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Low-Energy Magnetic Excitations and Magnetisation in Magnetoelectric

Antiferromagnets MnTiO3 and LiMnPO4 and in van-der-Waals Ferro-

magnet CrI3:

High-frequency electron spin resonance is utilised to study antiferromagnetic and

ferromagnetic resonance in MnTiO3, LiMnPO4, and CrI3. The main measurement

technique is complemented by X-band electron spin resonance and by magneti-

sation measurements in static and oscillating magnetic fields. For each studied

material, a resonance-frequency–magnetic-diagram of the magnon excitations is

constructed and effective anisotropy and exchange constants derived. MnTiO3 is

found to be describable by a two-sublattice antiferromagnetic model with uniaxial

anisotropy and with effective exchange field BE = 107(6)T and anisotropy field

BA = 0.17(1)T. The source of the anisotropy is argued to be magnetic dipole-

dipole interactions. LiMnPO4 is found to be a two-sublattice antiferromagnet with

orthorhombic anisotropy and effective parameters BE = 37.4(1)T, Bc
A = 0.22(1)T,

and Bb
A = 0.55(1)T. An anomalous magnon branch is shown to be accountable

for by rotation of the anisotropy axis at the spin-flop field by 6.5◦ towards the

hard magnetisation axis. A spin-flip along the hard magnetisation axis is detected

and suggested to indicate Dzyaloshinskii-Moriya-interaction-caused spin canting in

the ground state. CrI3 is shown to possess anisotropy gap ∆ = 80(1)GHz at 2K

and its closure is detected only at ≈ 1.3TC, confirming the quintessential role of

anisotropy in formation of long-range ferromagnetic order. Critical-scaling analysis

yields β = 0.21(4), γ = 1.05(2), and δ = 6.05(1), which are interpreted as indicating

a predominantly two-dimensional nature of magnetic interactions.





Niederenergetische magnetische Anregungen und Magnetisierung in den

magnetoelektrischen Antiferromagneten MnTiO3 und LiMnPO4 und im

van-der-Waals Ferromagneten CrI3:

Mittels hochfrequenter Elektronenspinresonanz-Spektroskopie werden die mag-

netischen Anregungen in MnTiO3, LiMnPO4 und CrI3 untersucht. Komple-

mentiert werden diese Messungen durch Messungen im X-Band, sowie durch

Magnetisierungsmessungen in statischen und oszillierenden magnetischen Feldern.

Für die untersuchten Materialien wird jeweils ein magnetisches Resonanz-

Frequenzdiagramm der Magnonanregungen erstellt und die effektiven Anisotropie-

und Austauschkonstanten werden bestimmt. MnTiO3 kann mithilfe eines antifer-

romagnetischen Zwei-Untergitter-Modells mit uniaxialer Ansiotropie, einem effek-

tiven Austauschfeld BE = 107(6)T und einem Anisotropiefeld BA = 0.17(1)T

beschrieben werden. Ursache der Anisotropie sind magnetische Dipol-Dipol-

Wechselwirkungen. Auch LiMnPO4 lässt sich im Modell eines Zwei-Untergitter-

Antiferromagneten beschreiben, wobei eine orthorhombische Anisotropie und die ef-

fektiven Parametern BE = 37.4(1)T, Bc
A = 0.22(1)T und Bb

A = 0.55(1)T betragen.

Ein anomaler Resonanzzweig kann durch die Rotation der Anisotropieachse um 6.5◦

in Richtung der harten magnetischen Achse am Spinflopfeld erklärt werden. Entlang

der harten magnetischen Achse wird ein Spinflip detektiert, welcher die Verkantung

der Spins im Grundzustand aufgrund Dzyaloshinskii-Moriya-Wechselwirkungen

zeigt. CrI3 weist bei 2K eine Anisotropielücke von ∆ = 80(1)GHz auf, die erst

bei ca. 1.3TC vollständig geschlossen wird. Letzteres bestätigt die Bedeutung der

Anisotropie für die Entstehung langreichweitiger ferromagnetischer Ordnung. Die

Analyse der kritischen Exponenten ergibt β = 0.21(4), γ = 1.05(2), δ = 6.05(1),

welche mit einer überwiegend zweidimensionalen Natur der magnetischen Wechsel-

wirkungen im Einklang stehen.
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1. Introduction

One half of the 2021 Nobel Prize was awarded to Giorgio Parisi “for the discovery

of the interplay of disorder and fluctuations in physical systems from atomic to plan-

etary scales” [1]. Although Parisi’s original work was concerned with providing a

self-consistent mean-field theory of spin glasses [2, 3], Parisi’s solution subsequently

found utilisation in diverse areas of physics and beyond, ranging from solutions to

optimisation problems [4] to applications in artificial neural networks [5].

Spin glasses – macroscopic solids in which spins freeze into one of a macroscopic number

of energetically equivalent ground states of randomly oriented spins with no long-range

magnetic order [6, 7] – are just one example of magnetic systems in which the inter-

play between structure, charge, and spin degrees of freedom lead to complex emergent

phenomena. Other examples include (high-TC) superconductivity and topological in-

sulators, but also the insulating state of the antiferromagnet CoO. Whereas some of

these effects (insulating CoO) are exhaustively understood (by means of an electron-

correlation-driven metal-insulator transition [8]), others are still awaiting their com-

prehensive explanation (high-TC superconductivity).

As Parisi’s work demonstrates, research in complex spin-spin phenomena may bear

fruits not only in understanding fundamental solid state magnetism – a motivation in

and of itself –, but it may also shed light on other areas of the natural sciences and

mathematics, and is hence of further considerable significance.

The present work too is concerned with the study of spin systems and it too uses

mean-field theories at a number of places to gain insight into the effects of magnetic

interactions and anisotropy. However, whereas spin glasses are inherently disordered,

the materials studied here all exhibit long-range magnetic order – be it antiferromag-

netic or ferromagnetic. Electron spin resonance (ESR) spectroscopy, which uses light

in the microwave part of the electromagnetic spectrum (10GHz ≲ ν ≲ 1000GHz,

i.e. 0.04meV ≲ ν ≲ 4meV), is employed to study experimentally the low-energy exci-

tations in long-range-ordered magnets.

A fundamental reason for studying excitations in an ordered system – be it, for instance,

a crystal or a magnet – is the footprint of the system’s ground state on the correspond-

ing excitations. In other words, by investigating an ordered system’s excitations, the

system’s ground state may be determined in qualitative and quantitative terms. A long-

range-ordered magnet is capable of sustaining long-wavelength, low-energy magnetic

1



2 Chapter 1. Introduction

waves – in quantum-mechanical parlance called magnons and in classical terminology

spin waves. The magnetic waves’ energy dependence on external parameters, such as

the k-vector, external magnetic field, or temperature, is determined by the microscopic

interactions which give rise to the long-range order in the first place. And hence, from

the experimentally-observed energy dependence of the magnetic excitations, the un-

derlying magnetic properties of the ground state may be inferred. Further important

insights may be obtained through analysis of the shape of the signal which the ex-

citation produces: the detected signal’s width contains information about relaxation

processes, its amplitude about the number of spins.

In addition to gaining understanding of the fundamental principles governing long-

range magnetic ordering, the second crucial aspect of studying low-energy magnetic

excitations in long-range-ordered magnets is the systems’ application potential and

the unique capabilities which ESR can provide. On the one hand, a detailed charac-

terisation of the various magnetic materials is required for spintronic applications: in

bulk antiferromagnets, the knowledge of the number and precise size of the zero-field

excitation gaps is crucial for efficient engineering [9]. In thin films and multilayered

heterostructures, ESR provides unique characterisation on the exchange coupling be-

tween the multilayers [10–12]. On the other hand, the very spintronic technology relies

on concepts and methods from ESR: spin transport through magnetic tunnel junctions

is often found to be mediated by magnon modes [13, 14], while spin pumping into a

magnetic tunnel junction may be driven by ferromagnetic resonance [15, 16].

Two magnetoelectric antiferromagnets – MnTiO3 and LiMnPO4 – and a van-der-Waals

ferromagnet – CrI3 – are studied by means of high-frequency ESR (HF-ESR) in this

work. The main experimental method is complemented by low frequency ESR (in the

X-band region of the spectrum) and by magnetisation measurements in static and os-

cillating magnetic fields. After these opening remarks, selected theoretical concepts

which are essential for studying magnetically-ordered materials by means of HF-ESR

are introduced in Chapter 2. The following chapter (Chapter 3) introduces the ex-

perimental methods employed in this work with special attention to the operation of

the HF-ESR setup. The following three chapters – which form the main corpus of

the text – present, analyse, and discuss the obtained experimental data on the ma-

terials: Chapter 4 is devoted to MnTiO3, Chapter 5 to LiMnPO4, and Chapter 6

to CrI3. In each case, firstly, the available background information on the respec-

tive material is summarised. Secondly, magnetisation results in static magnetic fields

are presented – in some cases (MnTiO3 and CrI3), they serve as a basic characteri-

sation tool; in other cases (LiMnPO4), they provide new observations and are duly

discussed. Thirdly, resonance-frequency–magnetic-field diagrams of the magnon exci-

tations are constructed, analysed, and the obtained parameters discussed. Fourthly,

temperature-dependent resonance is presented and discussed. Penultimately, comple-
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mentary measurements – X-band ESR on MnTiO3 and LiMnPO4, AC susceptibility

on CrI3 – are presented and analysed. Each results chapter concludes with a discussion

and a summary. The entire text then closes with an overall conclusion, which comprises

Chapter 7.
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2. Theory

This chapter provides a basic theoretical framework for this study. The approach is

highly selective but the generally followed path starts from a single isolated magnetic

ion (Section 2.1) which is subsequently treated when incorporated in a non-magnetic

crystalline environment (Section 2.2). Thereafter, the environment is assumed to be

magnetic, and magnetic interactions and sources of anisotropy are discussed (Sec-

tions 2.3 and 2.4). Following from that, selected aspects of long-range-ordered magnets

are discussed (Section 2.5). The chapter closes with introducing the magnetic reso-

nance phenomenon in a paramagnet and in long-range-ordered magnets (Section 2.6).

Sections 2.1–2.4 are based predominantly on the treatment by S. Blundell [6], D. Khom-

skii [17], A. Abragam and B. Bleaney [18], and P. Fazekas [8]. Sections 2.5–2.6 are de-

rived predominantly from S. Rezende [19], S. Vonsovskii [20], G. Rado and H. Suhl [21],

and E. Turov [22].

2.1. Isolated Magnetic Ions

2.1.1. Single-Atom Hamiltonian

The Hamiltonian of an electron moving in the electrostatic potential of a stationary

massive point-like nucleus is given by:

H =
p2

2me

− Ze2

r
(2.1)

where Z is the atomic number and r the electron’s distance from the nucleus. For N

electrons moving around the nucleus, the above Hamiltonian can be expanded to read:

H =
N∑
i=1

(
p2
i

2me

− Ze2

ri
+ Vi(ri)

)
(2.2)

Here, Vi is the electrostatic potential on the ith electron due to the remaining electrons.

The eigenstates of the Hamiltonian in Eq. 2.2 are given by the wave function:

ψn,l,ml,ms(r, θ, ϕ) = Rn,l(r)Y
ml
l (θ, ϕ)χ(ms) (2.3)

where Rn,l(r) quantifies the radial, Y ml
l (θ, ϕ) the angular, and χ(ms) the spin part,

respectively, whereby Y ml
l (θ, ϕ) are known as spherical harmonics. For the various

5
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Figure 2.1.: Visualisation of the angular component of an electron’s wave function
for atomic 3d orbitals, given by the spherical harmonics Y ml

l=2(θ, ϕ) from Eq. 2.3. The
legend in each subfigure denotes the particular state |ml⟩. Visualisation performed
by means of the Matlab library from [23].

quantum numbers, it holds: n = 1, 2, ...; l = 0, 1, ..., n− 1; ml = −l,−l + 1, ..., l − 1, l,

and; ms = ±s, whereby for a single electron, s = 1/2. The analytical form of the radial

and angular functions can be found, for instance, in [6, 8]. For illustrative purposes, the

spherical harmonics which correspond to atomic 3d orbitals (n = 3, l = 2) are shown in

Fig. 2.1. In this case ml can take five values, ml = −2,−1, 0, 1, 2, and so there are five

distinct solutions to the angular part of Eq. 2.2. Due to the Pauli exclusion principle,

each of the orbitals can be occupied at most by one spin-up and one spin-down electron.

2.1.2. Hund’s Rules

The ground state electronic configuration of an atom or an isolated ion is given by

Hund’s rules. These state that:

1. the total spin quantum number S is maximised;

2. the total orbital quantum number L is maximised while respecting the first rule;

3. the total angular momentum quantum number J is given by:

� J = |L− S| if the corresponding shell is less than half-filled;

� J = |L+ S| if the corresponding shell is more than half-filled;

� J = S if the corresponding shell is half-filled.

In addition, for completely empty or fully-filled shells, S = L = J = 0.

Hund’s first two rules have their origin in the Pauli exclusion principle and in the

minimisation of the Coulomb electrostatic repulsion energy: electrons with identical
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spin orientation and with identical orbital parity can avoid each other more efficiently

due to the exchange hole effect, which leads to the decrease in the Coulomb energy [8].

The energy saving associated with obeying the first rule is about 1 eV and the second

rule about 0.1 eV–0.3 eV [8].

2.1.3. Spin-Orbit Coupling

Hund’s third rule, which governs the ground state total angular momentum J , is a con-

sequence of the relativistic spin-orbit coupling interaction. For an individual electron

i, this is given by:

Hi
SO = ζili · si (2.4)

where ζi is a shell-dependent spin-orbit coupling constant. In order to obtain the total

spin-orbit coupling of an atom, the contributions from individual electrons must be

added up. Depending on the concrete atom at hand, the addition is more appropriately

performed within the so-called LS-coupling (or Russell-Saunders) scheme or within

the so-called jj-coupling scheme. In the LS-coupling scheme, the individual electrons’

orbital moments and spins are first added up as L =
∑

i li and S =
∑

i si to give the

total spin-orbit coupling of:

HSO = λL · S (2.5)

where λ = ±ζ/(2S), whereby ζ = ζi for electrons belonging to the same orbital shell.

and whereby λ is positive for less-than-half-filled shell and negative for more-than-half-

filled shell.

The LS-coupling scheme is appropriate for all 3d elements, as here the spin-orbit

coupling is much smaller than the crystal-field energy (λ3d ≈ 10meV–90meV [24]).

In the jj-coupling scheme, angular momenta of individual electrons are built first as

ji = li + si, and these are then added up to give the total angular momentum of the

atom as J =
∑

i ji. The jj-coupling scheme is appropriate for elements whose spin-

orbit coupling energy is much greater than the crystal-field energy, namely the 4f and

5f elements (λ4f ≈ 90meV–360meV [24]).

2.1.4. Zeeman Energy

The energy of a magnetic moment in an external magnetic field B is referred to as the

Zeeman energy. It can be calculated by means of the following Hamiltonian:

HZeeman = µB(gLL+ gSS) ·B (2.6)
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where gL = 1 and gS = 2 are the g-factors associated with the orbital moment and

spin, respectively, and where µB is the Bohr magneton.

2.1.5. Landé g-Factor

It can be shown (see, e.g., [6]) that the Landé g-factor of an isolated magnetic ion with

spin S, orbital moment L, and total moment J is given by:

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(2.7)

Consequently, the saturated magnetic moment of the ion is given by µsat = µBgJJ

and the effective moment as featuring, e.g., in the Curie-Weiss law, by µeff =

µBgJ
√
J(J + 1).

2.2. Magnetic Ions in Solids

2.2.1. Crystal Field Effects

The inclusion of a magnetic ion in a crystalline solid has a profound effect on its mag-

netic properties. The potential which determines the energy of a particular electron on

the ion is no longer given solely by the ion’s nucleus and by the remaining electrons on

the magnetic ion, but now also by electrons from neighbouring ligands. Through elec-

trostatic interactions the orbitals may be increased or decreased in energy with respect

to their free-ion values. While microscopic calculations may be very involved, if at all

possible, symmetry-based arguments allow for qualitative and partially quantitative

predictions of the energy changes. These are elaborated next.

Fig. 2.2 illustrates the changes to the 3d-orbitals energy for a particular set of crystal-

field effects. When isolated, the five 3d orbitals are energetically fully degenerate

(Fig. 2.2a). This remains the case also when they are placed in a spherically-symmetric

crystal field, albeit the electrostatic interaction between the spherical crystal field and

the orbitals raises the orbitals’ energy (Fig. 2.2b). An octahedral crystal field produced

by six ions located along the x-, y-, and z-axes results in a splitting of the orbital

energies, with reduction of the t2g-orbitals energy by 2∆CF/5 and elevation of the eg
orbitals energy by 3∆CF/5 (Fig. 2.2c). Here, ∆CF is the crystal-field-splitting constant

which is a function of the particular magnetic ion and of the particular ligand acting

on the ion. For example, in a hydrate solution, Ni2+ exhibits ∆CF ≈ 1.1 eV, whereas

Cu2+ ∆CF ≈ 1.6 eV [18]. On the other hand, Cr3+ in an octahedral environment of Cl−

exhibits ∆CF ≈ 1.7 eV, whereas it shows ∆CF ≈ 2.7 eV in an octahedral environment

of NH3 [17].

If the octahedron is slightly distorted, further energy splitting of the orbitals occurs.
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𝑑𝑦𝑧, 𝑑𝑥𝑧
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z
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x
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octahedral crystal field

𝑒𝑔
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Figure 2.2.: Crystal-field-splitting scheme appropriate for 3d elements in (a) isolated
environment, (b) spherically symmetric coordination, (c) octahedral coordination, (d)
tetragonally-distorted octahedral coordination. Grey spheres depict the magnetic ion,
yellow spheres the ligands. The 3d orbitals in (a) and (b) are degenerate, degeneracy
is partially (or completely) lifted in (c) and (d). The energy scales in (a)–(d) are not
to scale with each other. After [17, 25].

In Fig. 2.2d, a tetragonal distortion with an elongation of the bonds oriented along

the z-axis and contraction of the bonds oriented in the xy-plane is envisaged. This

partially lifts the degeneracy of the t2g orbitals, while completely lifting the degeneracy

of the eg orbitals. If the contraction appears rather along the z-axis and the expansion

in the xy-plane, the order of the split orbitals within the respective orbital manifold is

reversed.

The incorporation of an isolated ion into a crystalline lattice which breaks the spherical

symmetry of the ion’s environment impacts, among others, the solution to Eq. 2.2.

Consequently, the wave functions of the five 3d orbitals consist of linear superposition

of the five atomic basis functions. In case of a dominant octahedral crystal field, as is

the case for the three materials studied in this work, the angular part of the orbitals

is given by [17]:

t2g


dxy = − i√

2
(|2⟩ − |−2⟩)

dyz =
i√
2
(|1⟩+ |−1⟩)

dxz = − 1√
2
(|1⟩ − |−1⟩)

eg

dx2−y2 =
1√
2
(|2⟩+ |−2⟩)

d3z2−r2 = |0⟩
(2.8)

where |ml⟩ are the atomic basis functions displayed in Fig. 2.1. The upper three orbitals

form the t2g orbitals manifold, the lower two the eg orbitals manifold [6, 8]. The energy



10 Chapter 2. Theory

dependence of these orbitals is illustrated for the case of a perfect octahedral crystal

field in Fig. 2.2c and of a weakly tetragonally-distorted octahedral crystal field in

Fig. 2.2d.

2.2.2. Orbital Quenching

The phenomenon of orbital quenching refers to the realisation of a spuriously low value

of the orbital moment given the predictions from Hund’s second rule, in extremal

cases ⟨L⟩ = 0. Orbital quenching comes about due to the electrostatic interaction

of the crystal field with the 3d orbitals. The orbital momentum operator is given by

L = −iℏr× ∇⃗, i.e. is purely imaginary. At the same time, a physical observable, such

as orbital momentum, must have real expectation values. It follows that if the wave

function |Ψ⟩ of a particular orbital state is purely real, the expectation value of the

state when acted on by the orbital momentum operator must vanish: ⟨Ψ|L|Ψ⟩ = 0.

Inspecting the crystalline 3d orbitals in Eq. 2.8, it may be seen that the wave functions

of the eg orbitals are purely real. Based on the arguments in the preceding paragraph,

it follows that the orbital moment associated with the eg orbitals is quenched. Ni
2+ and

Cu2+ in an octahedral environment are good examples of ions with orbitally-quenched

eg orbitals [8].

2.2.3. Fictitious Orbital Moment

The situation on the t2g orbitals is even more subtle. It may be observed in Eq. 2.8

that their wave functions consist of real and imaginary parts, so that a straightforward

argument to show that orbital moment is fully quenched is not possible. However, ex-

perimental evidence suggests that even these orbitals undergo at least partial quench-

ing [18]. This may be explained as follows: due to the large energetic separation ∆CF

of the t2g from the eg orbitals, it is possible to treat the t2g orbitals as forming a closed

pseudo shell and to assign to them a fictitious, pseudo orbital moment L̃ = 1, with

three possible values ml̃ = −1, 0, 1.

Considering now a magnetic ion with the electronic configuration 3d3+ (such as Cr3+),

its ground state under the supposition of an isolated ion (or a perfectly spherically-

symmetric crystal field) is predicted to be: S = 1/2 + 1/2 + 1/2 = 3/2 (Hund’s first

rule); L = 2 + 1 + 0 = 3 (Hund’s second rule), and; J = |3 − 3/2| = 3/2 (Hund’s

third rule). Based on Eq. 2.7, the Landé g-factor is calculated as gJ = 0.4. This results

in the saturated moment of µsat = µBgJJ = 0.6µB and in the effective moment of

µeff = µBgJ
√
J(J + 1) = 0.77µB, contrary to experimental observations [18].

In an octahedral environment (as is the case for Cr3+ in, e.g., CrI3, see Chapter 6), the

crystal field lifts the five-fold degeneracy of the 3d orbitals, rendering the t2g orbitals

lowest in energy, while they remain energetically three-fold degenerate. Assigning
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the fictitious orbital moment l̃ = 1 to them and following Hund’s rules, the ground

state may be ascertained to be: S =
∑

i si = 1/2 + 1/2 + 1/2 = 3/2; L̃ =
∑

i l̃ =

1+0+ (−1) = 0, and; J̃ = S = 3/2. This gives the Landé g-factor gJ̃ = 2. And hence,

the saturated moment is given by µsat = µBgJ̃J̃ = 3µB and the effective moment by

µeff = µBgJ̃

√
J̃(J̃ + 1) = 3.87µB, in line with experimental observations [18].

2.2.4. g-Factor and Anisotropy Tensors

By its nature, the spin-orbit coupling interaction ties the spin degree of freedom through

its coupling with the orbital degree of freedom to the crystalline lattice. Although

spin-coupling energy in 3d transition metal ions is much weaker than the crystal-field

energy, it can still bring about macroscopically measurable effects. These are, on the

one hand, a partial restoration of the quenched orbital moment and, on the other hand,

the introduction of anisotropy in magnetic properties.

It may be shown that in second-order perturbation theory, the spin-orbit coupling term

of Eq. 2.5 and the Zeeman term of Eq. 2.6 become [18]:

HSO +HZeeman = λL · S + µB(gLL+ gSS) ·B

−→
2nd order

pert. theory

= −λ2S ·Λ · S + µBS · g ·B

(2.9)

where the free-ion g-factors gL and gS are replaced by a g-factor tensor g. In addition,

Eq. 2.9 introduces an anisotropy tensor Λ. The two tensors are given by [18]:

gij = 2(δij − λΛij) (2.10)

and

Λij =
∑
n̸=0

⟨0|Li|n⟩ ⟨n|Lj|0⟩
En − E0

(2.11)

Here, δij is the Kronecker delta, and Li and Lj are components of the orbital angular

momentum L, such that the matrix elements connect the orbital ground state |0⟩ of

energy E0 with the nth orbital excited state |n⟩ of energy En.

The crucial observation from the effective spin Hamiltonian in Eq. 2.9 is that the orbital

momentum operator L has been consumed by the remaining terms while its effects,

originating in spin-orbit coupling, are transmitted through the anisotropic g-tensor and

the anisotropy constant.



12 Chapter 2. Theory

2.3. Magnetic Interactions

In this section, the most important spin-spin interactions which are realised in long-

range-ordered magnets are discussed. It is thanks to these magnetic interactions that

correlation effects and ultimately long-range magnetic order evolves in crystalline solids.

2.3.1. Magnetic Dipole-Dipole Interaction

Magnetic dipole-dipole interaction is the magnetic equivalent of the electric dipole-

dipole interaction and is given by [26]:

Hdipole =
µ0µ

2
Bg1g2

4π|r|3
[3(S1 · r̂)(S2 · r̂)− S1 · S2] (2.12)

where the spins S1 and S2 are connected by the position vector r, and where r̂ is the

unit vector in the direction of r. g1 and g2 are the isotropic g-factors associated with

S1 and S2, respectively.

2.3.2. Exchange Interaction

The exchange interaction is determined by the fermionic nature of the electrons. Writ-

ing the spatial component of the ith electron’s wave function located at position rj
as ϕi(rj) and its spin component as χi, the respective symmetric and antisymmetric

components are given by:

ψsym =
ϕ1(r1)ϕ2(r2) + ϕ1(r2)ϕ2(r1)√

2

ψantisym =
ϕ1(r1)ϕ2(r2)− ϕ1(r2)ϕ2(r1)√

2

(2.13)

and

χsym =


|↑↑⟩
|↓↓⟩
|↑↓⟩+|↓↑⟩√

2

χantisym =
|↑↓⟩ − |↓↑⟩√

2
(2.14)

where the ket notation in Eq. 2.14 follows the nomenclature that the first arrow refers

to the spin orientation of the electron at r1 and the second arrow to the spin orientation

of the electron at r2. In order to ensure that the total two-electron wave function be

antisymmetric, two ways of combining the spatial and spin components are possible:

Ψantisym =

ΨS = ψsym · χantisym

ΨT = ψantisym · χsym
(2.15)
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where the superscripts S and T refer to the singlet and triplet state, respectively. In

the spatially antisymmetric state, the spin component is symmetric; the state is triplet.

This forbids the two electrons from occupying the same space due to the Pauli exclusion

principle. On the other hand, in the spatially symmetric state, the spin component is

antisymmetric, allowing greater proximity of the two electrons to each other; the state

is a singlet. In this way, the Coulomb electrostatic repulsion is lowered in the triplet

with respect to the singlet. The energy difference between the triplet and the singlet

state can be expressed as [6]:

ET − ES =

∫
V

ϕ∗
1(r1)ϕ

∗
2(r2)Hϕ1(r2)ϕ2(r1)dr1dr2 ≡ 2J (2.16)

where the integral is performed over the volume V and J is the exchange constant. A

corresponding effective spin Hamiltonian may be written as:

Hspin = 2JS1 · S2 (2.17)

In case of a many-body system, the Hamiltonian is expanded to read:

HHeisenberg =
∑
<i,j>

JijSi · Sj (2.18)

where the sum runs over all pairs of neighbouring spins i and j which are coupled by

the neighbour-specific exchange constant Jij. If Jij is positive (negative), the singlet

(triplet) state between the two neighbouring spins is energetically lower and antifer-

romagnetic (ferromagnetic) arrangement results. Eq. 2.18 is known as the Heisenberg

Hamiltonian.

2.3.2.1. Direct Exchange

Direct exchange refers to the mechanism of a proxy-free exchange interaction between

two neighbouring electrons. It lies at the heart of Hund’s first rule but also, for instance,

of the bonding effect in an H2 molecule. In long-ranged magnetic systems it is a rather

weak effect, since direct spatial wave function overlap is a precondition for it to be

operative (c.f. Eq. 2.16). Typical spatial extensions of 3d orbitals (in neutral atoms)

amount to ≈ 0.3 Å–0.5 Å [17], while nearest magnetic-neighbour distances amount to

≈ 2.5 Å–4 Å, implying the limited strength of the direct exchange.

2.3.2.2. Superexchange

Superexchange interaction refers to an exchange process which takes places between two

magnetic ions via one or more mediating proxy ions. In the core of the superexchange

interaction is the possibility of electrons’ reduction in kinetic energy if they are able

to delocalise from their ionic position. The delocalisation occurs via a virtual hopping
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𝑑𝑥𝑦
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L
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Figure 2.3.: Visualisation of a virtual hopping process of electrons from p orbitals
(blue) of a ligand (L) to half-occupied d orbitals of a magnetic ion Mi (black) in a
scenario of (a) 180◦-bonding angle, and (b) 90◦-bonding angle along the exchange
path M1–L–M2. Purple (red) spheres depict the magnetic ions (ligands). After [25,
27].

process between overlapping orbitals of neighbouring ions.

Fig. 2.3 illustrates such a virtual hopping process for two different bonding angles along

the exchange path of magnetic-ion–ligand–magnetic-ion,M1–L–M2. It is assumed that

the bonding is perfectly ionic and that the respective d orbitals are singly occupied

while the p orbitals are fully occupied. The Pauli exclusion principle implies that

the two spins on the fully-occupied p orbitals are arranged in an antiferromagnetic

fashion. When the bonding angle is 180◦ (Fig. 2.3a) and the spins on the magnetic

ions arranged antiferromagnetically, both electrons can virtually hop from L, one to

M1, the other to M2. On the other hand, if the spins on the magnetic ions were

arranged ferromagnetically, only one such virtual hopping process would be permitted.

Therefore, greater kinetic-energy saving is possible in the former case than in the latter

case, favouring antiferromagnetic arrangement of the spins on the magnetic ions.

When the bonding angle is 90◦ (Fig. 2.3b), two p orbitals on the mediating ligand are

involved in the superexchange process. If the spins on the magnetic ions are arranged

ferromagnetically, two electrons of equal spin orientation undergo virtually hopping –

one from the px orbital to M1, one from the py orbital to M2. This leaves behind

two electrons of the same spin orientation on the ligand. If the spins on M1 and M2

were arranged antiferromagnetically, two electrons with opposite spin orientations can

virtually hop from px and py orbital, respectively, leaving two electrons of opposite

spin orientation behind on the ligand. Based on Hund’s first rule, the scenario of two

equally oriented spins on the ligand after the virtual hopping processes is energetically

favourable, hence favouring the ferromagnetic arrangement of the spins on the magnetic
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ions.

A number of orbital occupations and exchange paths are possible. The semi-empirical

Goodenough-Kanamori-Anderson rules predict the sign of the resulting exchange in-

teraction. A good overview of the rules may be found in [17].

2.3.2.3. Anisotropic Exchange

Through spin-orbit coupling, the isotropic exchange interaction (Eq. 2.18) becomes

anisotropic. Consequently, the scalar quantity Jij assumes a tensorial character [21]:

H =
∑
<i,j>

JijSi · Sj

−→
spin−orbit

coupling

=
∑
<i,j>

Si · Jij · Sj

=
∑
<i,j>

JijSi · Sj︸ ︷︷ ︸
isotropic

+
∑
<i,j>

Si ·Ksym
ij · Sj︸ ︷︷ ︸

anisotropic symmetric

+
∑
<i,j>

Si ·Kantisym
ij · Sj︸ ︷︷ ︸

anisotropic antisymmetric

(2.19)

Here the first term is the isotropic component of the exchange Hamiltonian. The second

term quantifies the anisotropic symmetric exchange, and the third term the anisotropic

antisymmetric exchange interaction, where Ksym
ij and Kantisym

ij are the corresponding

tensors. The symmetric part is invariant under the exchange of S1 and S2, whereas the

antisymmetric changes sign under the exchange of S1 and S2. Moreover, perturbation

theory reveals that the symmetric component of the anisotropic interaction scales lin-

early, while the antisymmetric component quadratically, with the spin-orbit-coupling

constant [21]:

Ksym
ij ∼

(
λ

∆E

)2

Jij ∼
(
∆g

g

)2

Jij

Kantisym
ij ∼

(
λ

∆E

)
Jij ∼

(
∆g

g

)
Jij

(2.20)

The anisotropic symmetric interaction is also known as the pseudo dipolar interaction,

while the anisotropic antisymmetric interaction as the Dzyaloshinskii-Moriya interac-

tion. It is the latter which shall be of interest in Chapter 5 of the present work. It is

typically expressed as [17]:

HDM = dij · (Si × Sj) (2.21)

where dij is a bond-dependent Dzyaloshinskii-Moriya vector. In order to obtain the

total effect of the Dzyaloshinskii-Moriya interaction in a crystal, a sum of the individual
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Dzyaloshinskii-Moriya vectors dij must be performed. Due to the cross product in

Eq. 2.21, the Dzyaloshinskii-Moriya interaction acts against the collinearity of the

isotropic and anisotropic symmetric interactions, favouring instead canting of the spins.

As such, it may produce spiral and helical magnetic order.

2.4. Sources of Anisotropy

It may be observed that whenever the spin-orbit coupling constant is finite, it transmits

the symmetry of the crystalline environment onto the spins, whence the spins become

anisotropic. In this section, different anisotropy sources are briefly summarised.

2.4.1. Single-Ion Anisotropy

The single-ion (or single-site) anisotropy refers, as the name suggests, to the anisotropy

effect which a magnetic ion acquires in isolation from other magnetic neighbours. Nat-

urally, the presence of a ligand-caused crystal field which lifts the five-fold 3d-orbital

degeneracy is necessary, for otherwise the spin-orbit coupling would vanish. The single-

ion anisotropy was already encountered in Eq. 2.11. It takes the simplest form when all

the elements of the anisotropy-constant tensor are zero with the exception Λzz. Then,

Hsingle−ion = −λ2Λzz(Sz)
2. It leads to zero-field splitting between states with different

value of |mS⟩, and in long-range-ordered magnets, it induces a finite zero-field excitation

gap in the magnon energy spectrum (see the ensuing exposition in Section 2.6.1).

2.4.2. Interaction-Mediated Anisotropy

Apart from the anisotropy due to a single-site effect, the spin may acquire anisotropy

also as a result of its interaction with spins on neighbouring magnetic sites. This effect

has already been alluded to when discussing anisotropic exchange above.

2.4.2.1. Exchange-Mediated Anisotropy

Considering the anisotropic symmetric part of the Hamiltonian in Eq. 2.19 and taking

Ksym
ij = diag(J⊥, J⊥ J∥), the exchange interaction becomes:∑

<i,j>

Si ·Ksym
ij · Sj =

∑
<i,j>

J∥S
z
i S

z
j + J⊥(S

x
i S

x
j + Sy

i S
y
j ) (2.22)

As can be readily observed in Eq. 2.22, the spins acquire an anisotropic character. If

J∥ > J⊥, the spins become Ising-like; if J∥ < J⊥ they become XY-like. For J∥ = J⊥,

the isotropic symmetric Heisenberg exchange is recovered.

Moreover, the Dzyaloshinskii-Moriya interaction can too lead to anisotropic effects.

This is owing to the presence of the Dzyaloshinskii-Moriya vector in Eq. 2.21.
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2.4.2.2. Dipole-Dipole-Interaction-Mediated Anisotropy

The vectorial character of Eq. 2.12 indicates that the shear crystallographic arrange-

ment of the magnetic moments in a solid with fixed mean distances and angular orienta-

tion of the lattice sites brings about preferential orientation of the magnetic moments.

This effect is small on an absolute energy scale but it becomes important when spin-

orbit coupling vanishes.

2.4.3. Shape Anisotropy

Another source of anisotropy which is not mediated by spin-orbit coupling and which

can be understood in (semi-)classical sense is the shape anisotropy. It occurs whenever

a surface forms in a magnetic medium. Additional energy is involved when mag-

netisation attempts to transgress a surface from a high-permeability medium to a

low-permeability medium. A demagnetising field develops at the surface which acts

against the magnetisation. Correspondingly, in the vicinity of the surface, the mag-

netic moments preferentially align parallel to the surface, hence following the shape of

the sample. Shape anisotropy becomes appreciable when at least one of the sample’s

dimensions is significantly smaller than the remaining directions, such as in thin films.

2.5. Long-Range-Ordered Magnets

The aim of this section is to derive several important equations pertaining to the anal-

ysis of long-range-ordered magnetic systems undertaken in this study. More concretely,

effective mean fields as well as the spin-flop field in an antiferromagnet are derived in

terms of experimentally accessible quantities.

2.5.1. Microscopic Spin Hamiltonian

A minimal Hamiltonian required for describing magnetic systems with a large number

of interacting spins at zero temperature is the following microscopic spin Hamilto-

nian [19]:

H =
∑
<i,j>

JijSi · Sj︸ ︷︷ ︸
exchange

−Dz

∑
i

(Sz
i )

2

︸ ︷︷ ︸
anisotropy

− gµB

∑
i

(Si ·B)︸ ︷︷ ︸
Zeeman

(2.23)

The first term quantifies the Heisenberg exchange energy, the second term the

anisotropy energy along the z-axis, and the third term the Zeeman energy. Jij is

the magnetic exchange constant between two magnetic neighbours, occupying the sites

i and j, and Dz is the uniaxial anisotropy constant. The signs before the various terms

imply that a positive value of Jij minimises the system’s energy for antiferromagnetic
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arrangements of the spins, and a positive value of Dz selects out the z-axis as the easy

magnetisation axis.

