
DISSERTATION
submitted to the

Combined Faculty of Mathematics,

Engineering and Natural Sciences

of

Heidelberg University, Germany

for the degree of
Doctor of Natural Sciences

Put forward by

Leonid Kostrykin
born in St. Petersburg, Russia





Globally Optimal Cell Segmentation

using Shape and Intensity Information

Advisor: PD Dr. Karl Rohr

Oral examination: ........................





Abstract

Abstract

Studies of cellular structures and processes are of key interest in biomedical
research and pathology. Such studies often require segmentation of cell nuclei in
microscopy images, for example, for cell counting, analysis of the morphology, or
for analysis of other cellular structures in the proximity of nuclei. Since accurate
manual segmentation of cell nuclei is tedious, automatic segmentation methods
are indispensable to facilitate the analysis. Segmentation of cell microscopy images
is particularly challenging due to imaging artifacts like strong image noise and
intensity inhomogeneities, but also due to closely clustered or partially overlapping
objects and shape variation of cell nuclei.

In this thesis, three new cell segmentation methods are introduced. The methods
are based on implicitly parameterized shape models and address major challenges
in cell segmentation by jointly exploiting shape and intensity information. Model
fitting is performed by energy minimization, comprising convex and combinatorial
optimization schemes, which yields results close to global optimality. Convexity is
a computationally favorable property which permits fast, robust, and reproducible
energy minimization, independently of the initialization.

The proposed cell segmentation methods are based on three new shape parame-
terizations. First, a non-linear parameterization for elliptical models is presented,
which uses the locations of priorly detected objects. Energy minimization is per-
formed by convex optimization using a sequential approximation scheme. Second,
a linear parameterization for elliptical models is proposed. This parameterization
has the advantage of directly yielding a convex energy, thus sequential approxima-
tion is not required. Third, a linear parameterization for deformable shape models
is introduced, which also yields a convex energy but permits coping with more
general shapes.

To enable joint cell segmentation and cluster splitting, the shape parameteriza-
tions are generalized from the single-object to the multi-object case. The correspond-
ing energy is non-convex, yet, we show that it is structurally similar to the min-
weight set-cover problem. We develop a novel iterative global energy minimization
method which exploits the set-cover structure and provably determines a solution
close to global optimality. This is achieved by a new necessary optimality condition,
which is iteratively evaluated and refined. In addition, a closed-form solution for
non-clustered cell nuclei is derived, which directly determines the corresponding
segmentation result and further accelerates the computations.

The proposed methods were applied to challenging image data, comprising
fluorescence microscopy images of six different cell types and publicly available
benchmark datasets, and a quantitative comparison with previous methods was
performed. It turned out that the proposed methods generally yield competitive or
improved results. Furthermore, the applicability of the methods to H&E-stained
pathology images was investigated.
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Zusammenfassung

Zusammenfassung

Studien über zelluläre Strukturen und Prozesse sind von zentralem Interesse in der
biomedizinischen Forschung und der Pathologie. Solche Studien erfordern häufig
eine Segmentierung der Zellkerne in Mikroskopieaufnahmen, beispielsweise für
Zellzählung, Analyse der Morphologie oder für die Analyse anderer zellulärer
Strukturen in der Umgebung der Zellkerne. Da eine genaue manuelle Segmen-
tierung der Zellkerne mühsam ist, sind automatische Zellsegmentierungsverfahren
zur Durchführung der Bildanalyse unverzichtbar. Besonders schwierig ist die Seg-
mentierung von Zellmikroskopiebildern aufgrund von Bildgebungsartefakten wie
starkem Bildrauschen und Intensitätsinhomogenitäten, aber auch aufgrund von
zusammenhängenden oder teilweise überlappenden Objekten sowie Formvariatio-
nen der Zellkerne.

In dieser Arbeit werden drei neue Methoden zur Zellsegmentierung vorgestellt.
Die Methoden basieren auf implizit parametrisierten Formmodellen und begegnen
den Herausforderungen der Zellsegmentierung durch die gleichzeitige Nutzung
von Form- und Intensitätsinformationen. Die Modellanpassung erfolgt durch
Energieminimierung, die konvexe und kombinatorische Optimierungsverfahren
umfasst und Ergebnisse nahe der globalen Optimalität liefert. Konvexität ist eine
rechnerisch günstige Eigenschaft, die eine schnelle, robuste und reproduzierbare
Energieminimierung ermöglicht, unabhängig von der Initialisierung.

Die vorgeschlagenen Methoden basieren auf drei neuen Parametrisierungen
der Formmodelle. Zunächst wird eine nicht-lineare Parametrisierung für ellip-
tische Modelle präsentiert, die die Positionen der zuvor detektierten Objekte
berücksichtigt. Die Energieminimierung erfolgt durch konvexe Optimierung
unter Verwendung eines sequenziellen Approximationsverfahrens. Zweitens
wird eine lineare Parametrisierung für elliptische Modelle beschrieben. Diese
Parametrisierung hat den Vorteil, dass sie direkt zu einer konvexen Energie führt,
so dass eine sequenzielle Approximation nicht erforderlich ist. Drittens wird eine
lineare Parametrisierung für deformierbare Formmodelle eingeführt, die eben-
falls zu einer konvexen Energie führt, aber es gestattet mit allgemeineren Formen
umzugehen.

Um die Segmentierung und Trennung zusammenhängender Zellen simultan
durchführen zu können, werden die Formmodelle für ein einzelnes Objekt auf
mehrere Objekte verallgemeinert. Die entsprechende Energie ist nichtkonvex,
jedoch zeigen wir, dass sie strukturell dem minimal-gewichteten Mengenüberdeck-
ungsproblem ähnlich ist. Wir entwickeln ein neuartiges iteratives globales En-
ergieminimierungsverfahren, das die Struktur des Mengenüberdeckungsproblems
ausnutzt und nachweislich eine Lösung nahe der globalen Optimalität liefert. Dies
wird durch eine neue notwendige Optimalitätsbedingung erreicht, die iterativ
ausgewertet und verbessert wird. Darüber hinaus wird eine Lösung in analytisch
geschlossener Form für nicht-zusammenhängende Zellkerne hergeleitet, die das
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Zusammenfassung

entsprechende Segmentierungsergebnis direkt bestimmt und die Berechnungen
dadurch weiter beschleunigt.

Die vorgeschlagenen Methoden wurden aufherausfordernde Bilddaten angewen-
det, die Fluoreszenzmikroskopiebilder von sechs verschiedenen Zelltypen und
öffentlich zugänglichen Benchmark-Datensätzen umfassen, und ein quantitativer
Vergleich mit früheren Methoden wurde durchgeführt. Es zeigte sich, dass die
vorgeschlagenen Methoden im Allgemeinen vergleichbare oder bessere Ergeb-
nisse liefern. Auch wurde die Anwendbarkeit der Methoden auf H&E-gefärbte
Pathologiebilder untersucht.
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Chapter 1

Introduction

1.1 Motivation

For centuries, cell biology has been the basis of biomedical research. Mutations of
the cell nucleus were identified as a cause of degenerative neuromuscular diseases
like muscular dystrophy, cardiomyopathy, disorders of the skin and fat tissue,
premature aging, cancer, and other human diseases [1, 2, 3]. Cell nuclei of normal
(e.g., non-cancer) cells usually have an elliptical shape. Abnormally shaped and
sized cell nuclei have become the most common features for cancer diagnosis [4].

Figure 1.1 shows the simplified structure of a mammalian cell [5]. The cell
nucleus is enclosed by the cytoplasm and contains strings of nucleotides, which
are biochemical compounds that encode the genetic material of the cell. Besides
nucleotides, the cell nucleus also encloses the nucleolus. The nucleolus produces
the ribosomes, which then migrate to the cytoplasm, where they play a key role in
the synthesis of proteins. Non-mammalian cells can have a different structure. For
example, in single-cell organisms like bacteria, no distinct nucleus exists and the
nucleotides are instead directly embedded into the cytoplasm.

Quantitative assessment of cell nuclei in microscopy images generally requires
segmentation of cell nuclei, i.e. the identification of image regions corresponding to

Nucleolus

Cytoplasm

Ribosomes

Nucleus

Nucleotides

Proteins

Figure 1.1. Simplified cell structure comprising different cellular components.
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(a) (b) (c)

Figure 1.2. Examples of manual and automatic segmentation results (green con-
tours). (a) Microscopy image of U2OS cells. (b) Annotation by a human expert
(green contours overlaid with the original image). (c) Automatic segmentation
obtained using our approach described in Chapter 6.

individual cell nuclei. Besides the direct analysis of the cell nuclei morphology, cell
nuclei segmentation is also important, for example, for cell counting, for analysis
of cellular movement or proliferation, but also to determine regions of interest for
analysis of other cellular structures. However, manual segmentation is tedious
and prone to errors, which has raised interest in methods for automatic cell nuclei
segmentation. Examples of manual and automatic segmentation results are shown
in Figure 1.2. These examples illustrate the major challenges in cell segmentation,
such as irregularity of the shapes and closely clustered or partially overlapping
objects. Further challenges include imaging artifacts like image noise and intensity
inhomogeneities (see Figure 1.3). Such inhomogeneities occur across multiple
objects (inter-object inhomogeneities) as well as within individual cell nuclei (intra-
object inhomogeneities).

Below,we describe the acquisition process of cell microscopy images and examine
the challenges in cell segmentation in more detail.

1.2 Cell microscopy imaging

Human cells are typically around 0.01 to 0.1 mm in size [5] and thus too small to
be seen with the naked eye. Microscopy, a combination of the Greek terms mikros
(tiny) and skopein (view or observe), comprises the techniques for observation and
imaging of such tiny structures. Below, we describe some fundamentals of cell
microscopy imaging (for a more comprehensive description see the textbook [6]).
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(a) (b) (c)

Figure 1.3. Examples of challenges in cell microscopy segmentation (image sections).
(a) Closely clustered cell nuclei and strong image noise. (b) Partially overlapping
objects and strong inter-object intensity inhomogeneities. (c) Strong intra-object
intensity inhomogeneities.

1.2.1 Optical microscopy and image acquisition

Visible light behaves like an electromagnetic wave with a characteristic wave
length. Refraction is the well-known optical law, that light changes the direction
of propagation when traversing from one optical medium to another, depending
on the angle of incidence. In optical microscopy, this law is exploited by objectives
(groups of lenses) to achieve a magnified projection of the specimen. Disjoint objects
like the individual cells may overlap within the projection.

Image acquisition is performed, for example, by charge-coupled devices (CCD),
which measure the accumulated light intensity in each image pixel of the magnified
projection by counting the number of arriving photons over a short period of time.
This number of photons is generally Poisson-distributed and induces Poisson noise
in the image [7]. In addition, the readout of the pixel-wise intensities from the
CCD is Gaussian-distributed, leading to additional Gaussian noise in the image [7].

In bright-field microscopy, which is illustrated in Figure 1.4a, a white background
light is used for illumination of the specimen. Differences in the amount of light
absorbed by the specimen lead to differences in intensity, which we perceive as
structure. Due to the tininess of the cellular components, almost no light is absorbed
by the specimen, which makes direct optical observation of cellular structures
difficult. To cope with that, chemical compounds called stains are added to the
specimen, which bind to specific cellular components and increase the absorption
for characteristic wavelengths of light, thus staining the corresponding cellular
components in distinctive colors. Hematoxylin is the most widely used stain for cell
nuclei. It binds to negatively charged compounds like the nucleotides (cf. Figure 1.1),
staining nuclei in blue or purple tones. Another widely used stain is eosin, which
binds to the positively charged proteins within the cytoplasm, staining cytoplasms
in red. Using hematoxylin in conjunction with eosin (H&E) thus improves the
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Objective

White light source

Imaging device

Specimen
Staining

(a)

Specimen

Dichroic mirror

Excitation
light source

Fluorophores

Objective

Imaging device

(b)

Figure 1.4. Simplified setup of a (a) bright-field and (b) fluorescence microscope.
Arrows indicate the corresponding light paths.

optical contrast of the adjacent structures (nucleus and cytoplasm). H&E is the
most important staining method in histology.

1.2.2 Fluorescence microscopy

Another type of optical microscopy is fluorescence microscopy, which permits very
accurate imaging of cellular structures and is one of the most important methods
for cell microscopy today. This method requires that fluorescent stains called
fluorophores are added to the specimen. Different fluorophores bind to different
types of cellular structures (e.g., cell nuclei, cytoplasms, mitochondria). Upon light
excitation, the fluorophores emit light of characteristic wavelengths, rendering
cellular structures visible in distinctive colors. The light path of a fluorescence
microscope is illustrated in Figure 1.4b. A dichroic mirror, which is translucent for
light of specific wavelengths, is used to split excitation and fluorescence light.

The fluorescence light intensities can be captured in different image channels
based on the different colors, and each image channel can be considered as a
separate grayscale image. Cell nuclei are usually captured in a single image
channel where they appear as bright image regions (high intensities). Since the
fluorophores emit light of low intensity, fluorescence microscopy images generally
demonstrate comparably strong Poisson noise (e.g., [8, 9]).

DAPI (Diamidino-phenylindole-dihydrochloride) is an often used fluorophore
for cell nuclei staining in fluorescence microscopy. DAPI binds strongly to specific
parts of the nucleotide molecule (adenine and thymine). Since these parts are not
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uniformly distributed within the nucleus, the light emission is inhomogeneous.
Moreover, the concentration of nucleotides within the nucleoli (cf. Figure 1.1) is
three times lower than within the rest of the nucleus. Hence, less light is emitted
from the nucleoli which generally appear as a dark region inside the nucleus
[10] (see, e.g., the upper-left nucleus in Figure 1.3c). Hoechst 33342 and the green
fluorescent protein (GFP) are other fluorophores, which are often used to label
sub-cellular structures and better suited for in vivo studies.

Autofluorescence artifacts are imaging artifacts arising specifically in fluores-
cence microscopy which increase the difficulty of cell segmentation. These artifacts
usually correspond to unintended emission of light and can be caused by biological
processes or contamination of the specimen. Such contamination can be caused,
for example, during preparation of the specimen by chemical compounds which
are added in order to preserve cellular structures from decay.

1.3 Contributions and overview

In this thesis, we propose different new methods for globally optimal cell nuclei
segmentation, which jointly exploit shape and intensity information. Our methods
are based on (i) implicitly parameterized shape models, (ii) model fitting by global
energy minimization, and (iii) convex optimization. The methods do not suffer
from local energy minima and yield the global solution independently of the
initialization. The main contributions of this thesis are:

• CVXELL, a convex model-based approach for the segmentation of cell

nuclei using elliptical models. We introduce an approach based on implicitly
parameterized shape models, which are directly fitted to the image intensities.
Implicitly parameterized shape models were previously not used for cell
segmentation. Our approach relies on elliptical models and a sequential
approximation scheme, which yields a sequence of convex programs. Convex
optimization has the advantages that it is fast, robust, and yields globally
optimal results independently of the initialization. We use an efficient second-
order optimization scheme to solve the sequence of convex programs and
estimate the globally optimal solution based on the image intensities. Model
fitting is performed within image regions, which correspond to object de-
tections and are determined by exploiting the local image structure. The
approach is denoted CVXELL since it is based on convexity and elliptical
models. We evaluated the approach using fluorescence microscopy images
of two different cell types and performed a quantitative comparison with
previous methods. The work was published in [11].

• GOCELL, a globally optimal approach for joint cell segmentation and clus-

ter splitting using elliptical models. We introduce the approach GOCELL
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(globally optimal collaborating ellipses), which is based on a novel implicit
shape parameterization for elliptical objects. In the single-object case, this
parameterization leads to convex energies which can be directly minimized
without requiring an approximation. In the multi-object case, multiple col-
laborating ellipses are used, which has the advantage that prior detection of
individual cell nuclei is not needed. This leads to a non-convex energy, yet we
have found that model fitting using the multi-object model corresponds to the
combinatorial min-weight set-cover problem. The result is determined close to
the globally optimal solution using an efficient combination of combinatorial
and second-order convex optimization schemes. The proposed approach
jointly performs cell segmentation and cluster splitting and naturally copes
with touching and partially overlapping cell nuclei, is robust, and compu-
tationally efficient. In contrast, previous shape-based approaches for cell
segmentation either are computationally intractable, not globally optimal,
require prior image binarization, or object detection. We successfully applied
our approach to fluorescence microscopy images of five different cell types
and performed a quantitative comparison with previous methods. The work
was published in [12].

• SuperDSM, a globally optimal approach based on superadditivity and

deformable shape models for joint cell nuclei segmentation and clus-

ter splitting. We introduce the approach SuperDSM (superadditivity and
deformable shape models), which naturally copes with deformable shapes.
Previous methods are limited to elliptical models, not globally optimal, or
computationally intractable. We propose an implicit parameterization of
deformable shape models and show that it leads to a convex energy. To
jointly perform cell nuclei segmentation and cluster splitting, we developed
a novel iterative global energy minimization method, which solves the cor-
responding combinatorial min-weight set-cover problem by leveraging the
inherent property of superadditivity of the energy. This property exploits
the lower bound of the energy of the union of the models and establishes a
necessary optimality condition for the set-cover, which improves the computa-
tional efficiency. Our method provably determines a solution close to global
optimality. In addition, we derive a closed-form solution of the min-weight set-
cover problem based on the superadditivity property for non-clustered cell
nuclei, which further reduces computational cost. We evaluated our method
using fluorescence microscopy images of five different cell types comprising
various challenges, and performed a quantitative comparison with previous
methods. Our method achieved state-of-the-art or improved performance.
Furthermore, we successfully applied the method for segmentation of H&E-
stained pathology images. The work has been submitted for publication [13].
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This thesis is organized as follows. In Chapter 2, we describe the mathematical
background of optimization with focus on convex optimization, which is the basis
for the proposed methods. We also review previous work on cell nuclei segmenta-
tion. In Chapter 3, we describe the datasets, baseline methods, and performance
measures used for evaluation. In Chapter 4, we present our CVXELL approach
based on elliptical models, convex optimization, and sequential approximation.
In Chapter 5, we introduce a novel implicit parameterization for elliptical models.
This parameterization directly yields convex energies in the single-object case,
therefore sequential approximation is not required. We generalize this parameteri-
zation to the multi-object case and describe our GOCELL approach, which jointly
performs cell segmentation and cluster splitting, so prior object detection also is
not required. In Chapter 6, we introduce our SuperDSM approach, which naturally
copes with shape variation using deformable shape models. We also propose a
novel optimization scheme, which leverages the property of superadditivity, so
that SuperDSM is both more efficient and more general than GOCELL. Finally,
in Chapter 7, we provide a summary of our work and describe future research
directions.

An overview of the developed methods, their components,and their interrelations
is given in Figure 1.5. The single-object energy is the central building block of the
three methods. For CVXELL, this energy is based on a non-linear parameterization
for elliptical shape models and a convex loss function. For GOCELL, a linear shape
parameterization is used instead, and a generalization to the multi-object case is
proposed. This corresponds to a min-weight set-cover problem, which incorporates
multiple convex optimization problems corresponding to the single-object energy.
For SuperDSM, the single-object energy is based on a linear parameterization
for deformable shape models, and we introduce a regularization scheme for the
deformations. The multi-object case is solved more efficiently by automatically
confining the computations to a meaningful subset of the convex optimization
problems for the single-object energies while GOCELL needs to process the whole
set.
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indicate conceptual relations. Solid arrow heads indicate the main algorithmic
steps. Dashed boxes indicate groups of algorithmic steps or components.
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Chapter 2

Foundations and previous work

2.1 Introduction

This chapter describes the foundations of our work. Many approaches for cell
nuclei segmentation, including the approaches proposed in this thesis, are based
on energy minimization. Therefore, we first introduce the fundamental concepts
of optimization (Section 2.2). We then present an overview of previous work on
cell segmentation (Section 2.3).

2.2 Fundamentals of optimization

In this section, we introduce the fundamental concepts and technical background
of optimization. Below, we first summarize basic canonical definitions based on
the textbooks [14, 15, 16].

Optimization means the process of solving an optimization problem. Optimization
problems are either minimization or maximization problems. In the most general
form, a minimization problem is defined by

minimize !0 (")
subject to " ∈ 4 ,

(2.1a)

where " ∈ ℝ0 is the vector to be optimized (e.g., the parameters of a model), the
function !0 : ℝ0 → ℝ is the objective function and the set 4 ⊆ ℝ0 is the feasible set or
feasible region of the problem. To study optimization problems, it is often useful to
use a different notation of the minimization problem in Eq. (2.1a):

inf
"∈4

!0 (") (2.1b)

This has the advantage that the optimization problem is represented as an ana-
lytical term (the infimum term). Maximization problems like sup"∈4 !

′
0 (") can be

transformed into the form of Eq. (2.1b) by substituting the objective function !0 by
− ! ′0 . Thus, Eq. (2.1b) represents both minimization and maximization problems.
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Any vector "̂ ∈ ℝ0 satisfying the condition "̂ ∈ 4 is feasible or a feasible solution
of the optimization problem. Any vector "̂ ∈ ℝ0 satisfying the condition

"̂ ∈ 4 ∧ !0 ("̂) ≤ !0 (") for all " ∈ 4 (2.2)

is an optimal solution or a globally optimal solution of the optimization problem, and
!0 ("̂) is the optimal value of the problem. An optimal solution exists if and only
if the infimum of the objective function !0 on 4 is attained, and then inf"∈4 !0 (")
= min"∈4 !0 ("). Determining a globally optimal solution is also called global
optimization, to better distinguish from local optimization (see below).

A feasible solution "̂ ∈ 4 is a locally optimal solution if the optimality condition
in Eq. (2.2) holds locally, i.e. for all " ∈ 4 within a neighborhood ‖" − "̂‖ ≤ , of "̂
with arbitrarily small , > 0. A locally optimal solution can be (globally) optimal,
but, in general, it is not. Determining a locally optimal solution is referred to as
local optimization or non-global optimization.

An alternative notation of the optimization problem in Eq. (2.1) is to implicitly
encode the feasible set 4 into the objective function. To this end, the extended real
number line ℝ = ℝ ∪ {−∞,+∞} and the indicator function -4 : ℝ0 → ℝ,

-4 (") =

{
0 if " ∈ 4
+∞ else

(2.3)

are defined. The minimization problem from Eq. (2.1) can then be written inf"∈ℝ0

! (") with ! = !0 + -4 . The set dom ! = {" ∈ ℝ0 | ! (") < ∞} is the effective domain
of ! . Analogously, maximization problems are denoted sup"∈ℝ0 !0 (") − -4 (").

Below, we first discuss aspects of computational cost and tractability of optimiza-
tion (Section 2.2.1). We then briefly introduce convexity, which characterizes a major
class of computationally tractable optimization problems (Section 2.2.2). Conjugate
and Lagrange duality are then described (Section 2.2.3), the latter providing the
foundations for necessary and sufficient optimality conditions (Section 2.2.4). These
conditions are directly exploited by interior point methods for convex optimiza-
tion (Section 2.2.5). Finally, optimization methods for computationally intractable
combinatorial problems based on approximations are described (Section 2.2.6).

2.2.1 Computational tractability

The computational cost of computational problems such as optimization or decision
problems is commonly assessed based on the complexity class of the problems.
In this section, we give a short and informal overview of the key concepts of
complexity regarding tractability of computational problems.

The fundamental complexity classes P and NP are established for decision problems
(e.g., [17]). Roughly speaking, a decision problem is the problem of determining
whether, for a fixed input, a statement is true or false. For example, let !̂0 ∈ ℝ be an

10
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arbitrary value. Then, the optimization problem in Eq. (2.1a) is naturally associated
with the decision problem

“Given a value !̂0 ∈ ℝ, is there an " ∈ 4 so that !0 (") ≤ !̂0?” (2.4)

In this example, the vector " ∈ 4 is called a certificate. The input consists of the
value !̂0, the feasible set 4, and the objective function !0. Complexity theory also
requires that we assume an encoding for !̂0 (e.g., a specific binary representation)
as well as !0 and 4 (e.g., polynomials of sufficiently high degree and level sets
thereof) to properly quantify the problem size (e.g., the number of bits of the binary
representation, the number 0 of variables, and the degree of the polynomials used
for the encoding).

The complexity class P contains decision problems which can be solved in
polynomial time with respect to the problem size. On the other hand, if a certificate
can be obtained by guessing and it can be verified in polynomial time, then this
decision problem is in NP. This implies that for any problem in NP, the certificate
must be polynomial-length, since otherwise it cannot be verified in polynomial
time (e.g.,

√
2 is of infinite length). It is evident that P ⊆ NP.

Solving the optimization problem in Eq. (2.1a) obviously also solves the associ-
ated decision problem (2.4). Thus, the optimization problem is at least as hard as
the associated decision problem. The intuition behind P and NP is that problems
in P are “computationally easy” to solve, whereas for problems in NP solutions
are only “computationally easy” to verify. Solving problems in NP \ P is difficult,
since guessing a polynomial-length certificate amounts to exponential-time trial-
and-error schemes when implemented on traditional computers (e.g., brute-force
search). Even for small problems with a few tens of variables, exponential run
time can amount to hours or days. Problems which are not in NP are even more
difficult and can exhibit super-exponential run time. Cobham [18] and Edmonds
[19] coined the widely accepted rule of thumb, that a computational problem is
only tractable if it is in P (exceptions exist, e.g., due to constant factors).

An optimization or decision problem is NP-hard, if it generalizes any problem in
NP and the generalization can be obtained in polynomial time (e.g., [17]). Intuitively,
NP-hard problems are thus computationally at least as difficult as any problem in
NP. If the set 4 in the decision problem (2.4) is encoded as a union of finitely many
polynomial level sets, then it corresponds to the decision problem for the existential
theory of the reals (see, e.g., [20]), which is known to be NP-hard [21]. Under the
widely believed conjecture that P ≠ NP, this is the reason that optimization is
generally difficult or even intractable, unless computationally favorable properties
of the feasible set 4 and the objective function !0 can be exploited.

A prominent computationally favorable property of optimization problems is
convexity. Below, we first briefly describe the tools required for analysis of convexity
and to tailor convex optimization problems (Section 2.2.2). We then describe the
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(a) (b)

Figure 2.1. Examples of a (a) non-convex function ! and a (b) convex function !
(dashed line). The red line segments lie outside of epi ! , thus, neither the set epi !
nor the function ! in (a) are convex. The black line segments lie in epi !.

computational schemes, which perform convex optimization in polynomial time
(Section 2.2.5), suggesting that convex optimization problems are associated with
decision problems in P and thus computationally easy. Finally, we describe a class
of optimization problems, which are NP-hard, but for which fast and accurate
approximation algorithms are known (Section 2.2.6).

2.2.2 Convexity

A set 4 ∈ ℝ0 is convex if and only if the straight line segment between any two
points of the set lies in 4, i.e. . · "1 + (1 − .) · "2 ∈ 4 for all "1, "2 ∈ 4 and . ∈ [0, 1]
(e.g., [14, 15, 16]). A function ! : ℝ0 → ℝ is convex if and only if the epigraph of the
function,

epi ! = {(" , /)|" ∈ dom ! , / ≥ ! (")} , (2.5)

is a convex set (e.g., [14, 15]). Note that convexity of ! implies convexity of dom ! .
Examples are shown in Figure 2.1.

We briefly mention practically useful conditions for convexity of functions
! : ℝ0 → ℝ, which are both necessary and sufficient:

First-order condition. Let ! be differentiable on a convex set 7 ⊆ ℝ0 which
contains dom ! and ∇ ! (") denote the gradient of ! at ". Then, ! is convex
if and only if ! ("2) ≥ ! ("1) + ∇ ! ("1) · ("1 − "2) for all "1, "2 ∈ 7 (see
Proposition 1.1.7 in [16] for a proof).

Second-order condition. Let ! be twice differentiable on a convex set 7 ⊆ ℝ0

which contains dom ! . Then, ! is convex if and only if the Hessian matrix
∇2 ! (") is positive semidefinite for all " ∈ 7 (see Proposition 1.1.10 in [16]
for a proof). This means that the curvature of ! is non-negative.

12
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Figure 2.2. Examples of a convex function ! (dashed line) and the first-order
condition ! ("2) ≥ ! ("1) + ∇ ! ("1) · ("1 − "2). The red dots are examples of vectors
"1 and the red arrows indicate the corresponding gradients ∇ ! ("1). The gray lines
indicate the hyperplanes, which correspond to the rhs of the first-order condition.

Note that differentiability of ! = !0 + -4 with !0 : ℝ0 → ℝ means that 4 = ℝ0 and
! = !0. Hence, the first-order condition directly implies that if ! is differentiable
and convex, then any stationary point, that is a point "̂ ∈ ℝ0 satisfying ∇ ! ("̂) = 0,
also satisfies Eq. (2.2) and is thus an optimal solution of inf"∈ℝ0 ! ("). This relation
is illustrated in the example in Figure 2.2, where the bottom red dot corresponds
to a stationary point. For non-differentiable functions, an analogous relation can
be shown using the subgradient of ! (see, e.g., Section 5.4.3 in [16]). Thus, if any
convex function ! has a stationary point "̂, then it is a globally optimal solution of
inf"∈ℝ0 ! ("). There are no non-global minima or saddle points in convex functions.

Example 2.1 (Logistic loss). Consider + (); () = log (1 + exp (−) · ()), which is the
logistic loss function (e.g., [22, 23]), as a function of ( ∈ ℝ for a fixed ) ∈ ℝ. The first
derivative is 0

0(+ (); () = −)/(1 + exp () · ()) and yields the second derivative

02

0(2
+ (); () = )2 ·

exp () · ()
(1 + exp () · ())2

≥ 0, (2.6)

which is non-negative since it is a product of non-negative terms. Thus, by the
necessary and sufficient second-order condition for convexity, the logistic loss
function + is convex as a function of (. The reasoning applies analogously for + as
a function of ) for a fixed (, which, however, is not of interest for us.

We briefly mention further rules which are useful for establishing convexity:

Affine functions. Any affine function is convex (the Hessian matrix is zero and
thus positive semidefinite).

Affine weighted sum. Let !1, . . . , !* : ℝ0 → ℝ be affine functions, associated with
weights 51, . . . ,5* ∈ ℝ. Then, the weighted sum 51 · !1 + · · · + 5* · !* is a
convex function (any affine function is convex).

13
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Convex weighted sum. Let !1, . . . , !* : ℝ0 → ℝ be convex functions, associated
with non-negative weights 51, . . . ,5* ∈ ℝ+. Then, the non-negative weighted
sum 51 · !1 + · · · + 5* · !* is a convex function (the non-negative weighted
sum of positive semidefinite Hessian matrices is positive semidefinite).

Convex-affine composition. Let !1 : ℝ* → ℝ be a convex function and !2 : ℝ0 →
ℝ* an affine function. Then, the composition !1 ◦ !2 is convex (see Proposi-
tion 1.1.4 in [16] for a proof using a linear function !2, generalization to the
affine case is straight-forward).

Pointwise supremum. Let F be a family of convex functions ! : ℝ0 → ℝ, ! ∈ F .
Then, the pointwise supremum sup ! ∈F ! (") is also convex (see Proposi-
tion 1.1.6 in [16] for a proof).

An optimization problem of the form in Eq. (2.1) is convex if the feasible set 4
and the objective function !0 are convex (e.g., [15]). Below, we give two important
examples of convex optimization problems (see Sections 1.4 in [22] and 7.1.1 in
[15] for details).

Example 2.2 (Linear regression). Let "(1), . . . , "(*) ∈ ℝ$ be a sequence of inputs
and )(1), . . . , )(*) ∈ ℝ a sequence of corresponding outputs. In linear regression, each
output )(%) is modeled by (

(
"(%);!

)
using the model function ( (";!) = 〈!,Φ (")〉,

which is linear in the model parameters ! ∈ ℝ0 and where 〈!,Φ (")〉 is the
inner product of ! and Φ ("). The function Φ : ℝ$ → ℝ0 is called basis function
expansion or feature map. Model fitting is performed by likelihood maximization,
assuming that )(%) ∼ #

(
)
&
&"(%)

)
, where # () |") = <

(
)
&
&( (";!) , (2

)
is the normal

distribution with expected value ( (";!) and standard deviation ( > 0. Since log is
monotonously increasing, likelihood maximization boils down to

sup
!∈ℝ0

log
∏

%∈[*]

#
(
)(%)

&
&"(%)

)
=
−1

2(2
· inf
!∈ℝ0

∑

%∈[*]

(
)(%) − (

(
"(%);!

))2

︸!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!︸
!0(!)

