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1 INTRODUCTION 

1.1 Overview of the treatment planning process 

The overall aim of the treatment planning process is to translate the therapeutic 

requirement of the patient into a set of treatment instructions that will enable treatment 

while minimizing the risk of complications from radiation. Treatment planning typically 

starts with (1) images of the treatment volume (e.g., from CT or MRI scans) and, (2) 

the desired absorbed dose of radiation which is to be delivered to the planning target 

volume (PTV), and (3) the maximum absorbed dose which can be safely absorbed by 

tissue structures, such as organs at risks (OARs) which are located within the 

treatment volume adjacent to the target volume. Both the PTV and any OAR can have 

complex three-dimensional shapes, complicating the creation of a treatment plan.1,2 

The optimum treatment plan is thus that which achieves the prescribed target dose at 

a minimum of the organ at risks doses.3,4  

The success of radiation therapy depends on the ability to deliver the proper 

amount of radiation to cancerous cells while protecting healthy tissues. Thus, in 

treatment planning, the desired target and healthy tissue dose distribution are often 

specified as dose-volume constraints (DVCs), which define both how much radiation 

is required in the target volume, as well as the limits on radiation to the OARs.5,6 More 

specifically, the DVCs may specify that a tumour should receive an absorbed dose of 

at least X Gy in y% of the tumour volume. The DVCs are used to define the plan 

objectives, but the definition of the objective function is arguably the most challenging 

part of plan optimization. The objective function may reflect trade-offs arising while 

trying to achieve a very good compromise between the desired absorbed dose in the 

target while keeping the normal tissue complication probability (NTCP) as low as 

possible.7,8 The proper trade-off between these competing goals needs the planner to 

set and adapt the dose objectives for the targets and OARs to fit dose volume 

constraints using an iterative approach9 in the inverse treatment planning process. 

Running more iterations to improve the treatment plan (TP) can be counterproductive 

if unachievable constraints are used. The most common dose volume constraints have 

typically been determined using the Radiation Therapy Oncology Group protocol 

(RTOG) recommendations.10 
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The process of generating a clinical treatment plan is generally an iterative time-

consuming process. Since it involves optimizing large numbers of variables and 

complex matrix manipulations to calculate new treatment plans, it requires a relatively 

long substantial computational time even when using modern high-speed computers. 

These problems are even more difficult in treatment planning for arc therapy like 

volumetric intensity-modulated arc therapy (VMAT), which uses a moving source of 

radiation (the gantry of the accelerator may rotate along one or more arcs and deliver 

radiation continuously).11-13 The greater degree of freedom which is provided by such 

complex radiotherapy techniques has made the task of developing treatment plans 

even more difficult.7,13 Although these systems provide high-quality plans, the optimal 

solution generally depends on the planner’s time and experience to convert the clinical 

goals into an optimized plan accounting for the relation between the PTV coverage 

and the OARs sparing. 

 

1.2 Knowledge-based radiation therapy 

Knowledge-based radiation therapy (KBRT) is an approach to improve efficiency 

and to reduce variability in treatment planning.14-17 A variety of KBRT approaches have 

been reported. Some KBRT approaches are based on search and retrieval of prior 

optimized patient plans to guide the generation of new plans based on the similarities 

of their geometries.14,15,18-20 For example, Wu et al.15 retrieved a prior patient plan 

based on similarities of overlapped volume histograms (OVHs), to guide the 

optimization of the new plan. Chanyavanich et al.18 used the beam’s eye view of the 

treatment region of a new case to find the patient with the most similar anatomy from 

a database of previously treated patients. The planning constraints of the matching 

plan were used to define the planning goals of the new plan. Another approach predicts 

the dose volume histograms (DVHs) of the OARs based on their distance to target 

histograms (DTHs).21,22 More specifically, in this approach, a quantitative evaluation 

tool is proposed based on machine learning to characterize the relation between the 

DVH and anatomical features for each patient plan. This information could be used to 

estimate the DVH for a new TP or to optimize plan quality.23,24   
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Various efforts using these KB approaches were presented to improve treatment 

planning consistency,24-27 including RapidPlan25 in Eclipse, Multi-Criteria Optimization 

(MCO) in RaySearch.26 RapidPlan is a commercially available DVH-guidance 

approach. In this approach a mathematical model that correlates the geometrical 

features of patients to previously achieved dosimetry is used to derive the achievable 

DVHs for prospective cases.28 The key limitation of DVH-based approaches is the lack 

of spatial information. Planners may need extra work to deal with a case with 

uncommon OAR/target geometry. Furthermore, the DVH only predicts the delineated 

regions. Optimizing the dose to improve the conformality of tissues outside the 

delineated region might not be considered. Another approach called MCO tries to find 

the optimal trade-offs between target coverage and normal tissues sparing. Thus, it 

helps less‐experienced planners to produce high‐quality IMRT plans. In MCO, a pareto 

surface containing a spectrum of fitting plans is automatically generated by the 

optimizer. Then, planners navigate through the combinations based on specified trade-

offs objectives to choose a pareto-optimal plan.29,30 However, pareto-optimal plans are 

not clinically optimal plans and can be clinically highly undesirable. Pareto optimal is 

still the best clinically acceptable plan in MCO. The limitation of this approach is the 

large number of automatically generated pareto-optimal plans investigating many 

parameters to optimize the different clinical objectives. Generating a large number of 

optimal plans needs intensive computation resources, in addition to the accompanied 

difficulties in the selection of an optimal plan. However, using prior knowledge to 

automatically predict the DVH of the new plan cannot provide any reasonable 

estimation of the achievable absorbed dose distributions among different patients.31  

