
Dissertation
submitted to the

Combined Faculty of Natural Sciences and Mathematics
of the

Ruprecht-Karls-University Heidelberg
for the degree of

Doctor of Natural Sciences

Put forward by
Lennert Jarl Thormählen

born in Hamburg

Disputation on 27 October 2022





Linking QCD axion models
to their low-energy

phenomenology

Institute for Theoretical Physics
Department of Physics and Astronomy
Ruprecht-Karls-University Heidelberg

Referees: Prof. Dr. Jörg Jäckel
Prof. Dr. Jan M. Pawlowski





Linking QCD axion models to their low-energy phenomenology
The QCD axion is a well-motivated hypothetical particle beyond the Standard Model
of particle physics. It can solve the strong CP problem and account for dark matter
in the universe. An axion is a pseudo-Goldstone boson of a spontaneously broken
global U(1) symmetry with a chiral anomaly in the strong sector. Such a mini-
mal construction allows for a large number of alternative realisations with similar
phenomenology. In this thesis, links between the underlying high-energy physics of
axion models and the resulting observable phenomena at low energy are investigated.
First, the property of periodicity along with its realisation and consequences at lower
energies are studied. Subsequently, the usual leading logarithm approximation for
the calculation of loop-induced flavour-changing effects is critically examined. A new
model is developed that leads to large logarithmic enhancements and is valid up to
the scale of spontaneous symmetry breaking. The phenomenology of this model in
future searches for solar axions and at colliders is discussed. Finally, the spectrum of
solar axions is evaluated, improving on the previous calculation and systematically
quantifying the associated uncertainties for the first time. This could enable the
distinction of axion models as well as the measurement of unknown solar quantities
with the upcoming helioscope IAXO. It is also shown that this experiment is sensi-
tive to a singular line in the spectrum originating from axion-nucleon interactions.

Verbindungen zwischen QCD Axion Modellen und ihrer Phäno-
menologie bei niedriger Energie
Das QCD Axion ist ein gut motiviertes hypothetisches Teilchen jenseits des Stan-
dardmodells der Teilchenphysik. Es kann das starke CP-Problem lösen und die
dunkle Materie im Universum ausmachen. Ein Axion ist ein Pseudo-Goldstone-
Boson einer spontan gebrochenen globalen U(1)-Symmetrie mit einer chiralen An-
omalie im starken Sektor. Eine solche minimale Konstruktion ermöglicht eine große
Anzahl von alternativen Realisierungen mit ähnlicher Phänomenologie. In dieser
Arbeit werden Zusammenhänge zwischen der zugrundeliegenden Hochenergiephy-
sik von Axionmodellen und den daraus resultierenden beobachtbaren Phänomenen
bei niedriger Energie untersucht. Dies beginnt bei der Eigenschaft der Periodizi-
tät sowie deren Realisierung und Konsequenzen bei kleineren Energien. Anschlie-
ßend wird die übliche Näherung des führenden Logarithmus für die Berechnung von
schleifeninduzierten und flavour-verändernden Effekten kritisch untersucht. Es wird
ein neues Modell entwickelt, das zu großen logarithmischen Verstärkungen führt
und bis zur Skala der spontanen Symmetriebrechung gültig ist. Die Phänomeno-
logie dieses Modells an Teilchenbeschleunigern und bei zukünftigen Suchen nach
solaren Axionen wird diskutiert. Schließlich wird das Spektrum der solaren Axionen
bestimmt, wobei die bisherige Berechnung verbessert und die damit verbundenen
Unsicherheiten erstmals systematisch quantifiziert werden. Dies könnte die Unter-
scheidung von Axionmodellen sowie die Messung unbekannter solarer Größen mit
dem kommenden Helioskop IAXO ermöglichen. Es wird auch gezeigt, dass dieses
Experiment für eine singuläre Linie im Spektrum empfindlich ist, die von Axion-
Nukleon-Wechselwirkungen herrührt.
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1 Introduction

One of the great success stories of modern physics is the development of quantum
field theories (QFTs) as a generic language to describe models in particle physics [5].
Formal developments of these theories were simultaneously accompanied by exper-
imental progress and discoveries mostly using particle accelerators. In combina-
tion, these efforts lead to the development of the Standard Model (SM) of particle
physics [6–9], which is the most successful QFT today in describing the fundamen-
tal interactions of nature. A large number of laboratory experiments as well as
astrophysical and cosmological observations are in agreement with the SM at an
impressive level of accuracy. The pinnacle of this success was the discovery of the
Higgs boson at the Large Hadron Collider (LHC) [10, 11] in 2012, which was the
final particle required for describing the SM as a consistent gauge theory.

Despite these huge leaps in understanding the fundamental building blocks of na-
ture, the end of physics is very far from being reached. A large number of questions
remains unanswered. It is unknown what dark matter, which makes up the ma-
jority of matter in the universe, is made of. The mechanism of baryogenesis, the
overproduction of matter in comparison to antimatter, is not understood and it is
unclear how the non-vanishing neutrino masses are generated. In addition, there are
fine-tuning problems, which are at least aesthetic shortcomings but most likely hint
towards a lack in understanding the origin of the SM. These are for instance the
hierarchy, strong CP and cosmological constant problems. This incomplete list of
some of the most pressing issues demonstrates, on the one hand, that physics beyond
the SM (BSM) must exist and, on the other hand, that today the most significant
discrepancies between observation and theory stem from cosmological observations
or mathematical principles rather than laboratory experiments. Furthermore, the
large number of issues, which need to be addressed simultaneously, motivates to
search for connections among them and a BSM theory successfully solving more
than one at a time is in principle favoured over a solution which is fine-tuned to a
specific problem.

An example of such a proposed BSM particle, which stands at the centre of
this thesis, is the famous QCD axion. It was originally proposed independently
by Wilczek [12] and Weinberg [13] as a necessary consequence of the Peccei–Quinn
mechanism [14], which solves the strong CP problem. This is the question why the
discrete CP symmetry is realised to such a high precision in quantum chromody-
namics (QCD). In addition, it was soon realised that the axion has all the properties
of a dark matter particle and that it could constitute the dominant type of matter in
the universe [15, 16]. In this way the axion addresses two fundamental problems of
the SM, making it a particularly attractive BSM candidate. The axion can possibly
also be linked to various other problems albeit this may require additional model
building. It has for instance been suggested that it could be connected to baryoge-
nesis [17], cosmic inflation [18–23], neutrino masses [24–26] or dark energy [27].
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The search strategies required for detecting an axion are also particularly interest-
ing because it lies at a different frontier than the one being explored by large-energy
collider experiments. In general, any BSM particle must have properties that have
enabled it to escape detection thus far. This can either be because it is so heavy
that it cannot be produced with the energy available in modern day accelerators –
the high-energy frontier – or because it is so weakly interacting that its influences on
experimental setups are too tiny to be detected – the low-energy or precision fron-
tier [28]. These two directions at which new physical phenomena could be hidden
are complementary and require vastly different experimental techniques. Because
the axion is by construction light and weakly interacting, it lies beyond the current
precision frontier, where measurements with an unprecedented accuracy would be
required for detection and characterisation of new particles. In recent years and with
the LHC getting closer to its maximal potential, the particle physics community has
already started to engage more in precision experiments. Specifically for axions, a
plethora of new designs have been suggested or are already under construction and
the decades to come may indeed bring an axion rush in particle physics.

Besides detecting the signal of a new particle, it is always an important goal of the-
oretical physics to embed the newly observed phenomena into a consistent theory at
all energy scales, i.e. an ultraviolet (UV)-complete model. However, the QCD axion
or other similar light pseudoscalars called axion-like particles (ALPs) are a rather
generic implication of a large variety of BSM models, particularly in those which
feature spontaneous breaking of global symmetries. Distinguishing these models by
their low-energy phenomenology is difficult and in some cases it may be impossible.
This can be seen as either a blessing or a curse. It means that axion experiments are
sensitive to a number of different models, but at the same time, it is hard to pin down
or merely retrieve some information about the underlying theory at high energies.
For this reason, the thesis at hand works towards a better understanding of links
between UV-complete QCD axion models and their low-energy phenomenology. Es-
tablishing such links is far from trivial. The reason is that it involves physics at
various energy scales as well as methods ranging from theoretical particles physics
over solar astrophysics to novel x-ray detection techniques. All of these research
fields are crucial for at least some of the results presented in this thesis.

The power of this work becomes clear, when defining what is meant by low-energy
phenomenology and comparing this to the scales involved in QCD axion models. In
this thesis, observable phenomena are referred to as low-energy when they only
contain the axion as an additional degree of freedom to the Standard Model. All
of the UV structure of the underlying model, like for instance additional complex
scalars, heavy fermions or multiple Higgs fields, are integrated out at this level
and one is left with a light pseudoscalar and a set of effective coupling parameters.
The energy where this approach is applicable ranges from essentially zero, as in
dark matter experiments or light-shining-through wall setups, over keV temperatures
inside of stellar objects, all the way to MeV scales in fixed target colliders. Linking
such low-energy observables to QCD axion models can eventually allow to make
predictions about the physics at the electroweak scale or even significantly higher
scales, which are far from reach of present-day or near future collider experiments.
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One may wonder whether such an in-depth investigation of what can be learned
from an axion signal is called for, given that no axion has been observed so far.
The most immediate motivation comes from the large number of aforementioned
axion experiments which have been proposed or are already under construction. Of
course, it is of immense interest to explore the potential of such searches in order
to sensibly set priorities. Also on a more practical level, studies of beyond detec-
tion measurements like the ones in this thesis can directly influence the preferred
experimental configuration. Furthermore, links between low-energy phenomenology
and underlying UV-complete models are of general theoretical interest and may be
useful in other contexts than the axion. The lessons learned from this research are
therefore applicable regardless of the existence of a QCD axion or the nature of dark
matter in our universe.

This thesis is structured as follows. After introducing the axion as a solution to the
strong CP problem and a potential DM candidate in chapter 2, the most common
axion models are introduced in chapter 3. A brief overview of the most prominent
phenomenological implications of axions is provided in chapter 4. This sets the
stage for discussing several links between UV models and low-energy phenomena.
Chapter 5 is dedicated to an axion property originating from the underlying mi-
croscopic theory, namely its periodicity. Even though it is often neglected, it can
have significant consequences for setting up effective field theories and can help to
review the validity of proposed axion constructions. It is shown how the periodicity
is preserved also by loop corrections, which is then used to rule out a proposition
connecting the QCD axion to the majoron from neutrino mass generation. Another
context in which the intricate connections between low-energy observations and ax-
ion models can be studied is provided by UV-divergent observables in axion effective
field theories. An example are loop-induced rare meson decays, which are the topic
of chapter 6. This eventually leads to the construction of a new QCD axion model
for flavour-violating interactions. Finally, the solar axion flux and its uncertainties
are thoroughly investigated in chapter 7. This is motivated by upcoming solar axion
searches as well as the abundant information content of the solar axion spectrum.
Interesting new links are established, like the connection between quantised axion
couplings at low energies and solar properties. This allows to disentangle the influ-
ences of axion and solar models in section 7.4 and it is an illustrative example of
how UV properties like the axion’s periodicity can be useful for the interpretation
of axion observations. General conclusions, a brief summary of the main results and
an outlook on the future of axion physics are given in chapter 8.
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2 The QCD axion
The QCD axion is a hypothetical particle which could solve two fundamental prob-
lems of the Standard Model of particle physics – the strong CP problem and the
dark matter puzzle. This chapter will briefly introduce both problems and explain
how they could be addressed by the existence of an axion.

2.1 Theta-term of QCD
Quantum chromodynamics (QCD) is the sector of the SM which describes the strong
nuclear interaction. It is defined as an SU(3) gauge theory with a set of six fermions
in the fundamental representation called quarks. Its Lagrangian can therefore be
written as

LQCD = −1
2TrGµνG

µν + q̄(i /D −Mq)q , (2.1)

where Gµν is the field strength tensor1, q are the quark fields, D denotes the gauge
covariant derivative and Mq the quark mass matrix. While this description of QCD
is sufficient to explain all confirmed interactions between gluons and quarks, it is not
complete. Instead, the theta-term, named after its dimensionless prefactor, must be
included,

Lθ = θ
g2

s

16π2 TrGµν
˜︁Gµν = θ

αs

4πTrGµν
˜︁Gµν . (2.2)

gs or αs = g2
s/(4π) quantify the strong coupling constant and ˜︁Gµν = 1

2ϵµνρσG
ρσ is the

dual field strength tensor. There are two ways to argue why this term is a necessary
part of QCD. The first is a field-theoretic argument. Quantum field theories are
generally defined by imposing local gauge symmetries, global symmetries and by
fixing the particle content. Having done so, the defining Lagrangian is found by
adding up all renormalizable hermitian operators which can be constructed from
the particle content and are admissible by all symmetries. This is because any such
operator cannot be excluded on fundamental grounds and is anyway expected to
be generated radiatively at the least. Since both G and ˜︁G transform in the adjoint
representation of SU(3), it is apparent that the theta-term is invariant under all
gauge symmetries of the Standard Model and that it should therefore be included.

The second argument relates to the vacuum structure of QCD. It is presented in
several reviews, e.g. refs. [29–31]. The starting point are the solutions to the classical
field equations in Euclidean space, which have to solve

DµGµν = 0 . (2.3)
1In the following, G is regularly expressed in a generator basis T a such that Gµν = Ga

µνT a and
the usual normalization, Tr T aT b = 1

2 δab, is used.
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Gauge field configurations with finite Euclidean action solving these equations are
called instantons. They are a general phenomenon of non-abelian gauge theories.
The arguably simplest example of these are the BPST instantons [32], which are
(anti-)self-dual, spherically symmetric and minimise the action. They exist in SU(2)
gauge theory and can therefore be embedded in all other SU(N) theories because
these contain SU(2) as a subgroup. The self-dual BPST instanton can be expressed
in regular gauge as [31]

Ga
µν(x;x0, ρ) = − 4

gs

ηa
µν

ρ2

((x− x0)2 + ρ2)2 . (2.4)

The free parameters x0 and ρ define the position and size of the instanton, respec-
tively. Furthermore, the ’t Hooft-symbol ηa

µν was introduced, which mixes SU(2)
gauge indices (a = 1, 2, 3) with Euclidean Lorentz indices (µ, ν = 1, 2, 3, 4).

ηa
µν =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϵaµν µ, ν = 1, 2, 3
−δaν µ = 4
δaµ ν = 4
0 µ = ν = 4

(2.5)

The Euclidean action of this solution is given by SE = 8π2/g2
s . This solution demon-

strates some of the interesting properties of instantons. At large distances, the field
strength decays as 1/(x− x0)4, which means that it will give a finite contribution
to the action and that instantons are localised both in Euclidean time and space.
Even though the instanton approaches a pure gauge configuration at large distances,
the study of homotopy groups shows that the full instanton configuration cannot
be continuously deformed into the vacuum solution Ga

µν = 0 because the instanton
belongs to a different homotopy class. In fact, all field strength configurations which
approach pure gauge at infinity can be classified by their homotopy class. These
are labelled by the integer Pontryagin index q also called the winding number. It is
defined as

q =
∫︂

d4xE
αs

4πTrGµν
˜︁Gµν ∈ Z . (2.6)

The BPST instanton defined above gives q = 1, while the anti-instanton has q = −1.
Importantly, q is a topological and gauge invariant and hence a gauge transformation
can never map a field configuration from one homotopy class to another.

One may wonder what these classical solutions of the Euclidean field theory have
to do with the physical world in Minkowski space. To answer this, first note that
one can also define a winding number Q in Minkowski space [31, 33],

Q =
∫︂ σ1

σ0
d4x

αs

4πTrGµν
˜︁Gµν , (2.7)

where the integral runs over the volume bounded by two three-dimensional spatial
hypersurfaces σ0 and σ1 at times t0 and t1. Since the integrand is a total derivative
(see section 2.2), it can be reduced to two surface integrals, which are integer valued
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if one assumes a vacuum at the boundaries. While each of these surface integrals
is not gauge independent individually, the difference Q is. At a fixed time t, one
can therefore not distinguish between the different vacua. However, it does make
sense to speak of a change in the winding number between times t0 and t1 if Q ̸= 0.
One can show that there are no classical solutions to the equations of motion in
Minkowski space with Q ̸= 0 [33, 34]. This is interpreted as the vacuum not being
able to change from one topological sector to another in the classical field theory (i.e.
the two boundary terms in equation (2.7) are always the same). In a quantum field
theory, however, instantons play a crucial role. This is because the Wick rotated
instantons, while not being solutions of the equations of motion in Minkowski space,
correspond to complex critical points in the path integral and as such are the most
probable tunnelling paths from one topological sector to another [33, 34]. Instantons
in Minkowski space should therefore be viewed as quantum processes (not particles),
which can mediate between physically equivalent vacua.2

Several lessons can be taken from this discussion of instantons and fixed time
winding numbers. First, there is an infinite set of equivalent vacua, denoted |n⟩.
Because tunnelling processes exist in the form of instantons, the physical vacuum
|vac⟩ must be a linear superposition of all |n⟩,

|vac⟩ =
∑︂
n∈Z

an |n⟩ . (2.8)

Second, because the vacua are physically equivalent, one expects that the operator
T which is defined by T |n⟩ = |n+ 1⟩ commutes with the Hamiltonian and that the
physical vacuum should only change by a global phase under T [31, 34],

T |vac⟩ = e−iθ |vac⟩ (2.9)
⇒ |vac⟩ =

∑︂
n∈Z

einθ |n⟩ ≡ |θ⟩ . (2.10)

These are the famous θ-vacua of QCD. They are physically distinguishable states
parametrised by an angle θ, which is a free fundamental parameter of the theory.
For practical purposes, it is convenient to shift θ from the definition of the physical
vacuum to the Lagrangian. Instead of summing over all |n⟩, including the correct
phase and restricting the path integral over gauge fields to a fixed topological sec-
tor at a time, one can work with the convenient vacuum |0⟩ and perform the full
path integral over gauge fields if at the same time one includes the theta-term in
the Lagrangian. This way the path integral receives a phase einθ for every field
configuration with winding number n. In summary, QCD has another free angular
parameter θ, which does not appear explicitly in the Lagrangian (2.1). It can ei-
ther be included as a parameter of the physical vacuum or as the prefactor of the
theta-term as in equation (2.2). In this thesis, the latter approach is followed.

2Instantons also have other noteworthy effects. For instance they induce the determinental
’t Hooft interaction [35], which is baryon number violating in the SM electroweak theory.
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2.2 The strong CP problem
After recognising the fact that the theta-term is a necessary part of QCD, one needs
to investigate its properties and physical consequences. It was already mentioned
and used above that it is a total derivative. This can be made explicit by writing
Gµν

˜︁Gµν as the total derivative of the Chern–Simons current,

TrGµν
˜︁Gµν = ∂µ

(︃
2ϵµνρσTr

[︃
Aν∂ρAσ − 2

3gsA
νAρAσ

]︃)︃
. (2.11)

Such a term can only add boundary contributions to the action. This means it
will not appear in perturbation theory or Feynman diagrams because all functional
derivatives of the action are unaffected by the addition of surface terms. Any physical
consequences of the theta-term are therefore caused by non-perturbative effects like
instantons.

Notably, the theta-term also violates the discrete CP symmetry, i.e. the combi-
nation of charge conjugation and parity inversion.3 Its transformation properties
under C and P can be most intuitively understood by analogy to the electromag-
netic theta-term Fµν

˜︁F µν , which can be expressed in terms of electric and magnetic
fields E⃗ and B⃗,

Fµν
˜︁F µν ∝ E⃗ · B⃗ CP−→ E⃗ · (−B⃗) ∝ −Fµν

˜︁F µν . (2.12)

The gluon field strength tensor transforms precisely in the same way. Therefore,
QCD violates CP unless θ = 0 or θ = π.4 In order to measure the value of θ
in nature, one needs to probe CP violation related to the strong interaction. The
most sensitive observable of this kind is the electric dipole moment of the neutron
(nEDM). Because of the absence of a monopole, even a tiny dipole moment could in
principle be observed, but so far all measurements are in agreement with no nEDM
at all. The strongest upper bound is given by [37, 38]

dn < 1.8 × 10−13 e fm , (2.13)

where e denotes the elementary charge. On the theory side, the expected nEDM can
be calculated using various techniques like QCD sum rules [39], empirical neutron
models [40], chiral perturbation theory [41] or lattice QCD [42–45]. None of these
can provide a precise result, but a very conservative estimate of the expected nEDM
would be [30]

1.2 × 10−3 θ e fm < dn < 11 × 10−3 θ e fm . (2.14)

This means that an upper bound on the theta-term in nature is given by5

θ < 1.5 × 10−10. (2.15)
3Parity is also violated individually, but since the Standard Model is a chiral theory anyway, P

violation is a less remarkable feature than CP violation.
4The reason why QCD also conserves CP if θ = π is that CP maps θ from π to −π, which is

precisely a shift by the periodicity 2π of the θ-angle [36].
5Since CP is also conserved at θ = π, one may think that θ could also be very close to π.

However, as Vafa and Witten argued in ref. [46], this cannot be the case due to the sign of
quark condensates.
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While being an impressive experimental achievement, this constitutes a serious prob-
lem of the SM. All dimensionless parameters like θ are naturally expected to be of
order unity and none of the others have been proven to be this small. A good theory
should provide an intrinsic reason why θ is precisely set to a specific value. Such an
unexpected coincidence is called a fine-tuning problem. Furthermore, the smallness
of θ cannot be called natural by ’t Hooft’s definition [47] because setting θ to zero
does not enhance the symmetry of the theory. The reason for this is that CP is
already independently violated in the weak sector of the SM by a non-vanishing
phase of the CKM matrix [48]. In conclusion, the SM does not explain why the
strong interaction is CP-symmetric to such a high precision. This constitutes the
strong CP problem of the SM.

The problem becomes even more puzzling when the full particle content of the SM
is considered. Besides the vacuum angle of QCD, the theta-term receives another
contribution from the phases of quark masses due to the chiral anomaly. If a gauge
theory includes at least one chiral fermion, it can be anomalous under a global chiral
rotation of these fermionic fields. A toy example would be the theory defined by the
Lagrangian

L = −1
2TrGµνG

µν + ψ̄(i /D +m)ψ . (2.16)

Under a chiral transformation, the mass term receives a phase. Furthermore, the
fermionic path integral is not invariant, which adds a topological term to the La-
grangian (see e.g. ref. [29]).

ψL → eiα/2ψL , ψR → e−iα/2ψR (2.17)

⇒ L → −1
2TrGµνG

µν + ψ̄(i /D +me−iα)ψ − α
g2

s

16π2 TrGµν
˜︁Gµν . (2.18)

This is the famous Adler–Bell–Jackiw anomaly [49, 50]. It also appears in the SM,
where all quarks gain masses through the Higgs mechanism and it is common to
transform the fields into a mass eigenbasis.6 To do this, the Yukawa couplings
are diagonalized by unitary vector transformations. If the resulting diagonal mass
matrix Mq has a common phase, axial rotations are required to end up with a real
diagonal quark mass matrix. This means that the actual physically observable angle
in the SM, here denoted θ̄, is the sum of θ and the argument of the determinant of
the quark mass matrix7,

θ̄ = θ + Arg(Det(Mq)). (2.19)

To explain the smallness of the nEDM in the SM, θ̄ must be smaller than 1.5 ×
10−10. This requires an almost exact cancellation between two independent and a
priori unrelated parameters, which seems unlikely to occur by chance and begs for
a theoretical explanation.

6Note that if the theory contains a massless coloured fermion, the chiral rotation would be a
symmetry of the Lagrangian and the theta-angle could be rotated away. This is why a mass-
less up quark was considered a possible solution to the strong CP problem but recent lattice
calculations point towards a finite mass [51–54].

7In principle, such rotations also give rise to theta-terms of the other SM gauge groups. However,
the fermion content and particularly the chiral nature of the electroweak interaction allows to
rotate the electroweak theta angles to zero in the SM [5, 55–57].
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2.3 Peccei–Quinn solution
A dynamical solution to the strong CP problem was proposed by Roberto Peccei
and Helen Quinn in 1977 [14, 58]. Their idea is based on the fact that in the
presence of instantons8 the vacuum energy depends on θ̄. When θ̄ is regarded as a
dynamical parameter, this corresponds to a potential V (θ̄). In addition, they found
that this potential has two stationary points at θ̄ = 0 and π, the former of which
is a true minimum. Hence, observing CP conservation in strong interactions merely
corresponds to finding θ̄ at or close to the minimum of its potential, which is a
natural expectation. In this sense, Peccei and Quinn discovered that the strong CP
problem solves itself if it is allowed to. The only requirement is a dynamical θ̄, which
can relax to its minimum.

Shortly after this discovery by Peccei and Quinn, Frank Wilczek and Steven Wein-
berg noted independently of one another that this solution to the strong CP problem
indicates the existence of a new particle [12, 13] because the dynamical angle corre-
sponds to a new scalar field. Wilczek called this new particle axion [59]. The name
stems from a laundry detergent, which is fitting because the axion is devised to wash
the SM model clean of one of its stains and because it is related to the anomalous
breaking of an axial symmetry.

On the formal level, the solution described above amounts to introducing a new
scalar field a, which couples to the G ˜︁G-term in exactly the same way as θ̄,

Lθ̄,a = 1
2 (∂µa) (∂µa) + g2

s

16π2

(︄
θ̄ + a

fa

)︄
TrGµν

˜︁Gµν . (2.20)

How these terms can be generated from spontaneous breaking of a global U(1)
symmetry is discussed in chapter 3. The scalar field is written with a canonical
kinetic term. Therefore, the interaction with G ˜︁G must come with a new scale called
the axion decay constant fa. The fraction a/fa takes the role of the dynamical
theta-angle. The fact that the global minimum of the effective potential for a must
be at the CP conserving value, i.e. at a = −θ̄fa, can be most generically seen
following an argument by Vafa and Witten [46]. Based on the assumption that the
only imaginary term in the Euclidean path integral comes from G ˜︁G, the following
inequality for the effective potential has to apply,

exp
(︄

−Veff

[︄
θ̄ + a

fa

]︄)︄

=
⃓⃓⃓⃓
⃓
∫︂

DGµexp
(︄

−Seff[ϕ,Gµ] − i
∫︂

d4xE
g2

s

16π2

(︄
θ̄ + a

fa

)︄
TrGµν

˜︁Gµν

)︄⃓⃓⃓⃓
⃓ (2.21)

≤
∫︂

DGµ

⃓⃓⃓⃓
⃓exp

(︄
−Seff[ϕ,Gµ] − i

∫︂
d4xE

g2
s

16π2

(︄
θ̄ + a

fa

)︄
TrGµν

˜︁Gµν

)︄⃓⃓⃓⃓
⃓ (2.22)

=
∫︂

DGµ |exp (−Seff[ϕ,Gµ])| (2.23)

=exp (−Veff[0]) (2.24)
8Originally, the first paper on the PQ solution was titled ’CP conservation in the presence of

instantons’. The journal insisted to replace ’instantons’ by ’pseudoparticles’ even though in-
stantons should better not be considered as particles for reasons discussed in section 2.1.
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⇒ Veff[0] ≤ Veff

[︄
θ̄ + a

fa

]︄
. (2.25)

This means that the minimum of the potential will be at the CP conserving value
where θ̄ + a/fa = 0 and no spontaneous breaking of CP can occur. However, the
assumption made above is not strictly fulfilled in the SM. One can show that CP
violating terms will necessarily be imaginary in the Euclidean action [60]. The CP
violating phase of the CKM matrix is such a term and it will indeed contribute to
the effective axion potential by shifting its minimum away from the CP conserving
value. In order not to spoil the PQ solution, this contribution has to be tiny.
In fact this is the case since the CKM phase is only a physical parameter if the
SM includes at least three generations of quarks [61]. Hence, all three generations
must appear in Feynman diagrams9 needed for the calculation of the effective axion
potential or the resulting nEDM from the CKM phase. These kinds of diagrams are
highly suppressed by at least two loops and a heavy quark mass. This is why the
nEDM in the SM is several orders of magnitude smaller than the current limit in
equation (2.13) and why the CKM phase does not spoil the argument above [62–64].
For similar reasons, a non-vanishing phase of the PMNS matrix would not be an
issue. Secondly, there is P violation in the SM because only left-handed particles
interact weakly. This also contributes to the imaginary part of the Euclidean action,
but is no source of CP violation and the position of the vacuum is not shifted [14, 58].

Apart from the position of its minimum, the specific form of the axion potential
is of great interest for instance for the DM phenomenology of axions. Most impor-
tantly, the second derivative at the minimum of the potential defines the axion mass
as [54]

m2
a = δ2

δa2 log Z
(︄
θ̄ + a

fa

)︄⃓⃓⃓⃓
⃓
a=⟨a⟩

= 1
f 2

a

d2

dθ2 log Z(θ)
⃓⃓⃓⃓
⃓
θ=0

= χtop

f 2
a

. (2.26)

Z denotes the generating functional, which depends on a dynamical axion field and a
constant theta-term. In the last step, the topological susceptibility χtop was defined.
The QCD axion mass is thus proportional to f−1

a . To leading order in chiral pertur-
bation theory, the axion mass can be expressed in terms of QCD parameters [13, 54]
as10

m2
a ≃ mumd

(mu +md)2
m2

πf
2
π

f 2
a

. (2.27)

mu and md are the masses of up and down quarks. mπ is the pion mass and fπ its
decay constant. This result reflects the fact that θ is unphysical when one of the
quarks is massless. In this case, the axion field does not obtain a mass and CP is
conserved for any value of a. More recently, the most accurate calculations of χtop
and ma were performed by combining next-to-next-to-leading order calculations in

9Unlike the potential and nEDM generated by the theta-term, the contributions from the phase
of the CKM matrix can be computed perturbatively.

10See refs. [65–68] for some recent work motivating the possibility that QCD axions could signifi-
cantly deviate from this relation and be heavier than expected.
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chiral perturbation theory [54, 69] with lattice evaluations of QCD parameters like
the mass ratios of light quarks [70–73]. The numerical result is [69]

ma =
√
χtop

fa

= 5.69(5) µeV
(︄

1012 GeV
fa

)︄
. (2.28)

Evaluations of the full axion potential are even more involved. Again, only the
leading-order result is cited here [54],

V (a) ≃ −m2
πf

2
π

√︄
1 − 4mumd

(mu +md)2 sin2( a

2fa

) , (2.29)

where the axion field was shifted such that the minimum lies at a = 0. More accurate
evaluations of the potential and finite temperature effects, which are relevant in the
early universe, can be found in ref. [54].

In summary, the Peccei–Quinn solution of the strong CP problem proposes to
add a dynamical scalar field, which couples to G ˜︁G and thus takes the role of a
dynamical theta-angle. This new scalar is called the QCD axion. Non-perturbative
QCD effects induce a potential, whose minimum lies at the CP conserving value.
Potential and mass of the axion only depend on a single free parameter – the axion
decay constant fa, which acts as a suppression scale of all axion interaction terms.

2.4 Axion dark matter
The sole original motivation for the axion was to solve the strong CP problem [12,
13]. Nevertheless, shortly after its proposition, it was realised that the axion could
be a natural DM candidate [15, 16]. By construction, the axion is weakly coupled
to SM particles, light and therefore long-lived. These are ideal properties of a DM
particle. Before giving an overview of the dynamics of the cosmological axion field,
the main arguments for the existence of dark matter and its nature are recalled in
the following. Extensive books and reviews on this topic can be found for example
in refs. [74–77].

2.4.1 The dark matter puzzle
DM is a conjectured energy abundance in the universe which at most reacts very
weakly with the ordinary matter included in the SM. It is only known to interact
gravitationally and its energy density should scale with the inverse volume, i.e. like
ordinary non-relativistic matter. The observational evidence for its existence is over-
whelming and consistently points towards a cosmological abundance which is more
than five times as large as the one of ordinary baryonic matter [75]. Cosmological
abundances are typically quantified by the density parameter Ωi, which is the den-
sity of some cosmological species i relative to the critical density of the universe.
The Planck collaboration found [78]

Ωb = 0.049 , ΩDM = 0.259 , ΩΛ = 0.691 , (2.30)
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where b, DM and Λ label baryonic matter, dark matter and dark energy, respec-
tively.11 These numbers lead to the often-cited conclusion that modern physics only
understands and is able to describe the nature of about 5 % of the total energy
content of the universe.

One of the oldest observations that lead to the proposition of DM are galactic
rotation curves [79]. In the outer regions of galaxies, stars are observed to orbit at a
velocity much larger than what would be expected from the enclosed mass inside its
orbit. This can be explained by a larger gravitational pull coming from a different
type of matter which escapes observation but nevertheless contributes to the mass
of the galaxy [75].

Another powerful technique for observing matter distributions purely by its grav-
itational impact are called gravitational lenses (see ref. [80] for a review on this
topic). This subsumes a number of effects which can occur when light coming from
a distant object encounters strong gravitational potentials. Depending on the exact
matter distribution, this can lead to image distortions like shear, multiple images of
the same objects, Einstein rings or an increase in brightness [75]. From these effects,
the matter distribution between the object and the observer can be reconstructed.
Consistently, such observations point towards galaxies being more massive compared
to the expectation based on the amount of observable baryonic matter.

A singular piece of compelling evidence for DM is the famous observation of the
Bullet Cluster [81]. It formed from the collision of two smaller galaxy clusters. By
observations in the x-ray as well as in the visible spectrum, both the baryonic and
the overall matter density can be mapped. The latter is only detectable through its
gravitational interaction, i.e. via its lensing effects. Intriguingly, one can observe how
the centre of mass of the two smaller clusters passed through one another without
significant interference thus proving a lack of interaction of the majority of the matter
involved. The baryonic matter, on the other hand, slowed down due to interactions
with the collision partner. All of these observations are in perfect agreement with
a cluster consisting mainly out of collisionless dark matter. The Bullet Cluster is
particularly hard to explain in modified gravity theories since a clear differentiation
between different kinds of matter abundances can be observed [75, 81].

Finally, the inclusion of DM is a crucial ingredient in our current understanding
of the history of the universe. This fact becomes most apparent in observations of
the cosmic microwave background (CMB). This earliest detectable light exhibits the
structures in the universe at last scattering and it is a powerful probe of cosmological
parameters. The interplay between these early structures and the resulting CMB
power spectrum is far from trivial. An overview of the important effects can for
instance be found in ref. [74]. Overall, these observations are in extremely good
agreement12 with the ΛCDM model of the universe when the density parameters
are set to the values stated in equation (2.30) [78].

In conclusion, several independent observations point towards a large, unknown
11Only rounded central values are quoted here because they are sufficient for the point of the

argument.
12Potential deviations from the ΛCDM model like the cusp-core problem [82, 83], the missing

satellite problem [84, 85] or the too-big-to-fail problem [86] have mostly been successfully solved
by the inclusion of baryonic effects in the formation of galaxies [87–89].
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and weakly interacting population of matter being present in our universe. The
question, which is one of the most pressing puzzles in physics today, is what this
matter consists of. The only objects known to exist and which have the right prop-
erties are SM neutrinos and black holes. The former cannot comprise the whole
amount of DM due to neutrinos being very light and fermionic. The latter remains
a valid option but only for relatively broad distributions of masses [90, 91]. This is
why many candidates beyond the SM are also considered as DM. The key proper-
ties of a good candidate are weak couplings to the SM and the existence of a valid
production mechanism in the early universe leading to the right abundance today.

2.4.2 Production of axion dark matter
The axion is a typical example for a light DM candidate, which means that it has
to be bosonic. Otherwise Pauli pressure would prohibit the existence of a large and
cool enough abundance [92]. Its lightness also means that it cannot be produced
thermally. If the axions made up DM and had been in thermal equilibrium in the
early universe, structure formation to the extent observed today would have not
been possible [93]. Fortunately, the axion generically provides a non-thermal pro-
duction mechanism, which can lead to the right abundance today – the misalignment
mechanism. Even though several versions with slightly different properties exist, the
basic idea is always the same.

The description of the axion as in equation (2.20) becomes valid once a new
global symmetry – the PQ symmetry – is spontaneously broken. This is explained
in detail in chapter 3. The evolution of the classical axion field is then governed by
the Klein–Gordon-equation in an FLRW metric [94],

ä+ 3Hȧ+ V ′(a) = 0 , (2.31)

where a denotes the axion field13, H is the Hubble parameter and V the periodic
axion potential. As long as H is much larger than the potential term, friction
dominates and the field is effectively constant. But once H drops to values much
smaller than the axion mass, V ′(a) ≃ m2

aa, the field starts to oscillate. These
spatially coherent oscillations have an energy density which scales like matter with
the cubic inverse of the cosmological scale factor. Because of spatial homogeneity
(at least of the classical background field) the velocity dispersion is almost zero,
the produced abundance of axions is extremely cold and is clearly not in thermal
equilibrium with the dominating radiation at the time.

The initial conditions of this process can be set in either of two ways depending
on whether the PQ symmetry is broken during or after inflation. During SSB, the
axion field takes a random value at every point in space, because there is no preferred
position on the S1 vacuum manifold. If PQ breaking occurs during inflation, the
random field is stretched out such that the axion field has a constant value in the
whole observable universe. While this is a very simple scenario, the value of the
13In the cosmological context the axion field is often denoted A or ϕ in order to avoid confusion

with the cosmological scale factor a. This is not necessary here since the cosmological scale
factor only appears implicitly through H.
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constant initial value of θi = ainit/fa in the pre-inflationary scenario is unknown
because it can randomly take any value between 0 and 2π. The resulting dark
matter abundance depends on the subsequent expansion history of the universe and
the axion decay constant fa. To give a rough estimate, today’s abundance can be
approximated by [94]

Ωa ∼ 4 × 104
(︄

fa

1016 GeV

)︄ 7
6

θ2
i , (2.32)

in the case of fa ≲ 2 × 1015 GeV. This condition ensures that the oscillations in
the axion field start while T > ΛQCD and thus the axion mass can be computed
in the dilute instanton gas approximation. For fa ≳ 2 × 1017 GeV, the relation
becomes [94]

Ωa ∼ 1 × 104
(︄

fa

1016 GeV

)︄ 3
2

θ2
i , (2.33)

where the axion mass has reached its zero temperature value at the onset of oscil-
lations.14 Both of these results were derived in the harmonic approximation of the
axion potential, V (a) = 1

2m
2
aa

2, and the results receive significant corrections for
large initial field values. It becomes clear from the equations that a lighter axion,
i.e. with larger fa, is produced in larger abundances. This can eventually lead to
overproduction and therefore an overclosed universe. A smaller abundance can al-
ways be explained by a small initial misalignment angle θi but only at the cost of
fine-tuning.

The alternative, the post-inflationary scenario, is in general more predictive.
When the PQ symmetry is broken after inflation, the axion field takes a random
value in each causally disconnected patch of the observable universe. While still ran-
dom, the probability distribution is predicted by the theory and can be connected
to a prediction of the total amount of produced dark matter. This means that
the misalignment angle θ2

i in equations (2.32) and (2.33) can simply be replaced
by its expectation value ⟨θ2

i ⟩. However, there is a significant complication in the
post-inflationary scenario. The initial values can make a whole winding around the
S1 field manifold along a closed path in space. This results in topological defects
called axion strings. These strings carry a significant amount of the field’s energy
and eventually decay while the universe expands. The calculation of the resulting
axion DM abundance is numerically challenging. State-of-the-art calculations [96–
100] still differ significantly but point towards an axion mass of tens or hundreds of
µeV if the axion is supposed to make up the entire DM in the universe.

In conclusion, a realistic estimate of the viable mass range of QCD axion DM is
1 µeV ≲ ma ≲ 200 µeV. As mentioned above, a lighter mass would always be possible
in the pre-inflationary scenario if some tuning of the initial misalignment angle is
accepted. This is often referred to as the anthropic window. The upper bound comes
from the larger abundance estimates in the post-inflationary scenario. A more solid
14In the intermediate regime, 2 × 1015 GeV ≲ fa ≲ 2 × 1017 GeV , the oscillations start during

or close to the QCD phase transition and neither of the two expressions above is accurate [95].
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constraint in the same mass range for QCD axions can be derived from non-thermal
production via the axion-gluon interaction (see ref. [101] for the latest evaluation
of such a bound). It should also be mentioned that with some modifications, the
standard mass-abundance relations can be modified by several orders of magnitude.
Recent proposals for this kind of mechanism include a dynamical PQ scale [102] or
thermal friction from additional gauge fields [103, 104]. So even though there is a
preferred mass range, where the axion DM production is realised in its simplest form,
one should try to search in an even wider range in order to rule out non-standard
scenarios.
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3 Axion models and effective field theories

The axion, as it was introduced in the previous sections, is essentially a dynamical
theta-angle of QCD. Its coupling of the form aG ˜︁G together with its shift symme-
try, are all that is needed to solve the strong CP problem. However, this coupling
term has mass dimension five, which makes it in general non-renormalizable. Con-
sequently, it has to be an effective operator of a more fundamental UV-complete
theory. These UV completions can take various forms and are referred to as axion
models. Even though the underlying theories vary, the solution of the strong CP
problem always follows the same logic.

The important property of shift invariance can be realised by introducing the
axion as a Goldstone boson of a spontaneously broken global symmetry, the U(1)PQ.
Before looking at specific examples of how such a new symmetry can be realised, it is
instructive to systematically think about the minimal required field content of such
a theory. For the generation of the axion-gluon coupling, U(1)PQ must be a chiral
symmetry under which at least one coloured fermion is charged. Such a symmetry
does not exist in the SM since the only global symmetry (at the Lagrangian level)
involving quarks is the one related to baryon number conservation, which is not
chiral. It was therefore argued in ref. [105] that any axion model will need to
introduce either additional fermions or scalars in order to extend the space of possible
charges under U(1)PQ. Thus, the axion will never be the only additional particle
beyond the SM in a UV-complete theory.

Throughout this thesis, charges under U(1)PQ of a particle p (with fixed chirality)
will be denoted χp. A fermionic field ψL/R and a scalar field ϕ would therefore
transform as

ψL → eiαχψLψL , ψR → eiαχψRψR , ϕ → eiαχϕϕ . (3.1)

Exactly as described in section 2.2, this symmetry can feature an anomaly which
will result in additional terms in the Lagrangian. For fermions charged under the
SU(3)c and U(1)EM gauge symmetries of the SM15, these are [14, 49, 50, 58, 107]

Lanomaly = −αN g2
s

32π2G
a
µν
˜︁Gaµν − αE

g2
s

32π2Fµν
˜︁F µν , (3.2)

where N and E are the anomaly coefficients defined as

N =
∑︂

f

(χfL − χfR)T (Rf ) (3.3)

E = 2
∑︂

f

(χfL − χfR)Q2
f . (3.4)

15Couplings to weak gauge fields are also generated but are of less phenomenological interest and
are not further investigated in this thesis. See ref. [106] for a detailed discussion of these terms.
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T (Rf ) denotes the Dynkin index of the SU(3)c representation Rf , which is unity in
the case of a fundamental representation16, and Qf are the electric charges. The
sums run over all irreducible representations of the gauge group in question. In the
axion models presented below, it will be necessary to perform chiral rotations which
depend on the axion field. In these cases, the same transformation rules apply and
the rotation angle α is simply replaced by a/fa. The popular axion models discussed
in this chapter will later serve as benchmarks for phenomenological studies. This is
followed by an introduction into axion effective field theories (EFTs) which provide a
model independent parametrisation of all possible low-energy effective interactions.

3.1 KSVZ-type models
Hadronic axion models are the subset of models which extend the vector space
of PQ charges by introducing new fermionic fields. The simplest version of this
is the prominent KSVZ model [109, 110], which contains the minimal field content
required for an anomalous breaking of the U(1)PQ symmetry. This includes a fermion
Q charged under both the chiral U(1)PQ symmetry and the SU(3)c gauge symmetry,
which couples to the PQ scalar Φ via a standard Yukawa interaction. The full KSVZ
Lagrangian is therefore given by

LKSVZ = iQ̄ /DQ+ (∂µΦ)(∂µΦ) − V (|Φ|2) − (yΦQ̄LQR + h.c.) . (3.5)

The model then assumes that the complex scalar acquires a vacuum expectation
value (VEV) v, spontaneously breaking U(1)PQ. Inserting the convenient parametri-
sation

Φ = 1√
2

(v + ρ) eia
v , (3.6)

the resulting mass of the quark is given by mQ = yv/
√

2. The radial mode ρ acquires
a mass of the same scale, while the Goldstone mode a remains massless. The desired
coupling of a to gluons is found most easily by performing a chiral field redefinition,

Q → ei a2v γ5
Q . (3.7)

This eliminates the dependence on a from the Yukawa terms but instead induces a
QCD axion coupling,

L ⊃ −αs

8π
a

v
Ga

µν
˜︁Gaµν = −αs

8π
a

fa

Ga
µν
˜︁Gaµν , (3.8)

where v was identified as the axion decay constant fa in this model. After inte-
grating out the heavy fields Q and ρ, this is the only remaining axion coupling to
the SM. This pure KSVZ model is therefore not only minimal in its field content
16Note that some authors like e.g. [108] use a different convention where T (Rf ) = 1/2 for a

fundamental representation. They also omit the factor of 2 in the definition of E and thus
arrive at the same value for E/N . For the purpose of chapter 5, a convention in which N is
always an integer is chosen.
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but also results in the minimal axion couplings required for solving the strong CP
problem. However, this simplicity comes at a price. Because the heavy quark Q
only interacts via the strong force, it is stable on cosmological time scales [109] and
the population of thermal relics from the Big Bang would be observable today [111–
113]. Solving this problem leads to the wider class of KSVZ-type or hadronic axion
models. One can allow Q to have other gauge charges, e.g. a non-vanishing hyper-
charge, which means that it can mix with SM quarks and will decay. Such a model
would contain additional axion couplings to SM gauge bosons because the chiral
rotation generates anomalous coupling terms for all gauge groups that the fermion
is charged under. In general, hadronic axion models can even feature a number
of these coloured fermions in various representations of the gauge groups. The re-
sulting axion interactions with gluons and photons can then be derived from the
anomaly coefficients in equations (3.3) and (3.4).17 A comprehensive list of suitable
representations in hadronic axion models with a single heavy quark is described in
refs. [108, 115].

3.2 DFSZ-type models
An alternative to introducing fermionic fields charged under the new U(1)PQ sym-
metry is the expansion of the scalar sector. More specifically, one can consider a
two Higgs doublet model (2HDM) and identify the axion as a linear combination
of the two pseudoscalar Goldstone modes. This was exactly the idea of the orig-
inal PQWW axion model [12, 13]. In this scenario the axion decay constant is
closely related to the electroweak scale. The model was quickly ruled out by ex-
perimental observations because it predicted axion couplings of the same order as
the weak interactions. However, the 2HDM approach can be tweaked to avoid these
constraints by introducing another complex scalar. This is the well-known DFSZ
model [116, 117], which will be introduced in more detail below. The description
roughly follows the one in ref. [118].

In a two Higgs doublet model, the up- and down-type quarks couple to different
Higgs doublets. The Yukawa terms can therefore be written as

LY = −λuq̄LHuuR − λdq̄LHddR − λeL̄HdeR + h.c. . (3.9)

Exactly as in the Standard Model, the fermions obtain their masses through the
VEVs of the neutral components of the Higgs doublets. In the lepton Yukawa
term, Hd could be replaced by ϵH∗

u. These two possibilities of generating lepton
masses through Hd or Hu are called DFSZ I and II, respectively. For simplicity,
only the former is presented here, but all steps are completely equivalent in both
cases. The PQ charge of the two Higgs doublets are identical, but they differ in
their hypercharge. This means that the quark Yukawa terms shown above are the
only ones compatible with all symmetries.
17Directly using the anomaly coefficients as coupling constants only works for non-chiral gauge

groups like SU(3)c or U(1)EM and only in the limit of infinite mQ. This point is discussed in
detail in ref. [114].
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The only other BSM field in the DFSZ model is a complex scalar Φ, which cou-
ples to the doublets via the term H†

dϵH
∗
uΦn + h.c.. Renormalizability requires n to

be either 2 or 1. When all three scalar fields acquire a VEV, the neutral Higgs
components H0

u/d and Φ can be expressed as

H0
u/d = 1√

2
(︂
vu/d + ρu/d

)︂
eiθu/d and Φ = 1√

2
(vΦ + ρΦ) eiθΦ . (3.10)

Here, v, ρ and θ denote the VEVs, radial and angular modes, respectively. In this
parametrisation, the three possible neutral Goldstone fields au/d/Φ = vu/d/Φθu/d/Φ all
obtain a canonical kinetic term. In the following, only orthogonal rotations in this
field basis are made in order to keep the kinetic terms diagonal.

The subspace spanned by ad and au is the one affected by hypercharge gauge
transformations, but the combination vdau + vuad is invariant under U(1)Y. This
motivates the definitions(︄

aw

aZ

)︄
=
(︄

cos β sin β
− sin β cos β

)︄(︄
au

ad

)︄
with tan β = vu

vd

, (3.11)

where aw is the PQWW axion.18 This direction is invariant under gauge transfor-
mations while the Goldstone aZ is the one which becomes the longitudinal mode of
the Z boson in unitary gauge. It is convenient to define v2

F = v2
u + v2

d such that
cos β = vd/vF and sin β = vu/vF .

The coupling between the Higgs doublets and Φ generates a non-vanishing po-
tential for the pseudoscalar modes. When all three scalars acquire a VEV and the
heavy radial modes are neglected, the potential becomes

λH†
dϵH

∗
uΦn + h.c.

SSB−−→ |λ|vuvdv
n
Φ

2 2+n
2

ei(nθΦ−θu−θd+δ) + h.c. = |λ|vuvdv
n
Φ

2n
2

cos( n
vΦ
aΦ − vF

vuvd

aw + δ) .

(3.12)

λ is an arbitrary complex coupling constant with argument δ. The potential is
independent of aZ , which is an immediate consequence of the gauge invariance of
the interaction term. One can now rotate into a mass diagonal basis,(︄

a
am

)︄
=
(︄

cos γ sin γ
− sin γ cos γ

)︄(︄
aΦ
aw

)︄
with tan γ = nvuvd

vFvΦ
= nvw

vΦ
, (3.13)

where the scale vw = vuvd/vF was introduced. In this basis, the argument of the
cosine in the scalar potential in equation (3.12) only depends on the massive direc-
tion am, while the DFSZ axion a is the only pseudoscalar direction which remains
massless and is not eaten by a gauge boson.

The couplings of the DFSZ axion to gauge bosons are finally obtained by per-
forming a chiral rotation of fermions, eliminating the phase of the Yukawa terms in
18In a scenario without the additional complex scalar Φ, aw remains massless up to the anomalous

symmetry breaking.
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equation (3.9),⎛⎜⎜⎝
uL

dL

eL

⎞⎟⎟⎠ →

⎛⎜⎜⎝
ei θu2 uL

ei
θd
2 dL

ei
θd
2 eL

⎞⎟⎟⎠
⎛⎜⎜⎝
uR

dR

eR

⎞⎟⎟⎠ →

⎛⎜⎜⎝
e−i θu2 uR

e−i
θd
2 dR

e−i
θd
2 eR

⎞⎟⎟⎠ . (3.14)

Assuming that aZ is set to zero by a gauge transformation and that that the heavy
field am is integrated out, the phases θu/d only depend on the axion field a,

θu = cos2β

vw

aw = cos2β sin γ
vw

a = cos2β

3
3n√︂

nv2
w + v2

Φ

a = cos2β

3fa

a , (3.15)

where fa was defined as

fa =

√︂
(nvw)2 + v2

Φ

3n . (3.16)

Analogously, one finds θd = a sin2(β)/(3fa). The chiral rotation will eliminate the
axion from the Yukawa terms and instead induce derivative couplings to fermions.
Additionally, the chiral anomaly generates couplings to gauge bosons as described in
equations (3.3) and (3.4). Accounting for all generations of fermions, the resulting
terms in the Lagrangian are19

LDFSZ = − αs

8πG
a
µν
˜︁Gaµν 3(θu + θd)

− αEM

8π Fµν
˜︁F µν 2 · 3

[︄
3
(︃2

3

)︃2
θu + 3

(︃−1
3

)︃2
θd + (−1)2θd

]︄
(3.17)

+ ūγµγ5u
∂µθu

2 +
(︂
d̄γµγ5d+ ēγµγ5e

)︂ ∂µθd

2
= − αs

8π
a

fa

Ga
µν
˜︁Gaµν − αEM

8π
8
3
a

fa

Fµν
˜︁F µν

+ sin2β

3 ūγµγ5u
∂µa

2fa

+ cos2β

3
(︂
d̄γµγ5d+ ēγµγ5e

)︂ ∂µa

2fa

. (3.18)

At this point, the reason for the normalization of fa that was chosen above becomes
clear since a/fa takes the role of the dynamical theta-angle and the induced axion
potential has a discrete shift symmetry a → a+2πfa. Accordingly, the axion-photon
coupling is given by E/N = 8/3. The choice of n only affects the dependence of
fa on the VEVs of the three scalar fields. Doing the same steps as above for the
DFSZ II model, one arrives at the same Lagrangian but with factors of − sin2(β)/3
for the lepton coupling and E/N = 2/3 for the photon term.

The DFSZ models type I and II often serve as benchmark axion models, especially
when couplings to SM fermions are required. Additionally, there is a large class of
similar models that also employ additional Higgs doublets but lead to different
19Note that in a quark mass eigenbasis, the different charges of up- and down-type quarks also

leads to terms of the type eia/faWµūLγµdL. The corresponding four particle vertex is however
suppressed by both the weak coupling and f−1

a and it is therefore commonly neglected.
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effective axion couplings. The general logic is always the same, but for instance
additional Higgs doublets are included [119, 120] or PQ charges differ between the
three fermion generations [119, 121, 122]. These models are often referred to as
DFSZ-type. At the expense of some fine-tuning, they can be designed to avoid
astrophysical constraints [119, 121, 123]. Most importantly, their existence motivates
to search for axions via all possible couplings and to not merely constrain the one
low-dimensional parameter space of a specific model.

3.3 Non-canonical axion models

Besides the two well-known models and their modifications, which were presented
above, there is a vast landscape of conceivable QCD axion models [124]. Nonetheless,
the KSVZ and DFSZ models are typically used as benchmarks in axion studies. This
is because they represent a large class of models whose couplings to SM particles
differ only by factors of order unity. Since the decay constant fa always remains
a free parameter, the condition of the same order of magnitude vaguely defines
a band in two-dimensional parameter space. This is often called the QCD axion
band [108, 115]. Some effort has been invested into constructing models which lie
outside of this band because these can have a crucially different phenomenology
and populate experimentally interesting parameter space. Furthermore, it is of
theoretical interest to test what kind of properties a QCD axion may have, while
still solving the strong CP problem.

An extensive summary of available axion models is given in the recent review [124].
In this reference, methods to enhance or suppress certain couplings are outlined.
Such non-canonical axion models can even have a significantly modified relation be-
tween ma and fa. Reaching larger or smaller masses is difficult to achieve because the
additional potential terms should neither spoil the solution of the strong CP problem
nor reintroduce fine-tuning. The approaches for building non-canonical axion mod-
els are manifold and comprise composite axion models with additional (confined)
gauge groups [125–127], large numbers of Higgs doublets [115], clockwork scenar-
ios [128–130] or embeddings into grand unified theories [131–134]. Many attempts
have also been made to combine QCD axion models with other BSM scenarios like
for instance neutrino masses [24–26], inflation [18–23], gravitational wave produc-
tion by a first-order phase transition [135–138] or several of these (see e.g. ref. [139]
for an attempt to solve five fundamental problems simultaneously).

Explaining all of these models in detail is beyond the scope of this short summary.
It is, however, important to note that a large variety of models has been devised,
covering a wide range of phenomenologically interesting scenarios and often solving
different kinds of problems besides strong CP. Because the suggestions differ so dras-
tically in several important couplings, any detection of an axion will automatically
exclude a large number of models.
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3.4 Axion effective field theory
The large number of possible UV-complete axion models means that it is inconve-
nient to individually investigate their low-energy phenomenology in order to search
for these signatures. Instead, the method of low-energy effective field theories (EFTs)
is perfectly suited to axion physics. This is because the axion is typically the only
light new degree of freedom and experiments are probing its interactions to the SM
at some scale far below the axion decay constant fa. In addition, all axion couplings
are usually suppressed by fa and thus the leading order in the EFT expansion will
already be sufficient for all practical purposes.20

Above the electroweak scale

Before electroweak symmetry breaking, the most general axion EFT including all
operators up to mass dimension five can be written as [140–142]

LaEFT = LSM + La , (3.19)

with

La = 1
2∂µa∂

µa− V (a) − a

fa

∑︂
F

cF F
αF

8π F
a
µν
˜︁F aµν + ∂µa

fa

∑︂
χ

χ̄Cχγ
µχ . (3.20)

The first sum runs over all gauge bosons, F = B,W,G, and the indices a are ob-
solete for the abelian U(1)Y. In the second sum, χ takes the values of all chiral
fermion multiplets in the Standard Model, namely χ = QL, LL, uR, dR, eR. Genera-
tion indices have been omitted for simplicity but note that each Cχ is a quadratic
hermitian matrix in generation space and allows for flavour-changing fermion cur-
rents. If we restrict the EFT to CP conserving interactions21, which is sensible
since the axion is introduced in order to explain the absence of CP violation, the
coupling matrices must be symmetric, cχ = cT

χ (see appendix A). Chirality flipping
operators of the form a

fa
χ̄γ5χ have not been included because these can be rotated

into cF F and Cχ by appropriate chiral rotations of the fermionic fields. Even after
this reduction of operators, there is still some degree of redundancy left. Rotations
of fermionic fields along baryon number and lepton flavour22 reduce the number of
independent couplings by one in the quark sector and by the number of generations
in the lepton sector, resulting in a total of 29 independent real coupling constants
for three generations of fermions [142].

After electroweak symmetry breaking

Below the electroweak symmetry breaking scale, fermions as well as the W and Z
bosons acquire masses and it is convenient to write the axion interactions in the
20Note that divergent loop diagrams in the EFT are not necessarily regulated at fa. Instead many

axion EFTs are valid only up to the scale of the lightest BSM particle, e.g. a second Higgs
doublet. This is discussed in greater detail in chapter 6.

21See ref. [143] for a detailed discussion of CP violating axion interactions in effective field theories,
their origin and phenomenology.

22Without neutrino masses, lepton flavour is a global symmetry of the SM.
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mass eigenbasis. For the gauge bosons this is given by [142]

La ⊃ − a

fa

cgg
αs

8πG
a
µν
˜︁Gaµν − a

fa

cW W
αw

8πW
a
µν
˜︂W aµν − a

fa

cZZ
αEM

8π Zµν
˜︁Zµν

− a

fa

cγZ
αEM

8π Fµν
˜︁Zµν − a

fa

cγγ
αEM

8π Fµν
˜︁F µν . (3.21)

For phenomenological purposes, it is common to define the dimensionful coupling
constants

gagg = cgg
αs

2πfa

gaW W = cW W
αw

2πfa

gaZZ = cZZ
αw

2πfa

gaγZ = cγZ
αw

2πfa

gaγγ = cγγ
αEM

2πfa

. (3.22)

In the EFT, fa does not have a direct physical interpretation23, but only the combi-
nation cF F/fa is observable. One can avoid this redundancy by defining fa such that
cgg = 1, which is only possible if the axion couples to gluons at all. It appears as
if the three independent coupling constants before electroweak symmetry breaking
give rise to five couplings after. However, electroweak gauge symmetry implies [142]

gaW W = gaγγ + cos θW

2 sin θW

gaγZ , (3.23)

gaZZ = gaγγ + cos2θW − sin2θW

2 cos θW sin θW

gaγZ , (3.24)

where the Weinberg angle, cos θW = mW/mZ was introduced. Hence, there are
again only three independent couplings to gauge bosons.

Interactions with SM fermions in their mass eigenbasis can be written as

La ⊃ ∂µa

fa

⎛⎝ ∑︂
f=u,d,e,ν

f̄L cf,L γ
µ fL +

∑︂
f=u,d,e

f̄R cf,R γ
µ fR

⎞⎠ (3.25)

= ∂µa

fa

⎛⎝ ∑︂
f=u,d,e

f̄
[︂
cf,V γ

µ + cf,A γ
µγ5

]︂
f + ν̄L cν,L γ

µ νL

⎞⎠ , (3.26)

where the first line is in a chiral basis, while the second one splits the interactions
into vector and axial-vector types. The coupling matrices are related through cf,V =
(cf,R + cf,L)/2 and cf,A = (cf,R − cf,L)/2. The seven coupling matrices in this basis
are also not independent of each other. Instead, the mass diagonalization involving
left-handed doublets results in the relations cν,L = ce,L and cd,L = V † cu,L V with the
CKM matrix V . As a result, the EFTs above and below the electroweak scale have
exactly the same number of independent coupling constants.