. (2.7)

The optimal solution !̂ of Eq. (2.7) is thus determined by minimization of the
objective function !0 with respect to ! ∈ ℝ0 . The rhs of Eq. (2.7) has the form of a
linear least squares minimization problem, where the residual term )(%)− (

(
"(%);!

)
is

linear in !. Thus, each summand corresponds to a convex-affine composition. Thus,
the objective function !0 is a sum of convex functions, which is convex too (by the
rule for convex weighted sums, using 5% = 1 for % = 1, . . . ,*). Since the objective
function !0 and the feasible set ℝ0 are convex, Eq. (2.7) is a convex problem.
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Example 2.3 (Logistic regression). Let "(1), . . . , "(*) ∈ ℝ$ be a sequence of inputs
and )(1), . . . , )(*) ∈ {−1,+1} a sequence of corresponding binary outputs. In logistic
regression, a linear model function ( (";!) = 〈!,Φ (")〉 is used analogously to linear
regression buta sigmoiddistribution # () |") = 1/(1 + exp (−) · ( (";!))) is assumed
instead of the normal distribution. Applying the log-likelihood maximization
approach analogously to Example 2.2 yields

sup
!∈ℝ0

log
∏

%∈[*]

#
(
)(%)

&
&"(%)

)
= − inf

!∈ℝ0

∑

%∈[*]

+
(
)(%); (

(
"(%);!

))
, (2.8)

where + (); () = log (1 + exp (−) · ()) is the convex logistic loss function from
Example 2.1. Reasoning analogously to Example 2.2 (in particular, noting that ( is
affine in !), it is thus seen that logistic regression is a convex problem.

2.2.3 Duality

We briefly sketch Lagrange duality, which is fundamental for the subsequent
sections. Lagrange duality is a result of convex conjugates. Given a function ! : ℝ0 →
ℝ, the convex conjugate ! ∗ : ℝ0 → ℝ of ! is defined

! ∗ (#) = sup
"∈ℝ0

〈" , #〉 − ! (") , (2.9)

which is a function of the vector # ∈ ℝ0 and where 〈" , #〉 is the inner product
of the vectors " and # (e.g., [14, 15, 16]). The convex conjugate ! ∗ is a convex
function even if ! is not convex, since Eq. (2.9) is the pointwise supremum of
functions 〈" , #〉 − ! ("), which are affine in # for any fixed " ∈ ℝ0 (cf. Section 2.2.2).
The definition of the convex conjugate directly implies Fenchel’s inequality, that
is ! ∗ (#) ≥ 〈" , #〉 − ! (") for all " , # ∈ ℝ0 , or equivalently, ! (") ≥ 〈" , #〉 − ! ∗ (#).
Considering the biconjugate ! ∗∗ (") = sup#∈ℝ0 〈" , #〉 − ! ∗ (#), which is naturally
defined as the convex conjugate of ! ∗, we thus obtain ! ≥ ! ∗∗.

An intuitive view of the convex conjugate ! ∗ (#) is to consider the hyperplane
with normal vector (−# , 1) which is tangential to the graph of ! , as illustrated in
Figure 2.3a. In this view, the value − ! ∗ (#) corresponds to the vertical intercept of
the hyperplane. The convex biconjugate ! ∗∗ (") is shown in Figure 2.3b and the
relation ! ≥ ! ∗∗ becomes evident from comparison of the graph of ! ∗∗ to epi ! .
Since the set epi ! ∗∗ corresponds to the convex hull of the set epi ! , the biconjugate
! ∗∗ is also called the (lower) convex envelope or convex relaxation of ! (e.g., [15]).

Primal and dual problems

We briefly sketch below, that Lagrange duality is easily obtained as a special case
of convex conjugates (see, e.g., [16] for details). Consider an auxiliary function

15



Chapter 2 Foundations and previous work

(a) (b)

Figure 2.3. Examples of a non-convex function ! and the corresponding convex
conjugate and biconjugate functions. (a) The function ! (dashed line) and the
geometry of the corresponding convex conjugate ! ∗ for # = 0.53. (b) The convex
conjugate ! ∗ (blue line) and the corresponding biconjugate ! ∗∗ (dashed line).

1 : ℝ0 × ℝ* → ℝ and define 2 (6) = inf"∈ℝ0 1 (" , 6). Using the definition in
Eq. (2.9) yields the convex conjugate

2∗ (#) = sup
6∈ℝ*

sup
"∈ℝ0

〈6 , #〉 − 1 (" , 6)

= sup
"∈ℝ0

6∈ℝ*

〈0, "〉 + 〈6 , #〉 − 1 (" , 6) = 1∗ (0, #) . (2.10)

For any auxiliary function 1 satisfying 1(" , 0) = ! ("), the primal problem

2(0) = inf
"∈ℝ0

1(" , 0) = inf
"∈ℝ0

! (") (2.11a)

is obtained. As a function of 6 ∈ ℝ* , the auxiliary function 1 (" , 6) perturbs the
problem and is thus called perturbation function. The vector " ∈ ℝ0 in Eq. (2.11a)
denotes the primal variable.

The definition of the biconjugate and Eq. (2.10) directly yield

2∗∗(0) = sup
#∈ℝ*

−1∗(0, #), (2.11b)

which is known as the dual problem of the primal problem in Eq. (2.11a). The vector
# ∈ ℝ* in Eq. (2.11b) denotes the dual variable.
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The relation 2 ≥ 2∗∗, which is due to Fenchel’s inequality, is known as weak
duality. The difference 2(0) − 2∗∗(0) is the duality gap of the problem. In the special
case 2∗∗ = 2, it is said that strong duality holds (the duality gap is zero).

Lagrange duality

To obtain Lagrange duality, we consider a primal problem with * constraints,

minimize !0 (")
subject to !%(") ≤ 0 for all % = 1, . . . , . ,

!%(") = 0 for all % = . + 1, . . . ,*.
(2.12)

and suppose that dom !0 = ℝ0 and that the feasible set of the problem in Eq. (2.12)
is non-empty.

Using the indicator function -7 : ℝ0 → ℝ as defined in Eq. (2.3), we can implicitly
encode the constraints from Eq. (2.12) into the objective function and obtain

inf
"∈4

!0 (") = inf
8(")∈7

!0 (") = inf
"∈ℝ0

!0(") + -7(8(")), (2.13)

the form in Eq. (2.11a), where 7 = ℝ.
− × {0}*−. and 8 = ( !1, . . . , !*).

Let 1(" , 6) = !0(") + -7(8(") + 6) be the perturbation function. By calculating
its convex conjugate 1∗, we obtain the dual problem

2∗∗(0) = sup
#∈ℝ*

inf
"∈ℝ0

9(" , #) − -∗7(#), 9(" , #) = !0(") + 〈8 (") , #〉 (2.14)

due to Eq. (2.11b), where 9(" , #) is called the Lagrangian.
From the definition of the indicator function in Eq. (2.3) and the definition of

the convex conjugate in Eq. (2.9), it can be shown that the conjugated indicator
function -∗7 with 7 = ℝ.

− × {0}*−. resolves to the indicator function -7∗ with
7∗ = ℝ.

+ ×ℝ*−. . Thus, the dual problem reads

2∗∗ (0) = sup
#∈ℝ*

inf
"∈ℝ0

9(" , #) − -7∗ (#) = sup
#∈ℝ.

+×ℝ*−.
inf
"∈ℝ0

9(" , #) (2.15a)

and the Lagrangian from Eq. (2.14) takes the form

9(" , #) = !0(") + 〈8 (") , #〉 = !0 (") +
*∑

%=1

#% · !% (") . (2.15b)

The dual variables #1, . . . , #* are the Lagrange multipliers. For % = 1, . . . , ., the
Lagrange multipliers #% are associated with the primal inequality constraints
and constrained by #% ≥ 0. The remaining Lagrange multipliers #.+1, . . . , #* are
associated with the primal equality constraints and unconstrained.
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2.2.4 KKT conditions

We assume for this section that the primal and dual optimal solutions are attained,
i.e. there is a primal-dual solution ("̂ , #̂) ∈ ℝ0 ×ℝ.

+ ×ℝ*−. so that 2∗∗ (0) = 9 ("̂ , #̂),
and that the functions !0, . . . , !* are twice differentiable.

Let "̂ and #̂ be any primalanddualoptimal solutions. Since "̂ solves inf"∈ℝ0 9(" , #̂)
by supposition, it follows immediately that ∇"9("̂ , #̂) = 0, i.e.

∇"9("̂ , #̂) = ∇ !0 ("̂) +
*∑

%=1

#̂% · ∇ !% ("̂) = 0. (2.16)

This condition is one from a set of conditions, which generalize the necessary
optimality conditions for unconstrained problems to the constrained case (e.g.,
[15]). Another less obvious condition is obtained by considering the primal problem
2 (0) = inf"∈ℝ0 ! (") in Eq. (2.13) with the duality gap Δ2 = 2 (0) − 2∗∗ (0). Then,

2 (0) = !0 ("̂) = 2∗∗ (0) + Δ2 = 9 ("̂ , #̂) + Δ2 (2.17a)

= !0 ("̂) +
*∑

%=1

#̂% · !% ("̂) + Δ2, (2.17b)

and since !% ("̂) = 0 for all % = . + 1, . . . ,*,

0 =

.∑

%=1

#̂% · !% ("̂) + Δ2. (2.17c)

Thus, if strong duality holds (i.e. Δ2 = 0), then the equation 0 =
∑.
%=1 #̂% · !% ("̂)

is obtained. Since !% ("̂) ≤ 0 and #̂% ≥ 0 for all % = 1, . . . , . due to feasibility of "̂
and #̂, it immediately follows that #̂% · !% ("̂) = 0 for all % = 1, . . . , ., which is called
complementary slackness.

The necessary optimality conditions for problems with strong duality, better
known as the Karush-Kuhn-Tucker (KKT) conditions, are summarized as follows:

Feasibility condition. The solution "̂ , #̂ is primal and dual feasible, i.e. !1 ("̂), . . . ,
!. ("̂) ≤ 0, !.+1 ("̂), . . . , !* ("̂) = 0, and #̂1, . . . , #̂. ≥ 0.

Stationary condition. The solution "̂ , #̂ is a stationary point of the Lagrangian, i.e.
the solution satisfies Eq. (2.16).

Complementary slackness. The condition #̂% · !% ("̂) = 0 holds for all inequality
constraints, indexed by % = 1, . . . , ..

These conditions describe a solution "̂ , #̂ if it is optimal.
If the functions !0, . . . , !. are convex, the functions !.+1, . . . , !* are affine, and #̂

is dual feasible, then the Lagrangian 9 (" , #̂) in Eq. (2.15b) is a convex function in
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" (see the rules for weighted and non-negative weighted sums in Section 2.2.2).
If, in addition, the stationary condition holds, then the solution "̂ , #̂ minimizes the
Lagrangian (due to the first-order condition in Section 2.2.2), i.e.

2∗∗ (0) = inf
"∈ℝ0

9(" , #̂) = 9 ("̂ , #̂) = !0 ("̂) +
.∑

%=1

#̂% · !% ("̂) . (2.18)

Finally, if complementary slackness holds too, then the above equation boils down to
2∗∗ (0) = !0 ("̂). This means that "̂ and #̂ have zero duality gap, i.e. the solution "̂ , #̂
is primal and dual optimal. Thus, for optimization problems with convex objective
functions, convex inequality constraints, and affine equality constraints, the KKT
conditions are not only necessary, but also sufficient optimality conditions (e.g.,
[15]).

2.2.5 Convex optimization

Due to the sufficiency of the KKT conditions described above, optimization of
problems with convex objective functions, convex inequality constraints, and affine
equality constraints boils down to solving the KKT conditions.

Below, we consider the primal-dual space ℝ0 × ℝ* . The primal feasible region

{" ∈ ℝ0 |8 (") ∈ 7} is the intersection of the solution sets of the inequalities !1, . . . ,
!. and the equalities !.+1, . . . , !* . The dual feasible region is ℝ.

+ × ℝ*−. . Overall,
{" ∈ ℝ0 |8 (") ∈ 7} ×ℝ.

+ ×ℝ*−. is the feasible region of the primal-dual space.

Direct solution of the KKT conditions

The KKT conditions pose a system of non-linear equations (except for the inequali-
ties !1 ("̂), . . . , !. ("̂) ≤ 0 and #̂1, . . . , #̂. ≥ 0). This system can be solved iteratively
using Newton’s method, which is based on local linearization of the non-linear
system (first-order Taylor approximation).

Let ) = (" , #) be the current iterate and ) + Δ) the next iterate, so that Δ) =

(Δ" ,Δ#) corresponds to the primal-dual Newton step. Then, for example, the local
linearization of complementary slackness is

#% · !% (") + Δ#% · !% (") + #% · ∇ !% (") · Δ" = 0. (2.19)

Once the iterate reaches the boundary of the dual feasible region (#% = 0), Eq. (2.19)
yields Δ#% · !% (") = 0, i.e. Δ#% = 0 if !% (") < 0. For the boundary of the primal
feasible region ( !% (") = 0), Eq. (2.19) yields ∇ !% (") · Δ" = 0, i.e. ∇ !% (") ⊥ Δ".
Thus, the iterate sticks to the boundary of the feasible region, once it is reached,
potentially precluding the global convergence of the method (see, e.g., [24]).
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Interior point methods

To avoid sticking to the boundary of the feasible region and improve global
convergence, the KKT solutions are not solved directly. Instead, the standard
approach is to consider a sequence of perturbed conditions, which converge to the
KKT conditions (e.g., [15]). To this end, complementary slackness is replaced by

−#̂% · !% ("̂) = 1/: , (2.20)

where the parameter : > 0 is incrementally increased, successively decreasing the
perturbation and eventually converging to complementary slackness (for : →∞).
Since both !% ("̂) = 0 and #̂% = 0 contradict Eq. (2.20), the iterate approaches the
primal-dual solution )̂ via the interior of the region which corresponds to the
solution set of the primal and dual inequality constraints. Such approaches are
thus referred to as interior point methods.

Replacing complementary slackness by the perturbed condition in Eq. (2.20)
yields the modified KKT conditions ;: (" , #) = 0, where

;: (" , #) =


















∇?" 9(" , #)
−#1 · !1 (") − 1/:

...
−#. · !. (") − 1/:

!.+1 (")
...

!* (")


















Stationary condition (cf. Eq. (2.16))

Perturbed complementary slackness

Equality constraints ;eq
: (" , #)

(2.21)

is the residuals vector of the conditions, consisting of three blocks, and ;eq
: (" , #) =

( !.+1 (") , . . . , !* (")) is the bottom block (corresponding to the equality constraints).
In Eq. (2.21), only the equality constraints are regarded. The non-linear system

;: (" , #) = 0 is solved subject to 8 (") ∈ ℝ.
− and # ∈ ℝ.

+ × ℝ*−. using a Newton-
based scheme, which explicitly handles the inequality constraints 8 (") ∈ ℝ.

− and
# ∈ ℝ.

+×ℝ*−. . Given the current iterate ) = (" , #), the Newton step Δ) is obtained
by solving ;: () + Δ)) = 0 for Δ) using the first-order Taylor approximation

;: () + Δ)) ≈ ;: ()) + ∇;: ()) · Δ) , (2.22)

where ∇;: is the Jacobian of Eq. (2.21). Supposing that ∇;: is strictly positive
definite and thus invertible, we obtain the primal-dual interior point approach for
constrained convex optimization (e.g., [15]), which comprises three main steps in
each iteration:

1. The Newton step Δ) = −∇;: ())−1 · ;: ()) corresponding to the non-linear
system of equations ;: () + Δ)) = 0 is obtained from Eq. (2.22).
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2. The largest admissible step length. ∈ (0, 1) is determined using line search, so
that (i) feasibility is retained with respect to the primal and dual inequalities
for the next iterate ) + . · Δ), and (ii) the residuals ‖;: () + . · Δ))‖2 are
reduced in comparison to ‖;: ())‖2.

3. The current iterate ) ← ) + . · Δ) is updated.

Using an initialization of the iterate ) which is feasible with respect to the primal
and dual inequality constraints, the above scheme retains this feasibility. Note,
however, that a single iteration does generally not yield an iterate which is feasible
with respect to the equality constraints.

Thus, solving Eq. (2.17c) for the duality gap Δ2 yields the surrogate duality gap
Δ2 ()) = −

∑.
%=1 #% · !% ("), which is an approximation of the real duality gap due to

;
eq
: ()) ≠ 0. The iterations terminate when Δ2 ()) is small and converges to the real

duality gap (i.e.
6
6;eq
: ())

6
6

2
is sufficiently small too). The parameter : is updated at

the beginning of each iteration based on the duality gap of the current iterate.
The primal-dual interior point method for constrained convex optimization is a

second-order method, since second-order information of the primal problem is
exploited via the gradient of the Lagrangian in Eq. (2.21) and the corresponding
Jacobian ∇;: in the Newton step. The method is closely related to barrier methods,
which solve the modified KKT conditions using multiple Newton steps per iteration.
For such methods, the overall number of steps grows linearly with the number
. of inequality constraints, and logarithmically with the inverse of the precision
(thresholds of the termination criteria). The primal-dual interior point method
exhibits faster convergence in practice than barrier methods. The overall run time
is dominated by the computation of the inverse of the Jacobian, which is cubic in
0 + * for both barrier and primal-dual interior point methods.

Unconstrained convex optimization

Unconstrained convex optimization is a special case of constrained convex opti-
mization (using . = * = 0 constraints). In this case, primal-dual interior point
methods cannot be used directly, since neither the surrogate duality gap nor the
residuals of the equality constraints can be used as a termination criterion. To
cope with this, an unconstrained convex optimization problem inf"∈ℝ0 !0 (") can
be transformed into the constrained form in Eq. (2.12). To this end, note that any
(" , /) with " ∈ ℝ0 and / ∈ ℝ which satisfies / ≥ !0 (") is a point of the epigraph
of !0 (cf. Eq. (2.5)). Minimization of the scalar value / subject to the constraint
/ ≥ !0 (") hence also minimizes !0 ("). This motivates the epigraph form

minimize /
subject to !0 (") − / ≤ 0

(2.23)
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of inf"∈ℝ0 !0 ("), where the feasible set of the constrained problem in Eq. (2.23)
corresponds to the epigraph of !0 (e.g., [15]). The inequality constraint in Eq. (2.23)
is convex since it is a sum of the convex functions !0 and −/ (cf. Section 2.2.2).
The constrained convex problem can be solved using primal-dual interior point
methods for constrained convex optimization with respect to (" , /) ∈ ℝ0+1.

Linear programming

Another special case of constrained convex optimization is linear programming (e.g.,
[15]). If the functions !0, . . . , !* are affine, the problem is called a linear program
(LP). In the form of Eq. (2.12) an LP can be written

minimize < + 〈, , "〉
subject to = · " ≤ ℎ ,

/ · " = ? ,
(2.24)

where < ∈ ℝ and , ∈ ℝ0 are the weights of the LP. The constraints of the LP are
specified using the matrices = ∈ ℝ.×0 and / ∈ ℝ*−.×0 as well as the vectors
ℎ ∈ ℝ. and ? ∈ ℝ*−. of corresponding dimensions.

Definition 2.1 (Polytope associated with an LP). The feasible set 3 associated
with an LP is the solution set of the constraints in Eq. (2.24). Due to the affinity of
the constraints, the feasible set 3 of an LP is a closed polytope.

We assume that the objective function !0 is linear (i.e. < = 0) without loss of
generality due to inf"∈3 < + 〈, , "〉 = < + inf"∈3 〈, , "〉. Since a polytope is a convex
set and any linear objective function also is convex, the primal-dual interior point-
based approach described above can be used to solve an LP (dedicated LP solvers
exploit the linear structure, e.g., [25]).

For further considerations, we note that the dual problem of an LP takes a
simple form (e.g., [16, 26]). If there are no primal equality constraints (* = .), then
Eq. (2.15) yields the dual problem

2∗∗ (0) = sup
#∈ℝ.

+

inf
"∈ℝ0

〈, , "〉 + 〈= · " , #〉 − 〈ℎ , #〉 (2.25a)

= sup
#∈ℝ.

+

− 〈ℎ , #〉 + inf
"∈ℝ0

〈
, + =? · # , "

〉
(2.25b)

= sup
#∈ℝ.

+

− 〈ℎ , #〉 −

{
0 if =? · # = −,
∞ otherwise

(2.25c)
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of the LP in Eq. (2.24). The dual problem in Eq. (2.25c) can be written as an LP too,

maximize − 〈ℎ , #〉
subject to # ≥ 0,

=? · # = −, ,
(2.26)

since the last term in Eq. (2.25c) corresponds to the definition of the indicator
function in Eq. (2.3) for the solution set of the equality constraints in Eq. (2.26).

2.2.6 Combinatorial optimization

We consider a primal problem of the form in Eq. (2.24), which has no equality
constraints but exhibits the additional integrality constraint " ∈ {0, 1}0 ,

minimize 〈, , "〉
subject to = · " ≤ ℎ ,

" ∈ {0, 1}0
(2.27)

and is denoted an integer linear program (ILP). Replacing the integrality constraint by
the inequality constraint 0 ≤ " ≤ 1 yields the LP relaxation of the ILP in Eq. (2.27).

Due to the integrality constraint, the objective function of the ILP corresponds
to a sum of a subset of the elements of the vector ,, which naturally gives rise to the
interpretation of Eq. (2.27) as a combinatorial optimization problem. However, the
feasible set of an ILP is not convex due to the integrality constraint. Thus, an ILP
does not exhibit the computationally favorable properties which could be exploited
by convex programming. Many famous combinatorial problems can be expressed
in the form of the ILP in Eq. (2.27), including min-weight set-cover and max-weight
set-packing (see examples below). Most combinatorial problems are NP-hard, thus,
in general, determining the optimal solution is not tractable (cf. Section 2.2.1).

Set-cover and set-packing

Two closely related examples of NP-hard optimization problems in the form of the
ILP in Eq. (2.27) are given below (e.g., [17, 26]).

For simplicity, we consider a universe+ = [*] of integers, which, however, can
be used as an index set to identify any kind of elements (e.g., image regions). Also,
let S be a family of sets 21, . . . ,20 ⊆ + , and let , ∈ ℝ0

+ be a vector of non-negative
weights, where the .-th component ,. corresponds to the weight associated with
the .-th set 2. . To encode the interrelations of the universe + and family S in
matrix representation, we define the * × 0 matrix =′, where =′

%.
= [% ∈ 2.].

Definition 2.2 (Set cover). A set cover is a subset X ⊆ S , which covers each
element of the universe+ . A min-weight set-cover is a set cover, which is minimal
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with respect to the total weights
∑
.∈[0] ,. · [2. ∈ X ] associated with the included

sets. The ILP

minimize 〈, , "〉
subject to =′ · " ≥ 1,

" ∈ {0, 1}0
(2.28)

corresponds to the problem of determining a min-weight set-cover.

Definition 2.3 (Set packing). A set packing is a subset X ⊆ S which covers no
element of the universe + more than once (i.e. the sets in X are disjoint). A
max-weight set-packing is a set packing, which is maximal with respect to the total
weights

∑
.∈[0] ,. · [2. ∈ X ] associated with the included sets. The ILP

maximize 〈, , "〉
subject to =′ · " ≤ 1,

" ∈ {0, 1}0
(2.29)

corresponds to the problem of determining a max-weight set-packing.

Any vector " ∈ {0, 1}0 directly yields a family X = {2. ∈ S |. ∈ [0] , ". = 1} and
vice versa. If " is a feasible solution of the ILPs in Eq. (2.28) and Eq. (2.29), then X

is the corresponding set cover or set packing, respectively.

Approximation using LP relaxations and dual problems

To cope with the NP-hardness of combinatorial problems, methods have been de-
veloped which exploit the specific problem structure and determine approximative
solutions, which are guaranteed to be close to global optimality.

To quantify the approximation accuracy, the value APX of the approximative
solution must be compared to the value OPT of the optimal solution, which is
unknown. However, solving the LP relaxation of an ILP yields a fractional solution
and a corresponding lower bound OPTf of the optimal value OPT of the ILP,

inf
"∈ℝ0

=·"≤ℎ

〈, , "〉 = OPTf ≤ inf
"∈{0,1}0
=·"≤ℎ

〈, , "〉 = OPT ≤ APX, (2.30a)

which is due to the feasible set of the ILP being a subset of the feasible set 4 of the
LP relaxation (e.g., [26]). Let 3P and 3D denote the polytopes associated with the
LP relaxation of the primal problem and its dual (cf. Definition 2.1). Then, taking
the dual problem in Eq. (2.26) of the LP into consideration, we obtain the inequality

− 〈ℎ , #〉 ≤ OPTf ≤ OPT ≤ 〈, , "〉 = APX, (2.30b)
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which holds for all " ∈ 3P and # ∈ 3D satisfying " ∈ {0, 1}0 . The approximation
ratio APX/OPT is a measure of the approximation accuracy (lower is better). An
approximation ratio of 1 means that the optimal solution is attained.

In a posteriori analysis, Eq. (2.30a) is used to determine an upper bound of the
approximation ratio, i.e. APX/OPT ≤ APX/OPTf, by solving the corresponding
LP relaxation to obtain OPTf. This means that the approximation accuracy of
a given approximative solution APX is APX/OPTf or better. On the other hand,
Eq. (2.30b) is useful to a priori establish an upper bound of the approximation ratio,
i.e. APX/OPT ≤ 〈, , "〉 /− 〈ℎ , #〉. This is the worst-case approximation ratio, a so
called approximation guarantee. A prominent example is given below.

Approximative solution of min-weight set-cover

It can be seen from Eq. (2.26), that the dual problem of the LP relaxation of the
problem in Eq. (2.28) is to maximize 〈1, #〉 with respect to # ∈ ℝ*

+ subject to the
system of equalities =′? · # = , (due to = = −=′). Since (i) the objective is to
maximize the components of the vector #, and since (ii) both # and the matrix
=′ only have non-negative entries, the equality constraints can be written as
inequalities. This leads to

maximize 〈1, #〉
subject to # ≥ 0,

=′? · # ≤ ,
(2.31)

as the dual problem of the LP-relaxation of the min-weight set-cover problem. Notably,
up to an anisotropic scaling, the feasible set of the LP in Eq. (2.31) corresponds
to the polytope associated with the LP relaxation of the max-weight set-packing
problem defined in Eq. (2.29).

In the dual problem in Eq. (2.31), the components of the vector # are associated
with the elements 1, . . . ,* of the universe. Due to the structure of the matrix =′,
the dual inequality constraint =′? · # ≤ , means that

∑

%∈2.

#% ≤ ,. (2.32)

for all sets enumerated by . = 1, . . . , 0, i.e. the sum of components of # correspond-
ing to a single set cannot exceed the weight of that set.

The greedy algorithm [27] for approximation of min-weight set-cover iteratively
covers the elements of the universe by adding a specific set of the family S to the
cover X in each iteration (initially X = ∅) and terminates when all elements are
covered (i.e. " is a feasible solution and thus

⋃
X = +). Let @ (:) ⊆ + be the set of

already covered elements in iteration : and @ (1) = ∅. The set 2.̂(:) which is added
to the cover X in iteration :, is determined by .̂ (:) = arg min.∈[0] ,./;

(:)
.

, where
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;(
:)
.

= #
(
2. \@ (:)) is the number of newly covered elements, and thus

,.̂(:)/;
(:)
.̂(:)
≤ ,./;

(:)
.

(2.33)

for all . ∈ [0]. Consider the set 2. for a fixed but arbitrary . ∈ [0] and let %1,
. . . , %#2. be the order in which the elements of 2. are covered by the algorithm
(the order is arbitrary for elements covered within the same iteration). When an
arbitrary element % A is covered for the first time, there are currently #2. + 1 − A
uncovered elements in 2. . This occurs in iteration :, and the dual variable # is
updated so that the weight ,.̂(:) of the set added in this iteration is distributed
among the ;(:)

.̂(:)
newly covered elements. This yields the assignment

#%A ← . · ,.̂(:)/;
(:)
.̂(:)

(2.34)

when the element % A is covered, where. > 0 is a fixed factor. Notably, #%A ≤ . · ,./;
(:)
.

due to Eq. (2.33), and ;(:)
.
≥ #2. + 1 − A, since % A might be not the first element being

covered in iteration : (usually multiple elements are covered within a single
iteration). Considering the lhs of Eq. (2.32) thus yields

∑

%∈2.

#% ≤ . ·
∑

A∈[#2.]

,./(#2. + 1 − A) = . · ,. · '#2. , (2.35a)

where '#2. = 1 + 1/2 + · · · + 1/#2. is the harmonic number, and
∑

%∈2.

#% ≤ . · ,. · '* , (2.35b)

since #2. ≤ *. Comparing Eq. (2.35b) to Eq. (2.32) shows that the dual variable
# is feasible if . = 1/'* . The primal solution " is obviously feasible due to the
termination criterion. Due to primal and dual feasibility of " and #, Eq. (2.30b) can
be used to deduce the approximation guarantee. Note that for any set added to the
cover X , the algorithm also increases the dual variable # by the weight of that set
scaled by the factor . = 1/'* , due to Eq. (2.34). Thus, primal and dual solutions
are coupled by 〈1, #〉 = 〈, , "〉 /'* , which yields the approximation guarantee

APX

OPT
≤

〈, , "〉
〈, , "〉 /'*

= '* . (2.36)

This means that the greedy algorithm for approximative solution of min-weight
set-cover yields a solution, which is at most of a factor '* worse than the optimal
solution (the decay is less than logarithmic with respect to *). We refer to [26] for
further details.
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2.3 Overview of existing approaches for cell segmentation

In this section, we give an overview of previous work on cell segmentation. Besides
standard segmentation approaches (Section 2.3.1), one can generally distinguish
between model-based (Section 2.3.2) and learning-based approaches (Section 2.3.3).
Model-based approaches perform inference by energy minimization as opposed
to learning-based approaches, where inference typically amounts to forward
computations using a previously optimized model [28].

2.3.1 Standard approaches

Standard approaches for cell segmentation often employ thresholding methods
(e.g., [29, 30, 31, 32]). Wu et al. [29] proposed two-stage thresholding based on local
variation of the image intensities. In [30, 31, 32], adaptive thresholding based on
the histogram of the image intensities [33] was used. Singh et al. [30] determined
individual objects by connected component analysis of the binarized image in
order to study different cellular phenotypes in fluorescence microscopy images.
To better cope with closely clustered objects, Singh et al. [31] proposed seeded
region growing to split falsely merged objects in the binarized image, which was
supplemented by variational level sets for final refinement. Accurate initialization
of the region growing step is required to prevent falsely merged and split objects. He
et al. [32] determined concave points on the boundary of the connected components
of the binarized image. Then, modified DBSCAN [34, 35] was used for clustering
of the concave points to split falsely merged objects. This has the advantage that
initialization is not required, however, it is prone to cell nuclei with strongly non-
elliptical shapes. Other standard approaches employed the watershed transform or
morphological analysis (e.g., [36, 37, 38]). Wählby et al. [36] proposed a two-level
watershed transform to obtain an initial segmentation of fluorescence microscopy
images. The result was then refined by recognition of falsely merged or split
objects, according to 19 different appearance features. Cheng et al. [37] described a
watershed-based approach for cell cluster splitting based on the distance transform
of segmentation masks. Plissiti et al. [38] used morphological reconstruction for
detection of cell nuclei and morphological gradients for subsequent detection of
the nuclei boundaries. Generally, standard segmentation approaches are sensitive
to texture, prone to image noise, and intensity inhomogeneities.

2.3.2 Model-based approaches

A broad class of cell segmentation methods are model-based approaches. In these
approaches, models of an object or an image are gradually configured (i.e. adapted)
so that the model fits the image data. Model configurations are often realized
via parameterization or representation in a variational framework (see below).
Different model configurations are scored by an energy value, which is small for
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Figure 2.4. Diagram of the models used in previous model-based approaches.

configurations which fit the image data, and large otherwise. Model fitting, i.e.
inference of the optimal model configuration from the image data, corresponds to
energy minimization with respect to the configuration of the model [28]. Globally
optimal configurations yield the models which best fit the image data (depending
on, e.g., the parameterization or the particular quantification of the energy values,
which differ heavily among the methods).

However, since computationally tractable optimization requires exploitation of
computational properties (e.g., convexity, cf. Section 2.2.1), the majority of previous
model-based cell segmentation methods only used local optimization. Such methods
aim to solve a relaxed variant of the optimality condition in Eq. (2.2), which only
holds locally (cf. Section 2.2). If the initialization of the local optimization method
is close to the global solution, then the obtained locally optimal solution might also
be globally optimal (this depends on the optimization method). For this reason,
accurate initialization of local optimization-based segmentation methods is crucial.