Another KBRT approach described by Nwankwo et al.32 predicts the dose at voxel 

level of the OARs. More specifically, this algorithm relates the OARs dose of the voxels 

to their geometric proximity to the PTV. This algorithm was derived from the analysis 

of a database of high-quality TPs. As a result, this method objectively considers 

patient-specific anatomical variations in the treatment planning process, and thus 

enables the comparison of plans irrespective of patient anatomical geometries. 

Furthermore, the algorithm can predict the 3D absorbed dose distribution in the organ 

of interest.32 
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1.3 Motivation 

Even though the inverse treatment planning process is highly computerised, the 

process still contains an iterative approach to convert clinical requirements into DVH 

based objectives.  A High level of planner intervention is required to produce a high-

quality treatment plan, as the planner progressively improves the plan until it becomes 

clinically acceptable. In each optimization round, the DVH objectives should be 

optimized based on the planner subjective decision and clinical knowledge. Thus, 

planner can expend days to generate/improve new treatment plans.9 Typically, 

optimizing goals are determined from population-based data, or the RTOG guidlines 

and clinical feedbacks. These population-based recommendations can be meaningful 

for some plans, but not for others, due to patients’ geometric variations. However, 

based on the DVH objectives, the generated plan quality might be, not only, highly 

variable between planners, but also can be far from being the best optimal plan, if the 

dose to the normal tissue is not minimized to the best extent possible.33 Thus, plans at 

radiation therapy centres with limited experience may not be clinically optimal.16,34 To 

address this need, we proposed a quality control (QC) method to estimate the 

achievable OARs dose sparing. Such a QC algorithm should not entirely rely on 

personal judgment but should consider the geometric variations among patients. Thus, 

this study is motivated to provide guidance of the best achievable OAR sparing for 

each specific patient anatomy, and to eliminate the trial and error approach of defining 

the objective function during the treatment planning process. 

 

1.4 Aims 

To characterize treatment plan quality, a quantitative QC tool based on the method 

published by Nwankwo et al.32 is developed and proposed. The tool is validated using 

VMAT prostate plans by estimating a threshold to spot the sub-optimal plans to achieve 

further dose sparing in rectum and bladder using knowledge learned from prior plans. 

More specifically, the dose of the binned voxels according to their distant location from 

the PTV surface between the query plan and the reference plans were compared. 

Thus, the difference in the achieved sparing between plans is compared to determine 

the gain, and the influence of plan objectives on the achieved OAR sparing.  
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2 MATERIALS AND METHODS 

2.1 Ethics approval and Data base of plans 

This study was approved by the Medical Ethics Commission of the Medical Faculty 

Mannheim, Heidelberg University (2015-816R-MA). 

Four hundred and fifty (450) VMAT plans that were approved by both physician and 

physicist for a real prostate cancer treatment at the Department of Radiation Oncology, 

University Medical Centre, Mannheim, Germany, were used to conduct this study. 

These VMAT prostate plans were randomly selected from the database of patient 

plans that were treated between 2007 and 2017. The plans were anonymized for use 

in this study. The plans were divided into two groups: 181 homogenous prostate VMAT 

plans, and 269 simultaneous integrated boost (SIB) prostate VMAT plans. The target 

volumes in the homogenous plans were the prostate and seminal vesicles whereas 

the target volumes in the SIB plans were the prostate and seminal vesicles and a boost 

volume. The PTV prescribed doses were variable for the plans. These plans were 

calculated with Monaco® (CMS, Elekta-Group, UK) that is a fully inverse treatment 

planning system. The template used for prostate planning33 specifies the desired PTV 

coverage and the acceptable doses to the normal tissues. These constraints are 

adjusted based on trial-and-error planning strategy until the dose distribution is 

considered to be optimal for the given patient anatomy.  

2.2 Extraction of information from the treatment plans 

The plans were imported into a MATLAB programming platform using the 

Computational Environment for Radiotherapy Research (CERR) software.34 In each 

patient plan the following variables were extracted for each voxel in the OARs (rectum, 

bladder):32,35,36 

 

1. The coordinates (x, y, z) of each voxel of an OAR. Both OARs (rectum and 

bladder) were considered in this work.  

 

2. The dose of each voxel which was normalized to the prescribed planning target 

volume (PTV) dose. Dose normalization renders the analysis to be independent 

of the absolute value of the PTV prescribed dose. 
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3. The distance-to-PTV of each voxel. It is the shortest Euclidean distance between 

a voxel of an OAR and the surface of the PTV. The negative distance to PTV 

value is set for the shared voxel between both OAR and PTV. Only the voxel 

within the beam path was considered in this calculation.  

4. Two matrices, one for each OAR (rectum and bladder) were computed from each 

plan. A row of the matrix represents a voxel while the column specifies its 

parameters (dose, slice level, distance-to-PTV and the Cartesian coordinates). 

