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Abstract

This thesis reports on a setup for a quasi two-dimensional Bose-Einstein
condensate of 39K, which is an isotope well suited for interaction tuning due
to a broad magnetic Feshbach resonance, and presents the application of the
setup to a specific type of physical computing.

The first part gives an overview of the experimental components to prepare
a quasi two-dimensional condensate with a configurable shape. Particular
focus is put on the control of the magnetic field for the adjustment of atomic
interactions and the configurable potential, which is realized with a digital
micromirror device. The imaging setup is presented in detail and a strategy
for absorption imaging at high magnetic field is elaborated. This strategy is
necessary to properly exploit the magnetic Feshbach resonance. It relies on a
scheme for an approximately closed four level optical cycle.

The second part introduces an approach for the implementation of a shal-
low artificial neural network with a physical system. Subsequently, a specific
implementation that utilizes a quasi one-dimensional Bose-Einstein conden-
sate is presented. Regression and interpolation of a non-linear function are
performed successfully as a proof-of-concept, and the results are compared
for different experimental parameters.





Zusammenfassung

Diese Arbeit beschreibt einen experimentellen Aufbau für ein quasi zweidi-
mensionales Bose-Einstein-Kondensat aus 39K, ein Isotop das aufgrund einer
breiten magnetischen Feshbachresonanz gut für die Einstellung der atomaren
Wechselwirkung geeignet ist, und stellt die Anwendung des Aufbaus für eine
bestimmte Art von physikalischem Rechnen vor.

Der erste Teil gibt einen Überblick über die experimentellen Komponen-
ten zur Herstellung eines quasi zweidimensionalen Kondensats mit einer
konfigurierbaren Form. Besonderes Augenmerk liegt auf der Steuerung des
Magnetfeldes zur Einstellung der atomaren Wechselwirkung und dem kon-
figurierbaren Potential, das mit einem Digital Micromirror Device realisiert
ist. Der Abbildungsaufbau wird im Detail vorgestellt und eine Strategie für
Absorptionsabbildungen bei hohem Magnetfeld ausgearbeitet. Diese Strategie
ist notwendig, um die magnetische Feshbachresonanz voll auszunutzen. Sie
beruht auf einem Schema für einen näherungsweise geschlossenen, optischen
Viernieveauzyklus.

Im zweiten Teil wird ein Ansatz für die Implementierung eines flachen
künstlichen neuronalen Netzes mit einem physikalischen System vorgestellt.
Anschließend wird eine konkrete Umsetzung mit einem quasi eindimensio-
nalen Bose-Einstein-Kondensat gezeigt. Regression und Interpolation einer
nichtlinearen Funktion werden als Proof-of-Concept erfolgreich durchgeführt,
und die Ergebnisse werden für verschiedene experimentelle Parameter vergli-
chen.





Contents

1 Introduction 13

2 Fundamentals 17
2.1 Properties of Potassium . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Level Structure and Zeeman Effect . . . . . . . . . . . . . . . . 18
2.3 Atom-Light Interactions . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Atom-Atom Interactions and Feshbach Resonances . . . . . . 25
2.5 Cooling and Trapping . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Magneto-optical Traps . . . . . . . . . . . . . . . . . . . 27
2.5.2 Sub-Doppler Cooling and Grey Molasses . . . . . . . . 29
2.5.3 Trapping Potentials and Evaporative Cooling . . . . . . 33

2.6 Bose-Einstein Condensation and Gross-Pitaevskii Equation . . 35

3 Experimental Tools and Sample Preparation 39
3.1 Experiment Control and Vacuum System . . . . . . . . . . . . 40
3.2 Magnetic Field Setup . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Laser Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Preparation of the Ultra-cold Sample . . . . . . . . . . . . . . . 48

3.4.1 Magneto-optical Traps . . . . . . . . . . . . . . . . . . . 50
3.4.2 Grey Molasses . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Magnetic Trap . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.4 Dipole Traps . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Arbitrary Trapping Potentials in Two Dimensions . . . . . . . 54
3.5.1 Implementation of the DMD . . . . . . . . . . . . . . . . 55
3.5.2 Preparation and Characterization of the Quasi

One-dimensional BEC . . . . . . . . . . . . . . . . . . . 57

4 Absorption Imaging at High Magnetic Field 63
4.1 Closing the Optical Cycle . . . . . . . . . . . . . . . . . . . . . . 64

9



Contents

4.1.1 Scheme for High Field Imaging . . . . . . . . . . . . . . 66
4.1.2 Optimal Intensity Ratio and Calibration . . . . . . . . . 69

4.2 Overview of the Imaging Setup . . . . . . . . . . . . . . . . . . 73
4.3 ProEM Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Characterization of the Objective . . . . . . . . . . . . . 78
4.3.2 Imaging Assembly . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Pixis Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Laser System for Imaging . . . . . . . . . . . . . . . . . . . . . 86

5 Physical Computing 89
5.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Physical Encoding . . . . . . . . . . . . . . . . . . . . . 94
5.2.2 Reservoir Evolution and Readout . . . . . . . . . . . . . 96
5.2.3 Training Procedure and Overfitting . . . . . . . . . . . . 100

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Evolution Times . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Averaged Density Profiles . . . . . . . . . . . . . . . . . 106
5.3.3 Avoid Overfitting . . . . . . . . . . . . . . . . . . . . . . 108
5.3.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Final Remarks 115
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Refocussing with Secondary Lens 119

B Lists of Components 121
B.1 Vacuum Setup and Experimental Control . . . . . . . . . . . . 121
B.2 Laser Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3 Experimental Setup at Science Chamber . . . . . . . . . . . . . 124

C Control Circuits for Magnetic Fields 127
C.1 H-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.2 Passbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10



Contents

D Technical Drawings 133
D.1 Objective (ProEM imaging) . . . . . . . . . . . . . . . . . . . . 134
D.2 Objective (Pixis imaging) . . . . . . . . . . . . . . . . . . . . . . 134
D.3 Distances in Vertical Plane at the Glass Cell . . . . . . . . . . . 135
D.4 Objective Holder . . . . . . . . . . . . . . . . . . . . . . . . . . 137
D.5 H-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
D.6 Passbank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

List of Publications 143

Bibliography 145

Acknowledgements 157

11





CHAPTER 1
Introduction

To facilitate calculations and predictions, people have long built comput-
ing devices and the oldest known computer dates back to Ancient Greece. It
is a sophisticated mechanism used to predict positions of astronomical bodies
and eclipses [1]. This mechanism is an example for an analogue computer,
which provides a physical model system whose dynamical quantities are
utilized for the calculation. With the advances of technology and increased
manufacturing precision analogue computers for Fourier analysis [2, 3] or
the prediction of tides [4] were developed at the end of the 19th century. The
demand for analogue computers significantly increased with World War II as
they were used for calculating trajectories for fire control [5] and as guidance
system for rockets [6]. With the success of integrated circuits and microproces-
sors, analogue systems were superseded by their digital counterparts, which
are less error-prone to noise and can be universally programmed. Due to this
development computers today are predominantly digital computers. How-
ever, the implementation of computational tasks with physical systems might
become more important again, for example in machine learning [7]. Another
example is the field of quantum simulation [8, 9], where results are obtained
from a quantum physical model system.

Different physical systems can be employed for quantum simulation, and
this thesis focusses on Bose-Einstein condensates, which have become a tool
well suited for the task. After being described theoretically by Bose and Ein-
stein in 1924 [10, 11], the first condensates were observed experimentally with
dilute atomic gases about 70 years later [12–14]. This coherent state of matter
can directly reveal its quantum mechanical nature and its realization opened
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Chapter 1. Introduction

the door to many ground-breaking experiments. With the development of
new techniques and technological advances ultra-cold systems evolved to a
versatile and highly controllable tool. Examples for such developments are op-
tical trapping [15], which can be used to shape optical potentials and enables
a multitude of trapping configurations, or magnetic Feshbach resonances [16].
These resonances can be exploited to tune the atomic interactions with an
external magnetic field, and thus give easy access to a fundamental param-
eter of the experiment. The level of control allows for testing of theoretical
predictions or the investigation of phenomena not easily described by theory.

The first part of this thesis describes a setup for the preparation and
manipulation of a Bose-Einstein condensate of 39K. It is particularly versatile
and suitable for simulation tasks as the atomic interaction can be set precisely
over a wide range and the shape of the quasi two-dimensional condensate can
be controlled. The interaction is set with the help of a broad magnetic Feshbach
resonance [17], and the control system for the magnetic field is described in
detail in this thesis. A scheme for absorption imaging at high magnetic field is
presented, which is necessary to properly exploit the Feshbach resonance. The
configurable potential is realized by direct imaging of a digital micromirror
device [18, 19], and an overview of the setup is given.

In the second part of this thesis the experimental setup is used to perform
a simulation task which is connected to artificial neural networks. After early
implementations of neural networks on analogue computers [20] the imple-
mentation shifted to digital computers, and machine learning has become
a prominent research topic with the advances in digital computer technol-
ogy over the last decades. A particular framework of machine learning that
facilitates its implementation on hardware is reservoir computing [21, 22],
which is a non-linear network with a linear output layer. By replacing the
non-linear network with a physical system the framework can be applied to
very different fields such as photonics, electronics or mechanics [23–25]. In
this thesis we utilize a Bose-Einstein condensate and demonstrate the regres-
sion and interpolation of a non-linear function as a proof-of-concept. The
experiments presented take place predominantly in the classical regime, but
they give an interesting perspective on the storage and retrievability of in-
formation, and they point the way towards implementations that exploit the
quantum mechanical nature of the system. The framework is rather general
and the data processing with the linear output layer might be inspiring for
other applications.
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Structure of the thesis

In chapter 2 concepts of atomic physics relevant for this thesis are discussed,
in particular the atomic level structure, interactions, cooling and trapping of
atoms and properties of Bose-Einstein condensates.

In chapter 3 the experimental setup is presented. The magnetic field coils and
the laser system for manipulation of the atomic cloud are discussed, and the
preparation of the ultra-cold sample is introduced. The setup for trapping
the sample with a configurable potential is shown and the resulting quasi
one-dimensional cloud is characterized.

In chapter 4 a scheme for absorption imaging of the atomic cloud at high mag-
netic fields is introduced. The optimal parameter settings are investigated and
the calibration of the column density is discussed. Moreover, the experimental
setup for imaging and its implementation is presented.

In chapter 5 an experimental implementation of a shallow neural network is
presented. Basic concepts of machine learning and physical implementations
are introduced, and the specific implementation with a BEC as non-linear
resource is shown. Parameters of the implementation are varied and their
effect on the learning process is investigated.

In chapter 6 the results of the thesis are summarized, and prospects on experi-
mental upgrades and future projects are given.
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CHAPTER 2
Fundamentals

Since the identification of spectral lines by Fraunhofer, the investigation
of atomic properties has led to fundamental discoveries, such as the Bohr
atom model and quantum mechanics. Over the last century the field of atomic
quantum physics has grown rapidly, and it has become not only possible to
precisely measure atomic properties, such as resonances, but also to exploit
these properties to manipulate atoms. Among many other developments,
this led to laser cooling [26] and the experimental realization of Bose-Einstein
condensation [12–14].

This chapter gives a short review of some key concepts of atomic physics
relevant for the work presented in this thesis. It starts out with the properties
of potassium and its level structure. Atomic interactions with light, and with
other atoms are discussed. Building on these basic concepts, methods for
cooling and trapping of atoms are introduced. The chapter is concluded with
a discussion of the phenomenon of Bose-Einstein condensation.

2.1 Properties of Potassium

The experimental setup presented in this thesis makes use of the potassium
isotope 39K, and its key properties are given in this section. All values are
taken from [27], which gives a good overview of the potassium isotopes. 39K
is the most abundant isotope of potassium, which is an alkali with one valence
electron. Its electronic spin is thus S = 1/2, and the nuclear spin is I = 3/2.
Being made up from an even number of elementary particles it is a composite
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Chapter 2. Fundamentals

boson. Its level structure at vanishing magnetic field is given in fig. 2.1. The
ground state is 2S1/2 and the first excited state is split into the levels 2P1/2
and 2P3/2 due to the fine structure. The transitions between the states are
called D1 and D2 line referring to the Fraunhofer D line, which stems from
the same atomic transitions in sodium. The states are split further due to the
hyperfine structure, leading to the F = 1 and F = 2 state in the ground state
manifold, separated by 461.7 MHz. The hyperfine manifold of the excited
states consists of two and four states for 2P1/2 and 2P3/2, respectively. The
manifold of the 2P3/2 state features a rather small splitting of only 33.8 MHz,
which is close to the natural linewidth of 2π × 6.035 MHz. The single lines are
not resolvable with doppler-free absorption spectroscopy [28] and can not be
addressed selectively for cooling in a magneto-optical trap (see section 2.5.1).
In analogy to rubidium systems we call the transitions from the F = 1 and
F = 2 ground state cooler and repumper transitions, respectively, and the laser
systems are called accordingly.

2.2 Level Structure and Zeeman Effect

Alkali atoms are composite particles made from protons, neutrons, and
electrons, that each carry an intrinsic spin and may additionally carry or-
bital angular momentum. However, when probing the atom with optical
frequencies, the relevant states can be described by few quantum numbers.
This section shortly reviews the level structure of alkali atoms and how it is
influenced by an external magnetic field, based on [29, 30, 27].

For our experiments the atoms can be treated as hydrogen-like, and only
the ground and first excited state are of interest. The one valence electron
is described by its orbital angular momentum L and spin S (with quantum
numbers L and S, respectively). Due to spin-orbit interaction, these couple
together to form the total electronic angular momentum J = L + S with
quantum number J, where |L − S| ≤ J ≤ |L + S| (in integer steps). The
angular momentum is responsible for the fine structure of the excited state,
which is observed in fig. 2.1 as a level splitting in J = 1/2 and 3/2.

Additionally, there is a further, significantly smaller splitting of the states,
called hyperfine splitting. The nucleus as a composite structure has not only a
charge but also higher electromagnetic multipole moments. Their interaction
with the electron is governed by the nuclear spin I (with quantum number I).
It couples to the electronic angular momentum J at low magnetic field to form
the total angular momentum F = J + I with its quantum number F, for which

18



2.2. Level Structure and Zeeman Effect

Figure 2.1: Level scheme of 39K. The ground state is 2S1/2 and the first excited
state exhibits a fine structure splitting into 2P1/2 and 2P3/2. The transitions
from the ground state are called D1 and D2 line, respectively. The ground
state consists of two states due to the hyperfine splitting of 461.7 MHz, and
in analogy to rubidium we call the transition from the ground state F = 1
the cooler (C) and from and F = 2 the repumper (R) transition. The excited
states are split due to the hyperfine structure, and the natural line widths of
the transitions are indicated by the black bars (2π × 6.035 MHz for 2P3/2). The
hyperfine splitting of the excited state is small compared to the natural line
width and thus hard to resolve. Values taken from [27].
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Chapter 2. Fundamentals

holds |J − I| ≤ F ≤ |J + I| (in integer steps). The Hamiltonian describing the
hyperfine structure is given by

Hhfs =
ahfs

h̄2 J · I +
bhfs

h̄2
3(I · J)2 + 3

2(I · J)− I2J2

2I(2I − 1)J(2J − 1)
, (2.1)

where ahfs and bhfs are the magnetic dipole and the electric quadrupole con-
stants, respectively. This completes the contributions to the level scheme at
vanishing magnetic field presented in fig. 2.1.

The situation becomes more complicated when a non-vanishing external
magnetic field B is considered. Each state with quantum number F actually
consists of 2F − 1 substates that are degenerate if no magnetic field is present.
By applying a field the degeneracy is lifted and the substates exhibit different
eigenenergies. This is called the Zeeman effect and can be described by the
Hamiltonian

HZ = µB/h̄ (gJJ + gII)B , (2.2)

where gJ , gI are the electron and nuclear g-factors, respectively. Each of the
2F − 1 magnetic substates is characterized by its magnetic quantum num-
ber mF, which is the projection of the total angular momentum F onto the
magnetic field B. The quantum number mF can take the values −F ≤ mF ≤ F
in integer steps. Without loss of generality we assume the orientation of the
magnetic field to be in z-direction, B = Bz. Then, the operator relevant for the
projection is Fz. It commutes with the Hamiltonian,

[Fz , Hhfs +HZ] = 0 . (2.3)

This means that for any state there is one quantum number mF which is a
valid description at all magnetic field strengths.

In general, the energy eigenstates can not be described by a single state in
the basis of the quantum numbers F, mF, but the states and the shifts of their
energies have to be calculated by diagonalizing the Hamiltonian Hhfs +HZ.
For the special case of J = 1/2 this can be done analytically, resulting in the
Breit-Rabi formula [31]. Figure 2.2 shows the resulting energies for the ground
state and the 2P3/2 excited state manifolds. We assign numbers to the states at
high magnetic field, resulting in the states |g1⟩ to |g8⟩ and |e1⟩ to |e16⟩ in the
ground and excited state manifolds, respectively.

In the limit of low magnetic field, the eigenstates can be approximated
by single states in the F, mF-basis, and the Zeeman energy shift can be ap-
proximated to be linear to the strength of the field B and to mF. We can also
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2.2. Level Structure and Zeeman Effect

Figure 2.2: Energy shifts of the hyperfine states with external magnetic field.
Part a) shows the energy shifts of the levels of the 2S1/2 ground state hyperfine
manifold (lower graph) and the 2P3/2 excited state hyperfine manifold (upper
graph). At vanishing magnetic field all magnetic sublevels are energetically
degenerate, and the states can be well described by the total angular momen-
tum F, as annotated for the ground states. When a magnetic field is applied,
the states reorder according to the Zeeman energy. The transition can be seen
in part b) which shows a zoom for the excited states at low magnetic field. At
high magnetic field states with the same mJ quantum number group together,
which is shown in part a) for the excited state, and the states become pure in
the mJ , mI-basis. We assign numbers to the states at high magnetic field which
is shown in the figure for the ground states |g1⟩ to |g8⟩. We work mostly with
the state |g3⟩, which is indicated in red and connects to |F, mF⟩ = |1,−1⟩ at
vanishing field.

21



Chapter 2. Fundamentals

represent each state in the basis of mJ and mI , which are the projections of the
states momenta J and I along the magnetic field, respectively. Similar to the
total angular momentum they take values −J ≤ mJ ≤ J and −I ≤ mI ≤ I
in integer steps. However, in this basis the state is a superposition of several⃓⃓
mJ , mI

⟩︁
states, which have to fulfil the requirement mF = mJ + mI .

Increasing the magnetic field further affects the coupling of the electronic
and nuclear angular momenta. The simple representation of the eigenstates
in the F, mF-basis is no longer possible and the energy shifts become more
complicated. For very high field the internal coupling between J and I can
be neglected and both couple to the magnetic field independently (Back-
Goudsmit region1). In this region the eigenstates can be approximated by
single states in the mJ , mI-basis. Then, the energy shift of the states can be
estimated directly from eq. (2.2), and it is proportional to (gJmJ + gImI)Bz.
The high field limit can be observed in fig. 2.2 a) for the excited state manifold,
where the four branches in the plot belong to different mJ states.

Quantum numbers that allow to describe an eigenstate with a single state
are usually called good quantum numbers, making F, mF good quantum
numbers in the low field limit and mJ , mI good quantum numbers in the high
field limit. As a final note, mF is a good quantum number for all fields (see
eq. (2.3)). This simplifies tracing the eigenstates in the Breit-Rabi diagram as
states with the same mF do not cross each other, one knows mF at low field,
and one can easily estimate mF = mJ + mI in the high field limit.

2.3 Atom-Light Interactions
The interaction of atoms with an electro-magnetic field is one of the most

versatile tools at hand of the experimentalist. This section gives a short intro-
duction to atom-light interactions by showing the key results obtained from a
semi-classical model of a two-level atom in a radiation field, following [29].

The atomic model includes a ground and an excited state connected by an
atomic transition with frequency ω0. It is irradiated with light of frequency ω
that is detuned to the atomic transition by δ = ω − ω0. On resonance (δ = 0),
the population of the system coherently cycles back and forth between the two
states, which is called Rabi cycling. The cycling frequency Ω (Rabi frequency)
is proportional to the applied field (i.e. the square root of the intensity) and the

1Often, Back-Goudsmit is equated with the Paschen-Back regime, which strictly speaking
refers to the mixing of the fine structure due to the Zeeman effect [32]. Of course, at a magnetic
field that high, the hyperfine structure is mixed as well.
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2.3. Atom-Light Interactions

dipole matrix element, which encodes properties of the dipole transition. The
interaction with the light changes the eigenstates, and their associated energies
shift. This is called light shift and its direction is given by the detuning, where
negative detuning (red-detuned) lowers the ground state energy and positive
detuning (blue-detuned) raises it.

In addition, the atom can incoherently decay from the excited to the ground
state and reset the coherent cycling. This spontaneous process is rather com-
plex as a photon is randomly emitted into one of infinitely many modes, and
it can not be properly handled within the theoretical framework presented
here. However, we can model the process by an exponential decay of the
excited state population with a rate Γ. This is the natural linewidth of the
transition, and the decay leads to a natural lifetime of the excited state of
τ = 1/Γ. The exponential decay and the before-mentioned model lead to
a set of differential equations, the optical Bloch equations, that describe the
dynamics of the system.

Solving the optical Bloch equations for the steady state reveals some inter-
esting properties of the system. The initial coherences from the Rabi cycling
process have decayed due to the incoherent decay of the excited state. This
limits the steady state population ρee of the excited state to be at most equal
to the population ρgg of the ground state. Specifically, the imbalance between
the two states is given by

w = ρgg − ρee =
1

1 + s
, (2.4)

with the off-resonance and on-resonance saturation parameter given by

s =
s0

1 + (2δ/Γ)2 , s0 =
2|Ω|2

Γ2 = I/Isat . (2.5)

The last term defines the on-resonance saturation intensity Isat as the light
intensity where the Rabi frequency equals the spontanous decay rate. It is
given by

Isat = πhc
Γ

3λ3
0
=

h̄
12πc2 ω3

0Γ , (2.6)

where λ0 and ω0 are the wavelength and frequency at resonance. The satura-
tion process limits the total scattering of photons from a laser beam, which is
given by the product of the decay rate Γ of the excited state and its population
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Chapter 2. Fundamentals

ρee. Keeping in mind that the population is normalized to one, the latter can
be extracted from eq. (2.4) and the total scattering rate γ is estimated to be

γ = Γρee =
Γ
2

s0

1 + s0 + (2δ/Γ)2 . (2.7)

In the limit of very high intensities the scattering saturates γ → Γ/2.
Due to the interaction with the light field the atoms can experience a force.

Commonly, this force is separated in two parts, where one is important if
the frequency of the light field is close to resonance and the other if it is far
away. Close to resonance, atoms scatter photons as discussed above, and
these photons carry a momentum h̄k. When the atom absorbs and emits a
photon, the total momentum of the scattering process has to be conserved
and thus the momentum of the atom has to change accordingly. As the
atom absorbs photons from the light field where they all share the same
momentum, but subsequently emits the photons spontaneously in random
directions, contributions of the latter average out. Thus, a net momentum is
tranferred and the atom experiences a force proportional to the number of
scattered photons, which is called scattering or radiative force.

Far away from resonance, the scattering of photons ceases as described by
eq. (2.7). However, the light shift of the atomic levels is still present, and the
energy shift ∆Eg of the atom’s ground state far away from resonance (Ω ≪ |δ|)
is given by

∆Eg =
h̄Ω2

4δ
=

3πc2

2ω3
0

Γ
δ

I , (2.8)

where we used eq. (2.5) and eq. (2.6) to derive the expression on the right. The
energy shift depends on the Rabi frequency and therefore on the intensity of
the light. A spatially varying intensity is experienced by the atom like a spatial
potential, and associated forces act on the atom. This force is commonly called
the dipole force.

