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A B S T R A C T

In general, the dynamics of many-body quantum systems far-from-
equilibrium is highly intricate, and it depends strongly on the initial
conditions, the spatial geometry, and the type of the Hamiltonian.
Nonetheless, at late times, almost all macroscopic systems will eventu-
ally lose memory of the initial state and thermalize. As a significant ex-
ception to this rule, strongly disordered systems can retain retrievable
quantum correlations for long times, leading to a rich phenomenology
ranging from anomalously slow relaxation to many-body localization
(MBL).

This thesis studies the out-of-equilibrium dynamics of isolated,
disordered quantum spin systems realized by a Rydberg quantum
simulator where both the distribution of random coupling strengths
and the type of the Hamiltonian can be tuned. In Part I, we observed
sub-exponential, glassy dynamics well described by a stretched expo-
nential law. This dynamics is independent of the type of Hamiltonian
and the strength of disorder up to a critical value, showing a notion of
universality in the relaxation dynamics of disordered systems far-from-
equilibrium. A theoretical investigation revealed that the underlying
nature leading to glassy dynamics is a scale-invariant distribution of
interaction strengths. Part II reports on the discovery of the absence
of thermalization in a quantum system out of thousands of spins. To
achieve this, we developed a new protocol based on global magnetiza-
tion measurements that can successfully distinguish thermalizing and
non-thermalizing systems. Detailed exact numerical studies were able
to confirm the breakdown of the Eigenstate Thermalization Hypoth-
esis (ETH) for small strongly disordered systems of up to 16 spins.
In addition, we have shown that pairs constitute effective integrals of
motion providing thus an intuitive physical picture that also explains
the universality of the relaxation dynamics. Both phenomena as de-
scribed in Part I and II point toward the emergence of localization as
the overarching principle governing out-of-equilibrium dynamics of
disordered quantum spin systems.
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Z U S A M M E N FA S S U N G

Im Allgemeinen ist die Dynamik von Nichtgleichgewichtszuständen
von Quantenvielteilchensystemen hochgradig komplex und hängt
stark von den Anfangsbedingungen, der räumlichen Geometrie und
der Art des Hamiltonians ab. Trotzdem verlieren zu späten Zeiten fast
alle makroskopischen Systeme die Information über ihren Anfangszu-
stand und thermalisieren. Eine wichtige Ausnahme zu dieser Regel
stellen stark ungeordnete Systeme dar, die rückgewinnbare Quanten-
korrelationen für lange Zeiten beibehalten können, was zu vielseitigen
Phänomenen führt, die von ungewöhnlich langsamer Relaxation bis
zur Vielteilchenlokalisierung reichen.

Diese Arbeit studiert die Außergleichgewichtsdynamik von iso-
lierten, ungeordneten Quantenspinsystemen, die in einem Rydberg-
quantensimulator realisiert werden, wobei sowohl die Verteilung der
zufälligen Kopplungsstärken und die Art des Hamiltonians verändert
werden können. In Teil I beobachten wir subexponentielle, gläserne
Dynamik die durch eine gestreckte Exponentialfunktion beschrie-
ben werden kann. Diese Dynamik ist unabhängig von der Art des
Hamiltonians und bis zu einem kritischen Wert von der Unordnungs-
stärke, was von einer Form von Universalität der Relaxationsdynamik
ungeordneter Außergleichgewichtssysteme zeugt. Eine theoretische
Untersuchung ergab, dass gläserner Dynamik eine skaleninvariante
Verteilung der Wechselwirkungsstärken zugrunde liegt. Teil II be-
richtet von der Entdeckung der Abwesenheit von Thermalisierung in
Quantensystemen aus tausenden Spins. Um dies zu erreichen, wurde
eine neues Protokoll entwickelt, welches auf globalen Magnetisierungs-
messungen basiert, die erfolgreich zwischen thermalisierenden und
nicht-thermalisierenden Systemen unterscheiden können. Detaillierte,
exakte numerische Studien konnten den Zusammenbruch der Ei-
genzustandsthermalisierungshypothese für kleine, stark-ungeordnete
Systeme aus bis zu 16 Spins bestätigen. Außerdem konnten wir zeigen,
dass Paare effektive Integrale der Bewegung darstellen, wodurch ein
intuitives physikalisches Bild bereitgestellt wird, welches auch die Uni-
versalität der Relaxationsdynamik erklärt. Beide Phänomene, die in
Teil I and II beschrieben wurden, sprechen dafür, dass die Emergenz
von Lokalisation das übergeordnete Prinzip darstellt, welches die Au-
ßergleichgewichtsdynamik von ungeordneten Quantenspinsystemen
beherrscht.
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1
I N T R O D U C T I O N

On the question of which sentence contains the most information on
physics captured by only a few words, Richard Feynman answers in
his famous lecture series on physics with the atomistic worldview:
"all things are made of atoms — little particles that move around
in perpetual motion, attracting each other when they are a little dis-
tance apart, but repelling upon being squeezed into one another" [14].
According to Feynman, an enormous amount of information can be
gained from this atomistic view of matter "if just a little imagination
and thinking are applied". To give examples, Feynman explains based
on the atomistic view how heat can be understood as the motion of
molecules, how the phases of water are related to the arrangement
of the atoms and he also describes how atomic processes or chemical
reactions can be described based on microscopic models.

More generally speaking, Feynman addresses the idea to explain
macroscopic phenomena by a microscopic description of matter. This
approach is appealing since it promises to explain a plethora of phe-
nomena like the expansion of a thermal gas [15] or phase transi-
tions [16] from a simplistic model like a monoatomic ideal gas where
the equations of motions of the elementary particles are typically well
known and understood. But how could we possibly solve them for a
macroscopic number of particles? A possible solution is provided by
the ergodic hypothesis which was introduced by Boltzman in 1871 [17].
It states that the time a system spends in a certain region of phase
space is proportional to the volume of the region. As a consequence,
all interesting macroscopic properties like temperature or pressure
of a system can be derived from a probability distribution of mi-
crostates, the statistical ensemble. Solving the exact time evolution
of the many-body system is no longer required. Coming back to the
sentence of Richard Feynman, we see that the ergodic hypothesis is
a crucial assumption to simplify the microscopic description and to
gain information from the atomistic view of matter.

In classical systems, the ergodic hypothesis is nowadays well under-
stood as a consequence of non-linear equations of motion which
lead to a chaotic time evolution. Due to chaos, the whole phase
space is explored, and hence the system becomes ergodic. In con-
trast, the time-evolution of isolated quantum systems is determined by
the Schroedinger equation which is linear, and hence not chaotic. In
addition, for quantum systems, the concept of phase space is more
complicated due to Heisenberg’s uncertainty relation [18]. Therefore,
no direct analog of chaos, ergodicity and thermalization exists for
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2 introduction

quantum systems. Instead, we need to consider local subsystems
which can build up entanglement with the rest of the quantum system.
This allows to formulate the notion of ergodicity and thermalization
for these local subsystems. In this thesis, we aim to benchmark the
validity of these concepts by an experimental investigation of the
far-from-equilibrium dynamics of disordered quantum spin systems.

The first objective of this thesis is to explore how a quantum system
relaxes to equilibrium after a quench which prepares a system in a
well-defined initial state far-from-equilibrium. Most classical systems
will quickly become ergodic and reach thermal equilibrium after a
quench. Let us consider for example two chambers, the left one is
filled with a gas, and the right one contains a vacuum. After opening
a door between the two chambers, the gas will uniformly fill both
chambers, and the velocity of the particle will be perfectly charac-
terized by the Maxwell distribution [19]. Especially, the system will
have lost all memory of its initial state, whether at the beginning
only the left or the right chamber was filled. However, some classical
systems are not ergodic. Trivial examples are integrable systems like
uncoupled harmonic oscillators. Beyond that, also in some complex
many-body systems such as spin glasses, ergodicity can be broken be-
cause the dynamics are sufficiently slow such that the system remains
out-of-equilibrium and does not explore the full phase space on exper-
imentally relevant timescales [20, 21, 22]. In this thesis, we will explore
whether disordered quantum systems can also break ergodicity in this
sense and show anomalously slow relaxation dynamics after a quench.
In addition, we will examine whether a notion of universal behavior
exists that helps to understand these systems without the predictive
power of ergodicity and thermal equilibrium.

Understanding the characteristics of the quantum system, once it
is relaxed to a steady-state, is the second objective of this thesis. Es-
pecially, we aim to investigate whether this state is thermalized in
the sense that the reduced density matrices of local subsystems are
described by thermal ensembles [23]. The mechanism leading to quan-
tum thermalization is the Eigenstate Thermalization Hypothesis (ETH)
which states that almost all eigenstates of a generic, non-integrable
many-body Hamiltonian are thermal in this sense [24, 25, 26]. Since,
under very general conditions, quantum systems relax after a quench
towards a steady-state compatible with the diagonal ensemble, i.e. the
steady-state can be described as a mixture of eigenstates, the ETH
ensures that the quantum system will eventually thermalize. Recently,
many numerical studies [27, 28] and also some seminal experimental
works [29, 30, 31] have shown that indeed most quantum systems
thermalize and fulfill the ETH.

However, some notable exceptions exist where quantum systems
do not thermalize according to ETH. Similar to classical systems,
where integrability trivially leads to the breakdown of ergodicity, in-
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tegrable quantum systems will never thermalize and be compatible
with a microcanonical ensemble description because they feature an
extensive number of conserved quantities [27]. A famous example
for non-intuitive physics emerging in integrable systems is Ander-
son localization where strong disorder inhibits transport and local
excitations remain localized even at infinite times [32].

If the integrability is broken by a small perturbation, the system
is expected to exhibit prethermalization: After a quench, the system
will relax first to a quasi-stationary, prethermal state being defined
by the integrable part of the system’s Hamiltonian before it possibly
thermalizes on much longer time scales [33, 34, 35, 36, 23]. Strikingly,
there have been indications that breaking the integrability of Anderson
localizing systems by adding interactions leads to the phenomenon of
many-body localization (MBL) where ETH is violated even at infinite
times [37, 38]. These systems resemble integrable systems because
strong disorder leads to the emergence of an extensive number of local
integrals of motion (LIOMs) which are conserved quantities localized
in finite regions of space [39, 40]. Therefore, similar to Anderson local-
ization, transport is inhibited and the system never reaches thermal
equilibrium. Many numerical studies of finite one-dimensional sys-
tems with disorder in external fields have shown the existence of MBL
and investigated its characteristics like the properties of the eigen-
spectrum, the growth of entanglement, or the transition between a
localized and a thermal regime as a function of disorder. However, the
existence of an MBL phase in systems approaching thermodynamic
limit has recently been questioned [41, 42, 43]. Especially, it remains
an open question whether ETH can be violated in higher dimensional
systems [41, 44, 45, 46, 42] and for off-diagonal disorder [47, 48, 49].

This difficulty to understand ETH and MBL is generic to many-body
quantum systems and rooted in the so-called curse of dimensional-
ity [50, 51]: Classical computers are not suited to brute-force solve
high-dimensional problems, which is especially true for quantum sys-
tems where the dimension of the Hilbert space grows exponentially.
This is problematic in peculiar for disordered quantum systems where
finite-size effects strongly affect the study of quantum thermaliza-
tion [28]. Therefore, in this thesis, we employ, in addition to exact
diagonalization of small systems of up to 16 spins, also approximate
methods like the semiclassical Discrete Truncated Wigner Approxima-
tion (DTWA) or Moving Average Cluster Expansion (MACE). For the
integrable quantum Ising model, we derive an analytical solution for
the dynamics, and we discuss physical intuition that can be gained
from real-space renormalization group approaches [52, 53, 54, 55].

To overcome the limitations of small system sizes or approximate
methods, quantum simulations can realize fully controlled model
systems implemented by e.g. cold atomic gases [56, 57, 58, 59, 60, 61].
These experiments feature spatially resolved measurements which can
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reveal the absence of transport and hence demonstrate the failure of
thermalization [62, 63, 64, 65]. Moreover, recent works have achieved
the direct detection of entanglement entropy as a microscopic probe of
thermalization [29, 30, 31]. However, the scalability of these quantum
simulations is limited due to the required full microscopic resolution.

In this thesis, complementary to the simulators with microscopic
resolution, we implement systems with thousands of spins and use
global observables to gain insight into the quantum systems of in-
terest. We simulate the dynamics of a disordered quantum spin-1/2

system by exciting Rubidium-87 atoms to highly excited Rydberg
states. The orbital radius of Rydberg atoms increases with the square
of the principle quantum number n2, therefore they possess enormous
dipole moments [66]. This leads to strong dipolar or Van-der-Waals
interactions between different Rydberg atoms [67]. These interaction
strengths exceed the typical strength of external magnetic or elec-
tric noise, and also they are large compared to the spontaneous or
blackbody decay rates of Rydberg atoms. This allows considering the
Rydberg spin system as isolated during the dynamics. This property
of Rydberg atoms is extremely important for this study to ensure that
the relaxation dynamics are not induced due to coupling to a bath
and that this bath does not thermalize the system.

In addition, the Rydberg platform is extremely versatile. For exam-
ple, we can engineer different types of spin Hamiltonians depending
on the choice of Rydberg states that constitute the spin-1/2 system [68,
69]. In addition, the Rydberg blockade effect imposes a minimal dis-
tance between the Rydberg spins [70, 71, 72] which allows tuning the
strength of disorder in the system. A detailed explanation of how
different spin Hamiltonians can be realized with Rydberg atoms, how
microwave pulses allow the implementation of global spin rotations
and how the magnetization can be measured via electric field ioniza-
tion can be found in Chapter 2 of this thesis.

The thesis is organized as follows: First, we will give a short
overview of how to use Rydberg atoms to explore many-body spin
systems. This is followed by the two main parts of the thesis: Part I
discusses universal slow relaxation dynamics in disordered quantum
spin systems that is independent of the strength of disorder and the
type of Hamiltonian. Part II reports on the absence of thermalization
in systems consisting of thousands of spins, and it deduces an intuitive
physical explanation of this phenomenon based on the localization of
pairs. Each part features a detailed introduction to the main concepts,
an outline of the research program and a conclusion of the main re-
sults. Finally, the last chapter presents an outlook on the next steps
on the Heidelberg Rydberg quantum simulator platform which aim to
explore the relation of isolated spin systems with random couplings to
spin glasses and MBL through new experimental protocols and local
measurements.



2
C O N C E P T S : S P I N P H Y S I C S W I T H RY D B E R G AT O M S

Parts of this chapter are based on the publications Article [1] and [4], from
which parts of the text have been taken verbatim.

This work studies the relaxation of isolated quantum spin systems.
Part I focuses on the relaxation dynamics themselves, concluding that
the interplay of disorder and unitary quantum dynamics leads to the
build-up of entanglement within small clusters of spins leading to a
unifying description of the resulting glassy dynamics via the stretched
exponential law. Part II discusses whether the steady state is compati-
ble with a thermal ensemble description leading to the discovery of
the absence of thermalization in strongly disordered isolated quantum
systems. Despite addressing a different phenomenology, the two parts
share similar experimental challenges, and they benefit from the great
versatility of the Rydberg quantum simulator platform to tune the
type of interactions.

2.1 rydberg atoms as a versatile quantum simulator

platform

In this section, we first provide a comprehensive description of how
to engineer a spin-1/2 Hamiltonian with different combinations of
Rydberg states [74, 69]. Depending on the choice of the Rydberg states,
this allows for tuning both the interaction range and also the type of
interaction. In the second part of the section, we will discuss how the
Rydberg blockade effect can be used to tune the strength of disorder
in the spin system. This tuning of the disorder strength will allow us
to investigate how disorder affects the unitary quantum dynamics of
isolated quantum spin systems, and it will enable us to drastically

Figure 2.1: Fotograph of the Heidelberg Rydberg experiment (a) and the
Rydberg detector (b). Adapted from [73].
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6 concepts : spin physics with rydberg atoms

modify the properties of the system from a thermalizing regime to a
non-thermalizing regime.

2.1.1 Realizing different Heisenberg XXZ-Hamiltonians with Rydberg
atoms

We consider a spin-1/2 system interacting with the following Heisen-
berg Hamiltonian (h̄ = 1)

Ĥ = ∑
i<j

(
J⊥ij /2(ŝi

+ ŝj
− + ŝi

− ŝj
+) + J∥ij ŝ

i
z ŝj

z

)
. (2.1)

Here, ŝi
+− = ŝi

x ± iŝi
y, where ŝi

α(α ∈ x, y, z) are the spin-1/2 operator
of spin i.

For general spin systems with global U(1) symmetry, the coupling
terms can be obtained by calculating the matrix elements of the inter-
action Hamiltonian. The Ising term

J∥ij = (E↑i↑j + E↓i↓j)− (E↓i↑j + E↑i↓j) (2.2)

is defined as the energy difference between spins being aligned and
being anti-aligned. Here, Eαi β j = ⟨αiβ j|Ĥ|αiβ j⟩ are the interaction en-
ergy of spin i and j with α, β ∈ [↑, ↓]. The exchange term is determined
by

J⊥ij = ⟨↓i↑j |Ĥ| ↑i↓j⟩ . (2.3)

For a system consisting of states with opposite parity (see Fig-
ure 2.2 (b)), such as |↓⟩ = |nS⟩ and |↑⟩ = |nP⟩, where n is the principal
quantum number, the dominant coupling is a direct dipolar interaction
and can be described by the Hamiltonian

ĤDDI =
d̂i · d̂j − 3

(
d̂i · erij

) (
d̂j · erij

)

r3
ij

. (2.4)

where d̂i is the dipole operator of atom i, erij is the unit vector
connecting the two atoms and rij their distance. Mapped on the
spin Hamiltonian of Eq. 2.1, the resulting interaction coefficient is

J⊥ij =
C⊥3 (1−3cos2θij)

r3
ij

[75, 76]. Here, θij is the angle between erij and the

quantization axis and C⊥3 the coupling parameter. The Ising term J∥ij
is not present since interaction energy shifts Eαi β j are dipole forbid-
den. The strength of the dipolar interactions scales with the principle
quantum number as n4 [77], for example for a system of 61S and 61P
states, the coupling constant is given by C⊥3 /2π= 3.14 GHz µm3.

If the two states possess the same parity, such as the two atoms being
in the same state nS, direct dipolar coupling is forbidden. Instead, the
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Figure 2.2: (a) Spins that are randomly distributed in space and interact
via power-law interactions. The disorder can be decreased by
the Rydberg blockade effect which imposes a minimal distance
between the spins. The underlying Hamiltonian can be tuned by
the choice of Rydberg states leading to Heisenberg XX (b), XXZ
(c) or Ising (d) interactions. Adapted from Article [4].

interaction is a second-order process through a virtually excited pair
state |m⟩ and can be described by

ĤvdW = −1
h̄ ∑

m

ĤDDI |m⟩ ⟨m| ĤDDI

∆ν
. (2.5)

Here, the Foerster defect ∆ν is the energy difference between the initial
state and the virtually excited state |m⟩. This Hamiltonian gives rise
to power-law interactions Jij = C6/r6

ij that can be extremely large for
Rydberg states as the interaction scales with n11. Especially, this term
is large if a pair state m with a small Foerster defect and a large dipolar
coupling exists.

For example, an initial state |↑i↑j⟩ = |nS, nS⟩ couples mainly to the
pair state |m⟩ = |(n− 1)P, nP⟩. This gives rise to an energy offset E↑i↑j

if two atoms are in the same Rydberg state. Many experiments exploit
this effect by realizing a spin system where the ground state is coupled
to a single Rydberg state, which can be mapped on an Ising model [78,
79, 80].

Similar interactions also exist for a spin system realized with two
different Rydberg states |↓⟩ = |nS⟩ and |↑⟩ = |(n + 1)S⟩ for all energy
shifts in the Ising term (2.2). In addition, the Van-der-Waals Hamilto-
nian (2.5) can also induce the spin exchange term J⊥ defined in (2.3)
via the intermediate pair state |m⟩ = |nP, nP⟩ (see Figure 2.2 (c)). In
the case of n = 61, the Foerster defects of both the Ising and exchange
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interactions are similar, therefore also the interactions are comparable
resulting in J∥/J⊥ = 0.7. Therefore, this spin system can be mapped
onto an effective Heisenberg XXZ-Hamiltonian [1].

In order to realize an Ising Hamiltonian with two different Rydberg
states, a state combination is needed where the exchange term (2.3) is
small. This can be achieved by coupling |↓⟩ = |nS⟩ to |↑⟩ = |(n + 3)S⟩.
In this case, the largest contribution to the exchange term comes from
|m⟩ = |(n + 1)P, (n + 1)P⟩ where the Foerster defect is increased by
an order of magnitude (see Figure 2.2 (d)) and also the matrix elements
are small. For example, for n = 61, this spin system is characterized
by a ratio of J∥/J⊥ = 400, which is a good approximated to an Ising
Hamiltonian (J⊥ = 0).

2.1.2 Excitation of Rydberg spins

Figure 2.3: Time-of-
flight measurement
of the dipole trap
to determine the
temperature T. The
orange line shows a fit
of
√

w2 + 2kbTt2/mRb
where w is the diame-
ter of the dipole trap
and mRb the mass of
Rubidium.

To implement a Rydberg spin system in the experiment (see Fig-
ure 2.1 (a)), we prepare a gas of 87Rb atoms in their electronic ground
state |g⟩ = |5S1/2, F = 2, mF = 2⟩ in an optical dipole trap at a temper-
ature T ∼ 20 µK (see Figure 2.3). This temperature is low enough to
freeze the motional degrees of freedom over the time scale of 10 µs of
the experiment.

Figure 2.4: (a) Level scheme for the two-photon Rydberg excitation process.
(b) Schematic of the Rydberg blockade effect.

A laser pulse of variable duration brings a controllable number of
up to 4000 atoms to the |↓⟩ = |nS1/2, mj = +1/2⟩ Rydberg state where
n is chosen typically between 48 and 61. For this we use a two-photon
laser excitation at 780 nm and 480 nm, with a detuning ∆ν = 2π ×
100 MHz from the intermediate state |e⟩ = |5P3/2, F = 3, mF = 3⟩(see
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Figure 2.4 (a)). During this process, the strong Van-der-Waals inter-
actions J(r) = C6/r6 between atoms shift the atoms out of resonance
if the interaction strength exceed the excitation bandwidth ω (see
Figure 2.4 (b)). This prevents two atoms from being excited to Rydberg
states if the distance is smaller than the blockade radius

rbl =
6

√
C6

h̄ω
. (2.6)

In the experiments presented in this thesis, the excitation bandwidth
is typically Fourier limited by the duration of the excitation pulse. For
example, the blockade effect induces a minimal distance of 5 µm for
the Rydberg state |48S⟩ for an excitation of 1 µs.

2.1.3 Tuning the strength of disorder by the Rydberg blockade effect

Figure 2.5: 2D illustration of how the Rydberg blockade affects the strength
of disorder. At low density, the spins are randomly spaced and
the standard deviation σ of the interparticle distances mini ̸=j rij
is large (represented by the bar centered around the mean inter-
particle distance x). Increasing the density (left to right panel)
decreases the strength of disorder characterized by the mean
number of spins per blockade radius (a0/Rbl)

−2. Adapted from
Article [1].

Figure 2.6: Probability
distributions of nearest-
neighbor interaction
strengths for three
different blockade radii
(red line: large block-
ade radius, green line:
small blockade radius).
The dashed grey line
shows the distribution
of randomly placed
spins. Adapted from
Article [1].

The Rydberg blockade is an interesting many-body effect that is
studied in many quantum simulation experiments which map the
Rydberg excitation on an Ising spin system [78, 79, 80]. In this thesis,
the excitation to the Rydberg state is only the preparation that deter-
mines the spatial Rydberg distribution, afterward, the excitation lasers
are switched off, and the interaction with the ground states can be
neglected.

At first glance, the Rydberg excitation influences mostly the density
ρ. To the density, we can attribute a typical length scale of the system
given by the typical interparticle distance which can be represented
by the Wigner-Seitz radius a = (4πρ/3)−1/3. A high density or small
interparticle distance would increase the typical interaction strength
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leading to faster dynamics. However, this effect could be trivially com-
pensated by rescaling time with interaction strength and it should not
change the spin dynamics qualitatively. However, the Rydberg block-
ade effect introduces a second length scale which imposes a minimal
interparticle distance or maximal interaction strength to the system.
Therefore, rescaling time with density can not balance the effect of
both length scales, a and rbl, and the probability distribution functions
of the nearest-neighbor interaction strengths differ qualitatively from
each other (see Figure 2.6).

The ratio between blockade radius rbl and Wigner-Seitz radius a
can be seen as a way to control the degree of disorder (see Figure 2.5):
For a ≫ rbl the blockade effect has little influence and the spins
are randomly distributed, whereas the limit a ≈ rbl corresponds
to a strongly ordered configuration. In between, the short distance
cutoff imposed by the Rydberg blockade effect effectively reduces the
strength of the disorder compared to fully uncorrelated random spin
positions.

Another possibility to quantify disorder is to compare the blockade
radius to rmax = 2[3ηcp/(4πρ)]1/3 which corresponds to the distance
between the spins in a close-packed arrangement at same density ρ and
packing fraction ηcp = π/

√
18 ≈ 0.74. Here, rbl = 0rmax corresponds

to a fully disordered random system, and rbl = rmax describes the
configuration of close-packing which can be found in a hexagonal
close packing (hpc) or face-centred cubic (fcc) lattice without any
disorder.

2.1.4 Imaging and simulation of the density distribution of Rydberg atoms

Figure 2.7: Self-
consistent method to
calculate the blockade
radius. For a given
blockade radius, the
number of blockaded
atoms Nbl is calcu-
lated which enhances
the collective Rabi
frequency by

√
Nbl.

The associated power
broadening alters the
blockade radius, again
changing Nbl. This
calculation is iterated
until convergence.
Adapted from [81].

To model the experimental 3D spin distribution, we employ a sim-
plified description of the Rydberg excitation dynamics in a cloud of
ground-state atoms [82, 83, 84, 81]. Although the experimental proce-
dure creates a superposition of different configurations of atoms being
excited to the Rydberg state, each configuration of this superposition
can be regarded as an independent disorder realization. Indeed, the
different configurations evolve independently from each other under
the spin dynamics, and the final projective measurement randomly
selects one of them. Thus, to create samples of such configurations of
Rydberg excitations we iteratively select atoms randomly and excite
them to the Rydberg state with a certain excitation probability which
we set to zero if another atom within a distance of rbl is already in the
Rydberg state. The excitation probability includes a collective enhance-
ment factor caused by the Rydberg blockade effect [71, 72, 85] (see
Figure 2.7). We also take into account the spatial profile of the laser
excitation, and the Gaussian density distribution of the ground-state
atomic cloud. In our simulations, the peak two-photon Rabi frequency
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was chosen such that the total number of excited atoms equals the one
measured by field ionization.

2.2 coherent manipulation of rydberg spins

For both parts of this work, it is crucial that the experimental real-
ization of the quantum system is well isolated from the environment
such that the relaxation is not induced by decoherence caused by
coupling to an external bath but by the build-up of entanglement
generated by interactions within the quantum system. In addition, the
experiments require a microwave setup that does not induce further
decoherence effects and allows realizing pulse with arbitrary phases
to enable pulse sequences like spin locking or a tomographic readout
of the magnetization.

2.2.1 Fast Rabi oscillations

Figure 2.8: (a) Foto-
graph of the Rydberg
microwave setup. (b)
COMSOL® simulation
of the microwave radia-
tion. Adapted from [86].

To accomplish π/2-pulses on time scales much faster than the typical
interaction strength, it is decisive to realize fast and coherent Rabi
oscillations. The Rabi oscillations are realized by coupling the Rydberg
states using microwave radiation created by the Keysight M8195A
arbitrary waveform generator (AWG). This features a resolution of
8 bit, a sample rate of 65 GSa/s and an analog bandwidth of 25 GHz
which is sufficient to directly drive transition between |nS1/2⟩ and
|nP1/2⟩ for a principal quantum number n ≥ 54. Lower Rydberg states
can be addressed by mixing the signal of the AWG with the Anritsu
MG3697C signal generator that can output microwave frequencies up
to 70 GHz. For some measurements as in Article [5], it is required to
achieve high power for a fast π/2-pulse, followed by a spin-locking
pulse at low fields. For these measurements, the increased sampling
rate of 14 bit of the Keysight M8190A AWG (8 GSa/s sampling rate) is
beneficial.

To suppress the microwave coupling to unwanted transitions, we set
up a microwave setup with a clean polarization [86]. For this purpose,
we focus the microwave with a concave mirror into the science cham-
ber and dump the outgoing radiation after the chamber in microwave
absorbing foam. This avoids additional reflections from metallic sur-
faces with undefined polarization. As a result, the measured Rabi
frequency for the transition |48S1/2, mj = 1/2⟩ ↔ |48P3/2, mj = 1/2⟩
is approximately ten times larger compared to the unwanted transition
|48S1/2, mj = 1/2⟩ ↔ |48P3/2, mj = 3/2⟩. An additional benefit of this
microwave setup is reduced shot-to-shot fluctuations and drifts of the
microwave power which are typically caused by temporal varying
reflections.

Figure 2.9: Setup of
the magnetic fiel coils
of the Rydberg exper-
iment. Only the large
MOT coils are water-
cooled and do not over-
heat even at magnetic
fields of up to 260 G.

With this microwave setup, and since Rydberg atoms possess large
dipole moments, it would not be difficult to reach microwave radiation
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with electric fields corresponding to Rabi frequencies of multiple GHz.
However, to obtain a clean spin-1/2 system, special care needs to
be taken that no additional Rydberg states are populated due to the
microwave radiation. Therefore, we apply a strong magnetic field
of up to 130 G which energetically splits the states with different
magnetic quantum numbers. This large magnetic field is achieved by
using the large and water-cooled MOT coils (see Figure 2.9) instead of
the previously used compensation coils which would heat and break
at the large currents required for these magnetic field strengths. To
switch between the Antihelmholtz configuration required to realize the
gradient field needed for the MOT and the Helmholtz configuration
required for the constant magnetic field used during the Rydberg
experiment, we invert the direction of the current in one of the MOT
coils using an H-bridge.

Figure 2.10: Rabi oscillations at 59 MHz between the Rydberg states |48S⟩ and
|48P⟩. The orange line is a fit with a damped cosine oscillation.

Combining the large splitting of the magnetic Rydberg levels and
the clean microwave setup, we achieve coherent Rabi oscillations of up
to 60 MHz (see Figure 2.10). Additionally, we can generate an arbitrary
microwave waveform. This was used to build pulse sequences for
Floquet Hamiltonian engineering [87, 88] or to engineer dephasing
which allows measuring the fluctuation-dissipation theorem [89]. In
this thesis, the microwave is used to read out the magnetization in
the xy-plane tomographically and to implement the spin-locking field
(see Figure 2.11).

2.2.2 Coherence times of the Rydberg spin system

To achieve an isolated quantum spin system, we exploit the large
dipole moment of Rydberg atoms leading to interaction strengths
exceeding the typical decoherence effect like the Rydberg lifetime or
fluctuations of the external fields. For example, exciting the Rydberg
state 48S leads to a blockade radius of approximately rbl ≈ 5 µm. For
example, at this minimal distance, the dipolar interactions of the spin
system 48S− 48P are J⊥ = C3/r3

bl = 2π × 9.2 MHz and the Van der
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Figure 2.11: Experimental protocol for a Ramsey sequence. After Rydberg ex-
citation of the |↓⟩ Rydberg state, a microwave π/2-pulse creates
a superposition state. This state evolves unitarily either without a
field applied (Ramsey sequence), or a microwave field 90◦ phase
shifted with respect to the first π/2-pulse creates a spin lock-
ing field. Afterward, a second π/2-pulse with varying phases
tomographically rotates the magnetization in the xy-plane to the
z-direction. Finally, the z-magnetization is measured via state
selective field ionization (see Section 2.3). Adapted from Article
[1].

Waals interactions of 48S− 49S are J⊥ = C6/r6
bl = 2π× 3.8 MHz. Con-

sequently, the atoms undergo up to 100 interaction cycles within the
typical experimental duration of 10 µs during which the spin system
reaches the steady state. This time can still be considered short com-
pared to the Rydberg spontaneous lifetime of 113 µs which determines
the rate of Rydberg atoms decaying to the ground state. Since the inter-
action with the groundstate atoms can be neglected, this process does
not directly reduce the coherence within the spin-1/2 manifold but ef-
fectively spins are removed from the system. Additionally, black body
radiation from the 300 K hot vacuum chamber induces population
transfer to energetically close Rydberg states at a rate of 9 kHz. This is
the main source of decoherence and ultimately limits the coherence
time of the Rydberg quantum simulator.

Figure 2.12: Ramsey oscillations at a detuning of 470 kHz between the Ry-
dberg states |48S⟩ and |49S⟩. The orange line is a fit with a
damped cosine oscillation. Adapted from Article [1].
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To exclude other sources of decoherence like noise in magnetic or
electric fields, we observe Ramsey oscillations at low densities where
interactions are negligible (see Figure 2.12). These oscillations are
perfectly coherent for experimental times of 10 µs. This measurement
proves that decoherence effects on single atoms can be neglected. In
addition, the Ramsey oscillations allow us to precisely determine the
resonance frequency between the Rydberg states.