 

2.3 Data analysis 

2.3.1 The mean dose-at-distance function 

The mean dose-at-distance function of an organ was calculated from the in-field 

voxels of the OARs.32,35,36 The voxels were first divided into bins (0.5 mm bin size 

according to their distance-to-PTV). The mean dose-at-distance value was calculated 

for each distance-to-PTV bin, more precisely the mean dose-at-distance values of the 

in-field voxels were calculated against the centre of the corresponding distance-to-PTV 

bin. 

This function relates the mean dose of all the in-field voxels within a distance-to-PTV 

bin to the median distance of the voxels to PTV surface. The calculation of this variable 

is explained in reference [10]. 

 

2.3.2 The reference set versus query set 

For both groups, homogenous VMAT plans and SIB VMAT plans, the reference sets 

and the query sets were generated from the same plan matrices of the group. The 

same (181) homogenous plan matrices were used to generate the query and reference 

of homogenous plans, as well as, the (269) SIB plan matrices, were used to generate 

the query and reference of SIB plans. For each OAR, a single merged reference matrix 

out of (181) homogenous plan matrices, and a single merged reference matrix out of 

(269) SIB matrices, were derived. The merged reference matrix was generated by 

grouping all voxels located at approximately same distance to PTV bin (bin size = 0.5 

mm) from all reference plans into the same distance to PTV bin. The query set was 
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made up of the same plans (181) homogenous plan matrices and (269) SIB plan 

matrices, but this time each plan matrix was used separately without being merged 

(voxels at approximately same distance to PTV bin (bin size = 0.5 mm) in each query 

plan were grouped into same distance to PTV bin). The mean dose-at-distance 

function was calculated for the homogenous reference matrix and the SIB reference 

matrix, as well as, for each single query plan matrix. A schematic representation which 

summarizes the workflow is reported in Fig. 1. 

 

2.3.3 Plan evaluation metrics: Mq,r value 

For both groups (homogenous and SIB VMAT plans), the query and reference dose 

distributions were compared by calculating the Mq,r value. This metric value 

characterises the quality of OAR sparing of the query plan (index q) relative to the 

merged reference plans (index r) according to  

 
 

𝑀𝑀𝑞𝑞,𝑟𝑟 = 1
𝑁𝑁𝑞𝑞
∑ 𝑛𝑛𝑞𝑞,𝑖𝑖 ⋅

𝑑𝑑𝑞𝑞,𝑖𝑖−𝑑𝑑𝑟𝑟,𝑖𝑖

�
𝑠𝑠𝑞𝑞,𝑖𝑖
2

𝑛𝑛𝑞𝑞,𝑖𝑖
+
𝑠𝑠𝑟𝑟,𝑖𝑖
2

𝑛𝑛𝑟𝑟,𝑖𝑖

𝑖𝑖    .     (1) 

 
Where 𝑑𝑑𝑞𝑞,𝑖𝑖 is the mean dose at distance-to-PTV bin 𝑖𝑖 of the query plan 𝑞𝑞 of each OAR 

(bladder, rectum) and 𝑑𝑑𝑟𝑟,𝑖𝑖 is the mean absorbed dose at distance-to-PTV bin 𝑖𝑖 of the 

reference matrix 𝑟𝑟 of each OAR. This mean dose difference indicates the shift between 

each query plan matrix compared to the reference matrix in each group for each OAR. 

Negative differences demonstrate that the OAR in the query plan is better spared., i.e., 

less mean dose in the query plan. 𝑠𝑠𝑞𝑞,𝑖𝑖
2  and 𝑠𝑠𝑟𝑟,𝑖𝑖

2  are the variances of the dose 

distributions at a given distance-to-PTV bin 𝑖𝑖 for the query plan and the reference 

matrix. 𝑛𝑛𝑞𝑞,𝑖𝑖 and 𝑛𝑛𝑟𝑟,𝑖𝑖 are the numbers of voxels at distance-to-PTV bins 𝑖𝑖 for the query 

plan and the reference matrix, respectively. This metric is derived based on a t-test as 

it compares the sample dose distribution over each single bin 𝑖𝑖 in a query plan and the 

sample dose distribution in the matching bin in the reference matrix. This sample dose 

distribution difference over each individual bin is weighted by the number of voxels of 

the query plan at the same bin and summed over all the bins. After all, the summed 



8 

 
 

value is divided by the total number of voxels 𝑁𝑁𝑞𝑞 of the query plan which is calculated 

as  
 

𝑁𝑁𝑞𝑞 = ∑ 𝑛𝑛𝑞𝑞,𝑖𝑖𝑖𝑖    .       (2) 

 

For every query plan of each treatment group (homogenous and SIB plans), Mq,r of 

the rectum and Mq,r of the bladder were calculated to investigate the obtained OAR 

dose sparing for the  individual patient plan. Mq,r values for both OARs represent the 

data points of this work.  

 

2.3.4 Statistical Analysis 

Mean values and standard deviations were calculated for Mq,r  of both OARs for each 

group (Table 3). Then, the confidence ellipses (50%, 80%, 85%, 90%, 95%) were 

drawn for the 2D normally distributed data points, Mq,bladder versus Mq,rectum. 