For multi-level atoms, the situation becomes slightly more complicated.
Whether a transition between two states can take place depends in general
on the dipole matrix element that couples the states. Still, knowing the quan-
tum numbers of the states one can make use of a set of transition rules to
estimate possible transitions. These rules ensure the conservation of angular
momenta in the atom-photon system. This means in particular that the mag-
netic quantum number can only be changed by {−1, 0,+1} when the atom
absorbs a photon of polarization {σ−, π, σ+}. For emission, the polarizations
are reversed.
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2.4 Atom-Atom Interactions and Feshbach
Resonances

In the scope of ultra-cold atomic experiments, interactions between atoms
play an important role. They are vital during evaporative cooling, which
is necessary to reach Bose-Einstein condensation, but may also contribute
to unwanted atom losses. Depending on the atomic species, the interaction
between the atoms can be controlled by a Feshbach resonance. This section
gives a short introduction and mainly follows [33], where scattering theory
and Feshbach resonances are discussed in more detail. A comprehensive
review is given in [34].

The interaction between two neutral atoms is often described by a van
der Waals potential with an attractive part and a short-range repulsive part,
as sketched in fig. 2.3 a) for the open channel. Scattering can in general be
described by a partial wave expansion of ingoing and outgoing waves that
solve the Schrödinger equation in the potential. At the low temperatures of
our atomic sample the typical particle wavelength is much larger than the
interaction potential. Hence, the form of the potential plays a minor role
and the complicated scattering problem boils down to spherically symmetric
contact interactions. A single parameter is sufficient for its description, which
is the s-wave scattering length a. The scattering process leads to a phase shift
δ = −ka between an ingoing wave with momentum k and the outgoing wave.
It is directly connected to the effective atomic interaction, where a negative
scattering length means attractive interactions and vice versa.

So far, the description only took into account the single-channel problem,
where the atomic states are unaltered. Mostly, this is a good approximation
for alkali atoms at low temperature. However, the properties of the scattering
in one channel can be significantly altered by a nearby bound state in a closed
channel. This is called a Feshbach resonance. A sketch of the potentials is
provided in fig. 2.3 a), where a bound state with energy Eres in the closed
channel and the open channel with threshold energy Eth are shown. If the
energies are close, atoms can form an intermediate bound state during the
scattering event. This molecular state is not stable due to energy and momen-
tum conservation, but it strongly influences the scattering process and hence
the s-wave scattering length a. In our case, the energy of the bound state can
be shifted by an external magnetic field. This leads to a magnetically tuned
Feshbach resonance, which can be described by

a(B) = abg (1 − ∆/(B − B0)) . (2.9)
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Figure 2.3: Feshbach resonances in 39K. Part a) shows a sketch of the energy
versus the separation of two atoms. The lower curve depicts the scattering
potential (open channel) with the threshold energy Eth for infinite distance,
and the upper curve the molecular potential (closed channel) with bound
states. The energy of a bound state is indicated with Eres, and it can be
tuned via an external magnetic field B. When the energy Eres matches the
threshold energy Eth, a Feshbach resonance occurs. Although a bound state
can not be formed due to momentum conservation, the atoms can scatter to an
intermediate state in the closed channel. This coupling varies the interaction
between the atoms and hence the scattering length. For our atomic species
39K, this is indicated in part b) for the intra-species resonances between atoms
in the state |F, mF⟩ = |1,−1⟩. The scattering length is negative at vanishing
magnetic field, and preparation of the atomic sample and the experiments
take place close to the resonance at 562 G (shaded area). Part a) adapted from
[33], part b) adapted from [35].

The background scattering length abg corresponds to the scattering length far
off resonance, the field B0 to the magnetic field exactly on resonance, and the
parameter ∆ to the width of the resonance.

For our ground state |g3⟩, which corresponds to |F, mF⟩ = |1,−1⟩ at low
magnetic field, the intra-species resonances are depicted in fig. 2.3 b). As the
scattering length is below zero at vanishing magnetic field, most experiments
are performed at the broad resonance at B0 = 562.2 G (shaded area). It
has a width of ∆ = 55 G [17] and thus allows for a good adjustment of
the atomic interaction over a broad range, covering negative and positive
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interactions. The other ground states of the F = 1 manifold exhibit a similar
broad resonance at a slightly lower field.

2.5 Cooling and Trapping
The following section gives an introduction to the cooling and trapping

techniques used at our experiment to prepare ultra-cold atomic samples. This
section follows the typical experimental sequence starting at high tempera-
tures with dissipative methods that rely on photon scattering, such as the
magneto-optical trap and grey molasses. Subsequently, we focus on con-
servative traps and discuss further cooling to very low temperatures via
evaporation. The section is based on [29] and gives additional information
specific to our atomic species 39K.

2.5.1 Magneto-optical Traps

The magneto-optical trap (MOT) is one of the workhorses of cold atom
physics, and a starting point for many experiments. It combines cooling in
velocity space and trapping in real space, and relies on the radiative force
from the scattering of photons.

Figure 2.4 provides a sketch that shows the working principle of a MOT in
one dimension. The cooling in velocity space is implemented as follows. From
the left and the right laser light is shone in with the same handedness and
frequency ωL. It is red-detuned to the atomic transition by δ. For a moving
atom the frequency of the laser beam appears shifted by the Doppler effect.
While it is red-shifted further away from the resonance of the transition when
the atom moves along the beam, it is blue-shifted into resonance if the atom
moves in opposite direction to the beam. Hence, an atom is more likely to
scatter photons if it is counter-propagating the laser beam and is slowed down
by the resulting radiative force. This is called Doppler cooling.

Additionally, spatial confinement is realized with an inhomogeneous mag-
netic field. A simplified level scheme is sufficient to understand the principle,
and fig. 2.4 shows a single ground state with magnetic quantum number
m = 0 and an excited state with three magnetic substates. The magnetic field
is zero in the centre and increases outwards, which lifts the degeneracy of
the substates m ∈ {−1, 0, 1} due to the Zeeman effect. Note that the lower
branch always belongs to the state m = −1 as the direction of the magnetic
field is reversed in the centre. The spatial dependence of the magnetic field
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Figure 2.4: Working principle of a magneto-optical trap in one dimension.
The sketch shows a simplified level structure with one ground state and an
excited state with three magnetic substates, m ∈ {−1, 0,+1}. Their degen-
eracy is lifted by an inhomogeneous magnetic field B, which is zero at the
centre of the trap and increases outwards. The energy of the levels is indicated
by the black lines, where the labelling of the magnetic substates switches in
the centre as the magnetic field changes direction. From both sides circular
polarized laser light with the same handedness and with frequency ωL is
shone in (black wavy arrows). It is red-detuned to the m = 0 state by δL
and can drive σ− transitions when incoming (black) and σ+ transitions after
crossing the centre (grey). With this setup two mechanisms can be exploited.
First, velocity-dependent scattering processes slow down atoms that move
away from the centre due to the Doppler effect. Atoms that move in opposite
direction to the laser see the frequency blue-shifted into resonance. Second,
space-dependent scattering processes accelerate the atoms towards the centre.
The inhomogeneous magnetic field shifts the level structure of the atoms
due to the Zeeman effect. Hence, the detuning δ− of the substate m = −1 is
shifted into resonance while the detuning δ+ of the substate m = +1 is shifted
further away, as it is indicated at position z′. This enhances scattering with
the incoming laser light (indicated in black) and leads to a confinement at the
centre of the trap. The principle can be applied in three dimensions.
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directly translates to the detunings δ− and δ+ of the m = −1 and m = +1
state, respectively. Going away from the centre, the m = +1 state is tuned
further out of resonance, while the m = −1 state is tuned in resonance. As the
latter state is addressed only by the σ− light, which points in the direction of
the centre, a radiative restoring force keeps the atoms in the centre close to
the zero-point of the magnetic field.

The principle can be extended to three dimensions with three pairs of
counter-propagating laser beams and a quadrupole magnetic field. A big
advantage of the MOT is that it can capture and cool atoms from room-
temperature background gas, as it has a large capture velocity range. This
results from atoms being slowed over an extended distance in the gradient
field, when the Doppler shift of the resonance is compensated by the change
of the magnetic field. Finally, the temperature of the atomic cloud is limited
by the residual scattering of photons. It is called the Doppler temperature
TD = h̄Γ/(2kB), with Γ the natural linewidth of the transition.

For multi-level atoms the picture becomes slightly more complicated. The
MOT is usually realized with the cooling transition F = 2 → F′ = 3 (cf.
level scheme in fig. 2.1), where the atoms are pumped to the stretched states
|F, mF⟩ = |2,±2⟩ and |F′, mF′⟩ = |3,±3⟩ by the circularly polarized light.
Technically, this would lead to a closed transition. In the F′ = 3 excited state
hyperfine manifold of 39K, however, the different substates are energetically
very close, and the atoms are also excited to the other states. From these states,
atoms can decay back to the F = 1 ground state where they are not addressed
by the light. To excite the atoms from the F = 1 ground state a second laser
beam is employed that repumps the atoms back to the F = 2 ground state,
therefore the laser is usually called repumper. For rubidium, the atom loss
is a small effect and a low repumper intensity is sufficient. In 39K the decay
is significant and equal intensities of cooling and repumping light are used,
leading to a rather high temperature on the order of 1 mK for the MOT [36].

2.5.2 Sub-Doppler Cooling and Grey Molasses

Cooling below the Doppler limit was completely unexpected when ob-
served for the first time [37]. It made the necessity of theoretical models
beyond the simple two-level atom obvious, as the multi-level structure and
optical pumping between the states has to be taken into account for the expla-
nation of the phenomenon. This chapter gives a short introduction to Sisyphus
cooling, a prominent sub-Doppler technique, and grey molasses cooling.
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Sisyphus cooling utilizes two effects, the non-adiabatic movement of atoms
in a light field potential and associated optical pumping effects. This part
follows [38], and we restrict ourselves to the case of linear polarizations. The
principle of the mechanism is depicted in fig. 2.5 a). In our example, the light
field is provided by two counter-propagating laser beams with orthogonal
polarization, which is called lin⊥lin configuration. This leads to a spatial
gradient of the polarization, which switches back and forth between linear
and circular. The model atom has two ground states |g−1/2⟩ and |g+1/2⟩
with associated magnetic quantum numbers m = ∓1/2, respectively. For
red-detuned light these states experience a negative light shift that depends
on the polarization of the light. Hence, the energy of the ground states varies
with the position and is shown in the centre of fig. 2.5 a). Additionally, the
populations of the steady-state of resting atoms are indicated by the size of
the black dots. The energy of the two ground states alternates spatially, and
the state with lower energy is always favoured. An atom with finite velocity
moves non-adiabatically through this potential and trades its kinetic energy
with potential energy, as shown in the lowest graph. If the atom reaches the
top of the curve it has gained the maximal amount of potential energy. When
excited at this position, the atom is likely to spontaneously decay to the lower
state due to the circular polarization of the light. The decay radiates away the
energy difference between the two ground states. The atom is thus cooled,
and the process can be repeated until it has not enough energy left to climb
the potential hill any more.

Often, the cooling scheme is realized using counter-propagating beams
with σ+ and σ−. This leads to a linear polarization of the laser beam which
rotates spatially. The theoretical description is very different as no light shifts
appear in the rest frame of the atom. However, transforming to the rotating
frame of the polarization for a moving atom leads to shifts in the energy of
the states and an unbalanced interaction with the counter-propagating laser
beams, which provides the cooling.

The scheme can be extended to three dimensions with three pairs of beams
as before for the MOT. This leads to more complicated polarization geometries
where both lin⊥lin and σ+-σ− play a role. While the former dominates for
large detuning, the latter is more important in the region of small detuning
[39]. For 39K the conventional Sisyphus cooling proves difficult due to the
small hyperfine splitting of the 2P3/2 excited state. Still, temperatures as low
as 25 µK have been reached [40, 41, 36].
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Figure 2.5: Sisyphus and grey molasses cooling. Part a) shows the princi-
ple of Sisyphus cooling. A polarization gradient is created by two counter-
propagating laser beams with orthogonal polarization (lin⊥lin), resulting
in a polarization that goes back and forth between linear and circular. The
atomic ground states |g−1/2⟩ and |g+1/2⟩ experience a light shift that spatially
modulates the energy of the states. In the steady-state, most atoms populate
the lower state as indicated by the size of the black dots. When an atom
moves non-adiabatically with velocity v it can trade kinetic with potential
energy. Scattering a photon in the maximum of the potential it will most
likely decay back to the lower state. The difference in energy is dissipated
by the spontaneous emission and leads to cooling of the atom. In part b) the
ingredients for grey molasses cooling are depicted. When hitting the Raman
condition in a three-level Λ configuration the two ground states |g−⟩ and |g+⟩
can be rewritten in a dark state |d⟩ and a bright state |b⟩. For an atom at rest
only the latter state couples to the excited state |e0⟩. At a finite velocity the
Raman condition is not fulfilled and |d⟩ is not stationary. Thus, only resting
atoms are trapped in the dark state (VSCPT). Similar to Sisyphus cooling, a
polarization gradient can be applied by the incoming light which modifies
only the energy of the bright state. Motional coupling can transfer atoms from
|d⟩ to |b⟩ when the states are energetically close. Subsequently, potential and
kinetic energy can be traded and dissipated via excitation and spontaneous
emission, resulting in cooling of the atom. Part a) adapted from [38].
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Grey molasses cooling combines velocity-selective coherent-population
trapping (VSCPT) with Sisyphus cooling. First, we introduce VSCPT following
[42]. It is a sub-recoil scheme that keeps resting atoms in a dark state. An
effective three-level Λ system is necessary for the technique, which is depicted
in fig. 2.5 b). The two ground states |g−⟩ and |g+⟩ have magnetic quantum
numbers m = ∓1, respectively. They are connected to an excited state |e0⟩ with
m = 0 by the transitions σ+ and σ−. These transitions are in Raman condition,
which means that they have the same detuning relative to the excited state.
We can rewrite the ground states in the superpositions |d⟩ = |g−⟩+ |g+⟩ and
|b⟩ = |g−⟩ − |g+⟩. For an atom at rest one can show that |d⟩ is a dark state
that does not couple to the excited state, whereas the bright state |b⟩ does.
For a moving atom, however, the Raman condition is not fulfilled any more
due to Doppler shifts. On the level of the states this means that the dark state
|d⟩ is no energy eigenstate of the moving atom, and if the atom is initially in
|d⟩ it will eventually be transferred to the bright state |b⟩. In this state it can
scatter photons and experience associated changes in velocity. These changes
are in the fashion of a random walk, which means that there is no spatial
dependence of energy of the bright state. The energy diagram shown at the
bottom of fig. 2.5 b) would have two flat lines for dark and bright state for
the VSCPT scheme. The cooling of the atoms relies only on the decreasing
transfer probability to the bright state, as the atom spends more time in the
dark state the slower it becomes, and random changes of the atomic velocity
due to scattering. This is a diffusive process, but ultimately atoms might reach
temperatures below the photon recoil as the last emitted photon may leave
the atom at a velocity close to zero.

To enforce the cooling process instead of relying on diffusion, one can com-
bine VSCPT with sub-Doppler cooling. We follow [43] for a short discussion
of the technique. As for Sisyphus cooling, two counter-propagating beams
with orthogonal linear polarization are employed to form a gradient of the
polarization. The bright state |b⟩ couples to the excited state and is affected
by light shifts, while the dark state |d⟩ is not. An atom that is moving in the
dark state can be transferred to the bright state via a non-adiabatic passage,
which is also called motional coupling. One can show that this takes place
predominantly at the valleys of the bright state as indicated in fig. 2.5. If
the light frequency is blue detuned to the resonance of the transition, light
shifts lead to an increase of the bright state’s energy. As before, the atom
can climb the resulting potential hill and trade potential energy with kinetic
energy. Being in the bright state the atom can be excited and decay back to
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the dark state, and the energy difference is radiated away by the process of
spontaneous emission. This procedure repeats until the atom is sufficiently
slow to stay in the dark state where no further scattering takes place.

Experimentally, the complicated level structure of Alkali atoms permits no
strictly dark states, but there are grey states that couple only weakly to the
excited states and can be utilized. Furthermore, the technique we discussed in
one dimension can be applied in three dimensions by using three pairs of light
beams. For the species 39K the first successful implementations were realized
on the D1 transition (cp. fig. 2.1) coupling both F = 1 and F = 2 ground states
to the excited state F′ = 2 in a σ+-σ− configuration [44, 45]. Thus, two light
frequencies in Raman condition are necessary, which are both blue detuned to
the excited state hyperfine manifold. The publications report temperatures as
low as 6 µK.

2.5.3 Trapping Potentials and Evaporative Cooling

Laser cooling has a practical limit, which is typically on the order of 1 µK.
To achieve the lower temperatures and high phase-space densities necessary
for Bose-Einstein condensation traps for neutral atoms and cooling techniques
are needed that do not rely on the scattering of photons.

Magnetic traps confine atoms by the interaction of a magnetic field B with
the magnetic moment µ of the atom. As discussed in section 2.2, the level
structure of an atom shifts with the strength of an external magnetic field
due to the Zeeman effect. For a spatially inhomogeneous field this leads
to a conservative potential and an associated force F = ∇(µ · B), which is
experienced by the atom. The energy shifts of the levels can be read of in
the Breit-Rabi diagram (cf. fig. 2.2). A state with a positive slope is attracted
to a low field (low field seeker) to minimize its energy, and vice versa (high
field seeker). For realistic setups these energy shifts are small compared to
the energy of particles at room temperature, which makes pre-cooling of the
atomic sample necessary.

A static magnetic field may have local minima while local maxima are
forbidden [46], and the simplest configuration with a local minimum is a
quadrupole field produced by two identical coils with opposed currents. This
configuration has zero field at the central point, and from there the field
strength rises in all directions. It thus traps low field seekers. However, the
configuration is impractical for very low temperatures as losses can occur
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at the zero point due to spin flips into a high field seeking state (Majorana
losses). More complex geometries or a time-dependent magnetic field can
circumvent this problem.

In our setup a simple quadrupole trap is included for intermediate trap-
ping, state selection and compression. It traps the ground state |g3⟩, which
is connected to |F, mF⟩ = |1,−1⟩ at low field and the only low field seeker of
the F = 1 substates. For our application, losses play no role as the cloud is too
hot.

Dipole traps provide a conservative potential in space by inducing a dipole
moment via atom-light interaction. This results in a shift of the internal levels
of an atom in presence of a laser beam that is detuned from resonance (cf.
section 2.3). When the light is red-detuned to the resonance the atomic ground
state levels are shifted to lower energies, and vice versa. Similar to magnetic
traps this leads to a potential landscape depending on the spatially varying
intensity I of the light. Associated with this potential is a trapping force that is
proportional to derivative ∇I. Thus, atoms are attracted to regions of maximal
intensity for red-detuned light while they are repelled from those regions for
blue-detuned light. Usually, the potential minimum of a trap is approximated
by a harmonic trap and experimentally characterized by its trap frequency f .
A comprehensive overview and quantitative analysis of optical dipole traps
can be found in [47].

The most simple red-detuned (attractive) dipole trap is a focussed Gaus-
sian beam. It is characterized by its width in the focus, called the beam waist
w0. The divergence of the beam and thus the steepness of confinement along
the beam is described by the Rayleigh range zR = πw2

0/λ, where λ is the wave
length of the light. It is the distance from the focus, where the beam width w
has increased to w =

√
2w0. By overlapping several Gaussian beams, different

trap shapes and a strong confinement in all directions can be realized.
Repulsive traps with blue-detuned light are typically more complicated to

set up, as the light has to encase the atomic cloud. They have the advantage
that atoms are confined in regions of low intensity, which reduces scattering
and associated heating effects. There are many techniques to form laser
beams for trapping, and we restrict ourselves to two that are relevant for our
experimental setup. The first technique uses the interference between two
laser beams under a shallow angle to create a standing wave. As the light
repels the atoms, they are trapped in between the resulting sheets of light.
Such a trap is often referred to as a pancake trap, and it traps the atoms in one
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dimension. The second technique makes use of a digital micromirror device
(DMD), which is an array of small mirrors that can be addressed individually
[48]. Imaged onto the atomic cloud it can provide configurable trapping
potentials in two dimensions [18].

Evaporative cooling relies on the scattering of atoms among each other in
the atomic cloud instead of atom-light scattering. The scattering processes
distribute the energy among the atoms and allow for the development of a
thermal cloud. Evaporative cooling slowly removes atoms with high energies
while letting the remaining atoms redistribute their energies and rethermalize
by elastic collisions. This leads to a lower temperature of the remaining atoms.
The evaporation is usually forced by lowering the trap depth for dipole traps
or cutting away atoms with an rf knife for magnetic traps. To achieve good
cooling it is important that the rethermalization is faster than the cooling rate.
The final temperature is limited by the number of atoms in the beginning and
atom loss due to inelastic collisions.

For 39K two challenges have to be overcome for successful evaporative
cooling to a Bose-Einstein condensate that are both connected to the inter-
atomic interaction strength. First, the background interaction at vanishing
magnetic field is negative and small (cp. fig. 2.3). This prevents efficient
rethermalization and leads to a collapse of the atomic cloud at sufficiently
low temperatures as the atoms effectively attract each other [49]. It can be
prevented by keeping the atomic cloud in a dipole trap and applying a homo-
geneous magnetic field to tune the interaction strength to a positive value with
the help of a Feshbach resonance. Second, the sample has to be pre-cooled
sufficiently as the collisional cross-section has a Ramsauer minimum at 400 µK
[50]. This can be overcome with the grey molasses described above.

2.6 Bose-Einstein Condensation and
Gross-Pitaevskii Equation

A major task of our experimental setup is the preparation of a Bose-Einstein
condensate (BEC), as this is the starting point for most our experiments. This
section gives all information and theoretical descriptions for BECs that are
relevant for this work, mainly based on [29, 51, 52].

A BEC is a state of matter that forms in a dilute gas of bosons when the
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phase space density exceeds a critical value of

nλ3
dB ≥ ζ(3/2) ≈ 2.61 , (2.10)

where n is the spatial density, λdB the thermal de Broglie wavelength and
ζ the Riemann zeta function. In a simplified picture, the indistinguishable
particles can be viewed as wavepackets with an extent on the order of λdB,
which increases with lower temperature. For sufficiently low temperatures
and high densities, these atomic wavepackets overlap and synchronize, form-
ing a macroscopic matter wave. More formally, the transition to a BEC can
be explained using the Bose-Einstein distribution for non-interacting, indis-
tinguishable particles. At sufficiently low temperatures it features an energy
minimum for a macroscopic population of the lowest state and infinitesimally
populated higher states.

Theoretically, the mean-field dynamics of a BEC in three dimensions can
be described by the Gross-Pitaevskii equation (GPE),

ih̄ ∂tψ(x, t) =

(︄
− h̄2

2m
∇2 + V(x) + g3d|ψ(x, t)|2

)︄
ψ(x, t) , (2.11)

with mass m, external potential V and interaction strength g3d. The order
parameter ψ(x, t) is the complex wave-function of the macroscopically popu-
lated ground state of the condensate, and it is often written as ψ = |ψ| exp(iϕ)
with condensate density n = |ψ|2 and phase ϕ. The interaction strength is
given by

g3d =
4πh̄2a

m
, (2.12)

where a is the s-wave scattering length. This description is valid under the
assumption of contact interactions, which is justified in the low temperature
regime of BECs.

To estimate the reaction of the BEC to an external potential a helpful
quantity is the healing length of the system. It is defined as

ξ =
h̄√︁

2mng
, (2.13)

and it gives a length scale on which the system reacts to potential edges or
impurities. For the example of an infinite potential wall the healing length
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gives a length scale on which the density drops from the background density
to no density at the wall.