An overview of different types of model-based approaches is given in Figure 2.4.
Two major classes of model-based approaches are active contours and parametric
shape models. One can also differentiate between explicit models (e.g., snakes
and explicitly parameterized shape models), implicit models (e.g., variational level
sets and implicitly parameterized shape models), and graph-based models. Below,
we describe parametric active contours (snakes), non-parametric active contours
(variational level sets), parametric shape models, and graph-based models.

Snakes and parametric active contours

Kass et al. [39] introduced snakes, which are explicitly parameterized curves
associated with an energy function based on the image gradient. Minimization of
the energy function drives the snake towards image points corresponding to large
image gradient magnitude (e.g., lines and edges), while maintaining a reasonable
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smoothness and length of the curve due to regularization. Snakes are also called
parametric active contours or parametric deformable models.

Snake-based methods have been successfully used for cell segmentation (e.g.,
[40, 41, 42, 43, 44]). Zimmer and Olivo-Marin [40] proposed an energy function
which incorporates multiple snakes simultaneously. They also employed an object
interaction model (penalization of object overlap), which allows for joint cell
segmentation and cluster splitting. To better cope with partial object overlap and
image distortions like strong image noise, approaches were developed which
incorporate shape information. For example, Thevenaz and Unser [41] proposed a
parameterization for circular snakes and an energy function which incorporates the
image intensities. This method was used for vessel segmentation and cell counting.
In [42], they described an extension for cell segmentation based on elliptical shapes.
Delgado-Gonzalo et al. [43] introduced a spline-based snake parameterization.
This parameterization represents elliptical shapes, but allows for deformations,
and copes well with non-elliptical cell nuclei. In [44], they extended the method for
segmentation of biomedical 3-D data. However, no snake-based method mentioned
above exploited shape information for joint cell segmentation and cluster splitting
(the methods [41, 42, 43, 44] did not use the energy function incorporating multiple
snakes previously proposed in [40]). Only local optimization methods were used
for energy minimization. Initial placement of the snakes is thus crucial since
globally optimal solutions were not obtained.

Non-parametric active contours

Segmentation approaches based on implicit models were developed concurrently to
the explicitly parameterized snakes. In the variational level set framework [45, 46],
object and model contours are implicitly represented as level sets of non-parametric
functions, the so-called level set functions (e.g., a function corresponding to the
signed distance of an image point to the contour of the model). Variational level
sets are thus also called non-parametric active contours or non-parametric deformable
models. Model fitting is performed by minimization of a suitable energy functional
in function space with respect to the level set function, like the predominant Chan
and Vese [47] functional. Advantages of variational level set methods over snakes
are that the results are obtained independently of the parameterization and that
topological changes are handled naturally.

Variational level set methods for cell segmentation (e.g., [48, 49, 50, 51, 52]) have
been popular alternatives of snake-based methods. De Solorzano et al. [48] used
a variational level set approach for segmentation of cell nuclei in low-contrast
microscopy data. Analogous to the snake energy for joint cell segmentation and
cluster splitting [40], Dufour et al. [49] proposed an extension of the variational
level set framework using a similar object interaction model (both works were
published in the same year). Li et al. [50] introduced an energy functional which
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is robust to intensity inhomogeneities and strong image noise. Since only local
optimization methods were used in [48, 49, 50, 52], the initialization of the level set
functions was crucial. To overcome this, Bergeest and Rohr [51] proposed a globally
optimal approach for cell segmentation based on convex energy minimization
[53, 54] and the energy functionals [47, 50, 55]. However, shape information was
not used. Gharipour and Liew [52] employed level sets using local optimization.
Individual cell nuclei were subsequently detected by determining concave points
similarly to [32] and then delineated by a shortest-path method. Image intensities
were not used for detection of individual cell nuclei.

To jointly exploit shape and intensity information, variational level sets were also
used in conjunction with different kinds of shape regularization (e.g., [56, 57, 58, 59,
60, 61]). Ali and Madabhushi [56] employed elliptical shape priors based on signed
distance functions for segmentation of cell nuclei in histological images. Lu et al.
[61] proposed a shape prior based on the geometrical distance to the centroids of the
cell nuclei, which were previously detected by connected component analysis. Kong
et al. [57] and Zhang et al. [60] proposed similar approaches as [56] using more
general shape priors, based on sparse linear combinations of priorly determined
shape prototypes. Nosrati and Hamarneh [58] introduced a star-shape prior for
the segmentation of the cytoplasm of cervical cells. Xing and Yang [59] exploited
shape information to accelerate the evolution of similarly shaped level set functions,
using a CNN for initialization (see Section 2.3.3). However, none of these methods
yields globally optimal solutions and initialization is thus crucial.

Parametric shape models

The shape-constrained snakes [41, 42, 43, 44] described above can also be seen as a
subset of the more general class of explicitly parameterized shape models. This class of
models also includes non-snake based models (e.g., [62, 63, 64, 65, 66, 67, 68, 69]),
with the used frameworks being the crucial difference.

In probabilistic frameworks, a marked point process (MPP) was used to represent an
ensemble of multiple shape models (e.g., [62, 63, 64, 67]). An MPP is a random set
of points (see, e.g., [70]), where each point is associated with the shape parameters
and position of a shape model. The energy function is embedded into a probability
density function and model fitting is performed by sampling from the density.
Dong and Acton [62] employed a variant of Markov chain Monte Carlo sampling
[71] based on elliptical models, and a pairwise interaction model to cope with cell
clusters and partially overlapping objects. Soubies et al. [63] proposed a contrast-
invariant energy function for elliptical models based on the image gradient, but did
not exploit the image intensities. Sampling was performed using graph cuts [72, 73].
Descombes [64] embedded an MPP into a simulated annealing scheme. In principle,
this scheme converges to a globally optimal solution, but it is computationally
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intractable1 in practice and requires careful calibration of the cooling parameters.
Markowsky et al. [67] employed an MPP to determine a low-cardinality set of circles
(formally corresponding to Definition 2.2) in order to split touching and overlapping
cell nuclei in binarized images. Iteratively updated parameter distributions were
used to guide the MPP towards a globally optimal solution, but the approximation
ratio was not studied (cf. Section 2.2.6) and image intensities were not exploited.

Panagiotakis and Argyros [65] proposed a similar approach based on elliptical
models and expectation maximization instead of MPP and sampling, which was
later extended to better cope with partially overlapping objects [66]. However, only
binarized images were used to separate individual objects. Ducroz et al. [68] and
Eck et al. [69] used shape parameterizations based on spherical harmonics for
analysis of cellular shapes [68] and segmentation of cellular structures [69], but
globally optimal solutions were not obtained.

Compared to explicitly parameterized models, implicit parameterizations have
analytic and algorithmic advantages (e.g., easier representation of closed curves,
convenient representation by matrix-vector multiplication). In particular, implicitly
defined shape models are computationally advantageous since energy minimiza-
tion can often be performed by convex optimization. For example, Biesdorf et al.
[75] proposed implicitly parameterized tubular shape models for vessel segmen-
tation based on convex energy minimization. However, implicitly parameterized
shape models were not used for cell nuclei segmentation.

Graph-based models

Discrete models are powerful because they permit determining solutions close
to global optimality at low computational cost. In graph-based discrete models,
vertices typically represent image points (e.g., [76, 77]) orobjects (e.g., [78, 79, 80, 81]),
and edges represent interactions. Segmentation can then be seen as vertex labeling,
meaning that a discrete label is assigned to each vertex (e.g., an object label for image
points or a boolean label indicating whether the object is included in a set). The Potts
model [82] is a pairwise interaction model widely used in graph-based approaches,2

which encourages vertex label consistency and penalizes label discontinuity. Using
graph cuts [72] for energy minimization based on the Potts model yields an
approximation of the globally optimal solution within an approximation guarantee
(cf. Section 2.2.6) of factor 2 [84]. The globally optimal solution is exactly determined
if only two labels are involved (e.g., image background and foreground).

1Descombes [64] reported “heavy computational time” but did not assess the computational
cost quantitatively. Computationally favorable properties like convexity were not exploited
(the energy function is non-convex). State-of-the-art simulated annealing methods like [74]
demonstrate exponential run time. In view of Section 2.2.1, this suggests that the approach [64]
is computationally intractable, which we also confirmed in our own experiments (Section 5.4.1).

2Graph-based models are not to be confused with graphical models, the latter being graph-based
representations of joint probability distributions [22]. An example of a graphical model is
obtained by embedding the Potts model into a Gibbs distribution [83].
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Al-Kofahi et al. [76] used the Potts model and graph cuts for cell nuclei segmenta-
tion, also exploiting the four color theorem to reduce the number of labels and the
computational cost. However, shape information is difficult to handle in a purely
graph-based framework. For example, Lou et al. [77] employed blob detection
to a priori detect individual cell nuclei. Then, graph cuts were used to solve a
Potts model which favors cuts tangential to the previously detected blobs, thus
implementing a blob-like shape prior. Poulain et al. [78] used a sequence of graph
cuts to determine the best maximum subset of segmentation candidates formally
corresponding to max-weight set-packing,3 but properties of computational cost
(cf. Section 2.2.1) and the approximation ratio were not studied (cf. Section 2.2.6).

For performing cell segmentation jointly with cell tracking using temporal image
sequences (e.g., [79, 80, 81]), graphs were also used to represent an overcomplete
set of trajectories (comprising correctly detected and spurious cell nuclei). To
perform joint segmentation and tracking, the temporally most coherent subset of
non-conflicting trajectories needs to be determined. This task is a variant of max-
weight set-packing (Definition 2.3) and thus NP-hard. Akram et al. [79] proposed
an approximation scheme based on sequential shortest path methods but did not
investigate the approximation ratio. Akram et al. [80] and Türetken et al. [81] used
integer linear programming to exactly determine the globally optimal solution at
the price of high computational cost. Tracking-based methods are not applicable
for the segmentation of individual images.

2.3.3 Learning-based approaches

Instead of using hand-tailored models to represent objects or images (Section 2.3.2),
deep learning-based approaches are actively trained to learn representations [85].
Training, an immanent step of these approaches, is performed by minimization of
a suitable loss function prior to application.

In recent years, convolutional neural networks (CNN) have become increasingly
popular for cell segmentation in microscopy images (e.g., [86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96]). Ronneberger et al. [86] and He et al. [97] introduced the two
predominant CNN architectures, U-Net and Mask R-CNN, respectively. Many
extensions and variants were proposed to improve the segmentation performance.
For example, Fan and Rittscher [89] and Vuola et al. [91] employed ensembles of
multiple CNNs. To better cope with closely clustered or partially overlapping cell
nuclei, Böhm et al. [88] and Payer et al. [92] used higher-dimensional embeddings,
and Wollmann et al. [94] proposed a variant of the focal loss [98], which is sensitive
to cell boundaries. Methods were also based on ensembles of CNNs and graphical
models [87, 89, 93] or gradient flow fields [95, 99]. Fehri et al. [93] used Bayesian

3The objective of the optimization problem in [78] is to determine a minimum-weight subset
of disjoint objects using non-positive weights. This is equivalent to determining a maximum-
weight subset of disjoint objects using non-negative weights, which corresponds to Definition 2.3.
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polytrees with learned deep features and globally optimal inference. However,
training deep CNNs generally requires large amount of manually annotated data,
and manual annotation of pixel-based segmentation masks is tedious. To cope
with this, Xie et al. [90] used synthetic training data, and Ciga and Martel [96] used
higher-level annotations for classification of image regions.

However, training deep neural networks is computationally expensive in gen-
eral. In addition, it was shown that neural networks are prone to adversarial
perturbations (small intensity fluctuations in the input images) [100], universal
perturbations (e.g., random noise, geometric transformations) [101], and misan-
notated image data (label noise) when using deep high-capacity models [102].
Explainability, interpretability, and predictability of deep neural networks are open
research topics.
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Datasets, baseline methods, and

performance measures

3.1 Introduction

The proposed methods for cell segmentation (Chapters 4–6) were applied to fluo-
rescence microscopy datasets of different cell types comprising various challenges,
and we performed a quantitative comparison with previous methods. In this
chapter, we describe the used datasets (Section 3.2), the previous methods used as
baseline for the comparison (Section 3.3), and the performance measures used for
quantification of the segmentation performance (Section 3.4).

3.2 Datasets

We applied our methods to seven fluorescence microscopy datasets in total,
comprising different cell types, fluorophores, and challenges. The datasets are
described below. An overview is given in Table 3.1.

Number of

Dataset (cell type) Dye Image resolution Images Cell nuclei

NIH3T3 Hoechst 1344 × 1024 49 2212
U2OS Hoechst 1349 × 1024 48 1836
GOWT1 dataset 1 GFP 1024 × 1024 31 150
GOWT1 dataset 2 GFP 1024 × 1024 20 128
Fibroblast DAPI 1024 × 1024 175 985
HeLa DAPI 1200 × 1620 25 282
Macrophage DAPI 1388 × 1040 20 700

Table 3.1. Overview of the used datasets. The image resolution is given in pixels.
The number of cell nuclei corresponds to the number of annotated cell nuclei in
the ground truth data.
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• NIH3T3 dataset [103]. This dataset consists of 49 images with a size of 1344 ×
1024 pixels. The dataset includes 2212 cell nuclei in total, which were stained
with Hoechst 33342, and is challenging because of strong autofluorescence
artifacts, visible debris, significant intensity inhomogeneities, and many
closely clustered or partially overlapping cell nuclei.

• U2OS dataset [103]. The dataset consists of 48 images of U2OS cells that
were stained with Hoechst 33342. The images have a size of 1349 × 1030
pixels and the dataset includes 1836 cell nuclei. The dataset is challenging
due to frequent occurrence of strongly non-elliptical and closely clustered
cell nuclei.

• GOWT1 datasets [104]. We used two datasets of GFP-transfected mouse
embryonic stem cells from the IEEE ISBI 2013 Cell Tracking Challenge [105]
training data. The datasets are temporal image sequences, where each image
has a size of 1024 × 1024 pixels. GOWT1 datasets 1 and 2 consist of 31 images
(with 150 nuclei) and 20 images (128 nuclei), respectively. The two datasets
are challenging due to low signal-to-noise ratio, low image contrast, and cell
nucleoli (distinct dark regions within cell nuclei). The ground truth consists
of eight fully annotated images and partial annotations for the other images.

• Fibroblast dataset [106]. This dataset contains 175 3-D stacks of 35–50 DAPI-
stained images of human fibroblast cells. Each image has a size of 1024 ×
1024 pixels. The dataset includes 985 cell nuclei. For most of the 3-D stacks
(112 out of 175), the cells were serum-starved and forced to arrest in the same
cell cycle phase. From each of the 175 stacks, we used the image slice with the
highest object density for the evaluation. The ground truth does not include
objects at the image boundaries, causing wrong false-positive detections. To
avoid misleading results, objects detected at image boundaries were ignored
for Dice and Rand. The dataset is challenging due to partially strong intensity
inhomogeneities of the cell nuclei.

• HeLa dataset. We also used 25 DAPI-stained HeLa images. The images
contains 282 cell nuclei and each image is 1200 × 1620 pixels in size.

• Macrophage dataset [107]. The dataset consists of 20 images of DAPI-stained
murine bone-marrow derived macrophage cells. The images have a size of
1388 × 1040 pixels and show 30-50 cell nuclei per image. Half of the images
are strongly out of focus, but blurring artifacts also exist in those images
which are in focus.
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3.3 Baseline methods

We used the following previous methods as baseline for our evaluation:

• Global intensity thresholding (Otsu). A global intensity threshold is com-
puted from the image histogram [33]. Connected component analysis is
employed to identify individual objects.

• Blob detection-based level sets (Blob-LS). The variational level set model
of Chan and Vese [47] is used. For initialization, image blobs are detected
by multi-scale Laplacian of Gaussian filtering [108]. Individual objects are
determined using connected component analysis.

• Blob detection-based random walker (Blob-RW). First, a multi-scale Lapla-
cian of Gaussian-based blob detector [108] is used. For each detected blob, a
circular foreground marker is initialized (half the radius of the detected blob).
The background marker is determined as the watershed of the negative image
intensities between the foreground markers. Foreground and background
markers are then expanded using the random walker algorithm [109].

• Template matching (TM [110]). First, supervised learning is performed to
build a filter bank of templates, which is employed for the detection of cell
nuclei. Non-rigid registration is then used for local alignment of the templates
within each detected image region.

• Graph cuts with blob-like shape prior (Blob-GC [77]). First, the locations
and sizes of cell nuclei are determined based on second-order image statis-
tics. Segmentation is then performed by solving a Potts model, where cuts
perpendicular to the object edges of the detected cell nuclei are penalized.

• Two-stage thresholding (KTH [111]). The two-stage thresholding method
[29] is employed for segmentation. The connected components of the segmen-
tation result are then used to perform cell tracking. The approach achieved
the best result in the IEEE ISBI 2013 Cell Tracking Challenge [104].

• Convex variational level sets (CVX-LS [51]). The two-step approach exploits
the convexity of level set functionals. First, an image is segmented and then
semi-local refinement is performed. Shape information is not used.

• Region-based progressive localization (RPL [112]). Progressive contrast
enhancement and pre-trained classifiers to detect salient image regions are
used. Cell clusters are split using a binary classifier.

• Blob detection-based approach (Blob-WS [79]). Elliptical filter banks for
nuclei detection and a watershed transform to obtain segmentation candidates
are used. Temporal information from the image sequence is exploited to
select or reject candidates.
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• Bayesian risk-based level sets (Bayes-LS [52]). A level set functional based
on the Bayesian classification risk is used, followed by morphological analysis
to separate individual cell nuclei.

• Cell Proposal Network (CPN [80]). The method uses two convolutional neural
networks (CNN). First, a CNN based on [113] is employed to determine
candidates for cell nuclei bounding boxes. Then, another CNN based on
the U-Net [86] is used for segmentation of each candidate. Finally, multiple
hypothesis tracking is performed and the candidates corresponding to the
most plausible trajectories are selected.

• Ellipse-based shape decomposition (SEG-SELF [65], RFOVE [66]). First,
locally adaptive thresholding is used to binarize an image. Then, cell cluster
splitting is performed by approximation of the binary image by a low-
cardinality set of ellipses, either using hard (SEG-SELF) or soft (RFOVE)
constraints for the overlap of the ellipses and the binary image.

• Cellpose [95]. First, a modified U-Net [86] with residual blocks and global
average pooling is used to predict a vector field. Then, individual objects
are identified by grouping image points whose vectors point to the same
location. The authors trained the model using a wide spectrum of different
microscopy images including the NIH3T3 and U2OS datasets (Section 3.2).

3.4 Performance measures

The segmentation performance is assessed using measures that quantify the
similarity between the segmentation results and manual ground truth annotations
created by human experts. For our evaluation, we used region-based performance
measures (Section 3.4.1), contour-based performance measures (Section 3.4.2), and
detection-based performance measures (Section 3.4.3). These are detailed below.

3.4.1 Region-based performance measures

The used region-based performance measures are defined based on the set of all
ground truth objects Rgt within an image and the set of all segmented objects Rseg:

• Dice similarity coefficient (Dice). The Dice coefficient is defined as

Dice
(
Rgt,Rseg

)
= 2 ·

#
( (⋃

Rgt
)
∩
(⋃

Rseg
) )

#
(⋃

Rgt
)
+ #

(⋃
Rseg

) (3.1)

and measures the overlap of the ground truth and the segmentation result,
where 0 means no overlap and 1 means perfect agreement. Dice corresponds
to the pixel-based 81 score (harmonic mean of precision and recall).
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• Rand index (Rand). The Rand index measures the similarity of the ground
truth and the segmentation result [103]. Rand corresponds to the pixel-based
accuracy score and, in contrast to Dice, is not biased towards positive or
negative detections. A Rand value of 0 means no overlap, and a Rand value
of 1 means perfect agreement.

• Object-based Jaccard index (SEG). In contrast to Dice and Rand, which only
consider the union of all objects within an image, the SEG measure [104]
takes into account the performance for individual objects. For each ground
truth object = ∈ Rgt, the measure is defined as

SEG
(
=,Rseg

)
=

{
#(=∩B)
#(=∪B) if ∃B ∈ Rseg : # (= ∩ B) > 0.5 · #=,

0 else

and attains values between 0 and 1. The SEG value is 0 if no segmented object
overlaps the ground truth objects by at least 50 % (e.g., due to very inaccurate
segmentations, falsely split/merged, or undetected objects). The SEG value
is 1 if a ground truth object is perfectly segmented.

Notably, Dice and Rand are sensitive to false-positive detections, but invariant
to falsely split/merged objects. On the other hand, SEG is sensitive to falsely
split/merged objects and false-negative detections (but invariant to false-positive
detections). Overall, SEG is the most comprehensive and best suited measure for
region-based segmentation performance since it incorporates both detection and
object-based segmentation performance.

3.4.2 Contour-based performance measures

We also used two contour-based performance measures. Both measures are based
on the Euclidean distance dist0= (") = min"′∈0= ‖" − "′‖ of an image point " to the
contour 0= of the ground truth object = ∈ Rgt and the corresponding segmented
object B ∈ Rseg:

• Object-based Hausdorff distance (HSD). The Hausdorff distance

HSD (=, B) = max
"∈0B

dist0= (") (3.2)

is the maximum distance of the object contour 0= to the contour 0B of the
segmented object [114]. The HSD is not upper-bounded and attains 0 if the
two objects are identical.
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• Object-based normalized sum of distances (NSD).

The NSD measure is defined by

NSD (=, B) =
∑

"∈=EB

dist0= (") /
∑

"∈=∪B

dist0= (") , (3.3)

where =EB = (= \ B) ∪ (B \ =) is the symmetric difference of = and B. The
NSD is the ratio of the number of image points, which are either only in = or
only in B, where each image point is weighted by its distance to the ground
truth object contour [103]. The measure ranges from 0 (= and B are identical)
to 1 (no overlap of = and B).

We computed HSD and NSD for all segmented objects of an image. In case of
ambiguities, the correspondences between the ground truth objects Rgt and the
segmented objects Rseg were established

1. either by choosing the segmented object B ∈ Rgt which yields the largest
overlap # (B ∩ =) with the ground truth object = ∈ Rgt (Chapter 5).

2. or by choosing the segmented object B ∈ Rgt which is closest to the ground
truth object = ∈ Rgt using the respective distance function (Chapter 6).

3.4.3 Detection-based performance measures

In addition, we used two detection-based performance measures to better assess
the segmentation performance of closely clustered or overlapping objects. We
computed the average number of falsely merged (Merge) and split (Split) objects
per image.

We used the method proposed in [103] to identify falsely merged and split
objects. A bipartite graph was computed, comprising the segmented objects and
the ground truth objects as the vertices of two independent sets (examples of such
graphs are shown in Figure 3.1). A segmented object B and a ground truth object
= are linked by an edge, if = is the ground truth object which the segmented
object B has the largest intersection with (among all ground truth objects). Falsely
merged and split objects are then easily identified by considering the degree of
the vertices (i.e. the number of incident edges). A segmented object with degree
two or larger corresponds to a falsely merged object (Figure 3.1a). Analogously, a
ground truth object with degree two or larger corresponds to a falsely split object
(Figure 3.1b). An object with degree one corresponds to a correctly merged and
split object (Figure 3.1c).
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Segmented
objects

Ground truth
objects

(a)

Segmented
objects

Ground truth
objects

(b)

Segmented
objects

Ground truth
objects

(c)

Figure 3.1. Bipartite graphs used for the detection-based measures. Vertices
correspond to segmented (left) and ground truth objects (right). Edges indicate
object pairs with maximum intersection. (a) One object is falsely merged. (b) One
object is falsely split. (c) The two objects are correctly merged and split.
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Chapter 4

Model fitting using elliptical models

and sequential convex programming

4.1 Introduction

Key challenges of cell nuclei segmentation include strong image noise and the
absence of distinct object boundaries, as depicted in Figure 4.1. In previous work,
cell segmentation was often formulated a model-based energy minimization problem
(cf. Section 2.3). Discrete models have the advantage that the solution can often be
computed close to global optimality at low computational cost (e.g., [76, 77]). Such
approaches are robust because they provably obtain one of the best admissible
solutions. However, shape information is difficult to encode in discrete models.

Figure 4.1. Two example images of GFP-transfected GOWT1 mouse embryonic
stem cell nuclei (left and right) and corresponding ground truth segmentation.

Many cell segmentation methods are based on a variational framework (e.g.,
[48, 49, 50, 51, 52, 56, 57, 58, 59, 60]), where object contours are represented as
level sets of functions. Formulating the evolution of such functions as a convex
optimization problem (cf. Section 2.2.2) assures that a globally optimal solution
is found reproducibly for any initialization (e.g., [51]). Exploiting shape informa-
tion is advantageous to better cope with strong image noise and other distor-
tions. Previously proposed shape-based approaches include shape-regularized
variational level sets (e.g., [56, 57, 58, 59, 60]) or parametric shape models (e.g.,
[41, 42, 43, 44, 62, 63, 64, 65, 66, 67]). Model fitting was performed by probabilistic
methods (e.g., [62, 63, 64, 67]), snake energy minimization (e.g., [41, 42, 43, 44]), or
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expectation maximization (e.g., [65, 66]). None of these shape-based methods (ex-
cept [64, 67]) yield globally optimal solutions. In [64], elliptical models are randomly
sampled from uniform distributions, requiring a computationally intractable num-
ber of samples to obtain a globally optimal solution. The approach in [67] uses only
circular models, requires a binarization of the image, and does not use the image
intensities. None of the previous shape-based approaches for cell segmentation
used convex optimization.

In this chapter, we introduce a new approach for cell nuclei segmentation,
which is based on convex optimization and jointly exploits shape and intensity
information. The approach uses implicitly parameterized elliptical shape models
and we present a non-linear parameterization, which exploits the locations of
priorly detected objects. The elliptical models are directly fitted to the image
intensities, thus binarization of the image is not required. In our approach, the
globally optimal minimizer of a suitable energy is estimated using a sequence of
convex programs. A fast second-order method is employed to numerically solve
each convex program. We also present a robust method for automatic selection
of image regions, where model fitting is performed. Our approach is based on
convexity and elliptical models and hence denoted CVXELL. We have evaluated
CVXELL using fluorescence microscopy images of two different cell types and
performed a quantitative comparison with previous methods.

The work has been published in Kostrykin et al. [11].

4.2 Approach

In this section, we describe our convex model-based approach for cell nuclei
segmentation using elliptical shape models (CVXELL). Section 4.2.1 details the
model and the optimization scheme based on sequential convex programming.
Section 4.2.2 describes an approach for automatic selection of image regions for
model fitting.

4.2.1 Model fitting by convex programming

Let Ω denote the set of all image points. We formulate the shape model as the zero-
level set %( (!) =

{
" ∈ ℝ2

&
&( (";!) = 0

}
of a !-parametrized function ( : Ω → ℝ,

which maps an image point " ∈ Ω to a real value. With a symmetric matrix
/ ∈ ℝ2×2, a vector ? ∈ ℝ2, and a scalar , ∈ ℝ, we choose the parameterization

( (";!) = (" − ?)? · / · (" − ?) + ,, (4.1)

where the tuple ! = (/, ? , ,) is used for shorthand notation. Then, for a 2-D image,
the zero-level set %( (!) is the whole image plane ℝ2, the empty set, a single dot, or
takes either an elliptic, hyperbolic, or linear shape.
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The parameterization of the model function in Eq. (4.1) was previously used in
[75] for vessel segmentation in 3-D CT data employing a first-order optimization
scheme. In this work, we use the parameterization for segmentation of cell nuclei
in fluorescence microscopy images. We also introduce different constraints and
propose a much faster second-order optimization scheme (see below).

Energy formulation using a convex loss function

The model function in Eq. (4.1) induces the two disjoint image regions Ω+
( (!) =

{" ∈ Ω|( (";!) > 0} and Ω−( (!) = {" ∈ Ω|( (";!) < 0}, which correspond to the
zero-sublevel and zero-superlevel set of the function (, respectively, and identify
the inside and the outside of the model if %( (!) is elliptical. Given an image
- : Ω→ ℝ, which depicts an object and its background in an image region ' ⊆ Ω,
and an intensity offset *, the intensity model

) (") = - (") − *, (4.2)

induces the two regions Ω+
) = {" ∈ Ω|) (") > 0} and Ω−) = {" ∈ Ω|) (") < 0}

analogously, corresponding to the imaged object and its background. To segment
the object in the image region ', we seek the model parameters ! so that '∩Ω+

( (!)
matches ' ∩Ω+

) and ' ∩Ω−(# (!) matches ' ∩Ω−) . Formally, we minimize

∑

"∈'
9 () (") ; ( (";!)) , 9 (); () =

{
1 if ) · ( < 0,

0 else,
(4.3)

where the 0/1 loss function 9 penalizes each sample " with sgn ) (") ≠ sgn ( (";!).
Since the loss function 9 in Eq. (4.3) is non-smooth, we instead use a surrogate loss
function +) (see, e.g., [23]) and consider

∑

"∈'
+) () (") ; ( (";!)) , +) (); () = ln (1 + exp (−) · (/))) . (4.4)

The function +)/ln 2 is a minimal upper bound of 9 from Eq. (4.3), which also is
smooth, and moreover convex in the model ( (see Example 2.1, considering )−1 as
a factor of )). The factor 1/ln 2 is omitted in Eq. (4.4) because the minimizers of a
function are invariant to positive constant factors. The value ) > 0 governs how
strong samples " with sgn ) (") ≠ sgn ( (";!) are penalized. Since Eq. (4.4) is non-
convex in the model parameters !, we use an approximation scheme to estimate
its global minimizer by solving a sequence of convex programs, as detailed below.

Sequential convex programming

Using ! = !0 + !-, where !0 is a current estimate of the minimizer and !- is an
increment, leads to the decomposition ( (";!) = ( (";!0) + < (";!-) + <′ (";!-) of
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Eq. (4.1) with

< (";!-) =
〈
/- , " · "? − 2" · ??0 + ?0 · ??0

〉
+
〈
2?- , /0 · (?0 − ")

〉
+ ,- (4.5a)

being linear in !-, and a higher-order term

<′ (";!-) =
〈
?- , (/0 + /-) · ?-

〉
+
〈
2?- , /- · (?0 − ")

〉
. (4.5b)

Then, within the trust region ‖/-‖ ≤ ,1 and ‖?-‖ ≤ ,2 with small ,1, ,2 > 0
we have <′ (";!-) ≈ 0 and hence ( (";!) ≈ ( (";!0) + < (";!-). This enables us to
estimate the global minimizer of Eq. (4.4) by a sequential scheme: Keeping !0 fixed,
we compute the increment !- which globally minimizes the convex energy

∑

"∈'
!" (!) , !" (!) = +)

(
) (") ; ( (";!0) + < (";!-)

)
(4.6)

subject to the two trust-region constraints ‖/-‖ ≤ ,1 and ‖?-‖ ≤ ,2 (cf. Section 6.1.3
in [15]), which leads to !0← !0 + !- for the next iteration.

The energy in Eq. (4.6) is convex, since +) (); () is convex in (, and ( (";!0) +
< (";!-) is linear in #- (see the rule for convex-affine composition in Section 2.2.2). In
our experiments we found that constraining %( (!) to be located within a predefined
image region increases the robustness. With ? as the center of an elliptic shape
model %( (!), we formulate a convex program that is solved in each iteration and
constrains ? to stay within a maximum distance ; ∈ ℝ+ of a preset point / ∈ ℝ2:

minimize
∑

"∈'
!" (!)

subject to ‖/-‖ ≤ ,1,

‖?-‖ ≤ ,2,

‖?- + ?0 − /‖ ≤ ; ,

(4.7)

The feasible set in Eq. (4.7) is convex because the constraints are determined by
convex functions (norms) of affine mappings. These constraints are different to [75],
where 3-D tubular shapes were enforced for vessel segmentation in 3-D CT data
and location constraints were not used. In contrast, we avoid fitting an elliptical
model when no such structure is present.