Below the QCD confinement scale

The next relevant phase transition in the Standard Model takes place at the con-
finement scale. Quarks hadronise and the new degrees of freedom are mesons and
23This is apart from quantisation conditions of some axion couplings which are discussed in more

detail in chapter 5.
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baryons. For the EFT description this has two important consequences. First, the
axion-quark terms must be replaced by effective couplings to hadrons. Chiral per-
turbation theory allows to relate these hadronic couplings to the underlying quark
interactions in the UV [54]. For this thesis, the only axion hadron interactions of
interest are the ones to nucleons. These can be expressed as

LaN = −ia N̄γ5
(︂
g0

aN + g3
aNτ

3
)︂
N (3.27)

= −ia n̄γ5gann− ia p̄γ5gapp , (3.28)

where N = (p, n)T is the nucleon doublet, g0
aN , g3

aN are the iso-scalar and iso-vector
couplings, respectively, and τ 3 is the third Pauli matrix. The second row is expressed
in terms of the neutron and proton couplings, which are defined as

gan = g0
aN − g3

aN and gap = g0
aN + g3

aN . (3.29)

The reason why these are written as Yukawa-type rather than derivative interactions,
like all fermion terms above, is that the calculation of nuclear matrix elements are
usually carried out with these types of interactions. Note, however, that much care
has to be taken when derivative and Yukawa interactions are related by the equation
of motion, as it was done here. Tree-level calculations in each of these bases will
agree, but loop corrections, which can be parametrically of the same order as the
tree-level result, will not. This issue is discussed in more detail in chapter 5.

After hadronisation, axions can mix with pseudoscalar mesons, most notably the
light neutral pions η′ and π0. This will induce a contribution to the axion-photon
coupling provided that the axion interacts with gluons at all. At leading order
in chiral perturbation theory and assuming that cgg was normalized to unity, this
contribution to the photon coupling is given by [54]

gQCD
aγγ ≃ αEM

2πfa

(︃
−2

3
mu + 4md

mu +md

)︃
≃ αEM

2πfa

(−2.03) . (3.30)

The numerical factor in parentheses is called the model-independent contribution to
the axion-photon coupling. Its precise calculation beyond the approximation above
is rather involved. The latest results are obtained by going next-to-leading order
in chiral perturbation theory and using lattice QCD results [54, 69]. By combining
the parametrical result in ref. [54] with the updated values and uncertainties from
ref. [69] one arrives at

gQCD
aγγ = αEM

2πfa

(−1.93(3)) . (3.31)

All in all, the same EFT description of axion interactions with gauge bosons can be
used above and below the confinement scale of QCD. However, sizeable additional
contributions from axion meson mixing are expected.

3.5 Axion-like particles
The focus of this thesis are QCD axions, which are defined by their property of
solving the strong CP problem via the PQ mechanism. There is however a more
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general class of hypothetical new particles, called axion-like particles (ALPs). These
include pseudoscalars with an approximate shift symmetry which exhibit the same
kind of interactions as the QCD axion. They are therefore automatically included
in the EFT framework described above. Unlike QCD axions, they do not necessarily
solve the strong CP problem because they may not feature the required coupling to
gluons or because of other terms in the potential which spoil the PQ solution.

ALPs can emerge from spontaneous breaking of global symmetries or from the
compactification of extra dimensions [28, 144, 145]. In particular, many string theory
models predict the existence of such particles [144, 144–148]. In fact, they are a
common implication of these theories and can even appear in large numbers. This
is why the existence of an axiverse was suggested [145, 148, 149], which would be a
plenitude of different light and weakly coupled ALPs.

For most phenomenological discussions, it is irrelevant whether a new particle is
a QCD axion or an ALP. This is because the observable effects only depend on the
low-energy interactions which are often identical. Of course, it would be desirable to
confirm the existence of a QCD axion. To this end, a good match of a UV-complete
axion model with observations would be a good hint but ultimately a measurement
of the axion-gluon coupling would be required.

For the purpose of brevity, the following chapters will generically speak of axions
whenever both QCD axions and ALPs are meant to be included. This is also true for
the sensitivity studies in chapters 6 and 7, where the EFT parameters are regarded as
free. All of the benchmark models in these chapters are indeed QCD axion models.
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4 Axion phenomenology and experiments

Parts of this chapter are based on summaries which were published in refs. [1] and [2]
before submission of this thesis. Material from these articles is used in the following
without further reference.

Already in the first papers proposing the existence of a QCD axion some potential
experimental signatures were discussed [12, 13]. The original PQWW axion model,
in which fa is of the order of the electroweak scale, was quickly ruled out in this
way [150]. Models with a larger PQ symmetry breaking scale like the KSVZ and
DFSZ models were initially called invisible because it seemed unrealistic at the time
to detect them. However, the progress in experimental techniques and technology
has by now certainly proven that this is a misnomer [151]. A growing portion of
the most relevant parameter space is coming within reach of current or near future
experiments. An extensive overview of the bounds based on these experiments as
well as on astrophysical or cosmological observations is given in ref. [152]. It also
includes projections of proposed axion searches. In the following, a brief overview
of a selection of detection methods is provided.

4.1 Laboratory searches
The most controlled environments for axion detection are pure laboratory searches,
where axions are both produced and detected within the experiment. A famous ex-
ample of such a setup are light-shining-through-wall (LSW) experiments [153, 154].
They rely on the axion-photon coupling gaγγ. In the presence of a strong mag-
netic field, axions can convert into a photon via this interaction. This effect can
be enhanced by using optical resonators. The resulting axions can freely propa-
gate and leave the resonator, which confines the electromagnetic radiation. Inside a
second cavity, these axions can be reconverted into photons via the inverse mecha-
nism and subsequently be detected. The whole procedure corresponds to observing
light passing through an opaque wall in the presence of a magnetic field, giving the
setup its name. The strongest axion bounds from such an experiment is provided
by ALPS [155]. Its update ALPS II is soon expected to start operation [156–158].

LSW experiments quickly lose sensitivity at axion masses ∼ meV. This is due
to decoherence between the photon and axion waves inside the conversion volume.
Significantly heavier axions can be probed in particle colliders. For instance, axions
at the heavier end of the currently accessible mass range are best studied at the
LHC [141, 159–166] and B-factories [167–173]. For the intermediate regime between
MeV and GeV scales, reactors [174], rare decay [64, 167, 168, 171, 172, 175–178],
fixed target experiments [179–187] and long-lived particle detectors at the LHC [64,
188, 189] are available (see [64] for a recent review). As discussed in more detail in
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chapter 6, much lighter axions can also be tested through the K+ → π+ + a decay
rate at experiments like NA62 [190] and KOTO [191] as well as future experiments
such as KLEVER [192].

4.2 Solar axion detection
If axions exist, the Sun must be a powerful source of them close to Earth. The
reason is that stars are perfectly suited to the production of light and weakly in-
teracting particles due to their large mass and high temperature. One typical solar
axion search is the helioscope concept, devised by Sikivie in 1983 [151]. Its working
principle is similar to the one of LSW experiments. An evacuated bore inside a
strong magnet is aimed towards the Sun so that the magnetic field is perpendicu-
lar to the flux of solar axions. Because the coupling to the electromagnetic field is
proportional to E⃗ · B⃗, this maximises the probability of an axion converting into a
photon inside the magnetic field. The photons carry the same energy as the axions,
which puts them in the x-ray spectrum. With appropriate optics, the photons can
be focused on an x-ray detector. Any signal that is significantly stronger than the
noise level of the detector would indicate the existence of an axion or ALP.

Helioscope searches have the advantage of not requiring axions to contribute to
the dark matter abundance in the universe. Instead, the existence of solar axions
only relies on appropriate coupling strengths to photons or electrons. In addition,
helioscopes are sensitive to a wide axion mass range without the need to search
for each possible mass individually as it is often the case in axion DM searches.
However, they also lose sensitivity at large masses ∼ 20 meV because of the same
reasons as in LSW. The decoherence can in principle be avoided by using a buffer
gas in the conversion volume [193, 194]. This results in an effective mass of the x-ray
photons which can restore coherence when it is equal to the axion mass. With a
buffer gas, the sensitivity can therefore be improved at high masses at the cost of
some finite absorption and the need to scan over different pressure settings.

The helioscope setup also has a few disadvantages. If the axion mass is smaller
than ∼2 meV a helioscope is not able to distinguish it from a massless particle [195,
196]. Furthermore, they are not sensitive to QCD axions in the preferred mass
range for dark matter. However, with modifications of either the mass-coupling [65–
68, 124] or the mass-abundance relation [102–104], an axion that makes up DM
could also be detected.

For the phenomenological studies in chapter 7, the probability of an axion convert-
ing into a photon inside the helioscope is of crucial importance. The most general
result including a buffer gas is given by [197–200]

Pa→γ =
(︃
gaγγB

2

)︃2 1
q2 + Γ2/4

[︂
1 + e−ΓL − 2e−ΓL/2 cos (qL)

]︂
, (4.1)

where B denotes the average magnetic field strength perpendicular to the incoming
axions, L the length of the bore, Γ the absorption length of x-ray photons in the
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buffer gas and q the transferred momentum given by

q =
m2

a −m2
γ

2ω . (4.2)

mγ is the effective mass of x-ray photons in the thin buffer gas and ω the energy of
the incoming axion. The former is a function of the pressure and can be adjusted
to match the mass of the axion. In the vacuum limit, mγ → 0 and Γ → 0, the
conversion probability takes the form

P vacuum
a→γ =

(︃
gaγγBL

2

)︃2
× 2(1 − cos(qL))

(qL)2 . (4.3)

This is further simplified when the axion mass is assumed to be negligible. In this
case, q → 0 and the conversion probability becomes energy independent,

Pmassless
a→γ =

(︃
gaγγBL

2

)︃2
. (4.4)

All of these results will be used in chapter 7.
So far, the most powerful helioscope is the CAST experiment at CERN [199, 201–

208]. It constrained gaγγ < 0.66 × 10−10 GeV−1 for ma < 20 meV [208]. This is
expected to be surpassed in the coming years by the international axion observatory
(IAXO). It is a next generation helioscope, which is planned to exceed the sensitivity
of all previous broadband axion searches by 1 to 1.5 orders of magnitude in coupling
space [200, 209]. The newly probed parameter space will include KSVZ and DFSZ
axions in the mass range of 1 meV to 100 meV. Such an improvement becomes
possible due to technological advances in superconducting magnets, x-ray optics as
well as low-background x-ray detectors. For the first time, the whole setup of a
helioscope would be purpose-built including the magnet [210, 211]. In addition, the
plan includes mounting the experiment on a rotating platform, allowing Sun tracking
for approximately 12 hours per day. There are three design stages to be built one
after the other: BabyIAXO, IAXO and IAXO+ each exceeding the sensitivity of
the previous one [211]. Details about the different setups including magnet, optics
and detectors are discussed in the sensitivity study in section 7.5. Experimental
parameters are listed in table 7.5.

Besides helioscopes, which are custom-designed for axion detection, DM direct de-
tection experiments have also performed searches for solar axions and put bounds on
their couplings (see ref. [209] for an overview of detection techniques of solar axions
based on gaγγ or other axion couplings). This has recently received a lot of attention
in the context of the observed excess in electron recoil events in XENON1T [212].
However, it was quickly ruled out that the excess is caused by solar axions due to
astrophysical constraints [213, 214]. Shortly before submission of this thesis, the
first results of the follow-up experiment XENONnT were published. They show no
sign of an excess [215].

4.3 Dark matter searches
Besides axion helioscopes, Sikivie also proposed haloscopes as a detection scheme of
axion DM in his seminal paper [151]. Haloscopes are currently the most sensitive
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method to search for axions in the DM window. They consist of a microwave cavity
inside a strong magnetic field. When an axion enters the cavity, it can convert
into a photon by coupling to the background magnetic field. Because DM is non-
relativistic, the frequency of the resulting photon is completely determined by the
axion mass. If this frequency is matched by the resonance of the cavity, a strong
enhancement of the conversion probability can be achieved. A microwave detector
would then be able to detect the induced radiation. Due to the resonance effect,
haloscopes can achieve extremely good sensitivities but only in a tiny mass range at
a time. Their cavities are constructed in such a way that the resonance frequency
can be adjusted. Hence, the accessible mass range of an axion haloscope is defined by
the tuning range of its cavity. The strong resonant enhancement comes at the price
of having to scan over a multitude of frequency settings in order to cover the axion
parameter space. In fact, typical haloscopes only remain in one frequency setting
for time periods of the order of minutes while using a high-quality cavity [216]. The
scanning results in ragged exclusion lines as depicted in ref. [152].

A large number of axion haloscopes are currently in operation, under construction
or have been proposed. A comprehensive list can be found in ref. [152]. Experimen-
tal details of the various setups are discussed in ref. [217]. Collectively, these searches
will cover or reach into the axion band in the mass range of 0.5 µeV ≲ ma ≲ meV.
Note that in order to reach higher axion masses than ∼ 100 µeV, one has to go
beyond the simplest haloscope design described above. For instance, novel noise
reduction techniques [218, 219], alternative resonator designs [220, 221] or broad-
band searches [222] based on the dish-antenna concept [223] have been suggested.
Searching for far below µeV DM axions is yet again a unique experimental challenge,
for which the lumped element approach [224, 225] has been proposed.

Finally, axion DM could also be detected via a different coupling than gaγγ. An
example for this kind of search is the CASPEr experiment [226, 227], which em-
ploys couplings to gluons or nucleon EDMs. Also conventional direct detection
experiments may be sensitive to axions, when they exhibit appropriate couplings to
fermions. It was for instance suggested that the XENON1T anomaly [212] could
be caused by an axion or axion-like particle [228] even though this would require a
suppression of the axion-photon coupling.

4.4 Axions in astrophysics
The core of a star, with typical temperatures of a few keV, a significant density
and a large volume, constitutes an ideal source of very light bosons [229–236]. In
particular, axions can be produced through their couplings to photons, electrons or
nucleons. Once produced, they typically leave the star unimpeded due to their large
mean free path.24 This means that unlike photons, which are only emitted from
the surface of an opaque object, axions can be emitted from the entire volume of
a star. This mitigates the suppression by small coupling constants. Some of the
typical production mechanisms – in particular those that are important in the Sun
24See ref. [237] for a recent study in which the common assumption of free streaming axions was

dropped.
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– are discussed in greater detail in chapter 7. If stars like white dwarfs (WD), red-
giant branch (RGB) or horizontal branch (HB) stars, supergiants or neutron stars
emit axions in sufficient amounts, it can facilitates an additional cooling channel
and alter the stellar evolution significantly. The resulting effects can be used to
put constraints on the relevant couplings. Summaries of stellar cooling observations
used for constraining axions are given in refs. [235, 236].

Additional cooling in WDs is dominated by processes involving electrons and they
can therefore only be used to constrain gae. One observable effect in WDs is the
deformation of the luminosity function because WDs will move more quickly towards
smaller luminosity if they emit axions in large numbers [238–242]. Furthermore, the
rate of the period change of pulsating WDs depends on their cooling efficiency [243–
247]. In both of these WD variables, hints for anomalous cooling can be found [239,
240, 244–246]. Moreover, it has been suggested that axions can convert into x-rays
after escaping from a magnetic WD and giving an observable signal [248, 249].

Axion emission can also influence the distribution of HB and RGB stars in the
Hertzsprung–Russel diagram of globular clusters. For instance, the R-parameter,
which is the number density of HB over the one of RGB stars, is a good indica-
tor. An axion coupled to photons would shorten the time stars spend on the HB
but hardly influence the cooling of RGB stars. Hence, R would be smaller [250].
Again, constraints [251] and weak hints [252] have been derived from this argument.
Another useful observable is the luminosity at the tip of the RGB. Axions coupled
to electrons would delay the helium ignition, increasing the luminosity at the RGB
tip [253]. Furthermore, in open clusters, the ratio B/R of blue over red supergiants
depends on their respective lifetimes. Axion cooling by coupling to photons would
significantly shorten only the lifetime of blue supergiants, resulting in a smaller value
of B/R [254–257].

Neutron stars can also emit axions in significant numbers from their superfluid
core if the coupling to neutrons gan is sufficiently strong. In contrast to all stellar
objects mentioned above, the cooling of neutron stars can be observed directly by
following the evolution of one star for several years [258]. Again, a slight indication
of additional cooling has been discovered [48, 259].

Axions coupled to nucleons can furthermore significantly contribute to the energy
loss of supernovae. This would shorten the neutrino burst of such an event. The
only supernova whose neutrino burst was observed in several detectors around the
world was SN1987A [260–262]. Very soon after this event, the first axion limits
were deduced [263]. Several revisions later (e.g. [236, 264, 265]), the very limited
available data (∼ 24 detected neutrinos [266]) can be used to strongly constrain the
coupling strength of an axion to nucleons. With the much improved sensitivity of
today’s experiments, a supernova similar to SN1987A would be a golden opportunity
to derive better constraints or find hints for the existence of axions. Supernovae
at much larger distances can provide a limit on the coupling to photons, which is
deduced from the expected rate of gamma-rays due to axion decays [267]. Moreover,
the combination of all past supernovae can lead to a diffuse flux of highly energetic
axions. These could be detectable as gamma-rays when they convert into photons
inside the galactic magnetic field [268].

A final astrophysical test and possible hint for the existence of axions is the
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gamma-ray transparency of the universe. A number of studies have found that
gamma-ray sources appear brighter than expected [269–283]. This can be ex-
plained by photon-axion oscillations in the intergalactic magnetic fields. High-energy
gamma-rays are normally damped by pair production of electrons and positrons.
However, in the presence of a magnetic field and if gaγγ is large enough, photons
can convert to axions, which are not damped as strongly by this effect. These can
reconvert to photons after travelling freely for a long distance. The effect is very
similar to the one in an LSW experiment but on a cosmic distance scale. Coherent
photon-axion oscillations are only possible on these large scales if the axion mass
is very small (ma ≲ 10−7 eV) but they still need gaγγ ∼ 10−11 GeV−1. This puts
these bounds and hints far above the usual QCD axion band. Furthermore, not
all authors reach the conclusion of an unexpectedly transparent universe [284–286],
thereby only constraining the axion parameter space.
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5 Axion periodicity, quantised couplings and
loop corrections

This chapter is based on so far unpublished work under the working title Loop-
induced corrections to quantised axion couplings.

One of the often-neglected properties of a QCD axion is its periodicity, which
has been recently pointed out as one of the directions for future studies on axion
theory [287]. Only few authors have previously investigated its consequences for low-
energy phenomenology [288–290]. The reason for this is that the periodicity only
becomes apparent in UV-complete axion models and that it is often not carried along
to an effective description in the infrared (IR). Instead, common approximations like
the application of the equations of motion at the Lagrangian level or an expansion
in small field values, which can in many cases be reasonable simplifications, explic-
itly break the axion’s periodicity. This chapter will emphasize the importance of
periodicity conditions, demonstrate how it can help to avoid mistakes in calculating
observables and investigate why loop-induced corrections to quantised axion cou-
plings are not in contradiction to the periodicity. Many of the results presented here
have already been calculated in other contexts before. They are used here to explain
and demonstrate how periodicity conditions are fulfilled in effective field theories.

5.1 Axion as a compact scalar
The QCD axion was introduced above as the pseudo-Goldstone boson of a spon-
taneously broken global U(1) symmetry. In order to solve the strong CP problem,
this symmetry needs to be broken by a chiral anomaly, which generates a coupling
to gluons and is the reason for it being a pseudo-Goldstone boson.

The concept of periodicity becomes most apparent in the simple case where the
axion is just the angular degree of freedom of a complex scalar ϕ with a symmetry
breaking potential.25 When the scalar obtains a VEV, ⟨ϕ⟩ = v, one can write its
two real degrees of freedom as

ϕ(x) = 1√
2

(v + ρ(x))ei
a(x)
v . (5.1)

By choosing v as the normalization scale in the exponential and 1/
√

2 as a prefac-
tor, both the axion field a and the radial degree of freedom ρ automatically obtain

25More complicated scenarios like the DFSZ model, where the axion is a linear combination of
angular degrees of freedom of multiple scalars, are considered in the next section.
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a canonically normalized kinetic term without kinetic mixing. Furthermore, it be-
comes clear that a shift of the axion field by a multiple of 2πv, i.e.

a → a+ n 2πv with n ∈ Z , (5.2)

must be a symmetry of the theory, because such a shift leaves the underlying fun-
damental degree of freedom ϕ invariant [289, 291]. A breaking of this symmetry
would render the theory inconsistent and it thus has to be exact. It is in fact a
discrete gauge symmetry because such a shift relates two redundant descriptions of
the system [291].

The most immediate consequence of this discrete symmetry, which is referred to
as the axion’s periodicity, is that the axion potential as well as all axion interactions
must be invariant under these discrete shifts. If the axion were a true Goldstone
boson, it would be massless and would only receive derivative interactions automat-
ically fulfilling these conditions. In fact, the only axion interaction which breaks the
continuous shift symmetry is the anomalous coupling to gluons,

g2
s

32π2N
a

v
Ga

µν
˜︁Gaµν . (5.3)

N is the anomaly coefficient of the SU(3) chiral anomaly, which was defined in
equation (3.3) and is always an integer by construction. Exactly as it was previously
discussed in section 2.3 in the context of the axion solution, this interaction breaks
the continuous shift symmetry and provides a mass for the axion. The generated
potential is however also periodic for topological reasons. It is common to define the
axion decay constant fa such that the axion potential is periodic with period 2πfa.
This leads to

fa = v

N
= v

NDW
. (5.4)

NDW is the domain wall number, which is defined by the relation

NDW = v

fa

. (5.5)

In the conventions used in this thesis, it turns out to be identical to the anomaly
coefficient N .26 In any case, NDW is always an integer, which ensures that the larger
period 2πv is a multiple of the smaller 2πfa and therefore the axion potential always
preserves the periodicity.

In summary, one can differentiate between three symmetries of the axion field,
which are realised with different levels of accuracy. First, as a pseudo-Goldstone
boson the axion has an approximate continuous shift symmetry, which allows to
express all couplings to fermions as derivative interactions. This symmetry is not
exact but broken anomalously by instanton effects. The resulting potential is pe-
riodic with period 2πfa, which defines a discrete ZNDW symmetry. Even though
breaking of this symmetry is not discussed in this thesis, it is in principle possible
26Several authors, like e.g. refs. [108, 124], use a different definition for N , which leads to an integer

factor between N and NDW.
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(or even generic in general relativity) that this symmetry is broken at a higher scale.
Such a breaking can be a solution to the domain wall problem of some axion models
because it would allow domain walls to decay [292]. On an even more fundamental
level, the axion field is periodic by construction with period 2πv = 2πNDWfa. This
Z symmetry is the consequence of the axion being a compact scalar by construction
and it is thus gauged and exact.

5.2 Periodicity in common models
The connection between the axion’s periodicity in an effective theory at low energies
and the UV completion is often non-trivial. In this section, the benchmark KSVZ-
and DFSZ-type models are investigated. For a more general discussion on how the
periodicity of a light axion field emerges in the presence of mixing see ref. [289].

KSVZ-type
In KSVZ-type or hadronic models (see section 3.1) there is just one scalar field
charged under the U(1)PQ symmetry. The axion is the angular degree of free-
dom of this scalar. This means that the periodicity simply follows from the po-
lar parametrization as given in equation (5.1). The coupling to G ˜︁G is generated
by first performing a chiral field redefinition and then integrating out one or more
heavy quark fields. In the limit of large fermion masses, its size can be easily de-
rived by calculating the colour anomaly coefficient N [114]. The gauged periodicity
is therefore given by a → a + 2πv. In the case of NDW > 1, the shift by 2πfa is a
global symmetry that can in principle be broken without spoiling the theory.

DFSZ-type
The case of DFSZ-type models is substantially more complicated because it includes
several pseudoscalar modes and mass mixing terms. Considering the same DFSZ
model as in section 3.2 and using the same notation, it is easy to identify the three
exact shift symmetries of the three pseudoscalars,

au → au + 2πvu , ad → ad + 2πvd , aΦ → aΦ + 2πvΦ . (5.6)

After performing the first orthogonal rotation in the plane spanned by au and ad,
one can see that aw is shifted by 2πvw under a shift of either of the two fields.

au → au + 2πvu ⇒ aw → aw + 2πvu cos β = aw + 2πvw (5.7)
ad → ad + 2πvd ⇒ aw → aw + 2πvd sin β = aw + 2πvw (5.8)

This demonstrates that the new field aw inherits one gauged shift symmetry from
the symmetries of its components. In unitary gauge, the mode aZ is fixed to zero,
which results in the relation au = aw cos β. Hence, there are only two shift sym-
metries left after gauge fixing – one in aw and one in aΦ. Because the model also
contains mass mixing between these two remaining pseudoscalars, another rotation
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is required. Note that the potential after spontaneous symmetry breaking, as given
in equation (3.12), is symmetric under both aw → aw + 2πvw and aΦ → aΦ + 2πvΦ.
It is therefore apparent that the model containing aw and aΦ (or am and a after
the rotation to the mass eigenbasis) is symmetric under these two shifts. Typically,
however, one is interested in the effective theory containing only the axion a, so the
one where the heavy am has been integrated out. To leading order, this amounts to
fixing the value of am to the classical solution at the minimum of the potential,

am

vm

+ δ = 0 ⇒ aΦ = a cos γ + const . (5.9)

The constant only appears for non-vanishing values of δ. After integrating out am,
there is only one pseudoscalar left – the DFSZ axion. Its period can be directly read
off from equation (5.9) by inserting the discrete shift symmetry of aΦ,

aΦ → aΦ + 2πvΦ ⇒ a → a+ 2π vΦ

cos γ . (5.10)

The fundamental period v of the DFSZ axion, which is related through NDW to the
axion decay constant, is therefore given by

v = NDWfa = vΦ

cos γ =
√︂

(nvw)2 + v2
Φ . (5.11)

The domain wall number can be identified with the anomaly coefficient, which is
3n for the DFSZ-type model presented here. This way one arrives at the same
expression for fa as the one given in equation (3.16). This is of course a consequence
of the periodicity. Because the axion is periodic with period 2πv, it can only couple
to G ˜︁G in such a way that the resulting potential preserves this symmetry.

All in all, the effective low-energy theory of a DFSZ axion given in equation (3.18)
inherits a discrete exact shift symmetry from the three shift symmetries in the UV
(equation (5.6)). This is an explicit demonstration of the fact that a compact field
will remain compact after mixing with another massive pseudoscalar or with a scalar
which is eaten by a gauge field. These scenarios as well as mixing with non-compact
scalars have also been discussed in ref. [289].

5.3 Quantised couplings
Given that the axion is a compact scalar, one can start to investigate the periodicity
conditions on effective axion couplings. To this end, it is convenient to consider
a toy axion model coupled to just one fermionic field ψ and a gauge field A with
field strength tensor F .27 It is apparent that the axion can couple via derivative
interactions just like any shift symmetric Goldstone boson would. In addition, expo-
nential interactions with a discrete shift symmetry are allowed as well as the typical
axion-gauge boson interactions. The general Lagrangian for such a model is given
27For simplicity, all of the calculations in the following sections were performed for a U(1) gauge

group. The case of non-abelian groups can however be done completely analogously.
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by [30]

La =1
2∂

µa∂µa− 1
4F

a
µνF

aµν + (q̄Li /DqL + q̄Ri /DqR)

+ c1
∂µa

fa

q̄γµγ5q − (q̄L mqRe
ic2

a
fa + h.c.)

+ c3
g2

32π2
a

fa

F a
µν
˜︁F aµν .

(5.12)

As before, the period of the axion is assumed to be 2πv = 2πNDWfa. One can
start by identifying the conditions imposed by periodicity onto the three coupling
constants individually. c1 is clearly unconstrained since the derivative coupling is
shift symmetric. The exponential coupling, on the other hand, is symmetric under
a shift by 2πfa/c2 = 2πv/(NDWc2). Hence, c2 must be a multiple of N−1

DW. This
is the simplest example of a quantisation condition for an axion coupling coming
from the periodicity of the underlying theory. The case of the c3 coupling is slightly
more complex. Since F ˜︁F is a total derivative (see equation (2.10)) one may think
that after integration by parts, the interaction is in fact a derivative coupling and
therefore unconstrained by periodicity. However, as it was shown in section 2.1, the
boundary term can give non-trivial contributions to the action. An example is the
usual QCD axion potential generated by instanton effects in the case of an SU(3)
gauge theory. Recall that the integral∫︂

d4x
g2

32π2F
a
µν
˜︁F aµν ∈ Z (5.13)

is a topological winding number and therefore any potential generated by non-
perturbative effects must be periodic under shifts by 2πfa/c3. Naively, this results
in the same quantisation condition for c3 as for c2,

NDWc2 ∈ Z and NDWc3 ∈ Z . (5.14)

Note that this argument strictly only applies for couplings to non-abelian gauge fields
because no field configuration with finite topological charge exists in abelian theories.
However, one can see from the anomaly coefficients (equations (3.1) to (3.4)) that the
quantisation of gauge charges in abelian gauge symmetries also leads to quantised
axion-couplings. The quantisation of abelian charges in the SM is an observational
fact, which could be explained by the existence of magnetic monopoles [293, 294]
but they have no been observed so far (see e.g. ref. [295] for a recent negative search
result).

The conditions in equation (5.14) have to be fulfilled exactly, when it is assumed
that none of the fermions are transforming under the discrete axion shift. While
this may seem like an obvious assumption, it is actually very common to perform
a non-linear field redefinition of the quark fields which depends on the axion field.
This shifts the weights between the different coupling constants. Taking the chiral
anomaly into account, the couplings transform under chiral rotations of the fermions
as

qL → eiα a
fa qL and qR → e−iα a

fa qR (5.15)
⇒ c1 → c1 − α ; c2 → c2 − 2α ; c3 → c3 + 2α . (5.16)
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Two theories which are related by such a transformation are equivalent. Such a shift
does however affect the conditions in equation (5.14). They may not be fulfilled after
the chiral rotation because the angle α ∈ R can be chosen arbitrarily. However, the
sum of c2 and c3 is invariant under the field redefinition. Hence, the actual periodicity
condition for a general axion theory only implies that

NDW(c2 + c3) ∈ Z , (5.17)

which is a weaker condition than the naive one in equation (5.14). Whenever this is
fulfilled, a chiral transformation exists after which each term is individually invari-
ant under the axion shift by 2πv. Because there is no other transformation which
allows to shift c2 couplings into c3, equation (5.17) is the most general quantisation
condition that the toy model in equation (5.12) has to obey.

Because of the freedom to perform chiral rotations, there is a redundancy in the
operators given in the Lagrangian (5.12). This allows to set one of the three cou-
pling constants to zero. From the perspective of periodicity, one may argue that the
most convenient choice is to set c2 to zero. This has multiple advantages. First, the
derivative coupling is periodic independently of the value of the coupling constant
leaving c3 as the only quantised coupling. Second, the exponential interaction con-
sists of an infinite series of operators, which cannot be included in its entirety in a
perturbative calculation. That is why it is commonly expanded to linear order as
eic2

a
fa ≈ 1 + ic2

a
fa

. However, this approximation breaks the periodicity explicitly. It
should therefore not come as a surprise that EFTs working with such an operator
basis as, e.g. ref. [296], are not periodic in a.

There are two other common approximations in EFTs which break the periodicity
explicitly. One is the expansion of the axion potential V (a), which is generated
by non-perturbative instanton effects from the axion-gluon coupling. As it was
discussed above, V (a) is periodic (V (a) = V (a + 2πfa)), but this property is lost
when it is expanded around its minimum to V (a) ≈ 1

2m
2
aa

2. The other periodicity
violating approximation is the naive application of the equations of motion at the
Lagrangian level after integration by parts. This corresponds to the replacement

∂µa

fa

q̄γµγ5q → −2i a
fa

q̄mγ5q , (5.18)

which is also equivalent to first doing the chiral transformation but ignoring the
anomalous contribution to c3, followed by an expansion of the exponential. Note
that this replacement can also lead to a violation of the quantisation condition.

The axion EFT described in section 3.4 or the one constructed in ref. [142] are ex-
amples of how breaking the periodicity by small field expansions or naive application
of the equations of motion can be avoided.

5.4 Loop corrections to quantised couplings
So far it was shown that the axion’s periodicity is an exact symmetry and that it re-
sults in quantisation conditions of certain combinations of axion couplings. However,
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it is a well-known fact that various axion couplings can be generated or receive cor-
rections at one-loop order when heavier fields or high-energy modes are integrated
out [142, 296, 297]. This naively seems to contradict the quantisation conditions
because loop corrections are generically continuous functions of the renormalization
scale (in the case of UV-divergent terms) or of the masses of particles running in
the loop (in the case of finite corrections). This section will address both of these
potentially problematic scenarios – the running of axion couplings and finite correc-
tions. It will be shown that the periodicity is conserved when the operator basis is
chosen carefully. To simplify the discussion, it is instructive to again consider the
toy model given in equation (5.12). Furthermore, one can perform the chiral rota-
tion to a field basis in which c2 = 0.28 This way, the quantisation condition takes
the simple form c3 ∈ Z and one can investigate loop corrections to gauge boson and
fermion couplings separately.

5.4.1 Couplings to gauge bosons
In axion-gauge boson interactions, like the one given in equation (5.12), the axion
takes the role of a dynamical theta-angle. It is a well-known fact that the operator
g2F ˜︁F in any gauge theory cannot be multiplicatively renormalized [298, 299]. The
reason is that the winding number, which is given by the integral over this term, is
a topological quantity. This is also why θ is a periodic variable in the first place.
One can therefore argue that because θ is periodic, the anomalous dimension of the
operator g2F ˜︁F has to vanish and that it need not be subjected to any running under
the renormalization group. The same statement holds true when the constant θ is
replaced by a dynamical axion field. It is instructive to look at this in two typical
choices of operator bases [142, 296],

LaF = c3
g2

32π2
a

fa

F a
µν
˜︁F aµν = gaF F aF a

µν
˜︁F aµν (5.19)

= c3 OaF = gaF F ÕaF . (5.20)

Studies of axion effective field theories have shown that the Wilson coefficient gaF F

does indeed receive divergent loop corrections [142, 296]. This is in no conflict
with the quantisation conditions because it is only c3 = gaF F 32π2fa/g

2 which is
required to be integer-valued at all scales. Therefore, the quantisation condition
ensures that gaF F must exhibit the same renormalization group running as g2. This
way c3 ∝ gaF F/g

2 remains constant. This matching of the two beta functions was
checked explicitly at one-loop level for SU(3), SU(2) and U(1) gauge theories in
ref. [142, 296]. One can formulate this result as a non-renormalization theorem for
c3,

βc3 = d
d log(µ)c3 = 0 , (5.21)

where µ denotes the renormalization scale. This identity is exact to all orders in
perturbation theory because it is protected by the axion’s periodicity.
28This is also possible when the full particle content of the SM is taken into account, a fact that

is discussed in section 3.4.
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Figure 5.1. Diagrams contributing to the finite corrections of axion couplings to gauge
bosons at one-loop level. All Feynman diagrams throughout this work are drawn using
the TikZ-Feynman [300] package.

It is important to stress that the argument leading to the non-renormalization
theorem did not take other axion interactions into account. Instead, it is directly
related to the non-renormalization of the theta-angle. When the axion-fermion cou-
plings in equation (5.12) are considered, there are additional one-loop contributions
to the gauge boson couplings. The corresponding triangle diagrams are shown in fig-
ure 5.1. These are the same diagrams that enter the calculation of the chiral anomaly
given in equations (3.1) and (3.2). Several works have calculated these contributions
and found them to be finite corrections to the c3 coupling [142, 296, 297] and they
are thus in no conflict with the non-renormalization theorem. Despite this, finite
corrections can in principle also violate the quantisation condition when the result
– as it is usually done – is interpreted as an effective operator of the type

ceff
3

g2

32π2
a

fa

Fµν
˜︁F µν . (5.22)

This exhibits the core question of this section. How can such a finite correction
be in line with the quantisation condition? The most immediate way would be of
course if ceff

3 was in some way protected by the periodicity, so that it would always
turn out to be an integer. This is however not the case. For several fermions with
derivative axion coupling c1,f , gauge charge Qf and (colour) multiplicity N f

c , the
on-shell result is given by [141]

ceff
3 = c3 + 4

∑︂
f

N f
c Q

2
fc1,fB(τf ) . (5.23)

The sum runs over all fermions in the theory or just the one fermionic field ψ in the
case of the toy model above. The function B depends on the ratio of the fermions
and the axion mass, τf = 4m2

f/m
2
a. It is defined as

B(τ) =
⎧⎨⎩1 − τ arcsin2

(︂
1√
τ

)︂
τ ≥ 1

1 − τ
(︂

π
2 + i

2 ln 1+
√

1−τ
1−√

1−τ

)︂2
τ < 1

. (5.24)

The result given here was calculated in a field basis with c2,f = 0, but it was explicitly
checked that the same result is recovered after a chiral rotation that instead sets
c3,f = 0 in the Lagrangian. As a continuous function of the axion and fermion
masses, this result will generically not be integer-valued. The questions arise how
this result can be reconciled with the axion’s periodicity and which step in the
calculation resulted in this explicit breaking.
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To answer these questions, it is instructive to think about the rationale behind the
calculation of ceff

3 . In fact, it is a typical effective field theory calculation, where heavy
internal fields are integrated out to generate effective interactions between the light
degrees of freedom. This will in general result in an infinite tower of higher-order
operators. However, the result is clearly a simplification which replaces this infinite
series by just one effective interaction term. There are two possible scenarios how
this can happen and which could explain the non-integer couplings. Both include
explicit breaking of the periodicity, either through a small field expansion or by
insertion of the equation of motion.

1. An effective interaction term aF ˜︁F could be the lowest dimensional term gen-
erated by loop diagrams like the triangles in figure 5.1. The full result would
also include terms with an arbitrary power of the axion field a coupled to F ˜︁F .
This can restore the periodicity if the coefficients form a Taylor series of a
periodic function. In this scenario, the leading-order term in equation (5.22)
would be derived from the full result as(︃

cZ3
a

v
+ cR3 sin

(︃
a

v

)︃)︃
NDW

g2

32π2Fµν
˜︁F µν = ceff

3
g2

32π2
a

fa

Fµν
˜︁F µν + O(a3) .

(5.25)

On the left-hand side, the first term is a quantised coupling with cZ3 ∈ Z.
The second coefficient cR3 , on the other hand, can take any real value without
conflict with the periodicity, which is only broken by the small field expansion
going from left to right. This is similar to the breaking that occurs when the
axion potential is approximated to leading order as a mere mass term. The
effective coupling is given by the sum of the quantised and the linear order of
the periodic function coupled to F ˜︁F , i.e. ceff

3 = cZ3 + cR3 .

2. Alternatively, it could be the case that the non-integer result for ceff
3 already

incorporates an infinite series of higher-order corrections. If each of these
higher-order terms is in fact a derivative interaction and thereby conserves the
periodicity individually, there would be no contradiction. This scenario can
be illustrated as

g2

32π2

∞∑︂
n=0

dn

[︄
(∂µ∂

µ)n a

fa

]︄
Fµν

˜︁F µν EoM= g2

32π2

∞∑︂
n=0

dn(−m2
a)n

⏞ ⏟⏟ ⏞
ceff

3

a

fa

Fµν
˜︁F µν ,

(5.26)
where the coefficients dn have mass dimension −2n. In each term the equation
of motion, ∂µ∂

µa = −m2
aa, was applied n times. The coefficients will depend

on the internal fermion mass and can take arbitrary values except for d0,
which is the only dimensionless and non-derivative coupling. It still has to be
integer-valued due to the quantisation condition.

Axion decay in a constant axion background

In order to test whether the first scenario is realised in the toy model introduced
in equation (5.12), one needs to calculate the amplitude of n axions to two photons
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(n · a → γγ) and check if these form a periodic, analytic function. In classical
perturbation theory, it is however not possible to calculate the process with an arbi-
trary number of final state particles because the possible topologies of contributing
Feynman diagrams increases rapidly with n. One can instead take a different ap-
proach and calculate the amplitude with just one initial state axion (n = 1) but in
a constant axion background. This corresponds to the n · a → γγ result in the limit
of massless axions and with all axion momenta but one set to zero. This seems like
a peculiar limit to take at first sight, but note that if there is an effective interaction
of the type anF ˜︁F , it would contribute to the result also in this limit and by a term
that would be proportional to the background axion field to the power of n − 1.
Furthermore, the axion decay rate in an axion background is an observable, which
may depend explicitly on the axion field. It therefore has to preserve the periodicity
and the following calculation serves as a good check of this principle.

In order to include an axion background, one should work in a field basis in which
the axion is coupled in a non-derivative manner, i.e. c1 = 0 and c2 ∈ Z,

L ⊃ −ψ̄meic2
a
fa

γ5
ψ . (5.27)

In a homogeneous axion background, this can be interpreted as an axion-dependent
phase of the mass. The resulting fermion propagator is given by

i

/p−meic2
a
fa

γ5 . (5.28)

Assuming the standard anti-commutation relations, this can be written as

i

/p−meic2
a
fa

γ5 =
i(/p+me−ic2

a
fa

γ5)
p2 −m2 . (5.29)

Similarly, the axion-fermion vertex also depends on the background axion field and
is modified to be

c2m

fa

γ5 → c2m

fa

γ5eic2
a
fa

γ5
. (5.30)

In order to avoid matrix exponentials in both expressions for the propagator and
the vertex, it is helpful to rewrite this as

eic2
a
fa

γ5 = cos
(︄
c2
a

fa

)︄
+ iγ5 sin

(︄
c2
a

fa

)︄
. (5.31)

It is now straightforward to plug these new Feynman rules into the calculation of the
diagram in figure 5.1. The resulting loop integral can be analytically evaluated using
the Mathematica program Package-X [301]. The result turns out to be independent
of the homogenous axion background and it is exactly the same as the one given in
equations (5.23) and (5.24).

The calculation proves that the first scenario, where the periodicity is recovered
by higher-order non-derivative interactions, is not realised for the loops in figure 5.1.
This is not surprising, because the axion background trivially dropped out in the
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derivative coupling basis and the theory after a chiral rotation is expected to give
the same result. Nevertheless, this scenario for periodicity conservation is extremely
relevant. For instance, it was shown in appendix A of ref. [288] that it is exactly
this kind of effect which reconciles the non-integer coupling generated by axion-pion
mixing (see equation (3.31)) with the periodicity condition. The case of axion-pion
mixing differs from the mixing with pseudoscalars discussed in the context of the
DFSZ model, because in this case the background condition for the heavy field
(equation (5.9) in the DFSZ case) is non-linear in the axion field. This results in
a series of operators, when the heavy mixing partner like the neutral pion already
features a coupling to F ˜︁F . Interestingly, this also means that the axion decay rate
is only independent of a homogenous axion background in the simple toy model
above. In typical axion extensions of the SM, where axion-meson mixing is taken
into account, the next higher-order operator a3F ˜︁F would also be present and cause
a background dependence. Since this effect is suppressed by at least (a/fa)2 relative
to the leading-order decay rate, it may only become relevant when the background
field is close to its maximum value, a ∼ fa.

Apart from mixing, couplings of periodic functions of a to F ˜︁F can also occur as
a result of loop corrections. An example for such a situation, which will be further
examined in section 5.5, are the effective axion-gluon couplings in refs. [302–304].

Off-shell calculation

One can check whether the effective axion-gauge boson coupling is related to higher-
order derivative interactions by avoiding to apply on-shell conditions for the axion.
The axion momentum is denoted q as in figure 5.1. If only momentum conservation
and on-shell conditions of the photons (p2 = k2 = 0) are applied, the result for the
effective axion-photon coupling reads

ceff
3 = c3 + 4

∑︂
f

N f
c Q

2
fc1,fB

(︄
4m2

f

q2

)︄
, (5.32)

with B as defined in equation (5.24). This loop function can now be written as a
series in q2 and it can therefore be identified with an infinite tower of higher-order
operators as in equation (5.26). The first term of this expansion vanishes because

lim
τ→∞B(τ) = 0 . (5.33)

Therefore, the zeroth order result in axion momenta always obeys the quantisation
condition independent of the fermion content of the theory. The fact that the non-
integer value of ceff

3 is due to effective derivative interactions was recently pointed
out in ref. [290].

In summary, two scenarios were outlined which can explain effective non-integer
couplings to gauge bosons. Either a truncation of an operator series or the applica-
tion of the equation of motion is responsible for a result that seems to violate the
quantisation and thereby also the axion’s periodicity. The latter case can be iden-
tified either by making the momentum dependence explicit or by investigating the
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dependence of the loop result on ma. In contrast, higher-order interactions which
are not proportional to axion momenta will always contribute to observables in a
constant axion background. This can also help to distinguish the two cases.

In the toy model of equation (5.12), the effective non-quantised interaction is
caused by a derivative coupling evaluated on the equations of motion.29 The same
is true in the Standard Model, where only the diagrams depicted in figure 5.1 con-
tribute at one-loop order [142] to the axion-photon coupling. The first diagrams
involving other axion-gauge boson interactions appear at two-loop level. These can
in principle result in a periodic function of a coupled to F ˜︁F just like the axion’s
mixings with pseudoscalar mesons. In any case, it is always possible to retrieve
an explicitly periodic low-energy Lagrangian by choosing an appropriate operator
basis.

5.4.2 Couplings to fermions
Axion-fermion couplings also receive loop contributions in axion EFTs. Because
the exponential coupling c2 is subject to the combined quantisation condition in
equation (5.17), it is again non-trivial to understand how the periodicity is conserved
when non-discrete radiative corrections are taken into account. To slightly simplify
the discussion, it is convenient to start in a field basis where c2 = 0, as it was done
in the previous section. By choosing this basis, one only needs to confirm that all
effective axion-fermion interactions can either be written as contributions to c1 or to
other higher-order shift invariant interactions so that c2 is not driven away from zero
and the quantisation is left intact. All one-loop processes which couple the axion
to two gauge bosons in the toy model of equation (5.12) are depicted in figure 5.2.
In typical axion models, there would be a few additional diagrams like the ones
labelled 2–4 but with internal scalars instead of gauge bosons or axion-Z mixing
contributions [142]. These do not interfere with any of the following arguments.

Since it was assumed that the axion-fermion interactions are of derivative-type
at tree level, it is easy to acknowledge that the results of diagrams 2–4 will also be
proportional to the axion momentum. Consequently, they only induce contributions
to the derivative fermion interactions as computed in ref. [142]. However, when on-
shell conditions of the axion are applied, one can again easily transform these to
non-quantised pseudoscalar Yukawa-type interactions [296]. Such a result, when
used carefully, can still lead to the right phenomenological result. Nevertheless,
the correct low-energy EFT must include derivative interactions if the periodicity is
supposed to be preserved.

The only diagram in figure 5.2 which is not trivially proportional to the axion
momentum is diagram 1. It is also the only one which can induce axion-fermion
couplings only from tree-level gauge boson interactions. It is therefore the leading-
order axion-fermion contribution in axion models without tree-level interactions like
the KSVZ model. Its divergent part was first computed by Srednicki [297], but he
also interpreted it as an effective Yukawa-type interaction. In order to show that it
29Note that this is also the explanation for the process dependency of the loop-induced axion-

photon coupling described in ref. [305]. The effective axion-photon vertex is not evaluated on
the equations of motion when it is used in the Primakoff effect.
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Figure 5.2. Diagrams contributing to the coupling of axions to fermions at one-loop
level.

does preserve the periodicity, the calculation can be redone, including both divergent
and finite parts and not applying on-shell conditions for the axion. The result can
then be written in the compact form,

iM1 = i v̄(p) /qγ5 u(k) × F1 + i v̄(p) (/k − /p)/qγ5 u(k) × mf

4m2
f − q2F2 , (5.34)

where u and v are the usual positive and negative frequency solutions of the Dirac
equation and F1 and F2 are dimensionless form factors, which depend on the axion
momentum q, the fermion mass mf and the renormalization scale. UV-divergent
terms only appear in F1. These are responsible for the well-known running of the
axion-fermion interactions [142, 296, 297]. F2 only contains finite corrections, which
also preserve the periodicity because the second term can be interpreted as an ef-
fective interaction of the type

(∂µa) ψ̄(/∂ − ⃗/∂)γµγ5ψ . (5.35)

The arrow indicates a derivative acting on the left-hand side. Clearly, this higher-
dimensional operator is symmetric even under continuous shifts of the axion field.

In conclusion, the axion-fermion interactions can be split into those which are
subject to quantisation conditions and those which are parametrically free. The
exact shift symmetry of the axion field, which is responsible for these conditions,
ensures that quantised couplings are not generated radiatively. It is a nice feature
of the operator basis chosen in the axion EFT study [142] that this conservation
is explicit at all scales. Because some couplings are unrestricted, there can be a
renormalization group running of these free parameters. However, the running in
theory space is restricted to hypersurfaces which are defined by the quantisation
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Figure 5.3. Momentum assignments for the calculation of the first diagram in figure 5.2.

conditions (like equation (5.17) in the toy model considered in this section). This
way, the periodicity never gets broken explicitly by radiative corrections to axion-
fermion couplings.

5.5 Consequences of periodicity
It was shown above that the axion is a compact scalar with a discrete and exact
shift symmetry. This symmetry is present at all scales and it imposes periodicity
conditions on axion couplings which are not individually shift invariant. This general
axion property can also serve as a control mechanism in axion phenomenology.
When a new axion effect is investigated – be it in an experiment, cosmology or
astrophysics – one can always check whether the result would be altered by a shift
in the axion field by 2πv. Often, this will be the case. Then it is important to realise
which simplifications were applied to break the periodicity and if the corresponding
assumptions are justified in the setup in question. These simplifications will typically
be low field expansions or insertion of axion on-shell conditions, i.e. equations of
motion. If the restoration of the periodicity by including higher-order terms or
replacing Yukawa-type by derivative couplings leads to the same conclusions as
the initial discussion, one can be sure that there is no conflict with the axion’s
periodicity. In the following, two examples will be investigated in this manner. In
one case, a non-quantised coupling will turn out to be unproblematic for (almost) all
practical purposes, while in the other, the entire model breaks down when higher-
order corrections, which are required by periodicity, are included.

Example 1: Axion-pion mixing

An omnipresent effect in axion physics is the model independent contribution to the
axion-photon coupling. It appears because axions mix with the lightest pseudoscalar
mesons in the confined phase of QCD. This was already mentioned in section 3.4
and it will later become crucial in the context of solar axion detection (section 7.4).
By looking at the contribution to c3 or gaγγ given in equation (3.31), it becomes
immediately clear that it does not fulfil the quantisation condition, which would
be required by periodicity. Exactly as described above, it is helpful to investigate
where this apparent contradiction comes from and whether there is a fundamental
problem with the calculation. This was also done in appendix A of ref. [288].

To illustrate the effect which leads to the non-quantised coupling, it is sufficient
to include mixings with one pseudoscalar meson like the π0. Its interactions with
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photons and the combined potential can be written as [288]

Lπa = g2

32π2
π0

fπ

Fµν
˜︁F µν + Λ4 cos

(︄
π0

fπ

+ a

fa

)︄
+ Λ′4 cos

(︄
π0

fπ

)︄
, (5.36)

where Λ and Λ′ are energy scales whose value is of minor importance in this context.
This potential is clearly periodic in the axion field. Since one is only interested
in the effective theory for axions, the heavy π0 field can be integrated out. The
situation therefore seems similar to the mixings in the DFSZ model of sections 3.2
and 5.2. In this case, however, the π0 is already coupled to F ˜︁F and, in addition,
the minimisation of the potential leads to a non-linear relation between π0 and a,

∂V

∂π0 = 0 (5.37)

⇒ π0

fπ

= − arctan(
Λ4 sin

(︂
a
fa

)︂
Λ4 cos

(︂
a
fa

)︂
+ Λ′4

) ≡ h

(︄
a

fa

)︄
. (5.38)

The function h inherits the periodicity of the potential. If it is inserted back into
the Lagrangian, the effective axion coupling at all orders in f−1

a reads

Laγγ eff = g2

32π2h

(︄
a

fa

)︄
Fµν

˜︁F µν (5.39)

=
∞∑︂

n=1
dn

(︄
a

fa

)︄n

Fµν
˜︁F µν . (5.40)

This type of periodicity conservation corresponds to the scenario which was illus-
trated in equation (5.25). Typically, only the first-order term d1 is included and
therefore the apparent contradiction stems from the small field expansion of h or
equivalently from the truncation of the infinite tower of higher order operators.

The question remains, whether the higher-order operators are physically relevant.
In most cases, they will clearly be negligible because typical values of the axion de-
cay constant are at least ≳106 GeV and thus the next-to-leading order operator will
be highly suppressed. However, the effective 3a-to-2γ vertex also induces a depen-
dence on a possible axion background field. This is similar to the argument made in
section 5.4.1. If this background is close to maximal, the axion to photon coupling
can significantly deviate from the usual model independent result (equation (3.31)).
Such large field values are typical in the early universe, but they occur at temper-
atures above the QCD phase transition where the quarks do not condensate. One
can however envision scenarios in which a strong coupling to matter (for instance
neutrons) induces a potential which leads to large field values inside of dense as-
tronomical objects [306]. In such an environment, the higher-order interactions can
potentially play a role.

Example 2: Majoron as a QCD axion

In a series of papers [302–304], it was proposed that the QCD axion could be identi-
fied with the majoron, which is the pseudoscalar Goldstone boson of a spontaneously
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broken symmetry generating the neutrino masses. It is helpful to examine this pro-
posal taking the exact axion periodicity into account.

The proposition is intriguingly simple. By construction, the majoron only interacts
with neutrinos at tree level. However, it can also couple to gluons via neutrinos, W
bosons and quarks. The corresponding three-loop diagram is depicted in figure 5.4.
It generates an effective interaction of the type that is required for the PQ solution
of the strong CP problem. Thus, the pseudoscalar will acquire a potential which
would – as the authors argue – be enough to dynamically set the theta-angle to
zero. Interestingly, the result crucially relies on the spontaneous breaking of fermion
number conservation and the parity violation in weak interactions [304]. The model
predicts an axion symmetry breaking scale (defined as the inverse prefactor of the
axion-gluon interaction term), which depends on the weak coupling parameter αw,
the neutrino masses mν and another mass scale M, which is of order MW or the
largest heavy neutrino mass [304],

f−1
a,eff ∝ α2

w

M2

∑︂
ν

mν . (5.41)

For reasonable model parameters that are not excluded by observations, fa,eff is very
large (∼ 1018 GeV [304]). This is as expected, since fa is the inverse of a coupling
generated only at three-loop order.

Even though this proposed axion model differs from conventional ones in many
fundamental ways, the axion (or majoron) is still a compact field with an exact
discrete shift symmetry. The reason is exactly the same as given in section 5.1. It is
the phase of a fundamental complex scalar and symmetric under discrete shifts by
2πv. As in all the examples which were previously mentioned, the periodicity will be
conserved even in the low-energy effective interactions. How exactly this happens in
this case is difficult to establish since the three-loop calculations are very involved.
Nevertheless, one can easily exclude some possibilities. First, the three-loop result
depends on masses and running coupling constants and it is therefore clearly non-
quantised. Second, the result does not depend on the axion mass. If it did, this
would anyway invert the logic because it is the radiatively generated gluon coupling,
which is finally supposed to induce a non-vanishing axion potential. Anyhow, the
possibility that the effective aG ˜︁G interaction is actually a derivative interaction
evaluated on the equations of motion can be excluded. This leaves scenario two
from section 5.4.1 as the only viable option: the three-loop result must be a leading
term of a periodic function of a/v, where v denotes again the fundamental period
of the axion field. Note that this is in no contradiction to any of the calculations
in refs. [302–304] but merely relates to the fact that there must be terms of higher
order in v−1 which lead to the preservation of periodicity.

But what physical consequences do the higher-order terms have? As it turns
out they are fatal for this axion model. Similar to what happened with axion-pion
mixing, the leading-order term is replaced by some periodic function h,

v

fa,eff

a

v
Ga

µν
˜︁Gaµν → v

fa,eff
h
(︃
a

v

)︃
Ga

µν
˜︁Gaµν . (5.42)

Because the explicit calculation of the n·a → g+g amplitude at three-loop is beyond
the scope of this work, the exact form of h is unknown. Nevertheless, one would
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Figure 5.4. Three-loop diagram generating the effective axion-gluon vertex aG ˜︁G in the
axion model proposed in refs. [302–304]. The coupling is generated via the light SM ν
or heavy sterile neutrinos N , charged leptons ℓ±, W bosons and both up- and down-type
quarks u/d.

generically expect values of order unity. Since the goal was to device a QCD axion
model, this term has to cancel the θ̄ coming from the QCD vacuum structure and
complex phases in the quark mass matrix. This leads to the following condition,(︄

θ̄ − v

fa,eff
h
(︃
a

v

)︃)︄
Ga

µν
˜︁Gaµν != 0 (5.43)

⇒ h
(︃
a

v

)︃
= θ̄

fa,eff

v
. (5.44)

fa,eff was found to be larger than v by ∼14 orders of magnitude [304]. Because of
this and under the assumption h ≲ 1 for all values of the axion field, the equation
only has a solution for a if θ̄ is smaller than ∼10−14. Hence, the strong CP problem
is not even alleviated in this model. An alternative way to see this, involves the
finite field range of the periodic field a. Even if one only took the leading-order
term in the effective interaction and interpolated it to very large field values, one
would still require a to be of order fa,eff to cancel theta-angles of order unity. This
already contradicts the periodicity when one takes into account that non-compact
field ranges should not emerge in the IR [289].30

Conclusions

This chapter serves to highlight an important feature of the axion field – its peri-
odicity. It emerges from the UV construction of axion models and is a consequence
of it being a Goldstone boson of a spontaneously broken global U(1) symmetry.
Neither, mixing with other fields nor loop corrections can interfere with this exact
symmetry. The periodicity imposes quantisation conditions on certain axion cou-
plings. The symmetry breaking scale fa, however, is still arbitrary which means
that the couplings measured in experiments like gaγγ can still take any value. Nev-
ertheless, it was shown in two examples how the periodicity can help to investigate
the phenomenology of certain axion models. In particular, the periodicity becomes
an important feature whenever large field values are involved. Furthermore, fa is
directly related to the axion mass and hence the quantisation can be helpful in the
30A proposal to identify the relaxion as an axion [307] was criticised following similar arguments

in ref. [291]. The limited field range was also used in the appendix of ref. [308] to explain why
a specific ALP construction does not solve the strong CP problem.
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interpretation of experimental data when ratios of quantised couplings and the mass
are measured with sufficient accuracy. This is for instance exploited in section 7.4.
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6 Leading logarithms in QCD axion effective
field theory

This chapter is based on results and arguments which were published under the
same title in ref. [2] before submission of this thesis. Material and figures from this
article are used in the following without further reference.

EFTs are a regularly applied approach in particle physics phenomenology. The
reason is that they allow to test new physics models independent of the details of the
underlying model. An EFT can be constructed from a small number of ingredients.
First, the field content, i.e. the low-energy fields whose dynamics are described
by the EFT, is fixed. In addition, symmetries are imposed, which constrain the
set of available operators. The ones of higher mass dimension are suppressed by
a typically unknown large energy scale, which may also set a cutoff to the validity
of the EFT. Well-known and widely studied examples of such EFTs include Weak
Effective Theory [309–311], Standard Model Effective Field Theory [312, 313] and
Higgs Effective Field Theory [314–316].

EFTs can also be immensely helpful to perform model-independent phenomenolog-
ical studies of QCD axions or axion-like particles (see section 3.4). For constructing
a minimal axion EFT, one simply imposes a new pseudoscalar particle with a con-
tinuous shift symmetry (up to non-perturbative instanton effects). This allows the
axion to interact with the SM via dimension-five operator, which either couple it to
two gauge bosons or fermions. Such an EFT is very well motivated for the axion
because it is thought of as a pseudo-Goldstone boson arising from the spontaneous
symmetry breaking of a global and anomalous U(1)PQ at a very high scale. This
construction both explains the assumed (approximate) shift symmetry, the anoma-
lous gauge interactions and provides a suppression scale for all effective interactions
– the axion decay constant fa. The axion mass is also suppressed by this large scale
(see equation (2.28)) and it hence remains very light and can be treated as the only
additional low-energy field in the EFT.

Despite this intriguing picture of QCD axion EFTs, it needs to be acknowledged
that the adequacy of the EFT language is based on the assumption that the axion is
the only manifestation of the Peccei–Quinn mechanism below the scale fa. In tree-
level observables, it is usually already sufficient for all other particles to be much
heavier than any of the momenta involved. Loop-level effects, on the other hand, are
in principle sensitive to the contributions of heavy off-shell particles running in the
loop. These terms can turn out to be the most relevant ones when loop diagrams
in the EFT yield divergent contributions. In this case, a cutoff scale has to be
included by hand and, as this chapter will demonstrate, it may be more appropriate
to identify this scale with the lightest new degrees of freedom in the model (other
than the axion) rather than fa. When constructing an axion EFT from a UV-
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complete model, it is therefore essential to keep track of the range of validity of the
EFT prescription even below fa.