In the limit of a slowly varying density the kinetic term in the GPE can
be neglected, which is called Thomas-Fermi approximation. The equation
simplifies significantly and one obtains

µ = V(x) + gn(x) , (2.14)

where µ is the ground state chemical potential, and the atomic density distri-
bution n(x) is determined by the trapping potential. The expression simplifies
further to

µ = gn (2.15)

for a flat background potential.
An analytic treatment of small density perturbations on a large condensate

background can be derived with Bogoliubov theory. The details are given
in [52], and we only discuss few points relevant for this thesis. The theory
allows to construct the eigenmodes of the weakly interacting system from
a set of non-interacting eigenmodes. The resulting quasi-particles give a
description of the elementary excitations of the weakly interacting system.
Their corresponding dispersion relation is the Bogoliubov dispersion relation

h̄ω =

⌜⃓⃓⎷ h̄2k2

2m

(︄
h̄2k2

2m
+ 2µ

)︄
, (2.16)

where h̄ω is the energy associated with a spatial mode k. In the limit of small
momenta the dispersion relation becomes linear,

ω ≃ cs k , cs =
√︁

µ/m , (2.17)

where cs is the speed of sound of the system.
By a very strong confinement of the condensate in two directions, a one-

dimensional gas can be created. We assume a harmonic confinement with
equal trapping frequencies ωx = ωy = ω⊥ in those directions. Strong confine-
ment is achieved if the energy associated with the radial trapping frequency
is big compared to the chemical potential of the system, h̄ω⊥ ≫ µ , which
means that only the lowest oscillator mode in the harmonic trap is occupied.
For the description of such a system the GPE can be reduced to one dimension
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by replacing the three-dimensional order parameter with a one-dimensional
one (connected to a line density) and the spatial derivatives accordingly. The
interaction strength changes to

g1d =
4πh̄2a

m
1

2πl2
⊥

= 2h̄ω⊥a , (2.18)

with ω⊥ the radial trapping frequency and l⊥ =
√︁

h̄/(mω⊥) the associated
harmonic oscillator length [53].

Throughout this thesis energies E are typically given as frequencies f =
ω/(2π), in the sense of E = h̄ω = h f . SI units can be retrieved by multiplying
with Planck’s constant h.
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CHAPTER 3
Experimental Tools and Sample

Preparation

To prepare a BEC a specialized machine and precise equipment is needed
for trapping, cooling and manipulating atoms. The first BECs were created
with rubidium and sodium [12, 13], and early experiments with lithium
proved difficult due to instabilities arising from attractive interaction [14]. For
similar reasons the preparation of a BEC of 39K is no easy task, and it was
first achieved by using sympathetic cooling with rubidium [54]. Utilizing a
bright molasses led to the first direct preparation of a BEC of 39K [50], and the
preparation was improved further by employing grey molasses cooling [55].

In this chapter we give an overview of the preparation of a BEC in a
configurable quasi two-dimensional potential. The first part describes the
experimental setup, namely the control system and the vacuum system, the
magnetic field setup and the laser setup. Next we discuss the preparation
of a BEC with the apparatus and give an overview of the different stages of
cooling and trapping. The last part presents the implementation of the DMD,
the configuration of the trapping potential for a quasi one-dimensional BEC,
and the characterization of the trap and the atomic cloud. A comprehensive
list of the components used for the different parts of the experimental setup is
given in appendix B.

Our experimental work builds upon results from other potassium setups
[36, 56–58], new cooling strategies [44, 55] and experiences with novel trapping
setups [59]. Moreover, our setup and results discussed in this section are based
upon the work of our bachelor and master students that helped to set up the
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main magnetic coils [60], the magnetic offset coils [61], the master laser system
and spectroscopy [28], the frequency generation for the grey molasses [62],
and designed and tested the DMD system [63]. A thorough overview of our
setup and of the preparation of the ultra-cold sample is also given in [35],
which this section is partly based on.

3.1 Experiment Control and Vacuum System

The experiment is interfaced with a computer control system by dedicated
hardware, which is essentially a complex arbitrary function generator and
provides a sequence of voltages to control the individual components of
the experiment. The system has 80 digital TTL outputs and 32 digital-to-
analog converters with a resolution of 0.3 mV and a range from −10 V to 10 V.
Furthermore, the system features analog-to-digital inputs, which are used for
monitoring purposes. The time resolution of the experiment control is set to
50 µs in order to allow for sufficiently long sequences. If faster switching of
control signals is necessary, we use dedicated function generators that are
triggered by the experimental control system. Details on the setup and the
programming of the system can be found in [64].

The vacuum chamber of the experiment was originally designed for a
mixture experiment and a comprehensive description can be found in [65,
66]. It is depicted in fig. 3.1 and consists of two chambers connected by a
differential pumping stage, which is implemented with a long and narrow
tube. The left side has an oven attached that is filled with a few grams of
potassium and heated to ∼ 70 ◦C. This provides a thin potassium background
vapour at a pressure of 10−7 to 10−8 mbar. From the background a 2D-MOT
is loaded that creates a beam of pre-cooled atoms. The 2D-MOT is aligned
such that the atomic beam travels through the differential pumping stage to
the right side of the setup into the science chamber to load a 3D-MOT. The
science chamber is realized as a glass cell that features wide optical access,
and it is under ultra-high vacuum with a pressure of less than 10−11 mbar.
The low pressure ensures low heating rates of the atomic cloud and allows for
the preparation of ultra-cold atomic samples.
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Figure 3.1: Vacuum system of the experiment. A cut through the system
is shown, viewing the vacuum setup from the top. The system is divided
in two regions by a differential pumping stage, which is implemented by a
long tube. The left region with the 2D-MOT chamber has a relatively high
pressure (10−7 to 10−8 mbar) since heating the potassium oven provides a thin
background gas. The right part of the setup has ultra-high vacuum which
is below 10−11 mbar. The experiments are performed in the science chamber,
which is a rectangular glass cell. It allows components to be installed close
to the atomic cloud and has good optical access. All dimensions are given in
millimetres.

41



Chapter 3. Experimental Tools and Sample Preparation

Figure 3.2: Setup of the magnetic coils. The vacuum system and magnetic
coils are depicted as seen from the top. On the left side, a set of elongated coils
is placed below and above the 2D-MOT chamber to provide a quadrupole
field for the 2D-MOT. On the right side, the two main coils (orange) are
placed below and above the glass cell, and they can provide a quadrupole
or a homogeneous field. In addition, a gradient in gravity direction can be
applied. To shift the centre of the magnetic field and to cancel residual offsets
and gradients, three sets of offset coils (blue) and two single gradient wires
close to the science chamber (red) are included.

3.2 Magnetic Field Setup

Different setups of magnetic coils are utilized to provide the magnetic field
for the experiment. This section gives an overview of the different setups and
discusses the main coils in more detail. The schematics of the driver circuits
that control the current in the main coils are presented in appendix C.

Figure 3.2 gives a top view of the experimental setup with the different
coils. On the left a set of elongated coils is mounted below and above the 2D-
MOT chamber. They provide a constant quadrupole field of about 14 G/cm
for the 2D-MOT. The coils are kept at constant current throughout the experi-
mental cycle, which reduces complexity, and as the coils are placed rather far
from the science chamber their influence is small and the residual magnetic
field can be compensated.

Around the science chamber on the right in fig. 3.2 three different coil
systems are installed. The main system is a set of two water-cooled coils, one
coil above the science chamber and one coil below (details in [60]). These
coils are very versatile and provide different magnetic field configurations.
The direction of the current in the upper coil can be reversed, and the current
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Figure 3.3: Wiring diagram of the main magnetic field coils. The current in
the main coils is controlled with field effect transistors (MOSFET) arranged
in an H-bridge and bipolar transistors (BJT) arranged in two passbanks to
achieve different configurations of the magnetic field. Switching the direction
of the current in the upper coil allows creating a homogeneous magnetic
background field for Feshbach tuning of the interaction strength (left side)
or a quadrupole field for the MOT (right side) with only one set of coils
(current flow indicated in red). The total current in the coils is controlled by
passbank 1, which regulates on half of the sum of the two current transducers.
Passbank 2 acts as a shunt for the lower coil and is regulated on the difference
of the transducers. A lower current in the lower coil leads to a gradient of the
magnetic field and allows to levitate the atomic cloud. Adapted from [35].

in the lower coil can be smaller than in the upper coil. Thus, the coils can
produce the magnetic quadrupole field for the MOT and the magnetic trap,
as well as the homogeneous field necessary for Feshbach tuning. Reducing
the current in the lower coil in the homogeneous field configuration creates
an additional gradient in gravity direction. Choosing the proper gradient
the gravitational force can be compensated and the atomic cloud is levitated
magnetically.

Besides the two main coils there are three sets of offset coils that allow to
apply a homogeneous magnetic field in the three spatial directions, and two
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wires that are set up close to the glass cell. When the main coils are switched
off the offset coils are used to cancel residual background fields in order to
achieve a vanishing magnetic field in the region of the atomic cloud. In the
quadrupole configuration, the offset coils are used to shift the zero-point of
the magnetic field. The two wires apply a gradient field which is used to
cancel residual gradients in the horizontal plane.

The electrical wiring of the main magnetic coils is depicted in fig. 3.3. The
two sketches show the current flow through the H-bridge and main coils. The
Feshbach configuration for a homogeneous field is depicted on the left side,
and the quadrupole configuration on the right side, where the direction of
the current in the upper coil is reversed. The currents are measured with two
current transducers, where the upper one measures the total current and the
lower one the current in the lower coil. The currents are regulated with two
passbanks (details on passbank in [60]). The total current through the coils
is controlled with passbank 1, which is regulated on half of the sum of both
current transducers. Passbank 2 reduces the current in the lower coil and is
regulated on the difference between the two current transducers. Details on
the driver circuits are presented in appendix C.

To allow for fast changes of the driving current, special precautions have
to be taken. The coils are equipped with TVS diodes that break down at a
high voltage UTVS, which is tolerable for the electric system, and thus enable a
fast dissipation of the energy stored in the magnetic field. However, the field
effect transistors (MOSFET) of the H-bridge have a parasitic body diode which
conducts if the electrical potential at the source is higher than the potential at
the drain. This can lead to a slow decay of the magnetic field as the energy is
dissipated by the body diode at a small voltage. We avoided this condition by
proper switching of the H-bridge, which is explained in fig. 3.4.

We calibrate the homogeneous field with microwave spectroscopy on the
transition between the states |g3⟩ and |g6⟩, and the error of the calibration is
estimated to be on the order of 0.2 G. Details on the procedure can be found in
[35]. For Feshbach tuning the main uncertainty is the position of the resonance,
which is given with an error of 1.5 G [17]. At the typical field strength of about
550 G the homogeneous field has a residual quadratic contribution from the
magnetic coils, which can not be suppressed with the offset coils and gradient
wires. The quadratic contribution can be approximated by a harmonic trap in
the horizontal plane with a frequency of f = 5.5 Hz and can be neglected for
the experiments presented in this thesis.
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Figure 3.4: Current switching with the H-bridge. Part a) shows the current
flow through the upper coil for a homogeneous field, with MOSFETs 1 and
3 conducting (indicated by the blue base), and the current I is indicated in
red. When the current is reduced fast, for example by toggling the state of
MOSFET 3 and thus breaking the electrical connection (part b), the energy
stored in the magnetic field maintains the current. As the left side of the
coil is still connected to U+ its potential is fixed. Due to the current flow the
potential on the right side of the coil has to rise. The potential U+ + δU at
the source of MOSFET 4 becomes higher than the potential U+ at its drain,
and if the difference is high enough the body diode of the MOSFET conducts.
The energy stored in the coil is dissipated by the small voltage drop UD over
the body diode, which takes rather long. To shorten the switching time, the
energy has to be dissipated with a higher voltage drop. This can be achieved
by toggling the state of MOSFET 1 and 4 in addition to MOSFET 3 (part c).
The potential on the right of the coil is thus fixed to U+, and the potential left
of the coil drops to U+ − ∆U due to the current flow. Since the potential at the
source of MOSFET 1 is kept lower than the potential at its drain, it maintains
isolation. The potential drops until the TVS diode breaks down and dissipates
the energy. With the large voltage drop UTVS a fast switching time can be
achieved, and this scheme is implemented in the control electronics of the
H-bridge (cf. section C.1)

.
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3.3 Laser Systems

The preparation of well stabilized laser light with the right frequencies
and powers is a further key ingredient to prepare ultra-cold samples. The
laser setup consists of two systems, one providing resonant light for radiative
cooling and trapping, the other for imaging of the atomic cloud. The imaging
system is described more closely in section 4.5. Two additional systems
generate far red-detuned and far blue-detuned light, respectively, which is
used for the dipole traps. A detailed description of the systems with technical
drawings of the optical setup is given in [35].

Resonant light is provided on the D2 and the D1 transitions by a system
which is split in three modules as depicted in fig. 3.5. These modules are
connected by optical fibres, which keeps the setup flexible and allows for easy
maintenance. The first module includes two external cavity diode lasers which
are stabilized using doppler-free absorption spectroscopy [67]. We modulate
the magnetic field at the spectroscopy cell to shift the resonance, generate
the error signal with a lock-in amplifier and lock the frequency using a PI
controller. The D2 light is locked onto the cross-over resonance of the ground
states, and the D1 light blue-detuned to this resonance which simplifies the
generation of light for the grey molasses. Both lights are amplified by home-
built fibre-coupled tapered amplifiers (TA) [68, 28].

Subsequently, the frequency of the light is shifted with acoutso-optic modu-
lators (AOM) [69] in a double-pass cat-eye configuration [70]. The AOMs shift
the light frequency from the crossover of the ground states to the red to reach
the resonance of the cooler transition and to the blue to reach the repumper
transition. The 2D-MOT, which acts as source for pre-cooled atoms, gets D2
cooling and repumping light which is overlapped with a 50/50 beam splitter
in an optical fibre. Both frequencies are amplified in one TA [28] leaving us
with 350 mW after the optical fibre at the experiment. The 2D-MOT needs a
separate push beam that contains about 7 mW D2 cooling light. For the MOT
we need D2 cooling and repumping light, and for the grey molasses D1 cool-
ing and repumping light. As MOT and grey molasses are prepared after each
other in the science cell and need the same polarizations, all four frequencies
are coupled into one optical fibre to be delivered to the experimental setup.
This is achieved by 50/50 beam splitters for cooling and repumping lights
and by a bandpass filter for D2 and D1 light as the frequencies are sufficiently
far apart. At the experiment we usually get for the individual frequencies a
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Figure 3.5: Preparation of resonant light. The two laser systems for D2 and
D1 light are divided in three modules that are connected via optical fibres to
simplify maintenance and make the system more flexible. In the first step two
lasers provide light for the D2 and D1 transition of potassium, and they are
frequency stabilized to the crossover of the respective ground states. Next,
the light is amplified with TAs. In the final step the frequencies are shifted
with AOMs to match the cooling and repumping transitions. The 2D-MOT
needs only D2 light, and the cooler and repumper frequencies are combined
in a fibre and subsequently amplified. The atom source is completed with a
push beam that contains only D2 cooling light. For the MOT setup all four
frequencies are combined in one optical fibre as the D1 light is needed in the
same place for the grey molasses (GM).
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power of 30 mW (D2 C), 20 mW (D2 R), 25 mW (D1 C) and 8 mW (D1 R).
For the D2 light the frequency and amplitude of the rf signal for the AOMs

can be set by the experiment control system using custom AOM drivers. The
preparation of the D1 light needs special attention as the Raman condition
has to be met precisely. This means when changing the frequency of the
AOM for the D1 cooling light the frequency for the repumping light has to
follow accordingly. We achieve exact matching by deriving the rf signal for
the repumping light from the rf signal of the cooling light by substracting a
fixed rf offset from a stable source [62].

Far-detuned light for the dipole traps is provided by high-power lasers, one
for red-detuned light with a wavelength of 1064 nm and one for blue-detuned
light at 532 nm. The light for the different dipole traps is derived using a flight
of half-wave plates and polarizing beam splitters. Subsequently, each beam
passes an AOM in single-pass configuration to regulate the power and shift its
frequency in order to avoid interference with other beams. For each beam the
zeroth order is blocked, and we guide the first order to the experimental setup.
The individual laser beams are power-stabilized, and the control electronics is
shown in fig. 3.6. We found adding an attenuator and amplifier to be crucial
to keep a constant load on the voltage controlled oscillator. We thus avoid
small drifts in frequency that would translate in position drifts of the laser
beams diffracted by the AOM.

The 1064 nm laser system generates two high power beams for the reser-
voir dipole trap with 12 W each, which are guided to the experiment with a
free-space setup. Further beams with a maximum power of 2 W are provided
via optical fibres for attractive dipole traps.

The 532 nm laser system is used for the repulsive traps formed with the
pancake lattice setup and the DMD. The systems receive a maximum of 2 W
and 1 W of power through liquid crystal fibres, respectively.

3.4 Preparation of the Ultra-cold Sample
To prepare a sample of ultra-cold atoms, all the different components need

to be well synchronized to enable proper cooling and trapping. In short,
the following steps are executed during a typical experimental run. A beam
of pre-cooled atoms is prepared with the 2D-MOT and collected in a MOT
in the science chamber. The atomic cloud is compressed, further cooled by
grey molasses cooling and loaded in a magnetic trap. The magnetic gradient
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Figure 3.6: Power control loop with AOM frequency generator circuit. The
left part shows a sketch of the laser setup and the right part the electronics
for the generation of one far-detuned laser beam. The light is diffracted by
an AOM, the zeroth order is blocked, and the first order is guided to the
experiment. There, a small portion is reflected onto a photodiode (PD) with
a beam splitter (BS). The PD signal is fed into a PI controller that can be
set with the experiment control and regulates the rf power of the frequency
generator with a voltage controlled attenuator (PAS-1). The rf signal is fed
in a switch that features a high attenuation and is then amplified to drive
the AOM. The frequency can be set with a potentiometer in the range of
50 MHz to 100 MHz. Note the pi attenuator (PIA) and amplifier (MAN-1)
that guarantee constant load on the voltage controlled oscillator (POS-100)
and thus a constant frequency. The rf components are manufactured by
MINICIRUITS and more parts are given in section B.2.

is increased to compress the cloud further, and the reservoir dipole trap is
ramped up and loaded from the magnetic trap. In the dipole trap the atoms
are cooled evaporatively while transferring them to an asymmetric dipole
trap. This trap helps loading the atoms in a single lattice site of the pancake
trap. The pancake trap provides confinement in gravity direction, and lateral
confinement is achieved by an attractive dipole beam or the repulsive light
from the DMD. The whole process takes about 20 s, and after performing
an experiment the density distribution of the atomic cloud is extracted with
absorption imaging. This heats up the cloud and destroys the BEC, and the
experimental cycle has to be repeated.

A detailed description of the experimental cycle and the preparation of a
two-dimensional condensate with harmonic confinement is given in [35]. This
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section reviews the different experimental stages and their implementation.
In the course of this thesis a DMD was implemented to achieve configurable
trapping potentials in the lateral direction. An in depth discussion of the
implementation of the DMD follows in section 3.5.

3.4.1 Magneto-optical Traps

The magneto-optical traps are implemented using the D2 transition of 39K
as discussed in section 2.5.1. The cooling and repumping lights are guided to
the setup in a single fibre and then split into two beams per axis by a cascade
of half-wave plates and polarizing beam splitters. Subsequently, the beams
are guided to their destination in a free-space setup. This non-retroreflecting,
non-fiberized setup allows for superb alignment, meticulous power balancing
and a high polarization stability.

2D-MOT The atom source of our experimental setup is a 2D-MOT, which
is loaded with 39K from the background in the 2D-MOT chamber. It consists
of two pairs of counter-propagating MOT beams with an 1/e2-diameter of
15 mm, and a set of elongated coils that provide a quadruple field of about
14 G/cm. This cools the atoms in the plane spanned by the MOT beams
and produces a beam of pre-cooled atoms perpendicular to this plane. An
additional fifth beam with 2 mm diameter that contains only cooling light
is shone onto the atoms towards the differential pumping stage. It plugs
one side of the 2D-MOT and accelerates atoms in the direction of the science
chamber. We found this beam to be very critical for proper loading of the MOT.
Furthermore, we discovered that adding repumping light to the push beam
makes loading the MOT significantly worse, most likely due to persisting
interactions with the atoms on the way to the science chamber and associated
heating.

MOT The beam of pre-cooled atoms is directed through the differential
pumping stage and captured in the science cell by a MOT. It utilizes three
sets of counter-propagating beams with 1/e2-diameter of 13.5 mm and a
quadrupole magnetic field with a gradient of about 7.5 G/cm in the strong
axis. The two vertical beams have to pass the objectives located above and
below the glass cell, and thus need a correction to be collimated in the atomic
region. For the upper objective this is realized with a static telescope. The
distances and lenses are presented in fig. 3.7, and a more detailed schematic
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Figure 3.7: Telescope for upper MOT beam. Together with the upper objec-
tive and the two lenses a telescope is formed, which retains the collimation of
the upper MOT beam and the imaging beam. The lenses are chosen to come
as close to a 1:1 telescope as spacial restrictions allow.

of the implementation is shown in fig. 4.12. The lower objective is central for
the imaging of the cloud and its path can not be obscured. Thus, a lens with
focal length f = 35 mm, which forms a 1:1 telescope with the objective, and a
mirror are moved in with pneumatic stages during the MOT phase to guide
the lower MOT beam. The MOT is loaded for about 3 s.

Compressed MOT To achieve a higher density we compress the atomic
cloud at the end of the MOT phase within 5 ms by ramping up the magnetic
field and ramping the frequencies further away from resonance, which results
in a more compact and colder cloud.

3.4.2 Grey Molasses

A phase of grey molasses cooling follows directly after the compressed
MOT. The two ground states are addressed on the D1 transition by laser light
in Raman condition. The choice of the D1 transition is typical for 39K as
discussed in section 2.5.2. Since the polarization is the same as for the MOT,
the D1 light is coupled into the MOT fibre as well and the same optics for
preparing the beams can be used. The cooling is initiated by switching off
the magnetic field and the D2 light, and switching on the D1 light instead.
The grey molasses stage takes 4 ms in total and is split in two parts. We start
with high power and frequencies close to resonance to achieve strong cooling
forces in the beginning and subsequently ramp the power down and the
frequencies away from resonance to achieve a low temperature in the end.
The D1 laser system is designed specifically to maintain the Raman condition
during this process as discussed in section 3.3. The stage is concluded by
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switching off the cooler light for the last 0.2 ms to pump all atoms to the F = 1
ground state manifold. With this cooling technique the atomic cloud typically
achieves a temperature of 8 µK. After the grey molasses stage the resonant
light is switched off and completely blocked by mechanical shutters on the
laser preparation table to ensure that the atomic cloud is not disturbed by
residual light.

3.4.3 Magnetic Trap

A magnetic trap is employed following the stages of radiative trapping
and cooling. It is implemented with a simple quadrupole field (22 G/cm
gradient in strong axis) by the main coils, and it traps the low-field seeking
substate mF = −1 as discussed in section 2.5.3. After the grey molasses stage
all substates are equally populated but the magnetic trap selects atoms in
mF = −1. Atoms in the other substates fall out of the trapping region due
to gravity and the atomic cloud is left in a pure spin state. Subsequently, the
gradient is slowly increased to 56 G/cm (strong axis) in order to compress the
atomic cloud which increases the temperature of the atoms to typically 60 µK.

3.4.4 Dipole Traps

For cooling to degeneracy and the subsequent experiments the atoms are
held in different dipole traps generated by attractive 1064 nm or repulsive
532 nm light. We start by loading the atoms into the reservoir trap from the
magnetic trap by slowly ramping up the laser power and ramping down the
quadrupole magnetic field afterwards. Then, we switch the H-bridge and
apply a homogeneous background magnetic field on the order of 550 G to tune
the interaction to about 175 a0 for evaporative cooling. The cooling process is
enforced by lowering the depths of the dipole traps. Different traps are used to
keep the high density of the atomic cloud and to achieve the two-dimensional
geometry in the end. We shortly discuss the different traps, the evaporation
strategy and the final preparation of the BEC. More information, especially on
the mounting of the traps and the interferometer setup for the pancake trap
can be found in [35].

Reservoir Trap To achieve a large trapping volume the attractive reservoir
trap consists of two far red-detuned beams crossed under an angle of 10◦ in
the horizontal plane. The beams have a waist of 50 µm and reach a power of
up to 12 W each.
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Condensor, Kompressor and Pancake Trap We use two more attractive
traps with tighter focus, called the condensor and kompressor. They have a
circular waist of 35 µm and an elliptical waist of 17 µm/51 µm, respectively.
The waist of the kompressor beam is flattened in gravity direction to load
a single lattice site. The beams are crossed under an angle of 10◦ in the
vertical plane and the kompressor is aligned perpendicular to gravity. Each
beam carries up to 2 W of power. Furthermore, a repulsive lattice, called
pancake trap, provides trapping in gravity direction. It is formed with an
interferometer setup, the distance between the repulsive sheets is 5 µm and the
trapping frequency in gravity direction is 1.5 kHz. For increased stability the
three traps discussed in this paragraph are mounted on a massive aluminium
wedge, which ensures common motion.