  

2.3.5 Model Validation 

Patient plans between 80%-85%, 85%-90%, 90%-95% and 95%-100% probability 

ellipses to the upper right corner of longitudinal major axis (relatively high Mq,r of both 

rectum and bladder) and to the lower right corner of longitudinal major axis (relatively 

high Mq,r of bladder), were exported to TPS to be revised and re-optimized to potentially 

achieve better sparing for OARs while maintaining the best possible target coverage. 

[Fig. 1]. The re-planning was subjective based on the clinical experience of the 

oncologist and physicist in a trial and error process using MONACO® TPS. All the re-

optimized plans were accepted for clinical treatment by an experienced physician. 

Afterwards, Mq,bladder versus Mq,rectum. of the re-optimized plans were calculated and 2D 

normally distributed data points of re-optimized plans were added to the original 

probability ellipse bivariate normal distribution for each group. The numbers of 

improved plans after re-optimization to the total number of plans outside 80%, 85%, 

90% and 95% probability ellipses were calculated.  

 Such quantification of successfully re-optimized plans is a step towards 

establishing a specific threshold above which re-examination and re-optimization of 
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the plans is strongly recommended, as they should have a relatively high probability of 

being improved.  

The DVHs were calculated for the query plans outside 80%, 85%, 90% and 95% 

probability ellipses for the comparison of the plans before and after re-optimization. 

 

2.3.6 Refinement of database 

In the absence of a metric that incorporates patient anatomy to aid the acceptance 

of best optimum quality of treatment plans, sub-optimal plans still could be approved 

for patient treatment. To distinguish such sub-optimal plans, Mq,r value was calculated 

for all the plans in the original data base. Plans located outside 80% probability ellipses 

to the right of longitudinal major axis were classified as sub-optimal and were replaced 

by the re-optimized plans to obtain an improved data base of optimal plans [Fig. 1]. 
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Figure 1. A schematic representation of the study workflow. Homogenous and SIB VMAT TPs form the data base of this study. The plans were 
used to generate both the reference merged matrix and the query matrices. For each group, a query matrix was compared with the single merged 
reference matrix by calculating the Mq,r metric (Eq. (1)). If the Mq,r value was between 80%- 85%, 85%- 90%, 90% - 95% and 95% - 
100% probability ellipses, the plan was selected for re-optimization. After being re-optimized, the Mq,r value of the resultant plan was calculated 
and checked whether or not it is improved (lower value is gained) . This process can be repeated until no further improvement of plans can be 
achieved.37 
  



11 
 

3 RESULTS  

The results of the calculated Mq,r values before and after re-optimization are 

presented in Figures 2 and 3.  

The findings can be summarized as follows:  

1. Homogenous plans: eight out of eleven plans (8/11 TPs) falling outside the 90% 

(containing four plans out of five (4/5 TPs) located outside the 95% ellipse) 

could be improved after re-planning to achieve better OARs sparing while 

preserving the same or better target coverage. Thus, 73% of the plans located 

outside the 90% probability ellipse were improved (Fig. 2(b)). Three out of four 

plans (3/4) falling outside the 80% (containing one out of two (1/2) located 

outside the 85% ellipse) were improved after re-planning (Fig. 2(c)). 

2. SIB plans: six plans out of thirteen (6/13 TPs) located outside the 90% 

probability ellipse (with five plans out of eight (5/8 TPs) outside the 95% ellipse) 

were improved after re-planning which means 45% of the plans located out of 

the 90% were improved (Fig. 3(b)). One out of nine TPs (1/9) located outside 

the 80% (with one out of seven plans (1/7) falling outside the 85% ellipse) were 

improved after re-planning (Fig. 3(c)). 
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Figure 2(a) Probability ellipses of a bivariate normal distributed Mq,bladder versus Mq,rectum for homogenous VMAT prostate plans. Bold full line 
represents the 50% probability ellipse, dashed line, dotted line, full line and dashed-dotted line represent the 80%, 85%, 90% and 95% probability 
ellipses, respectively. The 80%, 85%, 95% and 90% probability ellipses were considered in this study. (b) TPs between the 90%-95% and 95%-
100% probability ellipses before and after re-optimization. Each data points pair with the same symbol represent plans for the same patient. Filled 
symbols represent patient plans before re-optimization, while open symbols stand for the plans after re-optimization. Cross-shaped symbols 
represent patient plans which could not be improved by re-optimization. (c) TPs between the 80%-90% probability ellipses before and after re-
optimization.37



13 
 

 

Figure 3 (a) Probability ellipses of a bivariate normal distributed Mq,bladder versus Mq,rectum for SIB VMAT prostate plans. Bold full line represents the 
50% probability ellipse, dashed line, dotted line, full line and dashed-dotted line represent the 80%, 85%, 90% and 95% probability ellipses, 
respectively. The 80%, 85%, 95% and 90% probability ellipses were considered in this study. (b) TPs between the 90%-95% and 95%-100% 
probability ellipses before and after re-optimization. Each data points pair with the same symbol represent plans for the same patient. Filled 
symbols represent patient plans before re-optimization, while open symbols stand for the plans after re-optimization. Cross-shaped symbols 
represent patient plans which could not be improved by re-optimization. (c) TPs between the 80%-90% probability ellipses before and after re-
optimization.37 
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Tables I and II show the Mq,r values for the homogenous and SIB plans before and 

after re-optimization. In most of the plans, the quality of both rectum and bladder was 

improved with respect to the Mq,r values. However, in the homogenous group of 

prostate plans, a relatively small increase of Mq,rectum was observed [Table I], i.e., for 

the hexagram and right-sided triangle data points outside of the 90% ellipse and the 

pentagram data point out of the 95% ellipse [Figure. 2(b)]. But, this was within the 

clinically acceptable ranges and did not affect the obtained quality of the re-calculated 

plans. 