2.3 measurement of the magnetization by field ioniza-
tion

In the two previous sections, we have seen that Rydberg atoms feature
strong and tunable interactions, long lifetimes, and they can be coher-
ently controlled by fast microwave pulses. Here, we want to discuss
how to detect Rydberg atoms and reconstruct the magnetization of
the Rydberg spin system using field ionization. The magnetization

Mz =
N↑ − N↓

2(N↑ + N↓)
(2.7)

of a Rydberg spin-1/2 system is defined as the difference of the
populations N↕ between the states |↑⟩ and |↓⟩. These can be measured
individually by selective field ionization where the electric field is slowly
ramped up such that the different states ionize at different times.
Alternatively, one of the states can be optically de-excited and only the
remaining atoms are ionized. This latter method requires a calibration
measurement of the total atom number Ntot = N↑ + N↓.

2.3.1 Field Ionization of Alkali Rydberg atoms

Figure 2.13: The
Coulomb-Stark poten-
tial of a Rydberg atom
in an electric field E .
The red arrow illus-
trates the tunneling
process of the electron
through the potential
barrier.

The principle idea of Rydberg field ionization is to apply a strong elec-
tric field E in z-direction which imposes a potential gradient Ez (blue
dashed line in Figure 2.13). Combined with the Coulomb potential of
the atomic core, the valence electron experience the potential

Vionization(z) = −1/z + Ez (2.8)

which is shown by the solid black line in Figure 2.13. This potential
features a saddle point at z = 1/

√
E where the potential has a value

of Vb = −2
√
E . For the ionization process to occur classically, the

energy of the Rydberg state needs to be above this potential barrier.
This condition leads to the classical ionization threshold for a state
with principle quantum number n (neglecting centrifugal potential
and quantum defects) of

Eclassical = 1/16n4. (2.9)

In a quantum system, the electron can additionally tunnel through the
barrier (indicated by the red arrow in Figure 2.13) at a rate Γ [90, 91,
92, 93].
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Figure 2.14: Stark map of the Rubidium atom. The grey lines show the en-
ergy of various Rydberg states. The dashed blue line represents
the classical ionization threshold Vb. (a) The evolution of the
states 48S, 48P and 49S assuming adiabatic level crossings are
highlighted in color. (b) The passage through the Stark map
of the state 48P for a slow ramp of 60 µs. The Stark map was
calculated using the ARC [94].

This simplified model of ionization ignores the Stark effect of the
electric field which shifts the energy levels of the Rydberg atom and
induces a multitude of avoided crossings (see Figure 2.14). Therefore,
the time evolution of a Rydberg state through the Stark map strongly
depends on how fast the electric field is increased leading to drastically
different ionization fields depending on the field ramp. For example,
Figure 2.14 (a) shows the time evolution of the Rydberg states 48S (red),
48P (green), and 49S (blue) assuming only adiabatic level crossings, i.e.
an infinite slow ramp. For all these states, the Stark effect decreases the
energy such that the states become more difficult to ionize compared
to equation (2.9). Interestingly, the time evolutions of the states 48P
and 49S meet at the first crossing of two different hydrogen manifolds,
the so-called Inglis-Teller limit [95]. After this point, the passages
through the Stark map are alike and the two different states ionize
at similar field strengths. Therefore, it is possible to distinguish the
spin systems nS− nP or nS− (n + 1)S via field ionization, but not
nP− (n + 1)S.

For a more realistic ramp where the field is linearly increased
within 10 µs from 0 to 100 V cm−1, only the first avoided crossing
is transitioned adiabatically. For larger fields, the system is partly
adiabatic and diabatic leading to a spread of the population into
different Rydberg states which ionize at slightly different times. For
heavy atoms like Rubidium, this broadening is typically found to be
on the order of 8% of the ionization field [96, 97], and can be even
larger if the slew rate is too large and the avoided crossings at low
electric fields below the Inglis-Teller limit are also partly diabatic [98].
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2.3.2 Experimental setup and peak detection

To ionize the Rydberg atoms in the Heidelberg Rydberg experiment,
we can apply voltages to segmented ring electrodes which creates a
constant electric field at the positions of the atomic cloud (see Fig-
ure 2.1 (b)). The ions are then guided by two deflection electrodes
towards a multichannel plate (MCP) ion detector (Hamamatsu F1551-
21S) where the individual ions induce an electron avalanche which
can be temporally resolved on an oscilloscope. The MCP allows for
detecting a large number of ions before saturating because each chan-
nel of the MCP saturates independently. The detection efficiency of
40% is mostly determined by the open area ratio of the MCP.

An important experimental upgrade enabling selective field ion-
ization was to build a high voltage amplifier that can generate field
ramps at arbitrary slew rates and voltage thresholds [99]. Importantly,
the electronic circuit needed to be designed such that the amplifier can
also produce small offset fields with low noise which allows tuning
the type of interactions of the spin system and does not induce further
sources of decoherence for the spin experiments.

Figure 2.15: Typical voltage trace obtained from field ionization of the Ry-
dberg state |48P⟩. The electric field was ramped from 0 to
175 V cm−1 within 60 µs. The bottom plot shows a zoom of the
signal into the highlighted region. The orange crosses highlight
the peaks identified as ions by the peak-finding algorithm.

In experiments prior to the new high voltage amplifier, the electric
field was switched on within a fraction of a microsecond. As a conse-
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quence, the ions have also arrived bunched on the detector within less
than a microsecond. Firstly, this resulted in overlapping peaks that
could no longer be differentiated leading to an early saturation of the
ion signal. Secondly, selective field ionization was impossible because
the duration of switching on the electric field was small compared
to the width of the arrival times of the peaks. The new amplifier
has allowed realizing controlled field ramps where the electric field
is increased within tens of microseconds from 0 to 175 V cm−1. For
these slow ramp speeds, the ions arrive at the detector well separated
in time within tens of microseconds (see Figure 2.15) which enables
counting single peaks and has increased the saturation threshold of
the detector.

2.3.3 Magnetization reconstruction by state selective field ionization

To reconstruct the magnetization via selective field ionization, we first
take two calibration measurements to determine the typical distribu-
tion of arrival times of ion peaks for each Rydberg spin state.

The green histograms in Figure 2.16 show the density ρ(t|M =

+1/2) of ion peaks as a function of the arrival time t for the Rydberg
state |↑⟩ = |48S⟩ for four different electric field ramps. Increasing
the ramp time from 10 µs (top histogram) to 90 µs (bottom histogram)
delays the average arrival time and increases the width of the distribu-
tion.

The Rydberg state |48P⟩ has a larger energy level and are therefore
expected to ionize slightly earlier compared to |48S⟩. Indeed, the
distribution ρ(t|M = −1/2) of arrival times (orange histograms in
Figure 2.16) is slightly shifted to earlier times compared to |48S⟩. For
the fast ramp of 10 µs (top histogram), this difference is only small and
the two different distributions are barely distinguishable. For slower
ramps of 30 µs to 60 µs, the relative distance between the maxima of
the distributions is comparable to the widths of the distributions. In
this regime, reconstructing the magnetization from the arrival times
of the ions on the detector is possible. If the ramp is chosen to be too
slow (90 µs ramp time), the relative distance between the peaks does
not increase further, but the noise floor is substantially larger which
effectively decreases the signal.

To infer the magnetization of a Rydberg system with unknown
magnetization M, we can assume that the distribution ρ(t|M) of arrival
times of ions on the detector is a superposition of the distributions
ρ(t|M = ±1/2) where only a single state is populated:

ρ(t|M) = (
1
2
+ M)ρ(t|M = +1/2) + (

1
2
−M)ρ(t|M = −1/2) (2.10)

This function can be fitted to the measured distribution of arrival
times, the best fit of M determines the most probable magnetization.
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Figure 2.16: Histograms of the arrival times of the ion signals obtained by
field ionization of the Rydberg states |48S⟩ (green) and |48P⟩
(orange) for linear electric field ramps from 0 to 175 V cm−1

within varying ramp times.

Alternatively, we can make use of Bayes theorem [100, 101] to
calculate the posterior probability given the measured arrival times of
ions

ρ(M|t) = ρ(t|M)ρM
ρ(t)

(2.11)

where ρ(M) is the prior and ρ(t) the marginal probability. Without
any assumptions on the measurement, the prior can be assumed to
be uniform leading, in this case, the magnetization can be calculated
from the maximum likelihood estimator. For multiple independent
measured arrival times ti, this can be calculated by minimizing

−∑
i

log ρ(ti|M) . (2.12)

This method gives similar results for the magnetization compared to
fitting the model function (2.10), but it can be generalized to arbitrary
priors and this method is numerically more stable and faster.

Figure 2.17: Field ion-
ization of a Rydberg
system at high den-
sity for a linear elec-
tric field ramp from
0 to 175 V cm−1 within
60 µs.

Selective field ionization is a reliable method to calculate the mag-
netization at low Rydberg densities, and it can even be used to distin-
guish three different Rydberg states [89]. However, at high Rydberg
densities, the distributions of arrival times broaden and distinguish-
ing different Rydberg states becomes impossible (see Figure 2.17). At
these high densities, the interactions between the spins become large
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and the Stark map shown in Figure 2.14 is expected to be modified
which could possibly change the ionization signal. Another possible
explanation for this effect is that atoms which ionize early during the
field ramp lead to avalanche ionization of nearby Rydberg atoms. This
avalanche process might dominate at high Rydberg densities which
explains the observed broadening and the indistinguishability of the
Rydberg states.

2.3.4 Magnetization reconstruction by optical de-excitation

Figure 2.18: Scheme for the measurement of the magnetization via optical
de-excitation. Initially, Rydberg atoms are excited by a resonant
two-photon excitation pulse with red 780 nm and blue 480 nm
light. The lasers are tuned such that the intermediate |5P3/2⟩
state is detuned by 98 MHz. After a delay time which can be used
for Rydberg spin experiments, the Rydberg state |R⟩ = |nS1/2⟩
is optically deexcited by the blue laser being resonant to the
intermediate |5P3/2⟩ state. The latter decays spontaneously at a
rate of Γe = 2π6 MHz. Adapted from [102]

Figure 2.19: Normal-
ized ion count mea-
sured after an optical
de-excitation pulse of
duration tdp. An ex-
ponential fit is shown
by the orange line.
Adapted from [81].

An alternative measurement scheme to selective field ionization is
the state selective optical de-excitation (see Figure 2.18). Here, the same
blue 480 nm laser which is also used for exciting the Rydberg atoms, is
tuned to be on resonance to the transition between the Rydberg state
|R⟩ = |nS1/2⟩ and the state |5P3/2⟩. The latter decays spontaneously
at rate of Γe = 2π6 MHz. If the Rabi frequency Ωdp of the blue laser is
small compared to this rate, we expect an exponential relaxation of
the Rydberg state at a rate determined by Ωdp. After the de-excitation
pulse, the remaining atoms can be ionized by field ionization.

To determine the efficiency of the de-excitation pulse, we have
prepared Rydberg atoms in the state |48S⟩, varied the duration tdp
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of the de-excitation pulse, and measured the remaining number of
Rydbergs by field ionization. The normalized ion count is shown
in Figure 2.19. The experimental data can be well described by an
exponential relaxation at a rate of 4.8 MHz.

Figure 2.20: Reconstruction of the magnetization. Left panel: measurements
of the total number of spins M↑+↓. Right panel: measurement
of the population in the |↑⟩ state M↑(ϕ) after a readout pulse
of phase ϕ. Both are affected by the population in auxiliary
states Na. The measurement M↑ is fitted by a sinusoidal function
(orange line), from which we extract the mean value M↑. The
amplitude A of the fit, normalized by the total number of spin
N↑+↓, indicates the magnetization in the xy plane. Adapted from
Article [1].

With this method, the calculation of the magnetization is more com-
plicated because adjacent Rydberg states might also be populated due
to the finite black-body lifetime of the Rydberg states, the finite effi-
ciency of the optical de-excitation, and a possible microwave transfer.
This residual population leads to an offset in the measured ion signal,
a number Na of those atoms being energetically above the ionization
threshold. In the following, we will describe how to calculate the
magnetization from a tomographic readout of the magnetization (see
Figure 2.20).

For the tomographic readout, the magnetization ⟨S⟩ϕ is rotated by
a π/2-pulse with phase ϕ to the z-direction. Now, the Rydberg state
|↓⟩ is optically deexcited and the sum of Na and the population N↑(ϕ)
in the state |↑⟩ is ionized:

M↑(ϕ) = N↑(ϕ) + Na (2.13)

The measured quantity M↑(ϕ) is a sinusoidal function of ϕ, centered
around its mean value

M↑ =
N↓+↑

2
+ Na . (2.14)
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The amplitude A of the sinusoidal fit corresponds to the magnetization
in the xy-plane but it needs to be normalized by the total number of
spins N↓+↑ = N↑ + N↓. The phase of the fit determines the direction
of the spins in the xy-plane.

To determine the total number of spins, a second calibration mea-
surement where no optical deexcitation is performed. This measure-
ment of the total number of Rydberg atoms

M↓+↑ = N↓+↑ + Na . (2.15)

combined with (2.14), allows calculating the total number of spins.
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This part of the thesis explores the relaxation dynamics of disordered
quantum spin systems. The most famous type of relaxation is the
exponential decay where a single relaxation timescale dominates the
dynamics. An example of exponential relaxation is the conventional
Debye relaxation where dipoles relax in an overdamped medium [103].
Similarly, in NMR systems both the spin-lattice (T1 time) and spin-
spin relaxation (T2 time) follow a simple exponential law [104]. The
typical origin of exponential relaxation is a decoherence mechanism
that uniformly affects each particle of the system. A consequence of
this decoherence is that these types of systems quickly reach thermal
equilibrium, at a temperature determined by the bath.

Figure 3.1: (a) Stretched
exponential function
(eq. (3.1)) plotted
on a lin-log scale.
(b) The stretched
exponential becomes
a linear function if
the logarithm of the
stretched exponential
is plotted on a log-log
scale.

However, relaxation is not always described by an exponential law.
For example, in glassy systems, disorder and frustration can lead to
an anomalously slow relaxation [105]. While these systems are generi-
cally expected to reach an ergodic thermal equilibrium state, this will
happen only on timescales that typically exceed the experimental time
window [20]. Therefore, on experimentally relevant timescales, glassy
systems are non-ergodic [22]. The description of the slowly relaxing
out-of-equilibrium state as a quasi-stationary state allows for building
a common theoretical framework for glassy systems in analogy to
thermal equilibrium including a generalized fluctuation-dissipation
theorem and an effective temperature [106]. Most importantly, we can
attribute to glassy systems the notion of a phase-transition [107]: At a
certain, critical temperature, the response of spin glasses to external
fields features a sharp cusp [108] and only below this temperature the
spin-glass order parameter is finite. Close to this critical temperature,
signatures of universality can be found [109, 110] which is typically
known only from phase transitions in equilibrium physics [16, 111].
Therefore, despite being non-ergodic, spin glasses can be described
by a common theoretical framework that explains the distinct features
like glassy dynamics or the spin glass phase transitions based on a
microscopic description [20].

The dynamics of glassy systems can generally be well described by
the stretched exponential law [112]:

exp−(t/τ)β
(3.1)

which was introduced by Kohlrausch in 1854 [113] to describe the
discharge of a Leyden jar, and is today known to fit relaxation of
numerous classical systems [114]. The stretched exponential relaxation
is characterized by a single number, the stretching exponent β ∈ (0, 1),
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which allows quantifying how much the dynamics deviate from an
exponential decay thereby functioning as a proxy for glassy dynam-
ics (see Figure 3.1). The limit β = 1 signifies a simple exponential
relaxation, for small β≪ 1, the stretched exponential function can be
expanded in β and is approximated by a logarithmic time dependence
β/e log(t/τ).

Figure 3.2: Illustration of the three classical mechanisms leading to stretched
exponential relaxation. (a) In the direct transfer model, the cen-
tral particle (red ball) relaxes by transferring energy to randomly
distributed defects (blue balls) at a rate Γ(Ri). (b) For the defect
diffusion model, the central particle relaxes if it is reached by a
defect that moves in a random walk toward the central particle. (c)
The hierarchically constrained dynamics model considers a hier-
archy of relaxation timescales from fast to slow. These timescales
emerge because spins on a given level can only change if a clus-
ter of spins on the previous level has acquired a specific spin
configuration. Adapted from [115].

In a seminal paper from 1985, Klafter and Shlesinger classified vari-
ous approaches to explain the stretched exponential relaxation based
on microscopic models into three different mechanisms [115]: In the
Foerster-direct transfer mechanism, a particle can relax by transferring
energy to randomly distributed defects at a rate Γ(Ri) ∝ R−α

i that
depends on the distance Ri between the particle and the defect i (see
Figure 3.2 (a)). Averaging over the relaxations of all parallel relaxation
channels, this model predicts a stretched exponential law with expo-
nent β = d/α for a d-dimensional system. A similar idea of parallel
relaxation channels is described by the defect-diffusion model where the
particle decays if it is reached by randomly positioned defects that
move in a random walk towards the particle (see Figure 3.2 (b)).

The third mechanism is the hierarchically constrained dynamics model
and was originally by Palmer et al. [21]. It contrasts the first two
mechanisms in the sense that the different relaxation channels do not
exist in parallel but in series. The model considers spins on different
levels n (see Figure 3.2 (c)). Spins on the first level (n = 0) can move
on the fastest timescale τ0. However, the spins on the next level (n = 1)
are constrained by the spins on the first level and can only move if µ0
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spins on the first level have reached one out of the 2µ0 configurations.
On the next level, spins are again constrained by the level before,
such that a hierarchy of relaxation time scales from initially fast to
slow dynamics at late times exist. This third model was suggested to
explain the stretched exponential relaxation of spin glasses, which was
later confirmed by de Dominicis et al. who derived a hierarchically
constrained dynamics model from the random free energy model of
spin glasses [116].

Strikingly, Klafter and Shlesinger could demonstrate that, despite
the different physical pictures, all these three mechanisms share a
common mathematical framework that leads to stretched exponential
relaxation: A scale invariant distribution of relaxation times.

The first part of this thesis discusses whether this notion of ergodic-
ity breaking due to slow relaxation also exists in the quantum realm.
Corresponding to glassy dynamics in classical systems, we find that
disordered spin systems relax sub-exponentially, well-described by
a stretched exponential law, remaining out-of-equilibrium for more
than three orders of magnitude in time. Also, this glassiness can be
attributed to the presence of strong disorder in the system and the
existence of a scale-invariant distribution of time scales, the same un-
derlying mathematical framework discussed by Klafter and Shlesinger
in [115] to explain glassy dynamics in classical systems.

Moreover, we find that the glassy dynamics feature universal behav-
ior when varying the type of Hamiltonian or the strength of disorder
up to a critical value, hinting towards a unifying description of re-
laxation dynamics of disordered quantum spin systems. However,
in contrast to classical spin glasses or other open quantum systems
featuring slow dynamics [117, 118, 119], the disordered quantum sys-
tem studied in this thesis is isolated. Therefore, the relaxation is not
induced by coupling to an external bath. Also, the dynamics are not
imposed by thermal fluctuations, which need to be small for a classical
spin glass such that the system can remain in those metastable states,
but instead, quantum fluctuations drive the system dynamics.





4
P U B L I C AT I O N S

Part I of this thesis presents a collection of four studies that investigate
the glassy relaxation dynamics of disordered quantum spin systems.

The first article "Glassy Dynamics in a Disordered Heisenberg Quantum
Spin System" (Article [1]) reports on the discovery of slow relaxation
dynamics in an isolated spin-1/2 system realized with Rydberg atoms.
To initiate the dynamics, we create, by using a microwave π/2-pulse,
a product state where each spin is in a superposition of the two
Van-der-Waals interacting Rydberg states that constitute the spin-1/2

system. This initial state does not show any dynamics in a mean-field
description such that all dynamics are caused by quantum fluctuations.
Strikingly, we can fit the obtained dynamics of the global magneti-
zation by a stretched exponential law exp−(t/τ)β

with a stretching
exponent of β = 0.32(2) which is similar to the exponents found in
classical glassy systems, and notably far below the exponent of β = 1
signifying an exponential decay. This glassy dynamics was observed
for different Rydberg densities, and the experimental data of the dif-
ferent relaxation curves collapse on a single curve after rescaling time
with the typical interaction strength which depends on the coupling
strength C6 and the typical interparticle distance a0. Since a different
Rydberg density results in a different spatial disorder due to the Ry-
dberg blockade effect, this scaling behavior signifies that the glassy
dynamics is independent of microscopic details in the spatial distribu-
tion of the spins. To confirm this observation, we have simulated the
relaxation dynamics using the semiclassical Discrete Truncated Wigner
transformation (DTWA) [120] which shows good agreement with the
experimental data. The DTWA simulations also allow probing of how
the glassy dynamics depends on the disorder strength in a uniform
density distribution. These simulations confirm that the stretching
exponent is independent of disorder strength up to a critical value.

In this first article, the stretched exponential law was just used
as a phenomenological fitting function. To establish the stretched
exponential law from a microscopic model, the article "Glassy Quantum
Dynamics of Disordered Ising Spins" (Article [2]) derives the stretched
exponential law analytically from the exact Emch-Radin solution [121,
122] for an isolated system of Ising spins in the limit of strong disorder
and infinite system size. The solution holds for an arbitrary dimension
d and interaction range α and yields a stretching exponent of β = d/α.
Moreover, this ansatz extends the validity of the stretched exponential
law to the relaxation dynamics of the average single spin purity which
is described by the same stretching exponent, only the relaxation rate
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is reduced. This signifies that the build-up of entanglement also shows
glassy dynamics. Beyond the analytical derivation of the stretched
exponential law in the limit of strong disorder, the exact Emch-Radin
solution allows also to numerically solve the relaxation dynamics for
large system sizes in a regime where a blockade radius decreases
the disorder. These numerical simulations confirm that the stretching
exponent is largely independent of the disorder strength up to a critical
value. Finally, the derivation of the stretched exponential law from a
microscopic model allows a better understanding of the underlying
mechanism leading to glassy dynamics: A scale-invariant distribution
of timescales leads to the emergence of the slow, subexponential
relaxation dynamics. For classical systems, the timescales are due
to coupling to a bath at different exponential relaxation rates, for
the quantum Ising system, the timescales emerge from oscillation
frequencies which are random due to the disorder in the interaction
matrix.

In both discussed studies, it was found that the stretched expo-
nential law describes the relaxation dynamics, either by experimental
observation of the dynamics of a non-integrable Heisenberg XXZ
model or by the analytical solution of the integrable Ising model. This
raises the question of whether glassy dynamics exists independent of
the type or symmetry of the spin Hamiltonian. The article "Semiclassi-
cal Simulations predict Glassy Dynamics for Disordered Heisenberg Models"
(Article [3]) simulates with DTWA the relaxation dynamics of various
Heisenberg XXZ and XYZ spin systems. These spin systems feature
various symmetries, the isotropic XXX model is SU(2) symmetric, the
XXZ model features a U(1) symmetry, and both of these symmetries
are broken for a generic XYZ model. Moreover, these systems feature
a variety of different many-body phases [123, 124, 125, 126, 127]. Since
no analytical solution exists for these models and the exact diago-
nalization is feasible only for small system sizes due to the curse of
dimensionality of quantum many-body systems, this study relies on
the semiclassical DTWA solution which has proven to accurately simu-
late the experimental observation of Article [1]. Also, DTWA becomes
exact for the dynamics of the magnetization of Ising spins oriented
along the x-direction, such that this study using semiclassical approxi-
mations can be seen as a natural generalization of Article [2] which has
derived the stretched exponential law analytically. To confirm that the
observed dynamics is not a specificity of the semiclassical DTWA, we
compare the predicted relaxation by employing the Moving Averaged
Cluster Expansion (MACE) which computes the magnetization by
exact diagonalization of local clusters of spins [128].

The previous study suggests that glassy dynamics is a generic
feature of a general quantum spin system, but the study relies on nu-
merical approximations like DTWA or MACE. To overcome this issue,
we experimentally realize three different types of spin-1/2 Hamilto-
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nians, the Ising, XX and XXZ Hamiltonian, by an appropriate choice
of Rydberg levels. For each spin model, we implement a Ramsey se-
quence similar to Article [1] and present the observed dynamics in
the article "Observation of Universal Relaxation Dynamics in Disordered
Quantum Spin Systems" (Article [4]). By rescaling time with the typical
interaction strength, we find that the relaxation dynamics of all three
Hamiltonians collapse on a single curve which is in good agreement
with the stretched exponential law. To explain this universal behav-
ior, we introduce a simple model which only considers interactions
between nearest neighbors. This model explains the independence of
the dynamics on the type of Hamiltonian and reproduces qualitatively
the obtained dynamics. Even better agreement can be obtained by
MACE, signifying that small local clusters are sufficient to describe
the quantum time evolution.
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Understanding the dynamics of strongly interacting disordered quantum systems is one of the most
challenging problems in modern science, due to features such as the breakdown of thermalization and
the emergence of glassy phases of matter. We report on the observation of anomalous relaxation dynamics
in an isolated XXZ quantum spin system realized by an ultracold gas of atoms initially prepared
in a superposition of two different Rydberg states. The total magnetization is found to exhibit
subexponential relaxation analogous to classical glassy dynamics, but in the quantum case this relaxation
originates from the buildup of nonclassical correlations. In both experiment and semiclassical simulations,
we find the evolution toward a randomized state is independent of the strength of disorder up to a
critical value. This hints toward a unifying description of relaxation dynamics in disordered isolated
quantum systems, analogous to the generalization of statistical mechanics to out-of-equilibrium scenarios
in classical spin glasses.

DOI: 10.1103/PhysRevX.11.011011 Subject Areas: Atomic and Molecular Physics,
Quantum Information

I. INTRODUCTION

The far-from-equilibrium behavior of isolated quantum
systems and in particular their relaxation toward equilibrium
still evades a unifying description. It has been conjectured
that these systems generically relax to a state of local thermal
equilibrium according to the eigenstate thermalization
hypothesis (ETH) [1]. However, the ETH does not explain
how the equilibrium state will be reached, or even if it will
be reached in experimentally accessible timescales.
Particularly rich relaxation dynamics are found in disordered
quantum systems, where the interplay between interactions
and randomness can give rise to new and intrinsically
nonequilibrium effects such as prethermalization [2–4],

many-body localization [5–7], Floquet time crystals [8,9],
and quantum scars [10,11].
In contrast, most natural systems (e.g., in condensed

matter) are not fully isolated from their environment and
hence always relax to thermal equilibrium imposed by the
external bath [12]. But it is known that disorder and
frustration effects can lead to a dramatic slowdown of
thermalization, associated with the onset of glassy behavior
[13]. A key signature of this behavior is that macroscopic
observables relax in a characteristically nonexponential
way, as encountered, for example, in doped semiconductors
[14] and organic superconductors [15], quasicrystals [16],
atoms in optical lattices [17], or diamond color centers
[18,19]. This raises the question whether slow relaxation,
which appears to be ubiquitous in open disordered systems,
also emerges in isolated quantum systems.
A prototypical model for studying far-from-equilibrium

quantum dynamics is the Heisenberg XXZ Hamiltonian
for spin-1=2 particles. Compared to the Ising Hamiltonian,
this class of spin systems has fewer conserved quantities
and shows complex, chaotic far-from-equilibrium dynam-
ics which are difficult to describe theoretically [20].
Here, we experimentally realize a disordered quantum
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Heisenberg XXZ spin-1=2 model in an ultracold atomic
gas by encoding the spin degree of freedom in two
electronically excited (Rydberg) states of each atom.
Spin-spin interactions arise naturally through the state-
dependent dipolar interactions between Rydberg states,
while disorder originates from the random positions of
each atom in the gas which gives rise to distance-
dependent couplings [21]. Using a strong microwave
field pulse that couples the two Rydberg states, we
initialize the spins in a far-from-equilibrium state and
probe their time evolution, thus employing our system
as a quantum simulator for unitary spin dynamics in a
disordered system out of equilibrium [10,22–26].
In a large ensemble of Rydberg spins, we observe that

the magnetization follows a subexponential dependence
characterized by a stretching exponent that is independent
of the strength of disorder up to a critical value. Our
experiments and supporting numerical simulations suggest
that such glassy dynamics, commonly known in disordered
open systems, might also be a generic feature of isolated
quantum spin systems, hinting toward a unifying effective
theory description.
In Sec. II, we give a qualitative physical picture by

solving the time-dependent Schrödinger equation for a
few spins exactly. We then describe in Sec. III how to
implement the Heisenberg XXZ spin model in a gas of
ultracold atoms that are excited to Rydberg states. In
Sec. IV, we experimentally characterize the relaxation
dynamics, and we theoretically investigate the dependence
on disorder strength and character in Sec. V. Finally, we
discuss in Sec. VI our findings in comparison to other
systems exhibiting glassy dynamics.

II. QUALITATIVE PICTURE OF THE
QUANTUM DYNAMICS

We consider an ensemble of N spin-1=2 particles
randomly positioned in space and all initialized in the
j→i⊗N

x ¼ 1=
ffiffiffi
2

p ðj↑i þ j↓iÞ⊗N state, corresponding to an

initial magnetization hSðiÞx i¼1=2. Here, SðiÞα (α ¼ fx; y; zg)
refers to the spin-1=2 operator of the ith spin. The
experimental protocol is illustrated in Fig. 1(a). The unitary
dynamical evolution of the system is governed by the
Heisenberg XXZ Hamiltonian in the absence of magnetic
fields (in units where ℏ ¼ 1),

HXXZ ¼ 1

2

X
i;j

Jij
�
SðiÞx SðjÞx þ SðiÞy SðjÞy þ δSðiÞz SðjÞz

�
; ð1Þ

where Jij are the interaction couplings between the spins i
and j and δ is the anisotropy parameter. To remain
consistent with the experimental implementation (see
Sec. III), we focus on an anisotropy parameter δ¼−0.73
and spin-spin interactions that decay as a power law
Jij ¼ C6=r6ij with the interparticle distance rij.

To obtain a qualitative understanding of the quantum
dynamics in this system, we perform a full quantum
mechanical simulation on a small ensemble of N ¼ 12
spins. In Fig. 1(b) we show the time evolution of the

magnetization hSxik ¼ 1=N
P

ihSðiÞx ik for a single disorder
realization k (gray curve). Because of the spatial disorder,
spin-spin interactions give rise to complex many-body
dynamics on strongly varying energy scales. This is in
stark contrast to an effectively classical, mean-field pre-
diction for this Hamiltonian [dashed line in Fig. 1(c)],
which assumes each spin to evolve in the average field
generated by all other spins, thus neglecting quantum
correlations. The initial fully magnetized state is an
eigenstate of the mean-field Hamiltonian which explains
the total absence of relaxation.
Therefore, in the many-body case the loss of magneti-

zation is not caused by classical dephasing, but by the
buildup of entanglement between spins, witnessed by the

(a)

(b)

FIG. 1. Relaxation dynamics in a disordered quantum spin
system. (a) Protocol for initialization and readout of the many-
body spin system composed of Rydberg atoms. Spin states j↑i
and j↓i correspond to two different Rydberg states. (b) Exact
simulation of 12 spins interacting via a Heisenberg XXZ
Hamiltonian. The plot shows the magnetization for a single
realization (gray curve) and the disorder average over 1000
realizations (black curve) which relaxes as function of time given
in units of the median of the mean-field interaction strengths Jmf .
The dashed line indicates the mean-field prediction that does not

relax. The microscopic expectation values of hSðiÞx i, hSðiÞy i, and
hSðiÞz i for each spin are plotted at three different time steps on the
Bloch sphere. The reduction of the expectation values (magneti-
zation) is a consequence of the spreading of entanglement
(visualized by the blue bonds between spins).
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decrease of the local purity Trðρ2i Þ for each spin ρi being
the single-spin reduced state ρi ¼ Tr¬iρ. Since the dynam-
ics are unitary and therefore the full system remains pure
[Trðρ2Þ ¼ 1], we can quantify entanglement by the second
order Rényi entropy,

Sð2Þ
i ¼ − log2½Trðρ2i Þ�; ð2Þ

which increases to Sð2Þ
i ¼ 1 on a similar timescale as the

relaxation of the magnetization (see Fig. 2). After ensemble
and disorder averaging, the magnetization approaches a
fully randomized state with hSx;y;zi ¼ 0 [see black curve in
Fig. 1(b)], consistent with the ETH prediction. However,
this relaxation occurs very slowly compared to the time-
scales associated with spin-spin interactions.

III. REALIZING A HEISENBERG XXZ SPIN
SYSTEM WITH RYDBERG ATOMS

From a few-body perspective, one may wonder whether
glassy dynamics can actually be observed in fully isolated
quantum many-body systems and to what extent it shares
common features with classical spin glasses. We address
this question experimentally using a gas of ultracold
rubidium atoms prepared in a superposition of two different
Rydberg states. For well chosen pairs of states, the electric
dipole-dipole coupling leads to the XXZ model [27,28].
Here we use the two low angular momentum states
j↓i ¼ j48si and j↑i ¼ j49si to realize the Hamiltonian
(1), with C6=2π ¼ 59 GHz μm6 characterizing the strength
of the power law interactions (for the derivation of the
Hamiltonian, see the Appendix A).
The experimental procedure [Fig. 3(a)] starts with a gas

of 87Rb atoms prepared in their electronic ground state
jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i in an optical dipole trap and
with a temperature T ∼ 50 μK, low enough to freeze the

motional degrees of freedom over the timescale of the
experiment. A laser pulse of variable duration brings a
controllable number of atoms N ≤ 1200 to the j↓i ¼
j48S1=2; mj ¼ þ1=2i Rydberg state. For this we use a
two-photon laser excitation at 780 and 480 nm, with a
detuning −2π × 100 MHz from the intermediate state
jei ¼ j5P3=2; F ¼ 3; mF ¼ 3i and an effective Rabi fre-
quency of 2π × 150 kHz. To individually address two
specific Rydberg states, including Zeeman substructure,
we continuously apply a magnetic field of 6 G. To
characterize the resulting three-dimensional Gaussian
Rydberg density distribution, we perform depletion imag-
ing, where the Rydberg density is deduced by absorption
imaging of the ground-state atoms before and after the
Rydberg excitation laser pulse [29].
A two-photon microwave field is then used to couple the

j↓i state to the j↑i ¼ j49S1=2; mj ¼ þ1=2i Rydberg state.
The single-photon frequency ν ¼ 35.2 GHz is detuned
from the intermediate state j48P3=2i by 170 MHz, far
enough to guarantee that the population in this state due to
off-resonant coupling is smaller than 2%. The atoms can
therefore be considered as two-level systems described by
a pseudospin degree of freedom. In this description the

FIG. 2. Buildup of entanglement quantified by the time
evolution of the second order Rényi entropy of the few-particle
simulation from Fig. 1(b). The plot shows the ensemble averaged
entropy for a single realization (gray curve) and the disorder
average over 1000 realizations (black curve). Since the full
system remains pure, the Rényi entropy is a measure of
entanglement that increases on similar timescales to the maximal

value of Sð2Þ
i ¼ 1 as the magnetization relaxes to zero.