As an example of such loop-divergent processes, flavour-changing decays involving
the axion will be the focus in the following. First, the leading log prescription will
be introduced, in which the logarithmically divergent term is by far the largest
contribution and it is assumed to be cutoff at fa. This assumption is commonly
employed in EFT studies and it can generate large logarithmic enhancements of
the amplitudes, thus predicting particularly good sensitivities of future experiments
using these observables. However, the following sections will show that typical
results in full QCD axion models differ qualitatively and quantitatively from the
simplified leading log picture because they do not satisfy the implicit assumptions
under which the EFT was constructed. This result is in agreement with earlier work
in a similar direction [317] where the leading-order renormalization group running
was used to demonstrate the absence of large logarithms in flavour-changing effects.

The observation of such a discrepancy between the naive EFT calculation and
common axion models leads to the question whether an explicit field theoretic31

UV-complete QCD axion model exists which truly features a large logarithm in
flavour-changing observables. More practically speaking, one would need to generate
tree-level couplings of the axion to SM fermions without introducing new degrees of
freedom below the PQ symmetry breaking scale. In this thesis, a model of this type
is explicitly constructed in two steps. At first, another effective model including
the PQ scalar is presented. This model – while not UV-complete – is valid up to
≳ fa. It is not entirely new as it coincides with the effective Lagrangian in ref. [317]
with specific charge assignments. It also shares some similarity with the flavoured
axion models of refs. [23, 318] even though the leading log contribution only requires
flavour-diagonal axion couplings. For the discussion of leading logarithms, it is
anyhow not sufficient to replace one EFT by another. Instead, the higher-energy
EFT needs to be UV-completed. This can be done by introducing additional heavy
fermionic fields, which serve a similar purpose as the heavy messenger fields in the
Froggatt-Nielsen mechanism [319]. The resulting new QCD axion model can then be
shown to fulfil all assumptions to reproduce the leading log EFT result for flavour-
changing decays. It therefore gives a definitive answer to the question whether
UV-complete QCD axion models exist whose EFT description is valid up to the PQ
symmetry breaking scale.

The new QCD axion model, which will be introduced below, serves multiple pur-
poses. On the one hand, it proves the theoretical point that the naive EFT result
is at least a valid description of some class of QCD axion models. On the other
hand, it is a nice benchmark model for axion searches involving flavour-changing
effects because it includes all of the required couplings and is rather simplistic at
small energy scales. Its phenomenology is interesting and it will be shown that the
two upcoming experiments NA62 and IAXO will have good sensitivity to different
variations of the model. Despite all of this, the model has some downsides as it
requires tuning of the flavour couplings in order to reproduce all SM values with-
out generating large flavour-changing neutral currents (FCNCs). This can be taken
31In ref. [317] string-motivated UV models were considered for which flavour effects are significantly

suppressed.
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as further motivation to investigate which axion EFTs have a UV completion and
whether some can be disfavoured by introducing mild additional assumptions like
the absence of tuning.

6.1 Loop-induced rare meson decays in the EFT
An axion effective field theory for the calculation of meson decay rates can be con-
structed exactly as described in section 3.4. Since the decays take place at energies
far below the electroweak symmetry breaking scale, one is interested in the effec-
tive interactions with the mass eigenstates both in the fermionic as well as in the
bosonic sector. In principle, the EFT involves all possible effective five-dimensional
couplings. For the following discussion however, it is sufficient to consider flavour-
universal couplings to SM quarks and leptons.32 This means that the leading-order
flavour-changing neutral current (FCNC) involving axions only appears at one-loop
level. Many authors have exploited such loop-induced flavour effects to search for
the axion [64, 167, 168, 171, 172, 177, 178, 320, 321].

The assumption of flavour universality at tree level also allows to eliminate any
possible vectorial parts of quark and lepton interactions (cf,V in equation (3.26)).
This is done by applying flavour-universal vectorial phase rotations, separately of
quarks and leptons. Mass terms and charged current interactions with the W± are
invariant under such transformations and thus no additional Yukawa-like couplings
to axions appear. Because of the chirally coupled electroweak fields, there will be an
anomalous contribution to axion-gauge boson couplings. This can be absorbed into
the corresponding coupling constants, which are anyway present in the EFT. The
existence of this contribution to the axion-gauge boson interactions was pointed out
in ref. [178]. The flavour-diagonal axion EFT can thus be assumed to only contain
the following interaction terms,

L ⊃ ∂µa

2fa

cq

∑︂
f=u,d

f̄γµγ5f + ∂µa

2fa

cl

∑︂
f=ℓ,ν

f̄γµγ5f

− a

fa

cW W
αw

8πW
a
µν
˜︂W aµν + ... , (6.1)

where the neutrino fields are implicitly assumed to be purely left-handed. Both up-
and down-type quarks as well as leptons are meant to represent all three generations.
The ellipsis stands for other anomalous coupling terms, which are not written out
because they are irrelevant for the following calculations.

The minimal axion EFT above can in principle be used to calculate arbitrary
flavour-sensitive observables. In order to follow one concrete example and because
of its experimental relevance, this chapter focuses on the decay of charged kaons
into pions and axions, K+ → π+ +a. The E787 and E949 experiments at BNL [322]
have already constrained the corresponding branching ratio, Br(K+ → π+a) < 7.3×
10−11. NA62 expects to improve on this by an order of magnitude by 2025 [323, 324].
32For axion models with non-trivial flavour properties see refs. [23, 318] or ref. [178] for a summary

of the associated phenomenology.
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Figure 6.1. One-loop diagrams which induce the flavour-violating s → d+a transition in
the otherwise flavour-universal EFT. The last diagram, a self-energy contribution on the
external strange quark leg, arises from the renormalization of quark fields. The analogous
one for the down quark line has to be included as well. This equivalence is shown in more
detail in appendix D.

Nevertheless, the qualitative results and conclusions are applicable to any FCNC
related observable.33

On the parton level, the kaon decay is induced by a neutral current of strange
and up quarks coupled to an axion, s → d+ a. This transition can be parametrized
using the effective interaction Hamiltonian

Hs→da = ∂µa d̄γ
µ(hS

ds + hP
dsγ

5)s+ h.c. . (6.2)

Working in the usual approximation, where the QCD contributions to the hadronic
matrix element can be factored out, one can write

⟨π(p′)|d̄γµ(hS
ds + hP

dsγ
5)s|K(p)⟩ = hS

ds P
µf+(q2) + hS

ds q
µf−(q2) , (6.3)

where q = p − p′ denotes the momentum transfer and P = p + p′. An on-shell
axion requires q2 = m2

a. This means that in the limit of a light axion, the result
only depends on the first form factor evaluated at q2 → 0. Calculations of such
form factors require non-perturbative methods. For the analysis in this thesis, a
recent lattice evaluation, which arrived at f+(0) = 0.9706(27), was used. Notably,
the matrix element for hP

ds vanishes. This is due to parity, which is (up to possible
local effects in quark gluon plasmas [325, 326]) conserved in QCD. Taking all of this
into account, the total rate of the decay is given by [317]

Γ(K+ → π+a) = |hS
ds|2

16πm3
K+

(m2
K+ −m2

π+)2λ1/2(m2
K+ , m2

π+ , m2
a) f 2

+(m2
a) , (6.4)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) denotes the Källén function.
Having established this relation between the decay rate and the effective flavour-
changing quark interactions, it only remains to calculate hS

ds in the EFT defined in
equation (6.1). The types of diagrams which contribute to this transition at one-
loop are depicted in figure 6.1. The resulting effective coupling has a logarithmic

33An example are neutral kaon decays, which were evaluated in refs. [191] and [192].
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divergence,

hS
ds = − GF

16
√

2π2
1
fa

cq

∑︂
q=u,c,t

V ∗
qdVqsm

2
q

×

⎛⎜⎜⎝log
(︄

Λ2

m2
q

)︄
−
m4

q − 8m2
qm

2
W + 7m4

W + 6m4
W log

(︃
m2
q

m2
W

)︃
2(m2

q −m2
W )2

⎞⎟⎟⎠
− 3G2

Fm
4
W

π2
cW W

32π2fa

∑︂
q=u,c,t

V ∗
qdVqsf(m2

q/m
2
W ) , (6.5)

where GF is the Fermi coupling constant and V is the CKM matrix. This result
agrees with previous calculations [168, 327]. The divergence was regulated by in-
serting an a priori undetermined UV cutoff Λ. Such a loop calculation can also be
understood as the leading-order RG evolution between a high scale Λ and a low scale
at which a measurement is performed. The RG approach was chosen for instance in
refs. [142, 296, 317, 328]. For convenience, the loop function [168]

f(x) = x(1 + x(ln(x) − 1))
(1 − x)2 (6.6)

was used in the W -boson contribution. Furthermore, the result was expanded to
leading order in external momenta, i.e. small quark masses. This corresponds to
dropping terms which are further suppressed by factors of md/mW , ms/mW or
ma/mW . This way, only the leading-order finite contribution remains. It was also
checked explicitly that the result is independent of the chosen field basis and that
with a Yukawa-like axion coupling one arrives at the same result as with the deriva-
tive coupling when the additional anomalous couplings are taken into account. This
is also true in non-unitary gauge where special care has to be taken with the axion
Goldstone interactions (see footnote 3 in ref. [175]).

The crucial feature of the effective flavour-changing coupling in equation (6.5) is
the logarithmic dependence on an undetermined UV cutoff. It is easy to see that the
logarithmic term becomes dominant already for a small hierarchy between λ and the
largest quark mass mt. This is why this term is commonly referred to as the leading
log and often taken as a good approximation for the full result (see e.g. ref. [327]).
Even more intriguingly, the UV cutoff can in principle be larger than mt by several
orders of magnitude. In fact, it is often identified with the only other scale appearing
in the EFT Lagrangian – the axion decay constant fa [171, 175, 327]. Even for a
moderate choice of fa ∼ 106 GeV, this results in a logarithmic enhancement of the
decay rate by a factor of ∼ 300. The UV cutoff is therefore of utmost importance
when placing experimental bounds on the EFT parameters in equation (6.1) and,
as the next section will demonstrate, the ad hoc choice of Λ ∼ fa is typically not
justified.

6.2 Comparison to UV-complete models
In order to get a first insight into what determines the correct UV cutoff in the EFT
calculation above, it is instructive to look at some explicit examples. Typical UV-
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complete axion models, which are commonly used to constrain axion parameters,
were introduced in chapter 3. In the following, the K+ → π+ + a rate will be
evaluated in both DFSZ- and KSVZ-type models.

6.2.1 DFSZ-type models
The DFSZ model includes two Higgs doublets in addition to the complex Peccei–
Quinn scalar (see section 3.2). This means that the flavour-violating kaon decay is
not only generated through the diagrams in figure 6.1. Instead, a large number of
different diagrams appear like for instance ones where a W -boson is replaced by a
charged Higgs. The results of the full calculation can be taken from ref. [167]. This
study investigated the rare B decay B → K+a but the calculation is identical up to
the change of generation indices and hadronic matrix elements. Note, however, that
these calculations are performed in a field basis with Yukawa-type axion interactions.
As in the EFT case, where it was checked explicitly, this should not affect the result
up to terms related to the axion-W coupling.

As outlined in detail in section 3.2, the DFSZ axion inherits couplings to SM
quarks from its mixing with the other pseudoscalars in the two Higgs doublet model.
Unlike in the EFT in equation (6.5), these are not completely flavour-universal but
differ between up- and down-type quarks, cu = cos2(β)/3 and cd = sin2(β)/3. Taking
into account all diagrams given in ref. [329] the effective coupling of axions to strange
and down quarks is given by [167]

hS
ds = − GF

16π2
cos2β

3fa

∑︂
q=u,c,t

V ∗
qdVqsm

2
q

(︂
Xq

1 +Xq
2 cot2 β

)︂
. (6.7)

As before, the sum runs over all up-type quarks. The structure constants Xq
i are

defined as [167]

Xq
1 = 2 + m2

H±

m2
H± −m2

q

− 3m2
W

m2
q −m2

W

+
3m4

W

(︂
m2

H± +m2
W − 2m2

q

)︂
(m2

H± −m2
W )

(︂
m2

q −m2
W

)︂2 log
m2

q

m2
W

+ m2
H±

m2
H± −m2

q

(︄
m2

H±

m2
H± −m2

q

− 6m2
W

m2
H± −m2

W

)︄
log

m2
q

m2
H±

, (6.8)

Xq
2 = − 2m2

q

m2
H± −m2

q

(︄
1 + m2

H±

m2
H± −m2

q

log
m2

q

m2
H±

)︄
. (6.9)

mH± denotes the mass of the charged Higgs boson. The different sign of the leading
logarithmic term in the limit of large mH± compared to the result in equation (6.5)
is merely caused by a negative constant cu in the DFSZ model. Plugging this into
equation (6.4) allows to compute the decay rate of K+ → π+ + a. The expected
sensitivity of the NA62 experiment to the DFSZ model in terms of the charged Higgs
mass and the mixing angle β is plotted in figure 6.2. A remarkable feature is that
for each value of tan β there is a value of mH± for which the hS

ds changes sign. This
is only possible because Xq

1 and Xq
2 have a different sign and thus a cancellation

appears along a line in figure 6.2 where the sensitivity vanishes completely.
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Figure 6.2. Expected sensitivity of NA62 on flavour-universal DFSZ models from K+ →
π+ + a. The reach in fa is shown in terms of the charged Higgs mass mH± and the mixing
angle tan β = vu/vd. The projection of ref. [323] was used for the numerical evaluation of
the sensitivity.

The calculation above explicitly demonstrates that the leading logarithm in ef-
fective flavour-changing interactions is not necessarily cutoff at fa. For the DFSZ
model, it is the mass of charged Higgs scalar which regulates the divergence. Since
this is close to the electroweak scale, it is orders of magnitude smaller than fa. But
also the cancellations, which can appear for certain parameter combinations, demon-
strate the shortcomings of the EFT calculation. Even without a specific combination
of parameters, the decay can be suppressed by large values of tan β as becomes clear
from figure 6.2. All of this results in a significantly smaller branching ratio of the
decay in question.

As a benchmark for the comparison to the EFT calculation and other models,
the parameters are chosen as mH± = 800 GeV and 1 ≤ tan β ≤ 5 (perturbativity
requires 0.25 ≤ tan β ≤ 170 [124]). On the one hand, this is roughly representative
of the experimentally allowed 2HDM parameter space (see e.g. [330, 331]). On the
other, it is not a region which is accidentally suppressed by a cancellation between
different contributions. The weaker bounds compared to the EFT are therefore pre-
dominantly caused by the smaller logarithm. NA62 projections for this benchmark
DFSZ model are depicted together with the EFT in figure 6.6.

6.2.2 KSVZ-type models
KSVZ-type models, as introduced in section 3.1, have an apparent advantage over
DFSZ-type models – they do not introduce new degrees of freedom below the PQ
symmetry breaking scale. This is because the additional fermions are charged under
U(1)PQ and gain their masses through the spontaneous breaking of this symmetry.
Nevertheless, one cannot expect a large, logarithmically enhanced result for the
K+ → π+ +a branching ratio. This is because of the absence of tree-level couplings
to SM fermions in KSVZ-type models. They are only generated at one-loop, an effect
which is discussed in section 5.4.2 and which is incapable of generating a large decay
rate. Tree-level interactions could otherwise only be introduced by a chiral rotation
of SM quarks. But as one would expect, the divergent contribution of a derivative
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coupling (∂µa/(2fa)f̄γµγ5f) exactly cancels with the one from the perturbatively
expanded exponential coupling (ia/famf f̄γ

5f). This means that only a finite part
remains, which depends on the electroweak anomaly coefficients but does not feature
a large log.

This argument can be made more explicit and exact for the full six generations
of SM quarks, q = (u, d, s, c, b, t)T . Starting without tree-level interactions, the
relevant terms for the s → d+ a transition are

L ⊃ q̄iγµ∂µq − q̄Mqq − g√
2
ūLγ

µW+
µ V dL + h.c. . (6.10)

A general chiral rotation of each SM quark individually can be written as [141]

q → exp
(︄
iκq

a

2fa

γ5
)︄
q , (6.11)

where κq is a real 6×6 diagonal matrix. These rotations allow to modify the anoma-
lous couplings to SM gauge bosons. In addition, they generate axion interactions
from all of the terms given in equation (6.10). At leading order in the axion field,
these are

L ⊃ −∂µa

2fa

q̄κqγµγ
5q − ia

fa

q̄ κqMqγ
5 q − iag√

8fa

ūLγ
µW+

µ (κuV − V κd) dL + h.c. .

(6.12)

Mq is the diagonalized quark mass matrix and it therefore commutes with κq. κu and
κd are the 3 × 3 submatrices of κq including only the elements for the up-type and
down-type quarks, respectively. It becomes clear that the last term only vanishes
for completely flavour-universal rotations34 because in this case κuV − V κd = 0.

One can collect the contributions of these terms on the s → d + a transition
and it becomes immediately clear that all of the UV-divergent contributions cancel
exactly. Thus, the KSVZ model does not contain a large log contribution at one-loop
regardless of the chosen field basis.

6.3 A new model inspired by large logarithms
The inability of typical axion models to recover the EFT result with a large UV
cutoff begs the question whether any QCD axion model is able to do so. Because
an extensive search in axion literature did not come up with such a model, the
remainder of this chapter is dedicated to constructing one.

6.3.1 An effective model of the PQ scalar
The guiding principles for constructing a UV-complete QCD axion model with a
large logarithmic enhancement in flavour-violating decays can be inferred from the
34This means that the last term in equation (6.12) appears in the DFSZ model when a basis with

derivative axion couplings is chosen. This is because the up- and down-type quarks are not
equally coupled to the axion in the Yukawa-basis. It is also the reason why the calculation in
the previous section was carried out in the Yukawa coupling basis.
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issues of KSVZ and DFSZ models. The previous sections demonstrated that (unlike
in the KSVZ) SM fermions must be charged under U(1)PQ in order to arrive at tree-
level axion interactions with SM quarks. Furthermore, no new degrees of freedom
should be introduced below fa (unlike in the DFSZ) because these may regulate the
logarithmic divergence at a lower scale.

It was shown in ref. [118] that any UV-complete QCD axion model must introduce
new degrees of freedom beyond the PQ scalar (if one excludes flavoured U(1)PQ
symmetries). Nevertheless, it is sensible to first search for an EFT only containing
SM fields plus the PQ scalar. This would automatically fulfil the assumption of no
new degrees of freedom below fa and could be UV-completed in a second step. A
class of such effective models that also satisfy the requirement of tree-level axion-
quark couplings are defined by the Lagrangian35

L ⊃ − Φ
Λu

ij

Q̄LiH̃uRj − Φ
Λd

ij

Q̄LiHdRj + h.c. . (6.13)

QL, uR, dR and H denote the usual SM chiral fermion fields and the Higgs doublet
before EW symmetry breaking. The indices i and j label the three generations.

As usual, the PQ scalar Φ contains the axion as its angular degree of freedom.
Its PQ charge is normalized to χΦ = 1. The Higgs field is chosen to be uncharged
under U(1)PQ

36 and the quarks charges must therefore satisfy

χQLi
− χuRi

= χQLi
− χdRi

= 1 . (6.14)

The coupling matrices Λu,d have an inverse mass dimension and are thought to be
suppressed by a large UV scale. In order to allow all entries of these matrices to be
non-zero, the PQ charges are taken to be flavour-independent,

χL = χQLi and χR = χdRi = χuRi for all generations. (6.15)

This is an essential difference to the flavoured axion models which were considered in
refs. [23, 318]. The model presented here does not attempt to explain the observed
flavour hierarchy of the SM. Nevertheless, flavour effects will become relevant in the
UV-complete model.

The QCD anomaly coefficient can be derived from the charge assignments37,

N =
∑︂

f

(χfL − χfR)T (Rf ) = 6. (6.16)

35This effective Lagrangian was also considered in ref. [317] based on electroweak symmetry con-
siderations. The authors also provided a string-related axion-like particle realisation to give a
large logarithm.

36The choice of vanishing Higgs charge under U(1)PQ is not a physical property of the model. The
reason is that the five charges of QL, uR, dR, H and Φ are restricted by the two interaction
terms in equation (6.13) to three conserved global U(1) symmetries, which can be identified as
hypercharge, baryon number and the PQ symmetry. In this three-dimensional space, a direction
for the PQ symmetry not involving the Higgs field can always be found and other choices do
not alter the physics but merely combine the chiral U(1)PQ with the vectorial rotations along
baryon number or hypercharge.

37Anomaly coefficients differ from the published version in ref. [2] because of a different choice of
conventions.
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Since it is non-vanishing, the model is indeed able to solve the strong CP problem.
The phenomenologically interesting electromagnetic anomaly coefficient

E = 2
∑︂

f

(χfL − χfR)Q2
f , (6.17)

can either be 16 or 10 depending on the PQ charges of leptons.38 When the PQ
scalar acquires a VEV, ⟨Φ⟩ = ⟨ϕ⟩ /

√
2, and the heavy radial mode is integrated out,

the Lagrangian becomes
L ⊃ −Y u

ij e
i a

⟨ϕ⟩ Q̄LiH̃uRj − Y d
ije

i a
⟨ϕ⟩ Q̄LiHdRj + h.c., (6.18)

where Y u,d
ij = ⟨ϕ⟩ /(

√
2Λu,d

ij ) are identified as the SM model Yukawa couplings.
After electroweak symmetry breaking, one can rotate into a mass eigenbasis. Be-

cause the axion couplings are aligned with the Yukawas, the diagonalization of the
quark mass matrix will automatically lead to flavour-universal axion couplings,

L ⊃ −
∑︂

q

mq q̄ e
i a

⟨ϕ⟩ γ5
q. (6.19)

This is what was expected from the flavour-independent charge assignments.
All in all, the effective model of the PQ scalar in equation (6.13) combines tree-level

couplings to SM fermions with the absence of new particles lighter than fa. Despite
this, the actual value of the UV cutoff is still not defined in this non-renormalizable
model. However, one would naively expect a factor of log(⟨ϕ⟩2 /m2

q) or log(Λ2
ij/m

2
q)

since these are the only scales present in the model. Both are at least as large as
the PQ symmetry breaking scale.

6.3.2 UV completion of the model
In order to allow for an explicit calculation of the s → d + a transition and gain a
physical interpretation of the UV cutoff, it is necessary to embed the effective model
from the previous section into a renormalizable UV completion. The standard EFT
approach in such situations is to interpret the higher-dimensional interactions as a
non-local interaction coming from the exchange of a heavy mediator particle. In the
case at hand, one could in principle choose to add scalar or fermionic mediators.
However, adding a scalar mediator would directly lead back to a two Higgs doublet
model, not identical but similar to the DFSZ. This is why the other path is chosen
here and three generations of heavy coloured up- and down-type fermions, F u

i and
F d

i , are added. These are in many ways similar to the messenger fields in the
Froggatt-Nielsen mechanism [319]. The approach is illustrated in figure 6.3.

For simplicity and to demonstrate the rationale, the number of generations can be
reduced to one. The following calculations are later generalized to include all three
generations. The renormalizable interaction terms required for the vertices on the
right-hand side of figure 6.3 are given by

L ⊃ − αuQ̄LH̃F
u
R − βuF̄

u

LΦuR + h.c.

− αdQ̄LHF
d
R − βdF̄

d

LΦdR + h.c. ,
(6.20)

38Leptons could also be coupled to Φ∗ and carry charges of opposite sign. A number of these kinds
of variations of the model are considered in appendix B.
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Figure 6.3. The UV completion of the effective model involving only the PQ scalar in
equation (6.13) proceeds by introducing new heavy coloured fermions. These are called
F quarks. In the limit of small momenta, where they can be integrated out, the effective
four particle interaction is recovered.

where αu,d and βu,d denote the couplings in the up- and down-type sectors.39 In
principle, one could also consider the possibility to couple either or both of the up-
and down-type quarks to Φ∗. This would lead to modified versions of the model,
which are described in appendix B. They can be treated in a similar way but this
thesis focuses on the version in equation (6.20) for concreteness.

Looking at invariance under the SM gauge groups, it becomes clear that the F u

and F d fields take the place of right-handed quarks in the SM Yukawa terms. They
must therefore live in the respective representations of uR and dR. The coupling
terms in equation (6.20) also impose conditions on the PQ charges, namely

χQL − χFR = 0 and χFL − χqR = 1 . (6.21)

This does not fix the charges precisely, but it is exactly the sum of these equations
that appears in the anomaly coefficients N and E in equations (6.16) and (6.17).
This is because F and SM quarks couple identically to photons and gluons. As a re-
sult, the new fields do not change the anomaly coefficients (N = 6 and E = 16 or 10)
compared to the effective model.

Because the F quarks do not feature chiral interactions in the electroweak sector,
gauge invariance allows a bare mass term,

L ⊃ −λ⟨Σ⟩√
2
F̄LFR + h.c.. (6.22)

The u/d superscript is omitted when referring to both of the two fields. This mass
term is parametrized in terms of a VEV of a spurion field Σ which does not carry
charge under any SM gauge symmetry or U(1)PQ. Hence, the charges of F quarks
should be independent of their chirality, χFL − χFR = 0. This means that all axial
charges of fermions, which are the relevant ones for the anomalous couplings to SM
gauge bosons, are fixed. The only remaining freedom is a shift of all fermion PQ
charges by an arbitrary constant.

The full mass matrix of the combined quark sector appears after PQ and elec-
troweak symmetry breaking. It contains mass mixing terms between the different
fields coming from the terms in the Lagrangian (6.20). In unitary gauge, one can
39The only other dimension-4 term that is invariant under all symmetries considered is ΦΦ∗HH†.

If included, such a term would generate a large contribution to the Higgs mass unless it comes
with an extremely small prefactor. This is nothing but the usual naturalness problem, which
is common to all axion models and which is not addressed in this thesis.
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define a combined mass matrix M such that all mass terms are included in

L ⊃ −
(︂
q̄L F̄L

)︂
M

(︄
qR

FR

)︄
+ h.c.. (6.23)

M depends on the VEVs of all scalar fields (H, Φ, Σ), as well as the coupling
constants (α, β, λ) and the axion field a, which is the only remaining Goldstone
boson from the spontaneous breaking of PQ and electroweak symmetries.

6.3.3 Mass diagonalization
The situation in the new model is in many ways similar to the one known from
the SM after electroweak symmetry breaking. The mass matrices Mu and Md are
(mostly) unconstrained complex coupling matrices. In order to recover the quark
mass eigenstates, they need to be diagonalized by independent unitary transfor-
mations of left- and right-handed fields. In the following, only the main steps are
illustrated. A more detailed calculation including all of the relevant intermediate
steps is given in appendix C. As before, the u/d labels are dropped whenever the
expression is valid for both up- and down-type sectors. Generation indices are also
omitted but all three generations of SM and F quarks are meant to be included and
the coupling constants α, β and λ are promoted to 3 × 3 matrices.

The full mass matrix can be written as

M = ⟨Σ⟩√
2

(︄
0 ϵϵ′α

ϵ′βeia/⟨ϕ⟩ λ

)︄
. (6.24)

The scale ⟨Σ⟩ was multiplied out by introducing the two parameters

ϵ = v

⟨ϕ⟩ and ϵ′ = ⟨ϕ⟩
⟨Σ⟩ , (6.25)

with the Higgs VEV v = 246 GeV. These dimensionless parameters highlight the
hierarchies of scales in the model. One can safely assume that ϵ is much smaller than
one since the PQ scale must be much larger than the electroweak scale. ϵ′, on the
other hand, can but does not need to be smaller than one. This depends on the values
of the bare mass terms, which are in principle unconstrained. It is only assumed that
⟨Σ⟩ is larger than ⟨ϕ⟩ so that the effective theory in equation (6.13) is at least to some
precision a low-energy representation of the UV model. Actually, introducing new
degrees of freedom very close to ⟨ϕ⟩ may lead to sizeable corrections like e.g. tree-
level flavour-violating axion couplings. In order to avoid such complications, it can
be assumed that the additional F quarks are heavy enough so that these effects are
sufficiently suppressed. This amounts to the condition

ϵ′′ = ⟨ϕ⟩
minmFi

≪ 1, (6.26)

where minmFi is the mass of the lightest new fermion. The issue of tree-level flavour
violation and more concrete bounds on the expansion parameters ϵ and ϵ′′ are given
in appendix C.
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The diagonalization proceeds completely analogously to the SM. One can define
the unitary matrix U by its property of diagonalizing the hermitian matrix MM †,

U †MM †U = Λ2 =
(︄
M2

q 0
0 M2

F

)︄
. (6.27)

Mq and MF are the diagonal mass matrices of the physical mass eigenstates, i.e. the
SM and F quarks. Another unitary matrix is given by S = M †UΛ−1. If the left-
handed quark fields are now rotated by U and the right-handed ones by S,(︄

qL

FL

)︄
→ U

(︄
qL

FL

)︄
,

(︄
qR

FR

)︄
→ S

(︄
qR

FR

)︄
, (6.28)

the mass terms in the Lagrangian are diagonalized and the exponential couplings
to the axion field a are also eliminated. Conventionally, the same symbols are used
for the fields before and after mass diagonalization, despite the fact that they are
non-trivial linear combinations of one another.

In order to arrive at an explicit expression of the masses in terms of the coupling
matrices in the UV Lagrangian (6.20), one can expand U in ϵ and ϵ′′. At leading
order, the masses of SM quarks Mq and F quarks MF are given by

M2
q = v2

2 ϵ′2U †
δ (αλ−1ββ†λ†−1α†)Uδ, (6.29)

M2
F = ⟨Σ⟩2

2 U †
ξ (λλ†)Uξ, (6.30)

where Uδ and Uξ are unitary matrices which diagonalize the hermitian matrices in
parentheses. In this way, the UV theory defines a total of 12 different quark masses,
keeping in mind that both of the expressions above exist for up- and down-type
quarks.

Note that any physical choice of UV parameters must be able to reproduce the
SM. Equation (6.29) shows that light quark masses are proportional to ϵ′v times a
rather complex combination of coupling constants. One would generically expect
this dimensionless factor not to be much larger than one. This hints at a potential
problem of the UV-complete model. Since the mass of the top quark is close to
⟨H⟩ = v/

√
2, it may be difficult or impossible to recover such a high value when all

F quarks are much heavier than the PQ scale (which would require ϵ′ ≪ 1) and when
perturbativity of all Yukawa couplings in the UV model is simultaneously required.
Similar arguments led the authors of ref. [317] to the conclusion that the cutoff of the
effective Lagrangian (6.13) cannot be much higher than fa. Without fine-tuning of
the couplings, this thesis reaches the same conclusion. However, in the explicit UV
completion presented here, the masses of the six extra fermions can in principle have
a large internal hierarchy. This may still allow enhancements of loop-induced flavour-
violating effects by factors larger than log(f 2

a/m
2
q) and simultaneously generate the

large top mass. Some more details on these non-trivial flavour properties of the
model are given in appendix C alongside an explicit realisation of coupling matrices
for which all of the calculations and conclusions given in this chapter apply.
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Axion couplings to gauge bosons

Just like in the KSVZ and DFSZ models described in sections 3.1 and 3.2, the
axion couplings to gauge bosons are generated by chiral rotations of fermionic fields.
These are included in the transformations by U and S in the previous paragraph
because the mass matrix was defined to include the axion field a. To make these
field dependent rotations more explicit, it is instructive to split the diagonalization
procedure into two parts. First, the axion dependence is absorbed into right-handed
quarks and only then the full mass matrix is diagonalized.

Equation (6.20) demonstrates that the dependence on a can be fully absorbed
into the right-handed q fields by the redefinitions

uR → e− ia
⟨ϕ⟩uR and dR → e− ia

⟨ϕ⟩dR . (6.31)
This transformation completely defines the resulting interactions of axions to gauge
bosons. In addition, the axion is removed from the mass matrix and instead appears
in the kinetic terms of right-handed quarks as a derivative interaction. Therefore, the
subsequent steps for fully diagonalizing M can be performed independently of the
axion field. The derivative couplings are investigated further in the next paragraph
(see equation (6.36)).

Because the path integral measure is not invariant under the chiral redefinition
in equation (6.31), anomalous interaction terms are generated just as described in
section 2.3. The interactions with the bosonic mass eigenstates of the SM can be
found to be [14, 49, 50, 58, 107]

L ⊃ −N · αs

8π ⟨ϕ⟩ aG
a
µν
˜︁Gaµν − E · αEM

8π ⟨ϕ⟩ aFµν
˜︁F µν

+ E · αEM

4π
sW

cW

a

⟨ϕ⟩Fµν
˜︁Zµν − E · αEM

8π
s2

W

c2
W

a

⟨ϕ⟩Zµν
˜︁Zµν ,

(6.32)

where sW and cW denote the sine and cosine of the Weinberg angle θW . Interestingly
there are no interactions with the W -boson because only right-handed fields are
transformed, which are singlets under SU(2). As in chapter 5, one defines the axion
decay constant as

fa = ⟨ϕ⟩
NDW

, (6.33)

where NDW = N = 6 is the domain wall number or the number of equivalent vacua.
Potential consequences of NDW ̸= 1 are briefly discussed in section 6.6. With the
definition of fa, the phenomenologically relevant interactions with gauge bosons read

L ⊃ − αs

8πfa

aGa
µν
˜︁Gaµν − E

N
· αEM

8πfa

aFµν
˜︁F µν

+ E

N
· αEM

4π
sW

cW

a

fa

Fµν
˜︁Zµν − E

N
· αEM

8π
s2

W

c2
W

a

fa

Zµν
˜︁Zµν .

(6.34)

The EFT parameters, which can be read off directly from this Lagrangian, are
listed in table 6.1. If leptons are chosen to also be charged under U(1)PQ, the axion
dependent phase can analogously be absorbed into the right-handed leptons. Such
rotations contribute to the E anomaly coefficient giving it the larger value of 16 but
the Lagrangian above is still applicable.
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Axion-quark couplings

Once the axion field has been absorbed into the right-handed quarks, the mass
matrix M is left independent of a. Therefore, the matrices U and S, which are
needed for the diagonalization as described in equation (6.28), can only depend
on the coupling matrices appearing in the Lagrangians (6.20) and (6.22). Despite
the fact that these are unitary transformations, they do not leave the derivative
couplings of right-handed quarks invariant because they mix the light PQ charged
SM fields with the heavier uncharged F quarks. The detailed derivation of this is
outlined in appendix C. At leading order in ϵ and ϵ′′, the axion-quark couplings in
the mass eigenbasis can be written as

L ⊃⟨ϕ⟩
2
(︂
q̄R F̄R

)︂
(/∂a) Λ−1

(︄
(ϵϵ′)2ABA† ϵϵ′AB
ϵϵ′BA† B

)︄
Λ−1

(︄
qR

FR

)︄
(6.35)

= 1
⟨ϕ⟩ q̄R (/∂a) qR + ⟨ϕ⟩

2 F̄R(M−1
F BM−1

F ) (/∂a)FR

+ v

2 ϵ
′ q̄R(M−1

q A BM−1
F ) (/∂a)FR + h.c.. (6.36)

A and B were defined for notational convenience and are given to leading order in
ϵ′′ as

A = U †
δαλ

−1Uξ and B = U †
ξββ

†Uξ . (6.37)

It may seem peculiar that the axions only couple to right-handed quarks in this
model. This is an explicit basis choice, which will become convenient in the next
section. It would also be possible to absorb the axion dependence of the quark mass
matrix into both left- and right-handed fields by combining the transformation in
equation (6.31) with a vectorial rotation of all quarks. This would immediately
generate derivative interactions regardless of chirality.

The benefits of the derivative coupling basis were already discussed in chapter 5
and it is also the most convenient choice for calculating the s → d+ a process. But
for recovering the effective couplings in equation (6.19), which the UV completion
initially set out to achieve, one has to rewrite the first term in equation (6.36).
This can be done by performing a rotation of the right-handed fields (neglecting
interactions with the Higgs and CP-conserving anomalous axion terms) and then
expanding in small field values

1
⟨ϕ⟩ q̄R (/∂a) qR → − a

⟨ϕ⟩ q̄Mqiγ
5q . (6.38)

This is exactly the kind of periodicity violating replacement which was discussed
in chapter 5 and it should be used with caution and only if all of the underlying
assumptions are fulfilled. It nevertheless demonstrates that the model exactly arrives
at the anticipated couplings of equation (6.19), which are proportional to the quark
masses. In addition, it gives an intuitive reason why these flavour-diagonal derivative
couplings exclusively to right-handed quarks do not violate CP. This fact is proven
explicitly in appendix A.
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The same replacements can be used for the non-universal couplings to F quarks,
which leads to

⟨ϕ⟩
2 F̄R(M−1

F BM−1
F ) (/∂a)FR

→ − ⟨ϕ⟩
2 a

[︄
F̄

BM−1
F −M−1

F B
2 iF + F̄

BM−1
F +M−1

F B
2 iγ5F

]︄
. (6.39)

Hence, their couplings are not proportional to their mass. A result that was ex-
pected, given that the UV fields did not feature a chiral charge under U(1)PQ and
that the mass of the physical fields is mostly generated by the VEV of the uncharged
spurion Σ. The fact that the interactions are not flavour-diagonal can lead to CP
violation as described in appendix A.

Finally, also the last term of equation (6.36) can be treated in the same manner,
v

2 ϵ
′q̄R(M−1

q A BM−1
F ) (/∂a)FR

→ − v

2 ϵ
′a

[︄
q̄

A BM−1
F −M−1

q A B
2 iF + q̄

A BM−1
F +M−1

q A B
2 iγ5F

]︄
. (6.40)

Again, there is room for potential CP violating interactions due to flavour non-
universality.

In conclusion, the UV-complete model reproduces flavour-universal axion cou-
plings to SM quarks as given in equation (6.38). These simple terms are in contrast
to the couplings among F quarks (equation (6.39)) or the ones mixing heavy and
light quarks (equation (6.40)), which exhibit a complex flavour structure. Note that
this is only true at leading order in ϵ and ϵ′′. The latter may not be a good ap-
proximation, in which case significant flavour-changing interactions already appear
at tree level (see appendix C).

Summary of low-energy couplings

The mass diagonalization procedure laid out in this section leads to a number of
low-energy couplings of the physical fermionic mass eigenstates to the new axion.
These can be mapped onto the EFT description of section 3.4. All relevant param-
eters of both models with and without lepton couplings are listed in table 6.1. By
construction, the model maps onto a rather simple EFT description at low energies
with the axion decay constant being the only free parameter. The details of the
UV completion will become important again in the next section, when the explicit
cutoff of a divergent process is evaluated in the new model.

6.4 Flavour and CP effects in the new model
6.4.1 Kaon decay rate
The new model introduced in the previous section was inspired by the leading log
in the EFT calculation of rare meson decays. It was designed to both feature tree-
level interactions with SM fermions as well as no new fields below the PQ breaking
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EFT coefficient UV parameter EFT model EFT-ℓ model
fa ⟨ϕ⟩ /N ⟨ϕ⟩ /6 ⟨ϕ⟩ /6
cgg 1 1 1
cγγ E/N 5/3 8/3
cZZ tan(θW )2 E/N tan(θW )2 5/3 tan(θW )2 8/3
cγZ −2 tan(θW ) E/N −2 tan(θW ) 5/3 −2 tan(θW ) 8/3
cW W W/N 0 0

(cq,R − cq,L) −(χqR − χqL)/N 1/6 − 0 1/6 − 0
(cℓ,R − cℓ,L) −(χℓR − χℓL)/N 0 1/6 − 0

Table 6.1. List of couplings of the new axion model. All parameters are expressed in the
EFT basis introduced in section 3.4. Both the general dependence on charges and anomaly
coefficients as well as the explicit values for the two models (either with or without tree-
level lepton couplings) are given. Note that for all couplings to gauge bosons (cγγ , cγZ and
cZZ) the interaction terms should be written with αEM as in equation (3.21) and (6.34).
The fermion couplings are all understood to be independent of flavour and the 1/6 − 0
indicates that only right-handed fields couple at tree level.

scale. This should make the naive estimate of the kaon decay rate in the EFT
(equation (6.5)) valid for this model. An explicit calculation including all new
degrees of freedom can confirm this claim.

In the previous section, the axion interactions to SM particles were derived. These
are important for the phenomenology of the new model but are not sufficient for
the unambiguous calculation of UV-divergent processes. Only using the interactions
listed in table 6.1 would lead to the same divergences as in the EFT. Only by in-
cluding the additional vertices induced by the rotation into a mass eigenbasis the
divergence can be regulated. All axion couplings to light and heavy quarks were
already included in equation (6.36). The calculation will proceed in this derivative
basis, where axions only interact with right-handed quarks. In addition, the unitary
transformations generate new flavour-dependent interactions of neutral and charged
hadronic currents with the weak gauge bosons. The full details and explicit expres-
sions for the unitary transformation matrices U and S are given in appendix C. At
leading order in ϵ the charged current interactions can be written as

L ⊃ −g√
2

⎛⎜⎜⎜⎜⎝
ūL

d̄L

F̄
u

L

F̄
d

L

⎞⎟⎟⎟⎟⎠
T

γµ

⎡⎢⎢⎢⎣W+
µ

⎛⎜⎜⎜⎝
0 V 0 −ϵϵ′VAd

0 0 0 0
0 −ϵϵ′A†

uV 0 (ϵϵ′)2A†
uVAd

0 0 0 0

⎞⎟⎟⎟⎠

+ W−
µ

⎛⎜⎜⎜⎜⎝
0 0 0 0
V † 0 −ϵϵ′V †Au 0
0 0 0 0

−ϵϵ′A†
dV

† 0 (ϵϵ′)2A†
dV

†Au 0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
uL

dL

F u
L

F d
L

⎞⎟⎟⎟⎠ , (6.41)

where the coupling matrices Au/d are the same ones as defined in equation (6.37)
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Figure 6.4. One-loop contributions to the s → d + a process in the new EFT inspired
axion model. The left diagram represents four separate contributions with either q or F
quarks on both of the internal propagators. The right diagram stands for counterterm
contributions from the renormalization of quark fields.

only that it is crucial to differentiate between up- and down-type matrices for the
charged current interactions. V denotes the SM 3×3 CKM matrix. At leading order,
it can be expressed in terms of the unitary matrices appearing in equation (6.29) as
V = Uu†

δ Ud
δ . The first non-unitary term appears at order (ϵϵ′′)2 in the expansion.

Neutral current interactions with the Z boson are also affected by the rotations
and come out as

L ⊃
(︄
q̄
F̄

)︄T

γµZ
µ −g

cos θW

[︄
±1

2

(︄
1 −ϵϵ′A

−ϵϵ′A† (ϵϵ′)2A†A

)︄
PL

−Q sin2θW

(︄
1 0
0 1

)︄]︄(︄
q
F

)︄
. (6.42)

u/d indices are omitted again. The upper and lower signs refer to up- and down-
type quarks respectively. PL denotes the projector onto left-handed fields and Q is
the electromagnetic charge of each field. Only the left-handed coupling structure is
affected because the heavy F quarks transform differently under SU(2) than the SM
quarks but they do carry the same electromagnetic charge.

With these additional vertices at hand, it is finally possible to collect all contri-
bution to the s → d + a flavour-changing process in the new model. The relevant
ones are shown in figure 6.4. The first diagram is meant to include four different
contributions because on each internal quark line a light SM or a heavy F quark
could be inserted. These diagrams are identical to the ones which were calculated
in the EFT, up to different internal masses and more complicated flavour struc-
tures at both W and axion vertices as in equations (6.35) and (6.41). Conveniently,
the W and axion only interact with left- and right-handed particles, respectively.
This means that on each internal quark propagator a mass insertion is required and
the momentum term in the numerator drops out. The resulting factors of fermion
masses are precisely cancelled by inverse Λ matrices in the axion interaction. Using
some of the identities from the diagonalization procedure, it is easy to see that all
four diagrams (all left in figure 6.4) have the same flavour structure, are of the same
order in ϵ as well as ϵ′′ and are parametrically the same in all scales and coupling
constants. When the four contributions are added up and the common terms are
multiplied out, the only difference between diagrams are sign and masses of internal
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propagators. The amplitude then takes the relatively compact form

iM

= i
g2

2 (ϵϵ′)2 ⟨ϕ⟩
2

∑︂
i,j,k,l

V †
di(Au)ij(Bu)jk(A†

u)klVls

∫︂ d4k

(2π)4 ūd(p2) [γνγρ(p2 − p1)ργµPL]us(p1)

×
(︄

1
k2 −m2

W

(︄
gµν − kµkν

m2
W

)︄)︄

×
(︄

1
((p2 − k)2 +m2

Qi
)((p1 − k)2 +m2

Ql
) − 1

((p2 − k)2 +m2
Fj

)((p1 − k)2 +m2
Ql

)

− 1
((p2 − k)2 +m2

Qi
)((p1 − k)2 +m2

Fk
) + 1

((p2 − k)2 +m2
Fj

)((p1 − k)2 +m2
Fk

)

)︄
,

(6.43)

where mQ and mF refer to masses of SM and F up-type quarks. The remaining
loop integral can be evaluated using Package-X [301]. It is helpful to make the
simplifying assumption that all F quarks have equal mass. The result at leading
order in down and strange quark masses can then be expressed as

iM = hds × ūd(p2)
(︂
(ms −md) + (ms +md)γ5

)︂
us(p1), (6.44)

with

hds = − GF

16
√

2π2
1

⟨ϕ⟩
∑︂

q=u,c,t

V ∗
qdVqsm

2
q

×

⎛⎜⎜⎝log
(︄
m2

F

m2
q

)︄
−

2m4
q − 7m2

qm
2
W + 5m4

W + 3m4
W log

(︃
m2
q

m2
W

)︃
(m2

q −m2
W )2

⎞⎟⎟⎠ .
(6.45)

This is exactly an effective interaction of the type defined in equation (6.4) with
hS

ds = hds. One can easily see that the result is qualitatively similar compared to the
one of the EFT in equation (6.5). In particular, the leading logarithmically enhanced
term is exactly the same but with fixed parameters cq = 1/6 and Λ = mF . The
finite term was expanded to zeroth order in 1/mF because this is by far the largest
mass involved. Despite this, the finite term differs from the EFT result because
diagrams involving F quarks also contribute at this lowest order.

In addition to the W boson interactions, the counterterm contributions from the
renormalization of quark fields also have to be considered. These are depicted on
the right of figure 6.4. The corresponding calculation is included in appendix D and
it shows that the relevant contributions cancel exactly at leading order in down and
strange quark masses. They can therefore be neglected for all practical purposes.

Since the Z interactions in equation (6.42) are not entirely flavour-universal, one
could also consider the first diagram in figure 6.4 with the W replaced by a Z boson.
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However, at leading order in ϵ′′, which is the limit considered in this section40, there
are no FCNCs between SM quarks induced by Z loops. This is because the coupling
matrix structure ABA† appearing in the relevant amplitudes is identical to the quark
mass matrix Mq in equation (6.29) and thereby diagonal.

In conclusion, the new model succeeded in reproducing the large logarithm from
the naive EFT calculation. It can therefore be stated with certainty that – even
though common QCD axion models are not in agreement with the leading log ap-
proximation – at least a class of models exists which possess a UV cutoff larger or
equal to the PQ scale.

6.4.2 CP violation
A curious property of the new QCD axion model is the fact that it will generically
incorporate additional sources of CP violation. It was discussed in section 3.4 and
proven in appendix A that CP violation occurs in flavour-violating interactions if
the corresponding coupling constant is complex valued. Because A or B in equa-
tion (6.36) can have imaginary entries, these conditions are fulfilled in the new UV
model even at leading order in ϵ. The reason why this may be problematic is that
QCD axion models serve the purpose of explaining the absence of CP violation in the
strong sector or more concretely the smallness of EDMs. Introducing new CP violat-
ing interactions in order to explain CP conservation therefore seems contradictory
at first. However, if the additional CP violation does not spoil the PQ mechanism
and does not lead to EDMs which are in conflict with observations, one would still
have a good QCD axion. CP violation can even be beneficial because it offers new
discovery opportunities [332, 333].

To check that the CP violation in the new model is indeed not problematic, it is
first important to note its connection to the CP-odd phase of the CKM matrix. Both
break CP explicitly and are not due to spontaneous symmetry breaking. In fact, if
the couplings α, β and λ are real-valued, no CP-violating terms are generated before
or after EW and PQ symmetry breaking. This is because, Uδ and Uξ appearing in
equations (6.29) and (6.30) can be chosen to be orthogonal and real if the matrices
which they diagonalize are real and symmetric to begin with. This then results
in A = UT

δ αλ
−1Uξ and B = UT

ξ ββ
TUξ being real-valued as well. In this scenario,

no CP violating interactions appear in equation (6.36). The CP violation in the
model is therefore already explicitly encoded in the complex UV interactions of
equation (6.20). Furthermore, the CKM matrix V is also constructed from these
matrices and it is experimentally confirmed to be complex valued. Hence, there is
no reason to expect A and B to be real without a fine-tuned cancellation.

It remains to be shown that the CP violating axion interactions are not in conflict
with EDM observations just like the CKM phase in the SM. In the following, only
the neutron EDM dn is considered because it puts the most stringent bounds on
CP violation. dn can be related to the EDM of free quarks [334] and it vanishes
in the limit of no quark EDMs. It was shown in appendix E of ref. [2] that the
new model does not generate these quark EDMs at one-loop, which means the

40See appendix C for consequences of large ϵ′′.
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leading contributions can only appear at two-loop level. At this point, it is sufficient
to conservatively estimate the size of these effects instead of delving into involved
two-loop calculations. EDM diagrams must involve the axion since its couplings
are the source of CP violation. Therefore at least two new physics vertices with a
suppression by fa must appear. This allows to estimate the order of magnitude of
the induced dipole moment as

dUV
n ≲

e

(16π2)2
mn

f 2
a

≈ 5 × 10−19 e fm . (6.46)

mn is the neutron mass, which is required in order to fix the dimensions, but it
is also the characteristic scale of the system in question. The result is a couple of
orders of magnitude smaller than the experimental bound in equation (2.13). The
axion decay constant was taken as fa = 4 × 106 GeV. This is a conservatively small
value considering the range of interest as shown in figures 6.5 and 6.6. Furthermore,
the estimate is even more conservative because it does not include any suppression
due to new physics contributions by W± or Z gauge boson interactions or the heavy
F quark mass scale ⟨Σ⟩ even though at least one of the three has to appear in order
to generate an EDM. Suppressions by light quark masses or their small Yukawa
couplings are also not included.

Additional contributions to the neutron EDM may come from interactions between
the constituent quarks. This is for instance discussed in the review [62]. These effects
are already far below the experimental bounds in the SM and they are only altered
in the UV model via terms suppressed by the new physics scale fa. This leaves them
completely negligible.

In conclusion, the new model introduces additional sources of CP violation in
comparison to the SM. These are however not in conflict with current observations
and it is even unlikely that its CP effects would be detectable in near future ex-
periments. The solution of the strong CP problem is not spoiled and the CP odd
couplings still allow the new model to be a proper QCD axion.

6.5 Discovery opportunities
The new QCD axion model introduced in the previous sections was designed to
serve a specific purpose. It demonstrates that a UV-complete axion model exists
which maps onto the minimal effective model in section 6.1 including the large log
enhancement in flavour observables appearing at one-loop level. Its phenomenology
could therefore be anticipated from the onset: Tree-level fermion interactions are
particularly relevant for axion production in astrophysical objects and the leading
log enhancement increases the sensitivity of experiments looking for rare meson
decays. In the following, both of these detection opportunities are discussed in more
detail.

6.5.1 Astrophysical limits and future searches
For the same reasons as outlined in section 4.4, the new axion can be produced in
large numbers inside of astrophysical objects like the Sun, supernovae, horizontal
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Figure 6.5. Bounds on the two models introduced in section 6.3. They are labelled EFT
or EFT-ℓ depending on whether tree-level axion-lepton couplings are included or not.
Predicted sensitivities of NA62 and IAXO are shown in orange and green, respectively.
The size of the flavour-changing quark couplings depends on the UV cutoff. The lighter
shade of orange therefore represents the range of possible values of the cutoff scale for the
leading log, Λ ∈ (30fa, MPl). Both plots demonstrate that IAXO becomes particularly
sensitive to the EFT-ℓ model due to a larger photon coupling and solar axion production
through axion-electron interactions. In the left panel, existing constraints on the only
free parameter fa are shown in blue. The hatched region in the supernova bounds on the
nucleon coupling indicates the large uncertainties related to this specific observation. On
the right, bounds and sensitivities in the mass-photon coupling-plane are shown. The QCD
axion band corresponds to the axion window E/N ∈ (44/3, 5/3) as defined in ref. [115].

branch stars or red giants. For the calculation of all of these effects, the tree-level
interactions of the axion with SM particles are sufficient. The astrophysical bounds
on the new model can therefore be directly inferred by comparing the low-energy
effective couplings listed in table 6.1 with the latest axion limits. For instance,
the latest helioscope search performed by CAST [335] together with the absence of
exotic cooling in horizontal branch (HB) stars in globular clusters [251], constrain
the photon coupling to be gaγγ ≲ 7 × 10−11 GeV−1. Using the respective values for
E/N in the two models, this translates into the bounds on fa shown in figure 6.5.
In the EFT-like model without lepton coupling, there is an accidental cancellation
between E/N and the model-independent contribution to the photon coupling (see
equation (3.31)). This means that the bound on fa related to the photon coupling
is much stronger for the EFT-ℓ model, which includes tree-level lepton interactions.
The upcoming helioscope IAXO [211] is expected to improve the limit on gaγγ by
more than an order of magnitude. As shown in figure 6.5, this will make it sensitive
to the EFT-ℓ model, but it is not sufficient for reaching into the parameter space
of the other EFT-like model. This is due to a combination of said cancellation, the
signal suppression by larger axion masses and the absence of electron interactions.
Such couplings would open several new production channels for axions inside the
Sun. These are discussed in greater detail in chapter 7.

Another detection technique relying on the photon interaction are haloscopes (see
section 4.3). They have an excellent reach in the mass range of 1 − 100 µeV if the
axion makes up the entire dark matter of the universe. Figure 6.4 shows the currently
excluded regions as given in refs. [64, 118] in combination with the latest ADMX
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data [336, 337]. Future searches will keep probing larger parts of the parameter
space of both EFT and EFT-ℓ models.41 Again, the larger photon interaction of the
EFT-ℓ model means that it is more easily detectable.

Astrophysical constraints also arise from the effective coupling of axions to nucle-
ons. These are a low-energy manifestation of interactions with gluons and quarks
above the confinement scale. It is usually parametrised in the same fashion as other
fermion couplings as

L ⊃ ∂µa

2fa

∑︂
N=p,n

cN N̄γ
µγ5N , (6.47)

where p and n stand for protons and neutrons, respectively. The individual quarks
couplings can be matched to specific values of the cN [54, 338]. In the new axion
model, this results in cp = −0.39875 and cn = 0.05125. The strongest bounds on
these couplings are derived from the formation of a proto-neutron star in the process
of a core-collapse supernova [233]. All limits are based on the observation of the
supernova 1987A [260–262]. The most recent ones are given in refs. [265, 339, 340].
In figure 6.5 the spread of these various evaluations is indicated by the hatched
regions.

Finally, astrophysical observations also put bounds on the axion coupling to elec-
trons. At tree level, this interaction only exists in the EFT-ℓ model which means
that all bounds on the other model are suppressed by a loop factor [124, 297] of
∼ α2

EM/(π2) log ∼ 10−4. This makes these bounds irrelevant for any model with
ce = 0 in the UV. The strongest limits on the coupling are derived from the bright-
ness of the tip of the red-giant branch (RGB) in globular clusters. These exclude
fa/ce ≥ 1.9×109 GeV [242]. Other limits of this coupling are based on the R param-
eter in globular clusters [341, 342]. As figure 6.5 illustrates, the electron coupling
puts the strongest bounds on fa when tree-level axion couplings are present.

6.5.2 Detection via rare kaon decays
By design, one of the most important phenomenological features of the new axion
model is the presence of a large logarithmic enhancement in the loop-induced decay
of mesons. This results in good sensitivities of fixed targets experiments looking
for this type of decays. The flavour-changing process with the best experimental
perspectives is the s → d+ a transition.

The predicted decay rate has been computed in equation (6.44). Unlike all the
tree-level couplings, which only depend on the single free parameter fa, the result for
hds also changes with mF , which is a property of the UV-complete theory. In princi-
ple, the only requirement is that mF must be larger than the axion decay constant.
But because the SM Yukawa couplings are also proportional to ⟨ϕ⟩ /mF (i.e. they
are suppressed by ϵ′), one can derive a rough upper bound on mF by demanding
perturbativity of Yukawa couplings. At least one of the F quarks must therefore
have a mass mFj ≲ 103fa. Nevertheless, other F quarks may be significantly heavier
41An extensive overview of existing bounds and sensitivity projections of planned experiments is

given in the ref. [152].
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mark the existing constraints by the E787 and E949 experiments [322] (solid line) and the
expected reach of NA62 [323] (dashed line). Vertical red lines indicate the bounds set by
HB stars for each individual model.

because of the large hierarchy in the SM quark masses. Without looking at explicit
realisations of α, β and γ, it is neither possible to give exact bounds on the allowed
F -masses nor to find the exact cutoff scale appearing the loop calculation. In con-
clusion, it is reasonable to expect Λ ≲ 103fa, but larger values cannot be ruled out
with absolute certainty.

Current bounds and sensitivity prospects of NA62 on the new models are plotted in
figure 6.6. TheK+ → π++a branching ratio as a function of fa and for Λ in the range
of 30fa < Λ < MPl is shown as an orange band. The lower boundary of Λ = 30fa

can be used to derive robust exclusions, since even smaller values of Λ and thereby
mF would lead to significant flavour effects already at tree level (see appendix C).
The existing limits on the branching ratio from the E787 and E949 experiments
thus rule out fa < 1.6 × 106 GeV in the new model. The future runs of NA62 could
elevate this bound to 5.6×106 GeV. Considering the possibility that Λ may be much
larger than fa leads to detection opportunities way above fa = 107 GeV. Only in
this way, NA62 can go significantly beyond the robust limits set by the cooling of
HB stars. This is illustrated by the red exclusion lines in figure 6.6. As discussed in
the previous section, these bounds are much more restrictive for the EFT-ℓ model,
which means that this model is nearly undetectable by NA62. As a comparison,
the DFSZ predictions of the branching ratio is also included in the plot. It becomes
clear that without the large logarithmic enhancement, there is no parameter space
that can be tested by NA62 which is not already robustly excluded by astrophysical
observations.
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6.6 Conclusions
The starting point of the work presented in this chapter is a rather simple observa-
tion. When investigating flavour-dependent observables at one-loop level in an EFT
framework, one requires an a priori undefined UV cutoff to regulate the divergence
appearing in the EFT calculation. It is tempting and even common practice to infer
this cutoff from the suppression scale appearing with every higher-dimensional op-
erator in the EFT Lagrangian. This leading log prescription assumes that the EFT
is valid up to the PQ symmetry breaking scale of order fa. It is however in conflict
with typical UV-complete QCD axion models.

By far the most prevalent models are the DFSZ and KSVZ models. The former
does not reproduce the naive EFT result because it includes new degrees of freedom
far below the PQ scale. These regulate the divergence in a similar fashion as new de-
grees of freedom in a Pauli-Villars regularization scheme. The DFSZ model therefore
provides a physical interpretation of the cutoff, the mass of the additional charged
Higgs particles mH± , but it is not in agreement with the large leading log. Hadronic
axion models like the KSVZ, on the other hand, do not introduce new particles
lighter than fa since the masses of new fermions are generated by the spontaneous
breaking of the PQ symmetry. In their case, it is the lack of tree-level axion interac-
tions with SM fermions, which does not allow for a large logarithmically enhanced
flavour effects.

The existence of this discrepancy demonstrates that in general the matching be-
tween observations and UV-complete theories is far from trivial. This applies in
particular to the QCD axion because there is a large hierarchy of energy scales
between potential axion observations and UV-complete models. A variety of new
physics contributions could become important within this large energy range and re-
sult in a dependence of observations on parameters of the UV model. Furthermore,
the question arises if a QCD axion model exists whose EFT description, containing
only the axion as a new field, is valid up to fa. In the previous sections, such a
model was successfully constructed by combining electroweak and PQ spontaneous
symmetry breaking to generate masses of all fermionic particles in the theory. This
allows the SM particles to transform non-trivially under U(1)PQ. Additional degrees
of freedom appear in the form of fermionic messenger fields. These can obtain a
large bare mass term without violating any gauge or global symmetries and can
hence be assumed heavier than fa. The new model therefore fulfils all requirements
to reproduce EFT results.

Possible detection opportunities of the new model were discussed in section 6.5.
The most relevant flavour observable is the K+ → π+ + a decay, which will be
probed with unprecedented accuracy by the NA62 experiment. This is plotted in
figure 6.6, which also shows that this detection technique is particularly relevant for
the model version without axion lepton coupling. In this variant, the sensitivity to
the rare kaon decay could supersede all astrophysical bounds except for the one based
on observations of supernova SN1987A. But taking into account the uncertainties
related to these limits42, it becomes apparent that it would be highly desirable to
42An alternative scenario for the SN1987A explosion was considered in ref. [343], which would

leave the SN bound on axions invalid. However, recent hints towards the existence of a neutron
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confirm this bound by an entirely lab-based experiment. Another axion search,
which could be sensitive to the version of the new model with tree-level lepton
couplings, is the upcoming helioscope IAXO. It could reach close to 109 GeV in
fa in its upgraded version IAXO+. This would supersede all astrophysical limits,
including the previously mentioned supernova bound as well as the one derived from
observations of the brightness of the tip of the red-giant branch in globular clusters.