Refinement of the above terms in the Hamiltonian or addition of further terms may

be required, depending on the system at hand. In particular, the Hamiltonian uses a

generic uniaxial constant Dz without providing any indication as to what its origin may

be. Moreover, additional interactions may be crucial for a particular system at hand.

The sources of anisotropy and the different types of magnetic interactions were already

addressed in Sections 2.4 and 2.3, respectively. Despite the present simplifications and

omissions, the Hamiltonian is rich enough to enable the derivation of several important

ground-state and low-energy excitation properties of long-range-ordered ferromagnets

and antiferromagnets.

The derivations of these may follow one of at least two available routes: a quantum

mechanical solution which involves the techniques of second quantisation in which the

above spin operators Si,j are expressed in terms of Sz and of raising and lowering

operators S+ and S−, and; a classical solution in which the on-site spin operators are

replaced by magnetisation – a macroscopic, continuous quantity. The former received

a detailed treatment, for example, in [19, 21, 28, 29]; the latter in [19, 21, 30, 31]. In

the present case, the classical theory, which is in the literature also referred to as the

phenomenological [21], molecular-field [32], mean-field [7], or effective-field [19] theory,

shall be pursued, following mostly its exposition in [19].1

It ought to be remarked at this stage that an altogether different approach to de-

riving the ground-state and low-energy excitation properties is based on principles

of Lagrangian mechanics with the corresponding solution formulated in terms of the

symmetry of the exchange interactions [33, 34]. Although no further exposition of this

approach shall be given in the present work, it may be noted that it predicts the same

low-energy excitations as the other approaches, as long as the external field remains

considerably smaller than the energy of the exchange interaction [34].

2.5.2. Classical Solution to Long-Range-Ordered Magnets

As already indicated above, the signature feature of the classical, mean-field theory in

approaching the Hamiltonian in Eq. 2.23 is to consider the magnetic system at hand

to be sufficiently large such that a definitive value of the magnetisation vector can be

given at every spatial and temporal coordinate [21]. A further ingredient employed

by the mean-field solution is to keep dividing up the ground state configuration into a

finite number of interpenetrating sublattices until each sublattice consists only of spins

which mutually stand in a ferromagnetic arrangement. Trivially, a ferromagnet consists

1 As the quantities which are of interest in the present work are the effective, mean fields, the termi-
nology of (effective) mean fields shall be adapted.
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of only one sublattice. While this procedure may require a large number of divisions for

antiferromagnets, the ensuing derivation shall be restricted to antiferromagnets with

two sublattices.2

Mathematically, the move from the spin Hamiltonian to the continuous magnetic

medium made up of up to two sublattices amounts to treating the spin operators

Si,j in the Hamiltonian in Eq. 2.23 as classical vectors which give rise to the macro-

scopic magnetisation on the two sublattices: M1,2 = gµBNSi,j where N is the number

of magnetic moments per unit volume of the sublattice [19]. Moreover, the constants

Dz and Ji,j in Eq. 2.23 are replaced by the effective anisotropy field BA, and by the

effective exchange field BE, respectively [19]:

BA = (2SDz)/(gµB)

BE = (2SzJeff)/(gµB)
(2.24)

Here, Jeff is the effective exchange constant which couples the two sublattices with one

another, replacing all the individual exchange couplings Jij between any two magnetic

sites i and j. Note that the inclusion of the factor 2 and of the number of nearest

neighbours z in the above definitions is not prescribed by theoretical considerations

and is, instead, a matter of convention. Due care must be taken when comparing

results from different studies, as the present convention is not followed universally.

Equipped with the transformation of the spin operators to sublattice magnetisations

and with the definitions of the effective fields, the Hamiltonian in Eq. 2.23 can be

expressed in mean-field terms as [19]:

E =
BE

M
(M1 ·M2)−

BA

2M

(
(M z

1)
2 + (M z

2)
2
)
−M1 ·B −M2 ·B (2.25)

2.5.3. Derivation of Effective Exchange and Anisotropy Fields

Since the magnetisation in Eq. 2.25 is a classical vector, it can be decomposed into

its orthogonal components or, alternatively, associated with polar angles. When the

external magnetic field is applied along the easy magnetisation axis (i.e. the z-axis

based on Eqs. 2.23 and 2.25), the easy-axis component can be expressed as M z
1 =

|M | cos(θ) and M z
2 = |M | cos(ϕ). Here, θ and ϕ are polar angles which the sublattice

magnetisation encloses with the external magnetic field. Eq. 2.25 can be now expressed

as [19]:

E(θ, ϕ)

M
= BE (cos(θ + ϕ))− BA

2

(
cos2(θ) + cos2(ϕ)

)
−Bz (cos(θ) + cos(ϕ)) (2.26)

2 The derivations for n-sublattice systems with n > 2 are performed in the same spirit as their simpler
two-sublattice counterpart; however, the mathematical complexity increases rapidly as n is increased
above two (see, e.g., the treatment of a six-sublattice antiferromagnet in [35]).
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To find the expression for the effective exchange and anisotropy fields in terms of

the experimentally-accessible spin-flop field BSF and saturation field Bsat, the con-

figuration of the sublattice magnetisation is obtained by deriving ∂E(θ, ϕ)/∂θ
!
= 0

and ∂E(θ, ϕ)/∂ϕ
!
= 0. Recognising that for Bz < BSF, θ = 0 and ϕ = π; for

BSF ≤ Bz < Bsat, θ = −ϕ, and; for Bsat ≤ Bz, θ = ϕ = 0, the effective exchange

and anisotropy fields are found to be given by:

BA =
B2

SF

Bsat

BE =
Bsat

2
+

B2
SF

2Bsat

(2.27)

The above derivation also finds that the angle between the sublattice magnetisation

and the external magnetic field in the spin-flop phase is given by θ(BSF ≤ Bz < Bsat) =

cos−1(Bz/(2BE − BA)). In addition, from Eq. 2.27 it follows that the spin-flop field is

given by:

BSF =
√
2BEBA −B2

A (2.28)

2.6. Electron Spin Resonance

Electron spin resonance is the phenomenon of resonant absorption of light by an elec-

tron.3 The energy of the absorbed light depends, among others, on the total magnetic

field which the electron experiences. The latter, in turn, may be a complicated func-

tion of the internal fields acting on the electron, such as the exchange interaction and

various anisotropy effects, and the external, applied magnetic field.

2.6.1. Landau-Lifshitz-Gilbert Equation

The dynamics of the electron’s spin in a magnetic field is described by the Landau-

Lifshitz-Gilbert (LLG) equation [19, 21]4:

∂S

∂t
= −γS ×B + γ

λ

|S|
S × (S ×B) (2.29)

Here, γ = (gµB/ℏ) is the gyromagnetic ratio, whereby ℏ is the reduced Planck constant,

S is the spin vector S = (Sx Sy Sz)T, B the applied magnetic field, and λ a small

unitless constant. The first term in Eq. 2.29 describes the torque exerted by the applied

magnetic field on the spin and thus quantifies the driving aspect of the dynamics,

whereas the second term describes the restoring of the equilibrium state and thus

3 The phenomenon goes also by name of electron paramagnetic resonance. In the present work,
the nomenclature of spin resonance is adopted in order to avoid the misunderstanding that the
investigated resonant behaviour might be associated exclusively with paramagnetic electrons.

4 A comprehensive mathematical overview of the LLG equation may be found in [36].
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quantifies the damping aspect of the dynamics. After a suitable rescaling, Eq. 2.29 can

be cast into the compact form [36]:

∂S

∂t
= γS ×Beff (2.30)

where Beff now denotes the effective field acting on the electron. The LLG equation

can be extended to systems with a macroscopic number of electrons. To do so, the

same reformulation in terms of macroscopic mean-field quantities is undertaken as in

Section 2.5.2, i.e. individual spin operators are replaced by the magnetisation vector

M = gµBNSi. Then, Eq. 2.30 takes the form [36]:

∂M

∂t
= γM ×Beff (2.31)

Qualitatively, Eq. 2.31 implies that a magnetisation vector M placed in an effective

field Beff will experience a torque perpendicular to the magnetisation orientation. The

torque will induce a precession of the magnetisation around its equilibrium orientation.

Hence, the magnetisation vector can be expressed as M = (Mxe
i(2πν)t Mye

i(2πν)t Mz)
T,

where ν is the precession frequency [19].

Due to the non-linearity of the LLG equation, its solutions can be highly complex.

Nevertheless, approximate analytical solutions can be derived under suitable approxi-

mations which linearise the dependencies. One such approximation is to treat the mag-

netisation precession as being limited to very small angles, such that the component of

the magnetisation along the easy magnetisation (z-)axis remains constant, Mz = |M |.
Correspondingly, for the components of the magnetisation vector perpendicular to the

easy axis, it holds Mx,My ≪Mz.

2.6.2. Solutions of the Landau-Lifshitz-Gilbert Equation

In order to find the solution of the LLG equation for a concrete magnetic system,

an expression for the effective field Beff is required. This may be obtained from the

thermodynamic relation [19]:

Beff = −∇⃗M[E(M)] (2.32)

where the nabla operator performs a vector differentiation of the free energy E with

respect to the three orthogonal components of the magnetisation.5 That is, if the sys-

tem’s free energy is known in terms of the magnetisation, the magnetisation dynamics

can be calculated. For example, Beff of an antiferromagnet with a uniaxial anisotropy

5 The non-linearity of the LLG equation can be seen by observing that the effective field Beff featuring
in Eq. 2.32 and being substituted into Eq. 2.31 is itself via its dependence on the free-energy
derivative a function of the magnetisation.
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is calculated by substituting Eq. 2.25 into Eq. 2.32.

2.6.2.1. Paramagnetic Resonance

The most elementary mode of magnetic excitation is that of a paramagnet. As param-

agnet is, by definition, not long-range-ordered, no collective excitations are possible.6

In such a case, the free energy contains only the contribution from the Zeeman term,

while all other internal fields vanish (in particular, BE = BA = 0). The solution of the

LLG equation yields:

ν =
gµBB

h
(2.33)

That is, linear field dependence of the resonance frequency with no zero-field excitation

gap is predicted (see Fig. 2.4a). The lack of zero-field excitation gap implies that the

magnetic moments have no preferred orientation, i.e. are isotropic.

2.6.2.2. Ferromagnetic and Antiferromagnetic Resonance

For long-range-ordered magnetic systems, the low-energy solutions of the LLG equation

represent collective excitations of all the spins in the system. These are known in

classical terms as spin waves and in quantum-mechanical terms as magnons. The

resonant behaviour of the system is typically referred to as ferromagnetic resonance

(FMR) or antiferromagnetic resonance (AFMR). The analytical solutions of the LLG

equation may be found, for instance, in [19, 20, 22, 37] for ferromagnets, and in [19, 21,

22, 30, 31] for antiferromagnets. The appropriate solutions shall also be stated in full

when discussing a concrete material’s results in the respective chapters. In the present

case, solutions to selected magnetic systems are discussed in qualitative terms, so as to

demonstrate FMR’s and AFMR’s general features. The assumption is made that the

respective magnetic system is made up of one magnetic domain and is at T = 0K.

Resonance-Frequency–Magnetic-Field Diagram of a Mean-Field Ferromagnet

An isotropic mean-field ferromagnet of a spherical shape exhibits qualitatively and

quantitatively the same field dependence of the resonance frequency as a paramagnet

(black solid line, Fig. 2.4b). The ferromagnetic arrangement of the moments ensures

that all the magnetic moments precess in unison, forming, as it were, a single param-

agnetic spin.

However, once the shape of a ferromagnet departs from a perfect sphere, demagnetisa-

tion fields change the internal field experienced by the magnetic moments, resulting in

altered field dependence of the resonance modes. Orange solid lines in Fig. 2.4b show

the qualitative behaviour of an isotropic ferromagnet in shape of an infinitely thin disc.

It may be seen that when the external field is applied parallel to the disc’s plane, the

6 Here, the denotation “EPR”, that is, electron paramagnetic resonance, is often used in the literature.
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Figure 2.4.: Simulated mean-field-theory-based field dependence of resonance modes
in: (a) paramagnet; (b) ferromagnet (FM) of spherical shape (black solid line), of thin-
disc shape (orange solid lines); (c) FM of spherical shape with easy-axis anisotropy;
and in antiferromagnets with (d) easy-axis, (e) orthorhombic, and (f) easy-plane
anisotropy. Where appropriate, BSF marks the spin-flop field and various Bsat the
saturation fields.
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resonance frequency is enhanced with respect to the spherical sample, whereas when

the field is applied orthogonally to the disc’s plane, considerable reduction of the res-

onance frequency is expected. Due to the assumed isotropy, no zero-field splitting is

predicted.

On the other hand, if the ferromagnet is taken to be anisotropic, a zero-field excitation

gap opens up (Fig. 2.4c). In fact, the size of the gap in ferromagnets is linearly depen-

dent on the effective anisotropy field, ∆FM ∝ BA [37]. When the external magnetic

field is applied perpendicularly to the anisotropy axis, square-root-dependent reduc-

tion of the resonance frequency is predicted up to the saturation field, above which the

frequency increases in an approximately linear fashion.

Interestingly, because the magnetisation is always parallel to the effective exchange

field in a ferromagnet, the torque exerted by the exchange field onto the magnetisation

is zero [37]. This implies that the ferromagnetic resonance frequency remains always

independent of the ferromagnetic exchange field, irrespective of the ferromagnet’s shape

or the presence of anisotropy.

Resonance-Frequency–Magnetic-Field Diagram of a Mean-Field

Antiferromagnet

The magnetic resonance phenomena in antiferromagnets depend on both, the effective

anisotropy field and the effective exchange field. Unlike for the ferromagnets, it is

the interplay between the anisotropy and exchange which gives rise to the zero-field

excitation gap in long-range-ordered antiferromagnets. The analytical expression for

the excitation gap is ∆AFM = γ
√
2BEBA +B2

A [38]. Consequently, the resonance

frequency in mean-field antiferromagnets is a function of both, the anisotropy field and

the exchange field, and, due to the typically large values of BE, considerably higher than

in ferromagnets [19]. On the other hand, due to the antiferromagnetic arrangement of

the magnetic moments, the total demagnetisation field vanishes.

Figs. 2.4d–f depicts the simulated magnon branches for three types of mean-field an-

tiferromagnets: with uniaxial anisotropy (Fig. 2.4d); with orthorhombic anisotropy

(Fig. 2.4e), and; with easy-plane anisotropy (Fig. 2.4f). Several features which all the

three system have in common can be observed in the figures. Firstly, antiferromag-

nets with a unique easy axis – i.e. systems with uniaxial or orthorhombic anisotropy

– exhibit two magnon modes of opposite field dependence when the field is applied

along the easy axis (solid green lines in Figs. 2.4d and 2.4e). One of the branches

decreases in frequency until it reaches the critical field BC, above which the spin-flop

mode appears (solid blue lines in Figs. 2.4d and 2.4e). The critical field itself is given by

BC =
√
2BEBA +B2

A and is thus intrinsically related to the excitation gap ∆AFM [38].

Secondly, whenever the field is applied orthogonally to an anisotropy axis in whichever

of the three antiferromagnetic systems, a finite gap has to be overcome and the corre-
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sponding resonance branch shows left-bending in the low-field regime, assuming ever

greater linear character as the field is increased (solid red lines in Figs. 2.4d–f). Thirdly,

each of the systems exhibits at least one magnon mode for which the resonance fre-

quency decreases with increasing field, before completely vanishing at the saturation

field (solid grey lines in Figs. 2.4d–f).7

A mean-field antiferromagnet with orthorhombic anisotropy is the only two-sublattice

antiferromagnet with two zero-field excitations gaps, corresponding to two easy axes.

When the anisotropy of one of easy axes is removed, the two gaps and the two branches

associated with B ⊥ easy axis merge into one and a mean-field antiferromagnetic with

uniaxial anisotropy is recovered (c.f. Fig. 2.4d).

A special feature of the mean-field antiferromagnet with easy-plane anisotropy is its

exhibition of a gapless magnon mode, the field dependence of which is identical to that

of a regular paramagnet. This magnon mode is excited when the field is applied within

the easy plane, whereby the magnetic moments undergo a spin flop within the plane

at zero field.

7 These modes are usually not observable in a field-swept experiment, as they remain almost field-
independent at typically-accessible static fields. For illustration purposes, the saturation fields in
Figs. 2.4d–f were chosen to lie at unreasonably low values given the choice of the other simulation
parameters.
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3. Experimental Methods

This chapter provides an overview of the experimental techniques employed in course

of the present work. The intention is to provide a general operation principle and

measurement recipes of the various techniques. Peculiarities, if any, pertaining to the

individual measurements are addressed in the respective results chapters (see especially

Chapter 6).

3.1. High-Frequency Electron Spin Resonance

The basic operational scheme of the high-frequency electron spin resonance (HF-ESR)

experiment utilised in this work is as follows (see Fig. 3.1):

1. Electromagnetic waves in a tunable continuous microwave range of base frequency

8GHz ≲ ν ≲ 18GHz are generated by a pair of YIG oscillators within a Millime-

ter Vector Network Analyzer (MVNA), from AB Millimetre [39];

2. the frequency of the generated microwaves is fixed by a frequency counter (EIP

575B Source Locking Microwave Counter, produced by Phase Matrix);

3. the microwaves (red lines in the figure) are guided via coaxial cables (blue lines)

into a harmonic generator (HG) which multiplies the microwaves’ base frequency;

4. the microwaves are subsequently guided via feed horns (not shown) into an over-

sized waveguide which is installed in a vacuum-sealing sample rod;

5. the sample of interest (dark blue square) is mounted in the way of the propagating

microwaves on the bottom of the sample rod;

6. the transmitted microwaves are guided through a second waveguide to the top of

the sample rod and into a harmonic mixer (HM), whereby all the steering of the

microwaves is carried out by gold-coated mirrors (dark yellow lines in the figure);

7. the frequency of the microwaves is scaled down in the HM to the original base

frequency and transmitted to the MVNA via another coaxial cable;

8. to improve detection sensitivity, the transmitted microwave signal received by the

MVNA is sent to a lock-in amplifier (Model SR830 DSP, produced by Stanford

Research Systems) together with a reference signal of ν = 10.488 kHz (green line);

9. the lock-in amplifier decomposes the received signal into its amplitude and phase

components, amplifying the amplitude in the process;

10. the signal read-out from the lock-in amplifier is facilitated by a LabView pro-

gramme on a PC.

The harmonic generator and the harmonic mixer consist of a series of Schottky diodes

27
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Figure 3.1.: Schematic visualisation of the high-frequency electron spin resonance
experimental setup, see text for details of operation. After [25].

and are also produced by AB Millimetre. These are classified by their harmonic number

N which specifies the multiplication of the base frequency. Harmonic generators and

mixers are available with harmonic numbers sufficient to provide a (quasi-)continuous

frequency coverage in the range 30GHz ≲ ν ≲ 1000GHz. Depending on the desired

frequency, additional amplifiers, attenuators, or filters are installed on the harmonic

generator and mixer. For ν ≲ 30GHz no propagation of the microwaves is possi-

ble through the waveguides due to the waveguides’ cut-off frequency [40], while for

increasing frequency, the observed dynamic range decreases.

As depicted in Fig. 3.1, for measurements, the sample rod is inserted into a liquid-

helium cryostat with a superconducting magnet (grey squares with a cross). The

superconducting coil is made of Nb3Sn and generates magnetic fields up to Bext =
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±18T. The liquid-helium reservoir serves for cooling of the superconducting magnet

as well as of the sample. The latter is facilitated by a variable temperature insert (VTI)

and allows to reach stable sample temperature down to ≈ 1.8K. Sample heating is

provided by two separate resistive heaters: one located at the needle valve of the

VTI, another directly at the sample. Sample temperature is measured by Cernox

thermometer, model CX-1040, produced by Lake Shore. The magnet is controlled by

Intelligent Power Supply (Mercury iPS), the VTI by Intelligent Temperature Controller

(Mercury iTC), and the sample heater by 340 Temperature Controller. The cryostat,

the superconducting magnet, the VTI, the iPS, and the iTC are products of Oxford

Instruments. The temperature controller, which also reads the sample temperature, is

a product of Lake Shore.

The magnetic field in the experiment is oriented vertically, the electric and magnetic

components of the microwave radiation along the waveguide inside the sample rod

horizontally. Hence, the experiments are performed in the Faraday configuration

(Bext ⊥ kMW, where kMW is the microwave wavevector). The microwave radiation

remains unpolarised throughout the experiment. Due to the technical complexity of

sustaining constant microwave intensity with varying microwave frequency, the experi-

ments are performed in a field-swept mode. That is, the desired frequency ν is selected

and locked by the frequency counter, Bext from the superconducting magnet swept at a

rate 1T/min, while the sample temperature is held constant. Owing to the utilisation

of the lock-in amplifier for detection, the absolute values of the transmitted microwave

amplitude cannot be conveyed. Instead, microwave transmitted amplitude and mi-

crowave phase as modulated by the lock-in amplification are recorded as a function of

the swept field and constitute the acquired spectra.

A pure, undistorted transmitted amplitude, Apure, is expected to assume a Lorentzian

shape. However, owing to a number of intrinsic and extrinsic parameters, the detected

amplitude, Adet, may become distorted by way of mixing-in of the microwave phase,

that is of wave dispersion, Ddet. Not only does such a distortion change the shape of the

true resonance signal but it also masks the true resonance-field position. Throughout

this work, this effect is referred to as wave-phase mixing. An important intrinsic pa-

rameter which affects the detected lineshape is the penetration depth of the microwaves

into the sample, which itself is a function of the microwave frequency, and of the sam-

ple’s conductivity and relative permeability [41]. The extrinsic parameters are given

by the efficiency of microwave propagation through the waveguides and of microwave

coupling to the sample. These in turn are a function, among others, of the sample

shape and of the sample and waveguides temperature. To reconstruct the true line-

shape of the resonance signal, Apure(B) = ±(1+ ϵ)−1[Adet(B)+ ϵDdet(B)] is calculated,

where ϵ ≤ 1 is a parameter which quantifies the fractional admixture of the dispersion

relative to the amplitude [42]. Under the assumption that Adet and Ddet have been nor-
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(a) (b) (c)

Figure 3.2.: (a) Empty brass ring used as a sample holder for HF-ESR measure-
ments; (b) brass ring filled with an eicosane-fixed sample and covered by a layer of
Kapton tape; (c) empty PEEK sample holder used for air- or light-sensitive samples.

malised with respect to each other appropriately, i.e. according to the Kramers-Kronig

relations, the absolute value of the amplitude may too be recovered [40, 43].

A standard sample holder consists of a home-made brass ring, the top and bottom

of which is sealed by a layer of Kapton tape. Single-crystal samples are fixed within

the brass-ring-Kapton-tape structure by another layer of Kapton tape. Polycrystalline

powders can be measured in the so-called “loose-powder” or “fixed-powder” arrange-

ment, whereby the present work employed only the latter arrangement. This comprises

a preparation of a mixture of the desired polycrystalline material with eicosane pow-

der within the brass-ring-Kapton-tape structure, approximately in 1-to-1 volume ratio.

Sealing both ends of the brass ring with Kapton tape, the structure is heated up by

a heat gun up to ≈ 40 ◦C, upon which the eicosane powder melts and flows through

the powder of interest. When the heat source is removed, the eicosane powder so-

lidifies, fixing the polycrystalline powder of interest in its random orientation in the

process. For air- or light-sensitive samples (c.f. Chapter 6), a home-made sample holder

manufactured from PEEK material is utilised. This features a screwing lid, the wind-

ings of which may be wrapped in several layers of teflon tape to enhance the sealing

capabilities.

For illustration purposes, an empty brass ring is depicted in Fig. 3.2a, a brass ring

filled with a fixed-powder sample and covered by a layer of Kapton tape in Fig. 3.2b.

Fig. 3.2c shows the PEEK sample holder.

The prepared sample is fixed into a home-made sample holder and attached to the

sample rod. Prior to installing the sample rod into the cryostat, three cycles of vacuum-

pumping–helium-gas-purging are performed. Subsequently, helium exchange gas of

p ≈ 250mbar (at room temperature) is introduced into the sample rod. The exchange

gas enables good temperature control of the sample during measurements.
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(b) (c)

(a)

Figure 3.3.: (a) EPR quartz tube used as a sample holder for X-band electron spin
resonance. A single-crystal sample is attached to a paper strip on the bottom of the
tube, marked by a black rectangle; (b)–(c) magnification of the sample along two
different orientations.

3.2. X-Band Electron Spin Resonance

Electron spin resonance in the X-band frequency range was performed in the research

group of Prof. Dr. Peter Comba at the Institute of Inorganic Chemistry, Heidelberg

University. The employed measurement setup consists of a commercial Elexsys E500

CW-EPR spectrometer, produced by Bruker, which delivers a continuous-wave signal.

The setup utilises a rectangular resonator cavity, model ER 4122SHQE, which pos-

sesses two resonance modes: ν ≈ 9.6GHz with Bext ⊥ kMW (Faraday configuration),

and; ν ≈ 9.4GHz with Bext ∥ kMW (Voigt configuration). Tuning of the incident mi-

crowave frequency enables access to either of the modes, whereby the precise resonance

frequency depends on the concrete geometry of the measurement, in particular, on the

shape of the sample and of the sample holder. The Q-factor of the cavity, defined as

Q = ν/(∆ν) is typically Q ≈ 4000–5000 for the Faraday, and Q ≈ 3000–4000 for the

Voigt configuration.

External magnetic field accessible in the range 0T ≤ Bext ≲ 1.2T is provided by an

electromagnet. The detection sensitivity is enhanced by applying a small oscillating

magnetic field which modulates the main external magnetic field Bext. The amplitude

of the modulation field may be adjusted and lies typically in the range 1G–10G. By

applying the modulation field, the detected signal assumes a character of a derivative

of a Lorentzian function.

Sample cooling down to ≈ 5K is provided by a Cryo Edge cryostat. This utilises

gaseous helium which is cooled by a compressor. The sample is heated by a resistive

heater, and the heating as well as the temperature reading are facilitated by an Mercury

iTC, produced by Oxford Instruments. Note that the spectra presented in the frame
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MPMS 3 PPMS

sample temperature range 1.8K – 400K 1.8K – 400K

DC magnetic field range −7T – 7T −14T – 14T

DC-mode measurement yes no

VSM-mode measurement yes yes

SQUID detection yes no

AC-field amplitude 0.1Oe – 10Oe 0.1Oe – 17Oe

AC-field frequency 0.1Hz – 1 kHz 10Hz – 10 kHz

Table 3.1.: Selected capabilities of the MPMS 3 and the PPMS used in magnetisation
measurements.

of this work were recorded solely at room temperature.

Single-crystal samples are attached by a small amount of GE varnish to the bottom

of a long paper strip which is inserted into an EPR quartz tube, produced by Sigma-

Aldrich. For low-temperature measurements, the quartz tube is filled with argon and

sealed. Fig. 3.3 depicts a single-crystal sample prepared for a measurement in the EPR

quartz tube.

3.3. Magnetometry

Magnetisation measurements were performed in a DC-field as well as in an AC-field

mode. For each of the options, two separate commercial devices were available: Mag-

netic Property Measurement System, MPMS 3, and; Physical Property Measurement

System, PPMS; both of which are products of Quantum Design. Selected capabilities

of each device are listed in Table 3.1. The choice of device for a particular measurement

depended on concrete requirements, such as preference for signal detection by means

of a SQUID (MPMS) or requirement of large AC-field excitation frequencies (PPMS),

see Table 3.1.

3.3.1. DC-Field Magnetisation

DC-field magnetisation measurements involve measuring the DC magnetic moment of a

sample, µDC, at particular sample temperature upon the application of a DC magnetic

field.

In the course of this work, field-swept and temperature-swept measurements of the DC-

field magnetisation were performed. Field-swept measurements involve measuring the

magnetic moment as a function of applied magnetic field while the sample temperature

is held constant. These shall be henceforth designated as isothermal magnetisation

measurements. To perform them, the desired sample temperature was held constant
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for 120 s prior to the start of the field sweep. Typical field sweep rates were 30–50Oe/s.

The magnetic moment was recorded upon ramping-up and ramping-down of the field,

with a short pause in between (≈ 10 s).

Temperature-swept measurements involve measuring the magnetic moment as a func-

tion of temperature in a constant applied field. In the present work, the magnetic mo-

ment was recorded upon heating with typical sweep rates of 1K/min. When recording

the moment upon heating, an important defining parameter of the measurement is

whether the applied magnetic field is present already during the cooling (field-cooled

measurement) or whether the cooling takes place with no applied field and the field is

applied only once the starting measurement temperature has been reached (zero-field-

cooled measurement). The particular measurement mode in the present work is speci-

fied when introducing the experimental data for each respective material and concrete

measurement. A typical quantity of interest resulting from temperature-swept mea-

surements of µDC is the static magnetic susceptibility, χ. This is defined as χ =M/B,

where M is the sample magnetisation and B the applied magnetic field. Hence, the

temperature-swept measurements of the DC magnetic moment shall be designated as

static magnetic susceptibility measurements in the ensuing.

The measurement of the magnetic moment is realised by moving the sample through

a set of pick-up coils, either singularly with a large scan length (DC mode) or in a

vibrating fashion with a small vibration amplitude (VSM1 mode). The moving sample

induces a potential difference in the coils which is detected. The MPMS is capable

of performing both measurement modes, employing a detection by a SQUID2 which

is built incorporated in the pick-up coil circuit while fully isolated from the sample

space. The PPMS utilises only the VSM mode, whereby the detection of the poten-

tial difference induced in the pick-up coils is read-out directly, i.e. without a SQUID.

Operation overview of a SQUID magnetometer may be found, for instance, in [44–46],

that of a VSM, for instance, in [47]. When employing the SQUID magnetometer of the

MPMS, a typical scan length through the pick-up coils of 30mm with a scan time of

4 s was used. A typical peak amplitude of vibration in the VSM-mode measurements

was 4mm with averaging time of 2 s. In the MPMS, the VSM mode is operated at a

pre-set frequency of 14Hz–16Hz, while in the PPMS, a choice of vibration frequency

is possible; typically 40Hz was used.

For DC-magnetisation measurements on powder samples, a sufficient amount (m ≈
5mg–10mg) of the desired material was transferred by a spatula into a polypropylene

capsule. To ascertain the mass of the powder, the capsule was weighed first without the

sample and subsequently with the sample. In case of DC-magnetisation measurements

on single crystals, thick enough samples were mechanically fixed between two quartz

1 Vibrating-Sample Magnetometer
2 Superconducting Quantum Interference Device
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spacers within a brass holder; thin samples were fixed by Kapton tape onto a quartz

sample holder. The polypropylene capsules as well as the brass and quartz sample

holders are products of Quantum Design.

3.3.2. AC-Field Magnetisation

AC-field magnetisation measurements are based on the application of a small oscillating

magnetic field, BAC, on the background of a larger, DC magnetic field, BDC, and the

detection of the sample’s magnetic moment. The oscillatory nature of BAC induces

a time-dependent moment in the sample. The AC susceptibility is given by χAC =

χ′ + iχ′′, where χ′ is the real, in-phase component, and χ′′ the imaginary, out-of-phase

component. The two components are given by:

χ′ =

(
∂M

∂BDC

)
cosϕ

χ′′ =

(
∂M

∂BDC

)
sinϕ

(3.1)

where ∂M/∂BDC is the slope of the isothermal magnetisation curve.

The present work utilised the AC-susceptibility option of both of the available devices.

In the MPMS, the three-point-measurement cycle was employed in which the sample’s

AC susceptibility is measured in a sequence at three spatial points within the detection

coils: at the central point of the gradiometer; followed by the point of the gradiometer’s

maximum response; followed again by the central point of the gradiometer. Such a

measurement cycle enhances the measurement sensitivity. The PPMS does not allow

for the choice of the measurement cycle. Instead, a pre-set cycle is utilised by the device

which involves measurements of the AC susceptibility in two separate counter-wound

coils and in a compensation coil. The measurements details of the AC-susceptibility

measurements on the two devices may be found in the respective manuals [48, 49].

Samples were either fixed by Kapton tape onto a quartz sample holder, akin to the

DC-magnetisation measurements, or fixed by Kapton tape to a small teflon platform

which was slid into a plastic straw.

3.4. Laue X-Ray Diffraction

Laue X-ray diffraction was utilised in the present study to verify the quality of single

crystal samples and to obtain information on their crystallographic orientation. Back-

scattering geometry in which the X-ray source and detector are located in the same

plane was employed. The home-made setup consists of an X-ray tube in which electrons

are accelerated towards a tungsten anode. The deceleration of the electrons upon

interaction with the anode generates Bremsstrahlung, braking radiation. The detector
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comprises a combination of a scintillating layer of Tb-doped Gd2O2S and two CCD

cameras. Tube current I = 20mA and acceleration voltage V = 35 kV with image

exposure time t = 300 s were typically used. During image acquisition, the sample was

fixed on a goniometer which enabled the sample’s orientation. The image analysis was

performed by freely-accessible software CLIP [50].3

3.5. Note on Usage of Symbols and Units

Throughout this work and following the English-language-literature nomenclature, the

distinction between the magnetic field strength H = [Oe] and the magnetic flux density

B = [G] is not followed. All designations of magnetic field (strengths), may they be

referring to internal fields, such as the exchange field, or to external applied fields, are

made by B. Moreover, the cgs unit system is followed in which the numerical values of

magnetic field strength and magnetic flux density are identical: 1Oe = 1G, whereby

10 000G = 1T. This usage follows the standard English-language textbook on solid-

state magnetism [6]. Additionally, references to “applied magnetic field” refer to DC

magnetic field. When discussing AC susceptibility, designations of the field as “DC”

or “AC” are made whenever ambiguity could arise.

Furthermore, the following shorthand is employed for statements pertaining to the

magnetisation, M , and to the static magnetic susceptibility χ =M/B:

� “Mi”, or “M for B||i” refer to the magnetisation along a sample’s i-axis when

the external magnetic field is applied along the i-axis;

� “χi”, or “χ for B||i” refer to the static magnetic susceptibility χii =Mi/Bi, i.e. to

the diagonal element of the static magnetic susceptibility tensor.

The employed unit of magnetisation is M = [µB/f.u.], that is, magnetisation quanti-

ties are normalised to the number of Bohr magnetons per formula unit of the com-

pound. Static magnetic susceptibility is given in the unit χ = [ergG−2mol−1], whereby

[ergG−2] ≡ [emu].

3 Cologne Laue Indexation Program
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4. MnTiO3

A portion of the following chapter forms the basis of a recently submitted article to

Physical Review B and is also available on the open-access repository arXiv under

the title The role of magnetoelastic coupling and magnetic anisotropy in MnTiO3 [51].

The author of the present text features as one of two first co-authors of the submitted

article. Unless stated otherwise, all data, analysis, and discussion presented here are

sole work of the present author.

4.1. Material Background

MnTiO3 belongs to the ilmenite family of titanates with the general formula MTiO3

where M is a cation with oxidation state 2+, such as Mg2+, Cd2+, Mn2+, Fe2+, Co2+,

or Ni2+ [52]. Whereas the first two members of the above series are non-magnetic [52],

the remaining compounds all display long-range antiferromagnetic order at low tem-

peratures [53, 54]. At least two different stable polymorphs of MnTiO3 have been

identified, successfully synthesised, and characterised: a low-pressure polymorph, de-

noted MnTiO3-I, and a high-pressure polymorph, denoted MnTiO3-II [52]. By far the

more investigated of the two is MnTiO3-I which also exhibits higher crystallographic

symmetry. The low-pressure phase (henceforth denoted simply as MnTiO3) is also the

subject of the present work.

MnTiO3, together with all other titanates, crystallises in the so-called ilmenite struc-

ture which exhibits the crystallographic symmetry R3̄ [57, 58]. Fig. 4.1 depicts the

crystal structure of MnTiO3 which consists of alternating planes of manganese and

titanium cations, whereby the stacking direction of the planes defines the crystallo-

graphic c-axis. Within the individual crystallographic ab-planes, both cation species

are displaced due to electrostatic forces from their high-symmetry position in an al-

ternating fashion, reducing the local point group symmetry and leading to buckling of

the basal planes (c.f. Fig. 4.1a) [59]. Within their respective plane, each cation species

is coordinated in weakly-distorted oxygen octahedra (distortion parameter amounts to

c/a ≈ 0.04 at 100K [55]). Neighbouring octahedra of the same species share a com-

mon edge within the ab-planes, and neighbouring octahedra of differing species share a

common face along the c-axis. Lastly and as demonstrated in Fig. 4.1b, the manganese

ions lie in an hexagonal arrangement within the basal planes.

The 2+ oxidation state of the manganese ions results in an electronic configuration

37
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(a) (b)

Figure 4.1.: Crystal structure of MnTiO3 (a) in the bc-plane, and; (b) in the ab-
plane, consisting of Mn2+ cations (green) embedded in octahedrally-coordinated O2−

anions (red). In between the individual manganese layers are sandwiched layers of
Ti4+ cations (blue). For clarity, titanium octahedra have been omitted from (a), and
titanium cations have been omitted in (b) altogether. Crystallographic data taken
from [55], visualisation performed in VESTA [56].