(a)

(b)

FIG. 3. Implementation of the XXZ spin-1=2 model in
Rydberg gases. (a) Experimental procedure. Left: A laser pulse
at 780 nm (red) and 480 nm (blue) excites a controlled fraction
of the 87Rb atoms to the j↓i ¼ j48Si Rydberg state. Middle:
A microwave field couples the j↓i state to the j↑i ¼ j49Si state
to perform a Ramsey experiment. Right: A blue 480 nm laser
depopulates the j↓i Rydberg state, before the j↑i state is
ionized by an electric field. The ions are detected by a
multichannel plate. (b) Ramsey fringes showing a high degree
of phase coherence for a detuning of Δ=2π ¼ 0.47 MHz for a
peak spin density of ρ0S ¼ 6.0ð15Þ × 107 cm−3. The solid line
shows discrete truncated Wigner approximation simulations for
that density.
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microwave field acts as an external field described by the
Hamiltonian

Hext ¼
X
i

�
Ω sinϕSðiÞx −Ω cosϕSðiÞy þ ΔSðiÞz

�
; ð3Þ

withΩ the Rabi frequency, Δ the two-photon detuning, and
ϕ the phase of the field. The Rabi frequency is calibrated
from the period of Rabi oscillations between the two spin
states.
To perform the Ramsey sequence shown in Fig. 1(a), a

resonant microwave π=2 pulse at an effective Rabi fre-
quency Ω=2π ¼ 3.00ð1Þ MHz rotates all spins to the fully
magnetized state j→i⊗N

x with all spins pointing along the x
direction on the Bloch sphere. Uncertainties in the duration
and amplitude of the pulses as well as interaction effects
lead to imperfect initial spin state preparation. Based on
simulations, we estimate the fidelity to be higher than 96%.
After a free-evolution time t in the absence of the

microwave field (Ω ¼ 0), a second microwave π=2 pulse
with adjustable phase ϕ is applied to rotate the equatorial
magnetization components,

hSϕi ¼ cosϕhSxi þ sinϕhSyi; ð4Þ

to the detection basis fj↓i; j↑ig. In this way we effectively
read out the hSxi and hSyi magnetizations from population
measurements of the Rydberg states using electric field
ionization (see Appendix B).
To ensure unitary Hamiltonian dynamics, we restrict the

experimental timescales to a maximum of 10 μs, which is
short compared to the spontaneous decay time and redis-
tribution by black-body radiation (113 and 121 μs, respec-
tively, for the chosen Rydberg states [30]). To verify that
the single-spin phase coherence is preserved during exper-
imental time, we perform a Ramsey measurement with
finite detuning Δ at low spin densities where interactions
can be neglected [31,32]. The full contrast oscillation
shows that the single-spin phase coherence is preserved
over the duration of the experiment, as shown in Fig. 3(b).

IV. EXPERIMENTAL OBSERVATION OF
RELAXATION DYNAMICS

A. Glassy dynamics

We now study the relaxation dynamics due to spin-spin
interactions for increasing spin densities. Figure 4 shows
the experimentally observed relaxation of the magnetiza-
tion using tomographic spin-resolved readout of hSxi and
hSyi. Starting from the almost fully magnetized state
hSxi ¼ 1=2; hSyi ≈ 0, we observe that the magnetization
decays toward the unmagnetized state hSxi ¼ 0; hSyi ¼ 0

within ∼10 μs. This is much shorter than the single-
spin phase coherence time measured in Fig. 3 but still
slower than the characteristic timescale of interactions,

½C6=ð2πÞ=a60�−1 ¼ 0.7ð3Þ μs. Here, a0 ¼ ð4πρ0S=3Þ−1=3
represents the mean interparticle distance. It is defined
as the Wigner-Seitz radius of the Gaussian spin density
distribution [33], whose peak density ρ0S is given by the
initial peak density of spin-down Rydberg atoms.
The time evolution seen in the experiment is qualita-

tively similar to the dynamics obtained by exact diago-
nalisation in Fig. 1(b). Even when accounting for
imperfect preparation of the initial state hSxi≲ 1=2 the
mean-field prediction shows essentially no relaxation on
the experimentally relevant timescales (see dotted line in
Fig. 4 and Appendix C). The qualitative failure of the
mean-field description is different from our earlier obser-
vation [21] of a density-dependent dephasing of hSzi. In
this previous work, mean field also predicted a damping
of Rabi oscillations, yet failing to provide a quantitatively
consistent description of the dynamics. Here, the absence
of dynamics at the mean-field level implies that the
relaxation seen in the experiment is closely related to
buildup of entanglement also apparent in the exact
diagonalization calculations.
We find that the relaxation is well described by a

stretched exponential, in apparent similarity with glassy
dynamics in classical disordered media [18,34–36]:

hSxðtÞi ¼
1

2
exp½−ðγJtÞβ�; ð5Þ

where β is the stretching exponent and γJ defines an
effective relaxation rate. The exponent β characterizes

FIG. 4. Many-body relaxation dynamics of a Heisenberg XXZ
Rydberg spin system. The dots show the temporal evolution of
the two magnetization components hSxi and hSyi from a tomo-
graphic spin readout. Error bars are determined from 120
realizations of the experiment at a peak spin density of ρ0S ¼
1.2ð3Þ × 109 cm−3. The observed dynamics are clearly incon-
sistent with the mean-field prediction including imperfect initial
state preparation (dotted line). The solid lines are DTWA
predictions without free parameters. The shaded area indicates
the systematic uncertainty of the measured density. The dashed
line depicts a fit of the data with a stretched exponential function
yielding a stretching exponent of β ¼ 0.32ð2Þ.
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the deviation from a simple exponential (β ¼ 1) toward a
purely logarithmic decay (β → 0) [see Appendix D].
The experimental data are well described by this phenom-
enological function (dashed line in Fig. 4) yielding an
exponent β ¼ 0.32ð2Þ. This value clearly rules out a pure
exponential decay, i.e., β ¼ 1, that could be expected on the
basis of single-particle dephasing.

B. Insensitivity to microscopic details

To further investigate how slow relaxation and the
characteristic exponent depend on microscopic details,
we control the degree of spatial disorder by taking
advantage of the Rydberg blockade effect in the state
preparation stage [37–39]. During laser excitation the
strong van der Waals interactions between Rydberg states
prevent two spins from being prepared at distances smaller
than the Rydberg blockade radius Rbl. The degree of
disorder is thus controlled by the ratio between blockade
radius Rbl and Wigner-Seitz radius a0 [Fig. 5(a)].

For a0 ≫ Rbl, the blockade effect has little influence
and the spins are randomly distributed, whereas the limit
a0 ≈ Rbl corresponds to a strongly ordered configuration.
In between, the short distance cutoff imposed by the
Rydberg blockade effect effectively reduces the strength
of the disorder compared to fully uncorrelated random
spin positions.
In the experiment we can tune the disorder strength by

changing the peak spin density ρ0S and thus the mean
number of spins per blockade sphere ða0=RblÞ−3 from
0.20(5) to 0.7(2) [two-dimensional representations of
corresponding distributions are depicted in Fig. 5(a)].
Remarkably, we find the stretching exponent β to be almost
constant over this range [inset in Fig. 5(b)]. Furthermore,
after rescaling the time axis by the characteristic energy
scale C6=a60, the time-dependent data collapse onto a single
line [Fig. 5(b)]. From this we conclude that the dynamics
is insensitive to the disorder strength which is modified by
the blockade effect. These experimental observations are
indicative of a universal behavior in the sense that the
dynamics does not depend on the microscopic details of the
system. This unexpected feature will be explored further in
numerical simulations.
Because of the large number of spins in the experiment,

an exact computer simulation of the unitary dynamics
under the Hamiltonian Eq. (1) is not possible. Instead,
quantum effects can be partially taken into account by
applying the semiclassical discrete truncated Wigner
approximation (DTWA; see Appendix C) [40,41] which
has recently been shown to describe the dynamics of
Rydberg interacting spin systems very well [21]. To model
the present experiments, all physical parameters entering
the simulation are determined through independent mea-
surements, such as the spatial density distribution, total
number of spins, and the microwave coupling strength Ω
used in the preparation and readout stages. The initial spin
distribution is generated from a random excitation model of
the Rydberg atoms, including a cutoff distance to account
for the blockade effect. This classical sampling of the
spatial spin distribution is justified on the basis that neither
the microwave pulses nor the Rydberg-Rydberg inter-
actions couple different terms of the collectively excited
many-body state, each of which satisfy the blockade
constraint (see Appendix E). The numerical simulations
describe the glassy dynamics and the insensitivity with
respect to changes of the distribution function of the
interaction strength very well [solid line in Fig. 4 and in
the inset of Fig. 5(b)], further confirming the validity of
the DTWA approximation for treating the dynamics of
disordered quantum systems.

V. NUMERICAL STUDY OF THE ROLE OF
DISORDER STRENGTH

Theoretical modeling using the DTWA allows to further
test the role of disorder for the glassy dynamics, while

(a)

(b)

FIG. 5. Rescaled magnetization dynamics for different densities
and disorder strengths. (a) 2D representation of a spin system with
different densities and thus strengths of disorder, characterized
by the mean number of spins per blockade radius ða0=RblÞ−2.
The bar denotes the mean x and standard deviation σ of the
interparticle distances mini≠j rij. (b) Data points represent mea-
surements of the averaged magnetization hSxi for spin densities
ρ0S ¼ 0.43ð11Þ × 109 cm−3 (blue), 0.8ð2Þ × 109 cm−3 (green),
1.2ð3Þ × 109 cm−3 (orange and red, corresponding to two differ-
ent datasets). By rescaling time with the effective interaction
strength C6=a60, the data collapse on a single curve described
by a stretched exponential function with stretching exponent
β ¼ 0.32ð2Þ (dashed line). The inset shows β as a function of the
corresponding ratio ða0=RblÞ−3 for the experimental data and
DTWA calculations (solid gray line).
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excluding possible effects of the inhomogeneous spin
density resulting from the optical trap. The simulated spin
dynamics for a uniform density distribution ρS are shown
by the solid lines in Fig. 6(a). For early times where
t ≤ 2πR6

bl=C6, the leading order quadratic Hamiltonian
evolution is clearly visible. For times beyond the pertur-
bative short-time regime, the relaxation is well described by
a stretched exponential [dashed lines in Fig. 6(a); see
Appendix D], proving that the glassy dynamics is an

intrinsic many-body effect and not a result of the density
inhomogeneities.
Figure 6(b) shows the fitted relaxation rate γJ of the four

simulations from Fig. 6(a) (colored dots, the disorder
average is shown as a dashed black line). This rate does
not scale with C6=a6 [a ¼ ð4πρS=3Þ−1=3 (dotted line)]
but with the median of the mean-field interaction strengths
Jmf (solid line), which plays the role of the characteristic
energy scale in the system (see Appendix E). This scale
Jmf ¼ C6=ã6 defines an effective Wigner-Seitz radius ã,
that coincides with the usual Wigner-Seitz radius a for
small spin densities but deviates at larger densities when
spatial correlations induced by the Rydberg blockade effect
become important. Rescaling the time with C6=ã6, the
simulated data from Fig. 6(a) collapse on a single stretched
exponential curve [see Fig. 6(c)], similarly to the exper-
imental observations in Fig. 5(b).
This insensitivity to changes in the cutoff energy induced

by the blockade effect substantiates the nature of the
universal relaxation dynamics. This is further confirmed
by the fitted stretching exponent β shown in the inset of
Fig. 6(c) obtained after disorder averaging [the solid line
depicts the mean, the gray shaded area shows the standard
deviation, the colored dots the single disorder realizations
from Fig. 6(a)]. We find β to be approximately constant for
large disorder strengths where spatial correlations are weak
[i.e., ðã=RblÞ−3 ≲ 0.7], with a value of 0.36, close to the
experimental value of β ¼ 0.32ð2Þ. In fact, the range of
densities in the inhomogeneous experimental distribution
falls well into the regime of a constant stretching exponent
[see inset in Fig. 5(b)].
The simulations allow us to access even higher densities

than those accessible in the experiment, corresponding to
more correlated spatial configurations of the atoms. For
ðã=RblÞ−3 ¼ 1, the DTWA simulations show significantly
different dynamics [dotted line in Fig. 6(a)] that translates
into a stretching exponent β that becomes sensitive to the
strength of the disorder above a certain threshold [see inset
in Fig. 6(c)].
To understand the behavior of β when changing the

disorder, we analyze the influence of the blockade effect on
the distribution of coupling strengths. Figure 7 shows for
four different densities the distribution function of nearest-
neighbor interaction strength rescaled by C6=a6. At low
densities, where we observe a disorder-independent stretch-
ing exponent, the rescaled distributions do not fully
coincide due to the blockade effect, but their shape remains
qualitatively the same. Their functional form is mostly
modified at large interaction strengths which influences
only the short-time dynamics. At large density, however,
the distribution is strongly altered by the high-energy cutoff
which renders the distribution much more peaked.
It is thus tempting to conjecture that the insensitivity

of the dynamics below a certain disorder strength is
related to negligible changes in the distribution of

(b)(a)

(c)

FIG. 6. Numerical simulation of the dynamics for a uniform
density distribution using the DTWA. (a) The simulated dynam-
ics before rescaling. After the quadratic onset, the magnetization
decay is fitted well by the stretched exponential function (dashed
lines). (b) The fitted decay rate γJ (dashed black line) agrees well
with the median of the mean-field interaction strengths Jmf (solid
gray line), which is the typical energy scale of the system. In the
weakly interacting limit, Jmf scales linearly with C6=a6 (dotted
gray line). The colored dots denote the decay rate derived
from the four simulations depicted in (a). (c) For small
(ρS ¼ 1.25 × 108cm−3, blue line and blue dot in the inset)
and intermediate densities (ρS ¼ 3.51 × 108cm−3, green line
and green dot in inset and ρS ¼ 8.73 × 108cm−3, yellow line
and yellow dot in the inset), the numerical data collapses on one
curve after rescaling time with C6=ã6, where ã plays the role of
an effective distance that takes into account the roles of disorder
and power law interactions. For densities as large as ρS ¼
2.11 × 109 cm−3 (dotted red line and red dot in the inset), the
spatial order introduced by the blockade is so large that the
dynamics does not follow the universal behavior observed for
smaller densities. Inset: disorder averaged stretching exponent β
(solid line) as a function of the order in the system expressed by
ðã=RblÞ−3. Below a critical value of ðã=RblÞ−3 ≲ 0.7 the exponent
becomes constant. The shaded area indicates statistical uncer-
tainty. The dots denote the exponent β resulting from the single
disorder realizations of (a). The dashed line is obtained from the
fluctuator model [see Eq. (6) in Sec. VI].
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interaction strength. Nonetheless, the changes at low
density are significant enough to predict a nonconstant β
when applying a simple model such as the fluctuator model
discussed in the next section, ruling out such a simple
interpretation based on energy rescaling.

VI. COMPARISON TO OTHER SYSTEMS
EXHIBITING GLASSY DYNAMICS

It is instructive to compare our findings to other systems
exhibiting glassy dynamics. In isolated quantum systems,
glassy dynamics has been observed for the Ising model
which is exactly solvable by the Emch-Radin ansatz
[36,42,43]. In this analytical solution the averaging
over oscillatory terms results in a stretching exponent of
β ¼ 1=2 for disordered spin systems which was also
confirmed experimentally [44,45]. Such a treatment is not
possible for an arbitraryHeisenbergXXZHamiltonian since
the Emch-Radin ansatz is based on the commutativity
between the terms in the Hamiltonian, which is only given
for the Ising model. Since the additional exchange inter-
actions of the Heisenberg XXZ model make the system
inaccessible to analytical treatment, quantum simulations
are essential to investigate the problem for a large number of
spins [20]. In this respect, our observation of slow dynamics
in a Heisenberg XXZ model in 3D with long-range inter-
actions reveals that glassy dynamics is not an extraordinary
property of the special case of Ising systems, but a more
generic feature applicable to isolated disordered spin sys-
tems. In our quantum simulation experiment, we observed a
value of β ¼ 0.32ð2Þ, significantly lower than 1=2.

A more general approach to explaining glassy dynamics
can be deduced from open disordered systems where
subexponential relaxation is a ubiquitous phenomenon
[34]. Here, the incoherent averaging over a distribution
of decay rates leads to the stretched exponential. The origin
giving rise to a specific distribution depends on the exact
physical system or model.
A commonly used model that predicts glassy dynamics

is the fluctuator model, where each spin is embedded in a
local bath that determines its decay rate. For example, this
model has been applied to NV centers where spins couple
to randomly distributed fluctuators [8,18,19]. A similar
approach is taken for dissipative many-body localized
systems where random decay rates originate from the
disordered potential at each lattice site [17,46]. For our
system, we apply the fluctuator model assuming that the
relaxation of each spin can be effectively described by an
incoherent coupling to its environment, which is deter-
mined by the local rate γi sampled from the probability
distribution of nearest-neighbor interactions from Fig. 7
(qualitatively the same results are obtained for sampling the
decay rates from the distribution of mean-field interaction
strengths):

hSðiÞx ðtÞi ¼ 1

2
exp ½−γit�: ð6Þ

This model predicts a stretched exponential relaxation as
observed in the experiment. However, we find two dis-
crepancies. First, the model predicts stretching exponents
of β > 1=2 inconsistent with our previous finding of β
being smaller than 1=2. Second, the fluctuator model
predicts a stretching exponent varying as a function of
disorder strength, as shown by the dashed line in the inset
of Fig. 6(c). Hence this model is sensitive to the change in
the distribution functions of the interaction strength intro-
duced by the cutoff, as depicted in Fig. 7, already in the
regime of large disorder. Therefore, the fluctuator model
does not capture the collapse of dynamics onto a single
curve after rescaling.
The most prominent example of open systems exhibiting

slow dynamics is spin glasses where, at low temperatures,
the relaxation of the macroscopic magnetization is
described by a temperature-dependent stretching exponent
[13,47]. Similar to the fluctuator model, this can be
explained by incoherent averaging over random relaxation
times. However, these times do not result from a local
environment of each spin, but from a random distribution
of free energies [48]. In this approach, concepts from
equilibrium statistical mechanics like thermodynamic
potentials are applied to describe the long-time evolution
of the system. Although our system does not exhibit sign-
changing interactions [49] or contain geometric frustration
[50] characteristic for spin glasses, the observation of
stretched exponential decay indicates that at long times a
similar quasiequilibrium approach might be applicable.

FIG. 7. Normalized probability distribution of nearest-neighbor
interactions gðJÞ for the densities given in Fig. 6 (blue line,
ρS ¼ 1.25 × 108 cm−3; yellow line, ρS ¼ 8.73 × 108 cm−3; red
line, ρS ¼ 2.11 × 109 cm−3). The dashed line depicts a distribu-
tion corresponding to randomly placed spins. The blockade effect
induces correlations in the system and hence the probability
distribution at high densities becomes more peaked. This results
in a decreased disorder compared to the completely random case.
The inset shows the same data with linear axis to illustrate the
narrowing of the distribution functions.
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This conjecture is supported by the fact that our system is
expected to thermalize in the sense of the ETH, but
approaches this limit only at exponentially long times in
analogy to classical spin glasses.

VII. CONCLUSION

In this work we implemented the XXZ Hamiltonian in
3D using a frozen gas of Rydberg atoms. We studied the
out-of-equilibrium dynamics of this model starting from
an almost zero entropy initial state, which lacks a
thorough theoretical understanding and is hard to simu-
late by classical means. We observed glassy dynamics in
close analogy to the subexponential relaxation known
from open disordered systems described by a stretched
exponential function. While the latter is driven by thermal
fluctuations, the dynamics of the disordered isolated
quantum system is governed by quantum fluctuations
and spreading of entanglement going beyond mean-field
approximations. The observation that the dynamics of the
magnetization is well described by semiclassical trun-
cated Wigner simulations suggests that quantum inter-
ference effects become less important as the system
approaches its equilibrium state. This is in line with
previous findings that the long-time dynamics of generic
thermalizing quantum many-body systems simplifies also
in the sense that states can be represented efficiently due
to limited entanglement [51].
In the experiment, disorder is changed by exploiting the

Rydberg blockade, which shifts the upper cutoff scale in
the distribution of interaction strengths. Remarkably, the
stretching exponent β takes on a constant value above a
certain disorder strength, as confirmed by both experiment
and semiclassical simulations. The long-time evolution is
therefore insensitive to the microscopic details of the
system parameters on high-energy scales. We interpret
the independence of the dynamics to changes in the
distribution function of interaction strengths as universal
behavior. This and the validity of a semiclassical descrip-
tion as a strong hint that the dynamics of many-body
quantum systems might be amenable to a simplified
description of the late-time dynamics in terms of effective
low-energy degrees of freedom. Concretely, this could be
approached within the framework of the strong disorder
renormalization group, iteratively integrating out the high-
est energy degrees of freedom resulting from most strongly
interacting spins or clusters of spins [52]. Furthermore, spin
glasses in the aging regime have been found to show certain
quasithermal properties. For example, a fluctuation dis-
sipation theorem has been found to hold [53] and the spin-
glass transition shows similarities to a thermal phase
transition [54]. Thus, the similarities to dynamics in open
glassy systems observed in this work are encouraging
to extend such an effective thermal-like description to
quantum glassy dynamics.
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APPENDIX A: CALCULATION OF RYDBERG
INTERACTIONS AND SPIN MODEL

In order to describe the interaction between two Rydberg
excitations, the Hamiltonian is expanded in multipoles.
This is well justified, as the minimal distance between the
Rydberg atoms that is determined by the blockade radius
Rbl is much larger than the LeRoy radius RLR that describes
the typical spread of the electron wave function. The
leading order term of this expansion is the dipole-dipole
interaction Hamiltonian,

ĤDDI ¼
d̂i · d̂j − 3ðd̂i · erÞðd̂j · erÞ

R3
; ðA1Þ

that couples Rydberg atoms with different angular
moment quantum number l. For dipolar forbidden tran-
sitions, the second order term in perturbation theory
needs to be calculated giving rise to the van der Waals
Hamiltonian,

HvdW ¼ −
1

ℏ

X
m

HDDIjmihmjHDDI

ΔF
δðωfm þ ωmiÞ; ðA2Þ

where the Foerster defect ΔF ¼ Em − Ei is the energy
difference between the intermediate and initial state, and
δðωÞ the Dirac function. Aiming for a simpler notation,
the two different Rydberg states can be identified as
spin states j↑i and j↓i. In the pair state basis ðj↑↑i;
j↑↓i; j↓↑i; j↓↓iÞ, the total Hamiltonian describing the
interaction between two atoms i and j can be written in
matrix form as
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Ĥtot
i;j ¼

0
BBBBB@

E↑↑ 0 0 0

0 E↓↑
Jex
2

0

0 Jex
2

E↓↑ 0

0 0 0 E↓↓

1
CCCCCA
; ðA3Þ

with the matrix elements E↑↑ ¼ h↑↑jHvdWj↑↑i,
E↓↑ ¼ h↓↑jHvdWj↓↑i, E↓↓ ¼ h↓↓jHvdWj↓↓i, and Jex ¼
h↑↓jHvdWj↓↑i. This Hamiltonian can be identified as the
Heisenberg XXZ Hamiltonian,

HXXZ ¼ 1

2

X
i;j

Jij
�
SðiÞx SðjÞx þ SðiÞy SðjÞy þ δSðiÞz SðjÞz

�

þ
X
i

ΔvdWS
ðiÞ
z ;

where Jij ¼ 2Jex, δ ¼ ðE↓↓ þ E↑↑ − 2E↓↑Þ=Jij, and
ΔvdW ¼ ðE↓↓ − E↑↑Þ=2. The additional single-spin detun-
ing ΔvdW is an order of magnitude smaller than the
interaction strength Jij and thus negligible.
The matrix elements E↑↑, E↓↑, E↓↓, and Jex were

calculated using the PYTHON module ARC [30]. For the
Rydberg states j48S1=2;þ 1

2
i and j49S1=2;þ 1

2
i this yields

the interaction strength Jij ¼ C6=rij with C6=ð2πÞ ¼
59 GHz μm6 and δ ¼ −0.73.

APPENDIX B: DETERMINATION OF THE
MAGNETIZATION

The magnetization is extracted from population mea-
surements of the Rydberg states after the readout pulse. To
vary the phase ϕ of this pulse rapidly enough in order to
explore the short-time dynamics, the microwave field is
generating using frequency up-conversion with a radio-
frequency field of frequency 400 MHz, offering time
resolution of 10 ns. The populations of the Rydberg states
are then extracted using electric field ionization [55].
At the end of the sequence, a strong electric field of
100 Vcm−1 is switched on and the resulting ions are
guided toward a multichannel plate detector. To calibrate
the detection efficiency, we combine ionization measure-
ments and depletion imaging [29]. We deduce a detection
efficiency η ¼ 0.173� 0.043 from four different calibra-
tion curves.
At time t we access the magnetization hSϕi by counting

after the readout pulse both the population of the j↑i state
N↑ðϕÞ and the total spin number N↓þ↑, according to

hSϕi ¼
N↑ðϕÞ − N↓ðϕÞ

2N↑þ↓
¼ N↑ðϕÞ

N↑þ↓
−
1

2
: ðB1Þ

Since the ionization is not state selective, N↑ðϕÞ is inferred
by counting the spin number after depopulating the j↓i

state. It is performed by optically coupling the j↓i state to
the short-lived intermediate state jei during 1.5 μs.
Because of the finite lifetime of the spin states and

microwave transfer, auxiliary Rydberg states might also be
populated. This residual population leads to an offset in the
measured ion signal, a number Na of those atoms being
energetically above the ionization threshold (see Fig. 8).
As a consequence, what we measure instead of N↑ðϕÞ
and N↓þ↑ are two quantities M↑ðϕÞ and M↓þ↑ given by

M↑ðϕÞ ¼ N↑ðϕÞ þ Na; ðB2Þ

M↓þ↑ ¼ N↓þ↑ þ Na: ðB3Þ

The measured quantity M↑ is a sinusoidal function of ϕ,
centered around its mean value:

M̄↑ ¼ N↓þ↑

2
þ Na: ðB4Þ

We determine from a sinusoidal fit the values M↑ðϕÞ
and M̄↑ and thus compute the magnetization hSϕi using
Eqs. (B1)–(B4). The amplitude A of the sinusoidal fit,
normalized by N↑þ↓, corresponds to the magnetization in
the xy plane. Following this procedure, we deduce that the
number of atoms in the auxiliary states Na increases
linearly in time with a rate of 7 kHz, consistent with the
blackbody decay of the spin states toward Rydberg states
above the ionization threshold.

APPENDIX C: THEORETICAL MODELS

To compare the experiment to the mean-field prediction,
we solve the classical equations of motion that are obtained
from the classical Hamiltonian function [41],

FIG. 8. Reconstruction of the magnetization. Left: measure-
ments of the total number of spins M↑þ↓. Right: measurement of
the population in the j↑i state M↑ðϕÞ after a readout pulse of
phase ϕ. Both are affected by the population in auxiliary states
Na. The measurement M↑ is fitted by a sinusoidal function
(orange line), from which we extract the mean value M̄↑. The
amplitude A of the fit, normalized by the total number of spin
N↑þ↓, indicates the magnetization in the xy plane.
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HC ¼ 1

2

X
i;j

Jij
�
sðiÞx sðjÞx þ sðiÞy sðjÞy þ δsðiÞz sðjÞz

�
; ðC1Þ

via Hamilton’s equation

_sðjÞx ¼ fsðjÞx ; HCg: ðC2Þ

Here, sðiÞ ¼ ðsðiÞx ; sðiÞy ; sðiÞz Þ are classical spins and f� � �g
denotes the Poisson bracket. The system of ordinary
differential equations is solved by Tsitouras’s 5=4
Runge-Kutta method [56] using the JULIA differential
equations package [57]. For a perfect initial state where
all spins are aligned in the x direction, mean-field theory
does not predict any dynamics. However, the interactions
present during the first π=2 pulse of the Ramsey protocol
induce small fluctuations in the initial state. We take these
imperfections into account by including the preparation
and readout pulses in the simulations, which leads to the
dynamics shown by the dotted line in Fig. 4. For the
relevant timescale of the experiment, these dynamics are
negligible.
For the considered dynamics, the initial state is an

eigenstate of the mean-field Hamiltonian. The relaxation
is thus triggered by the initial quantum fluctuations,
meaning that mean-field approaches fail in this case.
Instead, we use a discrete truncated Wigner approximation
(DTWA), which still performs classical evolution of the
spins following Eq. (C2) but includes the initial quantum
fluctuations into statistical ensembles of the initial state by
sampling Monte Carlo trajectories on discrete phase space
[40,41]. For the simulations in this paper, we sample over
100 initial conditions, which is sufficient for the magneti-
zation to be converged. Simulating far-from-equilibrium

dynamics of disordered spin systems has been successfully
applied to spin systems in recent work [21]. Imperfections
of the preparation and readout are taken into account by
simulating the whole Ramsey sequence including those
two microwave pulses. We also compared DTWA with an
approximate quantum mechanical model, the so-called
moving average cluster expansion (MACE) [58], which
qualitatively gives similar results (see Fig. 9).

APPENDIX D: QUANTIFICATION OF SLOW
DYNAMICS BY A STRETCHED EXPONENTIAL

A phenomenological approach to describe slow dynam-
ics in disordered systems is a fit of the magnetization with a
stretched exponential,

hSxiðtÞ ¼
1

2
exp½−ðγJtÞβ�; ðD1Þ

with relaxation rate γJ and stretching exponent β. This was
already proposed by Kohlrausch in 1847 [59]; a review on
the stretching exponent in numerical simulations and in
experimental data of various materials can be found
in Ref. [34].
For β ¼ 1, the stretched exponential describes an expo-

nential decay. In the limit β → 0, the stretched exponential
approaches the logarithmic decay which can be seen by
performing a Taylor expansion at small β:

exp½−ðt=τÞβ� ¼ 1

e
−
β logðtτÞ

e
þOðβ3Þ: ðD2Þ

So, the stretching exponent β quantifies how slow a system
relaxes: A small value signifies that the dynamics are
close to logarithmic and slow; a large value indicates fast
dynamics.
The magnetization at early times can be calculated by the

Baker-Campbell-Haussdorff formula:

hSxðtÞi ¼ heiHtSxe−iHti
¼ hSxi þ ith½H; Sx�i − t2=2h½H; ½H; Sx��i þ � � � :

ðD3Þ

Since the initial state j →i⊗N
x is an eigenstate of Sx, the

expectation value of the commutator ½H; Sx� vanishes for
this state and we expect the initial dynamics to be quadratic
in time. However, this does not hold for the stretched
exponential function that is a power law with exponent β
for short times t ≪ ð1=γJÞ:

hSxiðtÞ ¼ 1=2½1 − βðγJtÞβ�: ðD4Þ

Therefore, we exclude the very early dynamics from the fit
where t < 1=Jmax (see Fig. 6).