The DM phenomenology of the investigated models is similar to those in the
DFSZ and KSVZ benchmark models. It is important to note in this context that
the models investigated above have a domain wall number, which is greater than one.
This means that the scenario in which the PQ symmetry is broken during inflation
and not restored afterwards is preferred. Alternatively, the discrete ZN symmetry
could be broken explicitly. While this can be useful to allow for the correct DM
abundance at smaller values of the PQ scale fa [292], potentially accessible with
experiments such as NA62, it may also lead to a certain degree of tuning.

Despite mapping onto a rather minimal EFT – the property which was intended
from the start – the new UV model has a rather complex flavour structure and in
some parts of parameter space these could even become detectable. More detailed
discussions on this topic as well as on potential CP-violating axion interactions can
be found in appendix C. These types of couplings could also be employed in future
studies to establish connections between the axion dynamics and the flavour puzzle.
Furthermore, the new model is not uniquely defined by its EFT. In the course of its
construction, several explicit choices had to be made. For example, it was necessary
to fix the charges of the fields involved. Following alternative routes leads to similar
models with some distinct differences. These are discussed in appendix B.

Coming back to the main topic of this thesis, the study presented in this chapter
started by highlighting difficulties in connecting observations to axion models. It
was made apparent that in order to make links between the two, it is necessary
to develop a detailed understanding of the strength and limitations of EFT tools.
This can be seen from the fact that it already turned out to be far from trivial to
construct a UV embedding of a rather simple axion EFT that agrees with the leading
log prescription. Inserting fa as a cutoff scale by hand therefore spoils the general
applicability of the calculation, which is supposed to be the main feature of EFTs.
Nevertheless, a UV completion which agrees with the large cutoff was successfully
constructed. This makes it possible to put stringent bounds on an explicit UV-
complete axion model with a large logarithmic enhancement in flavour-violating
decays. Even though a completion (with some theoretically disfavoured features)
was found in this case, it remains an intriguing question whether extra assumptions –
like the requirement of no additional fine-tuning compared to the SM – may severely
restrict the space of axion EFTs that are the low-energy manifestations of reasonable
UV models.

Certainly, the EFT approach is a cornerstone of axion phenomenology and will
remain the default option for analysing new experimental data. However, the work
outlined in this chapter demonstrates that it is highly beneficial to compare EFT
results to common QCD axion models, which serve as benchmarks. This avoids

star remnant in the site of the explosion favour the standard hypothesis [344, 345].
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misconceptions about the actual sensitivity of axion searches. In the case of the
kaon decay, one would for instance note that the sensitivity in cq/fa differs by more
than two orders of magnitude between the DFSZ and the EFT-like model. The
new model could therefore be very useful as such a benchmark owing to its high
UV cutoff and simple low-energy interactions. It thus provides another helpful link
between experimental observations and UV-complete QCD axion models living at a
much larger energy scale.
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7 The solar axion spectrum

This chapter is based on results and arguments which were published in refs. [3]
and [4] before submission of this thesis. Material and figures from these articles are
used in the following without further reference.

The solar axion spectrum contains abundant information on the nature of the
axion [195, 196, 233] as well as on the Sun itself [346, 347]. For this reason, this
chapter is focused on the calculation of the spectral flux and detection opportunities
of future solar axion searches.

Connections between EFTs, which are completely defined by a set of low-energy
parameters, and UV-complete axion models were investigated in the previous two
chapters. While it became apparent that this matching is far from trivial, the simple
fact remains that good knowledge of as many as possible EFT parameters is crucial
for successfully ruling out or favouring certain UV models. Solar axion searches are
particularly well suited for this purpose. On the one hand, they are independent
from cosmology in the sense that they do not rely on the existence, abundance
or structure of axion dark matter. On the other hand, they are unique because
of their large number of potentially detectable axion parameters including several
couplings and the axion mass. This is due to various interactions with SM particles
inside the Sun contributing to the total axion flux. The different components can
be distinguished by their energy dependence, i.e. the resulting spectrum. On the
detection side, the conversion probability of an axion into a photon depends on the
energy and mass of the incoming axion. This allows to infer the mass on top of the
coupling constants [195, 196].

In order to exploit the full potential of solar axion searches, it is crucial to precisely
predict the expected spectral axion flux from the Sun. In addition, the remaining
uncertainties should be quantified. This serves two purposes, which are central to
axion phenomenology. In case of detection of a first signal, a good agreement be-
tween the measured and predicted spectrum would be an important consistency
check in support of the axion interpretation of such a signal. Secondly, axion pa-
rameters can only be measured with a precision that is limited by the experimental
uncertainty as well as the uncertainty of the theory prediction. In the following,
the calculation of the solar axion flux is updated to include state-of-the-art solar
models, plasma opacity data and all of the known and calculable corrections to the
axion flux. For the first time, the uncertainty of such calculations is systematically
quantified by estimating the known systematic effects related to approximations or
known higher-order corrections and by propagating the statistical uncertainties of
solar models and opacity data to the axion spectrum via a Monte Carlo simulation.

Additional motivation for the detailed investigation of the solar axion flux comes
from the upcoming international axion observatory (IAXO) [193, 210]. It is expected
to improve on the sensitivity of previous helioscopes [201–203, 205–207, 348–352] by
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more than an order of magnitude in the coupling constants. At the same time,
it was shown that it could be sensitive enough to study solar properties like the
abundances of metals [346] or magnetic fields inside the Sun [347]. However, both of
these proposals hinge on the ability to accurately predict the solar axion flux. For
the systematic investigation of uncertainties and the flexible calculation of the axion
spectrum from solar models, a C++ code was developed which provides the required
functionality.43 All spectra and numerical results in this chapter were calculated with
this code, which is also planned to be part of the signal and response calculation of
IAXO.

7.1 Calculation of the solar axion flux
To review the calculation of the solar axion flux, it is first necessary to identify the
relevant axion parameters. In the solar plasma, only interactions with electrons,
photons and nuclei can conceivably play an important role. The latter can be most
generically quantified by axion interactions with neutrons and protons, which will
later be related to couplings to specific nuclear transitions. An axion EFT containing
all significant parameters for solar axion searches is therefore given by

L⊙ =1
2(∂µa)2 − 1

2m
2
aa

2 − gaγγ

4 aFµν
˜︁F µν +

∑︂
f=e,n,p

gaf

2mf

(∂µa) f̄γµγ5f , (7.1)

where the sum in the fermion interactions term runs over electron, neutrons and
protons. For the purposes of this chapter, the common phenomenological couplings
constants gaγγ and gae, which are proportional to the inverse of the axion decay
constant, were chosen instead of the dimensionless cγγ and cf . Furthermore, the
derivative basis for fermionic couplings is a convenient choice. This way there are
no sizeable contributions to the axion-photon coupling from triangle diagrams of
charged fermions if the momentum transfer is small compared to the mass of the
electron [114]. This limit can safely be taken for all of the interactions considered
below.

All axion production processes can be categorized by the coupling constant in-
volved. At leading order in 1/fa this can only be one of the three options – gaγγ, gae

or nuclear interactions quantified by gan and gap. All processes which are explicitly
computed in this thesis are depicted in figure 7.1. Some additional contributions
will be considered as corrections and their size is only parametrically estimated in
section 7.3.

If a solar axion is supposed to be detectable in a helioscope, it must be lighter
than ∼ 1 eV (see section 4.2). This motivates to only consider highly relativistic
axions in the calculation of axion production rates because they are produced with
typical energies of ω ∼ keV ≫ ma. All of the following calculations are performed
in this limit.
43The code has been made available as open source software at https://github.com/sebhoof/

SolarAxionFlux.
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Figure 7.1. Diagrams of all relevant axion production processes [13, 105, 231] inside
the Sun. In the second diagram, B⃗ denotes the macroscopic magnetic field inside the
Sun. I stands for an arbitrary chemical element. It can be in an atomic (I∗) or nuclear
(I†) excited state. Electromagnetically bound states are indicated by many photon lines.
The two diagrams including this illustration are not to be strictly understood as Feynman
diagrams. For simplicity, only simply-charged ions or neutral elements are depicted, but
all processes can also occur with elements in higher ionisation states.

7.1.1 Primakoff effect in a non-degenerate plasma
The Primakoff effect is the most relevant production mechanism of axions coupled
to photons. The Feynman diagram of the process is shown in the top left corner of
figure 7.1. It can be understood from a semi-classical standpoint as an excitation of
the electromagnetic field inside the plasma – called a plasmon – converting into an
axion in the electromagnetic field of electrons or ions.

This effect has always been the focus of solar axion searches, because a non-
vanishing tree-level coupling to photons is a generic prediction of QCD axions due
to the model-independent contribution in equation (3.31). Furthermore, helioscope
detection anyway requires a non-vanishing gaγγ and therefore it is the only coupling
constant which can be constrained individually.

The first calculation of the Primakoff production rate per axion phase space (ΓP
a ) to

include the charge screening effect in the solar plasma was performed by Raffelt [231,
353]. His result can be expressed in terms of the Debye screening scale κs, the plasma
temperature T , the axion energy ω, the number density of free electrons ne and the
axion-photon coupling gaγγ as

ΓP
a (ω) = g2

aγγαEM
ne + n̄

8

[︄(︄
1 + κ2

s
4ω2

)︄
ln
(︄

1 + 4ω2

κ2
s

)︄
− 1

]︄
2

eω/T − 1 . (7.2)

n̄ is defined as the sum of number densities of each ion (nz), weighted by the square
of its electric charge (Q2

z) in units of the elementary charge squared,

n̄ ≡
∑︂

z

Q2
z nz . (7.3)
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The index z labels all different types of ions in the plasma. It is important to note
that not all nuclei are fully ionised even in the centre of the Sun and therefore Qz is
not simply given by the atomic number. How to evaluate n̄ is further discussed in
section 7.1.6. In the non-degenerate limit, the Debye scale, which quantifies the size
of the screening charge cloud, can be computed from the temperature and densities
as [231]

κ2
s = 4παEM

T
(ne + n̄) . (7.4)

Note that in order to arrive at equation (7.2), Raffelt worked in the limit of a
static screening potential during each scattering event. A first-order approximation
beyond this strict limit is introduced in appendix E. The resulting corrections are
parametrically estimated and enter the list of systematic uncertainties in table 7.3.

The rate in equation (7.2) also assumes a linear dispersion relation for the scatter-
ing photons. This is however not the case inside a plasma, in which the dispersion
relation in the non-relativistic44 and non-degenerate limit is given by [233]

ω2 = ω2
pl + k2

γ , (7.5)
where kγ is the photon momentum, which is identical to ω in vacuum, and ωpl
denotes the plasma frequency. This relation is also not exact, but higher-order
corrections are suppressed by powers of temperature over electron mass T/me. The
size of these corrections and their impact are discussed in section 7.3. ωpl is given
by [233]

ω2
pl = 4παEM

me

ne , (7.6)

The non-trivial dispersion relation of plasmons can have a large effect when ω ∼ ωpl
and therefore equation (7.2) is only valid in the limit ω ≫ ωpl. In fact, the rate has
to vanish for ω < ωpl since plasmons of energy smaller than the plasma frequency
do not exist. The full result including the dispersion relation (7.5) was found to
be [347, 354]

ΓP
a (ω) = g2

aγγαEM
ne + n̄

8

[︄
1
2

∫︂ 1

−1
dx 1 − x2

(ξ1 − x)(ξ2 − x)

]︄
2

eω/T − 1
dkγ

dω (7.7)

with ξ1 ≡ k2
a + k2

γ

2kakγ

and ξ2 ≡ ξ1 + κ2
s

2kakγ

. (7.8)

ka denotes the axion momentum, which is equal to ω in the relativistic limit. For the
numerical evaluation, it is useful to perform the integral analytically. This results
in the rate

ΓP
a (ω) =g2

aγγαEM
ne + n̄

8
2

eω/T − 1
ω

kγ

×
⎡⎣(ξ2

1 − 1) ln
(︂

ξ1+1
ξ1−1

)︂
− (ξ2

2 − 1) ln
(︂

ξ2+1
ξ2−1

)︂
2 (ξ1 − ξ2)

− 1
⎤⎦ . (7.9)

44Non-relativistic refers to the velocities of charges, i.e. electrons and nuclei in the solar plasma.
The electromagnetic field excitations called plasmons can still propagate at highly relativistic
speeds.
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Note that this equation is only valid for ω > ωpl and it goes to zero in the limit
ω → ωpl. For smaller ω, the rate can be directly set to zero.

All in all, the Primakoff production rate in a non-degenerate and non-relativistic
plasma can be expressed in a closed form and, when all definitions introduced above
are inserted, it only depends on the three solar quantities T , ne and n̄. The compu-
tation of the last two of these is discussed in section 7.1.6.

7.1.2 Primakoff effect including partial degeneracy
The calculation of the Primakoff rate in the previous section assumed free charges
to be non-degenerate inside the Sun. The electron gas is however partially degener-
ate [233], which can have an impact at the percent level on quantities like the Debye
scale, the plasma frequency as well as the total scattering rate.

In order to include these corrections, one has to evaluate the phase space integrals
of initial and final state electrons using the full Fermi-Dirac distribution,

f(p) = 1
e(E(p)−µ)/T + 1 , (7.10)

where E denotes the energy as a function of momentum p and µ is the chemical
potential. From this, one can find the total number density of electrons in the
non-relativistic limit as [355]

ne = 2
(︃
meT

2π

)︃3/2
FFD

1/2(z) , (7.11)

where z = (µ−me)/T and the Fermi-Dirac integral is defined as

FFD
j (z) ≡ 1

Γ(j + 1)

∫︂ ∞

0
dt tj

et−z + 1 = −
∞∑︂

k=1
(−1)k exp(z)k

kj+1 . (7.12)

Γ denotes the usual gamma function. The two parameters ne and T , which are
required for the computation of the Primakoff rate, are given by the solar model.
This means that in order to find the distribution function f(p), one has to solve
equation (7.11) for µ, which is a straightforward numerical task.

Once f(p) is known, the full expression for the screening scale including the de-
generacy can be evaluated. It is given by [233]

κ2
s = 4παEM

T
n̄+ 4αEM

π

∫︂ ∞

0
dp f(p) p

(︂
v + v−1

)︂
, (7.13)

where v = p/E = p/
√︂
m2

e + p2 is the electron’s velocity. Note that the contribution
from ions in the plasma is unaffected. This is because their mass is at least a factor
of 2000 larger than me and they are thus highly non-degenerate. One can also check
that in the Boltzmann limit of f(p) ∝ e−p2/2me the expression in equation (7.4) is
reproduced. Degeneracy effects become most important close to the core of the Sun,
where the largest reduction of κs compared to equation (7.4) is numerically found
to be 1.2 %. The correction is comparably small because electrons only contribute
∼37 % to the total value of κ2

s in the core. This is illustrated in figure 7.2.
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Figure 7.2. Relative contributions of electrons, H, He and heavier elements (metals) to
κ2

s according to equation (7.13) for the AGSS09 model.

The same rationale as for the Debye scale can be applied to the plasma frequency.
ωpl is given in terms of f(p) with an arbitrary degree of degeneracy as [233]

ω2
pl = 4αEM

π

∫︂ ∞

0
dp f(p) p

(︃
v − 1

3v
3
)︃
. (7.14)

The crucial difference compared to the Debye scale is that only positive powers of
the velocity v appear in the integrand. Because degeneracy effects are strongest at
small velocities, i.e. for low-energy states, the plasma frequency is less affected by
the partial degeneracy even though it does not receive a contribution from the non-
degenerate ions. The largest relative difference between the full expression and the
approximation in equation (7.6) is found to be of order 10−3. Nonetheless, all of the
following numerical calculations work with the full expression including degeneracy
corrections.

Another effect of the degeneracy is the occupation of phase space for outgoing
particles in scattering processes – called Pauli blocking. The electron occupation
numbers can reach up to ∼0.2 in the solar core, which makes this suppression non-
negligible for processes including final states with small momentum. To compute
the size of the effect, one can apply a similar strategy like the one in ref. [233] in the
context of Coulomb scattering. To start with, a suppression factor Fdeg is defined,
which reduces the rate of scattering events with electrons by replacing

ne ↦→ Fdeg ne , (7.15)

in equation (7.9). The suppression via Pauli blocking is given by the ratio of scat-
tering rates with and without a factor of (1 − f(p2)) in the phase space integrals,

Fdeg =
∫︁∞

0 dp1
∫︁ 1

−1 dy
∫︁ 1

−1 dx f(p1) (1 − f(p2)) dσ
dΩ∫︁∞

0 dp1
∫︁ 1

−1 dy
∫︁ 1

−1 dx f(p1) dσ
dΩ

, (7.16)

where p1 and p2 are the incoming and outgoing electron momenta, respectively.
The integrals over y ≡ cos θ12 and x ≡ cos θ are averages of the angle between
the incoming momentum and the momentum transfer θ12, as well as the scattering
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Figure 7.3. The effect of partial electron degeneracy on the Primakoff production rate
Left: Energy-averaged electron degeneracy factor for the solar model AGSS09 (black line).
The shaded grey region indicates the range of values of Fdeg between 1 keV–10 keV. Right:
Primakoff flux reduction (in percent) due to all degeneracy effects in the energy range of
interest and for the AGSS09 model.

angle θ of the plasmon converting to an axion. f(p) is the Fermi-Dirac distribution
as in equation (7.10) and dσ

dΩ is the differential Primakoff cross section from the
integrand of equation (7.7),

dσ
dΩ = αEM

32π g
2
aγγ

1 − x2

(ξ1 − x)(ξ2 − x) . (7.17)

Energy and momentum conservation lead to the relations,

p2
2 = p2

1 + 2 p1q cos θ12 + q2 , (7.18)

and (︃
q

ω

)︃2
= 2 −

(︃
ωpl

ω

)︃2
− 2

√︄
1 −

(︃
ωpl

ω

)︃2
cos θ , (7.19)

where q is the transferred momentum and ω the axion energy. By plugging these
identities into the expression for Fdeg, the integrals can be computed numerically45

for a given distance from the solar core r and axion energy ω. At the centre of the
Sun, Fdeg is found to be ∼ 0.87 with only weak dependence on ω in the relevant
energy range of 1 keV to 10 keV. To slightly simplify the calculation, it is sensible to
average over Fdeg in this energy range and to assume it to be a constant in ω from
now on. The range of true values as well as the average as a function of r is given
in the left panel of figure 7.3.

Finally, all of the degeneracy effects mentioned in this section can be combined to
find the relative reduction of the total Primakoff flux as a function of axion energy.
This is plotted in the right panel of figure 7.3. The integrated Primakoff flux in the
relevant energy range is reduced by about 2.6 %. These effects have previously not
been accounted for.
45Note that the integrals over x = cos θ in both the numerator and denominator, as well as the

integral over y = cos θ12 in the denominator, can be performed analytically to reduce the
dimensionality of the numerical integral.

85



7.1.3 Plasmon conversion in the solar magnetic field
In addition to the electromagnetic interactions on atomic distance scales, the Sun
is also permeated by a large scale macroscopic magnetic field. Inside of this field,
propagating plasmons can convert to axions, which is the reverse of the process
taking place in axion helioscopes. This production mechanism has lately gained
renewed attention because axions from plasmon conversion may come within reach
of observations in the not-so-distant future [347, 356] and because it may be relevant
for stellar energy loss arguments [356, 357].

Because of the effective mass of plasmons (see the non-linear dispersion relation in
equation (7.5)), they exist in both transverse and longitudinal polarisations, which
have to be considered separately. The conversion rate of longitudinal plasmons into
axions was found to be [347, 356]

ΓLP
a (ω) =

g2
aγγB

2
∥

eω/T − 1
ω2ΓL

(ω2 − ω2
pl)2 + (ωΓL)2 , (7.20)

where B∥ is the magnetic field strength projected onto the propagation direction
of the plasmon and ΓL is the total collision rate of longitudinal plasmons with any
scattering partner in the plasma. The resulting rate ΓLP

a is dominated by the reso-
nance at ω = ωpl and ΓL merely defines the width of this peak, which is typically
too narrow to be resolved. Because the total flux is independent of ΓL a detailed
evaluation of its value is not strictly necessary.46 For the same reason, ΓLP

a was
approximated as a delta function in refs. [347, 356, 357]. Since the energy of ax-
ions produced in this process is defined by the plasma frequency, which reaches a
maximum of ωpl ≲ 0.3 keV in the solar core, longitudinal plasmon conversion only
contributes at small energies. The resulting spectrum is not monochromatic but
features peaks. Their position is given by the plasma frequency at radii with the
strongest magnetic field.

Far from resonance, the conversion rate of longitudinal plasmons is strongly sup-
pressed. This is due to their peculiar dispersion relation. In the limit of non-
relativistic, non-degenerate electrons and to leading order in T/me, it is [233]

ω2 = ω2
pl

(︄
1 + 3 k

2

ω2
T

me

)︄
. (7.21)

Because T ≪ me, the second term in parentheses can be neglected for momenta
of the order of the energy and the relation reduces to ω ≈ ωpl [233, 357]. This is
exactly the resonance condition. The second term only becomes relevant, when the
phase velocity k/ω reaches values of the order of the thermal velocity of electrons
v∗ ∼

√︂
T/me [233]. At this point the plasmon four momentum crosses the electron

cone, which means that a large number of electrons fulfils the Cherenkov condition.
This causes Landau damping [233, 358] and leads Raffelt to the conclusion that no
organised oscillations exist at k ≳ ω/v∗ [233]. For the calculation of the axion
46The tiny width of the resonance can lead to very slow convergence of numerical integrals. ΓL

was therefore set to max(ΓT, 0.1 eV) by hand, which improves convergence and does not alter
the total number of axions produced.
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flux, this means that it is sufficient to integrate equation (7.20) over a small region
around the resonance. All additional off-resonance contributions are expected to be
completely negligible.

The behaviour of transverse plasmons is much closer to the usual intuition. Their
dispersion relation is given in equation (7.5), which illustrates that the plasma fre-
quency acts as an effective mass of transverse electromagnetic excitations in the
plasma. As a consequence, resonant conversion is only possible when the axion is
massive with ma = ωpl. The corresponding rate is given by [347]

ΓTP
a (ω) =

2 g2
aγγB

2
⊥

eω/T − 1
ω2ΓT

(ω2
pl −m2

a)2 + (ωΓT)2 . (7.22)

B2
⊥ is the average square of the magnetic field projected onto the polarisation vector

as defined in ref. [347]. ΓT is the collision rate of transverse plasmons and the prefac-
tor of two accounts for the two linearly independent polarisation states. Because this
chapter is only concerned with axions which may be detectable in helioscopes, the
possible resonance at ma = ωpl ∼ 100 eV is of no interest. Instead, equation (7.22) is
taken in the limit ma → 0, where the axion production rate becomes approximately
proportional to the collision rate ΓT. This means that unlike for the longitudinal
plasmons, the rate ΓT is highly relevant for computing the off-resonance contribu-
tion of transverse plasmons. In addition, ΓT is a frequency-dependent quantity. It
can, however, be deduced from the monochromatic opacity κ(ω), which is defined
as the absorption coefficient k (inverse of the mean free path) per plasma density ρ,

κ(ω) = k(ω)
ρ

. (7.23)

The total collision rate is then given by [357]

ΓT = k(ω)
(︂
1 − e−ω/T

)︂
= κ(ω) ρ

(︂
1 − e−ω/T

)︂
. (7.24)

Details about different opacity codes are given in sections 7.1.4 and 7.2.
The calculation in this thesis, which was published before submission in ref. [3],

is the first to incorporate monochromatic opacities. Previously, the Rosseland mean
opacity κR has been used for all frequencies [357]. It is defined by an integral over
the monochromatic opacity as [359]

1
κR

=
∫︂ ∞

0

R(ω/T )
T κ(ω) dω , (7.25)

where R is the Rosseland weight function,

R(u) ≡ 15
4π4

u4 eu

(eu − 1)2 . (7.26)

Rosseland opacities are a powerful tool for computing the radiative energy transport
in stellar plasmas. For the purpose of calculating the off-resonance spectral axion
flux, it is however not justified to replace the monochromatic κ(ω) by a frequency av-
eraged quantity. This distinction is highly relevant because the two results differ by
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Figure 7.4. Axion flux from longitudinal (LP) and transverse (TP) plasmon interactions
for gaγγ = 10−10 GeV−1. The blue and purple shaded contours show the LP and TP flux
between the minimal and maximal B-field reference values, respectively, using monochro-
matic opacities κ(ω, r). Dotted lines show the LP and TP fluxes computed with Rosseland
mean opacities. The Primakoff flux is plotted as a dashed black line for comparison.

more than three orders of magnitude at specific energies. In addition, the monochro-
matic opacity has some distinct features like peaks from atomic transitions. These
should also be visible in the resulting axion flux as shown in figure 7.4.

To finally compute the spectral flux from plasmon conversion requires a model
of the internal solar magnetic field. Despite the fact that many solar quantities
are known with high precision (see section 7.2), the magnetic field is still poorly
constrained [347, 360]. This is also why it has been suggested to use the axion flux
as a probe of solar magnetic fields instead of the other way around [347]. In this
work, the magnetic field model used in ref. [347] is adopted for concreteness and in
order to obtain comparable results. It postulates a toroidal field with

B⃗(r⃗) = −3B(r) cos θ sin θ êϕ , (7.27)

where θ is the azimuthal angle inside the Sun. The normalization is given by

B(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Brad(1 + λ)(1 + 1
λ
)λ
(︂

r
rCZ

)︂2
[︃
1 −

(︂
r

rCZ

)︂2
]︃λ

for r < rCZ − dtach

Btach

[︃
1 −

(︂
r−rCZ
dtach

)︂2
]︃

for |r − rCZ| < dtach

Bouter

[︃
1 −

(︂
r−rupper

dupper

)︂2
]︃

for |r − rupper| < dupper

0 otherwise

,

(7.28)

with λ ≡ 10 rCZ

R⊙
+ 1 . (7.29)

Here, rCZ ≈ 0.712 R⊙ is the approximate radius of the radiative zone, rupper ≈
0.96 R⊙ is the nominal beginning of the outer layers of the Sun while dtach ≈ 0.02 R⊙
and dupper ≈ 0.035 R⊙ are the shell thickness of the tachocline and the outer layers
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of the Sun, respectively. Again, for comparability, the same ranges for the B-
field normalizations as considered in figure 3 of ref. [347] are chosen. These are
Brad ∈ [200 T, 3000 T], Btach ∈ [4 T, 50 T] and Bouter ∈ [3 T, 4 T].

The results for the spectral axion flux from conversions of longitudinal and trans-
verse plasmons47 are plotted in figure 7.4. For comparison, the Primakoff flux and
the approximation using Rosseland opacities are also shown. The large possible
range of plasmon flux values for a given energy is due to the fact that the normal-
ization of the large-scale solar magnetic field is so poorly constrained.

Like the Primakoff effect, plasmon conversions are due to gaγγ and the resulting
flux is subject to large uncertainties. They should, however, not simply be regarded
as corrections or sources of uncertainty of the Primakoff prediction. This is because
the peaks in the axion spectrum corresponding to longitudinal plasmon conversion
are well separated from the bulk of the Primakoff contribution and they can therefore
be detected independently. As it was pointed out in ref. [347], this would enable a
measurement of the magnetic fields in the deep solar interior. Such a measurement
would also allow for a more accurate prediction of the non-resonant conversion rate of
transverse plasmons. In addition, the angular distribution of the flux from plasma
conversions depends on the geometry of the solar magnetic field. This results in
an anisotropic axion emission and an annually oscillating flux on Earth, providing
another handle to distinguish plasmon conversions from the Primakoff flux [347]. In
the following, the uncertainty of the Primakoff flux is therefore evaluated without
taking plasmon conversion into account. Nonetheless, the relative strength of the
two fluxes at specific energies and averaged over the whole spectrum is given in
table 7.3.

7.1.4 Axion-electron interactions
The solar plasma contains large numbers of free and bound electrons constantly
interacting. It is therefore natural to expect various relevant production processes
of axions if they are coupled to electrons. In fact, all SM scattering processes
taking place inside the Sun have an axion equivalent. This is the same process
but with an outgoing photon or plasmon being replaced by an axion. Because the
axion is a scalar particle, the spin structure of these processes differs from their SM
counterpart. The diagrams of the relevant contributions involving axion-electron
interactions are shown in figure 7.1. In combination, the resulting flux is often
referred to as ABC flux.

Some of the production rates, such as electrons scattering off nuclei (ff), elec-
tron bremsstrahlung (ee) and the Compton effect (C) can be computed analytically
similar to the Primakoff rate. As before, screening of scattering potentials has to

47The result in figure 7.4 differs from the one in ref. [347] by a constant factor. This due the
geometrical factor, which is required to calculate the time averaged flux on Earth from ΓLP

a as
discussed in section III D of ref. [347]. It is left out here because it depends on the data taking
times throughout the year and therefore is – at least slightly – different for each experiment.
Instead, the flux averaged over all emission directions from the Sun is shown, for which the
geometric factor was found to be 1/3 in ref. [357]. To recover the result in ref. [347], one has
to multiply the spectrum labelled LP in figure 7.4 by 3 × 1.8.
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be taken into account for processes taking place inside a plasma. The most recent
evaluations of these rates were given in ref. [105] as

Γff
a,z(ω) = g2

ae α
2
EM

8π
3
√

2π
Q2

znzne√
Tm

7/2
e ω

e−ω/T I(ω/T, y) , (7.30)

Γff
a(ω) =

∑︂
z

Γff
a,z , (7.31)

Γee
a (ω) = g2

ae α
2
EM

4
√
π

3
n2

e√
Tm

7/2
e ω

e−ω/T I(ω/T,
√

2y) , (7.32)

ΓC
a (ω) = g2

ae αEM
ne

3m4
e

ω2

eω/T − 1 , (7.33)

where the auxiliary screening function is defined as48

I(u, y) =
∫︂ ∞

0
dx x e−x2

∫︂ √
x2+u+x

√
x2+u−x

dt t

(t2 + y2) , (7.34)

and the parameter y is given by

y ≡ κs√
2meT

. (7.35)

z runs again over all types of nuclei. The only difference to ref. [105] is that this
thesis uses a different screening prescription, which changes the integrand in the
function I. This is because charge screening for bremsstrahlung is best described by
an effective form factor q2/(q2 +κ2

s ) in the transition amplitude. q is the transferred
momentum, i.e. the momentum of the exchanged plasmon. Ref. [105] used the square
of this factor. The two choices correspond to either taking the average over charge
distributions at the level of the matrix element squared or the matrix element itself.
Following the arguments given in refs. [231, 233, 361], the former description is better
if the time it takes for the scattering electron to cross the potential is smaller than
the typical timescale of screening cloud formation. While both are approximations,
the one used in this thesis should be more appropriate for bremsstrahlung processes.
This is taking into account that slow moving ions are responsible for the bulk of the
screening effect. Nevertheless, a more systematic investigation of the form factor
could be beneficial. For the purpose of this thesis, it suffices to numerically compare
the two screening prescriptions. The integrated ABC flux following equations (7.30)
to (7.33) between 1 keV and 10 keV is about 5.7 % larger compared to the one with
the form factor used in ref. [105]. The spectral flux within the same energy range
differs by at most 26 %.

The partial degeneracy of electrons can also affect the rates above. On the one
hand, the screening scale is modified as described in section 7.1.2. This effect is
included in all of the following results. On the other hand, screening leads to signif-
icant Pauli blocking because all three processes contain at least one electron in the
final state (see also refs. [233, 362]). The size of the resulting correction is estimated
in section 7.3 and contributes to the overall uncertainty of the ABC flux.
48The second integral can be computed analytically, which is beneficial for numerical evaluations

of the production rates.
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All of the processes mentioned so far do not depend on the details of the atomic
structure, which makes the calculation of these production rates comparably simple.
This is not the case for bound-bound (bb) and free-bound (fb) transitions. A first
spectral evaluation of the corresponding rates was performed by Redondo in ref. [105]
by relating the axion production to the monochromatic opacity κ as defined in
equation (7.23). This can be done in two steps. First, the photon absorption rate
(quantified by the opacity) is related to the photon production by detailed balance
under the assumption of local thermal equilibrium [105]

Γi
γ, abs e

−ω/T = Γi
γ, prod . (7.36)

Γi
γ, abs and Γi

γ, prod are the absorption and production rates per photon phase space
for process i (with i = bb, fb,ff), respectively. The factor e−ω/T is required in order
to have the same overall production and absorption rates per solar volume, taking
into account stimulated emission as well as the thermal occupation number. All of
the following rates will be production rates, which is why the subscripts are dropped.
In a second step, the ratio of axion to spin averaged photon production was found
for each of the three types of atomic processes as [105]

Γi
a

Γi
γ

= 1
8π

g2
aeω

2

αEMm2
e

. (7.37)

So by going from absorption to production and from photons to axions, the total
ABC emission rate of axions ΓABC

a can be expressed in terms of the monochromatic
absorption coefficient k(ω) as well as the Compton and ee bremsstrahlung rates [105],

ΓABC
a ≡ Γff

a + Γfb
a + Γbb

a + ΓC
a + Γee

a (7.38)

= 1
8π

g2
aeω

2

αEMm2
e

k(ω)
eω/T − 1 + 1

2
eω/T − 2
eω/T − 1ΓC

a + Γee
a . (7.39)

For details of the derivations the reader is referred to ref. [105]. This final expression
can be used whenever the total monochromatic opacity of a plasma is available.
Luckily, the opacity is a crucial ingredient for solar modelling since it determines
the amount of energy transport by radiative diffusion. Accordingly, large efforts have
been made to compute opacities of stellar plasmas (see refs. [359, 363–367] for an
overview of works in this direction). These calculations include the aforementioned
atomic structures as well as plasma effects. Opacity tables calculated by the opacity
project (OP) even quote the contributions of each element separately. In this case,
Redondo suggests [105] to calculate the ff processes involving hydrogen and helium
directly with equation (7.31) and only include the opacities from elements heavier
than helium in the first term of equation (7.39) while adding the full Compton rate.
This thesis follows this suggestion whenever possible.

7.1.5 Axion-nucleon interactions
The final axion interactions considered for the calculation of the solar axion flux are
the ones to nucleons. In principle, these allow two types of production mechanisms
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to take place. Axion emission in nuclear fusion or decay processes as well as thermal
excitation and subsequent deexcitation of nuclei of stable isotopes.

Axions produced in nuclear fusion and decay processes typically carry an energy
of the order of MeV. For instance, the axion flux from the p+d → 3He+a (5.5 MeV)
reaction, which provides one of the most intense axion fluxes from nuclear reactions,
has been experimentally searched for using Borexino [368] and SNO [369] data. In
principle, helioscopes could also detect such high-energetic axions when they are
equipped with a gamma-ray detector [204], but the resulting bounds are relatively
weak.

The second option turns out to be more promising. Some isotopes with a signifi-
cant abundance inside the Sun feature low-lying nuclear transitions, which can be
thermally excited. In the past, the two candidates 57Fe [370, 371] and 83Kr [372]
were identified. The corresponding transition energies E∗ are 14.4 keV and 9.4 keV,
respectively. In comparison to the solar core temperature of ∼ 1.3 keV, this is still
large, but the excited states will have a non-negligible occupation number that can
be calculated from a Boltzmann distribution. It is easy to acknowledge that the
amount of axions produced is proportional to the occupation number, the isotope
abundance and the inverse lifetime of the excited state. By combining a list of
possible elements and their nuclear transitions [373] with solar abundances [374],
it becomes clear that for IAXO the lowest transition of 57Fe would produce the
strongest signal (see appendix F for more details). In the following, this will be the
only isotope under consideration, but the calculation would be completely analogous
for all other possible transitions.

Axion-nucleon interactions were defined in the derivative basis in equation (7.1).
For calculating nuclear transition rates, they are commonly rewritten as

LaN = −iaN̄γ5
(︂
g0

aN + g3
aNτ

3
)︂
N . (7.40)

N = (p, n)T denotes the nucleon doublet and g0
aN and g3

aN are the iso-scalar and iso-
vector couplings, respectively. τ 3 is the third Pauli matrix. Note that the transition
from derivative to Yukawa-type interactions is justified as long as the difference in
anomalous gauge boson couplings does not enter the calculation.

The axion-to-photon branching ratio for the decay rates of the first excited state
of 57Fe can then be expressed as [375, 376]

Γa

Γγ

=
(︄
ka

kγ

)︄3 1
2παEM

1
1 + δ2

⎡⎣ β g0
aN + g3

aN(︂
µ0 − 1

2

)︂
β + µ3 − η

⎤⎦2

, (7.41)

where ka, kγ are the axion and photon momenta, µ0 and µ3 are the isoscalar
and isovector nuclear magnetic moments (expressed in nuclear magnetons), δ is
the E2/M1 mixing ratio for the 57Fe nuclear transition and β and η are constants
dependent on the nuclear structure [376]. The values of the isotope dependent con-
stants were reevaluated in ref. [377]. Using these and taking the relativistic limit
(ka/kγ) → 1, the branching ratio becomes

Γa

Γγ

= 2.32
(︂
−1.31 g0

aN + g3
aN

)︂2
(7.42)

= 2.32 (0.16 gap + 1.16 gan)2 . (7.43)
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The second line reinstates the coupling constants as defined in equation (7.1) by
using the identities

gan = g0
aN − g3

aN , (7.44)
gap = g0

aN + g3
aN . (7.45)

It is convenient to define the combination appearing in the branching ratio as an
effective axion-nucleon coupling,

geff
aN = 0.16 gap + 1.16 gan , (7.46)

which is specific to this transition. Notably, the updated branching ratio cited here
is 27 % larger than the one found in ref. [375], which was used in the analyses of
refs. [203, 212, 378].

From the branching ratio, the axion emission rate per unit of solar mass can be
computed as

Na = N ω1(T ) 1
τ0

1
1 + α

Γa

Γγ

, (7.47)

where N is the 57Fe number density per solar mass, ω1 the occupation number
of the first excited state, τ0 the lifetime of the excited state and α the internal
conversion coefficient. ω1 is computed from a Boltzmann distribution as in ref. [203]
or in appendix F. The natural linewidth of the emission peak ∼ 1/τ0 is negligible
compared to the Doppler broadening σ given by

σ(T ) = E∗
√︄

T

mFe57
∼ 2 eV . (7.48)

This corresponds to a full width at half maximum (FWHM) of 2.35σ ∼5 eV. Using
this as the spectral shape, one can find the axion emission from the 57Fe transition
per axion phase space ΓFe57

a as

ΓFe57
a (ω) = (2π)3

4πω2 Na
1√
2πσ

exp
(︄

−(ω − E∗)2

2σ2

)︄
ρ . (7.49)

The first factor is required for the normalization of the ω integral, which will become
clear in the context of section 7.1.7. The quantities Na, ρ and σ are all functions of
the solar radius. One would not expect the Doppler broadened peak to be resolved
in most detection scenarios in which case only the total flux is of interest. The
integral over ω can then be performed analytically and only the one over the solar
radius remains to be evaluated numerically.

Note that this axion source is particularly sensitive to the solar temperature. The
reason for this is that the thermal occupation number ω1 ∝ e−E∗/T of the excited
nuclear state is highly suppressed. For instance, the latest high- and low-metallicity
solar models (B16-GS98 and B16-AGSS09 [379]) only differ by about 1 % in their
respective core temperature, but this alone results in a difference of 12 % in the total
flux.
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Because the 14.4 keV line from 57Fe is well separated from the rest fo the spectrum,
it is left aside in the following discussions of uncertainties and detection opportunities
of helioscopes, which are optimised for 1 keV to 10 keV. Instead, section 7.5 is entirely
focused on the kinds of experimental setups which could be sensitive to axions from
nuclear interactions.

7.1.6 Electron densities and ionisation states
All of the production rates derived in the previous sections depend on a small set
of solar plasma parameters. Besides the monochromatic opacity and the solar mag-
netic field, which require extra attention, these are the temperature T , the number
density of free electrons ne and the number density of ions weighted by their charge
squared n̄. Publicly available standard solar models only contain the values of T
at every radius, as well as other solar properties like density, pressure and element
abundances. The values of ne and n̄ are usually not tabulated and hence need to be
computed.

Using the information provided by the standard solar model format, there are two
ways to calculate ne. The first option is to neglect all elements heavier than helium
and to assume full ionisation. Under these assumptions, the electron density can be
computed from the matter density ρ and the mass fraction of hydrogen X as49 [231]

ne ≈ X + 1
2

ρ

mu

, (7.50)

where mu denotes the atomic mass unit. The reason why this approximation works
very well is that it is exact for fully ionised hydrogen and helium, which together
account for more than 98 % of the total solar mass. Furthermore, the remaining
heavier elements also contribute at most one electron per two nucleons at full ioni-
sation, which is how they enter in the expression above.

The other option is to explicitly sum over all elements in the Sun and directly
assume full ionisation,

ne ≈
∑︂

z

z nz =
∑︂

z

z Xz
ρ

Azmu

. (7.51)

In this equation, Xz denotes the mass fraction of each element and Az is its standard
atomic weight. The resulting electron density only differs from the one computed
with equation (7.50) on the sub-percent level.

By construction, both of the approximations above must return a larger value than
the true one. For this reason, all following computations use the smaller value, which
is the one summing over all elements and assuming full ionisation in equation (7.51).

The next parameter n̄ appears both in the Primakoff rate (7.9) as well as in the
Debye screening scale (7.13). To calculate it, Raffelt used the same approximation

49This thesis adopts the commonly used notation of writing the mass fraction of all hydrogen
isotopes as X and the mass fraction of all helium isotopes as Y , which in turn defines the
metallicity Z ≡ 1 − X − Y .
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Figure 7.5. Radial dependence of various solar quantities. The solar model B16-AGSS09
was used for this plot [379]. The vertical, dashed grey lines in both panels correspond to
the radius below which 99 % of the total Primakoff and ABC fluxes are generated. Left
panel: The Primakoff (ΦP

a ) and ABC fluxes (ΦABC
a ) integrated to the given solar radius

as well as the solar temperature (T ), density (ρ) and plasma frequency (ωpl) with respect
to their maximum values. Right panel: Degree of ionisation, Qz/z, or various elements in
the Sun. The values were extracted from the OP code [365, 380].

as the one for ne in equation (7.50) [231]. This simply results in

n̄ =
∑︂

z

Q2
z nz =

∑︂
z

Q2
z Xz

ρ

Az mu

(7.52)

≈ ρ

mu

, (7.53)

where only the first two terms for hydrogen and helium (for which Q2
z/Az = 1) were

included in the second line and the metallicity was approximated with zero, i.e.
X + Y = 1. This approximation is however significantly less accurate for n̄ than
it is for ne. The reasons is that due to the square of charges, heavy elements can
contribute significantly to the total value of n̄ even though they only make up a
small fraction of the total density. Despite these heavy ions having large charges,
full ionisation is also not a good approximation. This can be intuitively seen by
comparing the full ionisation energies of heavy elements with the core temperature.
The former far exceeds the latter and it should hence not be expected that metals
are fully ionised in the solar plasma.

Because both of the previously successful approximations fail to give n̄ with suffi-
cient accuracy, the expectation value of Q2

z has to be computed for each element at
every solar radius. This can be done using data from the Opacity Project (OP) [380].
Besides calculating opacities for arbitrary chemical compositions of solar-like plas-
mas, the OP also provides tables of ionisation states for heavy ions in such plasmas.
These tables can be interpolated to calculate Q2

z as a function of T and ne. The
results for some relevant elements are plotted in the right panel of figure 7.5. Note
that due to the dependence of the ionisation on ne, the same method could not be
used for calculating ne itself. It is however possible to check the consistency of the
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calculation by comparing ne from OP data (using equation (7.51) as input) with
the full ionisation result. The relative difference does not exceed 0.2 % in the axion
production region. This is small enough for all current practical purposes and it
proves the consistency of the values adopted for ne and n̄.

Figure 7.5 illustrates the radial dependence of some important solar values as well
as the accumulation of the total axion flux inside the Sun. It is important to note
that most axions are generated inside the solar core (r/R⊙ < 0.25) and almost the
entire flux is emitted until about r/R⊙ = 0.5. The three flux components shown
in figure 7.5 are sorted by their energy. The 14.4 keV axions from 57Fe transitions
are only generated extremely close to the centre. Primakoff and ABC processes also
happen further outwards but it can be seen that the harder Primakoff spectrum is
produced more closely to the centre than the ABC flux. This observation is further
support for the assumption of full ionisation in the calculation of ne because this
approximation is better at high temperatures in the deep solar interior.

7.1.7 Integration of production rates over the solar model
Helioscopes can track and observe the whole or parts of the Sun throughout the
day. An accurate signal prediction requires a calculation of the spectral axion flux
generated inside the field of view. Because the distance of the Sun to Earth dE is
much larger than the solar radius, R⊙/dE ≈ 0.005, it is a good approximation to
assume that all axions are produced at the same distance from the experiment and
that parallax is negligible [202]. Using this, the total spectral flux dΦa/ dω can be
written as an integral of the production rate Γ over the solar volume V [105],

dΦa

dω = 1
4πd2

E

∫︂
dV 4πω2

(2π)3 Γ(ω, r) , (7.54)

where the first factor in the integrand accounts for the directional part of the phase
space integral over axion momenta (still assuming relativistic axions). dE is the
(averaged) distance between Sun and Earth during the observation50 and Γ can be
any (or the sum of all) of the production rates discussed earlier in this section.

In a spherically symmetric solar model, the integral becomes one-dimensional51

dΦa

dω = R3
⊙

4πd2
E

4πω2

(2π)3

∫︂ 2π

0
dϕ

∫︂ π

0
dθ sin θ

∫︂ 1

0
dr r2 Γ(ω, r) (7.55)

= R3
⊙ω

2

2π2d2
E

∫︂ 1

0
dr r2 Γ(ω, r) , (7.56)

where the radius r is expressed in units of the solar radius R⊙.
Depending on the optics used in a helioscope, it could be possible to resolve

different regions of the solar disc. As an example, one can consider a circular central
part of the solar disc with radius ρ1. In this case, it is convenient to perform the
50Throughout this work, all fluxes are computed with dE = 1 au ≈ 1.496 × 1011 m [381].
51The macroscopic magnetic field in equation (7.28) is not spherically symmetric. Hence, the

projected magnetic fields B⊥ and B∥ have to be averaged over plasmon directions and the
spherical shell inside the Sun, as it was done in refs. [347, 356, 357].
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integral in cylindrical coordinates, where r2 = ρ2 + z2 and |z| < zmax =
√

1 − ρ2

defines the solar sphere. The volume integral can then be written as

dΦa

dω = R3
⊙ω

2

(2π)3d2
E

∫︂ 2π

0
dϕ

∫︂ ρ1

0
dρ ρ

∫︂ zmax(ρ)

−zmax(ρ)
dz(ρ) Γ(ω, r) (7.57)

= R3
⊙ω

2

(2π)2d2
E

∫︂ ρ1

0
dρ ρ

(︄
2
∫︂ 1

ρ
dr

⃓⃓⃓⃓
⃓dzdr

⃓⃓⃓⃓
⃓ Γ(ω, r)

)︄
(7.58)

= R3
⊙ω

2

2π2d2
E

∫︂ ρ1

0
dρ ρ

∫︂ 1

ρ
dr r√

r2 − ρ2 Γ(ω, r) . (7.59)

In principle, a good resolution of this geometry with respect to ρ1 can give access
to the radial dependence of the emission rate Γ(ω, r).

7.2 Solar models and opacity codes
Solar models are the key input for calculating the solar axion flux. In this sec-
tion, all of the publicly available models with sufficient information to compute
the production rates are collected and qualitatively compared. This is followed by
a more in-depth quantitative analysis of associated uncertainties in the next sec-
tion. Table 7.1 provides an overview of the eleven models under consideration. The
first noteworthy difference is that some provide less information than others on the
abundances of heavier solar metals, e.g. Fe, which is of particular relevance for the
calculation of the ABC flux. Furthermore, all of the solar models available today fail
to consistently explain both seismological and photospheric measurements. This is
known as the solar metallicity or abundance problem [374, 382–386] in the literature
and it has so far not been fully resolved [387]. Table 7.1 clearly illustrates this by
showing whether a given model is in agreement with either seismological observa-
tions or photospheric data. Note also that this correlates with the overall metallicity
of the model. Models with larger values of Z tend to agree with helioseismology,
while low-Z models fit better to photospheric abundances.

The differences between solar models, has significant impact on the resulting axion
spectrum. This is shown in figure 7.6, where all fluxes except the 14.4 keV line52

are shown for all solar models listed in table 7.1. Since the BP and BS models do
not contain information on the abundance of heavier metals, the flux from axion-
electron interactions (ΦABC

a ) is missing contributions from these heavy constituents.
This results in the absence of peaks caused by atomic transitions and a reduction
of the smooth part of the spectrum by about 20–40 %. In the case of the Primakoff
spectrum, the deviations between BP/BS models and all other models enter through
differences in the Debye screening scale. The spectral flux can be up to about
12.5 % larger than the Primakoff flux from e.g. the B16-AGSS09 model. While
the differences are not as striking as they were for the ABC flux, the neglect of
heavier metals still causes a relatively large systematic difference. Since all of these
deviations are entirely due to a lack of information, it is clear that these models are
less suited for solar axion flux evaluations.
52This monochromatic line will be discussed in detail in section 7.5.
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Solar model Comments S Ph Z References

BP98 no heavier metals tracked ✓ ✗ 0.0201 [389]a

BP00 no heavier metals tracked ✓ ✗ 0.0188 [390]a

BP04 no heavier metals tracked ✓ ✗ 0.0188 [391]a

BS05-OP no heavier metals tracked ✓ ✗ 0.0190 [392]a

BS05-AGSOP no heavier metals tracked ✗ (✓) 0.0141

AGS05 ✗ ✓ 0.0140 [385]

GS98 ✓ ✗ 0.0188 [385, 388]b

AGSS09 same as AGSS09met ✗ ✓ 0.0150
AGSS09ph ✗ ✓ 0.0152

B16-GS98 updated version of GS98 ✓ ✗ 0.0188 [379]c

B16-AGSS09 updated version of AGSS09(met) ✗ ✓ 0.0150
a Model files available at www.sns.ias.edu/∼jnb/SNdata/solarmodels.html
b Model files available at wwwmpa.mpa-garching.mpg.de/∼aldos/solar_main.html
c Model files available at www.ice.csic.es/personal/aldos/Solar_Data.html

Table 7.1. List of the solar models considered in this work in order of their respective
publication date. Green ticks and red crosses denote, respectively, whether or not the
models (roughly) agree with helioseismological (“S”; high Z) or photospheric measure-
ments (“Ph”; low Z). In BP and BS models only a few metal abundances are tabulated.
These can therefore only agree with the photospheric measurements of these particular
metals, which is marked by a tick in parentheses. Z denotes the total mass fractions of
metals, which is larger than the surface metallicity (see refs. [385, 388]) due to diffusion
and gravitational settling [374].

In order to get a better idea of what the true systematic differences between
competing solar models is, figure 7.7 shows the deviations between models which
provide the most complete information on individual isotope abundances. Two
of them (GS98 and B16-GS98) fall in the high-Z category, while the other three
have a significantly lower values of Z. The deviations in the Primakoff flux are
typically a few, but no more than about 10 % and are most pronounced in the high
energy tail of the spectrum. The ABC flux shows a similar trend with deviations
up to about 15 %. In addition, the transition peaks are subject to particularly large
deviations. In conclusion, the choice of solar model has crucial influence on the solar
axion flux and systematic uncertainties related to the competing solar models are
more pronounced for the ABC than for the Primakoff flux.

In ref. [105] a powerful relation between the ABC axion flux and the monochro-
matic opacity was derived, which is reviewed in section 7.1.4. The required values
of the solar opacity can be computed using one of a number of available opacity
codes. Table 7.2 lists the ones considered in this thesis. The only code which is eas-
ily adoptable to arbitrary chemical compositions is the one by the opacity project
(OP). LEDCOP and ATOMIC also work for arbitrary mixtures but they can only
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Figure 7.6. Solar axion fluxes for different solar models between 0.1 keV and 10 keV,
using opacities from the OP code. Coupling constants were chosen as gae = 10−12 and
gaγγ = 10−10 GeV−1.

be generated via an online interface, which is unfeasible for the very large number of
different models that is considered in the next section. Finally, the OPAS collabo-
ration only provided monochromatic opacities for the AGSS09 model, but these are
not publicly available.

Following the same logic as before, figure 7.8 summarises how different opacity
codes affect the ABC flux, using AGSS09 as a reference solar model.53 At first sight
in the left panel of figure 7.8, the spectral flux agrees rather well – especially above
∼2 keV. Nevertheless, the relative differences are found as typically 10–20 % across
the whole energy range and there are additional huge deviations around some of
the peaks in the spectrum. The latter are particularly important for studying the
metal content of the Sun with suitable energy resolution [346] but become less of
an issue for integrated flux measurements. As pointed out in ref. [105], the OPAS
code is not fully applicable to the axion calculation below ∼2 keV. This is why the
resulting spectrum is also only plotted up to this energy in figure 7.8. Because of its
superior flexibility, the OP code is used in all of the following calculations and the
systematic uncertainties on the continuous part of the spectrum are quantified in
section 7.3. It should however be kept in mind that a different choice of opacity code
can significantly affect the outcome of a solar axion study, especially when peaks
from atomic transitions are investigated.

53Because the OPAS only provided data for the AGSS09 composition, this is the only possible
choice for a consistent comparison.
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Figure 7.7. Relative deviations in the axion flux from different solar models (compared
to the B16-AGSS09 model) for axion-photon interactions (left panel) and axion-electron
interactions (right panel).

Opacity codes Comments Arb. comp. References

OP ✓ [365, 380]

LEDCOP (✓) [366]a

ATOMIC (✓) [393]a

OPAS Only for AGSS09 comp. ✗ [367, 394]b

a Available at https://aphysics2.lanl.gov/apps/ .
b The monochromatic opacities for the AGSS09 composition are not publicly

available but were provided by C. Blancard and the OPAS collaboration.

Table 7.2. List of opacity codes considered in this work in order of their respective
publication date. Green ticks and red crosses denote whether or not it is possible to
calculate opacities for arbitrary solar composition. With the LEDCOP and ATOMIC
codes, this is only possible via an online interface.

7.3 Uncertainties of the solar axion flux
While it is interesting to compare how the solar axion flux differs for various solar
models and opacity codes, it is not sufficient as a complete representation of the total
uncertainty. Instead, it is necessary to investigate the intrinsic, statistical uncertain-
ties associated with a given combination of solar model and opacity code. Because
only the OP code allows for full flexibility regarding different solar compositions, it
is the natural choice as a benchmark for the opacity calculation.

The first two parts of this section focus on the uncertainties arising from the
modelling of the solar plasma properties. Systematic uncertainties of the calculation
are discussed in section 7.3.4. At all times the results come from the Primakoff rate
as in equation (7.7) including the electron degeneracy factor (7.15) and from the
full ABC flux (without Pauli blocking) (7.38). For simplicity, the flux from plasmon
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Figure 7.8. ABC flux (left panel) and relative deviations compared to the OP code (right
panel) for the AGSS09 model and different opacity codes. The low-energy region below
2 keV is excluded for OPAS because this is where this code may not be fully accurate [105].
In the right panel, the huge deviations (up to 440 %) for the Fe peak around 6.5 keV are
also not fully shown.

conversions and nuclear transitions are not included. This is because the plasma
conversion is much more strongly affected by the uncertainties in the modelling of
the solar magnetic fields and it is anyway expected to be subdominant in the 1 keV
to 10 keV range, see figure 7.4. The 57Fe line also lies outside of this range and its
phenomenological impact is separately discussed in section 7.5.

7.3.1 Solar model uncertainties
To explore how uncertainties of solar models translate into uncertainties of the solar
axion flux, one can exploit results produced by the authors of ref. [395]. They gener-
ated representative samples of about 10,000 solar models from a Monte Carlo (MC)
simulation. This was done using the Garching stellar evolution code [396]. It can
be used to evolve an initially homogeneous star over the full lifetime of the Sun.
By varying three free parameters (initial helium abundance, initial metallicity and
mixing length parameter), one can ensure that the model converges to the desired
present solar properties (luminosity, radius and chemical composition at the surface)
within a relative accuracy of 10−4, ending up with a realistic model for the current
state of the Sun. Apart from the three free parameters, which are varied in order
to fulfill the criteria of convergence, the procedure depends on a total of 21 input
parameters, which can have a strong effect on the final solar model. These include
rates of nuclear fusion reactions, solar properties (e.g. luminosity, age and diffusion
coefficient), chemical composition as well as opacities and equations of state. All of
these inputs come with their own uncertainty, which can be expressed in the form of
a set of independent probability distributions, one for each input parameter. For the
10,000 solar models in ref. [395] the input parameters are drawn from these proba-
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bility distributions, before applying the procedure summarised above. This method
ensures the generation of a statistically representative sample of solar models.

As mentioned earlier, the solar abundance problem [374, 382–386] currently still
persists, with models from the high-Z as well as the low-Z category being favoured
by helioseismology and photospheric observations, respectively. To cover both ex-
tremes, sets of 10,000 models are considered for one representative of each of the
two categories, namely AGSS09 (low Z) and GS98 (high Z).

The original idea of ref. [395] was to use this sample to quantify uncertainties
of the solar neutrino fluxes, helioseismological quantities and other characteristic
values such as the core temperature. Clearly, the approach is very flexible and
can readily be applied to solar axion fluxes. For this, updated sets of each of the
AGSS09 and GS98 solar model were kindly provided by the authors of ref. [395]. By
calculating all of the corresponding solar axion spectra as described in section 7.1, the
statistical uncertainty of the axion flux can be directly inferred from the statistical
uncertainties of the input parameters used to build a solar model. The MC samples
for solar models automatically take into account all possible dependencies between
the solar parameters that enter the axion flux calculation.

7.3.2 Opacity code uncertainties
In addition to the solar model, the ABC flux crucially depends on the adopted
opacities. This was already demonstrated by the direct comparison in figure 7.8.
Some of these large deviations can however be identified as unphysical [105] and it
would be desirable to have a more robust quantification of the actual uncertainties.

The benchmark opacity code throughout this work is the one by the OP because it
allows to compute opacities for arbitrary chemical compositions and therefore equa-
tion (7.31) can be used for all ff processes involving H and He. Furthermore, it is
possible, using the OP code, to calculate opacities for each mixture of the 2×10, 000
solar models individually. Most importantly, the OP does not make assumptions
or include effects that are fundamentally not applicable to axion production [105].
However, it does not supply its own uncertainty estimates of monochromatic opaci-
ties. In order to quantify these, one can exploit recent efforts in solar modelling, in
which uncertainties of the opacity input was carefully analysed [379]. It was argued
that opacity uncertainties are much larger at the bottom of the convective zone (CZ)
compared to the solar centre. This led ref. [379] to a temperature-dependent relative
opacity uncertainty δκ(T ), which can easily be adopted for the MC simulations of
this work. As suggested, a logarithmic interpolation between the uncertainty level
at the core (2 %) and at the bottom of the convection zone (7 %) is used. This means
the opacity from the OP κOP is modified as

κ(ω; T, ne) = κOP(ω; T, ne) (1 + δκ(T )) , (7.60)

where

δκ(T ) = a+ b
log10 (T0/T )

log10 (T0/TCZ) , (7.61)
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with log10(T0/TCZ) ≃ 0.9 and where T0 ≡ T (r = 0) is directly taken from the solar
model. For the MC simulation, a and b are drawn from normal distributions with
σa = 0.020 and σb = 0.067 [379], which reproduces the uncertainty levels in the core
and at the bottom of the convective zone.

The procedure above can directly be incorporated into the MC simulation. How-
ever, this applications differs from the one in solar modelling because it is applied
to monochromatic opacities. In solar modelling, on the other hand, one is mostly
interested in radiative energy transport, which is typically quantified by frequency
averaged opacities like the Rosseland mean (see equation (7.25)). One may therefore
wonder why the uncertainty estimation of the averaged opacity should be equally
applicable to the monochromatic one. In support of this, it can be argued that
the spectral shape of the opacity is also varied in the approach used here. This is
not done via equation (7.60) but through the variation of the chemical composition
within the set of 10,000 solar models. The full MC procedure does therefore not
merely rescale κ(ω) by a constant factor. Furthermore, it can be expected that the
method used here results in conservatively large uncertainties rather than an under-
estimation. The reason for this is that a large fraction of the opacity uncertainty
cited in ref. [379] actually stems from the uncertainty of the chemical composition.
By varying both composition and overall opacity, one is therefore more likely to
overestimate the total uncertainty.