Figures 4 and 5 show seven homogenous plans and four SIB plans, respectively, using 

their DVHs. Based on Mq,r difference of the rectum of the homogenous plans (last 

column of table I), inverted triangle and triangle plans demonstrated the best and worst 

Mq,r  difference to the rectum outside 95%, respectively, while square and right-sided 

triangle plans demonstrated the best and worst Mq,r difference to the rectum outside 

90% respectively. Among the homogenous plans outside 80% probability ellipse, circle 

and hexagram plans had the best and worst Mq,r difference to the rectum (last column 

of table I). However, for SIB plans (last column of table II), Mq,r  difference to the bladder 

indicates that inverted triangle plan has the best Mq difference while circle plan has the 

worst between plans before and after re-optimization outside 95%. Due to space 

limitations, only the DVH of the 13 plans in the two groups are shown. 
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Table 1. Mq,r values of bladder and rectum, before and after re-optimization for 
homogenous VMAT prostate plans. Lower Mq,r values indicate better quality, which 
implies better OAR sparing was achieved. Plans between 80%-85%, 85%-90%, 
90%-95% and 95%-100% probability ellipses were considered.37 

 
  Before re-optimization After re-optimization    

data point shape     Mq,bladder Mq,bladder  Difference 
95% -100%  

pentagram 97.0 37.7 59.3 
circle 88.5 -73.2 161.7 
inverted triangle 33.9 -39.9 73.8 
triangle 65.8 -66.6 132.4 

90% - 95% 
square 28.3 -4.3 32.6 
hexagram 40.7 -39.4 80.1 
right-sided triangle 52.2 -40.9 93.1 
diamond 79.0 -0.8 79.8 

85% - 90%  
square 66.4 29.9 36.5 

80% - 85% 
circle 22.5 11.3 11.2 
hexagram 32.2 -49.9 82.1 
  Mq,rectum Mq,rectum Differences 

  95% -100%    
pentagram -1.9 0.1 -2.0 
circle 12.9 -1.0 13.9 
inverted triangle 66.5 19.6 46.9 
triangle -20.2 -16.9 -3.3 
  90% - 95%   
square -30.5 -56.8 26.3 
hexagram -28.4 -15.8 -12.6 
right-sided triangle -23.4 -2.7 -20.7 
diamond 9.7 -3.9 13.6 

85% - 90%  
square 10.2 2.3 7.9 

80% - 85% 
circle 25.4 -4.5 29.9 
hexagram -24.1 2.4 -26.5 
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Table 2. Mq,r values of bladder and rectum, before and after re-optimization for SIB VMAT 
prostate plans. Lower Mq,r values indicate better quality, which implies better OAR sparing was 
achieved. Plans between 80%-85%, 85%-90%, 90%-95% and 95%-100% probability ellipses 
were considered. Both rectum and bladder in all the SIB plans gained better sparing (lower 
Mq,r values ).37  
 

  Before re-optimization After re-optimization   

data point  Mq,bladder Mq,bladder Differences 

95% -100%  

circle 38.2 31.3 6.9 

square 50.3 37.6 12.7 

inverted triangle 56.9 -74.7 131.6 

hexagram 127.8 118.6 9.2 

diamond 98.2 68.6 29.6 

90% - 95% 

triangle 93.4 86.2 7.2 

85% - 90%  

inverted triangle 78.7 43.9 34.8 

  Mq,rectum Mq,rectum Differences 

95% -100%  

circle -45.7 -47.2 1.5 
square -43.8 -70.2 26.4 
inverted triangle -42.4 -64.4 22 
hexagram 13.1 4.7 8.4 
diamond 14.6 5.9 8.7 

90% - 95% 

triangle -0.6 -4.8 4.2 
85% - 90% 

inverted triangle -1.9 -9.6 7.7 
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96% -100% 90% - 95% 85% - 90% 80% - 85% 
 

    

  

 

 

Rectum 

    

  

 

 

 
Figure 4. Validation of the model of the bladder and rectum of the homogenous plans. The 
DVHs were computed for both OARs of the query plans before and after re-optimization. Solid 
lines represent plans before re-optimization while dashed lines represent plans after re-
optimization. Within each percentile range (column), the first two rows showed the best and 
worst plans based on the Mq,r difference of plans (titles of subplots) before and after re-
optimization.37  
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Figure 5. Validation of the model of the bladder and rectum of the SIB plans. The DVHs were 
computed for both OARs of the query plans before and after re-optimization. Within each 
percentile range (column), the first two rows showed the best and worst plans based on the 
Mq,r difference of plans (titles of subplots) before and after re-optimization.37  
 

 

 

 

  



19 

 
 

 

 

Lastly, all the plans located outside 80% probability ellipse were replaced with the 

re-optimized plans. Thus, the reference set of both groups for both OARs were refined. 

