwarz
Preconditioned Exact Newton

As we have known from the previous chapter that Newton’s method is only locally
convergent, the initial guess has to be sufficiently close to the solution. Accordingly,
a good starting point has to be carefully chosen. Otherwise, the Newton method
might lose its strength. The robustness is consequently a major concern. Nonlinear
Preconditioning came up and has been developed in recent decades to precondition
the nonlinear system like the idea in the linear case so that we can potentially
enhance the robustness of Newton’s method. As in the linear case, the parallel
Schwarz method is typically used as a preconditioner to speed up the convergence.
The Additive Schwarz Preconditioned Inexact Newton (ASPIN) introduced in the
early 2000s by [CK02] can be referred to as a basis of the nonlinear preconditioner.
Next, the Restricted Additive Schwarz Preconditioned Exact Newton (RASPEN), an
ASPIN variant, is proposed by [Dol+16] with its two-level version. To add the second
level is also an important issue in the nonlinear case to bolster the scalability of the
method when it has to deal with a huge number of subdomains. This chapter would
provide the details of nonlinear preconditioners, especially RASPEN, including one-
and two-level versions.

3.1 One-level RASPEN

Suppose we want to solve the nonlinear algebraic problem arising after the discretiza-
tion of nonlinear partial differential equations by well-known discretization schemes
such as Finite Element (FE) or Discontinuous Galerkin (DG)

F (x) = 0 (3.1)

where F : Rn → Rn is a nonlinear function and n = |I| where I = {1, . . . , n} is an
index set.

Let us recall that in the previous chapter, we have defined Ik ⊆ I for 1 ≤ k ≤ p
to be the extended index set, and nk = |Ik|. We have also defined the restriction
operator Rk : Rn → Rnk . We also denote the second restrictions R̂k : Rn → Rnk

which satisfy a partition of unity (PU) property
p∑

k=1

RT
k R̂k = I = IT =

p∑
k=1

R̂T
kRk. (3.2)

The main approach is to transform the original nonlinear system F to an equivalent
system F which has the same solution. It can be done by domain decomposition

31

method in additive Schwarz fashion, that is, the new system is obtained from the
solutions of nonlinear subdomain problems.

Thus, we define the subdomain solution operator Gk : Rn → Rnk for 1 ≤ k ≤ p
: For any x ∈ Rn, and any k ∈ {1, . . . , p} it holds that

RkF
(
(I −RT

kRk)x+RT
kGk(x)

)
= 0. (3.3)

With the characteristics of F emerging from the discretization of PDE by the usual
tools like FE or DG, the equation (3.3) is typically a nonlinear subproblem on
kth subdomain with the Dirichlet boundary condition on the subdomain boundary.
Using the aforementioned subdomain solution operators, the nonlinear fixed point
iteration is then defined as

xl+1 =

p∑
k=1

R̂T
kGk(x

l). (3.4)

Then, we obtain the new nonlinear system

F(x) := x−
p∑

k=1

R̂T
kGk(x) = 0 (3.5)

which holds at the fixed point of iteration (3.4). We refer to the new nonlinear
system F(x) := 0 as preconditioned nonlinear system.

Lemma 1. If the fixed-point iteration (3.4) converges to a unique fixed point x∗, it
coincides with the solution z of the original problem (3.1).

Proof. Assume that x∗ is the unique fixed point of the fixed-point iteration (3.4).
Assume that z is the unique solution of F (z) = 0, we then have for any k ∈
{1, . . . , p}:

0 = F (z) = F
(
(I −RT

kRk)z +RT
kRkz

)
,

i.e. Gk(z) = Rkz. From this follows

p∑
k=1

R̂T
kGk(z) =

p∑
k=1

R̂T
kRkz =

(
p∑

k=1

R̂T
kRk

)
z = z,

i.e. z is a fixed point of (3.4). Since the fixed point is unique we have z = x∗.

Hence, we know that the preconditioned system has the same solution as the
original system. Therefore, we instead solve the preconditioned system by Newton’s
method.

xl+1 = xl − λl
[
∇F(xl)

]−1F(xl). (3.6)

Then, each Newton iteration requires two major steps

32

• The local nonlinear problems (3.3) have to be solved in each subdomain. This
can be done by using Newton’s method in parallel. For the linear subdomain
solves, we employ a sparse direct solver (one may use iterative solvers as well).

• The tangential system ∇F(xl)vl = F(xl) is required to be solved. That in-
volves the computation of the Jacobian ∇F(x). It is costly to be set up and
if we consider solving the tangential system by a Krylov method, one is able
to take advantage of a matrix-free implementation. This will be shown below.

In the following, we show details of the computation of the Jacobian ∇F(x). From
the definition of F we obtain

∇F(xl) = ∇

(
xl −

p∑
k=1

R̂T
kGk(x

l)

)
= I −

p∑
k=1

R̂T
k∇Gk(x

l), (3.7)

i.e. the Jacobians of the subdomain solution operator are required. We set the
abbreviation

xk = xk(x) = (I −RT
kRk)x+RT

kGk(x).

From (3.3), we obtain by the chain rule

Rk∇F (xk)
[
I −RT

kRk +RT
k∇Gk(x)

]
= 0

⇔ Rk∇F (xk)−Rk∇F (xk)R
T
kRk +Rk∇F (xk)R

T
k∇Gk(x) = 0

⇔ Rk∇F (xk)R
T
k∇Gk(x) = Rk∇F (xk)R

T
kRk −Rk∇F (xk)

⇔ ∇Gk(x) = Rk −
[
Rk∇F (xk)R

T
k

]−1
Rk∇F (xk).

(3.8)

Then, inserting this result into (3.7) yields

∇F(xl) = I −
p∑

k=1

R̂T
k

{
Rk −

[
Rk∇F (xlk)R

T
k

]−1
Rk∇F (xlk)

}
= I −

p∑
k=1

R̂T
kRk +

p∑
k=1

R̂T
k

[
Rk∇F (xlk)R

T
k

]−1
Rk∇F (xlk)

=

p∑
k=1

R̂T
k

[
Rk∇F (xlk)R

T
k

]−1
Rk∇F (xlk),

(3.9)

where we have set xlk = (I − RT
kRk)x

l + RT
kGk(x

l). One might notice that there is
the term

[
Rk∇F (xlk)R

T
k

]−1. This is generally a dense matrix even the local Jacobian
Rk∇F (xlk)R

T
k is sparse. And in practice, it is too costly to compute. So, ∇F(xl)

should never be set up. But, we can see that the matrix-vector product ∇F(xl)vl

can be computed by solving local linear systems where the matrix Rk∇F (xlk)R
T
k can

be reused from the local subdomain solves.

33

Relation to Linear Case

For the special case when the model problem is linear, F (x) can be expressed by
F (x) = Ax− b. We consider the nonlinear subdomain problems

RkF
(
(I −RT

kRk)x+RT
kGk(x)

)
= 0

= RkA
(
(I −RT

kRk)x+RT
kGk(x)

)
−Rkb = 0

⇔ Gk(x) = Rkx+
[
RkAR

T
k

]−1
Rk(b− Ax).

(3.10)

Substituing Gk(x) into (3.5), we achieve

F(x) = x−
p∑

k=1

R̂T
k

[
Rkx+

[
RkAR

T
k

]−1
Rk(b− Ax)

]
= −

p∑
k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax)

= B̂Ax− B̂b = 0

(3.11)

where B̂ =
∑p

k=1 R̂
T
k

[
RkAR

T
k

]−1
Rk. Let us remark that Newton’s method will solve

the preconditioned system F in one iteration because F is affine linear and solving
the Jacobian system with GMRES is equivalent to the restricted additive Schwarz
method in Algorithm 6.

Relation to One-level ASPIN

Since RASPEN is one of the variants of ASPIN [CK02], we would like to depict the
differences between those two. We might look at their name and see that there are
two different letters. The first one is R in RASPEN, standing for "restricted". In
RASPEN, we define the restriction operators in such a way that they satisfies the
partition of unity property

p∑
k=1

RT
k R̂k = I = IT =

p∑
k=1

R̂T
kRk.

But the restriction operators in ASPIN are defined by

RkR
T
k = Ik for k = 1, . . . , p

which are lacking of the partition of unity property. So, the preconditioned nonlinear
system can be written by

F(x) := x−
p∑

k=1

RT
kGk(x) = 0 (3.12)

which has a convergence issue on the overlapped region and need to be resolved by
the relaxation parameter [Dol+16].

34

The second different letter is E and I, standing for "exact" and "inexact" respec-
tively. This means ASPIN uses the inexact Jacobian for the reason of reducing the
computation cost of exact Jacobian [Dol+16] but this could slow down the conver-
gence and in fact, as we already explained that each component is already computed
somewhere before, we can reuse it. Therefore, the Jacobian of FASPIN yields

∇FASPIN(xl) =

(
p∑

k=1

RT
k

[
Rk∇F (xl)RT

k

]−1
Rk

)
∇F (xl) (3.13)

where the global Jacobian ∇F (xl) is required to be computed after subdomain
solves. The drawback of ASPIN [Dol+16] is that it is over-corrected on the over-
lapped region because it is lacking of the partition of unity (PU) property. This
would not cause any problem in the linear case because it could be compensated by
the damping parameter.

3.2 Two-level RASPEN

We learned from the previous chapter that the single level solver is not appropriate
for a huge number of subdomains because it greatly increases the condition number.
So the convergence is much slower. Therefore, in this section, we consider adding
a coarse grid correction to RASPEN to sort out the disadvantage of the one-level
approach. In [Dol+16], their approach is using multiplicative coarse space based on
the Full Approximation Scheme (FAS). While ASPIN [CK02; MC05] uses a simple
additive coarse space that requires (precomputed) coarse space solution. Recently,
multiplicative approaches without relying on FAS are provided in [HL20]. The coarse
correction can be applied before or after the local correction, or both before and after
the local correction. We do it in a slightly different way, i.e., we also apply a coarse
grid correction in a multiplicative way with the different approach for a coarse grid
setup. We will go through these methods in the following subsections

3.2.1 Additive Approach

This subsection is recalled from [HL20]. We first start with a simple additive ap-
proach. Let us assume that we have a generic coarse space, then we can define a
corresponding restriction operator that maps from a fine space to a coarse space
R0 : Rn → RnH where nH = |IH | where IH = {1, . . . , nH} is an index set for a
coarse space. The coarse nonlinear problem is defined as

R0F
(
x−RT

0C0(x)
)

= 0 (3.14)

where C0 : Rn → RnH is the coarse correction operator. The new nonlinear system
with the additive coarse grid correction reads

FAdd(x) := x−
p∑

k=1

R̂T
kGk(x) +RT

0C0(x) = 0. (3.15)

35

We can simply rewrite (3.15) in terms of corrections Ck(x) when we define Ck(x) :=
Rkx−Gk(x). Therefore, the nonlinear system (3.15) becomes

FAdd(x) :=

p∑
k=1

R̂T
kCk(x) +RT

0C0(x) = 0. (3.16)

Again, we solve the system by Newton’s method. The linearization leads to

xl+1 = xl − λl
[
∇FAdd(x

l)
]−1FAdd(x

l) (3.17)

where the evaluation of ∇FAdd(x) requires the Jacobian of the coarse grid correction
operator which can be derived as

R0∇F (x0)
[
I −RT

0∇C0(x)
]

= 0

⇔ R0∇F (x0)−R0∇F (x0)RT
0∇C0(x) = 0

⇔ R0∇F (x0)RT
0∇C0(x) = R0∇F (x0)

⇔ ∇C0(x) =
[
R0∇F (x0)RT

0

]−1
R0∇F (x0).

(3.18)

where we set x0 = x0(x) = x − RT
0C0(x). With the results from (3.8) and (3.18),

∇FAdd(x) can be expressed by

∇FAdd(x) = I −
p∑

k=1

R̂T
k

{
Rk −

[
Rk∇F (xk)R

T
k

]−1
Rk∇F (xk)

}
+RT

0

{[
R0∇F (x0)RT

0

]−1
R0∇F (x0)

}
= I −

p∑
k=1

R̂T
kRk +

p∑
k=1

R̂T
k

[
Rk∇F (xk)R

T
k

]−1
Rk∇F (xk)

+RT
k

[
Rk∇F (x0)RT

0

]−1
R0∇F (x0)

=

p∑
k=1

R̂T
k

[
Rk∇F (xk)R

T
k

]−1
Rk∇F (xk)

+RT
0

[
R0∇F (x0)RT

0

]−1
R0∇F (x0).

(3.19)

The additive approach seems to be over-correction which is a drawback of one-level
ASPIN as well. It looks like the error components are corrected twice on both fine
grid and coarse grid. So in practice, the authors apply the globalization strategy
to resolve the convergence behavior. Therefore, we believe that it is better to do it
multiplicatively.

Relation to Linear Case

Again, we would show that for the linear case, it becomes the additive Schwarz
preconditioner. We can recall Gk(x),

Gk(x) = Rkx+
[
RkAR

T
k

]−1
Rk(b− Ax)

36

Then, we consider the nonlinear coarse problem

R0F
(
x−RT

0C0(x)
)

= 0

= R0A
(
x−RT

0C0(x)
)
−R0b = 0

⇔ C0(x) = −
[
R0AR

T
0

]−1
R0(b− Ax).

(3.20)

Substituing Gk(x) and C0(x) into (3.15), we obtain

FAdd(x) = −
p∑

k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax)

−RT
0

[
R0AR

T
0

]−1
R0(b− Ax)

= B̂AddAx− B̂Addb = 0

(3.21)

where B̂Add =
[∑p

k=1 R̂
T
k

[
RkAR

T
k

]−1
Rk +RT

0

[
R0AR

T
0

]−1
R0

]
. Solving the Jacobian

system with GMRES is also equivalent to the restricted additive Schwarz with coarse
grid correction which consequently provides a lower number of linear iterations and
does not depend on the number of subdomains.

Two-level ASPIN

Two-level ASPIN from [CK02; MC05] which applies the coarse correction in an
additive way is briefly explained in the following part. Let us define the nonlinear
coarse problem

F0(x0) = 0 (3.22)

with the unique solution x∗0, and the nonlinear function F0 : RnH → RnH can
be obtained by the coarser discretization or Galerkin approach. And we denote
R̃0 which plays a similar role as R0 but in the residual space. Then, the coarse
correction CA

0 (x) is defined by

F0

(
CA

0 (x) + x∗0
)

= −R̃0F (x) (3.23)

which we can see that in order to solve for a coarse correction, the coarse solution
x∗0 is required and should be precomputed by solving (3.22). The preconditioned
system looks similar to FAdd.

3.2.2 Multiplicative Approach

Next, we consider the alternative approaches in a multiplicative way to add a coarse
space. It can be added either before or after, or both before and after nonlinear
subdomain solves. This subsection is also recalled from [HL20].

37

Added before subdomain solves

The new preconditioned nonlinear system with a coarse correction becomes

FB(x) := x−
p∑

k=1

R̂T
kGk(x−RT

0C0(x)) = 0. (3.24)

Solving (3.24) with Newton’s method, the linearization yields

xl+1 = xl − λl
[
∇FB(xl)

]−1FB(xl) (3.25)

where the Jacobian ∇FB(x) requires the results from (3.8) and (3.18). We obtain

∇FB(x) = I −
p∑

k=1

R̂T
k∇
[
Gk(x−RT

0C0(x))
]

= I −
p∑

k=1

R̂T
k

[
∇Gk(x−RT

0C0(x))(I −RT
0∇C0(x))

]
= I −

[
I −

p∑
k=1

R̂T
k

[
Rk∇F (xkb)R

T
k

]−1
Rk∇F (xkb)−RT

0∇C0(x)

+

p∑
k=1

R̂T
k

[
Rk∇F (xkb)R

T
k

]−1
Rk∇F (xkb)R

T
0∇C0(x)

]
(3.26)

= I − (I − A) (I −B)

whereA =
∑p

k=1 R̂
T
k

[
Rk∇F (xkb)R

T
k

]−1
Rk∇F (xk), B = RT

0

[
R0∇F (x0)RT

0

]−1
R0∇F (x0),

and xkb = (I − RT
kRk)x + RT

kGk(x) − RT
0C0(x). FB(x) indicates that this method

adds the coarse correction Before the nonlinear subdomain solves.