These arguments only apply to the continuous part of the spectrum, where it is
very reasonable to assume that the uncertainty of the monochromatic opacity con-
tribution from one element is not much larger than the uncertainty of the Rosseland
mean. As shown in figure 7.8, the various opacity codes produce widely differ-
ent values at the peaks from atomic transitions. This has little to no influence on
the resulting frequency averaged opacities and it is therefore not included in the
uncertainty estimation above. This means that one can still only estimate the un-
certainty in the solar axion flux around the peaks by comparing different opacity
codes. Results from the MC simulation in the following section should therefore not
be understood as a complete estimation of the uncertainty at these transition ener-
gies. This also has consequences for solar axion searches: even if the peaks can be
experimentally resolved, the uncertainty in the opacity calculation causes problems
for abundance measurements of solar metals [346].

7.3.3 Results of the Monte Carlo simulation
Having established the MC procedure for both solar models and opacity evaluations,
the spectral axion fluxes can be calculated. This is done for a precise total of 9,979
realisation of AGSS09 and 9,971 of GS98. These are all of the models provided
by the authors of ref. [395]. The results are shown in figure 7.9, where the relative
differences of the two models are shown together with the 1σ deviation. Just like the
comparison in figures 7.7 and 7.8, the fluctuations are larger at higher energies. The
relative uncertainty is however significantly smaller and only reaches a few percent.
As one would expect from the greater complexity and higher number of processes
involved, the typical uncertainties for the ABC spectrum are generally larger than
for the Primakoff flux.
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Figure 7.9. Comparison of solar axion spectra calculated from the Monte Carlo simula-
tion. All values are plotted relative to the mean of the AGSS09 model. Mean values of
AGSS09 (red) and GS98 (blue) are shown as solid lines and ±1σ bands as dashed ones.
The transparent grey lines are 100 randomly chosen Monte Carlo samples of the AGSS09
model. Primakoff and ABC fluxes are shown in the left and right panel, respectively.

The total axion flux will in general be comprised of both Primakoff and ABC
spectra at an arbitrary ratio. To visualise how this affects the total uncertainty, it
is helpful to define the flux ratio γ as

γ ≡ ΦP
a

ΦABC
a

= 1.32
(︃

gaγγ

10−10 GeV−1

)︃2
(︄

10−12

gae

)︄2

. (7.62)

The numerical prefactor is obtained by integrating the spectrum between 0.1 keV
and 10 keV for the AGSS09 model and OP opacities. γ ≫ 1 or γ ≪ 1 corresponds
to the domination of Primakoff or ABC flux, respectively.

Figure 7.10 shows the relative uncertainties of the spectral flux as a function of γ.
Typical values are of the order of a few percent. Significantly larger uncertainties
only occur at the peaks in the ABC spectrum, where the systematic uncertainties
are larger anyway. In the limit of large or small γ, the values shown in figure 7.9
are recovered.

7.3.4 Discussion of additional uncertainties
The MC simulation above is able to account for the impact of statistical uncer-
tainties of the input data and parameters. There are, however, further systematic
uncertainties and corrections, which originate from the approximations employed in
the calculations of section 7.1. All of these corrections considered in this work are
listed in table 7.3 alongside the MC results for comparison.

Primakoff flux

Besides the Primakoff effect, there are other production processes based on the axion-
photon coupling which were neglected above. These comprise Compton scattering,
bremsstrahlung or atomic interactions which emit a photon and an axion instead of
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Correction/Uncertainty Order Averaged Maximal

Primakoff flux
Solar model uncertainty (systematic) ∼ 5.1 % ∼ 11 %
Solar model uncertainty (statistical) ∼ 1 % ∼ 2.5 %
Atomic transition (ff, bf, & bb)

emitting γ + a
< 0.2 % ∼ 4 %

Higher-order QED effects αEM < 0.7 % < 0.7 %
Electro-Primakoff effect < 4 × 10−5 < 0.4 %
Non-vanishing axion mass (ma ∼ eV) ma/ω < 0.1 % < 0.1 %
Inelastic Primakoff ≲ 0.1 % ≲ 0.1 %
Form factor for non-static charges ≲ 0.02 % ≲ 0.02 %
Full relativistic dispersion relation ≲ 5 × 10−6 ≲ 10−6

Non-resonant transverse plasmon conversion† 0.01 %–5 % 0.02 %–50 %
Resonant longitudinal plasmon conversion† < 2 × 10−6 < 0.7 × 10−4

Resonant longitudinal plasmon conversion
Solar magnetic field strength factor 225 factor 225

Non-resonant transverse plasmon conversion
Solar magnetic field strength factor 225 factor 225
Total scattering rate ΓT

(Rosseland mean vs. monochromatic) factor 2.2 factor 15.2

ABC flux
Solar model uncertainty (systematic) ∼ 5.4 % ∼ 19 %
Solar model uncertainty (statistical) ∼ 1.5 % ∼ 5 %
Opacity uncertainty (systematic) 1 %–3 % < 440 %
OP opacity uncertainty (statistical) ≲ 1 % ∼ 17 %
Born approximation in eqs. (7.31) & (7.32) ≲ 10 % ≲ 10 %
Electron degeneracy ≲ 7 % ≲ 8 %
Higher-order in multipole expansion

in equation (7.37) ω/(meZαEM) ≲ 2 % ≲ 7 %

Effects of relativistic electron ≲ 3 % ≲ 6 %
Higher-order QED effects αEM < 0.7 % < 0.7 %
Spatial & spin wave function non-separable En (ZαEM)2/n ≲ 0.5 % ≲ 0.5 %*

Non-vanishing axion mass (ma ∼ eV) ma/ω < 0.1 % < 0.1 %
† Plasmon fluxes are distinct and experimentally distinguishable from the Primakoff flux (see

section 7.1.3) and are therefore not strictly speaking corrections of the Primakoff flux. They
are only included here to quantify their potential relevance.

* The assumption of separability of spatial and spin wave functions only works if the atomic fine
structure is not resolved. In practice this limits the resolution to about ∼ 25 eV [397]. The
uncertainty given here corresponds to a spectrum smoothed out at this level of resolution.
With better resolution, the local uncertainty can be much larger.

Table 7.3. Corrections and uncertainties relative to the respective solar axion flux.
Where possible, a parametric estimate is provided next to the averaged and maximal
effect between 1 keV and 10 keV.
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Figure 7.10. Relative errors of the solar axion flux as a function of energy ω and flux
ratio γ. The density plot on the left is for the AGSS09 solar model. In the right panel,
both AGSS09 (red lines) and GS98 (blue lines) are included. Note that the systematic
uncertainties around the peaks can be notably larger than a few percent (see figure 7.8).

only a photon. The corresponding rates can in principle be calculated and included
but they come out as highly suppressed. This can be seen from an approximate
expression analogous to equation (7.37),

Γi
γ+a

Γi
γ

∼ g2
aγγ ω

2 , (7.63)

where i = bb, fb,ff,B,C. Because this has the same ω dependence as the ABC flux,
it becomes clear that this correction is most important at low energies. At 1 keV
it can reach a few percent while the effect on the overall flux becomes negligible at
less than 0.2 %.

The treatment in sections 7.1.1 and 7.1.2 always assumed the Primakoff effect to
be elastic. However, when the ion involved is not fully ionised, the Primakoff process
can be inelastic by transferring energy to an electron in the shell. The size of this
effect is again negligible, which can be seen from ref. [398], where inelastic scattering
was investigated in the context of the inverse Primakoff effect. It showed that the
inelastic Primakoff cross section is proportional to the incoherent scattering function
S(q), whose maximal value is given by the number of bound electrons z −Qz [399].
The inelastic Primakoff cross section in the plasma is hence at least suppressed by∑︁

z nz (z −Qz)2

ne + n̄
≲ 0.1 % . (7.64)

This suppression can also not be compensated by resonance effects because the
plasma frequency, which acts as an effective photon mass, prohibits that any such
resonances can take place.
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Another process which is not included in the calculation is the electro-Primakoff
effect [231]. It is an electron scattering off an ion or electron with an axion emitted
from the virtual photon propagator. The total energy emission related to this process
was already calculated in ref. [231]. In agreement with their result, it is found to
be completely negligible at the order of 4 × 10−5. To provide a rough estimate
on the correction at specific energies, one can allow for a relative scaling between
Primakoff and electro-Primakoff of ω2. This results in a maximal correction between
1 keV and 10 keV of 0.4 %.

Higher-order QED diagrams can also contribute to the Primakoff process. These
are at least suppressed by an additional factor of αEM. Also recall that the axion
was assumed to be massless even though helioscopes can in principle detect axions
of up to ∼1 eV. This can lead to corrections which are expected to be smaller than
ma/ω ≲ 0.1 %.

At low energies near the plasma frequency, the dispersion relation in equation (7.5)
and hence the Primakoff flux may receive further corrections. Above, the limit of
non-relativistic and non-degenerate electrons was taken. However, evaluating the
full expression as given in ref. [233] only changes the prefactor of ω2

pl by 0.3 %. This
results in a tiny change of the low-energy cutoff but does not have any significant
effect on the flux in the energy range of interest between 1 and 10 keV.

Yet another potential source of uncertainty is the correct screening prescription.
As Raffelt pointed out in ref. [231], the time it takes for one plasmon to cross the
scattering potential is much smaller than the typical time it takes for an electron
to cover the same distance. This is the justification for deriving the effective Pri-
makoff form factor in the static limit, which amounts to first squaring the matrix
elements and then averaging over different charge distributions. The two screen-
ing prescriptions were also discussed in the context of axion-electron interactions in
section 7.1.4. The resulting form factor is included in the Primakoff rates in equa-
tions (7.2) and (7.9). In order to quantify the uncertainty associated with this static
limit, Raffelt’s calculation is generalised to charges moving at constant velocities in
appendix E. The relative corrections are found to be of O(10−4), which makes them
negligible.

Finally, it has to be mentioned again that the contribution from plasmon conver-
sion is not treated as a correction to the total Primakoff flux. It is also not included
in the MC simulation because it depends on the solar magnetic field, which is not
tabulated in the solar models. Leaving plasmon conversions aside is justified because
the flux component from longitudinal plasmons is only present at energies ≲ 0.2 keV
and can therefore be separated from the Primakoff flux with spectral information
(see figure 7.4). In contrast, the flux from non-resonant conversions of transverse
plasmons is not equally well separated. However, it has a similar dependence on the
large scale magnetic field, which means that if it turns out be relevant, this will be
marked by pronounced peaks from the resonant conversion of longitudinal plasmons.

ABC flux

The corrections which have already been discussed above and which equally apply
to the ABC flux are listed in table 7.3 without further comment. Additional ones
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are related to approximations in the derivation of the ABC rate in equation (7.39).
These include the non-relativistic expansion of the interaction Hamiltonian for the
electron, the leading-order multipole expansion of the transition amplitudes and the
separation of wave functions in spin and spatial parts [105].

First, the non-relativistic expansion of the matrix elements, which enters into
equations (7.31), (7.32) and (7.37), simply discards terms that are suppressed by
the electron velocity. An upper bound on the associated corrections can be found
by doing a full relativistic calculation of the bremsstrahlung rates (as described in
refs. [233, 362]) in the core of the Sun, where relativistic effects are expected to be
most significant. The spectral average, is only modified by about 3 %. This can be
rescaled to find an estimate for the high-energy tail, where the relativistic corrections
are expected to be less than 6 %.

The multipole expansion of the transition amplitudes for both photon and axion
emission is given in ref. [105]. Every higher order comes with an additional factor
of x⃗ · k⃗, the product of the electron’s position operator and the axion or photon
momentum k⃗. The size of this factor can be estimated by ω/(meZαEM), where k is
approximated by ω and the distance was taken as the Bohr radius of a hydrogen-
like atom. Since this only applies to fb and bb transitions and since higher-order
multipoles do not play a role in ff interactions, the size of this correction relative to
the overall flux is limited to few percent for most of the energy range.

The separability of the electron wave function into spin and spatial parts is the
final simplification entering the derivation of the key equation (7.37). Effectively,
this means that spin-orbit interactions are neglected and that an average over the
spin states is used instead. However, these interactions distinguish the energy levels
by their total angular momentum and the individual fine-structure transitions may
not contribute equally to the axion emission. Taking the average over spin-states is
therefore only valid if the fine structure is not resolved, limiting the energy resolution
of the approach described in section 7.1.4. In the case of the most prominent Fe
peak, this corresponds to an energy resolution of ∆E ∼ 25 eV.54 In addition, also the
total matrix element depends on the transition energy and would receive corrections
of the order of ∆E/ω.

The partial degeneracy of electron in the solar core was only partially considered
for the calculation of the ABC flux. While the screening scale is calculated using
the full expression in equation (7.13), Pauli blocking is neglected in the rates of
equations (7.31) and (7.32). To estimate the effect on the total rate, one can evaluate
the full ion-bremsstrahlung phase space integrals with and without Pauli blocking
around the solar core. The resulting suppression factor can be used for all radii. In
the case of electron-electron bremsstrahlung, it is squared due to the two electrons in
the final state. Since degeneracy effects are expected to be strongest at the core, this
estimate should be very conservative. It comes out with a maximal suppression of the
total ABC flux by 7 %. In principle, it would be possible to replace equations (7.31)
and (7.32) by full expressions including Pauli blocking. However, since the ABC flux
is affected by several other large uncertainties and due to the computational cost

54This estimate corresponds to the spread between fine-structure states of the relevant Lyman-
alpha transition and is taken from the NIST database [397].
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of such high-dimensional integrals, the full phase-space integrals were not included
in this work. For a high-precision measurement of the ABC flux, this calculation
should nonetheless be done in the future.

Besides the right evaluation of the screening scale including degeneracy effects,
it is important to apply the right screening prescription, i.e. the right modified
photon propagator inside the plasma. As already discussed in section 7.1.4, this
leads to additional uncertainties of the order of at least a few percent. In the case
of the Primakoff flux it was possible to estimate the next-to-leading order effects in
appendix E.

Bremsstrahlung rates in equations (7.31) and (7.32) are computed in the Born
approximation. This means that incident electrons are described by plain waves.
However, long-range effective forces can significantly modify the wave solution of free
non-relativistic particles and thereby enhance the scattering amplitude. The process
is an example of Sommerfeld enhancement. For an unscreened Coulomb potential,
the size of this effect can be well approximated by including the Elwert factor [361,
400] in the phase space integral. Including the Elwert factor in equations (7.31)
and (7.32) enlarges the results by approximately 20 %. In the solar plasma, where
charges are screened, the effect will be much weaker. One can use the estimate
provided in ref. [361] and conclude that the individual rates (7.31) and (7.32) should
underestimate the true value by less than 10 %. The effect on the total ABC flux
will be smaller again.

Finally, a similar effect is also hidden in the OP opacities. As Redondo pointed
out [105], they also used Coulomb wave function in their calculations. As above, this
means that the effect of enhanced wave functions towards the centre of the scattering
potential is overestimated since charge screening is not taken into account for the
incident waves. The approximation of Coulomb waves should, however, become more
precise with larger charges of the target nuclei because Coulomb wave functions and
plain waves only differ at radii given by the size of electronic orbitals around the
nucleus. This is yet another reason to use the analytical results in equations (7.31)
and (7.32) including the Born approximation for the scattering of light nuclei or two
electrons and to only apply equation (7.39) with the OP data for heavier elements.

To conclude the discussion of incident electron waves, note that there are two
corrections of the calculation in section 7.1.4 – one increases and one decreases the
total ABC rate. The true Bremsstrahlung rates should be larger due to Sommerfeld
enhancement. On the other hand, the Coulomb wave functions employed by the
OP overestimate the rates of electrons scattering off heavier nuclei but to a smaller
degree. A precise quantification of the combined effect is difficult but a very con-
servative estimate would be a systematic uncertainty on the ABC flux of less than
10 %.

Interference effects

So far, the Primakoff and ABC fluxes were treated as completely independent of one
another. There is however one possible effect which can invalidate this approach –
interference. It can only occur between two production processes with identical
initial and final states. Looking at the diagrams in figure 7.1, it becomes clear that
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Model NP
a N ABC

a

Mean Error Mean Error
AGSS09 1 1.2 % 1 1.4 %
GS98 1.052 1.3 % 1.051 1.6 %

Table 7.4. Statistical uncertainties (“Error”) of the integrated Primakoff and ABC fluxes
calculated with the MC simulation. The mean values are normalized to the mean of
the AGSS09 model. Note that the Primakoff flux is subject to additional systematic
uncertainties of ≲1 %. The ABC calculation is expected to be significantly less accurate
with a precision of ∼10 % (see table 7.3).

only Primakoff and Compton processes can interfere. As pointed out in ref. [231],
this interference is suppressed by ω/me because in the non-relativistic limit the two
final state electrons have opposing spin. Therefore, the interference can only give a
significant contribution to the Primakoff flux when gae is very large, compensating
for the ω/me suppression and the fact that the Compton process only contributes
a small fraction to the ABC flux. Such a large electron coupling would necessarily
result in a dominant ABC flux. Precision measurements like the one proposed in
section 7.4 require the Primakoff flux to dominate, so that this interference can
safely be neglected.

Going beyond the processes explicitly included in the calculation, there could
also be an interference between electro-Primakoff and bremsstrahlung. However,
the same suppression by ω/me is found by the same argument as above. Taking
into account that the electro-Primakoff was already negligible on its own, one can
conclude that this interference term is also insignificant.

Sun-Earth distance and positioning

A final effect which is not included in the computation of axion fluxes is the depen-
dence on the varying distance between Sun and Earth dE. Over the course of a year,
dE oscillates around its average by about 1.7 % [381]. Consequently, this effect has
to be taken into account when a sizeable axion signal is detected. Since dE can, in
principle, be measured with high precision, this does not need to be treated as an
additional source of uncertainty. All numerical values given in this thesis can also
be rescaled to the correct mean value for any given experiment.

A similar, biannual effect applies to the relative positioning of Earth with respect
to the Sun’s equator. This affects the plasmon flux because the large-scale solar
magnetic fields are not spherically symmetric. The resulting geometrical factor may
be determined for the data taking times of an experiment and then be used to rescale
the equations presented in this work.

7.3.5 Summary and consequences
The extensive review of the solar axion flux above had two objectives. First, the
calculation was updated to include all recent advances in solar modelling, opacity
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evaluations and calculations of axion emission rates. Second, the corresponding
uncertainties were quantified. For two different solar models, the uncertainty coming
from the variation of input parameters within their error bars was translated to the
axion flux using a Monte Carlo simulation. The resulting uncertainties of the total
integrated axion flux Na are summarised in table 7.4. For each solar model, the
uncertainty is only at the percent level. However, for both Primakoff and ABC flux,
the resulting counts are systematically higher by about 5 % for photospheric, GS98-
type models. This does not invalidate the results, but it is a consequence of the
solar metallicity problem.

Additional, systematic uncertainties arise from approximations made in the calcu-
lation of the rates. One would naively expect that the associated corrections would
be of similar size for either type of solar model. However, some of them will also
have a slightly larger impact on high-Z models than on low-Z ones, which could in
principle change the relative factor between the two models considered. The relative
size of the uncertainties was estimated in section 7.3 and they are listed in table 7.3.
While the Primakoff flux is only affected by corrections ≲1 %, the ABC flux could
by modified by ∼ 10 %. It is therefore clear that only the Primakoff flux currently
allows high-precision measurements.

To give a concrete example, one can study how the updated calculations affect
solar axion bounds. To this end, the latest data and limits from the CAST exper-
iment [208] are used. Figure 7.11 shows the profile likelihood ratios resulting from
this measurement using the updated axion flux for different solar models. Clearly,
the overall effect of the systematic differences on the limits from different models is
rather small and the intrinsic uncertainties for every model (not shown) are smaller
still. This is not unexpected, as the uncertainties only enter as the fourth root in
the effective coupling parameter.

In conclusion, the quantification of uncertainties in this thesis shows that the
solar axion flux is known to a high enough precision to put robust bounds on axion
models. Furthermore, the Primakoff flux may allow precision measurements once an
axion signal is detected. In this case, controlling the uncertainties is crucial in order
to measure properties of the axion [195, 196] or the Sun [3, 346, 347]. An example
for how both could be achieved simultaneously is given in the next section.

7.4 Disentangling axion and solar models
The discussion of uncertainties showed that the intrinsic uncertainty of each model
is typically much smaller than the difference between high-Z and low-Z solar models
(see table 7.4). This means that it is in principle possible to distinguish the two
limiting cases. The problem with this naive observation is a degeneracy between
the solar metallicity and the axion coupling constants. Smaller Z values result in
a smaller axion flux, which may always be compensated by a larger value of the
unknown coupling constant. Nonetheless, a crucial property of the axion-photon
coupling allows to circumvent this degeneracy. As it was discussed in chapter 5,
the phenomenological coupling constant gaγγ is generated from an anomaly and
the associated anomaly coefficient takes on discrete values for different viable axion
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Figure 7.11. Profile likelihoods of the axion-photon coupling and the combination√
gae gaγγ . The left and right panel assume that the flux is dominated by Primakoff or

ABC axions, respectively. The latest CAST data from 2017 [208] and the implementation
in ref. [342] are used. The different coloured lines represent a selection of solar models.
95 % confidence limits are indicated by dashed grey lines and the corresponding nominal
likelihood thresholds by dotted black lines. Note that the CAST 2017 limit on gaγγ [208]
uses the BP04 model and that the reference limit for √

gae gaγγ was only derived for older
data by the CAST collaboration [352].

models (gaγγ ∝ E/N+const.). This means that also gaγγ is quantised once the mass
of the axion and thereby fa is known (see equation (2.28)). Hence, the described
degeneracy is between one parameter – the metallicity Z – which is constrained to
fall within a relatively narrow interval and another parameter – the coupling gaγγ

– which can only take discrete values. Combining the knowledge about these two
parameters can allow to measure them separately.

A comprehensive list of values of gaγγ in hadronic axion models with a single
additional coloured fermion is given in refs. [108, 115]. The authors consider models
to be preferred if the additional heavy quark is sufficiently unstable and if the model
has no Landau pole below the Planck scale. By considering hadronic axions with
the above properties, which is sometimes called the axion window, one can break
the degeneracy between the solar metallicity and the coupling constant. However,
it is important to note that a specific E/N value does in general not correspond
to a unique UV model. For instance, among the models that will be considered
below, there are multiple ones with E/N = 2/3 and E/N = 8/3. The number
of possible E/N values could also be drastically increased if one would extend the
models under consideration to KSVZ axion models with more than one new heavy
fermion (see e.g. ref. [124] for a recent review on the landscape of axion models). It
would therefore require additional information to distinguish these. Nevertheless,
even a rough measurement of E/N would be a severe restriction on possible UV
models and when one goes beyond typical values for E/N , cosmological problems
or an extended UV sector commonly appear.

Having established a set of benchmark hadronic axion models, it is interesting
to investigate whether the most sensitive solar axion experiment IAXO can distin-
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guish the different models within the axion window. Moreover, could it even find
a preferred combination of a solar and an axion model? These questions can only
be answered by taking all of the relevant uncertainties into account, which include
the ones from the MC simulation and the systematic ones discussed in section 7.3
as well as the statistical uncertainty of the measurement itself.

Since hadronic axion models have a negligible axion-electron coupling, the cor-
responding solar axion spectrum will be Primakoff-dominated, γ ≳ 107.55 Because
the relative uncertainties of the Primakoff flux in the left panels of figure 7.7 and 7.9
are approximately constant for all relevant energies56, the solar uncertainty can be
modelled by a simple re-scaling of the axion spectrum. This is done by introducing
a scaling constant C such that the overall signal is proportional to (Cgaγγ)4. C
is normalized to unity for the B16-AGSS09 model, which is the latest low-Z solar
model. With these definitions, IAXO does not directly constrain gaγγ but instead
Cgaγγ – a combination of axion and solar properties.

It is illustrative to make a plot of IAXO’s predicted sensitivity in the plane spanned
by ma and Cgaγγ. Because C is different for high- and low-Z solar models, each
combination of a solar model with a hadronic axion model can be plotted separately.
This results in low-Z (red) and high-Z (blue) bands in figure 7.12, which are only
clearly visible as individual bands in the magnifications (right panel). Overlapping
bands appear in a darker, purple shading.

The underlying uncertainties in the axion model parameters are the reason why
each combination of a solar and an axion model defines a narrow band rather than a
line. The width of each band includes the statistical uncertainty of the solar model in
addition to the QCD uncertainties ofma and gaγγ, which are given in equations (2.28)
and (3.31). The uncertainty from ˜︁Caγγ dominates the total theoretical uncertainty
of axion models when E/N is close to ˜︁Caγγ, i.e. for models with small couplings to
photons. This effect is clearly visible in figure 7.12, where the bands get wider with
smaller couplings.

The red, blue and purple bands indicate the theoretical uncertainty from QCD and
the axion flux. In addition, experimental uncertainties are shown as grey regions. To
estimate these, a likelihood ratio analysis was performed using an Asimov data set
to find the expected exclusion contours at the 95 % confidence limit (CL). Similar
studies have been performed in refs. [195, 196]. The same method is applied for
seven benchmark values of ma and gaγγ, using the baseline IAXO parameters as
given in ref. [193]. The points are chosen by hand to illustrate qualitatively-different
potential experimental outcomes. They are marked with black crosses in figure 7.12
and are surrounded by their respective expected 95 % CL contour.57

The two points at the bottom with the smallest coupling constants demonstrate
that to locate the axion within a specific model band necessarily requires a mass
55Following the arguments in section 7.1.3, the flux generated by plasmon conversions in large

scale magnetic fields is considered as either small or separately detectable.
56While not exactly true, this is an acceptable approximation for estimating IAXO’s potential. In

case of a detection, the data analysis (in the ma-gaγγ plane) would need to be repeated with
various solar models (not by a simple rescaling) in order to make statements about the nature
of the signal.

57For simplicity, only the vacuum setup is simulated. If the conversion volume is filled with a
buffer gas, the experimental sensitivity would improve for higher axion masses [193, 194].
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Figure 7.12. IAXO sensitivity and benchmark cases in the ma-Cgaγγ parameter plane.
Included are all hadronic axion models in the axion window for high- and low-Z solar
models (blue and red shading, respectively; their overlaps appear in a darker, purple
shading). Left: Black crosses mark seven benchmark points for which the expected 95 %
confidence limits (grey-shaded areas) of a detection with the baseline IAXO setup [193] are
determined. The black line marks the expected IAXO sensitivity, while the yellow region
has already been excluded by CAST [208]. Right: Magnifications of the most precise
measurements, labelled (a) to (d).

measurement. For IAXO this is only possible if the axions mass is at least a few
meV and the coupling is sufficiently large [195, 196]. A detailed discussion and the
full region of parameter space where a mass measurement is possible is given in
ref. [195].

In all cases with gaγγ ≳ 10−11 GeV−1 and ma ≳ 10 meV, the axion parameters can
be located on a specific axion band, which means that there is only one possible
value of E/N within the axion window that would explain the observation. This is
of course only true if the observed particle actually falls on such a band. The cross
labelled (b) is an example for a situation where this would not be the case and the
detected axion would not be included in the list of preferred models.

At large coupling values, the experimental precision becomes so good that the
expected 95 % CL contour is only visible in the corresponding magnifications in the
right part of figure 7.12. It is also only at this accuracy that the high- (blue) and
low-metallicity (red) solar model bands are clearly distinguishable. The two bands
overlap due to the combination of solar model and QCD uncertainties, of which the
latter dominate the overall uncertainty. In fact, without QCD uncertainties, the two
bands would not overlap.

It is even possible to obtain a hint from IAXO towards higher or lower metal-
licity in some serendipitous cases. For instance, a measurement as indicated in
subpanel (a) of figure 7.12 could only be explained by the combination of a specific
value of E/N and a high-Z solar model. Example (c) could also be interpreted
as a hint towards lower Z even though the picture is less clear in this case. In
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contrast, the experimental uncertainty smears out any potential information on the
solar metallicity in example (d).

In conclusion, IAXO can indeed differentiate between different hadronic axion
models in the axion window. This is approximately possible for all parameters in
the mass-coupling plane, for which IAXO can determine the (non-zero) axion mass,
as described in refs. [195, 196]. In the case of a strong signal in IAXO, it may also be
possible to infer a combination of a solar model and axion model at the same time.
Indeed for such a fortuitous case and making the assumption of a reasonably simple
KSVZ model, it is possible to distinguish low-Z and high-Z models without making
use of the gae coupling (as it was done in ref. [346]). It is, however, also possible that
a detected particle is not in the axion window. This could for instance be an axion
model which includes multiple heavy coloured fermions in various representations
of the SM gauge groups [108]. In such a case, the degeneracy between metallicity
and the axion coupling would still persist but by constraining the value of E/N
including the solar model uncertainty, a large set of UV axion models could be ruled
out nonetheless.

7.5 IAXO and the 14.4 keV line
Nuclear interactions of axions offer an additional opportunity for axion detection
and model distinction. As discussed in section 7.1.5, axions emitted by thermally
excited nuclei could be detected by helioscopes, because they fall into the right
energy range. Out of all possible magnetic dipole transitions, the one of 57Fe gen-
erates by far the strongest solar axion flux (see appendix F), which is why only
the corresponding 14.4 keV line is considered in the following. The search for these
57Fe axions has a long history. The currently most powerful helioscope, the CERN
Axion Solar Telescope (CAST) [203], as well as CUORE [378] and, more recently,
XENON1T [212], have searched for axions produced in this transition and provided
constraints on the axion-nucleon coupling. With the new helioscope IAXO under
construction, it is again necessary to asses its potential to detect axions from this
nuclear transition. This is because detecting axions at 14.4 keV comes with its own
unique experimental challenges and it is helpful to provide estimates of efficiencies
for a variety of different setups.

In section 7.1.5, the power of the 57Fe line as a function of geff
aN was updated to

include the latest new theoretical developments like revised nuclear matrix elements
and the latest solar models. As a next step, this section investigates how the flux
depends on the axion model and which models can be used as benchmarks in the
following sensitivity studies. Finally, various experimental setups of IAXO are con-
sidered in order to provide a guide for the techniques required to maximise the
efficiency to detect axions from 57Fe.

7.5.1 Benchmark models
The axion-nucleon couplings which enter the relevant effective coupling geff

aN can be
expressed in terms of the dimensionless axion-quark coefficients c0

q [54]. Using this,
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equation (7.43) can be written as58

Γa

Γγ

= 5.81 × 10−16(1 + 3.28 c0
u − 9.97 c0

d + 0.52 c0
s

+ 0.16 c0
c + 0.12 c0

b + 0.048 c0
t )2

(︃
ma

1 eV

)︃2
. (7.65)

The first typical benchmark model is the KSVZ [109, 110] model with c0
q = 0. This

results in

Γa

Γγ

⃓⃓⃓⃓
⃓
KSVZ

= 5.81 × 10−16
(︃
ma

1 eV

)︃2
. (7.66)

In the DFSZ model [116, 117], c0
u,c,t = cos2(β)/3 and c0

d,s,b = sin2(β)/3 corresponding
to

Γa

Γγ

⃓⃓⃓⃓
⃓

DFSZ
= 5.81 × 10−16 × (1 + 1.16 cos2β − 3.11 sin2β)2

(︃
ma

1 eV

)︃2
. (7.67)

One can see that the axion emission rate is accidentally suppressed in KSVZ models
due to a small neutron coupling. In DFSZ models, on the other hand, it can get
enhanced by up to a factor of ∼ 4 with respect to KSVZ.

Equation (7.65) shows that for downphilic axions, i.e. axions with large c0
d ≫ c0

u,
the emission rate is enhanced if the model-independent term normalized to one
in (7.65) is not the dominating contribution. Such enhancements naturally occur
in non-universal DFSZ models. For instance, the M1 model of ref. [121] has quark
couplings c0

u = c0
c = sin2β, c0

t = − cos2β, c0
d = c0

s = cos2β and c0
b = − sin2β, leading

to

Γa

Γγ

⃓⃓⃓⃓
⃓
M1

= 5.81 × 10−16 × (1 + 3.32 sin2β − 9.50 cos2β)2
(︃
ma

1 eV

)︃2
. (7.68)

At small β, this can give an enhancement of O(60) with respect to the KSVZ
model. Other non-universal DFSZ models feature similar enhancements of geff

aN but
they can have different values for the axion-photon coupling. This is important since
the detection of axions in helioscopes always uses this coupling. In particular, the
non-universal model T (u)

2 of ref. [122] features the largest axion coupling to photons
among the general class of non-universal DFSZ models with two Higgs doublets (see
table 5 in [123]).

7.5.2 Astrophysical bounds
The strongest bounds on axion-nucleon interactions today come from astrophysical
observations. Because the Sun’s interior dynamics are particularly well understood,
one can derive a solid bound on geff

aN from a solar energy loss argument. Using the
58In deriving this equation, the standard relation between ma and fa (as in equation (2.28)) was

used.
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revised axion rate in equation (7.43) and the solar model B16-AGSS09, the total
axion luminosity (energy loss rate) via the 57Fe transition comes out as

La = 8.38 × 109(geff
aN)2 L⊙ . (7.69)

Exotic solar energy loss was constrained in ref. [401] to be smaller than 3 % of the
total solar luminosity L⊙. This can be translated to a bound on the effective nucleon
coupling,⃓⃓⃓

g eff
aN

⃓⃓⃓
≤ 1.89 × 10−6 . (7.70)

Notably, this bound is about a factor of two more stringent than the previous con-
straint, geff

aN ≤ 3.6 × 10−6 [203]. Besides the enhanced emission rate [377] and
the updated solar model [379], this is also due to ref. [203] having excluded only
La > 0.1 L⊙.

While the solar bound is very robust, it is not the strongest one derived from
astrophysics. This role falls to constraints which use the neutrino burst observed
in coincidence with the SN1987A event [263, 265, 402–408]. The most recent anal-
ysis [265] derived a bound on a combination of axion-proton and axion-neutron
couplings,

g2
an + 0.6 g2

ap + 0.5 gan gap ≲ 8.3 × 10−19 . (7.71)

Because this is not the combination relevant for solar axions from the 57Fe tran-
sition, it has to be translated into a bound on g eff

aN . This is done by choosing the
ratio between the proton and neutron couplings such that the left-hand side of this
equation is minimal, gap/gan ≈ −0.2, while keeping geff

aN constant,⃓⃓⃓
geff

aN

⃓⃓⃓
≲ 1.1 × 10−9 . (7.72)

This strong constraint can only be overcome by highly advanced helioscope setups
as will become clear in the next sections. Nonetheless, the observations on which
this bound is based are affected by their own substantial uncertainties (e.g. relying
on a single supernova event). It would therefore be comforting to have independent
confirmation in more controlled setups.

Finally, axion-nucleon interactions can also be constrained from x-ray observations
of various NS [409–414]. These bounds are, however, subject to several uncertain-
ties and do not always agree with each other, not even when referring to the same
star [123]. In any case, all these analyses suggest a limit of ∼10−9 on some combi-
nation of axion-nucleon couplings.59

7.5.3 Experimental configurations
Before going into specific experimental aspects, one can make a few general con-
siderations that can provide help with the experimental design. To detect the 57Fe
line, the signal to noise ratio in the single relevant energy bin, which contains all of
59In most of these analyses, the limit applies only to the axion-neutron coupling.
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the signal events, should be maximised. There are two main contributions to the
background for the measurement of the nucleon line. One is the usual background
rate of the detector itself (e.g. cosmic rays, environmental gammas, intrinsic detec-
tor radioactivity), which usually grows linearly with the area of the detector and
is typically proportional to the spectral size of the signal bin. This means that,
in the case of the expected narrow signals, it can be reduced by making use of a
detector with good energy resolution. Second, there is the physics background due
to Primakoff production. This grows with the photon coupling. Importantly, as
the Primakoff spectrum is continuous, it also grows linearly with worsening energy
resolution. Combining these two effects leads to the following figure of merit,

f ∝ S√
B

∝ ϵoϵd g
2
aγγ√

∆Ed

√︂
ba+ g4

aγγκϵoϵd

. (7.73)

In this equation, ϵo,d are the optics and detector efficiencies, ∆Ed is the energy
resolution (FWHM) of the detector, b is the (spectral) background rate per area
and a is the signal spot area on the detector. κ quantifies the Primakoff flux in the
57Fe signal bin and is implicitly defined in equation (7.77).

The figure of merit clearly identifies the parameters, which need to be optimised.
While good energy resolution is critical, this should not be offset by too large a
background. Similarly, with focusing optics, the detector area and therefore the
background contribution can be reduced . However, there is a balance because
such x-ray optics may have an efficiency significantly smaller than one. All of these
trade-offs will become more apparent when considering explicit setups below.

BabyIAXO

BabyIAXO [194, 415] is an intermediate stage of the full IAXO experiment. It serves
as an experimental pathfinder but is already expected to substantially advance the
exploration of the axion parameter space. It will be able to study QCD axion models
and investigate stellar cooling hints along with other well motivated sections of the
parameter space [124, 193]. The BabyIAXO experiment is mainly designed to mea-
sure Primakoff axions in the energy range from 1 keV to 10 keV with the peak of the
solar axion flux spectrum at ∼3 keV. BabyIAXO will consist of two magnetic bores
of 10 m length and 70 cm diameter, each with an average magnetic field strength of
about 2 T. Together with newly developed x-ray optics and detector systems pro-
viding higher energy resolution and lower background, BabyIAXO will be the first
helioscope to exceed the sensitivity of the CAST experiment. The magnet bores of
BabyIAXO are of similar diameter as those of IAXO (60 cm) and IAXO+ (80 cm),
thus the experience from the optics and detector development for BabyIAXO can
later be applied to the upgraded configurations [194]. The first detection system for
BabyIAXO is chosen to be microbulk Micromegas technology. These detectors have
proven background levels as low as 10−7 keV−1 cm−2 s−1 [416] and a high detection
efficiency for Primakoff photons below 10 keV. A variety of other detector types, like
silicon drift detectors (SDD), metallic magnetic calorimeters (MMC) and transition
edge sensors (TES), are also studied for BabyIAXO aiming to optimise the energy
resolution for precision measurements of the axion spectrum [194].
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BabyIAXO

baseline
no

optics
optimised

optics
high energy
resolution

BabyIAXO0 BabyIAXO1 BabyIAXO2 BabyIAXO3

B [T] 2 2 2 2
L [m] 10 10 10 10
A [m2] 0.77 0.38 0.38 0.38
t [year] 0.75 0.75 0.75 0.75
b [ 1

keV cm2 s ] 10−7 10−6 10−7 10−5

ϵd 0.15 0.9 0.5 0.99
ϵ0 0.013 1 0.3 0.3
a [cm2] 0.6 3800 0.3 0.3
rω = ∆Ed

14.4 keV 0.12 0.12 0.12 0.02

IAXO IAXO+
low

background
high energy
resolution

low
background

high energy
resolution

IAXOb IAXOr IAXO+
b IAXO+

r

B [T] 2.5 2.5 3.5 3.5
L [m] 20 20 22 22
A [m2] 2.3 2.3 3.9 3.9
t [year] 1.5 1.5 2.5 2.5
b [ 1

keV cm2 s ] 10−8 10−6 10−9 10−6

ϵd 0.99 0.99 0.99 0.99
ϵ0 0.3 0.3 0.3 0.3
a [cm2] 1.2 1.2 1.2 1.2
rω = ∆Ed

14.4 keV 0.02 5
14400 0.02 5

14400

Table 7.5. List of experimental parameters adopted for all helioscope configurations
which are considered in figures 7.13 and 7.14. B is the magnetic field of the helioscope,
L its length and A the cross-sectional area. t is the total observation time in which the
helioscope is pointed at the Sun. All of these values are taken from ref. [193]. ϵo,d are the
efficiencies of the optics and detector, b is the spectral background rate per detector area
and rω is the relative spectral resolution of the detector. The setup BabyIAXO0 is the
baseline BabyIAXO, BabyIAXO1 is a version without optics, BabyIAXO2,3 assume optics
optimised for the 14.4 keV line with BabyIAXO3 including also a good energy resolution.
For each of the more advanced setups IAXO and IAXO+, a version with minimal back-
ground and one with optimised energy resolution is considered.
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The baseline BabyIAXO configuration is not optimal for the measurement of 57Fe
axions. For instance, simulations of the Micromegas detector system predict an
ionization probability at a conversion length of 3 cm at the given argon gas mix-
ture and pressure of only around 15 %. Also the BabyIAXO optics are not op-
timised for 14.4 keV photons, where the expected optics efficiency is merely 1.3 %
(see BabyIAXO0 configuration in table 7.5). For these reasons, some possible modi-
fication of the BabyIAXO experiment are considered in order to boost its sensitivity
to axions from 57Fe.

The sensitivity of the Micromegas detector to 14.4 keV photons can for instance
be enhanced by changing the gas mixture and adjusting the pressure. Gas mixtures
with an inert gas of higher atomic number, like xenon, show a higher conversion
efficiency for 14.4 keV photons, compared to argon. With a suitable conversion
length, an efficiency of >90 % should be reachable at atmospheric pressure.

Regarding the optics, one could consider the radical approach of removing them
all together. Currently, microbulk Micromegas [417] are developed to have a square
active area of 25 cm × 25 cm [418], which means that the whole bore opening can
be covered with a few detector tiles. This could improve the detection efficiency,
because losses from inefficient x-ray optics are avoided. However, the detector will
have a higher background due to the larger conversion volume. This no optics
configuration is denoted as BabyIAXO1 in table 7.5 and in the figures below. As
BabyIAXO features two bores, the optics could also only be removed from one of
the two bores, while the other one could be operated in parallel with optics and a
smaller detector.

An alternative detection concept to Micromegas are silicon drift detectors (SDD).
Such a detector consists of a thick negative doped layer, which is fully depleted by
a negative bias voltage and positive doped contacts and strips on both sides of the
layer. The incoming x-ray radiation generates electrons in the depleted zone that
are then drifted towards the anode at the end of the layer. This detector type is
already considered as an addition for the baseline measurements at BabyIAXO [194]
and it can reach a sensitivity of up to 50 % to 15 keV photons [419]. Because SDDs
are only produced in small pixels and a maximal detector size of a few millimetres,
x-ray optics are mandatory in this detection scheme.

In addition, the optics could be optimised for focussing high-energy x-rays using
multilayer coating techniques [420]. Such an optical system was already employed
by the Nuclear Spectroscopic Telescope Array (NuSTAR) [421] to detect photons
in the range of 5 keV to 80 keV. A BabyIAXO system, which does not require
imaging optics, could reach an even higher throughput. A realistic estimate in this
scenario would be ϵ0 = 0.3, which is the value adopted in the analysis below. The
corresponding setup is denoted BabyIAXO2 in table 7.5.

Another detector suited to the 57Fe line could be one based on Cadmium-Zinc-
Telluride (CZT) semiconductors. While the detection principle is similar to the
one of SDDs, CZT provides a higher ionization probability for the photons such
that only 300 µm of CZT have an ionization probability of >99 % at 14.4 keV. CZT
detectors are already used in experiments focusing on the detection of hard x-rays
like NuSTAR [422]. These detectors can reach an energy resolution of 2 % in the
relevant range [423], which makes them powerful in discriminating the peaked signal
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from the continuous Primakoff background. However, the good energy resolution
comes at the price of an increased background compared to SDDs (see table 7.5).
Furthermore, it is currently only possible to produce detectors with an active area
of up to 2 cm × 2 cm [424], which again makes an efficient x-ray optic necessary for
the use of CZT detectors at BabyIAXO. The corresponding setup, which focusses
on energy resolution, is denoted BabyIAXO3.

All of these modifications are assumed to be implemented in only one of the two
BabyIAXO bores. This is why the cross-sectional area A in all of the optimised
setups in table 7.5 is smaller than the baseline value of BabyIAXO0.

IAXO and IAXO+

Construction of the full scale IAXO experiment is expected to begin during the
BabyIAXO data-taking period. IAXO+ is an even more ambitious experimental
configuration with a significantly larger magnet as well as improved optics and de-
tector designs [123, 193].

In this thesis, two types of setups are considered for both IAXO and IAXO+,
which are summarised in table 7.5. The first is labelled by an index b and as-
sumes optimistically that significant improvements in the detector backgrounds can
be achieved. At the same time, the energy resolution is only set to a moderate
value of 2 % at 14.4 keV, which is a very realistic figure for CZT detectors as dis-
cussed above. This setup is therefore aimed at reducing the intrinsic detector back-
ground at the expense of a larger physics background from Primakoff axions. The
contrary option would be to optimise the energy resolution, thereby reducing the
Primakoff background, at the expense of a larger detector background. These con-
figurations are labelled with an index r. They assume a resolution at the level of
the Doppler broadening of the 57Fe line. Such a precise energy resolution is realis-
tic when new technologies like microcalorimeters operated at mK temperatures are
employed [425, 426]. Metallic magnetic calorimeters (MMCs) are also studied in
the IAXO collaboration for precision measurements of the axion spectrum in the
energy range < 10 keV. First measurements have shown an energy resolution of
6.1 eV (FWHM) at the 5.9 keV 55Fe peak [425]. Because sufficiently low background
still needs to be established, a somewhat larger background rate is assumed in these
high-resolution setups in table 7.5.

The IAXO+ setups are anticipated to include further improvements of the detec-
tion system combined with an enhanced magnetic field, cross-sectional area, length
etc. as outlined in ref. [193].

7.5.4 Sensitivity evaluations
The sensitivity to geff

aN of a helioscope depends in general on several other axion
parameters: on gaγγ and ma through the conversion probability Pa→γ (see equa-
tion (4.3)) and also on gaγγ and gae because of the Primakoff and ABC contributions
to the background. In the following, the ABC background is neglected because it
can in principle be completely absent (unlike the Primakoff flux) and because it de-
cays more quickly at larger energies and is therefore subdominant to the Primakoff
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background in most of the common axion models. To further simplify the discus-
sion, the axion can be assumed to be massless or very light. Nonetheless, effects of
finite axion masses are considered separately below.

Massless axions

If the axion mass is assumed to be small (≲ 20 meV), the conversion probability of
an axion to a photon Pa→γ becomes energy independent, as shown in equation (4.4).
The helioscope signal can be calculated by integrating the product of the spectral
axion flux over the range of given energy bins. Because the FWHM of the Doppler-
broadened iron peak is only ∼5 eV, it can be assumed that the whole signal is always
in one energy bin.60 This means that the expected number of signal events µsignal
can be calculated from the total 57Fe flux ΦFe57

a as

µsignal = ΦFe57
a Pa→γ A t ϵo ϵd (7.74)

∝ (gaγγg
eff
aN)2 . (7.75)

The background consists of two contributions. First, the detector background, which
is quantified by the background level b and which can be measured accurately at
times when the magnet bores are not pointed at the Sun. Second, the tail of the
Primakoff spectrum, which may act as an additional background. The expected
background events µback are therefore given by

µback =
∫︂ E∗+ ∆Ed

2

E∗− ∆Ed
2

(︄
dΦP

a

dω ϵoϵd

)︄
dω Pa→γAt+ bat∆Ed (7.76)

≃
(︂
g4

aγγκϵoϵd + ba
)︂

∆Edt . (7.77)

The Primakoff flux ΦP
a as well as the efficiencies ϵo and ϵd are in general functions

of ω. In case of a sufficiently small energy resolution ∆Ed, one can average over
the energy and describe the Primakoff background using the constant κ. If the
Primakoff background to the 57Fe-peak is detectable at 14.4 keV, it is clear that there
is a much stronger Primakoff signal at smaller energies and gaγγ has been measured
very precisely. Therefore, the expected contribution from Primakoff axions to the
number of background events µback is either known or it is negligible compared to
the intrinsic detector background.

The p-value of the Poisson-distributed observed number of counts k in the signal
bin is given by

p =
∞∑︂

n=k

µn
backe

−µback

n! , (7.78)

where k ∈ N. In order to find the sensitivity in axion parameter space, one has
to evaluate the expectation value of p assuming a Poisson distribution for k with
mean µ = µback + µsignal for each possible value of the two relevant couplings. The
60This is only approximately true for the configurations IAXOr and IAXO+

r in table 7.5 for which
an energy resolution equal to the FWHM of the emission peak was assumed.
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Figure 7.13. Model independent prediction for the sensitivity to the axion couplings for
light axions (≲ 20 meV). The different regions refer to the setups presented in table 7.5.
The dark red region is the solar bound discussed in the text (see equation (7.70)). The dark
blue region represents the latest CAST exclusion regions from searches for the Primakoff
flux [208] and the 57Fe peak [203]. The dashed horizontal green line indicates the expected
sensitivity to the pure Primakoff flux.

experiment can be regarded as sensitive to a set of axion couplings if the expected
p-value, ⟨p⟩k, is smaller than 0.05.61 The resulting sensitivity curves are plotted in
figure 7.13.

Since the axion was assumed to be light or massless for the sensitivity estimates
in figure 7.13, the parameter space of DFSZ and M1 models is not shown. This
is because these models require large masses (ma ≳ 100 meV) at the couplings in
question and helioscopes quickly lose sensitivity above ∼ 20 meV (see figure 7.14).
This problem could in principle be eased by filling the helioscope bore with a buffer
gas [198].

The results in figure 7.13 show the potential of the various configurations to study
areas of parameter space well beyond the solar bound and the region probed by
CAST. The different green shaded areas indicate the expected sensitivity of the se-
tups summarised in table 7.5. BabyIAXO would be most efficient when optimised
optics are employed (setups labelled BabyIAXO2,3). In this case, the total back-
ground is reduced by ∼ 4 orders of magnitude with respect to the no-optics solution
due to a small focal spot area a. BabyIAXO would also be able to extend its de-
tection potential to regions of the parameter space below the Primakoff sensitivity
if geff

aN ≳ 10−7. This means it is possible that BabyIAXO could discover axions
through the 57Fe channel, before the Primakoff flux is detected. If, on the other
hand, axions have couplings in the green shaded area above the Primakoff sensitiv-
ity line (dashed green), one might have the opportunity to extract both couplings
61A measurement with p = 0.05 would strictly speaking only amount to a 2σ anomaly. Neverthe-

less, it is common to define the sensitivity in this way because it coincides with the expected
exclusion limits in the case of a null result.
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and derive additional information about the underlying axion model.
The more optimistic IAXO and IAXO+ configurations can explore an even larger

area of parameter space. A noteworthy feature of these exclusion curves is their
behaviour at different values of gaγγ. At gaγγ ≲ 10−11 GeV−1 the detector back-
ground dominates over the Primakoff background. Therefore the figure of merit in
equation (7.73) becomes f ∝ ϵoϵd g2

aγγ√
∆Edba

. With the parameters given in table 7.5, the
configurations with minimised background slightly outperform the ones with opti-
mised energy resolution in this area of parameter space (see figure 7.13). However,
at gaγγ ≳ 10−11 GeV−1 the Primakoff background starts to play a role and eventually
dominates. In this regime, the figure of merit is given by f ∝

√︂
ϵoϵd

∆Edκ
. The detector

background becomes negligible and the configurations with optimised energy res-
olution are significantly more sensitive than the ones with minimised background.
Therefore, the ideal detector for the 57Fe line crucially depends on the value of gaγγ.
If BabyIAXO detects Primakoff axions, a detector with good energy resolution may
be required to suppress the Primakoff background to the 57Fe line. If, on the other
hand, BabyIAXO only puts a stronger bound on gaγγ, the energy resolution becomes
less important and the low-background detectors may be advantageous.

Including a finite axion mass

A finite axion mass can cause decoherence between the photon and axion wave
functions inside the magnet bores and lead to a signal suppression. This effect
is discussed in section 4.2 and becomes relevant for masses above ∼ 20 meV even
though the exact value depends on the length of the magnet. The solar axion flux
only starts to be affected by a finite axion mass of the order of keV, where IAXO
would have already lost its sensitivity. Finite mass effects are therefore only relevant
on the detection side. The expression for the conversion probability Pa→γ of axions
into photons in the helioscope is given in equation (4.3). The suppression due to
decoherence can be mitigated at the cost of some absorption by feeding a buffer gas
into the bores [198, 199] (see equation (4.1)), which is why the sensitivity study to
effectively massless (i.e. ma ≲ 20 meV) axions above serves as a good benchmark.
Nonetheless, one can also explicitly investigate the sensitivity to massive axions
without a buffer gas. To this end, it is helpful to assume that the background from
Primakoff axions is negligible and that instead the detector background dominates.
In this case, the background is independent of any axion properties and the signal
depends on the product of the two couplings, gaγγg

eff
aN as well as the mass. The

statistical analysis is equivalent to the one in the massless case. The resulting
sensitivity curves for all of the setups in table 7.5 are plotted in figure 7.14. The
regions shaded in yellow indicate the coupling relations for the DFSZ, M1 and T (u)

2
models (see section 7.5.1).

The sensitivity curves are very similar to typical helioscope exclusion plots in the
coupling vs. mass plane with two noteworthy exceptions. Because the 57Fe line is
highly-energetic at 14.4 keV, the transferred momentum q is smaller than for axions
of the same mass from other solar processes. As a result the decoherence effect only
becomes relevant at slightly higher masses in comparison to, for instance, Primakoff
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Figure 7.14. Model independent prediction of the IAXO sensitivity to the 57Fe peak,
assuming that axions are produced only through the axion coupling to nucleons. In con-
trast to figure 7.13, only the sensitivity of the various setups to the coupling combination
gaγγgeff

aN is shown under the assumption that the Primakoff background is negligible. The
oscillations at higher masses are due to the form factor in the conversion probability. For
comparison, the effect of decoherence for a Primakoff spectrum is shown as a dashed black
line. The dark blue region represents the rescaled CAST result [203]. The dark yellow
region indicates the parameter space expected for the DFSZ model and brighter shades of
yellow are used for flavour non-universal DFSZ models M1 and T (u)

2 . The dashed yellow
line shows the expected coupling for a nucleophilic QCD axion model of the kind presented
in ref. [427], with n = 3. All models with n > 3 would be already accessible to BabyIAXO .

axions. To illustrate this effect, the expected sensitivity of the IAXO+
b setup with

a decoherence factor from a Primakoff spectrum is plotted as a dashed black line
in figure 7.14. Furthermore, the oscillations of the form factor for large qL are
clearly visible in the 57Fe exclusion lines while they are washed out in the case of
the broadband Primakoff spectrum.

In summary, the results in figures 7.13 and 7.14 show that already BabyIAXO will
be able to study a large section of interesting axion parameter space, well beyond the
region accessed by CAST, particularly in the configurations with optimised x-ray
optics. The potential will be greatly improved with IAXO and IAXO+. Figure 7.14
also show representative QCD axion models like the DFSZ model and flavour non-
universal M1 and T (u)

2 models discussed in section 7.5.1. The well-known KSVZ
axion model does not appear because an accidental cancellation reduces its effective
coupling to nucleons relevant in the 57Fe transition. Although BabyIAXO is expected
to have enough sensitivity to explore large sections of the parameter space for these
models [123], a sizeable axion flux from 57Fe transitions requires large axion masses,
where BabyIAXO loses sensitivity. This problem can be eased with the use of a
buffer gas [198], a technique already tested in CAST [208]. The sensitivities shown
in the figures do not account for this option in BabyIAXO nor in its scaled up
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versions. A dedicated study may show if a buffer gas may allow to probe the M1 or
other DFSZ-like models through the 57Fe line in the near future.

Less minimal models for QCD axions may present larger couplings to nucleons and
be better accessible through the 57Fe channel. For example, the nucleophilic QCD
axion models presented in ref. [427] (and shown in figure 7.14), have exponentially
large couplings to nucleons62 and are efficiently produced in 57Fe transitions even
at lower axion mass. One should nevertheless keep in mind that most of the region
shown in the figures is in tension with astrophysical considerations, in particular,
the bound from SN1987A as given in equation (7.72). Due to the uncertainties of
these bounds, an independent confirmation would be highly desirable. That being
said, the IAXO+ setup approaches a level of sensitivity comparable to supernova
bound, showing a potential pathway for pushing beyond the astrophysical limits.

In conclusion, helioscopes of the next generation may offer a unique chance to
probe an interesting range of the geff

aN -gaγγ parameter space. BabyIAXO would ben-
efit greatly from detector and optics designs optimised for the 14.4 keV line. In such
a configuration, BabyIAXO has the potential to detect axions through the 57Fe chan-
nel, which are too weakly coupled to photons to give a sizeable Primakoff flux (region
below the dashed green line in figure 7.13). In a more likely scenario, a detection of
axions through 57Fe will be accompanied by a large signal from Primakoff axions,
allowing to extract important information about its couplings to both photons and
nucleons and thereby rule out a large number of possible UV completions.

7.6 Summary of results
The solar axion flux is one of the most expressive signatures of a QCD axion model.
Several axion couplings enter the evaluation of the axion spectrum and in addition
the axion mass can be inferred from the spectral shape of the conversion probability
inside a helioscope. In light of this fact and the recently growing interest in solar
axions, this chapter has revisited the processes generating the solar axion flux and
assessed their uncertainties. This is motivated by the crucial influence that they can
have when measuring QCD axion or axion-like particle properties.

The solar axion flux depends on solar properties and therefore on solar models.
It was shown that the uncertainties of the axion flux resulting from the statistical
variations within solar models of a given type are relatively modest in size. This
shifts the focus to a better determination of systematic errors. One example is the
metallicity problem, which yields flux uncertainties at the level of 10 % or more
across a large energy range. Furthermore, calculations of the solar axion flux use
several approximations, some of which may need to be improved in order to reduce
the systematic theory errors. An important example is the partial degeneracy of
62The model A of ref. [427] has

gaγγgeff
aN ∼ 22nαEM

2π fa

mn

fa
∼ 22n+2 · 10−17

(︂ma

eV

)︂2
GeV−1 , (7.79)

where n + 1 is the number of Higgs doublets in the model. The parameter n is constrained to
n ≲ 50 in order to avoid sub-Planckian Landau poles [115].
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electrons in the solar core (see ref. [233]), which was included in section 7.1.2 into
the calculation of the Primakoff spectrum.

The ABC flux is also affected by uncertainties originating from variations between
different opacity codes. Achieving percent-level accuracy here will likely require go-
ing beyond the approximation where the axion emission is directly proportional to
the photon opacity and accounting for the differences between the emission of axions
and photons from each atomic transition. Moreover, a better treatment of screen-
ing effects as well as non-trivial electron wave-functions (Sommerfeld enhancement)
using a systematic, first-principles calculation would be very useful.

Beyond uncertainties in the standard Primakoff and ABC fluxes, there are addi-
tional production mechanisms such as the plasmon conversion in the Sun’s magnetic
field. The latter could add a noticeable flux contribution in the energy range of in-
terest if the magnetic fields are at the higher end of the estimated ranges.

The inference of underlying axion model parameters is also limited by the cur-
rent knowledge of low-energy axion parameters, such as the mass and the model-
independent contribution to the axion-photon coupling (see e.g. refs. [54, 69]). Ad-
dressing these effects will be important in order to accurately determine the prop-
erties of axion models with helioscopes.

The Primakoff flux calculation is less affected by uncertainties, which makes it
suitable for a study on the determination of axion model parameters. As a concrete
example for such a study, a few benchmark cases of a potential future axion detection
were considered in section 7.4. The known uncertainties on the solar Primakoff flux
are sufficiently small that IAXO may indeed be able to identify and discriminate
between different KSVZ axion models. It may even be possible to address solar
physics questions by distinguishing between low-Z and high-Z solar models if the
axion to photon coupling is sufficiently close to the current bound.

Finally, the potential of IAXO to detect the 14.4 keV line from nuclear transitions
of 57Fe was assessed in detail. Already BabyIAXO – with a few modifications – will
be able to probe parameter space so far unexplored. It is even possible that a first
axion detection will happen in the 57Fe channel. All of this requires optimised detec-
tor and optics setups, which are outlined in section 7.5.3. It is, however, important
to keep in mind that most of the region shown in figures 7.13 and 7.14 is in tension
with astrophysical considerations, in particular, SN1987A (see equation (7.72)). Be-
cause these types of bounds are still under discussion [343] and are subject to some
significant uncertainties, even a mere confirmation of the bound in a controlled setup
would be a significant result. In addition, the IAXO+ setup shown in figure 7.13
approaches a level of sensitivity comparable to equation (7.72), showing a pathway
for pushing beyond the astrophysical limits.

In conclusion, the solar axion flux, if detected, would likely be the most powerful
observation for linking UV-complete solar axion models and their low-energy phe-
nomenology. Any observation of all or some of the flux components discussed in
this chapter would immediately rule out a large number of axion models. More-
over, a good agreement of an observations with the predicted spectrum calculated
above would be a strong hint that an axion – and possibly a QCD axion – is being
observed.
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8 Conclusion and Outlook

The objective of this thesis is to investigate known and establish new connections
between QCD axion models and their low-energy phenomenology. This is because
axions stand out as one of the best motivated BSM hypotheses today since they can
address several shortcomings of the SM at once and are an almost generic outcome
of a large class of high-energy models. New experimental searches for axions are
constantly being devised and the interplay between axion models and their low-
energy phenomenology is crucial for investigating their expected sensitivity. These
studies can furthermore help to optimise the experimental configurations for axions
or axion-like particles.