[Ar]3d5 with spin momentum S = 5/2 and vanishing orbital momentum L = 0. The

long-range antiferromagnetic order in MnTiO3 is of the G-type [62], contrasting with

the other magnetic titanates which display A-type AFM order [62–64]. The long-range

ordering temperature of MnTiO3 has been found to vary between TN = 62.3K in a

powder sample [65] and TN = 64.5(5)K in a single crystal [66].

88.4° J1

J3

J2

(a) (b) (c)

Jc1

Jc2 Jc3

Figure 4.2.: (a) Manganese ions (green) coordinated octahedrally by six oxygen ions
(red) with a bonding angle of 88.4◦ along the exchange path Mn–O–Mn. Exchange
constants between various nearest manganese neighbours (b) within the ab-plane (J1–
J3), and; (c) perpendicular to the ab-plane (Jc1–Jc3). The arrows in (c) depict the
ground state spin structure as determined from inelastic neutron scattering [60, 61].
Crystallographic data taken from [55], visualisation performed in VESTA [56].

The difference in the types of antiferromagnetic order may be understood by consider-

ing the dominant exchange interaction in the titanates, J1, which is realised between
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M configuration S AFM order anisotropy type TN (K)

Mn2+ 3d5 5/2 G-type [62] uniaxial [62] 63.6 [67]

Fe2+ 3d6 2 A-type [63] uniaxial [68] 58.0 [68]

Co2+ 3d7 3/2 A-type [64] planar [64] 35.6 [69]

Ni2+ 3d8 1 A-type [62] planar [62] 23.2 [69]

Table 4.1.: An overview of the basic magnetic properties of the various magnetic
titanates with the general formula MTiO3. Numbers in square brackets indicate the
corresponding reference.

nearest in-plane magnetic neighbours M . With the help of Fig. 4.2a, it may be seen

that J1 comes about as a cooperative effect between, on the one hand, direct exchange

between the two neighbours M–M (dashed salmon-coloured line) and, on the other

hand, superexchange mediated by an oxygen anion which is bonded under 88.4◦ to

the M ions via two equal paths (solid salmon-coloured lines). Whereas the direct ex-

change path favours antiferromagnetic spin arrangement, the sign of the superexchange

path is dependent on the concrete electronic configuration: right-angled bonding be-

tween half-filled eg and half-filled t2g shells (as approximately realised in MnTiO3)

favours antiferromagnetic spin arrangement; right-angled bonding between half-filled

eg and more-than-half-filled t2g shells (as approximately realised in the other magnetic

titanates) favours ferromagnetic spin arrangement [17]. Consequently, in-plane anti-

ferromagnetic arrangement of the spins is realised in MnTiO3 [62], ferromagnetic in

the other titanates [62–64]. The basic magnetic properties of the various magnetic

titanates are summarised in Table 4.1.

Another intriguing difference between MnTiO3 and the other magnetic titanates con-

cerns the temperature evolution of the static magnetic susceptibility. FeTiO3, CoTiO3,

and NiTiO3 exhibit upon cooling a monotonic increase of χ all the way down to TN with

a sharp peak at TN and a subsequent decrease towards the lowest temperatures [68,

69]. In contrast, the static magnetic susceptibility of MnTiO3 displays upon cooling a

monotonic increase only down to about 100K, at which point a broad maximum χm

evolves, extending down to the antiferromagnetic ordering temperature TN ≈ 64K [67,

70].

Such a broad maximum in static magnetic susceptibility is a sign of reduced dimen-

sionality of the magnetic interactions [71]. In the case of MnTiO3 the reduced di-

mensionality is suspected to originate from an accidental cancellation of otherwise

sizeable interplanar exchange constants [61, 72]. Table 4.2 lists the first six nearest-

neighbour exchange constants as determined from the most recent inelastic neutron

scattering on MnTiO3 [61], and Figs. 4.2b,c visualise the various exchange constants.

It may be observed that all interplanar exchange constants are antiferromagnetic

in nature. However, due to the dominant intraplanar exchange constant J1 which
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forces all in-plane nearest neighbours into an antiferromagnetic arrangement, the in-

terplanar constant Jc2 is not realised. Consequently, the system has to pay energy

2n · Jc2, where n is the number of neighbours coupled via Jc2, in order to support

the ground state spin arrangement (see also the ground-state spin configuration de-

picted in Fig. 4.2c). That is, the effective out-of-plane exchange constant equals to

Jeff
c =

∑
i ni · Ji = 1 · Jc1 − 6 · Jc2 + 3 · Jc3 = 0.102meV, whereas the effective in-plane

exchange constant to Jeff
ab = 3·J1−6·J2+3·J3 = 4.629meV (whereby the minus signs in

the two sums indicate that the corresponding interaction is not satisfied in the ground

state). This results in the ratio Jeff
c /Jeff

ab ≈ 0.022 [61], highlighting the dominance of

the intraplanar over the interplanar coupling.

intralayer coupling interlayer coupling

(meV) n bond length (Å) (meV) n bond length (Å)

J1 1.833 3 3.057 Jc1 0.507 1 4.008

J2 0.139 6 5.134 Jc2 0.131 6 5.604

J3 −0.012 3 5.975 Jc3 0.127 3 6.252

Jeff
ab 4.629 Jeff

c 0.102

Table 4.2.: Intra- and interlayer exchange coupling constants, the number of neigh-
bours n connected via the respective coupling, and the corresponding bond lengths
in MnTiO3. J

eff
ab (Jeff

c ) corresponds to the effective intraplanar (interplanar) exchange
constant. Positive sign of the exchange constant corresponds to antiferromagnetic
coupling. Exchange constants taken from [61], crystallographic information from [55].

Although the basic magnetic properties of MnTiO3, such as the thermodynamic re-

sponse functions or the magnetic ground state, had been long understood, the recent

observation of the magnetoelectric effect in MnTiO3 [73] has reawakened interest in

the fundamental properties of the material, not least with a view on potential tech-

nological applications, harvesting the linear coupling between electric and magnetic

fields (see e.g. [74] and the references therein). In spite of not showing spontaneous

coexistence of ordered magnetic and electric dipole moments, characteristic for multi-

ferroics [17], MnTiO3 exhibits magnetic-field-induced electric polarisation within the

antiferromagnetically-ordered phase [73]. Moreover, based on group-theoretical consid-

erations the spin-flop phase of MnTiO3 has been predicted to support the evolution of

a ferrotoroidal structure [75, 76]. Measurements of the d-d transitions by means of sec-

ond harmonic generation have provided experimental evidence that toroidal moments

may indeed evolve in the spin-flop phase [76].

Another fascinating area of research on the titanates concerns the doping se-

ries NixMn1−xTiO3. Since MnTiO3 is a G-type antiferromagnet with an easy-

axis anisotropy [62] and NiTiO3 is an A-type antiferromagnet with an easy-plane

anisotropy [62], competing interactions and anisotropies in the doped compounds lead
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to exotic and novel phenomena [77]. For instance, NixMn1−xTiO3 has been observed

to exhibit an ab-plane-confined spin-glass state for x = 0.40–0.48 [78]. Moreover, the

frozen disordered regime of the spin-glass behaviour is accompanied by a magneto-

electric effect which is thought to be induced by alignment of toroidal moments [78,

79].

The recent observations on MnTiO3 and on the doping series NixMn1−xTiO3 make

the magnetic titanates an exciting material group to study. However, in order qual-

itatively and quantitatively to understand the ground-state properties of the Mn–Ni

doping series, a detailed understanding of the end compounds is required. While the

low-energy excitations of NiTiO3 have already been investigated in the frame of an-

other study [25], a comparable investigation of MnTiO3 is still missing. Small parts of

MnTiO3’s resonance-frequency–magnetic-field diagram [54, 80] as well as the tempera-

ture evolution of the linewidth [81] have been studied before. However, the present work

covers for the first time the low-temperature magnon excitations in a broad excitation-

energy spectrum 30GHz ≤ ν ≤ 420GHz in a large range of applied magnetic fields

0T ≤ B ≤ 16T. Furthermore, profiting from a high-quality single-crystal sample, the

parameters of the two-sublattice model of antiferromagnetic resonance (AFMR) with

uniaxial anisotropy are derived with previously unattainable precision and the physical

origin of the parameters is discussed in detail.

4.2. Sample and Experimental Details

The sample utilised in the present study was synthesised by Kaustav Dey by means

of optical floating-zone technique in argon-filled atmosphere of 5 bar [55]. It was pre-

viously characterised by magnetisation [55], and thermal expansion and magnetostric-

tion [66]. To perform high-frequency electron spin resonance (HF-ESR), a small sample

in a wedge form was cut out with approximate dimensions 2mm × 1mm × 0.3mm–

0.6mm, where the c-axis dimension reflected the varying height of the wedge. This was

necessary in order to minimise the effect of the so-called Walker modes [82–84]. Auxil-

iary HF-ESR measurements were conducted on a finely-ground polycrystalline sample

fixed by means of eicosane (see Section 3.1 for more details on preparing fixed-powder

samples).

4.3. Experimental Results

4.3.1. Static Magnetic Susceptibility

Fig. 4.3a depicts the axis-dependent static magnetic susceptibility, χ = M/B, of

MnTiO3 at B = 1T, measured by Kaustav Dey [85] and analysed by the present

author. Coming from high temperatures, an approximately isotropic increase of χ may
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be observed down to about 100K. At that point, a broad maximum χm evolves along

both crystallographic orientations which is indicative of reduced dimensionality of the

magnetic interactions, as already discussed in the introductory remarks in Section 4.1.

Long-range antiferromagnetic order sets in at TN = 64.0(5)K, as testified by a jump in

the temperature derivative of the susceptibility dχ/dT (data not shown). The value of

TN corresponds well with its earlier determination [65–67]. Below TN, the susceptibility

curves assume an anisotropic character, with χc undergoing a sharp decrease almost

to zero value while χb slightly increases as T → 2K. This observation confirms the

orientation of the easy magnetisation axis along the crystallographic c-direction.

To obtain an estimate of the Weiss temperature θ, Curie-Weiss-law fitting was per-

formed on the axis-averaged value1 of the susceptibility in the temperature region

200K ≤ T ≤ 300K. In the fitting procedure, the effective magnetic moment was

fixed to µeff = g
√
S(S + 1) = 5.92µB, as appropriate for Mn2+ ions. The optimised

parameters were determined to be θ = −237(4)K, and χ0 = 4.0(6)×10−4 ergG−2mol−1

for a constant background. Here, the error bars reflect the variation of the optimised

parameters when the fitting region is reduced to 250K ≤ T ≤ 300K. The fitted Curie-

Weiss curve is depicted as a solid blue line in the inset of Fig. 4.3a. From θ and TN,

a moderate frustration parameter f = |θ/TN| ≈ 3.7 is obtained. Previous fitting of

the powder static magnetic susceptibility up to 600K yielded the Weiss temperature

θ = −219K [54].

From the axis-dependent static susceptibility data, the temperature-dependent ratio

α = χ∥/χ⊥ can be calculated [30, 86]. Depicted in Fig. 4.3b, it confirms the isotropy of

the susceptibility above TN and its highly-anisotropic, antiferromagnetic-like behaviour

below TN, whereby TN serves as a sharp demarcation line. The evolution of α will

be important in a later discussion when considering the temperature effects on the

resonance phenomena.

4.3.2. Electron Spin Resonance

4.3.2.1. Low-Temperature Antiferromagnetic Resonance

Fig. 4.4 depicts a selection of the spectra obtained at 2K (i.e. deep in the

antiferromagnetically-long-range-ordered phase of MnTiO3) at high frequencies. Res-

onance features obtained on the single-crystal sample with B||c-axis exhibit a typical

Lorentzian-like transmission shape only for frequencies ν ≲ 100GHz (see, e.g., the spec-

trum obtained at ν = 68.0GHz depicted in Fig. 4.4a). As may be seen in Fig. 4.4a,

the resonance structure becomes more irregular and complex with increasing value of

the resonance frequency. This is a typical sign of the Walker modes which may arise in

regularly-shaped single-crystal samples when the wavelength of the exciting microwave

1 χave = (χ∥c + 2χ⊥c)/3
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Figure 4.3.: (a) Static magnetic susceptibility χ = M/B obtained in a zero-field-
cooled mode at B = 1T for the two main crystallographic orientations. The inset
depicts the axis-averaged inverse static magnetic susceptibility (black data points)
fitted by means of a Curie-Weiss law (blue solid line); (b) The temperature dependence
of the ratio α = χ∥/χ⊥ obtained from the susceptibility data in (a). Vertical dashed
lines mark the antiferromagnetic phase transition. The data in (a) were obtained by
Kaustav Dey [85].

field becomes comparable to the sample dimensions [82–84]. In order to extract the

resonance fields from the spectra in Fig. 4.4a, the low extremal resonance field and

the high extremal resonance field belonging to a particular group of Walker modes are

noted and the resonance-field position assigned to the midpoint of the two extrema.

The corresponding uncertainty is taken to extend from the low- to the high-field ex-

trema. The assignment of the resonance fields together with their uncertainty is marked

by coloured symbols in Fig. 4.4a.

Attempts were made also to measure antiferromagnetic resonance for B ⊥ c-axis on

the same single-crystal piece of MnTiO3. However, the measurements were distorted

by the Walker modes to such an extent that an unambiguous assignment of the res-

onance fields was not possible (the width of the Walker modes amounted to 7T or

more). To circumvent the issue, resonance measurements were performed on a finely-

ground powder stemming from the same synthesis batch as the single-crystal sample.

The powder was fixed by eicosane in order to prevent reorientation in the magnetic

field. The obtained spectra are depicted in Fig. 4.4b. As may be seen therein, well-

defined resonance features are observed (marked by coloured symbols) which exhibit

an increasing extent of wave-phase mixing with increasing frequency.

Following the colour-coding from Fig. 4.4, all the low-temperature resonance features

are collected in the resonance-frequency–magnetic-field diagram depicted in Fig. 4.5.



44 Chapter 4. MnTiO3

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16

Tr
an

sm
is

si
on

 (a
.u

. -
 o

ffs
et

)

B (T) || c-axis

68.0 GHz

109.4 GHz

135.1 GHz

198.9 GHz

234.8 GHz

270.7 GHz

345.3 GHz

379.4 GHz

T = 2 Ksingle crystal

(a) (b)

B (T)

411.5 GHz

269.9 GHz

260.4 GHz
240.0 GHz

206.3 GHz

fixed powder

Figure 4.4.: Selected spectra at various frequencies at T = 2K for (a) B||c-axis on
the single-crystal sample; and (b) on the powder sample. Coloured symbols mark the
positions of the resonance features

In addition to the dominant resonance features (black and red data points in Fig. 4.5),

a set of weak features has been observed which form a gapless branch with g = 2.00 and

disappear for ν ≥ 88.6GHz (see grey data points in Fig. 4.5). These may be attributed

to a small number of paramagnetic impurities and shall not be considered for further

analysis.

The presence of four dominant resonance modes, three of which merge into a sin-

gle zero-field excitation gap, suggests a two-sublattice AFMR model with axial-like

anisotropy. At T = 0K, the model’s free parameters are given by the zero-field excita-

tion gap ∆ and by a pair of effective g-factors, g∥ and g⊥, for parallel and perpendicular

orientation of the magnetic field with respect to the easy magnetisation axis. At finite

temperatures, the temperature-dependent ratio of the parallel and perpendicular static

magnetic susceptibilities α = χ∥/χ⊥ features as the model’s further parameter. For

the field dependence of the resonance frequency, the model predicts [19, 21, 30]:

νU,L
∥ =

√
∆2 +

(
α

2

g∥µBB

h

)2

±
g∥µBB

h

(
1− α

2

)
(4.1)

for B||easy ≤ (h∆)/(g∥µB), and

νSF∥ =

√(
g∥µBB

h

)2

−∆2 (4.2)
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for B||easy ≥ (h∆)/(g∥µB). For the magnetic field applied perpendicular to the easy

magnetisation axis, the resonance frequency is given by:

ν⊥ =

√(
g⊥µBB

h

)2

+∆2 (4.3)

In the above, νU∥ , ν
L
∥ , ν

SF
∥ , and ν⊥ denote the upper, lower, and spin-flop branch stem-

ming from B ∥ easy axis, and the perpendicular branch stemming from B ⊥ easy axis,

respectively. µB and h denote the Bohr magneton and the Planck constant, respec-

tively. Note that for α = 0, Eq. 4.1 assumes a simple form:

νU,L
∥ = ∆±

g∥µB

h
B (4.1b)

Since α ≈ 0.03 ≪ 1 at T = 2K (c.f. Fig. 4.3b), i.e. the temperature at which the

spectra were obtained, Eq. 4.1b, instead of Eq. 4.1, is used in the ensuing analysis of

the field dependence of the AFMR modes in MnTiO3. The error introduced by setting

α = 0 is expected to be smaller than the uncertainty associated with determination

of the resonance-field positions. A least-squares fitting of the four magnon branches

yields ∆ = 166(1)GHz, g∥ = 1.98(1), and g⊥ = 2.00(1). The fitting results of the

magnon branches are displayed in Fig. 4.5 as black and red solid lines. From the above

Eq. 4.1b, the critical field at which νL∥ reaches zero frequency can be calculated as

BC = (h∆)/(g∥µB). Using the optimised parameters, one finds BC = 6.0(1)T (marked

by a dashed vertical line in Fig. 4.5).

The AFMR results confirm the orientation of the easy axis along the crystallographic

c-axis, as the single-crystal measurements withB||c contribute solely to the model’s pre-

dictions for the easy-axis resonance features. The model’s above-obtained parameters

contrast with earlier observations from high-frequency ESR measurements in which

the zero-field excitation gap was found to amount to ∆ = 153GHz and the low-

temperature effective g-factor to 2.1 [80], and to ∆ = 156GHz [54], respectively; and

from inelastic neutron scattering measurements which found ∆ ≈ 200GHz [60], and

∆ ≈ 193GHz [61], respectively. The limited accessible frequency in the earlier ESR

reports and the superior energy resolution of ESR over neutron scattering spectroscopy

lend support to the present values of ∆ and the g-factors in MnTiO3.

Further to the dominant strongly frequency-dependent features, almost frequency-

independent resonance features around the position of the spin-flop field were detected

in the single-crystal measurements for B||c (blue data points in Fig. 4.5). For a perfect

alignment of the external field with the easy axis of a two-sublattice antiferromagnet,

a frequency-independent resonance branch is expected to occur at BC, corresponding

to the rotation of the spins about the easy axis at no cost of energy [19]. It may be

speculated that the blue resonance features in Fig. 4.5 around BC may be attributed
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Figure 4.5.: Resonance-frequency–magnetic-field diagram at T = 2K. Closed sym-
bols depict data obtained on the single crystal with B||c-axis, open symbols on the
polycrystal. Black and red lines show fitting results from a two-sublattice uniaxial
AFMR model, defined in Eqs. 4.1b–4.3. Blue solid lines show a simulation based on
the two-sublattice uniaxial AFMR model for the case of B applied 5◦ away from the
easy axis (see text for details). Light grey line corresponds to a gapless g = 2.00
excitation branch. Vertical dashed line marks the critical field at which νL

∥ becomes

zero (see text for a detailed discussion). Adapted from [51].
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Figure 4.6.: Laue image taken in a back-scattering geometry on the single-crystal
sample of MnTiO3 utilised in the electron spin resonance measurements. Yellow circles
mark areas where the doubling of diffraction spots is particularly noticeable.

precisely to this resonance branch, whereby at least a partial cause of their unexpected

frequency dependence may be the finite temperature at which the measurements were

performed. This speculation is corroborated by the observation of a finite width of the

spin-flop transition seen in isothermal magnetisation measurements at 2K [66, 76].

Another potential cause of the blue resonance features’ unexpected frequency depen-

dence is a possible deviation of the applied magnetic field from the easy axis, such

as may occur due to a small sample misalignment. Using the above-obtained fitting

parameters, the blue solid lines in Fig. 4.5 simulate the features’ expected field de-

pendence for B applied 5◦ away from the easy axis. As may be seen, the simulation

captures the blue resonance features very well. Intriguingly, however, a number of the

black resonance features are not correctly accounted for by the blue line and instead

follow the fitting results for perfect alignment of B||c-axis (c.f. e.g. the features approx-
imately at 5T and 306GHz or at 7T and 90GHz). Such doubling of the number of the

resonance branches around BSF indicates that a two-sublattice AFMR model is insuf-

ficient to explain the observed resonance-frequency–magnetic-field dependence. As the

remainder of the phase diagram is satisfactorily captured by the two-sublattice model,

this observation may indicate the presence of two grains within the single-crystal sam-

ple which are inclined by approximately 5◦ with respect to each other and which lead

to the doubling of the resonance branches. Indeed, careful analysis of the single-crystal

sample’s Laue diffractogram, which is shown in Fig. 4.6, reveals doubling of the diffrac-

tion spots (most noticeable doubling of the diffraction spots is marked by yellow circles

in Fig. 4.6). This observation confirms the hypothesis that the single-crystal sample of

MnTiO3 under investigation in the present study consists of two grains. Nevertheless,

thanks to the unambiguous and high-precision determination of the resonance features
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in the field regime up to 5T, the reduced quality of the sample does not undermine

the qualitative and quantitative results obtained from the present AFMR analysis.

Lastly, a small number of spectra exhibited additional resonance features (marked

by dark yellow symbols in Fig. 4.5). Their lack of discernible resonant-frequency–

magnetic-field dependence did not allow for their appropriate interpretation, and, as

such, they shall not be considered for further discussion.

4.3.2.2. Temperature-Dependent High-Frequency Electron Spin Resonance

To measure the temperature evolution of the resonances, spectra were obtained at

fixed resonance frequency ν = 54.2GHz for B||c-axis at increasing temperature steps

between 2K ≤ T ≤ 200K. Measurements at this frequency allowed to track the

temperature evolution of the AFMR modes νL∥ and νSF∥ . As observed in Fig. 4.7,

νL∥ remains at approximately the same resonance field all the way up to 30K. For

T ≥ 40K, a significant shift of the resonance field to lower values is detected. Since in

the two-sublattice AFMR model with uniaxial anisotropy, νL∥ is directly related to the

zero-field excitation gap, the branch’s shift to lower fields signals reduction in ∆.

The resonance branch νSF∥ is found to shift to higher resonance fields upon heating from

the lowest measured temperatures, and, moreover, no resonance feature associated with

νSF∥ is observed for T ≥ 40K in Fig. 4.7. A similar effect was observed in a number of

long-range-ordered antiferromagnets, such as CuCl2 · 2H2O [87] or LiFePO4 [88]. Note

that a simple reduction of the internal fields with increasing temperature would lead

to the resonance feature’s shift to lower resonance fields [86, 87].

Quantitatively, use can be made of Eq. 4.1, which explicitly accounts for temperature

effects through inclusion of the parameter α, to obtain the temperature dependence of

∆ and of BC. To do so, the position of the resonance field associated with νL∥ at the

various temperatures is extracted from Fig. 4.7 and the corresponding parameter α from

Fig. 4.3b. By means of Eq. 4.1, the two values are used to simulate the branch νL∥ at

the various temperatures. The resulting simulated branches are depicted in Fig. 4.8 for

selected temperatures. The temperature-dependent values of ∆ and BC are extracted

directly from the figure as the zero-field crossing and zero-resonance-frequency crossing,

respectively.

The obtained temperature dependencies are displayed in Fig. 4.9.2 Starting from the

lowest temperatures, ∆ exhibits a gradual weakening with increasing temperature. For

T ≥ 30K the changes in ∆ are drastic and as T → T−
N the data suggest a complete

2 Note that the two-Kelvin values of ∆ and BC displayed in Fig. 4.9 differ by a small amount from the
values calculated in the earlier analysis of the complete AFMR modes in Fig. 4.5. This is because
in the earlier analysis of the complete AFMR modes, α was approximated to be zero, whereas in
the present analysis, which leads to Fig. 4.9, the value of α is explicitly taken into account even
at 2K. Despite the different approaches, the thus-introduced difference in the parameters at 2K is
expected to be smaller than other errors contributing to the parameters’ overall uncertainty.
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Figure 4.7.: Temperature evolution of the resonance spectra recorded at fixed fre-
quency ν = 54.2GHz for B||c-axis. Curved dashed lines are a guide to the eye to
mark the evolution of the resonance features. Adapted from [51].
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 PM

nL
||

nSF
||nPM

Figure 4.8.: Simulation of the resonance branch νL
∥ in MnTiO3 at various tem-

peratures based on Eq. 4.1, on the resonance field extracted from Fig. 4.7, and on
the parameter α extracted from Fig. 4.3b. Additionally, simulation of the resonance
branch νSF

∥ based on Eq. 4.2, whereby the values of the zero-field excitation gap at the
various temperatures required to evaluate Eq. 4.2 are extracted from the correspond-
ing simulation of νL

∥ , see text for details. Grey dotted line, marked νPM, depicts a
paramagnetic resonance branch with g = 1.98. Dashed vertical lines mark the critical
field BC, with colour-coding corresponding to the respective temperature. Arrows
indicate the shift of the resonance fields for increasing temperature based on the sim-
ulated curves.

vanishing of the zero-field excitation gap. A qualitatively similar behaviour was also ob-

served in previous HF-ESR studies on MnTiO3 [54, 80]. The temperature dependence

of BC shall be addressed in the subsequent discussion.

By evaluating Eq. 4.2, the obtained temperature-dependent values of ∆ can be used

to simulate the branch νSF∥ at the respective temperatures. The resulting simulated

branches are also depicted in Fig. 4.8. It is evident that the simulation predicts a shift

of the resonance features associated with νSF∥ to lower resonance fields with increasing

temperature, contrary to the observation in Fig. 4.7. Note that magnetostriction mea-

surements revealed discontinuous length changes at the spin-flop transition for B||c,
indicating the importance of orbital degree of freedom and hence of spin-orbit coupling

in MnTiO3 [66].3 It may be speculated that concurring with the spin flop, structural

changes take place which affect the temperature evolution of the internal fields and

hence of the resonance field in the spin-flop mode.

Lastly, it may be seen in Fig. 4.7 that spectra obtained at ν = 54.2GHz above TN
exhibit a single paramagnetic resonance absorption peak which assumes a Lorentzian

3 Consequently, the field-induced transition does not constitute a proper spin flop. Bearing this in
mind, it shall be referred to as such for the sake of brevity in the remainder of the present text.
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Figure 4.9.: Temperature dependence (a) of the zero-field excitation gap ∆, and; (b)
of the critical field BC, as obtained from the analysis of the temperature evolution of
the resonance feature νL

∥ displayed in Fig. 4.7 by means of Eq. 4.1. Grey data points in

(b) are the spin-flop-transition-indicating features from isothermal magnetisation and
magnetostriction from [66]. Vertical dashed lines mark the antiferromagnetic ordering
temperature. Adapted from [51].

character with a small amount of wave-phase mixing. The decreasing intensity of the

resonance peak with increasing temperature corresponds well to Curie-Weiss-like be-

haviour. The spectroscopic g-factor can be estimated from the position of the resonance

field by means of the relation g = (hν)/(µBBres). This yields g(T = 100K) = 1.91(3)

and g(T = 200K) = 1.94(4). A deviation from the paramagnetic value g = 2.00 ex-

pected for Mn2+ with S = 5/2 and L = 0 [17] indicates that finite local internal fields

are present in the compound at temperatures as high as T ≃ 3TN.

Evidence for short-range magnetic order may also be seen in thermodynamic measure-

ments. In particular, a deviation from a Curie-Weiss-like behaviour may be observed

to set in below approximately 180K in static magnetic susceptibility (c.f. the inset of

Fig.4.3a). In addition, finite magnetic entropy changes were observed in specific heat

measurements up to about 130K on a single-crystal sample [89], and up to about 170K

on a powder sample [65]. Furthermore, since inelastic neutron scattering observed a

complete cessation of out-of-plane correlations at about 90K, it was argued that the

high-temperature short-range correlations are anisotropic in nature, extending only in

the ab-planes [61]. This corresponds very well also with the observation of anisotropic

length changes and especially with finite distortion parameter c/a up to 170K derived

from thermal expansion studies [66].
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4.3.2.3. Room-Temperature X-Band Electron Paramagnetic Resonance

In addition to the high-frequency ESR measurements presented thus far, X-band ESR

was also employed to study MnTiO3. Fig. 4.10 presents room-temperature spectra

obtained at ν ≈ 9.4GHz for two orientations of the external magnetic field, B||c and
B ⊥ c, respectively. Each spectrum can be successfully fitted by a single Lorentzian-

derivative line (solid lines in Fig. 4.10). From the fitted resonance fields, the g-factors

can be calculated as g = (hν)/(µBBres), yielding g∥c = 2.004(6) and g⊥c = 2.002(5),

respectively. Both of the values align very well with the expectation for paramag-

netic Mn2+ ions [90], indicating a complete cessation of short-range correlations at

room temperature. In addition, the absorption’s linewidth, defined as the full width

of the field at half maximum of the intensity, amounts to ∆B∥c = 24.1(2)mT and

∆B⊥c = 23.9(2)mT, respectively. The similarity in the linewidth values between the

two orientations suggests that the room-temperature relaxation processes are isotropic

and that no exchange narrowing effects occur [91]. An earlier study on the related

titanate NiTiO3 found ∆B∥c = 96.6(1)mT and ∆B⊥c = 84.8(1)mT, respectively [25].

The approximately four times larger linewidth in case of NiTiO3 relative to MnTiO3

implies that the relaxation processes in NiTiO3 are considerably faster than in MnTiO3.

Since the room-temperature relaxation is dominated by spin-phonon processes, it fol-

lows that NiTiO3 possesses a considerably larger spin-lattice coupling constant than

MnTiO3 [25]. This can be qualitatively understood by considering the orbital angu-

lar momenta in the respective compounds. Although to first order orbital angular

momentum is quenched in NiTiO3, spin-orbit coupling partially restores it, thereby

enhancing the interaction between the spin and lattice degrees of freedom. Since Mn2+

ions in MnTiO3 exhibit a half-filled d-shell, the spin-lattice coupling in MnTiO3 is

correspondingly weaker.

As may be seen in Fig. 4.10, the detected X-band ESR signal for B ∥ c-axis exhibits

greater intensity than the signal for B ⊥ c-axis. The detected intensity is proportional

to the dynamical susceptibility χESR which in turn is proportional to the static magnetic

susceptibility χDC. As the measurements of the latter unequivocally showed that at

room temperature χDC(B ∥ c) = χDC(B ⊥ c) (see Fig. 4.3a), it is expected that χESR

assumes a constant value along both orientations of the applied magnetic field. The

present observation can be understood if the varying dimensions of the single-crystal

sample are considered. The dynamical susceptibility will be enhanced along longer

sample edges, as the impinging microwave field will encounter a greater number of

resonating magnetic moments along these edges than along shorter edges. Without

appropriate normalisation of the detected signal (which has not been performed in

the present case), this leads to different values of χESR for different crystallographic

orientations.
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Figure 4.10.: Transmission derivative of paramagnetic resonance of MnTiO3 at X-
band frequency of ν = 9.395GHz at room temperature with the external magnetic
field applied parallel and perpendicular to the c-axis, obtained in a Voigt configuration
(B ∥ kMW). Black and red solid lines are fitted Lorentzian-peak derivatives with a
linear background. Adapted from [51].
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4.4. Discussion

It can be shown that within the two-sublattice uniaxial AFMR model, the crit-

ical field at which νL∥ reaches zero frequency at T = 0K is given by BC =√
(2BEBA +B2

A)/(1− α) [19, 92], where BE and BA are the effective exchange and

anisotropy fields defined in Eq. 2.24 in Chapter 2. The above analysis of the

AFMR data yielded BC = 6.0(1)T at 2K. At the same time, a two-sublattice

antiferromagnet with uniaxial anisotropy undergoes a spin-flop transition at BSF =√
(2BEBA −B2

A)/(1− α) [30, 86]. In the case of MnTiO3 previous magnetisation mea-

surements found BSF(T = 4.2K) = 5.8T [67, 93]; BSF(T = 1.4K) = 6.5T [76], and;

BSF(T = 2K) = 5.87(10)T [66]. Such a good correspondence between BC obtained

from the present AFMR analysis and BSF obtained from magnetisation measurements

implies that
√
(2BEBA +B2

A)/(1− α) ≃
√
(2BEBA −B2

A)/(1− α), and consequently

that BA ≪ BE. This is typical for 3d-ion-containing long-range-ordered antiferromag-

nets, see, e.g., MnF2 [92], Cr2O3 [86], or NiO [94]. A good correspondence between BC

and BSF is also seen in Fig. 4.9b all the way up to 60K. Hence, in the ensuing cal-

culation of the low-temperature values of the effective exchange and anisotropy fields,

the critical field BC obtained from the present AFMR analysis shall be taken as the

spin-flop field.

Given the definition of BC and BSF, the observed increase in their values with increasing

temperature implies that the (1−α) decreases more rapidly than 2BEBA as temperature

increases. A gradual increase of BC with increasing temperature at least up to 0.75TN
was observed also in MnF2, a related two-sublattice antiferromagnet with uniaxial

anisotropy and manganese ions in 3d5 configuration [95]. A spin-wave solution to

a Hamiltonian with exchange, single-ion, magnetic-dipole, and Zeeman contributions

showed that exchange interaction in combination with anisotropy caused by magnetic

dipole interactions could reproduce the temperature dependence of BC in qualitative

and, at sufficiently low temperatures, also quantitative terms [95]. It was also shown

in the same work that exchange interaction alone would lead to the overestimation

of the temperature dependence of BC, whereas exchange interaction in combination

with single-ion anisotropy would predict a decrease, rather than an increase, of BC

with increasing temperature [95]. Given the similarities between MnF2 and MnTiO3,

especially in the success of the two-sublattice uniaxial AFMR model in describing the

magnon branches (for HF-ESR on MnF2 see, e.g., [96]) and in the same electronic

configuration of the magnetic Mn2+ ions, it may be speculated that exchange energy

in combination with dipole-dipole-driven anisotropy is responsible for the observed

increase in BC also in MnTiO3.

As derived in Chapter 2, a mean-field approximation to a minimal Hamiltonian with the

assumption of a two-sublattice system can be used to calculate the effective exchange
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and anisotropy fields. To do so, the saturation field Bsat must be known in addition to

the spin-flop field (see Eq. 2.27 in Chapter 2). Since no published isothermal magneti-

sation measurements extended to sufficiently large magnetic fields to induce magneti-

sation saturation, merely an estimate for the saturation field can be obtained. To do

so, the linear part above the spin flop of the isothermal magnetisation at 2K, measured

in an earlier study by DC magnetometry up to 14T [66], is extrapolated to the known

value of the full ordered magnetic moment in MnTiO3, µ = 4.55µB/Mn2+ [62]. This

procedure yields Bsat = 213(10)T (data not shown).

Substituting the values of BSF and Bsat into Eq. 2.27, the effective exchange and

anisotropy fields are obtained as BE = 107(6)T and BA = 0.17(1)T. Noting that

in MnTiO3 z = 3 for the number of nearest magnetic neighbours coupled by the dom-

inant exchange constant J1 (see Fig. 4.2 and Table 4.2), Eq. 2.24 given in Chapter 2

can be used to calculate the effective exchange coupling constant Jeff and the uniaxial

anisotropy constant D. One finds Jeff = 0.82(4)meV and D = 0.0038(3)meV.4 Note

that, per definition, the mean-field theory provides merely the effective exchange cou-

pling constant. However, since the dominant exchange interaction in MnTiO3 is J1, it

follows that the hereby-calculated value of Jeff is predominately an estimator of J1.

Within the mean-field model at 0K, the effective anisotropy field can be inde-

pendently calculated as BA = (B2
SF · χ⊥)/Msat [92]. Utilising χb(T = 2K) =

0.0122(2) ergG−2mol−1 as obtained from the static magnetic susceptibility measure-

ments displayed in Fig. 4.3a, BA = 0.17(1)T is found. This matches very well the

value obtained based on Eq. 2.27.

The signs of the obtained parameters signal that the system’s anisotropy assumes a

uniaxial character and that the dominant intersublattice exchange interaction is an-

tiferromagnetic. Moreover, the obtained values of D and Jeff quantitatively corrobo-

rate their determination by means of inelastic neutron scattering: D = 0.0011meV

and J1 = 0.63meV [60], and D = 0.0045meV and J1 = 0.92meV [61], respectively.

In addition, an earlier magnetisation study found the uniaxial anisotropy constant

D = 0.0039meV [67], which lies within the error bars of its present determination by

means of AFMR analysis.5

The ratio of the anisotropy to exchange field amounts to BA/BE ≈ 1.6× 10−3, thereby

confirming the weak effective anisotropy field relative to the effective exchange field, and

matching well its previous estimate BA/BE ≈ 1.5 × 10−3 [67]. Moreover, the several-

4 Using another isothermal magnetisation dataset obtained in pulsed fields up to 35T at 1.4K [76],
Bsat ≈ 256(12)T is found by applying the same extrapolation procedure. This results in greater
exchange field BE ≈ 128(6)T and smaller anisotropy field BA ≈ 0.14(1)T, corresponding to Jeff =
0.98(5)meV and D = 0.0032(2)meV, respectively.