The global solution of the constrained convex optimization problem in Eq. (4.7) is
found by primal-dual interior-point methods (see Section 2.2.5), for which we used
the implementation [115]. This second-order optimization scheme is significantly
faster than using a first-order method to solve Eq. (4.7) directly. The initialization
!- = 0 is always feasible if ‖?0 − /‖ ≤ ; is assured. We incrementally refine the
estimate !0 by solving the optimization problem in Eq. (4.7), until the increment
‖!-‖ becomes smaller than ,min or 0max iterations are reached. This is outlined in
Algorithm 4.1, which determines the solution !̂ = (/̂, ?̂ , ,̂).
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Algorithm 4.1: Intensity-based model fitting using sequential convex program-
ming and location constraints.
input : Ω, -, *, ), /, ;, 0max, ,min

1 Initialize /0←
[ −1/;2 0

0 −1/;2

]
; ?0← /; ,0← 1;

2 for % ← 1 to 0max do
3 Set !-← solution of Eq. (4.7) using the initialization !- = 0;
4 if ‖!-‖ < ,min then break;
5 Update !0← !0 + !-;

6 return !0;

4.2.2 Selection of image regions

Our approach presented above determines the shape of a cell nucleus within
an image region '. Since the shape of %((!̂) is not restricted to ellipses by the
constraints of Eq. (4.7), the result of Algorithm 4.1 satisfies

/̂ ≺ 0 ∧ ,̂ > 0 (4.8)

if and only if an elliptical structure is present in ', where “≺” denotes the partial
order with respect to the semidefinite cone. Thus, our aim is to determine one
region ' for each cell nucleus in the image, where falsely detected regions without
cell nuclei are tolerable, because using Eq. (4.8) for testing allows identifying and
discarding empty regions in a simple but reliable manner.

To determine suitable image regions, we employed a multiscale blob detector
[108]. We used a very conservative threshold for the detection, since falsely detected
blobs (and the corresponding fitted shapes) can be reliably discarded by Eq. (4.8).
Densely located cell nuclei were handled by applying the detector not directly to
the image intensities -, but to the image - − ‖∇-‖ /max" ‖∇- (")‖, where ‖∇-‖ is
the gradient magnitude of -. The image is then partitioned into distinct regions by
assigning each pixel " to the %-th blob, for which the squared Mahalanobis distance
(" − /%)? · $% · (" − /%) to the center /% of the %-th blob is minimal. We used the
matrix

$% = −'% /
(
(2
% · .min (−'%)

)
, (4.9)

where '% is the Hessian matrix of the image intensities - at /% and .min (−'%) is
the lowest eigenvalue of −'% . Blobs with .min (−'%) = 0 were not considered. The
denominator in Eq. (4.9) normalizes the scale information in '% with respect to the
blob scale (% . Using the Hessian matrix of an image for analyzing local structure is
not new (e.g., [116]). However, in our approach we use the Mahalanobis distance
and the normalization in Eq. (4.9). Figure 4.2 shows that using the Euclidean
distance tends to split cell nuclei into multiple regions (first row), the Mahalanobis
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(d) (e) (f)

Figure 4.2. Voronoi diagrams (green) of detected blobs (yellow dot and circle)
using (a) Euclidean distance ($% = &), (b) Mahalanobis distance ($% = −'%), (c) Ma-
halanobis distance using the normalization in Eq. (4.9) for two example images
(top, bottom) from the NIH3T3 dataset.

distance without normalization is prone to falsely-detected blobs (second row),
and our approach performs best.

For each determined region ', we estimated the globally optimal fit of our shape
model using Algorithm 4.1. The parameters / and ; were chosen as the center and
radius

√
2 · (% of the blob, the threshold * was determined by Otsu thresholding

[33] of the region '. We used ) = 0.025, 0max = 50, ,min = 0.1, ,1 = 20, and ,2 = 1
in all our experiments. For every fitted model passing the condition in Eq. (4.8), we
further examined the eigenvalue decomposition /̂ = @ · Λ ·@? and computed the
ellipse half-axes [C1, C2] = −

√
,̂ · Λ−1/2 ·@ . We discarded those results additionally,

for which the ellipse area 3 · ‖C1‖ · ‖C2‖ or circularity ‖C1‖ /‖C2‖ significantly differed
from the means of the same image, and merged ellipses with sufficient overlap
into single objects.

4.3 Evaluation

First, we studied the convergence properties of our CVXELL approach, which
leverages a second-order optimization scheme. Using the image shown in Fig-
ure 4.3a, we compared our method with the first-order scheme in [75], which was
previously used for vessel segmentation in 3-D CT data, but omitting the tubular
shape constraints. Our approach converged in 0.6 seconds (after five iterations
there were hardly any changes), achieving a Dice coefficient of 84% (see Figure 4.3d).
In comparison, the scheme in [75] required already 3.3 seconds for one iteration
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(a) (b) (c) (d)

Figure 4.3. Example of the performance of our CVXELL approach. (a) Section of an
example image from GOWT1 dataset 1. (b) Ground truth. (c) Convergence of our
second-order approach (red) compared to first-order optimization (gray). (d) Our
segmentation result.

(Dice coefficient: 80%) and did not terminate within 100 seconds (using the same
parameter settings as for our approach).

Second, we applied CVXELL to images from three datasets. The first dataset
(from [103]) consists of 49 images of Hoechst-stained NIH3T3 cells. Visible artifacts
and non-elliptic nuclei shapes hamper the analysis of these images. The other two
datasets are training datasets from the ISBI 2013 Cell Tracking Challenge [104],
consisting of 51 images of GFP-transfected GOWT1 cells. Both datasets are difficult
due to strong image noise and low contrast (e.g., see Figure 4.3a). A detailed
description of the datasets is given in Section 3.2.

We used the Dice coefficient and the SEG measure from [104] to evaluate
our results. SEG was computed for all images. It is defined as the mean Jaccard
similarity index D (E) = |E ∩ B (E)| /|E ∪ B (E)| of a ground truth cell nucleus E and
its corresponding segmented object B (E). If no segmented object corresponds to E,
D (E) = 0 is set. For the Dice coefficient, we used all images, which a fully-labeled
ground truth was available for (all 49 images for the NIH3T3 dataset and 4 images
for each GOWT1 dataset). See Section 3.4 for details.

For the evaluation with the Dice coefficient, we used the NIH3T3 dataset and
both GOWT1 datasets. For NIH3T3, results were previously reported for CVX-LS
[51], which is a variational level sets approach based on convex energies but shape
information was not used (see Section 3.3). We performed a comparison with
this method and Otsu thresholding, and studied the effectiveness of the location
constraint of our approach in Eq. (4.7). The results in Table 4.1 show that the
location constraint improves the accuracy significantly. In addition, our CVXELL
approach outperforms CVX-LS [51] and Otsu thresholding.

We also assessed the performance of our method on the two GOWT1 datasets
using the SEG measure and compared it with three other methods, for which [80]
provided results. The first method is KTH [111], which performed overall best
for segmentation in the ISBI 2013 Cell Tracking Challenge [104]. The other two
methods are a blob detection approach (Blob-WS) [79] and a deep learning method
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Dataset Otsu CVX-LS CVXELL w/o LC CVXELL

NIH3T3 40.5 % 85 % 86.4 % 87.4 %

GOWT1 dataset 1 59.2 % — 57.4 % 63.7 %
GOWT1 dataset 2 60.4 % — 86.7 % 89.4 %

Table 4.1. Average Dice coefficients of our CVXELL approach with and without
location constraints (LC) and other approaches. The best-performing method of
each dataset is highlighted.

(CPN) [80]. For a description of the methods see Section 3.3. We also used Otsu
thresholding for our comparison. The results in Table 4.2 show that our method
performs best on the second GOWT1 dataset. For the first GOWT1 dataset, our
method is second best (somewhat worse than CPN), but significantly more accurate
(13.6 %P4 better) than KTH, which achieved the best overall result for segmentation
in the challenge [104]. Our method is also 7.9 %P better than Blob-WS. The low
values for Otsu thresholding indicate the difficulties of the datasets, where cell
nuclei are easily missed due to low contrast and strong noise. Considering this, and
also that BLOB and particularly CPN exploit temporal information by performing
joint segmentation and tracking, which our method does not, the results of our
method are very competitive.

Dataset Otsu CPN Blob-WS KTH CVXELL

GOWT1 dataset 1 21.7 % 85.1 % 74.2 % 68.5 % 82.1 %
GOWT1 dataset 2 42.5 % 87.3 % 90.5 % 89.4 % 91.3 %

Table 4.2. SEG performance values of Otsu thresholding, CPN, Blob-WS, KTH, and
our CVXELL approach. The best-performing method of each dataset is highlighted.

4.4 Discussion

In this chapter, we have presented a new model-based approach for robust seg-
mentation of cell nuclei in microscopy images. An elliptical shape model is directly
fitted to the image intensities by solving a sequence of convex programs, thus, shape
and intensity information are jointly exploited. A fast second-order optimization
scheme determines the global solution of each convex program. By the choice of
the constraints in the convex programs, our approach is intrinsically tolerant to
falsely selected image regions. A quantitative comparison with previous methods
showed that our approach yields competitive results or outperforms previous
methods.

4%P denotes percentage points.
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Chapter 5

Joint segmentation and

cluster splitting using

elliptical models

5.1 Introduction

A central problem in cell segmentation is coping with closely clustered or partially
overlapping objects. To address this, approaches that exploit shape information
have been introduced (for a review see Section 2.3). These shape-based approaches
often perform segmentation and separation of individual objects (cell cluster
splitting) consecutively. There are two main schemes:

1. Binarization-based. In this scheme, image binarization is performed first and
individual objects are delineated subsequently by analysis of the binary
image (e.g., [32, 52, 65, 66, 67]). Methods for binary image analysis include
morphological analysis [32, 52], probabilistic methods [67], and expectation
maximization [65, 66]. A disadvantage of these approaches is that shape
and intensity information are only used in consecutive steps, but not jointly.
Individual objects are identified using only the initial binarized image.

2. Detection-based. In this scheme, prior object detection is performed to identify
individual cells before segmentation (e.g., [58, 61, 77]). Object detection was
performed either by analysis of local second-order image statistics (e.g., [77]
and Chapter 4), using random decision forests [58], and connected component
analysis [61]. These approaches jointly exploit shape and intensity information,
but they heavily depend on the result of the initial object detection, which
determines how cell clusters are eventually split.

Active contours based on snakes (e.g., [41, 42, 43, 44]) or variational level sets with
shape priors (e.g., [56, 57, 59, 117]) can be seen as a sub-group of the second scheme
(detection-based). The reason is that accurate initialization is crucial for these
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Figure 5.1. Overview of our GOCELL approach for cell nuclei segmentation.

approaches, since they do not yield a globally optimal solution, and initialization
requires detection of the individual cell nuclei.

Shape-based approaches without requiring prior image binarization or object
detection have also been proposed (e.g., [62, 63, 64]) which were based on proba-
bilistic methods for model fitting. However, the methods of Dong and Acton [62]
and Soubies et al. [63] do not obtain globally optimal solutions. Descombes [64]
described an approach based on simulated annealing, which is computationally
intractable in practice and requires careful calibration of the cooling parameters.

In this chapter, we introduce a new globally optimal approach for cell nuclei seg-
mentation, which jointly exploits shape and intensity information. The approach is
based on implicitly parameterized elliptical models and global energy minimiza-
tion. Our proposed shape parameterization is linear and leads to a convex energy
for single objects, that is optimally minimized using robust numerical methods.
The optimization does not depend on the initialization and does not suffer from
local minima. To avoid prior detection of image regions corresponding to the
individual cell nuclei, we generalize the single-object model to the multi-object
case. Our multi-object model consists of multiple collaborating ellipses, which
represent a whole image. This leads to a non-convex energy, yet we have found
that model fitting using the multi-object model corresponds to the min-weight
set-cover problem (cf. Definition 2.2 in Section 2.2.6). Assuming that individual
objects are roughly elliptical, simply connected, and correspond to one or more
local intensity peaks, the result is determined close to the global solution using
an efficient combination of combinatorial and second-order convex optimization
schemes. Figure 5.1 shows an overview of the proposed GOCELL (globally optimal
collaborating ellipses) approach.

The proposed energies are contrast-invariant and thus our approach is robust
to inter-object intensity inhomogeneities. The joint exploitation of shape and
intensity information enables our approach to intrinsically cope with intra-object
intensity inhomogeneities and partial object overlap (see Figure 5.2). Thus, for
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(a) (b) (c)

Figure 5.2. Separation of touching (first row) and overlapping (second row) cell
nuclei. (a) Original image section (NIH3T3 cells). (b) Corresponding ground truth
data. (c) Segmentation result of the proposed approach (green contour).

splitting of clustered cell nuclei, our approach neither requires an object interaction
model (e.g., [40, 49, 62, 63, 64, 67, 77, 78]) nor prior image binarization (e.g.,
[32, 52, 65, 66, 67]). In contrast to our previous single-object approach CVXELL
(Chapter 4), the proposed single-object scheme leads to a convex energy, which
can be directly (exactly) minimized and does not require an approximation.
In addition, we propose a multi-object scheme. This scheme jointly performs
cell segmentation and cluster splitting, avoiding the necessity for prior object
detection (e.g., [41, 42, 43, 44, 56, 57, 58, 59, 61, 77, 117]). The structure of our
approach inherently permits effective parallelization. In contrast to learning-based
approaches (Section 2.3.3), our approach does not require data-driven training
nor annotated data. A main advantage of our model-based approach is that the
explicit model assumptions allow designing well-defined algorithms that facilitate
both reproducibility and predictability. To the best of our knowledge, we propose
the first globally optimal model-based approach which jointly exploits shape and
intensity information and is computationally tractable in practical applications.

We have evaluated our approach using fluorescence microscopy datasets of
five different cell types, including publicly available benchmark datasets, and
performed a quantitative comparison with previous methods. It turned out that
the proposed approach generally improves the performance.

This chapter is organized as follows. Section 5.2 presents our intensity-based
segmentation approach using convex energies and an implicitly parameterized
single-object model. Section 5.3 describes the generalized multi-object model and
the corresponding scheme for global energy minimization. Experimental results

53



Chapter 5 Joint segmentation and cluster splitting using elliptical models

and a comparison with previous methods are provided in Section 5.4. We discuss
the results of our work in Section 5.5.

The work has been published in Kostrykin et al. [12].

5.2 Single-object model and convex energy formulation

In this section, we describe our globally optimal approach for cell nuclei segmenta-
tion, which jointly uses shape and intensity information based on a single-object
model. We define a shape model as the zero-level set %( (!) =

{
" ∈ ℝ2

&
&( (";!) = 0

}

of a model function (, which maps an image point to a real value. More specifically,
we parameterize ( as a second-order polynomial,

( (";!) = "? · / · " + ?? · " + ,, (5.1)

where the symmetric 2×2 matrix/, the vector ? ∈ ℝ2, and , ∈ ℝ are represented by
the shape parameter vector !. The shape of the zero-level set %( (!) is then confined
to an ellipse, a parabola, hyperbola, line, or a stripe, unless %( (!) corresponds to
the whole image plane, the empty set, or a single dot. Given the set of all image
points Ω, the model function ( induces two disjoint image regions, which are
the zero-sublevel set Ω−( (!) = {" ∈ Ω|( (";!) < 0} of ( and its zero-superlevel set
Ω+
( (!) = {" ∈ Ω|( (";!) > 0}. If the parameters ! are chosen so that the shape

model %( (!) is elliptical, then the regions Ω+
( (!) and Ω−( (!) correspond to the

interior and exterior of the ellipse, respectively.
Segmentation using the parameterization in Eq. (5.1) is analogous to using the

parameterization in Eq. (4.1) for CVXELL in Section 4.2.1, but there are important
differences since Eq. (5.1) is linear in the shape parameters ! in contrast to Eq. (4.1)
which is non-linear. A main advantage of using a linear parameterization is that it
directly leads to a convex energy (see below).

Given an image - : Ω→ ℝ of an object and its background in an image region
' ⊆ Ω, which are roughly separable using an intensity offset *, the *-superlevel set
Ω+
-−* = {" ∈ Ω|- (") − * > 0} indicates the imaged object, whereas the *-sublevel

setΩ−-−* = {" ∈ Ω|- (") − * < 0} corresponds to the image background. To segment
the image region ', we consider the intensity model ) (") = - (") − * in Eq. (4.2)
and seek those shape parameters !̂, for which ' ∩ Ω+

( (!̂) covers ' ∩ Ω+
) while

' ∩Ω−( (!̂) covers ' ∩Ω−) . More formally, we minimize

&',9 (!) =
∑

"∈'
9 () (") ; ( (";!)) , 9 (); () =

{
1 if ) · ( < 0

0 else,
(5.2)

which penalizes each image point " with sgn ) (") ≠ sgn ( (";!). Since the energy
&',9 is non-smooth, we instead determine the optimal shape parameters !̂ as the
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global minimizer of the energy function

&' (!) = &',+ (!) =
∑

"∈'
+) () (") ; ( (";!)) , +) (); () = ln (1 + exp (−) · (/))) ,

(5.3)

where the surrogate loss function +) from Eq. (4.4) is smooth and convex in (
and ) > 0 is a fixed factor. In addition, +) is a minimal convex upper bound of
the 0/1-loss 9 in Eq. (5.2), if 9 is weighted by the constant factor +) (); 0) = ln 2.
Thus, the minimization of the energy &' also minimizes the energy &',9, since
the minimizers of a function are invariant to positive constant factors (ln 2). Our
approach exploits both shape and image intensity information and an extension to
other image features (e.g., texture) is possible by including additional terms in ).

Since the proposed parameterization in Eq. (5.1) is linear in the shape parameters
!, the energy function &' in Eq. (5.3) is a sum of convex functions (cf. convex-
affine composition in Section 2.2.2) and thus also convex (cf. convex weighted
sum in Section 2.2.2). The energy formulation in Eq. (5.3) is analogous to logistic
regression using polynomial basis function expansion (cf. Example 2.3 using
Φ (") =

(
"2

1 , "
2
2 , 2"1"2, "1, "2, 1

)
), but in contrast to logistic regression, the codomain

of ) in our approach is not limited to binary values.
In our previous CVXELL approach (Chapter 4), a different parameterization of

the model function was used, which is not linear in the shape parameters ! (cf.
Eq. (4.1)), and thus the corresponding energy is non-convex. There, we hence used
a sequential approximation scheme for global energy minimization. In contrast,
for the new parameterization in Eq. (5.1), the energy &' is convex and can be
directly globally minimized without requiring an approximation. In our proposed
approach, we determine the globally optimal parameters !̂ by robust numerical
methods and an arbitrary initialization, as detailed in Section 5.3.3.

Another advantage of the new parameterization in Eq. (5.1) is that it is homoge-
neous. Consequently, the optimal zero-level set %((!̂) is invariant to the factor ),
since the feasible set of the parameters ! is unbounded, and thus closed under
scalar multiplication. Using the parameterization in Eq. (5.1) we can assume ) = 1
without loss of generality. In our notation, we thus skip the dependence on ) below
and define + (); () = +1 (); () to improve readability. The factor ) > 0 in Eq. (5.3)
linearly scales the intensity model ) and thus governs the contrast between the
imaged object and the background. Model fitting using the energy &' and the new
parameterization in Eq. (5.1) is hence invariant to the image contrast.
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5.3 Multi-object model and globally optimal

energy minimization

The single-object model described above represents a single elliptical object. Hence,
the model can only be fitted to an image region, which contains at maximum one
single object. However, since cell microscopy images generally contain multiple
objects, we generalize the single-object model in Eq. (5.1) to the multi-object
case. Below, we describe the multi-object model, the method for global energy
minimization, and implementation details.

5.3.1 Multi-object model

Recall that the single-object model function (, described in the Section 5.2 above,
induces two disjoint image regions, which are defined by the zero-superlevel set
Ω+
( (!) and the zero-sublevel set Ω−( (!). If the zero-level set %( (!) has an elliptic

shape, then the two regions correspond to the interior and exterior of the ellipse.
For the multi-object case, we extend the model function ( so that it represents
multiple elliptical objects.

In the multi-object case, we seek to cover the image points " ∈ ' of the im-
age foreground () (") > 0) by the union of the foreground of multiple models
(
(
!(1)) , . . . , (

(
!(*)) of the form in Eq. (5.1). At the same time,the image background

(image points " with ) (") < 0) is covered by the intersection of the background of
these models. The union of the foreground of the models (

(
!(1)) , . . . , (

(
!(*)) can

be expressed as
⋃
.∈[*]Ω

+
( (!.) = Ω+

(̃ (!), which is the zero-superlevel set of

(̃ (";!) = max
.∈[*]

(
(
";!(.)) where ! =

(
!(1), . . . , !(*)) , (5.4)

since, for fixed " and !, (̃ (";!) > 0 occurs if and only if there is a . ∈ [*] with
(
(
";!(.)) > 0. The intersection of the background of the models is given by

⋂
.∈[*]Ω

−
(

(
!(.)) = Ω−

(̃ (!), since ( (";!) < 0 occurs if and only if (
(
";!(.)) < 0 for

all . ∈ [*]. Using the formulation in Eq. (5.4), the models (
(
!(1)) , . . . , (

(
!(*)) thus

collaboratively represent the image foreground and background. Below, to improve
the readability, we define (. (";!) = (

(
";!(.)) and skip the explicit dependence of

(̃ and (. on !.

Model activity regions and region fragments

An example illustrating the multi-object model is provided in Figure 5.3. Naturally,
at any given image point ", the pointwise maximum in Eq. (5.4) does not depend
on models (. with (. (") < (̃ ("). Hence, models (. with (. (") = (̃ (") are of major
interest. In ourapproach,such a model is denoted to be active at ". The set of all image
points, where this model is active, forms an activity region. Closer characterization
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(a) (b)

(c) (d) (e)

Figure 5.3. Example illustrating the multi-object model with optimally chosen
model parameters !̂. (a) Original image section (GOWT1 cells). (b) Zero-level set
%((!̂) (green) of the multi-object model (. (c) Intensity model ) (") as a function
of ". (d) Multi-object model (("; !̂) as a function of ". (e) Corresponding model
activity regions (green contour).

of these regions proves to be advantageous, as detailed in Section 5.3.2 below.
Figure 5.3e shows the activity regions, which correspond to the multi-object model
depicted in Figure 5.3d.

Multi-object energy formulation

The multi-object model in Eq. (5.4) is homogeneous in the parameters !, since the
pointwise maximum and (. are homogeneous functions. Thus, the multi-object
model preserves the contrast invariance property of the single-object model and
we may hence assume ) = 1 for the energy function of the multi-object model in
Eq. (5.4) without loss of generality. Analogously to the segmentation of an image
region ' (Section 5.2), segmentation of an entire image Ω using the multi-object
model in Eq. (5.4) is performed by determining those shape parameters !̂, for
which Ω+

( (!̂) covers Ω+
) while Ω−( (!̂) covers Ω−) . This corresponds to minimization

of the energy function

& (!) =
∑

"∈Ω

+
(
) (") ; max

.∈[*]
(. (")

)
, (5.5)

where the image intensities are incorporated via the intensity model ) in Eq. (4.2)
using an intensity offset *. The offset is computed by analyzing the local image
intensities, as detailed in Section 5.3.3 below. Image binarization is not required.

Minimization of the energy function in Eq. (5.5) determines the parameters ! of
the multi-object model in Eq. (5.4) which define the globally optimal collaborating
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(a)

(1 (2

(b)

(2 (1

(c)

(d)

(1 (2

(e)

(2 (1

(f)

Figure 5.4. Example illustrating the non-convexity of the energy in Eq. (5.5) using
* = 2 object models. (a) Synthetic image. (b) Parameters !0 corresponding to
the zero-level sets of the two models (red for (1 and blue for (2). (c) Parameters
!1, where !(1)

1 = !(2)
0 and !(2)

1 = !(1)
0 . (d) Energy function from Eq. (5.5) along the

"-parameterized line !" = !0 · (1 − ") + !1 · " between !0 and !1 (black, solid) and
its corresponding convex envelope (orange, dashed). (e) Zero-level sets for the
parameters !0.2 and (f) !0.8.

ellipses (GOCELL) representation of the image. In Eq. (5.5), the pointwise maximum
of the family of linear functions (1, . . . , (* is convex in !, but not affine. Thus,
in Eq. (5.5), the composition of the convex loss function + () (") ; ·), as given by
Eq. (5.3), and the multi-object model in Eq. (5.4) is non-convex (cf. Section 2.2.2).
An example of this non-convexity is provided in Figure 5.4, which illustrates the
energy function along a straight line in the parameter space. The minimization
of non-convex energies is generally difficult. In our case, convex envelope-based
reformulations (e.g., [118]) are not applicable, because the convex envelope (see
Section 2.2.3) of the energy in Eq. (5.5) possesses an infinite number of global
minimizers, which are far from being optimal with respect to the energy function
(e.g., " = 0.5 in Figure 5.4d). Also, the sequential approximation scheme from
Section 4.2.1 is not applicable, since the multi-object model in Eq. (5.4) is non-
polynomial. However, global minimization of the energy in Eq. (5.5) is tractable if
the model activity regions are assumed to be unions of adjacent subregions, which
we call region fragments, as detailed below.

5.3.2 Global energy minimization

In this section, we derive a global minimization scheme for the energy function in
Eq. (5.5). Since the loss function + () (") ; ·) is monotonously decreasing for ) (") > 0,
the maximization of (. with respect to . ∈ [*] is equivalent to the minimization
of + () (") ; (. (")) for non-negative ) ("). For negative ) ("), the minimization is
equivalent to the maximization of + () (") ; (. (")), since then + () (") ; ·) increases
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monotonously. Thus, the energy of the multi-object model can be written as

& (!) =
∑

"∈Ω

(
[) (") ≥ 0] · min

.∈[*]

{
+ () (") ; (. ("))

} )

+
(
[) (") < 0] · max

.∈[*]

{
+ () (") ; (. ("))

} )
,

(5.6)

where [statement] = {1 if statement = true; 0 else} are the Iverson brackets.
The loss function + only attains non-negative values. Thus, the sum over

+ () (") ; (. (")) for . ∈ [*] is an upper bound of the maximal + () (") ; (. (")).
Using this upper bound to reformulate Eq. (5.6) leads to

&̄ (!) =
∑

"∈Ω

(
[) (") ≥ 0] · min

.∈[*]

{
+ () (") ; (. ("))

} )

+
(
[) (") < 0] ·

∑

.∈[*]

+ () (") ; (. ("))
) (5.7)

with the property 0 ≤ & (!) ≤ &̄ (!) for all !. Hence, the minimization of the upper
bound &̄ also minimizes the energy &.

The pointwise minimum of + () (") ; (. (")) over . ∈ [*], as given in Eq. (5.7),
can be written as a pointwise minimization with respect to a binary indicator
vector F ("). We hence introduce a binary vector F (") ∈ {0, 1}* for each image
point ", where F. (") = 1 means that the .-th model is active at ". Then, the energy
in Eq. (5.7) can be expressed as a pointwise minimization with respect to F, that is

&̄ (!) = min
F∈G

&̄F (!) (5.8a)

with

&̄F (!) =
∑

"∈Ω

∑

.∈[*]

[) (") ≥ 0] · F. (") · + () (") ; (. ("))

+ [) (") < 0] · + () (") ; (. (")) .
(5.8b)

The constraint F ∈ G =
{
F : ℝ2→ {0, 1}*

&
&"?* · F (") ≥ 1∀" ∈ Ω

}
and "?* is an 1×*

vector of values one, enforces that there must be an active model for each " ∈ Ω.
Reordering the two sums in Eq. (5.8b) leads to

&̄F (!) =
∑

.∈[*]

∑

"∈Ω
[" ∈ 2. ∨ ) (") < 0] · + () (") ; (. (")) , (5.9)

where 2. = {" ∈ Ω|F. (") = 1} is the activity region of the .-th shape model. The
minimization of &̄F (!) with respect to F and ! also minimizes the upper bound &̄
of the energy & and thus determines the optimal fitting of the multi-object model
in Eq. (5.4) to the image data. The energy &̄F (!) is convex in ! for fixed F, but it is
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non-smooth in F. However, since the order of minimization with respect to F and
! =

(
!(1), . . . , !(*)) is interchangeable, the minimization of Eq. (5.9) boils down to

inf
!

min
F∈G

&̄F (!) = min
F∈G

{ ∑

.∈[*]

inf
!(.)

∑

"∈Ω
[" ∈ 2. ∨ ) (") < 0] · + () (") ; (. ("))

}
. (5.10)

Notably, if 2. = ∅, then inf!(.)
∑
"∈Ω [" ∈ 2. ∨ ) (") < 0] · + () (") ; (. (")) = 0. We

use an indicator vector < ∈ {0, 1}* and define <. = 0 as an equivalent representation
of 2. = ∅. With this substitution (<. = [2. = ∅]), we then obtain

inf
!

min
F∈G

&̄F (!) = min
F∈G
〈< (F) , ! (F)〉 , (5.11)

as a reformulation of Eq. (5.10), where , ∈ ℝ*
+ is a vector with the components

,. = inf
!(.)

&'.

(
!(.)) , '. = 2. ∪ {" ∈ Ω|) (") < 0} (5.12)

and the convex energy &'. is given by Eq. (5.3). Below, we describe the solution of
Eq. (5.11) by characterizing the model activity regions 21, . . . ,2* as a subset of
finitely many fixed region prototypes.

Region prototypes

Formally, let 2̂1, . . . , 2̂* be the model activity regions, which correspond to the
optimal F ∈ G with respect to Eq. (5.11). Then, each 2̂. , which is non-empty
(<. = 1), is unique among the regions 2̂1, . . . , 2̂* , because otherwise the optimality
assumption is contradicted due to ,1, . . . , ,* ≥ 0. Hence, 2̂1, . . . , 2̂* form a subset
of an overcomplete set

U = {21, . . . ,20} (5.13)

of 0 ≥ * region prototypes, as detailed in the next paragraph. Using a slightly
different connotation of the vector <, each region prototype 2. ∈ U is either
not included in the solution (<. = 0) or it is included once (<. = 1). Thus, the
minimization in Eq. (5.11) can be solved by minimizing with respect to 6 directly
instead of F,

inf
!

min
F∈G

&̄F (!) = min
<∈$
〈, , 6〉 , (5.14a)

where , and 6 are now 0-dimensional and

$ =

{
< ∈ {0, 1}0

&
&
&
∑

.∈[0]

[" ∈ 2.] · <. ≥ 1∀" ∈ Ω
}
. (5.14b)
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The vector , in Eq. (5.14a) is independent of F and <, since it now represents the
energies in Eq. (5.12) of the region prototypes 21, . . . ,20 , which are fixed. The
polytope constraint

∑
.∈[*] [" ∈ 2.] · <. ≥ 1∀" ∈ Ω in Eq. (5.14b) enforces that the

union of the included prototypes equals Ω, that is, covers the whole image.
The vector , is invariant to the values of F (") at image points " ∈ Ωwith ) (") < 0,

since in Eq. (5.12), the energy&'. is minimized for the union of the region prototype
2. and all image points " with ) (") < 0. For the computation of the set U in
Eq. (5.13), it is hence sufficient to consider only those region prototypes 21, . . . ,20 ,
which differ with regard to the image foreground (image points " with ) (") > 0).
Thus, each optimal region 2̂. covers all image points of a single cell nucleus and
an arbitrary part of the image background. This observation motivates two mild
assumptions, which prove to be convenient for the characterization of U as a set
of a computationally tractable cardinality:

1. Model activity regions are simply connected. This assumption is reasonable since
cell nuclei are physically connected objects without holes, although they
might appear as objects with holes due to staining.

2. Each model activity region contains one or more local intensity peaks. This is
generally the case, since cell nuclei are brighter than the image background in
fluorescence microscopy images. Correspondingly, the boundary of an activity
region is located at an intensity valley. However, not all intensity valleys represent
boundaries of activity regions.

Based on the first assumption, we characterize each region prototype 2 in U

as a simply connected union of region fragments + . Each fragment 6 ∈ + is
formed around a local intensity peak ; (6) and the fragments are separated by
intensity valleys, due to the second assumption. We propose Algorithm 5.1 to
generate + and the prototype set U . The algorithm constructs the fragment
adjacency graph (+ , ℰ), where ℰ ⊆ + ×+ and the adjacency of two fragments
6 , H ∈ + with sufficiently close local intensity peaks ; (6) , ; (H) is represented by
the edge {6 , H} ∈ ℰ. The region prototypes U are then obtained as locally confined
subgraphs. The cardinality of the generated set U is smaller than #+ · 2Δ

ℎ
, where

Δ is the maximum degree of the fragment adjacency graph (+ , ℰ) and ℎ is the
maximum search depth. Thus, for any fixed ℎ and degree Δ, the cardinality of
U grows linearly with the number #+ of fragments. The number of fragments is
controlled either by choosing the smoothing strength ( of the Gaussian filter or
by limiting the set Π in Algorithm 5.1 to a fixed number of most significant local
intensity maxima. Although we do not control Δ directly, the average degree of
the fragment adjacency graph is strictly smaller than 6, since the graph is planar.
The run time complexity of Algorithm 5.1 is at worst quadratic in the number of
generated prototypes, since duplicate prototypes must be sorted out to form the
prototype set U .
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Algorithm 5.1: Generating the fragments+ and the prototype set U .
input : Image - : Ω→ ℝ≥0, smoothing strength ( ≥ 0, relative intensity

threshold 0 ≤ 4 ≤ 1, maximum search depth ℎ ≥ 0, minimum seed
distance -seed ≥ 1, maximum fragments distance -frag ≥ 0.