Following the results in chapters 5 to 7, it becomes clear how the UV theory influ-
ences observations in the IR. The axion’s periodicity is, for instance, a property that
can only be understood by embedding the axion into a complete model. Crucially,
the periodicity is protected at all energy scales and survives mixing with other pseu-
doscalars. One of the consequences of this property are quantisation conditions on
specific combinations of axion couplings. Even though it seems as if loop corrections
to low-energy effective couplings break this condition, it was shown how the peri-
odicity is actually conserved at least when an appropriate operator basis is chosen
and no periodicity violating approximations are applied. Because the periodicity is
necessarily preserved, it can be an extremely helpful tool for analysing the validity of
proposals involving an axion. This was demonstrated in two examples, the effective
axion-photon coupling from mixings with pseudoscalar mesons and for the case of
an axion-majoron model.

The periodicity chapter is a good example of the top-down approach in axion
physics, while the second project presented in this thesis (chapter 6) proceeds in the
opposite direction. It starts from the observation that the leading log approximation,
often applied in EFT calculations, is not a good description for typical benchmark
axion models. This immediately leads to the question whether this is true for all
UV-complete axion models. By explicitly constructing a completion to an axion
EFT without introducing new degrees of freedom below the PQ symmetry breaking
scale, it was demonstrated that there are axion models with couplings of order unity
to SM fermions and a cutoff at the PQ scale. The lessons from this discussion are
widespread. First, it highlights the limitations of the EFT formalism, especially
when there are other manifestations of a QCD axion model than the axion itself at
a scale between experiment and PQ breaking. Second, a new model was devised.
Due to its simplicity in a large energy range, it can be a useful benchmark for
phenomenological studies. It was already shown that the two experiments NA62
and IAXO will be sensitive in an interesting range of parameter space. Finally, the
work opens a discussion on which kinds of UV completions exist for a given set
of EFT parameters. Even though a completion of the desired form was found in
this case, it has a few possible issues like the quite complicated structure of the
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model, the potential appearance of additional flavour-changing couplings and non-
perturbative Yukawas being required in some realisations to reproduce the top quark
mass. A further investigation could reveal under which additional assumptions the
set of axion EFTs which are the low-energy manifestations of reasonable UV models
could be restricted.

Chapter 7 is focused on low-energy phenomena, namely all processes generating
axions inside the Sun. In order to successfully relate an observation at low energies
to an axion model, as many axion parameters as possible should be measured. To
this end, it is beneficial to investigate the solar axion flux because it is unique in
the amount of information encoded. Axion helioscopes like IAXO have potential
access to the photon-, electron- and a combination of neutron- and proton-coupling
as well as the mass of the axion – more than any other detection technique. The
full potential of solar axion searches can only be exploited if the axion spectrum is
known with the best-possible accuracy. Thus, this thesis combined a large number
of previous works and several new ideas to provide the state-of-the-art calculation
of the solar axion flux. For maximal flexibility, it is compatible with all publicly
available standard solar models and opacity codes. The code which was developed
for this purpose is publicly available and is already being used by the IAXO collab-
oration. The computationally efficient implementation also allowed to perform an
in-depth analysis of associated uncertainties, using both MC simulations as well as
estimations of systematic effects. A quantification of uncertainties is both important
for statistical analysis of experimental data as well as for locating the parts of the
calculation where improvements are most urgent. It was found that the Primakoff
prediction already reaches percent-level accuracy. In contrast, the ABC flux is af-
fected by much larger uncertainties related to both opacity codes and systematics of
the calculation like the ones from partial degeneracy of electrons. Reducing this un-
certainty in the future will require improvements of the calculation and in particular
going beyond the direct relation between photon opacity and axion emission. As
an example for how the uncertainties influence what can be learned from an axion
observation, the simple case of a pure Primakoff flux was studied. With the updated
calculation, it can already be possible to gain insights into solar properties from an
axion detection. This shows the potential of axion physics and the possibility of a
future axion precision age, in which the axion takes the role of a new messenger also
revealing information about open questions unrelated to BSM physics.

An additional effort was made to study the sensitivity of IAXO to an isolated
signal in the solar axion spectrum generated by a nuclear transition of the isotope
57Fe. This signal could be very useful for ruling out a large number of possible
axion models. Because the transition energy of 14.4 keV is larger than the typical
ones of Primakoff or ABC axions, a detection of the 57Fe peak requires modified
experimental configurations. A number of options was discussed and it became clear
that a combination of purposely built optics and high-resolution, low-background
detectors will be required. Whether it is better to focus on optimising the energy
resolution or on minimising the detector background depends on the strength of
the axion-photon coupling and the corresponding Primakoff background to the 57Fe
peak. With such an optimised setup, IAXO could even make a first axion detection
in the 57Fe channel.
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The summary above demonstrates how physics at different scales can be intricately
linked to one another. A particularly illustrative example of these connections and
how the different projects come together is discussed in section 7.4. By using the
property of quantised couplings from chapter 5, one can draw additional information
from an axion observations in the IR. In this case, it was used to break a near
perfect degeneracy between the solar metallicity and the axion-photon coupling. A
UV axion property may therefore be directly linked to the measurement of a poorly
known solar parameter.

A large number of new axion experiments is planned to be built in the coming
decades. This is going to be accompanied by new and ever more precise astrophysical
observations, which can give new hints or bounds on axions. Collectively, these
searches are going to probe the majority of well-motivated axion parameter space
and finally give a definite answer to the question, whether the 45-year-old idea by
Peccei and Quinn is realised in nature in one of its simplest forms. At the same time,
future work in the direction of this thesis could be used to give predictions for high-
energy physics from low-energy experiments. Suppose for instance that an axion
with fermion couplings was discovered in experiments like IAXO or NA62. This
could be interpreted as a hint for an extended Higgs sector because this is the typical
way to generate this interaction in QCD axion models. Next generation collider
experiments could then perform direct searches for exactly these heavy scalars. The
future of particles physics, even at high energy, is therefore not exclusively relying on
ever larger accelerators but progress could also be driven more and more by studying
phenomena beyond the low-energy precision frontier.
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A CP violation in axion-fermion interactions

This appendix is based on results and arguments which were published in appendix A
of ref. [2] before submission of this thesis. Material from this article is used in the
following without further reference.

The most general description of axion-fermion interactions is given by

∂µa

fa

∑︂
χ

χ̄Cχγ
µχ . (A.1)

Just like in section 3.4, the sum runs over all chiral multiplets χ = QL, LL, uR, dR, eR.
Under a CP transformation each multiplet transforms like

χ
CP−→ Cχ∗ and χ̄

CP−→ χ̄∗C (A.2)

where C is the charge conjugation matrix, which is anti-symmetric, real, unitary
and satisfies (Cγµ)T = Cγµ. This is not to be confused with the coupling matrix
Cχ, which is defined in generation space. Inserting this into the axion interaction
term and reintroducing the generation indices, one can evaluate how the interaction
term transforms under CP.

∂µa

fa

Cχ,ij χ̄i γ
µ χj

CP−→ P ν
µ

∂νa

fa

Cχ,ij χ̄
∗
i Cγ

µC χ∗
j (A.3)

=P ν
µ

∂νa

fa

Cχ,ij χ
†
j Cγ

µTCγ0 χi (A.4)

=P ν
µ

∂νa

fa

Cχ,ij χ̄j γ
0γµγ0 χi (A.5)

=P ν
µ

∂νa

fa

Cχ,ij P
µ
ρ χ̄j γ

ρ χi (A.6)

=∂µa

fa

Cχ,ij χ̄j γ
µ χi (A.7)

A basis for the gamma matrices was used in which γ0† = γ0, γi† = −γi and
γ0γµγ0 = γµ†. P denotes the parity matrix, P = diag(1,−1,−1,−1). The cal-
culation shows that CP maps Cχ onto its transpose. Since Cχ has to be hermitian
due to hermiticity of the Lagrangian, the real part of Cχ is always symmetric and
thereby CP conserving. The imaginary part is however anti-symmetric. Axion-
fermion interactions are therefore CP violating if and only if the coupling matrix
in generation space has complex off-diagonal entries. The same is true for interac-
tions in a mass-diagonal basis where the same derivation applies. The vector and
axial-vector couplings are just linear combinations of the chiral ones, so again CP
violation occurs only in the case of complex off-diagonal entries.
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It is noteworthy that the mass diagonalization procedure can in principle induce
some degree of CP violation in the axion-quark interactions even though the matrices
Cχ may have been real in the UV. This can be most directly seen in the relation
between up- and down-type left-handed quark interactions, cd,L = V † cu,L V . Since
the unitary CKM matrix V has been measured to have a non-vanishing CP violating
phase, it is possible to get CP violating interactions in the case of flavour non-
universal axion couplings. This CP violation is however fully determined by the
CKM phase and does not originate from the axion sector.
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B Variations of the new axion model

This appendix is based on results and arguments which were published in appendix B
of ref. [2] before submission of this thesis. Material and figures from this article are
used in the following without further reference.

The UV completion in equation (6.20) is not unique. Instead it is also possible to
couple either or both of the up- and down-type fields to Φ∗ instead of Φ. In total,
this makes four possible ways to choose between Φ and Φ∗ and the most general
Lagrangian is given by

L ⊃ − αuQ̄LH̃F
u
R − βuF̄

u

LΦ(∗)uR + h.c.

− αdQ̄LHF
d
R − βdF̄

d

LΦ(∗)dR + h.c. .
(B.1)

Because Φ transforms trivially under all of the SM gauge groups, this choice does
not influence the gauge charges of any other fields. The difference appears in the
relations of PQ charges of the different fermions. The terms in equation (B.1) enforce
the conditions

χQL − χFuR
= χQL − χF dR

= 0 , (B.2)
χFuL

− χuR = ±1 , (B.3)
χF dL

− χdR = ±1 . (B.4)

The upper/lower sign corresponds to inserting Φ/Φ∗ into the Lagrangian (B.1).
As in the main text, the sum of the four equations above appears in the anomaly
coefficient, because all SM and F quarks are in the fundamental representation of
SU(3).

N =
∑︂

f

(χfL − χfR)T (Rf ) (B.5)

Hence, |N | = 6 as long as either Φ or Φ∗ is chosen for both up- and down-type
quarks. Otherwise, the two contributions cancel, there is no QCD anomaly and the
pseudoscalar a is not a QCD axion. For this reason, this possibility is not pursued
any further and PQ charges of up- and down-type fields are taken to be identical.
The corresponding labels are dropped in the following.

After this, the only other choice is the PQ charge assignment of F quarks. These
determine the possible origin of F quark masses, which can either originate from the
PQ scalar Φ or from the VEV of an additional spurion field Σ without PQ charge.
The combination of the two possible charge assignments of q and F quarks results
in four different models:
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1. Use Φ in (B.1) and generate F masses from ⟨Σ⟩. The additional mass
term is

L ⊃ −λ⟨Σ⟩√
2
F̄LFR + h.c. , (B.6)

which implies

χFL − χFR = 0 ⇒ χQL − χqR = 1. (B.7)

F is vector-like with respect to the PQ symmetry and does not contribute to
the anomaly. This is exactly the model which is analyzed in great detail in
chapter 6.

2. Use Φ∗ in (B.1) and generate F masses from ⟨Σ⟩. Using the same mass
term as in (B.6), one gets

χFL − χFR = 0 ⇒ χQL − χqR = −1 . (B.8)

This option is equivalent to the first one after a redefinition of Φ ↔ Φ∗.

3. Use Φ in (B.1) and generate F masses from ⟨Φ⟩. The mass term of F
quarks in this case is given by

L ⊃ −λ⟨ϕ⟩√
2
F̄LFR + h.c. . (B.9)

And consequently,

χFL − χFR = 1 ⇒ χQL − χqR = 0. (B.10)

Only F carries an axial PQ charge, which means that no symmetry forbids a
Yukawa term as in the SM,

L ⊃ −γuQ̄LH̃uR − γdQ̄LHdR + h.c. . (B.11)

The existence of these couplings slightly modifies the diagonalization of the
mass matrix. Even though the SM quarks are not charged under PQ in the UV
model, they inherit axion couplings through the mixing with the heavy quarks
during the diagonalization. These are however parametrically suppressed by
ϵ2 = v2

⟨ϕ⟩2 . This model will therefore not induce large flavour-changing effects
in the IR.

4. Use Φ∗ in (B.1) and generate F masses from ⟨Φ⟩. Using the same mass
term as in (B.9), one gets

χFL − χFR = 1 ⇒ χQL − χqR = −2 . (B.12)

Both SM and F quarks have axial PQ charges and therefore tree-level axion
couplings are present in this variation of the model.
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In each of the cases above, all axial charges of all combinations of SM and F
quarks are fixed. The only remaining freedom is a shift of all charges by an arbitrary
constant, which can be used to fix one vector-like charge.

Note that it only makes sense to work with the effective Lagrangian (6.13) in the
first (or the equivalent second model) when ⟨ϕ⟩ ≪ mFi . Otherwise, the F fields
cannot be integrated out at any scale above PQ symmetry breaking as it is done
in the main text. In models 3 and 4, a full diagonalization including all SM and F
quarks along the lines of what is done in appendix C is always necessary.
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C Mass diagonalization and axion
interactions

This appendix is based on results and arguments which were published in appendix C
of ref. [2] before submission of this thesis. Material from this article is used in the
following without further reference.

In the following, the full diagonalization procedure of chapter 6 is outlined. The
resulting couplings of the axion and light and heavy quarks are derived. This in-
cludes some repetitions of intermediate steps and results which are also given in
chapter 6.

Absorbing the axion field into the quarks
The mass diagonalization starts from the mass matrix in the UV-complete theory
after PQ and electroweak symmetry breaking,

M = ⟨Σ⟩√
2

(︄
0 ϵϵ′α

ϵ′βeia/⟨Φ⟩ λ

)︄
, (C.1)

with the two expansion parameters

ϵ = v

⟨ϕ⟩ and ϵ′ = ⟨ϕ⟩
⟨Σ⟩ . (C.2)

The transformation of quark fields is split into two parts, of which only the first one
depends on the axion field. This is done by absorbing the axion dependence of the
quark mass matrix into the right-handed quarks,

uR → e− ia
⟨ϕ⟩uR , dR → e− ia

⟨ϕ⟩dR . (C.3)

This removes the axion field a from M in equation (C.1), while the quark kinetic
terms generate derivative couplings of the axion to right-handed quarks,

q̄Ri/∂qR → q̄Ri/∂qR + ∂µa

⟨ϕ⟩ q̄Rγ
µqR , (C.4)

where q stands for both up- and down-type fields. The path integral measure is not
invariant under this transformation and anomalous interaction terms between the
axion and gauge bosons arise. These are [14, 49, 50, 58, 107]

L ⊃ −N · αs

8π ⟨ϕ⟩ aG
a
µν
˜︁Gaµν − E · αEM

8π ⟨ϕ⟩ aFµν
˜︁F µν

+ E · αEM

4π
sW

cW

a

⟨ϕ⟩Fµν
˜︁Zµν − E · αEM

8π
s2

W

c2
W

a

⟨ϕ⟩Zµν
˜︁Zµν ,

(C.5)
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In equation (C.4), the axion-dependent rotations were only applied to right-handed
fields, which do not couple to SU(2) gauge fields. Therefore, W -couplings are absent.
N and E are the anomaly coefficients defined as

N =
∑︂

f

(χfL − χfR)T (Rf ) = 6, (C.6)

E = 2
∑︂

f

(χfL − χfR)Q2
f . (C.7)

T (Rf ) is the Dynkin index of the SU(3) representation63 and Qf are the electric
charges. In the new model, N = 6 and E = 10 or 16 depending on whether the
leptons are also charged under PQ. The axion gluon coupling is normalized in the
conventional manner,

fa ≡ 1
NDW

⟨ϕ⟩ , (C.8)

with NDW ≡ N = 6. With these definition, the gauge-boson coupling terms can be
written as

L ⊃ − αs

8πfa

aGa
µν
˜︁Gaµν − E

N
· αEM

8πfa

aFµν
˜︁F µν

+ E

N
· α4π

sW

cW

a

fa

Fµν
˜︁Zµν − E

N
· αEM

8π
s2

W

c2
W

a

fa

Zµν
˜︁Zµν .

(C.9)

By comparing this to the EFT Lagrangian (3.21), one can identify cgg = 1, cW W = 0,
cγγ = E/N , cZZ = tan(θW )2 E/N and cγZ = −2 tan(θW ) E/N .

The subsequent steps in the diagonalization procedure also contain axial transfor-
mations of the quark fields, which are however not axion dependent and only result
in the usual shift of the theta-angle of QCD

θQCD → θQCD + arg(det(M |a=0)), (C.10)

therefore simply displacing the location of the minimum of the axion potential.

Mass diagonalization
In order to fully diagonalize the matrices Mu and Md, unitary transformations of
left- and right-handed fields are required. As in the main text, the labels u/d and
generation indices are dropped, but both types of quarks and all three generations
of SM and F quarks are considered at every point.

Because MM † is hermitian, it can be diagonalized by a unitary matrix U ,

U †MM †U = Λ2, (C.11)

63In the conventions of this thesis, T (Rf ) = 1 for the fundamental representation, which differs
from the published version in ref. [2] by a factor of 2.
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where Λ2 is a diagonal matrix with only real positive eigenvalues. Another unitary
matrix is defined by S = M †UΛ−1. The two matrices can be used to transform the
left- and right-handed quark fields, respectively,(︄

qL

FL

)︄
→ U

(︄
qL

FL

)︄
(C.12)(︄

qR

FR

)︄
→ S

(︄
qR

FR

)︄
. (C.13)

Here, q can be either u or d. This transformation diagonalizes the mass matrix,

U †MS = U †MM †UΛ−1 = Λ . (C.14)

U can be found perturbatively, only using its property that it diagonalizes

MM † = ⟨Σ⟩2

2

(︄
ϵ2ϵ′2(αα†) ϵϵ′(αλ†)
ϵϵ′(λα†) (λλ† + ϵ′2ββ†)

)︄
≡ ⟨Σ⟩2

2

(︄
(ϵϵ′)2δ ϵϵ′µ
ϵϵ′µ† ξ

)︄
. (C.15)

In the second step, the matrices δ, µ and ξ were defined for notational convenience,
of which δ and ξ are hermitian. To quadratic order in ϵ, U is given by

U =
(︄

(−1 + (ϵϵ′)2

2 µξ−2µ†)Uδ ϵϵ′µξ−1Uξ

ϵϵ′ξ−1µ†Uδ (1 − (ϵϵ′)2

2 ξ−1µ†µξ−1)Uξ

)︄
+ O(ϵ3) , (C.16)

where the unitary matrices Uδ and Uξ are defined by the property that they diago-
nalize hermitian matrices to give the q and F masses,

M2
q = diag(m2

q1 ,m
2
q2 ,m

2
q3) (C.17)

=
[︂
U †

δ (δ − µξ−1µ†)Uδ (ϵϵ′)2 + O(ϵ3)
]︂ ⟨Σ⟩2

2 , (C.18)

M2
F = diag(m2

F1 ,m
2
F2 ,m

2
F3) (C.19)

=
[︄
U †

ξ (ξ + (ϵϵ′)2

2 (µ†µξ−1 + ξ−1µ†µ))Uξ + O(ϵ3)
]︄

⟨Σ⟩2

2 . (C.20)

In the region of interest for NA62, this expansion in ϵ can be done safely, as ϵ ≲ 10−4.
In order to map onto the effective description and to avoid sizeable corrections to

the effective description in (6.13), it needs to be ensured that mFi ≫ ⟨ϕ⟩, such that
the F quarks can be integrated out at some scale above the PQ one. In other words,
the scale separation between the mass of the F quarks and the PQ scale needs to
be sufficiently large. This condition can be written as

min
i
m2

Fi
= min eig(ξ) ⟨Σ⟩2 ≫ ⟨ϕ⟩2 (C.21)

⇒ 1 ≳ min eig(ξ) = min eig(λλ† + ϵ′2ββ†) ≫ ϵ′2 (C.22)
⇒ 1 ≳ min eig(λλ†) ≫ ϵ′2 . (C.23)

’min eig’ denotes the smallest eigenvalue of a matrix. In the second and third lines,
the size of the eigenvalues are constrained by perturbativity. Note that ϵ′ ≪ 1 is
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only a necessary condition for the F quarks to be much heavier than the PQ scale,
while the last line is a sufficient condition. It is therefore helpful to define another
expansion parameter ϵ′′ as

ϵ′′2 = ϵ′2

min eig(λλ†) ≃ ⟨ϕ⟩2

mini m2
Fi

. (C.24)

When ϵ′′ ≪ 1, ξ−1 can be expanded as

ξ−1 = (λλ† + ϵ′2ββ†)−1 (C.25)
= λ†−1 (1 + ϵ′2λ−1ββ†λ†−1)−1 λ−1 (C.26)
= λ†−1 ∑︂

n

(−ϵ′2λ−1ββ†λ†−1)n λ−1 (C.27)

= λ†−1 (1 − ϵ′2λ−1ββ†λ†−1 + O(ϵ′′4)) λ−1 , (C.28)

where a Neumann series was used from the second to the third line and it was
assumed that eigenvalues of ββ† are at most of order unity. Inserting the leading-
order result in ϵ′′ into (C.17), the light quark masses become

M2
q = diag(m2

q1 ,m
2
q2 ,m

2
q3) ≃ U †

δαλ
−1ββ†λ†−1α†Uδ ϵ2ϵ′4 ⟨Σ⟩2

2 (C.29)

≃ ABA† ϵ2ϵ′4 ⟨Σ⟩2

2 . (C.30)

In the last step, the coupling matrices A and B were defined as

A = U †
δµξ

−1Uξ = U †
δαλ

−1Uξ + O(ϵ′′2) and B = U †
ξββ

†Uξ . (C.31)

Axion-quark interactions
Because the axion field was absorbed entirely into the right-handed fields, the deriva-
tive terms with left-handed quark fields are not affected by the unitary transforma-
tion U . However, the derivative axion coupling to right-handed fields as in equa-
tion (C.4) does not transform trivially,

∂µa

⟨ϕ⟩
(︂
q̄R F̄R

)︂
γµ

(︄
1 0
0 0

)︄(︄
qR

FR

)︄
→ ∂µa

⟨ϕ⟩
(︂
q̄R F̄R

)︂
γµS†

(︄
1 0
0 0

)︄
S

(︄
qR

FR

)︄
.

(C.32)

To leading order in ϵ, S is given by

S =M †UΛ−1 (C.33)

=⟨Σ⟩√
2

[︄(︄
ϵϵ′2 β†ξ−1µ†Uδ ϵ′ β†(1 − (ϵϵ′)2

2 ξ−1µ†µξ−1)Uξ

ϵϵ′ (λ†ξ−1µ† − α†)Uδ (λ† + (ϵϵ′)2(α†µξ−1 − 1
2λ

†ξ−1µ†µξ−1))Uξ

)︄

+ O(ϵ3)
]︄
Λ−1 , (C.34)
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from which the relevant coupling matrix can be determined to leading order in ϵ as
/∂a

⟨ϕ⟩S
†

(︄
1 0
0 0

)︄
S

=
/∂a

⟨ϕ⟩ Λ−1 ⟨Σ⟩2

2

(︄
ϵ2ϵ′4U †

δµξ
−1ββ†ξ−1µ†Uδ ϵϵ′3U †

δµξ
−1ββ†Uξ

ϵϵ′3U †
ξββ

†ξ−1µ†Uδ ϵ′2U †
ξββ

†Uξ

)︄
Λ−1 (C.35)

=
/∂a

⟨ϕ⟩ Λ−1 ⟨Σ⟩2

2

(︄
ϵ2ϵ′4ABA† ϵϵ′3AB
ϵϵ′3BA† ϵ′2B

)︄
Λ−1 (C.36)

≃ (/∂a)
(︄

1/ ⟨ϕ⟩ v ϵ′ M−1
q A BM−1

F /2
v ϵ′M−1

F B A†M−1
q /2 ⟨ϕ⟩M−1

F BM−1
F /2

)︄
, (C.37)

where only the leading-order term in ϵ′′ was kept in the last step as in equa-
tion (C.29), which is of course only justified if ϵ′′ ≪ 1. So as one would expect,
the coupling of SM quarks to axions is only strictly proportional to their masses if
the heavy messenger fields are well separated from the PQ scale and can be inte-
grated out. In the final step, it was also used that Λ−1 = diag(M−1

q ,M−1
F ). With

this, the axion couplings can be written as

L ⊃⟨ϕ⟩
2
(︂
q̄R F̄R

)︂
(/∂a) Λ−1

(︄
(ϵϵ′)2ABA† ϵϵ′AB
ϵϵ′BA† B

)︄
Λ−1

(︄
qR

FR

)︄
(C.38)

≃ 1
⟨ϕ⟩ q̄R (/∂a) qR + ⟨ϕ⟩

2 F̄R(M−1
F BM−1

F ) (/∂a)FR

+
(︃
v

2 ϵ
′q̄R(M−1

q A BM−1
F ) (/∂a)FR + h.c.

)︃
, (C.39)

in the form that has been used in the main body of this thesis.

Tree-level contributions to s → d+ a

It was shown in the previous section that, at leading order, the new model only
includes flavour-diagonal tree-level couplings between the axion and SM quarks. In
this case, the s → d + a process is only induced at one-loop level which is also the
scenario discussed in the main text. However, one cannot exclude the possibility that
higher orders in the expansion of both ϵ and ϵ′′, which induce non-diagonal coupling
structures, become relevant. These flavour-violating couplings would trigger the
s → d + a decay already at tree level. It therefore becomes important to quantify
them and to check if they restrict the range of values of the expansion parameters.

To start with, one can quantify how large the axial-vector coupling, irrespective of
whether it is induced at tree or loop level, is allowed to be without being in conflict
with the bound BR(K+ → π+ + a) < 7.3 × 10−11 [322]. Generally, a coupling of the
form

Hs→da = (∂µa) d̄hS
dsγ

µ(1 + γ5)s+ h.c. (C.40)
results in the decay width of equation (6.4)

Γ(K+ → π+a) = |hS
ds|2

16πm3
K+

(m2
K+ −m2

π+)2λ1/2(m2
K+ , m2

π+ , m2
a) f 2

+(m2
a) ,

(C.41)
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which leads to

|hS
ds| ≲ 1.5 × 10−12 GeV−1 . (C.42)

It is straightforward to conclude that the expansion in ϵ is safe: The parameter
ϵ = v/ ⟨ϕ⟩ is O(10−4) for fa ∼ 106 GeV, which is the region where NA62 is sen-
sitive. The leading-order axial-vector coupling between quarks and the axion in
equation (C.39) therefore corresponds to (2 ⟨ϕ⟩)−1 ∼ (12 · fa)−1 ∼ 10−7 GeV−1. The
NLO contribution to the axial-vector coupling between the axion and SM quarks
would be suppressed by an additional factor of ϵ2 with respect to this leading-order
coupling if the higher-order terms in S in equation (C.34) were included. Therefore,
the NLO coupling is parametrically suppressed by 10−7 ·10−8 GeV−1 = 10−15 GeV−1,
which is sufficiently far away from the E787 bound quoted in equation (C.42) and
is also out of reach for NA62.

Next, it is necessary to quantify how small ϵ′′ has to be in order to avoid signifi-
cant flavour-violating axion couplings at tree level. By expanding ξ−1 in ϵ′′ as in
equation (C.25), one can write S schematically as

S =
(︄

unitary + O(ϵ′′2) O(ϵ′′)
O(ϵ′′) unitary + O(ϵ′′2)

)︄
, (C.43)

and estimate the parametric size of the coupling structure in equation (C.32) as

S†

(︄
1 0
0 0

)︄
S =

(︄
1 + O(ϵ′′2) O(ϵ′′)

O(ϵ′′) O(ϵ′′2)

)︄
. (C.44)

Hence, an upper bound on the tree-level flavour-violating axion couplings to the SM
quarks can be derived,

|hS,treelevel
ds | = 1

2 ⟨ϕ⟩

[︄
S†

(︄
1 0
0 0

)︄
S

]︄
ds

≲
ϵ′′2

2 ⟨ϕ⟩ . (C.45)

To avoid the constraint in (C.42), it is sufficient to require ϵ′′ ≲ 10−3. By further
restricting to ϵ′′ ≲ 10−4, the tree-level effect becomes negligible compared to the
loop-induced effect. This is exactly the setup which is considered in the main text.

At this point, it is important to note two more interesting facts about this new
model. First, flavour-violating axion couplings at tree level are not necessarily a
problem but could also be considered an interesting feature of the model. Only
because it was initially set up to UV-complete the model in (6.13) and not to build an
axion-flavour model, the main part of this thesis is confined to the case of large scale
separations, where the tree-level flavour violation is negligible and flavour violation
is induced only by loop processes.

Second, tree-level flavour violation can also be suppressed by the coupling matrices
without requiring the masses of the additional fields to be much larger than the PQ
scale. For instance, when ϵ′ = 0.2, one can set β = λ = 1 and α = Y

√︂
1+0.22

0.22 , with
Y being the SM Yukawa couplings. This results in vanishing flavour off-diagonal
axion couplings to SM quarks in equation (C.36) at all orders in ϵ′′, as the inversion
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of ξ in (C.25) is trivial in this case and thus ABA† becomes proportional to M2
q ,

which is exactly diagonal, without expanding in ϵ′′,

M2
q =

[︂
U †

δ (δ − µξ−1µ†)Uδ (ϵϵ′)2 + O(ϵ3)
]︂ ⟨Σ⟩2

2 (C.46)

=
[︃
U †

δ (αα† − 1
1 + ϵ′2αα

†)Uδ (ϵϵ′)2 + O(ϵ3)
]︃ ⟨Σ⟩2

2 (C.47)

= 1
1 + ϵ′2 ABA†ϵ2ϵ′4 ⟨Σ⟩2

2 + O(ϵ3). (C.48)

Also note that with theses choices of couplings, the corrections to the relation in
equation (C.29), which are crucial to obtain the effective value of hds, are of the order
of ϵ′′2 = ϵ′2 = 4 %. This means that the results and discussions of the K+ → π+ + a
decay are still valid. Nevertheless, α is already very close to the perturbativity limit
of Yukawa couplings in this explicit realisation .

Electroweak interactions
Right-handed q and F quarks live in identical representations of the SM gauge
group (considering up- and down-type separately). Hence, the interactions of these
chiral components with gauge bosons are unchanged by the unitary transformation
of quark fields. This is not the case for left-handed fields. It is useful to write the
6 × 6 matrix U as a block matrix

U =
(︄
A B
C D

)︄
, (C.49)

where each block is a 3×3 matrix. Note, however, that unitarity of U does not imply
unitarity of any of the blocks. Because the transformation above mixes different
representations of SU(2)×U(1)Y/U(1)EM, it needs to be checked how the interactions
with W and Z bosons are modified. Starting with the Z bosons,(︄

q̄
F̄

)︄T

γµZ
µ −g

cos(θW )

[︄
±1

2

(︄
1 0
0 0

)︄
PL −Q sin2(θW )

(︄
1 0
0 1

)︄]︄(︄
q
F

)︄

→
(︄
q̄
F̄

)︄T

γµZ
µ −g

cos(θW )

[︄
±1

2

(︄
A†A A†B
B†A B†B

)︄
PL −Q sin2(θW )

(︄
1 0
0 1

)︄]︄(︄
q
F

)︄
.

(C.50)
In this expression, the upper (lower) sign refers to up- (down-) type quarks and
Q is the electromagnetic charge. Z can in principle couple to all available neutral
currents, including ones involving light SM quarks of different flavour because A
does not have to be unitary. By identifying the blocks A and B in the perturbative
result of U in equation (C.16), one can find the Z-interactions at leading order in ϵ
to be

L ⊃
(︄
q̄
F̄

)︄T

γµZ
µ −g

cos(θW )

[︄
± 1

2

(︄
1 −ϵϵ′A

−ϵϵ′A† (ϵϵ′)2A†A

)︄
PL

−Q sin2(θW )
(︄
1 0
0 1

)︄]︄(︄
q
F

)︄
. (C.51)
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Tree-level flavour-changing couplings to SM quarks only appear at order ϵ2.
The analogous computation has to be performed for the W interactions, but

because these mix up- and down-type quarks, the corresponding labels are reintro-
duced. The W terms become

−g√
2

⎛⎜⎜⎜⎜⎝
ūL

d̄L

F̄
u

L

F̄
d

L

⎞⎟⎟⎟⎟⎠
T

γµ

⎡⎢⎢⎢⎣W+
µ

⎛⎜⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠+W−
µ

⎛⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
uL

dL

F u
L

F d
L

⎞⎟⎟⎟⎠

−−→ −g√
2

⎛⎜⎜⎜⎜⎝
ūL

d̄L

F̄
u

L

F̄
d

L

⎞⎟⎟⎟⎟⎠
T

γµ

⎡⎢⎢⎢⎣W+
µ

⎛⎜⎜⎜⎝
0 Au†Ad 0 Au†Bd

0 0 0 0
0 Bu†Ad 0 Bu†Bd

0 0 0 0

⎞⎟⎟⎟⎠

+ W−
µ

⎛⎜⎜⎜⎝
0 0 0 0

Ad†Au 0 Ad†Bu 0
0 0 0 0

Bd†Au 0 Bd†Bu 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝
uL

dL

F u
L

F d
L

⎞⎟⎟⎟⎠ .

(C.52)

The SM CKM matrix V is identified as

V = Au†Ad = Uu†
δ Ud

δ + O(ϵ2) , (C.53)

which unlike in the SM does not have to be unitary, but non-unitarity only appears
at order ϵ2. The results for A and B can be inserted to get

L ⊃ −g√
2

⎛⎜⎜⎜⎜⎝
ūL

d̄L

F̄
u

L

F̄
d

L

⎞⎟⎟⎟⎟⎠
T

γµ

⎡⎢⎢⎢⎣W+
µ

⎛⎜⎜⎜⎝
0 V 0 −ϵϵ′VAd

0 0 0 0
0 −ϵϵ′A†

uV 0 (ϵϵ′)2A†
uVAd

0 0 0 0

⎞⎟⎟⎟⎠

+ W−
µ

⎛⎜⎜⎜⎜⎝
0 0 0 0
V † 0 −ϵϵ′V †Au 0
0 0 0 0

−ϵϵ′A†
dV

† 0 (ϵϵ′)2A†
dV

†Au 0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎝
uL

dL

F u
L

F d
L

⎞⎟⎟⎟⎠ , (C.54)

which is the expression used in the main text for the calculation of the s → d + a
amplitude in the new model.

Radial modes of H and Φ
Up to this point, the radial modes of the Higgs field H and of the PQ field Φ were
neglected, but they are of course present in the UV model and can in principle
be involved in observable processes. In order to find their coupling structure, it is
easiest to think of them as additional non-constant terms in the mass matrix,

L ⊃ −
(︂
q̄L F̄L

)︂
Mrad

(︄
qR

FR

)︄
+ h.c., (C.55)
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where

Mrad =
(︄ 0 α h√

2
β ϕ√

2 0

)︄
. (C.56)

The unitary transformations then result in

Mrad → U †MradS . (C.57)

The full expressions, where U and S are expressed in terms of the UV parameters,
are quite lengthy. That is why they are given separately for each 3 × 3 block below.

[U †MradS]qq =⟨Σ⟩
2

(︃(︃
ϵ2ϵ′3ABA†ϕ+ O(ϵ4)

)︃
−
(︃
ϵϵ′U †

δα(λ†ξ−1µ† − α†)Uδ h+ O(ϵ3)
)︃)︃

M−1
q (C.58)

=⟨Σ⟩
2

(︄
ϵ2ϵ′3ABA†ϕ+ 2

ϵϵ′ ⟨Σ⟩2M
2
q h

)︄
M−1

q (C.59)

≃Mq

⟨ϕ⟩ ϕ+ Mq

v
h , (C.60)

[U †MradS]qF =⟨Σ⟩
2

(︃(︃
ϵϵ′2ABϕ+ O(ϵ3)

)︃
−
(︃

C h+ O(ϵ2)
)︃)︃

M−1
F , (C.61)

[U †MradS]F q =⟨Σ⟩
2

(︃(︃
ϵϵ′2BA†ϕ+ O(ϵ3)

)︃
+
(︃
ϵ2ϵ′2A†U †

δα(λ†ξ−1µ† − α†)Uδh+ O(ϵ3)
)︃)︃

M−1
q (C.62)

=⟨Σ⟩
2

(︄
ϵϵ′2BA†ϕ− 2

⟨Σ⟩2 A†M2
q h

)︄
M−1

q , (C.63)

[U †MradS]F F = ⟨Σ⟩
2

(︃(︃
ϵ′B ϕ+ O(ϵ2)

)︃
+
(︃
ϵϵ′A†C h+ O(ϵ3)

)︃)︃
M−1

F , (C.64)

where C was defined as C = U †
δαλ

†Uξ ≃ 2 AM2
F/ ⟨Σ⟩2. First, note that modifications

of the Higgs coupling to SM quarks always appear together with additional factors
of ϵ2 and are thus negligible. Second, any additional contributions to s → d + a
involving ϕ must involve internal F quarks and are therefore proportional to ϵ′′2.
Consequently, any of these terms becomes negligible in the ϵ′′ ≪ 1 limit (as long
as this suppression also compensates for possible enhancements originating from
the hierarchical coupling matrices). This is particularly important for the otherwise
unsuppressed coupling in equation (C.63). But even without a significant ϵ′′ suppres-
sion, the flavour violation can be small for some realisations of the coupling matrices
α and β. For instance, in the realisation proposed above equation (C.46), the ϕ-
and Higgs-induced loop processes become flavour-diagonal because the amplitude
has the same flavour structure as the mass matrix.
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D Counterterm contribution to the kaon
decay rate

This appendix is based on results and arguments which were published in appendix D
of ref. [2] before submission of this thesis. Material and figures from this article are
used in the following without further reference.

It was acknowledged in the main text that counterterm contributions are relevant
for the computation of the s → d + a transition. For instance, the diagram on the
right-hand side of figure 6.4 is a counterterm contribution from the renormalization
of quark fields. The important contributions all stem from the renormalization of the
lighter SM quarks because the one related to heavy F fields are of higher order in ϵ′′.
Also SM quarks encounter divergent loop integrals involving the new heavy fields,
but these are again parametrically suppressed by O(ϵ′′2). Cancelling all divergences,
including these higher-order terms, would require a more complete renormalization
discussion compared to the one below, where only the leading-order processes in ϵ′′2

are considered.
The bare quark fields are labelled b and can be related to the renormalized fields

as in ref. [428]

qb
L =

⎛⎜⎝ds
b

⎞⎟⎠
bare

L

=
(︃

1 + 1
2δZ

L
)︃⎛⎜⎝ds

b

⎞⎟⎠
L⏞ ⏟⏟ ⏞

qL

, qb
R =

⎛⎜⎝ds
b

⎞⎟⎠
bare

R

=
(︃

1 + 1
2δZ

R
)︃⎛⎜⎝ds

b

⎞⎟⎠
R⏞ ⏟⏟ ⏞

qR

.

(D.1)

For the s → d+ a transition only the down-type fields are relevant. The renormal-
ization constants are determined by demanding that the one-loop W± contribution
to s → d and the counterterm cancel each other [329], as depicted in figure D.1.
The renormalization constants are therefore of quadratic order in the weak coupling
constant.

The renormalized quark fields from equation (D.1) have to be inserted into the
right-handed derivative axion-fermion interactions. This leads to the terms

L = 1
⟨ϕ⟩ q̄R (/∂a) qR + 1

2 ⟨ϕ⟩ d̄RδZ
R
sd

∗ (/∂a) sR + 1
2 ⟨ϕ⟩ d̄R (/∂a) δZR

dssR + h.c. .

(D.2)

Because δZ is expected to have non-vanishing off-diagonal entries, the new terms
induce s → d+a at tree level. These processes are of order g2/ ⟨ϕ⟩, just like the one-
loop FCNCs in equation (6.45). Hence, there is no reason to neglect the counterterm
contribution at this stage. As is known in the literature, the explicit renormalization
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s d + s d

W+−

u, c, t
+ ... = 0

Figure D.1. On-shell renormalization condition of SM quarks. Only the relevant dia-
grams for determining the renormalization constants contributing to s → d are depicted.
The dots stand for higher-order diagrams in the UV model, such as Z boson-induced
flavour changes or diagrams with heavy F quarks.

s d

a

p1 p2
+ s d

a

p1 p2 p2
+ s d

a

p1 p1 p2
= 0 ,

Figure D.2. Three different kinds of counterterm induced diagrams for s → d+a exactly
add up to zero. The relation is proved below.

s d

a

= – s d

W+−

u, c, t

a

s d

a

= – s d

W+−

u, c, t

a

Figure D.3. Counterterm insertions are related to the W ± loops for s → d + a because
of the renormalization condition in figure D.1.

calculation does not need to be performed. Instead, the diagrammatic equation in
figure D.2 can be shown to hold without knowing the precise expressions for the
renormalization constants. In addition, one can also conclude the two relations
given in figure D.3 from the renormalization condition shown in figure D.1.

By combining the three identities in figures D.1 to D.3, one obtains the key relation
depicted in figure D.4. It allows to replace the counterterm contributions with
additional self-energy diagrams, where the ALP is emitted from the external down-
type quark legs [429], i.e. the diagrams on the right-hand side. It is therefore most
straightforward to compute the additional loop diagrams instead of taking a detour
to first compute the renormalization constants. When performing the calculations,
one notices that the diagrams on the right-hand side of figure D.4 add up to zero
at linear order in the down and strange quark masses. Therefore, the counterterm
contribution is subdominant and can safely be neglected for all practical purposes.
This is the result used in section 6.1.
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s d

a

= s d

W+−

u, c, t

a

+ s d

W+−

u, c, t

a

Figure D.4. Key relation between s → d+a counterterm contribution and ALP emission
from external legs. This allows to skip the explicit evaluation of counterterms and instead
add two more loop diagrams to the calculation of the matrix element.

Proof of the relation in figure D.2
Derivative axion couplings to right-handed quarks can be written in their most
general form as

L ⊃ (∂µa) q̄b
R GQγ

µqb
R , (D.3)

where qb = (db, sb, bb)T denote the bare down-type quark fields and GQ is a general
coupling matrix of diagonal structure, i.e. GQ = diag(gd, gs, gb). Only interactions
with right-handed fermionic fields are considered here, but the derivation works
equivalently for left-handed fields. Inserting the renormalized quark fields from
equation (D.1), one obtains

L ⊃ (∂µa) q̄R

(︃
1 + 1

2δZ
R †
)︃
GQ

(︃
1 + 1

2δZ
R
)︃
γµqR (D.4)

= (∂µa) q̄R GQγ
µqR + ∂µa q̄R

1
2δZ

R †GQγ
µqR + ∂µa q̄R GQ

1
2δZ

R γµqR .

(D.5)

The kinetic and mass terms are modified as

L ⊃ iq̄b/∂qb − q̄bMqb (D.6)
=iq̄b

R
/∂qb

R + iq̄b
L
/∂qb

L − q̄b
RMqb

L − q̄b
LMqb

R (D.7)
= iq̄R/∂qR + iq̄L/∂qL − q̄RMqL − q̄LMqR + LC , (D.8)

where M = diag(md,ms,mb) and the counterterm Lagrangian LC is given by

LC = i

2 q̄R(δZR)†/∂qR + i

2 q̄R/∂ δZ
RqR + i

2 q̄L(δZL)†/∂qL + i

2 q̄L/∂ δZ
LqL

− 1
2 q̄R(δZR)†MqL − 1

2 q̄RM δZLqL − 1
2 q̄L(δZL)†MqR − 1

2 q̄LMδZRqR .

(D.9)

The left diagram in figure D.2 can be computed by just using equation (D.4),

iM1 = i(p1 − p2)µ

2 ūd(p2)
(︂
igs δZ

R∗
sd + igd δZ

R
ds

)︂
γµPRus(p1) , (D.10)

where ZR∗
sd is a specific matrix element from δZR † and ∗ denotes complex conjugation.

153



The middle diagram involves an internal propagator and can be evaluated applying
equations (D.4) and (D.9) to find

iM2 =ūd(p2)
i

2

{︄ [︂(︂
δZR∗

sd + δZR
ds

)︂
/p2 −

(︂
mdδZ

R
ds +msδZ

L∗
sd

)︂]︂
PR

+
[︂(︂
δZL∗

sd + δZL
ds

)︂
/p2 −

(︂
mdδZ

L
ds +msδZ

R∗
sd

)︂]︂
PL

}︄

×
i(/p2 +ms)
m2

d −m2
s

i(p1 − p2)µigsγ
µPRus(p1) (D.11)

=−i(p1 − p2)µ

2 igs ūd(p2)
{︂[︂
δZR∗

sd md −msδZ
L∗
sd

]︂
PR

+
[︂
δZL∗

sd md −msδZ
R∗
sd

]︂
PL

}︂
× /p2 +ms

m2
d −m2

s

γµPRus(p1) , (D.12)

where the equation of motion ūd(p2)/p2 = ūd(p2)md was applied. Using it once
more for /p2 in the propagator yields

iM2 =−i(p1 − p2)µ

2 igs ūd(p2){︄(︃ [︂
δZR∗

sd md −msδZ
L∗
sd

]︂
PR +

[︂
δZL∗

sd md −msδZ
R∗
sd

]︂
PL

)︃
ms

m2
d −m2

s

+
(︃ [︂
δZR∗

sd md −msδZ
L∗
sd

]︂
PL +

[︂
δZL∗

sd md −msδZ
R∗
sd

]︂
PR

)︃
md

m2
d −m2

s

}︄
× γµPRus(p1) (D.13)

= −i(p1 − p2)µ

2 igs ūd(p2)
{︃

−m2
sδZ

L∗
sd PR −m2

sδZ
R∗
sd PL

+ δZR∗
sd m

2
dPL + δZL∗

sd m
2
dPR

}︃ 1
m2

d −m2
s

γµ PR us(p1)

(D.14)

= −i(p1 − p2)µ

2 igs ūd(p2) δZR∗
sd γµPRus(p1) . (D.15)

This precisely cancels the gs term in equation (D.10). The terms involving δZL

cancel due to PRPL = 0.
The right-hand diagram in figure D.2 is computed in the identical manner. The
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calculation reads

iM3 =ūd(p2)i(p1 − p2)µ igd γ
µPR

i(/p1 +md)
m2

s −m2
d

i

2{︄ [︂(︂
δZR∗

sd + δZR
ds

)︂
/p1 −

(︂
mdδZ

R
ds +msδZ

L∗
sd

)︂]︂
PR

+
[︂(︂
δZL∗

sd + δZL
ds

)︂
/p1 −

(︂
mdδZ

L
ds +msδZ

R∗
sd

)︂]︂
PL

}︄
us(p1) (D.16)

=−i(p1 − p2)µ

2 igd ūd(p2)γµPR
/p1 +md

m2
s −m2

d

×
{︃
δZR

dsmsPL −mdδZ
R
dsPR + δZL

dsmsPR −mdδZ
L
dsPL

}︃
us(p1) (D.17)

=−i(p1 − p2)µ

2 igd ūd(p2)γµPR
1

m2
s −m2

d{︄
md

(︂
δZR

dsmsPL −mdδZ
R
dsPR + δZL

dsmsPR −mdδZ
L
dsPL

)︂
+ms

(︂
δZR

dsmsPR −mdδZ
R
dsPL + δZL

dsmsPL −mdδZ
L
dsPR

)︂}︄
us(p1)

(D.18)

=−i(p1 − p2)µ

2 igd ūd(p2)γµ δZR
ds PRus(p1) . (D.19)

The result is the negative gd term of equation (D.10). Thus, adding all three dia-
grams together gives

iM1 + iM2 + iM3 = 0 , (D.20)

independently of the precise form of the renormalization constants.
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E Primakoff form factor beyond the static
limit

This appendix is based on results and arguments which were published in appendix A
of ref. [3] before submission of this thesis. Material from this article is used in the
following without further reference.

The derivations of the Primakoff rates ΓP
a in equations (7.2) and (7.9) assume a

form factor for the scattering potential that is given by [231]

|Feff|2 = Z2 q2

q2 + κ2
s
, (E.1)

where Z is the charge in units of the elementary charge, q is the magnitude of the
transferred momentum q⃗ and κs is the usual screening scale.

This form factor was derived in ref. [231] by applying the strict static limit, hence
assuming that the scattering potential does not change during the time it takes for
one plasmon to cross the potential. Since charges are screened at typical distances
of 1/κs, the corresponding time scale is given by t ∼ 1/κs.

The opposing limit would be to assume a Yukawa potential for every scattering
plasmon. Since the results of these two limiting cases differ by a large factor ∼ 100,
it is necessary to investigate the size of the expected corrections once the assumption
of static point charges is dropped. To do this, the calculation in the static limit as
presented in ref. [231] is briefly recapped and then modified to include point charges
moving at constant velocity.

Static limit
It is helpful to recall the standard result for a situation where the plasmon encounters
a set of non-moving charges Zi. This was first discussed in ref. [231].

The form factor of N particles with charges Zi at positions r⃗i is given by

FN(q⃗) =
N∑︂

i=1
Zi e

i q⃗·r⃗i , (E.2)

and hence

|FN(q⃗)|2 =
∑︂

i

Z2
i +

∑︂
i,j
i ̸=j

ZiZj cos(q⃗ · r⃗ij) , (E.3)

where r⃗ij are the inter-particle distances. In order to obtain the effective form factor
in a plasma, this has to be averaged over the locations of charges. This requires the
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probability density of the distance between two point charges [231, 430],

pij = 1
V

(︄
e−Λr − ZiZjαEM

T

e−κsr

r

)︄
, (E.4)

where r is the distance between particles i and j. To simplify the calculation of the
resulting volume integrals, it is helpful to include a regulator Λ, which will be sent
to 0 in the end. V is a volume normalization factor that converges to the full volume
in the limit of Λ → 0. Averaging |FN |2 over the inter-particle distances yields

⟨|FN(q⃗)|2⟩r =
∑︂

i

Z2
i +

∑︂
i,j
i ̸=j

ZiZj

∫︂
dr3 pij(r) cos(q⃗ · r⃗)

=
∑︂

i

Z2
i + 4π

∑︂
i,j
i ̸=j

ZiZj

∫︂ ∞

0
dr r2 1

V

(︄
e−Λr − ZiZjαEM

T

e−κsr

r

)︄
sin(q r)
q r

.

(E.5)

The first term in parentheses vanishes in the limit Λ → 0, while the second one gives
a finite contribution. Using that the screening scale, as in equation (7.4), can be
written as

κ2
s = 4παEM

T

∑︂
i

Z2
i

V
, (E.6)

the sum becomes
∑︂
i,j
i ̸=j

Z2
i Z

2
j =

∑︂
i

Z2
i

∑︂
j ̸=i

Z2
j ≃

∑︂
i

Z2
i

κ2
sTV

4παEM
, (E.7)

where the last equality is exact in the large volume limit. By putting everything
together, the result of ref. [231] is recovered,

⟨|FN(q⃗)|2⟩r =
∑︂

i

Z2
i

(︄
1 − κ2

s
κ2

s + q2

)︄
=
∑︂

i

Z2
i

q2

κ2
s + q2 . (E.8)

Beyond the static limit
To see how decoherence can affect the expected form factor, the strict static limit is
now dropped and instead it is assumed that each particle i moves with a constant
velocity v⃗i. As a result, the form factor is now time-dependent,

FN(q⃗) =
∑︂

i

Zi e
i q⃗·(r⃗+v⃗it) , (E.9)

and it can be averaged over the time t ∼ 1/κs of one scattering event,

⟨FN(q⃗)⟩t = 1
t

∫︂ t
2

− t
2

dt′
∑︂

i

Zi e
i q⃗·(r⃗+v⃗it

′) =
∑︂

i

Zi sinc(∆ϕi) ei q⃗·r⃗ , (E.10)
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where ∆ϕi ≡ 1
2 q⃗ · v⃗it denotes the phase shift of particle i.

The average over the inter-particle distance can now be evaluated exactly as before
– up to the point of equation (E.5) – by just carrying along the factors of sinc(∆ϕi),

⟨|⟨FN(q⃗)⟩t|2⟩r =
∑︂

i

Z2
i sinc2(∆ϕi) + 4π

V

∑︂
i,j
i ̸=j

ZiZjsinc(∆ϕi)sinc(∆ϕj)

×
∫︂ ∞

0
dr r2

(︄
e−Λr − ZiZjαEM

T

e−κsr

r

)︄
sin(q r)
q r

. (E.11)

As before, the first term in parentheses vanishes in limit Λ → 0 while the second
term is finite. The sum over pairs of charges is modified by the suppression factors.∑︂

i,j
i ̸=j

sinc(∆ϕi)Z2
i sinc(∆ϕj)Z2

j =
∑︂

i

sinc(∆ϕi)Z2
i

∑︂
j

j ̸=i

sinc(∆ϕj)Z2
j (E.12)

≃
∑︂

i

sinc(∆ϕi)Z2
i

κ2
effTV

4παEM
, (E.13)

where in the last line, κ2
eff was defined as

κ2
eff ≡ 4παEM

T

∑︂
i

sinc(∆ϕi)Z2
i

V
. (E.14)

Inserting these results into the expression for ⟨|⟨FN(q⃗)⟩t|2⟩r, one arrives at

⟨|⟨FN(q⃗)⟩t|2⟩r =
∑︂

i

sinc(∆ϕi)Z2
i

(︄
sinc(∆ϕi) − κ2

eff

∫︂ ∞

0
dr e−κsr sin(q r)

q

)︄
(E.15)

=
∑︂

i

Z2
i sinc(∆ϕi)

(︄
sinc(∆ϕi) − κ2

eff
κ2

s + q2

)︄
(E.16)

=
∑︂

i

Z2
i sinc(∆ϕi)

(︄
sinc(∆ϕi)κ2

s − κ2
eff + sinc(∆ϕi)q2

κ2
s + q2

)︄
. (E.17)

As expected, this result converges to the previous one in the limit ∆ϕi → 0, where
κeff → κs.

To evaluate the relative correction of the new result compared to the static limit,
the thermal averages of the suppression factors sinc(∆ϕi) and sinc2(∆ϕi) need to
be evaluated. For simplicity, one can assume a Maxwell-Boltzmann distribution for
electrons and use typical values for the solar core temperature. By expanding the
sinc function, the estimated values can be given as

⟨sinc(∆ϕi)⟩vi |e =
∫︂

d3v sinc(∆ϕi)
(︃
me

2πT

)︃ 3
2
e−mev

2
2T ∼ 1 −

(︄
10−4 q

2

κ2
s

)︄
(E.18)

⟨sinc2(∆ϕi)⟩vi

⃓⃓⃓
e

=
∫︂

d3v sinc2(∆ϕi)
(︃
me

2πT

)︃ 3
2
e−mev

2
2T ∼ 1 −

(︄
2 × 10−4 q

2

κ2
s

)︄
.

(E.19)
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These factors for electrons are already very close to unity and it is safe to neglect
the equivalent suppression factors for significantly heavier ions.

The effective screening scale as defined in equation (E.14) still depends on the
velocities of particles. But using equation (E.18) and the fact that electrons con-
tribute at most 45 % to the square of the screening scale (as shown in figure 7.2),
one can see that the thermal average of the difference between κ2

s and κ2
eff is given

by

κ2
s − ⟨κ2

eff⟩vi ≲ 0.45 × 10−4 q2 . (E.20)

This means that the resulting relative correction to the square of the form factor in
equation (E.17) does not exceed 5×10−5. Furthermore, equations (E.18) and (E.19)
indicate that the sinc factors in equation (E.17) result in corrections by at most 10−4

when it is conservatively assumed that q ≲ κs.
In conclusion, it is expected that the square of the form factor, and thereby the

total Primakoff rate, only changes by ≲ 0.02 % when the assumption of a static
distribution of point-like charges is dropped.
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F Axions from other nuclei than 57Fe

This appendix is based on results and arguments which were published in appendix A
of ref. [4] before submission of this thesis. Material from this article is used in the
following without further reference.

The phenomenological discussion in chapter 7 centres around the 14.4 keV line of
57Fe because it is expected to give the strongest signal. In order to ensure that this
is true, especially considering that the 57Fe-line suffers from strong thermal suppres-
sion, this appendix systematically searches for alternative nuclear M1 transitions
which may also generate a line in the solar axion flux.

A list of potential candidates is provided in the appendix of ref. [373] in form of
a list of isotopes featuring low-energy nuclear transitions. All of the calculations in
section 7.1.5 equally apply to M1 transitions of nuclei other than 57Fe. Hence, one
only needs to compare their respective axion flux per solar mass. This is expressed
in equation (7.47) as

Na = Nω1
1
τ0

1
1 + α

Γa

Γγ

. (F.1)

The nuclear matrix elements entering in the ratio of axion to photon emissions have
not been computed with equal precision for the various nuclear transitions. It is
however reasonable to assume values of O(1) for the dimensionless constants β and
η. Furthermore, the E2/M1 mixing ratio is already close to its ideal value of zero
for the 57Fe line. The factor Γa

Γγ is therefore expected to be comparable (or smaller
than the one of 57Fe in case of a large δ) for all nuclear transitions and it is sufficient
to focus on the combination of abundance, occupation number and inverse lifetime.

Very large differences appear in the respective number density N of isotopes. To
estimate their value for all radii in the Sun, two assumptions have to be made. First
that the contribution of one isotope to the total element abundance is constant
throughout the Sun and identical to the one found on earth, which is denoted as a.
And second that the radial density profiles of heavy elements only differ from the one
of iron by a constant factor. These two reasonable assumptions allow to compare
the respective values of N by just multiplying the photospheric abundance with the
relative isotope abundance on earth. The photospheric abundance is tabulated in
ref. [374] on a logarithmic scale. The ratio of the number density of the element in
question normalized to the one of hydrogen, i.e. ϵ ≡ NX/NH , is given in table F.1.

The thermal occupation number ω1 crucially depends on the transition energy E∗

and can be written as [203, 370]

ω1 = (2J1 + 1)e−E∗/T

(2J0 + 1) + (2J1 + 1)e−E∗/T
, (F.2)
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57Fe 83Kr 169Tm 187Os 201Hg

E∗ [keV] 14.4 9.4 8.4 9.7 1.6

J0 1/2 9/2 1/2 1/2 3/2

J1 3/2 7/2 3/2 3/2 1/2

τ0 [ns] 141 212 5.9 3.4 144

α 8.56 17.09 285 264 47000

ϵ 10−4.5 10−8.75 10−11.9 10−10.6 10−10.83

a [%] 2.14 11.55 100 1.6 13.2
Na(r=0)

[relative to 57Fe]
1 1.8 × 10−3 1.3 × 10−4 3.0 × 10−5 1.9 × 10−6

Table F.1. Isotopes with a nuclear M1 transition and E∗ < 20 keV. The element abun-
dances ϵ are taken from ref. [374]. All other values are tabled in the appendix of ref. [373].
The values in the last row were calculated by evaluating equations (F.1) and (F.2) with
the solar core temperature T (r=0) = 1.33 keV.

where J0 and J1 are the total angular momentum quantum numbers of the ground
and excited states, respectively. Because of the exponential suppression, the transi-
tion energy E∗ has a large effect on the resulting axion flux.

All isotopes from the appendix of ref. [373] with a nuclear M1 transition below
20 keV were collected in table F.1. The last row indicates the size of the axion flux
from these nuclear transitions relative to the one from 57Fe. It becomes clear that
the strong Boltzmann suppression in the case of 57Fe is mitigated by a relatively
large abundance and a small internal conversion coefficient. Even though the values
in table F.1 should be understood as very rough estimates, this clearly indicates
that the 57Fe line generates the strongest axion signal from nuclear deexcitations.

162



Bibliography

[1] G. Alonso-Álvarez, F. Ertas, J. Jaeckel, F. Kahlhoefer and L. J.
Thormaehlen, Hidden Photon Dark Matter in the Light of XENON1T and
Stellar Cooling, JCAP 11 (2020) 029, [2006.11243].

[2] G. Alonso-Álvarez, F. Ertas, J. Jaeckel, F. Kahlhoefer and L. J.
Thormaehlen, Leading logs in QCD axion effective field theory, JHEP 07
(2021) 059, [2101.03173].

[3] S. Hoof, J. Jaeckel and L. J. Thormaehlen, Quantifying uncertainties in the
solar axion flux and their impact on determining axion model parameters,
JCAP 09 (2021) 006, [2101.08789].

[4] L. Di Luzio et al., Probing the axion–nucleon coupling with the next
generation of axion helioscopes, Eur. Phys. J. C 82 (2022) 120,
[2111.06407].

[5] M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge
University Press, 2014.

[6] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22
(1961) 579–588.

[7] A. Salam and J. C. Ward, Electromagnetic and weak interactions, Phys. Lett.
13 (1964) 168–171.

[8] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.

[9] A. Salam, Weak and Electromagnetic Interactions, Conf. Proc. C 680519
(1968) 367–377.

[10] CMS collaboration, S. Chatrchyan et al., Observation of a New Boson at a
Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716
(2012) 30–61, [1207.7235].

[11] ATLAS collaboration, G. Aad et al., Observation of a new particle in the
search for the Standard Model Higgs boson with the ATLAS detector at the
LHC, Phys. Lett. B 716 (2012) 1–29, [1207.7214].