Added after subdomain solves

Another approach is to apply a coarse correction after nonlinear subdomain solves.
The new preconditioned nonlinear system is thus defined by

FA(x) := x−
p∑

k=1

R̂T
kGk(x) +RT

0C0

(
p∑

k=1

R̂T
kGk(x)

)
= 0. (3.27)

The Newton iteration is given by

xl+1 = xl − λl
[
∇FA(xl)

]−1FA(xl). (3.28)

38

The Jacobian ∇FA(x) is derived as

∇FA(x) = I −
p∑

k=1

R̂T
k∇Gk(x) +RT

0∇C0

(
p∑

k=1

R̂T
kGk(x)

)
p∑

k=1

R̂T
k∇Gk(x)

= I −

[
I −RT

0∇C0

(
p∑

k=1

R̂T
kGk(x)

)][
p∑

k=1

R̂T
k∇Gk(x)

]

= I −

[
I −RT

0∇C0

(
p∑

k=1

R̂T
kGk(x)

)][
I −

p∑
k=1

R̂T
k

[
Rk∇F (xk)R

T
k

]−1
Rk∇F (xk)

]
= I − (I − A)(I −B)

(3.29)

whereA = RT
0

[
R0∇F (x00)RT

0

]−1
R0∇F (x00), B =

∑p
k=1 R̂

T
k

[
Rk∇F (xk)R

T
k

]−1
Rk∇F (xk),

and x00 =
∑p

k=1 R̂
T
kGk(x) − RT

0C0

(∑p
k=1 R̂

T
kGk(x)

)
. FA(x) indicates that this

method adds the coarse correction After the nonlinear subdomain solves.

Added before and after subdomain solves

The symmetric variant is obtained by applying coarse corrections before and after
nonlinear subdomain solves. The system is written by

FBA(x) := x−
p∑

k=1

R̂T
kGk(x−RT

0C0(x)) +RT
0C0

(
p∑

k=1

R̂T
kGk(x−RT

0C0(x))

)
= 0.

(3.30)

Solving the above system by Newton’s method, the Newton iteration reads

xl+1 = xl − λl
[
∇FBA(xl)

]−1FBA(xl). (3.31)

We can derive the Jacobian ∇FBA(x) as

∇FBA(x) = I −

[
p∑

k=1

R̂T
k∇Gk(x−RT

0C0(x))

] [
(I −RT

0∇C0(x))
]

+

[
RT

0∇C0

(
p∑

k=1

R̂T
kGk(x−RT

0 C0(x))

)][
p∑

k=1

R̂T
k∇Gk(x−RT

0 C0(x))

] [
(I −RT

0∇C0(x))
]

= I −

[
I −RT

0∇C0

(
p∑

k=1

R̂T
kGk(x−RT

0 C0(x))

)][
p∑

k=1

R̂T
k∇Gk(x−RT

0 C0(x))

] [
(I −RT

0∇C0(x))
]

= I − (I − A)(I −B)(I − C)

(3.32)

whereA = RT
0

[
R0∇F (x000)RT

0

]−1
R0∇F (x000), B =

∑p
k=1 R̂

T
k

[
Rk∇F (xkb)R

T
k

]−1
Rk∇F (xk),

C = RT
0

[
R0∇F (x0)RT

0

]−1
R0∇F (x0), x000 =

∑p
k=1 R̂

T
kGk(x−RT

0C0(x))

39

−RT
0C0

(∑p
k=1 R̂

T
kGk(x−RT

0C0(x))
)
, and xkb = (I−RT

kRk)x+RT
kGk(x)−RT

0C0(x).
FBA(x) indicates that this method adds the coarse corrections Before and After the
nonlinear subdomain solves.

From our perspective, we do not expect that the results of adding the coarse
solve before or after or both before and after are so different. It might work really
well for symmetrization in the linear case. But we do not think it is helpful in the
nonlinear case and do not worth trying. We expect that their performances are
not that different. Therefore, we decide to mainly consider adding a coarse solve
after solving nonlinear subdomain problems as our main approach. We expect that
solving the subdomain problems first would provide a good starting point for solving
the coarse system.

Relation to Linear Case

We would also like to show that the multiplicative approach here is equivalent to
the multiplicative Schwarz as a preconditioner if the system is linear. Note that
this is the case for which we add the coarse correction after solving the subdomain
problems. Gk(x) can be recalled from the additive approach

Gk(x) = Rkx+
[
RkAR

T
k

]−1
Rk(b− Ax).

Next, we consider the nonlinear coarse problem (3.14) but the starting point becomes
x̃ =

∑p
k=1 R̂

T
kGk(x)

R0F
(
x̃−RT

0C0(x̃)
)

= 0

= R0A
(
x̃−RT

0C0(x̃)
)
−R0b = 0

⇔ C0(x̃) = −
[
R0AR

T
0

]−1
R0(b− Ax̃).

(3.33)

Substituing Gk(x) and C0(x̃) into (3.27), we get

FA(x) = −
p∑

k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax)

−RT
0

[
R0AR

T
0

]−1
R0(b− Ax̃) = 0

(3.34)

40

For an explicit form, we rearrange (3.34) into

FA(x) = −
p∑

k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax)

−RT
0

[
R0AR

T
0

]−1
R0(b− A

p∑
k=1

R̂T
kGk(x))

= −
p∑

k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax)

−RT
0

[
R0AR

T
0

]−1
R0(b− Ax− A

p∑
k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax))

= −
p∑

k=1

R̂T
k

[
RkAR

T
k

]−1
Rk(b− Ax)

−RT
0

[
R0AR

T
0

]−1
R0

((
I − A

p∑
k=1

R̂T
k

[
RkAR

T
k

]−1
Rk

)
(b− Ax)

)
= B̂AAx− B̂Ab = 0

(3.35)

where B̂A =
[∑p

k=1 R̂
T
k

[
RkAR

T
k

]−1
Rk +RT

0

[
R0AR

T
0

]−1
R0

(
I − A

∑p
k=1 R̂

T
k

[
RkAR

T
k

]−1
Rk

)]
.

The Jacobian system arising in Newton iteration is solved by GMRES and it is again
equivalent to restricted multiplicative Schwarz with coarse grid correction.

FAS-based Multiplicative Approach

We have mentioned that two-level RASPEN proposed in [Dol+16] using the Full
Approximation Scheme (FAS) for the coarse correction. We would also like to briefly
explain it here. Let us recall that R̃0 is denoted in the same way as two-level ASPIN.
Then, we can define the FAS correction C0(x) by

F0 (C0(x) +R0x) = F0(R0x)− R̃0F (x). (3.36)

One might notice that we do not need to know the coarse solution like in two-level
ASPIN. The authors choose to solve the FAS correction C0(x) before the subdomain
problems. So, the preconditioned system becomes similar to FB.

The full approximation scheme needs the rediscretization for the coarse level.
The question might appear when there is a variability of coefficients, for exam-
ple, the diffusion coefficient in an elliptic problem which could be highly fluctuated
among cells in a fine grid. How to redefine this function in terms of a coarse mesh
is questionable. In [Bas99], the author mentioned this concern and proposed the
remedy which is in a purely algebraic way.

41

3.2.3 Our Approach

Due to the concern of using the coarser mesh by rediscretization, we would like to
construct the second level of RASPEN in an algebraic way or by the Galerkin prod-
uct. We exploit the Nicolaides coarse space and its extension proposed in Section 2.6
because it can be fully constructed in an algebraic fashion. As we already decided in
the previous section, we consider adding the coarse correction after the subdomain
solves in a multiplicative way. Recalling the simply multiplicative approach (3.27)

FA(x) := x−
p∑

k=1

R̂T
kGk(x) +RT

0C0

(
p∑

k=1

R̂T
kGk(x)

)
= 0

or we can write it in terms of correction

FA(x) :=

p∑
k=1

R̂T
kCk(x) +RT

0C0

(
x−

p∑
k=1

R̂T
kCk(x)

)
= 0 (3.37)

with R0 from Nicolaides scheme, we defined in (2.24) and (2.25). The coarse com-
putation does not require a coarse solution like in ASPIN and is not based on the
Full Approximation Scheme (FAS) like in RASPEN. We can see that the Jacobian
of FA needs the information of

[
R0∇F (x0)RT

0

]
which can be done by simply matrix-

matrix multiplication (more details will be explained in chapter 4).
Our approach solves the local nonlinear subdomain problems first. Then we

glue up the local solutions and use it as the initial guess for the (global) coarse
nonlinear problem (3.14). And we solve the coarse nonlinear problem by Newton’s
method with the direct solver, since the coarse problem size is small compared to
the original problem. One might notice that R0∇F (x0)RT

0 is required in nonlinear
coarse problem solve and can be reused in the global linear part in the same way as
in the one-level method.

For the global tangential system ∇F(xl)vl = F(xl), we need the local linear
solves in the same way as in the one-level scheme as well. The additional task from
the second level comes after solving the first level completely. We recall the Jacobian
∇FA(x) and their abbreviations from (3.29)

∇F(xl)vl = [I − (I − A)(I −B)] vl = [B + A(I −B)] vl

= Bvl + A(vl −Bvl)
(3.38)

which Bvl is what we have done in the one-level. What we need to do more is
subtract it by vl before solving the linear system for the coarse problem. Algorithm
10 displays the evaluation of ∇F(xl)vl when solving the global linear system by an
iterative solver.

42

Algorithm 10 Computing ∇F(x)v

init v
compute yk = Rk∇F (xk)v
solve local linear problem

[
Rk∇F (xk)R

T
k

]
zk = yk // can be done in parallel

communicate zk → z
compute y0 = R0∇F (x0)(v − z)
solve local linear problem

[
R0∇F (x0)RT

0

]
z0 = y0 // can be done in rank 0

prolongate RT
0 z0 // can be done in parallel

compute z = z +RT
0 z0

3.3 Algorithm Description

This section would present RASPEN in an algorithmic perspective. Note that all
approaches (e.g. one-, two-level or additive, multiplicative coarse correction) share
the same structure. The only difference is the order of computation. In this section,
we mainly describe two-level RASPEN with a coarse grid correction added after
local nonlinear solves. Let F be a preconditioned nonlinear system obtained from
the approach we consider. The RASPEN algorithm is presented in Algorithm 11.

Algorithm 11 RASPEN
init l = 0, x0

while l <max_outer_iter and ‖F (xl)‖/‖F (x0)‖ > tolouter do
solve nonlinear subdomain problems RkF

(
(I −RT

kRk)x
l +RT

k x̂
l
k

)
= 0

set x̃l =
∑p

k=1 R̂
T
k x̂

l
k

solve nonlinear coarse problem R0F
(
x̂l −RT

0 ĉ
l
0

)
= 0

evaluation F(xl) = xl − x̂l +RT
0 ĉ

l
0

solve the global tangential system ∇F(xl)vl = F(xl)
update xl+1 = xl − λlvl, l = l + 1

end while

One might exploit ‖F(x)‖ as a stopping criterion instead of ‖F (x)‖. For a bet-
ter comparison between other methods, we select ‖F (x)‖. We generally set tolouter =
10−6. We look more precisely into the evaluation of F(x). It requires the solution
of the nonlinear subdomain problems Fk(x̂k;x) = RkF

(
(I −RT

kRk)x+RT
k x̂k
)

= 0
for a given x which can be solved by Newton’s method in parallel; see Algorithm
12. The tangential system that appeared in this algorithm is typically solved by a
sparse direct solver and λ is a step length from a line-search algorithm. Note that
Algorithm 12 can also apply to the nonlinear coarse problem in a similar way.

After we achieve the subdomain solutions x̂k, we glue them together (with a
partition of unity) and use this updated solution as the initial guess for the non-
linear coarse problem. This problem is also typically solved by Newton’s method
with a direct solver and can be done only in one processor since the size is not too

43

big compared to the fine-grid problem. Then, we obtain the coarse correction and
prolongate it to the fine grid. Finally, we have all ingredients for computing F(x)

Algorithm 12 Solving Fk(x̂k;x) = RkF
(
(I −RT

kRk)x+RT
k x̂k
)

= 0 for a given x

init i = 0, x̂0
k

while i <max_inner_iter and ‖Fk(x̂ik;x)‖/‖Fk(x̂0
k;x)‖ > tolinner do

compute ∇Fk(x̂ik;x) = Rk∇F
(
(I −RT

kRk)x+RT
k x̂k
)
RT
k

solve [∇Fk(x̂ik;x)] sik = Fk(x̂
i
k;x)

update x̂i+1
k = x̂ik − λiksik, i = i+ 1

end while

The global tangential system is considered as the global linear problem and
is literally solved by an iterative solver like the GMRES method where we can
take advantage of a matrix-free implementation - the global Jacobian in the global
tangential system is not explicitly built and stored. That means it could save a lot
of memory. Moreover, computing the residual in GMRES or any iterative Krylov
solvers requires the evaluation of ∇F(xl)vl which in fact, demands the local linear
solves as explained in Algorithm 10. The local Jacobian obtained from solving
nonlinear subdomain problems could be reused for linear solves arising within this
evaluation. This happens as well for the coarse Jacobian. One might notice that
the linear system itself is not preconditioned but our method already applied the
preconditioner in the nonlinear concept. Let us remark that, in practice, the main
difference between two-level additive and multiplicative approaches is the ordering
of the computation of the coarse correction. We simply summarize it below

• FAdd(x), nonlinear subdomain solutions and a coarse correction can be com-
puted simultaneously

• FB(x), a coarse correction is computed first, then update the solution before
solving nonlinear subproblems

• FA(x), nonlinear subproblems are computed first, then update the solution
before solving for a coarse correction

• FBA(x), a coarse correction is computed first, then update the solution before
solving nonlinear subproblems, then the coarse correction is computed again
and update the solution.

As we already described that an additive approach might be overly corrected, and
the globalization strategy should play a crucial role here. The symmetrized version
FBA looks not worth trying for a nonlinear case, so we omit it. The one we decide
to mainly consider is to apply the coarse correction after the subdomain solves FA

because it would provide the better initial guess for the nonlinear coarse system.
The implementation details will be described in the next chapter.

44

4 Implementation of RASPEN in DUNE

This chapter would talk about our main software used in this thesis. DUNE, the
Distributed and Unified Numerics Environment, is a free software framework mainly
written in C++ for solving partial differential equations with a grid-based method.
The discretization schemes such as Finite Element (FE), Finite Volumes (FV), or
Discontinuous Galerkin (DG) are suitably implemented in DUNE along with several
mesh refinement techniques, efficient solvers, especially in parallel.

The first section would give the reader an overview of DUNE. Then, in the
following sections, we look into the specific module of DUNE, dune-pdelab, a pow-
erful toolbox for solving PDEs. After that, it is the part that would explain the
implementation details of our method, RASPEN and its two-level version. The last
part would explain the parallel computations which occur in our algorithm.

4.1 Overview of DUNE

This section dedicates to describing the overview of DUNE, and what the skeleton
workflow looks like. To get started, we introduce that DUNE is a compilation
of libraries, working for some specific functionalities such as grid manager, linear
algebra, and discretizations and well-written in their own place so-called "module".
The advantage of modularization is that users can choose and use only the modules
that depend on their projects. This framework also profits for considerably easier
reading and understanding of what each module explicitly functions. DUNE consists
of modules that are categorized as "core modules" because they are used in almost
every project.

• dune-common: the origin of everything in DUN(E)iverse, depended by all other
modules and contains the basic infrastructures for all Dune modules.

• dune-geometry: contains the information of reference element such as map-
ping from reference element to real element and also the quadrature rules.

• dune-grid: contains the grid interface, enabling the user to access the iterator
over vertices, intersections, or elements. It also includes some basic tools for
the grid implementation like YaspGrid.