1 Apply Gaussian filter with standard deviation ( to the image -;
2 Let I ("̂) be {" ∈ Ω|‖ "̂ − "‖ ≤ -seed};
3 Π←

{
" ∈ Ω

&
&- (") = max"′∈I(") - ("′) ∧ (1 − 4) · - (") ≥ min"′∈I(") - ("′)

}
;

4 + ←
{
6 ⊆ Ω

&
&6 is a region of Π-seeded watershed transform of -

}
;

5 Let ; (6) be the centroid of Π ∩ 6;
6 ℰ ←

{
{6 , H} ∈ + ×+

&
&6 is adjacent to H ∧ ‖; (6) − ; (H)‖ ≤ -frag

}
;

7 U ← ∅;
8 for 6 ∈ + do
9 for each simply connected subgraph (+′, ℰ′) of (+ , ℰ) induced by+′ ⊆ + with

6 ∈ +′ and maxH∈+′ distℰ′ (6 , H) ≤ ℎ do
10 U ← U ∪ {2} where 2 =

⋃
H∈+′ H;

11 return+ ,U ;

Incorporation of region fragments enables formulating the minimization in
Eq. (5.14a) as an integer linear program (ILP):

minimize 〈, , <〉
subject to

∑

.∈[0]

[6 ⊆ 2.] · <. ≥ 1 ∀6 ∈ + ,

< ∈ {0, 1}0 .

(5.15)

Since the region prototypes 21, . . . ,20 are independent of <, the computation of
each component of the vector , amounts to solving an individual convex program,
as detailed in Section 5.3.3 below. The combinatorial minimization by the ILP in
Eq. (5.15) yields the vector <. This determines, which of the 0 prototypes are to be
used to form the model activity regions (<. = 1), subject to the constraint that an
active model exists at each point of the image. Thus, our derivation shows that
model fitting using the multi-object model in Eq. (5.4) corresponds to solving the
NP-hard min-weight set-cover problem (see Definition 2.2) in Eq. (5.15).

Tolerance for shape irregularities

Due to the overcompleteness of the prototype set U , the number * of models
being fitted by the ILP in Eq. (5.15) only has the upper bound 0 ≥ *, which is the
cardinality of the prototype set U . Since this number is usually larger than the
number of cell nuclei in an image, this likely leads to oversegmentation of non-
ideally elliptical cell nuclei, as the example in Figure 5.5 shows. The two large,
slightly irregularly shaped cell nuclei in Figure 5.5a are falsely split (Figure 5.5d).
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(a) (b) (c) (d) (e) (f)

Figure 5.5. Influence of the tolerance for shape irregularities # in Eq. (5.16) on the
segmentation result. (a) Original image section (HeLa cells). (b) Ground truth.
(c) Model activity region fragments + (green contour) generated from intensity
peaks of the smoothed image (Algorithm 5.1). (d) Segmentation result (green
contour) using # = 0, (e) # = 0.6 · ,m, and (f) # = 1 · ,m, where ,m is the median of
the components of the vector ,.

The reason is that, for our multi-object model, these cell nuclei are rather cases
of two overlapping cell nuclei, than individual objects. To cope with that, we
incorporate a tolerance for slight shape irregularities by demanding additional
sparsity for the solution < in Eq. (5.15). This is done by introducing a penalty # > 0
for each selected prototype (<. = 1) into the objective function, which yields

minimize 〈, , <〉 + # · 〈"0 , <〉
subject to

∑

.∈[0]

[6 ⊆ 2.] · <. ≥ 1 ∀6 ∈ + ,

< ∈ {0, 1}0 .

(5.16)

The ILP in Eq. (5.16) is identical to Eq. (5.15) for # = 0. It is beneficial to choose a
value of # in the same range as the components of the vector ,. In our experiments,
we specified # as a multiple of the median ,m of the components of the vector
,. Figure 5.5e and Figure 5.5f show that the segmentation result improves by
increasing # up to # = ,m. Choosing a too large value for # might cause false
merges of closely located cell nuclei.

Joint cell segmentation and cluster splitting by combinatorial optimization

The ILP in Eq. (5.16) incorporates both shape and intensity information through
the components of the vector , defined in Eq. (5.12). Solving this ILP boils down to
merging adjacent region fragments if this improves the value of the objective func-
tion, as described in Section 5.3.3 below. This enables coping not only with touching
and partially overlapping cell nuclei, but also with intensity inhomogeneities of
the cell nucleus due to staining.
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5.3.3 Optimization methods and implementation details

To compute the components of the vector , according to Eq. (5.12), the energy in
Eq. (5.3) needs to be minimized for each region prototype. This energy depends on
the intensity offset * of the intensity model ) defined in Eq. (4.2). In fluorescence
microscopy images, we need to cope with cell nuclei of varying intensities and
non-homogeneous image backgrounds. Thus, instead of using a global intensity
offset * for the whole image, we computed * adaptively for each region prototype.
The value of * was selected either using Otsu thresholding [33] or by determining
the first mode in the intensity distribution of the image region, obtained by kernel
density estimation [119] using Gaussian kernels.

In order to accelerate the computation of the vector ,, we exploited that the
vector components are independent of each other by computing the components in
parallel. For each component, we solved the minimization of the energy in Eq. (5.3)
using the iterative second-order solver [120] for unconstrained convex optimization
(see Section 2.2.5), which exploits the positive definiteness of the Hessian matrix
∇2&' for rapid convergence. The first- and second-order derivatives of the energy
in Eq. (5.3) are

∇&' (!) = −
∑

"∈'
) (") · 5" ,! · ∇( (") , 5" ,! =

1

1 + exp () (") · ( (";!))
,

∇2&' (!) =
∑

"∈'
) (")2 ·

(
5" ,! − 52

" ,!

)
· ∇( (") · ∇?( (") ,

(5.17)

where ∇( is the gradient of the linear model defined in Eq. (5.1) with respect
to its parameters !. Choosing the basis J1 =

[
1 0
0 0

]
, J2 =

[
0 0
0 1

]
, J3 =

[
0 1
1 0

]
to

represent the matrix / =
∑3
%=1 1% · J% and ! = (11, 12, 13, ?1, ?2, ,) for the vectorial

representation of the parameters !, we obtain the gradient of the linear model
as ∇?( (") =

(
"2

1 , "
2
2 , 2"1"2, "1, "2, 1

)
. We used the zero-vector for initialization.

However, the initialization can be arbitrary due to convexity.
The min-weight set-cover problem in Eq. (5.16) is NP-hard. In general, it thus

cannot be expected that an exact solution for < is obtained in polynomial time.
However, a greedy heuristic [27] is known to determine an approximate solution
within an approximation guarantee of factor '#+ or better, where ': =

∑:
%=1 1/% is

the :-th harmonic number (see Section 2.2.6). We used the Algorithm 5.2 to solve the
ILP in Eq. (5.16), where the greedy heuristic is combined with a local search. The
local search merges adjacent regions if this decreases the energy &̃ = 〈<, , + "0 · #〉
of the solution. Hence, the approximation ratio of Algorithm 5.2 is never worse than
'#+ . This conservative lower bound can be tightened a posteriori by solving the
linear programming (LP) relaxation. Let &̂LP be the exact solution (energy) of the
LP relaxation of the ILP in Eq. (5.16). Since &̂LP is a lower bound of the unknown
optimal solution &̂ of Eq. (5.16), the achieved approximation ratio of the solution &̃
is at least &̂LP/&̃. We found that Algorithm 5.2 succeeded in determining a de-facto
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Algorithm 5.2: Determining the global solution of the ILP in Eq. (5.16) within
an approximation guarantee of '#+ or better.
input :Vector ,, sparsity #, region fragments+ , region prototypes U .

1 Initialize <← 0 · "0 ; @ ← + ; V ← U ;
2 while @ ≠ ∅ do // greedy
3 Set K. ←

,.+#
|2.∩@ | for all . = 1, . . . , 0 where U = {21, . . . ,20};

4 Set .̂ ∈ [0] so that K.̂ = min.∈[0] K. ;
5 Set <.̂ ← 1; and @ ← @ \

{
2.̂

}
;

6 while V ≠ ∅ do // local search

7 Set .̂ ∈ [0] so that 2.̂ ∈ V and ,.̂ = min {,. |. ∈ [0] ,2. ∈ V };
8 if <.̂ = 0 ∧ ∃<′ ∈ {0, 1}#U : <′ ≤ < ∧

⋃
.∈[0]:<′.=1 2. = 2.̂ then

9 if ,.̂ + # < 〈<′, ! + # · "0〉 then
10 Update <← < − <′; and <.̂ ← 1;

11 V ← V \
{
2.̂

}
;

12 return <;

exact solution (&̂LP/&̃ ≥ 99 %) in at least 91.5 % of our experiments (Section 5.4) and
the obtained worst lower bound of the ratio was 88.7 %. The run time complexity
of Algorithm 5.2 is at worst quadratic in the cardinality of U .

The final segmentation result is given by the subset of the shape models
%((!(1)), . . . , %((!(0)) which is identified by <. = 1, as determined by Algorithm 5.2.
Ellipses with a significant overlap (larger than 40 % or 50 %, depending on the
image data) were considered as single objects.

5.4 Evaluation

We have applied ourmulti-object model-based approach GOCELL (globally optimal
collaborating ellipses) to 2-D fluorescence microscopy image data. Our experiments
comprise image datasets of five different cell types. We studied the segmentation
accuracy as well as the computation time, and performed a comparison with
previous methods. To quantify the segmentation accuracy, we used region-based
(Dice, Rand, SEG) and contour-based measures (HSD, NSD), which are described
in Section 3.4.

5.4.1 Computational complexity

First, we studied the computational complexity of our approach using an example
microscopy image of DAPI-stained HeLa cell nuclei (Figure 5.6a). The size of
the image is 741 × 1000 pixels. As described in Section 5.3, the computational
complexity of our approach crucially depends on the cardinality of the prototype
set U . Therefore, we varied the smoothing strength ( of the Gaussian filter (within
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the range [2, 50]) when applying Algorithm 5.1 (using 4 = 1 %, ℎ = 2, -seed = 20,
-frag = 100). For smaller values of ( (little smoothing), more activity region
fragments occur. Assuming that the maximum number of fragments adjacent to
any single fragment in + (i.e. the maximum degree of the fragment adjacency
graph (+ , ℰ)) is constant, the number of prototypes scales linearly with the number
of the fragments. However, when the smoothing strength is lowered, the fragments
become more irregularly shaped, and thus the maximum degree of the fragment
adjacency graph grows. Hence, the cardinality of the prototype set increases
somewhat fasterwith increasing numberof fragments (Figure 5.6b). This is tolerable,
since the overall run time grows almost linearly with the number of prototypes
(Figure 5.6c), where # = 2 · ,m was used for Algorithm 5.2 and * was determined by
Otsu thresholding. Although the computational complexity of Algorithm 5.1 and
Algorithm 5.2 is at worst quadratic in the number of the prototypes, they terminate
rapidly, since both algorithms consist of only few instructions per iteration. Thus,
the overall run time is dominated by the computation of the energy values of
the region prototypes and grows linearly with the number of the prototypes
(controlled by (). For each value of (, eight prototypes were processed in parallel
using a regular consumer CPU (Intel(R) Core(TM) i7 860 2.80GHz). The overall
run time performance, as a function of the number of region fragments, is shown
in Figure 5.6d. Our approach terminated after 1 minute for 16 fragments (using
( = 16) and after 9.7 minutes for 41 fragments (using ( = 6). In both cases, a
Dice value of 94.6 % was achieved. For less than 16 fragments (corresponding to
( > 16), the fragments become too coarse and the segmentation accuracy reduces
(cf. Dice value for less than 1 minute in Figure 5.6e). For more than 16 fragments
(corresponding to ( < 16), the run time increases but the segmentation accuracy
remains high (cf. Dice value for more than 1 minute in Figure 5.6e). Thus, for this
example image, ( = 16 is an optimal trade-off between segmentation accuracy and
run time.

For comparison, we also applied another globally optimal approach for cell nuclei
segmentation [64]. This approach is also based on a parameterized shape model,
but uses a marked point process, that is embedded into a simulated annealing
scheme. We applied this approach using circular (MPP) or elliptical (MPPELL)
shape models. MPP converged after 38.2 minutes, achieving a Dice value of 52.9 %
(Figure 5.6g). MPPELL converged after 35.7 hours with an improved Dice value
(61.6 %, Figure 5.6h). In comparison, our approach (GOCELL) yielded a better Dice
value of 94.6 % (Figure 5.6i) after only 1 minute. We note that the computation time
of our approach can be straightforwardly reduced by parallelization (e.g., using
more than eight CPU threads as in our case). This is possible since computing the
energy values of the region prototypes (which dominates the run time) can be
performed independently from each other. Typically, we obtained a few hundred
prototype regions in our experiments (553 or less in 95 % of the images). The ratio
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(a)

(b) (c)

(d) (e)

(f) (g) (h) (i)

Figure 5.6. Run time performance for an example image. (a) Original image (HeLa
cells). (b) Cardinality of the prototype set as a function of the number of activity
region fragments. (c) Run time as a function of the cardinality of the prototype set.
(d) Run time as a function of the number of activity region fragments. (e) Dice score
as a function of the run time of our approach (GOCELL) and an approach based
on marked point processes using circular (MPP) or elliptical models (MPPELL).
(f) Ground truth segmentation. (g) Segmentation result (green contour) for MPP,
(h) MPPELL, (i) and GOCELL.
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between the number of region prototypes and the final number of segmented cell
nuclei in an image was between 4 and 8 in most cases, the median was 5.4.

5.4.2 Macrophage, HeLa, and Fibroblast datasets

Next, we studied the segmentation performance of our GOCELL approach using
DAPI-stained images of three different cell types, corresponding to three different
datasets (Macrophage, HeLa, Fibroblast). The datasets are described in Section 3.2.

We applied our approach to all three datasets and performed a comparison
with standard approaches, including Otsu, Blob-LS, and Blob-RW (described in
Section 3.3). For all three methods, we applied pre-processing by Gaussian filtering
and post-processing by morphological closing. We optimized the parameters of the
three methods as well as their respective pre/post-processing steps individually
for each dataset. This was accomplished by an automatic grid search scheme, which
maximizes the average Dice and SEG values using two randomly chosen images
from each dataset. In contrast, for our GOCELL approach, we did not adapt the
parameters individually for each dataset but used the same set of parameters for
all three datasets (as described in Section 5.4.1, using ( = 11).

Macrophage dataset

The Macrophage dataset is difficultdue to partially strong image blur (see Figure 5.7).
The quantified segmentation results are provided in Table 5.1. It turns out that
our approach yields the best result for all three performance measures (SEG, Dice,
NSD). Compared to the second-best method (Blob-LS), SEG is improved by 3.5 %P
and NSD by 27 %, while for Dice we have a small degradation of 0.7 %P. The highest
improvement for SEG is obtained compared to Otsu (6 %P). For this dataset, we
also computed results for our approach (GOCELL) when adapting the parameters
(as for the other three methods) by reducing the tolerance for shape irregularities
to # = 0.6 · ,m and using kernel density estimation instead of Otsu thresholding to
determine the intensity threshold * (GOCELL*). This improved the SEG value by
2.5 %P, the Dice value by 1.4 %P, and the NSD value by 23 %.

HeLa dataset

For the HeLa dataset, our approach (GOCELL) performed better than all other
methods. Using dataset-specific adaptations by increasing the tolerance for shape
irregularities (# = 3,m) further improved SEG by 1.1 %P and NSD by 19 % (GO-
CELL*). The other parameters remained the same as in Section 5.4.1.
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(a) (b) (c)

Figure 5.7. Example segmentation results for the Macrophage dataset. (a) Original
image. (b) Ground truth segmentation. (c) Segmentation result (green contour)
using our GOCELL approach.

SEG Dice NSD Parameter sets

Macrophages
Otsu 66.7 % 81.3 % 0.268 Adapted
Blob-LS 69.2 % 81.4 % 0.227 Adapted
Blob-RW 67.8 % 79.0 % 0.176 Adapted
GOCELL 72.7 % 80.7 % 0.166 Same for all
GOCELL* 75.2 % 82.1 % 0.127 Adapted

HeLa cells
Otsu 85.4 % 93.7 % 0.077 Adapted
Blob-LS 85.4 % 93.2 % 0.063 Adapted
Blob-RW 68.3 % 81.3 % 0.146 Adapted
GOCELL 87.9 % 94.3 % 0.037 Same for all
GOCELL* 89.0 % 94.3 % 0.030 Adapted

Fibroblasts
Manual 92.3 % 89.5 % 0.008
Otsu 78.3 % 86.4 % 0.135 Adapted
Blob-LS 71.5 % 83.4 % 0.178 Adapted
Blob-RW 29.3 % 63.8 % 0.281 Adapted
GOCELL 93.1 % 90.9 % 0.012 Same for all

Table 5.1. Segmentation performance of our approach using the same parameter
configuration for all three datasets (GOCELL) or using dataset-specific parameter
configurations (GOCELL*) compared to manual segmentation and standard ap-
proaches, which were optimized for each dataset. The best results for each dataset
are highlighted in bold.

69



Chapter 5 Joint segmentation and cluster splitting using elliptical models

(a) (b) (c)

Figure 5.8. Example segmentation results for the Fibroblast dataset. (a) Original
image. (b) Segmentation result (green contour) using Otsu thresholding. (c) Seg-
mentation result (green contour) using our GOCELL approach.

Fibroblast dataset

For the Fibroblast dataset, our approach (GOCELL) performed better than the
other approaches for all three performance measures. An example of a segmen-
tation result is shown in Figure 5.8. It can be seen that our approach effectively
separates touching cell nuclei since shape information is exploited. In contrast,
Otsu thresholding, which performed second-best on this dataset, falsely merges
closely located cell nuclei (Figure 5.8b). Blob-LS and Blob-RW performed worse
since their initialization is prone to the densely located and non-elliptical cell nuclei.
For a comparison with the performance of manual segmentation, a human expert
manually segmented 34 images, yielding a SEG value of 92.3 % and Dice value of
89.5 %. Thus for our approach it turns out that the SEG and Dice values are higher
compared to manual segmentation.

Conclusion

Overall, our approach performed best for all three datasets. The best results were
obtained using dataset-specific adaptations for our approach (GOCELL*). However,
more importantly, using fixed parameters for all three datasets for our approach
(GOCELL) yielded better or comparable results than the other approaches, despite
of the heterogeneity of the datasets (cf. Figure 5.7 and Figure 5.8).

5.4.3 NIH3T3 dataset

We also applied our approach to the publicly available NIH3T3 dataset (described in
Section 3.2). Figure 5.9 shows an example image with corresponding ground truth
data and segmentation results. For our approach, we used ( = 6 and # = 0.3 · ,m for
all images of the dataset, the other parameters remained the same as in Section 5.4.1.
To better cope with the strong background intensity inhomogeneities in this dataset,
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SEG Dice Rand HSD NSD Merged Split

CVX-LS 65.2 % 85.3 % 90.5 % 14.2 0.12 1.6 0.0
TM — — 88 % 134.1 0.29 4.0 0.0
Blob-GC — — 91.5 % 10.3 — 1.6 2.4
RPL — 90.6 % 93.2 % 14.1 0.09 — —
Bayes-LS — 86.3 % — 14.3 — — —
SEF-SELF 79.7 % 88.7 % 91.8 % 9.5 0.08 0.8 1.3

CVXELL 74.5 % 87.4 % 90.6 % 14.3 0.14 1.4 0.3
GOCELL 83.7 % 91.5 % 93.6 % 8.3 0.06 0.7 0.4

Table 5.2. Segmentation performance of our GOCELL approach for the NIH3T3
dataset compared to previous approaches. Not available results are indicated by
“—”. The best results are highlighted in bold.

we employed local background subtraction based on the minimal intensities of
the Gaussian-filtered image (standard deviation 1) within circular neighborhoods
(50 pixels radius) of each pixel (see Figure 5.10). In addition, segmented objects
with a radius smaller than 22 pixels were discarded to eliminate the visible debris
objects. We quantitatively compared the segmentation performance of our GOCELL
approach to our previous CVXELL approach which is based on a single-object
model (Chapter 4), as well as six state-of-the-art methods including CVX-LS [51],
TM [110], Blob-GC [77], RPL[112], Bayes-LS [52], and SEG-SELF [65] (described in
Section 3.3).

The results of the different approaches are given in Table 5.2. The performance
values for TM, Blob-GC, RPL, and Bayes-LS were reported in publications by
the authors. It turns out that our approach (GOCELL) achieved the best results
for all region- (SEG, Dice, Rand) and contour-based (HSD, NSD) measures. As
additional object-based performance measures we determined the average numbers
of falsely merged/split cell nuclei per image (described in Section 3.4). Our GOCELL
approach yielded the lowest number of falsely merged cell nuclei and the second-
lowest number of falsely split cell nuclei. Although SEG-SELF yielded only slightly
more falsely merged cell nuclei per image (0.8 compared to 0.7), much more falsely
split cell nuclei were obtained (1.3 compared to 0.4). Also, the overall performance
of SEG-SELF was worse. The lowest number of falsely split cell nuclei was achieved
by CVX-LS and TM, but these approaches performed worse with regard to all other
performance measures. In particular, falsely merged cell nuclei occurred more
than twice as often as for our approach. Compared to RPL, our approach yields
a slight improvement for the region-based measures (Dice improved by 0.9 %P,
Rand by 0.4 %P, SEG was not reported for RPL), but a significant improvement for
the contour-based measures (HSD improved by 41 %, NSD by 33 %). Considering
all performance measures, our approach performed overall best on this dataset.
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(a) (b)

(c) (d)

Figure 5.9. Example segmentation results for the NIH3T3 dataset. (a) Original
image (contrast-enhanced). (b) Ground truth segmentation. (c) Segmentation result
(green contour) using the SEG-SELF approach. (d) Segmentation result (green
contour) using our GOCELL approach.
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(a) (b) (c)

Figure 5.10. Example for preprocessing of the NIH3T3 dataset. (a) Original image.
(b) Computed background. (c) Results after local background subtraction.

5.4.4 GOWT1 datasets

We also applied our approach to two image sets of mouse embryonic stem cells
(GOWT1) from the IEEE ISBI Cell Tracking Challenge training data [104]. The two
image sets are temporal image sequences with fully annotated segmentation ground
truth for eight images and partially annotated ground truth for the other images
(see Section 3.2 for details). Since for the partially annotated images ground truth
is not available for all objects, using a performance measure which is not invariant
to false-positive detections would yield misleading results. In previous work (e.g.,
[80]), only SEG was used as performance measure for the whole dataset, since it is
invariant to false-positive detections and reflects the object-based segmentation
performance. In our evaluation, we also used SEG for the whole dataset, but
additionally used Dice for the fully-annotated images of the dataset.

The GOWT1 datasets are challenging due to a partially low signal-to-noise ratio,
the visible presence of the cell nucleoli (distinct dark regions within individual
cell nuclei), and since for many images only the difficult cell nuclei were annotated
in the ground truth. An example image from each dataset, the corresponding
ground truth, and the segmentation result of our GOCELL approach are shown
in Figure 5.11. Due to the nucleoli, the cell nuclei often appear rather as bright
rings than as ellipses. Therefore, we pre-processed the images using a Laplacian of
Gaussian filter to detect small dark regions and decreased the contrast based on the
mean intensities inside and outside these regions. For both datasets, we used ( = 10
and ℎ = 1. We used kernel density estimation to determine the intensity offset *. To
reliably separate very noisy, but almost ideally elliptical nuclei (e.g., Figure 5.11, first
row, bottom-right), we reduced the tolerance for shape irregularities to # = 0.1 · ,m
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(a) (b) (c) (d)

Figure 5.11. Example segmentation results for the GOWT1 dataset 1 (first row)
and GOWT1 dataset 2 (second row). (a) Original images (contrast-enhanced).
(b) Ground truth segmentations. (c) Segmentation results (green contour) using the
SEG-SELF approach. (d) Segmentation results (green contour) using our GOCELL
approach.

and # = 0 for GOWT1 dataset 1 and 2, respectively. All other parameters remained
the same as in Section 5.4.1.

We compared the performance of our approach on the two GOWT1 datasets
to our previous CVXELL approach (Chapter 4) and four state-of-the-art methods
including KTH [111], Blob-WS [79], CPN [80], and SEG-SELF [65] (described
in Section 3.3). Since both Blob-WS and CPN rely on temporal information to
determine the final segmentation result, they are not applicable to individual
images.

The results for all approaches are given in Table 5.3. The performance values for
KTH, Blob-WS, and CPN were provided in Akram et al. [80]. For GOWT1 dataset 1
and the SEG measure, GOCELL performed not only better than BLOB (+10.3 %P)
and SEG-SELF (+32.4 %P), but also significantly better than KTH (+16 %P), which
achieved the best overall result for segmentation in the ISBI challenge [104].
GOCELL yielded a slightly worse result compared to CPN (SEG −0.6 %P), which,
however, exploits temporal information.

For GOWT1 dataset 2, our approach (GOCELL) achieved a slightly lower SEG
value (−0.3 %P) than our previous CVXELL approach, but a significantly better
Dice value (+5.1 %P). More importantly, our approach outperformed SEG-SELF
by 9.2 %P, KTH by 1.6 %P, and the tracking-based approaches CPN and Blob-WS
by 3.7 %P and 0.5 %P, respectively. Thus, GOCELL performed overall best on this
dataset.

74



Chapter 5 Joint segmentation and cluster splitting using elliptical models

Tracking-based Single-image segmentation

Blob-WS CPN KTH SEG-SELF CVXELL GOCELL

GOWT1 dataset 1
SEG 74.2 % 85.1 % 68.5 % 52.1 % 82.1 % 84.5 %
Dice — — — 88.7 % 63.7 % 94.0 %

GOWT1 dataset 2
SEG 90.5 % 87.3 % 89.4 % 81.8 % 91.3 % 91.0 %
Dice — — — 91.8 % 89.4 % 94.5 %

Table 5.3. Segmentation performance of our GOCELL approach for the GOWT1
datasets compared to previous approaches. The tracking-based approaches (Blob-
WS and CPN) exploit information from several images (temporal coherence) in
contrast to the other approaches, which use only the information of a single image.
The Dice measure was computed for those images only, for which fully labeled
ground truth was available (four images per dataset). Not available results are
indicated by “—”. The best results are highlighted in bold.

5.5 Discussion

We have introduced a new globally optimal approach for cell nuclei segmentation in
fluorescence microscopy images. The approach is based on implicitly parameterized
elliptical shape models and incorporates intensity information by a contrast-
invariant energy function. An advantage of the single-object model is that the
corresponding energy is convex. This means that the energy can be directly globally
minimized using an arbitrary initialization. However, since this model represents
a single object, prior extraction of image regions is required, which contain at
most one cell nucleus. To perform segmentation, which is globally optimal with
respect to the entire image, we generalized the model so that multiple shape
models collaboratively represent all objects of an image. The corresponding energy
function is non-convex and global minimization is challenging. However, we
have derived a global minimization scheme, which is based on activity regions
of the individual shape models. Our theoretical considerations have shown that
the global solution is invariant with respect to specific non-identical regions. We
exploited this observation to reduce the set of possible model activity regions to a
computationally tractable size using an overcomplete set of region prototypes. Each
region prototype is associated with a non-negative energy, which is the infimum
of a convex function. We showed, that the non-convex multi-object model energy
is minimized by choosing an energy-minimal subset of region prototypes, which
covers the whole image. Since computing this min-weight set-cover is NP-hard, a
fast approximation algorithm has been used, which is guaranteed to determine a
solution close to global optimality. In addition, global optimality was checked a
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posteriori and we found, that the global solution was exactly determined in at least
91.5 % of our experiments comprising 380 images.

Previous approaches, which jointly exploit shape and intensity information (e.g.,
[64]), assemble segmentation results by selecting object segmentation masks. In
contrast, the model activity regions used in our approach only coarsely subdi-
vide an image compared to the final segmentation result. Hence, the solution
space for determining the optimal subset of region prototypes is smaller than
if considering directly the segmented objects as in previous approaches. This is
advantageous, since combinatorial optimization is computationally challenging.
Our combinatorial formulation is also fundamentally different on the conceptual
level. Previous approaches [63, 64, 78] identified favorable segmentation candidates
by negative energy values while performing energy minimization. Hence, object
interaction models (mutual exclusion constraints) were required to prevent non-
meaningful solutions, such as the trivial solution (selection of all candidates with
negative energy values). Since, however, the energies in our approach are non-
negative, mutual exclusion constraints are not required, and an object interaction
model (e.g., maximum allowed object overlap) is not needed. Our non-negative
energy minimization scheme intrinsically favors sparse solutions and enables
our approach to naturally cope with touching and overlapping cell nuclei. To
better cope with non-elliptical cell nuclei, we included a parameter # in our energy
minimization scheme, which controls the tendency of recognizing such cell nuclei
as single objects.

The computational complexity of our approach depends on the number of the
region prototypes. We used region fragments to approximate the set of all permissible
region prototypes by a set of computationally tractable cardinality. By controlling
the coarseness of the fragments, the error introduced by the approximation is
balanced against the computation time. Ideally, the fragments are as coarse as
possible, but no fragment should cover more than one cell nucleus. Thus, the choice
is intuitive and can be adapted in advance. The run time is dominated by the
computation of the energies of the individual region prototypes, which can be
highly reduced by parallelization. In addition, adaptation of the parameter # does
not require recomputing these energies and is thus fast. Hence, our approach is
suitable for high-throughput applications and large datasets.

We applied our approach to fluorescence microscopy images of five different
cell types and performed a quantitative comparison with previous methods.
We demonstrated the robustness of our approach for datasets of three different
cell types (macrophages, HeLa cells, and fibroblasts), achieving equally good or
improved results using a fixed set of parameters compared to standard approaches
using individually optimized parameters for each of the three datasets. For the
NIH3T3 benchmark dataset [103], our approach performed best, achieving a
relatively low number of falsely merged/split cell nuclei compared to previous
approaches. This highlights the effectiveness of our approach which performs joint
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Chapter 5 Joint segmentation and cluster splitting using elliptical models

segmentation and cluster splitting, as opposed to explicit cluster splitting (e.g.,
[52]). Our approach exploits both shape and intensity information jointly, while in
[65] the image intensities were not directly exploited for cluster splitting. In our
approach, elliptical models are fitted directly to the image intensities. For the two
GOWT1 datasets [104], our approach achieved competitive or improved results
compared to state-of-the-art methods, including two tracking-based approaches
which exploit the temporal coherence of the datasets. Moreover, our approach
performed overall best among those methods which do not exploit temporal
information and are applicable to individual images.
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Chapter 6

Segmentation using superadditivity

and deformable shape models

6.1 Introduction

Parametric and non-parametric deformable models, also known as active contours,
have a long-lasting history in cell segmentation and computer vision in general
(see Section 2.3.2). When equipped with a shape prior, such models can be denoted
as deformable shape models (DSMs). Parametric shape models, which are not active
contours but capable of performing local deformations, can be considered as DSMs,
too. In general, DSMs can be non-parametric or parametric:

1. Non-parametric DSMs. Non-parametric DSMs are based on the variational
level set framework and shape regularization (e.g., [56, 57, 58, 59, 60, 61]).
Priors used for shape regularization include elliptical shape priors [56],
distance-based priors [61], statistical shape priors [57, 59, 60], and star-shape
priors [58].

2. Parametric DSMs. In contrast to those parametric models which are limited
to circular (e.g, [41, 67]) or elliptical (e.g., [42, 62, 63, 64, 65, 66]) shapes,
parametric DSMs (e.g., [43, 44, 68, 69]) are more general and intrinsically
cope with non-elliptically shaped cell nuclei. Previous parameterizations
are explicit and based on splines [43, 44] or spherical harmonics [68, 69].
Implicitly parameterized DSMs were not used.

The segmentation result of the DSM-based approaches mentioned above heavily
depends on the initialization, since none of them yields globally optimal solutions.