Evaporation The process of evaporation consists of three stages. We start
with the atomic cloud being held in the reservoir trap and the condensor,
which cross under an angle of about 90◦. The reservoir trap is ramped down
by 90 % while the intensity of the condensor is kept constant. Next, the
reservoir traps are ramped down completely while the condensor is ramped
down by 94 %. Simultaneously, the kompressor is ramped up to the same
intensity as the condensor. The atomic cloud is now held by condensor and
kompressor, and a BEC is formed by ramping down the intensity of both
beams further.

Final Preparations After the BEC is formed we levitate the atomic cloud
magnetically and change the background magnetic field to reduce the in-
teraction strength. The pancake trap is ramped up, and a single site of the
pancake lattice is loaded as the kompressor ensures that the atomic cloud is
small enough in gravity direction. At this point we ramp down the attractive
dipole traps and the atomic cloud is held by the curvature of the homoge-
nous magnetic field in lateral direction. The interaction strength is reduced
further to reduce the space occupied by the atomic cloud in the harmonic trap.
Next, we switch on the DMD with a mask that resembles a big quadratic box
to capture the atomic cloud. Subsequently, we adiabatically transform the
mask to reach the desired potential. The optical setup for the DMD and the
quasi one-dimensional trapping is discussed more closely in the next section.
The preparation with harmonic trapping in lateral direction is achieved in a
slightly different way which is discussed in [35].
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3.5 Arbitrary Trapping Potentials in Two
Dimensions

The variants of dipole traps are as wide-ranging as the amount of optical
elements one can use to sculpt the shape of laser beams. One particularly
versatile element is a digital micromirror device (DMD), which consists of
a huge amount of small mirrors that can be addressed individually [48].
Typically, they are small squares that can be tilted along their transverse axis
by ±12◦ and can thus be configured to reflect incident light into one or the
other direction. In the context of dipole traps this can be used to provide
configurable trapping potentials in two dimensions [18].

The first part of this section shows our implementation of a DMD in
direct imaging configuration. The chip has 2560 × 1600 mirrors on an area of
19.4 mm × 12.1 mm, and we typically use the central square with size of the
short axis. It is illuminated with 532 nm light and the reflection is demagnified
by about a factor of 90 onto the atomic plane. Thus, we can manipulate the
atoms in a region of about 130 µm × 130 µm. More details about the design
and first tests of the setup are presented in [63].

Since the single mirrors are demagnified below the resolution of the imag-
ing system they have to be convoluted with the point spread function of the
system (cf. section 4.3.1), which leads to averaging over several pixels in
the atomic plane. This can be exploited to prepare potentials that are not
limited to regions with and without light, but allow for grey scales. We start
by preparing masks for the DMD as grey scale images. In general, the surface
of the DMD has to be treated as a grating, and the grey scale image has to be
scaled with the square-root to account for interference effects. Subsequently,
the image is binarized using the Floyd-Steinberg algorithm, which scans over
the pixels and locally redistributes any rounding errors to surrounding pixels
to get a dithered image. The resulting grey scales in the potential are impor-
tant to prepare flat density distributions. It allows for the compensation of
errors such as the non-uniform illumination of the DMD. Details about the
algorithm can be found in [63].

In the second part of this section we discuss the preparation of a quasi one-
dimensional BEC with the help of DMD and pancake trap, and characterize
the atomic cloud. The preparation procedure sets the foundations for the
experiments on physical computing, which are presented in chapter 5.
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3.5.1 Implementation of the DMD

The optical setup for the creation of a sculpted light beam with the DMD
is placed on a breadboard, which is located above the science cell. A sketch
of the setup located on the breadboard is depicted in fig. 3.8. The last parts
of the DMD setup are not placed on the breadboard. They include the optics
for overlapping of the beam from the DMD with the other vertical beams for
MOT and imaging, and these components are shown in fig. 4.6. The objective
acts as the last telescope lens, and it is discussed more closely in section 4.3.1.

We start with blue-detuned laser light from the high-power laser (cf. sec-
tion 3.3), which is guided to the setup with a photonic crystal fibre providing
up to 1 W power of 532 nm light. Its polarization is cleaned with a Glan-Taylor
prism and a small part is coupled out onto a photodiode. The signal is fed
into a PI controller, which stabilizes the laser power with an AOM setup. Sub-
sequently, the beam is widened to a diameter of about 12 mm with a Galilean
telescope to cover the central square of the DMD chip. The chip is mounted
such that the tilt axis of the mirrors is aligned in gravity direction and the
direction of the outgoing beam is perpendicular to the mounting plane of
the individual mirrors. This ensures that all mirrors are in the focus of the
subsequent imaging system. After being shaped by the mirrors of the DMD,
the light is demagnified by a factor of about 90 with two 4f telescope setups.
The first demagnifies the image by a factor of 4 and it is used for spatial
filtering. This is necessary since the DMD acts as a grating and creates higher
diffraction orders. The filtering is realized with an iris in the Fourier plane
that blocks all but the central order. Thereafter, the remaining demagnification
is achieved with a second 4f telescope. The beam passes a lens with high
focal length, and it is then reflected out of the plane in gravity direction. With
the help of a dichroic mirror, which is transparent for the imaging and MOT
beams (cf. fig. 4.6), the DMD light is guided into the vertical optical axis of
the experiment. The second element of the telescope is the upper objective. It
completes the setup and projects the DMD image into the atomic plane. To
focus the DMD light with the upper objective we re-imaged the projection of
the DMD with the ProEM imaging setup. By removing the filters in front of
the camera the green light can be observed directly.

Our first results are depicted in fig. 3.9. They show single realizations of
the atomic cloud in the form of the logo of our institute and our experiment.
The cloud is not condensed since the pictures were obtained shortly after
building in the setup and no proper loading strategy was applied at the time.
However, they show the versatility of the setup and give an intuition of the
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Figure 3.8: Optical setup for imprinting potentials with the DMD. The setup
for the generation of the spatially modulated light with the DMD is located on
a bread board above the glass cell. The 532 nm light is guided to the setup with
an optical crystal fibre, its polarization is cleaned with a Glan-Taylor prism,
and a small amount of light is coupled out onto a photodiode to stabilize the
intensity with a PI controller. The beam is then magnified with a Galilean
telescope to cover the DMD, where it is shaped by the mirrors. When being in
the off-position, the light is reflected out of the beam path (dashed line). For
mirrors in the on-position the light travels further towards the atoms, and the
the light beam is shaped by these mirrors. In the sketch we only indicate the
outer shape of the beam with the grey area. The shaped beam is demagnified
by about a factor of 90 with two 4f telescopes, as indicated in the upper right.
The first setup demagnifies the image by a factor of 4 and contains an iris at
the focus to block all but the central mode. The second telescope is rather
long. It uses the objective as second lens to demagnify the image onto the
atomic plane, which is not depicted in the figure. Note that the last mirror,
which is shown in the sketch, reflects the beam out of the plane downwards
to the science cell. The beam is then guided onto the atoms with a mirror and
a dichroic mirror, as depicted in fig. 4.6. All measurements are in millimetres.
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Figure 3.9: Atomic cloud in complex trapping potentials. The images show
single realizations of our atomic cloud in the form of the logo of our institute
(left) and the experiment (right). Note that the atomic cloud is not condensed
as the images were taken just after building in the setup without thorough
optimization of the loading strategy. Blue corresponds to no atomic signal.

structures that can be imprinted onto the atomic cloud.
To calibrate the DMD setup we project a disk onto the atomic cloud as

shown on in the left panel of fig. 3.10. It has a diameter of 1100 pix, and a
distinctive pattern is formed by local maxima of the intensity. The features
allow both rotation and magnification to be identified. The right panel shows
an average over 100 experimental realizations of the atomic cloud. As before,
it is not condensed and the imaging is not yet perfectly aligned. We find that
the atomic cloud has a diameter of about 95 µm and extract a rotation angle of
42◦ from the position of the holes. The total demagnification from the DMD
chip is extracted to be 89, which means that one pixel has a side length of
about 0.09 µm in the atomic plane. This is well beyond the resolution of the
objective and its point spread function averages over roughly 7 neighbouring
mirrors (cp. section 4.3.1), thus allowing for grey scale images as discussed
above.

3.5.2 Preparation and Characterization of the Quasi
One-dimensional BEC

Once the BEC is created as discussed in section 3.4 we can transform its
shape in two dimensions with the DMD. We start with a big square mask to
capture as many atoms as possible and slowly reduce its size. The sequence is
shown as a flip book in the bottom left corner, starting at page 14. Every fourth
image is shown, and black pixels correspond to mirrors in the on-position. The
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Figure 3.10: Calibration of the DMD. The left image shows a cut-out of
the DMD mask which imaged into the atomic plane. In the black region
mirrors are turned off (no light) and the in the white region light is present.
The resulting density distribution is depicted in the right image, which is an
average over 100 experimental realizations (blue corresponds to no atomic
signal). As before, the cloud is not in a condensed state. By mapping the holes
onto each other we find that the image of the DMD is rotated by 42◦ which
results from the mounting of DMD with respect to the atomic plane, and it is
demagnified by a factor of 89. The size of a single pixel corresponds to about
0.09 µm in the atomic plane, well beyond the resolution of our objective. Thus,
multiple pixels are averaged by the point spread function which allows for
the generation of grey scales.

final mask for the elongated rectangular box trap is depicted in fig. 3.11 b). It
results from binarizing the image shown in panel a) with the Floyd-Steinberg
algorithm. This image is derived from a homogeneous box with the inner
size of 1000 pix × 40 pix and a border of 40 pix width, which corresponds to a
box of 87.5 µm × 3.5 µm in the atomic plane. We multiply correction factors
necessary for flatness (details in paragraph below) and scale the image to a
maximal value of 1/3. This allows a background potential to be applied to
the atomic cloud while scaling the height of the box walls accordingly (cf.
section 5.2). Panel c) shows a mean image of the resulting condensate.

Correction Factors To achieve a flat density distribution the intensity of the
box walls has to be similar along the trap. Due to the finite resolution of
the optical system that projects the mask in the atomic plane the walls are
broadened and extend towards the atoms. An inhomogeneous intensity can
thus lead to locally varying trapping potentials. To account for the inhomo-
geneous illumination of the DMD with a Gaussian beam we take an image
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Figure 3.11: DMD mask for the elongated box trap and quasi one-
dimensional condensate. We start with a uniform box and scale it by cor-
rection factors to cancel the uneven illumination of the DMD chip and other
errors. The result is presented in part a), and the image is scaled to a value
of 1/3 at maximum to allow for potential shifts as performed in section 5.2.
Subsequently, the image is binarized with the Floyd-Steinberg algorithm to
produce a mask for the DMD, and it is depicted in part b). Panel c) shows the
resulting density distribution averaged over 50 realizations.

of the DMD with all mirrors in on-position with the ProEM imaging system
(filters removed) and record the intensity distribution. A two-dimensional
Gaussian function is fitted to this distribution (see fig. 3.12 a). When designing
a mask for the DMD this correction is divided out to level the light intensity.
The effect on the mask can be seen directly by comparing the wall height in
fig. 3.11 a) to the shaded area in fig. 3.12 a), which is the position of the box
trap on the DMD chip. To achieve a flat density distribution further correc-
tions are necessary. We prepare a condensate with the mask, sum its density
distribution along the short axis and quantify deviations to a flat distribution.
The resulting deviations are smoothed with a Gaussian filter and multiplied
to the long axis of the mask as a correction factor. We repeat the procedure
and find sufficient convergence after two iterations. The resulting correction
factor is displayed in fig. 3.12 b) and leaves us with the approximately flat
distribution depicted in fig. 3.11 c).

Characterization The atomic cloud has a length of lBEC = 85 µm, and we
estimate the chemical potential µ in the following. Imprinting a phase on

59



Chapter 3. Experimental Tools and Sample Preparation

Figure 3.12: Correction factors for DMD masks. To receive a flat density dis-
tribution the walls of the box trap need to have a constant intensity along the
atomic cloud. Part a) shows the correction factor for the uneven illumination
of the DMD. We measure the intensity reflected by the DMD with all mirrors
in on-position with the ProEM imaging system (filters removed) and fit a
two-dimensional Gaussian to the distribution (scaled to one). This correction
is divided out when designing a mask on the DMD to receive equal intensity
over the mask. The resulting grey scale image is subsequently scaled to one to
get the maximal intensity. The shaded area shows the mask for the elongated
box trap. Part b) depicts an additional correction factor which is multiplied
to the long axis of the mask. The factor is necessary to achieve a flat atomic
distribution, and it is calculated in two iterations from comparing images of
the atomic cloud to a uniform distribution.

a part of the atomic cloud produces over- and under-densities that travel
along the cloud. The procedure for the phase imprint is explained in detail in
section 5.2, and the resulting density distribution and its time evolution are
depicted in fig. 5.5. Since small perturbations on the atomic cloud travel with
the speed of sound cs we can extract this quantity by tracking the movement
of the density peak. We measure the travel distance with evolution time for
different positions of the imprinted phase jump. The results are depicted in
fig. 3.13. A linear fit yields the speed of sound,

cs = 3.5 µm/ms , (3.1)

and following eq. (2.17) we can directly derive the chemical potential

µ = mc2
s = 1.2 kHz . (3.2)
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Figure 3.13: Estimation of the speed of sound. We track the movement of
the over-density in the density profile after imprinting a phase on the atomic
cloud. The procedure is discussed in section 5.2 and a typical evolution is
depicted in fig. 5.5. We extract the distance that the over-density travels in a
specific time. The speed of sound is given by the slope of a linear fit which
yields cs = 3.45 µm/ms.

Comparing the chemical potential to the trap frequency allows us to judge
how far the system is in a one-dimensional regime. In gravity direction the
trap is provided by the pancake lattice, and its trap frequency of 1.5 kHz is
higher than the chemical potential. The first excited oscillator mode is at a
frequency of 3/2 × 1.5 kHz = 2.3 kHz which is twice the chemical potential.
Thus, the trap should suppress higher oscillator modes in gravity direction.
To evaluate the confinement in the short direction of the trap in plane we
sum the image fig. 3.11 c) along the long axis. For the short axis we find a
width of about 6 µm, which can be compared to the healing length of the
system (cf. eq. (2.13)). With the chemical potential estimated above we get
a healing length of ξ = 3.3 µm, which is about half the system’s width and
suggests that the system is well confined in this direction. Moreover, the
experiments performed in the elongated box trap take place predominantly
in the limit of low spatial frequency, and we did not observe excitations in the
short direction. We thus treat the atomic cloud as quasi one-dimensional.

Finally, we calibrate the dipole potential caused by the light of the DMD
to the chemical potential. After loading the atomic cloud in the elongated box
trap we slowly ramp up a local potential which has the form of a Gaussian in
the long direction and is constant in the short direction of the trap. Figure 3.14
a) shows the resulting normalized density distributions for different relative
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Figure 3.14: Calibration of the DMD potential. In the middle of the other-
wise dark background of the elongated box trap we adiabatically ramp up a
Gaussian of relative intensity ι. Panel a) shows single shots of the resulting
normalized density profiles with the corresponding dip. We fit a Gaussian
to the dip and extract the value of the minimum. The results are depicted
in panel b) and the expected linear behaviour between the potential and the
relative light intensity can be observed. We fit a linear function which is fixed
to one for ι = 0. At a value of ι0 = 0.35 the peak displaces all the atoms and
dipole potential of the light thus equals the chemical potential.

intensities ι (height of the peak relative to the height of the box wall). Increas-
ing ι successively, the atomic cloud is eventually displaced completely. We fit
a Gaussian to the dip and extract the depth of the minimum, which is plotted
in part b) against the relative intensity ι. A linear fit yields a value of ι0 = 0.35
for full displacement of the atomic cloud. The DMD was illuminated with
a laser power of PDMD = 0.2 W for the measurement, and we estimate the
calibration factor to be

cL = µ/(ι0 PDMD) = 17 kHz/W . (3.3)

With this factor we can calculate the height of the box walls, which is 3.4 kHz.
Note that the potential of the light might be slightly over-estimated since the
displacement of the atoms by the Gaussian slightly increases the chemical
potential of the atomic cloud. We assume the calibration to be valid along the
whole cloud as the correction factors ensure a flat density distribution, which
should correspond to similar light intensities in the atomic plane.
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CHAPTER 4
Absorption Imaging at High

Magnetic Field

Working with a dilute cloud of ultra-cold atoms inside a vacuum chamber
makes direct measurements challenging. Two widely used techniques to
extract the density distribution of the atoms are fluorescence and absorption
imaging [51]. For fluorescence imaging, resonant light is applied to and
absorbed by the atoms, and one measures a portion of the photons that are
re-emitted by the atom in random directions with a camera. We use this
technique mainly for monitoring the MOT, but also investigated possibilities
for imaging in the regime of few atoms [71]. For absorption imaging, the beam
of resonant light is imaged onto the camera after hitting the atomic sample. By
comparing this perturbed beam with a reference beam without atomic signal,
the density profile of the cloud can be extracted. For our experiments we
commonly use absorption imaging, and its application and implementation
in our setup is the main topic of this chapter.

The first part discusses the requirements for proper imaging of the atomic
sample, in particular the need for closed cycle transitions. An absorption
imaging scheme is presented that realizes such an approximately closed
imaging cycle at high magnetic field using two atomic transitions. Recently,
this scheme has been developed for fluorescence imaging [72]. In this thesis we
show that it can be adapted to absorption imaging of dense atomic clouds. We
investigate its efficiency by varying the intensity ratio of the two transitions,
and show that it can be reduced to an effective two-level system for calibration.
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Furthermore, the imaging setup of the experiment is introduced. It con-
sists of different imaging systems to take pictures at various stages of the
experiment. The main system (ProEM imaging) features an objective with
a high numerical aperture and allows taking detailed images of our quasi
two-dimensional BEC. The mechanical setup is described, the objective is
benchmarked and an overview of the alignment procedure is given. The
second high-resolution imaging setup (Pixis imaging) is discussed and the
design of its home-built objective is shown. Finally, the laser system for the
imaging setup is presented.

The setup and results discussed in this section build on the works of
our bachelor students that helped to investigate the effects of the multilevel
structure on the imaging processes [73, 74] and to set up the laser lock system
for imaging [75]. An overview of the setup and the laser system is also given
in [35], and the results on absorption imaging are published in [76].

4.1 Closing the Optical Cycle

To extract the in-situ density profile of the atomic cloud after the exper-
iment run with a high resolution, as many photons as possible should be
scattered in a short time and the measurement should take place immediately.
Thus, an imaging scheme that features a closed optical cycle is desirable to
avoid losses into dark states that can not be addressed by the imaging light.
First, we shortly introduce our imaging scheme for vanishing magnetic field
and then discuss imaging at a high field. The experiments presented in this
part are performed with a three-dimensional cloud, and we use the ProEM
system for imaging (details in section 4.3). Parts of this section are taken or
adapted from our publication of the imaging scheme [76].

The atomic levels at vanishing magnetic field are given in fig. 2.1. In this
limit the energy eigenstates of the system are pure in the quantum numbers
F, mF, and states that only differ in the magnetic quantum number mF are
energetically degenerate. When imaging the atomic sample in the |F, mF⟩ =
|1,−1⟩ ground state on the D2 transition, atoms can also decay to the F = 2
ground state. We thus use both D2 lights with equal intensity to address both
ground states. This creates a closed cycling scheme at vanishing magnetic
field, as atoms from both ground states can be excited and scatter photons.

For non-vanishing magnetic field the degeneracy of the magnetic sub-
states is lifted. In the limit of very high magnetic field the states of both the
ground and excited state manifold are pure in the quantum numbers mJ , mI .

64



4.1. Closing the Optical Cycle

Figure 4.1: Dipole transitions of the D2 line at 550 G. The energy eigenstates
|g⟩ and |e⟩ are depicted for the ground state S1/2 and the excited state P3/2
hyperfine manifold, respectively, and the atoms are initially prepared in the
state |g3⟩ indicated with the black dot. For the ground states the quantum
number mJ of the predominant admixture is given, and the excited states can
be described by a single mJ , mI up to 10−4. The transitions between the ground
and excited states are indicated by lines, where transitions that stem from
the residual admixtures in the excited states are omitted. For each transition
the polarization is given by colour and its strength is displayed by the line
width. With a single frequency the best results for our ground state |g3⟩ are
obtained with the transition T1. However, the transition is not closed and
atoms can decay to the ground state |g5⟩. Adding a second frequency to drive
the transition T2 leads to an approximately closed scheme. Furthermore, the
closed transitions between the stretched states (TS) are indicated. Adapted
from [74].
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Therefore, a closed cycling transition can be easily found for any ground state.
However, at a magnetic field of 550 G, which is typical for our experiments,
the ground states are still mixed in mJ , mI . This increases the number of pos-
sible transitions, which are shown in fig. 4.1. Our initial state |g3⟩, which is
adiabatically connected to |F, mF⟩ = |1,−1⟩ at low field, is indicated with the
black dot. The figure shows that only the stretched states with maximal or
minimal magnetic quantum number feature a closed transition to an excited
state (TS). Interestingly, this holds for all magnetic fields as the stretched
states are always pure in mJ , mI due to its unique mF. This transition is com-
monly used for caesium experiments, where an efficient pumping scheme to
a stretched state exists [77, 78]. However, such a scheme is not available in
general and often the choice of the atomic ground state is fixed, for example
when using Feshbach resonances. Ramping down the magnetic field and
imaging the atoms at a vanishing field is not possible as it takes too long and
several Feshbach resonances have to be crossed, which makes the extraction
of a high quality in-situ image of the density distribution impossible. This
leaves imaging the atomic cloud at high field as the only option.

4.1.1 Scheme for High Field Imaging

This section introduces a four-level imaging scheme that results in an
approximately closed optical cycle at sufficiently high field. To underline
its advantages, fig. 4.2 a) compares the absorption signal for imaging at a
magnetic field of 550 G when using a single transition (red points) to the
improved scheme that exploits two transitions (blue points). Note that in the
latter case both imaging lights are overlapped at a polarizing beam splitter and
both fall on the camera. While the scattering vanishes for a single frequency
after few microseconds, a significantly enhanced signal is achieved when
imaging on both transitions. The number of scattered photons is estimated by

Nscatt = −G(C f − Ci), (4.1)

with C f and Ci the number of integrated counts of the images on the camera
with and without atoms, respectively. For both images the CCD offset has been
subtracted. Moreover, the images are normalized to each other by comparing
a region without atomic signal to account for fluctuations in the imaging light
intensity. The factor

G = 1.07 · 0.89 / 0.8 / 0.77 (4.2)
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Figure 4.2: Absorption imaging at high field and imaging scheme. Part
a) compares the number of scattered photons Nscatt when imaging with a
single laser frequency (transition T1, red points) to imaging with two frequen-
cies on both transitions T1 and T2 (blue points). Whereas the first levels
off within ∼ 5 µs, a significant enhancement can be observed for the lat-
ter. The difference is clearly visible in the absorption images of the atom
cloud after 20 µs (same colour scale used for both images, dark blue cor-
responds to no scattered photons). Part b) shows the energy eigenstates
relevant for the imaging scheme. Transition T1 excites atoms form the ini-
tial state |g3⟩ =

√
p |−1/2,−1/2⟩+

√︁
1 − p |1/2,−3/2⟩ marked by the black

dot to the excited state |e3⟩ ≃ |−3/2,−1/2⟩. The basis
⃓⃓
mJ , mI

⟩︁
is used here

and p = 0.98 at a magnetic field of 550 G. While most of the atoms decay
back to the initial state (dashed arrow), a small leakage populates the state
|g5⟩ =

√
p |1/2,−3/2⟩+

√︁
1 − p |−1/2,−1/2⟩ (dotted arrow). This state is

not addressed by the light resonant with transition T1, leading to the ceasing
scattering shown in part a). However, adding a second laser frequency to drive
the transition T2 couples the state |g5⟩ to the excited state e13 ≃ |3/2,−3/2⟩.
As atoms can decay back only into the states |g3⟩ and |g5⟩ a closed optical
cycle is obtained if the excited states are sufficiently pure in the quantum
numbers mJ , mI . Adapted from [76].
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includes from left to right a correction for the solid angle of the objective, the
gain and quantum efficiency of the camera, and the reflection loss along the
imaging path.