• dune-istl: is abbreviated from iterative solver template library. It provides
a zoo of iterative solvers for linear systems which can exploit a lot of blocking
and sparsity patterns. These are implemented in both sequential and parallel
version which are convenient for this study.

45

• dune-localfunctions: implements the warehouse of basis functions of finite
element spaces defined on the reference elements.

Each module has its own dependency and it is a must requirement for building each
module to work. One might see the difficulty to track the individual dependencies.
But with a script dunecontrol provided in dune-common, it resolves this problem.
The buildsystem can track down the dependencies and build the modules in the
correct order. Next, we would like to present dune-pdelab which is a powerful
and appropriate module for solving PDEs. The introduction of DUNE and mod-
ule dune-pdelab is introduced in DUNE/PDELab Course [Dun21]. It is typically an
annual week-long workshop, usually held in March, brought up by Parallel Com-
puting Group, IWR, Heidelberg University. We implement our one- and two-level
RASPEN, and all numerical experiments in the same style as dune-pdelab. In the
following section, we deliver the overview of dune-pdelab.

4.2 Overview of DUNE-PDELab

dune-pdelab is a powerful and flexible module for solving PDEs. It depends on two
core modules, dune-localfunctions and dune-istl described above. It is built
on top of dune-functions which allows to access to the information of bases of
finite element spaces in terms of global aspect. dune-pdelab can handle a variety of
discretization methods like Finite Element (FE) and Discontinuous Galerkin (DG)
with a lot of available basis functions. Furthermore, it provides several methods
to apply the constraints to the degrees of freedom depending on boundary condi-
tions. It also features the data communication and distribution which plays a key
role in the application of the restriction operators satisfying with the partition of
unity property. It can also deal with the zoo of linear solvers and preconditioners
which are available for both sequential and parallel versions. In addition, it can ma-
nipulate the local grid adaptivity. A lot of local operators where the element-wise
computations are implemented for some interesting and well-known problems like
convection-diffusion, Navier-Stokes, or Maxwell’s equations are already provided but
implementing a new one is not a big deal.

dune-pdelab is written as such a high-level abstraction. That would be more
friendly and suitable for new users because it is not necessary to implement the
whole thing; some functions are already provided for you elsewhere. In order to
implement the assembler of the algebraic problem, the user only needs to define the
objects which are well separated and structured. Then, we eventually create the
so-called GridOperator object which would represent the global assembler of the
problem. We would give the overview and function of some important classes.

The first interesting class implemented in dune-pdelab we would like to intro-
duce is GridFunctionSpace (GFS). Its idea is to define the discrete function space
from the given type of user-selected basis and let the user access the grid infor-
mation. It also includes the information of constraints on (sub)domain boundaries.

46

Note that GridFunctionSpace for trial and test spaces are not necessary to be iden-
tical. So, one can define it separately if using a method like the Petrov-Galerkin
method [EG04]. The next one is called local operator containing all element-wise
computation corresponding to the considered problem. The parameter class for the
problem is needed as an argument for the local operator because some functions
like a source term (RHS) or diffusion coefficients are evaluated here. Then, we are
able to construct the GridOperator object. GFS and local operator are required
arguments for GridOperator. The matrix assembler machinery can be called as a
method inside an object of type GridOperator as well as the evaluation of residual.

In the end, we solve the algebraic system by choosing an appropriate solver as
well as its preconditioner which is already provided in dune-pdelab. The nonlin-
ear solver such as Newton’s method is also already implemented in dune-pdelab.
In practice, we try to replace Newton class by the implementation of our method
RASPEN

4.3 RASPEN Implementation

This section would explain the implementation of RASPEN in dune style. Before
we go further into the explanation, we would like to denote some words that clarify
a specific part of the algorithm.

• outer Newton - represents when we apply Newton method to the precondi-
tioned nonlinear system F(x) = 0.

• inner Newton - represents when we apply Newton method to solve the local
nonlinear subproblems RkF

(
(I −RT

kRk)x+RT
kGk(x)

)
= 0. In this process,

we usually choose a direct solver as a linear solver.

• global linear solve - represents when we apply a linear solver to the tangential
system of the global nonlinear problem F(x),

∇F(x)v = F(x)

which we normally choose GMRES because the residual (F(x)−F(x)v) is
required and ∇F(x)v can be computed by the local linear solves. So, ∇F is
never explicitly built or stored.

Note that RASPEN class has the same signature as Newton so that the user can replace
it easily. Let us start the implementation with the constructor we use to create the
RASPEN object
RASPEN(GridOperator& go, SolutionVector& x, LinearSolver& ls)

go is an object of type GridOperator containing the kinds of stuff we have afore-
mentioned, x is considered as an initial guess of the problem and a solution vector
in the end, and ls is a linear solver we choose to apply in inner Newton. Note that

47

the following pseudocodes are written from the perspective of one processor. Each
processor has only the information of its own grid (including overlap region). Then,
to exchange some information with its neighbors can be done by a method in go.
The main application can be called by apply() method. So we start looking into
the implementation details. The first important thing in RASPEN is the restriction
operator satisfying the partition of unity property. Since the data is already dis-
tributed to subdomains, we do not need to explicitly have the restriction operator.
We remind that R̂k can be expressed as R̂k = DkRk (in Section 2.6). So Dk plays
a key role to fulfill the partition of unity property. In practice, we do not need the
matrices since we do also not explicitly have Rk. Instead, we can create a vector
of the same type as SolutionVector to represent the diagonal entries of Dk. We
remark that there are several options to define the partition of unity vector pk but
in this study, we impose it by the following

(pk)i =
1

ξi
where ξi is a number of subdomains to which (xk)i belongs.

This signifies that it finds the average value on the overlapped region so that it
requires a communication to get the information of its neighbors. The pseudocode
of this part is shown here

// make partition of unity
SolutionVector p=1;
do communicate and sum up the value of p on the overlapped dofs
do find the inverse value of p on the overlapped dofs
do get information of constrained and subdomain boundary dofs
do restrict those dofs to 0

Note that the constrained and subdomain boundary dofs can be given by go. Next,
we would display what happens in the main loop in high-level and later we describe
some parts in lower level.

// outer Newton
while(not converged)
do inner Newton
do communication to glue up local solutions
do global linear solve
do update the global solution
do check the convergence criteria

end while

We go further to explain the inner Newton part where the local nonlinear subprob-
lems are solved (in parallel) and the algorithm is already described in Algorithm 12.
Here we could explain the lower level in the pseudocode paradigm.

// inner Newton
Matrix A
SolutionVector z
SolutionVector r
while(not converged)

48

do go.Jacobian(x,A) // update Jacobian
do ls.apply(A,z,r) // do a linear solve
do update solution and defect(r)
do check the convergence

end while

We can see that this part is solely done locally in each processor. go.Jacobian(x,A)
is called for updating the local matrix A; z is a solution of the linearized equation; and
r is a residual vector considered as the RHS term which can be computed by calling
go.residual(x,r). After each processor finishes the job, we need a communication
to glue up the local solution along with the partition of unity in order to evaluate
F(x) which is the RHS of the tangential system.

The next part would be the global linear solve. Even though the name is global
but in practice, it still requires some local communications. Here we employ an
iterative solver, usually GMRES, to solve the linear system. In each linear iteration,
it requires the evaluation of ∇F(x)v which we have already explained in Algorithm
10 that it involves the local linear solves. We would explain it in the lower level in
Section 4.5.
// global linear solve
RestartedGMResSolver (LinearOperator& op,

ScalarProduct& sp,
Preconditioner& prec ,
double reduction ,
int restart ,
int maxit ,
int verbose)

The above block of code shows the constructor of RestartedGMResSolver class im-
plemented in dune-istl. LinearOperator represents how to deal with the matrix-
vector multiplication which in our case, it has to handle the local subdomain solves.
ScalarProduct has to be chosen in an overlapped version since we solve the global
tangential system. Preconditioner is not chosen here because our scheme has al-
ready preconditioned the nonlinear system. Then, we can call method apply() to
solve the problem. The returned result is applied to update the global solution in
outer Newton with the line-search method in order to achieve more stability.

4.4 Two-level RASPEN Implementation

The difference between one-level and two-level is that we add a coarse grid correction.
As we have mentioned in the previous section, we exploit the extended Nicolaides
to generate our coarse problem. The main algorithm is basically done in the same
way as in the one-level scheme. But it is supplemented with inner coarse Newton.
Therefore, the main loop of two-level RASPEN would look like
// outer Newton for two -level
while(not converged)
do inner Newton

49

do communication to glue up local solutions
do inner coarse Newton
do global linear solve
do update the global solution
do check the convergence criteria

end while

Note that the order to solve inner Newton or inner coarse Newton depends on the
scheme we have introduced in Section 3.2. Here we basically exert the multiplicative
version that adds the coarse correction after the local nonlinear solves. Hence, we
do inner Newton before inner coarse Newton.

The restriction operator from fine grid to coarse grid R0 introduced in Section
2.6 has to be defined. Again here, we create a vector of type SolutionVector to
represent the partition of unity. But we have to multiply it by t which depends on
the number of dimensions and variables. The following block would show how to
define R0 for one variable case.

// make partition of unity R0
std::vector <SolutionVector > R0(dim+1)
std::vector <SolutionVector > t (dim+1)
do assign values to each element of t
for (int j=0; j<dim +1; j++)
R0[j] = p*t[j] // element -wise product

end for

We assume that the first entry of vector t is an coefficient vector representing the
constant function corresponding to the finite element function. The following en-
tries are the coefficient vectors representing the Cartesian coordinate function cor-
responding to the finite element function. After that, we multiply element-wise by
the partition of unity we have defined in the one-level scheme. We eventually obtain
the restriction operator R0 (for the considered processor). Note that each element
in R0 is a column vector in RT

0 . Then, we are able to do the inner coarse Newton
to solve the nonlinear coarse problem which is a supplement of two-level RASPEN.

// inner coarse Newton
Matrix Ac
Vector zc
Vector rc
while(not converged)
do go.Jacobian(x,A) // update fine -grid Jacobian
do coarse matrix assemble
do ls.apply(Ac ,zc ,rc) // do a coarse linear solve
do prolongate zc
do update solution and defect(rc)
do check the convergence

end while

We write the coarse matrix assemble here in high-level but it is not done by go as in
the local matrix case. zc and rc are vectors for the coarse problem. rc is computed
by restricting the residual vector from fine grid to coarse grid. zc is a coarse solution

50

obtained from coarse linear solve. It is needed to be prolongated back to the fine
grid before updating. We would talk about the restriction and prolongation of the
coarse problem in the lower level in Section 4.5. Actually, the coarse system is
global, but we can assemble the coarse matrix by the local computations with some
communications which we would also describe in Section 4.5. Note that solving the
coarse problem by ls.apply() can be done in only one processor.

The further part is global linear solve which looks basically the same in the
one-level approach but we require the linear coarse solve after linear subdomain
solves. This has literally explained in Section 3.2.3 that we need to solve the local
subdomain solves then subtract the result by the initial guess to obtain the initial
guess for the linear coarse system. The coarse matrix can be reused from inner
coarse Newton as the same for the fine-grid matrix.

4.5 Parallel Computation

There are parts of our method that can be done in parallel even when we deal
with the coarse grid problem which is actually a global problem. Also in the global
tangential system where we might have to compute the matrix-vector multiplication,
we could set it up in parallel. This section would go through our algorithm and
explain how we apply the parallel computation to the specific parts.

Restriction and Prolongation for Coarse Grid Problem

In inner coarse Newton, problem has to be set up in the coarse grid where the RHS
is R0F (x). We know that F (x) can be computed by go.residual(x,r). Then,
we want to restrict r to the coarse grid residual rc. Note that we have done it
locally. So, each processor contains a part of the full vector rc. Therefore, we need
to distribute each part to one processor to do the coarse global solve (we usually use
rank 0 in practice)

// restriction from fine to coarse grid

Vector rc(NumberofProcessors*NumberofVariables *(dim +1))
// rc is defined on rank 0

Vector local_rc(NumberofVariables *(dim +1))

for (int j=0; j<NumberofVariables *(dim +1); j++)
local_rc[j] = R0[j].dot(r)

end for

do distribute local_rc to rank 0 and store in rc

On rank 0, we define rc vector which is of size (number of subdomains)*(number of
variables)*(dim+1) to store the RHS for the coarse problem. The restriction looks
quite a straightforward procedure. The next thing we would like to explain is the

51

prolongation. After the coarse problem is solved, the obtained solution zc has to be
prolongated back to the fine grid in order to update the global solution. It can be
done by the following block of code

// prolongation from coarse to fine grid
SolutionVector d
do broadcast zc to local_zc

for (int j=0; j<d.size (); j++)
for (int i=0; i<local_zc.size (); i++)
d[j] += R0[j]* local_zc[i]

end for
end for

do communicate d on overlapped dofs

zc is broadcasted to every processor. Here we know that which part of zc comes
from which processor. We prolongate each part by multiplying with RT

0 on each
processor which can be done by the above pseudocode and in the end, we require a
communication on overlapped dofs.

Coarse Matrix Assembly

This subsection would show how to compute A0 = R0∇F (x)RT
0 in parallel. With

the extended Nicolaides coarse space, we could assemble the coarse matrix A0 in
parallel by this following pseudocode.

// coarse matrix assembly
int rank_size = NumberofProcessors
int component = NumberofVariables *(dim +1)
SolutionVector R0_ // R0 dummy

for (int j=0; j<rank_size; j++) // iterate over each processors
for (int J=0; J<component; J++) // iterate over each components
R0_=0

if (j is self) R0_=R0[J]
do communicate R0_

if (j is neighbor or self) do A*R0_
do communicate A*R0_ // be aware of over calculation on overlap!

for (int I=0; I<component; I++)
if (j is neighbor or self)
AcRow[I][j*component+J] = R0[I].dot(A*R0_)
// AcRow stores row of coarse matrix

end if

end for
end for

52

do distribute each AcRow to rank 0 to complete Ac

Figure 4.1: A subdomain with overlap = 1. Gray points are the dofs belonging to
the considered subdomain. Red points are the dofs involved in coarse
matrix assembly for this subdomain and belong only to its neighbors.

Note that we have R0 defined locally in each processor and the local matrix A
generated from go in each processor. Since each column vector of RT

0 is considered
to have a support on its subdomain and some parts of its neighbors (overlapped
region), one might notice that the computation between two column vectors from
not connected subdomains is not necessary to do. Moreover, only a little information
of the neighbors is needed because it requires only the dofs that is adjacent to
the considered domain. It is from the fact that the rows of local matrix A which
correspond to the border dofs contain the coefficients which correspond to the dofs
that is adjacent to it. So, as shown in Figure 4.1, only the red points are involved
in the computation for the considered domain. Every processor does its job and
store the information of some rows of the coarse matrix A0. In the end, they are
distributed to rank 0 to complete A0

Evaluation of ∇F(x)v

This matrix-vector multiplication is basically required in every linear iteration when
we apply a Krylov iterative method like Conjugate Gradient (CG) or GMRES.
The class that implements the evaluation of the matrix-vector multiplication is of
type LinearOperator as we have mentioned. It is required as an argument for the
GMRES solver. But by Algorithm 10, we can see that ∇F(x)v is not the usual
matrix-vector multiplication. It contains the local linear solves instead.

// evaluation of matrix -vector multiplication
Matrix A
SolutionVector v

53

SolutionVector y
SolutionVector z

do y = A*v
do set constrained dofs of y to 0
do ls.apply(A,z,y)
do communicate z with partition of unity

if (coarse grid)
Matrix AC
Matrix Ac
SolutionVector d
Vector yc
Vector zc

do v = v-z
do y = AC*v
do set constrained dofs of y to 0
do restrict y to coarse grid and store in yc
do ls.apply(Ac ,zc ,yc)
do broadcast zc
do prolongate zc to fine grid and store in d
do communicate d on overlapped dofs
do y = z+d

else

do y = z

end if

Note that A*v interprets Rk∇F (x)v even Rk∇F (x) is not exactly the local matrix
Ak = Rk∇F (x)RT

k . Rk∇F (x) differs from Rk∇F (x)RT
k by some additional columns

corresponding to the Dirichlet boundary dofs [Dol+16] but the local matrix gener-
ated from dune-pdelab machinery is already incorporated those degrees of freedom.
Therefore, we could do it in our implementation. Matrix A can be reused from in-
ner Newton and Matrix Ac can be reused from inner coarse Newton as well. We
emphasize that Matrix AC is not a coarse matrix but it is a fine-grid matrix updated
within inner coarse Newton which can also be reused here. Note again here that, the
above block of code explains the multiplicative version with the coarse correction
added after the subdomain solves.