In this chapter, we introduce a new globally optimal approach for cell segmen-
tation in microscopy images, which uses implicitly parameterized DSMs based
on a linear parameterization. Our approach intrinsically copes with non-elliptical
shapes and jointly exploits shape and intensity information by convex energy
minimization. Neither prior image binarization nor prior object detection are
required. The approach is based on three main contributions:
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1. We propose implicitly parameterized DSMs for cell segmentation and show
that the proposed parameterization leads to a convex energy for model fitting.
Implicit parameterizations are advantageous, since model fitting can often
be performed by convex optimization (cf. Section 2.3.2). Minimization of
the convex energy determines the global solution independently of the
initialization, is fast, and robust.

2. We introduce a novel iterative global energy minimization method, which
jointly performs cell segmentation and cluster splitting. The method exploits
the inherent superadditivity property, simultaneously fits multiple models to
the image data, and provably determines a solution close to global optimality.
The superadditivity property leverages the lower bound of the energy of the
union of models and improves the computational efficiency.

3. We also derive a closed-form solution of the global minimization for non-
clustered cell nuclei, which is based on the superadditivity property. This
further improves the efficiency since iterative minimization is not required.

The core idea of our approach is to consider the infimum of the convex energy for
a DSM as a set energy function, i.e. a function of the set of image regions where
model fitting is performed. We determine optimal regions for fitting and show
that for these regions the computation of set energy functions amounts to convex
energy minimization. To perform joint cell segmentation and cluster splitting, we
show that the set energy functions are superadditive for disjoint image regions. This
structural property is established via the set-packing polytope (see Definition 2.3
in Section 2.2.6) and leads to a necessary optimality condition for image regions,
meaning that the optimal image regions can be determined by only considering
the subset of all possible image regions, which pass the condition. We exploit
the inherent property of superadditivity to develop a novel and computationally
efficient global energy minimization method, which iteratively determines the
optimal regions. In addition, we derive a closed-form solution of the proposed
global minimization, which directly determines optimal regions for non-clustered
cell nuclei (without requiring iteration). Our energy minimization method does
not suffer from local minima and scale-related hyperparameters are automatically
determined to facilitate application to image data with different scales. The
proposed approach intrinsically copes with intensity inhomogeneities and partial
object overlap since shape and intensity information are used jointly. We denote
the proposed approach as SuperDSM since it leverages superadditivity and DSMs.

In contrast to previous approaches (see Section 2.3), SuperDSM neither requires
an object interaction model (e.g., [40, 49, 62, 63, 64, 67, 77, 78]), nor prior image
binarization (e.g., [32, 52, 65, 66, 67]), nor prior object detection (e.g., [41, 42, 43,
44, 56, 57, 58, 59, 61, 77, 117]). In contrast to our previous GOCELL approach
(Chapter 5), which is limited to elliptical models, the proposed approach copes
with more general shapes by using DSMs, is more efficient since it exploits the
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property of superadditivity for energy minimization, and is scale invariant. None
of the previous methods mentioned above exploited the superadditivity property.
To the best of our knowledge, the proposed approach is the first that combines
convex optimization with DSMs for cell segmentation.

We have evaluated our approach using fluorescence microscopy datasets of five
different cell types comprising various challenges, including publicly available
benchmark datasets, and performed a quantitative comparison with previous
methods. It turns out that the proposed approach generally yields competitive
or improved results. In addition, we also demonstrate the applicability of our
approach to another imaging modality, namely histopathology images with H&E-
stained cell nuclei.

This chapter is organized as follows. Section 6.2 introduces the implicitly parame-
terizedDSMs,the corresponding convex energy,and the global energy minimization
method which exploits the superadditivity property. Section 6.3 describes the
proposed cell segmentation approach including the pre-processing scheme, the
automatic choice of hyperparameters for scale invariance, and the post-processing
scheme. Section 6.4 provides experimental results and a comparison with previous
methods. We discuss the results of our work in Section 6.5.

The work has been submitted for publication [13].

6.2 Superadditivity and convex optimization for segmentation

An overview of the proposed SuperDSM approach for cell nuclei segmentation
using deformable shape models is shown in Figure 6.1. The approach consists of
four main steps: 1) Pre-processing (scale estimation, determination of intensity
offsets, and detection of regions of possibly clustered objects), 2) coarse-to-fine
region analysis (computation of the universe of image regions and the correspond-
ing adjacency graph), 3) global energy minimization using deformable shape
models, and 4) post-processing. Step 3 is most important and concerns our main
contributions.

Below, we describe the proposed global energy minimization method. We first
introduce the implicitly parameterized deformable models (Section 6.2.1) and the
corresponding convex energy (Section 6.2.2). Then, we describe the superadditive
set energy functions (Section 6.2.3), the global optimization objective (Section 6.2.4),
and the iterative method for cell segmentation and cluster splitting using global
energy minimization, as well as the closed-form solution for non-clustered cell
nuclei (Section 6.2.5).

6.2.1 Implicit shape parameterization

We use the zero-level set of a model function to represent the shape of an object.
Our model function consists of a polynomial and local deformations. We use a
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(a) Original image
(contrast-enhanced)

(c) Universe 𝑈 of example regions 
marked orange in (b) and

corresponding adjacency graph

(d) Segmentation result
(green contours)

0

-0.8

+1.0

(b) Regions of possibly clustered objects

3) Global energy
minimization

– Iterative method
– Closed-form

solution

2) Coarse-to-fine
region analysis

1) Pre-processing

– Scale estimation
– Intensity offsets
– Region detection

4) Post-processing

Figure 6.1. Overview of our SuperDSM method for cell nuclei segmentation.
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second-order polynomial ( : Ω→ ℝ, which maps each image point " = ("1, "2) to
a real value, where " ∈ Ω and Ω ⊂ ℝ2 are all points of an image. We employ the
parameterization

( (";!) = 〈 !" , !〉 , ! ∈ ℝ6, ! ?" =
[
"2

1 "2
2 2"1"2 "1 "2 1

]
, (6.1)

where ! are the polynomial parameters. The zero-level set of Eq. (6.1) corresponds
to a conic section, which is limited to elliptical shapes and a few degenerated
shapes (e.g., hyperbolic). We consider an image region ' ⊆ Ω, i.e. a non-empty
subset of the image points Ω in an arbitrary but fixed order ' =

{
"(1), . . . , "(#')

}
,

where # denotes cardinality. Then,

B' (!, !) = 8?' · !, where 8' =
[
!"(1) · · · !"(#')

]
, (6.2)

describes a polynomial surface within the image region ', where ! is a vector of zeros
with arbitrary dimension (used for notational consistency). The parameterization
in Eq. (6.1) was used in the previous GOCELL approach (Chapter 5) to describe
elliptical shapes.

To represent more general non-elliptical shapes, we augment the polynomial
surface by integrating local deformations. We represent the deformations by the
smooth perturbation term =' · % and define an implicit deformable shape model in
an image region ' as

B' (!, %) = 8?' · ! + =' · %, % ∈ ℝ#Ω. (6.3)

The #' × #Ω matrix =' is a block Toeplitz matrix, where each row represents
a Gaussian function with standard deviation (= centered at the image points
"(1), . . . , "(#'). The term=' ·% thus corresponds to a linear combination of Gaussian
functions,and% are the deformation parameters (weights of the Gaussian functions).
The deformable model in Eq. (6.3) includes the elliptical model in Eq. (6.2) as a
special case for % = !. The implicit parameterization in Eq. (6.3) has the advantage
that it is linear in the model parameters !, %, which leads to a convex energy.
Thus, minimization yields the global solution and can be performed efficiently
(Section 6.2.2).

Any pair of model parameters !, % induces two disjoint image regions, that are
the zero-sublevel set Ω−B (!, %) of the deformable shape model B' (!, %) |'={"} as a
function of " ∈ Ω and its corresponding zero-superlevel set Ω+

B (!, %),

Ω−B (!, %) =
{
" ∈ Ω

&
&
& B' (!, %) |'={"} < 0

}
,

Ω+
B (!, %) =

{
" ∈ Ω

&
&
& B' (!, %) |'={"} > 0

}
.

(6.4)

These two regions correspond to the interior and exterior of the model, respectively.

83



Chapter 6 Segmentation using superadditivity and deformable shape models

6.2.2 Convex energy minimization

We use -" ∈ ℝ to denote the image intensity at an image point " ∈ Ω. Given the
image intensities -"(1) , . . . , -"(#') , we assume local intensity offsets *"(1) , . . . , *"(#')
so that

L?' =
[
-"(1) − *"(1) . . . -"(#') − *"(#')

]
(6.5)

defines a coarse subdivision of the image into a set of points Ω−L corresponding to
the background and the image points Ω+

L corresponding to the foreground,

Ω−L =

{
" ∈ Ω

&
&
& L' |'={"} < 0

}
,

Ω+
L =

{
" ∈ Ω

&
&
& L' |'={"} > 0

}
.

(6.6)

The intuition is that -"−*" < 0 (i.e. " ∈ Ω−L) indicates that an image point " belongs
to the background, and -" − *" > 0 (i.e. " ∈ Ω+

L) indicates that an image point "
belongs to the foreground. Since cell nuclei in fluorescence microscopy images
correspond to bright intensity regions compared to the background, the offsets *"
can be determined, for example, by Gaussian filtering. In our implementation, we
have developed a more sophisticated two-step scheme, which interpolates between
Gaussian filtering of the original and clipped intensity values to better cope with
boundary points, and is more robust to intensity inhomogeneities (for details see
Appendix A).

To fit the implicitly parameterized deformable shape model to the image data,
we seek to determine the model parameters ! and % so that '∩Ω+

L ≈ '∩Ω+
B (!, %)

and ' ∩Ω−L ≈ ' ∩Ω−B (!, %). More formally, we minimize the cardinality of the
intersections ' ∩Ω+

L ∩Ω−B (!, %) and ' ∩Ω−L ∩Ω+
B (!, %),

inf
!,%

&' (!, %) , &' (!, %) = ℓ' (!, %) + $ · ‖%‖1 , (6.7)

using an 91 regularization for the deformation parameters %, where ℓ' (!, %)
corresponds to the cardinality of the intersections. Direct minimization of the
cardinality amounts to the minimization of the 0/1 loss. However, this is challenging
since the 0/1 loss is neither smooth nor convex. Analogously to Chapter 5, we
thus use the surrogate loss function +1 from Eq. (4.4) for the cardinality of the
intersections, i.e.

ℓ' (!, %) =
∑

"∈'
+1

(
L' |'={"}; B' (!, %) |'={"}

)

=
〈
"#' , ln (1 + exp (−L' . B' (!, %)))

〉
,

(6.8)

where “ln” and “exp” are defined component-wise, “.” is the Hadamard product,
and "#' is a vector of ones with dimension #'. Using the surrogate loss is

84



Chapter 6 Segmentation using superadditivity and deformable shape models

(a) (b) (c) (d) (e) (f)

Figure 6.2. Example segmentation results for different values of the regularization
parameter $. (a) Original image section. (b) Segmentation result using $ = 0.001,
(c) $ = 0.002, (d) $ = 0.003, (e) $ = 0.004, (f) $ = 0.005.

advantageous since Eq. (6.8) is convex. Another advantage of Eq. (6.8) is that
the image intensities are directly exploited via L' and image binarization is not
required. The parameter $ ≥ 0 in Eq. (6.7) governs the regularization of the
deformations. Example segmentation results for different values of $ for an image
section of U2OS cells are shown in Figure 6.2. The section shows a single cell
nucleus (according to the ground truth from [103]) and has a size of 136 × 108
pixels. Increasing $ leads to a smoother segmentation result.

Eqs. (6.7) and (6.8) correspond to an unconstrained convex problem (see Ap-
pendix B.1 for a proof). To solve this problem, we use a fast second-order method
based on consecutive Newton steps (see Section 2.2.5). Due to convexity, the
method determines the globally optimal solution for ! and % independently of the
initialization. We use the implementation [121] of the second-order method and a
specific initialization scheme for faster convergence (described in Appendix C.3).

6.2.3 Set energy functions and superadditivity

The implicit deformable shape model introduced above represents a single object.
For globally optimal model fitting for an entire image, we exploit that linearly
parameterized single-object models such as Eq. (6.2) and Eq. (6.3) naturally gen-
eralize to the multi-object case (Chapter 5). Let the set + be a universe of region
fragments, where each region fragment is a connected image region comprising
image points of at most a single object (and the image background). The objective
then is to determine a low-cardinality and minimal-energy family X of sets of the
region fragments+ , subject to the constraint that

⋃
X = + . The energy of a set

2 ⊆ + of image regions is given by the solution of Eq. (6.7) for ' = '̃ (2) ∪Ω−L ,

inf
!,%

&'̃(2)∪Ω−L (!, %) , where '̃ (2) =
⋃

2 (6.9)
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is the model activity region defined by the set 2 of region fragments5 (cf. Sec-
tion 5.3.1), and

⋃
2 are all image points of the set 2. In Chapter 5, this result was

used for elliptical models, but determining the optimal family X required the com-
putation of all admissible sets using prior assumptions (e.g., maximum cardinality
of+) to maintain computational tractability. In this work, we exploit the result for
deformable shape models and for the property of superadditivity. Superadditivity
denotes the property that the energy of any set 2 is lower-bounded by the sum of
energies of its disjoint subsets. This has the advantage that the optimal family X

can be determined by only considering a subset of all possible image regions. The
proposed global optimization method for deformable shape models is far more
sophisticated than the one for elliptical models, since we automatically confine the
computations to a meaningful subset of the admissible sets, using the analytical
property of superadditivity instead of requiring prior assumptions.

Below, we first formally define the universe+ of region fragments, formulate
Eq. (6.9) as a set energy function, and derive its property of superadditivity. We
then exploit this property to formally define a suitable optimization objective for
the optimal solution X (Section 6.2.4). Minimization of the obtained objective
is NP-hard and thus computationally challenging. However, we further leverage
superadditivity and convexity to decompose the challenging optimization problem
into easily solvable sub-problems (Section 6.2.5).

Let ℰ ⊆ + ×+ represent adjacent region fragments, i.e. {6 , H} ∈ ℰ if and only if
6 is adjacent to H, using the following definition of adjacency:

Definition 6.1 (Adjacency). Two region fragments 6 , H ∈ + are considered adjacent
if and only if Ω+

L ∩ (6 ∪ H) contains a path between 6 and H. Π ⊆ + ×+ represents
the connected region fragments (i.e. {6 , H} ∈ Π if and only if the adjacency graph
& = (+ , ℰ) contains a path between the regions 6 and H).

Figure 6.1c shows an example universe of region fragments (black lines) and the
corresponding adjacency graph (green lines) for two connected components.

In order to formally introduce set energy functions (see below), we first define
the family of all connected subsets of+ with cardinality . or less,

ℙ. (+) = {2 ⊆ + |#2 ≤ . ,2 × 2 ⊆ Π} . (6.10)

In the following, we use ℙ (+) = ℙ#+ (+) as a short form.
The objective function in Eq. (6.9) is defined by the energy &' in Eq. (6.7) for

the image region ' = '̃ (2) ∪ Ω−L . Image points within large regions of image
background generally yield low energy values and are thus negligible. Since the

5The symbol 2 is slightly differently defined in this chapter than in Chapter 5. In Chapter 5, the
union of region fragments was denoted by 2. In this chapter, 2 denotes a set of region fragments
and '̃ (2) denotes their union.
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set Ω−L mostly contains such image points, we have

inf
!,%

&'̃(2)∪Ω−L (!, %) ≈ inf
!,%

&'̃(2) (!, %) . (6.11)

This gives rise to the set energy function , : ℙ (+)→ ℝ+,

, (2) = inf
!,%

&'̃(2) (!, %) . (6.12)

Below, we describe a relation of Eq. (6.12) to the set-packing polytope, which we
use to establish the property of superadditivity.

For any family of sets 21, . . . ,2* ⊆ + , the set 3 (21, . . . ,2*) of solutions 6 ∈ ℝ*
+

for the inequality
∑

.∈[*]

[6 ∈ 2.] · 6. ≤ 1 for all 6 ∈ + , (6.13)

is a set-packing polytope (the polytope associated with the max-weight set-packing
problem and its linear relaxation, cf. Definition 2.3), using the Iverson brackets
defined by [statement] = {1 if statement is true; 0 else}. Then, any family of sets
21, . . . , 2* and associated weights 6 ∈ 3 (21, . . . ,2*) yields a lower bound of
the set energy function in Eq. (6.12) for the set 21 ∪ · · · ∪ 2* (Property B.2 in
Appendix B.2).

When the sets21, . . . ,2* are disjoint, a vector of ones with dimension* is always
contained in 3 (21, . . . ,2*) and thus the set energy function , is superadditive,

, (21) + · · · + , (2*) ≤ , (21 ∪ · · · ∪ 2*) . (6.14)

Thus, for any two disjoint, non-empty sets /, I ⊂ + , the sum of their energies
, (/) + , (I) is a lower bound of the energy of their union, , (/ ∪ I). This means that
the energy , of a set can be directly deduced (without optimization). Moreover,
the singleton set {6} (i.e. set with exactly one element) of any element 6 ∈ + is the
set with the lowest energy among all those containing the element 6. In terms of
energy minimization, this means that any image is best fitted by the singleton sets
of+ . This likely leads to over-segmentation and is thus not well-suited. Below, we
describe an extension of the set energy functions which avoids over-segmentation.

6.2.4 Extended set energy functions and optimization objective

To obtain a meaningful segmentation result and avoid over-segmentation, we
extend the set energy functions in Eq. (6.12). We add the constant term # ≥ 0 and
define the extended set energy function ,̃ : ℙ (+)→ ℝ+,

,̃ (2) = , (2) + #. (6.15)
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In contrast to the original set energies ,, the extended energies ,̃ (/) + ,̃ (I) of two
disjoint, non-empty sets /, I ⊂ + can actually be higher than the extended energy
of their union, ,̃ (/ ∪ I), since ,̃ (/) + ,̃ (I) − ,̃ (/ ∪ I) ≤ # due to Eq. (6.14). Thus,
# is the maximum allowed energy difference of merging / and I. Only if the
energy , (/ ∪ I) exceeds , (/) + , (I) by less than #, merging / and I is beneficial
in terms of energy minimization using the extended set energy ,̃. Merging / and I
corresponds to using a single deformable shape model for the union / ∪ I instead
of two separate shape models for / and I.

Using the linear program (LP) relaxation of the max-weight set-packing problem
(cf. Section 2.2.6)

MaxSetPackingLP (S ) = max
6∈3(S )

∑

.∈[*]

6. · , (2.) , where S = 21, . . . ,2* (6.16)

and the set-packing polytope 3 is the set of solutions of the inequality in Eq. (6.13),
we obtain the following lower bound of the extended set energy ,̃ (2):

Property 6.1. Given a set 2 ⊂ + with cardinality #2 = . + 1 ≥ 2, the rhs of

,̃ (2) ≥ MaxSetPackingLP (ℙ. (2)) + # (6.17)

is a lower bound of its extended set energy (lhs).

Proof. See Appendix B.3. !

To define the optimization objective for global energy minimization, we consider
the overall minimal energy for a subset of regions X ⊆ ℙ (+), which covers the
whole universe + . Using the extended set energy from Eq. (6.15), this formally
corresponds to MinSetCover(ℙ (+)) where

MinSetCover (S ) = min
X ⊆S

∑

2∈X

,̃ (2) subject to
⋃

S =
⋃

X , (6.18)

which is an instance of the min-weight set-cover problem (cf. Definition 2.2). Com-
putation of MinSetCover(ℙ (+)) is challenging for two reasons. First, Eq. (6.18)
is NP-hard. To cope with this, we use an approximation algorithm which deter-
mines the global solution within a tight approximation ratio (see Section 6.3.3).
Second, ℙ (+) has a potentially large cardinality. We address this by avoiding the
computation of the whole family ℙ (+), as described below.

6.2.5 Global optimization scheme

To cope with the potentially large cardinality ofℙ (+),we are interested in a criterion
for a set2 ⊆ + which guarantees that the set2 is negligible, i.e. MinSetCover(ℙ (+))
= MinSetCover(ℙ (+) \ {2}). Excluding such sets ultimately yields a subset U ⊆
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ℙ (+), which satisfies MinSetCover(U ) = MinSetCover(ℙ (+)) but is of lower
cardinality than ℙ (+). We derive such a criterion from the following lower bound
of the global optimization objective:

Property 6.2. Let 2 ⊆ + be a set with cardinality #2 = . + 1 ≥ 2. If 2 or a superset of
2 are not negligible, i.e.

∃L : 2 ⊆ L ⊆ + ∧MinSetCover (ℙ (+)) < MinSetCover (ℙ (+) \ {L}) , (6.19a)

then the lhs of

,̃ (2) +
∑

6∈+\2

, ({6}) ≤ MinSetCover (ℙ (+)) (6.19b)

is a lower bound of the global optimization objective (rhs).

Proof. See Appendix B.3. !

In addition to the lower bound established above in Eq. (6.19b), the monotonicity
ℙ. (+) ⊆ ℙ.+1 (+) yields upper bounds of MinSetCover (ℙ (+)),

MinSetCover (ℙ (+)) =
MinSetCover (ℙ#+ (+)) ≤ . . . ≤ MinSetCover (ℙ1 (+))

=
∑

6∈+

,̃ ({6}).
(6.20)

Note that a set2 ⊆ + is negligible if and only if2 ∉ X , where X is the family of
optimal sets in Eq. (6.18) which solve MinSetCover(ℙ (+)). Eq. (6.20) relaxes the rhs
of Eq. (6.19b), which is necessary for 2 ∈ X (but not sufficient). Thus, Property 6.2
in conjunction with Eq. (6.20) can be seen as a necessary optimality condition for a set
2. By negating this condition (i.e. considering the logical complement), we obtain
the following criterion to identify negligible sets:

Criterion 6.1 (Negligible sets). Let 2 ⊆ + a set with cardinality #2 = . + 1 ≥ 2. If

,̃ (2) > MinSetCover (ℙ. (+)) −
∑

6∈+\2

, ({6}) , (6.21a)

then 2 and its supersets are negligible, i.e.

MinSetCover (ℙ (+)) = MinSetCover (ℙ (+) \ {L}) (6.21b)

for all L : 2 ⊆ L ⊆ + .

Proof. See Appendix B.3. !
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Algorithm 6.1: Iterative solution of MinSetCover (ℙ (+)).
input :Adjacency graph & = (+ , ℰ)

1 iter1← {{6}|6 ∈ +}; // initialize U1 = ℙ1 (+)
2 U ← iter1; // sets for which ,̃ (2) was computed
3 do // iterate U = U1 ,U2 , . . .
4 value←MinSetCover (U ); // optimization objective
5 iter0← family of all sets 2 ∪ {6} where

2 ∈ iter1, 6 ∈ + \ 2, and ∃H ∈ 2 , {6 , H} ∈ ℰ;
6 iter1← {};
7 for 2 ∈ iter0 do
8 ,̃max← value −

∑
6∈+\2 , ({6}); // Property 6.2

9 ,̃min← # + MaxSetPackingLP {L ∈ U |L ⊂ 2}; // Property 6.1
10 if ,̃min ≤ ,̃max then // Criterion 6.1
11 compute ,̃ (2) and insert 2 into U ;
12 if ,̃ (2) ≤ ,̃max then // Criterion 6.1
13 iter1← iter1 ∪ {2};

14 until #iter1 = 0;
15 return family X corresponding to “value”, cf. Eq. (6.18)

To compute MinSetCover (ℙ (+)), we consider the sequence U1, . . . ,U#+ , where
each subset U. ⊆ ℙ. (+) is obtained by excluding sets according to Criterion 6.1.
This procedure guarantees MinSetCover(U#+) = MinSetCover(ℙ (+)) due to
Eq. (6.21b) and is formally described in Algorithm 6.1. First, Property 6.1 and
Property 6.2 are used to determine a lower bound ,̃min (line 9) and an upper bound
,̃max (line 8) of the extended set energy ,̃ (2). The set is excluded if the lower bound
exceeds the upper bound (line 10). Otherwise, ,̃ (2) is computed (line 11) and
the set 2 is excluded if ,̃ (2) exceeds the upper bound ,̃max (line 12). The lower
and upper bounds ,̃min and ,̃max are tightened from iteration to iteration (due to
monotonic increase of the family U and monotonic decrease of the variable value).
Thus, if a set 2 is excluded, all supersets L ⊃ 2 are also excluded in subsequent
iterations and computation of ,̃ (L) is not required due to Property 6.1. The number
of iterations is upper-bounded by the cardinality of the universe. An example run-
through of Algorithm 6.1 is given in Appendix C.1.

Compared to classically tree-based branch-and-bound schemes, Algorithm 6.1
builds multiple treesℋ along the edges of the adjacency graph & = (+ , ℰ), each
rooted in the singleton sets of+ . This corresponds to the directed acyclic graph
(DAG)

ℋ = (U , ℰ′) , where (2 ,L) ∈ ℰ′ iff 2 ⊂ L. (6.22)

The graphℋ comprises only the subset U of the admissible nodes ℙ (+). Also, in
contrast to previous DAG-based approaches (e.g., [93, 122]), the segmentation is not
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encoded in our graph structure. These two properties naturally lead to comparably
shallow graphs, thus, neither heuristic pruning [122] nor prior assumptions [12]
are required to obtain graphs of computationally tractable size.

Algorithm 6.1 can be interpreted that it excludes sets corresponding to falsely
merged objects (see the example in Appendix C.1). However, if the whole universe
+ corresponds to a single object, i.e. if ,̃ (+) = MinSetCover (ℙ (+)), then no falsely
merged objects can possibly occur. In this case, Eq. (6.19b) is fulfilled for any 2 ⊆ +
due to Eq. (6.14), and the computational cost (cardinality of U ) grows to #ℙ (+).
To avoid this, we introduce Criterion 6.2, which identifies this case a priori and
provides a closed-form solution:

Criterion 6.2 (Closed-form solution of MinSetCover (ℙ (!))). If ,̃ (+) ≤ 2# +
∑
6∈+ , ({6}), then MinSetCover (ℙ (+)) = ,̃ (+).

Proof. See Appendix B.3. !

Criterion 6.2 is applied for direct segmentation of non-clustered cell nuclei without
using the iterative Algorithm 6.1 (see Section 6.3). Note that Criterion 6.2 can also
be seen as a sufficient optimality condition for the set+ (as opposed to the necessary
optimality condition which is the basis for Criterion 6.1).

The iterative Algorithm 6.1 is computationally more efficient for small values
of # (Criterion 6.1 then excludes more sets). On the other hand, the closed-form
solution (Criterion 6.2) is more efficient for large values of # (since in this case the
margin of the inequality in Criterion 6.2 is larger).

6.3 Cell nuclei segmentation using superadditivity,

convex optimization, and deformable shape models

The proposed SuperDSM method for cell nuclei segmentation consists of four
main steps (cf. Figure 6.1). First, an image is pre-processed to estimate the scale
of the objects, determine the image intensity offsets, and detect image regions
corresponding to possibly clustered objects. Second, a coarse-to-fine region analysis
is performed to compute the universe+ of region fragments and the corresponding
adjacency graph. Third, global energy minimization is performed by iterative
(Algorithm 6.1) and direct (Criterion 6.2) solution of MinSetCover (ℙ (+)) in
Eq. (6.18) above. This includes the automatic choice of hyperparameters for scale
invariance, comprising the weight $ of the regularization of the deformations
in Eq. (6.7) and the constant term # of the extended set energy functions in
Eq. (6.15). Both parameters are determined based on the scale (, which is computed
automatically in the first step. Fourth, post-processing is performed. The steps are
detailed below.
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6.3.1 Scale estimation, intensity offsets, and detection of regions of

possibly clustered objects

To estimate the scale of cell nuclei, we compute the Hessian matrix of the image
intensities [123] and determine local maxima of the determinant of the Hessian
in scale space [108]. False-positive detections are discarded if (i) the detection
corresponds to a non-negative response of the Laplacian of Gaussian filter or (ii)
the scale of the detection is an outlier (determined based on the mean absolute
difference to the median scale). The mean of the remaining inliers is then associated
with the scale ( of an image.

The intensity offsets *" for all image points " ∈ Ω are computed using modified
Gaussian filtering with standard deviation according to the estimated scale ( (see
Supplemental Material 1 in [13]). The denoised image intensities -" (obtained by a
Gaussian filter with standard deviation

√
2) and the intensity offsets *" are then

used to compute LΩ (image intensities with *" offset) for all image points " ∈ Ω
according to Eq. (6.5) by setting ' = Ω.

We also determine the universe+ of region fragments and the corresponding
adjacency graph & = (+ , ℰ). In general, & is disconnected due to Definition 6.1
(Section 6.2.3). Each connected component corresponds to a region of possibly clustered
objects. For computational efficiency, we first determine these regions, and then the
corresponding connected adjacency graph & for each region of possibly clustered
objects (formally this is the same as considering the disconnected adjacency graph
of the whole image). We consider the connected components of the foreground
region Ω+

L , defined as in Eq. (6.6). This generally yields several components which
correspond to the background due to image noise. We identify such components by
considering the perimeter-to-area ratio (P/A ratio). The intuition is that components
due to image noise have strongly irregular contours (jagged or wavelike), while
isolated and clustered cell nuclei have rather smooth contours. Components with
strongly irregular contours can be identified by a large perimeter compared to
the area. We discarded such image regions when the P/A ratio is larger than a
threshold of 0.2, which was chosen empirically. We then obtain the regions of
possibly clustered objects as the regions of the Voronoi diagram of the remaining
connected components (cf. Figure 6.1b).

6.3.2 Coarse-to-fine region analysis

We next determine the universe + of region fragments and the corresponding
connected adjacency graph & separately for each region of possibly clustered
objects (cf. Figure 6.1c). The main requirement for the universe + is that each
region fragment overlaps with at most one object, while not generating a universe
+ of an unnecessarily large cardinality (which would increase the run time of
Algorithm 6.1). We thus start with a region of possibly clustered objects as a whole,
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determine the irregularity of an object in that region, and split the region into
smaller parts as long as the irregularity is large, ultimately obtaining the region
fragments (which are not split further). To determine the irregularity of an image
region ', we minimize the energy function in Eq. (6.7) for % = ! and consider the
normalized energy

; (') = inf
!

&' (!, !) /#'. (6.23)

Eq. (6.23) corresponds to fitting an elliptical model to the region '. It is beneficial
to use elliptical models here, since the energy of these models is more sensitive to
shape irregularities of objects than the energy of deformable shape models. Since
the analysis is performed by splitting large image regions into smaller parts, a
coarse-to-fine region analysis scheme is induced (in contrast to Algorithm 6.1 which
uses a fine-to-coarse scheme). See Appendix C.2 for details.

6.3.3 Scale invariant global energy minimization

Each graph & = (+ , ℰ) determined as described in Section 6.3.2 is processed as
follows. First, the extended set energies ,̃ (+) and ,̃ ({6}) are computed for all
region fragments 6 ∈ + by solving Eq. (6.7). Second, it is checked whether +
corresponds to a non-clustered cell nucleus using the inequality in Criterion 6.2.
If it does, the closed-form solution X = {+} is applied. Otherwise, the iterative
Algorithm 6.1 is used to determine the solution X of MinSetCover(ℙ (+)) using
&. Below, we describe the automatic choice of the hyperparameters $ and # for
Criterion 6.2 and Algorithm 6.1 to establish scale invariance, and introduce efficient
implementations of Algorithm 6.1 and Eq. (6.7).

The extended set energy function ,̃ (2) = , (2) + # in Eq. (6.15) depends on the
hyperparameter # ≥ 0. To properly choose a value for #, we need to understand
how , (2) = inf!,% &'̃(2) (!, %) in Eq. (6.12) depends on the scale ( of an image.
For an arbitrary image region ' = '̃ (2), recall that the energy inf!,% &' (!, %)
approximates the cardinality of a set of image points (Section 6.2.2). Since the
number of image points corresponds to the area, the number changes quadratically
with respect to the scale (for 2-D images). Thus, it is reasonable to assume that
the energy inf!,% &' (!, %) depends quadratically on the scale. Figure 6.3b shows
the energy for image sections of different cell types in different datasets generated
by Gaussian filtering and sub-sampling at different scales (. It can be seen that
the energy depends quadratically on the scale (note that the vertical axis is scaled
quadratically). Thus, it is reasonable to choose # = #factor · (2 as a quadratic
function of the scale to achieve scale invariance. In our experiments using image
data of different scales and cell types, #factor = 0.33 turned out to be a reasonable
choice (cf. Section 6.4).
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Figure 6.3. Relation of the energy inf!,% &' (!, %) and the scale (. Top: Example
image regions of different cell types, from left to right: U2OS, NIH3T3, GOWT1,
Fibroblast, HeLa. Bottom: Corresponding energy inf!,% &' (!, %) as a function of
the scale.