5 Ref. [67] quotes the anisotropy constant Keff = 5.7 × 105 erg/cm3, whereby per definition, Keff =
2SD. Converting Keff to SI units and utilising the unit cell volume Vu.c. = 325.7 Å3 (containing six
manganese ions), D = 0.0039meV is found.
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orders-of-magnitude-larger value of BE than BA confirms the earlier observation that

BA ≪ BE and justifies the utilisation of BC as the spin-flop field. Such small values

of the effective anisotropy field are expected for Mn2+ ions with negligible single-ion

anisotropy due to vanishing orbital angular moment.

In searching for the origin of the anisotropy MnTiO3, it may be observed that due to

vanishing orbital moment of the Mn2+ magnetic ions, spin-orbit coupling is expected

to act only in second order of perturbation theory [17]. In particular, only negligible

contributions to the overall anisotropy are expected to arise from single-ion effects and

from anisotropic exchange interaction. In principle, both symmetric and antisymmetric

exchange may lead to macroscopic anisotropy effects [17] (see also Section 2.4). Based

on symmetry considerations, however, the contribution from antisymmetric exchange

in MnTiO3 amounts to zero, Jantisym
anis = 0. The contribution due to symmetric exchange

can be estimated as J sym
anis ∼ Jeff(

∆g
g
)2 [17]. With the room-temperature spectroscopic

g∥c = 2.004(6) and g⊥c = 2.002(5) obtained in the X-Band measurement (c.f. Fig. 4.10),

∆g = 0.002, resulting in the effective anisotropy energy on the order of ∼ S2J sym
anis ≈

5 × 10−6meV. This is almost three orders of magnitude smaller than the calculated

anisotropy constant D and hence cannot account for its value.

On the other hand, the potential energy between two magnetic dipoles can be calculated

by means of Eq. 2.12. Utilising the ordered moment of 4.55µB/Mn2+ [62] and the

crystallographic information from [55] (see also Table 4.2), the sum of the dipole-

dipole energies
∑

i ni · Edipole
i is calculated up to first six nearest neighbours (i = 6),

whereby ni is the number of neighbours. Edipole = 0.0345meV is found, from which,

based on E ∼ DS2, it follows that Ddipole = 0.0055meV. Although this value is almost

1.5 times larger than the above-obtained value of D, its proximity to the experimental

observations indicates the significance of dipole-dipole interactions for the evolution of

anisotropy in MnTiO3. It may be speculated that a part of the discrepancy to the

experimental observations is owing to possible admixing of Mn3+ (3d4) ions, which

reduces the actual dipole-dipole energy.

Furthermore, a superexchange mechanism involving a simultaneous transfer of an

electron-hole pair between neighbouring ions was proposed to materialise along the

Mn2+–O2−–Mn2+ exchange path in MnTiO3 [59]. It was shown that such exciton

superexchange may contribute to overall anisotropy energy if the octahedral symme-

try of the crystal field acting on the Mn2+ ions is reduced [59]. As the exchange

path Mn2+–O2−–Mn2+ lies in the ab-plane, the resulting anisotropy will too favour

planar arrangement of the spins and hence act against the c-axis-oriented dipolar-

interaction-caused anisotropy. The temperature evolution of the distortion parameter

(dL∥c(T )−dL⊥c(T ))/(dL∥c(T )+dL⊥c(T )), where dL∥c(T ) and dL⊥c(T ) is relative ther-

mal expansion parallel and perpendicular to the c-axis, respectively, demonstrates that

the high-temperature high-symmetry local environment of the Mn2+ ions is reduced
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below T ≲ 150K [66]. This suggests that exciton superexchange in MnTiO3 may in-

deed act as another source of reduction of the dominant c-axis-oriented anisotropy due

to dipole-dipole interactions.

4.5. Summary

The presented high-frequency electron spin resonance on MnTiO3 has shown that the

low-energy excitations in the antiferromagnetically-ordered phase can be successfully

described by means of a two-sublattice model with uniaxial anisotropy. The least-

square fitting of the antiferromagnetic resonance branches found ∆ = 166(1)GHz,

g∥ = 1.98(1) and g⊥ = 2.00(1). Correspondingly, the critical field at which the lower

magnon branch νL∥ reaches zero was determined as BC = 6.0(1)T. It has been shown

that this value lies very close to the spin-flop field obtained from magnetisation mea-

surements, implying BA ≪ BE. Utilising BC obtained from the present AFMR analysis

as the spin-flop field and the saturation field Bsat obtained by extrapolating isothermal

magnetisation from available literature, the effective anisotropy and exchange fields

were derived. The analysis has yielded BA = 0.17(1)T and BE = 107(6)T which lie

close to their determination from inelastic neutron scattering experiments and confirm

that the effective anisotropy field is almost three orders of magnitude smaller than the

effective exchange field. These observations indicate that the low-temperature mag-

netic ground state of MnTiO3 displays a mean-field-like behaviour.

On the other hand, a shift of the spin-flop branch towards higher resonance fields upon

heating cannot be explained by means of the mean-field AFMR model. It may be

speculated that the structural changes which accompany the spin-flop transition affect

the temperature evolution of the internal fields and hence of the resonance field in

the spin-flop mode. Moreover, magnetic properties also above TN have been found

intriguing, including short-range correlations up to at least 3TN, as directly detected in

the present study by following the temperature evolution of the resonance field above

TN, and a correlation maximum approximately at 100K, as seen in static magnetic

susceptibility.

Hence, the overall picture of magnetic interactions in MnTiO3 indicates a robust long-

range order with uniaxial anisotropy, as indicated by the excellent description of the

AFMR by a mean-field model. With increasing temperature, the order assumes more

complex and ever more anisotropic, two-dimensional character due to the weak effec-

tive interplanar exchange constant, resultant from the cancellation of otherwise strong

exchange constants along various exchange paths.
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5. LiMnPO4

5.1. Material Background

LiMnPO4 belongs to the material class of olivine-structured lithium orthophosphates

with the general formula LiMPO4, whereM = Mn, Fe, Co, or Ni. These materials rep-

resent an attractive research field for both, addressing topics in fundamental solid-state

magnetism and harvesting their technological applications. Technologically promising

is the utilisation of the various lithium orthophosphates as cathode materials in bat-

teries due to the materials’ high capacity (predicted to be as high as 170mAhg−1),

good conductivity, and robust cycling stability [97–100]. Equally technologically at-

tractive is the pronounced magnetoelectric coupling [101–103] which may be exploited

in data-storage devices, spin field-effect transistors, or magnetic sensors [104–106].

At the same time, lithium orthophosphates display a number of intriguing mag-

netic properties at low temperatures. For example, LiNiPO4 features short-range

and long-range antiferromagnetic incommensurate phases below T IC
SRO = 36K and

T IC
LRO = 21.7K, respectively, followed by a first-order phase transition to an

antiferromagnetically-ordered commensurate phase (TC
N = 20.8K) [102, 107]. In ad-

dition, a sequence of field-induced transitions was observed in LiNiPO4 at the lowest

temperatures [108], rendering the magnetic phase diagram of LiNiPO4 highly com-

plex. LiCoPO4 possesses one of the highest thus-far measured components of the

magnetoelectric tensor from all ferroelectrics with αyx = 30.6 psm−1 [101]. Moreover,

ferrotoroidic domains – regions of spontaneously ordered toroidal moments [109] – were

resolved by spatial second harmonic generation in LiCoPO4 [110], a first ever observa-

tion of ferrotoroidic domains in an experiment. LiFePO4 possesses the highest values

of anisotropy constants from the four lithium orthophosphates, with Da = 0.86(2)meV

and Dc = 2.23(2)meV [111]. Moreover, Da and the effective exchange constant Jeff
show in LiFePO4 complex, field-dependent behaviour [112] (see also Table 5.1 for an

overview of the orthophosphates’ selected magnetic properties).

Of all the orthophosphates, LiMnPO4 displays the smallest components of the mag-

netoelectric tensor, amounting to no more than α = 0.8 psm−1 [119]. Moreover, the

component of the magnetoelectric tensor for which the external magnetic field is parallel

to the orientation of the spins, i.e. αaa, vanishes as T → 0K, in line with ab initio cal-

culations and in contrast to the remaining orthophosphates [119]. It is speculated that

vanishing orbital momentum is responsible for both of the observations, the smallest

59
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M easy axis TN (K) canted order canting angle anis. constants (meV)

Mn2+ a 32.5 [113] (undetected) (undetected) 0.0069; 0.0089 [114]

Fe2+ b 49.5 [113] AFM 1.3◦ [103] 0.86; 2.23 [111]

Co2+ b 21.9 [115] AFM 4.6◦ [116] 0.718; 0.802 [117]

Ni2+ c 20.8 [107] WFM 7.8◦ [118] 0.413; 1.423 [108]

Table 5.1.: Overview of selected magnetic properties of the lithium orthophosphates
with the general formula LiMPO4 (where M = Mn, Fe, Co, Ni). AFM and WFM
denote antiferromagnetism and weak ferromagnetism, respectively. Numbers in square
brackets provide the corresponding reference.

magnetoelectric tensor components and for αaa → 0 psm−1 as T → 0K [119]. Lastly,

based on symmetry considerations of the magnetic point group, LiMnPO4 is predicted

to exhibit an antiferrotoroidic moment [120].

The orthophosphates crystallise in an orthorhombic crystal structure with space group

Pnma [113, 121]. Focusing on LiMnPO4 in more detail, its lattice constants amount

to a = 10.46 Å, b = 6.1 Å, and c = 4.75 Å [122, 123]. The structure consists of lithium

octahedra, manganese octahedra, and phosphorus tetrahedra, whereby oxygen ions

are located at the vertices of the various polyhedra. For the present purposes, the

most interesting are the manganese octahedra: sharing four vertices of oxygen ions

with neighbouring manganese octahedra, they occupy the crystallographic bc-plane, as

illustrated in Fig. 5.1a. It is also in the bc-plane, running along the [011] direction,

that two neighbouring manganese-manganese ions are located at closest separation.

The direct separation amounts to dnearestMn−Mn = 3.9203 Å [123] and is marked by a solid

purple line in Fig. 5.1a. The corresponding exchange path, denoted J1 (see subsequent

discussion), is mediated by a shared oxygen ion, with bonding angle Mn–O–Mn of

125.36◦ [123]. The individual planes of the manganese octahedra are stacked along

the a-axis and are separated by lithium and phosphorus polyhedra, as may be seen in

Fig. 5.1b.

In a picture of purely ionic bonding, the manganese ions exhibit oxidation state 2+,

which results in a half-filled 3d shell (3d5), giving rise to spin S = 5/2 and vanishing

orbital momentum L = 0. As such, the single-ion magnetic properties of LiMnPO4 are

identical to those of MnTiO3 (c.f. Section 4.1). Previous analysis of inelastic neutron

scattering data determined the exchange interactions up to five nearest neighbours,

labelled henceforth J1–J5 [114]. These are illustrated in Fig. 5.2a and are listed in Ta-

ble 5.2. Interestingly, each of the five nearest-neighbour exchange constants is antiferro-

magnetic. However, due to the C-type antiferromagnetic long-range order [123], J2, J3,

and J5 are frustrated (c.f. Fig. 5.2a), and as such, the system has to pay the correspond-

ing energy in order to support the ground state. The effective exchange coupling con-

stant can be estimated as Jeff =
∑

i ni ·Ji = 4·J1−2·J2−2·J3+2·J4−4·J5 = 1.192meV.



5.1. Material Background 61

(a) (b)

Figure 5.1.: (a) View of the bc-plane of LiMnPO4 in which manganese ions (purple)
are coordinated in distorted oxygen ion (red) octahedra. Solid purple line marks
the shortest distance between two manganese ions. Lithium ions are depicted in
green, while, for clarity, phosphorus ions have been omitted; (b) View of the ab-plane.
Crystallographic data taken from [123], visualisation performed in VESTA [56].
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Figure 5.2.: (a) Exchange coupling constants J1–J5 between Mn2+ ions (purple
spheres) up to five nearest neighbours in LiMnPO4. Red arrows designate the ground-
state spin configuration; (b) Two nearest Mn2+ neighbours, each coordinated in an
octahedral environment of six oxygen ions (red spheres). Black cross marks the middle
point of the exchange path J1. Red dashed line originates in one of the oxygen ions
and goes through the exchange path’s middle, terminating in a mirror image (red
dashed sphere) of the first oxygen ion (see text for details). Crystallographic data
taken from [123], visualisation performed in VESTA [56].
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extension (meV) n bond length (Å)

J1 bc-plane 0.480 4 satisfied 3.9203

J2 b-axis 0.200 2 frustrated 6.1000

J3 c-axis 0.076 2 frustrated 4.7440

J4 ab-plane 0.036 2 satisfied 5.4981

J ′
5 ac-plane 0.062 2 frustrated 5.6379

J ′′
5 ac-plane 0.062 2 frustrated 5.8579

Jeff 1.192

Table 5.2.: Nearest-neighbour exchange coupling constants, number of neighbours n
connected via the respective coupling, status of the coupling constant in the ground
state, and corresponding bond lengths in LiMnPO4 (see also Fig. 5.2). Jeff refers to
the effective exchange constant. Positive sign of the exchange constant corresponds
to antiferromagnetic coupling. Coupling constants taken from [114], bond lengths
from [123].

Upon inspection of the crystal structure of LiMnPO4, it becomes evident that no

inversion centre exists between the two nearest Mn2+ neighbours (see Fig. 5.2b). Based

on geometrical considerations, an inversion centre is expected to lie in the middle of

the corresponding bond, i.e. of J1, marked by a black cross in the figure. However,

if the cross did designate an inversion centre, then the oxygen ion located at r⃗ would

have a counterpart at position −r⃗ (marked by red dashed sphere in the figure), such

that a mirror plane containing the bond J1 would exist between the two oxygen ions.

As is evident from Fig. 5.2b, no oxygen ion is found at position −r⃗. A lack of inversion

centre between two spins constitutes a necessary condition for the realisation of the

antisymmetric, Dzyaloshinskii-Moriya interaction between the spins [17].

Long-range antiferromagnetic order in various single-crystalline LiMnPO4 samples was

found to develop at TN = 34.9(1)K by nuclear magnetic resonance [124], at TN =

35(2)K [125] and at TN = 32.5(5)K [113] by static magnetic susceptibility, and at

TN = 33.0(1)K [126] by specific heat. Vanishing of the static magnetic susceptibility

along the crystallographic a-axis as T → 0K [127] and the extremely small shift of the

lithium resonance in nuclear magnetic resonance for B||a-axis [124] led to the conclusion

that the spins in the ground state of LiMnPO4 are oriented in a collinear fashion along

the a-axis. Collinear spin arrangement along the a-axis was later confirmed by elastic

neutron scattering experiments [123].

The observation of collinear spin configuration along the a-axis with no spin canting

contrasts with spin structures determined for the related lithium orthophosphates:

LiFePO4 and LiCoPO4 both exhibit collinear rotation of the spins away from their

easy magnetisation axis, leading to antiferromagnetic ordering of the canted moments;

the former by 1.3◦ [103], the latter by ≈ 4.6◦ [116]. LiNiPO4, on the other hand,
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displays spin canting of 7.8◦, which is associated with weak ferromagnetism [118] (see

also Table 5.1).

Similarly to the other lithium orthophosphates, LiMnPO4 exhibits orthorhombic

anisotropy, with two anisotropy constants determined by inelastic neutron scattering to

be Dc = 0.0069(10)meV and Db = 0.0089(10)meV [114]. Consequently, Da = 0meV,

demonstrating the crystallographic a-axis to be the easy magnetisation axis, while c-

axis is the intermediate and b-axis the hard magnetisation axis, respectively.1 The two

anisotropy constants are about two orders of magnitude smaller than in the other or-

thophosphates (c.f. Table 5.1), a consequence of vanishing orbital angular momentum in

first-order perturbation theory due to a half-filled 3d shell of the Mn2+ ion in LiMnPO4.

It was shown that about a half of the total anisotropy energy in LiMnPO4 is due to

dipole-dipole interactions and consequently argued that the remaining contributions

are due to higher-order orbital modifications of the ground state [123]. The anisotropy

constants give rise to energy gaps at k = 0 of ∆1 = 148GHz and ∆2 = 168GHz [114],

which are accessible with the HF-ESR setup used in the present study.

The motivations to undertake the present investigation were twofold: firstly, the hith-

erto lack of observation of spin canting in the ground state of LiMnPO4, despite good

arguments from crystal-symmetry analysis for its existence and despite its unambiguous

presence in the remaining lithium orthophosphates; secondly, the unique insight into

the anomalous field dependence of the magnon branches in LiFePO4 which HF-ESR

was able to provide, encouraging the revisiting of the ground state Hamiltonian and the

redefining of the exchange and anisotropy constants as explicitly field-dependent [112].

5.2. Experimental Results

The LiMnPO4 samples utilised in the present study originate from two different

batches synthesised by Christoph Neef [126]. In particular, a light-brown-coloured,

rectangularly-shaped single-crystal sample with approximate dimensions 1.9mm x

1.6mm x 1.9mm and mass m = 8.38(3)mg stemming from one batch, and a poly-

crystalline powder sample stemming from a second batch. The single crystal was

previously characterised by static magnetic susceptibility, isothermal magnetisation,

and specific heat measurements [126]. Long-range antiferromagnetic order was found

to evolve at TN = 32.5(5)K with an easy-axis orientation along the crystallographic

a-axis [126], thereby matching well with earlier literature reports [114, 123].

1 The anisotropy term in the Hamiltonian reads
∑
i,ξ

Dξ(S
ξ
i )

2 [114].
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5.2.1. Magnetisation and Magnetic Phase Diagrams

5.2.1.1. Static Magnetic Susceptibility

To verify the quality of the powder sample required for subsequent HF-ESR stud-

ies, static magnetic susceptibility was measured in field of B = 0.1T in a zero-field-

cooled mode. The resulting curve is depicted in Fig. 5.3a. Overlaying the powder

data is an axis-averaged static magnetic susceptibility obtained on the single crystal,

χave = (χa + χb + χc)/3. χpowder was scaled to χave at 320K by a scaling factor 0.93

which may reflect a small error in determination of the mass of one or both of the

samples. As may be seen in Fig. 5.3a, a very good correspondence exists between

the two curves in a large temperature region extending from the highest measured

temperatures all the way down to TN. A small discrepancy may be observed only

in the antiferromagnetically-ordered phase. This may be attributed to the presence

of different amounts of paramagnetic impurities in the respective samples, with the

powder exhibiting fewer paramagnetic defects than the single crystal. Calculating the

Fisher’s specific heat d(χT )/dT (data not shown) determines the antiferromagnetic

ordering temperature at TN = 33.5(2)K. This matches well its earlier determination

by nuclear magnetic resonance (TN = 34.9(1)K) [124] and elastic neutron scattering

(TN = 33.9(1)K) [114]. Therefore, it follows that the polycrystalline sample may be

used in electron spin resonance studies as a faithful representation of the single crystal

and is expected to display the full resonance behaviour of the single crystal.

To provide a further characterisation of the powder sample, the susceptibility in the

temperature region 220K–355K was fitted by a Curie-Weiss law. An effective moment

of µeff = 5.85(9)µB and Weiss temperature θ = −51(6)K were found. Assuming a

spin-only value of the total angular momentum J = S = 5/2, the g-factor g = 1.98(3)

is found, which lies within the expectation for a Mn2+ ion with a 3d5 orbital occupation.

The negative sign of the Weiss temperature confirms the predominance of antiferro-

magnetic interactions in the compound, and its size implies an almost frustration-free

ground state with the frustration ratio θ/TN ≈ 1.5. The three-dimensional nature of

the magnetic interactions is also evidenced by a rather narrow correlation maximum

which is observed at only a slightly higher temperature than the Néel temperature,

χmax ≈ 37K. On the other hand, a deviation from the Curie-Weiss behaviour may be

seen for T ≲ 120K, which may indicate the evolution of three-dimensional short-range

correlations.2

5.2.1.2. Isothermal Magnetisation

As part of the characterisation of the LiMnPO4 powder sample an isothermal magneti-

sation measurement was performed at 1.8K. This is displayed in Fig. 5.4. Continu-

2 Specific heat reveals that short-range order exists only up about 60K [128]. See the discussion on
temperature-dependent paramagnetic resonance in Section 5.2.2.2.
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Figure 5.3.: (a) Static magnetic susceptibility of LiMnPO4, obtained at B = 0.1T,
of a powder sample (black) scaled at T = 320K to axis-averaged susceptibility, (χa +
χb + χc)/3, of the single crystal (green). The data on the single crystal stem from an
earlier work by Christoph Neef [126]. Vertical dashed line marks the antiferromagnetic
ordering temperature; (b) inverse static susceptibility of the powder sample fitted by
a Curie-Weiss law (solid red line).

ously increasing magnetisation all the way to the highest measured fields is observed.

At around B ≈ 4T, a weak jump is detected. As shall become apparent in the ensuing

discussion of the isothermal magnetisation of the single-crystal sample, the detected

jump may be interpreted as a spin flop. The exact position of the jump may be ascer-

tained from the corresponding peak in the field derivative of the magnetisation (right

ordinate of Fig. 5.4): BSF = 4.0(1)T. A small decrease of dM/dB as the field is ramped

up from 0T confirms the small but finite number of paramagnetic impurities in the

sample.

Profiting from access to external magnetic fields up to B = 14T, earlier isothermal

magnetisation measurements on the single crystal of LiMnPO4 reported elsewhere [126]

could be extended to higher fields within the scope of the present work. The low-

temperature axis-dependent data are displayed in Fig. 5.5. Isothermal magnetisation

at 2K along the a-axis (Fig. 5.5a) exhibits a small, approximately linear increase up

to about 4T, at which point a jump is found, followed by a linear evolution towards

the highest accessible fields. In contrast, no significant magnetisation jumps are found

along the b- and c-axes. Much less visible is a small right bending of all three magneti-

sation curves in the low-field region. This indicates the alignment of a small number

of paramagnetic impurities which are known to be distributed in the sample [126].

In order to prepare the isothermal magnetisation data for further quantitative analysis,
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Figure 5.4.: Left ordinate: Isothermal magnetisation of powder sample of LiMnPO4

at T = 1.8K; right ordinate: corresponding field derivative. BSF marks the spin-flop
field.

the low-field regimes 0T ≤ B ≤ 3.5T, i.e. field regimes sufficiently below BSF and BC2

(see the ensuing discussion), are fitted by a function consisting of a Brillouin and linear

part, namely M = MBrillouin + χ0B. Here, the first term MBrillouin = M sat
PMBS=5/2(2K)

accounts for the right bending of the low-field behaviour, whereby BS=5/2(2K) is the

Brillouin function with S = 5/2 as appropriate for Mn2+ paramagnetic moments and

M sat
PM is the paramagnetic moments’ saturation magnetisation. The second term in

the above equation accounts for the linear regime associated with the magnetisation

evolution of an antiferromagnet.

The resulting fits are displayed as solid green lines in Fig. 5.5. In the same figure, the

solid blue lines depict the sole Brillouin component, MBrillouin, of the respective fitted

function (this is further magnified in the respective insets in Fig. 5.5). It is apparent

that the Brillouin component comprises only a very small part of the complete fitted

function, indicating the low impurity content in the single-crystal sample. This may

be estimated to amount to 0.1%–0.3%. Interestingly, and as evident from the insets in

Fig. 5.5, the paramagnetic impurities exhibit anisotropic behaviour, with their detected

saturation moment being approximately twice as large along the c-axis as along the a-

or b-axes. This verifies earlier observations [126] and indicates that the impurities are

not perfectly paramagnetic but merely quasi-free. A possible microscopic mechanism

by which such quasi-free moments may be realised is provided by antisite disorder which

has been postulated to affect compounds containing highly-diffusive lithium ions, such

as LiFePO4 [129].

In the next step of the isothermal magnetisation analysis, the thus-modelled Brillouin
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Figure 5.5.: Isothermal magnetisation of LiMnPO4 at 2K along the main crystallo-
graphic orientations (black), fitted by a function consisting of a Brillouin and a linear
component in the region 0T ≤ B ≤ 3.5T (green) (see text for details). The obtained
Brillouin component is shown in blue. The magnetisation curves depict a full mea-
surement cycle 0T → 14T → 0T. Insets: magnification of the respective Brillouin
components from the fits.
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contributions are subtracted from the respective curves. Hence, the remaining mag-

netisation, M −MBrillouin (depicted in Figs. 5.6a,c,e), may be taken to be due to the

antiferromagnetic ground state of LiMnPO4. This is then fitted in the high-field region

10T ≤ B ≤ 14T by a linear function of the form M0 + χ′
0B and the resulting fits

are displayed in Figs. 5.6a,c,e as solid red lines.3 Focusing first on the a-axis magneti-

sation, it is now possible to interpret the jump in M as a spin-flop transition, since

the high-field fit extrapolates approximately to zero. This confirms that the spins in

the ground state are aligned (predominantly) along the crystallographic a-axis. The

exact spin-flop field, BSF, can be determined as the peak in the field derivative of the

magnetisation (see Fig. 5.6b). BSF = 3.92(6)T is found at T = 2K, confirming earlier

work [126]. With increasing temperature, the spin-flop transition weakens and moves

to slightly larger fields. Finally at 40K, i.e. above TN, no feature is found in the field

derivative of the magnetisation. The size of the jump at the spin flop can be read off

from Fig. 5.6a: ∆Ma = 0.276(5)µB/f.u. Assuming that the fully-saturated moment

amounts to µsat = gS = 5µB/f.u., the angle between the sublattice magnetisation and

the bc-plane, into which the spins flop, is found to be θSF = 3.2(2)◦. That is, and as

expected, the magnetic moments lie at the spin flop predominantly in the bc-plane,

almost perpendicular to the easy axis.

The (Brillouin-component-accounted) isothermal magnetisation along the b-axis ap-

pears on the first look to be perfectly linear. However, upon closer inspection a small

jump is found to occur at around 5T, as demonstrated by a small but finite devia-

tion from the high-field linear fit setting in for B ≲ 5T (c.f. Fig. 5.6c). The small

jump becomes clearly visible when the high-field linear component is subtracted from

the magnetisation curve. This is depicted in the inset of Fig. 5.6c, together with the

low-field Brillouin component, previously seen already in Fig. 5.5b. Denoting the field

at which the jump occurs as BC2, its exact position may be determined – similarly to

B||a-axis – as the maximum in the corresponding field derivative. At T = 2K, the

maximum is found at BC2 = 4.9(2)T. As demonstrated in Fig. 5.6d, the maximum

weakens and shifts somewhat to higher fields with increasing temperature, before it

completely disappears at T = 40K. This provides a further strong indication that

the jump is an inherent property of the antiferromagnetically-ordered ground state of

LiMnPO4. The origin of the is discussed in the following section (Section 5.2.1.3).

Lastly, as Figs. 5.6e,f demonstrate, no particular field-induced phase-transition-

indicating features are detected in the isothermal magnetisation along the c-axis. Only

a small decrease of the field derivative may be seen in the low-field regime in Fig. 5.6f.

However, this is merely an artefact of the fitting of the original magnetisation curve

by means of M = MBrillouin + χ0B and may indicate the presence of other types of

3 Note that χ′
0 of the present fit of the high-field region 10T ≤ B ≤ 14T is distinct from χ0 of the

earlier fit of the low-field region 0T ≤ B ≤ 3.5T seen in Fig. 5.5.
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Figure 5.6.: Left: isothermal magnetisation of LiMnPO4 at 2K along the main axes
accounted for the Brillouin component (see text for details). Right: corresponding
field derivative. Solid red lines are straight-line fits in the region 10T ≤ B ≤ 14T.
The inset in (c) depicts the magnetisation for B||b after subtraction of the high-field
linear regime, whereby the solid blue line depicts the Brillouin component. Vertical
dashed line marks the spin-flop field BSF in (a) and the critical field BC2 in (c).
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paramagnetic impurities beyond Mn2+ with S = 5/2 and g = 2.

The above straight-line fits may be used to estimate the saturation fields for the re-

spective axes under the assumption that the ground state of LiMnPO4 is characterised

by unreduced size of the moment µ = gS = 5µB/f.u.. The saturation fields are thus

found to be: Bsat
a = 74.5(3)T; Bsat

b = 78.0(20)T, and; Bsat
c = 76.7(3)T. Such an order

of saturation fields implies that the easy magnetisation axis lies along the crystallo-

graphic a-axis, the intermediate axis along c, and the hard axis along b, confirming the

assignment of anisotropy values based on neutron scattering [114].

Previous, unpublished magnetostriction measurements at 2K identified a jump in the

relative length change of the a-axis at 4.0(3)T [128], hence corroborating the present

observation of a spin flop at this field. Crucially, a counterpart to the much weaker

magnetisation jump along the b-axis was also detected in magnetostriction at 2K, albeit

at slightly higher magnetic field of ≈ 5.6(4)T [128]. On the other hand, despite solving

the spin structure in the ground state and in the spin-flop phase, previous elastic

neutron scattering experiments gave no hints pertaining to the possible microscopic

origin of the presently-observed b-axis feature [114].

5.2.1.3. Interpretation of the Isothermal Magnetisation

In the following, an attempt is made at providing a possible microscopic picture which

could account for the observed magnetisation jump in LiMnPO4 for B||b.4 The attempt

invokes small canting of the antiferromagnetically-ordered moments away from the easy

a-axis in the ground state of LiMnPO4. Since no magnetisation jump is observed when

B||c (at least up to 14T), it may be assumed that the canting of the magnetic moments

is solely towards the b-axis. In principle, the canting may be envisaged to occur in two

different ways which are schematically depicted in Fig. 5.7. Therein, a projection of

the nearest Mn2+ neighbours is made onto the ab-plane.5 Without any canting, the

individual magnetic moments would be aligned parallel or anti-parallel with respect to

the a-axis. In Fig. 5.7a, a scenario is envisaged in which the canting on two nearest

neighbours (i.e. canting along the b-axis) is realised in an opposite fashion, such that

overall an antiferromagnetic arrangement of the canted components of the magnetic

moments is realised along the b-axis. In contrast, Fig. 5.7b envisages a scenario in

which the canting on nearest neighbours is realised in the same same fashion, such that

overall a ferromagnetic arrangement of the canted components is realised (denoted by

a thick red arrow in Fig. 5.7b). The latter scenario is typically referred to as weak

ferromagnetism [17].

4 It is to be stressed that without detailed information on the microscopic spin structure, the present
attempt is merely a hypothesis the verification of which can be provided only by microscopic meth-
ods, such as elastic neutron scattering.

5 The bond between the nearest Mn2+ neighbours is oriented predominantly along the [011] axis with
a small component also along the a-axis.



5.2. Experimental Results 71

a

bc

BC2 || b-axisB = 0 T
(a) (b)

B = 0 T

θcant θcant θcant

Figure 5.7.: A schematic depiction of two possible spin canting arrangements in
LiMnPO4: (a) with nearest-neighbour moments canting towards each other, resulting
in zero net magnetisation when B = 0T; (b) with nearest-neighbour moments canting
in the same direction, resulting in finite net magnetisation M when B = 0T (thick
red arrow). The right image in (a) visualises the spin canting just above the critical
field BC2 applied along the b-axis. Thin black arrows represent the full magnetic
moment of the Mn2+ ions (purple spheres), thick grey arrows the component of the
magnetic moment along the b-axis, and purple lines the nearest-magnetic-neighbour
interaction. θcant is the canting angle, which is greatly exaggerated for visualisation
purposes.

Interestingly for the present purposes, the two envisaged scenarios make different pre-

dictions about the macroscopic magnetisation along the direction of the canted compo-

nents of the total magnetic moments. Whereas weak ferromagnetism is characterised by

spontaneous magnetisation at B = 0T and magnetisation hysteresis around B = 0T,

as is known for regular ferromagnets, the antiferromagnetic arrangement of the canted

moments predicts a spin flip to occur in sufficiently large external field applied along

the direction of the canted moments (i.e. along the b-axis in the present case). The

spin flip of the antiferomagnetically-ordered canted components is illustrated in the

right panel of Fig. 5.7a.

In the present case, no spontaneous magnetisation at B = 0T and only negligible

hysteresis of approximately 0.01T around B = 0T were observed, whereby the latter

is on the order of typical hysteresis effects due to a superconducting magnet coil. On the

other hand, the analysis of the isothermal magnetisation along the b-axis revealed that

the linear regime above BC2 does not cross the abscissa at M0 = 0µB/f.u., but rather

a finite remnant moment is found (c.f. Fig. 5.6c). This indicates that the field-induced

jump at BC2 is a spin-flip transition.

Therefore, it may be concluded that – should spin canting be responsible for the ob-

served jump in the magnetisation along the b-axis – the spin canting must be of the

type shown in Fig. 5.7a, i.e. of antiferromagnetically-arranged canted components of the
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magnetic moments along the b-axis which undergo a spin-flip transition to full satura-

tion at BC2. Correspondingly, the size of the jump may be estimated by reading off the

value of M0 from the above fit, obtaining M0 = ∆M spin
flip = 0.014µB/f.u. The obtained

value enables to estimate the canting angle as θcant = sin−1(∆M/(gµBS)) ≈ 0.16◦.

Such a small value of the canting angle could have easily been missed by the reported

neutron scattering experiments [123].

Note that earlier magnetisation measurements on a powder sample purported to have

detected signatures of weak ferromagnetism in LiMnPO4 [130, 131]. The basis for

the conclusion was the observation of a hysteresis in the isothermal magnetisation

with coercive fields on the order of 0.1T, significant difference in the low-temperature

static magnetic susceptibility between field-cooled and zero-field-cooled regimes, and a

small value of the saturated magnetic moment at the lowest temperatures [130, 131].

Although clear left-bending of the isothermal magnetisation was observed for fields

larger than approximately 1T in the reported work [131], the limited available field

range (B ≤ 5T) and the unavailability of single-crystal samples would have rendered

the present observation of the small jump at BC2 very unlikely. Indeed, isothermal

magnetisation at T = 1.8K up to B = 7T of the powder sample of LiMnPO4 in the

present study reveals only the spin-flop-associated jump at BSF = 4.0T and no further

features at higher fields (c.f. Fig. 5.4 and the corresponding discussion). Furthermore, it

should be noted that the polycrystalline sample in the reported work was found to order

at around 42K [131]. This value is about 10K higher than the ordering temperature

in the present sample and in other, state-of-the-art literature reports [114, 124]. At

the same time, ferrimagnetic compound Mn3O4 is known to order at TC = 39K and

to show sizeable magnetisation hysteresis around B = 0T [132]. It cannot be ruled

out that such an impurity phase might have formed within the reported polycrystalline

sample of LiMnPO4 and distorted the reported results.

Given the arguments in the preceding paragraph, it is concluded that the weak ferro-

magnetic order proposed by earlier magnetisation studies on polycrystalline LiMnPO4

is unjustified. Instead, the present analysis demonstrates that – if canting of the mo-

ments occurs – it leads to their antiferromagnetic arrangement.

The microscopic mechanism by which the spins may cant away from the easy magneti-

sation axis in the ground state of LiMnPO4 may be provided by the antisymmetric,

Dzyaloshinskii-Moriya (DM) interaction [17, 21] (see also Section 2.3). Inspection of

the spin structure of LiMnPO4 reveals that the bond between the nearest-neighbour

magnetic ions, which lie in the bc-plane, does not contain an inversion centre (see Sec-

tion 5.1 and especially the discussion pertaining to Fig. 5.2b) and, as such, supplies

the necessary condition for the occurrence of the DM interaction. Not only is the

DM interaction in LiMnPO4 permitted on symmetry grounds, it was also invoked to

explain several phenomena in other, structurally-related lithium orthophosphates: in
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LiFePO4 to account for the occurrence of an additional, mean-field-theory-forbidden

magnetic resonance mode [112]; in LiNiPO4 to account for the evolution of zero-field

spin canting components away from the easy (b-)axis [118]. Moreover, in spite of no

explicit reference to the Dzyaloshinskii-Moriya interaction in the discussion of neutron

scattering results on LiCoPO4, the compound’s ground state was shown to exhibit a

collinear rotation of the spins by ≈ 4.6◦ away from the easy axis [116], much akin

to the scenario hypothesised in the current work (see also Section 5.1, and especially

Table 5.1).

5.2.1.4. Magnetic Phase Diagrams

In order to map out the axis-dependent magnetic phase diagrams of LiMnPO4, static

magnetic susceptibility on the single crystal was measured at various fields in addi-

tion to the already-presented and discussed isothermal magnetisation (Fig. 5.6). The

obtained curves are presented in Figs. 5.8a,c,e for the three main crystallographic ori-

entations. It may be seen that all the curves fall onto each other at high temperatures.

Upon cooling, a kink which signifies the onset of long-range antiferromagnetic order, is

visible. The kink is found to remain at approximately the same temperature as the ex-

ternal magnetic field increases, indicating that the antiferromagnetic phase transition

is only very weakly field-dependent in fields up to 14T. The low-temperature evolution

of the static magnetic susceptibility confirms that the a-axis is the easy magnetisation

axis, since the corresponding curve at B = 1T drops to the lowest values of χ upon

cooling. The susceptibility at the lowest temperatures shows a Curie-like increase, con-

firming the presence of paramagnetic impurities. As expected, the Curie-like increase is

suppressed in increasing magnetic field. The antiferromagnetic transition temperature

for the various fields and crystallographic orientations is determined as the maximum

in the curves’ corresponding Fisher’s specific heat ∂(χT )/∂T (data not shown).