FIG. 9. Comparison between DTWA and MACE. Both moving
average cluster expansion (MACE) and DTWA perform well
to describe the experimental data at late times. At intermediate
times (between 1 and 3 μs), MACE predicts faster depolarization
dynamics.
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APPENDIX E: SPATIAL SPIN DISTRIBUTION
AND DISORDER STRENGTH

To model the experimental 3D spin distribution, we
employ a simplified description of the Rydberg excitation
dynamics in a cloud of ground-state atoms. Although the
experimental procedure creates a superposition of different
configurations of atoms being excited to the Rydberg state,
each configuration of this superposition can be regarded as
an independent disorder realization. Indeed, the different
configurations evolve independently from each other under
the spin dynamics, and the final projective measurement
randomly selects one of them (see Appendix B). Thus, to
create samples of such configurations of Rydberg excita-
tions we iteratively select atoms randomly and excite
them to the Rydberg state with a certain excitation
probability which we set to zero if another atom within
a distance of Rbl is already in the Rydberg state. The
excitation probability includes a collective enhancement
factor caused by the Rydberg blockade effect [60,61]. We
also take into account the profile of the laser excitation,
characterized by a Gaussian distribution of the two-photon

Rabi frequency with measured radius σ ¼ 70.6ð3Þ μm
(e−1=2), and the Gaussian density distribution of the
ground-state atomic cloud [measured radii at e−1=2:
σx ¼ 203ð3Þ μm, σy ¼ σz ¼ 35ð1Þ μm]. In our simula-
tions, the peak two-photon Rabi frequency was chosen
such that the total number of excited atoms equals the one
measured by field ionization.
For simulations of a homogeneous system, the spins

are randomly distributed in a uniform box taking into
account a blockade radius of 5 μm until the desired density
ρS is reached. In the limit of no blockade effect, the nearest-
neighbor distribution for a given Wigner-Seitz radius
a ¼ ð4πρ=3Þ−1=3 would be given by [33]

hðrÞ ¼ 3

a
ðr=aÞ2 exp½−ðr=aÞ3�; ðE1Þ

yielding the distribution of coupling strengths hðJÞ ¼
hðrÞð∂r=∂JÞ. Instead, the blockade effect modifies the
nearest-neighbor distribution, resulting in a different cou-
pling distribution gðJÞ [see Fig. 7(a)]. We quantify the
disorder strength of the spin system with the Kullback-
Leibler divergence [62],

DKLðgkhÞ ¼
Z

gðJÞ log
�
gðJÞ
hðJÞ

�
dJ; ðE2Þ

i.e., the amount of information that is gained by updating
from the distribution hðJÞ. Indeed, the Kulback-Leibler
divergence increases almost linearly with density (see
Fig. 10). This confirms that ða=RblÞ−3 is a relevant scale
to describe the disorder strength.
When investigating the universal character of the spin

dynamics for a homogeneous system, we have concluded
that the typical energy scale should be determined by the
median of the mean-field energy Jmf ¼ medianðC6=r̃6i Þ,
with r̃−6i ¼ P

j r
−6
ij (see Fig. 6). The effective distance ã,

defined by Jmf ¼ C6=ã6, thus corresponds to the median of
the non-Gaussian distribution fr̃ig.

APPENDIX F: SUMMARY OF PARAMETERS

Table I summarizes the parameters of the individual
measurements shown in Figs. 2 and 3 of the main text.

FIG. 10. Scaling of the disorder strength as a function of
density. The Kullback-Leibler divergence DKL increases mono-
tonically with ða=RblÞ−3. This quantifies the additional correla-
tions induced by the Rydberg blockade effect. The dots indicate
the Kullback-Leibler divergence corresponding to the specific
simulations presented in Fig. 6.

TABLE I. Experimental parameters. texc denotes the time of laser excitation from the ground to the Rydberg state. ρ0gs denotes the
measured ground-state density. ρ0S the derived peak spin density, NS the derived number of total spins. Rbl is the blockade radius derived
from the excitation time and laser coupling strength. a denotes the Wigner-Seitz radius, C6=a6 the van der Waals coefficient, and β is the
exponent of the stretching exponential derived from a fit to the relaxation curves.

Figure texc ðμsÞ ρ0gs 10
11 ðcm−3Þ ρ0S 109 ðcm−3Þ NS × 1000 Rbl ðμmÞ a ðμmÞ ða=RblÞ−3 C6=ð2πÞ=a6 (MHz) β

2, 3 1.0 1.79(9) 1.2(3) 1.2(3) 5.21 5.8(5) 0.7(2) 1.5(8) 0.32(2)
3 0.6 1.69(12) 0.43(11) 0.4(1) 4.81 8.2(7) 0.20(5) 0.195(97) 0.37(2)
3 0.8 1.73(9) 0.8(2) 0.8(2) 5.03 6.6(6) 0.43(11) 0.7(3) 0.36(4)
3 1.0 1.64(15) 1.2(3) 1.1(3) 5.21 5.9(5) 0.7(2) 1.4(7) 0.305(14)
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We study the out-of-equilibrium dynamics of the quantum Ising model with power-law interactions and
positional disorder. For arbitrary dimension d and interaction range α � d we analytically find a stretched-
exponential decay of the global magnetization and ensemble-averaged single-spin purity with a stretch power
β = d/α in the thermodynamic limit. Numerically, we confirm that glassy behavior persists for finite system
sizes and sufficiently strong disorder. We identify dephasing between disordered coherent pairs as the main
mechanism leading to a relaxation of global magnetization, whereas genuine many-body interactions lead to a
loss of single-spin purity which signifies the buildup of entanglement. The emergence of glassy dynamics in
the quantum Ising model extends prior findings in classical and open quantum systems, where the stretched-
exponential law is explained by a scale-invariant distribution of timescales, to both integrable and nonintegrable
quantum systems.
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Statistical mechanics provides a well-established frame-
work for describing the macroscopic properties of matter in
thermal equilibrium. In contrast, no general theoretical frame-
work exists for describing dynamics out of equilibrium. Of
particular interest are extremely slow relaxation processes
observed in disordered materials such as spin glasses [1,2].
Phenomenologically, relaxation in these systems can be de-
scribed by a stretched-exponential law exp[−(γ τ )β] with
decay rate γ and stretch power β [3]. Despite the widespread
success of this heuristic description, a derivation of the
stretched-exponential law starting from first principles in a
microscopic model has been achieved for few systems only,
in particular amorphous solids [2] and spin glasses [2,4]. By
generalizing three prototypical models, Klafter and Shlesinger
conjectured that a scale-invariant distribution of relaxation
times is the unifying basis of stretched-exponential relaxation
phenomena [5].

Recently, glassy dynamics has been found to emerge also
in disordered quantum systems. Subexponential relaxation
dynamics was observed in experiments with nitrogen-vacancy
centers in diamond [6–8] and in many-body localized systems
under the influence of dissipation [9]. These studies involve
open quantum systems where dissipation arising from cou-
pling to an external bath explains the slow relaxation. In the
generic fluctuator model [6], each particle is coupled to a local
bath resulting in an average over different decay rates and thus
a stretched-exponential decay law. Recently, glassy relaxation
was also found in a closed quantum system governed by
purely unitary dynamics [10]. In the absence of dissipation,

*These authors contributed equally to this work.
†Corresponding author: marting@kip.uni-heidelberg.de

the question arises whether and how glassy dynamics in iso-
lated quantum systems is related to the degree of disorder and
to the buildup of entanglement.

Understanding the dynamics of strongly interacting disor-
dered quantum many-body systems is notoriously difficult due
to the lack of applicable theoretical approaches. The absence
of a small parameter in the model impedes the use of pertur-
bative methods, and the exponential complexity of quantum
many-body problems generally limits numerical simulations
to very small system sizes. A paradigmatic exception is the
quantum Ising model, where analytical solutions are available
even for the disordered case [11,12]. This model is diag-
onal in a product-state basis but, if prepared initially in a
superposition of different eigenstates, features intrinsically
quantum properties, namely dephasing between its eigenstate
components leading to relaxation and the buildup of entangle-
ment. Previous studies addressed the buildup of correlations
[13], decoherence [14], the effect of long-range interactions
[15–17], and the decay of the Ramsey contrast [18,19].

Here, we introduce a generalized approach to obtain
stretched-exponential relaxation of the transversal magnetiza-
tion and purity in the quantum Ising model extending earlier
studies of special cases [15,19]. Analytical results are pro-
vided for arbitrary dimensionality and power-law interactions,
applicable to multiple experimental settings, e.g., in NMR
[20], quantum information [21,22], trapped ions [23], and
Rydberg atoms [10,24]. The analytic solution for the mag-
netization and purity of the microscopic model allows one
to differentiate dephasing between disordered coherent pairs
from genuine many-body effects. Furthermore, finding glassy
dynamics in the quantum Ising model with a scale-invariant
distribution of interactions constitutes a generalization of the
Klafter-Shlesinger conjecture [5] to the quantum realm.
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We consider N spin-1/2 particles, whose dynamics are
governed by the Ising model (h̄ = 1)

HIsing =
∑
i<k

Jik σ̂
i
z ⊗ σ̂ k

z , (1)

where σ̂ i,k
α (α = {x, y, z}) are the Pauli operators acting on

spin i and k and Jik describes the interaction between them. We
consider isotropic power-law interactions Jik = Cα/|ri − rk|α
with particle positions ri, realized by a variety of quan-
tum simulation platforms, such as polar molecules (α = 3)
[25,26], Rydberg atoms (α = 3, 6) [10,27–29], or trapped ions
(0 � α < 3) [23,30] (see Ref. [13] for a more complete list).
For the initial state |ψ0〉 = |→〉⊗N , we are interested in the re-
laxation of the ensemble-averaged transversal magnetization
〈ŝx〉 = N−1 ∑

i〈σ̂ i
x〉/2, where the overline denotes the ensem-

ble average and 〈· · ·〉 the quantum mechanical expectation
value. Here, |→〉 is the σ̂x eigenstate with σ̂x |→〉 = |→〉.

The dynamics of Ising spins initialized in |ψ0〉 was de-
scribed analytically by Emch [11] and Radin [12] as

〈ŝx(τ )〉 = 1

2

∑
i

1

N
〈σ̂ i

x (τ )〉 = 1

2

∑
i

1

N

N∏
k �=i

cos(2Jikτ ), (2)

which shows that the ensemble average is determined by prod-
ucts of oscillations with frequencies given by the couplings
Jik between a given spin i and its neighbors k. From the
Emch-Radin solutions also follows 〈σ̂ i

y〉 = 〈σ̂ i
z 〉 = 0 such that

the analytical expression 〈σ̂ i
x (τ )〉 = ∏N

k �=i cos(2Jikτ ) already
fully determines the one-particle reduced density matrix ρ i =
[1 + 〈σ̂ i

x〉σ̂ i
x]/2 of spin i. Thus, the single-particle purity is

tr[(ρ i )2] = 1
2

[
1 + 〈

σ̂ i
x (τ )

〉2]
. (3)

Similar to the magnetization, we define the ensemble-
averaged single-particle purity as tr(ρ2) = 1

2 [1 + 〈σ̂x(τ )〉2],
where

〈σ̂x(τ )〉2 =
∑

i

1

N
〈σ̂ i

x (τ )〉2 =
∑

i

1

N

N∏
k �=i

cos2(2Jikτ ). (4)

The purity of a subsystem (here, a single spin) of a closed
quantum system 1/2 � tr[(ρ i )2] � 1 quantifies the entangle-
ment between the subsystem and its complement, and deter-
mines the second-order Rényi entropy S2 = − log{tr[(ρ i )2]}.
For our initial product state S2 = 0, as the single-particle
reduced state ρ i is pure, and the subsystem entropy takes its
maximal value S2 = log(2) in the late-time limit.

The Emch-Radin solutions hold for arbitrary choices of
the couplings Jik . Here, we consider disorder in the cou-
plings due to random spin positions drawn from a uniform
distribution within a d-dimensional sphere and power-law
interaction with exponent α � d . To illustrate the charac-
teristic dynamics emerging in this situation we show the
relaxation of the transversal magnetization in Fig. 1(a) for
a van der Waals interaction (α = 6) in d = 3 dimensions.
Time is scaled by the median nearest-neighbor (NN) inter-
action strength JNN [10]. The random positions lead to a
strongly disordered Jik distribution which causes oscillations
on a broad range of different timescales. Curves showing fast
oscillations correspond to spins interacting strongly with their

FIG. 1. (a) Magnetization decay for a uniform random spin
distribution in d = 3 with α = 6 for 1300 spins. The single-spin
magnetizations 〈ŝi

x (τ )〉 for 50 different spins are shown, featuring
the oscillatory behavior predicted by Eq. (2). The line color encodes
the nearest-neighbor (NN) interaction strength and is thus a measure
for the onset and fastest frequency of each oscillation. Its median JNN

is furthermore used as the unit for the relaxation time. Additionally,
the ensemble-averaged decay is plotted (red dashed line), showing
monotonous subexponential relaxation, which is well captured by a
stretched-exponential function predicted analytically in the large N
limit (black line). Remaining deviations from the analytical solution
can be attributed to the finite system size used for the simulation.
(b) Histograms showing the frequency of occurrence of single-spin
magnetization values at different times. The fluctuations relax on a
slower timescale than the mean value, which is directly connected to
the decay of the purity. (c) Single-spin purities and ensemble average,
analogous to (a).

nearest neighbors. Due to disorder, these oscillations between
coherent pairs lose their phase correlations. Consequently,
the ensemble-averaged magnetization (red dashed line) shows
smooth subexponential decay closely following the analytical
solution in the thermodynamic limit N → ∞ (black curve)
derived below, which is a stretched-exponential function.

Figure 1(b) shows the frequency of occurrence of single-
spin magnetizations at fixed evolution times, showing a
bimodal distribution at intermediate times. For JNNτ = 10,
the ensemble-averaged value nearly reached its equilibrium,
while still showing large fluctuations around the mean value.
These fluctuations are directly connected to the purity [cf.
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Eq. (4)] showing already that the decay of magnetization and
purity happen on different timescales. In this particular case,
the timescales differ by a factor of 2, where in general this
factor depends on α/d and can become large as discussed
below. Figure 1(c) shows the ensemble-averaged purity along
with the purity of individual spins. Similar to Fig. 1(a), the
purity of individual spins shows oscillations. Following the
same argument that explains the full relaxation of magneti-
zation, the dephasing of these oscillations would result in an
average purity of 0.75. Instead, the ensemble-averaged purity
relaxes to its minimum value of 0.5, which accounts for an
irreversible buildup of entanglement with the whole ensemble.
We again find a smooth stretched-exponential curve in the
ensemble average.

To derive an analytical expression for Eq. (2) in the limit of
N → ∞, the ensemble average can be replaced by an average
over all possible configurations of placing the surrounding
spins of a reference spin [18,19] thus leading to a scale-
invariant distribution of interaction strengths. Without loss of
generality, we fix the position of the reference spin at r1 = 0
and choose a finite spherical integration volume V in which
N ′ atoms are placed. We will later take the limit N ′ → ∞
keeping the density n = N ′/V constant. Therefore, Eq. (2)
transforms into the integral form

〈ŝx(τ )〉 = 1

2

∫
V

dr2 · · · drN ′P(r2 · · · rN ′ )
N ′∏

k=2

cos(2J1kτ ). (5)

The spin positions are chosen independently following
a homogeneous distribution over the volume V , i.e.,
P(r2 · · · rN ′ ) = ∏

k p(rk ) with p(rk ) = 1/V . Thus, the integral
in Eq. (5) factorizes into a product of identical integrals

〈ŝx(τ )〉 = 1

2

[
1

V

∫
V

dr cos(2Jrτ )

]N ′−1

, (6)

where Jr = Cα/|r|α .
We now introduce a lower distance cutoff rb on the integra-

tion volume [31]. Note that imposing an exclusion distance
rb between any pair of atoms violates the assumption of in-
dependent atom positions and scale-invariant distributions of
interactions. For our analytical calculations this inconsistency
is irrelevant as we will send rb to zero eventually. We show
below that our results also describe the dynamics well for a
finite exclusion radius as long as rb is much smaller than the
average nearest-neighbor distance in the ensemble.

Defining r0 as the radius of the spherical integration vol-
ume V and carrying out the angular part of the integration we
obtain

〈ŝx(τ )〉 = 1

2

[
d

rd
0 − rd

b

∫ r0

rb

dr rd−1 cos
(

2
Cα

rα
τ
)]N ′−1

. (7)

We now evaluate this expression in the limits rb → 0 and
r0, N ′ → ∞ for arbitrary d and α � d , thus generalizing
previous results. The scale invariance of the system now be-
comes obvious as Eq. (7) is invariant under a rescaling of
space (r → λr) and time (τ → λατ ). The main result of our

derivation

〈ŝx(τ )〉 = 1

2
exp

[
−κd,α�

(
α − d

α

)
sin

(
π

α − d

2α

)
τ d/α

]

(8)

is a stretched exponential 〈ŝx(τ )〉 = exp[−(γmτ )βm ]/2 with
decay rate γm = [κd,α�( α−d

α
) sin(π α−d

2α
)]α/d and stretch

power βm = d
α

[for details, see Supplemental Material
(SM) [32] containing Ref. [33]]. Here, the index m
stands for magnetization and we have introduced κd,α =
πd/2n(2Cα )d/α/�(d/2 + 1). Since βm � 1 our result shows
that the characteristic subexponential relaxation typically ob-
served in glassy systems appears in the out-of-equilibrium
unitary dynamics under the Ising Hamiltonian. In the
case α = d Eq. (8) simplifies to a pure exponential de-
cay 〈ŝx(τ )〉α=d = exp(−πκd,ατ/2)/2 where we used that
limα−d→0[�( α−d

α
) sin(π α−d

2α
)] = π/2. Note, that the deriva-

tion of a stretched exponential remains valid even for a broad
class of anisotropic interactions, whose anisotropy yields a
change only in the rate γ , whereas β remains unchanged (see
SM [32]).

Remarkably, the stretch power β = d/α is the same as
for the Förster direct-transfer model with parallel channels
discussed by Klafter and Shlesinger [5]. This classical model
features the same spatial distribution and power-law interac-
tion but relies on exponential relaxation, instead of coherently
interacting spins showing microscopic oscillatory behavior.

Beyond classical models, genuine quantum effects occur
in the quantum Ising model. Therefore, we focus on the
ensemble-averaged purity which describes the buildup of en-
tanglement [cf. Eq. (4)]. As for the magnetization, one can
convert the ensemble average of the term 〈σ̂x(τ )〉2 into an
integral over atom positions in the asymptotic large N limit,
resulting in

〈σ̂x(τ )〉2 =
[

d

rd
0 − rd

b

∫ r0

rb

dr rd−1 cos2
(

2
Cα

rα
τ
)]N ′−1

=
[

1

2
+ d

rd
0 − rd

b

∫ r0

rb

dr
rd−1

2
cos

(
4

Cα

rα
τ
)]N ′−1

,

(9)

where the identity cos2(x) = 1/2 + cos(2x)/2 is used. The in-
tegral now has the same shape as the one for the magnetization
(7) with a global prefactor of 1/2 and twice the frequency
Cα → 2Cα . We can thus use the same approach to obtain

tr(ρ2) = 1
2 {1 + exp[−(γpτ )βp]} (10)

for the relaxation of the ensemble-averaged single-particle
purity with γp = 21−α/dγm and βp = βm = d/α. This formal-
ism can be extended to all higher moments 〈σ̂x(τ )〉 j with
j ∈ N shown in SM [32]. Note that the decay rate of the
purity is generally smaller than that of the magnetization by a
factor γp/γm = 21−α/d � 1. The slower decay of purity is vis-
ible in the fluctuations of the single-spin magnetizations [cf.
Fig. 1(b)] that are still present when the mean magnetization
has already decayed. This separation of timescales gets large
in the case of α 
 d .
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We numerically investigate whether glassy dynamics per-
sist for systems with finite exclusion radius rb and finite
system size N . We evaluate Eqs. (2) and (4) for d = 1, 2, 3,
α = d, . . . , 10, and random atom positions. We average the
results over Ns random realizations to decrease statistical
fluctuations from random sampling and fit the averaged re-
laxation curves with a general stretched-exponential function
described by f (τ ) = A exp[−(γ τ )β] and we compare the re-
sulting β to the analytical solution d/α derived previously of
the thermodynamic limit.

The exclusion radius rb is incorporated in the process of
generating random position samples by rejecting atoms that
are closer than rb to one of their neighbors. This process is
equivalent to the random sequential absorption (RSA) model
of randomly placing nonoverlapping spheres [34,35]. The
packing density can be quantified by the ratio x = Nrd

b /rd
0 ,

where a small value of x corresponds to strong disorder,
i.e., uncorrelated atom positions, while large x implies more
densely packed and thus more regularly spaced, less disor-
dered spins. We note that in experiments with Rydberg atoms
x is tunable over a wide range [10].

The dependence of β on x is shown in Fig. 2(a) for both
magnetization and purity in the case of a van der Waals
interaction α = 6 and d = 3 for a system size of N = 100
and Ns = 200 samples. In the sufficiently disordered regime
(x � 0.01) β reaches a constant value (dashed lines), which
shows that the description by glassy dynamics obtained in
the limit rb → 0 are robust with respect to finite exclusion
radius. In this regime the blockade radius is sufficiently small,
such that the system can be considered as effectively scale
invariant. Similar results are obtained in all studied cases of
dimension and interaction range.

Next we study the effect of finite N in the strongly dis-
ordered regime (x � 1). Figure 2(b) shows the deviation of
the fitted β from the analytical result d/α as a function of N .
Analogous plots for α = 6 in d = 1 and d = 2 dimensions are
shown in the SM [32]. We observe an algebraic decrease of the
error for both magnetization and purity. A power-law fit ∝N−p

shows good agreement. The point at N = 1300 corresponds to
the data shown in Figs. 1(a) and 1(c), where the comparison
to the analytical solution matches nearly perfectly.

We systematically extract the exponent p describing the
scaling of the error with N for various d and α (see SM
[32] for the choice of parameters N and Ns). The range of
particle numbers is chosen such that the deviation from the
analytical solution does not fall below ∼1%. This value cor-
responds to the size of statistical fluctuations due to finite
disorder averaging giving a lower bound on the observable
deviation. In particular the 1D case converges already for
small N , therefore we need to increase the samples Ns to
reduce statistical fluctuations. The results, shown in Fig. 2(c),
indicate that the finite-size scaling behavior is independent of
α, but convergence is slower for increasing d . In all cases,
an algebraic convergence to the analytical result is obtained,
showing the robustness of our analytical results with respect
to finite-size effects.

Our analytical and numerical studies show that the far-
from-equilibrium dynamics of the quantum Ising model
exhibits glassy behavior. In addition to the global magnetiza-
tion, we investigated the single-spin purity, which quantifies

FIG. 2. (a) Fit parameter β as a function of the disorder parame-
ter x = Nrd

b /rd
0 for the magnetization (blue dots) and purity (green

dots) for N = 100 and Ns = 200 for the case of α = 6 in d = 3.
At strong disorder (x � 0.01) β becomes independent of x. Dashed
lines show the averages within this regime. Error bars describe the
parameter uncertainty of β obtained from the fit. (b) Deviation of the
fitted β from the analytical solution d/α = 0.5 as a function of N .
We average β over five different blockade radii within the strongly
disordered regime. The error bars correspond to the standard error
of the mean of the latter, which is the dominant uncertainty [cf. (a)].
Dashed lines are power-law fits. (c) Fitted power-law exponent p for
all simulated cases d = 1, 2, 3 and α = d, . . . , 10. The red circle
highlights the points corresponding to the data shown in (b). See
Supplemental Material for the choice of parameters N and Ns.

entanglement between local spins and their environment. Es-
pecially for a short interaction range α 
 d , the timescales
between magnetization and purity differ largely. This dis-
crepancy is due to differences in the involved relaxation

L020201-4



GLASSY QUANTUM DYNAMICS OF DISORDERED ISING … PHYSICAL REVIEW B 105, L020201 (2022)

mechanisms. For qualitatively explaining the decay of the
global magnetization it is sufficient to consider the interac-
tion of spins with their nearest neighbors. Due to disorder,
these coherent pair dynamics oscillate at different frequencies
resulting in dephasing and hence a loss of global magnetiza-
tion. In contrast, the full relaxation of single-spin purity is
a genuine many-body effect, which is eventually due to the
irreversible dephasing between many-body eigenstates.

Similar to known classical models showing glassy dy-
namics, the quantum Ising model features a scale-invariant
distribution of timescales. Therefore, our findings extend the
conclusion of Ref. [5], that scale invariance is sufficient to
explain the emergence of a stretched-exponential law, to the
quantum realm. This argument is not limited to observables
such as the magnetization with a classical analog, but also
applies to the single spin purity, a genuine quantum property,
which shows the same stretched-exponential relaxation. An
interesting direction for future research is the investigation
of the dynamics of entanglement entropy beyond single-spin
subsystems. This includes entanglement scaling with subsys-
tem size [36,37] in view of constraints on the spreading of
correlations [38–41].

In conclusion, stretched-exponential relaxation is found in
classical models as well as in open quantum systems and,
as we have shown, also in the quantum Ising model pro-

totypical for isolated integrable quantum systems. Despite
the vastly different underlying physics, all of these systems
feature scale-invariant distributions of timescales. Thus, the
analytical results presented here are in line with the conclusion
of Ref. [5], extending the sufficiency of scale invariance for
the emergence of glassy dynamics to quantum systems. Based
on recent numerical investigations of a more general family of
Heisenberg Hamiltonians, where glassy dynamics is observed
for almost any anisotropy parameter [42], as well as experi-
mental findings [10], we expect the conjecture to hold even for
nonintegrable quantum systems if scale invariance is given.
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We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with 1/r6 power-law
interactions and positional disorder. Using the semiclassical discrete truncated Wigner approximation (dTWA)
method, we investigate the time evolution of the magnetization and ensemble-averaged single-spin purity for a
strongly disordered system after initializing the system in an out-of-equilibrium state. We find that both quantities
display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian.
Furthermore, a systematic analysis allows us to quantitatively show that, for all the scenarios considered, the
stretch power lies close to the one analytically obtained in the Ising limit. This indicates that glassy relaxation
behavior occurs widely in disordered quantum spin systems, independent of the particular symmetries and
integrability of the Hamiltonian.

DOI: 10.1103/PhysRevB.105.L100201

I. INTRODUCTION

Recent experimental progress and the development of more
advanced numerical tools allow the exploration of far-from-
equilibrium physics of many-body systems, e.g., transport
[1,2], localization [3,4], and dynamical phase transitions [5].
In disordered quantum systems, peculiarly rich relaxation dy-
namics has been found where the interplay of interactions and
randomness results in new and intrinsically nonequilibrium
effects such as prethermalization [6,7], quantum scars [8], and
aging [9].

Strikingly, a large variety of disordered materials [10–13]
feature slow subexponential relaxation behaviors. Phe-
nomenologically, these can be described by a stretched
exponential law exp[−(t/τ )β] with relaxation time τ and
stretch power β [14]. Despite the huge success of this law
in capturing the relaxation dynamics of disordered systems,
derivations of this function from microscopic models are
rare [11]. By exploring relaxation behaviors of three differ-
ent classical disordered models, Klafter and Shlesinger [15]
concluded that the scale-invariant property of the relaxation
timescales is the underlying feature resulting in the appear-
ance of stretched exponential law. Similarly, this behavior
has also been observed in a disordered open quantum system
where the decay rates, coupling the system to an environment,
display scale invariance [16,17].

In contrast to dissipative systems, closed quantum sys-
tems are subjected to unitary dynamics where relaxation can
solely be explained by interactions. In recent work, we have
analytically derived the occurrence of stretched exponential

*These authors contributed equally to this work.
†Corresponding author: weidemueller@uni-heidelberg.de

law for the disordered quantum Ising model in the thermo-
dynamic limit, where the interactions between different spins
feature a scale-invariant distribution [18]. Intuitively, spins
that interact strongly with their surrounding spins relax faster
compared to spins that are spatially more isolated. This leads
to a hierarchy of scales resulting in a subexponential relax-
ation. These observations indicate also in disordered quantum
systems that scale invariance implies glassy dynamics. Scruti-
nizing this hypothesis requires studying more general classes
of disordered quantum spin systems. A suitable candidate for
this is the XXZ Heisenberg model for which we recently
observed glassy dynamics in an experiment with Rydberg
atoms [19]. Nevertheless, in contrast to the integrable quan-
tum Ising model the XXZ Heisenberg model is in general
nonintegrable, which prevents direct analytical derivations
beyond the disorder-free one-dimensional case [20]. Further-
more, due to the exponentially increasing size of the Hilbert
space, exact numerical studies are limited to small system
sizes. Among different approximate numerical methods, the
semiclassical method of the discrete truncated Wigner ap-
proximation (dTWA) [21] already succeeded in capturing the
glassy behavior observed in a Rydberg spin experiment [19].
In addition, this method becomes exact for describing the
evolution of the magnetization in the Ising limit [21]. These
arguments imply that this method is a natural candidate to
address the glassy dynamics of disordered systems composed
of a large number of particles.

Within this work, we use the dTWA method (see
Appendix A for details on the numerical method and bench-
mark calculations) to investigate the occurrence of glassy
dynamics for the relaxation of magnetization and ensemble-
averaged single-spin purity in the general XYZ Heisenberg
model. This Letter is organized as follows: In Sec. II we intro-
duce the system and the relevant observable, and in Sec. III we

2469-9950/2022/105(10)/L100201(7) L100201-1 ©2022 American Physical Society
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focus on the dynamics of the particular scenario of the XXZ
Heisenberg model. In Sec. IV this investigation is extended to
the XYZ Hamiltonian.

II. XYZ HEISENBERG MODEL

We investigate the dynamics of N spin-1/2 particles de-
scribed by the general XYZ Hamiltonian

H = 1

2

∑

i, j

Ji j

|J|
(
Jxσ̂

i
xσ̂

j
x + Jyσ̂

i
yσ̂

j
y + �σ̂ i

z σ̂
j

z

)
, (1)

where for each spin i the Pauli matrices σ̂ i
α with α ∈ {x, y, z}

are introduced. The spins interact via van der Waals inter-
actions Ji j = 1/r6

i j with ri j being the distance between spins
i and j. The prefactors Jx, Jy, and � describe the contribu-
tions of the different interaction terms and are normalized by
|J| = (J2

x + J2
y + �2)1/2. In the case of Jx = Jy = � = 1, the

system is SU(2) symmetric which implies a conservation of
all the three components of the transverse magnetization, 〈σ̂x〉,
〈σ̂y〉, and 〈σ̂z〉, where 〈σ̂α〉 are defined as

〈σ̂α〉 = 1

N

N∑

i=1

〈
σ̂ i

α

〉
. (2)

As this peculiar isotropic case displays no relaxation dynam-
ics, we will exclude it from numerical investigations in the
following. In the case of Jx = Jy = 1 the model of Eq. (1)
reduces to the anisotropic XXZ Heisenberg model featuring
U(1) symmetry. Finally, we note that in the limits � → ±∞
the (anti)ferromagnetic quantum Ising model is recovered.

In this Letter, we numerically study the dynamics of
an ensemble of spins homogeneously distributed in three
dimensions. We focus on the dynamics of the transverse mag-
netization 〈σ̂x〉 and the ensemble-averaged single-spin purity

tr(ρ)2 = 1
2 (1 + 〈σ̂x〉2 + 〈σ̂y〉2 + 〈σ̂z〉2) (3)

after having initialized the system in the state |�0〉 = |→〉N ,
where |→〉 is the σ̂x eigenstate with a positive eigenvalue. The
purity quantifies the entanglement between each single spin
and its environment. The purity of a single spin can take values
of 1/2 � tr(ρ)2 � 1 and is directly connected to the second-
order Rényi entropy S2 = − log(tr[ρ2]).

III. STRETCHED EXPONENTIAL RELAXATION
IN THE HEISENBERG XXZ MODEL

Considering the particular case of the XXZ Hamiltonian
we perform numerical simulations using the dTWA method
to obtain the dynamics of the transverse magnetization. Ex-
emplarily, the observed decay of the magnetization for � =
−0.7 is shown in Fig. 1(a) (blue curve). Additionally, a
stretched exponential law was fitted yielding nearly perfect
agreement (red dashed line). Note that we have rescaled
time with the fitted decay time τ . Figure 1(b) shows the
residual of the applied fit to the data which lies in the per-
centage regime. We explore different regimes of anisotropy in
Fig. 1(c) showing the dynamical behavior of log 〈σ̂x〉 for � =
{−2.0,−0.7, 0.0, 0.7, 2.0} [for relaxation dynamics including
the fit similar to Fig. 1(a), see Appendix C]. In this double

FIG. 1. (a) Relaxation dynamics of the transverse magnetization
〈σ̂x〉 for an XXZ Heisenberg model with � = −0.7 as a function of
rescaled time t/τ . The dashed (red) curve shows a fit by a stretched
exponential function. (b) Residuals of the stretched exponential fit
applied to the relaxation dynamics shown in (a). (c) The logarithm of
the transverse magnetization log 〈σ̂x〉 as a function of rescaled time
t/τ for different �. Note that both axes are in logarithmic scale. A
pure exponential decay and the limit of the Ising model are added as
the dotted and dashed curve, respectively.

logarithmic plot a stretched exponential law corresponds to a
line with slope −β. The comparison to an exponential decay
(β = 1, black dotted line) shows that the decay is clearly
subexponential in all cases. The linear behavior over five
decades indicates the suitability of a stretched exponential
law to describe the relaxation dynamics. Strikingly, all five
observed cases agree well with each other, resulting in similar
slopes. These slopes are consistent with the exact solution
of the Ising limit |�| → ∞ (black dashed line) which yields
analytically a stretched exponential with β = 0.5 in the ther-
modynamic limit [18].

Next, we investigate the stretched exponential relaxation
of the system systematically over a broad range of values
of the anisotropy parameter �. For this we extract the two
characteristic parameters β and τ from the fit to the relaxation
dynamics of magnetization and purity for each value of the
anisotropy parameter. The stretch power is largely indepen-
dent of disorder strength in the regime of strong disorder and
convergence with respect to system size is investigated as we
show in detail in Appendix B.
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FIG. 2. Fit parameters (a) τ/τ0 and (b) β for magnetization
(circles) and ensemble-averaged single-spin purity (squares) as a
function of anisotropy � for an XXZ Hamiltornian. Within the gray
shaded area, the relaxation dynamics is not properly described by
stretched exponential law.

The relaxation time τ of the magnetization (blue dots) and
purity (red dots) is shown in Fig. 2(a) as a function of �.
The y axis is rescaled by the timescale τ0 corresponding to
the magnetization’s decay in the thermodynamic limit of the
Ising model [18] which is obtained for |�| → ∞ in Eq. (1).
For this model, it can be shown analytically that dTWA gives
the exact solution [21].