For Algorithm 6.1, the extended set energies ,̃ (2) = inf!,% &'̃(2) (!, %) + # have
to be computed often. Each computation amounts to solving the convex problem
in Eq. (6.7). Efficient implementation of convex energy minimization is thus crucial.
Eq. (6.7) includes the term=' ·% via Eq. (6.8) and Eq. (6.3), which can be interpreted
as radial basis function interpolation [124] due to the block Toeplitz structure of
the matrix ='. Reducing the number of points (summands of the interpolant)
motivates the approximation =' · % ≈ =̃' · %̃, where the matrix =̃' is constructed
from a subset of the columns of =' (the rows are normalized to the sum of 1)
and %̃ is a vector of lower dimension than % (the dimension of % corresponds
to the overall number of points in an image). The columns of =' correspond to
the regular grid of all image points Ω, and the columns of =̃' correspond to the
sub-sampled regular grid of image points within the region ' spaced by 2(=
(where (= is the standard deviation of the Gaussian function used for the matrix
=', cf. Section 6.2.1). We used (= = 0.2 ( (where ( is the scale of an image).
Due to sub-sampling, the number of points of the regular grid and thus also
the dimension of %̃ scales inverse-quadratically with (. Since the regularization
parameter$ of the energy in Eq. (6.7) is a factor of ‖%̃‖1 (using %̃ instead of%), inverse-
quadratic scaling of the dimension of %̃ needs to be compensated by quadratically
scaling $. We used $ = $factor · (2 and $factor = 5 · 10−4 in our experiments
(Section 6.4). The approximation =' · % ≈ =̃' · %̃ concerns only the deformations of
the shape representation in Eq. (6.3). The approximated shape representation has a
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somewhat lower expressive power (since the matrix =̃' is of lower rank than ='),
but substantially increases the computational efficiency, since less parameters need
to be determined (the dimension of %̃ is lower than %). Another interpretation of
the perturbation term =' · % is that it corresponds to a low-pass filter of %, which is
due to the block Toeplitz structure of the matrix =' and since each row represents
a Gaussian function (see above). High frequencies in % are suppressed and thus
sub-sampling % introduces only minor errors. Therefore, minimization using the
approximation yields a solution close to the globally optimal solution for the whole
segmentation task with the original minimization. Further implementation details
of Algorithm 6.1 and an initialization scheme for convex programming with fast
convergence are described in Appendix C.3.

Robust approximation of MinSetCover

To solve the NP-hard min-weight set-cover problem MinSetCover in Algorithm 6.1,
we use the approximative Algorithm 6.2, which iteratively performs a two-step
scheme. First, a greedy step [27] determines the family X ⊆ S for Eq. (6.18) so that
the value &̃ =

∑
2∈X ,̃ (2) of the global optimization objective MinSetCover(ℙ (+))

is at most factor '#+ =
∑#+
.=1 1/. higher than the globally optimal solution (due

to false merges/splits, cf. Section 2.2.6). Any false splits that may arise are coped
with by the subsequent merge step, which merges subsets of X if this decreases the
value &̃ of the global optimization objective (cf. Chapter 5). To cope with possible
occurrences of false merges, both steps are repeated using a more conservative
merging strategy, i.e. decreasing # by a decay factor ), and the family X which
yields the overall lowest value &̃ is considered as final solution. We used 5 iterations
and ) = 0.8. The approximation ratio of Algorithm 6.2 is '#+ or better, since
modifications of the greedy solution are only permitted if the value &̃ is lowered.
This conservative upper bound of the approximation ratio can be tightened a
posteriori. Let &̂ be the unknown exact solution of Eq. (6.18) and &̂LP ≤ &̂ the exact
solution of the LP relaxation. The approximation ratio &̂/&̃ is thus at worst &̂LP/&̃.
In our experiments, the average approximation ratio was at least 99.7 % (median:
100.0 %). Moreover, we found that a de-facto exact solution (&̂LP/&̃ ≥ 0.99) was
determined in at least 92.1 % of the cases. Figure 6.4 shows lower bounds of the
ratio of de-facto exact solutions for different values of ) and iteration numbers.
Note that the special case ) = 1 corresponds to our previous GOCELL approach
(Chapter 5). It can be seen that for ) < 1, higher lower bounds are obtained, thus,
our new method improves the global optimality (we used ) = 0.8 and 5 iterations
as indicated in the figure).

Fast approximation of MaxSetPackingLP

Algorithm 6.1 also requires solving MaxSetPackingLP defined in Eq. (6.16), which
can be solved directly (Section 2.2.5). However, the lower bound computed by
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Algorithm 6.2: Approximative solution of MinSetCover (S ).
input :Family S ⊆ ℙ (+); number of iterations max_iter; decay factor ) ∈ (0, 1)

1 Let ,̃ (2 , #′) = , (2) + #′;
2 for iter = 1, . . . , max_iter do
3 X ′ ← {}; @ ← + ; Z ← S = {21, . . . ,20};
4 #′ ← # · )(iter−1);
5 while #@ > 0 do // greedy step
6 Set K. = ,̃ (2. , #′) /(2. ∩@) for all . = 1, . . . , 0;
7 Set .̂ ∈ [0] so that K.̂ = min.∈[0] K. ;
8 Insert 2.̂ into X ′; and @ ← @ \ 2.̂ ;
9 while #Z > 0 do // merge step

10 Set .̂ ∈ [0] so that 2.̂ ∈ Z and
,̃
(
2.̂ , #

′) = min
{
,̃
(
2.̂ , #

′) &&. ∈ [0] ,2. ∈ Z
}
;

11 if 2.̂ ∉ X ′ and ∃Y ⊆ X ′ :
⋃

Y = 2.̂ ∧ ,̃
(
2.̂ , #

′) <
∑
2∈Y ,̃ (2 , #′) then

12 Update X ′ ← (X ′ \ Y ) ∪
{
2.̂

}
;

13 Remove 2.̂ from Z ;

14 if iter = 1 or
∑
2∈X ′ ,̃ (2) <

∑
2∈X ,̃ (2) then X ←X ′;

15 return X ;

Our method !!

Figure 6.4. A posteriori assessment of global optimality of Algorithm 6.2 for
different numbers of iterations (max_iter) and values of ) based on all instances of
MinSetCover(S ) in Algorithm 6.1 in our experiments. Each curve shows a lower
bound (indicated by the shading) of the ratio of de-facto exact solutions.
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MaxSetPackingLP serves the only purpose to determine whether computation of
the exact set energy ,̃ (2) in line 11 is necessary. Relaxing this bound thus, at worst,
leads to more frequent computations of the exact set energy than necessary, but does
not affect the segmentation result. This means that for MaxSetPackingLP, fast run
time is more important than accuracy. We thus approximated MaxSetPackingLP by
packing disjoint elements of S in decreasing order of their respective set energies
, and found that it overall yields the lowest run time.

6.3.4 Post-processing

Post-processing of the segmentation result (i.e. the globally optimal solution
X ) is performed by refining the segmentation masks (e.g., hole filling using
morphological operations) and rejecting falsely detected objects (e.g., imaging
artifacts or debris objects). Details are given in Appendix C.4. Note that objects are
neither split nor merged in the post-processing.

6.4 Evaluation

We have applied the proposed SuperDSM approach to 2-D fluorescence microscopy
image data. For performance evaluation, we have used six image datasets of five
different cell types comprising various challenges,which are described in Section 3.2
(NIH3T3, U2OS, GOWT1, Fibroblast, HeLa). The data is challenging for a variety
of reasons, including autofluorescence artifacts, low signal-to-noise ratio, closely
clustered and partially overlapping objects, strongly non-elliptical shapes, and
different object scales. Overall, 348 images were used, including 5593 annotated
cell nuclei in total.

We applied the SuperDSM approach using the same set of hyperparameters for all six
datasets. In addition, we applied our approach using dataset-specific adaptations
(SuperDSM*). Details on the hyperparameters are given in Appendix D.

6.4.1 Experimental results

We studied the segmentation accuracy and the cluster splitting performance,
and carried out a quantitative comparison with previous methods. We used
region-based and contour-based performance measures (SEG, Dice, Rand, HSD,
NSD), as well as detection-based measures (Merge, Split), which are described in
Section 3.4. We also provide an analysis of the run time performance and describe
the application of our approach to another imaging modality.

We performed a comparison with previous methods, including eight state-of-the-
art methods (CVX-LS, RPL, Blob-WS, Bayes-LS, CPN, SEG-SELF, RFOVE, Cellpose)
comprising those which were reported to achieve the best results on the respective
datasets and three standard methods (Otsu, Blob-LS, and Blob-RW). The methods
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are described in Section 3.3. For the three standard methods, Gaussian filtering
and morphological closing were applied for pre- and post-processing, and the
hyperparameters were optimized for each dataset using a grid search scheme,
which maximizes the average Dice and SEG values using two randomly chosen
images per dataset. These images are also included in the test set. Note that we did
not use grid search for our method, which is more realistic in practical applications.
Also, we are on the safe side that we do not give an advantage to our method in the
comparison. In addition, we included our previous method GOCELL (Chapter 5)
in the comparison.

For the U2OS and NIH3T3 datasets, we computed the performance values for
SEG-SELF and RFOVE based on the original segmentation results published by the
authors. Some results for HSD and NSD are somewhat different from previously
reported values (Section 5.4.3) since object correspondences were established
differently (cf. Section 3.4). Results for HSD differ from [65, 66], possibly due to
different computation of object correspondences. For the two GOWT1 datasets,
we applied the original SEG-SELF and RFOVE implementations. In addition, we
applied Cellpose to all six datasets. Note that the authors had used the NIH3T3
and U2OS datasets for training the network. Thus, the results of Cellpose for these
two datasets should be treated with caution. For the NIH3T3 and the two GOWT1
datasets, we had to manually adapt one input parameter of Cellpose to achieve
useful results (the optimal nuclei diameter, which we determined based on the
ground truth, and which by default is computed automatically). For CVX-LS, RPL,
Blob-WS, Bayes-LS, and CPN, we have used the performance values provided in
the respective publications. For CPN, only performance values for the SEG measure
were reported.

The results for all approaches and all datasets are provided in Table 6.1. Below,
we discuss the datasets individually.

NIH3T3 dataset

The NIH3T3 dataset contains many closely clustered cell nuclei. SuperDSM yields
better results than SEG-SELF and RFOVE regarding SEG, Dice, Rand, HSD, NSD,
and Split. Compared to RPL, SuperDSM yields a slightly worse Dice value, but
improved NSD and strongly improved HSD values. The lowest number of falsely
merged/split objects is obtained by Cellpose and the second-lowest by GOCELL and
SuperDSM. However, for Cellpose this dataset was used for training, and GOCELL
employs dataset-specific parameters and pre-processing (see Sections 5.4.3–5.4.4).
For SEG, Dice, HSD, and NSD, SuperDSM performs substantially better than
Cellpose. Besides using fixed parameters for all datasets, we also employed dataset-
specific adaptations for our approach (SuperDSM*) and discarded objects by post-
processing which likely correspond to autofluorescence artifacts (based on the
radius and connected component analysis). SuperDSM* yields the best results
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SEG Dice Rand HSD NSD Merge Split

NIH3T3 cells
RPL — 0.91 0.93 14.1 0.09 — —
SEG-SELF 0.80 0.89 0.92 12.9 0.11 0.8 1.3
GOCELL 0.84 0.92 0.94 8.3 0.06 0.7 0.5
RFOVE 0.80 0.89 0.92 13.3 0.12 0.9 0.9
Cellpose 0.75 0.86 0.92 33.4 0.17 0.0 0.4
SuperDSM 0.82 0.90 0.93 8.8 0.08 0.8 0.4
SuperDSM* 0.85 0.92 0.94 8.3 0.07 0.5 0.6

U2OS cells
CVX-LS — 0.94 — 12.8 0.05 — —
RPL — 0.96 0.96 10 0.02 — —
Bayes-LS — 0.96 — 12.7 — — —
SEG-SELF 0.85 0.94 0.95 13.7 0.08 0.3 4.6
GOCELL 0.75 0.92 0.93 15.5 0.09 0.4 3.3
RFOVE 0.77 0.92 0.93 15.8 0.16 1.8 1.9
Cellpose 0.89 0.96 0.96 11.6 0.06 0.1 0.2
SuperDSM 0.86 0.93 0.94 8.8 0.05 0.6 0.5
SuperDSM* 0.90 0.96 0.96 7.3 0.06 0.9 0.4

GOWT1 dataset 1
Blob-WS 0.74 — — — — — —
CPN 0.85 — — — — — —
SEG-SELF 0.52 0.89 0.97 30.3 0.17 0.0 0.1
GOCELL 0.85 0.94 0.98 4.7 0.02 0.0 0.0
RFOVE 0.60 0.89 0.97 25.6 0.15 0.0 0.1
Cellpose 0.72 0.86 0.97 28.2 0.16 0.1 0.0
SuperDSM 0.84 0.94 0.98 4.3 0.01 0.0 0.0
SuperDSM* 0.87 0.94 0.98 4.2 0.01 0.0 0.0

GOWT1 dataset 2
Blob-WS 0.91 — — — — — —
CPN 0.87 — — — — — —
SEG-SELF 0.82 0.92 0.97 18.4 0.12 0.0 1.1
GOCELL 0.91 0.95 0.98 3.9 0.01 0.0 0.0
RFOVE 0.79 0.90 0.97 18.9 0.13 0.0 0.7
Cellpose 0.73 0.92 0.97 18.2 0.13 0.0 0.6
SuperDSM 0.89 0.94 0.98 4.3 0.02 0.0 0.5
SuperDSM* 0.92 0.94 0.98 3.6 0.01 0.0 0.0

Fibroblasts
Otsu 0.78 0.86 0.97 12.4 0.14 0.1 0.9
Blob-LS 0.72 0.83 0.96 18.5 0.18 0.1 1.2
Blob-RW 0.29 0.64 0.93 36.9 0.28 0.0 0.1
GOCELL 0.93 0.90 0.98 6.5 0.01 0.0 0.0
Cellpose 0.54 0.56 0.94 115.0 0.39 0.0 0.3
SuperDSM 0.94 0.89 0.98 5.8 0.02 0.0 0.1
SuperDSM* 0.95 0.90 0.98 5.1 0.01 0.0 0.0

HeLa cells
Otsu 0.85 0.94 0.98 10.5 0.08 0.2 2.8
Blob-LS 0.85 0.93 0.98 13.5 0.06 0.2 0.2
Blob-RW 0.68 0.81 0.94 31.7 0.15 0.0 0.4
GOCELL 0.89 0.94 0.98 15.9 0.03 0.0 0.3
Cellpose 0.69 0.76 0.95 106.7 0.24 0.0 0.3
SuperDSM 0.90 0.93 0.98 13.9 0.02 0.1 0.0
SuperDSM* 0.90 0.94 0.98 13.2 0.03 0.1 0.0

Table 6.1. Segmenta-
tion performance of
different approaches.
For SEG, Dice, Rand,
higher is better. For
HSD, NSD, Merge,
Split, lower is bet-
ter. Not available re-
sults are indicatedby
“—”. Best results are
highlighted.
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for SEG, Dice, Rand, HSD, and Merge. An example segmentation result is shown
in Figure 6.5. It can be seen that clustered and non-clustered cell nuclei are well
segmented.

U2OS dataset

The U2OS dataset is difficult due to strongly non-elliptical shape of the cell nuclei,
which is challenging for the merging/splitting schemes of the segmentation
methods. Cellpose yields the lowest number of falsely merged/split objects,
however, this dataset was used for training the network. SEG-SELF achieves the
second-lowest false merging rate (0.3 per image), but has a strong tendency to over-
segmentation (4.6 falsely split objects per image). SuperDSM yields only 0.6 falsely
merged and only 0.5 falsely split cell nuclei per image. This good merging/splitting
performance is in agreement with an improved SEG performance (SEG is sensitive
to false merges/splits). Compared to RPL, SuperDSM performs worse for Dice,
Rand, and NSD. However, Dice and Rand are invariant to false merges/splits, which
were not reported for RPL. SuperDSM* yields the best results for SEG, Dice, Rand,
and HSD. SEG-SELF and GOCELL yield fewer false merges, but significantly more
false splits. Thus, overall, SuperDSM* performs best. Figure 6.6 shows example
segmentation results. Our approach yields no false merges/splits, whereas SEG-
SELF yields four falsely split cell nuclei. The object contours of all cell nuclei are
accurately segmented.

GOWT1 datasets

For GOWT1 dataset 1, SuperDSM yields overall very good results. Compared to
SEG-SELF and RFOVE, strong improvements can be observed for SEG (0.60 to
0.84), Dice (0.89 to 0.94), HSD (25.6 to 4.3), and NSD (0.15 to 0.01). Improvements
are also large compared to Cellpose and concern mostly SEG (0.72 to 0.84), Dice
(0.86 to 0.94), HSD (28.2 to 4.3), and NSD (0.16 to 0.01). GOCELL and CPN
perform slightly better (SEG is 0.85), however, only SEG was reported for CPN
(which is invariant to false-positive detections) and GOCELL used dataset-adapted
parameters and pre-processing. Using ourmethod with dataset-specific adaptations
(SuperDSM*) yields the best results for all performance measures. For GOWT1
dataset 2, SuperDSM performs competitively. SEG is improved compared to CPN,
SEG-SELF, RFOVE, and Cellpose, but not as good as Blob-WS (which did not
perform well for GOWT1 dataset 1). SuperDSM* yields the best results regarding
all measures. Figure 6.7 shows example segmentation results. All objects are
accurately segmented, including the low-intensity cell nuclei and the irregularly
shaped nucleus in GOWT1 dataset 2.
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(a) (b)

(c) (d)

Figure 6.5. Example segmentation results (green contours) for the NIH3T3 dataset.
(a) Original image. (b) Ground truth. (c) Result of RFOVE. (d) Result of SuperDSM*.
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(a) (b)

(c) (d)

Figure 6.6. Example segmentation results (green contours) for the U2OS dataset.
(a) Original image (contrast-enhanced). (b) Ground truth. (c) Result of SEG-SELF.
(d) Result of SuperDSM*.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7. Example segmentation results (green contours) for GOWT1 dataset
1 (left) and GOWT1 dataset 2 (right). (a) Original images (contrast-enhanced).
(b) Ground truth. (c) Result of SEG-SELF. (d) Result of GOCELL. (e) Result of
RFOVE. (f) Result of SuperDSM*.
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Fibroblast dataset

For the Fibroblast dataset,SuperDSM yields the best results forSEG,Rand,HSD,and
Merge, but is slightly worse for Dice, NSD, Split compared to GOCELL. Compared
to Cellpose, the results are strongly improved for SEG (0.54 to 0.94), Dice (0.56 to
0.89), Rand (0.94 to 0.98), HSD (115.0 to 5.8), NSD (0.39 to 0.02), and Split (0.3 to 0.1).
The dataset contains multiple images with only few cell nuclei and it turns out that
the pre-processing somewhat underestimates the scale (. Adapting this parameter
(SuperDSM*) yields the best results for all measures. Example segmentation results
are shown in Figure 6.8. Our approach reliably segments the contours of both
elliptical and non-elliptical cell nuclei. GOCELL performs worse since elliptical
shape models are insufficient. Blob-LS and Blob-RW perform worse since their
initialization is prone to the non-elliptical shapes and closely clustered objects.

HeLa dataset

For the HeLa dataset, SuperDSM performs overall better than Otsu, Blob-LS, Blob-
RW, and Cellpose. Compared to GOCELL, SuperDSM yields better results for SEG,
HSD, NSD, and Split. Overall, SuperDSM yields the best result for SEG, Rand,
NSD, and Split. SuperDSM* yields the overall best result.

Conclusion

Considering all datasets, it turns out that our SuperDSM approach achieves
better results than previous methods for the Fibroblast and HeLa datasets and
competitive results for the U2OS, NIH3T3, GOWT1 datasets using the same set
of hyperparameters for all six datasets. The results are generally slightly worse
than using dataset-specific adaptations (SuperDSM*). Using such adaptations, our
approach generally yields best results for all datasets for the region-based measure
SEG. For Dice and Rand, the results are competitive. Concerning contour-based
measures, the performance of our method is best for four out of six datasets, and
second-best for two datasets. Regarding cluster splitting, our method generally
yields the best results for all datasets for the number of falsely merged/split objects
(sum of Merge and Split in Table 6.1), and achieves very low Merge and Split counts
(less than one falsely merged/split objects per image). For the NIH3T3 and U2OS
datasets, Cellpose yields fewer falsely merged/split objects, however, both datasets
were used for training the network. For the other datasets, our method achieves
strongly improved results compared to Cellpose for all region-based and contour-
based measures. The best performing methods besides our approach are RPL and
GOCELL. However, for RPL, published results for SEG, Merge, and Split are not
available. GOCELL yields worse results than SuperDSM for non-elliptical cell
nuclei (e.g., U2OS dataset). We thus conclude that our method performs overall
best in this study.
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(a) (b)

(c) (d)

Figure 6.8. Example segmentation results (green contours) for the Fibroblast
dataset. (a) Original image (contrast-enhanced). (b) Result of GOCELL. (c) Result
of Cellpose. (d) Result of SuperDSM*.
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In practical applications, the hyperparameters of the global energy minimization
of our SuperDSM* method can be adapted as follows starting from the default
values (SuperDSM). For example, when the computed cell contours are too smooth,
one could reduce the weight $ of the regularization of the deformations in Eq. (6.7).
When objects are falsely split (e.g., due to irregular shapes) one could increase the
constant term # of the extended set energy functions in Eq. (6.15). The scale ( can
be adapted by using ( = E/

√
2, where E is the average radius of cell nuclei which

could be determined coarsely.

6.4.2 Run time performance

In addition, we studied the run time performance of our approach. As described in
Section 6.3, our approach separately processes regions of possibly clustered objects.
This involves the computation of the extended set energies ,̃ (2) in Eq. (6.15) for dif-
ferent sets 2 ∈ ℙ (+) to determine the solution X ⊆ ℙ (+) of MinSetCover (ℙ (+)),
see Algorithm 6.1. The computational cost is the number of sets (image regions),
for which the set energies must be computed (see Section 6.2.5). This number is
upper-bounded by the cardinality of the universe of a region of possibly clustered
objects. Regions of possibly clustered objects with universe cardinality #+ ≤ 2
are computationally cheap, since #ℙ (+) ≤ 3 and thus at most three sets must
be computed. We found that such regions occurred in 82.7 % of the cases. The
other cases are computationally more challenging, and our method reduces the
computational cost by excluding sets before computing the corresponding energies
using Criterion 6.1 and Criterion 6.2. The more sets are excluded, the more efficient
the method is. As a measure of efficiency, we use the set exclusion rate (SER), which
is the ratio of excluded sets compared to the cardinality of ℙ (+). To quantify the
computational cost of our approach for the computationally challenging cases,
below we consider SER for regions of possibly clustered objects with universe
cardinality #+ > 2. We also study the run time of our method.

Figure 6.9a shows a histogram of SER values for the computationally challenging
cases (#+ > 2) for all six datasets. The median SER is 0.33 and the maximum is
0.97, thus, the computational cost was typically reduced by 33 % and at best by
97 %. For the U2OS, GOWT1, Fibroblast, and HeLa datasets, relatively high SER
values were obtained. The median SER is 0.62 for GOWT1 dataset 1 and 0.43 for the
other datasets. Thus, the computational cost was typically reduced by 43 % or 62 %,
respectively. Only for the NIH3T3 dataset lower SER values were obtained. The
reason is probably that this dataset is most difficult in terms of clustered objects.
Overall, we can conclude that the two criteria effectively reduce the computational
cost for the computationally challenging cases.

Figure 6.9b shows the average computation time per image of the individual
processing steps of our approach. It can be seen that both pre-processing and post-
processing performed in almost constant time (see the scattering indicated by the
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(a)

(b)

(c)

Figure 6.9. Run time performance of our approach for the six datasets (darker color
shades correspond to SuperDSM, brighter color shades correspond to SuperDSM*).
(a) Histogram of the set exclusion rate SER (relative frequencies). (b) Computation
time of the individual processing steps of our approach (mean and standard
deviation). (c) Histogram of the total run time per image (absolute frequencies).
The labels on the horizontal axis denote intervals (e.g., 0 to 1 min, 1 to 2 min).
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error bars). The computationally most expensive task in pre-processing is scale
estimation (cf. Section 6.3.1). The strongest scattering in the average run time can be
observed for the coarse-to-fine region analysis, which is probably due to the linear
search to determine seeds for splitting regions with high normalized energies (cf.
Section 6.3.2). Regarding the global energy minimization (cf. Section 6.3.3), we
observe that images with many closely clustered objects correlate with longer run
times (U2OS and NIH3T3 datasets). This confirms that our approach efficiently
copes with non-clustered cell nuclei. The overall average run time was 45.3 seconds
per image. For comparison, the average run time of our previous globally optimal
GOCELL approach (Chapter 5) was 1:23 minutes per image using the same
hardware (see below). Thus, we achieved a speed-up of 183 %. This is remarkable,
since deformable shape models used in the proposed approach are computationally
much more challenging than elliptical models due to the higher dimension of
the parameter space. For the globally optimal approach using circular models
[64], we observed a run time of 38 minutes (Section 5.4.1). This emphasizes the
computational efficiency of the proposed approach. In biological applications,
most time is required for preparation of the specimen such as staining and for
image acquisition (e.g., DAPI staining takes at least 2–4 minutes [6]). Thus, the run
time of our method is suited for practical applications.

Figure 6.9c shows the overall run time of our method per image. From the mode
of this histogram it can be seen that for the vast majority of the images, the typical
computation time was less than 1 minute per image (84.1 % of the images). For
95.8 % of the images, the overall run time was less than 2 minutes. We observed
only two cases, where the computation lasted unexpectedly long (a single image
from the Fibroblast dataset, which took 14 minutes for SuperDSM and 12 minutes
for SuperDSM*). The reason is probably that scale estimation was not accurate.

All experiments were performed using an AMD Ryzen Threadripper 3970X CPU
and 32 GB of RAM. We used Intel Math Kernel Library 20.0 for fast sparse and dense
linear algebra. For the coarse-to-fine region analysis, up to 16 regions of possibly
clustered objects were processed in parallel. For global energy minimization, the
energies for up to 16 sets were computed in parallel. For post-processing, up to
16 objects were processed in parallel. Note that no GPU acceleration was used
for the experiments. Faster run times can be achieved by increasing the degree of
parallelization, which is straightforward.

6.4.3 Application to different imaging modality

So far, we have studied the performance of our method using a wide range of
fluorescence microscopy image data. In a final experiment, we investigated the
applicability of our approach to another imaging modality, namely histopathology
images stained with haematoxylin and eosin (H&E). These images are color images,
where cell nuclei appear in blue or dark purple. We used the training dataset of the
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MICCAI 2018 MoNuSeg challenge [125]. The image size is 1000 × 1000 pixels and
the data contains 1390 cell nuclei from the histological section of a human stomach
in adenocarcinoma disease condition (see Figure 6.10a). The data is challenging
due to very densely clustered cell nuclei, a wide variety of nuclei shapes, and
strongly inhomogeneous background.

We used minor methodological adaptations to account for the very different
imaging modality. This concerns only pre-processing and the computation of LΩ
(image intensities with *" offset). The idea is to transform the image intensities so
that cell nuclei (dark purple regions) correspond to bright intensities. To this end,
we first average the image intensities over the three color channels -r

" , -
g
" , -

b
" using

-" = 1− 1
3

(
-r
" + -

g
" + -b

"

)
. Second, we apply Gaussian filtering (standard deviation

() followed by local maximum filtering (2( × 2( neighborhood) to determine the
locally maximal responses -max

" . Third, we compute LΩ (image intensities with *"
offset, see Eq. (6.5)) by *" = max

{
-max
" ,mean"∈Ω -"

}
using the mean intensity over

all image points.
Our method performed the segmentation within 3:06 minutes and the result

is shown in Figure 6.10c. We found that 97.1 % of the cell nuclei were detected
(using the detection measure described in Section 3.4), and only 4.5 % were falsely
merged or split, respectively. Given that our approach is designed for fluorescence
microscopy images rather than H&E-stained histopathology images, the result is
promising. In Figure 6.10c, right bottom, few small tissue regions are segmented
since they are slightly darker than their neighborhood (as for cells). The result
could be improved by not only taking into account the brightness, but also the
color hue and saturation for computing LΩ. Overall, this experiment shows that
our approach can be generalized to other imaging modalities.

6.5 Discussion

We have introduced a new globally optimal approach based on deformable shape
models and global energy minimization for cell nuclei segmentation in microscopy
images. The approach intrinsically copes with non-elliptical shapes, jointly exploits
shape and intensity information, and is based on an implicit parameterization,
which leads to a convex energy. Thus, energy minimization is independent of the
initialization, fast, and robust. To jointly perform cell segmentation and cluster
splitting, we have considered the infimum of the convex energy as a set energy
function, i.e. a function of the set of image regions where model fitting is performed.
We have proposed a novel iterative global energy minimization method, which
provably determines the optimal image regions close to global optimality. The
method exploits the inherent property of superadditivity of the set energy function,
which is established via the set-packing polytope. Intuitively, the property of superad-
ditivity means that a deformable shape model cannot fit better to an image region
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(a) (b)

(c)

Figure 6.10. Application of our approach to different imaging modality. (a) Original
H&E-stained histopathology image. (b) Ground truth. (c) Segmentation result
(green contours) of SuperDSM*.
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than it fits to any of its sub-regions. We have used this property to obtain a necessary
optimality condition for the image regions, which shows that it is not required to
consider all possible image regions for optimization. Instead, the proposed energy
minimization method considers image regions in order of increasing size and
leverages superadditivity to exclude regions corresponding to falsely merged
objects using a fine-to-coarse scheme. This is achieved by iterative evaluation and
refinement of the necessary optimality condition, and improves the computational
efficiency, since when excluding a region, all its supersets are also excluded. We
have also described a coarse-to-fine region analysis scheme, which determines the
universe of region fragments used as input for global energy minimization. In
addition, we have derived a closed-form solution of the proposed global energy
minimization based on the superadditivity property for non-clustered cell nuclei,
which further accelerates the computation.

The regularization parameter $ of the convex energy is used to control the shape
variability of the deformable shape models. An extended set energy function has
been introduced to avoid over-segmentation, which uses the hyperparameter #
defining the maximum allowed energy difference for merging two image regions
(i.e. two deformable shape models that are fitted in these regions). Our approach
automatically determines scale-related hyperparameters based on scale estimation.
The objective function of our global energy minimization method corresponds
to a min-weight set-cover problem, which is NP-hard to compute. We have thus
used a fast approximation algorithm, which determines a solution close to global
optimality. In addition, the design of the algorithm directly addresses the false
splits and false merges possibly introduced by using an approximation. We have
performed an analysis of global optimality and found that the global solution was
exactly determined in at least 92.1 % of our experiments, the average approximation
ratio of the solution was at least 99.7 %, and the median was 100.0 %. To compute
the set energy function, we have used a fast numerical second-order method which
directly determines global solutions by convex energy minimization.

We have applied our approach to a wide range of 348 fluorescence microscopy
images of five different cell types comprising 5593 cell nuclei, and performed a
quantitative comparison with previous methods. It turned out that our approach
generally demonstrates the best or second-best cluster splitting performance. The
segmentation accuracy is better compared to previous methods according to region-
based measures, and is competitive according to contour-based measures. For the
region-based SEG performance measure used in the cell segmentation benchmark
[104], which is the best suited measure for overall segmentation performance (since
it incorporates both detection and object-based segmentation performance), our
approach generally yields superior results for all datasets. Our approach is robust
since it achieves competitive or improved results even when using a fixed set of
hyperparameters for all datasets, compared to nine state-of-the-art methods which
previously achieved best results on the respective datasets. In addition, we have
demonstrated that our approach can be generalized to other imaging modalities.
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Summary and outlook

7.1 Summary

In this thesis, three new globally optimal model-based approaches for cell nuclei
segmentation have been introduced. The new approaches address main challenges
and difficulties of cell segmentation in general and for fluorescence microscopy in
particular (see Section 1.2), and can be summarized as follows:

• In fluorescence microscopy imaging, strong image noise occurs due to low
intensity of light emitted by the fluorophores. To cope with this, we have
introduced the CVXELL approach (Chapter 4). The approach is based on
convex optimization and elliptical models, which are fitted directly to the im-
age data, using a sequential approximation scheme. Convex optimization has
the advantage that globally optimal solutions are determined independently
of the initialization.