The different results for the absorption signal can be understood from a re-
duced level scheme, which is displayed in fig. 4.2 b). Using a single frequency
to image the atoms in the initial state |g3⟩ ∼

⃓⃓
mJ , mI

⟩︁
= |−1/2,−1/2⟩ the best

results are obtained by driving the transition T1 with σ− light to the excited
state |e3⟩ = |−3/2,−1/2⟩. The nearby states (< 15 MHz) are not addressed
as mI is not changed by electric dipole transitions and the energy eigenstates
of the upper hyperfine manifold are pure up to 10−4 in the mJ , mI-basis. How-
ever, the ground states are mixed in this basis and the two states relevant for
the imaging can be written as

|g3⟩ =
√

p |−1/2,−1/2⟩+
√︁

1 − p |1/2,−3/2⟩ ,

|g5⟩ =
√

p |1/2,−3/2⟩+
√︁

1 − p |−1/2,−1/2⟩ ,
(4.3)

where p = 0.98 at 550 G. Hence, the excited state |e3⟩ can decay back in the
initial state |g3⟩ and the dark state |g5⟩ as they both have an admixture of
the state |−1/2,−1/2⟩. Looking at the dynamics of a single atom, this 2 %
admixture corresponds to 34 scattering events until it has a probability of 0.5
to be in the dark state |g5⟩. Assuming a scattering rate of Γ/2, this corresponds
to a timescale of 1.8 µs, which is consistent with the 2.2 µs that can be extracted
from the red data points.

To enhance the signal we address the state |g5⟩ with a second laser fre-
quency. The transition T2 couples the ground state to the excited state
|e13⟩ ≃ |3/2,−3/2⟩ with σ+ light and closes the optical cycle to good ap-
proximation as shown in fig. 4.2 b). The blue data points in part a) confirm
that the atoms continue to scatter photons on the relevant timescale. We
expect to lose a small fraction of only 2 % of the atoms during a typical 10 µs
imaging pulse. Due to the limited purity of the excited states in the

⃓⃓
mJ , mI

⟩︁
basis they decay into the ground states |g2⟩ and |g6⟩, which are not addressed
by the imaging light. For typical imaging intensities off-resonant coupling to
other excited states is negligible as the closest transitions are detuned by at
least 350 MHz.

The imaging procedure discussed here can be generalized to all alkali-like
atoms, and it has been successfully used with lithium for fluorescence imaging
[72]. The ground states can always be written as a superposition of maximally
two

⃓⃓
mJ , mI

⟩︁
states. This is a consequence of the fact that the spin operator

Fz commutes with the Hamiltonian as shown in eq. (2.3). Since J = 1/2 for
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Figure 4.3: Optimization of the intensity ratio. The number of scattered pho-
tons is measured at different ratios r = I1/Itot and different total intensities
Itot = I1 + I2. The imaging pulse length is 10 µs, and the data points corre-
spond to total intensities of 23 mW/cm2 (triangles), 42 mW/cm2 (diamonds),
60 mW/cm2 (squares), and 79 mW/cm2 (circles). For the highest intensities
the largest signal is found at r ≃ 0.5. This optimum slightly shifts to larger
ratios for decreasing light intensities, as it takes a longer time to reach the
steady state. We compare the data to numerical solutions of the optical Bloch
equations for the four-level system, scaled by a global factor (solid curves).
Adapted from [76].

the ground states of all alkali atoms (i.e. mJ = ±1/2) there are maximally
two states with the same mF = mJ + mI . Except for the stretched states with
maximal |mF|, all states can be written in the form of Eq. 4.3, and the imaging
scheme can be applied.

4.1.2 Optimal Intensity Ratio and Calibration

In this section we investigate the optimal intensity ratio of the two fre-
quencies for the imaging scheme and showcase the calibration for a three-
dimensional trap geometry with different intensity ratios. When imaging with
high intensities, this calibration is important to obtain a linear measure for the
density, as the atomic system is saturable and thus responds in a non-linear
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fashion.
We measure the number of scattered photons Nscatt (as in eq. (4.1)) during

a 10 µs imaging pulse for different ratios r = I1/Itot. The intensities of the
two imaging transitions T1 and T2 are I1 and I2, respectively, and the total
imaging beam intensity Itot = I1 + I2 is kept constant. The results are shown in
fig. 4.3 for different total intensities. The solid lines are results from numerical
solutions of the optical Bloch equations for the four-level system. The curves
are calculated with the effective saturation intensity estimated below and
scaled by a constant factor (for details on the simulation see [74]). If transition
T2 is not driven (r = 1) the total signal is limited by the decay into the
dark state. Imaging without transition T1 (r = 0) results in no signal, as the
initial state of the atoms is not addressed by this light. For the highest imaging
intensities the maximum number of scattered photons is obtained at r ≃ 0.5, as
expected from the steady state solution. For smaller intensities, the optimum
is at higher ratios r. This results from the initial pumping dynamics starting
in the state |g3⟩. The atoms have to decay spontaneously to |g5⟩ and populate
it before the transition T2 can contribute. This happens on a timescale of a
few microseconds for high intensities and becomes more important for low
intensities as the length of the imaging pulse is kept fixed to 10 µs.

To describe the absorption of light by the atomic cloud, we follow the
method presented in [79] where each atom in the cloud is described as an
effective two-level system including the effect of saturation. The intensity loss
of the light beam can be described by

dI
dz

= −h̄ωγn , (4.4)

where ω is the frequency of the light, γ the total scattering rate and n the
atomic density [29]. Inserting eq. (2.7) for γ and assuming resonant light
(δ = 0) leads to

dI
dz

= −σ0n
1

1 + I/Isat
I (4.5)

with saturation intensity Isat and the resonant cross-section σ0 given by

σ0 =
h̄ω0γ

2Isat
=

3λ2
0

2π
, (4.6)

where λ0 and ω0 are the wavelength and frequency at resonance, respec-
tively. From eq. (4.5) we can recover the Beer-Lambert law in the limit of low
saturations I ≪ Isat, where the fraction approaches unity.

70



4.1. Closing the Optical Cycle

The atomic column density nc is obtained by solving the differential equa-
tion (4.5), which yields

nc =
∫︂

n dz =
1

σeff

[︄
ln
(︃

Ii

If

)︃
+

Ii − If

Ieff
sat

]︄
. (4.7)

Here, the final intensity If and the initial intensity Ii are the total intensities
measured via the signal on the CCD camera with and without the presence
of atoms, respectively. We replaced the cross-section and saturation inten-
sity by effective values that incorporate experimental discrepancies from the
theoretical values, leaving us with the effective scattering cross-section σeff
and the effective saturation intensity Ieff

sat = αIsat. In particular, the deviation
from the bare saturation intensity Isat of a single closed two-level optical cycle
captures effects of polarization, detuning fluctuations of the laser from atomic
resonance, and optical pumping effects.

To estimate the effective saturation intensity Ieff
sat experimentally, we take

absorption images for a constant atom number with different total imaging
intensities. The first term of eq. (4.7) can be estimated directly from the
number of CCD counts, Ii/If = Ci/Cf. For the second term we calibrate the
camera counts to the central intensity of the imaging beam. The effective
saturation intensity Ieff

sat is then inferred by calculating the column density nc
for different total imaging intensity Itot. For the correct Ieff

sat the column density
stays invariant, and the procedure is exemplified in the inset of fig. 4.4 for the
ratio r = 0.5. We find Ieff

sat = (18 ± 4)Isat, where Isat is the saturation intensity
of the bare two-level system.

To predict a value for the effective saturation intensity Ieff
sat in the steady

state on resonance we use that the coupled four-level system consists of two
standard two-level systems with equal Isat, which are only coupled to each
other via the incoherent spontaneous decay of their excited states. Thus,
no coherence is built up and the two subsystems can be described as being
independent. Here, Γ1→2 is the decay rate of the states |e3⟩ → |g5⟩ and Γ2→1
of |e13⟩ → |g3⟩ (cf. fig. 4.2 b). The decay rates between the two parts are
determined by the admixture 1 − p of the ground states, which gives the
probability for a decay, the populations ρ of the respective excited states and
the imaging light intensities. We get

Γ1→2 = (1 − p) ρe3

Γ
2

s(1)0

1 + s(1)0

, Γ2→1 = (1 − p) ρe13

Γ
2

s(2)0

1 + s(2)0

, (4.8)
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Figure 4.4: Calibration of the imaging system. For each ratio r = I1/Itot, the
effective saturation intensity Ieff

sat = αIsat is estimated such that the resulting
atomic column density nc is invariant under changes of the imaging intensity
Itot. The inset shows this procedure for r = 0.5. The theoretical predictions
obtained from the steady state solution and the numerical simulation of the
dynamics are depicted by the dashed and solid curves, respectively. The
experimental values are scaled by the mean of three points around r = 0.5
and the theoretical curves by their respective values at r = 0.5. The error bars
are estimated by bootstrap resampling. Adapted from [76].

where the saturation parameters s(1/2)
0 = I(1/2)/Isat contain the intensities of

the imaging light. In the steady state we have Γ1→2 = Γ2→1. Subsequently,
we describe the four-level system by an effective two-level system, where the
total photon scattering γeff is the sum of the photons scattered by the two
individual systems,

γeff =
Γ
2

s(1)0

1 + s(1)0

+
Γ
2

s(2)0

1 + s(2)0

=
Γ
2

seff
0

1 + seff
0

, seff
0 =

Itot

Ieff
sat

. (4.9)

Solving the resulting system of linear equations, we get an analytic solution
for the effective saturation intensity,

Ieff
sat(r) =

Isat

2r(1 − r)
, (4.10)
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which only depends on the ratio r of the intensities and the saturation intensity
of the bare two-level system Isat. In the case of r = 0.5 the populations in the
two coupled systems are equal and the effective saturation intensity is twice
the value of the single two-level system. For different intensities an imbalance
in population builds up which reduces the total scattering and thus increases
the effective saturation intensity.

We investigate the dependence of Ieff
sat on the ratio r experimentally. The

results are displayed in fig. 4.4, and they are compared to the analytical solu-
tion discussed before (dashed line). Furthermore, we performed numerical
simulations of the optical Bloch equations of the four-level system for different
ratios. The resulting relations between scattering and total intensity are scaled
to the two-level system, which yields an effective saturation intensity (solid
line, details in [74]). At the largest and smallest ratios, deviations between
experimental and analytic behaviour arise due to the initial population dy-
namics of the four-level system, which is captured well by the numerical
simulation. From r ∼ 0.4 to 0.6 the effective saturation intensity varies only
slightly, making the calibration of the column density robust against small
changes of the imaging intensities. The remaining deviation of Ieff

sat between
absolute experimental and theoretical numbers is attributed mainly to insta-
bilities of the magnetic field and imaging laser frequencies. Section 4.3.3 gives
a more recent calibration, where the effective saturation intensity is reduced
by a factor of 2.

4.2 Overview of the Imaging Setup

Different imaging systems are implemented in the experiment that allow
to measure the density distribution of the atomic cloud at the different stages
from multiple angles. We start by introducing the systems that are set up in
the horizontal plane, which are used to image the atoms from the side. An
overview is given in fig. 4.5. For the optimization and monitoring of the MOT
a Guppy and a Guppy Pro camera image the fluorescence signal of the atoms.
Both cameras are equipped with simple, commercial photography objectives,
as a big field of view is wanted and a low resolution is sufficient. The cameras
are mounted slightly out of the horizontal plane to get an impression of the
atom cloud’s shape. Furthermore, the fluorescence light of the MOT is imaged
on a photodiode with a single lens. This setup allows for constant monitoring
of the MOT fluorescence and enables easy logging of the signal. During the
late stages of the experimental cycle the photodiode also detects stray light
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Figure 4.5: Imaging setup in the horizontal plane. The atomic cloud (indi-
cated with the black dot) can be imaged with two cameras (Guppy and Guppy
Pro) during the MOT stage by collecting fluorescence light. The cameras
are tilted slightly out of the plane to allow for an impression of the cloud’s
shape, which is helpful during optimization. Furthermore, fluorescence light
is collected with a photodiode, which gives an easily accessible quantity for
permanent monitoring of the MOT. Absorption imaging provides a tool for
optimization of trapping and cooling at later stages of the experimental cycle.
A low resolution system is realized with a Guppy camera (magnification 0.9)
and the Pixis imaging with magnification 29.0 provides a high resolution
imaging system.
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from the dipole traps and is thus a useful tool to judge the current status of the
experiment. As it is prominently displayed on a voltmeter in the lab, many
technical or human errors can be excluded quickly while troubleshooting.

The two remaining imaging systems that are shown in fig. 4.5 are used
for absorption imaging predominantly. They are aligned with the horizontal
plane and therefore allow imaging of the atomic cloud perpendicular to
gravity direction. Thus, time-of-flight measurements can be conducted as the
atoms stay in focus while falling, which is useful for example to estimate the
temperature of the sample. Both imaging systems can be used at low and high
magnetic field, as the necessary lights for absorption imaging are all coupled
into all imaging fibres and can be switched electronically (see section 4.5).

One of the two systems uses a single lens to image the atomic cloud on
a Guppy camera. The magnification is calibrated using gravity and it is
approximately 0.9, which means the system is slightly demagnifying. It is
mostly used for optimization during early stages of the experimental cycle,
including the compressed MOT, the grey molasses, the magnetic trap, loading
of the crossed dipole trap, and early stages of evaporation.

The second system, called Pixis Imaging, provides high resolution absorp-
tion images of the atomic sample and is described more closely in section 4.4.

Furthermore, our experimental setup contains a third imaging system
oriented perpendicular to the horizontal plane and hence not shown in fig. 4.5.
It is called ProEM imaging and is introduced in the following section.

Technical details and a list of components can be found in section B.3.

4.3 ProEM Imaging

The ProEM imaging system is the main imaging system of the experimental
setup. It is aligned in gravity direction, which is necessary to image the
two-dimensional atom cloud trapped in the horizontal plane. Because of the
magnetic coils the available space in the vertical direction is rather limited and
multiple systems need optical access in this axis. In addition to the imaging
system this includes light from the DMD and the MOT beams. The way these
systems are combined is illustrated in fig. 4.6, and a detailed sketch of the
vertical dimensions is given in fig. D.3. Two identical objectives are placed
above and below the glass cell, where the upper one projects the light from
the DMD into the atomic plane and the lower one is used to image the atomic
cloud. The objectives are described more closely in section 4.3.1. They are

75



Chapter 4. Absorption Imaging at High Magnetic Field

mounted on translation stages that are home-built by the institute workshop.
The design as well as alignment strategies are discussed in section 4.3.2.

In this section we focus on the optical properties of the imaging system.
The laser beam for absorption imaging is shone onto the atomic cloud from
above. It is tilted with respect to the glass cell to avoid etalon effects. Two
lenses form a telescope with the upper objective, such that the beam is colli-
mated in the atomic plane (cf. fig. 3.7). Due to spatial restrictions there are two
individual secondary lenses for MOT beam and imaging beam, respectively,
and the exact setup is detailed in fig. 4.12. After passing the glass cell and the
atomic cloud the imaging light is collected by a custom-made, commercial
objective (designed and built by Special Optics). It is infinity-corrected and has
an effective focal length of feff = 35 mm. A secondary lens with a focal length
f = 1000 mm focusses the light on a ProEM camera. The lens is mounted on
a piezoelectric translation stage to adjust the focus of the system in a small
range. The relation between the shift of the objective and secondary lens is
elaborated in appendix A. In front of the camera an external shutter blocks
light during the experimental cycle and is opened before the images are taken.
It is not directly connected to the camera to minimize vibrations. Additionally,
a single-band bandpass filter blocks all light except for the 767 nm imaging
light and a 532 nm single notch filter blocks most of the high intensity DMD
light. Both are necessary because the mechanical shutter takes about 50 ms to
open, during which stray light from the dipole traps or DMD light could fall
on the camera. Figure 4.6 shows the path of the imaging beam in red, where
the red shaded area after the atoms is the absorption signal (signal of a point
source).

For the imaging sequence special precautions have to be taken. The camera
chip has a size of 1024x2048 pix and its lower half is blacked out to serve as a
storage register during the readout. In principle, the camera supports taking
two pictures shortly after each other. In this mode the first picture is taken
and immediately transferred to the lower half. A second picture can be taken
in the upper region while the slow readout of the first is still taking place.
However, we find that triggering the camera two times shortly after each
other, which means that the camera is reading out the first picture while the
second trigger arrives, leads to strongly enhanced fluctuations in a circular
region on the image. As a workaround, we trigger the second time only after
the first picture is read out as the exposed pixels of the upper region collect
the photoelectrons even without a trigger.

The magnification of the imaging system is calibrated exploiting the
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Figure 4.6: Vertical beam paths at the glass cell. The vertical beam axis is
shared among different systems. For absorption imaging a resonant laser
beam is shone on the atoms from above (red). The light is collected by the
lower objective and imaged onto a ProEM camera. An external shutter and
two filters block ambient light. Also from above, light from the DMD with a
wavelength of 532 nm is overlapped with the vertical axis by a dichroic mirror.
It is imaged with the upper objective onto the atoms as a repulsive potential.
From both sides, the MOT beams are shone onto the atoms during the early
phase of the experimental cycle. In the lower path, a retractable mirror and
lens are moved into the imaging path during the MOT stage (shaded position)
to ensure a collimated beam after the objective. In the upper path, the same is
achieved by a static telescope for both imaging and MOT beam. For spatial
restrictions both beams have an individual second lens, which is not shown
in this sketch.

77



Chapter 4. Absorption Imaging at High Magnetic Field

Figure 4.7: Spatial calibration of the ProEM imaging system. The left panel
shows two groups of atoms that move out from the condensate in the middle
of the picture after the application of a Bragg pulse (evolution time 3.5 ms).
On the right, the distance d of the atoms from the condensate is plotted versus
the evolution time t. With the velocity v of the atoms (see main text) the time
can be converted to the distance x covered by the atoms. The slope of the
linear fit reveals the calibration of the imaging system.

dynamics of the atomic cloud after a Bragg pulse. We illuminate the con-
densate for 0.3 ms with a retroreflected laser beam. It has a wavelength of
λ = 765.94 nm and a power of about 100 mW. The laser beam forms a stand-
ing wave with wavelength λ/2 and imprints this structure as a phase onto the
atoms. Thus, a momentum mode p = 2h/λ is excited. As shown in fig. 4.7 a),
atoms are ejected along the direction of the beam and move outward with
velocity v = p/m, where m is the mass of 39K. Part b) shows a plot of the dis-
tance d the atoms have moved in an evolution time t. From the wavelength of
the standing wave we can calculate the velocity of the atoms and convert the
time axis to distance covered by the atoms. The slope of a linear fit gives the
calibration of the imaging system with 0.45 µm/pix which leads to a 35-fold
magnification.

4.3.1 Characterization of the Objective

This section describes and characterizes the high resolution objective used
for the ProEM imaging system and the DMD assembly. The two identical
objectives are designed and manufactured by Special Optics, and a technical
drawing is given in fig. D.1. As illustrated in fig. 4.6, they are located above
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and below the glass cell, respectively, with a working distance of 3.43 mm air,
4 mm glass and 15 mm vacuum. Each objective has a numerical aperture of
0.5, the effective focal length is feff = 35 mm, and a total transmission of 0.91 is
stated in the specifications. The radius of the field of view, where the objective
is diffraction limited, is greater than 250 µm for 767 nm light and about 230 µm
for 532 nm light (calculations from the manufacturer). We measure the back
focus of the objective to be 7 mm behind the last surface, which coincides with
the end of the objective housing.

To characterize the performance of the objective, we estimate the resolution
according to the Rayleigh criterion [80]. The response of a diffraction-limited
imaging system to a point source is given by an Airy function, and it is called
the point spread function (PSF) of the system. For such a system the Rayleigh
criterion defines the resolution by the distance between the maximum and first
minimum of the PSF. Experimentally, we provide the point-like source with a
gold foil target, which has holes of 650 nm diameter arranged in a grid pattern
with a spacing of 20 µm [81]. The setup for the resolution measurement is
shown in fig. 4.8 a). The gold foil target is illuminated with a laser beam and
imaged with the objective. To emulate the glass cell, a glass window with
the same thickness and type of glass is placed at the right position between
the gold foil and the objective. After passing through the system, the light
is re-imaged onto a Guppy Pro camera with a secondary lens ( f = 500 mm).
We start with our main wavelength of 767 nm. An example image is shown
in fig. 4.8 b), where each bright dot belongs to a hole in the gold foil. From
the distance between the holes we can calibrate the magnification of the
imaging system. In the next step, a two-dimensional Airy function is fitted
to each hole and the resolution R is estimated as the distance between the
maximum and the first minimum of the Airy function. We get a resolution of
R = (0.97 ± 0.02)µm as indicated by the central value for ∆d = 0 in fig. 4.8 c).
This result is close to the theoretically expected value for a diffraction limited
system,

Rdiff = 1.22 λ/(2 NA) = 0.936 µm , (4.11)

where λ is the wavelength of the light and NA the numerical aperture of the
setup, which is limited by the entrance pupil of the objective. The small devi-
ation of the experimental value might stem from an imperfect alignment of
the focus, which is adjusted by minimizing the spot size by eye. Furthermore,
we test the robustness of the system against the position of our atomic cloud
in the glass cell. This is emulated by shifting the position of the glass plate
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Figure 4.8: Measurement of the resolution for the ProEM objective. Part a)
shows the measurement setup. A gold foil target is illuminated with a laser
beam and acts as a point-like source. Subsequently, the light is diffracted
by a glass plate mimicking our glass cell and collected by the objective. A
secondary lens focusses the light on a Guppy Pro camera. A cut-out of an
image of the gold foil target is shown in part b) where the bright spots are the
images of the point-like sources. Fitting a two-dimensional Airy function to
the spots, the resolution R according to the Rayleigh criterion can be extracted.
Part c) gives the resolution when illuminating the target 767 nm and 532 nm,
respectively, and the dashed lines indicate the diffraction limits. For 767 nm
we mimic a shift of the atomic cloud in the glass cell by shifting the glass
plate, and extract the resolution for different positions. Within the range of
3 mm no significant deviation in the resolution is observed. Overall, we get a
resolution close to the diffraction limit, and the small deviation might result
from an error of the focus, which was adjusted by eye.
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and re-focussing the objective on the gold foil. Figure 4.8 c) shows that the
absolute position of the glass plate is not critical, which indicates that the
atomic cloud does not need to be accurately centred within the glass cell to
reach a good performance of the imaging setup.

Finally, we test the objective with laser light of the wavelength 532 nm,
which we use to implement a dipole trap with the DMD. The result is shown
in the right plot of fig. 4.8 c) and gives a resolution of R = (0.72 ± 0.03)µm.
The deviation from the theoretical value Rtheo = 649 nm might result from the
size of the holes in the gold foil, which become resolvable for green light as
their size is bigger than the wavelength. Furthermore, the focus was again
adjusted by eye, which might lead to a small imprecision.

4.3.2 Imaging Assembly

To mount the objectives below and above the glass cell, we designed a
holder tailored to the requirements on alignment and space available. A
sketch of the setup is shown in fig. 4.9 and technical drawings of the parts can
be found in section D.4. The holder is fixed to the table with three legs, two
of which are located close to the vacuum chamber and one is positioned in
front of the glass cell. The latter is placed in the area that is already optically
blocked by the holder of the dipole traps. This way, the legs of the holder
do not block any optical access. An upper and a lower support platform are
screwed onto the legs. The lower platform consists of two parts to allow the
assembly of the part without dismantling the holder of the magnetic coils.
Both objective holders feature a tip/tilt stage with differential micrometer
heads. They allow for coarse and fine adjustment, where the latter has a travel
range of only 25 µm per revolution. Additionally, the upper part includes
an x/y-translation stage with a range of 6.5 mm for each axis. The legs are
manufactured from brass as it is rigid and non-magnetic, and the holder is
made out of PEEK to inhibit eddy currents and residual magnetization of the
material. The commercial components such as springs and micrometer heads
are listed in table B.4.

The objective features an outer thread with a small slope. It is screwed into
the tip/tilt stage, which has a matching inner thread, and is fastened with a
lock nut. This allows for easy adjustment of the approximate focus position
and simplifies the installation.