The figure shows that this limit is well recovered for |�| �
1 as the extracted τ lies close to τ0. Similar behavior is ob-
served for the purity, where the value of 2τ0 is expected in the
Ising limit. Remaining discrepancies are attributed to the finite
system size. By approaching � = 1, the observed dynamics
for both quantities is remarkably slowed down compared to
the Ising case. This behavior is expected since no dynamics
occur in the fully isotropic Heisenberg model. We point out
the fact that within the region closer to � = 1, represented
by the gray shaded area, relaxation dynamics become pro-
hibitively slow. As a result, magnetization and purity have
not fully relaxed at numerically accessible times t , and the
dynamics is not captured well by stretched exponential law.
This region is therefore excluded from further discussion.

In Fig. 2(b) the corresponding stretch powers for both
purity and magnetization are shown. Remarkably, although
timescales vary strongly as a function of �, the resulting
stretch powers are within a narrow range (from β = 0.4 to
β = 0.6) around the Ising value of β = 0.5. This indicates

FIG. 3. Fit parameters (a) τ/τ0 and (b) β for magnetization
(circles) and ensemble-averaged single-spin purity (squares) as a
function of � for a general XYZ Hamiltonian with Jx = 0.5, Jy = 1.
Within the gray shaded area, the relaxation dynamics is not properly
described by stretched exponential law.

that the glassy property of the relaxation, characterized by the
stretch power β, is not strongly dependent on the underlying
anisotropy and is similar for systems possessing different
conservation laws.

IV. GENERALIZATION TO XYZ HEISENBERG MODELS

We further explore the generality of the stretched expo-
nential law by investigating a more general class of spin
models, where the U(1) symmetry corresponding to conser-
vation of the z magnetization is broken. Specifically, we relax
the constraint of Jx = Jy, thus realizing an XYZ model. As a
particular example, we set Jx = 0.5 and Jy = 1 and vary �.
Another example, realizing a YZ Heisenberg model, where
Jx = 0, is presented in Appendix D.

The characteristic parameters of the fit are displayed in
Fig. 3 in analogy to Fig. 2. The resulting behaviors of β and
τ are similar to the results of Fig. 2. One main difference
is that the region around � = 1 where the relaxation time
becomes long and we cannot extract reliable quantities is
broader than in the XXZ case. Exemplarily, we provide the
relaxation dynamics in this specific region in Appendix C.
Nevertheless, the obtained stretch powers are still close to
β = 0.5, confirming that breaking the symmetry does not alter
drastically the glassy relaxation behavior of the system.
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V. CONCLUSIONS

Motivated by the experimental findings of glassy dynamics
in the XXZ Heisenberg model for � ≈ −0.7 and the analyt-
ical observation of stretched exponential law in the quantum
Ising model, we have systematically investigated in this Letter
the magnetization and ensemble-averaged purity dynamics
of XYZ Heisenberg models. In all investigated cases, glassy
dynamics characterized by stretched exponential relaxation
are observed. We found that independent of the symmetries
and Hamiltonian parameters, the stretch power lies close to
the one analytically predicted for the Ising limit (β = 0.5).

The numerical investigations in this Letter have been car-
ried out using the semiclassical dTWA method, allowing us to
simulate hundreds of particles in the strong disorder regime.
Hereby dTWA takes primordial quantum fluctuations into ac-
count, that are required to trigger relaxation dynamics [22].
The application of dTWA is justified, since it is expected to
successfully approximate the dynamics of one-point correla-
tions [21]. Furthermore, we cross validated the method with
a moving average cluster expansion (MACE), which takes
into account the full quantum dynamics but may suffer from
finite size artifacts (see Appendix A). In addition, dTWA
succeeded in the past to reproduce experimentally observed
relaxation dynamics in disordered Heisenberg models [19,22].
The obtained results on disordered XYZ models can be ex-
perimentally tested, as recently the Floquet engineering of
Rydberg spins has enabled the possibility to experimentally
implement Heisenberg Hamiltonians with tunable interaction
coefficients [23]. In the future we aim to use this experimental
platform to extend the investigation of glassy dynamics to
two-time quantities such as the susceptibility and we expect
phenomena such as aging or the reminiscence of possible
phase transitions to emerge.

Our observations of a stretched exponential law in both
XXZ and XYZ Heisenberg systems possessing a scale-
invariant distribution of interaction strengths extend the
connection between scale invariance and glassy dynamics
beyond open systems and the quantum Ising model. This
highlights that glassy dynamics is neither a speciality of open
systems nor of the quantum Ising model, but it appears natu-
rally in a wide variety of XYZ Hamiltonians with different
symmetries that feature scale invariance. Furthermore, the
presented work shows that this connection also constitutes a
reality for nonintegrable quantum spin systems.
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APPENDIX A: DISCRETE TRUNCATED
WIGNER APPROXIMATION

dTWA can be understood as a Monte Carlo average over
trajectories sampled from the Wigner distribution of the sys-
tem’s initial state and evolved according to the mean-field
equations of motions, thus accounting for quantum fluctua-
tions [21]. dTWA has been used successfully to model the
dynamics of one- and two-point correlations for the Ising
model and the XY Heisenberg model [21] and with experi-
mental observations of the decay of transverse magnetization
in Heisenberg models [19,22]. In addition, it has been shown
that dTWA is capable of describing genuine quantum features
such as entanglement [24] and correctly reproduces the dif-
fusive long time dynamics of generic nonintegrable quantum
systems [25]. While these arguments support the applicability
of dTWA in the system under study, we compare in the fol-
lowing the resulting dynamics to another numerical method
based on exact diagonalization. The moving average cluster
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FIG. 5. Stretch power β obtained from a stretched exponential fit
to the numerically simulated transverse magnetization dynamics for
different anisotropies � as a function of (a) particle number N and
(b) disorder strength x.

expansion (MACE) [26] solves clusters of spins exactly. This
method takes the full quantum dynamics into account, as long
as the correlation length is smaller than the cluster size. We
present in Fig. 4 the relaxation dynamics of the transverse
magnetization 〈σ̂x〉 for both methods over five decades for an
XXZ Heisenberg model with � = −0.7. Remarkably good
agreement is found, thus cross validating both methods. In the
work of this Letter, we decided to use dTWA as it requires
less computational resources, which allows us to explore a
broader parameter space. In addition to the averaging per-
formed via the Monte Carlo trajectories, we perform disorder
averages over different spin configurations drawn from the
same uniform distribution. We point out that the dynamics
of the magnetization are converged for 20 trajectories and
200 disorder averages, whereas for the purity it requires 200
trajectories and 40 disorder averages.

APPENDIX B: DEPENDENCE ON SYSTEM SIZE
AND DISORDER STRENGTH

In this Letter we consider a system of N spins drawn
from a homogeneous spatial distribution in three dimensions
characterized by the density n. Motivated by the realization of
spin systems with Rydberg atoms where the blockade effect
imposes a minimal distance between Rydberg spins, we con-
sider a minimal distance rb between different spins. Disorder
is coming from the random spin positions resulting in a broad

FIG. 6. Transverse magnetization as a function of rescaled time
t/τ for different anisotropies. Numerical data (solid blue line) are
obtained for N = 100 and x = 8 × 10−3. The dashed red line shows
the fitted stretched exponential law.

distribution of interaction strengths. As a disorder quantifier
we define x = nVb, where Vb is the spherical volume with
radius rb [18]. For large x, the induced correlations of rb play
a significant role, and a more regular structure is obtained
due to only slightly varying distances between the spins. For
sufficiently small x, the induced correlations can be neglected
and uncorrelated spin positions are reobtained, which justifies
the choice of x as the disorder parameter.

Additionally, we perform a systematic investigation of the
scaling of the numerical results with particle number N in
order to assure that the remaining finite size effects are negli-
gible in comparison to the structure obtained in Fig. 2(b). In
the following we focus on the glassy dynamics of the trans-
verse magnetization. In Fig. 5(a), we see that the stretched
power β, for a given �, is only slightly dependent on the
particle number between 50 and 500. No global trends are vis-
ible and the remaining fluctuations resulting from finite size
effects are varying from 0.01 (� = 0.0) to 0.03 (� = 0.7).
Note that for the Ising limit, the resulting stretch power for
N = 100 particles varies by 0.03 from the analytical result
of the thermodynamic limit [18], which can also be seen in
the large |�| limit of Figs. 2(b) and 3(b). Nevertheless, the
remaining finite size artifacts are negligible in comparison to
the obtained values and structure obtained from these figures.
Therefore, we fix N = 100 for all simulations shown.

FIG. 7. Transverse magnetization as a function of rescaled time
t/τ for the XYZ Heisenberg Hamiltonian with Jx = 0.5 and Jy = 1
with � = 0.5 and � = 0.8 (gray-shaded region in Fig. 3). Numerical
data (solid blue line) are obtained for N = 100 and x = 8 × 10−3.
The dashed red line shows the stretched exponential fit.
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FIG. 8. Fit parameters (a) τ/τ0 and (b) β for magnetization
(circles) and ensemble-averaged single-spin purity (squares) as a
function of � for an XYZ Hamiltonian with Jx = 0 and Jy = 1.
Within the gray shaded area, the relaxation dynamics is not properly
described by stretched exponential law.

Glassy relaxation has been found to be a robust feature for
disorder strengths above a certain threshold [19]. To ensure
that the chosen disorder parameter x is within this universal

strong disorder regime we investigate how the stretch power
β changes when we actively modify the disorder strength by
varying x. In Fig. 5(b), we show the resulting stretch powers
for different � values in the case of an XXZ Hamiltonian. We
see that if x lies below a value of 0.05, the β exponent obtain
from the fit to the dynamics gets disorder independent. Within
this Letter, we have chosen to work in this limit by choosing
x = 8 × 10−3.

APPENDIX C: ADDITIONAL AGREEMENT
OF STRETCHED EXPONENTIAL LAW

Complementary to the data presented in Fig. 1(a) we pro-
vide the relaxation dynamics of the transverse magnetization
with a linear y scale for the remaining anisotropies of Fig. 1(c),
� = {−2.0, 0.0, 0.7, 2.0}, in Fig. 6. We highlight the remark-
able agreement between numerical data and the stretched
exponential law.

Similar good agreement can be found for the relaxation
dynamics of the general XYZ Heisenberg Hamiltonian pro-
vided in Fig. 3 (Jx = 0.5, Jy = 1). Exemplarily, the left panel
of Fig. 7 shows the decay of the transverse magnetization for
� = 0.5. In contrast, the right panel shows the case of δ = 0.8
close to 1, which lies in the gray-shaded region featuring
prohibitively large timescales τ . The stretched exponential fit
(dashed red line) can no longer capture the full dynamics.
Especially at long times, the magnetization stalls at a finite
value.

APPENDIX D: INVESTIGATION ON A YZ
HEISENBERG HAMILTONIAN

We present in Fig. 8 a complementary plot to the one
presented in Fig. 3 where this time Jx = 0 and Jy = 1. The
resulting fit parameters are similar to the ones presented in
Fig. 3.
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A major goal toward understanding far-from-equilibrium dynamics of quantum many-body sys-
tems consists in finding indications of universality in the sense that the dynamics no longer depends
on microscopic details of the system. We realize a large range of many-body spin systems on a Ry-
dberg atom quantum simulator by choosing appropriate Rydberg state combinations. We use this
platform to compare the magnetization relaxation dynamics of disordered Heisenberg XX-, XXZ-
and Ising Hamiltonians in a scalable fashion. After appropriate rescaling of evolution time, the
dynamics collapse onto a single curve. We find that the observed universal behavior is captured
by theoretical models that only consider local pairs of spins. Associated to each pair is a local
quasi-conserved quantity, allowing us to describe the early time dynamics of the system in terms of
an integrable model similar to systems featuring prethermalization. Since the dynamics of pairs are
independent of the type of Hamiltonian up to a scaling factor, this integrable model explains the
observed universal relaxation dynamics of disordered Heisenberg quantum spin systems.

I. INTRODUCTION

Far-from equilibrium dynamics of isolated quantum
systems displays a wide range of emergent phenom-
ena, such as dynamical phase transitions [1, 2], quan-
tum many-body scars [3–5] and many-body localization
(MBL) [6–10]. The time evolution of these systems af-
ter a quench generally depends strongly on the type of
interactions and the distribution of interaction strengths
between the particles [11]. A notable exception are sys-
tems showing (metastable) prethermal phases, where re-
laxation dynamics can show universal behavior, i.e. the
dynamics become independent of details of the micro-
scopic model [12–16].

When considering the role of disorder for the dynamics
of quantum many-body systems, a striking characteristic
of the dynamics is that they can be non-ergodic [17],
which is found for example in spin glasses [18] and
MBL [19]. Associated with non-ergodicity is often
an anomalously slow relaxation, which was observed
in disordered quantum spin systems that feature sub-
exponential dynamics [20–24]. Remarkably, a unified de-
scription of the sub-exponential dynamics, the stretched
exponential law, emerges as long as the degree of disor-
der is sufficiently strong [20]. This raises the question
of whether this apparently robust phenomenon also per-
sists for spin Hamiltonians possessing different symmetry
properties and how we can explain its appearance in var-
ious systems.

∗ These authors contributed equally to this work.
† weidemueller@uni-heidelberg.de

In classical systems, such universality is known and can
be understood. In a seminal work, by comparing three
different physical mechanisms, Klafter and Shlesinger
have found that a scale-invariant distribution of time-
scales is the underlying mathematical structure that in-
duces stretched-exponential relaxation [25]. In order to
get an intuitive understanding of the underlying physics,
we consider an ensemble of initially fully polarized spins.
All the spins are coupled to an external bath at a different
strength sampled from a scale-invariant distribution (de-
noted as ”many parallel channels model” in [25]). Due to
the coupling to the bath, each spin decays exponentially
on a different timescale. Thus, the global polarization of
the system yields a stretched exponential form resulting
from the averaging over all the spins.

For isolated quantum systems, where the dynamics are
unitary, there is no notion of decay to a bath. How-
ever, in a disordered system where the spins are ran-
domly positioned in space, the interaction strengths be-
tween the spins can be distributed scale-invariantly. For
example, it was shown analytically for the dynamics of
the quantum Ising model that this distribution of cou-
pling strengths induces a stretched exponential law [26].
This analytic solution is only possible because the Ising
model features an extensive number of conserved quanti-
ties, i.e. it is integrable. Thus, for non-integrable models,
no analytic solution exists, and it remains an open ques-
tion in which manner the system relaxes after a quan-
tum quench. Semi-classical simulations suggest that non-
integrable Heisenberg XYZ Hamiltonians present out-of-
equilibrium dynamics that follow a stretched exponen-
tial law like the Ising model independent of their sym-
metry [27]. However, these semiclassical approximations
neglect quantum effects beyond initial quantum fluctua-

ar
X

iv
:2

20
9.

08
08

0v
1 

 [
qu

an
t-

ph
] 

 1
6 

Se
p 

20
22



2

FIG. 1. Rydberg quantum simulator platform. (a) Illustration of out-of-equilibirum disordered spin systems relaxing with
respect to different Hamiltonians (b) Illustration of the experimental realization of a Heisenberg XX Hamiltonian by coupling
a Rydberg |nS〉 state to a |nP 〉 state, possessing opposite parity. The interaction is dipolar and falls of as r3ij . Coupling two
Rydberg states with the same parity results in Heisenberg XXZ Hamiltonian (b) for state combinations |nS〉 and |(n+ 1)S〉,
while state combinations |nS〉 and |(n+ 3)S〉 results in a Ising Hamiltonian (c). In the two latter cases, the interactions is of
van der Waals nature with a r6ij dependence.

tions and may miss relaxation behaviors owing to large
scale correlation propagation associated to build up of
entanglement. Investigating the exact time evolution nu-
merically is challenging due to the exponential growth
of the Hilbert space with system size in quantum many-
body systems.

This challenge can be addressed by studying the time
evolution for given Hamiltonians with highly tunable
quantum simulators on elaborated experimental appara-
tus [28–31]. In this work, we use different combinations of
states of highly excited Rydberg atoms to realize differ-
ent types of spin Hamiltonians thus making use of the full
versatility of this platform [9, 20, 32–36]. Rydberg atoms
are ideally suited to study unitary quantum dynamics be-
cause the time scales of the interacting dynamics vastly
exceed those of the typical decoherence mechanisms. We
observe the relaxation dynamics of three different Heisen-
berg Hamiltonians: the integrable Ising model and the
non-integrable XX and XXZ models with power-law in-
teractions and positional disorder (see Fig. 1 (a)). For
all models we observe the same characteristic decay of
magnetization, well-described by a stretched exponential
function, which causes the data to collapse onto a sin-
gle universal curve after appropriate rescaling of time.
This behavior can be qualitatively explained by an in-
tegrable model which neglects all interactions beyond

nearest-neighbor pairs. This implies that his relaxation
is not a consequence of spreading of correlations beyond
the nearest neighbor and thus the observed universality
is associated to the integrable property of the disordered
quantum spin systems [6, 37]

II. HEISENBERG SPIN SYSTEMS ON A
RYDBERG-ATOM QUANTUM SIMULATOR

We consider a spin-1/2 system interacting with the fol-
lowing Heisenberg Hamiltonian (~ = 1)

Ĥ =
∑

i<j

(
J⊥ij /2(ŝi+ŝ

j
− + ŝi−ŝ

j
+) + J

‖
ij ŝ

i
z ŝ
j
z

)
. (1)

Here, ŝi± = ŝix ± iŝiy, where ŝiα(α ∈ x, y, z) are the spin-

1/2 operator of spin i and J
⊥,‖
ij = C

⊥,‖
a /ra. These types

of Heisenberg XXZ Hamiltonians with disordered cou-
plings feature a rich phenomenology of different phases
and relaxation behaviors. For example, increasing the

ratio J
‖
ij/J

⊥
ij leads to a crossover from a many-body lo-

calized to a spin glass phase [38]. The Ising case where
J⊥ij = 0 features additional symmetries under local spin

rotations ŝiz that commute with the Hamiltonian. There-
fore, 〈ŝiz〉 constitute an extensive number of conserved
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quantities which make this Hamiltonian integrable. For
J⊥ij 6= 0, ŝiz are no longer conserved and the Hamiltonian
is non-integrable.

In the following, we provide a comprehensive descrip-
tion of how to engineer this Hamiltonian with different
combinations of Rydberg states [39, 40]. Especially, this
gives us the opportunity to explain how to engineer an
Ising Hamiltonian in a spin system realized by two dif-
ferent Rydberg states.

For general spin systems with global U(1) symmetry,
the coupling terms can be obtained by calculating the
matrix elements of the interaction Hamiltonian. The
Ising term

J
‖
ij = (E↑i↑j + E↓i↓j )− (E↓i↑j + E↑i↓j ) (2)

is defined as the energy difference between spins be-
ing aligned and being anti-aligned. Here, Eαiβj =

〈αiβj |Ĥ|αiβj〉 are the interaction energy of spin i and
j with α, β ∈ [↑, ↓]. The exchange term is determined by

J⊥ij = 〈↓i↑j |Ĥ| ↑i↓j〉 . (3)

For a system consisting of states with opposite parity,
such as |↓〉 = |nS〉 and |↑〉 = |nP 〉 (see Fig. 1 (b)), where
n is the principal quantum number, the dominant cou-
pling is a direct dipolar interaction and can be described
by the Hamiltonian

ĤDDI =
d̂i · d̂j − 3

(
d̂i · erij

)(
d̂j · erij

)

r3ij
. (4)

where d̂i is the dipole operator of atom i, erij is the unit
vector connecting the two atoms and rij their distance.
Mapped on the spin Hamiltonian of Eq. 1, the resulting
interaction coefficient is

J⊥ij =
C⊥3 (1− 3cos2θij)

r3ij
. (5)

. Here, θij is the angle between erij and the quantization

axis and C⊥3 the coupling parameter [35, 36]. The Ising

term J
‖
ij is not present since interaction energy shifts

Eαiβj are dipole forbidden. Therefore this is a way to
realize an XX model as depectied in figure 1b). In this
work, we have chosen 61S and 61P leading to C⊥3 /2π=
3.14 GHz µm3.

If the two states possess the same parity, such as the
two atoms being in the same state nS, direct dipolar cou-
pling is forbidden. Instead, the interaction is a second-
order process through a virtually excited pair state |m〉
and can be described by

ĤvdW = −1

~
∑

m

ĤDDI |m〉 〈m| ĤDDI

∆ν
. (6)

Here, Foerster defect ∆ν is the energy difference between
the initial state and the virtually excited state |m〉. This

Hamiltonian gives rise to power-law interactions Jij =
C6/r

6
ij that scales with n11. Especially, this term is large

if a pair state m with a small Foerster defect and a large
dipolar coupling exists. Many experiments exploit these
interactions by realizing a spin system where the ground
state is coupled to a single Rydberg state. These systems
feature the Rydberg blockade effect and can be mapped
on an Ising model [3, 33, 34].

Similar interactions also exist for a spin system real-
ized with two different Rydberg states |↓〉 = |nS〉 and
|↑〉 = |(n+ 1)S〉 for all energy shifts in the Ising term
(2). In this case, the Van-der-Waals Hamiltonian (6)
also induce a spin exchange term because the two Ry-
dberg states are coupled via the intermediate pair state
|m〉 = |nP, nP 〉 (see Fig. 1 (c)). In the case of n = 61,
the Foerster defects of both the Ising and exchange in-
teractions are similar, therefore also the interactions are
comparable resulting in J‖/J⊥ = −0.7. Therefore, this
spin system can be mapped onto an effective Heisenberg
XXZ-Hamiltonian [20].

In order to realize an Ising Hamiltonian with two dif-
ferent Rydberg states, a state combination is needed
where the exchange term (3) is small because the Fo-
erster defect is large. This can be achieved by cou-
pling |↓〉 = |nS〉 to |↑〉 = |(n+ 3)S〉. In this case, the
largest contribution to the exchange term comes from
|m〉 = |(n+ 1)P, (n+ 1)P 〉 where the Foerster defect is
increased by an order of magnitude (see Fig. 1 (d)) and
also the matrix elements are small. For example, for
n = 61, this spin system is characterized by a ratio of
J‖/J⊥ = 400, which is a good approximation to an Ising
Hamiltonian (J⊥ = 0).

III. EXPERIMENTAL OBSERVATION OF
SCALING BEHAVIOR AND GLASSY

DYNAMICS

In order to observe the relaxation dynamics of the
three different spin models, we implement a Ramsey
protocol in our Rydberg experiment. The experiment
starts with trapping Rubidium-87 atoms loaded in a
crossed dipole trap of size 65 µm × 45 µm × 45 µm at
a temperature of 20 µK. The atoms are excited from
the ground |g〉 = |5S1/2, F = 2,mF = 2〉 to the Ryd-
berg state |61S1/2,mj = 0.5〉 by a two-photon transi-
tion with red (780 nm) and blue (480 nm) lasers that
are detuned by 2π · 98 MHz from the intermediate state
|e〉 = |5P3/2, F = 3,mF = 3〉. For this state, the Ryd-
berg lifetime of 100 µs exceeds the duration of the spin
experiment of 30 µs. The excitation process leads to a
three-dimensional cloud of N≈ 80 − 250 Rydberg atoms
that are distributed randomly. The Van-der-Waals in-
teraction during the excitation process imposes a mini-
mal distance of rbl ≈ 10 µm between the spins (Rydberg
blockade effect). The state |61S1/2,mj = 0.5〉 is the |↓〉
state of all three different spin systems, the main dif-
ference is the second Rydberg states that is addressed
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by choosing proper microwave coupling using an AWG
setup.

To realize the Heisenberg-XX model, a single-photon
microwave transition at 2π · 16 GHz with a Rabi fre-
quency of Ω = 2π · 18 MHz couples this state to
|↑〉 = |61P3/2,mj = 1/2〉. In the case of XXZ inter-
actions, two microwave photons at 2π · 16 GHz couple
to |↑〉 = |62S1/2,mj = 1/2〉. Here, a single photon
Rabi frequency of Ω = 2π · 48 MHz with a detuning
∆ν = 2π · 170 MHz leads to a two photon Rabi fre-
quency of Ω2γ = 2π · 6.8 MHz. For Ising interactions,
where the state |61S〉 is coupled to |64S〉, the detuning
of ∆ν = 2π · 1.426 GHz is too large to efficiently couple
the states with two microwave photons of the same fre-
quency 2π · 47 GHz. Therefore, we combine two frequen-
cies differing by 2π · 1.563 GHz such that the effective
detuning to the intermediate state |62P 〉 is 2π ·136 MHz.
For a single photon Rabi frequency of Ω = 2π · 30 MHz
this results in an effective two-photon Rabi frequency of
Ω2γ = 2π ·3.3 MHz (see Figure 1 (b-d) for the microwave
photonic transitions).

After having excited the ground states atoms to the
down spin state, we initialize the dynamics be performing
a first π/2-pulse microwave pulse which set the whole

system is the state |→〉⊗N = 1/
√

2(|↑〉 + |↓〉)⊗N and let
the system evolve under the natural Hamiltonian over
4 orders of magnitude in time up to 30 µs. A second
π/2-pulse at a different readout phase followed by optical
de-excitation and field ionization allows a tomographic
measurement of the x magnetization 〈Ŝix〉 =

∑
i 〈ŝx〉 [20].

The resulting relaxation dynamics of the Ising, Heisen-
berg XX, and XXZ models are shown in Fig. 2 (a-c).
At early times, the magnetization seems to be almost
perfectly conserved at 〈Ŝx〉 = 0.5 before the relaxation
begins. This effect is attributed to the Rydberg block-
ade that induces a maximal interaction strength that
determines the system’s fastest time scale. For each
model, the system relaxes to zero magnetization within
less than 10 µs. which is understood in disordered sys-
tem by considering symmetry arguments: Indeed, the
magnetization can be rewritten using the commutator re-
lation for Pauli matrices 〈Ŝx〉 = −i〈[Ŝy, Ŝz]〉. The latter
term vanishes for each eigenstate |φ〉 of the XXZ Hamil-
tonian because each eigenstate is also an eigenstate of

Ŝz |φ〉 =
∑
i ŝ

(i)
z |φ〉 = Sz |φ〉 due to the global U(1) sym-

metry leading to 〈[Ŝy, Ŝz]〉 = Sz 〈[Ŝy, 1]〉 = 0.
To compare the relaxation curves to numerical predic-

tions, the positions of the Rydberg spins are needed. We
use a hard-sphere model where each Rydberg excitation
is described by a superatom [41] with a given blockade
radius and effective Rabi frequency [20]. Without free
parameters, only taking into account the geometry of
the ground state atomic could, the size and linewidth
of the excitation laser beams, and the measured number
of Rydberg atoms, that are evaluated through additional
measurements, we can use this model to predict a distri-
bution of atoms thus having full access to the distribution
of distance-dependent interaction strengths.

We simulate the exact time-evolution of the Ising

model 〈Ŝx〉 (t) = 1/(2N)
∑
i

∏
j 6=i cos(2J

‖
ijt) derived by

Emch [42] and Radin [43] (solid line in Fig. 2 (a)). This
prediction agrees within the error bars with the mea-
sured dynamics providing a benchmark whether the ex-
perimental data can be reproduced assuming unitary dy-
namics and a given distribution of Rydberg spins. In the
case of XX and XXZ Hamiltonians, no analytical solu-
tion is known. However, the Discrete Truncated Wigner
Approximation (DTWA) naturally generalizes the Emch-
Radin solution as in the limiting case of only Ising inter-
action DTWA predicts the magnetization exactly [44].
Compared to the experimental data in Fig. 2 (b) and
(c), DTWA also shows good agreement within the ex-
perimental uncertainties. The small deviation between
simulations and experiments can be mostly attributed to
an inaccuracy of the atom distribution obtained from the
simplified excitation model (see appendix).

Despite stemming from three different spin systems,
the dynamics in Fig. 2 (a-c) look strikingly similar in a
log-linear plot. Indeed, by rescaling time with the typi-

cal timescale of each system given by |J⊥median− J
‖
median|,

all relaxation curves coincide within the experimental

errors. Here, J
⊥,‖
median is the median of the average ab-

solute interaction strengths 1/N
∑
j |J
⊥,‖
ij |. This choice

of typical interaction time scale is motivated by the os-
cillation frequency of a single pair of interacting spins
governed by (1), which will be further discussed in the
following section. This scaling behavior shows univer-
sal relaxation dynamics which is independent of the type
of Hamiltonian. The striking collapse allows us to in-
fer the functional form of the relaxation dynamics of the
non-integrable models: For the Ising model, it is known
that the relaxation follows exactly the stretched expo-

nential law e−(t/τ)
β

[26] with stretching exponent β and
timescale τ . The logarithm of the stretched exponen-
tial law is a power-law. Plotted on a double logarithmic
scale, this power-law becomes a linear function (dashed
line in the inset of Fig. 2 (d)). In this representation,
the rescaled experimental data also show a linear behav-
ior over two decades. This confirms the hypothesis that
the stretched exponential law is the unifying description
of the relaxation for the integrable quantum Ising model
and also for the non-integrable XX and XXZ Hamiltoni-
ans.

IV. EFFECTIVE INTEGRABILITY BY
LOCALIZED ENSEMBLES

In order to explain the emergence of the scaling be-
havior, we aim for a simplified model which captures the
relevant time scales of the system.

In order to explain the emergence of the scaling be-
havior, we aim for a description of relaxation dynamics
that exploits the possibility of separating the time-scales
in the system. This is possible in disordered samples
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FIG. 2. Relaxation dynamics of disordered quantum spin systems. Magnetization dynamics as a function of time for the Ising-
model (a), the XX-model (b), and the XXZ-model (c). The solid line shows the exact solution for the Ising-model and dahed
lines are DTWA simulations for the XX- and XXZ-model. Error bars are the statistical errors resulting from the repetition of
the experiment. (d) Magnetization dynamics of the three models as a function of the time rescaled by the typical interaction

strength 2π|J⊥median− J‖median| = 2.1 MHz (Ising-model), 19 MHz (XX-model), 3.5 MHz (XXZ-model). Inset: Data points of (c)
plotted on as loglog vs log. Dashed line is a guide to the eye indicating a stretched exponential relaxation.

where the closest pairs interact on the fastest time-scales.
A similar approach is used in disorder renormalization
group theories where the fastest time scales are integrated
first followed by renormalization steps [45–48]. Here, we
do not aim to proceed further in this renormalization
scheme, but instead, we use the basis of eigenstates of
strongly interacting pairs to derive an intuitive under-
standing of the physics within mean-field theory. Fol-
lowing this idea, we introduce a model where each spin
only interacts with its nearest neighbor. Since interac-
tions between different pairs are neglected, we can solve
the time-evolution of each pair individually which results
in an integrable model. In the following, we show that
this crude approximation indeed qualitatively explains
the data. Each pair oscillates between the fully polar-
ized states |→→〉 and |←←〉 via the maximally entangled

Bell states 1/
√

2 (|→→〉 ± |←←〉) (see Fig. 3 (a)) [49].
The resulting oscillation of the magnetization (shown in
Fig. 3 (b)) is independent of the specific XXZ Hamilto-

nian, only the frequency J⊥ij − J
‖
ij differs depending on

the Ising and exchange interaction strengths. This in-
depence explains the observed universality of relaxation
dynamics.

To compare the pair approximation to the experimen-
tal setting, we calculate the magnetization of each spin
assuming it interacts only with its nearest neighbor. The
global magnetization is the moving average over all of

these pairs:

〈Ŝpair
x 〉 (t) =

1

2N

∑

i

cos(2 max
j

(J⊥ij − J‖ij)t). (7)

The resulting relaxation is shown by the solid black line
in Fig. 3 (c-e). Qualitatively, it shows a similar behavior
compared to DTWA or the experimental data despite all
long-range interactions and correlations beyond isolated
pairs being completely neglected. In the case of Ising
interactions, the magnetization simulated with the pair
model dips at 1 µs slightly below the experimental data.
This is a reminiscence of the blockade effect which leads
to some pairs separated by the blockade radius that oscil-
late at the same frequency. In the case of dipolar interac-
tions (XX model), which are long-range with interaction
exponent a = 3, the pair model overestimates the magne-
tization slightly at early times as all interactions beyond
the nearest neighbor are neglected. For the XXZ model,
where the blockade radius is small (see appendix) and the
Van-der-Waals interactions are short range with a = 6,
the pair model shows the best agreement and coincides
with the DTWA simulation.

To investigate the effects of higher order correlations on
the dynamics, we explore clusters of spins using Moving
Average Cluster Expansion (MACE) [50]. Here, the ex-
pectation value of every single spin is calculated by exact
diagonalization of the cluster of surrounding spins. For a
cluster size of 10 spins, the resulting dynamics are shown
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as a dashed grey line in Fig. 3 (c-d). MACE predicts
nearly the same relaxation behavior as DTWA (dotted
grey line in Fig. 3 (c-d)) including the overestimation of
the magnetization at late time compared to the experi-
mental data. Therefore, we conclude that it is possible
to capture the complete quantum dynamics of the mag-
netization by simulating only small clusters of spins.

FIG. 3. Effective description by localized pairs. (a) Il-
lustration of the oscillation of a single pair under an ar-
bitrary Heisenberg XXZ Hamiltonian. A fully polarized
state |→→〉 (left) evolves via the the maximally entangled
Bell state 1/

√
2 (|→→〉+ |←←〉) (top) to the state |←←〉

(right). Then, it returns to the origin via the other Bell state
1/
√

2 (|→→〉 − |←←〉) (bottom). (b) Oscillation of the mag-
netization for a single pair initialized in |→→〉. (c-e) Compar-
ison of the pair approximation (solid black line) and MACE
(dashed grey line) with DTWA (dotted lines) and the exper-
imental data of Fig. 2 (error bars) for Ising (c), XX (d) and
XXZ model (e).