Table III shows the Mq,r values for the homogenous and the SIB plans before and after 

the data-base was refined. 

 
 

Table 3. Summary of Mq,r values - Mean ± Standard Error (SE), STD ± SE, the correlation  
parameter between bladder and rectum Mq,r values (rho factor) - for both treatment groups 
before and after the data-base was refined. Lower Mq,r values indicate better quality, which 
implies that better OAR sparing was achieved.37  

 
    Homogenous TPs SIB TPs 

Data-Base refined Before After Before After 

Mq,rectum 
Mean ± SE  - 2.2 ± 1.1   - 2.1 ± 1.0  -1.5 ±1.1  -1.5 ±1.1 

STD ± SE   14.6 ± 5.7   13.5 ± 0.7  17.8 ± 0.8  18.2 ± 0.8 

Mq,bladder 
Mean ± SE  -0.4 ± 2.6  -0.4 ± 2.4  11.4 ± 2.1  10.7 ± 2.0 

STD ± SE  35.5 ± 1.9  33.0 ± 1.7  34.5 ± 1.5  34.0 ± 1.4 

rho factor 0.17 0.17 0.20 0.23  
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4 DISCUSSION 

  We developed and propose a quantitative KBRT algorithm to characterize the 

quality of radiotherapy treatment plans, which aids planners in identifying potential 

absorbed dose reductions for OARs during the treatment planning process. The 

algorithm was validated for the prostate but can be applied to other treatment sites. 

The first step is to determine the relationship between the positions of OARs (relative 

to the treatment volume) and their doses by analysing a reference database of prostate 

TPs accepted for patient treatment. This knowledge was used later to develop a QC 

quantitative approach that characterizes the quality of the plans to define a threshold 

that spots sub-optimal plans.  

An objective decision on the quality of the radiotherapy TPs requires quantitative 

knowledge of what can be achieved for the particular anatomy.23 Published dose-

volume constraints used in evaluating plan quality are population-based and do not 

guarantee that the best possible plan is achieved for the varying patient anatomy. Our 

knowledge-based quantitative metric ensures that OAR doses are minimized to the 

extent permitted by the anatomy of the treated patient. The need to examine trade-offs 

at a fine level makes it desirable to model the absorbed dose at the voxel level. This is 

not addressed in most existing model-based dose prediction studies23 since they 

handle summary dose metrics such as the DVH. 

In this work, a knowledge-based algorithm was developed and evaluated to estimate 

a threshold for the achievable absorbed dose sparing in OARs to help radiotherapy 

planners to identify sub-optimal TPs. Each query plan was compared to the reference 

plans by calculating Mq,rectum and Mq,bladder. (Eq. (1), p (7)). The Mq,r metric was 

calculated based on the weighted differences of the mean doses at binned distances 

to the PTV surface. The 80%, 85%, 90% and 95% probability ellipses for the normal 

distributed data points (patient plans) of OARs were considered to define the threshold 

above which the plan is highly recommended to be re-optimized. The re-planning, 

although not the main focus of the study, was performed to confirm that plans falling 

below certain thresholds defined by this method could be significantly improved. The 

identified deficiencies in the sub-optimal plans fell in one of two categories; insufficient 

modulation level which leads to wider dose gradients than optimally possible, and 

insufficient use of cost-functions especially regarding the balance between bladder and 
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rectum that sometimes led to unnecessary dose spillage in one of the two organs. 

More specifically, this is due to inexperience and the absence of a tool that 

incorporates the anatomies of different patients to help the planner in the assessment 

of the plan quality. In addition, it can be due to the compromised sparing of an OAR 

for the benefit of another competing OAR which is deemed unsatisfactory focused.  

The results of this work showed that the majority of the re-optimized plans were of 

greater quality when compared with the original plans in the data base for both SIB 

and homogenous VMAT prostate TPs especially outside 90%. Although much of plan 

quality assessment is subjective, and is best made by planners, eight out of eleven 

(8/11) homogenous prostate plans, as well as, six out of thirteen (6/13) SIB prostate 

plans outside the 90% probability ellipse had superior dose sparing of OARs with more 

uniform PTV coverage after re-optimization. In addition, three out of four (3/4) 

homogenous TPs and one out of nine (1/9) SIB TPs located outside 80% could be 

improved after re-planning. Thus, all the re-optimized plans would have potentially 

resulted in clinical improvements or clinically negligible differences when compared to 

the original plans. Re-optimizing the plans outside the 90% probability ellipse in both 

data groups led to more satisfying plans that better matched the planning dose volume 

objectives. The quantitative and qualitative (Mq,r and DVHs) comparison of plans before 

and after re-optimized showed the efficiency and accuracy of this metric in evaluating 

the agreement between the compared plans.  