All phase-transition-indicating features from the static magnetic susceptibility and the

earlier-presented isothermal magnetisation are summarised in magnetic phase diagrams

in Figs. 5.8b,d,f. Whereas the a-axis phase diagram is partially corroborated by an

earlier report [126], the b- and c-axes phase diagrams have not yet been reported in

literature. Considering the a-axis diagram in more detail, the above-presented mag-

netisation and the known neutron scattering results [123] revealed that the magnetic

moments are oriented along the a-axis in the ground state of LiMnPO4.
6 Hence, as

magnetic field is applied along a, the moments remain oriented along the easy mag-

netisation axis, i.e. M||a-axis, until they undergo a spin flop at BSF. From the order of

anisotropy constants and from solutions of the microscopic spin structure in the spin-

flop phase, it is known that above BSF the moments occupy the ac-plane [114, 123],

presumably until their full saturation. This is denoted as M||ac-plane in Fig. 5.8b.

6 The hypothesised small canting of the moments in the ground state is omitted in the present dis-
cussion.
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LiMnPO4 determined from anomalies in static magnetic susceptibility and isothermal
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The a-axis magnetic phase diagram additionally includes data points from the analysis

of temperature-dependent antiferromagnetic resonance (these are discussed in detail in

Section 5.2.2.2). For B||b-axis, the magnetisation jump at BC2 has been hypothesised

in the present work to mark the spin flip of the canted component of the magnetic

moments. However, further microscopic studies are called for in order to verify this

supposition and, moreover, to exclude any canting in the c-axis.

5.2.2. High-Frequency Electron Spin Resonance

5.2.2.1. Ground-State Antiferromagnetic Resonance

Profiting from the single-crystal sample, an attempt was made to obtain axis-dependent

resonance spectra at T = 2K, i.e. deep in the antiferromagnetically-ordered ground

state of LiMnPO4. For B||a-axis, these are displayed in Fig. 5.9a. It may be seen that

at frequencies ν ≤ 80GHz, up to four resonance features of varying shape are detected.

Although the resonance features lack a Lorentzian character, the spectra’s noise-free

background allows for an unambiguous determination of the resonance-field positions

(these are marked by the variously-coloured symbols in Fig. 5.9a). Especially notewor-

thy is the double-feature structure detected in the three spectrographs at 51.8GHz,

57.0GHz, and 62.3GHz at 2.8T ≲ B ≲ 4.0T, marked by black and orange symbols.

For higher microwave frequencies, the double-feature structure disappears and a single

resonance peak is observed at its position. At the same time, a different type of com-

plexity of the resonance features evolves with increasing microwave frequency. Already

at 102.0GHz, the resonance feature at ≈ 6T exhibits an intricate character, permitting

a resonance-field assignment only with a large error bar. For still higher frequencies,

no reliable assignment of any of the resonance features is possible, as illustrated in

Fig. 5.9a for spectra recorded at high frequencies of ν = 306.1GHz and ν = 331.1GHz.

Therein, blue points mark the presumed resonance field but the number and exact

position of the resonance features remain indeterminable. Such an evolution of the res-

onance peaks indicates Walker modes [82] which may result from the regularly-shaped

sample or from a complex behaviour of the material’s dielectric constant.

For this reason, electron spin resonance measurements were performed on an eicosane-

fixed powder of LiMnPO4. Although the powder sample did not stem from the same

synthesis batch as the single-crystal sample, its magnetic properties were confirmed to

be identical with the single crystal, as demonstrated and discussed in Section 5.2.1.1,

especially with reference to Fig. 5.3. Spectra obtained on the powder and at frequencies

comparable to those at which the single-crystal spectra were obtained are displayed in

Fig. 5.9b (resonance features belonging to the same branch are marked by symbols of

the same style and colour in both figures, (a) and (b)). As expected, single-crystal

spectra exhibit more intense resonance features and more stable background than the

powder spectra. The reduced quality of the powder spectra does not allow for the
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5.2. Experimental Results 77

detection of the double feature seen in the single-crystal spectra at low frequencies,

and in place of the expected double feature, only a single absorption peak is observed.

Utilising the full available microwave frequency range, further spectra obtained on the

powder sample at the lowest temperatures are displayed in Figs. 5.9c,d. While exhibit-

ing a considerable amount of wave-phase mixing, these spectra possess a more stable

background than their counterparts at lower frequencies, enabling an unambiguous

assignment of the resonance-field positions.

Since it was not possible to obtain reliable resonance spectra on the single-crystal

sample for frequencies ν ≳ 110GHz, resonance features stemming only from the pow-

der measurement (Figs. 5.9b–d) are used in the next analysis step of constructing the

resonance-frequency–magnetic-field diagram of LiMnPO4. This is displayed in Fig. 5.10

and follows the colour coding introduced in Fig. 5.9. Altogether, the resonance fea-

tures appear to fall onto six distinct magnon branches, labelled νUeasy, ν
L
easy, ν

SF
easy, ν

U
im,

νUhard, and ν
anom, whereby the superscripts U, L, and SF refer to the upper, lower, and

spin-flop branch, respectively, while the subscript “im” stands for intermediate. The

branches νUeasy and νUhard, as well as the branches νLeasy and νUim merge into two distinct

excitation gaps for zero resonance field. The presence of two zero-field excitation gaps

indicates two distinct anisotropy constants and hence an orthorhombic set of mag-

netisation axes with an easy, intermediate, and hard axis. Therefore, a minimal model

required to describe the field dependence of the magnon branches of LiMnPO4 is a two-

sublattice antiferromagnetic resonance (AFMR) model with orthorhombic anisotropy.

When the external magnetic field is applied along the easy magnetisation axis, the

model predicts [31, 133–135]:

νU,L
easy =

1√
2

[
(2− 2α + α2)

(
geasyµBB

h

)2

+ (∆2)
2 + (∆1)

2±{
(2α− α2)2

(
geasyµBB

h

)4

+ (8− 8α + 2α2)

(
(∆2)

2 + (∆1)
2

)(
geasyµBB

h

)2

+

(
(∆2)

2 − (∆1)
2

)2} 1
2

] 1
2

(5.1)

for B||easy ≤ (h∆1)/(geasyµB), and:

νSFeasy =

√(
geasyµBB

h

)2

− (∆1)
2 (5.2)

for B||easy ≥ (h∆1)/(geasyµB). For the external magnetic field applied along the in-

termediate magnetisation axis, the field dependence of the magnon branch is given

by:
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νUim =

√(
gimµBB

h

)2

+ (∆1)
2 (5.3)

and for the field applied along the hard magnetisation axis by:

νUhard =

√(
ghardµBB

h

)2

+ (∆2)
2 (5.4)

In the above, α is a temperature-dependent ratio of the parallel and perpendicular

static magnetic susceptibilities, α = χ∥/χ⊥. µB and h refer to the Bohr magneton

and the Planck constant, respectively, while geasy, gim, and ghard refer to the effective

g-factors associated with the easy, intermediate, and hard magnetisation axis, respec-

tively. Lastly, ∆1 and ∆2 are the zero-field excitation gaps, whereby ∆1 < ∆2.

In addition to the dominant resonance features which can be associated with the AFMR

model with orthorhombic anisotropy, a large number of spectra exhibit weak features

which fall onto a gapless straight-line branch. Fitting the features by means of Eq. 2.33,

∆ ≈ 0GHz and g = 2.00(2) are found (the features and the fitted branch are displayed

in grey colour in Fig. 5.10). This confirms that the features originate from the resonance

behaviour of the paramagnetic impurities which were detected in DC magnetisation

measurements and discussed above (see Section 5.2.1.1). Correspondingly, these reso-

nance features shall not be considered for further analysis.

Similarly to the AFMR model with uniaxial anisotropy applied to MnTiO3 (see Sec-

tion 4.3.2), Eq. 5.1 can too be simplified if α = 0:

νU,L
easy =

1√
2

[
2

(
geasyµBB

h

)2

+ (∆2)
2 + (∆1)

2±

{
8

(
(∆2)

2 + (∆1)
2

)(
geasyµBB

h

)2

+

(
(∆2)

2 − (∆1)
2

)2} 1
2

] 1
2

(5.1b)

Accounting for the paramagnetic impurities in the sample, it is found that χa → 0

as T → 0K (c.f. Section 5.8), such that fixing α = 0 is justified for the subsequent

analysis of the low-temperature AFMR in LiMnPO4. However, taking finite values of α

into consideration shall be necessary in the later analysis of the temperature-dependent

AFMR.

νLeasy is a magnon branch which can be excited when the external magnetic field is ap-

plied parallel to the easy magnetisation axis. The branch is associated with left-handed

chirality of the processing sublattices [19] and softens with increasing external mag-

netic field. The softening becomes critical when the external magnetic field amounts
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based on Eqs. 5.1b–5.4. Solid grey line is a paramagnetic resonance branch, fitted by
means of Eq. 2.33. Vertical dashed line marks the critical field BC1.
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to BC1 = (h∆1)/(geasyµB). At this point, the sublattice magnetisations jump and the

system enters a spin-flop mode whose field dependence is given by Eq. 5.2. In spite of

excluding the resonance features observed on the single-crystal sample with B||a from

the subsequent quantitative analysis, the single-crystal resonance features marked by

solid black symbols in Fig. 5.9a do fall onto the same branch νLeasy as the features

stemming from the powder measurement. This again confirms that a-axis is the easy

magnetisation axis and that BC1 is related to the closing of the easy-axis-associated

excitation gap.

Curiously, a region of anomalous behaviour is observed in the present case above the

critical field BC1. As may be seen in Fig. 5.10, two distinct branches, νSFeasy and νanom,

are observed to lie below the paramagnetic resonance branch. As B > BC1, ν
anom is ob-

served (open black symbols). For increasing resonance field, νanom exhibits significant

bending and, moreover, for B ≳ 7.6T the branch either becomes field-independent or

disappears completely. For ν ≳ 160GHz, νSFeasy is observed (closed black symbols) which

shows an almost perfectly linear field dependence. It is to be stressed that a system-

atic search for resonance features was conducted in the microwave frequency window

137.0GHz ≤ ν ≤ 153GHz, but only resonances associated with the green branch νUim
and grey paramagnetic branch were detected. The observation of two distinct branches

above the spin-flop field but below the paramagnetic line is in stark contrast to the

prediction of the two-sublattice AFMR model with orthorhombic anisotropy. This

predicts a unique spin-flop mode given by Eq. 5.2.

Simulating all the observed resonance features by the two-sublattice orthorhombic

AFMR model given in Eqs. 5.1b–5.4, it is found that νUeasy, ν
L
easy, ν

SF
easy, ν

U
im, and ν

U
hard –

but not νanom – can be fitted by a unique set of parameters ∆1, ∆2, geasy, gim, and ghard
(simulation not shown). Therefore, resonance features belonging to νanom are excluded

from the fitting and the remaining features fitted by the above model. The optimised

parameters are found to be ∆1 = 112.4(2)GHz, ∆2 = 179.9(2)GHz, geasy = 2.00(1),

gim = 2.00(1), and ghard = 2.00(1). The magnon branches obtained by means of the

optimised parameters are displayed as solid black, green, and red lines in Fig. 5.10. It

can be seen that all the resonance features are covered very well by the optimised curves

with the exception of νanom. Possible origins of νanom are discussed in Section 5.3.

The presently-obtained excitation gaps contrast with their earlier determination by

means of inelastic neutron studies which found ∆1 = 148GHz and ∆ = 168GHz [114].

The greater separation of the excitation gaps found in the present study indicates a

greater difference in the axis-dependent anisotropy constants than suggested by the

neutron study. The optimised effective g-factors associated with the AFMR model

correspond very well to their paramagnetic counterparts for which, based on 3d5 shell

occupation, g = 2 is expected. Using Eq. 5.1b, the critical field BC1 at which νLeasy
reaches 0GHz can be estimated as BC1 = 4.02(2)T. Since this value lies in the prox-
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imity of the spin-flop field (BSF = 3.92(6)T, see Section 5.2.1.2), such that BC1 ≃ BSF,

it follows that the effective exchange field in LiMnPO4 is much larger than the effective

anisotropy field along the easy axis.

The determined zero-field excitation gaps ∆1 = 112.4(2)GHz and ∆2 = 179.9(2)GHz

can be used in combination with the spin-flop field BSF = 3.92(6)T and the esti-

mated saturation field along the a-axis, Bsat
a = 74.5(3)T, obtained from isothermal

magnetisation (c.f. Section 5.2.1.2) to calculate the effective exchange and anisotropy

fields. As already indicated above, besides the effective exchange field BE, two effec-

tive anisotropy fields, Bc
A and Bb

A, are expected, whereby the superscripts refer to the

crystallographic axes. From the effective fields, the effective coupling and anisotropy

constants, Jeff , Dc, and Db, can be calculated. The strategy is similar to the analysis

applied to MnTiO3 (see Section 4.3.2), only made complicated by the presence of two

energy gaps in the excitation spectrum, i.e. of two anisotropy constants.

In the first step, the spin-flop and saturation fields are evaluated by means of Eq. 2.27

(Chapter 2) to obtain the effective exchange field, finding BE = 37.4(1)T.7 In the

second step, use is made of the relation ∆i = gµB

h

√
2BEBi

A [133] to calculate the

effective anisotropy fields, obtaining Bc
A = 0.22(1)T and Bb

A = 0.55(1)T. In the third

step, Jeff , Dc, and Db are calculated with the help of Eq. 2.24. Taking into account

that z = 4 for the number of Mn2+ nearest neighbours in LiMnPO4 (see Table 5.2),

Jeff = 0.43(1)meV is found, as well as Dc = 0.005(1)meV and Db = 0.013(1)meV.

From the above values, the ratios of the effective fields can be calculated: Bc
A/BE ≈

6× 10−3 and Bb
A/BE ≈ 1.5× 10−2, confirming that Bc

A ≪ BE and Bb
A ≪ BE.

Note that in order to facilitate comparison with literature data, the anisotropy constant

along the easy-axis orientation was fixed to Da = 0meV. Since no AFMR data were

obtained on the single-crystal sample either with B||b or B||c, the assignment of the

anisotropy constants to the remaining two crystallographic orientations was informed

by the above isothermal magnetisation. This showed that the intermediate magneti-

sation axis lies along the c-axis, whereas the hard magnetisation axis along the b-axis,

such that Dc must be smaller than Db.
8

The anisotropy constants determined from the present AFMR analysis differ from those

obtained from inelastic neutron scattering [114]. As noted above, the difference comes

from the contrasting values of the zero-field excitation gaps, and from the quadratic

dependence of the effective anisotropy field, and thus by extension of the anisotropy

constant, on the excitation gap (Di ∝ (∆i)
2). With energy resolution of HF-ESR

of ∆ν ≲ 1GHz, as opposed to the moderate energy resolution in the cited inelastic

7 Note that since BC1 ≃ BSF, BC1 could also be used as the spin-flop field (see also the analysis of
MnTiO3 in Section 4.3.2).

8 Here, the anisotropy term in the Hamiltonian reads
∑
i
Dx(S

x
i )

2 +
∑
i
Dy(S

y
i )

2 such that positive

values of Di render the orientation of the spin along the i-axis unfavourable by energy ∼ DiS
2.
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neutron scattering of ∆ν ≈ 5GHz [114], the present AFMR study is expected to yield

more precise results.

On the other hand, the value of the effective exchange constant, Jeff = 0.43meV cor-

responds well to the dominant exchange constant determined by means of inelastic

neutron scattering, J1 = 0.48meV [114]. This indicates that long-range antiferromag-

netic order in LiMnPO4 is predominately established through this nearest-neighbour

interaction. This conclusion could have been anticipated directly from a careful in-

spection of the various exchange constants in Table 5.2. As may be observed, J1 is

more than two times larger than the next strongest constant, J2, which is, moreover,

frustrated.

Interestingly, the related orthophosphate LiFePO4 exhibits a similarly strong effec-

tive exchange coupling as LiMnPO4 but several orders of magnitude larger easy-axis

anisotropy constant: Jeff = 0.67meV and Db = 0.53meV in LiFePO4 [136]; Jeff =

0.43meV and Dc = 0.005meV in LiMnPO4 (present study). The significantly larger

anisotropy constant increases the spin-flop field from the here-observed BSF = 3.92T in

LiMnPO4 to BSF = 32T in LiFePO4 [136]. This is a direct consequence of the different

orbital occupation in the two compounds: whereas L = 0 holds in LiMnPO4, the nomi-

nal, Hund’s-rules-predicted orbital moment in LiFePO4 is L = 2 [111], although crystal-

field effects likely introduce partial orbital quenching (see also the discussion on orbital

quenching in Section 2.3). Furthermore, it may crudely be expected that the antiferro-

magnetic ordering temperature scales with the effective exchange constant, TN ∝ Jeff .

Using the above values, Jeff(LiFePO4)/Jeff(LiMnPO4)= 0.67meV/0.43meV ≈ 1.56

and TN(LiFePO4)/TN(LiMnPO4)= 50.0K/33.5K ≈ 1.49 are found, whereby the Néel

temperature of LiFePO4 is taken from [125].

5.2.2.2. Temperature-Dependent Electron Spin Resonance Studies

Temperature evolution of the resonance behaviour was studied at three different

frequencies ν = 79.9GHz on the single-crystal sample, and ν = 125.0GHz and

ν = 197.3GHz on the powder sample. Such frequency selection ensured that the tem-

perature dependence of the resonance branches was covered in three distinct regimes:

ν ≤ ∆1; ∆1 ≤ ν ≤ ∆2, and; ∆2 ≤ ν. For clarity purposes, the presentation and

discussion of the spectra is divided into two parts: in the first part, the temperature

evolution of the AFMR, i.e. of spectra obtained at temperatures up to TN, is in focus

(Figs. 5.11, 5.12, and 5.13); in the second part, the temperature regime above TN is

discussed on the basis of spectra obtained in HF-ESR (Figs. 5.15 and 5.16), and in

X-Band ESR (Fig. 5.17).
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Temperature Dependence of the Antiferromagnetic Resonance Modes

In the antiferromagnetically-long-range-ordered phase, a pronounced shift of the reso-

nance fields is found as temperature is increased from the lowest values up to TN. In

particular, νUeasy, ν
U
hard, and ν

U
im shift at ν = 197.3GHz to higher resonance fields upon

heating (Fig. 5.11a), as does νUim at ν = 125.0GHz (Fig. 5.11b). On the other hand,

νSFeasy at ν = 197.3GHz shifts to lower resonance fields with increasing temperature

(Fig. 5.11a), similarly to νLeasy at ν = 79.9GHz (Fig. 5.12). This way, the resonance

branches νUeasy, ν
U
hard, ν

U
im, and νSFeasy shift towards the paramagnetic, g = 2.00 line as

T → T+
N , thus approaching each other in the process. This behaviour is typical for

a long-range-ordered antiferromagnet and signals the gradual closing of the zero-field

excitation gaps as the Néel temperature is approached from below. In particular, at

each of the three measured frequencies, the spectrum taken at 35K, i.e. directly above

TN, exhibits a qualitatively different behaviour from the spectra taken below TN (the

paramagnetic spectrum at 35K is included in the respective figure for comparative

purposes together with the AFMR-bearing spectra). In each case, a pronounced fea-

ture is observed which can be associated with paramagnetic resonance. The resonance

behaviour for T > TN is addressed in greater detail in the following section. Here, it

is to be noted that the abrupt change of the resonant behaviour as the temperature is

swept through TN signals a complete closure of both excitation gaps at TN.

Interestingly, the branch νanom exhibits an opposite trend to all the other AFMR

branches in that it distances itself away from the paramagnetic line, shifting to higher

resonance fields, with increasing temperature. This trend is observed in the temper-

ature dependence of the powder spectra (Fig. 5.11b) as well as of the single-crystal

spectra (Fig. 5.12). The observation of the same temperature trend in both sample

types serves also as a good indication that the anomalous behaviour of νanom is not

merely a property of the powder sample (or of the single-crystal sample) but rather

that it is intrinsic to LiMnPO4 itself. A further important observation from the tem-

perature dependence of νanom is its disappearance for T → T+
N (most clearly seen in

Fig. 5.12), indicating that the branch is a property of the long-range-ordered LiMnPO4.

Lastly, upon careful inspection a shoulder to the right of the main resonance feature in

νanom may be observed in the single-crystal spectra in Fig. 5.12. As the single-crystal

spectra exhibited shoulders on varying sides of the main resonance features belonging

to the branch νanom also at other frequencies and as the shoulders showed no univocal

trend, they shall not be discussed in further detail. Although their nature as intrin-

sic resonant property of the ground state of LiMnPO4 cannot be ruled out, it is also

possible that they arose as a consequence of the developing Walker modes.

Quantitative analysis of the temperature-dependent spectra displayed in Figs 5.11

and 5.12 may be performed by means of Eqs. 5.1, 5.3, and 5.4.9 This enables the

9 The resonance features associated with the branches νSFeasy and νanom are excluded from the current



84 Chapter 5. LiMnPO4

1 2 3 4 5 6 7 8

Tr
an

sm
is

si
on

 (a
.u

. -
 o

ffs
et

) TN = 33.5 K

2 K

4 K

8 K

12 K

14 K
16 K

20 K
25 K
30 K

10 K

6 K

35 K
n = 197.3 GHz

nU
im

nU
hard

nU
easy

nSF
easy

(a)

(b)

Tr
an

sm
is

si
on

 (a
.u

. -
 o

ffs
et

)

B (T)

35 K

30 K

25 K
20 K

16 K

12 K

8 K

4 K

2 K

n = 125.0 GHzTN = 33.5 K

nU
im nanom

Figure 5.11.: Temperature evolution of resonance spectra obtained on the powder
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Figure 5.12.: Temperature evolution of resonance spectra obtained on the single-
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colour-coding follows Figs. 5.9 and 5.10.

calculation of the temperature dependence of the excitation gaps ∆1 and ∆2, as well

as of the critical field BC1. To perform the analysis, the parameter α = χa/χc at a

particular temperature is firstly obtained from the static magnetic susceptibilities at

1T displayed in Figs. 5.8a and 5.8e.10 Secondly, a simultaneous least-squares minimi-

sation at each individual temperature is performed on Eqs. 5.1, 5.3, and 5.4 with the

resonance fields given in Figs. 5.11 and 5.12. This mimics the procedure for analysing

the full low-temperature frequency–resonance-field diagram with the exception that

here only a small number of resonance frequencies and fields are available for the fit-

ting. Moreover, the effective g-factors which enter Eqs. 5.1, 5.3, and 5.4 are taken to

be temperature-independent in the present case and hence enter the minimisation rou-

tine as constant parameters. Their values are taken from the above two-Kelvin fitting,

i.e. geasy(T ) = gim(T ) = ghard(T ) = 2.00(1)= constant.

analysis, since νanom cannot be satisfactorily accounted for by the AFMR model at hand.
10In principle, α could also be defined as χa/χb. The choice of the definition affects the obtained value
of the critical field BC1, leaving the obtained values of ∆1 and ∆2 unaffected.
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Figure 5.13.: Temperature dependence of the zero-field excitation gaps ∆1 and ∆2

of LiMnPO4 as obtained from the analysis of the temperature-dependent spectra in
Figs. 5.11 and 5.12 by means of Eqs. 5.1–5.4, see text for details. Vertical dashed line
marks the antiferromagnetic ordering temperature.

The thus-obtained temperature dependence of the two excitation gaps is depicted in

Fig. 5.13. As may be seen, both ∆1 and ∆2 decrease in size as the temperature

increases. Interestingly, the two gaps remain distinct from each other in the entire

temperature region of observation, indicating that the system preserves its orthorhom-

bic anisotropy at least up to 30K. A qualitatively similar but quantitatively different

temperature evolution of the excitation gaps was recorded also by inelastic neutron

scattering [114]. Although no spectra were obtained for 30K ≤ T ≤ TN in the present

study, it was already discussed above that the abrupt change of the spectra as temper-

ature is swept through TN indicates a complete vanishing of both gaps at TN.

Also obtained from the quantitative analysis of the temperature-dependent AFMR

spectra is the temperature dependence of the critical field BC1. This is included in

the a-axis magnetic phase diagram which is displayed above in Fig. 5.8b (open black

data points). It may be seen therein that the temperature evolution of BC1 follows

in general that of BSF while lying consistently above it by ≈ 0.4–0.5T. Such ob-

servation could indicate that the effective exchange field in LiMnPO4 is not signifi-

cantly larger than the effective anisotropy field, i.e. that
√
(2BEBA +B2

A)/(1− α) ̸≈√
(2BEBA −B2

A)/(1− α). However, the above low-temperature AFMR analysis found

Bc
A/BE ≈ 6× 10−3 and Bb

A/BE ≈ 1.5× 10−2. The present observation that BC1 > BSF

is a likely consequence of an overestimation of the parameter α, possibly owing to an

incorrect accounting for the paramagnetic background in the static magnetic suscepti-

bilities.
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Figure 5.14.: Simulation of the resonance branches νU
easy and νL

easy in LiMnPO4

at various temperatures based on Eq. 5.1, on the resonance fields extracted from
Figs. 5.11 and 5.12, and on the parameter α. Additionally, simulation of the resonance
branch νSF

easy based on Eq. 5.2, whereby the value of ∆1 at the various temperatures

required to evaluate Eq. 5.2 is extracted from the corresponding simulation of νU
easy

and νL
easy. Grey dotted line, marked νPM, depicts a paramagnetic resonance branch

with g = 2.00. Dashed vertical lines mark the critical field BC1 with colour-coding
corresponding to the respective temperature. Thick black arrows indicate the shift of
the resonance fields for increasing temperature based on the simulated curves.

The AFMR branches simulated on the basis of the temperature-dependent resonance

features in Figs. 5.11 and 5.12 are depicted for B||a-axis at selected temperatures in

Fig. 5.14. The decreasing trend in the excitation gaps and the increasing trend in

BC1 with increasing temperature are clearly visible. Although the resonance features

belonging to νSFeasy were not included in the present fitting, the predicted trend of the

resonance field’s shift to lower values with increasing temperature matches the experi-

mental observation at ν = 197.3GHz seen in Fig. 5.11a. On the other hand, it clearly

contradicts the observation made of νanom in Figs. 5.11b and 5.12.

Temperature Dependence of the Paramagnetic Resonance

The temperature evolution of the spectra obtained above TN on the single-crystal sam-

ple at ν = 79.9GHz and on the powder sample at ν = 125.0GHz is displayed in

Fig. 5.15 (note that the spectrographs at 35K have already been included in Figs. 5.12

and 5.11a). A single Lorentzian-like resonance feature which may be assigned to a

paramagnetic resonance of the Mn2+ ions is detected at 100K and 80K, respectively.

Upon cooling, the resonance feature’s linewidth increases while its position remains

unchanged. The broadening of the linewidth as T → T−
N implies the reduction of the

spin relaxation time and hence the growth of spin fluctuations. This likely occurs due
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Figure 5.15.: Temperature evolution of resonance spectra above TN of LiMnPO4

obtained (a) on the single-crystal sample at ν = 79.9GHz, and (b) on the powder
sample at ν = 125.0GHz. Vertical dashed lines serve as a guide for the eye.

to the opening of a spin-spin relaxation channel as an internal magnetic field evolves

with the temperature’s decrease towards TN [18].

The lack of visible shift of the paramagnetic resonance with temperature may indi-

cate that on the resolution scale of the presently-employed HF-ESR system, the local

magnetic environment of the Mn2+ ions remains constant and, in particular, no short-

range correlations are present in the temperature regime of study. This is partially

corroborated by inelastic neutron scattering which detected finite correlation length in

a modest temperature regime up to approximately 50K [114]. Moreover, specific heat

measurements showed that as much as 80% of the magnetic entropy in LiMnPO4 is

released upon heating up to TN, whereby the small remaining entropy is completely

released in the regime up to 60K [137]. Furthermore, finite magnetostriction was de-

tected up to about 65K [128]. All these observations point to a weak short-range

order in LiMnPO4 above TN which tends to complete melting within 1× TN above the

ordering temperature.

The spectra at 40K and 60K obtained on the single crystal exhibit an additional weak

shoulder to the right of the dominant feature (c.f. Fig. 5.15a). If originating from the

sample, it would indicate the presence of two distinct g-factors as may occur either

in case of two crystallite grains which are rotated by a small angle with respect to

each other, or in case of two distinct crystallographic sites with different crystal fields

occupied by the Mn2+ ions. However, if the single-crystal sample did consist of two

grains inclined at a small angle to each other, all the spectra would be expected to

exhibit a double-feature behaviour, in particular, the spectra at 35K and 100K. But
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Figure 5.16.: Resonance-frequency–magnetic-field diagrams of LiMnPO4 at (a) T =
100K, and (b) T = 250K. Solid lines are fit to the data by means of Eq. 2.33.

this is not the case. The second proposed scenario may be ruled out on the basis of

the single-crystal refinement which detected only a single Mn2+ site [113].

The cessation of all short-range correlations and the realisation of a fully paramagnetic

regime above ≈ 60K is confirmed by the value of the corresponding g-factor. At

selected temperatures – 60K, 100K, and 250K – spectra at three different frequencies

were obtained, the corresponding resonance field extracted, and the g-factor determined

by fitting the resonance features’ field dependence by means of Eq. 2.33. The optimised

g-factors are found to be: g(60K) = 2.001(15); g(100K) = 1.999(8), and; g(250K) =

2.006(1). Within their respective error bars, the g-factors do not vary from each other

and, moreover, lie in the region typical for paramagnetic Mn2+ ions [90]. The resulting

frequency–resonance-field diagrams for T = 100K and T = 250K are displayed in

Fig. 5.16 together with their respective fit.

In the last step, electron paramagnetic resonance was measured on the single-crystal

sample of LiMnPO4 at room temperature. This measurement was performed at X-

Band frequency of ν = 9.632GHz, utilising a cavity (see Section 3.2). As may be seen

in Fig. 5.17, the detected signal assumes a sharp Lorentzian-derivative form along all

three main crystallographic orientations. Fitting the detected signal by a Lorentzian-

peak derivative with a constant background, the resonance field and the linewidth are

determined as: Bres
a = 343.7(1)mT, ∆Ba = 30.3(1)mT for B||a; Bres

b = 343.7(1)mT,

∆Bb = 29.4(1)mT for B||b, and; Bres
c = 343.5(1)mT, ∆Bc = 30.7(1)mT for B||c. The

corresponding g-factors amount to: ga = 2.002(1); gb = 2.002(1), and; gc = 2.003(1).

The g-factors reflect the behaviour present already at lower temperatures, namely that
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Figure 5.17.: Transmission derivative of room-temperature paramagnetic resonance
of LiMnPO4 at X-band frequency of ν = 9.632GHz in a Faraday configuration
(B ⊥ kMW) for the three main crystallographic orientations. Red solid lines are
fitted Lorentzian-peak derivatives with a constant background. The spectrographs
have been offset with respect to each other for clarity.

of typical paramagnetic Mn2+ ions [90]. The similar values of the linewidth for the

different crystallographic orientations indicate that the room-temperature relaxation

processes are isotropic. In particular, no signature of exchange narrowing, which would

predict sharper resonance lines along directions with more dominant exchange interac-

tions, is detected [91].

5.3. Discussion

Static magnetic susceptibility, specific heat, and magnetostriction reveal magnetism

in LiMnPO4 which in many respects provides a textbook-like example of a three-

dimensional antiferromagnet: a sharp onset of long-range antiferromagnetic ordering

with only a modest correlation maximum in susceptibility close above TN, concomitant

with a narrow window of short-range order as detected by specific heat and magne-

tostriction, as well as only a small frustration parameter derived from the Weiss and

Néel temperatures. Even several aspects of the spectroscopic studies suggest behaviour

of a three-dimensional mean-field antiferromagnet: X-Band- and HF-ESR above TN in-

dicate purely paramagnetic Mn2+ moments with g = 2.00 and no detectable evolution

of short-range order down to TN, while the ground-state properties as detected by HF-

ESR point largely to a two-sublattice antiferromagnet with orthorhombic symmetry.

However, a more thorough look at the ground state has revealed at least two phe-

nomena which cannot be explained by means of a simple two-sublattice AFMR model
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and which make LiMnPO4 an exciting material to investigate: a spin-flip transition

along the hard magnetisation axis, and an additional, strongly field-dependent reso-

nance branch νanom. Having already provided a possible account of the origin of the

spin-flip transition by way of invoking small canting of the magnetic moments in the

ground state of LiMnPO4, and having argued that the origin of such canting may be

Dzyaloshinskii-Moriya interactions, several models to account for the origin of νanom

are to be considered next.

Firstly, without providing a microscopic underpinning, the right bending of νanom might

suggest its phenomenological interpretation as a spin-flop branch, the dynamics of

which is governed by Eq. 5.2. Performing the fitting under this hypothesis, the opti-

mised parameters are found to be ganom = 1.53(9) and ∆anom = 69(10)GHz, and the

optimised curve is displayed as a blue solid line in Fig. 5.18a. Not only is the deter-

mined g-factor unreasonably small for Mn2+ ions, but as evident from Fig. 5.18a, the

fitted curve also fails to describe the resonance features satisfactorily. In particular,

the resonance features appear to possess a considerably greater right bending than can

be captured by Eq. 5.2. Moreover, the features seem to become field-independent or

to vanish completely for B ≳ 7.5T, in contradiction to the expectation on the basis of

Eq. 5.2.

Secondly, νanom might be associated with the canted component of the magnetisation

and hence interpreted as a Dzyaloshinskii-Moriya mode. In the spin-flop phase, this is

known to give rise to a modified frequency dependence of the usual spin-flop resonance

branch and is given by [138–140]:

νSFDM =

√(geasyµB

h

)2
(B2 +BDMB)− (∆DM)

2 (5.2b)

where BDM is an effective Dzyaloshinskii-Moriya field and ∆DM is a zero-field excitation

gap, much akin to the usual excitation gap given, for instance, in Eqs. 5.1–5.4 but

adjusted for Dzyaloshinskii-Moriya interactions. Although successful convergence of

the fitting of νanom by Eq. 5.2b is possible (see Fig. 5.18b), the convergence can only

be achieved at the expense of non-physical optimised parameters: geasy ≈ 10−4; BDM ≈
7× 107T, and; ∆DM ≈ 16THz.

Having shown that νanom can be interpreted neither as a spin-flop mode nor as a

Dzyaloshinskii-Moriya mode, it shall now be shown that the branch’s unusual field

dependence can be phenomenologically understood if the anisotropy axis is assumed

to change its orientation above the spin-flop field (i.e. above BC1). Fig. 5.18c depicts a

simulation of νSFeasy and ν
anom using the earlier-optimised parameters of the AFMRmodel

with orthorhombic anisotropy (∆1 = 112.4GHz, ∆2 = 179.9GHz, and geasy = 2.00,

c.f. Section 5.2.2.1), but under the assumption that above BSF the applied magnetic

field has become inclined by 6.5◦ away from the easy a-axis towards the hard b-axis.
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Figure 5.18.: Resonance-frequency–magnetic-field diagram of LiMnPO4 displaying
the fitting of νanom (a) as a spin-flop mode (Eq. 5.2, blue solid line), and (b) as a
Dzyaloshinskii-Moriya mode (Eq. 5.2b, blue solid line). Further, the same diagram
depicting a simulation of νSF

easy and νanom under the assumption that the anisotropy
axis of the spin-flop phase is inclined (c) by 6.5◦ with respect to the axis’ orientation
in the ground state towards the hard magnetisation axis (red solid lines), and (d)
by 5◦ and 10◦, respectively, with respect to the axis’ orientation in the ground state
towards the intermediate (im) magnetisation axis, see text for details. For clarity, only
resonance features associated with B|| easy axis are included (grey data points). Grey
solid lines depict the fitting results of the non-inclined, ground-state antiferromagnetic
resonance for B||a-axis, presented already in Fig. 5.10. Vertical dashed lines mark
BC1 and BC2, respectively.
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(a) (b) (c)

Figure 5.19.: Schematic visualisation of the orientation of the magnetic moments
(black arrows) and anisotropy constant D (red arrows) in LiMnPO4 with respect
to the sample’s crystallographic coordinate system (grey arrows) (a) in the ground
state; (b) at a regular spin flop, and; (c) at a regular spin flop under the hypothesis of
rotation of the anisotropy axis with respect to its ground-state orientation by angle α
towards the b-axis. θSF denotes the spin-flop angle. The grey dotted arrows and lines
in (c) depict the spin-flop scenario from (b) for comparative purposes.

But since it is assumed that for B < BSF, the magnetic field is applied perfectly along

the easy magnetisation axis, this simulation procedure is equivalent to supposing that

above BSF the anisotropy axis itself deviates from its ground-state orientation by 6.5◦

towards the hard magnetisation axis.