V. RELATION TO PRETHERMALIZATION

The observed magnetization relaxation dynamics for
the different models show a universal behavior in the
sense that the essential features of a large class of dis-
ordered quantum systems are independent of the micro-
scopic details of the system. Such universal behavior is
famously known from equilibrium physics where differ-
ent materials share the same scaling functions and criti-
cal exponents near phase transitions, which is why these
materials can be attributed to universality classes [51–
53]. Recently, the concept of universality and scaling
behavior has also been introduced to relaxation dynam-
ics in the context of prethermalization [12, 14, 16, 54].
In systems showing prethermalization, the Hamiltonian
of a near-integrable system can be divided in an inte-
grable part and a small perturbation that breaks inte-
grability. The integrable part has an extensive num-
ber of conserved quantities, therefore it will always keep
memory of the initial state which is a signature of non-
thermalization. On the other hand, a non-integrable sys-
tem is expected to thermalize according to Eigenstate
Thermalization Hypothesis [12, 55–59]. Thus, a near-
integrable system first relaxes to a quasi steady-state, the
non-thermal fixed point, which is universally described
by the General Gibbs ensemble of the integrable part. At
much later times, the integrability-breaking perturbation
leads to thermalization in a non-universal fashion.

Is the universal relaxation observed in this work related
to prethermalization? At first glance, a general Heisen-
berg XXZ Hamiltonian seems to be not divisible in a
non-integrable part and a small perturbation. However,
as we have revealed in the previous section, relaxation
dynamics is well captured by a non-interacting ensem-
ble of pairs for sufficiently disordered spin systems. In
the framework of prethermalization, the description in
terms of pairs would then provide the integrable part of
the Hamiltonian, the interaction between pairs would be
the integrability-breaking perturbations. Strikingly, the
description of the dynamics in terms of pairs is not only
valid at early times, but it agrees well with the data for
the whole relaxation of the magnetization, which lasts for
over three decades in time. This coincides with the main
consequence of prethermalization that the system stays
at the non-thermal fixed point defined by the integrable
part of the Hamiltonian for long times before reaching
thermal equilibrium. Indeed, recent studies have found
signatures for localization and the absence of thermaliza-
tion even at times much larger than the relaxation times
of the magnetization [60, 61].

VI. CONCLUSION

Our work demonstrates the ability of Rydberg atom
quantum simulators to synthesize a variety of many-
body Hamiltonians on a single experimental platform.
By choosing the appropriate state combination, we real-
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ized XX-, XXZ-, and for the first time, a quantum Ising
model within the Rydberg manifold. This versatility of
the platform has enabled us to directly study and com-
pare the relaxation dynamics of three different quantum
spin systems far-from-equilibrium.

We have observed universal relaxation dynamics, i.e.
dynamics independent of the microscopic details of the
system after appropriate rescaling, in strongly disordered
Heisenberg quantum spin systems which can be explained
by an effective description of the system in terms of small
localized clusters. This explanation of universality due to
an emergent integrability appears to be consistent with
the concept of prethermalization. To confirm this inter-
pretation of the dynamics, a strong-disorder renormal-
ization group treatment might directly reveal possible
universality classes. We are currently pursuing first at-
tempts into this direction. Experimentally, further in-
vestigations could reveal whether the relaxation of dis-
ordered quantum spin systems is also universal with re-
spect to different initial states, or whether the energy
density of the initial state affects the dynamics, indicative
of a possible phase transition [62]. In addition, the mea-
surement of higher-order correlation functions will shed
further light on the dynamics and might reveal whether
localized pairs remain stable or delocalize at late times.
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Appendix A: Details on experiment

In the main text, we have highlighted that the typical
timescale of the relaxation is given by the pair oscillation
frequency |J‖ − J⊥|. For the Heisenberg XXZ Hamilto-
nian, both exchange and Ising interactions exist. There-
fore, another possibility of rescaling would only involve
J⊥ which would disregard the anisotropy δ = J‖/J⊥.
In Figure 4, we have compared both possibilities of
rescaling time. The rescaling by the oscillation frequency
shows a more precise collapse of the experimental data.
This demonstrates that this frequency indeed determines
the relevant timescale of the system. In addition, this
indicates that the Rydberg interactions can be mapped
onto the Heisenberg XXZ Hamiltonian with δ = −0.7.

In Fig. 5, we show the sensitivity of the DTWA simu-
lations to different densities and blockade radii. For most
simulations, these parameters have only a small, quanti-
tative effect on the simulated dynamics. A notable ex-
ception is the Ising system. Here, the Rydberg cloud
is largely saturated and the blockade radius is the rele-
vant length scale of the system. Therefore, a variation
of the blockade radius changes drastically the early time
dynamics. In contrast, the density of the sample featur-
ing XX-interaction is low, therefore the blockade effect
can be neglected. For the Heisenberg XXZ Hamiltonian,
the simulations show that the blockade radius of 8.3 µm
fits the observed dynamics slightly better than the value
of 10 µm expected from the simplified excitation model
assuming no phase noise of the laser.
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S. Whitlock, G. Zürn, and M. Weidemüller, Physical
Review X 11, 011011 (2021).

[21] J. Choi, S. Choi, G. Kucsko, P. C. Maurer, B. J. Shields,
H. Sumiya, S. Onoda, J. Isoya, E. Demler, F. Jelezko,
N. Y. Yao, and M. D. Lukin, Physical Review Letters
118, 093601 (2017).

[22] G. Kucsko, S. Choi, J. Choi, P. Maurer, H. Zhou,
R. Landig, H. Sumiya, S. Onoda, J. Isoya, F. Jelezko,
E. Demler, N. Yao, and M. Lukin, Physical Review Let-
ters 121, 023601 (2018).

[23] C. Sommer, G. Pupillo, N. Takei, S. Takeda, A. Tanaka,
K. Ohmori, and C. Genes, Physical Review A 94, 053607
(2016).

[24] N. Takei, C. Sommer, C. Genes, G. Pupillo, H. Goto,
K. Koyasu, H. Chiba, M. Weidemüller, and K. Ohmori,
Nature Communications 7, 13449 (2016).

[25] J. Klafter and M. F. Shlesinger, Proceedings of the Na-
tional Academy of Sciences 83, 848 (1986).

[26] P. Schultzen, T. Franz, S. Geier, A. Salzinger, A. Tebben,
C. Hainaut, G. Zürn, M. Weidemüller, and M. Gärttner,
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5
C O N C L U S I O N

path to equilibrium of disordered quantum spin systems

Part I of this thesis has investigated how isolated quantum spin sys-
tems relax towards equilibrium, where we have discovered that disor-
der induces slow, glassy dynamics, which is largely independent of
microscopical details like the type of Hamiltonian or the strength of
disorder up to a critical value.

In the following, we aim to map a general path towards equilibrium
for disordered quantum spin systems. We will argue that a simplified
model which only considers pairs of spins is sufficient to explain the
main features of the relaxation, especially the observed universality.
Finally, we will discuss the relation of the here studied disordered
quantum spin system to spin glasses.

Figure 5.1: Relaxation dynamics of a disordered quantum spin system. (a) Simulation of the relaxation of the
magnetization (solid black line) and the ensemble-averaged single-spin purity (dotted blue line) of 14 spins in the
limit of strong disorder (rbl = 0.1rmax following the notation from Article [4]). (b) The far-from-equilibrium initial
state is a disordered sample of spins aligned in x-direction. (c) The time evolution features slow, glassy dynamics
which can be qualitatively captured by an ensemble of pairs of spins, each oscillating at a specific frequency. (d)
At late times, the magnetization and single-spin purity has relaxed to zero. However, this state is not compatible
with a thermal ensemble description and is therefore labeled as an MBL regime. (e) It is still an open question
whether the system might reach thermal equilibrium in the thermodynamic limit at infinite late times and infinite
system size.
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Figure 5.1 (a) shows the numerically calculated time evolution of a
disordered system (similar to Figure 1 in Article [1]), and the sketches
in Figure 5.1 (b) to (e) outline the path a disordered quantum system
takes on its way toward a steady state. Initially (Figure 5.1 (b)), the sys-
tem is prepared in the fully polarized state (magnetization ⟨Ŝ⟩x = 0.5),
where all spins are aligned in the x-direction. Because this is a product
state, this state has zero entropy or, equivalently, the purity of each
subsystem is maximal. The fully polarized initial state is a steady state
within mean-field prediction: In this approximation, the spins generate
a mean-field that is aligned in the direction of the spins, which locks
the spins instead of inducing spin rotations. Therefore, a mean-field
or equivalently classical approximation predicts no dynamics of the
magnetization for this initial state. Any dephasing mechanism where
spins are rotated in individual directions that occur, for example, in
NMR systems [129] or NV centers [117] due to inhomogeneities in
the external field, is absent. Therefore, any dynamics observed for
the fully polarized initial state can be attributed to the build-up of
entanglement.

In this thesis, we could qualitatively explain the time evolution of
the disordered quantum system by a collection of pairs of spins (see
Article [4]). These oscillate collectively between product states, where
both spins are aligned, and maximally entanglement Bell states (Fig-
ure 5.1 (c)). Due to disorder, the timescales of these oscillations follow
a scale-invariant distribution which leads to a subexponential, glassy
relaxation that lasts multiple orders of magnitude in time (solid black
line in Figure 5.1 (a)). This subexponential relaxation can be described
as a stretched exponential decay with stretching exponent β < 1. At
later times, different pairs of spins additionally start to interact with
each other. As a result, the pair oscillations lose coherence, and the
single-spin purity relaxes to its minimal value of ⟨S2

x⟩ = 1/2 for each
spin (dashed blue line in Figure 5.1 (a)). The ensemble-averaged single-
spin purity also follows a stretched exponential relaxation with the
same stretching exponent as the magnetization, which can also be
attributed to a scale-invariant distribution of timescales. The anoma-
lously slow relaxation of the magnetization represents one possibility
of how ergodicity can be broken in isolated quantum systems. Since
ergodicity is only meaningfully defined for a steady state, the sys-
tem remains non-ergodic during the relaxation, which continues for
multiple decades.

In Part II of this thesis, we will explore whether the system becomes
ergodic at late times when both magnetization and single-spin purity
have relaxed to zero (Figure 5.1 (d-e)).
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universal relaxation dynamics in the view of prether-
malization and renormalization group theory

The main discovery of this part of the thesis is the insensitivity of
this relaxation with respect to disorder (Article [1] and [2]) and the
type and symmetry of the Hamiltonian (Article [3] and [4]). These
findings are also independent of the type of simulations, we could
show qualitatively similar relaxation dynamics in semiclassical DTWA
simulations, in cluster expansion methods like MACE, in the analytical
Emch-Radin solution of the quantum Ising model, and also in the
quantum simulation of the Rydberg experiment. In the following,
we discuss how this universality can be explained by the existence
of localized clusters which leads to an emergent integrability of the
system.

As a first signature of universality, we have found that the stretching
exponent is independent of the strength of disorder up to a critical
value. In this regime of disorder, the blockade radius affects only
the strongest interacting pairs of atoms. These will depolarize on
the fastest timescale and can be integrated out at late times. For the
remaining pairs, the blockade effect can be neglected such that they
constitute a system that is effectively more disordered. This explains
why the late time dynamics agrees with the completely disordered
limit.

The second signature of universality is the insensitivity with respect
to the type of the Heisenberg XYZ Hamiltonian. This can also be
explained by pairs of spins that remain localized throughout the entire
duration of the relaxation dynamics. The magnetization of isolated
pairs oscillates coherently independent of the type of the Heisenberg
XXZ Hamiltonian, only the oscillation frequency differs. Therefore,
after rescaling time with this oscillation frequency which is specific
to each Hamiltonian, the relaxation dynamics of different types of
Hamiltonians collapse onto a single curve.

In addition to explaining the qualitative features of the system like
the universal relaxation dynamics, the description in terms of localized
pairs also features a good quantitative approximation to the observed
dynamics. This approximation can be further improved by MACE
simulations that consider slightly larger clusters of spins.

Importantly, this model of the system as an ensemble of isolated
clusters is an effectively integrable description of the many-body sys-
tem. Only at late times, the effective integrability might be broken
by higher-order terms, which cause entanglement to grow between
different clusters of spins, potentially leading to thermalization at infi-
nite late times (see Part II of this thesis for a more detailed discussion
of quantum thermalization). In this view, the description in terms
of isolated clusters corresponds to a prethermal, intermediate state.
Associated with prethermalization is a notion of universality of the re-
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laxation of the intermediate, prethermal state towards asymptotically
long times. This relaxation should depend only on few parameters,
whereas microscopic details like the blockade radius do not influence
the dynamics.

Figure 5.2: Illustration
of a possible renormal-
izaton group flow to-
wards infinite disorder
and Ising interactions
(J∥/J⊥ → ∞).

A more general understanding of the universality observed in this
thesis could become possible via a disorder real-space renormalization
group approach (RSRG) [55, 130, 54, 131, 127]. The description of
the many-body system as a non-interacting collection of pairs can be
seen as the first step of this method, higher orders would additionally
consider the interactions between the pairs. In this approach, the
blockaded atoms are integrated out in each step leading to an effective
increase of disorder (see Figure 5.2). Additionally, the leading term of
the effective Hamiltonian obtained after each RG step would be the
Ising interaction [53] such that we can expect a renormalization group
flow towards the Ising limit. For future studies, it would be exciting to
investigate a minimal disorder strength required for applicability of
the disorder RSRG approach and to quantitatively study the RG flow
and its implications on the relaxation dynamics.

relation to spin glasses

Figure 5.3: Mechanisms
leading to glassy dy-
namics. (a) In case of se-
rial channels, the decay
rate is time dependent
and becomes slower
in time. Adapted from
[115]. (b) For paral-
lel channels, different
spins relax due to dif-
ferent coupling to their
neighbors.

In this part, we have observed a breakdown of ergodicity in disor-
dered quantum spin systems in the sense that the system remains
out-of-equilibrium for extensively long times. A similar breakdown
of ergodicity can be observed in classical spin glasses, which are also
disordered spin systems that relax so slowly that they typically do not
reach thermal equilibrium on experimentally accessible timescales [20].
In spin glasses, the interplay of disorder and frustration leads to
a rugged free energy landscape with many quasi-degenerate val-
leys [132, 133]. Spin relaxation can be described within this model as a
hierarchical process where the system relaxes from one local minimum
to the next, with each step featuring a slower relaxation time [21, 116].
This results in a scale-invariant distribution of relaxation times, that
also yields glassy dynamics well described by a stretched exponential
law [115]. This mathematical framework of a scale-invariant distri-
bution of timescales is the same in spin glasses and the disordered
quantum system discussed in this thesis, but the microscopic origin
differs significantly: In spin glasses, the distribution emerges from
different timescales occurring sequentially one after another, whereas
in this thesis the timescales exist in parallel and can be directly related
to the disordered distribution of interaction strengths (see Figure 5.3).
In Chapter 9, we will discuss how to prepare initial states at low
energy density on the Heidelberg Rydberg experiment, which will
pave the way towards further studying the relation to spin glasses by
measurements of the response to an external field.
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I N T R O D U C T I O N T O Q UA N T U M T H E R M A L I Z AT I O N
A N D L O C A L I Z AT I O N

This part of the thesis explores whether quantum spin systems generi-
cally thermalize, or whether strong disorder can lead to localization
and the absence of thermalization. In the following, we aim to give a
short introduction to classical thermalization, and we will discuss how
the Eigenstate Thermalization Hypothesis (ETH) explains quantum
thermalization (a more detailed and mathematically rigorous review
of thermalization can be found in [134]). Finally, we will derive how
the assumptions of ETH are broken in many-body localized (MBL)
systems.

Classical thermalization

Figure 6.1: Time evolution of a billiard ball that bounces at the boundary of
a sphere. (a) A single billiard ball follows regular, non-chaotic
dynamics. (b) In a system of 300 balls that collide with each other,
the dynamics of the billiard ball becomes chaotic.

In classical systems, two conditions need to be fulfilled such that
a system thermalizes. Firstly, the system needs to be ergodic, i.e. the
system explores all parts of the phase space uniformly. In Figure 6.1,
we exemplarily show how a non-linear equation leads to chaotic
dynamics which ensures ergodicity: If a system is integrable, like
a billiard ball that scatters off the boundary of a perfect circle, the
dynamics is non-chaotic (Figure 6.1 (a)). Even at late times, parts of
phase space are never reached by the ball. In Figure 6.1 (b), we simulate
300 billiard balls that collide with each other, the red line shows the
trajectory of one out of the 300 balls. This trajectory is clearly chaotic,
and indeed at late times, the ball has uniformly explored the whole
circle.

77
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The second necessary condition for classical thermalization is typi-
cality, meaning that the vast majority of microstates share the same
macroscopic quantities. For example, most configurations of billiard
balls equally occupy the left and the right half circles.

Figure 6.2: Illustration of thermalization of a disordered system of classical
spins. Initialized in a polarized state, the spins start to rotate due
to spin-spin interactions such that they dephase. In thermal equi-
librium, the spins continue to rotate, but the total magnetization
remains zero.

If these two conditions of ergodicity and typicality are fulfilled, any
classical system will reach thermal equilibrium in the sense that the
microscopic degrees of freedom still evolve in time, but all macroscopic
quantities are well described by the ensemble average. This thermal
equilibrium state is illustrated in Figure 6.2 using the example of
classical spins: Starting from a fully polarized state where all spins are
aligned in x-direction, the spins are rotated by spin-spin interactions
such that the system quickly dephases. In thermal equilibrium, each
spin continues to rotate, only the temporal average over the rotation
agrees with the thermal expectation of zero magnetization.

Quantum thermalization

In contrast, the dynamics of a quantum systems with Hamiltonian Ĥ
is determined by Schroedinger equation ih̄∂t |ψ(t)⟩ = Ĥ |ψ(t)⟩. This
is a linear equation, thus no notion of chaos in the classical sense
can exist. Instead, quantum chaotic systems are defined as systems
where the classical analog is chaotic, and they are characterized by a
Wigner-Dyson distribution of spacings between eigenenergies [135] or
an exponential growth of out-of-time-ordered correlators [136]. This
difference between classical and quantum chaos shows that quantum
thermalization is inherently different from its classical analog.

The time evolution of a state |ψ(t)⟩ and an operator Â can be
expressed in terms of eigenstates |α⟩ and eigenvalues Eα of Ĥ as

⟨ψ(t)|Â|ψ(t)⟩ = ∑
α,β

c∗αcβei(Eα−Eβ)t Aαβ (6.1)
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with cα = ⟨ψ(t = 0)|α⟩ and Aαβ = ⟨α|Â|β⟩. Under extremely general
assumptions, we can assume that the coherences ei(Eα−Eβ)t in Equa-
tion 6.1 dephase such that the system reaches a steady-state given by
the diagonal ensemble [137]:

⟨Â⟩diagonal = ∑
α

|cαα|2Aαα (6.2)

where the expectation value is determined by the average over all
eigenstate expectation values (EEV) Aαα weighted by the eigenstate
occupation numbers (EON) |cαα|2. This relaxation to the diagonal en-
semble expectation value, the equilibration of the quantum system, is
the first necessary condition (condition (1)) for quantum thermaliza-
tion.

Figure 6.3: Illustration
of a system acting as
its own bath for the
subsystem s. Adapted
from [37].

The diagonal ensemble still involves the EONs which contain a lot
of information about the initial state. To understand how a quantum
system can effectively lose this information and thermalize, we divide
the system into a small subsystem s and a large bath B = ¬s (see
Figure 6.3). Due to interactions, these two subsystems will become
entangled, such that the reduced density matrix ρs

ψ is a mixed state. A
state is typical if the reduced density matrix is almost the same as the
density matrix of the microcanonical ensemble

ρs
ψ ≈ ρs

mc. (6.3)

Canonical typicality requires that almost all states ψ within a given
energy shell are typical [138].

Figure 6.4 illustrates how this concept of typicality in quantum
systems drastically changes the notion of thermalization compared
to the classical systems: Starting from an atypical state which is fully
polarized, each spin in a quantum system is expected to build up
entanglement with the remaining system. Therefore, it will reach a
typical state where the reduced density matrix of each individual spin
is a mixed state with zero magnetization expectation value (illustrated
by the two-sided arrows). In this sense, the vanishing polarization of a
spin in thermal equilibrium is caused by quantum instead of temporal
fluctuations.

In order to give a criterion of whether a system thermalizes or not,
we need to specify exactly which states are typical. This criterion is
the Eigenstate Thermalization Hypothesis (ETH) which asserts that all
eigenstates are typical [24, 25, 26]. This second condition (condition (2))
necessary for thermalization assures that the eigenstate expectation
values of any local operator Aαα are a smooth function of energy,
i.e. the variance of the EEV is small within a small energy window
(see red line in Figure 6.5 (a)). If the initial state is also localized in
energy (condition (3)) (see blue line in Figure 6.5 (a)), then the diagonal
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Figure 6.4: Illustration of quantum thermalization. Quantum thermalization
can be understood as the time evolution from an atypical state
(for example a fully polarized state, left panel), to a typical state
(each spin has zero magnetization expectation value, right panel).

ensemble expectation value is equal to the microcanonical ensemble
expectation value

⟨Â⟩diagonal
!
= ⟨Â⟩microcanonical :=

1
NE0,∆E

∑
α

|E0−Eα|<∆E

Aαα (6.4)

which averages over all eigenstate expectation values within the energy
window ∆E centered around E0 (see green line in Figure 6.5 (b)).
The normalization NE0,∆E counts the number of eigenstates in the
energy window. Equation 6.4 explains why expectation values of
vastly different initial states with similar energy E0 relax to the same
thermal equilibrium value ⟨Â⟩mc.

Figure 6.5: Illustration of the calculation of the diagonal (a) and microcanon-
ical (b) ensemble in a system fulfilling ETH. According to ETH,
the eigenstate expectation values Aαα (red line in (a) and (b))
are a smooth function of energy. In this case, the average of Aαα

weighted by the eigenstate occupation numbers |Cαα|2 (blue line
in (a) is the same as the average over all eigenstates within an
energy window ∆E centered at E0(green line in (b)).

ETH is generically expected to hold in non-integrable systems and
is supported by various numerical studies of cold atom and spin
systems [27, 28]. Even some experimental evidence for ETH exists,
where the entanglement was observed to grow as expected from
quantum thermalization [29, 139].

If the system features additional conserved quantities beyond the
energy like the number of particles, these need to be taken into account
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by computing the thermal ensemble expectation values with respect
to a grand canonical ensemble. This approach can be even extended
to integrable systems possessing an extensive number of conserved
quantities. [27, 140]. In this case, ETH is still expected to hold when
the microcanonical ensemble is computed only for eigenstates with
the same expectation values of the conserved quantities [141].

Many-body localization

A notable exception to ETH is the phenomenon of localization. Already
in 1958, P. W. Anderson recognized that, in non-interacting systems,
strong disorder can lead to interference effects that suppress diffusion
and localize wavepackets at their origin [32] (for a review of Anderson
localization, see for example [142]). Strikingly, localization can also
occur in interacting systems if the disorder is sufficiently strong [37,
38]. This phenomenon is known as many-body localization (MBL).

To understand how ETH is broken, we investigate transport in a
chain of spins initialized in the Néel state |ψNéel⟩ = |↑↓↑↓ . . .⟩. To
probe whether the system delocalizes, we compute the imbalance
Î = 1

N ∑N−1
i=0 (−1)i ŝ(i)z (here, ŝz = σ̂z/2 are spin operators) which is

⟨Î⟩Néel = 0.5 for the initial state and zero for a delocalized system.
If the system thermalizes according to ETH, we expect that the ex-
pectation values ⟨Î⟩α are a smooth function of the eigenenergy for
eigenstates α (condition (2)) and that only eigenstates with zero imbal-
ance are occupied (typicality).

Figure 6.6: Imbalance expectation value of the eigenstates for (a) the inte-
grable Ising model and (b) the non-integrable Heisenberg XXZ
model. The color encodes the EON |cαα|2.

We consider the prototypical MBL system, the Heisenberg XXZ
model with nearest-neighbor interactions and random longitudinal
field hi ∈ [−∆, ∆] with ∆ = 4

ĤIsing =
N−1

∑
i=0

(
J⊥

2

(
ŝ(i)+ ŝ(i+1)

− + ŝ(i)− ŝ(i+1)
+

)
+ J∥ ŝ(i)z ŝ(i+1)

z + hi ŝ
(i)
z

)
. (6.5)
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In the case of Ising interactions (J⊥ = 0 and J∥ = 1), this model is
symmetric under rotations ŝ(i)z , which yields an extensive set of con-
served quantities and hence the Ising model is integrable. Therefore,
the eigenstates are product states |∏N−1

i=0 ↕(i)⟩ (↕(i)=↑ if s(i)z = 1/2,

else ↕(i)=↓) are the eigenstates of the conserved quantities ŝ(i)z . Fig-
ure 6.6 (a) shows both the imbalance and the EON |cαα|2 of each
eigenstate. The imbalance 1/N ∑N−1

i=0 (−1)is(i)z of each eigenstate is a
multiple of 1/(2N), whereas its energy is mostly determined by the
strong disordered field term and hence random. Therefore, condition
(2) is not fulfilled. Also, the initial state is already an eigenstate with
an imbalance of 0.5, hence the state is atypical.

Since the Ising model is integrable, the failure of ETH is expected.
To break the integrability, we increase the exchange interaction to
J⊥ = 0.5 in Figure 6.6 (b). Strikingly, the properties of the eigenstate
expectation values are only slightly perturbed and condition (2) is
still broken. In addition, only a few eigenstates with large imbalances
are occupied, so typicality is also not fulfilled for the non-integrable
Heisenberg XXZ Hamiltonian. Since only eigenstates with large imbal-
ance are occupied, we can also conclude that the system will remain
in a state with a large imbalance, hence the initial state stays localized.

The example of the integrable system has shown us that local con-
served quantities are the reason for the absence of thermalization. The
MBL system can be seen as a perturbation of the integrable system
in the sense that quasilocal integrals of motion (LIOMs) exist [39, 40].
For the prototypical MBL model discussed above, these are given by
τ̂
(i)
z = Ûŝ(i)z Û where Û is a quasilocal unitary transformation. If these

LIOMs are known, they reveal an effective integrable description of
the non-integrable Hamiltonian. This allows us to solve the dynamics
of the system and calculate the properties of the eigenspectrum.

In this part of the thesis, we investigate whether ETH holds for
Heisenberg XXZ Hamiltonians where the disorder is due to random
couplings or whether thermalization can be absent similar to the MBL
system discussed above. We also argue that in case of strong disorder
in the couplings, the LIOMs are given by the projectors onto localized
pairs.
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The article "Absence of Thermalization in an Interacting System of Thou-
sands of Quantum Spins" (Article [5]) reports on the observation of
the absence of thermalization in an isolated system of thousands of
quantum spins in a three-dimensional geometry. In contrast to the
standard scenario of many-body localization, where disorder is cre-
ated exclusively by a spatially fluctuating external field [143, 124], in
our system disorder emerges intrinsically from the spatial distribution
of the quantum spins. This disorder can be tuned by exploiting the
Rydberg blockade effect which induces strong spatial correlations in a
dense sample allowing to probe both a thermalizing and a localized
regime. This observation was possible through the development of
a measurement protocol that only relies on the measurement of the
dependence of the global magnetization on the strength of an applied
spin locking field [144]. The magnetization shows a smooths depen-
dence of the transverse field if the system thermalizes, but it features
a sharp cusp, a point of non-analytic behavior, in the absence of ther-
malization. The benefit of this method is that no spatial resolution is
required which was the case in previous experiments probing MBL.
The simplicity of this measurement scheme allows to scale the size
of the quantum system and enables to study thermalization in three-
dimensional systems. Importantly, this approach is readily extendable
to other quantum simulator platforms including nuclear spins [145],
color centers in diamond [146], polar molecules [147], and magnetic
atoms [148, 149].

To understand why thermalization is absent in the experiment, we
employ various theoretical investigations. Exact diagonalization of a
small ensemble of 14 spins shows qualitatively the same behavior as
the experimental observation including the existence of the sharp cusp
at strong disorder. Additionally, the numerics allow for studying the
properties of the eigenspectrum which resembles the spectrum of the
standard MBL system and is contradictory to the ETH. The specific
characteristics of the spectrum of the non-thermalizing system can
be understood from the existence of strongly interacting pairs which
effectively decouple from the rest of the system. To further scrutinize
this intuitive understanding, we introduce an effective model which
treats the interaction within pairs exactly and the interactions between
different pairs within mean-field approximation. This simplified model
reproduces all qualitative features of both the experiment and the
finite-size simulations, and it can analytically derive the existence of
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the cusp feature from a distribution of pairs with random interaction
strengths.

Strictly speaking, the results of Article [5] show the absence of ther-
malization only if an arbitrary small field is applied. This special case
of zero external field is investigated in more detail in the article "Pair
localization in dipolar systems with tunable positional disorder" (Article [6]).
Here, we study numerically a one-dimensional system with power-law
interactions and disorder due to random couplings with the aim to
further establish the hypothesis that strongly interacting pairs are
emergent local conserved quantities (LIOMs).

In this study, we have found that in the limit of strong disorder, a
description in terms of independent pairs is able to reproduce the half-
chain entanglement entropy calculated via exact diagonalization. To
directly determine how well the eigenstates are captured by product
states of pairs, we have calculated the participation ratio with respect
to a pair basis. For strong disorder, the participation ratio increases
with system size N with a power-law 1.5N/4 which is significantly
slower compared to a thermalizing system where the participation
ratio scales exponentially with system size. The dependence on system
size is also small compared to the participation ratio calculated with
respect to a product basis which scales with an exponent N/2.

Furthermore, Article [6] investigates the crossover between the ther-
malizing regime at weak disorder and localization at strong disorder.
For this purpose, we compute the variance of the half-chain entropy
over different disorder realizations for varying disorder strengths and
system sizes. The location of the maximum variance determines the
crossover between thermalization and localization. This location varies
only weakly with system size, and also agrees well with the location
of the crossover that we have calculated via the level spacing ratio or
the Thouless parameter.
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Understanding how closed quantum systems dynamically approach thermal equilibrium presents a
major unresolved problem in statistical physics. Generically, it is expected that non-integrable quan-
tum systems thermalize as they comply with the Eigenstate Thermalization Hypothesis (ETH) [1–
3]. A notable exception to this is the phenomenon of many-body localization [4, 5], where the
emergence of local conserved quantities prevents thermalization, which has been observed in finite
low-dimensional systems. We study an ensemble of Heisenberg spins with a tunable distribution of
random coupling strengths realized by a Rydberg quantum simulator [6]. The total magnetization
as a function of external field after a quench [7, 8] serves as a probe for thermalization. We find that
such an isolated quantum system exhibits a non-thermalizing regime despite being non-integrable.
It is shown that thermalization can be restored by reducing the disorder in the coupling strengths.
As our system consists of up to 4000 spins, we thus show that closed quantum systems can fail to
reach thermal equilibrium even at system sizes approaching the thermodynamic limit.

The success and accuracy of statistical mechanics to
describe nature rests on the assumption that macro-
scopic systems quickly relax to thermal equilibrium.
This complies with our everyday experience: The rip-
ples on a pond caused by a rock being thrown into it
disappear quickly leaving a calm surface. This apparent
irreversibility of the macroscopic dynamics, despite the
reversible laws describing the microscopic dynamics of
the water molecules, is explained through the notion of
typicality: Macroscopic observables, like the water flow
at a specific point, take the same "typical" value for al-
most all allowed microstates of the system. Therefore,
a system prepared in an atypical state will generically
evolve into a typical state just because anything else is
extremely unlikely. This notion is also expected to ap-
ply to quantum systems, where the microstates of the
system are the eigenstates of the Hamiltonian operator.
In this case, typicality means that local observables take
the same values for all eigenstates consistent with dy-
namic constraints such as energy conservation [9]. As
a result, local observables will generically relax towards
equilibrium values which agree with a thermal ensemble
description. This mechanism for quantum thermaliza-

∗ franzt@physi.uni-heidelberg.de
† martin.gaerttner@kip.uni-heidelberg.de
‡ weidemueller@uni-heidelberg.de

tion has been formalized through the ETH [1–3].
Notably, in disordered systems, the emergence of an

extensive number of local conservation laws can inval-
idate the typicality assumption. As a consequence,
quantum thermalization is absent even at infinite times
as evidenced by the phenomenon of MBL [4, 5]. While
this mechanism is firmly established for finite one-
dimensional systems with disorder in external fields,
the possibility of the absence of thermalization in sys-
tems approaching thermodynamic limit has been ques-
tioned [10–12]. In addition, many open questions re-
main about the possibility of violating ETH in higher
dimensional systems [10, 11, 13–15] and for off-diagonal
disorder [16–18].

This lack of understanding is rooted in the hardness
of solving the out-of-equilibrium dynamics of strongly
interacting quantum systems numerically on classical
devices and in the scarcity of controlled perturbative
approaches. Numerical exact diagonalization is limited
to small system sizes of a few tens of particles where
finite-size effects strongly affect the study of quantum
thermalization [19]. Analytical treatments rely on phe-
nomenological renormalization group approaches which
involve uncontrolled approximations [20–23]. Quan-
tum simulation experiments, fully controlled model sys-
tems that can be implemented, e.g. in cold atomic
gases [6, 24–27], may help to overcome this problem.
In these experiments, spatially resolved measurements
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can reveal the absence of transport and thereby demon-
strate the failure of thermalization [28–31]. As a mi-
croscopic probe of thermalization, recent works have
focused on the direct detection of entanglement en-
tropy [32–34]. However, relying on full microscopic res-
olution, again, limits the scalability of these quantum
simulations.