The re-planning, although not the main focus of the study, was performed to confirm 

that plans falling below certain thresholds defined by this method could be significantly 

improved. It should be noted that, the observed dose reduction of OARs after the re-

optimization could also have been achieved by modifying the planning constraints and 

objectives during optimization without guidance of a KBRT QC algorithm. However, 

the fact that the planners of the original plans did not achieve lower OARs doses and 

the original plans were approved, indicates the difficulty of finding the right set of 

constraints and objectives for planning and judging the quality of TP based on 

experience and intuition alone. If the planners had known that the OAR dose could 

have been decreased considerably without increasing the dose to the other OARs, it 

would have been unlikely that they would have approved the original plans. This 

emphasises the usefulness of a QC model for treatment planning. During the re-

optimizing process, sometimes several iterations were performed to improve the 
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quality of plan but knowing what the achievable DVH should look like limited the 

number of iterations. Although, a longer planning time sometimes was required, it was 

within the same time range normally encountered to generate clinical acceptable plans. 

However, the achieved improvements in the sparing of OARs without degrading the 

coverage to the PTV, made the needed time and effort valuable since we know that 

the optimal plan has not been achieved based on prior knowledge.  

The results of Mq,r  could be either positive or negative. It is important to note that 

the calculated Mq,r metric was derived through other equations. For example, the 

squared weighted difference of mean dose at binned distance to PTV, M2, was also 

calculated. But the calculated M2 did not show the negative and positive sign of the 

results which affects the true meaning of the Mq,r metric. Since the negative Mq,r metric 

indicates that the query plan is below the reference, which means better sparing for 

the OARs. In the case of positive Mq,r metric, the query plan is above the reference 

which means more weighted dose to the OARs is received in the query plan compared 

to reference plans. Another important point considered when comparing reference 

against query dose distribution is the trade-offs between OARs. In the planning 

process it is common to increase the sparing of one OAR at the expense of the other 

OAR. In our approach this is considered: For example, Mq,bladder of a homogenous plan 

(Table I, pentagram) before re-optimization is 97, while for Mq,rectum it is -1.9; this 

suggests that a prioritized sparing of rectum compared to bladder may be possible. 

Even if having negative scores of Mq,r   to both OARs indicating that both OARs are 

better spared compared to the reference plans, still one OAR should be lower than the 

other to indicate the priority of sparing in the competing OARs. An example for this is 

the homogenous plan (Table I, circle) after re-optimization with Mq,bladder =  -73.2 , 

Mq,rectum = -1 which implies a prioritized sparing of bladder compared to rectum in the 

re-optimized plan. This adds a considerable worth to the calculated metric. 

Also, this method showed that the chance to improve plans diminishes as we move 

inward toward the central part of ellipses. In homogenous plans (4/5 TPs) located 

outside 95% and (5/7 TPs) between 90% and 95% were able to be re-optimized. In 

SIB (5/8 TPs) outside 95%, as well as, (1/5 TPs) between 90% and 95% achieved 

better OARs sparing when re-optimized. However, it is still suggestive to check and 

improve the quality of the plans within 80%, 50%...etc. In fact, it could be argued that 

with sufficient time and experience, most TPs could be improved. Although this is true, 
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a cost-benefit consideration must be made: Is it worth investing hours to improve a 

plan to a level (relative to a reference) that is clinically irrelevant? As the gains are the 

smaller the more we move towards the centre of the ellipses, a threshold ellipse must 

be defined outside of which the plans are to be improved. It is also important to note 

that the use of clinically accepted plans which have relatively high quality is quite 

important because the algorithm is based on the mean values of dosimetric features 

of the used reference plans. We believe that this method can be used to eliminate sub-

optimal plans iteratively from the reference set (removing plans with high positive Mq,r 

values from the reference set while keeping those with negative or low Mq,r value) will 

strict the characterizing capability of the used method and increase its efficiency. 

Therefore, the reference set of both groups for both OARs were refined by replacing 

all the plans outside 80% probability ellipse with the matching re-optimized plans with 

improved quality 

Several studies have demonstrated the importance of adoption of QC methods to 

predict and quantify the achievable OAR sparing to provide planning consistency.15,16 

Wu et al.15 proposed a QC method to optimize the DVHs of the OARs in new TPs 

based on an OVH descriptor to identify related patients. They reported a clinically 

significant excess radiation dose that was delivered to patient as a result of insufficient 

plan QC. Other recent advances in knowledge-based methods used machine 

learning12, 38. Zhu et al.21,22 proposed a quantitative evaluation tool based on machine 

learning to characterize the relation between DVH and anatomical features, which 

could be used later to optimize plan quality.23,24 Although these approaches help 

planners to achieve better OARs sparing based on the DVH-guidance. The inter-

patient anatomical variations and their impact on the OARs sparing need more than 