54

5 Numerical Expriments

5.1 Overview

This section dedicates to giving an overview of the numerical experiments chapter.
It would provide the applications of RASPEN on several problems, with different
discretization schemes (FE or DG), from stationary to instationary, from simple
scalar-value problems to complex systems of PDEs, in order to inspect the flexibility
and performance of RASPEN.

We would like to start with the nonlinear Poisson problem which is a scalar-
value problem where we know the analytical solution. This part would show the
validity of RASPEN and its two-level variants so that it can provide the accurate
outcome.

Then, we step further to investigate the robustness of RASPEN in p-Laplace
problems where p is the parameter indicating the difficulty of the problem; The
higher value of p, the harder task for the solver. We aim to see that RASPEN can
handle the higher value of p than the ordinary Newton method.

The problems so far are stationary problems. Therefore, we would advance
to the instationary problems where the temporal derivative is involved. We look
into the diffusive wave approximation in order to show that RASPEN is applicable
to the transient problem. The next problem is Richards’ equation describing the
flow in the porous medium where there is also a nonlinearity term on the temporal
derivative. Then, we move ahead to the complex systems of PDEs describing the
leaching and carbonation of concrete.

5.2 Nonlinear Poisson Equation

The first example we consider is the nonlinear Poisson equation as follows:

−∇ ·
(
(1 + u)2∇u

)
= 0 in Ω = [0, 1]2, (5.1a)

u = x on ΓD = {(0, y) ∪ (1, y) ⊂ ∂Ω)}, (5.1b)
−∇u · ν = 0 on ΓN = ∂Ω \ ΓD (5.1c)

where we know the exact solution: u(x, y) =
(

(23 − 1)x+ 1
) 1

3 − 1 (shown in Figure
5.1).

We apply RASPEN to the algebraic equations resulted from discretization
schemes like Finite Element (FE) and Discontinuous Galerkin (DG).

55

Figure 5.1: Illustration of the exact solution of the problem (5.1).

Numerical Results

We mention again that all numerical results in this study provided by DUNE soft-
ware. The square domain [0, 1]2 is discretized into a rectangular grid by YaspGrid.
The Q1 finite element is employed for both finite element and discontinuous Galerkin
methods. We choose the initial condition as u(x, y) = x.We investigate the scalabil-
ity of RASPEN and Newton on a large number of processors by fixing the number
of degrees of freedom per subdomain. We start from 2× 2 subdomains and increase
it until 64× 64 subdomains. For finite element, we fix the number of cells per sub-
domain to 64×64 and 128×128. And for discontinuous Galerkin, we choose 16×16
and 32 × 32. The overlapped region is given in such a way that it keeps the same
ratio between subdomain diameter (H) and overlap size δ.

Table 5.1 and 5.2 show the comparison in terms of the number of iterations
between RASPEN (and its variants) and Newton. Three columns of RASPEN rep-
resent the results from RASPEN with the multiplicative extended Nicolaides coarse
space (Multi-RASPEN), RASPEN with the additive extended Nicolaides coarse
space (Add-RASPEN), and RASPEN without coarse space (1-level-RASPEN), re-
spectively. And two columns of Newton stand for Newton with GMRES as a lin-
ear solver preconditioned with the restricted Additive Schwarz method + extended
Nicolaides coarse space (2-level-Newton), and with the restricted Additive Schwarz
method but no coarse space (1-level-Newton), respectively. The outer itr. means
the outer Newton iteration when the error reduction is below the criterion 10−6. It
is clearly see that RASPEN and its variants can converge with less number of outer
iteration than Newton and the error reduction is illustrated in Figure 5.2 and 5.3.
The local nonlinear + coarse nonlinear itr. depicts the average number of inner
Newton iteration applied to the local nonlinear problems in each subdomain and
the number of inner coarse Newton applied to solve the coarse nonlinear problem.

56

64× 64
cells/subd.

RASPEN Newton
outer itr. local nonlinear +

coarse nonlinear itr.
global linear itr. outer itr. global linear itr.

2× 2 3 (3) [3] 3 + 4 (3 + 4) [3] 10 (20) [18] 4 [4] 19 [18]
subd 2 + 3 (2.5 + 2) [3] 15 (22) [20] 20 [20]

3 + 1 (2 + 2) [2] 13 (22) [20] 20 [20]
20 [20]

4× 4 3 (3) [3] 3 + 4 (3 + 4) [3] 20 (28) [50] 4 [4] 24 [58]
subd 2.25 + 2 (2.25 + 2) [2.25] 22 (33) [56] 25 [60]

1.25 + 2 (1.38 + 2) [1.75] 22 (34) [56] 26 [60]
26 [60]

8× 8 3 (3) [3] 2.81 + 4 (2.81 + 4) [2.81] 19 (27) [145] 4 [4] 24 [172]
subd 2 + 2 (2 + 2) [2.03] 24 (35) [173] 24 [153]

1 + 1 (1 + 1) [1.28] 24 (35) [168] 26 [159]
26 [165]

16× 16 3 (3) [3] 2 + 4 (2 + 4) [2] 17 (25) [419] 4 [4] 22 [431]
subd 2 + 2 (2 + 2) [1.94] 24 (35) [448] 23 [433]

1 + 1 (1 + 1) [1.06] 24 (35) [385] 24 [462]
24 [426]

32× 32 3 (3) [3] 2 + 4 (2 + 4) [2] 15 (22) [1590] 4 [4] 19 [1301]
subd 1.94 + 2 (1.97 + 2) [1.85] 24 (34) [1154] 21 [1475]

0.94 + 1 (0.98 + 1) [1.03] 22 (33) [1101] 20 [1117]
21 [882]

64× 64 3 (3) [3] 2 + 4 (2 + 4) [2] 13 (19) [3108] 4 [4] 17 [3425]
subd 1.83 + 2 (1.83 + 2) [1.67] 23 (33) [3836] 18 [2849]

0.80 + 1 (0.85 + 1) [1] 19 (29) [3069] 16 [4195]
18 [2959]

Table 5.1: Number of iterations of RASPEN and Newton for finite element with fixed 64×64 cells per subdomain.

57

128× 128
cells/subd.

RASPEN Newton
outer itr. local nonlinear +

coarse nonlinear itr.
global linear itr. outer itr. global linear itr.

2× 2 3 (3) [3] 3 + 4 (3 + 4) [3] 16 (21) [18] 4 [4] 19 [20]
subd 2 + 3 (2.5 + 3) [3] 16 (22) [20] 20 [19]

3 + 2 (2 + 2) [2] 17 (22) [21] 20 [20]
20 [20]

4× 4 3 (3) [3] 3 + 4 (3 + 4) [3] 20 (30) [52] 4 [4] 27 [58]
subd 2.25 + 3 (2.25 + 2) [2.25] 22 (36) [56] 27 [60]

1.5 + 2 (1.38 + 2) [1.63] 23 (36) [56] 27 [60]
28 [60]

8× 8 3 (3) [3] 2.63 + 4 (2.63 + 4) [2.63] 20 (30) [149] 4 [4] 26 [171]
subd 2 + 3 (2 + 2) [2.03] 24 (38) [174] 26 [154]

1 + 2 (1 + 2) [1.25] 24 (39) [161] 28 [159]
29 [165]

16× 16 3 (3) [3] 2 + 4 (2 + 4) [2] 19 (27) [430] 4 [4] 24 [448]
subd 2 + 2 (2 + 2) [1.94] 24 (38) [461] 25 [425]

1 + 1 (1 + 1) [1.06] 25 (38) [464] 27 [463]
29 [439]

32× 32 3 (3) [3] 2 + 4 (2 + 4) [2] 16 (24) [1488] 4 [4] 21 [1422]
subd 1.97 + 2 (1.97 + 2) [1.82] 24 (38) [1489] 23 [1210]

1 + 1 (1 + 1) [1.03] 25 (37) [1317] 23 [1074]
23 [987]

64× 64 3 (3) [4] 2 + 4 (2 + 4) [2] 14 (21) [2804] 4 [4] 18 [2928]
subd 1.86 + 2 (1.86 + 2) [1.6] 24 (37) [2560] 21 [2813]

0.87 + 1 (0.9 + 1) [1] 23 (37) [3209] 18 [3479]
[1] [1739] 21 [3296]

Table 5.2: Number of iterations of RASPEN and Newton for finite element with fixed 128×128 cells per subdomain.

58

These numbers, of course, do not appear in the ordinary Newton method. The
inner Newton and inner coarse Newton are solved by a sparse direct solver with
the error reduction criterion is set to 10−9. The global linear itr. is the iteration of
GMRES applied to solve the tangential system which we set the reduction criterion
to 10−9. The coarse grid correction exhibits its strength here as we can see that
the number of linear iterations remains nearly constant in two-level variants. And
it does not depend on the number of subdomains as in the one-level scheme.

Figure 5.2: Illustrations of error reduction of finite element with fixed 64×64 cells
per subdomain.

59

The error reduction of two-level RASPEN does not look good at the first itera-
tion but after that, it reduces rapidly so that it converges faster than other variants
in terms of the number of outer iterations. Note that, the ordinary Newton with or
without coarse grid is applied to solve the same (global) nonlinear problem; there-
fore, the error reduction of two-level-Newton and one-level-Newton look almost the
same. Tables 5.3 and 5.4 and Figures 5.4 and 5.5 represent the results from discon-
tinuous Galerkin in the same aspects. They display the flexibility of RASPEN that
it is available to apply for the different discretisation schemes and still provide good
performance.

Figure 5.3: Illustrations of error reduction of finite element with fixed 128×128 cells
per subdomain.

60

16× 16
cells/subd.

RASPEN Newton
outer itr. local nonlinear +

coarse nonlinear itr.
global linear itr. outer itr. global linear itr.

2× 2 3 (3) [3] 3 + 4 (3 + 4) [3] 43 (55) [78] 4 [4] 55 [75]
subd 3 + 2 (3 + 2) [3] 45 (56) [87] 53 [82]

1 + 1 (1 + 2) [2] 42 (58) [88] 56 [81]
58 [77]

4× 4 3 (3) [3] 3 + 4 (3 + 4) [3] 52 (64) [205] 4 [4] 65 [263]
subd 2.25 + 2 (2.25 + 2) [2.25] 58 (71) [273] 65 [277]

1 + 2 (1 + 2) [1.75] 57 (75) [221] 66 [229]
70 [189]

8× 8 3 (3) [3] 2.72 + 4 (2.72 + 4) [2.72] 47 (57) [521] 4 [4] 57 [626]
subd 2.13 + 2 (2.13 + 2) [2.13] 61 (78) [555] 60 [607]

1 + 1 (1 + 1) [1.38] 61 (79) [598] 62 [670]
65 [741]

16× 16 3 (3) [3] 2 + 4 (2 + 4) [2] 41 (50) [2242] 4 [4] 50 [1827]
subd 1.94 + 2 (1.95 + 2) [1.94] 59 (79) [2600] 54 [2703]

1 + 1 (1 + 1) [1.06] 57 (77) [1714] 52 [1528]
57 [1484]

32× 32 3 (3) [3] 2 + 4 (2 + 4) [2] 34 (42) [8087] 4 [4] 42 [10087]
subd 1.85 + 2 (1.85 + 2) [1.88] 58 (77) [5018] 47 [8708]

0.92 + 1 (0.89 + 1) [1.03] 52 (72) [5238] 45 [5187]
52 [4513]

64× 64 3 (3) [3] 2 + 4 (2 + 4) [2] 27 (37) [33603] 4 [4] 36 [37069]
subd 1.72 + 2 (1.72 + 2) [1.71] 55 (76) [23458] 40 [37225]

0.61 + 1 (0.61 + 1) [1] 45 (64) [27876] 38 [18593]
50 [28468]

Table 5.3: Number of iterations of RASPEN and Newton for DG with fixed 16×16 cells per subdomain.

61

32× 32
cells/subd.

RASPEN Newton
outer itr. local nonlinear +

coarse nonlinear itr.
global linear itr. outer itr. global linear itr.

2× 2 3 (3) [3] 3 + 4 (3 + 4) [3] 21 (26) [25] 4 [4] 25 [25]
subd 2 + 3 (2.5 + 2) [3] 22 (29) [27] 26 [27]

2 + 2 (2 + 2) [2] 24 (30) [27] 26 [27]
26 [27]

4× 4 3 (3) [3] 3 + 4 (3 + 4) [3] 27 (38) [81] 4 [4] 32 [85]
subd 2.25 + 2 (2.25 + 2) [2.25] 30 (44) [90] 34 [86]

1.25 + 2 (1.38 + 2) [1.75] 31 (46) [90] 35 [84]
35 [86]

8× 8 3 (3) [3] 2.72 + 4 (2.72 + 4) [2.72] 24 (37) [200] 4 [4] 32 [206]
subd 2 + 2 (2.03 + 2) [2.03] 33 (45) [225] 32 [242]

1 + 1 (1 + 1) [1.36] 34 (46) [224] 35 [236]
36 [204]

16× 16 3 (3) [3] 2 + 4 (2 + 4) [2] 23 (33) [565] 4 [4] 28 [597]
subd 2 + 2 (2 + 2) [1.94] 33 (46) [582] 30 [655]

1 + 1 (1 + 1) [1.06] 33 (47) [765] 32 [620]
32 [739]

32× 32 3 (3) [3] 2 + 4 (2 + 4) [2] 20 (28) [1694] 4 [4] 24 [1461]
subd 1.94 + 2 (1.94 + 2) [1.85] 33 (45) [2585] 27 [1795]

0.93 + 1 (0.93 + 1) [1.03] 29 (43) [1502] 26 [1694]
27 [1419]

64× 64 3 (3) [3] 2 + 4 (2 + 4) [2] 17 (24) [5032] 4 [4] 21 [4721]
subd 1.81 + 2 (1.81 + 2) [1.69] 32 (44) [3834] 23 [5083]

0.81 + 1 (0.84 + 1) [1] 35 (40) [4588] 20 [6343]
24 [6338]

Table 5.4: Number of iterations of RASPEN and Newton for DG with fixed 32×32 cells per subdomain.

62

For the time measurement, we inspect a strong scaling by fixing the size of the
global problem and then increasing the number of processors to reduce the workload
per processor. Note that, we examine only on finite element method. We do an
experiment on the machine, AMD EPYC 7713 which is a 64-core processor with a
base frequency of 2 GHz [AMD21]. Therefore, we run the test on 2× 2, 4× 4, and
8× 8 subdomains. We look into the global problem size of 512× 512, 1024× 1024,
and 2048 × 2048 cells per subdomain and measure its scalability. Tables 5.5 - 5.7
illustrate the CPU time and its scalability. We can see that Newton with the coarse
grid correction for the linear solver (2-level-Newton) is the fastest in terms of CPU
time, but two-level-RASPEN variants provide great scalability.

Figure 5.4: Illustrations of error reduction of DG with fixed 16×16 cells per subdo-
main.

63

Figure 5.5: Illustrations of error reduction of DG with fixed 32×32 cells per subdo-
main.

64

512×512 cells 2×2 subd. 4×4 subd. 8×8 subd.

Multi-RASPEN CPU time (s) 76.29 13.25 4.13
scaling - 5.76 36.94

Add-RASPEN CPU time (s) 96.61 16.91 5.19
scaling - 5.71 18.62

1-level-RASPEN CPU time (s) 122.76 41.6 21.04
scaling - 2.95 5.84

2-level-Newton CPU time (s) 21.86 4.02 1.88
scaling - 5.44 11.63

1-level-Newton CPU time (s) 27.29 9.35 4.71
scaling - 2.92 5.79

Table 5.5: Strong scaling experiment on global problem size 512×512 cells.