[12] F. Wilczek, Problem of Strong P and T Invariance in the Presence of
Instantons, Phys. Rev. Lett. 40 (1978) 279–282.

[13] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.

163

https://doi.org/10.1088/1475-7516/2020/11/029
https://arxiv.org/abs/2006.11243
https://doi.org/10.1007/JHEP07(2021)059
https://doi.org/10.1007/JHEP07(2021)059
https://arxiv.org/abs/2101.03173
https://doi.org/10.1088/1475-7516/2021/09/006
https://arxiv.org/abs/2101.08789
https://doi.org/10.1140/epjc/s10052-022-10061-1
https://arxiv.org/abs/2111.06407
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.223


[14] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of
Pseudoparticles, Phys. Rev. Lett. 38 (1977) 1440–1443.

[15] J. Preskill, M. B. Wise and F. Wilczek, Cosmology of the Invisible Axion,
Phys. Lett. B 120 (1983) 127–132.

[16] L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion,
Phys. Lett. B 120 (1983) 133–136.

[17] G. Servant, Baryogenesis from Strong CP Violation and the QCD Axion,
Phys. Rev. Lett. 113 (2014) 171803, [1407.0030].

[18] A. D. Linde, Axions in inflationary cosmology, Phys. Lett. B 259 (1991)
38–47.

[19] K. Freese, J. T. Liu and D. Spolyar, Inflating with the QCD axion, Phys.
Rev. D 72 (2005) 123521, [hep-ph/0502177].

[20] T. W. Grimm, Axion inflation in type II string theory, Phys. Rev. D 77
(2008) 126007, [0710.3883].

[21] L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear
Inflation from Axion Monodromy, Phys. Rev. D 82 (2010) 046003,
[0808.0706].

[22] F. Marchesano, G. Shiu and A. M. Uranga, F-term Axion Monodromy
Inflation, JHEP 09 (2014) 184, [1404.3040].

[23] Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal
extension to solve puzzles in the standard model, JHEP 01 (2017) 096,
[1612.05492].

[24] P. Langacker, R. D. Peccei and T. Yanagida, Invisible Axions and Light
Neutrinos: Are They Connected?, Mod. Phys. Lett. A 1 (1986) 541.

[25] M. Shin, Light Neutrino Masses and Strong CP Problem, Phys. Rev. Lett. 59
(1987) 2515.

[26] A. G. Dias, A. C. B. Machado, C. C. Nishi, A. Ringwald and
P. Vaudrevange, The Quest for an Intermediate-Scale Accidental Axion and
Further ALPs, JHEP 06 (2014) 037, [1403.5760].

[27] M. Kamionkowski, J. Pradler and D. G. E. Walker, Dark energy from the
string axiverse, Phys. Rev. Lett. 113 (2014) 251302, [1409.0549].

[28] J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics,
Ann. Rev. Nucl. Part. Sci. 60 (2010) 405–437, [1002.0329].

[29] J. E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept.
150 (1987) 1–177.

164

https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1103/PhysRevLett.113.171803
https://arxiv.org/abs/1407.0030
https://doi.org/10.1016/0370-2693(91)90130-I
https://doi.org/10.1016/0370-2693(91)90130-I
https://doi.org/10.1103/PhysRevD.72.123521
https://doi.org/10.1103/PhysRevD.72.123521
https://arxiv.org/abs/hep-ph/0502177
https://doi.org/10.1103/PhysRevD.77.126007
https://doi.org/10.1103/PhysRevD.77.126007
https://arxiv.org/abs/0710.3883
https://doi.org/10.1103/PhysRevD.82.046003
https://arxiv.org/abs/0808.0706
https://doi.org/10.1007/JHEP09(2014)184
https://arxiv.org/abs/1404.3040
https://doi.org/10.1007/JHEP01(2017)096
https://arxiv.org/abs/1612.05492
https://doi.org/10.1142/S0217732386000683
https://doi.org/10.1103/PhysRevLett.59.2515
https://doi.org/10.1103/PhysRevLett.59.2515
https://doi.org/10.1007/JHEP06(2014)037
https://arxiv.org/abs/1403.5760
https://doi.org/10.1103/PhysRevLett.113.251302
https://arxiv.org/abs/1409.0549
https://doi.org/10.1146/annurev.nucl.012809.104433
https://arxiv.org/abs/1002.0329
https://doi.org/10.1016/0370-1573(87)90017-2
https://doi.org/10.1016/0370-1573(87)90017-2


[30] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod.
Phys. 82 (2010) 557–602, [0807.3125].

[31] S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, [0802.1862].

[32] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin,
Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59
(1975) 85–87.

[33] K. M. Bitar and S.-J. Chang, Vacuum Tunneling of Gauge Theory in
Minkowski Space, Phys. Rev. D 17 (1978) 486.

[34] C. G. Callan, Jr., R. F. Dashen and D. J. Gross, Toward a Theory of the
Strong Interactions, Phys. Rev. D 17 (1978) 2717.

[35] G. ’t Hooft, Computation of the Quantum Effects Due to a
Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432–3450.

[36] M. H. G. Tytgat, QCD at theta similar to pi reexamined: Domain walls and
spontaneous CP violation, Phys. Rev. D 61 (2000) 114009,
[hep-ph/9909532].

[37] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the
Neutron, Phys. Rev. Lett. 124 (2020) 081803, [2001.11966].

[38] R. Alarcon et al., Electric dipole moments and the search for new physics, in
2022 Snowmass Summer Study, 3, 2022, [2203.08103].

[39] M. Pospelov and A. Ritz, Theta vacua, QCD sum rules, and the neutron
electric dipole moment, Nucl. Phys. B 573 (2000) 177–200,
[hep-ph/9908508].

[40] V. Baluni, CP Violating Effects in QCD, Phys. Rev. D 19 (1979) 2227–2230.

[41] A. Pich and E. de Rafael, Strong CP violation in an effective chiral
Lagrangian approach, Nucl. Phys. B 367 (1991) 313–333.

[42] F. K. Guo, R. Horsley, U. G. Meissner, Y. Nakamura, H. Perlt, P. E. L.
Rakow et al., The electric dipole moment of the neutron from 2+1 flavor
lattice QCD, Phys. Rev. Lett. 115 (2015) 062001, [1502.02295].

[43] E. Shintani, T. Blum, T. Izubuchi and A. Soni, Neutron and proton electric
dipole moments from Nf = 2 + 1 domain-wall fermion lattice QCD, Phys.
Rev. D 93 (2016) 094503, [1512.00566].

[44] M. Abramczyk, S. Aoki, T. Blum, T. Izubuchi, H. Ohki and S. Syritsyn,
Lattice calculation of electric dipole moments and form factors of the
nucleon, Phys. Rev. D 96 (2017) 014501, [1701.07792].

[45] J. Dragos, T. Luu, A. Shindler, J. de Vries and A. Yousif, Confirming the
Existence of the strong CP Problem in Lattice QCD with the Gradient Flow,
Phys. Rev. C 103 (2021) 015202, [1902.03254].

165

https://doi.org/10.1103/RevModPhys.82.557
https://doi.org/10.1103/RevModPhys.82.557
https://arxiv.org/abs/0807.3125
https://arxiv.org/abs/0802.1862
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1016/0370-2693(75)90163-X
https://doi.org/10.1103/PhysRevD.17.486
https://doi.org/10.1103/PhysRevD.17.2717
https://doi.org/10.1103/PhysRevD.14.3432
https://doi.org/10.1103/PhysRevD.61.114009
https://arxiv.org/abs/hep-ph/9909532
https://doi.org/10.1103/PhysRevLett.124.081803
https://arxiv.org/abs/2001.11966
https://arxiv.org/abs/2203.08103
https://doi.org/10.1016/S0550-3213(99)00817-2
https://arxiv.org/abs/hep-ph/9908508
https://doi.org/10.1103/PhysRevD.19.2227
https://doi.org/10.1016/0550-3213(91)90019-T
https://doi.org/10.1103/PhysRevLett.115.062001
https://arxiv.org/abs/1502.02295
https://doi.org/10.1103/PhysRevD.93.094503
https://doi.org/10.1103/PhysRevD.93.094503
https://arxiv.org/abs/1512.00566
https://doi.org/10.1103/PhysRevD.96.014501
https://arxiv.org/abs/1701.07792
https://doi.org/10.1103/PhysRevC.103.015202
https://arxiv.org/abs/1902.03254


[46] C. Vafa and E. Witten, Parity Conservation in QCD, Phys. Rev. Lett. 53
(1984) 535.

[47] G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer
et al., Recent Developments in Gauge Theories. Proceedings, Nato Advanced
Study Institute, Cargese, France, August 26 - September 8, 1979, NATO Sci.
Ser. B 59 (1980) pp. 1–438.

[48] Particle Data Group collaboration, M. Tanabashi et al., Review of
Particle Physics, Phys. Rev. D 98 (2018) 030001.

[49] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177
(1969) 2426–2438.

[50] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo
Cim. A 60 (1969) 47–61.

[51] RM123 collaboration, G. M. de Divitiis, R. Frezzotti, V. Lubicz,
G. Martinelli, R. Petronzio, G. C. Rossi et al., Leading isospin breaking
effects on the lattice, Phys. Rev. D 87 (2013) 114505, [1303.4896].

[52] MILC collaboration, S. Basak et al., Electromagnetic effects on the light
hadron spectrum, J. Phys. Conf. Ser. 640 (2015) 012052, [1510.04997].

[53] R. Horsley et al., Isospin splittings of meson and baryon masses from
three-flavor lattice QCD + QED, J. Phys. G 43 (2016) 10LT02,
[1508.06401].

[54] G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD
axion, precisely, JHEP 01 (2016) 034, [1511.02867].

[55] A. A. Anselm and A. A. Johansen, Can electroweak theta term be
observable?, Nucl. Phys. B 412 (1994) 553–573, [hep-ph/9305271].

[56] P. Fileviez Perez and H. H. Patel, The Electroweak Vacuum Angle, Phys.
Lett. B 732 (2014) 241–243, [1402.6340].

[57] D. Tong, Line Operators in the Standard Model, JHEP 07 (2017) 104,
[1705.01853].

[58] R. D. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in
the Presence of Pseudoparticles, Phys. Rev. D 16 (1977) 1791–1797.

[59] F. Wilczek, The Birth of Axions, Current Contents (1991) 8–9.

[60] G. Alexanian, R. MacKenzie, M. B. Paranjape and J. Ruel, Path integration
and perturbation theory with complex Euclidean actions, Phys. Rev. D 77
(2008) 105014, [0802.0354].

[61] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory
of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652–657.

166

https://doi.org/10.1103/PhysRevLett.53.535
https://doi.org/10.1103/PhysRevLett.53.535
https://doi.org/10.1007/978-1-4684-7571-5
https://doi.org/10.1007/978-1-4684-7571-5
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/PhysRevD.87.114505
https://arxiv.org/abs/1303.4896
https://doi.org/10.1088/1742-6596/640/1/012052
https://arxiv.org/abs/1510.04997
https://doi.org/10.1088/0954-3899/43/10/10LT02
https://arxiv.org/abs/1508.06401
https://doi.org/10.1007/JHEP01(2016)034
https://arxiv.org/abs/1511.02867
https://doi.org/10.1016/0550-3213(94)90392-1
https://arxiv.org/abs/hep-ph/9305271
https://doi.org/10.1016/j.physletb.2014.03.064
https://doi.org/10.1016/j.physletb.2014.03.064
https://arxiv.org/abs/1402.6340
https://doi.org/10.1007/JHEP07(2017)104
https://arxiv.org/abs/1705.01853
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/http://inspirehep.net/record/1469386/files/A1991FE77000001.pdf
http://inspirehep.net/record/1469386/files/A1991FE77000001.pdf
http://inspirehep.net/record/1469386/files/A1991FE77000001.pdf
http://inspirehep.net/record/1469386/files/A1991FE77000001.pdf
https://doi.org/10.1103/PhysRevD.77.105014
https://doi.org/10.1103/PhysRevD.77.105014
https://arxiv.org/abs/0802.0354
https://doi.org/10.1143/PTP.49.652


[62] S. Dar, The Neutron EDM in the SM: A Review, [hep-ph/0008248].

[63] M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics,
Annals Phys. 318 (2005) 119–169, [hep-ph/0504231].

[64] J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard
Model Working Group Report, [1901.09966].

[65] P. Agrawal and K. Howe, Factoring the Strong CP Problem, JHEP 12 (2018)
029, [1710.04213].

[66] D. S. M. Alves and N. Weiner, A viable QCD axion in the MeV mass range,
JHEP 07 (2018) 092, [1710.03764].

[67] M. K. Gaillard, M. B. Gavela, R. Houtz, P. Quilez and R. Del Rey, Color
unified dynamical axion, Eur. Phys. J. C 78 (2018) 972, [1805.06465].

[68] T. Gherghetta, V. V. Khoze, A. Pomarol and Y. Shirman, The Axion Mass
from 5D Small Instantons, JHEP 03 (2020) 063, [2001.05610].

[69] M. Gorghetto and G. Villadoro, Topological Susceptibility and QCD Axion
Mass: QED and NNLO corrections, JHEP 03 (2019) 033, [1812.01008].

[70] European Twisted Mass collaboration, N. Carrasco et al., Up, down,
strange and charm quark masses with Nf = 2+1+1 twisted mass lattice
QCD, Nucl. Phys. B 887 (2014) 19–68, [1403.4504].

[71] Z. Fodor, C. Hoelbling, S. Krieg, L. Lellouch, T. Lippert, A. Portelli et al.,
Up and down quark masses and corrections to Dashen’s theorem from lattice
QCD and quenched QED, Phys. Rev. Lett. 117 (2016) 082001, [1604.07112].

[72] D. Giusti, V. Lubicz, C. Tarantino, G. Martinelli, F. Sanfilippo, S. Simula
et al., Leading isospin-breaking corrections to pion, kaon and charmed-meson
masses with Twisted-Mass fermions, Phys. Rev. D 95 (2017) 114504,
[1704.06561].

[73] MILC collaboration, S. Basak et al., Lattice computation of the
electromagnetic contributions to kaon and pion masses, Phys. Rev. D 99
(2019) 034503, [1807.05556].

[74] S. Dodelson, Modern Cosmology. Academic Press, Amsterdam, 2003.

[75] K. Freese, Review of Observational Evidence for Dark Matter in the Universe
and in upcoming searches for Dark Stars, EAS Publ. Ser. 36 (2009) 113–126,
[0812.4005].

[76] M. Bauer and T. Plehn, Yet Another Introduction to Dark Matter: The
Particle Physics Approach, vol. 959 of Lecture Notes in Physics. Springer,
2019, 10.1007/978-3-030-16234-4.

167

https://arxiv.org/abs/hep-ph/0008248
https://doi.org/10.1016/j.aop.2005.04.002
https://arxiv.org/abs/hep-ph/0504231
https://arxiv.org/abs/1901.09966
https://doi.org/10.1007/JHEP12(2018)029
https://doi.org/10.1007/JHEP12(2018)029
https://arxiv.org/abs/1710.04213
https://doi.org/10.1007/JHEP07(2018)092
https://arxiv.org/abs/1710.03764
https://doi.org/10.1140/epjc/s10052-018-6396-6
https://arxiv.org/abs/1805.06465
https://doi.org/10.1007/JHEP03(2020)063
https://arxiv.org/abs/2001.05610
https://doi.org/10.1007/JHEP03(2019)033
https://arxiv.org/abs/1812.01008
https://doi.org/10.1016/j.nuclphysb.2014.07.025
https://arxiv.org/abs/1403.4504
https://doi.org/10.1103/PhysRevLett.117.082001
https://arxiv.org/abs/1604.07112
https://doi.org/10.1103/PhysRevD.95.114504
https://arxiv.org/abs/1704.06561
https://doi.org/10.1103/PhysRevD.99.034503
https://doi.org/10.1103/PhysRevD.99.034503
https://arxiv.org/abs/1807.05556
https://doi.org/10.1051/eas/0936016
https://arxiv.org/abs/0812.4005
https://doi.org/10.1007/978-3-030-16234-4


[77] A. Arbey and F. Mahmoudi, Dark matter and the early Universe: a review,
Prog. Part. Nucl. Phys. 119 (2021) 103865, [2104.11488].

[78] Planck collaboration, N. Aghanim et al., Planck 2018 results. I. Overview
and the cosmological legacy of Planck, Astron. Astrophys. 641 (2020) A1,
[1807.06205].

[79] V. C. Rubin and J. Ford, W. Kent, Rotation of the Andromeda Nebula from
a Spectroscopic Survey of Emission Regions, Astrophys. J. 159 (Feb., 1970)
379.

[80] M. Bartelmann, Gravitational Lensing, Class. Quant. Grav. 27 (2010)
233001, [1010.3829].

[81] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall,
C. Jones et al., A direct empirical proof of the existence of dark matter,
Astrophys. J. Lett. 648 (2006) L109–L113, [astro-ph/0608407].

[82] R. A. Flores and J. R. Primack, Observational and theoretical constraints on
singular dark matter halos, Astrophys. J. Lett. 427 (1994) L1–4,
[astro-ph/9402004].

[83] B. Moore, Evidence against dissipation-less dark matter from observations of
galaxy haloes, Nature 370 (Aug., 1994) 629–631.

[84] A. A. Klypin, A. V. Kravtsov, O. Valenzuela and F. Prada, Where are the
missing Galactic satellites?, Astrophys. J. 522 (1999) 82–92,
[astro-ph/9901240].

[85] B. Moore, S. Ghigna, F. Governato, G. Lake, T. R. Quinn, J. Stadel et al.,
Dark matter substructure within galactic halos, Astrophys. J. Lett. 524
(1999) L19–L22, [astro-ph/9907411].

[86] M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat, Too big to fail? The
puzzling darkness of massive Milky Way subhaloes, MNRAS 415 (July, 2011)
L40–L44, [1103.0007].

[87] T. Sawala et al., The APOSTLE simulations: solutions to the Local Group’s
cosmic puzzles, Mon. Not. Roy. Astron. Soc. 457 (2016) 1931–1943,
[1511.01098].

[88] A. Benitez-Llambay and C. Frenk, The detailed structure and the onset of
galaxy formation in low-mass gaseous dark matter haloes, MNRAS 498
(Nov., 2020) 4887–4900, [2004.06124].

[89] Q. Gu, Q. Guo, T. Zhang, M. Cautun, C. Lacey, C. S. Frenk et al., The
spatial distribution of satellites in galaxy clusters, MNRAS 514 (May, 2022)
390–402, [2205.06767].

[90] B. Carr, F. Kuhnel and M. Sandstad, Primordial Black Holes as Dark
Matter, Phys. Rev. D 94 (2016) 083504, [1607.06077].

168

https://doi.org/10.1016/j.ppnp.2021.103865
https://arxiv.org/abs/2104.11488
https://doi.org/10.1051/0004-6361/201833880
https://arxiv.org/abs/1807.06205
https://doi.org/10.1086/150317
https://doi.org/10.1086/150317
https://doi.org/10.1088/0264-9381/27/23/233001
https://doi.org/10.1088/0264-9381/27/23/233001
https://arxiv.org/abs/1010.3829
https://doi.org/10.1086/508162
https://arxiv.org/abs/astro-ph/0608407
https://doi.org/10.1086/187350
https://arxiv.org/abs/astro-ph/9402004
https://doi.org/10.1038/370629a0
https://doi.org/10.1086/307643
https://arxiv.org/abs/astro-ph/9901240
https://doi.org/10.1086/312287
https://doi.org/10.1086/312287
https://arxiv.org/abs/astro-ph/9907411
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://doi.org/10.1111/j.1745-3933.2011.01074.x
https://arxiv.org/abs/1103.0007
https://doi.org/10.1093/mnras/stw145
https://arxiv.org/abs/1511.01098
https://doi.org/10.1093/mnras/staa2698
https://doi.org/10.1093/mnras/staa2698
https://arxiv.org/abs/2004.06124
https://doi.org/10.1093/mnras/stac1292
https://doi.org/10.1093/mnras/stac1292
https://arxiv.org/abs/2205.06767
https://doi.org/10.1103/PhysRevD.94.083504
https://arxiv.org/abs/1607.06077


[91] A. M. Green and B. J. Kavanagh, Primordial Black Holes as a dark matter
candidate, J. Phys. G 48 (2021) 043001, [2007.10722].

[92] S. Tremaine and J. E. Gunn, Dynamical Role of Light Neutral Leptons in
Cosmology, Phys. Rev. Lett. 42 (1979) 407–410.

[93] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and
A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013, [1201.5902].

[94] D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1–79,
[1510.07633].

[95] P. Fox, A. Pierce and S. D. Thomas, Probing a QCD string axion with
precision cosmological measurements, [hep-th/0409059].

[96] V. B. . Klaer and G. D. Moore, The dark-matter axion mass, JCAP 11
(2017) 049, [1708.07521].

[97] M. Gorghetto, E. Hardy and G. Villadoro, Axions from Strings: the
Attractive Solution, JHEP 07 (2018) 151, [1806.04677].

[98] M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren and J. Urrestilla, Scaling
Density of Axion Strings, Phys. Rev. Lett. 124 (2020) 021301, [1908.03522].

[99] M. Gorghetto, E. Hardy and G. Villadoro, More axions from strings, SciPost
Phys. 10 (2021) 050, [2007.04990].

[100] M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox,
W. Zhang et al., Dark matter from axion strings with adaptive mesh
refinement, Nature Commun. 13 (2022) 1049, [2108.05368].

[101] L. Caloni, M. Gerbino, M. Lattanzi and L. Visinelli, Novel cosmological
bounds on thermally-produced axion-like particles, [2205.01637].

[102] I. J. Allali, M. P. Hertzberg and Y. Lyu, Altered Axion Abundance from a
Dynamical Peccei-Quinn Scale, Phys. Rev. D 105 (2022) 123517,
[2203.15817].

[103] A. Papageorgiou, P. Quílez and K. Schmitz, Axion dark matter from
frictional misalignment, [2206.01129].

[104] K. Choi, S. H. Im, H. J. Kim and H. Seong, Axion dark matter with thermal
friction, [2206.01462].

[105] J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 1312
(2013) 008, [1310.0823].

[106] G. Alonso-Álvarez, M. B. Gavela and P. Quilez, Axion couplings to
electroweak gauge bosons, Eur. Phys. J. C 79 (2019) 223, [1811.05466].

[107] W. A. Bardeen, Anomalous Ward identities in spinor field theories, Phys.
Rev. 184 (1969) 1848–1857.

169

https://doi.org/10.1088/1361-6471/abc534
https://arxiv.org/abs/2007.10722
https://doi.org/10.1103/PhysRevLett.42.407
https://doi.org/10.1088/1475-7516/2012/06/013
https://arxiv.org/abs/1201.5902
https://doi.org/10.1016/j.physrep.2016.06.005
https://arxiv.org/abs/1510.07633
https://arxiv.org/abs/hep-th/0409059
https://doi.org/10.1088/1475-7516/2017/11/049
https://doi.org/10.1088/1475-7516/2017/11/049
https://arxiv.org/abs/1708.07521
https://doi.org/10.1007/JHEP07(2018)151
https://arxiv.org/abs/1806.04677
https://doi.org/10.1103/PhysRevLett.124.021301
https://arxiv.org/abs/1908.03522
https://doi.org/10.21468/SciPostPhys.10.2.050
https://doi.org/10.21468/SciPostPhys.10.2.050
https://arxiv.org/abs/2007.04990
https://doi.org/10.1038/s41467-022-28669-y
https://arxiv.org/abs/2108.05368
https://arxiv.org/abs/2205.01637
https://doi.org/10.1103/PhysRevD.105.123517
https://arxiv.org/abs/2203.15817
https://arxiv.org/abs/2206.01129
https://arxiv.org/abs/2206.01462
https://doi.org/10.1088/1475-7516/2013/12/008
https://doi.org/10.1088/1475-7516/2013/12/008
https://arxiv.org/abs/1310.0823
https://doi.org/10.1140/epjc/s10052-019-6732-5
https://arxiv.org/abs/1811.05466
https://doi.org/10.1103/PhysRev.184.1848
https://doi.org/10.1103/PhysRev.184.1848


[108] L. Di Luzio, F. Mescia and E. Nardi, Redefining the Axion Window, Phys.
Rev. Lett. 118 (2017) 031801, [1610.07593].

[109] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev.
Lett. 43 (1979) 103.

[110] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Can Confinement
Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166
(1980) 493–506.

[111] E. Nardi and E. Roulet, Are exotic stable quarks cosmologically allowed?,
Phys. Lett. B 245 (1990) 105–110.

[112] M. L. Perl, P. C. Kim, V. Halyo, E. R. Lee, I. T. Lee, D. Loomba et al., The
Search for stable, massive, elementary particles, Int. J. Mod. Phys. A 16
(2001) 2137–2164, [hep-ex/0102033].

[113] M. L. Perl, E. R. Lee and D. Loomba, A Brief review of the search for
isolatable fractional charge elementary particles, Mod. Phys. Lett. A 19
(2004) 2595–2610.

[114] J. Quevillon and C. Smith, Axions are blind to anomalies, Eur. Phys. J. C
79 (2019) 822, [1903.12559].

[115] L. Di Luzio, F. Mescia and E. Nardi, Window for preferred axion models,
Phys. Rev. D 96 (2017) 075003, [1705.05370].

[116] A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions.
(In Russian), Sov. J. Nucl. Phys. 31 (1980) 260.

[117] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP
Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199–202.

[118] I. G. Irastorza and J. Redondo, New experimental approaches in the search
for axion-like particles, Prog. Part. Nucl. Phys. 102 (2018) 89–159,
[1801.08127].

[119] F. Björkeroth, L. Di Luzio, F. Mescia, E. Nardi, P. Panci and R. Ziegler,
Axion-electron decoupling in nucleophobic axion models, Phys. Rev. D 101
(2020) 035027, [1907.06575].

[120] A. G. Dias, J. Leite, J. W. F. Valle and C. A. Vaquera-Araujo, Reloading the
axion in a 3-3-1 setup, Phys. Lett. B 810 (2020) 135829, [2008.10650].

[121] L. Di Luzio, F. Mescia, E. Nardi, P. Panci and R. Ziegler, Astrophobic
Axions, Phys. Rev. Lett. 120 (2018) 261803, [1712.04940].

[122] F. Björkeroth, L. Di Luzio, F. Mescia and E. Nardi, U(1) flavour symmetries
as Peccei-Quinn symmetries, JHEP 02 (2019) 133, [1811.09637].

170

https://doi.org/10.1103/PhysRevLett.118.031801
https://doi.org/10.1103/PhysRevLett.118.031801
https://arxiv.org/abs/1610.07593
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0370-2693(90)90172-3
https://doi.org/10.1142/S0217751X01003548
https://doi.org/10.1142/S0217751X01003548
https://arxiv.org/abs/hep-ex/0102033
https://doi.org/10.1142/S0217732304016019
https://doi.org/10.1142/S0217732304016019
https://doi.org/10.1140/epjc/s10052-019-7304-4
https://doi.org/10.1140/epjc/s10052-019-7304-4
https://arxiv.org/abs/1903.12559
https://doi.org/10.1103/PhysRevD.96.075003
https://arxiv.org/abs/1705.05370
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/j.ppnp.2018.05.003
https://arxiv.org/abs/1801.08127
https://doi.org/10.1103/PhysRevD.101.035027
https://doi.org/10.1103/PhysRevD.101.035027
https://arxiv.org/abs/1907.06575
https://doi.org/10.1016/j.physletb.2020.135829
https://arxiv.org/abs/2008.10650
https://doi.org/10.1103/PhysRevLett.120.261803
https://arxiv.org/abs/1712.04940
https://doi.org/10.1007/JHEP02(2019)133
https://arxiv.org/abs/1811.09637


[123] L. Di Luzio, M. Fedele, M. Giannotti, F. Mescia and E. Nardi, Stellar
evolution confronts axion models, JCAP 02 (2022) 035, [2109.10368].

[124] L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD
axion models, Phys. Rept. 870 (2020) 1–117, [2003.01100].

[125] J. E. Kim, A composite invisible axion, Phys. Rev. D 31 (1985) 1733.

[126] D. B. Kaplan, Opening the Axion Window, Nucl. Phys. B 260 (1985)
215–226.

[127] K. Choi and J. E. Kim, Dynamical Axion, Phys. Rev. D 32 (1985) 1828.

[128] K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian
axions, Phys. Rev. D 90 (2014) 023545, [1404.6209].

[129] K. Choi and S. H. Im, Realizing the relaxion from multiple axions and its UV
completion with high scale supersymmetry, JHEP 01 (2016) 149,
[1511.00132].

[130] D. E. Kaplan and R. Rattazzi, Large field excursions and approximate
discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007,
[1511.01827].

[131] A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in
SO(10) × U(1)PQ Models, JHEP 02 (2018) 103, [1801.04906].

[132] L. Di Luzio, A. Ringwald and C. Tamarit, Axion mass prediction from
minimal grand unification, Phys. Rev. D 98 (2018) 095011, [1807.09769].

[133] A. Ernst, L. Di Luzio, A. Ringwald and C. Tamarit, Axion properties in
GUTs, PoS CORFU2018 (2019) 054, [1811.11860].

[134] P. Fileviez Pérez, C. Murgui and A. D. Plascencia, The QCD Axion and
Unification, JHEP 11 (2019) 093, [1908.01772].

[135] L. Delle Rose, G. Panico, M. Redi and A. Tesi, Gravitational Waves from
Supercool Axions, JHEP 04 (2020) 025, [1912.06139].

[136] B. Von Harling, A. Pomarol, O. Pujolàs and F. Rompineve, Peccei-Quinn
Phase Transition at LIGO, JHEP 04 (2020) 195, [1912.07587].

[137] D. Croon, R. Houtz and V. Sanz, Dynamical Axions and Gravitational
Waves, JHEP 07 (2019) 146, [1904.10967].

[138] C. S. Machado, W. Ratzinger, P. Schwaller and B. A. Stefanek, Gravitational
wave probes of axionlike particles, Phys. Rev. D 102 (2020) 075033,
[1912.01007].

[139] G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, Several Problems
in Particle Physics and Cosmology Solved in One SMASH, Front. Astron.
Space Sci. 6 (2019) 55, [1904.05594].

171

https://doi.org/10.1088/1475-7516/2022/02/035
https://arxiv.org/abs/2109.10368
https://doi.org/10.1016/j.physrep.2020.06.002
https://arxiv.org/abs/2003.01100
https://doi.org/10.1103/PhysRevD.31.1733
https://doi.org/10.1016/0550-3213(85)90319-0
https://doi.org/10.1016/0550-3213(85)90319-0
https://doi.org/10.1103/PhysRevD.32.1828
https://doi.org/10.1103/PhysRevD.90.023545
https://arxiv.org/abs/1404.6209
https://doi.org/10.1007/JHEP01(2016)149
https://arxiv.org/abs/1511.00132
https://doi.org/10.1103/PhysRevD.93.085007
https://arxiv.org/abs/1511.01827
https://doi.org/10.1007/JHEP02(2018)103
https://arxiv.org/abs/1801.04906
https://doi.org/10.1103/PhysRevD.98.095011
https://arxiv.org/abs/1807.09769
https://doi.org/10.22323/1.347.0054
https://arxiv.org/abs/1811.11860
https://doi.org/10.1007/JHEP11(2019)093
https://arxiv.org/abs/1908.01772
https://doi.org/10.1007/JHEP04(2020)025
https://arxiv.org/abs/1912.06139
https://doi.org/10.1007/JHEP04(2020)195
https://arxiv.org/abs/1912.07587
https://doi.org/10.1007/JHEP07(2019)146
https://arxiv.org/abs/1904.10967
https://doi.org/10.1103/PhysRevD.102.075033
https://arxiv.org/abs/1912.01007
https://doi.org/10.3389/fspas.2019.00055
https://doi.org/10.3389/fspas.2019.00055
https://arxiv.org/abs/1904.05594


[140] H. Georgi, D. B. Kaplan and L. Randall, Manifesting the Invisible Axion at
Low-energies, Phys. Lett. B 169 (1986) 73–78.

[141] M. Bauer, M. Neubert and A. Thamm, Collider Probes of Axion-Like
Particles, JHEP 12 (2017) 044, [1708.00443].

[142] J. Bonilla, I. Brivio, M. B. Gavela and V. Sanz, One-loop corrections to ALP
couplings, JHEP 11 (2021) 168, [2107.11392].

[143] W. Dekens, J. de Vries and S. Shain, CP-violating axion interactions in
effective field theory, JHEP 07 (2022) 014, [2203.11230].

[144] P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051,
[hep-th/0605206].

[145] A. Ringwald, Searching for axions and ALPs from string theory, J. Phys.
Conf. Ser. 485 (2014) 012013, [1209.2299].

[146] E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984)
351–356.

[147] J. P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078,
[hep-th/0602233].

[148] M. Cicoli, M. Goodsell and A. Ringwald, The type IIB string axiverse and its
low-energy phenomenology, JHEP 10 (2012) 146, [1206.0819].

[149] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and
J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530,
[0905.4720].

[150] T. W. Donnelly, S. J. Freedman, R. S. Lytel, R. D. Peccei and M. Schwartz,
Do Axions Exist?, Phys. Rev. D 18 (1978) 1607.

[151] P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51
(1983) 1415–1417.

[152] C. A. J. O’Hare, “cajohare/axionlimits: Axionlimits.”
https://cajohare.github.io/AxionLimits/, July, 2020.
10.5281/zenodo.3932430.

[153] Y. Fukuda, T. Kohmoto, S. i. Nakajima and M. Kunitomo, Production and
detection of axions by using optical resonators, Prog. Cryst. Growth Charact.
Mater. 33 (1996) 363–366.

[154] F. Hoogeveen and T. Ziegenhagen, Production and detection of light bosons
using optical resonators, Nucl. Phys. B 358 (1991) 3–26.

[155] K. Ehret et al., New ALPS Results on Hidden-Sector Lightweights, Phys.
Lett. B 689 (2010) 149–155, [1004.1313].

172

https://doi.org/10.1016/0370-2693(86)90688-X
https://doi.org/10.1007/JHEP12(2017)044
https://arxiv.org/abs/1708.00443
https://doi.org/10.1007/JHEP11(2021)168
https://arxiv.org/abs/2107.11392
https://doi.org/10.1007/JHEP07(2022)014
https://arxiv.org/abs/2203.11230
https://doi.org/10.1088/1126-6708/2006/06/051
https://arxiv.org/abs/hep-th/0605206
https://doi.org/10.1088/1742-6596/485/1/012013
https://doi.org/10.1088/1742-6596/485/1/012013
https://arxiv.org/abs/1209.2299
https://doi.org/10.1016/0370-2693(84)90422-2
https://doi.org/10.1016/0370-2693(84)90422-2
https://doi.org/10.1088/1126-6708/2006/05/078
https://arxiv.org/abs/hep-th/0602233
https://doi.org/10.1007/JHEP10(2012)146
https://arxiv.org/abs/1206.0819
https://doi.org/10.1103/PhysRevD.81.123530
https://arxiv.org/abs/0905.4720
https://doi.org/10.1103/PhysRevD.18.1607
https://doi.org/10.1103/PhysRevLett.51.1415, 10.1103/PhysRevLett.52.695.2
https://doi.org/10.1103/PhysRevLett.51.1415, 10.1103/PhysRevLett.52.695.2
https://cajohare.github.io/AxionLimits/
https://doi.org/10.1016/0960-8974(96)83672-2
https://doi.org/10.1016/0960-8974(96)83672-2
https://doi.org/10.1016/0550-3213(91)90528-6
https://doi.org/10.1016/j.physletb.2010.04.066
https://doi.org/10.1016/j.physletb.2010.04.066
https://arxiv.org/abs/1004.1313


[156] R. Bähre et al., Any light particle search II —Technical Design Report,
JINST 8 (2013) T09001, [1302.5647].

[157] C. Albrecht, S. Barbanotti, H. Hintz, K. Jensch, R. Klos, W. Maschmann
et al., Straightening of Superconducting HERA Dipoles for the
Any-Light-Particle-Search Experiment ALPS II, EPJ Tech. Instrum. 8
(2021) 5, [2004.13441].

[158] A. Hallal, G. Messineo, M. D. Ortiz, J. Gleason, H. Hollis, D. B. Tanner
et al., The heterodyne sensing system for the ALPS II search for sub-eV
weakly interacting particles, Phys. Dark Univ. 35 (2022) 100914,
[2010.02334].

[159] J. Jaeckel, M. Jankowiak and M. Spannowsky, LHC probes the hidden sector,
Phys. Dark Univ. 2 (2013) 111–117, [1212.3620].

[160] K. Mimasu and V. Sanz, ALPs at Colliders, JHEP 06 (2015) 173,
[1409.4792].

[161] J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles
with LEP and LHC, Phys. Lett. B 753 (2016) 482–487, [1509.00476].

[162] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey et al.,
ALPs Effective Field Theory and Collider Signatures, Eur. Phys. J. C 77
(2017) 572, [1701.05379].

[163] S. Knapen, T. Lin, H. K. Lou and T. Melia, Searching for Axionlike
Particles with Ultraperipheral Heavy-Ion Collisions, Phys. Rev. Lett. 118
(2017) 171801, [1607.06083].

[164] CMS collaboration, A. M. Sirunyan et al., Evidence for light-by-light
scattering and searches for axion-like particles in ultraperipheral PbPb
collisions at √

sNN = 5.02 TeV, Phys. Lett. B 797 (2019) 134826,
[1810.04602].

[165] ATLAS collaboration, G. Aad et al., Measurement of light-by-light
scattering and search for axion-like particles with 2.2 nb−1 of Pb+Pb data
with the ATLAS detector, JHEP 11 (2021) 050, [2008.05355].

[166] A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New LHC bound on
low-mass diphoton resonances, Phys. Lett. B 783 (2018) 13–18,
[1710.01743].

[167] M. Freytsis, Z. Ligeti and J. Thaler, Constraining the Axion Portal with
B → Kl+l−, Phys. Rev. D 81 (2010) 034001, [0911.5355].

[168] E. Izaguirre, T. Lin and B. Shuve, Searching for Axionlike Particles in
Flavor-Changing Neutral Current Processes, Phys. Rev. Lett. 118 (2017)
111802, [1611.09355].

173

https://doi.org/10.1088/1748-0221/8/09/T09001
https://arxiv.org/abs/1302.5647
https://doi.org/10.1140/epjti/s40485-020-00060-5
https://doi.org/10.1140/epjti/s40485-020-00060-5
https://arxiv.org/abs/2004.13441
https://doi.org/10.1016/j.dark.2021.100914
https://arxiv.org/abs/2010.02334
https://doi.org/10.1016/j.dark.2013.06.001
https://arxiv.org/abs/1212.3620
https://doi.org/10.1007/JHEP06(2015)173
https://arxiv.org/abs/1409.4792
https://doi.org/10.1016/j.physletb.2015.12.037
https://arxiv.org/abs/1509.00476
https://doi.org/10.1140/epjc/s10052-017-5111-3
https://doi.org/10.1140/epjc/s10052-017-5111-3
https://arxiv.org/abs/1701.05379
https://doi.org/10.1103/PhysRevLett.118.171801
https://doi.org/10.1103/PhysRevLett.118.171801
https://arxiv.org/abs/1607.06083
https://doi.org/10.1016/j.physletb.2019.134826
https://arxiv.org/abs/1810.04602
https://doi.org/10.1007/JHEP11(2021)050
https://arxiv.org/abs/2008.05355
https://doi.org/10.1016/j.physletb.2018.06.039
https://arxiv.org/abs/1710.01743
https://doi.org/10.1103/PhysRevD.81.034001
https://arxiv.org/abs/0911.5355
https://doi.org/10.1103/PhysRevLett.118.111802
https://doi.org/10.1103/PhysRevLett.118.111802
https://arxiv.org/abs/1611.09355


[169] M. J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer and K. Schmidt-Hoberg,
Revised constraints and Belle II sensitivity for visible and invisible axion-like
particles, JHEP 12 (2017) 094, [1709.00009].

[170] X. Cid Vidal, A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New Axion
Searches at Flavor Factories, JHEP 01 (2019) 113, [1810.09452].

[171] M. B. Gavela, R. Houtz, P. Quilez, R. Del Rey and O. Sumensari, Flavor
constraints on electroweak ALP couplings, Eur. Phys. J. C 79 (2019) 369,
[1901.02031].

[172] L. Merlo, F. Pobbe, S. Rigolin and O. Sumensari, Revisiting the production
of ALPs at B-factories, JHEP 06 (2019) 091, [1905.03259].

[173] Belle-II collaboration, F. Abudinén et al., Search for Axion-Like Particles
produced in e+e− collisions at Belle II, Phys. Rev. Lett. 125 (2020) 161806,
[2007.13071].

[174] D. Aristizabal Sierra, V. De Romeri, L. J. Flores and D. K. Papoulias,
Axionlike particles searches in reactor experiments, JHEP 03 (2021) 294,
[2010.15712].

[175] M. J. Dolan, F. Kahlhoefer, C. McCabe and K. Schmidt-Hoberg, A taste of
dark matter: Flavour constraints on pseudoscalar mediators, JHEP 03
(2015) 171, [1412.5174].

[176] B. Döbrich, F. Ertas, F. Kahlhoefer and T. Spadaro, Model-independent
bounds on light pseudoscalars from rare B-meson decays, Phys. Lett. B 790
(2019) 537–544, [1810.11336].

[177] S. Gori, G. Perez and K. Tobioka, KOTO vs. NA62 Dark Scalar Searches,
JHEP 08 (2020) 110, [2005.05170].

[178] J. Martin Camalich, M. Pospelov, P. N. H. Vuong, R. Ziegler and J. Zupan,
Quark Flavor Phenomenology of the QCD Axion, Phys. Rev. D 102 (2020)
015023, [2002.04623].

[179] CHARM collaboration, F. Bergsma et al., Search for Axion Like Particle
Production in 400-GeV Proton - Copper Interactions, Phys. Lett. B 157
(1985) 458–462.

[180] E. M. Riordan et al., A Search for Short Lived Axions in an Electron Beam
Dump Experiment, Phys. Rev. Lett. 59 (1987) 755.

[181] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu
et al., Search for Neutral Metastable Penetrating Particles Produced in the
SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375.

[182] B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg,
ALPtraum: ALP production in proton beam dump experiments, JHEP 02
(2016) 018, [1512.03069].

174

https://doi.org/10.1007/JHEP12(2017)094
https://arxiv.org/abs/1709.00009
https://doi.org/10.1007/JHEP01(2019)113
https://arxiv.org/abs/1810.09452
https://doi.org/10.1140/epjc/s10052-019-6889-y
https://arxiv.org/abs/1901.02031
https://doi.org/10.1007/JHEP06(2019)091
https://arxiv.org/abs/1905.03259
https://doi.org/10.1103/PhysRevLett.125.161806
https://arxiv.org/abs/2007.13071
https://doi.org/10.1007/JHEP03(2021)294
https://arxiv.org/abs/2010.15712
https://doi.org/10.1007/JHEP03(2015)171
https://doi.org/10.1007/JHEP03(2015)171
https://arxiv.org/abs/1412.5174
https://doi.org/10.1016/j.physletb.2019.01.064
https://doi.org/10.1016/j.physletb.2019.01.064
https://arxiv.org/abs/1810.11336
https://doi.org/10.1007/JHEP08(2020)110
https://arxiv.org/abs/2005.05170
https://doi.org/10.1103/PhysRevD.102.015023
https://doi.org/10.1103/PhysRevD.102.015023
https://arxiv.org/abs/2002.04623
https://doi.org/10.1016/0370-2693(85)90400-9
https://doi.org/10.1016/0370-2693(85)90400-9
https://doi.org/10.1103/PhysRevLett.59.755
https://doi.org/10.1103/PhysRevD.38.3375
https://doi.org/10.1007/JHEP02(2016)018
https://doi.org/10.1007/JHEP02(2016)018
https://arxiv.org/abs/1512.03069


[183] S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS:
the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201, [1504.04855].

[184] B. Döbrich, J. Jaeckel and T. Spadaro, Light in the beam dump - ALP
production from decay photons in proton beam-dumps, JHEP 05 (2019) 213,
[1904.02091].

[185] L. Darmé, F. Giacchino, E. Nardi and M. Raggi, Invisible decays of axion-like
particles: constraints and prospects, JHEP 06 (2021) 009, [2012.07894].

[186] K. J. Kelly, S. Kumar and Z. Liu, Heavy axion opportunities at the DUNE
near detector, Phys. Rev. D 103 (2021) 095002, [2011.05995].

[187] V. Brdar, B. Dutta, W. Jang, D. Kim, I. M. Shoemaker, Z. Tabrizi et al.,
Axionlike Particles at Future Neutrino Experiments: Closing the
Cosmological Triangle, Phys. Rev. Lett. 126 (2021) 201801, [2011.07054].

[188] J. L. Feng, I. Galon, F. Kling and S. Trojanowski, Axionlike particles at
FASER: The LHC as a photon beam dump, Phys. Rev. D 98 (2018) 055021,
[1806.02348].

[189] G. Aielli et al., Expression of interest for the CODEX-b detector, Eur. Phys.
J. C 80 (2020) 1177, [1911.00481].

[190] NA62 collaboration, E. Cortina Gil et al., The Beam and detector of the
NA62 experiment at CERN, JINST 12 (2017) P05025, [1703.08501].

[191] KOTO collaboration, J. K. Ahn et al., Search for the KL →π0νν and
KL →π0X0 decays at the J-PARC KOTO experiment, Phys. Rev. Lett. 122
(2019) 021802, [1810.09655].

[192] KLEVER Project collaboration, M. Moulson, KLEVER: An Experiment
to Measure BR(KL → π0νν̄) at the CERN SPS, J. Phys. Conf. Ser. 1526
(2020) 012028, [1912.10037].

[193] IAXO collaboration, E. Armengaud et al., Physics potential of the
International Axion Observatory (IAXO), JCAP 06 (2019) 047,
[1904.09155].

[194] IAXO collaboration, A. Abeln et al., Conceptual design of BabyIAXO, the
intermediate stage towards the International Axion Observatory, JHEP 05
(2021) 137, [2010.12076].

[195] T. Dafni, C. A. O’Hare, B. Lakić, J. Galán, F. J. Iguaz, I. G. Irastorza et al.,
Weighing the solar axion, Phys. Rev. D 99 (2019) 035037, [1811.09290].

[196] J. Jaeckel and L. J. Thormaehlen, Distinguishing Axion Models with IAXO,
JCAP 1903 (2019) 039, [1811.09278].

[197] G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles,
Phys. Rev. D 37 (1988) 1237.

175

https://doi.org/10.1088/0034-4885/79/12/124201
https://arxiv.org/abs/1504.04855
https://doi.org/10.1007/JHEP05(2019)213
https://arxiv.org/abs/1904.02091
https://doi.org/10.1007/JHEP06(2021)009
https://arxiv.org/abs/2012.07894
https://doi.org/10.1103/PhysRevD.103.095002
https://arxiv.org/abs/2011.05995
https://doi.org/10.1103/PhysRevLett.126.201801
https://arxiv.org/abs/2011.07054
https://doi.org/10.1103/PhysRevD.98.055021
https://arxiv.org/abs/1806.02348
https://doi.org/10.1140/epjc/s10052-020-08711-3
https://doi.org/10.1140/epjc/s10052-020-08711-3
https://arxiv.org/abs/1911.00481
https://doi.org/10.1088/1748-0221/12/05/P05025
https://arxiv.org/abs/1703.08501
https://doi.org/10.1103/PhysRevLett.122.021802
https://doi.org/10.1103/PhysRevLett.122.021802
https://arxiv.org/abs/1810.09655
https://doi.org/10.1088/1742-6596/1526/1/012028
https://doi.org/10.1088/1742-6596/1526/1/012028
https://arxiv.org/abs/1912.10037
https://doi.org/10.1088/1475-7516/2019/06/047
https://arxiv.org/abs/1904.09155
https://doi.org/10.1007/JHEP05(2021)137
https://doi.org/10.1007/JHEP05(2021)137
https://arxiv.org/abs/2010.12076
https://doi.org/10.1103/PhysRevD.99.035037
https://arxiv.org/abs/1811.09290
https://doi.org/10.1088/1475-7516/2019/03/039
https://arxiv.org/abs/1811.09278
https://doi.org/10.1103/PhysRevD.37.1237


[198] K. van Bibber, P. M. McIntyre, D. E. Morris and G. G. Raffelt, A Practical
Laboratory Detector for Solar Axions, Phys. Rev. D 39 (1989) 2089.

[199] CAST collaboration, E. Arik et al., Probing eV-scale axions with CAST,
JCAP 02 (2009) 008, [0810.4482].

[200] I. G. Irastorza et al., Towards a new generation axion helioscope, JCAP
1106 (2011) 013, [1103.5334].

[201] CAST collaboration, K. Zioutas et al., First results from the CERN Axion
Solar Telescope (CAST), Phys. Rev. Lett. 94 (2005) 121301,
[hep-ex/0411033].

[202] CAST collaboration, S. Andriamonje et al., An Improved limit on the
axion-photon coupling from the CAST experiment, JCAP 04 (2007) 010,
[hep-ex/0702006].

[203] CAST collaboration, S. Andriamonje et al., Search for 14.4-keV solar axions
emitted in the M1-transition of Fe-57 nuclei with CAST, JCAP 12 (2009)
002, [0906.4488].

[204] CAST collaboration, S. Andriamonje et al., Search for solar axion emission
from 7Li and D(p, γ)3He nuclear decays with the CAST γ-ray calorimeter,
JCAP 03 (2010) 032, [0904.2103].

[205] CAST collaboration, S. Aune et al., CAST search for sub-eV mass solar
axions with 3He buffer gas, Phys. Rev. Lett. 107 (2011) 261302, [1106.3919].

[206] CAST collaboration, M. Arik et al., Search for Solar Axions by the CERN
Axion Solar Telescope with 3He Buffer Gas: Closing the Hot Dark Matter
Gap, Phys. Rev. Lett. 112 (2014) 091302, [1307.1985].

[207] CAST collaboration, M. Arik et al., New solar axion search using the CERN
Axion Solar Telescope with 4He filling, Phys. Rev. D 92 (2015) 021101,
[1503.00610].

[208] CAST collaboration, V. Anastassopoulos et al., New CAST Limit on the
Axion-Photon Interaction, Nature Phys. 13 (2017) 584–590, [1705.02290].

[209] IAXO collaboration, I. Irastorza et al., The International Axion Observatory
IAXO. Letter of Intent to the CERN SPS committee, CERN-SPSC-2013-022.

[210] E. Armengaud et al., Conceptual Design of the International Axion
Observatory (IAXO), JINST 9 (2014) T05002, [1401.3233].

[211] IAXO collaboration, E. Armengaud et al., Physics potential of the
International Axion Observatory (IAXO), JCAP 1906 (2019) 047,
[1904.09155].

[212] XENON collaboration, E. Aprile et al., Excess electronic recoil events in
XENON1T, Phys. Rev. D 102 (2020) 072004, [2006.09721].

176

https://doi.org/10.1103/PhysRevD.39.2089
https://doi.org/10.1088/1475-7516/2009/02/008
https://arxiv.org/abs/0810.4482
https://doi.org/10.1088/1475-7516/2011/06/013
https://doi.org/10.1088/1475-7516/2011/06/013
https://arxiv.org/abs/1103.5334
https://doi.org/10.1103/PhysRevLett.94.121301
https://arxiv.org/abs/hep-ex/0411033
https://doi.org/10.1088/1475-7516/2007/04/010
https://arxiv.org/abs/hep-ex/0702006
https://doi.org/10.1088/1475-7516/2009/12/002
https://doi.org/10.1088/1475-7516/2009/12/002
https://arxiv.org/abs/0906.4488
https://doi.org/10.1088/1475-7516/2010/03/032
https://arxiv.org/abs/0904.2103
https://doi.org/10.1103/PhysRevLett.107.261302
https://arxiv.org/abs/1106.3919
https://doi.org/10.1103/PhysRevLett.112.091302
https://arxiv.org/abs/1307.1985
https://doi.org/10.1103/PhysRevD.92.021101
https://arxiv.org/abs/1503.00610
https://doi.org/10.1038/nphys4109
https://arxiv.org/abs/1705.02290
http://cds.cern.ch/record/1567109
https://doi.org/10.1088/1748-0221/9/05/T05002
https://arxiv.org/abs/1401.3233
https://doi.org/10.1088/1475-7516/2019/06/047
https://arxiv.org/abs/1904.09155
https://doi.org/10.1103/PhysRevD.102.072004
https://arxiv.org/abs/2006.09721


[213] L. Di Luzio, M. Fedele, M. Giannotti, F. Mescia and E. Nardi, Solar axions
cannot explain the XENON1T excess, Phys. Rev. Lett. 125 (2020) 131804,
[2006.12487].

[214] C. Gao, J. Liu, L.-T. Wang, X.-P. Wang, W. Xue and Y.-M. Zhong,
Reexamining the Solar Axion Explanation for the XENON1T Excess, Phys.
Rev. Lett. 125 (2020) 131806, [2006.14598].

[215] E. Aprile et al., Search for New Physics in Electronic Recoil Data from
XENONnT, [2207.11330].

[216] ADMX collaboration, N. Du et al., A Search for Invisible Axion Dark
Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett. 120 (2018)
151301, [1804.05750].

[217] C. B. Adams et al., Axion Dark Matter, in 2022 Snowmass Summer Study,
March, 2022, [2203.14923].

[218] HAYSTAC collaboration, K. M. Backes et al., A quantum-enhanced search
for dark matter axions, Nature 590 (2021) 238–242, [2008.01853].

[219] A. V. Dixit, S. Chakram, K. He, A. Agrawal, R. K. Naik, D. I. Schuster
et al., Searching for Dark Matter with a Superconducting Qubit, Phys. Rev.
Lett. 126 (2021) 141302, [2008.12231].

[220] MADMAX collaboration, P. Brun et al., A new experimental approach to
probe QCD axion dark matter in the mass range above 40 µeV, Eur. Phys. J.
C 79 (2019) 186, [1901.07401].

[221] M. Lawson, A. J. Millar, M. Pancaldi, E. Vitagliano and F. Wilczek, Tunable
axion plasma haloscopes, Phys. Rev. Lett. 123 (2019) 141802, [1904.11872].

[222] BREAD collaboration, J. Liu et al., Broadband Solenoidal Haloscope for
Terahertz Axion Detection, Phys. Rev. Lett. 128 (2022) 131801,
[2111.12103].

[223] D. Horns, J. Jaeckel, A. Lindner, A. Lobanov, J. Redondo and A. Ringwald,
Searching for WISPy Cold Dark Matter with a Dish Antenna, JCAP 04
(2013) 016, [1212.2970].

[224] Y. Kahn, B. R. Safdi and J. Thaler, Broadband and Resonant Approaches to
Axion Dark Matter Detection, Phys. Rev. Lett. 117 (2016) 141801,
[1602.01086].

[225] J. L. Ouellet et al., First Results from ABRACADABRA-10 cm: A Search
for Sub-µeV Axion Dark Matter, Phys. Rev. Lett. 122 (2019) 121802,
[1810.12257].

[226] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov,
Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys.
Rev. X 4 (2014) 021030, [1306.6089].

177

https://doi.org/10.1103/PhysRevLett.125.131804
https://arxiv.org/abs/2006.12487
https://doi.org/10.1103/PhysRevLett.125.131806
https://doi.org/10.1103/PhysRevLett.125.131806
https://arxiv.org/abs/2006.14598
https://arxiv.org/abs/2207.11330
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://arxiv.org/abs/1804.05750
https://arxiv.org/abs/2203.14923
https://doi.org/10.1038/s41586-021-03226-7
https://arxiv.org/abs/2008.01853
https://doi.org/10.1103/PhysRevLett.126.141302
https://doi.org/10.1103/PhysRevLett.126.141302
https://arxiv.org/abs/2008.12231
https://doi.org/10.1140/epjc/s10052-019-6683-x
https://doi.org/10.1140/epjc/s10052-019-6683-x
https://arxiv.org/abs/1901.07401
https://doi.org/10.1103/PhysRevLett.123.141802
https://arxiv.org/abs/1904.11872
https://doi.org/10.1103/PhysRevLett.128.131801
https://arxiv.org/abs/2111.12103
https://doi.org/10.1088/1475-7516/2013/04/016
https://doi.org/10.1088/1475-7516/2013/04/016
https://arxiv.org/abs/1212.2970
https://doi.org/10.1103/PhysRevLett.117.141801
https://arxiv.org/abs/1602.01086
https://doi.org/10.1103/PhysRevLett.122.121802
https://arxiv.org/abs/1810.12257
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1103/PhysRevX.4.021030
https://arxiv.org/abs/1306.6089


[227] D. Aybas et al., Search for Axionlike Dark Matter Using Solid-State Nuclear
Magnetic Resonance, Phys. Rev. Lett. 126 (2021) 141802, [2101.01241].

[228] F. Takahashi, M. Yamada and W. Yin, XENON1T Excess from
Anomaly-Free Axionlike Dark Matter and Its Implications for Stellar Cooling
Anomaly, Phys. Rev. Lett. 125 (2020) 161801, [2006.10035].

[229] D. A. Dicus, E. W. Kolb, V. L. Teplitz and R. V. Wagoner, Astrophysical
Bounds on the Masses of Axions and Higgs Particles, Phys. Rev. D 18
(1978) 1829.

[230] J. R. Ellis and K. A. Olive, Constraints on Light Particles From Stellar
Evolution, Nucl. Phys. B 223 (1983) 252–268.

[231] G. G. Raffelt, Astrophysical axion bounds diminished by screening effects,
Phys. Rev. D 33 (1986) 897.

[232] G. G. Raffelt and D. S. P. Dearborn, Bounds on Weakly Interacting Particles
From Observational Lifetimes of Helium Burning Stars, Phys. Rev. D 37
(1988) 549–551.

[233] G. G. Raffelt, Stars as laboratories for fundamental physics: The
astrophysics of neutrinos, axions, and other weakly interacting particles.
University of Chicago Press, May, 1996.

[234] H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons,
Phys. Lett. B 725 (2013) 190–195, [1302.3884].

[235] M. Giannotti, Hints of new physics from stars, PoS ICHEP2016 (2016)
076, [1611.04651].

[236] M. Giannotti, I. G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa,
Stellar Recipes for Axion Hunters, JCAP 1710 (2017) 010, [1708.02111].

[237] G. Lucente, O. Straniero, P. Carenza, M. Giannotti and A. Mirizzi,
Constraining Heavy Axionlike Particles by Energy Deposition in Globular
Cluster Stars, Phys. Rev. Lett. 129 (2022) 011101, [2203.01336].

[238] J. Isern, M. Hernanz and E. Garcia-Berro, Axion cooling of white dwarfs,
Astrophys. J. 392 (1992) L23.

[239] J. Isern, E. Garcia-Berro, S. Torres and S. Catalan, Axions and the cooling of
white dwarf stars, Astrophys. J. 682 (2008) L109, [0806.2807].

[240] J. Isern, S. Catalan, E. Garcia-Berro and S. Torres, Axions and the white
dwarf luminosity function, J. Phys. Conf. Ser. 172 (2009) 012005,
[0812.3043].

[241] M. M. Miller Bertolami, Limits on the neutrino magnetic dipole moment
from the luminosity function of hot white dwarfs, Astron. Astrophys. 562
(2014) A123, [1407.1404].

178

https://doi.org/10.1103/PhysRevLett.126.141802
https://arxiv.org/abs/2101.01241
https://doi.org/10.1103/PhysRevLett.125.161801
https://arxiv.org/abs/2006.10035
https://doi.org/10.1103/PhysRevD.18.1829
https://doi.org/10.1103/PhysRevD.18.1829
https://doi.org/10.1016/0550-3213(83)90104-9
https://doi.org/10.1103/PhysRevD.33.897
https://doi.org/10.1103/PhysRevD.37.549
https://doi.org/10.1103/PhysRevD.37.549
https://doi.org/10.1016/j.physletb.2013.07.008
https://arxiv.org/abs/1302.3884
https://doi.org/10.22323/1.282.0076
https://doi.org/10.22323/1.282.0076
https://arxiv.org/abs/1611.04651
https://doi.org/10.1088/1475-7516/2017/10/010
https://arxiv.org/abs/1708.02111
https://doi.org/10.1103/PhysRevLett.129.011101
https://arxiv.org/abs/2203.01336
https://doi.org/10.1086/186416
https://doi.org/10.1086/591042
https://arxiv.org/abs/0806.2807
https://doi.org/10.1088/1742-6596/172/1/012005
https://arxiv.org/abs/0812.3043
https://doi.org/10.1051/0004-6361/201322641
https://doi.org/10.1051/0004-6361/201322641
https://arxiv.org/abs/1407.1404


[242] M. M. Miller Bertolami, B. E. Melendez, L. G. Althaus and J. Isern,
Revisiting the axion bounds from the Galactic white dwarf luminosity
function, JCAP 1410 (2014) 069, [1406.7712].

[243] A. Bischoff-Kim, M. H. Montgomery and D. E. Winget, Strong limits on the
DFSZ axion mass with G117-B15A, Astrophys. J. 675 (2008) 1512,
[0711.2041].