Fig. 5.19 visualises the envisaged rotation of the anisotropy axis. In Fig. 5.19a, the

collinear ground state arrangement of the magnetic moments along the a-axis is il-

lustrated.11 Fig. 5.19b illustrates the usual spin-flop scenario in which the magnetic

moments flop from their ground-state arrangement along the a-axis into lying almost

perpendicularly to the a-axis. The spin-flop angle which the moments enclose with the

bc-plane was calculated earlier to amount to θSF = 3.2(2)◦ (c.f. Section 5.2.1.2). The

anisotropy vector D is identical in both cases and its direction given by D = (1 0 0)T.

In Fig. 5.19c, the spin flop is visualised under the assumption that the anisotropy vec-

tor has tilted with respect to its ground-state orientation by angle α towards the b-axis.

That is, the direction of the anisotropy vector is now given byD∗ = (cos(α) sin(α) 0)T,

where, based on the above simulation, it is argued that α = 6.5◦.

It may be seen in Fig. 5.18c that the simulation captures the right bending of the

branch νanom very well while simultaneously successfully covering the resonance features

associated with νSFeasy. Moreover, the simulation correctly predicts the vanishing of the

branch above ≈ 140GHz. As is evident from the figure, the vanishing is a consequence

of an avoided crossing between the branches νanom and νSFeasy. Importantly, the presumed

change of the inclination of the anisotropy axis above BSF has no impact on the field

dependence of the remaining branches, νUim and νUhard (data not shown).

11The proposed Dzyaloshinskii-Moriya-caused small canting θcant = 0.16◦ of the magnetic moments is
omitted from the present discussion.
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Note that a reasonable overlap between the resonance features and the simulated

branches νanom and νSFeasy can also be achieved if a rotation of the anisotropy axis

towards the intermediate c-axis above BSF on the order of 5◦–10◦ is assumed. This

is illustrated in Fig. 5.18d. However, in such a case it is found that the frequency

of several resonance features is overestimated: either those around ≈ 6.5T belonging

to νanom (for inclinations of ≈ 5◦, blue solid lines) or those around ≈ 7.5T belong-

ing to νSFeasy (for inclinations of ≈ 10◦, green solid lines). While the present analysis

cannot definitively discriminate between the inclination towards the hard axis and the

inclinations towards the intermediate axis, the apparent success of the former simula-

tion in simultaneously describing all the resonance features provides a strong case for

supposing its correctness.

It is important to stress that the argued-for misalignment between the anisotropy axis

in the spin-flop phase and its ground-state orientation along the crystallographic a-axis

cannot be understood by invoking a misalignment between the sample and the applied

magnetic field during the measurement. It is true that HF-ESR on a single-crystal

sample defined by the current optimised parameters of ∆1, ∆2, and geasy but misaligned

by 6.5◦ would produce an identical frequency–resonance-field diagram as presented in

Fig. 5.18c. However, it is to be noted that the resonance data under the current

discussion were obtained on a well-ground powder sample for which misalignments of

the applied magnetic field are not possible.

The picture presented here contradicts the results obtained in elastic neutron scattering

which found that the spin-flop phase in LiMnPO4 retains its zero-field spin structure

and, in particular, which observed no signature of change of anisotropy axis [123].

Speculatively, this may be owing to the fact that the elastic neutron scattering employed

only a modest field above the spin-flop field, B = 4.5T. The present data suggest that

the resonance features for BSF ≤ B ≲ 5.0T may still be correctly described by the

ground-state AFMR model (see the good overlap of νSFeasy with the two lowest lying

resonance features of νanom in Fig. 5.10).

On the other hand, the hereby-developed account naturally incorporates magnetostric-

tion measurements [128] and the above-presented isothermal magnetisation for B||a-
axis (c.f. Fig. 5.6a), neither of which detected a field-induced phase transition above

BSF, and, in particular, in the region B ≈ 7.6T where νanom disappears. The fact that

the simulated branches νanom and νSFeasy are continuous at all fields above BSF clearly

demonstrates that no field-induced phase transitions are expected to occur. Addition-

ally, the magnetostriction measurement at the lowest temperature detected a strong

response of the lattice at BSF, indicating that LiMnPO4 cannot be understood as a

pure spin magnet. Concretely, the lattice was found to contract below BSF, undergoing

an abrupt jump at BSF, followed by positive lattice expansion for fields greater than

BSF [128]. From ∂La/∂Ba = −∂Ma/∂pa it follows that the pressure dependence of the
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magnetisation changes its character from being positive below BSF to being negative

above it.

Furthermore, pulsed-field isothermal magnetisation and HF-ESR on the related or-

thophosphate LiFePO4 demonstrated that the zero-field values of the single-ion

anisotropy (and of the exchange constants) cannot explain the high-field data, es-

pecially the low value of the spin-flop field given the size of the zero-field excitation

gap and the strong bending of the corresponding resonance branch towards BSF [112].

A detailed modelling showed that the anisotropy and exchange constants are field-

dependent, with a proposed quadratic dependence [112]. Although the present study

does not provide as detailed an account on LiMnPO4 as the above-cited investigation

on LiFePO4, they both share one conclusion: that the HF-ESR data are compatible

with a field-dependent anisotropy.

Notwithstanding the above-proposed phenomenological account of νanom, its success

in explaining the branch’s strong right bending and its plausibility based on other

observations discussed in the previous paragraphs, it is stressed that without further

detailed studies, the account remains a hypothesis. Moreover, the account provides no

microscopic mechanism by which the proposed inclination of the anisotropy axis in the

spin-flop phase takes place.

A further point worth discussing is the additional resonance feature seen in the

single-crystal spectra (but not in the powder spectra) in a small frequency window

ν ≲ 65GHz, marked by orange data points in Fig. 5.9a. Since it possesses an ap-

proximately constant separation from the resonance feature associated with νLeasy and

since it disappears for microwave frequencies greater than ≈ 65GHz, it is unlikely to

originate from a second crystallite grain in the single-crystal sample. Should a second

grain be present in the sample, other spectra would too be expected to exhibit such

a doubling of the main resonance feature, and the additional feature’s position would

be expected to follow the bending of the corresponding resonance branch. Although

no satisfactory theoretical underpinning of the observed feature can be currently pro-

vided, it may be noted that in LiFePO4 an additional resonance feature for B < BSF,

unaccountable by the employed AFMR model, was too detected along the easy mag-

netisation axis [112]. Simulations showed that the feature could be assigned to a

Dzyaloshinskii-Moriya mode [112]. The present study has argued for the presence of

small spin canting in the ground state of LiMnPO4 as a mechanism to explain the

observed spin flip for B||b-axis. Moreover, using symmetry arguments the appearance

of Dzyaloshinskii-Moriya interactions has been made plausible. It may therefore be

speculated that also in LiMnPO4 the additional feature which appears below the spin

flop is associated with a Dzyaloshinskii-Moriya mode.
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5.4. Summary

LiMnPO4 was previously known to be a three-dimensional long-range-ordered antifer-

romagnet with a collinear ground state spin structure and a simple spin flop along the

easy magnetisation axis. In this respect, the material was at odds with its counterparts

from the olivine group of lithium orthophosphates, such as LiFePO4, LiCoPO4, and

LiNiPO4, which show complex ground state properties, including exceptionally large

magnetoelectric tensor, spin canting and incommensurate magnetic phases, or field

dependence of the anisotropy and exchange constants.

Profiting from a high-quality single crystal sample, the present study revisited the

low-temperature isothermal magnetisation, and, encouraged by non-trivial antiferro-

magnetic resonance in LiFePO4, to study the low-energy magnon excitations in a broad

range of frequencies and fields.

Isothermal magnetisation along the b-axis detected a hitherto unobserved small jump

at BC2 = 4.9(1)T which could be interpreted as a spin flip. Spin canting of the mag-

netisation along the hard magnetisation b-axis with an antiferromagnetic arrangement

was postulated to explain the observed spin-flip effect. From the size of the jump,

the canting angle was estimated to be 0.16◦. Despite its very small size, the canting’s

presence brings LiMnPO4 in line with the other lithium orthophosphates, all of which

display canting of the magnetic moments in the ground state. The lack of inversion

centre along the bond between nearest-neighbour Mn2+ ions, lying in the bc-plane, was

invoked as providing the necessary condition for occurrence of Dzyaloshinskii-Moriya

interactions which were put forward as a candidate to explain the ground state’s spin

canting. Using the full available range of magnetic fields, the magnetic phase diagrams

were constructed for the first time along all three main crystallographic directions.

Also constructed was the low-temperature resonance-frequency–magnetic-field diagram

of the antiferromagnetic resonance in LiMnPO4. While confirming the orthorhombic

nature of the anisotropy in the system, the zero-field excitation gaps could be deter-

mined with superior resolution over inelastic neutron scattering. ∆1 = 112.4(2)GHz,

∆2 = 179.9(2)GHz, and geasy = gim = ghard = 2.00(1) were determined directly

from the fitting of the AFMR, while Jeff = 0.43meV, Dc = 0.005(1)meV, and

Db = 0.013(1)meV were calculated from the subsequent analysis. Temperature evolu-

tion of ∆1 and ∆2 could be mapped thanks to the analysis of temperature-dependent

AFMR, finding that at least up to ≈ 0.9TN the anisotropy preserves its orthorhombic

nature while both excitations gaps vanish for T → T+
N . HF-ESR above TN detected a

single paramagnetic line with no evolution of internal fields, indicative of negligible, if

any, short-range order above TN.

An anomalous AFMR mode was detected above the spin-flop field. It was shown

that the branch could be interpreted neither as an additional spin-flop mode nor as a
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Dzyaloshinskii-Moriya mode. Instead, it was shown that the mode is fully integrable

into the rest of the resonance-frequency–field diagram if a rotation of the anisotropy

axis above the spin-flop field is supposed. Computational results showed that a rotation

of the anisotropy axis above the spin flop by 6.5◦ towards the hard axis could most

comprehensively explain the field dependence of the AFMR modes.
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6. CrI3

6.1. Material Background

6.1.1. Crystallographic Information

CrI3 belongs to the class of chromium trihalides with the general formula CrX 3, where

X = Cl, Br, and I.1 From a crystallographic point of view, CrI3 consists of weakly, van-

der-Waals-coupled two-dimensional layers spanning the ab-plane (see Fig. 6.1) [141].

Each chromium atom is embedded in edge-sharing octahedra of six I− ions in such a

way that nearest-neighbour chromium ions within the ab-plane form a hexagonal lattice

(Fig. 6.1b).

At high temperatures, CrI3 crystallises in a monoclinic C2/m crystal structure with an

imperfect ABC-like stacking of the hexagonal layers [141]. The interatomic Cr3+–I−

separation within the individual octahedra at T = 250K amounts to 2.709 52 Å (2x),

2.709 43 Å (2x), and 2.702 35 Å (2x), respectively, leading to a small distortion of the

regular octahedra of 0.27%. Upon cooling, the intralayer chromium–chromium and

iodine–iodine separation increases, whereas the individual planes grow closer to each

other, reducing the van-der-Waals gap [141]. A structural phase transition from the

monoclinic C2/m to rhombohedral R3̄ crystal structure sets in at TS = 212K [141].

In contrast to the monoclinic structure, the rhombohedral crystal structure is charac-

terised by almost perfectly regular chromium octahedra and an ideal ABC-like stacking

of the hexagonal layers [141]. The Cr3+–I− separation in the R3̄ phase (at T = 90K)

is 2.7271(15) Å (3x) and 2.7246(17) Å (3x), respectively, amounting to a minimal dis-

tortion of approximately 0.09%.

As is apparent from Fig. 6.1b, the intralayer nearest-magnetic-neighbour coupling is

mediated by a single I− ion. The bond angle at T = 90K along the exchange path

Cr3+–I−–Cr3+ amounts to 93.31(6)◦ [141], favouring a ferromagnetic superexchange

between the nearest neighbours [17, 142, 143] (see also Section 2.3.2). Indeed, CrI3
undergoes a ferromagnetic phase transition at TC = 61K [141]. The ferromagnetic

order is axial, with the easy magnetisation axis oriented along the crystallographic

c-axis, that is, perpendicular to the hexagonal ab-planes [141].

1 For reasons of conciseness, the ensuing discussion is restricted to CrI3, although a number of the
observations apply also to the other chromium trihalides.
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(a) (b)(a)

Figure 6.1.: Low-temperature, orthorhombic crystal structure of CrI3 (a) in the
bc-plane, (b) in the ab-plane. Blue spheres depict Cr3+ ions, purple I− ions. Crystal-
lographic data taken from [141], visualisation performed in VESTA [56].

6.1.2. Exchange Constants

Continuing with the above crystallographic considerations, it is found that three of the

chromium-chromium nearest neighbours lie in the ab-planes and three perpendicular to

the ab-planes. Designating the corresponding exchange coupling constants as J1–J3 for

the intralayer nearest-neighbour exchange, and Jc1–Jc3 for interlayer nearest-neighbour

exchange, Fig. 6.2 visualises the various exchange constants.2 Their quantitative values

were determined by inelastic neutron scattering [144] and are listed together with the

corresponding lengths and number of neighbours in Table 6.1. Using Jeff =
∑

i(niJi),

Jeff
ab = 3 · J1 + 6 · J2 + 3 · J3 ≈ 77.7K for the effective in-plane exchange coupling, and

Jeff
c = 1 · Jc1 + 6 · Jc2 + 3 · Jc3 ≈ 6.8K for the effective out-of-plane exchange coupling

are found. This results in the ratio Jeff
c /Jeff

ab ≈ 0.09, highlighting the dominance of the

intralayer over the interlayer coupling.

6.1.3. Chromium Ion in CrI3

Based on valence considerations in a purely ionic picture, the oxidation state of

chromium in CrI3 may be taken to be 3+, resulting in the electronic configuration

[Ar]3d3. Hund’s rules predict for an isolated Cr3+ ion: S = 3/2; L = 3, and;

J = 3/2 (see also Section 2.2.3). In an ideal octahedral coordination, crystal-field

theory predicts a splitting of the 3d-orbital shell into lower-lying threefold degener-

ate t2g orbital manifold and higher-lying twofold degenerate eg orbital manifold [18]

(see Section 2.2.1). Under the assumption of a complete quenching of the orbital mo-

ment, the ground state is predicted to be an orbital singlet Γ2, and the g-factor to

2 Unlike in Chapters 2, 4, and 5, a positive value of J in the present chapter implies ferromagnetic
exchange coupling.
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intralayer coupling interlayer coupling

length [Å] N strength [K] length [Å] N strength [K]

J1 3.965 3 24.49 Jc1 6.589 1 -0.56

J2 6.867 6 1.28 Jc2 7.701 6 0.82

J3 7.929 3 -1.16 Jc3 7.713 3 0.82

Jeff
ab 77.7 Jeff

c 6.8

Table 6.1.: Bond lengths, the number of neighbours, N , connected via the respec-
tive bond length, and the corresponding intra- and interlayer coupling constants in
CrI3. J

eff
ab (Jeff

c ) corresponds to the effective intralayer (interlayer) exchange constant.
Positive value of Ji refers to ferromagnetic coupling. Crystallographic information
from [141], coupling constants from [144].

Jc1

Jc2

Jc3J1

J2

J3

(a) (b)

Figure 6.2.: Visualisation of the chromium-chromium coupling constants Ji in CrI3
up to six nearest neighbours, (a) three of which, J1–J3, lie in the ab-plane, and; (b)
three of which, Jc1–Jc3, lie perpendicular to the ab-plane. Crystallographic data taken
from [141], visualisation performed in VESTA [56].

be isotropic and equal to the free-electron value [18]. However, small spin-orbit cou-

pling typically restores a finite orbital moment by admixing higher-lying states of the

Γ5 orbital triplet into the ground state [18]. Based on Eq. 2.10, the g-factor is then

expected to be lowered with respect to its free-electron value by |8λ/∆CF|, where λ is

the spin-orbit coupling constant and ∆CF the crystal-field splitting [18].

With typical values of λ for paramagnetic Cr3+ of λ ≈ 10meV [18] and with ∆CF ≈
0.5 eV–1 eV in CrI3 [145, 146], the paramagnetic g-factor of Cr3+ in CrI3 is expected

to amount to g ≈ 1.84–1.92. Moreover, due to the minimal distortion of the Cr3+

octahedra in the high-temperature C2/m and low-temperature R3̄ phases, the g-factor

is expected to be isotropic.

Room-temperature X-band ESR on CrI3 detected g = 1.986, albeit with no in-

formation on the sample orientation [147]. Furthermore, X-ray magnetic circular
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dichroism (XMCD) studies at T = 20K found small but finite orbital moments

Lc = −0.059 and Lab = −0.059, resulting in vanishing orbital moment anisotropy

∆L = Lc − Lab ≲ 0.001 [146]. The latter observation confirms the almost complete

quenching of the orbital moment as well as the expectation based on the negligible

distortion of the chromium octahedra in the low-temperature phase of CrI3. The size-

able discrepancy in the g-factor values between, on the one hand, the predictions from

crystal-field theory and, on the other hand, the observation from X-band ESR can be

understood by taking into account covalent-bonding effects which simple crystal-field

considerations with a perfect ionic bonding neglect. Covalent bonding tends to reduce

the spin-orbit coupling constant λ, leading to a less pronounced reduction 8λ/∆CF of

the free-electron g-factor [18]. Indeed, covalent bonding between the 3d orbitals of

the chromium ions and the 5p orbitals of the iodine ions is argued to be significant in

CrI3 [146]. This point is briefly revisited in the next section.

6.1.4. Sources of Anisotropy in CrI3

Fascinatingly, CrI3 preserves its long-range order all the way to atomically thin sam-

ples [148]. In particular, monolayer CrI3 was observed to order ferromagnetically at

TC = 45K [148]. Moreover, a sizeable zero-field excitation gap of almost 0.4meV

(≈ 90GHz) at the Brillouin zone centre in inelastic neutron scattering [143] and ferro-

magnetic resonance experiments [149, 150] on the one hand, and considerable magnetic

anisotropy field of approximately 2.8T in isothermal magnetisation measurements [141,

151] on the other hand, were observed in bulk samples. Since a purely two-dimensional

system of Heisenberg spins and long-range interactions is prevented from developing

long-range order [152], the detection of long-range ferromagnetic order in a monolayer

– and indeed in a quasi-two-dimensional bulk – of CrI3 raises the question about the

mechanism through which the spin-rotation invariance is broken and anisotropy intro-

duced in this van-der-Waals system.

It is generally accepted that neither shape nor dipolar anisotropy can account for the

observed behaviour [145, 146]. In layered structures, such as van-der-Waals materials,

shape anisotropy favours in-plane arrangement of the spins [145], and, as such, it

contradicts the observed easy-axis anisotropy oriented along the crystallographic c-

axis. Dipolar magnetic anisotropy in CrI3 too favours in-plane spin orientation and

is rather weak [146]. Following Eq. 2.12, its energy may be estimated as Edipole ≈
0.016meV, corresponding to about 0.09T. This is more than 30 times smaller than

the actually-observed anisotropy field Banis ≈ 2.8T [141, 149, 151]. Furthermore,

it is also generally accepted that neither can single-ion anisotropy of the chromium

ions satisfactorily account for the large anisotropy field [143, 145]. This is due to the

already-mentioned almost completely quenched orbital angular moment which couples

the spin and crystalline lattice degrees of freedom.
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On the other hand, both symmetric and antisymmetric exchange interactions were

proposed as potential causes of the anisotropy behaviour in CrI3. In particular, it

was shown by means of density functional theory modelling that spin-orbit coupling

on the iodine ions can give rise to a sufficiently large anisotropic symmetric superex-

change [145]. Along a similar line of argument, a combination of theoretical modelling

and experimental XMCD observations were used to highlight the crucial role of p–d

covalence between the neighbouring iodine’s p orbital and chromium’s d orbital in de-

termining the anisotropy in layered van-der-Waals ferromagnets with Cr3+ ions [146].

Moreover, antisymmetric Dzyaloshinskii-Moriya (DM) interactions were invoked as a

necessary addition to the usual Heisenberg Hamiltonian for establishing of the observed

anisotropy [153], in spite of early theoretical arguments to the contrary [145]. Still

further, a Kitaev Hamiltonian with an anisotropy-inducing off-diagonal term Γ was

proposed as an appropriate model to describe the magnetic interactions in CrI3 [150].

Lastly, it was shown that the hitherto-obtained neutron scattering data do not allow for

a univocal discrimination between the applicability of the Heisenberg-Dzyaloshinskii-

Moriya model and of the Kitaev model to CrI3 [143]. In summary, whereas several can-

didates have been ruled out as being responsible for the magnetocrystalline anisotropy

in CrI3, no unified agreement appears to exist about the dominant anisotropy-inducing

mechanism.

6.1.5. Long-Range Magnetic Order in Thin Layers of CrI3

Another fascinating feature pertaining to the magnetism in CrI3 is the complex evolu-

tion of a long-range magnetic order in atomically-thin samples. As already alluded to,

in its exfoliated monolayer rendition, CrI3 is a long-range-ordered ferromagnet [148].

Samples with thickness up to at least ten atomic layers were observed to preserve

the same in-plane ferromagnetic arrangement of the spins as the monolayer while ex-

hibiting out-of-plane antiferromagnetic arrangements of the spins [13, 148, 154, 155].

Consequently, CrI3 with thickness of 2–10 layers is a long-range-ordered layered, A-

type antiferromagnet. Lastly, this antiferromagnetic order was found to evolve at

T ∗ = 45K also in thin surface regions, approximately 13 nm in thickness, of otherwise

ferromagnetically-long-range-ordered bulk CrI3 [156, 157].

It was shown by means of first-principles calculations that the stacking order of the

hexagonal layers in CrI3 determines the interlayer magnetic coupling, with rhombo-

hedral, ideal ABC-like stacking favouring ferromagnetic coupling and monoclinic, im-

perfect ABC-like stacking favouring antiferromagnetic coupling between the adjacent

layers [158]. It was subsequently shown by means of Raman scattering that thin mul-

tilayers and surface layers of bulk CrI3 do not undergo a structural phase transition

upon cooling, but that they instead remain in the high-temperature monoclinic phase

while cooling through the bulk ferromagnetic transition at 61K and all the way down
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to at least 5K [159]. Therefore, it may be concluded that it is due to the alleviation

of the structural phase transition in thin multilayers and in the surface layers of bulk

CrI3 that these structures exhibit long-range antiferromagnetism [157, 159].

Lastly, a number of imaging techniques unveiled the presence of magnetic domains in

CrI3. They were first observed by electron microscopy which allowed to set a minimal

value for the domain width as 70 nm [160]. Subsequently, the presence of domains

was inferred from magneto-optical Kerr effect measurements on thin multilayers and

the domain width was estimated to lie in the micrometre regime [148]. Single-spin

magnetometry based on diamond nitrogen-vacancy centres was used to view domains

in CrI3 and even to confirm the interlayer antiferromagnetic coupling in atomically-thin

samples of the material [161]. Moreover, a recent ferromagnetic resonance (FMR) study

invoked the presence of domains in order to account for the observed field dependence

of the detected resonances [162].

Note that all the available information on magnetic domains in CrI3 stems from studies

which mapped the magnetisation orientation, and hence the spatial extension of mag-

netic domains, solely in the lateral, ab-plane of the sample. As such, no information is

available on the distribution of the magnetisation along the c-axis. In other words, the

size of the domains along the c-axis of CrI3 is not known. It may be speculated that for

samples whose thickness amounts to the lateral size of the domains, i.e. with thickness

on the order of few micrometers [148], a single magnetic domain extends across all the

layers. For bulk samples, such as measured in the present study, the situation is more

complicated and no simple prediction about the spatial extension of the domains along

the c-axis is possible.

However, the measurements performed in the frame of this work are – similarly to all the

reported literature – sensitive solely to the effects which the presence of domains cause

in the ab-plane of the sample and they remain unaffected by the possibly-varying spatial

extension of the domains along the c-axis. Correspondingly, the ensuing discussion

concerns itself solely with the presence, shape, and dynamics of lateral domains, that

is of domains as they appear in a single ab-layer.

6.2. Sample and Experimental Details

The measurements on CrI3 presented in this chapter were performed on several thin

single-crystal samples obtained from HQ Graphene [163]. All the samples originated

from the same batch. High-frequency electron spin resonance (HF-ESR) measure-

ments were performed on an approximately rectangularly-shaped thin sample of dimen-

sions 2.2(1)mm x 1.4(1)mm x 0.095(15)mm. Under the approximation of a perfectly

rectangular sample, the corresponding demagnetisation factors can be calculated as

Nx = 0.049(8), Ny = 0.079(14), and Nz = 0.871(21). DC and AC susceptibility mea-
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surements were performed on further similarly-shaped samples. The crystallographic

a-, b-, and c-axes are taken to lie along the spatial x-, y-, and z-coordinates, respec-

tively.

Due to the known air- and light sensitivity of CrI3 [163, 164], the samples were stored

in a dark vacuum-sealing container in an argon-filled glove box. The various measure-

ments were also prepared in the glove box and exposure to air and light minimised

during transport from the glove box to the respective measurement device. Owing to

the very small sample thickness, different sample holders had to be utilised in the mag-

netisation measurements for the application of the magnetic field within the ab-plane

and along the c-axis, respectively. The former allowed for the utilisation of a quartz

sample holder with a low magnetic background, whereas the latter necessitated the

usage of a standard brass sample holder. In each case, the sample was attached with

Kapton tape.

For HF-ESR measurements, the sample was fixed by Kapton tape to the inside walls

(B||ab-plane) or the bottom (B||c-axis) of a PEEK sample holder (c.f. Fig. 3.2c). The

lid’s sealing capabilities were enhanced by wrapping several layers of teflon tape around

the lid’s windings.

6.3. Experimental Results

6.3.1. DC Magnetisation

6.3.1.1. Static Magnetic Susceptibility

Axis-dependent static magnetic susceptibility, χ = M/B, and low-temperature

isothermal magnetisation measurements were performed in order to characterise the

commercially-obtained samples of CrI3. The former measurement was performed in an

applied field of 0.1T in a zero-field-cooled mode, and the obtained static susceptibility

curves are presented in Fig. 6.3a. As may be seen therein, χab and χc are similar, though

not identical, in the high-temperature region. The discrepancy between the curves has

two likely origins: firstly, the two different sample holders utilised for the two respec-

tive orientations of the magnetic field possess a different (diamagnetic) background;

secondly, the mechanical manipulation of the sample during weighing and installation

may lead to exfolation of a small number of the weakly, van-der-Waals-bonded surface

layers, resulting in the utilisation of incorrect sample mass in the analysis (c.f. Sec-

tion 6.2).

As the temperature is decreased to around 75K, both curves shoot up, signalling the

onset of the long-range ferromagnetic order. The c-axis exhibits approximately five

times larger static susceptibility than the ab-plane in the ordered phase, confirming

that the c-axis is the easy magnetisation axis. Interestingly, once the long-range ferro-
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magnetic order is established, χab shows a sizeable downturn, untypical for a ferromag-

net. The downturn may be attributed to domain effects, detectable as a consequence

of measuring the static magnetic susceptibility in a zero-field-cooled regime, and to

the antiferromagnetic ordering of the surface layers, the existence of which in bulk

samples was inferred from Raman scattering [165]. The phase transition tempera-

tures may be determined by considering the minimum in the derivative of the c-axis

static susceptibility: the ferromagnetic phase transition occurs3 at TC = 61.0(5)K and

the weaker structural phase transition from the high-temperature monoclinic C2/m

to the low-temperature rhombohedral R3̄ phase at TS = 212.5(20)K (c.f. upper and

lower inset in Fig. 6.3a). Both values show good correspondence with previously-

reported magnetisation [141, 168] and specific heat studies [169, 170]. For the rest

of the analysis and discussion of CrI3 presented in this chapter, the ferromagnetic or-

dering temperature shall be fixed to the hereby-obtained value. It shall be seen in

Section 6.3.3 that the analysis of AC susceptibility measurements, which enable the

calculation of the true ferromagnetic phase transition temperature (i.e. TC(B → 0T)),

yields TC = 61.06K± 0.04K(stat)± 0.5K(sys).

In order to analyse the static magnetic susceptibility further, Curie-Weiss analysis was

performed on χc in temperature regions 150K ≤ T ≤ 200K and 250K ≤ T ≤ 300K,

that is, below and above TS. The fitting was carried out simultaneously in both temper-

ature regions under the constraint of minimising the absolute difference in the optimised

values of χ0 and µeff stemming from the two fitting regions. That is, simultaneous min-

imisation of |χ0(T < TS)−χ0(T > TS)| and of |µeff(T < TS)−µeff(T > TS)| was sought.
The former constraint reflects the expected unique constant background for the entire

temperature region. The latter constraint derives from the expectation that the struc-

tural phase transition does not significantly affect the crystalline environment of an

individual magnetic ion. This is, inter alia, suggested by the minimal change in the

Cr3+–I− separation between the crystal phases (c.f. Section 6.1.3). On the other hand,

the Weiss temperature θ was left as a free parameter throughout the fitting, as the struc-

tural changes at TS are known to influence the magnetic coupling between in-plane and

out-of-plane neighbours. Concretely, the antiferromagnetically-ordered surface layers

exhibit the high-temperature C2/m phase, whereas the ferromagnetically-ordered bulk

exhibits the low-temperature R3̄ phase [159] (see also 6.1.5).

The fitting procedure yielded µeff = 3.4(3) and θ = 81(15)K for the low-temperature

fitting region, and µeff = 3.4(5) and θ = 60(30)K for the high-temperature fitting

region, with a diamagnetic constant background term χ0 = −0.022(2) ergG−2mol−1.4

3 Strictly speaking, a ferromagnetic phase transition with a corresponding transition temperature TC

is defined in case of a ferromagnet only for vanishing external static magnetic field, B = 0T. Hence,
the presently-obtained value is only an approximation, though – as brief literature survey reveals –
not an unusual one [141, 166, 167].

4 Such a large value of the diamagnetic constant term likely originates from the dominant diamagnetic
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Figure 6.3.: (a) Static magnetic susceptibility of CrI3 as a function of temperature
obtained at 0.1T in a zero-field-cooled mode for B||ab-plane (black circles) and B||c-
axis (green circles). The insets shows the derivative of the c-axis susceptibility, with
the dashed lines marking the various phase transitions (see text for details and note
that the upper inset has a three-orders-of-magnitude larger ordinate scale than the
lower inset). (b) Inverse of the static magnetic susceptibility for B||c-axis where
the susceptibility has been accounted for a diamagnetic background. Red (blue)
straight line depicts a Curie-Weiss fit in the temperature region 150K ≤ T ≤ 200K
(250K ≤ T ≤ 300K). Optimised fitting parameters are displayed in the graph.

Fig. 6.3b depicts the Curie-Weiss curves based on these optimised parameters. It may

be seen that for T ≲ 130K, the static susceptibility data start to deviate from the

lower of the two Curie-Weiss fits (red solid line in Fig. 6.3b).

Utilising the room-temperature g-factor obtained from X-band electron paramagnetic

resonance g = 1.986 [147], the total magnetic moment may be calculated from the

effective moments as J = 1.3(2) for the low-temperature, and J = 1.3(3) for the

high-temperature region. The uncertainty in the above-obtained fitting parameters

was estimated by relaxing the two fitting constraints. The large uncertainty associated

with the high-temperature fitting region may be owing to the dominating effect of the

diamagnetic background over the sample signal, resulting in small signal-to-noise ratio.

The expected value based on the above-discussed XMCD measurements J = L+ S =

1.559 [146] lies higher than, but just outside the respective error bars of the presently-

obtained values of the total magnetic moment. The Weiss temperature’s proximity

to the actual ferromagnetic ordering temperature implies that fluctuations are not

significant in the evolution of long-range order in CrI3. Note that relaxing the con-

straints in the low-temperature fitting region results in µeff = 3.76(45) (corresponding

background due to the sample holder and the Kapton tape used in attaching the sample.
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to J = 1.46(30)) and θ = 72(12)K, which corroborates previous literature results on

the material very well [141]. Overall, it may be concluded that the commercially-

obtained samples utilised in the present study show comparable magnetic behaviour

to the state-of-the-art samples reported in literature.

6.3.1.2. Isothermal Magnetisation at 2 K

Isothermal magnetisation performed at T = 2K and displayed in Fig. 6.4 shows –

similarly to the low-temperature static magnetic susceptibility – strongly anisotropic

behaviour. The considerably more abrupt magnetisation increase when B||c-axis com-

pared to B||ab-plane confirms the c-axis as the easy magnetisation axis. The more

gradual magnetisation growth observed along the ab-plane is associated with the re-

orientation of the magnetisation away from the easy-axis and into the ab-plane. The

effective anisotropy field may be estimated as the difference between the respective

axis-dependent saturation field values, BA = Bsat
ab −Bsat

c . The saturation fields can be

read off graphically from Fig. 6.4 as: Bsat
ab = 2.86(5)T and Bsat

c = 0.20(9)T, resulting

in BA = 2.66(10)T. Similarly, the saturation magnetisation may be read off from the

same figure M sat
ab = 2.85(16)µB/f.u. and M sat

c = 3.04(10)µB/f.u., thereby confirming

within the respective error-bar limits the expectation for a quasi-spin-only 3d3 mag-

netic ion and the previous literature observations [141, 148, 151, 171]. Note that owing

to the small sample mass (m = 0.91(3)mg), a small uncertainty in the mass determina-

tion (∆m ≈ 0.03mg) results in a sizeable uncertainty in the measured magnetisation,

including the saturation value. Consequently, it is not possible to argue with definite-

ness on the basis of Fig. 6.4 whether or not the observed difference in the saturation

magnetisation between the two crystallographic orientations is significant. A mea-

surement of the magnetisation as a function of the sample’s rotation in the magnetic

field would be able to settle the current ambiguity. As M sat = µBgJJ , axis-dependent

saturation values would indicate anisotropy either in the g-factors or in the total mag-

netic moment. Although g-factor anisotropy is not expected owing to the negligible

distortion of the chromium octahedra [141], it shall be seen in Section 6.3.2 that the

low-temperature ferromagnetic magnon branches are more satisfactorily described by

anisotropic g-factors, with gab > gc.

Considering the isothermal magnetisation in Fig. 6.4 in more detail, a series of small

jumps in the up-sweep direction for B||c-axis starting at B = 0.2T and culminating

at B = 2.1T may be observed, accompanied by pronounced hysteresis in this field

regime. On the other hand, no jumps and no hysteresis are observed in the isothermal

magnetisation for B||ab-plane. As already discussed in Section 6.1, it is known from

magnetic force microscopy that surface layers of bulk CrI3 develop long-range A-type

antiferromagnetic order with a spin flip at B = 2.1T [157]. Although the present

magnetisation data reveal a set of jumps, their interpretation as flipping of the anti-
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Figure 6.4.: Isothermal magnetisation of CrI3 for B||c-axis (green) and B||ab-plane
(black) at T = 2K. Both curves depict a full measurement cycle 0T → 14T → 0T.

ferromagnetic surface layers appears plausible. A possible explanation for the cascade

of jumps may be a more complex surface structure in the presently-studied sample

compared to the originally-reported measurements. The complexity may be a result

of a partial deterioration of the sample’s surface, perhaps due to the surface’s reaction

with atmospheric oxygen and nitrogen during the sample installation. Importantly for

the present study, the antiferromagnetically-ordered surface seems to have protected

the bulk from contamination, since the main features of the static magnetic suscepti-

bility in Fig. 6.3 and of the isothermal magnetisation in Fig. 6.4 appear unaffected, as

the good correspondence with the literature data bears witness to. Furthermore, the

focal point of the present chapter are high-frequency electron spin resonance studies,

for which the sample was protected from exposure to air at all times.

6.3.2. High-Frequency Electron Spin Resonance

6.3.2.1. Ground-State Ferromagnetic Resonance

A selection of spectra obtained in the ferromagnetically-ordered phase of CrI3 with the

external field applied along the c-axis (at T = 2K or T = 4K) and within the ab-plane

(at T = 2K) are displayed in Fig. 6.5. Several spectra in both crystallographic direc-

tions show a small amount of wave-phase mixing, resulting in asymmetric Lorentzian

absorption features. Moreover, ab-plane spectra obtained at ν ≳ 150GHz show an

increased level of background noise. However, careful comparison of the spectra ob-

tained in the up- and down-sweep directions allows for an unambiguous assignment of

all the resonance features (marked by coloured symbols in Fig. 6.5). Whereas no reso-
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Figure 6.5.: Selected spectra of CrI3 at various frequencies deep in the
ferromagnetically-ordered phase for (a) B||c-axis, and; (b) B||ab-plane. Coloured
symbols mark the positions of the resonance features.

nances have been detected below 80GHz in the c-axis orientation of the applied field,

a single c-axis resonance feature has been observed at all frequencies above 80GHz.