1024×1024 cells 2×2 subd. 4×4 subd. 8×8 subd.

Multi-RASPEN CPU time (s) 683.2 99.25 19.64
scaling - 6.88 34.79

Add-RASPEN CPU time (s) 819.2 124.6 24.08
scaling - 6.57 34.02

1-level-RASPEN CPU time (s) 1284 386.8 155.4
scaling - 3.32 8.26

2-level-Newton CPU time (s) 132.6 24.6 8.03
scaling - 5.39 16.51

1-level-Newton CPU time (s) 211.6 89.75 56.68
scaling - 2.36 3.73

Table 5.6: Strong scaling experiment on global problem size 1024×1024 cells.

65

2048×2048 cells 2×2 subd. 4×4 subd. 8×8 subd.

Multi-RASPEN CPU time (s) 7784.7 801.1 147.9
scaling - 9.72 52.64

Add-RASPEN CPU time (s) 11111 1037.4 180.3
scaling - 10.71 61.63

1-level-RASPEN CPU time (s) 14268 4262.6 1379.7
scaling - 3.35 10.34

2-level-Newton CPU time (s) 939.7 155.28 51.26
scaling - 6.05 18.33

1-level-Newton CPU time (s) 1466.3 626.94 496.84
scaling - 2.34 2.95

Table 5.7: Strong scaling experiment on global problem size 2048×2048 cells.

5.3 P-Laplace Equation

This section provides the numerical experiments to investigate the robustness of
RASPEN compared to the ordinary Newton method. The p-Laplace equation is
introduced as the following:

−∆pu = 1 in Ω = [0, 1]2, (5.2a)
u = 0 on ∂Ω (5.2b)

where the p-Laplace operator ∆p := ∇ · (|∇u|p−2∇u) is defined for p ≥ 2. One
might notice that if p = 2, the problem becomes the linear Poisson equation. p
could be set unequally for different parts of the domain in order to impose the
local nonlinearity which could trouble the convergence issue of Newton method. We
consider the problem in two different scenarios as follows:

5.3.1 First Scenario

We set up p in the following way as proposed in [KLR14]. Let us assume that
domain Ω is composed of nonoverlapped subdomains Ωi

Ω =

p⋃
i=1

Ωi.

Then we introduce a small frame Ωi,I embedded in each subdomain Ωi and define
the surrounded area Ωi,η by

Ωi,η := {x ∈ Ωi ; dist(x, ∂Ωi) < η}.

Furthermore, We denote the whole embedded area by ΩI :=
⋃N
i=1 Ωi,I and the

outer area by Ωη :=
⋃N
i=1 Ωi,η. In the first example, we always fix p = 2 on Ωη

66

Ωi,η

Ωi,I

−∆pu = 1

−∆u = 1

Figure 5.6: Left: Subdomain Ωi, with the embedded frame Ωi,I surrounded by the
outer part Ωi.η.
Middle: Example of a computational domain for 4 subdomains.
Right: Example of a computational domain for 16 subdomains.

and slightly increase p on ΩI so that the local nonlinearity also increases until
the methods is nearly unable to solve. We hopefully expect that RASPEN could
solve for higher number of p compared to the ordinary Newton method. Since the
homogeneous Dirichlet boundary conditions are imposed, using the initial guess from
linear interpolation as in the previous example would give u(0) = 0 which is not a
good guess because the Jacobian matrix is then singular. So, we impose the initial
condition by this function

u(0)(x, y) = x(1− x)y(1− y)

which also satisfies the Dirichlet boundary conditions. And we choose η = 1
8
× length

of subdomain.

Figure 5.7: Left: The solution of the first scenario where the domain Ω is divided
into 4 subdomains.
Right: The solution of the first scenario where the domain Ω is divided
into 16 subdomains.

67

(a) p = 4

(b) p = 4.5

68

(c) p = 5

Figure 5.8: Illustrations of error reduction of the first scenario of p-Laplace problem
with p = 4, 4.5, 5.

Numerical Results

Again here, the computational square domain [0, 1]2 is discretized by YaspGrid and
Q1 finite element is employed. We fix the number of cells per subdomain to 128×128
and increase the value of p from 4 to 5 where some solver fails or struggles to
converge. We run the experiments on 2× 2 to 16× 16 subdomains. The visualized
results of 4 and 16 subdomain cases are shown in Figure 5.7. The error reduction
of this scenario is illustrated in Figure 5.8. One can see that increasing p makes the
problem harder to solve by the number of outer iterations. Moreover, the ordinary
Newton with or without coarse grid takes many more outer iterations compared to
RASPEN. RASPEN can still keep the number of outer iterations, even though the
problem gets more difficult. RASPEN with multiplicative linear Nicolaides coarse
space (Multi-RASPEN) outperforms on the higher value of p and the higher number
of subdomains. Moreover, this experiment exhibits that RASPEN could be even
better at the computational time. Table 5.8 presents the time used to finish the first
scenario from the different schemes with p = 4, 4.5, and 5 on 8× 8 subdomains. We
can clearly see that multiplicative two-level RASPEN provides the best results.

69

Methods CPU time (s)
p=4 p=4.5 p=5

Multi-RASPEN 7.267 8.142 8.981
Additive-RASPEN 17.762 18.028 47.549
1-level-RASPEN 22.038 23.553 26.049
2-level-Newton 8.730 12.154 18.233
1-level-Newton 10.673 14.304 20.301

Table 5.8: Computational time of the first scenario of the p-Laplace problem with p
= 4, 4.5, 5 on 8× 8 subdomains.

5.3.2 Second Scenario

We consider another type of local nonlinearity which is not embedded in the subdo-
main but connected with other subdomains as in Figure 5.9. We can see the channel
lying horizontally through the subdomain and connecting with neighbors to become
a long horizontal channel. We denote ΩC to be the union of the channels and the
rest of the domain is ΩR. And we propose the coefficient functions α : Ω→ R by

α(x) =

{
α̃ ifx ∈ ΩC ,

1 elsewhere.

Then, we consider the problem

−α∆pu = 1 in Ω = [0, 1]2, (5.3a)
u = 0 on ∂Ω (5.3b)

where p = 4 holds for the entire domain Ω and α̃ = {103, 106} which causes the high
condition numbers to the systems [Lan15].

Ωi,R

Ωi,C

−α∆4u = 1

−∆4u = 1

Figure 5.9: Left: Subdomain Ωi, with the channel Ωi,C lying horizontally.
Middle: Example of a computational domain in the second scenario for
4 subdomains.
Right: Example of a computational domain in the second scenario for
16 subdomains.

70

Figure 5.10: The solution of the second scenario where the domain Ω is divided into
16 subdomains with a coefficient α̃ = 103 (left) and α̃ = 106 (right).

Numerical Results

The computational domain and Q1 finite element are employed as the same in the
first scenario. The channel is of width 1

2
× length of subdomain lying in the middle of

each subdomain. The visualized results of 16 subdomain cases are shown in Figure
5.10. We run the experiments on 2×2 to 16×16 subdomains. For α̃ = 103, the one-
level approach is not a consistent solver for this scenario. It does not converge on
2×2 and 8×8 subdomain cases. But we can see that the multiplicative second level
still outperforms any other approaches. It happens also for α̃ = 106. While other
methods become inconsistent; the one-level approach does not converge on 2 × 2
subdomain case, the additive second level does not converge in 16× 16 subdomain
case, and they are struggling to solve when the number of subdomains increases, the
multiplicative second level still looks consistent in terms of convergence behavior as
shown in Figure 5.11.

5.4 Diffusive Wave Approximation

Two previous sections talk about the stationary problems. This section would show
that RASPEN can also apply to the instationary problems. We consider a model
problem so-called diffusive wave approximation [Kin86] describing the overland flows
written in the form

∂tu−∇ · (D(u,∇u)∇u) = f in Ω× Σ = [0, 1]2 × [0,∞], (5.4a)
u = u0 in Ω× {t = 0} (5.4b)

where u stands for the water height, and D is the diffusion coefficient depending on
u and ∇u given by

D(u,∇u) =
(u− z)αM

CM |∇u|1−γM

where z represents the bathymetry, αM and γM are the parameters from Manning’s
formula, CM is renowned for the friction coefficient, and f is a source/sink func-
tion which would be precipitation such as rainfall in this study. We can see that

71

(a) α̃ = 103

(b) α̃ = 106

Figure 5.11: Illustrations of error reduction of the second scenario of p-Laplace prob-
lem with α̃ = {103, 106}.

72

equations (5.4) have an additional term from the previous sections, that is, the tem-
poral derivative term. We discretize the time interval into subintervals and find
the solution for each substep. That would be considered as we solve the series of
stationary problems. And we can apply RASPEN to solve these. We start the weak
formulation by multiplying a test function and integrating in space and it results
that

d

dt

∫
Ω

uv dx+

∫
Ω

D(u,∇u)∇u · ∇v +

∫
∂Ω

jv ds = 0
∀v ∈ V (t),
t ∈ Σ,

(5.5)

where V (t) = {v ∈ H1(Ω) : v = 0 on ΓD(t)}. We denote the temporal residual
form by

mL2(u, v) =

∫
Ω

uv dx

and the spatial residual form is actually the residual form of the nonlinear Poisson
problem. Therefore, we can express the residual form by

d

dt
mL2(u, v) + rNLP(u, v) = 0 ∀v ∈ V (t), t ∈ Σ.

We can choose the finite-dimensional space V k,d
h (Th, t) which is introduced in Chapter

2 but might be depend on time here. Then, we apply the method of lines to discretize
the temporal space. We subdivide the time interval from t0 to t0+T into subintervals
as follows:

Σ = {t0} ∪ (t0, t1] ∪ . . . ∪ (tN−1, tN]

with tN = t0 + T , tj−1 < tj for 1 ≤ j ≤ N and we denote the time step by
∆tj = tj+1 − tj. Then, we apply the one-step-θ, a simple ODE integrator. So, the
problem becomes

Find uj+1
h ∈ Uh(tj+1) s.t.:

1

∆tj
(mL2

h (uj+1
h , v; tj+1)−mL2

h (ujh, v; tj))+

θrNLP
h (uj+1

h , v; tj+1) + (1− θ)rNLP
h (ujh, v; tj) = 0 ∀v ∈ Vh(tj+1).

(5.6)

where uh(t) ∈ Uh(t) = uh,g(t) + Vh(t) and the function uh,g(t) satisfied the bound-
ary conditions. The parameter of one-step-θ method could be 0 which implies the
explicit Euler method, 1/2 which implies the Crank-Nicolson method, and 1 for the
implicit Euler method. In this study, we mainly focus on using the implicit Euler
method. Furthermore, we reorder the terms and the problem then reads:

Find uj+1
h ∈ Uh(tj+1) s.t.: rjh(u

j+1
h , v) + sjh(v) = 0 ∀v ∈ Vh(tj+1).

where

rjh(u, v) = mL2
h (u, v; tj+1) + ∆tjrNLP

h (u, v; tj+1),

sjh(v) = −mL2
h (ujh, v; tj).

73

Figure 5.12: Left: Bathymetry information of Baden-Württemberg, Germany.
Right: Water height profile after 300 days.

Numerical Results

We apply this model to simulate the shallow water flow in Baden-Württemberg,
Germany region. We employ the bathymetry information collected on a scale of
90 × 90 square meters. This model is chosen with parameters CM = 1, αM = 1,
and γM = 0.5. We discretize it by the Finite Volume method which is actually the
discontinuous Galerkin method with polynomial degree 0 (piecewise constant) as
basis functions. The computational domain is subdivided into 4800×4800 cells. We
provide the constant precipitation rate as the rain falls all the time with the rate 2
l/day ·m2. And we set the initial height of water to 0.001 m.

We initiate the time step size to 18,000 s and after some successful steps, we
increase the time step size by the factor of

√
2, but if the method fails to solve,

we reduce the time step size by the factor of
√

2 as well. We keep maintaining the
reduced time step size until some successful steps. We then enable to increase the
time step back again. The time step can eventually be up to 86,400 s (1 day) which
is our maximum size.

One additional feature could be incorporated here. The local nonlinear prob-
lems sometimes cannot be solved with the large time step size. But it does not
happen on every subproblem. From the advantage of RASPEN that we solve the
subdomain problems locally, we could reduce the time step size only for those sub-
problems which are failed to solve instead of reducing the global time step size when
the method once fails like in the ordinary Newton. Assume that j+1

j Fk(x̂
j+1
k ;xj) is

the nonlinear subdomain problems that we want to solve for the time step tj to tj+1.
One can choose n, a number of substeps, to allow the local time split scheme as the
following algorithm

74

Algorithm 13 Solving j+1
j Fk(x̂

j+1
k ;xj) = 0 for a given xj with n substeps

init i = 0, x̂jk
for i = 1, . . . , n do

solve j+ i
n

j+
(i−1)

n

Fk(x̂
j+ i

n
k ;xj+

(i−1)
n) = 0 // by Algorithm 12

update xj+
i
n , i = i+ 1

end for
solve j+1

j Fk(x̂
j+1
k ;xj+1) = 0 // solve the last stage

The strategy is that we split the problem into substeps. We then solve the
substep problems until it reaches the final stage which is the same as the original
problem. The last substep problem would provide a solution at the final stage but
it might not be a precise solution for the original system. We should recompute the
full step system again with the solution from the last substep as an initial guess
before going further to solve the coarse nonlinear problem or global linear system.
It is essentially applicable by the nature of RASPEN that we are requested to seek
local solutions. With this strategy, RASPEN would have more robustness in terms
of time step size.

Note that we do the experiment only on two-level RASPEN with multiplica-
tive linear Nicolaides coarse space (two-level RASPEN) and Newton with GMRES
preconditioned with restricted additive Schwarz (two-level Newton). Figure 5.13
illustrates the time step size used in the calculation of the 90-day simulation of
shallow water flow in Baden-Württemberg region with the time step size can be
increased/decreased by the strategy we mentioned in the previous paragraphs. In
practice, if we allow dividing the substeps until RASPEN converges, it would waste a
lot of time on the failed time step. Restarting with a smaller time step size might be
a better option. Hence, we should set the threshold for maximum substeps allowed
for the locally split scheme which we choose 4 and 8 substeps in this experiment
but note that these numbers might depend on problems. The top one shows the
results of two-level RASPEN with 8-substeps allowed for local problems. The mid-
dle one shows the results of two-level RASPEN with 4-substep allowed for local
problems. And the bottom one shows the result of two-level Newton. If we allow
only 4 substeps on local problems, RASPEN does not perform better than two-level
Newton. And if we increase the threshold to 8 substeps, RASPEN can finish the
computation in less number of outer iterations than Newton. At the early stage of
computation, RASPEN with 8-substeps can comfortably reach the maximum time
step size but fall a bit to the stable time step size at 64,094 s while Newton stays
around at 36,000-50,192 s. In the end, RASPEN takes 124 time steps for 8-substep
and 151 time steps for 4-substep while Newton takes 139 time steps to complete
the simulation. In terms of outer iteration RASPEN still outperforms like in the
stationary problems. It takes an overall 606 (4.88 for each time step), and 612 (4.05
for each time step) outer iterations for 8-substep and 4-substep, respectively. Mean-

75

Figure 5.13: Time step size for each outer iteration compared between 2-level
RASPEN and 2-level Newton.

while, Newton takes an overall 2,931 (21.09 for each time step) outer iterations.
But RASPEN takes longer overall time. It takes 1.0893× 105 and 8.8105× 104s for
8-substep and 4-substep, respectively while Newton takes 3.3621× 104s.