In the present work, we show that the absence of ther-
malization can be probed without the requirement for
spatial resolution through macroscopic observables, al-
lowing to scale up accessible system sizes. Specifically,
we show that the late-time global magnetization reveals
localization effects in a strongly interacting Heisenberg
spin-system with transverse field and disordered cou-
pling constants. We find through numerical simulations
that the system equilibrates to a steady-state charac-
terized by a sharp cusp at small transverse field, not
present in a thermal description of the system. We con-
firm the persistence of these features in the large system
limit through a quantum simulation experiment realiz-
ing a Heisenberg spin system in a 3D cloud of thou-
sands of Rydberg atoms. By imposing correlations on
the coupling constants, we observe that thermalization
is reestablished.

I. THERMALIZATION IN ISOLATED
QUANTUM SPIN SYSTEMS

The dynamics of a closed quantum system prepared
in a state |ψ0〉 is governed by the Schrödinger equation
i~∂t |ψ(t)〉 = Ĥ |ψ(t)〉 with system Hamiltonian Ĥ. In
terms of the eigenstates |φα〉 and eigenvalues Eα of Ĥ,
the time evolution of an observable Ô is given by

〈Ô〉 = 〈ψ(t)|Ô|ψ(t)〉 =
∑

α, β

c?αcβe
i(Eα−Eβ)tOαβ , (1)

with Oαβ = 〈φα|Ô|φβ〉 and cα = 〈ψ0|φα〉.
The system is said to be locally thermalizing if local

observables 〈Ô〉 relax to their microcanonical ensem-
ble value 〈Ô〉mc = N−1

E0,∆E

∑
|E0−Eα|<∆E Oαα, where

NE0,∆E denotes the number of states within the energy
window ∆E around E0 = 〈ψ0|Ĥ|ψ0〉, and stay close to
it during most times [35].

The following set of conditions is sufficient for ther-
malization [35]: (i) Local observables equilibrate to the
diagonal ensemble value 〈Ô〉d =

∑
α |cα|2Oαα. (ii) The

initial state is concentrated in energy, i.e. cα is signif-
icantly different from zero only in a sufficiently small
window of the eigenenergies Eα. (iii) ETH holds, i.e.
Oαα is an approximately smooth function of Eα [1–
3, 36]. Condition (i) applies in generic non-integrable
systems, including MBL systems, as the time-dependent

(off-diagonal) terms in Eq. (1) average to zero, or de-
phase, for non-degenerate eigenstates [37]. The latter
two conditions guarantee the equivalence between di-
agonal and microcanonical ensemble. We investigate
in the following whether in our system conditions (ii)
and (iii) can be violated due to strong disorder which
prevents thermalization.

We consider the quantum spin-1/2 Heisenberg XXZ-
model (in units where ~ = 1)

Ĥint =
1

2

∑

i,j

Jij

(
ŝ(i)
x ŝ(j)

x + ŝ(i)
y ŝ(j)

y + δŝ(i)
z ŝ(j)

z

)
, (2)

with spin operators ŝ(i)
α = σ̂

(i)
α /2 (α ∈ {x, y, z}) act-

ing on spin i. The interactions between spins decay
with a power law Jij = Car

−a
ij , where rij are the dis-

tances between the spins i and j. The spins are dis-
tributed randomly with an imposed minimal distance
rbl resulting in a random but correlated distribution of
couplings Jij (Fig. 1a). This geometry is motivated by
our experiments where the Rydberg blockade effect for-
bids two excitations being closer than rbl. The blockade
constraint allows us to tune the strength of the disor-
der (illustrated in the insets of Fig. 1 c and d) from
rbl = 0, corresponding to a fully disordered random sys-
tem, towards the configuration of close-packing where
rbl = rmax (see methods).

We initially prepare the system in the fully x-
polarized state |ψ0〉 = |→〉⊗Nx = 2−N/2(|↑〉 + |↓〉)⊗N
which shows no classical dephasing or dynamics in a
mean-field description (see appendix H), and observe
the dynamics of the average magnetization 〈Ŝx〉 =

〈∑i ŝ
(i)
x 〉/N . Since this observable is an average over lo-

cal (single-spin) observables, it should relax to its ther-
mal value if the system is locally thermalizing.

II. MAGNETIZATION AS A PROBE FOR
THERMALIZATION

The dashed line in Fig. 1b shows the time evolution
of the magnetization in an ensemble of N = 14 spins at
strong disorder (rbl = 0.4rmax) and Van-der-Waals in-
teractions (a = 6) simulated via exact diagonalization.
Note that all data shown in Fig. 1 was averaged over
100 samples of random atom positions to decrease sta-
tistical fluctuations from random couplings (see meth-
ods). The magnetization relaxes to zero slowly, follow-
ing a stretched exponential law as discussed in previ-
ous work [7, 38, 39], and reaches a steady-state on a
time scale of ∼ 10J−1

median in units of the inverse median
nearest neighbor interaction strength. The steady-state
value agrees with diagonal and microcanonical ensem-
ble predictions (orange and blue hollow arrows) as all
eigenstates already have vanishing x-magnetization due



3

Figure 1. Heisenberg spin systems in transverse fields. a, Schematic illustration of the disordered spin system. Spins
are positioned randomly and interact via power-law interactions described by Hamiltonian (2) with coupling constants Jij .
An external field represented by the violet arrow couples the energy levels of each spin- 1

2
particle resonantly with a field

strength Ω. The phase is chosen such that it corresponds to an external field aligned with the spins in x-direction as described
by Hamiltonian (3). b, Relaxation of the magnetization of disordered Heisenberg spins without external field (dashed black
line) and with an external field of Ω = 0.7Jmedian (solid black line). The expectation values obtained by diagonal (orange)
and microcanonical (blue) ensembles are indicated with arrows. c, Schematic illustration of spin locking and the build-up
of entanglement. Spins that are spaced far apart interact weakly, and the external field impedes the relaxation of the
magnetization (symbolized by a padlock). On the contrary, strongly interacting spins build up entanglement and become
effectively depolarized (represented by the green ribbon). d and e, Late time magnetization (solid orange line), diagonal
ensemble description (dashed black line), and microcanonical ensemble (solid blue line) at t = 100Jmedian as function of
external field Ω/Jmedian for strong (d) and weak (e) disorder. The numerical simulations are obtained from 100 disorder
averages by exact diagonalization of a Heisenberg Hamiltonian of 14 spins which are randomly distributed in a sphere with
a minimal distance between the spins of rbl = 0.4rmax (strong disorder, c) and rbl = 0.8rmax (weak disorder, d).

to the conservation of
∑
i ŝ

(i)
z

1. Hence the apparent re-
laxation of the magnetization to the thermal value is
solely a consequence of the global U(1) symmetry of
the Hamiltonian.

This situation changes when adding a homogeneous
transverse field term to the Hamiltonian

Ĥext = Ω
∑

i

ŝ(i)
x , (3)

which breaks the U(1) symmetry. The solid line in
Fig. 1b shows the case of Ω = 0.7Jmedian. The mag-
netization quickly saturates at a non-zero value con-
sistent with the diagonal ensemble prediction, hence it
equilibrates, but is inconsistent with the microcanonical
ensemble prediction, hence it does not thermalize.

1 From the conversation of Ŝz , i.e. [Ŝz , Ĥint] = 0, it follows that
〈Ŝx〉 = −i〈[Ŝy , Ŝz ]〉 = 0 for every eigenstate.

An intuitive explanation of the spin locking effect
leading to the large steady-state magnetization is shown
in Fig. 1c. At any finite field strength Ω there will be
a competition between the field term and the interac-
tion term in the Hamiltonian. Spins that only inter-
act weakly with their neighbors (Jij � Ω) stay po-
larized due to the spin locking effect [40], causing the
magnetization to saturate at a positive value. In the
strongly disordered regime, where the blockade radius
rbl is small, we will always encounter some pairs of close-
by spins that interact very strongly (Jij � Ω). These
pairs will depolarize and evolve into entangled states,
however, they will decouple from the rest of the sys-
tem as the energy splitting between their eigenstates
will typically be much larger than any other terms in
the Hamiltonian affecting the pair. This effect hinders
further spreading of entanglement which would effec-
tively depolarize the ensemble. A detailed description
of this mechanism is found in Appendices H and I where
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a mean-field model explaining the features observed in
Fig. 1 is introduced.

Figure 1d shows the dependence of the late-time mag-
netization on the field strength Ω. We globally find
agreement with the diagonal ensemble, meaning that
the magnetization equilibrates. However, the micro-
canonical ensemble prediction deviates for all finite non-
zero field strengths 2. Strikingly, the late-time magneti-
zation is strictly non-negative and shows a non-analytic
feature (cusp) at Ω = 0. This non-analyticity contra-
dicts ETH (condition (iii)) where eigenstate expectation
values are a smooth function of the eigenergy such that
a small perturbation in the external field only leads to
a smooth change of magnetization. Indeed, the thermal
ensembles predict a smooth Ω-dependence with nega-
tive values at small negative fields.

When increasing the blockade radius to rbl = 0.8rmax

(Fig. 1e), thus decreasing the strength of the disorder,
we find that the late-time magnetization agrees reason-
ably well with thermal ensemble predictions showing
that the magnetization does thermalize at weak disor-
der.

III. EIGENSPECTRUM OF DISORDERED
SPIN SYSTEMS

Figure 2. Eigenstate expectation values for the mag-
netization and eigenstate occupation numbers. Mag-
netization of each eigenstate α for a single disorder real-
ization of 14 spins in a small negative locking field Ω =
−0.3Jmedian for strong a and weak disorder b as defined in
Figure 1. The color code shows the overlap |cα|2 of each
eigenstate with the initial state. Additional data like the
distributions ρ(E) of the thermal ensembles and the density
of states are provided in appendix F.

2 Note that choosing the canonical ensemble instead of the mi-
crocanonical ensemble gives the same predictions as shown in
appendix E.

The observed absence of thermalization at strong dis-
order in numerical simulations of small systems of 14
spins is associated with a breakdown of the ETH. In
order to illustrate this point, we analyze the eigenspec-
trum in Fig. 2. We find that at strong disorder (panel
a), the eigenstate populations |cα|2 (color encoded) are
spread out over the entire spectrum, whereas, at weak
disorder (panel b), eigenstates are populated mostly
around E0 (indicated by the red arrow). Also, the
distribution of eigenstate expectation values Oαα for
Ô =

∑
i ŝ

(i)
x /N at any given energy is very broad in the

case of strong disorder. In contrast, the magnetization
expectation values are a smooth function of Eα in the
case of weak disorder. We thus conclude that for small
spin systems spectral localization of the initial state (ii)
and ETH (iii) are violated for strong disorder.

The numerically observed breakdown of ETH can be
understood within the simplified picture that spins can
either be part of a strongly interacting pair or perfectly
pinned by the external field (see Fig. 1 c). Within
this picture two eigenstates can have similar energy
while largely differing in magnetization because the en-
ergy penalty of flipping many spins can be compen-
sated by changing the state of one strongly interacting
pair, thus explaining the broad distribution observed in
Fig. 2a. Conversely, two eigenstates with similar mag-
netization can be energetically far separated if they fea-
ture a strongly interacting pair in two different eigen-
states leading to a large spectral spread of |cα|2. This
shows that the breakdown of ETH is rooted in the ex-
istence of strongly interacting pairs that effectively de-
couple from the rest of the system. Thus, the projec-
tors onto the eigenstates of these pairs take the role of
local integrals of motion, which in standard MBL mod-
els with random local fields are given by the individual
spins [41–43]. We provide a more detailed discussion of
the spectral properties in Appendix F.

We conclude from our numerical study that the non-
negativity of the late time magnetization and its non-
analytic dependence on Ω differ qualitatively from ther-
mal ensemble predictions and are thus a clear sign of
disorder-induced failure of thermalization. Many-body
localization phenomena are known to be prone to finite
size effects [19] which motivates us to probe the per-
sistence of these features at significantly larger system
sizes through a quantum simulation experiment.

IV. EXPERIMENTAL SIGNATURES OF
BREAKDOWN OF THERMALIZATION

In our experiment, we encode the spin degree of
freedom in highly excited Rydberg states |↓〉 = |61S〉
and |↑〉 = |62S〉 leading to Van-der-Waals interactions
as described by Eq. (2) with δ = −0.7, a = 6 and
C6/(2π) = 1000 GHz µm6. By coupling the spin states
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Figure 3. Relaxation dynamics of the magnetization and late time magnetization as function of the transverse
field in a cloud of 3000 spins. a, Measured spin relaxation dynamcics for Van-der-Waals interactions for varying
transverse field strengths ranging from 5.5 MHz (red) to Ω = −5.5 MHz. b, Magnetization after 5 µs as a function of field
strength Ω for Van-der-Waals interactions. The inset shows a zoom of the magnetization in vicinity of vanishing fields. The
data was taken in a cloud of approximately 3000 spins with a median interaction strength of Jmedian = 3.4 MHz.

with a microwave field Ω, we can initialize the spins in
the x-polarized initial state |ψ0〉 = |→〉⊗N , implement
the external field Ĥext and read out tomographically the
final magnetization (see methods for details of the ex-
perimental protocol). We choose the density of the Ry-
dberg cloud such that the median interaction strength
Jmedian/(2π) = 6.8 MHz is large compared to the de-
cay rate of the Rydberg atoms of Γ/(2π) = 0.06 MHz
(see methods for more details on the distribution of the
Rydberg atoms). At this density, the blockade radius
rbl = 5.7 µm is still small compared to the close-packing
limit rmax = 14 µm, corresponding to the strong disor-
der regime (see Fig. 1 d).

The dynamics for different field strengths are shown
in Fig. 3 a. For Ω = 0 the system fully depolarizes af-
ter a few microseconds. For a weak field, the dynamics
display the same rapid initial decay over 1 µs followed
by slow saturation dynamics up to 10 µs. The satura-
tion value of the magnetization depends on the strength
and the sign of the external field which is expected due
to the spin locking mechanism explained above. Fig-
ure 3b shows the late-time value of the magnetization
(taken after 10 µs) as a function of the field strength.
This curve features the same characteristics as the di-
agonal ensemble prediction obtained from exact diag-
onalization in the case of strong disorder (Fig. 1 d):
In particular, we highlight the non-analytic feature at
Ω = 0 MHz, which we had identified as inconsistent with
thermal ensemble predictions. We thus observe that a
system of 3000 spins fails to reach a thermal state on
time scales exceeding the typical relaxation time of the
system.

V. RESTORING THERMALIZATION IN
LONG-RANGE INTERACTING SPIN SYSTEMS

Exploiting the full versatility of the Rydberg plat-
form, we can tune the range of interaction by imple-
menting a dipolar interacting spin system using the
Rydberg states |↓〉 = |48S〉 and |↑〉 = |48P 〉. For
the resulting Hamiltonian with δ = 0, C3/(2π) =
1.15 GHz µm3 and a spatial anisotropy Jij(θ) = (1 −
3 cos(θ)

2
)/2, the interaction range a = 3 equals the di-

mension d = 3 of the system. Resonance counting ar-
guments suggest that for a > d the system should no
longer be localized [17], rendering the critical case a = d
a particularly interesting one, even more so as numeri-
cal simulations strongly suffer from finite size effects in
this case (see appendix G). Our experiments enable us
to study this case for system sizes increased more than
100-fold compared to what is accessible numerically.

Fig. 4a shows the late-time dynamics taken after 10 µs
for dipolar interaction in the strongly disordered regime
of rbl = 0.3rmax (time resolved data is provided in ap-
pendix B). Interestingly, this curve strongly resembles
the case of the Van-der-Waals spin system: At large
fields, Ω > 2.5 MHz, compared to Jmedian ≈ 1.4 MHz,
the magnetization is locked to the initial value. The
asymmetry is strongly reduced because the sign of the
interaction strength is angular dependent and no longer
purely repulsive. Most importantly, the sharp cusp fea-
ture has remained unchanged, which suggests the ab-
sence of thermalization also in the case of a strongly
disordered dipolar system.

Finally, to show that thermalizing behavior is estab-
lished at weaker disorder, we have saturated the Ry-
dberg excitations in the cloud in a strongly blockaded
regime where rbl = 0.5rmax. In this case, as shown in
see Fig. 4 b, the cusp feature disappears and a smooth
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Figure 4. Late time magnetization for different strength of disorder for a spin system interacting with dipole-
dipole interactions. a, At low density (N = 1150, Jmedian = 1.4 MHz), corresponding to strong disorder (rbl = 0.3rmax),
the late time magnetization exhibits the non-analyticity at zero field Ω expected for a non-thermal system. b, In the case
of high density (N = 3900, Jmedian = 2.7 MHz), respectively weak disorder (rbl = 0.5rmax), the late-time magnetization is
a smooth function of the external field Ω, indicating the system to be thermalized.

dependence on the external field strength is recovered,
qualitatively agreeing with thermal ensemble predic-
tions.

VI. DISCUSSION AND OUTLOOK

We have observed non-thermalizing dynamics of
powerlaw interacting spins with positional disorder
by studying late-time magnetization after a quan-
tum quench. The observed magnetization equilibrates
rapidly under the unitary dynamics, and thermal en-
semble predictions differ qualitatively from the observed
late-time values (Appendix J). Recent theoretical works
claim that systems with power-law interactions or with
dimensions D > 1 thermalize due to rare ergodic re-
gions that seed thermalizing avalanches [10, 11, 13–15]
in the limit of infinite system sizes and evolution times.
Yet, our observations demonstrate the absence of ther-
malization as expected for a system that is in a MBL
phase. Thus, adopting the terminology of [11], we in-
terpret our observation as an MBL regime, i.e. localiza-
tion effects occurring at finite times and system sizes.
We also note that the proliferation of thermalization
avalanches should depend on the coordination number
of the interaction graph (rather than the spatial di-
mension), which becomes small in the strongly disor-
dered limit of our model [44, 45]. This would be con-
sistent with the reestablishment of thermalization for
more strongly correlated coupling constant correspond-
ing to an increased coordination number. The charac-
teristic features of our system, power-law interactions
and static positional disorder, are naturally realized by
a wide range of quantum simulation platforms beyond
Rydberg atoms, including nuclear spins [46], color cen-

ters in diamond [47], polar molecules [48] and magnetic
atoms [49, 50]. Our work thus paves a way to study
quantum thermalization for a largely unexplored type
of disordered systems in a scalable fashion.
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METHODS

Here we provide further details on the numeric sim-
ulations and both the experimental protocol and the
spatial configuration of the Rydberg cloud.

Details on numerical simulations. To diagonalize
Hamiltonian (2), we take into account the parity sym-
metry with respect to a global spin-flip Ps =

∏N
i σ̂

(i)
x

which reduces the dimension of the Hilbert space by a
factor of two and ensures that the thermal ensemble cal-
culations only take eigenstates into account states that
have the same (positive) spin parity as the initial state
|ψ0〉3.

To obtain the microcanonical expectation value, an
appropriate energy window ∆E needs to be chosen. In
the thermodynamic limit, the size of this window should
vanish ∆E → 0+. However, for finite-size systems, the
energy window needs to be finite to ensure that a suf-
ficient number of eigenstates contributes to the micro-
canonical ensemble. In Fig. 8 in appendix D we com-
pare the microcanonical expectation values for energy
windows ranging from 10−6Jmedian to 101Jmedian and
find that the microcanonical ensemble simulation is in-
dependent of the energy window ∆E signifying that the
finite window size does not change the microcanonical
expectation values.

Details on experimental implementation. We
start the experiment by trapping 106 Rubidium-87 in
a cigar shaped dipole trap with a diameter of 300 µm
(long axis) and 70 µm(short axis) at a temperature of
10 µK. We consider this gas to be frozen since the atoms
move only a distance of dkin = texp

√
3kT
m = 0.5 µm

during an experimental cycle of texp = 10 µs which
is small compared to the Rydberg blockade radius of
rbl ≈ 5 µm. After optically pumping the atoms into
the state |5S(F = 2,mF = 2)〉, we optically excite the
atoms to the spin state |↓〉 via a two-photon off-resonant
excitation process (single-photon detuning of 98 MHz
and two-photon Rabi frequency of 1 MHz). A global
microwave π/2-pulse prepares the fully polarized initial
state |ψ0〉 = |→x〉⊗N . In the case of Van-der-Waals
interactions, the state |61〉S is coupled resonantly to
|62〉S via a two-photon transition at a microwave fre-
quency of 16.546 GHz which can be directly generated
with a Keysight M8190A arbitrary waveform genera-
tor (AWG). For the dipolar interacting spin system, we
couple the |48S〉 state resonantly with a single-photon
transition at 35 GHz. This frequency is generated by
mixing a 5 GHz signal of the Keysight M8190A AWG

3 Only Fig. 16 e - f also shows both parity symmetric and anti-
symmetric eigenstates. To highlight the symmetric eigenstates,
these are plotted on top of the anti-symmetric ones.

with an Anritsu MG3697C signal generator. The same
microwave setup is used to realize the spin locking field
where a phase shift of 90 degrees needs to be added such
that the field aligns with the spins. This allows us to
implement the transverse field term, Eq. (3), with field
strengths up to Ω/(2π) = 10 MHz. After a time evolu-
tion t, the x-magnetization is rotated tomographically
onto the z-axis by applying a second π/2-pulse with
various phases. Finally, the magnetization is obtained
from a measurement of the population of one of the two
spin states via field ionization, and the other spin state
is optically deexcited to the ground state. A visual rep-
resentation of the measurement protocol can be found
in appendix A, and a more detailed explanation of the
determination of the magnetization was reported in a
previous publication [7].

Details on the Rydberg distribution. In this
work, we can tune the disorder with the Rydberg block-
ade effect, which imposes a minimal distance rbl be-
tween the spins. At small blockade radius, the spins
are distributed randomly in the cloud, while a large
radius introduces strong correlation between the atom
positions and hence the coupling strength. To quantify
the disorder strength, we compare the blockade radius
to the distance rmax = 2[3ηcp/(4πρ)]1/3 which corre-
sponds to the distance between the spins in a close-
packed arrangement at same density ρ and packing frac-
tion ηcp = π/

√
18 ≈ 0.74.

In our experiment, we tune the spatial distribution
of the Rydberg atoms by varying the volume of the
ground state atoms with a short time-of-flight period
after turning off the dipole trap and before exciting to
the Rydberg states. Further, we can alter the Rydberg
fraction by modifying the excitation time texc. We mea-
sure the resulting Rydberg density through depletion
imaging [51] where we deduce the Rydberg distribu-
tion from the ground state atoms that are missing after
Rydberg excitation. The measured parameters of the
Rydberg distribution are presented in detail in Table I
in appendix A.

To estimate the Rydberg blockade radius, we model
the excitation dynamics by the simplified description in-
troduced in [7] which assumes a hard-sphere model for
the Rydberg blockade effect. This model sets an upper
limit on the blockade radius rbl = 6

√
C6

Γeff
by estimating

the effective linewidth of the laser, based on the dura-
tion of the excitation pulse and power broadening. The
latter is calculated self-consistently, taking into account
the enhancement factor induced by collective Rabi os-
cillations within a superatom [52, 53].

This established model of the Rydberg cloud can be
benchmarked using the experimentally measured time
evolution without a locking field, which is known to
be well described by semiclassical Discrete Truncated
Wigner Approximation (DTWA) [7] (see Fig. 7 in ap-
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pendix C). This simulation is highly sensitive to the ex-
act value of the blockade radius, and we can deduce that
the hard-sphere model slightly overestimates the Ryd-
berg blockade effect in the case of Van-der-Waals inter-
actions where a fitted value of rbl = 5.7 µm = 0.4rmax

describes the experiment perfectly. For the more long-
range dipolar interactions, the blockade radius of rbl =
6.5 µm = 0.5rmax is already a reasonable estimate lead-
ing to a good agreement between the experiment and
DTWA simulation.

From the excitation model, we can also compute the
median of the nearest neighbor interaction strength
Jmedian which ranges from 0.78 MHz to 3.4 MHz depend-
ing on the experimental setting (see table I). The result-
ing time evolution can be considered unitary for up to
10µs which is an order of magnitude larger than the
timescale of the experiment J−1

median.
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Appendix A: Illustration of the experimental
protocol and parameters

Figure 5. Experimental protocol: An initial π/2-pulse aligns
the spins in x-direction. After unitary dynamics under the
interaction Hamiltonian and the locking field, a second π/2-
pulse with varying phases reads out the magnetization in
the xy-plane. For each pulse, the Bloch spheres illustrate
the spin state of the initial state (light red arrow), the final
state (red arrow), and the direction of the external field (blue
arrow).

Appendix B: Time evolution of the dipolar
interacting spin system

Figure 6. Time evolution of the dipolar interacting spin
system. The experimental parameters for the time traces
are identical to the quantum simulation shown in Fig. 4 b
in the main text.

Analogously to Fig. 3 a in the main text, we also
measured the time evolution of the magnetization for
the dipolar interacting Rydberg spin system in the case
of strong disorder for various external fields Ω. The
resulting dynamics are shown in Fig. 6. Similar to the
case of Van-der-Waals interactions shown in Fig. 3 a
in the main text, the magnetization relaxes within a
microsecond to zero in the case of zero applied field
(Ω = 0). With applied field, the dynamics show a rapid

decay within the first microsecond, followed by a much
slower relaxation until the final magnetization at 10 µs
is reached. This late-time magnetization is plotted as a
function of the external field in Fig. 4 in the main text.

Appendix C: Semiclassical simulations of the
Ramsey decay

Figure 7. Semiclassical simulations using Discrete Trun-
cated Wigner Approximation (DTWA) in the case of Van-
der-Waals interactions (a) and dipolar interactions (b). The
simulations are performed for realistic distributions of the
Rydberg spins with the same density as the experiment (red
dots), but for varying blockade radii. The maximal blockade
radius corresponds to a linewidth of the Rydberg excitation
determined by Fourier limit and power broadening. The
simulation best fitting the experimental data is plotted as a
solid line.

In previous work [7, 54], we could show that the
semiclassical Discrete Truncated Wigner Approxima-
tion (DTWA) is well suited to describe the relaxation
of the magnetization under the interaction Hamiltonian
(2) defined in the main text. The main principle of
DTWA is to sample classical time evolutions over dif-
ferent initial states such that the quantum uncertainty
of the initial state is respected [55]. In Fig. 7, we com-
pare the time evolution obtained from DTWA simula-
tions for various blockade radii (solid lines) to the ex-
perimental data (red dots) in the case of Van-der-Waals
(panel a) and dipolar interactions (panel b). It turns
out that in the case of Van-der-Waals interactions, the
resulting dynamics depend sensitively on the blockade
radius, which allows estimating the correct blockade ra-
dius to be 5.9 µm. This radius is small compared to the
blockade radius of 7.8 µm estimated from power broad-
ening and the Fourier limit determined from the length
of the excitation pulse. This discrepancy in expected
and simulated blockade radius might be explained by
a finite linewidth of the excitation lasers, a small de-
tuning [56] or from underestimated Rydberg-Rydberg
interactions. In the case of dipolar interactions, the
DTWA dynamics are less sensitive to the size of the
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Van-der-Waals interactions
(Figure 3 a and b)

Dipolar interactions (low density)
(Figure 4 a)

Dipolar interactions (high density)
(Figure 4 b)

texc 5 µs 1 µs 10 µs
Rydberg volume 69 µm× 43 µm× 37 µm 59 µm× 44 µm× 36 µm 59 µm× 34 µm× 30 µm
NRyd 2900 1150 3900
rbl 5.7 µm = 0.4rmax 5.3 µm = 0.29rmax 6.5 µm = 0.5rmax

Jmedian 3.4 MHz 0.78 MHz 1.7 MHz

Table I. Experimental parameters. texc specifies the duration of the optical excitation to the Rydberg state, the Rydberg
volume is specified by the radii (1/e2) of the Rydberg cloud, NRyd denotes the derived Rydberg number, rbl the blockade
radius and Jmedian the obtained median nearest-neighbor interaction.

blockade radius. The reason might be the longer-range
interactions which cause the dynamics to be less domi-
nated by the nearest neighbors. As a result, the dynam-
ics for a Rydberg distribution with a blockade radius es-
timated from the Fourier limit agrees already well with
the experimental observation.

Appendix D: Sensitivity of the microcanonical
ensemble on the energy window

To calculate the magnetization expectation value of
the microcanonical ensemble, the average over all eigen-
state expectation values within an energy window ∆E is
calculated. In the thermodynamic limit, it is possible to
calculate the limit ∆E → 0, but for a finite simulation,
the energy window has to be chosen small but finite. To
ensure that the choice of the energy window does not
influence the magnetization expectation value of the mi-
crocanonical ensemble, we compare in Fig. 8 a the pre-
diction of microcanonical ensembles for a large range of
energy windows between 10−4Jmedian and 101Jmedian.
Indeed, we find that the simulations agree if the energy
window is small enough, i.e. ∆E/Jmedian < 10−3. In
particular, all curves are smooth and feature a nega-
tive magnetization at small negative fields. The exis-
tence of this large region of energy windows is a strong
hint that the microcanonical expectation value is no
longer dependent on details of the finite size system, in-
dicating that the simulation is already converged for 14
spins. Importantly, any microcanonical ensemble pre-
diction differs qualitatively from the diagonal ensemble
(red dashed line in Fig. 8 a) for any choice of ∆E .

Fig. 8 b shows how many eigenstates are populated
within a given energy window ∆E . This quantity is im-
portant to ensure that the window size is varied in a
meaningful way, i.e. that a different number of eigen-
states are populated for different window sizes. For the
smallest window, on average less than a single eigen-
state is populated 4 which leads to large fluctuations of

4 If no eigenstate is within the energy window, the algorithm de-

the magnetization. Contrary, for a large energy window
of 101Jmedian, almost all eigenstates are populated by
the microcanonical ensemble. Within the region where
∆E/Jmedian < 10−3 and the microcanonical ensemble is
converged, the number of populated eigenstates varies
from 1 to 300 which highlights the insensitivity of the
microcanonical ensemble with respect to the width of
the energy window.

Figure 8. Microcanonical ensemble for different widths
of the energy window ∆E ranging from 10−6Jmedian to
101Jmedian. The simulations are performed for the same sys-
tem parameters as in Figure 1 of the main text (Heisenberg
XXZ interactions with anisotropy δ = −0.7, power law inter-
actions Jij = C6

r6
, 100 disorder averages, 14 spins randomly

distributed in a sphere with a minimal distance between the
spins of rbl = 0.4rmax). a, Magnetization as a function of
Ω/Jmedian for the microcanonical ensembles for different en-
ergy windows ∆E (solid lines) and the diagonal ensemble
(dashed red line). b, Number of populated eigenstates as a
function of Ω/Jmedian for different energy windows ∆E .

termines the magnetization from the closest eigenstate in en-
ergy.
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Appendix E: Ensemble equivalence

In this work, we exemplary compute the microcanoni-
cal expectation values to show the behavior of a thermal
system. It should be noted that one could as well choose
the canonical ensemble 〈Ô〉c = Z−1

∑
αOααe−βEα

(with inverse temperature β satisfying E0 = 〈Ĥ〉c and
partition function Z) as thermal ensembles become
equivalent in the limit of large system sizes for short-
range interacting systems [9]. Indeed, we find good
agreement between the microcanonical ensemble and
the canonical ensemble expectation value in the case of
both strong and weak disorder (see Fig. 9). This agree-
ment shows that thermal ensemble equivalence already
holds at this moderate system size of 14 spins.

Figure 9. Comparison of the microcanonical (solid blue line)
and the canonical ensemble (dashed red line) in the case of
strong (panel a) and weak disoroder (panel b). For each
thermal ensemble, the magnetization is plotted as a function
of the external field Ω

Appendix F: Spectral properties for varying
disorder strength

Figure 10 gives additional details of the simulations
shown in Fig. 1 and 2 of the main text. The middle and
right columns represent the same simulation as in the
main text for the strong and weak disordered systems,
respectively.

The left column shows an even more strongly disor-
dered case (smaller blockade radius), where all ensem-
bles mutually disagree. For this very strong disorder,
a sawtooth profile is visible where the magnetization in
some regions of the spectrum depends linearly on energy
(Fig. 10 a). As a consequence of extremely strong in-
teracting pairs, the spectrum is energetically split into
far apart blocks. In between, the density of states is
zero (Fig. 10 d), which might be a sign of finite-size
effects and indicate that the simulation is not yet con-
verged to the thermodynamic limit. To explain how
the sawtooth profile of the eigenstate expectation val-
ues emerges from disorder, we can consider a simpli-
fied scenario of a single strongly interacting pair where
J strong
ij � Ω surrounded by N weakly interacting spins

Figure 10. Same as Fig. 2 with three different blockade radii
rbl = 0.1a0 (left column), rbl = 0.4a0 (central column), and
rbl = 0.8a0 (right column). Top row (a - c: Eigenstate ex-
pectation value of the magnetization for a single disorder re-
alization at Ω = −0.2Jmedian for all eigenstates as a function
of eigenenergy. The color encodes the eigenstate occupation
| 〈ψ0|φα〉 |2. Bottom row (d - f): Energy distributions ρ(E)
of the diagonal ensemble (solid orange line), microcanonical
ensemble (dashed red line), and canonical ensemble (dotted
green line) for the same disorder realization and field as in
the top row. The solid gray line shows the density of states.
The diagonal ensemble and density of states are obtained
after a Gaussian kernel density estimation with bandwidth
0.01Jmedian, the energy gap of the microcanonical ensemble
is ∆E = 0.1Jmedian.

where Ω� Jweak
ij (see Fig. 1 a and c). To find approxi-

mate eigenstates for this system, we may first diagonal-
ize the strongly interacting pair giving rise to two occu-
pied eigenstates separated in energy by J strong

ij . The re-
maining spins can be approximately assumed to be non-
interacting leading to 2N configurations with energies
−NΩ

2 ,− (N−1)Ω
2 , . . . , (N−1)Ω

2 , NΩ
2 . As a result, the spec-

trum is divided into two regions, each associated with
one of the eigenstates of the strongly interacting pair;
Within each region, magnetization is determined by the
weakly interacting spins and depends linearly on energy
with a slope 1

NΩ . In the case where J strong
ij ≈ NΩ, this

scenario yields two states depicted by Fig. 1c of the
main text that features similar eigenenergy but vastly
different magnetization. We expect eigenstates where
the weakly interacting spins are strongly polarized to
share a significant wavefunction overlap with the fully
magnetized initial state. However, these states may
have completely different eigenenergies due to the in-
ternal state of the strongly interacting spins.