In the following the installation process of the lower objective is described.
First, we set up a resonant guide beam to support the adjustment (cf. fig. 4.12).
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Figure 4.9: Objective holder and magnetic coils around the glass cell. Close
to the glass cell in the centre of the sketch the main magnetic coils are mounted.
Their front legs are placed such that they are in line with the edges of the glass
cell when looking at the atomic cloud to minimize the blockage of optical
access. The objectives are mounted through the coils above and below the
glass cell on a tip/tilt/translation stage and a tip/tilt stage, respectively. The
holders are manufactured from PEEK to prevent eddy currents and residual
magnetization. They are mounted on three posts to keep most optical access,
where the right post fits in a gap in front of the holder for the dipole traps (not
shown here).

This beam is aligned to hit the atomic cloud and to be parallel to gravity. The
latter is achieved by retro-reflecting the beam off a methanol surface back into
the fibre-coupler. We choose methanol because of its low surface tension. The
alignment of the beam is marked with an iris behind the planned position
of the objective. Next, the objective is screwed in the holder. We place a
glass plate on top of the objective and adjust the tip/tilt stage such that the
guide beam is back-reflected into the fibre-coupler. Hence, the objective is
aligned with gravity. Next, a lens is fixed on the back of the objective to form
a one-to-one telescope. The holder with the objective is shifted such that the
guide beam is centred on the iris again, which ensures proper alignment with
the optical axis. For a first adjustment of the focus we measure the distance
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between glass cell and objective, and set it to the theoretical working distance.
A fine adjustment of the focus is achieved with the atomic cloud. A density dip
is imprinted in the condensate with a dipole beam and we optimize the focus
for minimal size with the micrometer screws and the secondary lens. The
upper objective is built in similarly, where the remaining relative translational
alignment is carried out with the micrometer screws.

The holder has proven to be very stable. After initial focussing with the
secondary lens no substantial shift in the focus was observed. Keeping as
much optical access available as possible is helpful for every-day lab work
and further upgrades of the setup.

4.3.3 Calibration

For absorption imaging with high intensities it is important to calibrate
the system for the non-linear response of the atomic cloud. Section 4.1.2
discusses the calibration method for our imaging scheme and showcases it
for a three-dimensional cloud. In this section we perform the calibration for
a quasi two-dimensional atomic cloud with harmonic confinement in the
radial direction and describe the measurement of the atom number for this
configuration.

For the calibration we take absorption images with different total imaging
intensities Itot. The quasi two-dimensional atomic cloud is trapped in the
pancake lattice with harmonic confinement in radial direction (cf. section 3.4).
All images should yield the same atomic column density nc for the correct
calibration factor, and fig. 4.10 shows the results for three different factors α (cf.
section 4.1.2). The best result is obtained for α = 7.3± 0.1, where we estimated
the error by bootstrap resampling. The lower value for α in comparison to the
calibration for the three-dimensional cloud in section 4.1.2 implies that more
photons are scattered at a given imaging intensity, which leads to a better
quality of the imaging signal. We attribute this enhancement to improved
stability of the magnetic field and the imaging lasers themselves.

To extract an absolute atom number from this signal with calibrated non-
linearities, a value for the effective cross-section σeff is needed. It can be
obtained by detection of atomic shot noise [82] or a comparison of the experi-
mental data to theory predictions. For this comparison we perform systematic
measurements of the quasi two-dimensional cloud with harmonic confine-
ment for different interaction strengths and different radial confinements.
Both parameters change the radial expansion of the cloud in a characteristic
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Figure 4.10: Calibration for two-dimensional atomic cloud. The cloud is
confined in the radial direction with a harmonic trap (cf. section 3.4). We take
absorption images with different total imaging intensities Itot. As the atom
number stays constant, the atomic column density nc should as well. This
is ensured by choosing the right calibration factor α as depicted by the three
examples. The best results are obtained for α = 7.3. A detailed explanation is
given in section 4.1.2.

way. We compare this expansion to ground state results of a three-dimensional
GPE simulation when varying the same parameters. The radial expansions of
the experimental results and theoretical predictions only fit together for the
correct choice of the total atom number, which we estimate to be N = 23000 .

4.4 Pixis Imaging

The Pixis imaging system provides images of the atomic cloud perpen-
dicular to gravity with a high resolution. The setup is shown in fig. 4.5. It
makes use of a home-built, infinity-corrected objective made from off-the-shelf
components with an effective focal length of feff = 35 mm. With a secondary
lens ( f = 1000 mm) the light is focussed on a Pixis camera leading to a mag-
nification of ∼ 29. The objective blocks the MOT beams when it is in the
position of the focus, and it is thus placed on a motorized translation stage
and moved out during the early stages of the experimental cycle. Moreover,
the motorized stage allows for easy adjustment of the focus.

The design of the home-built objective is inspired by [83, 84], and it is
adapted to our setup where the first section of the beam path is fixed to 15 mm
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Figure 4.11: Dimensions and quality of the home-built objective. Part a)
shows from left to right a point source, a part of the glass cell and a sketch
of the objective along with its dimensions. The lenses of the objective are
standard components manufactured by THORLABS, and the article numbers of
the four lenses are stated above. The housing and spacer rings are home-built
by the workshop of the institute. Part b) shows the results from measuring the
resolution with the gold foil method explained in section 4.3.1 at a wavelength
of 767 nm. For a single point-like source a cut of the PSF and the fit with an
Airy function is plotted in the lower part. The upper part gives the position of
the first minimum averaged over all point-like sources of the gold foil, which
is a measure for the resolution of the system.

vacuum followed by 4 mm glass. Starting with the design reported in the
publications we optimized the layout of the objective iteratively using a ray
tracing software. One by one, the optical elements are replaced by catalogue
lenses and the remaining elements are re-optimized. The resulting design is
diffraction limited and the final spacings are given in fig. 4.11 a). All lenses are
standard components from THORLABS with an 1 inch diameter. We designed
spacer rings accordingly (technical drawings in section D.2), and the rings are
manufactured by the institute workshop with a fitting lens tube.

The objective is tested using the gold foil method described in section 4.3.1
with 767 nm laser light. The results are depicted in fig. 4.11 b), where the
lower plot shows a cut along the intensity profile of an imaged hole of the
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gold foil, which is a measure for the PSF of the optical system. We estimate the
resolution of the system by fitting an Airy function to the images of all point-
sources of the gold foil, and calculate the resolution R = (1.60 ± 0.04)µm
as the mean over all measured PSFs. It is depicted in the upper part of
the plot. The diffraction limit Rdiff = 1.34 µm can be calculated from the
numerical aperture NA = 0.35 of the system according to eq. (4.11), which
demonstrates that our home-built objective works close to the diffraction limit.
The NA results from the total working distance of 30.8 mm and the width of
the objective’s entrance pupil, which is 23.4 mm.

4.5 Laser System for Imaging

The laser setup provides light for imaging at low magnetic field, where
the frequencies are close to the cooler and repumper transitions, and at high
magnetic field in the region of 550 G. At this field the resonance is detuned
by a large frequency of about ±850 MHzfrom the D2 reference, and the two
imaging lights are about 1.7 GHz apart. Since these frequencies are too far
apart to be efficiently produced with AOMs we use two external cavity diode
lasers which we stabilize on the D2 reference laser (cf. section 3.3) with an
offset lock [85]. As shown in fig. 4.12 a) we divert a small part of the imaging
light of each laser, overlap it with the reference light and detect the beating
on a fast photodiode. Subsequently, the high frequency signal is mixed down
and an error signal is generated, which can be shifted by an external voltage to
tune the frequency of the light. The laser is then stabilized with a PI controller.
A detailed description of the setup can be found in [75].

The second part of the setup contains three AOMs in double-pass cat-eye
configuration. They allow for a fast switching of the imaging light with a
typical pulse length of 10 µs and a regulation of the laser power. This part is
connected to the first part with optical fibres to allow easy maintenance and
alignment, and it is depicted in fig. 4.12 b). The beams are combined with
cascaded beam splitters after the AOM paths such that every camera can be
used for low and high field absorption imaging. Note that the polarizations
of the two imaging lights are co-aligned for the Guppy and Pixis imaging,
whereas the polarization of the high field σ+ light for the ProEM imaging is
perpendicular to the other polarizations. The lights are coupled into fibres
that guide it to the experiment. Additional mechanical shutters in front of the
fibres ensure that light is transferred to the experiment only during imaging
(shutters not shown in schematic).
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Figure 4.12: Laser system for imaging. Part a) and b) show a sketch of
the laser system that produces the frequencies for low field (LF) and high
field (HF) imaging. Two lasers are stabilized with an offset locked to the
D2 reference laser and the light is coupled into optical fibres (part a, mirrors
omitted for clarity). The frequency is then shifted by double-pass AOMs
which also enable fast switching of the light. Finally, the light is mixed such
that every imaging system gets all frequencies at the right polarizations (part
b, mirrors omitted). Note that the polarizations for HF σ− and HF σ+ light are
perpendicular to each other for the ProEM. Part c) depicts a sketch of the optics
for the ProEM imaging beam and the upper MOT beam. For both, the final
polarizations are set with a quarter-wave and half-wave plate to compensate
the dichroic mirror later in the beam path. Additionally, the imaging beam is
equipped with a photodiode to stabilize its power. As noted here and shown
in fig. 4.6, the imaging beam is set up above the MOT beam to enter the glass
cell under an angle and avoid etalon effects. Part a) and b) adapted form [35].
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The frequencies of the imaging lights are determined by the setting of the
offset lock and the AOMs. For imaging at low field, one laser close to the D2
reference suffices and the light is generated with two AOM paths that shift
the frequency to the cooler and repumper transitions, respectively. At high
field the AOM paths are predominantly used for switching, and the frequency
is set by the offset lock (for details see [75]).

The imaging light is transferred to the experimental setup with optical
fibres. Figure 4.12 c) depicts the path of the ProEM imaging beam at the
experiment. After the fibre out-coupler, a small part of the light is reflected
onto a photodiode. At the beginning of each experimental cycle the different
imaging lights are turned on one after the other to calibrate their intensities.
This is done with a PI controller that tunes the rf-power of the corresponding
AOMs. The light is switched off again, and the appropriate voltage is stored
by a sample-and-hold circuit which is implemented in the control loop. This
allows to tune the intensities of the imaging lights individually and prevents
slow drifts of the system. The imaging light passes a half-wave and a quarter-
wave plate to transform the linear to a circular polarization. Both plates are
needed as the light passes through a dichroic mirror later in the beam path (cf.
fig. 4.6), and we adjusted the wave plates to receive circular polarization after
the dichroic mirror. As the polarizations of the two frequency components
for high field imaging are perpendicular to each other they are transformed
into left and right-handed circular light, respectively. Thus, they drive their
according transition and signal-to-noise is increased in comparison to the use
of linearly polarized light, which has both left- and right-handed components.
Furthermore, the imaging beam passes several lenses that correct for the
focussing of the upper objective. The first lens is shown here, and the distances
and focal lengths are given in fig. 3.7. Due to spatial constraints we use two
individual lenses for the imaging beam and the MOT beam, respectively. Both
beams are reflected down towards the atomic cloud by a mirror, where the
imaging beam sits above the MOT beam to enter the glass cell under an angle
and avoid etalon effects.
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Physical Computing

Over the last decades, artificial neural networks have gained a lot of
interest in the field of machine learning and artificial intelligence. Many
classes of network architectures exist, and they are used for a plethora of
tasks such as data classification or regression. The networks are usually
implemented in software, and their training and operation require a lot of
computational power. To accelerate typical computational steps dedicated
hardware is developed.

A more direct approach is the implementation of parts, or even of a whole
network, in a physical system. First approaches of electronic implementations
date back to the 1960s [86], and in the 1980s the first optical systems were
realized [87, 88]. Shortly after the development of the liquid state machine
[89] in the early 2000s a physical implementation was suggested [90] and
implemented in a bucket of water [91]. The architecture was unified to the
reservoir computing (RC) framework [21] together with similar concepts,
and the implementation of RC or simpler models similar to kernel machines
[92, 93] in diverse physical systems became popular. To name a few, there
are examples of optical implementations that promise high speed analysis
or classification [94–97] and electronic implementations that investigate non
von Neumann architectures and might lead to lower energy consumption
than traditional microchips [98]. In the field of robotics the use of complex
mechanical structures as computational resource and the actuation of soft
robots is investigated [99–101]. More implementations are discussed in the
reviews [23–25].
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In this chapter we show the implementation of an effective single-layer
model in a Bose-Einstein condensate. This is a special physical system as it is
well isolated from the environment and features a high level of coherence. We
start by introducing both support-vector machines and reservoir computing
in general and discuss requirements for the implementation in a physical
system. Next, we focus on our experimental implementation and explain
the training process. We then investigate different experimental parameters
relevant for the learning process and discuss the results.

5.1 Fundamentals
This section gives a short overview of kernel machines and reservoir

computing, and we discuss the requirements on physical systems for the
implementation of such a model.

Conventional Models We start by introducing the general formalism, and
this section follows mainly [22]. The task is to learn a functional relation f
that maps inputs xi ∈ R to the desired outputs ui ∈ R as given by a training
dataset {(xi, ui)}, where i = 1, . . . , N and N is the number of training points.
Although we assume the inputs and outputs to be in R, they can be of higher
dimension in general. To estimate the success of our procedure we calculate
the root-mean-square (rms) error

ε =

√︄
1
N ∑

k
(yk − uk)2 , (5.1)

with the results yk = f (xk) for a non-temporal task, where the data points
{(xi, ui)} are independent of each other. In a temporal task on the other hand,
the data points have a specific order and i = 1, . . . , N represents a discrete
time domain. The result yk = f (. . . , xk−1, xk) depends on the earlier input
values, which means that the function we want to learn has to have some sort
of memory. For a non-temporal task this is not necessary.

Non-temporal tasks can not be solved using only a linear model in general.
Instead, many approaches first expand the input xi in a non-linear fashion
to a high-dimensional feature vector ni. In this space the solution can then
be obtained by linear regression and can be written as yi = ni · w, where the
vector w is obtained from the data by minimizing eq. (5.1). Traditionally the
expansion functions are called kernels, and methods using them are referred
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to as kernel machines [92, 93]. These methods often employ the so-called kernel
trick, which allows executing the calculation of inner products of elements of
the feature space in the original space. As the original space is of much lower
dimension, calculations are significantly cheaper to execute there. Although
the training procedure is a rather simple process, the expansion function has
to be chosen by hand in a trial-and-error process for many methods.

Temporal tasks can also be solved by expanding the input, but the expan-
sion function needs to fulfil more requirements. It has to have memory, which
means that the history of the input is taken into account. Such an expansion is
given by the framework of reservoir computing (RC) [21], which was derived
as a unification of the echo state network [102] and the liquid state machine [89].
The echo state network was developed to offer a practical training method
for recurrent neural networks. It features a (not necessarily) randomly con-
nected recurrent neural network, which is kept unchanged during the training
process and is called the reservoir. It is driven by the temporal/sequential
input signal and stores information on the history of the latest inputs. This is
formalized in the echo state property [102]. The output is derived by a linear
combination of weighted reservoir states, and these output weights w are
trained by linear regression. The approach has been studied extensively, and
more recently it was shown that echo state networks are capable of universal
approximation [103]. The liquid state machine was proposed with biological
learning models in mind. It is similar to the echo state network but instead of
random connections the topology and connectivity of the reservoir is chosen
to be locally connected to mimic neural microcircuits of the brain. Reservoirs
of this type are typically called a liquid, and their operation liquid computing.

The models presented for non-temporal and temporal tasks have a similar
structure. They both encode the input non-linearly in a high-dimensional
feature space, where a linear readout becomes possible. An illustration of
these shallow models is given in fig. 5.1 a) and they feature only two layers,
opposed to deep neural networks with many layers.

Physical Models The feature space is not restricted to mathematical models,
but appropriate physical systems can also provide such a high-dimensional
space. They need to be interfaced properly to encode the input, and require
some sort of memory capability to solve temporal tasks. For RC models that
solve such temporal tasks the term physical reservoir computing is commonly
used. For non-temporal tasks, however, such a term has not been coined, and
many names for specific physical implementations exist or are sometimes
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Figure 5.1: Conventional and physical implementation of a shallow model.
Part a) exemplifies the conventional implementation of a shallow model with
RC, where inputs are fed in a static recurrent neural network which acts as
high-dimensional feature space (reservoir). The output is linearly combined
from this space with the output weights w. For a physical implementation as
shown in part b) the feature space is realized by an adequate physical system
(indicated by waves). The input is encoded in appropriate physical quantities
and the output is linearly combined form quantities read out from the physical
system. Figure adapted from [23].

attributed falsely to physical reservoir computing. The term closest to the
original mathematical model would be physical kernel machines, which was
recently used to describe a photonic implementation [97]. To avoid these
confusions we use the general term physical computing (PC). It includes physi-
cal implementations of shallow models for both non-temporal and temporal
tasks. An illustration of such an implementation is given in fig. 5.1 b).

The prerequisites for a good feature space that have been discussed and
formulated for conventional RC [102, 104, 105] and kernel machines [92, 93]
can not easily be translated to physical systems. In [23] four rather general
requirements are formulated for temporal tasks, which we can adapt here.
First, the feature space has to be high-dimensional to capture the different
inputs. Second, the feature space should exhibit non-linear behaviour to act as
a non-linear mapping. Thus, inputs that are not linearly separable can become
linearly separable after evolution (and vice versa). Third, the feature space
should be tolerant to noisy inputs and distinguish them from actual changes
in the input. For non-temporal tasks, these prerequisites on the feature space
should suffice. For temporal tasks the fourth criterion is that the feature space
should additionally exhibit a fading memory to store information on the latest
inputs. If the feature space exhibits all four requirements, we call it a reservoir.

Regarding the property of separation it is often recommended for con-
ventional reservoirs that parameters of the system should be set close to the
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so-called edge of chaos [106, 107], where the system is close to exhibit chaotic
behaviour. This should support the separation of input values, but a more
recent study [108] shows that this is not favourable in general and the setting
depends on the nature of the tasks.

In the following section we introduce our specific implementation for
physical computing with a Bose-Einstein condensate. Apart from the proper
setting of the feature space (reservoir) with the physical system one has to
choose the encoding to and the decoding from the system. Our approach
is inspired by the papers [109, 110], which theoretically explore the use of
non-linear waves for physical computing of non-temporal tasks. In [109] the
authors encode inputs as a sum of plane waves and explore subsequent non-
linear dynamics under the evolution of the GPE. One has to note that some
results in this publication are obtained in the regime of overfitting, where a
low training error is obtained by an excessive number of fitting parameters
and predictive power is limited (see section 5.2.3). The paper [110] discusses
the use of an attractive soliton train as a computational resource. Inputs are
encoded in the position of single solitons, which are then evolved with the
GPE.

5.2 Implementation

This section describes how we utilize our atomic system as a computational
resource and it gives details on the experimental implementation with a
quasi one-dimensional BEC. As a proof-of-concept we solve non-temporal
tasks, in particular a regression and an interpolation task of the function
u(x) = sin(πx)/(πx), where x ∈ [−3, 3]. This is a typical non-linear test
function and we note that the choice of one input and one output dimension
is no fundamental limitation for our implementation. Furthermore, we show
later that our BEC can be viewed as a reservoir according to the conditions
set in section 5.1 and thus refer to the atomic cloud as such. Both points are
discussed in more detail in section 5.4.

Our implementation can be summarized as follows. First, an input value
xi ∈ R is encoded in the atomic cloud, where i ∈ 1 . . . Nx, with Nx the number
of input values. This is performed by imprinting a jump in the phase ϕ of
the condensate at position zi. After a certain evolution time of the reservoir,
the atomic density is read out by imaging the cloud, normalized and binned.
This results in the density distribution ni ∈ RNC , where NC is the number of
binning points, also called output channels. The density is normalized and
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Figure 5.2: Physical Computing with a Bose-Einstein condensate. An input
value xi is encoded physically in a quasi one-dimensional BEC as the position
zi of a jump in the phase ϕ. After a time evolution of the reservoir we extract
the normalized and binned density ni. A vector multiplication with the
obtained weight vector w yields the output value yi.

multiplied with the weight vector w ∈ RNC to yield the result yi ∈ R. This
weight vector w is found by minimizing the rms error ε of the results yi with
respect to the target values ui for all Nx input values (cf. eq. (5.1)). For a single
input xi, the process is depicted in fig. 5.2 and can be summarized by

xi
Phys. enc.−−−−−→ zi

Evo. & readout−−−−−−−−→ ni
Apply weights−−−−−−−−→ yi = ni · w (5.2)

To confirm that the procedure works we test the obtained weight vector w with
different experimental realizations for the same input values. The following
sections give an in-depth presentation of the single steps.

5.2.1 Physical Encoding

This section revisits the properties of our atomic cloud and introduces the
encoding of the input values by a phase imprint.

After the preparation of the condensate as discussed in section 3.5.2 we end
up with a quasi one-dimensional atomic cloud trapped by blue-detuned light
from the pancake lattice and the DMD. The cloud has a length of lBEC = 85 µm
and it is prepared at a scattering length of 50 aB, where aB the Bohr radius.
From the velocity of a density peak we estimate the chemical potential to be
µ = 1.2 kHz (cf. eq. (3.2)).

Subsequently, the input is encoded in the condensate as the position of a
jump in its phase. We found that it is important to represent the continuous
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Figure 5.3: Example of a DMD image to imprint a phase. Part a) shows the
desired intensity distribution for imprinting a phase jump at position z80 onto
the BEC, normalized to the maximal intensity Imax. Light with the intensity
0.67 Imax is shone onto the atoms on the right part. The height of the box walls
is 0.33 Imax on the left and Imax on the right. It is scaled accordingly to the
background in order to minimize a change in trap frequency. The dashed lines
show the leftmost and rightmost positions for imprinting a phase jump. The
scale of the axes are the pixels of the DMD, i.e. the individual mirrors. Part b)
shows the binarized image after incorporating effects of the inhomogeneous
illumination and rounding the grey-scale image with the Floyd-Steinberg
algorithm.

input by a continuous feature in the reservoir. Therefore, the position zi of the
phase jump associated with the input value xi is calculated by

zi = l
(︃

0.25 + 0.5
(︃

xi − mink xk
maxk xk − mink xk

)︃)︃
, (5.3)

where l is the size of the trap, and mink xk and maxk xk are the minimal and
maximal input value, respectively. This scales the input values to fit in the
encoding region, which is the central half of the condensate.

The phase jump is imprinted by switching the image of the DMD from
the flat box trap to a trap where one part is elevated. Figure 5.3 a) shows an
example of the intensity profile for a phase jump at position z80, corresponding
to the input value x80 = 1.79. The dashed lines indicate the central region
used for the encoding, which is 500 pix broad. The background intensity in
the trap is modelled by a shifted error function of the form I(z) ∝ (0.5 +
0.5 erf((z − zi)/b)). To avoid interference effects the width of the transition is
chosen as b = 16.7 pix, corresponding to the integral over a Gaussian function
with standard deviation σ = 11.8 pix. For a typical experiment, the DMD
is illuminated with a total power of PDMD = 0.6 W, which leads to some
maximal intensity Imax in the atomic plane. Atoms on the left of the phase
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jump are not illuminated during the imprint. On the right, a light intensity
of 0.67 Imax is shone onto the atoms. The walls of the box trap are scaled
accordingly, leading to an intensity of 0.33 Imax on left side and Imax on the
right side of the phase jump. This is implemented to minimize a change of
the radial trapping frequency. We estimate the light potential VL experienced
by the atoms on the right side of the transition to be

VL = cL · 0.67 · PDMD ∼ 7 kHz , (5.4)

where the calibration cL is calculated in eq. (3.3). This light potential is present
on the DMD for tL = 100 µs, corresponding to the fastest switching time
for images on the DMD compatible with the time steps of the experimental
control system. Therefore, we can estimate the phase shift to be

∆ϕ = (2π/h) VLtL ∼ 1.4 π . (5.5)

For our experiments, we use Nx = 100 input values which are evenly
distributed in the input range. This leads to a spacing of 5 pix between
adjacent input values on the DMD, corresponding to about 0.5 µm in the
condensate.