• To better cope with touching and partially overlapping cell nuclei, we have
proposed the GOCELL approach (Chapter 5). The approach is based on
elliptical models and a multi-object scheme, which jointly performs cell seg-
mentation and cluster splitting, meaning that neither prior object detection
nor prior image binarization is required. Global energy minimization is
performed using an efficient combination of convex and combinatorial opti-
mization, which determines the solution close to global optimality. GOCELL
is also intrinsically robust to inhomogeneous image intensities.

• We have also introduced the SuperDSM approach, which is based on de-
formable shape models (Chapter 6). The approach jointly performs globally
optimal cell segmentation and cluster splitting, but in contrast to the GOCELL
approach, SuperDSM is scale-invariant and more general, since it naturally
copes with cell nuclei of varying shapes. Despite its higher level of generality,
SuperDSM is also more efficient since it exploits the inherent property of
superadditivity for combinatorial optimization.
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The proposed approaches were quantitatively evaluated using publicly available
benchmark datasets, comprising different challenges, cell types, and stainings. The
proposed approaches generally achieved state-of-the-art or improved performance.
In particular, SuperDSM achieved competitive results even when using a fixed set
of hyperparameters for all datasets.

Our main technical contributions and findings can be summarized as follows:

• We have introduced implicitly parameterized shape models for cell nuclei
segmentation. We have also described model fitting methods based on energy
minimization and proposed three different parameterizations. In the first
method (CVXELL), an elliptical model is parameterized as a function of the
center of the model. This non-linear parameterization has the advantage that
the center of the model can be used to encode prior knowledge regarding the
location of the model during energy minimization (e.g., for priorly detected
objects). Energy minimization using this parameterization is performed by
convex optimization based on a sequential approximation scheme. In the
second method (GOCELL), a linear parameterization for elliptical models
was introduced. This parameterization has the advantage that it yields a
convex energy function, so that direct minimization can be performed without
requiring approximation. Another advantage is that the energy function is
invariant to the image contrast. In the third method (SuperDSM), we proposed
a linear parameterization for deformable shape models. This parameterization
also leads to a convex energy function for model fitting, but permits more
general shapes than previous parameterizations.

• The image intensities are directly encoded in the energy functions. Model
fitting using parametric shape models thus jointly exploits shape and intensity
information. The proposed energy minimization methods are based on
convex optimization. We employed fast second-order optimization methods for
convex optimization, which are robust and yield globally optimal solutions
independently of the initialization. Convex optimization exploiting shape
information was not used in previous cell segmentation methods.

• Single-object and multi-object schemes have been proposed. Single-object
schemes have the advantage, that model fitting can be performed by energy
minimization using exclusively convex optimization methods (e.g., Chapter 4,
Section 5.2, Section 6.2.2). However, prior object detection is required since
cell microscopy images generally contain multiple objects. To avoid prior
object detection, we have also proposed multi-object schemes (e.g., Section 5.3,
Section 6.2.3). In Chapter 5, we generalized the single-object model to the
multi-object case. The multi-object model yields a non-convex energy, yet
we have found that model fitting using the multi-object model corresponds
to the min-weight set-cover problem. In this formalism, an overcomplete
set of region prototypes is used and each region prototype is weighted by a
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non-negative energy value determined by convex optimization. Joint cell
segmentation and cluster splitting is performed by determining a minimum-
weight subset of region prototypes. We then used this result to design a
global multi-object energy minimization scheme, where the overcomplete set
of region prototypes is computed in advance (Section 5.3). In Chapter 6, we
proposed a more efficient multi-object energy minimization scheme, which
iteratively evaluates and refines a necessary optimality condition for the region
prototypes (see below). This scheme automatically confines the computations
to a meaningful subset of region prototypes (instead of computing all possible
region prototypes in advance).

• We have found a necessary optimality condition for region prototypes, which is
based on the property of superadditivity. This property means that the weight
of any region prototype is lower-bounded by the sum of the weights of any
pair of disjoint sub-regions and is established via the set-packing polytope.
The advantage is that the computations are automatically confined to a
meaningful subset of all region prototypes.

• We have also derived a closed-form solution of the proposed global energy
minimization,using the corresponding min-weight set-cover and the property
of superadditivity. The closed-form solution directly identifies non-clustered
cell nuclei and determines the corresponding segmentation result, instead of
performing cell cluster splitting, which further accelerates the computations.

• Computing the min-weight set-cover is NP-hard and thus computationally
intractable. Hence, we used fast approximation algorithms, which directly
address the false splits and false merges possibly introduced by the approxi-
mation and are guaranteed to determine a solution close to global optimality.
In addition, global optimality was checked a posteriori and we found, that
the global solution was exactly determined in at least 91.5 % (GOCELL) and
92.1 % (SuperDSM) of the experiments, respectively.

• We have used region fragments to characterize the overcomplete set of region
prototypes as a set of a computationally tractable cardinality. In addition, we
proposed a coarse-to-fine region analysis scheme, which determines the region
fragments by recursively fitting elliptical models using convex optimization.

• The proposed segmentation approaches were designed for cell segmentation
in fluorescence microscopy images. In addition, we have demonstrated the
general applicability of SuperDSM to other imaging modalities (H&E stained
histopathology images).
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7.2 Outlook

In future work, the proposed approaches could be extended as follows:

• The global optimization scheme of the SuperDSM approach is based on a
necessary optimality condition for the region prototypes, which is evaluated
and refined iteratively. To increase the computational efficiency of the global
optimization scheme, an extension would be to also incorporate sufficient
optimality conditions into the iterative scheme.

• The proposed global energy minimization schemes minimize a non-convex
multi-object energy using convex and combinatorial optimization steps,which
are performed either successively (GOCELL) or alternatingly (SuperDSM).
Blending both optimization steps into a single optimization method might
further increase efficiency and accuracy.

• We have shown that SuperDSM can be used for segmentation of cell nuclei
in microscopy data of different imaging modalities. Future research will
consider extendability to other imaging modalities and other application
areas of computer vision and image analysis.
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In this appendix, we provide mathematical, algorithmic, and implementation
details of Chapter 6. In particular, we provide details on the computation of the
image intensity offsets (Appendix A), mathematical details and proofs on convex
optimization and superadditivity (Appendix B), algorithmic and implementation
details of Algorithm 6.1, coarse-to-fine region analysis, convex optimization, and
post-processing (Appendix C), and the hyperparameters (Appendix D).

A Computation of the image intensity offsets

Notation. We use -" to denote the image intensity at image point " ∈ Ω. By
stacking the image intensities in an arbitrary but fixed order Ω =

{
"(1), . . . , "(#Ω)},

we obtain a vector representation - = (-"(1) , . . . , -"(#Ω) ) of the whole 2-D image.
Accordingly, given a vector 5, we write 5" to denote the component of the vector
5 corresponding to the image point ". Using this vector notation, let &( be the
vector representation of a 2-D Gaussian function with standard deviation (, and
let “∗” denote the corresponding 2-D convolution. Thus, for example, (&( ∗ -)"
denotes the intensity value of the Gaussian-filtered image - at image point ".

As described in Section 6.2.2, the purpose of the image intensity offsets *" ∈ ℝ
is to roughly subdivide an image into two regions which are foreground (-" > *")
or background (-" < *"). To determine the intensity offsets, one possibility would
be to use *" = (&( ∗ -)" . However, this leads to a misclassification of low-intensity
objects as image background (-" − *" < 0) if they are close to bright objects (e.g.,
see the object in the center in Figure A.1b). To better cope with such intensity
inhomogeneities,we propose the following two-step scheme. First,we determine the
image region Ω′ = {" ∈ Ω|-" ≤ *max} using *max = 3 · std"∈Ω -" , where std"∈Ω -"
is the standard deviation of the image intensities -" for " ∈ Ω. Second, we compute
the intensity offsets *" either (i) directly using (&( ∗ -)" for image points " ∈ Ω′,
or (ii) by clipping image intensities higher than *max prior to filtering. For image
points " ∈ Ω′ close to the boundary of Ω′, the intensity offsets are interpolated
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between these two options using the weights ." . Formally, this corresponds to

*" = ." · (&( ∗ -)" + (1 − .") · (&( ∗ clip (- , *max))" ,

where ." =

{
1 if " ∈ Ω′

max {0, 1 − distΩ′ (") /(}2 else,
,

(A.1)

where clip (- , *max) denotes clipping of the image intensities and distΩ′ (") =

min"′∈Ω′ ‖" − "′‖2 is the Euclidean distance of the image point " to the set Ω′. It
can be seen in Figure A.1c, that using Eq. (A.1) properly classifies all three objects
as image foreground (-" − *" > 0).

(a) (b) (c)

Figure A.1. Computation of image intensity offsets. (a) Original image section
(NIH3T3 cells, contrast-enhanced to improve visibility). (b) Image intensities
-" − *" using the offsets *" = (&( ∗ -)" . (c) Image intensities -" − *" using the
offsets computed by Eq. (A.1). The dashed contour corresponds to the boundary
of Ω′.

B Proofs and mathematical details

B.1 Convexity and smooth approximation

A direct numerical solution of Eq. (6.7) is difficult due to the non-smooth regular-
ization term ‖%‖1. We thus propose using the smooth approximation

‖%‖1 ≈
〈
"#Ω,

√
%2 + ,

〉
−
√
, · #Ω, (B.1)

with , > 0, where the power of two and the square root are defined component-
wise. Below, Property B.1 establishes the convexity of Eq. (6.7) using Eq. (B.1). In
Eq. (B.1), the constant term

√
, · #Ω ensures that the approximation yields 0 for

% = !, which is important to retain Property B.2 (discussed thereafter).

Property B.1. Eq. (6.7) states an unconstrained convex problem.
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Proof. The absence of constraints is evident. To proof convexity of the objective function,
let . denote the Hadamard product and consider the Hessian matrix:

∇2&' (!, %) =
[
8'
=?'

]
·N ·

[
8?' ='

]
+ $ · Diag

(
!6, ,/

(
%2 + ,

)3/2
)
, (B.2a)

where

N = Diag
(
L2
' .

(
7' (!, %) − 72

' (!, %)
))

, (B.2b)

7' (!, %) =
1

1 + exp (L' . B' (!, %))
. (B.2c)

Note that N * 0 due to 0 < 7' (!, %) < 1 for all !, %. Thus, the Hessian matrix is of the
form ∇2&' (!, %) = '?' + $$, where (skipping the dependence of the matrices ' and
$ on ', %, ! for clarity of notation)

' = Diag
√
L2
' .

(
7' (!, %) − 72

' (!, %)
)
·
[
8?' ='

]
,

$ = Diag

(
!6, ,/

(
%2 + ,

)3/2
)
.

The matrix '?' is positive semidefinite (PSD), since F?'?'F = F̃? F̃ + 0 for all
F ∈ ℝ6+#Ω, where F̃ = 'F (since ' is real-valued). The matrix $ is also PSD due to
, > 0. This means that the Hessian matrix ∇2&' (!, %) is the sum of two PSD matrices,
and thus also PSD. By the necessary and sufficient second-order condition for convexity
(Section 2.2.2), the energy in Eq. (6.7) thus is a convex function. !

B.2 Set-packing polytope

In Section 6.2.3, we define the set-packing polytope 3 for a given family of sets
21, . . . ,2* ⊆ + as the set of solutions 6 ∈ ℝ*

+ for the inequality in Eq. (6.13). Here,
we consider the set-packing polytope 3 for a family of sets '1, . . . , '* ⊆ Ω, which
is analogously defined as the set of solutions 6 ∈ ℝ*

+ for the inequality
∑

.∈[*]

[" ∈ '.] · 6. ≤ 1 for all " ∈ Ω. (B.3)

An important property of the objective function in Eq. (6.7) is that &'1∪···∪'* (!, %)
is an upper bound of 61 ·&'1 (!, %) + · · · + 6* ·&'* (!, %) for any pair of parameters
!, % and family of sets '1, . . . , '* with associated weights 6 ∈ 3 ('1, . . . , '*):
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Property B.2. Let '1, . . . , '* ⊂ Ω, ' = '1∪ · · ·∪'* , and 6 ∈ 3 ('1, . . . , '*). Then

&' (!, %) ≥ 61 · &'1 (!, %) + · · · + 6* · &'* (!, %) . (B.4)

Proof. Let %" the component of % corresponding to " ∈ Ω. Expanding Eq. (6.7) using
Eq. (6.8) then yields

&' (!, %) =
∑

"∈'
ℓ" (!, %) + $ · |%" | , (B.5a)

where ℓ" (!, %) = ln
(
1 + exp

(
−L' · B' (!, %) |'={"}

) )
. Let 8" =

∑
.∈[*] [" ∈ '.] · 6. .

Since 8" ≤ 1 for all " ∈ ' due to 6 ∈ 3 ('1, . . . , '*),

&' (!, %) ≥
∑

"∈'
8" · (ℓ" (!, %) + $ · |%" |) (B.5b)

=
∑

.∈[*]

∑

"∈'.

6. · (ℓ" (!, %) + $ · |%" |) (B.5c)

=
∑

.∈[*]

6. ·
∑

"∈'.

ℓ" (!, %) + $ · |%" | , (B.5d)

which directly yields Eq. (B.4). !

We use Property B.2 to proof Property B.2:

Property B.3 (L). t 21, . . . ,2* ⊂ + , 2. ≠ ∅ for all . ∈ [*], and 6 ∈ 3 (21, . . . ,2*).
Then, 61 · , (21) + · · · + 6* · , (2*) ≤ , (21 ∪ · · · ∪ 2*).

Proof. Let ℎ2 ()) = &'̃(2) ()) and Γ = ℝ6 ×ℝ#Ω. The assumption 6 ∈ 3 (21, . . . ,2*)
implies that

∑

.∈[*]

[" ∈ '̃ (2.)] · 6. ≤ 1 for all " ∈ '̃ (2), (B.6a)

where 2 = 21 ∪ · · · ∪ 2* , which means that 6 ∈ 3 ('̃ (21) , . . . , '̃ (2*)). Due to
Property B.2 and using the definition of , from Eq. (6.12) we thus obtain

, (2) = inf {ℎ2 ())|) ∈ Γ} ≥ inf {61 · ℎ21 ()) + · · · + 6* · ℎ2* ())|) ∈ Γ} . (B.6b)

Observing that

{ ∑

.∈[*]

6. · ℎ2. ())
&
&
& ) ∈ Γ

}
⊆
{ ∑

.∈[*]

6. · ℎ2. ().)
&
&
& )1, . . . , )* ∈ Γ

}
, (B.6c)
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we further obtain

, (2) ≥ inf {61 · ℎ21 ()1) + · · · + 6* · ℎ2* ()*)|)1, . . . , )* ∈ Γ} (B.6d)

= 61 · inf {ℎ21 ()1)|)1 ∈ Γ} + · · · + 6* · inf {ℎ2* ()*)|)* ∈ Γ} , (B.6e)

and thus , (2) ≥ 61 · , (21) + · · · + 6* · , (2*). !

B.3 Proofs of Section 6.2

Below, we give the proofs for Property 6.1 and 6.2 as well as Criterion 6.1 and 6.2.

Proof of Property 6.1. According to Eq. (6.16), 6 ∈ 3 (ℙ. (2)) is fulfilled by any
feasible solution 61, . . . , 6* of MaxSetPackingLP (ℙ. (2)). Since

⋃
ℙ. (2) = 2,

Eq. (6.17) then follows directly from Property B.2 and Eq. (6.15). !

Proof of Property 6.2. There is a family X ⊂ ℙ (+) so that
⋃

X = + and
∑

2′∈X

,̃ (2′) = MinSetCover (ℙ (+)) . (B.7a)

The condition in Eq. (6.19a) means that X is unique and ∃L ∈ X : 2 ⊆ L. Then,

MinSetCover (ℙ (+)) =
∑

2′∈X

,̃ (2′) = ,̃ (L) +
∑

2′∈X \L

,̃ (2′) (B.7b)

≥ ,̃ (L) +
∑

6∈+\L

, ({6}) (B.7c)

≥ ,̃ (2) +
∑

6∈L\2

, ({6}) +
∑

6∈+\L

, ({6}) (B.7d)

≥ ,̃ (2) +
∑

6∈+\2

, ({6}) (B.7e)

due to the superadditivity property stated in Eq. (6.14). !

Proof of Criterion 6.1. Property 6.2 states that Eq. (6.19a)⇒ Eq. (6.19b), thus ¬
Eq. (6.19b)⇒¬Eq. (6.19a). Due to Eq. (6.20),¬Eq. (6.19b) is equivalent to Eq. (6.21a)
and ¬ Eq. (6.19a) is equivalent to Eq. (6.21b) since MinSetCover (ℙ (+)) ≤
MinSetCover (ℙ (+) \ {L}). !

Proof of Criterion 6.2. Let ,̃ (+) ≤ 2# +
∑
6∈+ , ({6}) and assume that ,̃ (+) >

MinSetCover (ℙ (+)). Then, there is a family X ⊂ ℙ (+) with cardinality #X ≥ 2
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so that
⋃

X = + ,
∑

2∈X

,̃ (2) = MinSetCover (ℙ (+)) < ,̃ (+) ≤ 2# +
∑

6∈+

, ({6}) (B.8a)

and due to
∑
2∈X ,̃ (2) ≥ # · #X +

∑
2∈X , (2) ≥ # · #X +

∑
6∈+ , ({6}),

# · #X +
∑

6∈+

, ({6}) ≤
∑

2∈X

,̃ (2) < 2# +
∑

6∈+

, ({6}) , (B.8b)

which is a contradiction since #X ≥ 2, i.e. the assumption ,̃ (+) >
MinSetCover (ℙ (+)) is wrong. Thus, Criterion 6.2 is proved. !

C Algorithmic and implementation details

C.1 Example run-through of Algorithm 6.1

Figure C.1 illustrates an example run-through of Algorithm 6.1 (Section 6.2.5)
using the example image region in Figure C.1a. The corresponding universe
+ = {61, . . . , 65} of five atomic image regions, where each region only contains
image points from a single object, is shown in Figure C.1b. The corresponding
adjacency graph & = (+ , ℰ) serves as the input for Algorithm 6.1. In the first
iteration, the algorithm computes the min-weight set-cover MinSetCover (U1) in
line 4, which demands the computation of the energy ,̃ ({6}) of the singleton
sets {6} ∈ ℙ1 (+). Then, the lower bounds ,̃min and the upper bounds ,̃max of the
extended set energy are computed for each connected set 2 ⊂ + of cardinality
#2 = 2. There are 8 such sets in total and each corresponds to a pair of blue/orange
crosses in Figure C.1c in iteration 1. The condition ,̃min ≤ ,̃max holds for all
these sets (all orange crosses are above their corresponding blue crosses). Thus,
the energies ,̃ (2) are then computed for all 8 sets of cardinality #2 = 2. In
iteration 2, the algorithm computes MinSetCover (U2) in line 4 and then processes
the connected sets 2 ⊂ + of cardinality #2 = 3 (there are 9 such sets in total).
The results of the previous iteration are exploited to obtain bounds ,̃min and
,̃max that are tighter than before (the orange and blue crosses in Figure C.1c
generally are closer to each other). Only 4 of the 9 sets pass the condition ,̃min ≤
,̃max in iteration 2 ({61, 63, 64} , {61, 63, 65} , {61, 64, 65} , {63, 64, 65}). For example,
the set 2 = {61, 62, 64} yields ,̃min = 4220.7 and ,̃max = 3627.7 and is thus
excluded. Moreover, neither of its supersets requires to be considered in subsequent
iterations. This is reasonable, since the regions 61 and 62 truthfully correspond
to different objects, and all supersets of {61, 62, 64} would thus lead to falsely
merged objects. As another example, the set 2 = {62, 64, 65} yields ,̃min = 3563.6
and ,̃max = 3681.1 and thus passes the condition ,̃min ≤ ,̃max with a tiny margin.

122



Appendix

(a)

2

3

1

45

(b) (c)

(d) (e)

Figure C.1. Example of determining MinSetCover (ℙ (+)) by Algorithm 6.1.
(a) Original image section (GOWT1 dataset 1, contrast-enhanced). (b) Computed
universe+ and corresponding adjacency graph. (c) Lower and upper bounds as
well as the value of the objective function (the variable value) of Algorithm 6.1 for
iterations 1 to 4. (d) Optimal set X from which the variable value is computed
(line 4) for iterations 1 to 4 and corresponding intermediate segmentation results
(white contours). (e) Segmentation result (green contours).

However, the computation of its extended energy yields ,̃ (2) = 3917.4, which
violates the condition ,̃ (2) > ,̃max, which is why this set also is excluded. In
iteration 3, connected sets 2 ⊂ + of cardinality #2 = 4 are processed. Only the
set {61, 63, 64, 65} passes the condition ,̃min ≤ ,̃max (there is only a single blue
cross below its corresponding orange crosses in Figure C.1c in iteration 3). No set
passes this condition in iteration 4, which leads to #iter1 = 0, and the algorithm
terminates. Figure C.1d shows the optimal X from which MinSetCover (U.) is
computed for the iterations . = 1, . . . , 4. Figure C.1e shows the final segmentation
result, which corresponds to the family X = {{61, 63, 64, 65} , {62}}.

C.2 Coarse-to-fine region analysis

The coarse-to-fine region analysis scheme (in Section 6.3.2) determines the uni-
verse + for regions of possibly clustered objects, subject to the two constraints
that (i) no region is smaller than a circle of radius min_region_radius and (ii)
each split improves the normalized energy ; in Eq. (6.23) at least by the factor
min_norm_energy_improvement. Regions ', for which ; (') ≤ max_norm_energy1
are not split further. We used max_norm_energy1 = 0.05, min_norm_energy_im-
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provement = 0.1, and min_region_radius= 0.33 ( ·
√

2, where ( is the estimated
scale. The algorithm is given as pseudo-code in Algorithm C.1. distB (") =

min"′∈B ‖" − "′‖2 is the distance of the image point " to the set B and split' ("0, "1)
is the watershed transform of L' seeded by "0 and "1. Each region is associated
with a seed point. The seed point is used as "0 for splitting and is also employed
as seed point for the newly formed region 62 (line 12). As seeds we use intensity
peaks, and each seed is considered at most once. Thus, the number of iterations is
upper-bound by the number of local intensity peaks. Regions are not split further
if the normalized energy is below or equal max_norm_energy1, if splitting would
violate the size constraint, or if no seeds are left.

An example run-through of Algorithm C.1 is given in Figure C.3 using the
image region shown in Figure C.2a. Subfigure 0 of Figure C.3 shows the state of
the algorithm right after the initialization (before the first iteration, seed point 1
corresponds to " in line 4). The normalized energy of the set ' is 0.416, which
is why the tuple (" , ') is enqueued into O (line 5). Afterwards, the loop of the
algorithm starts. Iteration 1 considers the entire set ' for splitting (subfigure 1) and
chooses seed point 2 as the point in 2, which is farthest away from " (corresponds
to "1 in line 8). Splitting the whole region using the two seed points yields the
two depicted regions (which correspond to 61 and 62 in line 12). However, the
improvement of the normalized energy is insufficient (line 15), which is why this
split is discarded (seed point 1 and the whole region ' are re-enqueued). Iteration 2
(subfigure 2) considers a different seed point for splitting the image region ',
which again is farthest away from all seed points considered so far (seed point 3).
Using seed point 1 and seed point 3 yields sufficiently improved normalized
energies for both newly formed image regions 61 and 62. Since both normalized
energies ; (61) = 0.122 and ; (62) = 0.345 still exceed max_norm_energy1 = 0.05,
both are enqueued for further splitting (lines 17 and 19). One of these two regions
is considered in iteration 3 (subfigure 3). Here, seed point 4 is chosen for splitting.
The split yields ; (62) = 0.024 for the left image region and ; (61) = 0.054 for
the right image region. Since the normalized energy of the left image region is
sufficiently low, 62 is added to the universe + (line 20), but ("1, 61) is enqueued
for further splitting (line 17). Iteration 4 adds the image region associated with
seed point 5 to the universe+ (subfigure 4). In the subsequent iterations, further
seed points are processed as candidates for splitting, but neither split yields a
sufficient improvement of the normalized energy (subfigures 5–8). In iteration 9
(subfigure 9), the algorithm is supposed to split the region associated with seed
point 4. However, no further unused seed point exists in that region, therefore
this region is added to the universe + (line 10), although its normalized energy
is slightly higher than max_norm_energy1 = 0.05. Iterations 10 and 11 finally add
three more regions to the universe+ . The finally obtained universe+ as well as
the corresponding adjacency graph & = (+ , ℰ) are shown in Figure C.2c. Note
that, for simplicity, we have skipped iterations corresponding to violations of the
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Algorithm C.1: Coarse-to-fine analysis of a region of possibly clustered objects.
input : Image region ' ⊆ Ω, max_norm_energy1, min_norm_energy_improvement, min_region_radius

1 2 ←
{
" ∈ ' ∩Ωfg : L' |'={"} is maximal within 3 × 3 neighborhood

}
; // set of potential seed points

2 + ← ∅; B← ∅; O ← empty queue; // initialization
3 if ; (') > max_norm_energy1 then
4 " ← arg max"∈2 L' |'={"}; // pick the seed point " with the highest intensity
5 Insert (" , ') into O and " into B; // associate the region ' with " and mark " as chosen

6 while #O > 0 do
7 "0, 60← pop (O); // pick a region and its associated seed point
8 "1← arg max"∈2∩60 distB ("); // pick seed point in 60 farthest from previously chosen seeds
9 Insert "1 into B; // mark seed point

10 "1 as chosen if #60 < 23 · min_region_radius2 or distB ("1) = 0 then Insert 60 into+ ; // cannot split 60 further
11 else
12 62, 61← split60

("0, "1); // split 60 using seeds "0 and "1

13 if #62 < 3 · min_region_radius2 then Insert ("1, 60) into O; // re-associate 60 with "1

14 else if #61 < 3 · min_region_radius2 then Insert ("0, 60) into O;
15 else if 1 −max {; (61) , ; (62)} /; (60) < min_norm_energy_improvement then Insert ("0, 60) into O;
16 else
17 if ; (61) > max_norm_energy1 then Insert ("1, 61) into O; // associate 61 with "1

18 else Insert 61 into+ ;
19 if ; (62) > max_norm_energy1 then Insert ("0, 62) into O; // associate 62 with "0

20 else Insert 62 into+ ;

21 return the universe+ ;
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(a) (b) (c) (d)

Figure C.2. Example region of possibly clustered objects. (a) Original image section
(NIH3T3 cells, contrast-enhanced). (b) Image intensities with offset *" (blue and
red correspond to negative and positive intensities, respectively). (c) Elements of
the universe + (delineated by black lines) and corresponding adjacency graph
(green). (d) Segmentation result of our method.

size constraint. For example, such iterations occur between subfigures 4 and 5,
which leads to a shift of seed point 4 (due to line 13, cf. subfigure 9).

C.3 Efficient implementations of the extended set energy functions

and Algorithm 6.1

The computation of the extended set energy function ,̃ (2) = inf!,% &'̃(2) (!, %) + #
requires solving the convex problem in Eq. (6.7). As described in Section 6.2.2, a
globally optimal solution is obtained for any initialization due to Property B.1.
However, for faster convergence, we solve the convex problem in Eq. (6.7) in
two steps. First, the optimal elliptical model parameters !ell of the convex energy
&'̃(2) (!, !) with respect to ! are computed. Second, ! = !ell and % = ! are used
as the initialization for the minimization of the convex energy &'̃(2) (!, %) for
deformable shape models. This two-step scheme is faster than the direct solution of
Eq. (6.7) for two reasons: First, ! is a vector of dimension 6, whereas % generally is
of the much higher dimension #Ω. Thus, minimization with respect to ! is much
faster than minimization with respect to ! and %. The second reason is that, if the
object within the image region represented by the set 2 is almost elliptical, then
the optimal vector % is also close to !, i.e.

inf
!,%

&'̃(2) (!, %) ≈ &'̃(2) (!ell, !) = inf
!

&'̃(2) (!, !) . (C.1)

This means that the initialization of the second step is close to the optimal solution.
In the ideal case when the object is exactly elliptical, the initialization of the second
step is the optimal solution, i.e. inf!,% &'̃(2) (!, %) = &'̃(2) (!ell, !).
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Figure C.3. Intermediate steps of the coarse-to-fine region analysis scheme, which
determines the universe+ for a region of possibly clustered objects (Algorithm C.1).
Subfigure . shows the state after the .-th iteration (. = 0 corresponds to the state
before the first iteration). The green dots correspond to the seed points associated
with the respective image regions (the circled dot marks the newly chosen seed
point).
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To further accelerate convex programming, the size of image background in-
cluded in '̃ (2) is reduced. Analogously to Eq. (6.11) we use

inf
!,%

&'̃(2) (!, %) ≈ inf
!,%

&'̃′(2) (!, %) ,

where '̃′ (2) =
{
" ∈ '̃ (2)

&
&distΩfg (") ≤ (=

} (C.2)

and distΩfg (") = min"′∈Ωfg ‖" − "′‖2 is the Euclidean distance of the image point "
to the set 4.

For efficient implementation of Algorithm 6.1, we include the set + into the
family U of Algorithm 6.1 from the start, since the extended set energy ,̃ (+) is
anyway computed in advance for evaluation of Criterion 6.2 (cf. Section 6.3.3), and
the iteration corresponding to iter1 = {+} is thus skipped.

C.4 Details on post-processing (Section 6.3.4)

Each element of the family X is an image region 2 ⊆ + , which represents a
!, %-parameterized deformable shape model B. The optimal parameters ! and
% are determined by convex programming (Section 6.3.3). The corresponding
segmentation mask N = ℐ+

B (!, %)∩ '̃ (2) is obtained from the zero-superlevel set
ℐ+
B (!, %) of the model B. Each segmentation mask N ⊂ Ω is refined individually.

First, morphological holes in N are filled. Then, image points " ∈ Ω within a
maximum distance of mask_max_distance to the boundary of the segmentation
mask N are added to the segmentation mask if

−mask_stdamp · std
"′∈N

-′"′ ≤ -
′
" −mean

"′∈N
-′"′ ≤ +mask_stdamp · std

"′∈N
-′"′ (C.3)

and removed otherwise. Here, mean"′∈N -′"′ and std"′∈N -′"′ denote the arithmetic
average and the standard deviation of -′"′ for "′ ∈ N, where -′" and -′"′ are the
intensity values of the Gaussian-filtered image at image points " and "′, respectively
(using a Gaussian filter with standard deviation 3). We used the default values
mask_max_distance = 1 and mask_stdamp = 2 in our experiments.

In addition, spurious objects are discarded based on a set of criteria. An object
2 ∈ X and its corresponding segmentation mask N are discarded if at least one
of the following rejection criteria is fulfilled:

1. The object is fully contained in the image and the eccentricity of its boundary
is larger than 0.99.

2. The normalized energy , (2) /#'̃′ (2) is larger than min_norm_energy2.

3. The ratio of the mean image intensity inside the mask and the mean image
intensity within its neighborhood is smaller than min_contrast (i.e. the
contrast is too low).
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4. The radius
√

#N/3 of a circle of the same size #N as the object mask N is
smaller than min_object_radius (i.e. the object is too small).

D Hyperparameters used in the experiments (Section 6.4)

Table D.1. Hyperparameters used in the experiments (“—” for SuperDSM* indi-
cates that the default values were used, see the column SuperDSM). The value
( = 42.43 for SuperDSM* is the mean scale ( estimated over all images of the
dataset using SuperDSM. The parameter max_pa_ratio denotes the maximum
P/A ratio described in Section 6.3.1.
Processing step Parameter SuperDSM SuperDSM*
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Pre-processing
(Section 6.3.1) ( Automatic 40 — 42.43 — 80 70 5

Coarse-to-fine
region analysis
(Section 6.3.2)

min_region_radius Automatic — — — — — — 10
min_norm_energy_improvement 0.1 — — −∞ — — 0 −∞
max_norm_energy1 0.05 — — — — — — —
max_pa_ratio 0.2 — — — — — — 0.5

Global energy
minimization
(Section 6.3.3)

$ Automatic 0.6 — — 0.1 — 1.5 0.4
# Automatic 1200 — — — — 3500 75
$factor 5 · 10−4 — 7.5 · 10−5 — — — — —
#factor 0.33 — 0.15 — — — — —

Post-processing
(Section 6.3.4)

mask_max_distance 1 — 2 2 — — — 5
mask_stdamp 2 3 3 1 — — — —
max_norm_energy2 0.2 — — 0.5 0.5 — — —
min_contrast 1.35 1.25 — 1.45 1.45 1.8 — —
min_object_radius 0 — — — — — 40 —
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