5.5 Richards’ Equation

Next, we look into a more challenging instationary problem that has nonlinearities
on both temporal and spatial derivatives, Richards’ equation. It describes the flow in
an unsaturated porous medium. Note that the parametrization models are chosen
following from [Kle16]. In this study, we focus on the head-based formulation of
Richards’ equation expressed as

∂tθ(φ)−∇ · (Kκ(φ)(∇φ− g)) = 0 (5.7)

where θ is a water content, φ is a hydraulic head, K is the conductivity for sat-
urated condition, κ is the relative conductivity and g is a vector representing the
gravitational direction, respectively. Let we define the saturation function Θ which
is written as a function of the water content by

Θ =
θ(φ)− θr
θs − θr

. (5.8)

where θr is the residual water content after complete drainage, and θs is the water
content under the fully saturated conditions. In this study, the parametrization

76

Figure 5.14: An example of conductivity field K generated from dune-randomfield.

model of the saturation Θ is chosen as the van Genuchten model [Gen80] expressed
by

Θ(φ) = [1 + [α|φ|]n]
1−n
n (5.9)

where α, and n are the parameters from the van Genuchten model. Then, the water
content relation can be expressed as

θ(φ) = θr + [1 + [α|φ|]n]
1−n
n · [θs − θr] (5.10)

Next, we exploit the parametrization models combining from Mualem [Mua76] and
van Genuchten [Gen80] to determine the relative conductivity κ.

κ(φ) = Θτ ·
[
1−

[
1−Θ

n
n−1

] 1−n
n

]2

(5.11)

where τ is the parameter from the Mualem model. We can see that we could replace
the saturation by the relation in (5.9). Therefore, it results that

κ(φ) = [1 + [α|φ|]n]
τ · 1−n

n ·
[
1− [α|φ|]n−1 [1 + [α|φ|]n]

1−n
n

]2

(5.12)

The conductivity field K is provided by dune-randomfield, a DUNE module work-
ing on the generator of Gaussian random fields based on the circulant embedding
[Kle19].

We consider a square domain Ω := [0, 2] × [0, 2] as a computational domain.
The equation is discretized by Discontinuous Galerkin with rectangular Q1 finite
elements and we employ the implicit Euler time stepping scheme. The hydraulic
head φ is initialized by φ(0)(x, y) = −y. The Dirichlet boundary conditions are ap-
plied to the top and bottom boundaries with the values are set to be -2 at the top

77

parameter description value
θr residual water content 0.05
θs saturated water content 0.35
α van Genuchten parameter 3
n van Genuchten parameter 2
τ Mualem parameter 0.5
g gravitational direction [0,−1]T

Table 5.9: Parameters of Richards’ equation used in the numerical experiments.

Figure 5.15: The initial head for this experiment (Left) and after slightly increasing
in order to let the flow happens (Right).

and 0 at the bottom. The left and right boundaries are equipped with the homoge-
neous Neumann boundary conditions. With these settings, φ is initially imposed to
be hydrostatic equilibrium since the gradient of the pressure head cancels out the
gravitational vector. Therefore, we slightly increase the Dirichlet boundary value at
the bottom from 0 to 0.2 in the first 20s so that we can see the flow going upward
through the medium. We set the time step size to be 1s and run the experiments
until 100s.

Numerical Results

Note that we only consider applying two-level RASPEN with multiplicative linear
Nicolaides coarse space (two-level RASPEN) and Newton with GMRES precon-
ditioned with restricted additive Schwarz (two-level Newton) and we turn off the
adaptive time step scheme used in the previous experiment. We run the experi-
ments on 256 × 256 cells divided into 64 subdomains with an overlap size is two
cells. With our random field generator and the setup parameters presented in Ta-
ble 5.9, both RASPEN and Newton, in general, cannot solve for every generated
random field. We generate a hundred conductivity fields and then apply RASPEN
and Newton methods to solve Richards’ equation with the conductivity parameter

78

seed
1 2 3 4 5 6 7 8 9 10

RASPEN 237 221 230 241 243 239 215 223 234 246
Newton 293 283 296 293 306 285 296 290 299 294

seed
11 12 13 14 15 16 17 18 19 20

RASPEN 243 218 235 238 219 233 226 229 226 227
Newton 308 303 293 - 289 296 293 296 291 298

seed
21 22 23 24 25 26 27 28 29 30

RASPEN 235 250 223 232 232 230 235 251 238 238
Newton 289 - 278 299 - 298 295 308 296 289

seed
31 32 33 34 35 36 37 38 39 40

RASPEN 249 247 241 225 235 235 - 232 238 224
Newton 298 308 301 297 295 296 - 289 293 291

seed
41 42 43 44 45 46 47 48 49 50

RASPEN 239 230 258 248 237 233 238 236 236 240
Newton 300 - 297 299 299 294 302 291 295 305

seed
51 52 53 54 55 56 57 58 59 60

RASPEN 234 238 239 241 249 232 245 226 226 239
Newton 289 295 289 304 302 296 301 293 280 293

seed
61 62 63 64 65 66 67 68 69 70

RASPEN - 232 246 243 226 230 246 235 220 233
Newton - 292 296 299 301 281 297 295 - 301

seed
71 72 73 74 75 76 77 78 79 80

RASPEN 228 246 235 235 - 229 231 238 244 234
Newton 280 302 297 - - 299 300 309 297 286

seed
81 82 83 84 85 86 87 88 89 90

RASPEN 240 228 238 238 234 217 231 222 225 -
Newton 312 297 290 302 294 286 288 - 282 -

seed
91 92 93 94 95 96 97 98 99 100

RASPEN 240 239 221 245 238 241 221 239 246 237
Newton 297 303 287 301 293 291 282 294 293 297

Table 5.10: Numbers of outer iterations of RASPEN and Newton on Richards’ prob-
lem with 100 random conductivity fields.
(-) stands for the solver cannot solve that problem.

79

K corresponded with those generated fields. The results turn out that RASPEN
is able to solve 96 problems. Meanwhile, Newton is able to solve 89 problems. In
addition, we observe that there is no case that Newton can solve but RASPEN can-
not. That would rather imply that RASPEN has more robustness than Newton. In
terms of the number the outer iteration, RASPEN takes 234.88 iterations on average
for total outer iterations after 100 time steps while Newton takes 295.13 iterations
on average.

5.6 Leaching and Carbonation of Concrete

In this part, we apply RASPEN to the system of PDEs. The problem is adopted and
the explanation is excerpted from [TB]. It considers the leaching and carbonation of
the concrete. Leaching is the dissolution of minerals forming the concrete. It would
increase the porosity of the medium. Carbonation is the reaction of calcium oxide
with carbonic acid forming the calcite (calcium carbonate)

CaO +H2CO3 → CaCO3 +H2O

which would reduce the porosity of the medium. The whole system would consider
the air flow in a porous medium, transport of calcium in water and carbon dioxide
in air, and chemical reactions - leaching and carbonation - which affect the porosity.
Hence, the system has primarily five unknowns: water pressure pw, air saturation
Sa, molar concentration of calcium dissolved in water Ca, concentration of carbon
dioxide in air c̄, and the porosity φ. Then, the system consists of five equations as
the followings:

∂t(φSwρw) +∇ · qw = Fw (5.13)
∂t(φSaρa) +∇ · qa = Fa (5.14)

∂t(φSwCa) +∇ · (qw
ρw
Ca −Dw∇Ca) = FCa (5.15)

∂t(φSaρc̄) +∇ · (qa
ρa
ρc̄ −Daρa∇c̄) = F̄c̄ (5.16)

∂tφ = Rl∂tLφ −RcVCaCO3 (5.17)

where ρ∗ are densities, F∗ are nonlinear source terms, q∗ are fluxes, D∗ are the
diffusion tensors, R∗ are reaction rates, L∗ are also reaction rates describing the
amount of released substances caused by leaching, and VCaCO3 is a constant referred
to molar volume of calcite. We go further to explain what each equation represents.
The first two equations (5.13) and (5.14) describe the mass balance equations for
the water and air phase which q∗ represents the flux from Darcy’s law

q∗ =
−K∗(φ)k∗(S∗)

µ∗
ρ∗(∇p∗ − ρ∗g)

80

where µ∗ is the viscosity and g is the gravity vector. K∗(φ) is the intrinsic perme-
ability derived from Kozeny-Carman which is a function of initial porosity φ0 and
current porosity φ

K∗(φ) = K̄∗

(
φ

φ0

)3(
1− φ0

1− φ

)2

K̄w and K̄a are constants standing for the initial water and air intrinsic permeability
where we set it by K̄a = 50F̄w. k∗ is the relative permeability from van Genuchten
and Mualem model [Gen80; Mua76]

kw = S
1
2
w

(
1−

(
1− S

1
m
w

)m)2

ka = S
1
3
a

(
1− (1− Sa)

1
m

)2m

.

The water density ρw and water viscosity µw are set to be constant, but the air
density ρa, depending on the pressure and the carbon dioxide concentration. The
ideal gas law is exploited to evaluate the air density

ρa = Ma
pa
RT

, Ma = c̄Mc̄ + (1− c̄)Mā

where R is the ideal gas constant, T is temperature, Ma is the molar mass of air
including carbon dioxide, Mc̄ and Mā are the molar masses of carbon dioxide and
air without carbon dioxide. And the air viscosity µa is exerted by Wilke’s equation

µa =
(1− c̄)µā

(1− c̄) + c̄ϕac
+

c̄µc̄
c̄+ (1− c̄)ϕca

,

ϕac =

(
1 +

(
µā
µc̄

) 1
2
(
Mc̄

Mā

) 1
4

)2

4√
2

(
1 +

Mā

Mc̄

) 1
2

, ϕca =

(
1 +

(
µc̄
µā

) 1
2
(
Mā

Mc̄

) 1
4

)2

4√
2

(
1 +

Mc̄

Mā

) 1
2

where µc̄ and µā are the viscosities of gaseous carbon dioxide and air without carbon
dioxide, respectively. Then, the source terms Fw and Fa are expressed by

Fw = RlMw∂tLw

Fa = −RcMc̄

where

Rl =
1

1 + (5Sa)4
, Rc = kglφSwCapac̄, kgl = 0.492S

3
2
w

(
1− S

3
2
w

)
We may notice that the unknown pw is not explicitly written in (5.13). We need two
more conditions here. The first is the saturations of water and air are sum up to 1;

81

Sw + Sa = 1. The second is the relation between the saturation and the capillary
pressure pc from the van Genuchten water retention curve

pa = pc + pw =
1

α

(
S

1−n
n

w − 1
) 1

n

+ pw

where m = 1− 1
n
.

The next two equations (5.15) and (5.16) are the mass balance equations for
calcium in water and carbon dioxide in air. The diffusion tensors Dw is actually
the sum of the dispersion Dws and the diffusion Dwf and is expressed by Dw =
S−2
w Dws +DwfI. For Dws, the Scheidegger tensor is applied and its coefficients are

(Dws)ij =

[
aT δij + (aL − aT)

(vw)i(vw)j
|vw|2

]
|vw|

for i ≥ 1, j ≤ dimension, δij is the Kronecker delta, velocity vw = qw/ρw, aL and
aT are the dispersion coefficients on the longitudinal and traversal direction. We set
aL = 1 and aT = 1/8 here. And the diffusion coefficient Dwf is defined by

Dwf = Rc 2.3× 10−13e9.95φ.

For Da, we only consider the effect of diffusion and is expressed by

Da = 3× 10−10 φ
4
3 S

10
3
a

One might notice again that the unknown c̄, the carbon dioxide concentration
in air, is not explicitly seen in the temporal derivative of (5.16). We can simply
transform the equation by dividing it by Mc̄/RT . We then apply the Dalton’s law:
pc̄ = c̄pa. Therefore, the equation (5.16) becomes

∂t(φSapac̄) +∇ · (RT
Ma

qac̄−Da
Ma

Mc̄

pa∇c̄) = Fc̄. (5.18)

The source terms FCa and Fc̄ are expressed by

Fw = Rl∂tLCa − Rc

Fa = − RcRT.

And the last equation (5.17) describes the change of the porosity from the effect of
leaching and carbonation.

Numerical Results

The computational domain is rectangular (0, 1) × (0, 0.5) cm. The top, left, and
bottom boundaries are imposed with the homogeneous Neumann conditions. On
the right boundary, we impose the homogeneous Neumann boundary only for cal-
cium. The other variables are assigned by these following Dirichlet values, Sa =

82

2.28, pa = 0, c̄ = 0.5. For the initial conditions, we set Sa = 0.151, pa = atmospheric
pressure = 101, 325 Pa, c̄ = 0, φ = 0.094, and Ca = 22. The constants used in this
experiment are provided in Table 5.11. The mesh is rectangular and axiparallel but
not equidistant in x-direction. The closer to the right boundary, the finer the mesh
(in x-axis). The image of the mesh is shown in Figure 5.16.

The system is discretized in space by the vertex-centered finite volume scheme
and is discretized in time by the implicit Euler scheme. We employ the iterative
operator splitting to solve the system. It creates two subsystems. One contains
two variables: water pressure pw and air saturation Sa. This part is called flow
part. Another one contains the rest of variables: calcium Ca, carbon dioxide c̄, and
porosity φ. This part is called chemical part.

We set the maximum iterative step to 10. If it does not converges in ten steps,
we restart with the smaller time step size, or if the results provide the unphysical
values, we restart as well. We set the stopping criterion that the defects of both
parts are lower than 10−10 or the defect reductions are below 10−4. Note that we
measure the defect with different approaches for each part. The Euclidean norm is
applied to the flow part defect. But, the maximum norm is applied to the chemical
part. These are by the means of the system’s behavior. More details on the problem
setup can be read in [TB]. They also introduce the projected line search to restrict
the concentration of calcium and CO2 to the nonnegative values which should help
the convergence issue.

Since the chemical part is reacted pretty locally by its behavior, we believe that
the second level would not be ideally helpful to this system so we do not have to add
the second level to this part. Therefore, we apply the two-level scheme only on the
flow part and the one-level scheme on the chemical part. Another thing to mention
is that we turn off the local time split scheme for RASPEN in this experiment.

We run the experiments on 512× 128 cells discretized in the manner of Figure
5.16 for 128 subdomains and simulate the reaction until 175 days (1.512 × 107s).
We start with the initial time step size of 20 s. There is no maximum time step size

Figure 5.16: Mesh used in this numerical experiment.

83

parameter description value
K̄w water permeability 1.0038× 10−20

K̄a air permeability 5.019× 10−19

n van Genuchten-Mualem parameter 1.65
α van Genuchten water retention curve 1.89× 10−2

g gravity vector [0,−9.81]T

ρw water density 998.205
pa0 atmosheric pressure 101,325
µw viscosity of water 1.002× 10−3

µā viscosity of air 1.8369× 10−5

µc̄ viscosity of CO2 1.48× 10−5

R ideal gas constant 8.3144598
T temperature 293.15
φ0 initial porosity 0.094
Mā molar mass of air without CO2 28.954× 10−3

Mc̄ molar mass of CO2 44.01× 10−3

MCaO molar mass of CaO 56.0774× 10−3

VCaCO3 molar volume of calcite 36.92× 10−6

Table 5.11: Parameters of leaching and carbonation of concrete used in numerical
experiments.

restrained in this experiment. And we keep increasing the time step size for each
time step by the factor of 1.25 if the method can solve the system. On the other
hand, if the method fails to solve, we decrease the time step size by the factor of
0.75 until it converges. This does not practically work for the real run because there
will be so many steps to be failed when the method reaches its critical time step
size. But we do it this way because we do not know that in advance and we would
like to know how large the time step size each method can handle.

In Figure 5.17 we display the time step size exploited along the simulation in the
logarithmic scale for RASPEN and Newton. The results carry out that RASPEN
can take a larger time step size compared to Newton. The maximum time step size
taken in RASPEN is 439,652 s while in Newton is 180,711 s. Therefore, RASPEN
eventually takes only 107 time steps for operator splitting whereas Newton takes
222 time steps to complete the simulation.