In the ab-plane, on the other hand, at least two distinct features have been found for

ν < 80GHz. Moreover, for 60GHz < ν < 90GHz the ab-plane resonance feature

lying lower in field splits into two distinct features, with possible spectral weight also

in between, as demonstrated by the closed and open circles in the spectrograph at

ν = 73.8GHz in Fig. 6.5b. In a ferromagnetic resonance model with lateral domains,

the two thus-arisen features may be assigned to two extremal orientations of the domain

walls with respect to the applied magnetic field: the more intense, left-hand-side fea-

ture corresponds to the parallel alignment of the domain walls with the magnetic field,

α = 0◦; the weaker, right-hand-side feature to the perpendicular alignment, α = 90◦

(see also the subsequent discussion on the form of the lateral-domain structure)

Beyond the dominant features, a small number of spectra stemming from both orienta-

tions exhibit resonances which broadly follow a gapless, paramagnetic behaviour with

g-factor of g = 2.00 (for illustration see the ab-plane low-field feature at ν = 33.3GHz

in Fig. 6.5b marked by a grey circle). While a domain-wall mode in a related compound

CrSiTe3 was found to exhibit vanishing zero-field excitation gap, akin to the present

observation, the mode showed right bending at finite frequency [167], contrary to the

present frequency dependence. Although no univocal determination of the observed

features’ origin is possible in the present case, since the features appear only in a small

number of spectra, they shall not be discussed further in the ensuing.
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All the low-temperature resonances are summarised in the resonance-frequency–

magnetic-field diagram presented in Fig. 6.6. As may be seen, good correspondence

exists between the present data and previously published FMR data along the c-axis at

1.5K (purple squares in Fig. 6.6) [149], as well as between the present data and angle-

dependent FMR measurements at 5K (blue squares) [150]. Previous ab-plane FMR

measurements in a narrow frequency window from 20GHz to 40GHz at 10K also show

reasonable correspondence (orange squares) [162]. A small shift of the saturation field

in the ten-Kelvin data with respect to the here-presented two-Kelvin data towards

lower fields is observed, confirming that with increasing temperature the anisotropy

field weakens, leading to a lower saturation field.

To model the observed ferromagnetic resonance behaviour in CrI3, the magnetocrys-

talline anisotropy is taken to lie along the c-axis and the presence of lateral domains is

recalled. Under the given constraints and for Faraday configuration, appropriate for the

experimental setup in this study, the ferromagnetic resonance behaviour is quantified

by the following domain-based model [167, 172]:(
ν1
γab

)2

= (BA +NxMS)(BA +MS sin
2 α)−

(BA +MS sin
2 α−NzMS)(BA +NxMS)

(BA +NyMS)2
B2

(6.1)

for the external magnetic field B ≤ BA+NyMS applied along the b-axis (i.e within the

ab-plane); (
ν2
γab

)2

= {B − [BA − (Nz −Ny)MS]}{B − (Ny −Nx)MS} (6.2)

for B ≥ BA +NyMS applied along the b-axis, and;

ν3
γc

= B +BA −NzMS (6.3)

for B applied along the easy c-axis. In the above, γab,c = gab,c · 13.996 [GHz/T] is the

axis-dependent gyromagnetic ratio with the corresponding g-factor; BA is the effec-

tive anisotropy field; MS is the saturation magnetisation; and Nx, Ny, and Nz is the

demagnetisation factor along the crystallographic a-, b-, and c-axis, respectively.5 α

corresponds to the angle which the applied magnetic field B encloses with a particular

domain wall.6

To perform the fitting of the resonance features, a least-squares minimisation routine

5 For external field applied within the ab-plane along the a-axis, the demagnetisation factors Nx and
Ny in Eqs. 6.1 and 6.2 are exchanged.

6 Due to the lateral structure of the domains, the angle α lies solely in the ab-plane.
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Figure 6.6.: Resonance-frequency–magnetic-field diagram of CrI3 at 2K. Black and
red circles were obtained with the external magnetic field applied within the ab-plane,
green circles along the c-axis. Closed circles for B||ab correspond to α = 0◦; open
circles to α = 90◦ (see text for details). Orange open squares are data points at 10K
digitised from [162], blue open squares at 5K from [150], and purple open squares
at 1.5K from [149]. Solid lines display the fitting results based on the domain-based
FMR model (Eqs. 6.1, 6.2, and 6.3), dashed lines on the domain-free FMR model (see
text for details). Light-grey solid line depicts a paramagnetic line with g = 2.00. The
inset zooms in on the low-frequency, low-field region of the main plot.
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was implemented simultaneously on all resonance features in Fig. 6.6 such that the

various branches were fitted by the respective equation. In particular, Eq. 6.1 was

applied to the two ab-plane low-field branches (closed and open black data in Fig. 6.6)

with two fixed values of the angle between the external field and the domain wall:

α = 0◦ and α = 90◦, respectively. The optimised parameters resulting from such

domain-based model are: gc = 2.01(1); gab = 2.04(4); BA = 2.81(10)T, and; MS =

0.26(10)T; and the optimised curves are displayed in Fig. 6.6 as solid lines. The

obtained anisotropy field compares well with its determination from magnetisation

measurements [141, 151]. With the unit cell volume 134.8 Å
3
[141], the saturation

magnetisation obtained from the fitting amounts to MS = 3.0(10)µB/f.u., lying in

an excellent agreement with the theoretical expectations and previous magnetisation

measurements [141, 151]. Using BS = BA +NyMS, the saturation field is calculated to

be BS = 2.83(1)T.

Upon inspection of Eqs. 6.1–6.3, it may be noted that only the low-field planar exci-

tations, quantified by Eq. 6.1, have explicit domain dependence via the angle α. In

fact, a uniaxial domain-free FMR model differs from its domain-based counterpart only

in the low-field planar regime [20, 167]. To describe the low-field ab-plane spin-wave

excitations by means of a domain-free model, Eq. 6.1 is substituted with [20, 167]:(
ν1
γab

)2

=
{
[BA + (Ny −Nz)MS]

2 −B2
}
· BA + (Nx −Nz)MS

BA + (Ny −Nz)MS

(6.1b)

For comparative purposes, Fig. 6.6 includes also the fitting results from a tentative

attempt to describe the resonance features in CrI3 by means of the domain-free FMR

model (dashed lines, Eqs. 6.1b, 6.2, and 6.3). As is apparent, a better fitting quality,

with a seven-times smaller residual-squares sum, is obtained in the framework of the

domain-based model than within the domain-free picture. The difference between the

two models is especially evident when considering the branch ν1: firstly, whereas the

domain-based model predicts the splitting of ν1, the domain-free model makes no such

prediction; secondly, whereas the domain-free model predicts the softening of ν1 all

the way to νmin = 0GHz, the domain-based model predicts the softening to terminate

at finite frequency νmin = γab
√
NzMS(BA +NxMS). The observed splitting of ν1 and

its termination at νmin ≈ 23GHz strongly suggest that the correct model to describe

the low-temperature magnetic resonance behaviour in CrI3 is the domain-based model

given in Eqs. 6.1–6.3. This corroborates the previous observation of domains in CrI3
by means of microscopic methods [148, 160, 161].

Note that the form of the low-field double resonance feature for B||ab-plane
(c.f. Fig. 6.5a) which is associated with the two extremal orientations of the domain

magnetisation with respect to the magnetic field does not allow for a definitive dis-

crimination between (i) a statistically-random arrangement of the lateral domains with
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(a) (b) (c)

Figure 6.7.: A schematic visualisation of three types of envisaged ground-state
lateral-domain structures in CrI3: (a) domains are randomly-shaped and randomly-
oriented with respect to each other; (b) domains consist of rectangular prisms but
are randomly-oriented, and; (c) domains consist of equally-shaped rectangular prisms
and arranged in periodic stripes with width L. d is the sample thickness, α the angle
between a particular domain wall and the external magnetic field B, whereby α lies
solely in the xy-plane, i.e. in the sample’s ab-plane.

respect to each other and (ii) an orthogonal arrangement of the lateral domains with

respect to each other. The two scenarios are illustrated in Fig. 6.7. Whereas the former

case implies for the ground state a continuum of angles 0◦ ≤ α ≤ 90◦ (Fig. 6.7a), the

latter case permits only two orientations: α = 0◦; α = 90◦ (Fig. 6.7b). Although some

spectrographs exhibit two clearly defined features with negligible spectral weight in

between, other spectrographs may be pointing to a resonance continuum between the

two extremal orientations. For reasons of simplicity and without introducing signif-

icant inaccuracy, the above fitting routine assumed the case of orthogonally-oriented

domains (Fig. 6.7b).

A yet further extension to the envisaged microscopic picture of the lateral domains is

possible. While the domains in Figs. 6.7a and 6.7b are randomly oriented with respect

to each other, the domain arrangement may, in principle, occur in a periodic stripe

fashion [173, 174]. This was previously observed on the related ferromagnetic semicon-

ductor CrBr3 [160] and on the metal Fe3GeTe2 [175].
7 Fig. 6.7c presents an example of

such a periodic stripe fashion. Unlike the random arrangement of orthogonally-shaped

domains (Fig. 6.7b), the effect of periodicity alters the resonance matrix and hence

the field dependence of the resonance frequencies. However, for systems in which the

sample thickness, d, is much greater than the domain width, L, such that the aspect

ratio L/d vanishes, the stripe-domain model reduces to the presently-utilised simple-

domain model. With the estimated domain width in CrI3 on the order of 1µm [160]

and with the sample thickness in the range of 50–100µm, the present FMR is not

measurably affected by the additional complexity due to the stripe-domain behaviour.

Moreover, micromagnetic simulations based on the stripe-domain model did not con-

7 In these two cases, no information about the spatial extension of the lateral domains along the c-axis
was available either.
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firm the presence of stripe domains in CrI3 [162]. Therefore, the simple domain-based

model defined in Eqs. 6.1–6.3 appears to be justified as a description of the ferromag-

netic resonance in CrI3. High-resolution electron microscope studies are required to

verify the potential presence of stripe domains, and resonance studies on samples with

thickness comparable to the domain width are required to elucidate the effect of stripe

domains on ferromagnetic resonance behaviour in CrI3.

Beyond the resonance behaviour due to ferromagnetic spin waves in the bulk,

two further magnetic-resonance phenomena are, in principle, expected to occur

in CrI3. Firstly, earlier polarised Raman scattering experiments detected Raman

modes which could be interpreted as antiferromagnetic resonance associated with the

antiferromagnetically-ordered surface layers [165]. Whereas the Raman study iden-

tified two linear gapped modes with ∆1 ≈ 100GHz and a negative slope, and with

∆2 ≈ 120GHz and a positive slope [165], these modes have not been found in the

present study. This may be owing to the utilisation of unpolarised microwave radia-

tion, or owing to the weak signal expected from the surface of an already-small sample.

Secondly, a collective resonance of the domain walls is also expected within the domain-

based model [162, 167]. Although domain-wall modes were previously observed in a

related ferromagnetic van-der-Waals semiconductor CrSiTe3 using a coplanar waveg-

uide sample rod [167], no definitive signature thereof has been detected in the present

study. This may be owing to the low transmission power in the low-frequency regime,

in which the domain wall mode is expected for CrI3, of the presently-utilised setup. As

already alluded to above, the resonance features which have been detected in a small

number of spectra but cannot be accounted for by the model in Eqs. 6.1–6.3 do not

warrant a conclusive argument about their origin as domain-wall resonance (c.f. grey

data points in Figs. 6.5 and 6.6). A comparable FMR study on CrI3 makes no mention

of a domain wall mode [162].

Upon inspecting Eqs. 6.1 and 6.3 it becomes clear that the domain-based model of

ferromagnetic resonance predicts the observation of unequal zero-field excitation gaps

corresponding to the two main crystallographic orientations, and, moreover, the ob-

servation of two different values of the ab-plane gap corresponding to the two ex-

tremal orientations of the external magnetic field with respect to the domain wall,

α = 0◦ and α = 90◦. Labelling the gaps determined from B||c as ∆̃c and from

B||ab as ∆̃ab, the various values, as determined by the above fitting procedure at

2K, are: ∆̃c(T = 2K) = 72.8(2)GHz; ∆̃ab(T = 2K, α = 0◦) = 80.4(2)GHz, and;

∆̃ab(T = 2K, α = 90◦) = 84.0(2)GHz. The variedness of the values comes from the

presence of lateral domains and from finite demagnetisation effects acting within the fer-

romagnetic sample. The true zero-field splitting, quantifying the magnetic anisotropy

of the system, remains thereby unique; in a domain-free scenario and in the limit of van-

ishing demagnetisation, the prediction of the excitation gap as deduced from Eqs. 6.1
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and 6.3 reduces to the expected unique value ∆ = γBA. Accounting for these effects in

the fitting results, ∆c(T = 2K) = 79.2(16)GHz and ∆ab(T = 2K) = 80.2(10)GHz are

found, thus confirming within the error bar limits the expected presence of a unique

anisotropy gap: ∆ = 80(1)GHz. Previous ferromagnetic resonance measurements de-

termined the zero-field splitting to be ∆ = 82.9GHz [149] and ∆ = 72.5GHz [150],

but utilising thereby only a limited number of data points (former), or an indirect,

rotation-dependent measurement (latter). More coarsely energy-resolved inelastic neu-

tron scattering found ∆ = 90GHz [143].

6.3.2.2. Temperature Dependence of the Ferromagnetic Resonance

Temperature Dependence of the Linewidth

Spectra obtained at various temperatures along both principal crystallographic orien-

tations at various fixed frequencies are displayed in Fig. 6.8. The spectra obtained with

B||c-axis at ν = 102.1GHz (Fig. 6.8a) exhibit a symmetric Lorentzian feature which

broadens and shifts to higher resonance fields with increasing temperature. A very sim-

ilar behaviour all the way up to 120K is found along the c-axis also at ν = 135.7GHz

(data not shown). At ν = 135.7GHz and T = 140K, the Lorentzian feature becomes

so broad that it can no longer be resolved. On the other hand, the resonance fea-

ture stemming from B||ab-plane at ν = 73.8GHz (Fig. 6.8b) continuously shifts to

lower resonance fields with increasing temperature. At low temperatures, the feature

is asymmetric due to its being split into two distinct absorption peaks, as noted above.

Only for ≳ 28K is a single symmetric Lorentzian peak observed.

Fitting the temperature-dependent spectra in Figs. 6.8a and 6.8b by means of a

Lorentzian function, the temperature dependence of the linewidth, quantified as the

function’s full width at half maximum, may be studied. Designating the linewidth

obtained from spectra with B||c-axis (B||ab-plane) as ∆Bc (∆Bab), it may be seen in

Figs. 6.8c and 6.8d that both, ∆Bc and ∆Bab, show two regions of distinct temper-

ature dependence, demarcated by the ferromagnetic ordering temperature. Whereas

∆Bc continuously increases, ∆Bab shows weak negative temperature dependence upon

approaching TC from below and strong positive dependence for T > TC.

The weak temperature dependence of the linewidth in the ferromagnetically-ordered

phase suggests that magnetisation relaxation in this temperature region is dominated

by a spin-spin relaxation process [176]. At the lowest temperatures, ∆B ≈ 100–150mT.

Based on τ = ℏ/(gµB(∆B)) [91], this amounts to the relaxation time τ ≈ 10−10–10−11 s,

typical for spin-spin relaxation processes in long-range-ordered ferromagnets [177, 178].

Much more pronounced, approximately linear temperature dependence is observed for

T > TC. The distinct increase of the linewidth for T > TC indicates gradual prevalence

of a spin-phonon relaxation mechanism in this temperature regime [179]. In partic-
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Figure 6.8.: Spectra at various temperatures obtained with (a) B||c-axis at ν =
102.1GHz, and; (b) B||ab-plane at ν = 73.8GHz. Green and red solid lines in (a)
and (b) show fits to the spectra by means of a Lorentzian function. Temperature
dependence of the corresponding linewidth, ∆B, obtained from spectra with (c) B||c-
axis at ν = 102.1GHz and at ν = 135.7GHz, and; (d) B||ab-plane at ν = 73.8GHz.
Lines in (c) and (d) show linear fits to the data as a guide for the eye. Vertical dashed
lines in (c) and (d) mark the ferromagnetic ordering temperature at B = 0T.
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ular, it was previously argued that an increase in ∆B for T ≫ TC may be due to a

temperature-dependent phonon modulation either of the antisymmetric exchange inter-

action or of the crystalline field [179]. Whereas a phonon modulation of the crystalline

field was argued as the appropriate relaxation avenue in the related van-der-Waals fer-

omagnetic semiconductor CrBr3 [179], both of the above scenarios are possible in CrI3.

On the one hand, the antisymmetric, Dzyaloshinskii-Moriya exchange interactions were

seen in several studies as essential for opening of the topological Dirac gap [144, 153,

180], but alternative accounts were also proposed [145, 150, 181]. On the other hand,

the relatively low value of the crystal-field energy ∆CF ≈ 0.5–1.0 eV [145, 146] when

compared to other cases of Cr3+ in an octahedral environment (c.f. Section 2.2.1),

combined with the proposed sizeable p–d covalence between neighbouring iodine and

chromium ions [146] may result in appreciable modulation of the crystalline field as

the temperature is increased.

Moreover, as the data in Figs. 6.8c and 6.8d reveal, ∆Bc > ∆Bab at all temperatures

above TC, amounting to, e.g., ∆Bc ≃ 1.4∆Bab at 80K. Since the effective intralayer

coupling J intra
eff is predicted to be one [182] or even two [142, 183] orders of magnitude

larger than the effective interlayer coupling J inter
eff , and, moreover, since inelastic neutron

scattering found J intra
eff ≈ 77.7K and J inter

eff ≈ 6.8K [144] (c.f. Section 6.1), a consider-

able amount of exchange narrowing may be expected to affect the resonance features

for B||ab-plane, leading to a decrease in the intrinsic paramagnetic linewidth [91]. Al-

though the observed difference between ∆Bc and ∆Bab is not large, the expected line

broadening arising from spin-phonon coupling must be taken into account. Due to

the strong covalent bonding in the ab-plane as compared to the weak van-der-Waals

bonding along the c-axis of bulk CrI3, it may be expected that spin-phonon coupling is

considerably larger in the ab-plane than along the c-axis. Consequently, resonance line

broadening due to spin-phonon coupling via a preferred relaxation path in the ab-plane

likely masks the true extent of exchange narrowing in the ab-plane.

Lastly, the linewidth of a ferromagnet at small resonance frequency νres ≪ νE, where νE
is the effective exchange frequency, is expected to diverge as ∆B ∝ ξ3/2 for T → T+

C ,

where ξ is the correlation length [184]. The exchange frequency may be estimated

from (2πνE)
2 = (2/3)S(S + 1)

∑
i ni(Ji)

2, where ni is the coordination number of the

ith nearest neighbour coupled with the exchange constant Ji [184]. Using the fitting

parameters from inelastic neutron scattering [144] and evaluating the above sum to

the first three nearest neighbours, the effective exchange frequency amounts to νE ≈
257GHz. As this is at most only three-and-a-half-times larger than the resonance

frequency at which the linewidth displayed in Figs. 6.8a and 6.8b was obtained, the

above condition for observing linewidth broadening as T → T+
C is not satisfied. This

explains the merely linear temperature dependence of ∆B in the entire temperature

region above TC and the lack of critical broadening in the vicinity of TC.
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Temperature Dependence of the Zero-Field Excitation Gap

In order to map the temperature evolution of ∆̃c, and the c-axis g-factor, gc,

frequency–magnetic-field diagrams at various temperatures in the low-temperature,

ferromagnetically-ordered phase and at elevated temperatures above TC have been

constructed (see Fig. 6.9). The field dependence of the resonance features has been

fitted by means of Eq. 6.3, with ∆̃c = γc(BA − NzMS) and gc = γc/(13.996 [GHz/T])

following from the fits (the fitted curves are shown in Fig. 6.9 as solid lines).

Moreover, the temperature evolution of ∆̃ab has been estimated by following the grad-

ual shift towards lower resonance fields and eventual disappearance of the low-field

resonance features obtained for B||ab as a function of increasing frequency and tem-

perature (c.f. Fig. 6.10). To illustrate the procedure, consider the set of spectra at

T = 10K in Fig. 6.10a: following the evolution of the double resonance feature (cor-

responding to α = 0◦ and α = 90◦), it is found that while the two features can still

be observed at ν = 80.0GHz (as marked by the closed and open circles in the corre-

sponding spectrograph), the features are no longer visible at ν = 83.2GHz. This in-

dicates that at T = 10K, the zero-field splitting satisfies 80.0GHz < ∆̃ab < 83.2GHz.

∆̃ab is then estimated as the middle point between the two concerned spectrograms:

∆̃ab(T = 10K) = 81.6(32)GHz, with the uncertainty reflecting the frequency difference

between the two spectrograms.8

The thus-obtained temperature dependence of ∆̃c and ∆̃ab is depicted in Fig. 6.11a.

Note that since these gap values have not been accounted for domain and demagneti-

sation effects, the same finite difference between ∆̃ab and ∆̃c already discussed above

in relation to the two-Kelvin data can also be observed at elevated temperatures be-

fore vanishing at about 50K. Since saturation magnetisation in a ferromagnet shows

a decreasing tendency for increasing temperature [6], leading to weaker demagnetising

fields, and since with weaker demagnetising fields the number of domains is expected

to decrease, the difference in the observed gap values, ∆̃ab − ∆̃c, is too expected to

show a decreasing tendency, an effect observed also in Fig. 6.11a.

To obtain the actual zero-field excitation gap ∆ from ∆̃c and ∆̃ab, demagnetisation

corrections are applied to these values, similarly to as has already been applied to

the two-Kelvin data above. The resulting temperature dependence of ∆ is presented in

Fig. 6.11b, confirming again that within error bars, a unique zero-field excitation gap is

observed. Interestingly, at 62K (i.e., just above TC) ∆ = 19.8(7)GHz (approximately

25% of its value at 2K) and vanishes only above T∆ ≈ 80K, i.e. for T ≳ 1.30TC. The

resonance-frequency–magnetic-field diagram obtained at 100K indicates a paramag-

netic, gapless excitation spectrum (c.f. bottom right graph in Fig. 6.9). The present

8 For completeness, note that the resonance features marked by red circles in the spectra at 50K
(Fig. 6.10d) belong to ν2 of the resonance-frequency–magnetic-field diagram and are not of interest
in the present discussion, as the branch is not characterised by zero-field splitting (c.f. Fig. 6.6)
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effective c-axis g-factor, and; (d) of the difference of resonance fields at ν = 135.7GHz
(B||c, green data points) and ν = 73.8GHz (B||ab, black data points) from their
respective value at 100K. Open grey squares in (b) are INS data from [143]. Vertical
dashed lines mark TC, horizontal dashed line in (d) the position of zero resonance-field
shift, and shaded area shows the region around T∆ (see text for details).
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results qualify earlier inelastic neutron scattering observations which saw the complete

closing of the anisotropy gap already at TC [143, 153]. In the cited neutron scattering

experiments, however, the weak inelastically-scattering peak due to a finite gap at TC
may have been overshadowed by the dominant elastically-scattering peak in its vicinity.

The fitting of the resonance spectra in Fig. 6.9 provides information also on the ef-

fective g-factor via the relation γi = (giµB)/h. The temperature dependence of the

optimised value of gc is displayed in Fig. 6.11c. Therein, three distinct regions may

be observed. In the long-range-ordered temperature region T ≤ TC, gc continuously

increases, before reaching a plateau-like maximum with a peak value of 2.30(2) for

64K ≤ T ≤ 74K. Finally, gc decreases for T > 74K, amounting to gc = 2.19(3)

at T = 100K. Room-temperature X-band electron paramagnetic resonance measure-

ments on an unoriented single crystal of CrI3 found g = 1.986 [147]. The deviation of

the c-axis g-factor at 100K from g = 1.986 obtained here indicates that local magnetic

fields still evolve at this temperature and points to the presence of short-range order.

Interestingly, similar analysis of the effective g-factor obtained from high-temperature

HF-ESR was previously performed on CrGeTe3 [167, 185] and CrSiTe3 [167]. In each

case, comparable increase in the g-factor for the field applied along the easy magneti-

sation axis (B||c-axis) was observed up to TC. Moreover, [167] followed the evolution

of the g-factor for T > TC and found a decrease of gc, albeit with no plateaux regime as

seen in the present case in Fig. 6.11c. It was argued that on-site as well as off-site spin-

orbit coupling [185], or anisotropic symmetric exchange and single-ion anisotropy [167],

respectively, were responsible for the observed temperature dependence of the g-factor.

Extracting the resonance field positions from the spectra in Figs. 6.8a and 6.8b, the

effect of temperature on the resonance field may be studied. Approximating the para-

magnetic resonance field by its value at 100K, above which no resonance signal was

detected, Fig. 6.11d depicts the temperature-dependent shift in the resonance field

position, Bres − Bres(100K), from this paramagnetic value. Such a shift signals the

evolution of anisotropic local magnetic fields [186]. As may be seen in Fig. 6.11d, be-

low 80K, which corresponds to the temperature T∆, the resonance positions are shifted

towards higher values in the case of B||ab, while opposite trend appears for B||c. These
observations imply the presence of anisotropic local magnetic fields, quasi-static on the

timescale of the HF-ESR experiment (i.e. 1/ν ≈ 10−11 s). This demonstrates the pres-

ence of anisotropic short-range magnetic order in the temperature regime TC ≤ T ≤ T∆.

The anisotropic nature of the observed resonance shift correlates with the observation

of a finite anisotropy gap in this temperature regime. The sign of the shift opposes

the findings in CrCl3 which exhibits planar anisotropy [186] and is similar to what is

found in Cr2Ge2Te6 [187]. The data show that the effective magnetic easy axis is ori-

ented parallel to the crystallographic c-axis, as also suggested by the low-temperature

magnon field dependence and static magnetisation measurements presented above.
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As seen in the gradual decrease of gc with increasing temperature above TC (Fig. 6.11c),

the system tends to its paramagnetic value, g = 1.986, as expected. However, as

indicated by the deviation of the g-factor at 100K from its room-temperature value

(gc(100K) = 2.19(3); g(300K) = 1.986) (see the above discussion), the system is not

truly paramagnetic at 100K. It is in light of this observation that the shifts in the

axis-dependent resonance fields depicted in Fig. 6.11d are to be understood. The lack

of difference in the shift of Bres between the c-axis and the ab-plane which sets in at T∆
does not imply that the system is truly paramagnetic at this temperature. Instead, it

implies that the shift in the resonance fields for T ≤ T∆ is isotropic. In other words, the

data in Figs. 6.11c and 6.11d imply that short-range order is anisotropic for T ≤ T∆,

and isotropic for T ≥ T∆.

6.3.3. AC Susceptibility

The thus-far presented DC magnetisation and high-frequency electron spin resonance

results on CrI3 have been complemented by AC magnetisation studies. With a broad

range of applications, ranging from establishing the presence and nature of long-range

order, through building-up of a magnetic phase diagram, to studying relaxation phe-

nomena in, e.g., superparamagnetic particles or single-molecule magnets, AC suscepti-

bility measurements provide a powerful and versatile technique in the study of magnetic

materials. In the present case, the aim of AC susceptibility measurements was to ob-

tain the true, external-magnetic-field-independent ferromagnetic ordering temperature,

to perform a critical-exponent analysis of the ferromagnetic phase transition, and to

quantify the relaxation mechanism of the ferromagnetically-long-range-ordered phase

in CrI3.

6.3.3.1. DC-Field-Dependent AC Susceptibility

Fig. 6.12 presents the results of AC susceptibility measurements performed in various

static DC fields applied parallel to the easy magnetisation c-axis, that is, for BDC||c-
axis. Coming from high temperature of Curie-Weiss-like behaviour (data not shown),

χ′ obtained at BDC = 0T exhibits a significant increase as the ferromagnetic ordering

temperature is approached. At T ≃ TC, χ
′(BDC = 0T) reaches its maximal value and

remains approximately constant for all temperatures below TC. For BDC > 0T, the

monotonous increase of χ′ upon cooling and subsequent approximately temperature-

independent behaviour for T < TC is replaced with a gradual evolution of a peak-like

structure as the ferromagnetic ordering temperature is approached from above. For an

increasing value of BDC, the peak-like structure broadens, becomes weaker, and shifts

to higher temperatures. Moreover, for 0T < BDC ≤ 0.2T, the peak-like structure is

followed by a gradual increase of χ′ towards the lowest temperatures. No such increase

is observed for BDC > 0.2T; instead, χ′ assumes a vanishing value.
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Figure 6.12.: AC susceptibility of CrI3 obtained with AC-field excitation amplitude
BAC = 5Oe and excitation frequency fAC = 500Hz in various DC fields 0T ≤ BDC ≤
1T: (a) real part, χ′; (b) imaginary part, χ′′.

Furthermore and as may be seen in Fig. 6.12b, χ′′ is finite with a complex structure

for DC fields 0T ≤ BDC ≤ 0.2T for all temperatures below TC. On the other hand,

χ′′ assumes a more-or-less featureless character for BDC > 0.2T at all temperatures.

It is possible to account for the above observations in a phenomenological sense by

considering the evolution of the static magnetisation in the various temperature and

DC-field regimes. In particular, isothermal magnetisation in the long-range-ordered

phase for B||c-axis exhibits a typical behaviour of a ferromagnet along the easy axis

with an almost instantaneous increase towards the spontaneous magnetisation, followed

by an approximately constant, fully-saturated regime (see Fig. 6.4 for T = 2K, and

Ref. [169] for elevated temperatures). Recalling that Bsat
c (T = 2K) = 0.2T and

focusing firstly on the low-temperature behaviour of the in-phase component of the AC

susceptibility, χ′ is found to respond to the driving field BAC only for B ≤ Bsat
c , i.e. in

the region of finite slope of the isothermal static magnetisation. Once the magnetic

moments have been saturated by the DC field and the slope of the isothermal static

magnetisation becomes (approximately) zero, χ′ too vanishes. In the temperature

region around TC, the behaviour of χ
′ is determined by the evolution of the long-range

ferromagnetic order and can be used for a critical-exponent analysis (to be returned to

presently). Lastly, the high-temperature in-phase component of the AC susceptibility

tends to zero as the temperature is increased above TC, mimicking a paramagnet’s

Curie-Weiss-like behaviour.

The evolution of the out-of-phase component of the AC susceptibility, χ′′, indicates that

in the DC-field region in which the magnetic moments are not completely saturated,
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dissipative losses occur at all temperatures below TC.

In order to provide a deeper quantitative insight into the way in which long-range

ferromagnetic order develops in bulk CrI3, the static-magnetic-field-dependent χ′ data

presented in Fig. 6.12a can be analysed by means of the static scaling theory [188–

190]. For a second-order paramagnet-ferromagnet (PM-FM) phase transition, the static

scaling theory predicts Tmax ∝ Bϵ
DC, where Tmax can be equated with the temperature

at which the peak-like structure in χ′ reaches its maximum value χ′
max (c.f. Fig. 6.12a),

and where ϵ is a dummy exponent.9 By seeking an appropriate value of ϵ, it is possible

to linearise the dependence of Tmax on Bϵ
DC. An implementation of a least-squares-

minimisation routine yields ϵ = 0.79. Correspondingly, fitting a linear equation to

Tmax ∝ B0.79
DC of the form Tmax = a·B0.79

DC +TC enables the extraction of the ferromagnetic

phase transition temperature as the y-axis intercept. The thus-obtained TC provides

a true value of the ferromagnetic ordering temperature, as it is obtained for vanishing

external DC field. The procedure yields TC = 61.06K ± 0.04K(stat) ± 0.5K(sys),

lying in good agreement with the approximated value of TC from DC-magnetisation

measurements in Sec. 6.3.1, and from other thermodynamic studies [170, 171, 183].10

The resulting linearised dependence of Tmax on B0.79
DC and the corresponding linearised

fit are displayed in Fig. 6.13a.

Equipped with the true ferromagnetic ordering temperature, the quantitative analysis

of the present AC-susceptibility results may be further elaborated. The static scaling

theory postulates that the reduced magnetisation m =M/MS satisfies [188, 190, 191]:

m(b, t) ∝ tβF±

(
b

tβ+γ

)
(6.4)

where F is Helmholtz free energy, with t = (T − TC)/TC and b = BDC/TC being

the reduced temperature and field, respectively, and where β and γ refer to critical

exponents with their usual meaning. Exploiting the definition of AC susceptibility as

the derivative of the magnetisation with respect to the applied magnetic field, it follows

from Eq. 6.4 that [190]:

χ(b, t) =
∂m

∂b
∝ t−γF±

(
b

tβ+γ

)
= b

1
δ
−1G

(
b

tβ+γ

)
(6.5)

where G is Gibbs free energy. Defining the reduced temperature associated with the

maximum in the peak-like structure in χ′ as tmax = (Tmax − TC)/TC, the following

9 The nature of the PM-FM phase transition in bulk CrI3 remains disputed. Most recent inelas-
tic neutron scattering analysis suggests that the phase transition may possess a weak first-order
character [144].

10The utilisation of a number of individual data points to determine TC reduces the corresponding
statistical error. In such a way, the precision of the determined value of TC is improved compared to
the above DC-susceptibility determination. The systematic error, originating predominately from
the thermometer calibration, remains thereby unchanged.
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Figure 6.13.: (a) Linearised dependence of the temperature Tmax of the peak-like
maximum in χ′ on the applied static field BDC; (b)–(d) log-log plots of the scaling
relations in Eqs. 6.6a–c between the reduced magnetic field, b, temperature, Tmax, and
the peak-like maximum, χ′
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scaling relations can be derived from Eq. 6.5 [188, 190]:

tmax ∝ b1/(β+γ)

χ′
max ∝ b(1/δ)−1

χ′
max ∝ t−γ

max

(6.6)

where δ is a further critical exponent and where the static-magnetic-field-dependent

values of χ′
max are, similarly to Tmax, extracted from the data in Fig. 6.12a. Utilising

the above-obtained value TC = 61.06K, Eq. 6.6 can be used to obtain the values

of the various critical exponents. Least-squares-minimisation routines applied to the

logarithmic counterparts of Eq. 6.6 yield: β + γ = 1.22(5); δ = 6.05(1), and; γ =

1.04(2). The various scaling relations together with the resulting fits are displayed in

Figs. 6.13b–d in log-log plots, exhibiting good correspondence between the experimental

AC-susceptibility data and the fitted curves.

The value of the exponent β can be calculated from the above results as β = 0.21(4).

Moreover, the Widom relation, given by γ = β(δ − 1), can be used to perform a

self-consistency check of the obtained critical exponents, obtaining γ = 1.05(2). This

compares well with the value of γ obtained directly by analysing the AC susceptibility

data by means of Eq. 6.6, indicating good self-consistency of the present results.

Although the presently determined critical exponents are self-consistent, a caution

should be exercised when associating their values with any particular model sys-

tem. This is, firstly, because of the finite temperature step size utilised in the AC-

susceptibility measurements presented in Fig. 6.12 and the finite magnetisation reso-

lution of the device, and, secondly, because of the lack of a priori knowledge about

the region around the ferromagnetic phase transition in which the critical behaviour is

manifested and hence in which the scaling analysis is applicable. Whereas the first of

these limiting factors could, in principle, be reduced by utilising smaller temperature

step size, the exponential dependence of the scaling relations in Eq. 6.6 necessarily

leads to an inherent amplification of the error associated with the temperature, mag-

netisation, and DC-field reading. The second of these limiting factors is something

of a chicken-and-egg problem, as the critical region can be experimentally determined

only after performing the critical-scaling analysis, though it is precisely the information

about the extent of the critical region which is required as an input for performing the

analysis. Without prior knowledge from numerical modelling of the critical phenomena,

the interpretation of the critical scaling remains limited. Nevertheless, it has been ap-

plied to the analysis of the ordering phenomena in several members of the family of the

chromium-based van-der-Waals semiconducting ferromagnets, such as CrGeTe3 [167,

190], CrSiTe3 [167, 192, 193], CrBr3 [194], and not last CrI3 [168, 171].

The presently-obtained values of the various critical exponents do not allow for a univo-
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cal association with any one particular model system for which theoretical predictions

exist [188, 191, 195]. The rather low value β = 0.21(4) may signal a departure from

the three-dimensional models for which the value ranging from β = 0.325 (3D Ising

model) to β = 0.365 (3D Heisenberg model) is predicted [195]. In particular, the obser-

vation appears to rule out a possibility of a mean-field model for which β = 0.5 is pre-

dicted [188]. Indeed, a detailed analysis of a large number of two-dimensional magnetic

systems derived a phenomenological observation that 0.1 ≲ β ≤ 0.25 holds for two-

dimensional systems [196]. Based on this observation, the obtained value β = 0.21(4)

would suggest a reduced dimensionality of the dominant magnetic interactions in CrI3.

A similar supposition may be warranted also on the basis of the determined value

δ = 6.05(1). With predictions for δ ranging from δ = 4.78 for the 3D Ising system to

δ = 5 for the mean-field system [195], the presently-determined value of δ too demon-

strates a departure from the three-dimensional models and indicates a gradual shift

towards 2D Ising system (δ = 15) [195]. On the other hand, the value γ = 1.04(2) lies

in the vicinity of the prediction for the mean-field model and some distance away from

models with reduced dimensions (e.g. 2D Ising γ = 1.75 [195]).

Previous analyses of scaling relations in CrI3 relied on DC-magnetisation technique and

obtained critical exponents which were argued to point to a crossover from a mean-

field behaviour towards a 3D Ising model [168, 171]. In particular, it was concluded

that the interlayer coupling plays an essential role in establishing three-dimensional

long-range order in bulk CrI3 [168, 171, 197]. However, as shall be argued later, the

current HF-ESR and isothermal magnetisation data point rather to the significance

of magnetocrystalline anisotropy as the driving force behind long-range ferromagnetic

order in bulk CrI3.