5.2.2 Reservoir Evolution and Readout

After an input value is encoded via the structure of the phase as described
before, the BEC is left to evolve in the flat box trap for a time tevo and an
absorption image of the resulting density distribution is taken. A single
realization of the atomic cloud after an evolution of 1 ms is shown in the left
panel of fig. 5.4 for the input value x80. The single images are rotated using
the MATLAB built-in function imrotate, such that they are aliged with the
pixel grid for further analysis (top right panel). The rotation includes an
interpolation of the data. However, possible errors can be neglected as many
pixels are averaged together later in the analysis process. The atom cloud is
cut out with a box of height 11 µm and length 82 µm to include the full width,
but cut off the edges of the cloud. The cut-out is summed along the short axis
and the resulting profile is normalized to minimize the effect of atom number
fluctuations (top curve of lower right panel). Finally, the profile is binned,
which significantly reduces the noise. This yields the binned density profile
n80 plotted as the lower curve in the lower right panel of fig. 5.4. As the profile
is multiplied with the weight vector w to get the output, the number of bins is
directly connected to the number of parameters used in the training process,
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Figure 5.4: Data extraction. On the left, a single realization of the reservoir
is shown for an evolution time tevo = 1 ms. The image is rotated to align
the atomic cloud with the pixel grid (A). Next, the atom cloud is cut out as
indicated by the white box with size 11 µm × 82 µm. The edges of the cloud
are removed to suppress fluctuations. The image is summed along the short
axis and the resulting profile is normalized to the total atom number (B). The
result is shown as the top curve in the lower right plot, and the dashed line
gives the mean of the profile. Finally, the profile is binned according to the
chosen number of output channels NC, which we typically set to NC = 20.
The lower line in the plot gives the binned result (C).

which is the number of channels NC. Typically, we use NC = 20, which leads
to a width of 4.1 µm per bin.

Figure 5.5 gives an overview of the time evolution. Each curve shows the
mean over 30 realizations of the unbinned density profiles for the indicated
evolution time. They are centred around their respective mean value (dashed
line), share the same scale, and the standard deviation is given by the grey
shaded area. One can see that a peak and a dip develop and evolve with
time. The movement of the features can be understood from basic theory
of superfluidity, where a gradient in the phase of the order parameter is
proportional to the velocity of the fluid [52]. The features start to develop
already during the imprint time, which makes sense when looking at the first
100 µs of evolution time (0 ms → 0.1 ms). One can observe a fast evolution
on this timescale, which is the same as the imprint time of tL = 100 µs. On
the right side of the density profiles fluctuations are present. They originate
from an uneven light potential during the imprint phase that is caused by
interference effects of the DMD light. These fluctuations do not move and
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Figure 5.5: Normalized profiles of the atomic cloud. The plot shows the
time evolution for a phase imprint on the right side with the transition at
position z80. The lowest curve depicts the profile without phase imprint as
a reference. The curves above show the profiles for increasing evolution
time, as indicated on the axis. All profiles are normalized to the total atom
number before calculating the mean over 30 realizations. The resulting mean
profiles are centred at their mean value (indicated with the dashed line) and
the standard deviation is given by the shaded area. They share the same
scale, and a deviation of ±20% from the mean is indicated. The evolution
shows the development of a peak and a dip that move in opposite directions
while getting broader. Furthermore, density fluctuations are imprinted on the
profile where the cloud was illuminated.
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Figure 5.6: Time evolution in experiment and theory. The left panel shows
the time evolution for the normalized atomic profiles after a phase imprint
at position z80. Each evolution time tevo is represented by a bin reaching
from midpoint to midpoint between adjacent times. The right panel shows
a numerical simulation with the GPE that follows the same protocol as the
experiment. Both plots show a broadening of the peak. The dip remains stable
in the simulation but decays in experiment. We attribute this to the density
fluctuations on the right side of the condensate.

decay with evolution time.
To gain a better understanding of the processes during the time evolution,

we compare the experimental data to a simulation for the input value x80,
which is depicted in fig. 5.6. The left panel shows the experimental results
evaluated with NC = 40 bins for a better spatial resolution. The evolution
times are represented by bins that range from midpoint to midpoint between
adjacent evolution times. The simulation shown in the right panel is carried
out using the one-dimensional GPE to govern the dynamics (cf. section 2.6).
It follows the same steps as the experiment. First, a ground state is prepared
in a flat box trap, then a potential is switched on for the phase imprint and
finally the atomic cloud is evolved in the flat box trap. We use the chemical
potential estimated in eq. (3.2) and the imprint potential from eq. (5.4). The
simulation is implemented using the split-step method with 1024 grid points
and a time step of 0.1 µs.

In the theoretical prediction, an over-density moves to the left and broad-
ens, whereas under-densities travel to the right and keep their form. This
behaviour can be understood from the theory of solitons [111, 112]. A density
dip with a phase-jump on a continuous background with repulsive interac-
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tions can form a stable, non-linear wave, which is called a dark soliton. They
have no dispersion and their velocity decreases with increasing depth. In
contrast, a density peak on such a background is not stable and will disperse
as one can see in the theory results. A stable solution can only be obtained by
exploiting attractive interactions [113].

In the experimental data a similar behaviour is observed for the over-
density, which moves to the left and broadens. However, no solitonic exci-
tations are observed and the under-density is dampened out rather quickly.
This might result from the interaction with the density fluctuations introduced
during the phase imprint on the right side of the phase jump. Such dissipative
effects might affect the training and limit the accuracy of predictions for long
evolution times (cf. section 5.3.1).

5.2.3 Training Procedure and Overfitting

The remaining building block is the calculation of the weight vector w ∈
RNC , which we call training. As mentioned before, the output layer is simply
a linear transformation. This means that for any input xi with an associated
binned density profile ni ∈ RNC the corresponding output yi is calculated by

yi = ni · w . (5.6)

This output should match the target output ui. To fit the weight vector w, we
minimize the root-mean-square (rms) error

ε =

√︄
1
N ∑

k
(nk · w − uk)2 (5.7)

over N data points k. Typically, we use one profile corresponding to one
experimental realization for every input value xi for training, leading to
N = Nx. This is not fixed, however, and one can use fewer data points which
leads to a sparse training set. When evaluating the output corresponding to
an input value not present in the training set the system has to interpolate
between neighbouring data points (cf. section 5.3.4). On the other side, one
could use multiple profiles for every input value xi. As the readout from
the physical system is always noisy this leads to an averaging effect and
thus reduces the error. The minimal error ε is achieved by calculating the
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Figure 5.7: Training results for 1 ms evolution time. The top left panel
shows the result for training a regression of u(x) = sin(πx)/(πx) (dashed
line) to the data. Every point has an associated binned density profile, here
exemplified for the input value x42, and its binned density profile n42 is shown
in part b). It is multiplied with the weight vector w (part c) to yield the output
y42. The weight vector w is the same for all inputs and calculated in the
training procedure. The top right panel shows test data, where a new set
of measurements of the density was used to calculate the results with the
weight vector w trained beforehand. Both training and testing show that the
regression can be performed well.
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Moore-Penrose pseudo-inverse [114, 102] for the system of linear equations⎛⎜⎝ n1
...

nN

⎞⎟⎠
⎛⎜⎝w

⎞⎟⎠ =

⎛⎜⎝u1
...

uN

⎞⎟⎠ , (5.8)

and leaves us with the best fit for the weight vector w. Alternatively, one can
also use Ridge regression or logistic regression [115, 110], but we found the
pseudo-inverse to be sufficient.

The result is shown in fig. 5.7 for our target function u(x) = sin(πx)/(πx).
The left plot of part a) depicts the regression for 1 ms evolution time of the
reservoir. The data points show the calculated outputs yi to each input xi for
all Nx training points, and the target function is plotted with a dashed line.
One can see that the data points agree very well with the target function. The
calculation of the output values is shown below for the input value x42. Part b)
gives the binned density profile n42 that is read out from the experiment. It is
multiplied with the weight vector w shown in part c) to yield the output y42.
The weight vector w is determined by the pseudo-inverse as described above.

To demonstrate that the regression works properly, the right plot of part a)
shows results obtained with different realizations of density profiles ñi for
each input value xi while the weight vector w is kept from the training. For
these new test profiles ñi the data points show a very good agreement with
the target values as well. This indicates that our implementation of physical
computing works, and a weight vector can be successfully trained to fit a
non-linear function. More quantitative results are given in the following
section.

The last step, in which we validated the fitted weight vector w with an in-
dependent test data set, is particularly important to spot potential overfitting.
This occurs, for example, if one uses too many output channels NC, i.e. fit pa-
rameters, compared to the number of training points. As our density profiles
are noisy, these small variations can be exploited by the fit to discriminate
the different density profiles ni if there are enough free parameters. Then, an
independent test data set would not fit the target function well, as its noise is
different.

We illustrate this by sabotaging the procedure and using reference profiles
for the input profiles ni. These are obtained before the phase imprint and
therefore completely uncorrelated to their input value xi. However, as the
upper row of fig. 5.8 shows, a fit becomes possible by increasing the number
of output channels NC, i.e. fit parameters in the weight vector w. Already
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Figure 5.8: Overfitting using reference profiles. The top four plots show the
result of training a regression where reference profiles were used for each
input value (N = 100). They are completely uncorrelated to the input as they
are obtained before the phase imprint. However, by increasing the number
of channels NC and hence the number of fitting parameters in the weight
vector w a regression to the target function (dashed line) seems possible.
Testing the obtained weight vector w with a different set of inputs reveals that
no prediction can be made and the results stem from overfitting (lower row).

for NC = 50 the data points start to follow the target function. Maximal
overfitting occurs when the number of training points equals the number of
channels NC. If all input profiles are linearly independent eq. (5.8) becomes
invertible and the data points follow the target perfectly. In this example,
few profiles are linearly dependent, and therefore some points do not match
the target. When we test the obtained weight vector w with a different set of
profiles ni˜ , the data points do not fit the target function (fig. 5.8, lower row).
No prediction is possible, and the overfitting of the model is directly visible.
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5.3 Experimental Results

The first qualitative results for the regression task of a non-linear function
have been shown in the last section. In this section we give a more quantita-
tive analysis, looking at the rms error for different evolution times and the
influence of noise. Furthermore, the onset of overfitting and an interpolation
task is investigated.

So far we applied our physical computing framework to fit the non-linear
function u(x) = sin(πx)/(πx) at Nx = 100 input values using one realization
of the reservoir per input value for training. To gain statistics, we use a method
inspired by bootstrap resampling [116]. For every input value xi we measure
NR different density profiles ni,k . We then compile a set of density profiles
NTrain by randomly choosing one of the realizations ki = 1 . . . NR for every
input value xi ,

NTrain =
{︁

n1,k1 . . . n100,k100

}︁
. (5.9)

For this set of reservoir realizations the training is applied to obtain the weight
vector w. We then calculate the rms error ε for the training set according to
eq. (5.7) to judge the quality of the regression. Next, a testing set NTest is put
together the same way as the training set NTrain, but using only density profiles
ni,k /∈ NTrain . Then, the rms error ε is calculated for the testing set NTest. The
whole process is repeated 25 times, and mean and standard deviation of the
rms error are estimated. This way we can generate statistical statements from
a limited number of experimental realizations.

5.3.1 Evolution Times

First, we investigate the quality of the regression for different evolution
times of the reservoir, using NC = 20 output channels. The profiles ni =
ni(tevo) evolve in a non-linear manner and show dissipative behaviour (cf.
section 5.2.2). Hence, the resulting rms error ε also depends on the evolution
time tevo and is plotted in fig. 5.9 for training and testing data sets. The dashed
and dotted lines at the top of the plot indicate a sensible upper error bound
for training and testing, respectively. They originate from calculating the
rms error for training with reference profiles for NC = 20 output channels
as shown in fig. 5.8. These profiles do not contain any information, and
the error is similar to the rms deviation of the target function to its mean.
One can see that the regression for the non-evolved reservoir yields already
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Figure 5.9: Development of the error with evolution time of the reservoir.
The upper panel shows the rms error for training and testing data sets (circles
and squares, respectively). It is calculated in a bootstrap resampling fashion
as explained in the main text, NC = 20 output channels are used. The straight
lines at the top of the plot indicate the error that results from using reference
profiles without any information on the input values for training (dashed
line) and testing (dotted line). The error is lowest for an evolution time
of 1 ms and the results of the testing data sets imply that the regression
works properly. Examples of the regression are shown in the lower panel for
evolution times 0 ms, 1 ms and 4 ms, where the training data for 10 sets of
realizations composed in the bootstrap resampling fashion is shown by the
grey transparent points. The target function is indicated with the dashed line.
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better results than the error bound. Looking back at the density profiles in
fig. 5.5 this becomes clear since the condensate starts to evolve during the
imprint duration tL and shows a small feature at tevo = 0 ms. With increasing
evolution time the error decreases and reaches a minimum at tevo = 1 ms. This
behaviour can be understood from the evolution of the profiles (cf. fig. 5.5),
where the density features resulting from the phase imprint have to develop
first and stretch over multiple bins to be of use in the training process. With
further evolution, the features broaden and become weaker compared to the
noise. Therefore, the error increases for longer evolution times. The testing
error is slightly above the training error for most times, which indicates that
the regression works well.

To give a better intuitive understanding of the rms error ε , the lower panel
of fig. 5.9 directly compares the regression results without evolution (A), for
minimal error at tevo = 1 ms (B), and for a longer evolution tevo = 4 ms (C).
The training results for ten different sets of density profiles NTrain are over-
lapped to give a visual impression of the statistics. The central plot (B) shows
that the data points agree well with the target function (dashed line). In
comparison, the data points deviate if no evolution is performed (A) or noise
effects become more relevant (C).

5.3.2 Averaged Density Profiles

We investigate the influence of noise for longer evolution times more
closely by using averaged density profiles navg

i for the training,

navg
i =

1
NR

NR

∑
k=1

ni,k , (5.10)

where NR is the number of realizations. We calculate the rms error ε for
different NR using NC = 20 output channels, and we only consider the
training error as the testing error behaves well (see fig. 5.9). The result is
shown in fig. 5.10 for the evolution times tevo = 1 ms, 4 ms, and 8 ms. The error
decreases with the number of realizations NR used to calculate the averaged
density profile navg

i . A power-law behaviour can be observed, which results
in straight lines in the double-logarithmic plot. We fit the data points by

ε ∝ NR
−ζ , (5.11)

with the scaling exponent ζ. For the evolution time tevo = 1 ms we find an
exponent of ζ1 = 0.38. This indicates that the realizations of the density
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Figure 5.10: Suppression of noise using averaged density profiles. The rms
training error ε is shown using averaged density profiles for three different
evolution times. For each input value xi the associated density profile ni
is calculated as the mean of NR realizations of the profile. The error bars
are estimated in the boostrap resampling fashion described in the main text.
When the number of realizations is increased shot noise averages out and the
regression works better. The decrease of the error is fitted by a power-law
curve, ε ∝ NR

−ζ . The flattening of the curves for longer evolution implies
that information is lost or redistributed during the evolution.

profiles differ not only by uncorrelated shot noise, where we would expect
scaling with the square-root (ζ = 0.5), but contain systematic deviations. With
increasing evolution times the scaling exponent decreases. We thus conclude
that information is lost or redistributed during the evolution, which can not
be recovered by averaging an acceptable amount of profiles to suppress noise.
This fits the observation presented in fig. 5.6, where density fluctuations from
the phase imprint disturb the dynamics. However, averaging is a legitimate
strategy to improve the quality of the regression even further and works
especially well for evolution times that give good results in the first place.
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Figure 5.11: Dependence of training and testing error on the number of
channels. The graph shows the dependence of the rms error ε for training
(circles) and testing sets (squares) on the number of output channels NC. The
values are calculated in a bootstrap resampling fashion as described in the
main text. For increasing NC the error for both training and testing decreases
at first. The testing error reaches a minimum at about NC = 20. This is
the onset of overfitting, where the testing error starts to increase again even
though the training error continues to decrease.

5.3.3 Avoid Overfitting

So far, the analysis was done with a fixed number of channels, NC = 20,
as we claimed this works best. To illustrate what can go wrong we calculate
the rms error ε for training and testing sets for increasing NC. The results
are shown in fig. 5.11 for a fixed evolution time tevo = 1 ms with a single
realization ni of the reservoir per input value xi. One can see that the error
drops at first with increasing NC for both training and testing data sets. The
error for the training continues to decrease, while the error for the testing
features a minimum around NC = 20. This is known as the bias-variance
trade-off in machine learning [117]. By increasing the number of channels
NC, and therefore the number of fitting parameters, we enter the regime of
overfitting. The lower error for the training arises only from fitting the excess
parameters to noise features that are not present in the testing sets. We find
this behaviour to be robust against sensible changes of the number of training
points. Setting NC = 20 for our analysis is thus a good choice.
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5.3.4 Generalization

In this section we look at the performance of the system on input values
that are not part of the training data set to check the system’s ability of
generalization. Previously, the Nx = 100 input values were chosen to be
equally spaced in the range [−3, 3]. For the experiments presented in this
section we leave out 20 data points and compile a training set NTrain from the
density profiles of the remaining 80 data points. Single profiles with NC = 20
after an evolution time of tevo = 1 ms are used. We estimate the outputs
for the 20 left-over input values by multiplying the density profiles with the
obtained weight vector. This approach demonstrates the capabilities of the
system to interpolate between the training data points.

Figure 5.12 a)-c) presents the generalization results, where each left plot
shows the outcomes of the training process with N = 80 data points. Each
right plot depicts the results for data points not included in the training
process, and it is thus a measure for the interpolation capabilities of the
system. In part a), the points to be removed are chosen randomly, in part b)
on the rising edge left to the maximum, and in part c) left and right to the
maximum. Each plot shows ten sets of realizations to illustrate the spread of
the data. A quantitative analysis is given in part d), where the rms error ε is
given for training and interpolation (estimated from 25 sets of realizations in
the bootstrap resampling fashion). As a reference the training and test error
for a regression with N = 80 data points is included.

One can see in part a) that the interpolation works well when omitting
few points at any position, and the interpolated points lie close to the target
function. Consistently, the rms error ε is equal to the reference obtained from
the regression within the error bounds. To increase the complexity of the
problem, we leave out the rising edge on the left to the central maximum for
training (part b), and we get a training error ε similar to the reference error.
The interpolation seems to work good for most input values, but the error is
significantly higher and has a high variance. We attribute this mainly to the
data points close to the local minimum at an input value of x ∼ −1, where
a large fluctuation can be observed. Leaving out the central maximum for
the training procedure (part d) limits the interpolation capabilities, which is
expected as no information about the structure of the maximum is known to
the training procedure. However, the system interpolates smoothly between
the two regions similar to the previous task and the form resembles the
maximum qualitatively. As the data points deviate significantly from the
target function in absolute values, a large error is obtained. These results show
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Figure 5.12: Generalization. The figure shows a strategy to test the ability of
the system to interpolate between data points. We remove 20 data points from
the training set and train the weight vector w on the left-over N = 80 points
(left plots). For the remaining 20 data points the output value is calculated with
the obtained weight vector (right plots). Parts a) to c) illustrate three scenarios,
where ten sets of realizations are shown and the target function u(x) is given
by the dashed line. In part a) the data points for training are chosen randomly,
in part b) they are chosen to leave out the rising edge on the left of the central
maximum, and in part c) the central maximum is left out. Part d) shows the
resulting rms error ε for the different cases. The values are calculated in the
bootstrap resampling fashion. As a reference (Ref.) the training and testing
error for the regression task with N = 80 training points is shown by the circle
and diamond, respectively. Part a) gives very good results and the rms errors
are similar. The interpolation of the gap in part b) works well, but the rms
error is significantly higher than the reference. This is attributed mainly to
fluctuations close to the minimum at x ∼ −1. Omitting the central maximum
in part c) for training, the interpolation behaves reasonable and connects the
two parts smoothly. The data points deviate significantly from the target,
which leads to a large rms error.
110



5.4. Discussion

that the system is capable of interpolation and behaves well even for large
gaps in the training data.

5.4 Discussion
We have shown that a quasi one-dimensional BEC can be used with our

implementation of physical computing. The regression and interpolation of a
non-linear function was performed as a first task. We investigated the quality
of the regression for different evolution times and the effects of noise. The
analysis demonstrates that the system behaves well and sensible results can
be obtained. In the following, we first revisit the prerequisites for a reservoir
and discuss that our physical implementation satisfies them. We then show
the limitations of our implementation and discuss possible extensions.

Reservoir Our implementation of physical computing uses a quasi one-
dimensional BEC on which we imprint input data by a change of the phase.
The system itself has only one spatial dimension, but the feature space is
spanned by the values the density distribution takes along this direction
and the number of spatial points. This makes the system high dimensional,
which is the first prerequisite for a reservoir as discussed in section 5.1. We
deliberately reduce the feature space to NC = 20 output channels to avoid
overfitting. Two more prerequisites are met, as the system features non-linear
dynamics (cf. fig. 5.5) and it separates the inputs by a non-linear evolution
(cf. fig. 5.9). The fourth, the property of fading memory, is not tested directly
as we consider non-temporal tasks. However, we showed that the error of
the regression task increases again after some evolution time (cf. fig. 5.9)
and we observe a loss of information for long evolution times (cf. fig. 5.10).
We can thus conclude that the system has a fading memory and fulfils the
prerequisites for a reservoir. It should be able to solve temporal tasks as well,
which is an interesting direction for further investigation.

Further Investigations In our current implementation the non-temporal
task is limited to one input and one output dimension. This is no fundamental
limit as the shape of the trap and the phase imprint are easily configurable
with the DMD. To implement a non-temporal target function with more than
one input dimension we do not need to change our approach much, as we
could imprint multiple phase jumps. The same phase difference could be used
at each position, or different shifts could be chosen by applying a matching
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potential. In this context it would be particularly interesting to look closer
into the interaction of the resulting density features and its consequences for
learning. Increasing the number of output dimensions could be implemented
by changing the weight vector w to a matrix. Then, multiple outputs can be
calculated from one density profile ni by effectively computing one weight
vector per output dimension.

For a more complex target function it might be favourable to increase
the capacity of the reservoir and encode more than Nx = 100 input values.
This can be achieved by small changes of the encoding that are explained in
the following. A total increase by a factor of 5–10 should be possible before
reaching the technical limit of the implementation. By imprinting the phase
jump closer to the edges of the trap we could gain at least a factor 2. For this
estimation, we choose a distance of 5 µm from the trap walls such that the
resulting features are not reflected on the edge of the trap for an evolution
time of tevo = 1 ms. Furthermore, the spacing between the input values
on the DMD can be reduced. For our experiments we used a spacing of
xi+1 − xi = 5 pix. Although single pixels of the DMD are below the resolution
of the imaging optics (cf. section 3.5), the evolution of the reservoir could still
reveal small shifts of few pixels. This has to be investigated in the experiment
and a further factor of 5 in Nx can be reached at most. With more input values
Nx at hand it is interesting to revisit the task of interpolation and check the
capabilities of our system. Furthermore, the conditions for overfitting can be
investigated better by having more data points available for training.

Another parameter to be investigated is the height of the phase jump. We
always use the same phase difference in the experiments presented. How-
ever, it could be adapted with the DMD and should influence the non-linear
response of our system. Further research on its influence on the quality of
learning would be interesting and allow for a better understanding of the
processes.

Technical Challenges On the technical side it would be beneficial to reduce
the fluctuations introduced during the imprint of the phase. So far we used a
rather simple approach to flatten the density profile by correcting the intensity
along the cloud (cf. section 3.5). The same factors are used to correct the
background potential which we apply during the phase imprint. However,
switching on more mirrors introduces further interference patterns. These
might lead to fluctuations in the density of the atom cloud and enhance dissi-
pation and heating. To eliminate these effects all different configurations of
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the DMD have to be calibrated carefully [118]. To reduce density fluctuations
it would be beneficial to imprint the phase in a shorter time with a higher
potential. We can change the image displayed by the DMD every 70 µs at most.
To reach significantly shorter imprint times, a second DMD setup would be
necessary, and the light needs to be switched with a fast external device, such
as an AOM. This approach is useful in many ways, as interference effects
of the light used for trapping and background potential could be separated.
Furthermore, one could use a different frequency of light on the second DMD.
With a frequency closer to the resonance a higher potential difference can
be achieved. Another technical challenge is the repetition rate of the experi-
ment. A typical run takes about 20 s and it is a limiting factor to gain statistics.
For one-dimensional systems this could be improved by preparing multiple
systems simultaneously.