DVH objectives to achieve lowest possible dose to OARs. 
An interesting approach that has been investigated to overcome these issues is voxel-

based dose prediction. Nwankwo et al.32 proposed a KB QC approach depending on 

the mean dose difference at voxel level between the compared plans. Although, in the 

proposed approaches of this work and Nwankwo et al 32, the same KB algorithm was 

used, our approach is unique as it introduces a threshold to spot the sub-optimal plans 

that are highly recommended to be re-optimized using Mq,r  metric. In addition to the 

mean dose difference at binned distance to PTV, other factors that expected to have 

an impact on the Mq,r  metric were considered, to calculate a more realistic outcomes. 
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For example, the number of estimated standard deviations of the sample mean dose 

from it is expected value were considered. This estimation includes different variables 

that directly affect the Mq,r  metric values. Firstly, the variances of the dose distributions 

at a given distance-to-PTV bin for the query plan and the reference matrix that give a 

feedback on the dose scattering around the mean over the compared bins. Secondly, 

the numbers of voxels at distance-to-PTV bins for both query and reference, which 

corresponds to the number of observations, since this metric was derived in analogy 

to a t-test.39 If we have a large number of observations and all of these observations 

are close to the sample mean (large 𝒏𝒏, small 𝒔𝒔), we can be confident that our estimate 

of the sample dose distribution is fairly accurate, which results in a small Mq,r  value. 

The large number of plans used in this approach database enables the approach 

making more accurate calculations, since it allows more observed variations in organ 

geometries.40 However, a limitation of this approach is that the quality of the new plan 

strongly depends on the quality of the reference plans. 

Finally, this KBRT QC approach is expected to be efficient even with more 

complicated treatment sites and their corresponding treatment techniques, i.e., head 

and neck tumours and Hyper-Arch technique. Even-though these techniques improve 

the sparing of the adjacent critical tissue while delivering a more conformal dose to the 

PTV, but they still need to fulfil the DVH-guidance. However, judging the real benefits 

of integrating this algorithm for more complex treatment sites / techniques is a subject 

that requires further investigations. We believe that the adoption of this QC method in 

the planning process will provide better planning efficiency in radiation therapy centres, 

especially ones with a lower experience level. 
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5 SUMMARY 

Inverse-treatment planning has a remarkable capability of “dose painting” to minimize 

the dose to OARs while achieving prescription coverage to PTV. However, the task of 

creating/optimizing a “best plan” continues to be difficult and time-consuming. The 

anatomical variation of multiple OARs, their distant location to PTV create types of 

trade-offs such that the quality of a plan and the speed of planning depend heavily on 

the experience of physicians and planners. Therefore, despite the computational 

developments and the years of experience in plan optimization, inverse treatment 

planning is still a time-consuming process depending on planners’ subjective 

decisions. To tackle these challenges, a number of approaches based on KBRT have 

been successfully developed, i.e. KB QC methods to predict OARs sparing. 

Furthermore, most of the efforts to standardize and automatize inverse treatment 

planning are DVH-based KB approaches. However, these methods cannot provide a 

reasonable estimation of the achievable patient-specific dose distributions since they 

lack the objective standards to evaluate the quality of the plans depending on the 

anatomical variations. 

We address this problem by developing a knowledge-based QC algorithm of using 

clinically approved prostate VMAT TPs, whereby we used the prior knowledge of 

treatment planning to achieve the greatest possible rectum-bladder sparing without 

compromising target coverage. This QC approach aims to characterize the quality of 

the TPs by evaluating the doses of the OARs (rectum and bladder) in order to define 

a threshold that detects sub-optimal treatment plans based on the variability of patient 

anatomy. 

Therefore, rather than predicting DVHs, this quantitative metric ensures that OAR 

doses are minimized to the extent permitted by the anatomy of the individual treated 

patient. 

The knowledge-based database consisted of 450 VMAT prostate plans that were 

divided into 181 homogenous prostate plans and 269 SIB prostate plans. For both of 

the planning groups, the reference sets matrix and the query set matrices were 

generated for each OAR. For the step of plan quality evaluation, Mq,r metric was 

developed in analogy to a t-test. More specifically, this metric compares the weighted 

differences of the mean doses at binned distances to the PTV surface of the individual 
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query plan matrix against the reference matrix. The 90% probability ellipse of the 2 D 

normally distributed data points (Mq, bladder versus Mq, rectum) were considered to define 

a threshold above which the treatment plan is strongly recommended to be re-

optimized. Afterward, for both OARs, the DVH was calculated to compare the plans 

before and after being re-optimized for the purpose of validating the approach.  

The results of this work demonstrated that the majority of the re-optimized plans 

had superior quality compared to the original plans in the database for both groups, 

especially outside 90%. More precisely, Mq,r values of bladder and rectum 

demonstrated lower values after TPs were reoptimized for both groups (homogenous 

and SIB).  8/11 of the homogenous plans in addition to 6/13 of the SIB plans outside 

the 90% probability ellipse were of greater quality with respect to OARs dose sparing 

while achieving a better target coverage. Also, 3/4 of the homogenous TPs and 1/9 of 

the SIB TPs between 80% - 90% were improved. The quantitative and qualitative (Mq,r, 

and DVHs) comparison of plans before and after re-optimized confirms the efficiency 

of this metric for investigating the quality of plans. 

In general, the patient-specific objective measures of plan quality are not 

currently widely used in clinical practice. To improve treatment plan evaluation, an 

objective plan quality assurance (QA) tool is needed. If this QC method of using a 

knowledge base of treatment plans can be made available for use at institutions, it 

could lead to more consistent quality of treatment planning across institutions. 
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