We look into the computational time and we find out that RASPEN takes
slightly more time than Newton even running fewer time steps. On the grounds
that once Newton fails, it usually happens on solving subsystem problems, then it
restarts with a reduced time step. But RASPEN typically solves subsystem prob-
lems pretty well so that it fails on exceeding the operator splitting iterations which
means it would take more time to reach the failure. We observe another point that
RASPEN takes less time on solving the flow subsystem than Newton takes but vice
versa on the chemical subsystem. Then, one might couple RASPEN-Newton to solve

84

Figure 5.17: Time step size plotted in logarithmic scale along the simulation time.

the system by using RASPEN on the flow part and Newton on the chemical part.
Table 5.12 shows the results from 32 subdomain case with 256× 64 cells when

we apply the combinations of solvers to each subsystem problem and investigate the
computational time and behavior of the solvers. Note that the computational time
includes the failed steps from both solvers and the operator splitting part. We set
the maximum iteration for operator splitting to 10 and do not set the maximum
time step size like in the previous experiment. It can be seen that the combina-
tion of RASPEN on the flow part and Newton on the chemical part is the best one
since it takes less computational time than any other combinations and can handle
a larger time step size. And in the last columns show that the failure occurs less
often compared to other combinations.

solver computational time op. split failure
flow chem flow (s) chem (s) total (s) itr. max (s) solver op. sp.

RASPEN RASPEN 3.39e2 8.97e2 1.23e3 95 7.42e5 47 34
RASPEN Newton 2.52e2 6.25e2 8.77e2 92 8.23e5 37 36
Newton RASPEN 5.58e2 6.60e2 1.21e3 148 2.62e5 141 32
Newton Newton 5.59e2 6.64e2 1.22e3 170 2.81e5 179 26

Table 5.12: Results of the combinations of solvers.

85

6 Conclusion

6.1 Summary

In this thesis, we have studied the Restricted Additive Schwarz Preconditioned Ex-
act Newton (RASPEN), a nonlinear preconditioning. We have described RASPEN
method and have discussed its two-level extension which is based on the Nicolaides
coarse space. Then the overview of our main software used in this study and the im-
plementation details of RASPEN were explained including the parallel computations
of coarse problem setup. The flexibility of RASPEN has been shown by applying it
to various applications. It has worked successfully well with different discretization
schemes such as Finite Element, Discontinuous Galerkin, Cell-centered Finite Vol-
ume, or Vertex-centered Finite Volume.

We have also applied RASPEN to many types of problems. We started with
the scalar-value problem, then stepped further to instationary problems. And lastly,
we have tried on the complex system of PDEs. RASPEN has shown its competence
in solving these problems. The robustness of RASPEN has been displayed by the p-
laplace problem where we were able to increase the nonlinearity of the problem. We
saw that RASPEN has managed to tackle higher nonlinearity problems compared to
the ordinary Newton. We also presented that our two-level approach can be plugged
in on both RASPEN and Newton. In Newton, we can apply the restricted additive
Schwarz method plus our extended Nicolaides coarse space as a preconditioner of
GMRES. The results have shown that RASPEN with our coarse space as well as
Newton with our coarse space has overcome the scalability concern on the single
level scheme. The number of global linear iterations when GMRES was applied to
solve the tangential system does not depend on the number of subdomains anymore.
Therefore, the computation time was greatly reduced for the large-scale run. On the
flow problem in a porous medium where we generated random conductivity fields,
RASPEN has presented that it has more robustness due to the fact that it can han-
dle more random fields compared to Newton. The last experiment was on reactive
two-phase flow in the porous medium which was prescribed by the complex system
of PDEs. RASPEN has also performed well from the results that it can take the
larger time step sizes compared to Newton.

One thing clearly to be seen is that RASPEN has converged to the solution
faster in terms of outer iteration compared to Newton. This has been shown in
every case we have experimented with that RASPEN has taken much less outer
iterations than Newton. Therefore, we could say that RASPEN is a good nonlin-
ear preconditioner. But it has also a downside, that is, in each outer iteration it
needs a fairly additional amount of operations. That makes RASPEN usually runs

86

longer than Newton to complete the simulations. Anyhow, we have shown some
cases where RASPEN shines on both the number of iterations and computational
time aspects like in the p-Laplace problem or in the flow subsystem of the reactive
two-phase flow.

Furthermore, by the nature of RASPEN that it seeks for the subdomain so-
lutions, we have proposed an additional feature that for instationary problems we
could reduce the time step size locally on some subdomain problems which are more
difficult to solve. It is helpful because if Newton failed to solve, it has to reduce the
global time step size but RASPEN can reduce the time step size and solve the sub-
step problems locally until it reached the same final stage. It eventually allowed us
to take the larger global time step sizes as shown in the diffusive wave approximation
example.

6.2 Future Works

We exploit MPI to distribute the jobs to computers. It assigns the jobs at the begin-
ning of the computation. When some subdomain problems have higher nonlinearity,
it is harder to solve and would take more time than the others. And when one turns
on the oversubscription, the situation might get worse if they cluster the complicated
problems together on the same computer. In general, we would not know in advance
when and where the problems have more difficulties, otherwise, we can easily balance
the workload. But in some cases, the problematic regions could change over time.
Then assigning the jobs to computers beforehand is not a good strategy. It would
be great if we could redistribute the jobs when we find out that one takes more time
than the others. It is the idea of dynamic loadbalancing. And with oversubscription,
we can set up the cluster in such a way that each computer should take the same
amount of time to finish the jobs. This strategy should minimize the idle time of
our parallel computer. Hence, it can run at full performance. We could also use

Figure 6.1: Recursive application of RASPEN

87

the information from the previous time step to decide how we should cluster the
problems in the current time step. But it should be noted that this is not an easy
issue on MPI.

From our observation, solving the local nonlinear problems in RASPEN using
the ordinary Newton method is a major part when RASPEN fails. But we have
shown that RASPEN is quite more robust. One might possibly apply RASPEN to
those subdomain problems that Newton cannot solve. It means that we can apply
RASPEN recursively. It would end up with the recursive application of RASPEN.
For example, we start to decompose the considered domain to a number of subdo-
mains so that we can apply RASPEN. We seek each subdomain solution in each
iteration and in order to find each solution, one can consider decomposing the sub-
domain once more to a number of sub-subdomains. We then apply RASPEN to
those sub-subdomains. It is not necessary to do it on all subdomains. One can
select only the subdomains which might have more nonlinearity than any other sub-
domains. But again the issue is that we might not know that in advance. The
dynamic loadbalancing might resolve this issue too.

88

Appendix

List of Figures

1.1 Diagrams of ordinary Newton and nonlinear preconditioning. 3

2.1 Example of local-to-global index map. 9
2.2 Illustrations of 2-d reference element on cube T̂ = Q̂2 and element

transformation map µT . 9
2.3 Illustrations of inside element T−F , outside element T+

F , and outer
normal vector νF . 12

2.4 Illustrations of additional map µF and ηF 14
2.5 Example of local-to-global index map for discontinuous case. 18
2.6 Coloring of a structured mesh in 2D. 27

4.1 A subdomain with overlap = 1. Gray points are the dofs belonging to
the considered subdomain. Red points are the dofs involved in coarse
matrix assembly for this subdomain and belong only to its neighbors. 53

5.1 Illustration of the exact solution of the problem (5.1). 56
5.2 Illustrations of error reduction of finite element with fixed 64×64 cells

per subdomain. 59
5.3 Illustrations of error reduction of finite element with fixed 128×128

cells per subdomain. 60
5.4 Illustrations of error reduction of DG with fixed 16×16 cells per sub-

domain. 63
5.5 Illustrations of error reduction of DG with fixed 32×32 cells per sub-

domain. 64
5.6 Left: Subdomain Ωi, with the embedded frame Ωi,I surrounded by

the outer part Ωi.η. Middle: Example of a computational domain for
4 subdomains. Right: Example of a computational domain for 16
subdomains. 67

5.7 Left: The solution of the first scenario where the domain Ω is divided
into 4 subdomains. Right: The solution of the first scenario where
the domain Ω is divided into 16 subdomains. 67

5.8 Illustrations of error reduction of the first scenario of p-Laplace prob-
lem with p = 4, 4.5, 5. 69

5.9 Left: Subdomain Ωi, with the channel Ωi,C lying horizontally. Mid-
dle: Example of a computational domain in the second scenario for
4 subdomains. Right: Example of a computational domain in the
second scenario for 16 subdomains. 70

90

5.10 The solution of the second scenario where the domain Ω is divided
into 16 subdomains with a coefficient α̃ = 103 (left) and α̃ = 106 (right). 71

5.11 Illustrations of error reduction of the second scenario of p-Laplace
problem with α̃ = {103, 106}. 72

5.12 Left: Bathymetry information of Baden-Württemberg, Germany. Right:
Water height profile after 300 days. 74

5.13 Time step size for each outer iteration compared between 2-level
RASPEN and 2-level Newton. 76

5.14 An example of conductivity field K generated from dune-randomfield. 77
5.15 The initial head for this experiment (Left) and after slightly increasing

in order to let the flow happens (Right). 78
5.16 Mesh used in this numerical experiment. 83
5.17 Time step size plotted in logarithmic scale along the simulation time. 85

6.1 Recursive application of RASPEN . 87

91

List of Tables

5.1 Number of iterations of RASPEN and Newton for finite element with
fixed 64×64 cells per subdomain. 57

5.2 Number of iterations of RASPEN and Newton for finite element with
fixed 128×128 cells per subdomain. 58

5.3 Number of iterations of RASPEN and Newton for DG with fixed
16×16 cells per subdomain. 61

5.4 Number of iterations of RASPEN and Newton for DG with fixed
32×32 cells per subdomain. 62

5.5 Strong scaling experiment on global problem size 512×512 cells. . . . 65
5.6 Strong scaling experiment on global problem size 1024×1024 cells. . . 65
5.7 Strong scaling experiment on global problem size 2048×2048 cells. . . 66
5.8 Computational time of the first scenario of the p-Laplace problem

with p = 4, 4.5, 5 on 8× 8 subdomains. 70
5.9 Parameters of Richards’ equation used in the numerical experiments. 78
5.10 Numbers of outer iterations of RASPEN and Newton on Richards’

problem with 100 random conductivity fields. (-) stands for the solver
cannot solve that problem. 79

5.11 Parameters of leaching and carbonation of concrete used in numerical
experiments. 84

5.12 Results of the combinations of solvers. 85

92

List of Algorithms

1 Newton’s Method for Nonlinear Systems 22
2 Line Search Method, Hackbusch and Reusken, 1989 [HR89] 22
3 Preconditioned Conjugate Gradient Method (PCG) 24
4 Additive Schwarz Method . 26
5 Multiplicative Schwarz Method . 26
6 Restricted Additive Schwarz Method 27
7 Restricted Multiplicative Schwarz Method 27
8 Additive Schwarz Method with Coarse Grid Correction 28
9 Multiplicative Schwarz Method with Coarse Grid Correction 28

10 Computing ∇F(x)v . 43
11 RASPEN . 43
12 Solving Fk(x̂k;x) = RkF

(
(I −RT

kRk)x+RT
k x̂k
)

= 0 for a given x . . 44

13 Solving j+1
j Fk(x̂

j+1
k ;xj) = 0 for a given xj with n substeps 75

93

Bibliography

[ABF00] D. Arnold, D. Boffi, and R. Falk. “Approximation by quadrilateral finite
elements”. In: Mathematics of Computation 71 (June 2000). doi: 10.
1090/S0025-5718-02-01439-4.

[AL83] H. W. Alt and S. Luckhaus. “Quasilinear elliptic-parabolic differential
equations”. In: Mathematische Zeitschrift 183 (1983), pp. 311–341.

[AMD21] AMD, Inc. AMD EPYC™ 7713. 2021. url: https://www.amd.com/
en/products/cpu/amd-epyc-7713 (visited on 12/09/2021).

[Ame+01] P. Amestoy et al. “A Fully Asynchronous Multifrontal Solver Using Dis-
tributed Dynamic Scheduling”. In: SIAM Journal on Matrix Analysis
and Applications 23.1 (2001), pp. 15–41.

[Ame+19] P. Amestoy et al. “Performance and Scalability of the Block Low-Rank
Multifrontal Factorization on Multicore Architectures”. In: ACM Trans-
actions on Mathematical Software 45 (1 2019), 2:1–2:26.

[Arm66] L. Armijo. “Minimization of functions having Lipschitz continuous first
partial derivatives”. In: Pacific Journal of Mathematics 16 (Jan. 1966),
pp. 1–3.

[Arn+02] D. N. Arnold et al. “Unified Analysis of Discontinuous Galerkin Meth-
ods for Elliptic Problems”. In: SIAM Journal on Numerical Analysis
39.5 (2002), pp. 1749–1779. doi: 10.1137/S0036142901384162. url:
https://doi.org/10.1137/S0036142901384162.

[Bar+94] R. Barrett et al. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. Society for Industrial and Applied
Mathematics, 1994. doi: 10.1137/1.9781611971538. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611971538. url:
https://epubs.siam.org/doi/abs/10.1137/1.9781611971538.

[Bas+08a] P. Bastian et al. “A generic grid interface for parallel and adaptive
scientific computing. Part I: abstract framework”. In: Computing 82.2
(July 2008), pp. 103–119.

[Bas+08b] P. Bastian et al. “A generic grid interface for parallel and adaptive
scientific computing. Part II: implementation and tests in DUNE”. In:
Computing 82.2 (July 2008), pp. 121–138.

[Bas17] P. Bastian. Lecture Notes on Scientific Computing with Partial Differ-
ential Equations. 2017. url: https://conan.iwr.uni-heidelberg.
de/teaching/finiteelements_ws2017.

94

https://doi.org/10.1090/S0025-5718-02-01439-4
https://doi.org/10.1090/S0025-5718-02-01439-4
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://www.amd.com/en/products/cpu/amd-epyc-7713
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1137/1.9781611971538
https://epubs.siam.org/doi/pdf/10.1137/1.9781611971538
https://epubs.siam.org/doi/pdf/10.1137/1.9781611971538
https://epubs.siam.org/doi/abs/10.1137/1.9781611971538
https://conan.iwr.uni-heidelberg.de/teaching/finiteelements_ws2017
https://conan.iwr.uni-heidelberg.de/teaching/finiteelements_ws2017

[Bas20] P. Bastian. Lecture Notes on Parallel Solvers for Finite Elements. 2020.
url: https://conan.iwr.uni-heidelberg.de/teaching/parsolve_
ws2020.

[Bas99] P. Bastian. “Numerical Computation of multiphase flow in porous me-
dia”. Habilitationsschrift. 1999.

[BB07] M. Blatt and P. Bastian. “The Iterative Solver Template Library”. In:
Applied Parallel Computing – State of the Art in Scientific Computing.
Ed. by B. Kagström et al. Berlin/Heidelberg: Springer, 2007, pp. 666–
675.

[BBG09] F. Bordeu, P.-A. Boucard, and P. Gosselet. “Balancing Domain De-
composition with Nonlinear Relocalization: Parallel Implementation for
Laminates”. In: First international conference on parallel, distributed
and grid computing for engineering. Ed. by B. H. V. Topping and P.
Iványi. Stirlingshire, UK: Civil-Comp Press, Apr. 2009.

[BHM10] P. Bastian, F. Heimann, and S. Marnach. “Generic implementation of
finite element methods in the Distributed and Unified Numerics Envi-
ronment (DUNE)”. In: Kybernetika 46 (2010), pp. 294–315.

[Bra07] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in
Solid Mechanics. 3rd ed. Cambridge University Press, 2007. doi: 10.
1017/CBO9780511618635.

[Cai+94] X.-C. Cai et al. “Newton-Krylov-Schwarz Methods in CFD”. In: Numer-
ical methods for the Navier-Stokes equations: Proceedings of the Interna-
tional Workshop Held at Heidelberg, October 25–28, 1993. Ed. by F.-K.
Hebeker, R. Rannacher, and G. Wittum. Wiesbaden: Vieweg+Teubner
Verlag, 1994, pp. 17–30. isbn: 978-3-663-14007-8.

[Cai+98] X.-C. Cai et al. “Parallel Newton–Krylov–Schwarz Algorithms for the
Transonic Full Potential Equation”. In: SIAM Journal on Scientific
Computing 19.1 (1998), pp. 246–265.