Other Implementations Apart from these small modifications, different im-
plementations of physical computing could be tested without major changes
on the setup due to the configurable nature of the lateral trap. It is possible,
for example, to extend the physical system and use a two-dimensional atomic
cloud as feature space. This allows for a quadratic increase of possible inputs
and more complex dynamics. However, the encoding we used can not be
transferred to this system in a straight-forward manner. Different physical
phenomena, such as vortices, could be exploited. Depending on the tasks the
system has to solve, one has to take care that the implementations reflect the
properties of the input features, for example continuity. A different approach
would be the direct encoding of grey scale images as a dipole potential on
the atomic cloud, and classification of such images might be investigated in
future studies.

Another interesting direction is the investigation of temporal tasks, which
could for example be implemented by consecutive inputs to the system or
by an encoding of the temporal domain (partly) in space. As discussed
above, these tasks might provide insights in the ability of the system to retain
information and allow for a quantitative analysis. In addition, the potential
loss or the redistribution of information in the system is by itself an exciting
topic.

Very recently the first training of physical systems with the help of back-
propagation has been demonstrated [119]. The procedure enables the training
of deep physical neural networks with multiple layers. This could be a promis-
ing path as the construction of deep networks led to significant improvements
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for conventional neural networks implemented with digital computers.
A distinctive feature of our reservoir are its inherent quantum properties.

While the experiments presented in this thesis take place in a regime predomi-
nantly governed by classical dynamics of a macroscopic quantum-mechanical
“wavefunction”, the access to “truely quantum” features might be as direct as
the implementation of an advanced imaging technique [120] or the extension
to a spinful system [121]. The presented framework for physical computing is
versatile, and it is possible to choose implementations that include quantum
processes. This might lead to new insights and help to understand quantum
computing in a continuous system.
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CHAPTER 6
Final Remarks

This thesis presented the experimental setup to prepare a BEC of 39K, to
control its interactions and shape, and a strategy for imaging. Furthermore,
a shallow neural network was implemented using a quasi one-dimensional
atomic cloud and the learning process is investigated for different experi-
mental parameters. This chapter concludes the topics discussed and gives
prospects for experimental upgrades and future projects.

6.1 Conclusion

The first chapters of this thesis give an overview of the components of
the experimental setup, which has been developed and put together over the
last few years. The different systems are optimized for stable operation, and
the setup is automated to run continuously. With the high stability of the
experiment this allows for measurement campaigns over many days.

A detailed description of the control setup for the magnetic coils is given.
It drives a single pair of coils which can create a quadrupole field or a homoge-
neous field with an additional gradient in gravity direction. The control setup
shows a high stability, and fluctuations of the magnetic field are estimated to
be below 0.5 G at the typical Feshbach field of 550 G.

To trap the atomic cloud in two dimensions and control its shape, a con-
figurable dipole potential was implemented with a DMD. For this thesis, the
setup is utilized to prepare a quasi one-dimensional BEC. In other experiments
the setup was also used to form square and circular box potentials, or more
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complex ones like a potential that features a density minimum in the centre
[122].

The imaging system of the experiment is discussed in detail and a scheme
for absorption imaging at high magnetic fields is presented. This scheme is
necessary to properly exploit tuning of the atomic interaction, and it obtains a
high absorption signal of the atomic cloud immediately after the experiments
are performed. It uses two transitions to form an approximately closed four-
level system, and we find the best results for equal imaging intensities on
both transitions. The scheme can be calibrated similar to an effective two-level
system and experiments confirm that the calibration is robust against small
variations of the imaging intensities. On the technical side, the objectives
applied in the imaging setup are characterized, and the mechanical mounting
system for the ProEM objectives above and below the science cell is presented.
The MOT and grey molasses stages are successfully performed with two out
of the six beams passing through the objective. This setup allows for large
optical access and it shows high passive stability.

The second part of this thesis introduces physical computing and presents
the physical implementation of a shallow network utilizing a Bose-Einstein
condensate. As a proof-of-concept the regression and interpolation of the
non-linear function u(x) = sin(πx)/(πx) are performed. Values are encoded
in the physical system by the imprint of a phase, the system undergoes a free
evolution and is subsequently read out by absorption imaging. Results can
be obtained using single experimental realizations, and the lowest error is
reached for an evolution time of 1 ms. Further parameters are investigated and
the loss of information for long evolution times is observed. These promising
results pave the way for further investigations of the topic.

6.2 Outlook

On the technical side a next step is to further improve the stabilization of
the magnetic field. At the typical magnetic field for interaction tuning around
550 G the control setup reaches a stability better than 10−4, which is mostly
limited by the stability of the control voltage. To regulate the magnetic field
over a wide range, a change of 10 mV in control voltage corresponds to a
change of about 1 G in the magnetic field, and thus small fluctuations can
have significant influence. To improve the setup, the implementation of a
stable reference voltage at the control circuit is planned, which can be used as
an input when working at high magnetic fields.
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Improvements and prospects for physical computing are discussed in
detail in section 5.4, and the following paragraphs give a short overview.
The experiments show that the potentials generated with the DMD lead to
a flat density distribution on large scales, but persistent patterns on small
scales on the order of few micrometers are observed. This can be improved by
optimizing the correction factor on those scales (cf. fig. 3.12) or more advanced
optimization methods for the DMD masks (see for example [118]).

Imprinting a phase with the DMD leads to fluctuations of the atomic
density in the region where the light is flashed on (cf. fig. 5.6). This effect
could be reduced if the flatness of the atomic cloud is improved at small scales.
Greater advantages are expected from the implementation of a second DMD
that is switched independently. It can use light of a frequency closer to the
atomic resonance, which allows for a shorter light pulse. This gives the atoms
less time to move in the dipole potential. Furthermore, it could minimize
noise on the dipole potential that originates from interference effects.

On the scientific side it would be interesting to test the limits of the pre-
sented implementation. The physical limits can be investigated by encoding
the input values more dense on the quasi one-dimensional system. To test
the capabilities for information processing a wider range of input values can
be used for the regression task. Another promising direction is studying the
dynamic behaviour of the reservoir, as it was observed that the system seems
to dissipate information (cf. fig. 5.10). This can be investigated in more detail
with the implementation of a temporal task, which might also give insight to
the memory capabilities of the system.

In general, physical computing is a versatile concept and not fixed to
our implementation or our choice of encoding. The experimental system
presented in this thesis allows the preparation of a BEC in two dimensions,
which opens up many possibilities and might provide a rich feature space.
Furthermore, the study of encoding methods that involve quantum processes
might lead to new methods for quantum computing with BECs, and take the
concept of physical computing to a new level.
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APPENDIX A
Refocussing with Secondary Lens

As we discussed in section 4.3 the secondary lens of the ProEM imaging
system is mounted on a linear stage to allow for minor adjustments of the
focus. To gain quantitative understanding of the connection between shifts of
objective and secondary lens, we approximate our system using ray optics and
a 4f-setup which is shown in fig. A.1 a). The two lenses have focal lengths of
fa and fb, respectively, and the distances are initially z1/2 = fa and z3/4 = fb.
We keep the total distance D between the object plane on the left and imaging

Figure A.1: Refocussing with secondary lens. Part a) shows the model
system, where two lenses with focal length fa and fb are arranged in a 4f-
setup initially. Shifting the first lens by a small distance δ we estimate with
the lens formula which distance ∆ the second lens has to be shifted such that
the image is focussed again after a distance D. Part b) shows experimental
results (circles) and theoretical (line) for a test setup with the ProEM objective
and an fb = 500 mm secondary lens.
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plane on the right fixed. When the left lens is shifted by a small distance δ the
distances z1/2 between object and lens, and lens and intermediate image are
altered according to the lens equation,

z1 = fa − δ , z2 =
z1 fa

z1 − fa
=

δ fa − fa
2

δ
. (A.1)

Similarly, the shifts of the distances z3/4 can be estimated and requiring D to
be equal to the sum of the distances zi we get the equation,

0 = ∆2 + ∆
(︂

2 fa + 2 fb − D − δ − fa
2/δ
)︂
+ fb

2 , (A.2)

which can be solved for ∆.
In a test setup with the ProEM objective ( fa = feff = 35 mm) and a sec-

ondary lens with fb = 500 mm we carried out the refocussing, and the results
are presented in fig. A.1 b). The theoretical prediction is close to a linear curve
for small shifts δ on the order of 100 µm and matches the experimental data
well. We can fit a linear curve, ∆ = mδ and get

m = 205 for fb = 500 mm , (A.3)
m = 838 for fb = 1000 mm , (A.4)

for the slope.
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APPENDIX B
Lists of Components

The following chapter serves as a reference for components used in the
experimental setup, giving details such as the manufacturer and part numbers.

B.1 Vacuum Setup and Experimental Control

Glass Cell The glass cell of the setup is manufactured from uncoated SPEC-
TROSIL 2000, which has a refractive index of n = 1.4535 at a wavelength
of 767 nm. The glass is 4 mm thick, and the inner/outer side length of the
quadratic profile is 30 mm and 38 mm, respectively.

Experimental Control System The interface of the experiment with the com-
puter control is established by National Instruments control cards. The single
channels are broken out to BNC connectors and subsequently distributed to
the experiment.

Table B.1: Interface cards.

Component Manufacturer Part Number

Analog Output Module National Intstruments PXI-6733
Digital/Analog Input/Output Module National Intstruments PXI-6254
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B.2 Laser Setup
Resonant Light The resonant light is generated by DL-Pro external cavity
diode lasers. We used them with different anti-reflection coated laser diodes
and found that L1 works well at wavelengths of 767 nm and 770 nm. We
found diode L2 to be difficult to work with at 767 nm, and it was sometimes
hard to get good output power while maintaining a single mode. The diode
L3 works good for us at wavelengths of 767 nm and we achieved slightly more
output power than with diode L1.

To amplify the laser power we use home-built tapered amplifier units [68].
For laser shutters we use either a razorblade, which is attached to the moving
switch of a relay, or a 3d printed design similar to [123]. A comprehensive
overview of the laser setup with detailed schematics of the optical setup is
given in [35].

Table B.2: Resonant Light Setup.

Component Manufacturer Part Number

ECDL Toptica DL-Pro
Laser diode (L1) Toptica LD-0790-0120-AR-2
Laser diode (L2) Toptica LD-0760-0080-AR-2
Laser diode (L3) Toptica LD-0780-0080-AR-4
Rf amplifier Mini-Circuits ZHL-3A+
AOM Gooch and Housego AOMO 3110-120 (110 MHz)
Tunable bandpass Semrock TBP01-790/12
Fast photodiode Thorlabs DET025AFC/M

Off-resonant light The experiment utilizes off-resonant light at 1064 nm and
532 nm. Comprehensive sketches of the optical setup can be found in [35].

For the green light we use special photonic crystal fibres that allow to
carry high intensities while maintaining a single mode and the polarization. A
special in-coupler is used that leaved the core open on the first few centimetres
and allows light to escape that is not coupled in the fibre properly, thus
reducing the risk of burning the fibre tip and the cladding.

The green light is shaped with a DMD from Texas Instrument. It is bought
from Vialux with a control board that interfaces the DMD with the computer.
It has a resolution of 2560 × 1600 mirrors, the individual mirrors have a side
length of 7.6 µm and the whole chip hence a size of 19.4 × 12.1 mm2.
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Table B.3: Off-resonant Light Setup.

Component Manufacturer Part Number

Laser 1064 nm Coherent Mephisto MOPA 55 W
AOM Gooch and Housego AOMO 3080-199 (80 MHz)
DMD TI / Vialux DLP9000X
High-power fibre Schäfter-Kirchhoff PMC-E-980-8.5-NA009-3-APC.EC-

500-P
Fibre coupler Schäfter-Kirchhoff 60FC-4-M15-37

Laser 532 nm Coherent Verdi V10
AOM Gooch and Housego 3080-1916 (80 MHz)
High-power fibre NKT Photonics LMA-PM-10 (ends: SMA-905 and

FC/APC)
Fibre in-coupler Schäfter-Kirchhoff 60FC-SMA-T-23-A18-01
Fibre out-coupler Schäfter-Kirchhoff 60FC-4-M10-01

Photodiode Osram SFH 206 K
Rf switch Mini-Circuits ZASWA-2-50DRA+
Rf amplifier Mini-Circuits ZHL-1-2W+
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B.3 Experimental Setup at Science Chamber
Objective Holder The holder was manufactured by the workshop of the
institute. Technical drawings can be found in section D.4. Additional parts
are listed in the table below.

Table B.4: Commercial parts of the objective holder.

Component Manufacturer Part Number

Micrometer heads: tip/tilt Thorlabs DM10
Micrometer heads: translation Mitotuyo 148-142
Springs Gutekunst Federn RZ051MI
Supporting spheres Kugel-Winnie Zirkonoxid, 10.000 mm

Cameras The cameras used for our experiment are listed in the following
table with specification of chip size and edge length of the individual pixels.
More information on the imaging setup can be found in section 4.2

Table B.5: Cameras used at the experiment.

Component Manufacturer / Part Specs

Guppy Allied Vision, Guppy F046B 780x582 pix, 8.3 µm size
Guppy Pro Allied Vision, Guppy Pro 125B 1280x960 pix, 3.75 µm size
Pixis Princeton Instruments, Pixis BR1024 1024x1024 pix, 13 µm size
ProEM Princeton Instruments, ProEM-HS

1024B eXelon
1024x1024 pix, 13 µm size
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Imaging Setup The following table lists the parts utilized for the imaging
setups. The camera shutter is used for the ProEM imaging and the Pixis
imaging setup.

To move parts of the MOT setup we use two pressure stages that allow
for linear translation. The stage has two end points which can be set with a
screw and it shows high repeat accuracy for the end positions. It contains
two magnets at the pistons for position sensing which we removed. The
cylinder can be opened and one can break off the magnets from the piston
without damaging it. A few parts of the stage like the linear rail and screws
are magnetizable. For one stage we swapped the linear rail with a plastic
replacement, and we did not find significant degrading of the precision.

Table B.6: Parts of the imaging setups.

Component Manufacturer Part Number

Dichroic mirror (DMD light) Thorlabs DMLP650L
Pressure stage (MOT optics) Festo DGST-8-80-Y12A
Flow control valve Festo GRLA-M5-QS-6-D
Solenoid valve Festo VUVG-L10-M52-MT-

M5-1R8L
Translation stage (Secondary lens) Thorlabs ELL20/M
External camera shutter Vincent Associates Uniblitz CS45S3T0
Bandpass filter (ProEM imaging) Semrock FF01-766/13-25
Notch filter (ProEM imaging) Chroma ZET532NF
Translation stage (Pixis objective) Physik Instrumente Micos VT-80
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APPENDIX C
Control Circuits for Magnetic Fields

The main coils allow for different configurations of the magnetic field,
which is enabled by an H-bridge and two passbanks. This chapter gives an
overview of the systems and details on the drive circuits.

The wiring of the main coils is depicted in fig. C.1, and the setup is powered
by a power supply that provides up to 400 A at 15 V. The direction of the
current in the upper coil is controlled with an H-bridge, which is discussed in
section C.1. The current is measured by two current transducers (LEM IT 400-S
Ultrastab) and controlled with two passbanks, which is detailed in section C.2.
The coils are shorted with bi-directional TVS diodes (15KP58C) that break
down at about 60 V and dissipate power when the current is switched.

C.1 H-bridge

The H-bridge consists of four banks that are each equipped with six field
effect transistors connected in parallel (MOSFET, IRFP4668). The mechanical
design is shown in section D.5. An overview of the drive circuit is given in
fig. C.2. It is powered by an isolated power supply at 20 V, and the ground
reference for the circuits is connected to the source of the lower transistor
banks. First, this ensures that the MOSFETs can be switched if the transistors of
the passbanks are non-conducting. Second, it ensures that a sufficient voltage
is provided at the gates of the MOSFETs to switch them in a conducting state
as the upper transistor banks are located above the load and the gate voltage
thus needs to be at least the voltage drop over the coil plus the gate threshold
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Figure C.1: Schematics of the main coil setup. The single transistors shown
in the schematics represent multiple transistors connected in parallel to handle
high currents, and the current transducer we use is the LEM IT 400-S Ultrastab.

Figure C.2: Driver setup for H-bridge. The sketch shows an abstract repre-
sentation of the different parts. The opto-isolators ensure decoupling from the
ground of the experiment control system and invert the signal. The second
stage contains TTL elements that switch between transistor bank 1 and 3, or 2
and 4 when SWITCH is toggled. The DISABLE signal switches bank 2 and 3
non-conducting and toggles the upper transistor banks (cf. fig. 3.4). The logic
is followed by the MOSFET driver which inverts the signal again.
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Figure C.3: Electronic schematics for H-bridge driver. Panel a) shows the
power supply which derives the low voltage for the components from the
20 V to avoid ground loops. Panel b) shows the input stage that features an
opto-isolator to decouple the ground, and panel d) shows the subsequent TTL
modules. Panel c) shows the output stage which is a totem pole drive circuit.

voltage. The gates of the MOSFETs are protected against high voltage with
two unidirectional TVS diodes (1.5KE15A) connected in series.

The schematics of the drive circuit is presented in fig. C.3. The two in-
puts allow switching the direction of the current in the upper coil (and thus
switching from the quadrupole configuration to the Feshbach configuration),
and switching off the current by switching the two lower transistor banks to
non-conducting. The input stage of the drive circuit features an opto-isolater
that decouples the signals and prevents a ground connection to the experi-
ment control (panel b). Subsequently, the logic is implemented by three TTL
modules that address the four transistor banks (panel d). The output stage for
each transistor bank is a totem pole driver which is depicted in panel c). It is
powered with 20 V to ensure that the high-side MOSFETs can be switched to a

129



Appendix C. Control Circuits for Magnetic Fields

Figure C.4: Schematics of the current control. The total current and the
current difference between the two coils are measured with two current trans-
ducers (LEM1 and LEM2). The current is subsequently regulated with a PI
loop that drives the passbanks. To suppress noise two channels are used to
control the total current.

conducting state. Additional diodes at the output prevent charge or discharge
of the MOSFET gate when the current of the coil is switched, which might
lead to substantial shifts of the potential at the source/drain of the transistor
banks as the coils are clamped at 60 V by the TVS diodes. The lower resistor is
chosen small to enable fast switching, but it has to be large enough to allow the
lower transistor to open completely. The low voltage for the logic components
is derived from the isolated power supply to avoid ground loops (panel a).

C.2 Passbank

The two passbanks control the current in the upper and lower coil. They
employ bipolar transistors (MJ11032G) connected in parallel to handle high
currents. Details on the passbank can be found in [60], and a technical drawing
is provided in section D.6. An abstract diagram of the control circuit is
presented in fig. C.4. The total current is regulated with passbank 1, which
is placed below the lower coil in the circuit (cf. fig. C.1). Passbank 2 acts as a
shunt for the lower coil and diverts the current, which leads to less current
flowing through the lower coil compared to the upper coil.

The current is measured by two current transducers placed at the input
cable (LEM1) and above the lower coil (LEM2). As a measure for the total
current half of the sum of the signals is derived, and to measure the current
imbalance in the two coils the difference of the signals is used. Detailed
schematics of the circuit are shown in fig. C.5. The signal from the transducers
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Figure C.5: Electronic schematics for generation of the current signal. Panel
a) shows the circuit that converts the current from the current transducers
(LEM) to a voltage, and provides a monitor signal. The instrumentation
amplifier needs a stable reference which is used to calibrate the offset of the
transducer. It is provided by the circuit shown in panel b). Finally, the sum
and difference signals are derived from the signal of the current transducers
by the circuit shown in panel c). Over-voltage protection is provided by uni-
directional TVS diodes that are put back-to-back.

is a current which is sensed by a resistor implemented with many resistors
in parallel to avoid heating and subsequent changes of the resistance. The
voltage drop is amplified by an instrumentation amplifier (panel a). It is
important that the amplifier is provided with a stable reference signal to
calibrate the offset. The corresponding circuit is shown in panel b), where a
stable voltage is provided by voltage regulators and subsequently clamped
with Zener diodes. Finally, the sum and difference of the two LEM signals are
provided by operational amplifiers (panel c).

To increase the stability of the set point, two analog channels of the experi-
ment control are utilized to control the total current. One channel provides
large changes in the signal. It is filtered with a low pass to suppress noise and
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Figure C.6: Electronic schematics of the PI controller. The drive circuits
for the passbanks use a PI controller to stabilize the current. The output
stage is implemented with a high-current MOSFET. Over-voltage protection
is provided by uni-directional TVS diodes that are put back-to-back.

hence allows only for slow changes of the set point. The second channel is
attenuated with a voltage divider to suppress noise. It thus allows for smaller
but fast changes of the signal. The two signals are subtracted and used as set
point for the total current. For the difference the signal form the experiment
control is used directly.

The current is regulated with a PI controller which drives the bipolar
transistors of the passbank, and the schematics are shown in fig. C.6. The
first stage sums the input signal (SUM or DIFF) with the inverted set point
and filters high frequencies with its capacitor (cutoff frequency 2 kHz). It is
followed by an attenuator that adapts the voltage levels and allows setting the
gain of the following amplifier stages above one. The attenuator is buffered
and followed by one more unity-gain buffer which is connected in parallel to
the integral stage. The latter features two Zener diodes that limit the loading
of the capacitor and allow faster switching after the PI controller was at a limit.
Both signals are summed and amplified. They drive a high-current MOSFET,
which provides the drive current for the passbank.
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APPENDIX D
Technical Drawings

In this chapter technical drawings and sketches of experimental parts and
the setup are presented. The measurements are given in millimeters if not
specified differently.

This space is intentionally left blank.
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D.1 Objective (ProEM imaging)
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Figure D.1: Technical drawing of the ProEM objective. We removed the
grey/white striped part as the objective is fixed by its outer thread. Adapted
from a technical drawing by Special Optics.

D.2 Objective (Pixis imaging)

Figure D.2: Technical drawing of the Pixis objective. The drawing gives
the dimensions of lens tube and spacer rings. The tube is manufactured from
PEEK and the spacers from ceramic.
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D.3. Distances in Vertical Plane at the Glass Cell

D.3 Distances in Vertical Plane at the Glass Cell

Figure D.3: Vertical dimensions of the experimental setup. The sketch shows
the glass cell (1) in the centre, with objectives above and below. The magnetic
field coils (2), the upper (3) and lower (4) objective holders, and the optics of
the vertical beam path are displayed.
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Figure D.4: Holder for lower MOT mirror. The holder is designed such that
a beam can be guided from below through the mirror, and it has a cut to avoid
eddie currents as it is manufactured from brass. The mirror is glued onto the
holder. Adapted from a technical drawing by David Jansen.
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D.4. Objective Holder

D.4 Objective Holder

The holder is manufactured from PEEK, and the commercial parts are
given in table B.4. All figures are adapted form technical drawings by David
Jansen.
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Figure D.5: Lower holder, part 1.
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Figure D.6: Lower holder, part 2.
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Figure D.7: Extension for lower holder. The lower holder consists of two
parts to be installed without removing the main magnetic coils. This part was
screwed to the holder after it was in place.
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Figure D.11: Tip/tilt stage for upper holder.
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D.5. H-bridge

D.5 H-bridge

Figure D.12: Sketch of the H-bridge assembly. The electrical connection of
the transistors is realized with the backplane (drain) and one leg (source),
which is connected to the lower bar. The electrical connection of the gate is not
shown in the sketch. The bars for mounting the transistors are manufactured
from copper. They are water-cooled with copper pipes which are soldered
into the channels visible in the sketch. The figure is adapted from a technical
drawing by David Jansen.
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D.6 Passbank

Figure D.13: Sketch of the passbank assembly. The sketch shows the back of
the passbank without electrical connections. The transistors are mounted on
the other side and their legs are visible in the sketch. The copper bars are each
cooled with two channels. Each channel features narrow groves milled in the
copper to increase the contact area with the cooling water, and the channel is
sealed with a copper lid, which is welded onto the bar. The passbank cools
the transistors very well, and it was designed and manufactured by David
Jansen.
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