6.3.3.2. AC Susceptibility at Various Excitation Frequencies

In order to obtain information about relaxation processes and to quantify relaxation

times in the long-range-ordered ferromagnetic phase of CrI3, studies of AC susceptibil-

ity’s dependence on the frequency of the excitation AC field, fAC, have been performed

in static DC field BDC = 0T.11 The advantage of such measurements over the earlier

performed analysis of HF-ESR (c.f. Section 6.3.2.2) is the possibility of studying mag-

netisation relaxation in a DC-field-free environment. This is particularly interesting

for CrI3 where, as seen earlier, DC fields of approximately 0.2T along the c-axis, and

of 3T along the ab-plane lead to the magnetisation saturation.

The obtained AC susceptibility curves in the complete available range of excitation

frequencies 0.5 kHz ≤ fAC ≤ 10 kHz are displayed in Fig. 6.14. As may be seen in

Fig. 6.14a, the in-phase component χ′ shows negligible dependence on fAC and the

11In order to study relaxation in the paramagnetic phase above TC, excitation-frequency-dependent
AC susceptibility would have to be measured in a range of static DC fields BDC > 0T [198]. This,
however, was not subject of the present study.
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Figure 6.14.: AC susceptibility of CrI3 obtained with AC-field excitation amplitude
BAC = 2Oe at various excitation frequencies 0.5 kHz ≤ fAC ≤ 10 kHz and for BDC =
0T: (a) real part, χ′; (b) imaginary part, χ′′.

curves resemble the static DC susceptibility presented in Fig. 6.3a. On the other hand,

χ′′ exhibits significant dependence on fAC in the temperature region 48K ≲ T ≲

61K, with a peak-like structure developing in this temperature region and growing in

size with the increasing value of fAC. Interestingly, as fAC, the peak in χ′′ remains

approximately symmetric about its middle point of around 54K and does not move

to lower temperatures, thereby lying in contrast with earlier comparable studies on

the ferromagnet Fe3O4 [199]. The finite value of χ′′ indicates the occurrence of a

dissipation, that is, of a relaxation process [200]. The termination of the peak at

around 48K and the onset of low, approximately constant temperature dependence

of χ′′ suggests prevalence of a different relaxation process with a considerably longer

relaxation time at this temperature.

Extracting the excitation-frequency-dependent values of χ′ and χ′′ at particular tem-

peratures, the so-called Cole-Cole diagram may be constructed by plotting χ′ on the

abscissa and χ′′ on the ordinate [200]. In case of a unique relaxation process, such

a diagram describes a single semicircle, with each data point on the semicircle corre-

sponding to a particular value of fAC [198]. The apex of the semicircle, denoted here as

fmax
AC (T ), corresponds to the relaxation time characteristic of the relaxation process in

question at that particular temperature via the relation τ(T ) = 1/(2πfmax
AC (T )) [198].

Fig. 6.15a presents the Cole-Cole diagrams for T = 54K and T = 56K obtained from

the data in Fig. 6.14. As may be seen, despite lying on an arc of a semicircle, the data

points do not encompass a full semicircle and, in particular, do not reach the presumed

apex. Therefore, the data are insufficient to establish univocally whether a unique re-
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laxation mechanism (corresponding to a single regular semicircle in the Cole-Cole plot)

or several relaxation mechanisms (corresponding to a flattened single semicircle or to

a series of semicircles) are at play at the respective temperatures [198]. In order to re-

move these uncertainties, measurements with a set of higher AC excitation frequencies

are required.

In order to provide an estimate of the relaxation times nonetheless, it is assumed that

the datasets at the respective temperature do lie on a unique circle. Hence, each

dataset is fitted in the first step by the equation of a circle (black and red solid lines in

Fig. 6.15a). The individual data points are then treated as enclosing an angle θ with

the abscissa of the graph, as illustrated by the black dotted line in Fig. 6.15a. From

trigonometric considerations, the dependence of θ on the AC excitation frequency is

obtained. This is depicted in Fig. 6.15b and exhibits linear dependence. By fitting

a straight line to these data, an estimate can be made for fAC when θ = 90◦, i.e. for

the frequency corresponding to the apex of the semicircle in Fig. 6.15a. One finds:

fmax
AC (54K) ≈ 24.5 kHz, corresponding to τ(54K) ≈ 6.5 × 10−6 s, and; fmax

AC (56K) ≈
27 kHz, corresponding to τ(56K) ≈ 5.9× 10−6 s (see Fig. 6.15b).

Since the actual Cole-Cole diagrams may extend significantly higher than estimated by

the fitted semicircles in Fig. 6.15a, the obtained values of fmax
AC provide merely a lower

limit of the actual relaxation frequencies, and thus the actual relaxation times may be
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considerably shorter. Still, with the time scale of a typical spin-spin relaxation process

of the domain magnetisation lying several orders of magnitude lower (τS−S ≈ 10−10–

10−11 s [176]), it may be speculated that the mechanism responsible for the peak-

like structure in Fig. 6.14b is of a different nature. Indeed, relaxation phenomena in

ferromagnets are expected to be dominated by the domain walls, as the walls’ delicate

balance between exchange energy and anisotropy energy can be easily destroyed by

an exciting AC field, leading to dissipation of magnetisation [198]. Moreover, typical

relaxation times associated with domain-wall effects lie in the order of 10−5–10−8 s [201–

203], matching with the presently-estimated relaxation time. Therefore, it is argued

that the relaxation effect leading to the peak-like structure in χ′′ seen in Fig. 6.14b

originates in domain-wall effects, such as moving or reshaping of the domain walls. The

possibility of observing domain-wall effects in the present case is made plausible also

by the fact that the AC susceptibility in Fig. 6.14 was measured upon heating with

BDC = 0T, whereby the cooling to the lowest temperatures was also performed in zero

DC field.12

6.3.4. High-Temperature Isothermal Magnetisation

6.3.4.1. Anisotropy Effects in Isothermal Magnetisation

Fig. 6.16a depicts axis-dependent isothermal magnetisation curves obtained at selected

temperatures above the ferromagnetic ordering temperature. These curves expand on

earlier measurements performed in the temperature range 2K < T < TC, available

elsewhere [197]. Starting from temperatures T = 64K, i.e. just above TC, the magneti-

sation shows a pronounced discrepancy between the two orientations in the entirety

of the measured field regime. This is reminiscent of the isothermal magnetisation at

2K, depicted in Fig. 6.4. As discussed in reference to Fig. 6.4, the discrepancy in the

detected magnetisation at 14T may be a result of a small error in the sample mass

determination, or of anisotropy in the values of the g-factors or of the total magnetic

moment (see Section 6.3.1). Interestingly, the size of the discrepancy between the two

axes decreases with increasing temperature, becoming vanishingly small for T ≳ 160K.

The latter observation indicates that the error in the sample mass determination cannot

explain the observed anisotropic behaviour. An earlier report of isothermal magneti-

sation of CrI3 too detected anisotropic effects up to 6T at selected temperatures in

the vicinity of TC (T = 50K and T = 75K), though no explicit discussion thereof was

given [141].

12Based on the presently-estimated relaxation time of 10−5–10−6 s, spin-phonon relaxation of the do-
main magnetisation, with typical relaxation times of 10−4–10−7 s [176], could also be responsible for
the current observation [176]. Definitive differentiation between phonon-mediated relaxation of the
domain magnetisation and domain-wall effects could be achieved by repeating the AC susceptibility
measurements in Fig. 6.14 with having saturated the ferromagnetic domains by cooling to the lowest
temperatures with BDC > Bsat. If domain walls are responsible for the observed effect, then in a
saturated, domain-free scenario, a vanishing χ′′ response can be expected.
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Figure 6.16.: (a) Isothermal magnetisation at selected temperatures as a func-
tion of applied magnetic field along the ab-plane (black) and c-axis (green); (b) the
same magnetisation curves as in (a) together with magnetisation curves at additional
temperatures with each ab-plane curve scaled to the c-axis magnetisation at 14T
at the respective temperature. The curves in (a) depict a full measurement cycle
0T → 14T → 0T, the curves in (b) only the up-sweep 0T → 14T.

In order to account for the potential anisotropy in the g-factors or total magnetic mo-

ment, each ab-plane magnetisation curve in Fig. 6.16a has been scaled to the c-axis

magnetisation value at 14T at the respective temperature. The resulting curves are

plotted in Fig. 6.16b. It may be seen that even after accounting for the above effects,

the isothermal magnetisation at temperatures close enough to TC exhibits anisotropic

behaviour. To be concrete, starting at 64K, the two magnetisation curves show dif-

ferent bending in the magnetic field, with c-axis bending in a more pronounced way.

With increasing temperature, the difference in the bending weakens and the two curves

align ever better with each other. Finally, the two curves fall perfectly onto each other

for T ≳ 105K, such that the magnetisation for B||ab is hidden underneath the curves

for B||c in Fig. 6.16b. Such different bending points to non-vanishing magnetocrys-

talline anisotropy in this temperature region. Indeed, the observed behaviour above

TC is a precursor of the low-temperature behaviour in which the c-axis is the easy

magnetisation axis. Moreover, the present observation corroborates the detection of a

finite zero-field excitation gap and anisotropic shift in the resonance fields for T ≤ T∆
observed in HF-ESR measurements (c.f. Section 6.3.2.2).

Furthermore, starting from 64K, the magnetisation curves depicted in Fig. 6.16b ex-

hibit finite right bending in the magnetic field. Its extent weakens with increasing

temperature, although a close inspection of the curves reveals that even at 200K, a

small right curvature is present. Especially interesting is the observation that the right
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Figure 6.17.: (a) Simulation of isothermal magnetisation by means of a Brillouin
function with S = 3/2, L = 0, g = 2, and MS = 3µB/f.u. at the same selected
temperatures as displayed in Fig. 6.16b; (b) isothermal magnetisation at the same
selected temperatures along the ab-plane (black), fitted by means of a modified Bril-
louin function (Eq. 6.7, red), see text for details.

bending clearly persists for T ≳ 105K, i.e. for temperatures for which no anisotropic

behaviour in the scaled magnetisation curves in Fig. 6.16b is visible. The right bending

may be an indication of underlying short-range ferromagnetic correlations. To be sure,

the observed right bending is likely enhanced by the applied magnetic field, such that

without appropriate theoretical underpinning, it may not be possible to disentangle

the two contributions. The enhancement due to the applied magnetic field is likely to

become especially significant as T → T+
C .

That short-range ferromagnetic correlations may at least partially be responsible for the

curvature of the magnetisation curves can be seen when predictions for an ideal param-

agnetic Cr3+ ion are considered. Assuming S = 3/2, L = 0, g = 2, andMS = 3µB/f.u.,

Fig. 6.17a shows such predictions on the basis of a usual Brillouin function [6] for the

various temperatures shown in Fig. 6.16b. Although the real saturation magnetisation

will decrease with increasing temperature, this will not affect the curvature but merely

the absolute value of the simulated magnetisation. As is evident from Fig. 6.17a, a pure

Cr3+ paramagnet in the studied temperature and magnetic-field regime would exhibit a

perfectly linear magnetisation field dependence, contrary to the present observations.13

Using the isothermal magnetisation in Fig. 6.16, an attempt may be made at quantify-

ing the ensemble size of the short-range ferromagnetically-correlated magnetic moments

13For completion, the magnetisation curve of an antiferromagnet would, depending on the strength
and orientation of the external magnetic field with respect to the magnetocrystalline anisotropy,
display either no field dependence, left bending in the field, or at most linear field dependence [6].



6.3. Experimental Results 135

above TC.
14 To do so and focusing henceforth only on the unscaled isothermal mag-

netisation for B||ab-plane, the magnetisation curves may be fitted by means of the

following function [6, 204]:

M =MS ·
[(

2S̃ + 1

2S̃

)
· coth

(
(2S̃ + 1)

y

2

)
−
(

1

2S̃

)
· coth

(y
2

)]
+ χ0B (6.7)

withMS, S̃, and χ0 being free fitting parameters, and whereMS denotes the saturation

magnetisation, χ0 a field-independent term, and y = (gµBB)/(kBT ). The term in the

square brackets is a modified Brillouin function. Herein the individual ion’s spin S is

substituted by S̃ to denote the sum of the spins of ions participating in a short-range

ferromagnetically-correlated ensemble, S̃ =
∑

i Si, where i runs over all members of the

correlated ensemble. It follows from these considerations that the correlated ensembles

can be projected back into the usual Brillouin function by taking them to correspond

to individual magnetic ions completely uncorrelated from all neighbouring ions, just

as would be the case for paramagnetic centres. Note that including the linear term in

Eq. 6.7 is necessary in order to describe the data well for T ≲ 82K. Furthermore, note

that the small curvature prevents reliable fitting for 160K ≤ T ≤ 200K.

The fitting results of this procedure at selected temperatures are depicted in Fig. 6.17b

as red solid lines. Despite successful convergence of all the fits up to 140K, it may

be seen that upon approaching the ferromagnetic ordering temperature, the quality of

the fitting is reduced. This indicates the breaking-down of the above-assumed simple

correlation model. This is likely, on the one hand, owing to the negligence of the field-

induced contributions to the correlations, and, on the other hand, owing to treating

the correlation between two magnetic ions as a linear binary effect whereby correla-

tions grow linearly with decreasing temperature and individual ions are either perfectly

correlated or completely uncorrelated.

Still, it may be seen that for T ≳ 82K, Eq. 6.7 describes the magnetisation curves

well. That is, the magnetisation data above this temperature may be described by a

single value of S̃ which is obtained directly from the fits. This may indicate that the

applied field does not significantly change the size of the short-range ferromagnetically-

correlated ensemble. The approximate number of spins in such ensemble can be es-

timated as ñ = S̃/S, where S = 3/2. The resulting temperature dependence of ñ

is displayed in Fig. 6.18a. For illustrative purposes, the figure includes the obtained

value of ñ also for T ≲ 82K. The grey marked area in the figure emphasises that

the simple correlation model is insufficient in quantifying the magnetisation in this

temperature region and the obtained values of ñ are hence to be taken as providing

14The impetus for the ensuing analysis was provided by a discussion in the framework of a bachelor
student supervision. Correspondingly, elements of the ensuing analysis were previously published in
Ref. [197].
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Figure 6.18.: Temperature dependence of (a) the number of ferromagnetically-
correlated moments, ñ, and; (b) the ab-plane correlation length, ξab. Shaded regions
mark temperatures for which the simple correlation model likely breaks down, see text
for details. Vertical dashed lines mark the ferromagnetic ordering temperature, and
horizontal dashed line in (b) marks the in-plane Cr–Cr nearest-neighbour separation,
taken from [141].

merely a very crude approximation. As seen in Fig. 6.18a, ñ is found to decrease upon

heating, indicating the gradual splitting of the ferromagnetically-correlated ensembles

due to thermal fluctuations.

6.3.4.2. Correlation Length Estimation

Using the values of ñ, it is possible to provide a rough estimate of the in-plane ferromag-

netic correlation length ξab. To do so, an assumption is made that the ferromagnetic

short-range correlations above TC extend solely in the ab-planes, such that the c-axis

correlation length, ξc, vanishes. Such an assumption is justified based, firstly, on earlier

numerical calculations on bulk CrI3 which predict that intralayer coupling is one [182]

or even two [142, 183] orders of magnitude stronger than interlayer coupling, and,

secondly, on inelastic neutron scattering results which show that J intra
eff ≈ 77.7K and

J inter
eff ≈ 6.8K [144] (see Section 6.1). Moreover, inelastic neutron scattering on a related

van-der-Waals ferromagnet CrSiTe3 found the persistence of in-plane correlations well

above TC and all the way up to room temperature with vanishing out-of-plane cor-

relations [205]. Assuming further that the correlated ensembles form circles with a

diameter equalling the correlation length ξab, it is possible to express the correlation

length as:
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ξab =

√
2
√
3

π
· a2 · S̃ (6.8)

where a = 3.965 Å is the in-plane nearest-neighbour Cr–Cr separation [141]. The thus-

estimated temperature dependence of the correlation length is depicted in Fig. 6.18b,

where the grey area emphasises again the crudeness of the approximation in the marked

temperature region. Given that inelastic neutron scattering revealed ξab = 220 Å at

10K [143], i.e. in the long-range-ordered phase, the presently-obtained values of the

correlation length of several tens of Angstroms appear reasonable. Especially interest-

ing is the observation that at 140K, i.e. the highest temperature for which the fitting

by means of Eq. 6.7 was still possible, ξab still lies about three times higher than the

in-plane nearest-neighbour Cr–Cr separation (c.f. dashed horizontal line in Fig. 6.18b).

This points to significant robustness of the in-plane short-range correlations and is

reminiscent of the above-cited case of CrSiTe3. However, it ought to be stressed that

inelastic neutron scattering is required in order to provide accurate quantification of

the correlation lengths.

6.3.4.3. Critical Scaling of DC-Field Isothermal Magnetisation

Isothermal magnetisation obtained at elevated temperatures, some of which has been

presented in the previous section, may be also used to perform a critical-scaling analysis

(see [188, 191, 195] for theoretical approaches to such an analysis). In the current case,

the aim is to complement the above-presented and discussed critical-scaling analysis

on the basis of AC-susceptibility measurements (see Section 6.3.3).

Fig. 6.19 depicts the critical isotherm of CrI3, i.e. the isothermal magnetisation obtained

at the ferromagnetic ordering temperature, for B||ab-plane. With the ferromagnetic

ordering temperature determined in the above AC susceptibility analysis TC = 61.06K,

the critical isotherm was measured at T = 61K. It can be shown that for the mag-

netisation of a critical isotherm it holds that [188]:

M(T = TC) = a ·B(1/δ) (6.9)

where δ is the critical exponent, obtained already in the above AC susceptibility

analysis, and a is a scaling constant. Applying a least-squares-minimisation rou-

tine to the logarithmic form of Eq. 6.9, δ = 6.22(10) is found for the fitting region

10T ≤ B ≤ 14T. The fitted curve is displayed in Fig. 6.19 as a red solid line. The

value of δ obtained from the present analysis of the DC magnetisation lies above its

determination from the AC susceptibility: δDC = 6.22(10); δAC = 6.05(1). Neverthe-

less, the close proximity of the two values to each other justifies the upholding of the

original interpretation of δ as indicating a departure from three-dimensional models



138 Chapter 6. CrI3

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

0.5 1.0

0.2

0.3
M

ab
 (m

B 
/ f

.u
.)

B (T) || ab-plane

T = 61 K

lo
g(

M
)

log(B)

Figure 6.19.: Critical magnetisation isotherm (T = TC = 61K) of CrI3 obtained for
B||ab-plane. Red solid line is a fit to the field regime 10T ≤ B ≤ 14T by means of
Eq. 6.9. The inset depicts the main plot on a log-log scale.

and towards two-dimensional Ising system (see Section 6.3.3).

Furthermore, the value of the critical exponents β and δ obtained in the above AC

susceptibility analysis can be verified on the basis of DC magnetisation measurements.

Starting from Eq. 6.6, it can be shown that for true critical exponents, the renormalised

magnetisation curves given by M |t|−β as a function of the renormalised field given by

B|t|−(β+γ) for different temperatures below and above TC fall onto each other [188,

206]. More specifically, one renormalised curve M |t|−β vs. B|t|−(β+γ) is expected for

T < TC, and another for T > TC.

Using the above-obtained values βAC = 0.21(4) and γ = 1.04(2), it is found that the

isothermal magnetisation curves obtained for B||ab-plane collapse onto each other very

well for all temperatures T ≥ 70K. Fig. 6.20a demonstrates this for selected tem-

peratures 70K ≤ T ≤ 100K. As the temperature is decreased from 70K towards the

ferromagnetic ordering temperature, the overlap becomes progressively less satisfactory

(data not shown). A similar effect is observed also for isothermal magnetisation below

TC: in the temperature region 44K ≤ T ≤ 53K, a good overlap of the various curves

is found (Fig. 6.20a). However, as the temperature is increased from 53K towards TC,

the overlap becomes progressively less satisfactory (data not shown).

Using β = 0.21(4) and γ = 1.04(2), no satisfactory overlap of the renormalised mag-

netisation curves above TC for B||c-axis can be found (data not shown). However,

using adjusted values of β = 0.18 and γ = 1.13, a very good overlap is achieved for the

renormalised curves at all temperatures T ≥ 70K (see Fig. 6.20b). Similarly to above,
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Figure 6.20.: Renormalised isothermal magnetisation as a function of renormalised
magnetic field of CrI3 at selected temperatures (a) for B||ab-plane below and above the
ferromagnetic ordering temperature, and; (b) for B||c-axis above the ferromagnetic
ordering temperature.

as the temperature is decreased from 70K towards TC, the overlap becomes gradually

worse. No isothermal magnetisation was performed below the ferromagnetic ordering

temperature for B||c-axis.

The adjusted value of β for B||c-axis lies within the error bar of its originally-

determined value and, as such, requires no re-interpretation. In particular and as

noted above, empirical investigations found that for two-dimensional magnets, β sat-

isfies: 0.1 ≲ β ≤ 0.25 [196]. As β = 0.18 < 0.25 for B||c-axis, CrI3 may be classified as

a predominantly two-dimensional magnet also on the basis of the renormalised mag-

netisation for B||c-axis. On the other hand, the value of γ for B||c-axis lies outside of

the error bars of its value determined from AC susceptibility. Nevertheless, the close

proximity of the two values to each other may be a good indication that the real value

of γ falls in the region 1.04 ≲ γ ≲ 1.13. Although such a determination has a limited

precision, it does allow to uphold the original interpretation that γ lies in the vicinity

of the prediction for the mean-field-model.

Lastly, it may be remarked that the renormalised magnetisation curves in Fig. 6.20

show a similarly-good [168] or even superior [171] overlap than previous literature

reports.
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6.4. Discussion and Summary

In a wide frequency and magnetic-field regime, ferromagnetic magnon excitations in

CrI3 are exactly captured by a domain-based model in Eqs. 6.1–6.3. The analysis by

means of the model provides microscopic parameters from which the magnetisation

easy axis is determined to lie along the crystallographic c-axis, the axis-dependent g-

factors with gc = 2.01(1) and gab = 2.04(4), and the zero-field excitation gap ∆(T =

2K)= 80(1)GHz are obtained. Whereas the low-temperature magnon field dependence

univocally points to the existence of domains in bulk CrI3, the domains’ exact shape

could not be ascertained on the basis of the present magnetic resonance experiments.

The obtained low-temperature value of the excitation gap as well as the gap’s temper-

ature dependence in the ferromagnetically-ordered phase are corroborated by earlier

studies [143, 149, 150]. However, whereas previous inelastic neutron scattering found

the vanishing of ∆ at TC [143], the present study is, thanks to its high energy reso-

lution, able to follow the gap’s temperature evolution also above TC (c.f. Fig. 6.11b).

Concretely, at 62K (i.e. just above TC), ∆ is found to amount to 19.8(7)GHz (ap-

proximately 25 % of its value at 2K) and to vanish only for T ≳ 80K, i.e. for

T = T∆ ≳ 1.3TC. Furthermore, anisotropic shift in the resonance field is also observed

to emerge below T ≃ T∆ (c.f. Fig. 6.11d). At the same time, isothermal magnetisa-

tion at temperatures above TC reveals a difference in the right bending between B||c
and B||ab even after presumed effects due to anisotropic g-factor and total magnetic

moment have been accounted for (c.f. Fig. 6.16b).

On the other hand, a deviation from Curie-Weiss-like behaviour is found to set in

approximately below 130K (c.f. Fig. 6.3b), while finite right bending in isothermal

magnetisation is detected for temperature as high as T = 200K (c.f. Fig. 6.16b). Lastly,

fitting of the resonance-frequency–magnetic-field diagram at temperatures above TC
found a deviation from the high-temperature paramagnetic value of the g-factor; in

particular, g = 2.19(3) was observed at T = 100K (c.f. Fig. 6.11c). Although not

measured in this work, specific heat measurements found magnetically-driven entropy

changes below about 150K [170, 171].

Synthesising these observations into a self-contained picture of evolution of ferromag-

netic order in CrI3, four regimes of magnetic interactions may be identified:

� a high-temperature, purely paramagnetic regime above TPM;

� a regime of short-range ferromagnetic correlations which is split by the onset of

magnetocrystalline anisotropy to:

– a higher-temperature, isotropic short-range correlations regime at tempera-

tures T∆ ≤ T iso
SRO ≤ TPM;

– a lower-temperature, anisotropic short-range correlations at temperatures
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TC ≤ T aniso
SRO ≤ T∆, and;

� a ferromagnetically-long-range-ordered phase for T ≤ TC.

Whereas the experimental evidence presented in this chapter points univocally to the

existence of the different temperature regimes, the designation of the various temper-

ature boundaries is influenced by the sensitivity of the various experimental methods

used to determine them. Correspondingly, TPM may be identified to lie at TPM ≈ 130K

by the analysis of static magnetic susceptibility, at TPM ≈ 150K by the analysis of spe-

cific heat, and at TPM ≳ 200K based on right bending of the isothermal magnetisation.

In a similar vein, T∆ may be identified to be T∆ ≈ 80K–90K by HF-ESR and to be

T∆ ≈ 105K by isothermal magnetisation. The ferromagnetic ordering temperature is

found to be TC = 61.0(5)K and TC = 61.06K± 0.04K(stat)± 0.5K(sys) by DC- and

AC-field susceptibility, respectively.

These observations point to a scenario of a purely two-dimensional (i.e. in-plane) and

Heisenberg-like (i.e. isotropic) short-range order at T∆ ≤ T ≤ TPM. This develops

an anisotropic character below T∆; that is, for T ≤ T∆, the magnetic moments start

to experience a preferred magnetisation direction which lies along the c-axis.15 These

findings imply that long-range order in CrI3 does not primarily evolve from a purely

Heisenberg-like short-range-ordered regime through increasing in-plane correlations in

the presence of small but finite interlayer coupling as observed, e.g., in the paradigmatic

2D Heisenberg system La2CuO4 [6]. Instead, the onset of anisotropic effects well above

TC indicates that long-range ferromagnetic order in CrI3 is at least partially driven by

magnetocrystalline anisotropy, as also suggested previously by theoretical studies [145,

182].

Additionally, the critical exponents obtained from AC susceptibility (Fig. 6.13), and

corroborated by analysis of DC magnetisation (Figs. 6.19 and 6.20) provide at least

partial further evidence that interlayer interactions do not dominate the ferromagnetic

ordering in CrI3. Concretely, β = 0.21(4) and δ = 6.05(1) suggest that at TC the

appropriate model to characterise the magnetic interactions in CrI3 is of reduced di-

mensionality (most likely exhibiting 2D character). The small departure of the critical

exponent γ from γ = 1, which may be implied by the combined critical scaling analysis

from AC and DC-field susceptibility, and its value 1.04 ≲ γ ≲ 1.13 corroborates the

supposition that at TC, the magnetic interactions are predominantly two-dimensional.

The conclusion that long-range ordering in CrI3 is at least partially anisotropy-driven

15Although the magnetic moments remain predominantly Heisenberg-like in the entire short-range
regime, it could be asserted that at T∆ they start to develop a weak Ising-like character. However,
the usage of the term “Ising” in this context should not be equated with implying terahertz-regime
single-ion anisotropies typically known for 4f magnetic ions, such as gadolinium or dysprosium. In
the present context, Ising-like character is intended to differentiate the truly Heisenberg behaviour
of the magnetic moments in the ab-planes above T∆ from the moments’ tendency to orient along a
preferred magnetisation axis below T∆.
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and that dominant magnetic interactions may be two-dimensional is also corroborated,

firstly, by the detection of long-range ferromagnetic order in a monolayer of CrI3 [148]

which, trivially, cannot be driven by growing out-of-plane correlations, and, secondly,

by the small reduction of TC from 61K to 45K as the sample’s thickness is reduced

from bulk to monolayer which indicates that interlayer interactions do not dominate the

ferromagnetic ordering in CrI3 [148]. It is natural to extend the arguments advanced

for a single layer of CrI3 also to the case when the monolayer is expanded to a bulk

and thus to provide a uniform account of the decisive mechanism by which Mermin-

Wagner theorem is circumvented and long-range order established in this system with

dominant Heisenberg interactions operating on a two-dimensional lattice.

Relaxation times on the order of 10−10–10−11 s were detected in the long-range-ordered

phase at the lowest temperatures by high-frequency electron spin resonance. These

could be attributed to a spin-spin relaxation mechanism. At the same time, an upper

limit of ≈ 10−6 s on the relaxation time in the long-range-ordered phase but in the

vicinity of TC was provided by the analysis of the AC susceptibility data. The order of

this relaxation time could be reconciled with the dynamics of domain-wall motion or

reshaping. However, higher frequencies of the exciting AC field are required to quantify

the relaxation time more precisely.
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This work is devoted to the experimental investigation of long-range-ordered magnets:

the magnetoelectric antiferromagnets MnTiO3 and LiMnPO4, and the ferromagnetic

van-der-Waals material CrI3. The principal experimental method is high-frequency

electron spin resonance. The employed setup utilises a millimetre vector network anal-

yser in combination with Schottky diodes to generate excitation frequencies in the

range 30GHz ≲ ν ≲ 1000GHz. In combination with a superconducting magnet and

liquid-helium cooling, the materials can be investigated in magnetic fields up to 18T

and temperatures 1.8K ≲ T ≲ 270K. The main experimental method is complemented

by electron spin resonance in the X-band frequency range using a cavity setup, and by

magnetisation measurements in static and oscillating magnetic fields.

MnTiO3 belongs to the class of ilmenite titanates which exhibit a layered honeycomb

crystal structure. The material features Mn2+ ions, leading to S = 5/2, L = 0 in

the ground state, and enters G-type long-range antiferromagnetic order at 64.0(5)K

with c-axis as the easy magnetisation axis. The resonance-frequency–magnetic-field

diagram at T = 2K can be exhaustively described by the model of a two-sublattice

antiferromagnet with uniaxial anisotropy. The quantitative analysis yields the zero-

field excitation gap ∆ = 166(1)GHz and effective g-factors g∥ = 1.98(1) and g⊥ =

2.00(1). The subsequent analysis finds the effective exchange field BE = 107(6)T

and effective anisotropy field BA = 0.17(1)T, implying BA ≪ BE. The anisotropy

is argued to originate predominantly from magnetic dipole-dipole interactions. The

zero-field excitation gap exhibits an order-parameter-like temperature dependence and

closes completely at TN. Above TN, a shift of the resonance field with increasing

temperature up to T ≈ 200K indicates a pronounced region of short-range order.

LiMnPO4 is a member of the olivine-structured orthophosphates class which exhibit

complex ground-state properties, including exceptionally large magnetoelectric tensors,

weak ferromagnetism, and incommensurate magnetic phases. Similarly to the studied

titanate, LiMnPO4 too features Mn2+ ions. The antiferromagnetic order forms at

33.5(2)K with an easy magnetisation axis along the a-axis. Isothermal magnetisation

along the hard magnetisation b-axis reveals a spin flip at BC2 = 4.9(2)T and T = 2K.

With increasing temperature, BC2 shifts weakly to higher fields, before disappearing

as T → T−
N , confirming it to be an inherent property of the ground state. It is argued

that the feature signals a canting of the magnetic moment in the ground state by 0.16◦

from the easy towards the hard magnetisation axis. Symmetry analysis reveals a lack

143
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of inversion centre between the nearest magnetic neighbours, which lie in the bc-plane.

This leads to the speculation that Dzyaloshinskii-Moriya interactions give rise to the

spin canting. The field dependence of the low-energy magnon excitations reveals two

zero-field excitation gaps, ∆1 = 112.4(2)GHz and ∆2 = 179.9(2)GHz, and an isotropic

effective g-factor geasy = gim = ghard = 2.00(1). The complete field dependence of the

magnon branches, including an anomalous branch above the spin-flop field, can be

accounted for within a model of a two-sublattice antiferromagnet with orthorhombic

anisotropy and a rotation of the anisotropy axis by 6.5◦ towards the hard axis at the

spin-flop field. Analysis of the temperature-dependent resonance indicates, firstly, that

the system preserves its orthorhombic anisotropy at least up to ≈ 0.9TN with complete

closure of ∆1 and ∆2 as T → T−
N , and secondly, that no detectable short-range order

develops above TN.

CrI3 consists of weakly, van-der-Waals-coupled honeycomb layers which easily un-

dergo exfoliation. The material develops long-range ferromagnetic order at 61K.

Ferromagnetic resonance in the ground state reveals a large zero-field excitation gap

∆ = 80(1)GHz and a pair of anisotropic g-factors, gc = 2.01(1) and gab = 2.04(4).

The magnon excitations univocally indicate the presence of ferromagnetic domains, al-

though the domains’ exact structure cannot be ascertained by ferromagnetic resonance

alone. The excitation gap ∆ preserves a finite value at TC and completely closes only

at T∆ ≈ 1.3TC. Up to about the same temperature, anisotropic shifts in the reso-

nance field and anisotropic isothermal magnetisation are detected. These observations

are interpreted as indicating the evolution of magnetocrystalline anisotropy already

above TC, which provides the necessary condition for circumvention of the Mermin-

Wagner theorem and evolution of long-range ferromagnetic order in the monolayer.

Isothermal magnetisation implies isotropic short-range order at least up to ≈ 200K.

Critical-scaling analysis, derived from AC susceptibility and DC magnetisation, yields

TC = 61.06K ± 0.04K(stat) ± 0.5K(sys), and the critical exponents β = 0.21(4),

γ = 1.05(2), and δ = 6.05(1). The latter indicate a predominantly two-dimensional

nature of the magnetic interactions at TC, in line with theoretical simulations and in-

elastic neutron scattering observations. Relaxation times on the order of 10−10–10−11 s

are detected at the lowest temperatures by high-frequency electron spin resonance, and

of ≈ 10−6 s in the vicinity of TC by AC susceptibility. The former are attributed to a

spin-spin relaxation mechanism, whereas the latter can be reconciled with domain-wall

motion or reshaping.

Jointly, these observations demonstrate the indispensable insights which high-frequency

electron spin resonance delivers in a laboratory-scale setup, thus avoiding the necessity

for large-scale neutron-reactor- or synchrotron-based experiments; insights which are

valuable for fundamental research as well as for future applications. Especially note-

worthy is the highly precise determination of the zero-field excitation gap, thanks to
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which the crucial role of magnetocrystalline anisotropy in formation of long-range ferro-

magnetic order in bulk CrI3 could be determined, and thanks to which materials can be

designed for a stable spin-current transport in spintronic-based devices. Also of great

value is the precise mapping of the field dependence of the low-energy magnon excita-

tions in a large range of magnetic fields thanks to which the rotation of the anisotropy

axis at the spin-flop field of LiMnPO4 was inferred, and thanks to which the interplay

between exchange coupling and anisotropy in magnetic heterostructures can be stud-

ied. As this work bears witness to, these are but a few examples of how high-frequency

electron spin resonance can be combined with other experimental techniques to study

complex magnetic materials.
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[4] M. Mézard and A. Montanari, Information, Physics, and Computation (Oxford

University Press, Oxford, 2009).

[5] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing

(Oxford University Press, Oxford, 2001).

[6] S. J. Blundell, Magnetism in Condensed Matter, Oxford Master Series in Con-

densed Matter Physics (Oxford University Press, Oxford, 2001).

[7] D. I. Khomskii, Basic Aspects of the Quantum Theory of Solids (Cambridge

University Press, Cambridge, 2010).

[8] P. Fazekas, Lecture Notes on Electron Correlation and Magnetism, Vol. 5, Series

in Modern Condensed Matter Physics (World Scientific Publishing, Singapore,

1999).
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I. Golosovsky, Journal of Physics and Chemistry of Solids 65, 1773–1777 (2004).

https://doi.org/https://doi.org/10.1016/j.jcrysgro.2017.01.046
https://doi.org/https://doi.org/10.1016/j.jcrysgro.2017.01.046
https://doi.org/10.1103/PhysRevB.79.144410
https://doi.org/10.1103/PhysRevB.79.144410
https://doi.org/10.1063/1.1511710
https://doi.org/10.1103/PhysRevB.65.224414
https://doi.org/10.1103/PhysRevB.65.224414
https://doi.org/10.1103/PhysRevB.78.184429
https://doi.org/10.1103/PhysRevB.78.184429
https://doi.org/10.1103/PhysRevB.79.092412
https://doi.org/10.1103/PhysRevB.99.104421
https://doi.org/10.1021/acs.chemmater.2c00372
https://doi.org/10.1103/PhysRevB.62.12247
https://doi.org/https://doi.org/10.1107/S0365110X60002521
https://doi.org/10.1103/PhysRevB.85.224415
https://doi.org/10.1103/PhysRev.131.38
https://doi.org/10.1107/S0365110X67000672
https://doi.org/10.1051/jphysrad:01959002002-3039300
https://doi.org/10.1103/PhysRevMaterials.4.115403
https://doi.org/10.1103/PhysRevMaterials.4.115403
https://doi.org/https://doi.org/10.1016/j.jpcs.2004.06.002


156 B. Bibliography

[131] D. Arčon, A. Zorko, R. Dominko, and Z. Jagličić, Journal of Physics: Condensed
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