[244] A. H. Córsico, L. G. Althaus, M. M. Miller Bertolami, A. D. Romero,
E. Garcia-Berro, J. Isern et al., The rate of cooling of the pulsating white
dwarf star G117−B15A: a new asteroseismological inference of the axion
mass, Mon. Not. Roy. Astron. Soc. 424 (2012) 2792, [1205.6180].

[245] A. H. Córsico, L. G. Althaus, A. D. Romero, A. S. Mukadam,
E. Garcia-Berro, J. Isern et al., An independent limit on the axion mass from
the variable white dwarf star R548, JCAP 1212 (2012) 010, [1211.3389].

[246] A. H. Córsico, A. D. Romero, L. G. Althaus, E. García-Berro, J. Isern, S. O.
Kepler et al., An asteroseismic constraint on the mass of the axion from the
period drift of the pulsating DA white dwarf star L19-2, JCAP 1607 (2016)
036, [1605.06458].

[247] T. Battich, A. H. Córsico, L. G. Althaus and M. M. Miller Bertolami, First
axion bounds from a pulsating helium-rich white dwarf star, JCAP 1608
(2016) 062, [1605.07668].

[248] C. Dessert, A. J. Long and B. R. Safdi, X-ray Signatures of Axion
Conversion in Magnetic White Dwarf Stars, Phys. Rev. Lett. 123 (2019)
061104, [1903.05088].

[249] C. Dessert, D. Dunsky and B. R. Safdi, Upper limit on the axion-photon
coupling from magnetic white dwarf polarization, Phys. Rev. D 105 (2022)
103034, [2203.04319].

[250] G. G. Raffelt and D. S. P. Dearborn, Bounds on Hadronic Axions From
Stellar Evolution, Phys. Rev. D 36 (1987) 2211.

[251] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero,
Revisiting the bound on axion-photon coupling from Globular Clusters, Phys.
Rev. Lett. 113 (2014) 191302, [1406.6053].

[252] O. Straniero, A. Ayala, M. Giannotti, A. Mirizzi and I. Domínguez,
Axion-Photon Coupling: Astrophysical Constraints, in Proceedings, 11th
Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015):
Zaragoza, Spain, June 22-26, 2015, pp. 77–81, 2015, DOI.

[253] N. Viaux, M. Catelan, P. B. Stetson, G. Raffelt, J. Redondo, A. A. R.
Valcarce et al., Neutrino and axion bounds from the globular cluster M5
(NGC 5904), Phys. Rev. Lett. 111 (2013) 231301, [1311.1669].

179

https://doi.org/10.1088/1475-7516/2014/10/069
https://arxiv.org/abs/1406.7712
https://doi.org/10.1086/526398
https://arxiv.org/abs/0711.2041
https://doi.org/10.1111/j.1365-2966.2012.21401.x
https://arxiv.org/abs/1205.6180
https://doi.org/10.1088/1475-7516/2012/12/010
https://arxiv.org/abs/1211.3389
https://doi.org/10.1088/1475-7516/2016/07/036
https://doi.org/10.1088/1475-7516/2016/07/036
https://arxiv.org/abs/1605.06458
https://doi.org/10.1088/1475-7516/2016/08/062
https://doi.org/10.1088/1475-7516/2016/08/062
https://arxiv.org/abs/1605.07668
https://doi.org/10.1103/PhysRevLett.123.061104
https://doi.org/10.1103/PhysRevLett.123.061104
https://arxiv.org/abs/1903.05088
https://doi.org/10.1103/PhysRevD.105.103034
https://doi.org/10.1103/PhysRevD.105.103034
https://arxiv.org/abs/2203.04319
https://doi.org/10.1103/PhysRevD.36.2211
https://doi.org/10.1103/PhysRevLett.113.191302
https://doi.org/10.1103/PhysRevLett.113.191302
https://arxiv.org/abs/1406.6053
https://doi.org/10.3204/DESY-PROC-2015-02/straniero_oscar
https://doi.org/10.1103/PhysRevLett.111.231301
https://arxiv.org/abs/1311.1669


[254] R. C. Dohm-Palmer and E. D. Skillman, The ratio of blue to red supergiants
in sextans a from hst imaging, [astro-ph/0203284].

[255] K. B. W. McQuinn, E. D. Skillman, J. J. Dalcanton, A. E. Dolphin,
J. Holtzman, D. R. Weisz et al., Observational Constraints on Red and Blue
Helium Burning Sequences, Astrophys. J. 740 (2011) 48, [1108.1405].

[256] A. Friedland, M. Giannotti and M. Wise, Constraining the Axion-Photon
Coupling with Massive Stars, Phys. Rev. Lett. 110 (2013) 061101,
[1210.1271].

[257] G. Carosi, A. Friedland, M. Giannotti, M. J. Pivovaroff, J. Ruz and J. K.
Vogel, Probing the axion-photon coupling: phenomenological and
experimental perspectives. A snowmass white paper, in Proceedings, 2013
Community Summer Study on the Future of U.S. Particle Physics:
Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July
29-August 6, 2013, 2013, [1309.7035].

[258] C. O. Heinke and W. C. G. Ho, Direct Observation of the Cooling of the
Cassiopeia A Neutron Star, Astrophys. J. 719 (2010) L167–L171,
[1007.4719].

[259] L. B. Leinson, Axion mass limit from observations of the neutron star in
Cassiopeia A, JCAP 1408 (2014) 031, [1405.6873].

[260] Kamiokande-II collaboration, K. Hirata et al., Observation of a Neutrino
Burst from the Supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490–1493.

[261] R. M. Bionta et al., Observation of a Neutrino Burst in Coincidence with
Supernova SN 1987a in the Large Magellanic Cloud, Phys. Rev. Lett. 58
(1987) 1494.

[262] M. Aglietta et al., On the event observed in the Mont Blanc Underground
Neutrino observatory during the occurrence of Supernova 1987a, Europhys.
Lett. 3 (1987) 1315–1320.

[263] M. S. Turner, Axions from SN 1987a, Phys. Rev. Lett. 60 (1988) 1797.

[264] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008)
51–71, [hep-ph/0611350].

[265] P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo and
A. Mirizzi, Improved axion emissivity from a supernova via nucleon-nucleon
bremsstrahlung, JCAP 10 (2019) 016, [1906.11844].

[266] T. J. Loredo and D. Q. Lamb, Bayesian analysis of neutrinos observed from
supernova SN-1987A, Phys. Rev. D 65 (2002) 063002, [astro-ph/0107260].

[267] M. Giannotti, L. D. Duffy and R. Nita, New constraints for heavy axion-like
particles from supernovae, JCAP 1101 (2011) 015, [1009.5714].

180

https://arxiv.org/abs/astro-ph/0203284
https://doi.org/10.1088/0004-637X/740/1/48
https://arxiv.org/abs/1108.1405
https://doi.org/10.1103/PhysRevLett.110.061101
https://arxiv.org/abs/1210.1271
https://arxiv.org/abs/1309.7035
https://doi.org/10.1088/2041-8205/719/2/L167
https://arxiv.org/abs/1007.4719
https://doi.org/10.1088/1475-7516/2014/08/031
https://arxiv.org/abs/1405.6873
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1103/PhysRevLett.58.1494
https://doi.org/10.1103/PhysRevLett.58.1494
https://doi.org/10.1209/0295-5075/3/12/011
https://doi.org/10.1209/0295-5075/3/12/011
https://doi.org/10.1103/PhysRevLett.60.1797
https://doi.org/10.1007/978-3-540-73518-2_3
https://doi.org/10.1007/978-3-540-73518-2_3
https://arxiv.org/abs/hep-ph/0611350
https://doi.org/10.1088/1475-7516/2019/10/016
https://arxiv.org/abs/1906.11844
https://doi.org/10.1103/PhysRevD.65.063002
https://arxiv.org/abs/astro-ph/0107260
https://doi.org/10.1088/1475-7516/2011/01/015
https://arxiv.org/abs/1009.5714


[268] F. Calore, P. Carenza, M. Giannotti, J. Jaeckel and A. Mirizzi, Bounds on
axionlike particles from the diffuse supernova flux, Phys. Rev. D 102 (2020)
123005, [2008.11741].

[269] A. De Angelis, M. Roncadelli and O. Mansutti, Evidence for a new light
spin-zero boson from cosmological gamma-ray propagation?, Phys. Rev. D 76
(2007) 121301, [0707.4312].

[270] A. Mirizzi, G. G. Raffelt and P. D. Serpico, Signatures of axion-like particles
in the spectra of TeV gamma-ray sources, Phys. Rev. D 76 (2007) 023001,
[0704.3044].

[271] M. Simet, D. Hooper and P. D. Serpico, The Milky Way as a
Kiloparsec-Scale Axionscope, Phys. Rev. D 77 (2008) 063001, [0712.2825].

[272] A. De Angelis, O. Mansutti, M. Persic and M. Roncadelli, Photon
propagation and the VHE gamma-ray spectra of blazars: how transparent is
really the Universe?, Mon. Not. Roy. Astron. Soc. 394 (2009) L21–L25,
[0807.4246].

[273] M. A. Sanchez-Conde, D. Paneque, E. Bloom, F. Prada and A. Dominguez,
Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of
cosmological sources, Phys. Rev. D 79 (2009) 123511, [0905.3270].

[274] A. Dominguez, M. A. Sanchez-Conde and F. Prada, Axion-like particle
imprint in cosmological very-high-energy sources, JCAP 1111 (2011) 020,
[1106.1860].

[275] A. De Angelis, G. Galanti and M. Roncadelli, Relevance of axion-like
particles for very-high-energy astrophysics, Phys. Rev. D 84 (2011) 105030,
[1106.1132].

[276] W. Essey and A. Kusenko, On weak redshift dependence of gamma-ray
spectra of distant blazars, Astrophys. J. 751 (2012) L11, [1111.0815].

[277] D. Horns and M. Meyer, Indications for a pair-production anomaly from the
propagation of VHE gamma-rays, JCAP 1202 (2012) 033, [1201.4711].

[278] M. Meyer, D. Horns and M. Raue, First lower limits on the photon-axion-like
particle coupling from very high energy gamma-ray observations, Phys. Rev.
D 87 (2013) 035027, [1302.1208].

[279] G. I. Rubtsov and S. V. Troitsky, Breaks in gamma-ray spectra of distant
blazars and transparency of the Universe, JETP Lett. 100 (2014) 355–359,
[1406.0239].

[280] S. V. Troitsky, Axion-like particles and the propagation of gamma rays over
astronomical distances, JETP Lett. 105 (2017) 55–59, [1612.01864].

181

https://doi.org/10.1103/PhysRevD.102.123005
https://doi.org/10.1103/PhysRevD.102.123005
https://arxiv.org/abs/2008.11741
https://doi.org/10.1103/PhysRevD.76.121301
https://doi.org/10.1103/PhysRevD.76.121301
https://arxiv.org/abs/0707.4312
https://doi.org/10.1103/PhysRevD.76.023001
https://arxiv.org/abs/0704.3044
https://doi.org/10.1103/PhysRevD.77.063001
https://arxiv.org/abs/0712.2825
https://doi.org/10.1111/j.1745-3933.2008.00602.x
https://arxiv.org/abs/0807.4246
https://doi.org/10.1103/PhysRevD.79.123511
https://arxiv.org/abs/0905.3270
https://doi.org/10.1088/1475-7516/2011/11/020
https://arxiv.org/abs/1106.1860
https://doi.org/10.1103/PhysRevD.87.109903, 10.1103/PhysRevD.84.105030
https://arxiv.org/abs/1106.1132
https://doi.org/10.1088/2041-8205/751/1/L11
https://arxiv.org/abs/1111.0815
https://doi.org/10.1088/1475-7516/2012/02/033
https://arxiv.org/abs/1201.4711
https://doi.org/10.1103/PhysRevD.87.035027
https://doi.org/10.1103/PhysRevD.87.035027
https://arxiv.org/abs/1302.1208
https://doi.org/10.7868/S0370274X14180015, 10.1134/S0021364014180088
https://arxiv.org/abs/1406.0239
https://doi.org/10.1134/S0021364017010052
https://arxiv.org/abs/1612.01864


[281] K. Kohri and H. Kodama, Axion-Like Particles and Recent Observations of
the Cosmic Infrared Background Radiation, Phys. Rev. D 96 (2017) 051701,
[1704.05189].

[282] A. Korochkin, G. Rubtsov and S. Troitsky, Search for anomalous features in
gamma-ray blazar spectra corrected for the absorption on the extragalactic
background light, JCAP 12 (2019) 002, [1810.03443].

[283] Y.-F. Liang, C. Zhang, Z.-Q. Xia, L. Feng, Q. Yuan and Y.-Z. Fan,
Constraints on axion-like particle properties with TeV gamma-ray
observations of Galactic sources, JCAP 06 (2019) 042, [1804.07186].

[284] D. A. Sanchez, S. Fegan and B. Giebels, Evidence for a cosmological effect in
γ-ray spectra of BL Lacs, Astron. Astrophys. 554 (2013) A75, [1303.5923].

[285] A. Domínguez and M. Ajello, Spectral analysis of Fermi-LAT blazars above
50 GeV, Astrophys. J. 813 (2015) L34, [1510.07913].

[286] J. Biteau and D. A. Williams, The extragalactic background light, the Hubble
constant, and anomalies: conclusions from 20 years of TeV gamma-ray
observations, Astrophys. J. 812 (2015) 60, [1502.04166].

[287] P. Agrawal, K. V. Berghaus, J. Fan, A. Hook, G. Marques-Tavares and
T. Rudelius, Some open questions in axion theory, in 2022 Snowmass
Summer Study, March, 2022, [2203.08026].

[288] P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental Targets for
Photon Couplings of the QCD Axion, JHEP 02 (2018) 006, [1709.06085].

[289] K. Fraser and M. Reece, Axion Periodicity and Coupling Quantization in the
Presence of Mixing, JHEP 05 (2020) 066, [1910.11349].

[290] M. A. Buen-Abad, J. Fan, M. Reece and C. Sun, Challenges for an axion
explanation of the muon g − 2 measurement, JHEP 09 (2021) 101,
[2104.03267].

[291] R. S. Gupta, Z. Komargodski, G. Perez and L. Ubaldi, Is the Relaxion an
Axion?, JHEP 02 (2016) 166, [1509.00047].

[292] A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary
Peccei-Quinn symmetry breaking scenario, Phys. Rev. D 93 (2016) 085031,
[1512.06436].

[293] R. Foot, H. Lew and R. R. Volkas, Electric charge quantization, J. Phys. G
19 (1993) 361–372, [hep-ph/9209259].

[294] R. A. Bertlmann, Anomalies in Quantum Field Theory. Oxford University
Press, Nov., 2000, 10.1093/acprof:oso/9780198507628.001.0001.

182

https://doi.org/10.1103/PhysRevD.96.051701
https://arxiv.org/abs/1704.05189
https://doi.org/10.1088/1475-7516/2019/12/002
https://arxiv.org/abs/1810.03443
https://doi.org/10.1088/1475-7516/2019/06/042
https://arxiv.org/abs/1804.07186
https://doi.org/10.1051/0004-6361/201220631
https://arxiv.org/abs/1303.5923
https://doi.org/10.1088/2041-8205/813/2/L34
https://arxiv.org/abs/1510.07913
https://doi.org/10.1088/0004-637X/812/1/60
https://arxiv.org/abs/1502.04166
https://arxiv.org/abs/2203.08026
https://doi.org/10.1007/JHEP02(2018)006
https://arxiv.org/abs/1709.06085
https://doi.org/10.1007/JHEP05(2020)066
https://arxiv.org/abs/1910.11349
https://doi.org/10.1007/JHEP09(2021)101
https://arxiv.org/abs/2104.03267
https://doi.org/10.1007/JHEP02(2016)166
https://arxiv.org/abs/1509.00047
https://doi.org/10.1103/PhysRevD.93.085031
https://arxiv.org/abs/1512.06436
https://doi.org/10.1088/0954-3899/19/3/005
https://doi.org/10.1088/0954-3899/19/3/005
https://arxiv.org/abs/hep-ph/9209259
https://doi.org/10.1093/acprof:oso/9780198507628.001.0001


[295] MoEDAL collaboration, B. Acharya et al., Search for magnetic monopoles
with the MoEDAL prototype trapping detector in 8 TeV proton-proton
collisions at the LHC, JHEP 08 (2016) 067, [1604.06645].

[296] M. Chala, G. Guedes, M. Ramos and J. Santiago, Running in the ALPs,
Eur. Phys. J. C 81 (2021) 181, [2012.09017].

[297] M. Srednicki, Axion Couplings to Matter. 1. CP Conserving Parts, Nucl.
Phys. B 260 (1985) 689–700.

[298] D. B. Kaplan and A. Manohar, Strange Matrix Elements in the Proton from
Neutral Current Experiments, Nucl. Phys. B 310 (1988) 527–547.

[299] C. Grojean, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization
Group Scaling of Higgs Operators and \Gamma(h -> \gamma \gamma),
JHEP 04 (2013) 016, [1301.2588].

[300] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys.
Commun. 210 (2017) 103–123, [1601.05437].

[301] H. H. Patel, Package-X: A Mathematica package for the analytic calculation
of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276–290,
[1503.01469].

[302] A. Latosinski, K. A. Meissner and H. Nicolai, Axions without Peccei-Quinn
Symmetry, [1010.5417].

[303] A. Latosinski, K. A. Meissner and H. Nicolai, Neutrino Loops from Neutrino
Mixing, [1112.0134].

[304] A. Latosinski, K. A. Meissner and H. Nicolai, Neutrino Mixing and the
Axion-Gluon Vertex, Nucl. Phys. B 868 (2013) 596–626, [1203.3886].

[305] R. Z. Ferreira, M. C. D. Marsh and E. Müller, Strong supernovae bounds on
ALPs from quantum loops, [2205.07896].

[306] A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik and P. Wolf, Violation of
the equivalence principle from light scalar dark matter, Phys. Rev. D 98
(2018) 064051, [1807.04512].

[307] P. W. Graham, D. E. Kaplan and S. Rajendran, Cosmological Relaxation of
the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801, [1504.07551].

[308] M. Bauer, G. Rostagni and J. Spinner, The Axion-Higgs Portal,
[2207.05762].

[309] G. Buchalla, A. J. Buras and M. E. Lautenbacher, Weak decays beyond
leading logarithms, Rev. Mod. Phys. 68 (1996) 1125–1144, [hep-ph/9512380].

[310] J. Aebischer, M. Fael, C. Greub and J. Virto, B physics Beyond the Standard
Model at One Loop: Complete Renormalization Group Evolution below the
Electroweak Scale, JHEP 09 (2017) 158, [1704.06639].

183

https://doi.org/10.1007/JHEP08(2016)067
https://arxiv.org/abs/1604.06645
https://doi.org/10.1140/epjc/s10052-021-08968-2
https://arxiv.org/abs/2012.09017
https://doi.org/10.1016/0550-3213(85)90054-9
https://doi.org/10.1016/0550-3213(85)90054-9
https://doi.org/10.1016/0550-3213(88)90090-9
https://doi.org/10.1007/JHEP04(2013)016
https://arxiv.org/abs/1301.2588
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://arxiv.org/abs/1601.05437
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://arxiv.org/abs/1010.5417
https://arxiv.org/abs/1112.0134
https://doi.org/10.1016/j.nuclphysb.2012.11.027
https://arxiv.org/abs/1203.3886
https://arxiv.org/abs/2205.07896
https://doi.org/10.1103/PhysRevD.98.064051
https://doi.org/10.1103/PhysRevD.98.064051
https://arxiv.org/abs/1807.04512
https://doi.org/10.1103/PhysRevLett.115.221801
https://arxiv.org/abs/1504.07551
https://arxiv.org/abs/2207.05762
https://doi.org/10.1103/RevModPhys.68.1125
https://arxiv.org/abs/hep-ph/9512380
https://doi.org/10.1007/JHEP09(2017)158
https://arxiv.org/abs/1704.06639


[311] E. E. Jenkins, A. V. Manohar and P. Stoffer, Low-Energy Effective Field
Theory below the Electroweak Scale: Operators and Matching, JHEP 03
(2018) 016, [1709.04486].

[312] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New
Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621–653.

[313] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six
Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085, [1008.4884].

[314] F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod.
Phys. A 8 (1993) 4937–4972, [hep-ph/9301281].

[315] R. Alonso, M. B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective
Chiral Lagrangian for a Light Dynamical ”Higgs Particle”, Phys. Lett. B 722
(2013) 330–335, [1212.3305].

[316] G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral
Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552–573,
[1307.5017].

[317] K. Choi, S. H. Im, C. B. Park and S. Yun, Minimal Flavor Violation with
Axion-like Particles, JHEP 11 (2017) 070, [1708.00021].

[318] L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan, Minimal axion
model from flavor, Phys. Rev. D 95 (2017) 095009, [1612.08040].

[319] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo
Angles and CP Violation, Nucl. Phys. B 147 (1979) 277–298.

[320] C. Cornella, P. Paradisi and O. Sumensari, Hunting for ALPs with Lepton
Flavor Violation, JHEP 01 (2020) 158, [1911.06279].

[321] P. Escribano and A. Vicente, Ultralight scalars in leptonic observables, JHEP
03 (2021) 240, [2008.01099].

[322] E949, E787 collaboration, S. Adler et al., Measurement of the K+ –> pi+
nu nu branching ratio, Phys. Rev. D 77 (2008) 052003, [0709.1000].

[323] NA62 collaboration, R. Fantechi, The NA62 experiment at CERN: status
and perspectives, in 12th Conference on Flavor Physics and CP Violation,
July, 2014, [1407.8213].

[324] NA62 collaboration, E. Cortina Gil et al., Search for a feebly interacting
particle X in the decay K+ → π+X, JHEP 03 (2021) 058, [2011.11329].

[325] STAR collaboration, B. I. Abelev et al., Azimuthal Charged-Particle
Correlations and Possible Local Strong Parity Violation, Phys. Rev. Lett.
103 (2009) 251601, [0909.1739].

184

https://doi.org/10.1007/JHEP03(2018)016
https://doi.org/10.1007/JHEP03(2018)016
https://arxiv.org/abs/1709.04486
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP10(2010)085
https://arxiv.org/abs/1008.4884
https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1142/S0217751X93001946
https://arxiv.org/abs/hep-ph/9301281
https://doi.org/10.1016/j.physletb.2013.04.037
https://doi.org/10.1016/j.physletb.2013.04.037
https://arxiv.org/abs/1212.3305
https://doi.org/10.1016/j.nuclphysb.2014.01.018
https://arxiv.org/abs/1307.5017
https://doi.org/10.1007/JHEP11(2017)070
https://arxiv.org/abs/1708.00021
https://doi.org/10.1103/PhysRevD.95.095009
https://arxiv.org/abs/1612.08040
https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1007/JHEP01(2020)158
https://arxiv.org/abs/1911.06279
https://doi.org/10.1007/JHEP03(2021)240
https://doi.org/10.1007/JHEP03(2021)240
https://arxiv.org/abs/2008.01099
https://doi.org/10.1103/PhysRevD.77.052003
https://arxiv.org/abs/0709.1000
https://arxiv.org/abs/1407.8213
https://doi.org/10.1007/JHEP03(2021)058
https://arxiv.org/abs/2011.11329
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1103/PhysRevLett.103.251601
https://arxiv.org/abs/0909.1739


[326] STAR collaboration, B. I. Abelev et al., Observation of charge-dependent
azimuthal correlations and possible local strong parity violation in heavy ion
collisions, Phys. Rev. C 81 (2010) 054908, [0909.1717].

[327] B. Batell, M. Pospelov and A. Ritz, Multi-lepton Signatures of a Hidden
Sector in Rare B Decays, Phys. Rev. D 83 (2011) 054005, [0911.4938].

[328] M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, The
Low-Energy Effective Theory of Axions and ALPs, JHEP 04 (2021) 063,
[2012.12272].

[329] L. J. Hall and M. B. Wise, Flavor changing Higgs boson couplings, Nucl.
Phys. B 187 (1981) 397–408.

[330] S. Oda, Y. Shoji and D.-S. Takahashi, High Scale Validity of the DFSZ
Axion Model with Precision, JHEP 03 (2020) 011, [1912.01147].

[331] F. Kling, S. Su and W. Su, 2HDM Neutral Scalars under the LHC, JHEP 06
(2020) 163, [2004.04172].

[332] C. A. J. O’Hare and E. Vitagliano, Cornering the axion with CP -violating
interactions, Phys. Rev. D 102 (2020) 115026, [2010.03889].

[333] L. Di Luzio, R. Gröber and P. Paradisi, Hunting for CP -violating axionlike
particle interactions, Phys. Rev. D 104 (2021) 095027, [2010.13760].

[334] J. Hisano, K. Tsumura and M. J. S. Yang, QCD Corrections to Neutron
Electric Dipole Moment from Dimension-six Four-Quark Operators, Phys.
Lett. B 713 (2012) 473–480, [1205.2212].

[335] CAST collaboration, V. Anastassopoulos et al., New CAST Limit on the
Axion-Photon Interaction, Nature Phys. 13 (2017) 584–590, [1705.02290].

[336] ADMX collaboration, N. Du et al., A Search for Invisible Axion Dark
Matter with the Axion Dark Matter Experiment, Phys. Rev. Lett. 120 (2018)
151301, [1804.05750].

[337] ADMX collaboration, T. Braine et al., Extended Search for the Invisible
Axion with the Axion Dark Matter Experiment, Phys. Rev. Lett. 124 (2020)
101303, [1910.08638].

[338] T. Vonk, F.-K. Guo and U.-G. Meißner, Precision calculation of the
axion-nucleon coupling in chiral perturbation theory, JHEP 03 (2020) 138,
[2001.05327].

[339] J. H. Chang, R. Essig and S. D. McDermott, Supernova 1987A Constraints
on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an
Axion-like Particle, JHEP 09 (2018) 051, [1803.00993].

185

https://doi.org/10.1103/PhysRevC.81.054908
https://arxiv.org/abs/0909.1717
https://doi.org/10.1103/PhysRevD.83.054005
https://arxiv.org/abs/0911.4938
https://doi.org/10.1007/JHEP04(2021)063
https://arxiv.org/abs/2012.12272
https://doi.org/10.1016/0550-3213(81)90469-7
https://doi.org/10.1016/0550-3213(81)90469-7
https://doi.org/10.1007/JHEP03(2020)011
https://arxiv.org/abs/1912.01147
https://doi.org/10.1007/JHEP06(2020)163
https://doi.org/10.1007/JHEP06(2020)163
https://arxiv.org/abs/2004.04172
https://doi.org/10.1103/PhysRevD.102.115026
https://arxiv.org/abs/2010.03889
https://doi.org/10.1103/PhysRevD.104.095027
https://arxiv.org/abs/2010.13760
https://doi.org/10.1016/j.physletb.2012.06.038
https://doi.org/10.1016/j.physletb.2012.06.038
https://arxiv.org/abs/1205.2212
https://doi.org/10.1038/nphys4109
https://arxiv.org/abs/1705.02290
https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.1103/PhysRevLett.120.151301
https://arxiv.org/abs/1804.05750
https://doi.org/10.1103/PhysRevLett.124.101303
https://doi.org/10.1103/PhysRevLett.124.101303
https://arxiv.org/abs/1910.08638
https://doi.org/10.1007/JHEP03(2020)138
https://arxiv.org/abs/2001.05327
https://doi.org/10.1007/JHEP09(2018)051
https://arxiv.org/abs/1803.00993


[340] F. Ertas and F. Kahlhoefer, On the interplay between astrophysical and
laboratory probes of MeV-scale axion-like particles, JHEP 07 (2020) 050,
[2004.01193].

[341] M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, Cool WISPs for
stellar cooling excesses, JCAP 05 (2016) 057, [1512.08108].

[342] S. Hoof, F. Kahlhoefer, P. Scott, C. Weniger and M. White, Axion global fits
with Peccei-Quinn symmetry breaking before inflation using GAMBIT, JHEP
03 (2019) 191, [1810.07192].

[343] N. Bar, K. Blum and G. D’Amico, Is there a supernova bound on axions?,
Phys. Rev. D 101 (2020) 123025, [1907.05020].

[344] P. Cigan et al., High angular resolution ALMA images of dust and molecules
in the SN 1987A ejecta, Astrophys. J. 886 (2019) 51, [1910.02960].

[345] D. Page, M. V. Beznogov, I. Garibay, J. M. Lattimer, M. Prakash and H.-T.
Janka, NS 1987A in SN 1987A, Astrophys. J. 898 (2020) 125, [2004.06078].

[346] J. Jaeckel and L. J. Thormaehlen, Axions as a probe of solar metals, Phys.
Rev. D 100 (2019) 123020, [1908.10878].

[347] C. A. J. O’Hare, A. Caputo, A. J. Millar and E. Vitagliano, Axion helioscopes
as solar magnetometers, Phys. Rev. D 102 (2020) 043019, [2006.10415].

[348] D. M. Lazarus, G. C. Smith, R. Cameron, A. C. Melissinos, G. Ruoso, Y. K.
Semertzidis et al., A Search for solar axions, Phys. Rev. Lett. 69 (1992)
2333–2336.

[349] S. Moriyama, M. Minowa, T. Namba, Y. Inoue, Y. Takasu and
A. Yamamoto, Direct search for solar axions by using strong magnetic field
and x-ray detectors, Phys. Lett. B 434 (1998) 147, [hep-ex/9805026].

[350] Y. Inoue, T. Namba, S. Moriyama, M. Minowa, Y. Takasu, T. Horiuchi
et al., Search for sub-electronvolt solar axions using coherent conversion of
axions into photons in magnetic field and gas helium, Phys. Lett. B 536
(2002) 18–23, [astro-ph/0204388].

[351] Y. Inoue, Y. Akimoto, R. Ohta, T. Mizumoto, A. Yamamoto and
M. Minowa, Search for solar axions with mass around 1 eV using coherent
conversion of axions into photons, Phys. Lett. B 668 (2008) 93–97,
[0806.2230].

[352] K. Barth et al., CAST constraints on the axion-electron coupling, JCAP
1305 (2013) 010, [1302.6283].

[353] G. G. Raffelt, Plasmon Decay Into Low Mass Bosons in Stars, Phys. Rev. D
37 (1988) 1356.

186

https://doi.org/10.1007/JHEP07(2020)050
https://arxiv.org/abs/2004.01193
https://doi.org/10.1088/1475-7516/2016/05/057
https://arxiv.org/abs/1512.08108
https://doi.org/10.1007/JHEP03(2019)191
https://doi.org/10.1007/JHEP03(2019)191
https://arxiv.org/abs/1810.07192
https://doi.org/10.1103/PhysRevD.101.123025
https://arxiv.org/abs/1907.05020
https://doi.org/10.3847/1538-4357/ab4b46
https://arxiv.org/abs/1910.02960
https://doi.org/10.3847/1538-4357/ab93c2
https://arxiv.org/abs/2004.06078
https://doi.org/10.1103/PhysRevD.100.123020
https://doi.org/10.1103/PhysRevD.100.123020
https://arxiv.org/abs/1908.10878
https://doi.org/10.1103/PhysRevD.102.043019
https://arxiv.org/abs/2006.10415
https://doi.org/10.1103/PhysRevLett.69.2333
https://doi.org/10.1103/PhysRevLett.69.2333
https://doi.org/10.1016/S0370-2693(98)00766-7
https://arxiv.org/abs/hep-ex/9805026
https://doi.org/10.1016/S0370-2693(02)01822-1
https://doi.org/10.1016/S0370-2693(02)01822-1
https://arxiv.org/abs/astro-ph/0204388
https://doi.org/10.1016/j.physletb.2008.08.020
https://arxiv.org/abs/0806.2230
https://doi.org/10.1088/1475-7516/2013/05/010
https://doi.org/10.1088/1475-7516/2013/05/010
https://arxiv.org/abs/1302.6283
https://doi.org/10.1103/PhysRevD.37.1356
https://doi.org/10.1103/PhysRevD.37.1356


[354] J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The Need
for purely laboratory-based axion-like particle searches, Phys. Rev. D 75
(2007) 013004, [hep-ph/0610203].

[355] S. A. Bludman and K. A. van Riper, Equation of state of an ideal Fermi
gas., Astrophys. J. 212 (March, 1977) 859–872.

[356] A. Caputo, A. J. Millar and E. Vitagliano, Revisiting longitudinal
plasmon-axion conversion in external magnetic fields, Phys. Rev. D 101
(2020) 123004, [2005.00078].

[357] E. Guarini, P. Carenza, J. Galan, M. Giannotti and A. Mirizzi, Production of
axionlike particles from photon conversions in large-scale solar magnetic
fields, Phys. Rev. D 102 (2020) 123024, [2010.06601].

[358] L. D. Landau, On the vibrations of the electronic plasma, J. Phys. (USSR)
10 (1946) 25–34.

[359] M. Krief, A. Feigel and D. Gazit, Solar opacity calculations using the
super-transition-array method, Astrophys. J. 821 (2016) 45, [1601.01930].

[360] S. Couvidat, S. Turck-Chieze and A. G. Kosovichev, Solar seismic models
and the neutrino predictions, Astrophys. J. 599 (2003) 1434–1448,
[astro-ph/0203107].

[361] E. Vitagliano, J. Redondo and G. Raffelt, Solar neutrino flux at keV
energies, JCAP 12 (2017) 010, [1708.02248].

[362] P. Carenza and G. Lucente, Revisiting axion-electron bremsstrahlung
emission rates in astrophysical environments, Phys. Rev. D 103 (2021)
123024, [2104.09524].

[363] A. N. Cox and J. N. Stewart, Radiative and Conductive Opacities for Eleven
Astrophysical Mixtures., Astrophys. J. Suppl. 11 (Jan., 1965) 22.

[364] F. J. Rogers and C. A. Iglesias, Radiative atomic Rosseland mean opacity
tables, Astrophys. J. Suppl. 79 (1992) 507–568.

[365] N. R. Badnell, M. A. Bautista, K. Butler, F. Delahaye, C. Mendoza,
P. Palmeri et al., Up-dated opacities from the Opacity Project, Mon. Not.
Roy. Astron. Soc. 360 (2005) 458–464, [astro-ph/0410744].

[366] N. H. Magee, J. Abdallah, J., R. E. H. Clark, J. S. Cohen, L. A. Collins,
G. Csanak et al., Atomic Structure Calculations and New LOS Alamos
Astrophysical Opacities, in Astrophysical Applications of Powerful New
Databases (S. J. Adelman and W. L. Wiese, eds.), vol. 78 of Astronomical
Society of the Pacific Conference Series, p. 51, Jan., 1995.

[367] C. Blancard, P. Cossé and G. Faussurier, Solar Mixture Opacity Calculations
Using Detailed Configuration and Level Accounting Treatments, Astrophys. J.
745 (Jan., 2012) 10.

187

https://doi.org/10.1103/PhysRevD.75.013004
https://doi.org/10.1103/PhysRevD.75.013004
https://arxiv.org/abs/hep-ph/0610203
https://doi.org/10.1086/155110
https://doi.org/10.1103/PhysRevD.101.123004
https://doi.org/10.1103/PhysRevD.101.123004
https://arxiv.org/abs/2005.00078
https://doi.org/10.1103/PhysRevD.102.123024
https://arxiv.org/abs/2010.06601
https://doi.org/10.3847/0004-637X/821/1/45
https://arxiv.org/abs/1601.01930
https://doi.org/10.1086/379604
https://arxiv.org/abs/astro-ph/0203107
https://doi.org/10.1088/1475-7516/2017/12/010
https://arxiv.org/abs/1708.02248
https://doi.org/10.1103/PhysRevD.103.123024
https://doi.org/10.1103/PhysRevD.103.123024
https://arxiv.org/abs/2104.09524
https://doi.org/10.1086/190108
https://doi.org/10.1086/191659
https://doi.org/10.1111/j.1365-2966.2005.08991.x
https://doi.org/10.1111/j.1365-2966.2005.08991.x
https://arxiv.org/abs/astro-ph/0410744
https://doi.org/10.1088/0004-637X/745/1/10
https://doi.org/10.1088/0004-637X/745/1/10


[368] Borexino collaboration, G. Bellini et al., Search for Solar Axions Produced
in p(d, 3He)A Reaction with Borexino Detector, Phys. Rev. D 85 (2012)
092003, [1203.6258].

[369] A. Bhusal, N. Houston and T. Li, Searching for Solar Axions Using Data
from the Sudbury Neutrino Observatory, Phys. Rev. Lett. 126 (2021) 091601,
[2004.02733].

[370] S. Moriyama, A Proposal to search for a monochromatic component of solar
axions using Fe-57, Phys. Rev. Lett. 75 (1995) 3222–3225, [hep-ph/9504318].

[371] M. Krcmar, Z. Krecak, M. Stipcevic, A. Ljubicic and D. A. Bradley, Search
for invisible axions using Fe-57, Phys. Lett. B 442 (1998) 38,
[nucl-ex/9801005].

[372] Y. M. Gavrilyuk et al., First result of the experimental search for the 9.4 keV
solar axion reactions with 83Kr in the copper proportional counter, Phys.
Part. Nucl. 46 (2015) 152–156, [1405.1271].

[373] R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron
Radiation. Springer-Verlag Berlin Heidelberg, Germany, 2004.

[374] M. Asplund, N. Grevesse, A. J. Sauval and P. Scott, The chemical
composition of the Sun, Ann. Rev. Astron. Astrophys. 47 (2009) 481–522,
[0909.0948].

[375] W. C. Haxton and K. Y. Lee, Red giant evolution, metallicity and new
bounds on hadronic axions, Phys. Rev. Lett. 66 (1991) 2557–2560.

[376] F. T. Avignone, C. Baktash, W. C. Barker, F. P. Calaprice, R. W. Dunford,
W. C. Haxton et al., Search for Axions From the 1115-kev Transition of
65Cu, Phys. Rev. D 37 (1988) 618–630.

[377] F. T. Avignone, R. J. Creswick, J. D. Vergados, P. Pirinen, P. C. Srivastava
and J. Suhonen, Estimating the flux of the 14.4 keV solar axions, JCAP 01
(2018) 021, [1711.06979].

[378] CUORE collaboration, F. Alessandria et al., Search for 14.4 keV solar
axions from M1 transition of Fe-57 with CUORE crystals, JCAP 05 (2013)
007, [1209.2800].

[379] N. Vinyoles, A. M. Serenelli, F. L. Villante, S. Basu, J. Bergström, M. C.
Gonzalez-Garcia et al., A new Generation of Standard Solar Models,
Astrophys. J. 835 (2017) 202, [1611.09867].

[380] M. J. Seaton, OP data on CD for mean opacities and radiative accelerations,
Mon. Not. Roy. Astron. Soc. 362 (2005) 1, [astro-ph/0411010].

[381] D. R. Williams, “Earth fact sheet.”
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html,
2020.

188

https://doi.org/10.1103/PhysRevD.85.092003
https://doi.org/10.1103/PhysRevD.85.092003
https://arxiv.org/abs/1203.6258
https://doi.org/10.1103/PhysRevLett.126.091601
https://arxiv.org/abs/2004.02733
https://doi.org/10.1103/PhysRevLett.75.3222
https://arxiv.org/abs/hep-ph/9504318
https://doi.org/10.1016/S0370-2693(98)01231-3
https://arxiv.org/abs/nucl-ex/9801005
https://doi.org/10.1134/S1063779615020094
https://doi.org/10.1134/S1063779615020094
https://arxiv.org/abs/1405.1271
https://doi.org/10.1146/annurev.astro.46.060407.145222
https://arxiv.org/abs/0909.0948
https://doi.org/10.1103/PhysRevLett.66.2557
https://doi.org/10.1103/PhysRevD.37.618
https://doi.org/10.1088/1475-7516/2018/01/021
https://doi.org/10.1088/1475-7516/2018/01/021
https://arxiv.org/abs/1711.06979
https://doi.org/10.1088/1475-7516/2013/05/007
https://doi.org/10.1088/1475-7516/2013/05/007
https://arxiv.org/abs/1209.2800
https://doi.org/10.3847/1538-4357/835/2/202
https://arxiv.org/abs/1611.09867
https://doi.org/10.1111/j.1365-2966.2005.00019.x
https://arxiv.org/abs/astro-ph/0411010
https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html


[382] J. N. Bahcall, S. Basu, M. Pinsonneault and A. M. Serenelli,
Helioseismological implications of recent solar abundance determinations,
Astrophys. J. 618 (2005) 1049–1056, [astro-ph/0407060].

[383] H. M. Antia and S. Basu, The Discrepancy between solar abundances and
helioseismology, Astrophys. J. 620 (2005) L129–L132, [astro-ph/0501129].

[384] C. Pena-Garay and A. Serenelli, Solar neutrinos and the solar composition
problem, [0811.2424].

[385] A. Serenelli, S. Basu, J. W. Ferguson and M. Asplund, New Solar
Composition: The Problem With Solar Models Revisited, Astrophys. J. 705
(2009) L123–L127, [0909.2668].

[386] C. Mendoza, Computation of Atomic Astrophysical Opacities, Atoms 6
(2018) 28, [1704.03528].

[387] F. L. Villante and A. Serenelli, The relevance of nuclear reactions for
Standard Solar Models construction, Front. Astron. Space Sci. 7 (2021) 112,
[2101.03077].

[388] A. M. Serenelli, New Results on Standard Solar Models, Astrophys. Space
Sci. 328 (2010) 13–21, [0910.3690].

[389] J. N. Bahcall, S. Basu and M. H. Pinsonneault, How uncertain are solar
neutrino predictions?, Phys. Lett. B 433 (1998) 1–8, [astro-ph/9805135].

[390] J. N. Bahcall, M. H. Pinsonneault and S. Basu, Solar models: Current epoch
and time dependences, neutrinos, and helioseismological properties,
Astrophys. J. 555 (2001) 990–1012, [astro-ph/0010346].

[391] J. N. Bahcall and M. H. Pinsonneault, What do we (not) know theoretically
about solar neutrino fluxes?, Phys. Rev. Lett. 92 (2004) 121301,
[astro-ph/0402114].

[392] J. N. Bahcall, A. M. Serenelli and S. Basu, New solar opacities, abundances,
helioseismology, and neutrino fluxes, Astrophys. J. Lett. 621 (2005)
L85–L88, [astro-ph/0412440].

[393] J. Colgan, D. P. Kilcrease, N. H. Magee, M. E. Sherrill, J. Abdallah, J.,
P. Hakel et al., A New Generation of Los Alamos Opacity Tables, Astrophys.
J. 817 (Feb., 2016) 116, [1601.01005].

[394] G. Mondet, C. Blancard, P. Cossé and G. Faussurier, Opacity Calculations
for Solar Mixtures, Astrophys. J. Suppl. 220 (Sep., 2015) 2.

[395] J. N. Bahcall, A. M. Serenelli and S. Basu, 10,000 standard solar models: a
Monte Carlo simulation, Astrophys. J. Suppl. 165 (2006) 400–431,
[astro-ph/0511337].

189

https://doi.org/10.1086/426070
https://arxiv.org/abs/astro-ph/0407060
https://doi.org/10.1086/428652
https://arxiv.org/abs/astro-ph/0501129
https://arxiv.org/abs/0811.2424
https://doi.org/10.1088/0004-637X/705/2/L123
https://doi.org/10.1088/0004-637X/705/2/L123
https://arxiv.org/abs/0909.2668
https://doi.org/10.3390/atoms6020028
https://doi.org/10.3390/atoms6020028
https://arxiv.org/abs/1704.03528
https://doi.org/10.3389/fspas.2020.618356
https://arxiv.org/abs/2101.03077
https://doi.org/10.1007/s10509-009-0174-8
https://doi.org/10.1007/s10509-009-0174-8
https://arxiv.org/abs/0910.3690
https://doi.org/10.1016/S0370-2693(98)00657-1
https://arxiv.org/abs/astro-ph/9805135
https://doi.org/10.1086/321493
https://arxiv.org/abs/astro-ph/0010346
https://doi.org/10.1103/PhysRevLett.92.121301
https://arxiv.org/abs/astro-ph/0402114
https://doi.org/10.1086/428929
https://doi.org/10.1086/428929
https://arxiv.org/abs/astro-ph/0412440
https://doi.org/10.3847/0004-637X/817/2/116
https://doi.org/10.3847/0004-637X/817/2/116
https://arxiv.org/abs/1601.01005
https://doi.org/10.1088/0067-0049/220/1/2
https://doi.org/10.1086/504043
https://arxiv.org/abs/astro-ph/0511337


[396] A. Weiss and H. Schlattl, GARSTEC—the Garching Stellar Evolution Code,
Astrophysics and Space Science 316 (2008) 99–106.

[397] A. Kramida, Yu. Ralchenko, J. Reader and and NIST ASD Team. NIST
Atomic Spectra Database (ver. 5.8), [Online]. Available:
https://physics.nist.gov/asd [2021, January 19]. National Institute of
Standards and Technology, Gaithersburg, MD., 2020.

[398] T. Abe, K. Hamaguchi and N. Nagata, Atomic Form Factors and Inverse
Primakoff Scattering of Axion, Phys. Lett. B 815 (2021) 136174,
[2012.02508].

[399] J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer and
R. J. Howerton, Atomic form factors, incoherent scattering functions, and
photon scattering cross sections, J. Phys. Chem. Ref. Data 4 (1975) 471–538.

[400] G. Elwert, Verschärfte Berechnung von Intensität und Polarisation im
kontinuierlichen Röntgenspektrum, Annalen der Physik 426 (Jan., 1939)
178–208.

[401] N. Vinyoles, A. Serenelli, F. L. Villante, S. Basu, J. Redondo and J. Isern,
New axion and hidden photon constraints from a solar data global fit, JCAP
10 (2015) 015, [1501.01639].

[402] G. Raffelt and D. Seckel, Bounds on Exotic Particle Interactions from SN
1987a, Phys. Rev. Lett. 60 (1988) 1793.

[403] G. G. Raffelt, Astrophysical methods to constrain axions and other novel
particle phenomena, Phys. Rept. 198 (1990) 1–113.

[404] M. S. Turner, Dirac neutrinos and SN1987A, Phys. Rev. D 45 (1992)
1066–1075.

[405] G. Raffelt and D. Seckel, A selfconsistent approach to neutral current
processes in supernova cores, Phys. Rev. D 52 (1995) 1780–1799,
[astro-ph/9312019].

[406] W. Keil, H.-T. Janka, D. N. Schramm, G. Sigl, M. S. Turner and J. R. Ellis,
A Fresh look at axions and SN-1987A, Phys. Rev. D 56 (1997) 2419–2432,
[astro-ph/9612222].

[407] T. Fischer, S. Chakraborty, M. Giannotti, A. Mirizzi, A. Payez and
A. Ringwald, Probing axions with the neutrino signal from the next galactic
supernova, Phys. Rev. D 94 (2016) 085012, [1605.08780].

[408] T. Fischer, P. Carenza, B. Fore, M. Giannotti, A. Mirizzi and S. Reddy,
Observable signatures of enhanced axion emission from protoneutron stars,
Phys. Rev. D 104 (2021) 103012, [2108.13726].

[409] J. Keller and A. Sedrakian, Axions from cooling compact stars, Nucl. Phys.
A 897 (2013) 62–69, [1205.6940].

190

https://doi.org/10.1007/s10509-007-9606-5
https://doi.org/10.1016/j.physletb.2021.136174
https://arxiv.org/abs/2012.02508
https://doi.org/10.1063/1.555523
https://doi.org/10.1002/andp.19394260206
https://doi.org/10.1002/andp.19394260206
https://doi.org/10.1088/1475-7516/2015/10/015
https://doi.org/10.1088/1475-7516/2015/10/015
https://arxiv.org/abs/1501.01639
https://doi.org/10.1103/PhysRevLett.60.1793
https://doi.org/10.1016/0370-1573(90)90054-6
https://doi.org/10.1103/PhysRevD.45.1066
https://doi.org/10.1103/PhysRevD.45.1066
https://doi.org/10.1103/PhysRevD.52.1780
https://arxiv.org/abs/astro-ph/9312019
https://doi.org/10.1103/PhysRevD.56.2419
https://arxiv.org/abs/astro-ph/9612222
https://doi.org/10.1103/PhysRevD.94.085012
https://arxiv.org/abs/1605.08780
https://doi.org/10.1103/PhysRevD.104.103012
https://arxiv.org/abs/2108.13726
https://doi.org/10.1016/j.nuclphysa.2012.11.004
https://doi.org/10.1016/j.nuclphysa.2012.11.004
https://arxiv.org/abs/1205.6940


[410] A. Sedrakian, Axion cooling of neutron stars, Phys. Rev. D 93 (2016)
065044, [1512.07828].

[411] K. Hamaguchi, N. Nagata, K. Yanagi and J. Zheng, Limit on the Axion
Decay Constant from the Cooling Neutron Star in Cassiopeia A, Phys. Rev.
D 98 (2018) 103015, [1806.07151].

[412] M. V. Beznogov, E. Rrapaj, D. Page and S. Reddy, Constraints on Axion-like
Particles and Nucleon Pairing in Dense Matter from the Hot Neutron Star
in HESS J1731-347, Phys. Rev. C 98 (2018) 035802, [1806.07991].

[413] A. Sedrakian, Axion cooling of neutron stars. II. Beyond hadronic axions,
Phys. Rev. D 99 (2019) 043011, [1810.00190].

[414] L. B. Leinson, Impact of axions on the Cassiopea A neutron star cooling,
JCAP 09 (2021) 001, [2105.14745].

[415] A. Abeln et al., Axion search with BabyIAXO in view of IAXO, PoS
ICHEP2020 (2021) 631, [2012.06634].

[416] S. Aune et al., Low background x-ray detection with Micromegas for axion
research, JINST 9 (2014) P01001, [1310.3391].

[417] S. Andriamonje et al., Development and performance of Microbulk
Micromegas detectors, JINST 5 (2010) P02001.

[418] J. Castel, S. Cebrián, T. Dafni, J. Galán, I. G. Irastorza, G. Luzón et al.,
Status of low mass WIMP detector TREX-DM, J. Phys. Conf. Ser. 1312
(2019) 012010.

[419] P. Lechner, C. Fiorini, A. Longoni, G. Lutz, A. Pahlke, H. Soltau et al.,
Silicon drift detectors for high resolution, high count rate x-ray spectroscopy
at room temperature, Powder Diffraction 47 (June, 2003) 53–58.

[420] F. E. Christensen, A. C. Jakobsen, N. F. Brejnholt, K. K. Madsen,
A. Hornstrup, N. J. Westergaard et al., Coatings for the NuSTAR mission,
in Optics for EUV, X-Ray, and Gamma-Ray Astronomy V (S. L. O’Dell and
G. Pareschi, eds.), vol. 8147, pp. 298 – 316, International Society for Optics
and Photonics, SPIE, 2011, DOI.

[421] NuSTAR collaboration, F. A. Harrison et al., The Nuclear Spectroscopic
Telescope Array (NuSTAR) High-Energy X-Ray Mission, Astrophys. J. 770
(2013) 103, [1301.7307].

[422] F. A. Harrison, W. W. Craig, F. E. Christensen, C. J. Hailey, W. W. Zhang,
S. E. Boggs et al., The Nuclear Spectroscopic Telescope Array (NuSTAR)
High-energy X-Ray Mission, apj 770 (June, 2013) 103, [1301.7307].

191

https://doi.org/10.1103/PhysRevD.93.065044
https://doi.org/10.1103/PhysRevD.93.065044
https://arxiv.org/abs/1512.07828
https://doi.org/10.1103/PhysRevD.98.103015
https://doi.org/10.1103/PhysRevD.98.103015
https://arxiv.org/abs/1806.07151
https://doi.org/10.1103/PhysRevC.98.035802
https://arxiv.org/abs/1806.07991
https://doi.org/10.1103/PhysRevD.99.043011
https://arxiv.org/abs/1810.00190
https://doi.org/10.1088/1475-7516/2021/09/001
https://arxiv.org/abs/2105.14745
https://doi.org/10.22323/1.390.0631
https://doi.org/10.22323/1.390.0631
https://arxiv.org/abs/2012.06634
https://doi.org/10.1088/1748-0221/9/01/P01001
https://arxiv.org/abs/1310.3391
https://doi.org/10.1088/1748-0221/5/02/P02001
https://doi.org/10.1088/1742-6596/1312/1/012010
https://doi.org/10.1088/1742-6596/1312/1/012010
https://doi.org/10.1154/1.1706959
https://doi.org/10.1117/12.894615
https://doi.org/10.1088/0004-637X/770/2/103
https://doi.org/10.1088/0004-637X/770/2/103
https://arxiv.org/abs/1301.7307
https://doi.org/10.1088/0004-637X/770/2/103
https://arxiv.org/abs/1301.7307


[423] C. M. H. Chen, W. R. Cook, F. A. Harrison, J. Y. Y. Lin, P. H. Mao and
S. M. Schindler, Characterization of the HEFT CdZnTe pixel detectors, in
Hard X-Ray and Gamma-Ray Detector Physics V (L. A. Franks, A. Burger,
R. B. James and P. L. Hink, eds.), vol. 5198, pp. 9 – 18, International
Society for Optics and Photonics, SPIE, 2004, DOI.

[424] M. Freitas, F. Medeiros and E. M. Yoshimura, Detection properties of cdznte
semiconductor for diagnostic x-ray spectroscopic applications, in
Cross-Disciplinary Applied Research in Materials Science and Technology,
vol. 480 of Materials Science Forum, pp. 53–58, Trans Tech Publications
Ltd, Jan., 2005, DOI.

[425] D. Unger, A. Abeln, C. Enss, A. Fleischmann, D. Hengstler, S. Kempf et al.,
High-resolution for IAXO: MMC-based x-ray detectors, J. Instrum. 16 (June,
2021) P06006.

[426] F. S. Porter, J. Gygax, R. L. Kelley, C. A. Kilbourne, J. M. King,
P. Beiersdorfer et al., Performance of the ebit calorimeter spectrometer,
Review of Scientific Instruments 79 (Oct., 2008) .

[427] L. Darmé, L. Di Luzio, M. Giannotti and E. Nardi, Selective enhancement of
the QCD axion couplings, Phys. Rev. D 103 (2021) 015034, [2010.15846].

[428] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Analysis of neutral Higgs
boson contributions to the decays B̄( s) → ℓ+ℓ− and B̄ → Kℓ+ℓ−, Phys. Rev.
D 64 (2001) 074014, [hep-ph/0104284].

[429] H. E. Logan and U. Nierste, Bs,d → ℓ+ℓ− in a two Higgs doublet model, Nucl.
Phys. B 586 (2000) 39–55, [hep-ph/0004139].

[430] L. D. Landau and E. M. Lifshitz, Statistical Physics. Pergamon Press,
Oxford, 2 ed., 1968.

https://doi.org/10.1117/12.506075
https://doi.org/10.4028/www.scientific.net/MSF.480-481.53
https://doi.org/10.1088/1748-0221/16/06/p06006
https://doi.org/10.1088/1748-0221/16/06/p06006
https://doi.org/10.1063/1.2957925
https://doi.org/10.1103/PhysRevD.103.015034
https://arxiv.org/abs/2010.15846
https://doi.org/10.1103/PhysRevD.64.074014
https://doi.org/10.1103/PhysRevD.64.074014
https://arxiv.org/abs/hep-ph/0104284
https://doi.org/10.1016/S0550-3213(00)00417-X
https://doi.org/10.1016/S0550-3213(00)00417-X
https://arxiv.org/abs/hep-ph/0004139


Danksagung
Mein großer Dank gilt meinem Doktorvater Prof. Jörg Jäckel, der mir in den ver-
gangenen Jahren stets mit hilfreichem Rat zur Seite stand. Seine Begeisterung für
die Physik und seine Art, sicher Geglaubtes in Frage zu stellen, haben mein wissen-
schaftliches Denken und diese Arbeit nachhaltig beeinflusst.

Zudem danke ich Prof. Jan Pawlowski für die Bereitschaft das Zweitgutachten für
diese Doktorarbeit zu verfassen.

Meinen Co-Autoren danke ich für die produktive Zusammenarbeit, den anregenden
Austausch und die Möglichkeit auch in der Pandemie Wissenschaft als kooperative
Arbeit zu erfahren.

Sehr dankbar bin ich der gesamten Phänomenologie Arbeitsgruppe am Institut für
theoretische Physik für eine angenehme Arbeitsatmosphäre, kollegiale Zusammen-
arbeit und gegenseitige Motivation. Ein besonderer Dank gilt meinen langjährigen
Bürokollegen Gonzalo, Alaric und Paul für sowohl hilfreiche als auch unterhaltsame
Diskussionen.

Dem Graduiertenkolleg Particle Physics beyond the Standard Model der Deutschen
Forschungsgemeinschaft danke ich für die finanzielle und inhaltliche Unterstützung
dieser Arbeit und für den engen Austausch zwischen Experimentalphysikern und
Theoretikern, von dem ich sehr profitiert habe.

Zu besonderem Dank verpflichtet bin ich Ruben, Alaric und Valentina für aufmerk-
sames Korrekturlesen dieser Arbeit und hilfreiche Kommentare.

Prof. Klaus Hasselmann und Susanne Hasselmann möchte ich für die hilfreichen
Gespräche vor der Studienwahl und die Vermittlung an das Deutsche Zentrum für
Luft- und Raumfahrt danken. Dies hat mir die ersten Einblicke in aktive Forschung
ermöglicht.

Danken möchte ich auch meinen Physik- und Mathematiklehrern, insbesondere
Herrn Wendt, Frau Schwertfeger und Herrn Wohlenberg, die bereits früh mein Inter-
esse wecken konnten und aufzeigten, dass es in der Physik stets noch viel Spannendes
zu entdecken gibt.

Meinen Freunden und Studienkollegen danke ich für neun wundervolle Jahre in
Heidelberg, für Ablenkung und Zerstreuung, wenn immer es vonnöten war und dafür,
meinen Studienort zu einem Zuhause gemacht zu haben.

Ganz besonders dankbar bin ich meinen Eltern und meiner Schwester für ihre un-
nachgiebige Unterstützung, für unsere ausführlichen Gespräche und unseren starken
und währenden Zusammenhalt. Ihnen sei diese Arbeit gewidmet.

193


	1 Introduction
	2 The QCD axion
	2.1 Theta-term of QCD
	2.2 The strong CP problem
	2.3 Peccei–Quinn solution
	2.4 Axion dark matter
	2.4.1 The dark matter puzzle
	2.4.2 Production of axion dark matter


	3 Axion models and effective field theories
	3.1 KSVZ-type models
	3.2 DFSZ-type models
	3.3 Non-canonical axion models
	3.4 Axion effective field theory
	3.5 Axion-like particles

	4 Axion phenomenology and experiments
	4.1 Laboratory searches
	4.2 Solar axion detection
	4.3 Dark matter searches
	4.4 Axions in astrophysics

	5 Axion periodicity, quantised couplings and loop corrections
	5.1 Axion as a compact scalar
	5.2 Periodicity in common models
	5.3 Quantised couplings
	5.4 Loop corrections to quantised couplings
	5.4.1 Couplings to gauge bosons
	5.4.2 Couplings to fermions

	5.5 Consequences of periodicity

	6 Leading logarithms in QCD axion effective field theory
	6.1 Loop-induced rare meson decays in the EFT
	6.2 Comparison to UV-complete models
	6.2.1 DFSZ-type models
	6.2.2 KSVZ-type models

	6.3 A new model inspired by large logarithms
	6.3.1 An effective model of the PQ scalar
	6.3.2 UV completion of the model
	6.3.3 Mass diagonalization

	6.4 Flavour and CP effects in the new model
	6.4.1 Kaon decay rate
	6.4.2 CP violation

	6.5 Discovery opportunities
	6.5.1 Astrophysical limits and future searches
	6.5.2 Detection via rare kaon decays

	6.6 Conclusions

	7 The solar axion spectrum
	7.1 Calculation of the solar axion flux
	7.1.1 Primakoff effect in a non-degenerate plasma
	7.1.2 Primakoff effect including partial degeneracy
	7.1.3 Plasmon conversion in the solar magnetic field
	7.1.4 Axion-electron interactions
	7.1.5 Axion-nucleon interactions
	7.1.6 Electron densities and ionisation states
	7.1.7 Integration of production rates over the solar model

	7.2 Solar models and opacity codes
	7.3 Uncertainties of the solar axion flux
	7.3.1 Solar model uncertainties
	7.3.2 Opacity code uncertainties
	7.3.3 Results of the Monte Carlo simulation
	7.3.4 Discussion of additional uncertainties
	7.3.5 Summary and consequences

	7.4 Disentangling axion and solar models
	7.5 IAXO and the 14.4 keV line
	7.5.1 Benchmark models
	7.5.2 Astrophysical bounds
	7.5.3 Experimental configurations
	7.5.4 Sensitivity evaluations

	7.6 Summary of results

	8 Conclusion and Outlook
	A CP violation in axion-fermion interactions
	B Variations of the new axion model
	C Mass diagonalization and axion interactions
	D Counterterm contribution to the kaon decay rate
	E Primakoff form factor beyond the static limit
	F Axions from other nuclei than 57-Fe
	Bibliography
	Danksagung