[Cha+21] F. Chaouqui et al. Linear and nonlinear substructured Restricted Addi-
tive Schwarz iterations and preconditioning. 2021. arXiv: 2103.16999
[math.NA].

[CK02] X.-C. Cai and D. Keyes. “Nonlinearly Preconditioned Inexact Newton
Algorithms”. In: SIAM Journal on Scientific Computing 24.1 (2002),
pp. 183–200.

[CKM02] X.-C. Cai, D. E. Keyes, and L. Marcinkowski. “Non-linear additive
Schwarz preconditioners and application in computational fluid dynam-
ics”. In: International Journal for Numerical Methods in Fluids 40.12
(2002), pp. 1463–1470.

95

https://conan.iwr.uni-heidelberg.de/teaching/parsolve_ws2020
https://conan.iwr.uni-heidelberg.de/teaching/parsolve_ws2020
https://doi.org/10.1017/CBO9780511618635
https://doi.org/10.1017/CBO9780511618635
https://arxiv.org/abs/2103.16999
https://arxiv.org/abs/2103.16999

[CKY01] X.-C. Cai, D. E. Keyes, and D. P. Young. “A Nonlinear Additive Schwarz
Preconditioned Inexact Newton Method for Shocked Duct Flow”. In:
Proceedings of the 13th International Conference on Domain Decompo-
sition Methods. 2001, pp. 343–350.

[CS99] X.-C. Cai and M. Sarkis. “A Restricted Additive Schwarz Precondi-
tioner for General Sparse Linear Systems”. In: SIAM Journal on Scien-
tific Computing 21.2 (1999), pp. 792–797. doi: 10.1137/S106482759732678X.
eprint: https://doi.org/10.1137/S106482759732678X. url: https:
//doi.org/10.1137/S106482759732678X.

[CW93] X.-C. Cai and O. B. Widlund. “Multiplicative Schwarz Algorithms for
Some Nonsymmetric and Indefinite Problems”. In: SIAM Journal on
Numerical Analysis 30.4 (1993), pp. 936–952. doi: 10.1137/0730049.

[Dav04] T. A. Davis. “Algorithm 832: UMFPACKV4.3—an Unsymmetric-Pattern
Multifrontal Method”. In: ACM Trans. Math. Softw. 30.2 (June 2004),
pp. 196–199. issn: 0098-3500. doi: 10.1145/992200.992206.

[DGL97] J. W. Demmel, J. Gilbert, and X. S. Li. SuperLU Users” Guide. Tech.
rep. USA, 1997.

[DJN15] V. Dolean, P. Jolivet, and F. Nataf. “An Introduction to Domain De-
composition Methods: algorithms, theory and parallel implementation”.
Master. Lecture. France, Jan. 2015. url: https://hal.archives-
ouvertes.fr/cel-01100932.

[Dol+12] V. Dolean et al. “Analysis of a Two-level Schwarz Method with Coarse
Spaces Based on Local Dirichlet-to-Neumann Maps”. In: Computational
Methods in Applied Mathematics 12.4 (2012), pp. 391–414. doi: doi:
10.2478/cmam-2012-0027. url: https://doi.org/10.2478/cmam-
2012-0027.

[Dol+16] V. Dolean et al. “Nonlinear Preconditioning: How to Use a Nonlinear
Schwarz Method to Precondition Newton’s Method”. In: SIAM Journal
on Scientific Computing 38.6 (2016), A3357–A3380.

[Dun21] Dune Course Team. Dune/PDELab Course. 2021. url: https://dune-
pdelab-course.readthedocs.io/en/latest/ (visited on 04/21/2021).

[EG04] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements.
Appl. Math. Sci. 159, Springer-Verlag, New York, 2004.

[Eva10] L. C. Evans. Partial differential equations. Providence, R.I.: American
Mathematical Society, 2010.

[Gen80] M. T. van Genuchten. “A Closed-form Equation for Predicting the Hy-
draulic Conductivity of Unsaturated Soils”. In: Soil Science Society of
America 44.5 (1980), pp. 892–898.

96

https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/S106482759732678X
https://doi.org/10.1137/0730049
https://doi.org/10.1145/992200.992206
https://hal.archives-ouvertes.fr/cel-01100932
https://hal.archives-ouvertes.fr/cel-01100932
https://doi.org/doi:10.2478/cmam-2012-0027
https://doi.org/doi:10.2478/cmam-2012-0027
https://doi.org/10.2478/cmam-2012-0027
https://doi.org/10.2478/cmam-2012-0027
https://dune-pdelab-course.readthedocs.io/en/latest/
https://dune-pdelab-course.readthedocs.io/en/latest/

[GT06] L. Giraud and R. Tuminaro. “Algebraic domain decomposition precon-
ditioners”. In: Mesh partitioning techniques and domain decomposition
methods (2006), pp. 187–216.

[GV13] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Stud-
ies in the Mathematical Sciences. Johns Hopkins University Press, 2013.
isbn: 9781421407944. url: https://books.google.de/books?id=
X5YfsuCWpxMC.

[HC05] F.-N. Hwang and X.-C. Cai. “A parallel nonlinear additive Schwarz
preconditioned inexact Newton algorithm for incompressible Navier–
Stokes equations”. In: Journal of Computational Physics 204.2 (2005),
pp. 666–691. issn: 0021-9991.

[HL20] A. Heinlein and M. Lanser. “Additive and Hybrid Nonlinear Two-Level
Schwarz Methods and Energy Minimizing Coarse Spaces for Unstruc-
tured Grids”. In: SIAM Journal on Scientific Computing 42.4 (2020),
A2461–A2488. doi: 10.1137/19M1276972. url: https://doi.org/
10.1137/19M1276972.

[HR89] W. Hackbusch and A. Reusken. “Analysis of a damped nonlinear multi-
level method”. In: Numerische Mathematik 55 (Jan. 1989), pp. 225–246.
doi: 10.1007/BF01406516.

[HS52] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for
solving linear systems”. In: Journal of research of the National Bureau
of Standards 49 (1952), pp. 409–435.

[Joh13] V. John. Numerical Methods for Partial Differential Equations. URL:
https://www.wias-berlin.de/people/john/LEHRE/NUM_PDE_FUB/
num_pde_fub.pdf. Last visited on 2021/04/21. 2013.

[Kin86] W. Kinzelbach. Groundwater modelling : an introduction with sample
programs in BASIC. eng. Developments in water science ; 25. Amster-
dam ; Elsevier, 1986. isbn: 9780080870168.

[Kle16] O. Klein. “Preconditioned and Randomized Methods for Efficient Bayesian
Inversion of Large Data Sets and their Application to Flow and Trans-
port in Porous Media”. PhD thesis. Jan. 2016.

[Kle19] O. Klein. dune-randomfield. https://gitlab.dune-project.org/
oklein/dune-randomfield. 2019.

[KLR14] A. Klawonn, M. Lanser, and O. Rheinbach. “Nonlinear FETI-DP and
BDDCMethods”. In: SIAM Journal on Scientific Computing 36.2 (2014),
A737–A765.

[Lan15] M. Lanser. “Nonlinear FETI-DP and BDDC Methods”. PhD thesis.
Sept. 2015.

97

https://books.google.de/books?id=X5YfsuCWpxMC
https://books.google.de/books?id=X5YfsuCWpxMC
https://doi.org/10.1137/19M1276972
https://doi.org/10.1137/19M1276972
https://doi.org/10.1137/19M1276972
https://doi.org/10.1007/BF01406516
https://www.wias-berlin.de/people/john/LEHRE/NUM_PDE_FUB/num_pde_fub.pdf
https://www.wias-berlin.de/people/john/LEHRE/NUM_PDE_FUB/num_pde_fub.pdf
https://gitlab.dune-project.org/oklein/dune-randomfield
https://gitlab.dune-project.org/oklein/dune-randomfield

[LKS13] L. Liu, D. Keyes, and S. Sun. “Fully Implicit Two-phase Reservoir
Simulation With the Additive Schwarz Preconditioned Inexact Newton
Method”. In: Sept. 2013. isbn: 9781613992685. doi: 10.2118/166062-
MS.

[MC05] L. Marcinkowski and X.-C. Cai. “Parallel Performance of Some Two-
Level ASPIN Algorithms”. In: Domain Decomposition Methods in Sci-
ence and Engineering. Ed. by T. J. Barth et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 639–646. isbn: 978-3-540-26825-
3.

[Mua76] Y. Mualem. “A new model for predicting the hydraulic conductivity of
unsaturated porous media”. In: Water Resources Research 12.3 (1976),
pp. 513–522.

[Nat+11] F. Nataf et al. “A Coarse Space Construction Based on Local Dirichlet
to Neumann Maps”. In: SIAM J. Scientific Computing 33 (Feb. 2011),
pp. 1623–1642.

[Nic87] R. A. Nicolaides. “Deflation of Conjugate Gradients with Applications
to Boundary Value Problems”. In: SIAM Journal on Numerical Analysis
24.2 (1987), pp. 355–365. issn: 00361429. url: http://www.jstor.
org/stable/2157562.

[Nit71] J. Nitsche. “Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen
bei Verwendung von Teilräumen, die keinen Randbedingungen unter-
worfen sind”. In: Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg 36 (1971), pp. 9–15.

[Ric31] L. A. Richards. “Capillary Conduction of Liquids Through Porous Medi-
ums”. In: Physics 1.5 (1931), pp. 318–333.

[Riv08] B. Riviere. Discontinuous Galerkin Methods For Solving Elliptic And
Parabolic Equations: Theory and Implementation. Vol. 35. Jan. 2008.
doi: 10.1137/1.9780898717440.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Second. Soci-
ety for Industrial and Applied Mathematics, 2003. doi: 10.1137/1.
9780898718003. eprint: https://epubs.siam.org/doi/pdf/10.
1137/1.9780898718003. url: https://epubs.siam.org/doi/abs/
10.1137/1.9780898718003.

[Saa93] Y. Saad. “A Flexible Inner-Outer Preconditioned GMRES Algorithm”.
In: SIAM Journal on Scientific Computing 14.2 (1993), pp. 461–469.
doi: 10.1137/0914028. eprint: https://doi.org/10.1137/0914028.
url: https://doi.org/10.1137/0914028.

[Sak87] S. Sakaguchi. “Concavity properties of solutions to some degenerate
quasilinear elliptic Dirichlet problems”. In: Annali Della Scuola Normale
Superiore Di Pisa-classe Di Scienze 14 (1987), pp. 403–421.

98

https://doi.org/10.2118/166062-MS
https://doi.org/10.2118/166062-MS
http://www.jstor.org/stable/2157562
http://www.jstor.org/stable/2157562
https://doi.org/10.1137/1.9780898717440
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0914028

[San20] O. Sander. DUNE — The Distributed and Unified Numerics Environ-
ment. Springer International Publishing, 2020. doi: 10.1007/978-
3 - 030 - 59702 - 3. url: https : / / www . springer . com / gp / book /
9783030597016.

[Sch70] H. A. Schwarz. Über einen Grenzübergang durch alternirendes Ver-
fahren. Zürcher u. Furrer, 1870.

[SKN16] J. O. Skogestad, E. Keilegavlen, and J. Nordbotten. “Two-Scale Precon-
ditioning for Two-Phase Nonlinear Flows in Porous Media”. In: Trans-
port in Porous Media 114 (Sept. 2016). doi: 10.1007/s11242-015-
0587-5.

[Sor82a] D. Sorensen. “Newton’s Method with a Model Trust Region Modifica-
tion”. In: SIAM Journal on Numerical Analysis 19.2 (1982), pp. 409–
426.

[Sor82b] D. C. Sorensen. “Newton’s Method with a Model Trust Region Modifi-
cation”. In: SIAM Journal on Numerical Analysis 19.2 (1982), pp. 409–
426. doi: 10.1137/0719026.

[Spi+14] N. Spillane et al. “Abstract robust coarse spaces for systems of PDEs
via generalized eigenproblems in the overlaps”. In: (Jan. 2014).

[SS86] Y. Saad and M. H. Schultz. “GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems”. In: SIAM Jour-
nal on Scientific and Statistical Computing 7.3 (1986), pp. 856–869.
doi: 10.1137/0907058. url: https://doi.org/10.1137/0907058.

[Tan+09] J. Tang et al. “Comparison of Two-Level Preconditioners Derived from
Deflation, Domain Decomposition and Multigrid Methods”. In: Journal
of Scientific Computing, 39 (3), 2009 39 (June 2009). doi: 10.1007/
s10915-009-9272-6.

[TB] M. Tóth and P. Bastian. “Projected Line Search in Newton and Raspen
Solvers Applied to Leaching and Carbonation of Concrete”. Preprint.

[TW05] A. Toselli and O. Widlund. Domain Decomposition Methods – Algo-
rithms and Theory. Vol. 34. Jan. 2005. isbn: 978-3-540-20696-5. doi:
10.1007/b137868.

[Vor92] H. A. van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems”.
In: SIAM Journal on Scientific and Statistical Computing 13.2 (1992),
pp. 631–644. doi: 10.1137/0913035. url: https://doi.org/10.
1137/0913035.

[WD89] O. Widlund and M. Dryja. Towards a unified theory of domain decom-
position algorithms for elliptic problems. English (US). Technical Re-
port 486, Ultracomputer Note 167. Department of Computer Science,
Courant Institute, Dec. 1989.

99

https://doi.org/10.1007/978-3-030-59702-3
https://doi.org/10.1007/978-3-030-59702-3
https://www.springer.com/gp/book/9783030597016
https://www.springer.com/gp/book/9783030597016
https://doi.org/10.1007/s11242-015-0587-5
https://doi.org/10.1007/s11242-015-0587-5
https://doi.org/10.1137/0719026
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1007/s10915-009-9272-6
https://doi.org/10.1007/s10915-009-9272-6
https://doi.org/10.1007/b137868
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035

[XN14] H. Xiang and F. Nataf. “Two-level algebraic domain decomposition pre-
conditioners using Jacobi–Schwarz smoother and adaptive coarse grid
corrections”. In: Journal of Computational and Applied Mathematics
261 (2014), pp. 1–13. issn: 0377-0427. doi: https://doi.org/10.
1016/j.cam.2013.10.027. url: https://www.sciencedirect.com/
science/article/pii/S0377042713005712.

[Yua15] Y.-x. Yuan. “Recent advances in trust region algorithms”. In: Mathe-
matical Programming 151 (June 2015). doi: 10.1007/s10107-015-
0893-2.

[Yua94] Y.-x. Yuan. “Trust region algorithms for nonlinear programming”. In:
(Jan. 1994). doi: 10.1090/conm/163/01559.

100

https://doi.org/https://doi.org/10.1016/j.cam.2013.10.027
https://doi.org/https://doi.org/10.1016/j.cam.2013.10.027
https://www.sciencedirect.com/science/article/pii/S0377042713005712
https://www.sciencedirect.com/science/article/pii/S0377042713005712
https://doi.org/10.1007/s10107-015-0893-2
https://doi.org/10.1007/s10107-015-0893-2
https://doi.org/10.1090/conm/163/01559

	Introduction
	Thesis Outline
	Major Achievements

	Numerical Solution of PDEs
	Problem Formulation
	Finite Element method
	Discontinuous Galerkin method
	Newton's Method for Nonlinear System of Equations
	Methods for Solving Linear System
	Domain Decomposition

	Restricted Additive Schwarz Preconditioned Exact Newton
	One-level RASPEN
	Two-level RASPEN
	Additive Approach
	Multiplicative Approach
	Our Approach

	Algorithm Description

	Implementation of RASPEN in DUNE
	Overview of DUNE
	Overview of DUNE-PDELab
	RASPEN Implementation
	Two-level RASPEN Implementation
	Parallel Computation

	Numerical Expriments
	Overview
	Nonlinear Poisson Equation
	P-Laplace Equation
	First Scenario
	Second Scenario

	Diffusive Wave Approximation
	Richards' Equation
	Leaching and Carbonation of Concrete

	Conclusion
	Summary
	Future Works

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