The central column shows a slightly less disordered
system ("strong disorder" in the main text). Here,
the microcanonical and canonical ensemble agree, but
they differ from the diagonal one (Fig. 10 e). Like the
strongly disordered case depicted in the left column of
Fig. 10, strongly interacting pairs induce large varia-
tions of the eigenstate expectation values. However, due
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to the non-negligible blockade effect, the existence of
extremely strong interacting pairs is prohibited. There-
fore, the eigenspectrum is not split into clearly distin-
guishable blocks (Fig. 10 e), and as a consequence, the
density of states becomes a smooth function without
gaps. This smoothness might be indicative of a reason-
able convergence of the simulation. Additional disorder
realizations for this case are shown in Fig. 11. Qual-
itatively, they show very similar behavior, including a
large variation of eigenstate expectation values and an
extended spread of eigenstate occupation numbers.

Figure 11. Similar to Fig. 10 b, Eigenstate expectation val-
ues of the magnetization for 9 different disorder realizations
at Ω = −0.2Jmedian and rbl = 0.4rmax for all eigenstates as
a function of eigenenergy. The color encodes the eigenstate
occupation |cα|2 = | 〈ψ0|φα〉 |2.

For weak disorder (right column in Fig. 10), all en-
semble predictions agree, which indicates thermaliza-
tion (Fig. 1 e). Quantum thermalization is confirmed
by the eigenspectrum, which shows a smooth depen-
dency of the eigenstate magnetization as a function of
eigenenergy (Fig. 10 c) following ETH. Also, the eigen-
state occupation (orange line in Fig. 10 f) is clearly
peaked at the energy of the initial state as expected in
a thermalizing system. However, this peak is still rel-
atively broad compared to the energy window of the
microcanonical ensemble (dashed red line in Fig. 10 i).
This broadening of the eigenstate occupation number
is a well-known finite size effect that is also present in
other numerical studies [36].

Appendix G: Numerical simulations for dipolar
interactions

The simulations in the main text shown in Fig. 1
and 2 are performed in a Van-der-Waals interacting

Figure 12. Similar to Fig. 1 d and e from the main text,
but for dipolar interactions. The simulations are also ob-
tained from 100 disorder averages by exact diagonalization
of 14 spins, but the blockade radii are chosen differently
(rbl = 0.01rmax for strong disorder and rbl = 0.4rmax weak
disorder) to compensate for the more long-range interac-
tions.

system with purely repulsive interactions and a power-
law a = 6. Changing the system to dipolar interaction
modifies these two characteristics: The sign of the in-
teractions becomes dependent on the angle θ between
the quantization axis and the interatomic axis propor-
tional to 1 − 3 cos(θ)

2 and the interactions are more
long-range with a = 3. This section will investigate
how these changes alter the system dynamics and the
steady-state properties.

Fig. 12 compares the late-time magnetization (dashed
black line), the diagonal ensemble (solid orange line),
the microcanonical ensemble expectation value (solid
blue line) and the canonical ensemble (dotted green
line) in the case of strong (panel a) and weak disorder
(b). As in the case of Van-der-Waals interactions, the
late-time magnetization agrees almost perfectly with
the diagonal ensemble for both strong and weak disor-
ders. This agreement shows that the system has equi-
librated to a steady-state. Also, we can observe that
the thermal ensembles (canonical and microcanonical)
agree with the steady-state only in the case of weak dis-
order. For strong disorder, the thermal ensembles pre-
dict a magnetization being consistently lower than the
steady-state value. This disagreement indicates, just
like in the case of Van-der-Waals interaction, that the
system appears to not thermalize at strong positional
disorder.

Besides these similarities, the dipolar interacting sys-
tem behaves in some aspects drastically different com-
pared to the Van-der-Waals interacting spins. Most no-
tably, the magnetization is almost perfectly symmetric
with respect to the sign of the applied external field.
This is explained by the spatial anisotropy which effec-
tively cancels any mean-field shift β(i)

α =
∑
j Jij〈ŝ

(j)
α 〉

(α ∈ {x, y, z} on atom i which causes the asymmetry
(see appendix H for a derivation of the anisotropy from
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a mean-field model).
A more subtle difference between Van-der-Waals and

dipolar interactions is the existence of the sharp cusp
behavior around zero external fields. Unambiguously,
the magnetization shows no sharp cusp in the case of
weak disorder, just as we would expect from a ther-
malizing system. In comparison, the strongly disor-
dered case shows much steeper slopes, albeit the non-
analyticity is less pronounced compared to the case of
Van-der-Waals interactions. In the inset of Figure 13,
the dashed black line shows the diagonal ensemble ex-
pectation value in a zoom at small fields. Here, we can
identify a small peaked structure at extremely small
fields |Ω| < 0.01Jmedian which might correspond to the
non-analyticity observed in the case of Van-der-Waals
interactions. Aside from this small region, the curve
looks smooth, reminiscent of thermalization.

Figure 13. Similar to Fig. 11, Eigenstate expectation values
of the magnetization for 9 different disorder realizations at
Ω = −0.15Jmedian and rbl = 0.1rmax for all eigenstates as
a function of eigenenergy. The color encodes the eigenstate
occupation | 〈ψ0|φα〉 |2.

The solid lines in Fig. 13 show the time-evolution
of the magnetization, the time. At early times up to
≈ 10Jmedian, the magnetization depends smoothly on
the external field Ω, and the magnetization is strictly
positive. After ≈ 10Jmedian, the dynamics without ex-
ternal fields have already almost reached a steady-state,
whereas the magnetization continues to decrease if an
external field is applied. As a result, the magnetization
at ≈ 10Jmedian features the steepest slope. In compar-
ison, the steady-state, just like the diagonal ensemble,
appears to be rather smooth apart from the small region
within |Ω| < 0.01Jmedian showing the peaked structure.

This ambiguity concerning the existence of a cusp
feature and hence thermalization shows most drasti-
cally when analyzing the eigenspectrum. Fig 14 shows
the eigenstate expectation values and occupation num-
bers for 9 different disorder realizations for a dipolar
interacting system with rbl = 0.1rmax. Interestingly,
some realizations like realization 2, 3, and 5 show a
scattered distribution of eigenstate expectation values

which strongly resemble the strongly disordered case of
Van-der-Waals interactions. These disorder realizations
are inconsistent with ETH (condition (iii) in the main
text). Contrary, other realizations, like realization 4, 7,
and 8, exhibit a smooth dependence of the magnetiza-
tion as a function of eigenenergy being compatible with
ETH. In summary, we can’t conclude from the numeric
simulations of only 14 dipolar interacting spins whether
the system thermalizes or not. This uncertainty might
be a consequence of the more long-range interactions
with a = d = 3, which generally favors thermalization.

Figure 14. Similar to Fig. 11, Eigenstate expectation values
of the magnetization for 9 different disorder realizations at
Ω = −0.15Jmedian and rbl = 0.1rmax for all eigenstates as
a function of eigenenergy. The color encodes the eigenstate
occupation | 〈ψ0|φα〉 |2.

Appendix H: Mean-field model

It is often helpful to employ a mean-field approxima-
tion to obtain an intuitive understanding of the dynam-
ics of interacting quantum systems. In this approxima-
tion, the Hamiltonian Ĥint + Ĥiext becomes

Ĥmf =
∑

i

((
β(i)
x + Ω

)
s(i)
x + β(i)

y s(i)
y + β(i)

z s(i)
z

)
(H1)

where we defined the mean field β
(i)
α =

∑
j Jij〈ŝ

(j)
α 〉

(α ∈ {x, y, z}. Since the initial state is fully polarized
in x-direction, the only non-zero component of the mean
field is β(i)

x and the Hamiltonian simplifies to

Ĥmf =
∑

i

(
β(i)
x + Ω

)
s(i)
x . (H2)

The resulting dynamics is a precession around the x-
axis. Therefore in mean-field approximation, the initial
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state remains fully polarized and does not evolve at all,
which is in stark contrast to the observed magnetization
decay. Nonetheless, the mean-field picture provides an
intuitive explanation for the asymmetry observed in the
diagonal ensemble description of Fig. 1 c: For positive
fields Ω, the external field and the mean-field add up to
a large effective field which leads to a strong spin locking
effect. On the other hand, at small negative fields where
Ω ≈ −β(i)

x , the two components cancel each other, and
the spin locking effect is diminished.

Appendix I: Pair mean-field model

In this appendix, we introduce an approximation
that remedies the shortcomings of the naive mean-field
model by treating strongly interacting pairs of spins
exactly and adding the effects of interactions between
pairs on the mean-field level. This approximation pro-
vides an intuitive picture that allows us to explain all
the observed features of the long-time magnetization
(positivity, cusp, asymmetry).

For a single interacting pair, in the basis
{|→→〉 , |→←〉 , |←→〉 , |←←〉}, Hamiltonian (2) reads

Ĥpair = 2J
(

∆ŝ(1)
x ŝ(2)

x + ŝ(1)
y ŝ(2)

y + ŝ(1)
z ŝ(2)

z

)
+ Ω

2∑

i=1

ŝ(i)
z

(I1)

=




J + Ω 0 0 J(∆− 1)
0 −J J(∆ + 1) 0
0 J(∆ + 1) −J 0

J(∆− 1) 0 0 J − Ω




(I2)

where we defined J = J01/4. Out of the four eigenstates
of this Hamiltonian, only two have non-zero overlap
with the initial state |→→〉 (see table II). Therefore,
each interacting pair can be seen as an effective two-
level system on its own, with a modified interaction be-
tween these "renormalized" spins. This ansatz of diago-
nalizing the strongest interacting pairs first can be seen
as a first step in a real-space strong-disorder renormal-
ization group treatment [20–23]. Here, we do not aim
to proceed further in this renormalization scheme, but
instead, we use the basis of eigenstates of strongly in-
teracting pairs to derive an intuitive understanding of
the physics within mean-field theory.

In contrast to a single spin which does not show any
dynamics, a strongly interacting pair features oscilla-
tory dynamics. Using the definition given in the main
text, we can calculate the diagonal ensemble expecta-
tion value for single pair:

〈Ŝx〉pair =
Ω2

2(Ω2 + j2)
(I3)

where we introduced j = J (∆− 1). It should be
noted that this diagonal ensemble does not describe the
steady-state but rather the time average over the oscil-
lations. The magnetization expectation value predicted
by the diagonal ensemble of a single interacting pair
represents an inverted Lorentz profile with width j/2,
which features a quadratic dependence on Ω around
zero (see Figure 15(a)). However, if we average over
multiple pairs with different interaction strengths j, the
diagonal ensemble value becomes more meaningful since
we can assume that the different oscillation frequen-
cies dephase. Also, the behavior of the magnetization
changes: For example, assuming a uniform distribution
of j ∈ [0,∆j ]

5, we obtain

1

∆j

∫ ∆j

0

〈Ŝx〉pair dj =
Ω

2∆j
arctan

(
∆j

Ω

)
(I4)

which shows the non-analytic cusp feature at Ω = 0
(see Figure 15(b)). Close to the non-analytic point,
the magnetization increases linearly with a slope

π

4∆j

inversely proportional to the width of the distribution of
interaction strengths. Therefore, we can conclude that
the non-analyticity is a direct consequence of disorder
and the resulting broad distribution of nearest neighbor
interaction strengths.

To obtain an even more realistic model and to under-
stand additional features like the asymmetry, we add a
mean-field interaction between pairs. For this purpose,
we replace the external field with an effective mean-field
acting on spin i:

Ω→ Ωi = Ω +
∑

j

J inter
ij 〈ŝ(j)

x 〉 (I5)

As a first example, we may consider a periodic chain
of equally spaced pairs where all pairs are identical and
the mean-field shift arising from interactions between
the pairs is J inter. In this case, the diagonal ensemble
expectation value can be calculated by solving the self-
consistent equation

〈Ŝx〉 =
1

2

(
Ω + J inter〈Ŝx〉

)2

(
Ω + J inter〈Ŝx〉

)2

+ j2

. (I6)

Since the right-hand side of the equation only con-
tains squares, the magnetization is still positive or zero.

5 For distributions like j ∈ [jmin,∆j ] that do not feature arbi-
trary small interaction strengths, a small region of approximate

size Ω < | jmin

∆j
| exists where magnetization is a smooth func-

tion of external field.
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Eigenvalue Eigenvector Occupation Magnetization

J∆
1√
2

(|→←〉+ |←→〉) 0 0

−J(2 + ∆)
1√
2

(|→←〉 − |←→〉) 0 0

J −
√

Ω2 + J2 (∆− 1)2
√

1

2
− Ω

2
√

Ω2 + j2
|→→〉+

√
1

2
+

Ω

2
√

Ω2 + j2
|←←〉 1

2
− Ω

2
√

Ω2 + j2
− Ω

2
√

Ω2 + j2

J +
√

Ω2 + J2 (∆− 1)2
√

1

2
+

Ω

2
√

Ω2 + j2
|→→〉+

√
1

2
− Ω

2
√

Ω2 + j2
|←←〉 1

2
+

Ω

2
√

Ω2 + j2
Ω

2
√

Ω2 + j2

Table II. Properties of the four eigenstates of a single interacting spin pair. To simplify notation, we introduced j =
J (∆− 1).

Figure 15. The diagonal ensemble expectation value of
the magnetization as a function of applied external field Ω
for (a) a single pair, (b) a disorder average of single pairs
with interaction chosen randomly in the interval J ∈ [0, 1],
(c) a system of identical pairs that interact with mean field
interaction Jinter = 1.5∗J , and (d) a realistic random distri-
bution with power-law interactions, as described in the text.
For the latter, the dashed orange line shows the full quan-
tum mechanical solution obtained by exact diagonalization
for the same system.

Therefore, for positive external fields Ω, the effective
field is larger than the external field (Ωi ≥ Ω), lead-
ing to an enhanced spin locking effect. Consequently,
mean-field leads to an increased magnetization com-
pared to the case of independent pairs. For negative
Ω, the external field is anti-aligned with the mean-field,
and the resulting magnetization is decreased. Thus, the
dependence of the magnetization as a function of field
strength is asymmetric (see Figure 15(c)). In conclu-
sion, we can attribute the asymmetry to mean-field in-
teraction between different pairs.

In order to model the disordered spin system realized
experimentally, we apply the pair model to an ensemble
of spins with randomly chosen positions. We cluster the
spins i into pairs p in such a way that the sum over all

pair distances is minimized. Naturally, the interaction
jp of a pair p consisting of spins i and j is given by the
interaction strength between the spins. The interaction
strength J inter

pq between pair p and q can be obtained
from the strongest interaction Jij where spin i is in pair
p and j in q respectively. Now, we solve the system of
self-consistent equations

〈ŝpx〉 =
1

2

(
Ω +

∑
q(J

inter
pq 〈ŝqx〉)

)2

(
Ω +

∑
q(J

inter
pq 〈ŝqx〉)

)2

+ j2
p

. (I7)

The resulting magnetization curve obtained after disor-
der averaging (see blue line in Figure 15(d)) closely re-
sembles the exact diagonal ensemble prediction (orange
line). Importantly, all qualitative features are captured,
including a positive magnetization which is asymmetric
with respect to the external field and shows a sharp
cusp at zero field. The remaining discrepancy between
the pair model and the exact solution, in particular the
stronger asymmetry of the exact solution, can be at-
tributed to clusters of spins containing more than two
atoms where quantum fluctuations decrease the magne-
tization even further than predicted by the pair mean-
field model.

We conclude that the heuristic pair mean-field model
provides an intuitive understanding of the diagonal en-
semble prediction. Furthermore, we can also apply it to
investigate the microcanonical ensemble. To this end,
we assume that the microcanonical ensemble expecta-
tion value is determined solely by the eigenstate closest
in energy to the energy E0 of the initial state. Without
mean-field interaction, the energy of the system E0 is
closer to the upper eigenstate featuring positive mag-
netization for positive fields (respectively closer to the
lower eigenstate for negative fields) (see Figure 16 (a
and b). Thus, E0 is always closer to the positively po-
larized eigenstate and we expect a positive magnetiza-
tion for the microcanonical ensemble for all field values
Ω. This changes when we take into account the mean-
field interaction between pairs. Due to the assumption
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that the system is exactly in a single eigenstate, we can
calculate the magnetization of each eigenstate via the
self-consistent equation

〈ŝx〉± = ± Ω + J inter〈ŝx〉±
2
√

(Ω + J inter〈ŝx〉±)2 + j2
. (I8)

The resulting effective field Ω + J inter〈ŝx〉± changes
the eigenvalues, and the spectrum becomes asymmet-
ric with respect to the lower and upper branch. Most
strikingly, a region of small negative fields exists where
the energy of the system E0 is closer to the upper eigen-
state which features a negative magnetization (compare
the dashed gray line showing E0 with the solid gray line
showing the center between the eigenstates in Figure 16
(c and d)). This explains why the magnetization of the
microcanonical ensemble can become negative for small
negative Ω.

Comparing this model to a many-body spectrum ob-
tained by exact diagonalization of the full quantum me-
chanical Hamiltonian, we notice that the highest and
lowest excited states show the same features as the two
eigenstates of a single pair in the mean-field model.
Additionally, in between these two states, we find a
plethora of further eigenstates. In a microcanonical de-
scription, the eigenstates closest to the energy of the
system are populated. Therefore, for small negative
fields, the microcanonical ensemble populates states
which are closer in energy to the highest excited state.
Since these states typically feature negative magnetiza-
tion, we obtain a negative magnetization for the micro-
canonical ensemble similar to the red line in Figure 1 c
in the main text.

The right column of Figure 16 also shows the eigen-
state occupation for each of the studies systems. No-
tably, we can see that not only the eigenstates closest in
energy to E0 are populated. Rather, the occupation is
highly correlated with the magnetization of the eigen-
state. Therefore, the assumption of the microcanoni-
cal ensemble is not justified leading to the qualitative
different behavior of the microcanonical and diagonal
ensembles.

Appendix J: Finite size scaling

To strengthen confidence in our results, we perform
finite-size scaling on a one-dimensional system with pe-
riodic boundary conditions (at rb = 0.5rmax with van-
der-Waals interactions). This analysis shows that the
main qualitative difference between diagonal and ther-
mal ensembles, being the thermal ensembles’ dip below
zero magnetization at small negative field strength, ap-
pears to be stable. Figure 17 c and 17 d show that the
position and depth of the minimum are not yet per-
fectly converged but seems to stabilize around at small

Figure 16. Eigenvalue spectra and eigenstate properties for
pairs of spins compared to properties of the full many-body
spectrum. In the left column, the color gradient encodes the
magnetization of each eigenstate. In the right column, the
color gradient represents the wavefunction overlap of the
eigenstate with the initial state of fully x-polarized spins.
Panels a and b show the eigenstate properties of a single pair
given in Table II. Panels c and d show the eigenstates of a
pair including the mean-field shift caused by the surrounding
pairs according to eq. (I8). The full many-body spectrum of
a disordered system of N = 6 spins is shown in panels e and
f. The qualitative correspondence between the middle row
and the extremal states in the lower row is clearly visible,
showing that the pair mean-field picture may provide an
intuitive understanding of the properties of the many-body
spectrum.

negative values. There is no clear drift visible, meaning
the thermal ensembles minimum is indeed negative and
at small negative external field.
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Figure 17. Finite size scaling methodology. a, shows an
overview of diagonal and canonical ensembles. We obtain
detailed data (b) around the minima for different N and
perform a quadratic fit to extract the position (c) and depth
(d) of the minima.
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Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena
such as glassiness and many-body localization. Theoretical studies have mainly focused on disorder
in the from of random potentials, while many experimental realizations naturally feature disorder in
the interparticle interactions. Inspired by cold Rydberg gases, where such disorder can be engineered
using the dipole blockade effect, we study a Heisenberg XXZ spin model where the disorder is
exclusively due to random spin-spin couplings, arising from power-law interactions between randomly
positioned spins. Using established spectral and eigenstate properties and entanglement entropy,
we show that this system exhibits a localization crossover and identify strongly interacting pairs as
emergent local conserved quantities in the system, leading to an intuitive physical picture consistent
with our numerical results.

I. INTRODUCTION

Understanding how an isolated quantum system pre-
pared out of equilibrium, can exhibit thermal proper-
ties at late times, i.e. how it thermalizes, has challenged
quantum physicists for almost a century. The eigenstate
thermalization hypothesis (ETH) [1, 2] offers a generic
mechanism to explain this phenomenon but makes strong
assumptions on the structure of energy eigenstates in
terms of the matrix elements of local operators. Nonethe-
less, it has been shown numerically that a large class of
quantum systems complies with ETH and thermalizes
[3, 4]. A notable exception are strongly disordered sys-
tems in which transport is absent and the system retains
memory of the initial state at arbitrary times [5–8].

This phenomenon, called many-body localization
(MBL), has been verified for small systems including,
but not limited to, spin-systems with random poten-
tials [9–11], random nearest [12–14] and next-to-nearest
neighbour interactions [15, 16], and power-law interac-
tions [17–21] using a combination of exact numerical ap-
proaches and heuristic arguments like the strong disorder
renormalization group (SDRG) [22–25] to generalize to
large systems.

Recently, claims have been made that this localiza-
tion phenomenology may not be stable in the thermo-
dynamic limit due to thermal inclusions [26–34]. These
are small, more ordered subregions thought to thermal-
ize with their surrounding and thus slowly pushing the
system towards thermalization. Unfortunately, these re-
gions are very rare and thus only start appearing in large
systems far beyond the reach of numerical methods. This
raises the question, whether this instability is relevant for
quantum simulation experiments, being finite in size and

∗ adrian.braemer@kip.uni-heidelberg.de
† martin.gaerttner@kip.uni-heidelberg.de

limited by coherence time. In this paper, we only focus on
the phenomenology of localization in finite systems and
subsequently use the term ”localized regime” instead of
a ”phase” following the terminology of [28].

Complementary to numerical works there are a number
of experimental results falling into roughly two classes:
Experiments with single particle resolution, including op-
tical lattices [35–38] and trapped ions [39], and experi-
ments based on macroscopic samples, like NV centers in
diamond [40] or NMR systems [41]. The former offer
precise control, but are rather limited in size, while the
latter can realize much larger systems at the expense of
flexibility, in particular lack of programmable disorder.
Cold gases of Rydberg atoms implement dipolar dynam-
ics with random couplings (similar to NMR systems or
NV centers) and allow for control of the disorder strength
and even the power-law of the interaction at rather large
particle numbers [42], which makes them a powerful plat-
form for studying localization phenomena.

Motivated by recent progress on quantum simulations
with Rydberg atoms [42–45], we consider a power-law
interacting spin system where the disorder is due to ran-
domly positioned spins respecting a blockade condition,
which induces disordered couplings. In this setup, the
strength of the disorder can be tuned by changing the
density of particles or, equivalently, the minimal distance
between them. Starting out in a ordered system, where
the blockade radius is of order of the mean inter-particle
distance, we show numerically that this system exhibits
a crossover to a localized regime at small blockade and
apply a SDRG approach to derive a simple model based
on strongly interacting pairs, which captures the proper-
ties of the eigenstates in the localized regime well. Our
study thus adds to the body of numerical works on MBL,
focusing on dipolar systems with tunable positional dis-
order, and is highly relevant to experimental efforts, as
a wide range of quantum simulation platforms feature
dipolar interactions.
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II. LOCALIZATION IN A RYDBERG GAS

A. System

We consider the Heisenberg XXZ spin model described
by the Hamiltonian (~ = 1)

Ĥ =
1

2

∑

i 6=j
Jij

(
Ŝ(i)
x Ŝ(j)

x + Ŝ(i)
y Ŝ(j)

y + ∆Ŝ(i)
z Ŝ(j)

z

)

︸ ︷︷ ︸
≡H(i)(j)

pair

(1)

where Ŝ
(k)
α (with α ∈ {x, y, z}) denotes the spin- 12 op-

erators acting on the k-th spin. The coupling Jij be-
tween spins i and j at positions xi and xj is given by

Jij = Cα
|xi−xj |α , where Cα is an interaction coefficient

which we set to Cα = 1. In experimental realizations
of this model with Rydberg atoms, the values of the
anisotropy parameter ∆ and interaction exponent α are
controllable via the choice of the Rydberg states encod-
ing the two spin states. The cases α = 3, ∆ = 0 (dipolar
exchange) and α = 6, ∆ ≈ −0.7 (van-der-Waals) have
been realized experimentally [42, 44]. For typical cloud
temperatures and time scales of the spin dynamics the
atom positions can be regarded as fixed (frozen gas ap-
proximation).

During the initial Rydberg excitation, the spins are
subjected to the Rydberg blockade [46] which means no
two spins can be closer than some distance rb, called
the blockade radius. This feature allows one to tune the
strength of disorder via the sample’s density: In a very
dilute sample, the mean inter-spin distance is much larger
than the blockade radius rb and thus positions are essen-
tially uncorrelated. In the other extreme, the spins are
tightly packed and exhibit strong spatial correlation.

We quantify the strength of disorder by the ratio W of
the system’s total volume V over total blocked volume
Vblock or, equivalently, by the ratio of Wigner-Seitz radius
a0, which is half of the mean inter-spin distance, to the
blockade radius rb to the power of the dimension d,

W =
V

Vblock
=

(
a0
rb

)d
. (2)

For d = 1, the minimal value of Wmin = 1
2 is attained for

a translationally invariant chain with spacing 2a0 = rb,
as illustrated in Fig. 1(a).

B. Effective pair description

This model differs from the random field Heisenberg
model, which has been studied extensively in the MBL
literature, as no disordered potentials are considered.
Thus it may not be immediately apparent, why this sys-
tem features localization and what constitutes the local
conserved quantitites akin to the l-bits [47] in the stan-
dard scenario. Here we provide a phenomenological pic-
ture in the spirit of the SDRG suggesting that localiza-
tion should appear due to strongly interacting pairs.

(a) fully ordered

(b) disordered

(c) pair description

LIOM

FIG. 1. Pair description. The blockade constraint (blue
shadings) enables tuning of disorder in the couplings (green
lines) from fully ordered (a) to disordered (b). In the latter
case a perturbative treatment to first order yields a descrip-
tion in terms of strongly correlated pairs (c) subject to an
Ising-like interaction (not depicted). These pairs constitute
local integrals of motion (LIOM).

Consider a strongly disordered cloud of N spins de-
scribed by Eq. (1) like the example depicted in Fig. 1(b).
Due to the power-law interactions, coupling strengths
vary strongly between different pairs of atoms, symbol-
ized by the width and brightness of the green lines.
This motivates us to employ a perturbative treatment,
in which we single out the strongest pair coupling and
consider all other couplings as a perturbation. In the ex-
ample shown in Fig. 1(b), the two rightmost spins share
the strongest coupling and we can see that it is much
stronger than the other couplings of either one of the
spins to the rest of the system. Using perturbation the-
ory to first order, we find that the pair of spins almost
decouples from the rest of the system leaving only an
effective Ising-like interaction, which is unimportant for
the further procedure and thus not shown in the figure.
For details on the calculations involved, see appendix A.

We may now repeat this procedure of eliminating cou-
plings between pairs and rest system by identifying the
next strongest interaction among the remaining spins
which, in this example, is the coupling between the sec-
ond and third spin. Eliminating the respective cou-
plings as well leaves us with the effective pairs shown
in Fig. 1(c). Note that in an ordered system, as shown in
Fig. 1(a), this perturbative treatment is not applicable as
not all neglected couplings can be considered small. We
also note that the order of eliminations is not important
as long as each time the inner-pair coupling is much larger
than the couplings between pair and rest. Concretely, for
the given example, choosing the coupling between spins
2 and 3 in Fig. 1(b) first in the pair elimination process
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does not change the result.
The great advantage of this ansatz is that we can now

give a simple description of the whole many-body spec-
trum. Diagonalizing Hpair (see Eq 1), we find two max-

imally entangled eigenstates |±〉 = 1/
√

2(|↑↓〉 ± |↓↑〉) at
energies E± = ±2 − ∆ and two degenerate states |↑↑〉,
|↓↓〉 at energy Ed = ∆, which we will refer to as |ll〉.
The Ising-like interaction between pairs does not act on
the entangled states |±〉 and is diagonal w.r.t. to |ll〉.
Thus, in the pair picture, the eigenstates of the full sys-
tem are now given by tensor products of these four pair
eigenstates. We refer to this basis as the ”pair basis”.

In the many-body spectrum, the degeneracy between
the pair states |↑↑〉 and |↓↓〉 is lifted due to the emerging
Ising-like interaction. However, we note that this split-
ting is small compared to the splitting between the other
pair eigenstates as it emerges from first order perturba-
tion theory.

The pair picture is analogous to the l-bit picture of-
ten used MBL, where strong local disorder potentials
lead to the emergence of quasi-local conserved quantities

τ̂ (i) ∼ σ̂(i)
z [47, 48]. Here, we see that each projector on a

pair’s eigenstate constitutes an approximately conserved
quantity and hence is a local integral of motion (LIOM).
Thus, we established a description akin to the l-bit pic-
ture of MBL for this disordered Heisenberg model, where
the role of LIOMs is taken by strongly interacting pairs.

While this ansatz is heuristic and neglects all higher
resonances, that may play a crucial role in delocalizing
the system, it will nonetheless turn out to be useful for in-
terpreting and understanding the spectral and eigenstate
properties reported in the following.

III. NUMERICAL RESULTS

To minimize boundary effects, we consider a
one-dimensional system with periodic boundary condi-
tions [49] of up to N = 16 spins governed by Eq. (1) and
perform exact diagonalisation on the sector of smallest
positive magnetisation. We fix the interaction exponent
to α = 6, corresponding to a Van-der-Waals interactions,
and set ∆ = −0.73 (cf. [42]). We do not expect a strong
dependence of our results on the precise value of ∆ as
long as one steers clear from regions around points where
additional symmetries emerge.

For each disorder strength W , we generate 2000 config-
urations, perform a full diagonalisation and compute sev-
eral well established indicators for the localization tran-
sition from the spectrum. We always average over all
eigenstates/-values as restricting to the bulk of the spec-
trum does not lead to qualitative changes in the observed
behavior. For a description of the algorithm for choosing
the configurations, we refer to appendix C. All code used
for this paper can be found at [50].

The following sections discuss different indicators of
localization with the aim to establish the localization
crossover in this model and employ the pair model for
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0.5
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N=14
N=15
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FIG. 2. Level-spacing ratio. With increasing disorder the
LSR shows a crossover from an ergodic value to its Poissonian
value and below. We identify four major regions where the
physics is governed by (I) translational symmetry breaking,
(II) thermal behavior, (III) the localization crossover and (IV)
localization. The horizontal lines show random-matrix theory
predictions.

interpretation and predictions. The last section directly
compares the pair basis to the eigenstates, thus demon-
strating it’s validity.

A. Level spacing ratio

The spectral average of the level spacing ratio (LSR),
defined as [51]

〈r〉 =
1

|H|
∑

n

min

(
En+2 − En+1

En+1 − En
,
En+1 − En
En+2 − En+1

)
, (3)

is a simple way of characterizing the distribution of dif-
ferences between adjacent energy levels. For thermal-
izing (ergodic) systems, the Hamiltonian is expected to
show a mean LSR resembling a random matrix from the
Gaussian orthogonal ensemble (GOE), because its eigen-
vectors essentially look like random vectors. Thus one
can use random matrix theory to obtain 〈r〉thermal =

4− 2
√

3 ≈ 0.536 [52].
On the other hand, in localized systems the eigenvalues

follow a Poisson distribution, since they are essentially
sums of randomly distributed energies from the l-bits the
system consists of. Computing the mean LSR in this case
yields 〈r〉MBL = 2 ln 2− 1 ≈ 0.386 [52].

Comparing with the numerical results in Fig. 2 and
focusing on the central parts first, we find the mean LSR
reaches its thermal value for large enough systems and
weak disorder (II) dropping towards the Poissonian value
for stronger disorder (III). With growing system size, the
thermal plateau (II) broadens, marking a parameter re-
gion where the system appears ergodic. But while the
plateau broadens, the drop-off (III) for increasing dis-
order strength becomes steeper, meaning the crossover
becomes sharper as the system gets larger.
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Considering very strong disorder (IV), the mean LSR
drops even below the Poissonian value, which indicates
level attraction. This effect can be explained by the
pair model: As stated earlier, the |ll〉 states’ degeneracy
is lifted by the effective Ising-like terms from 1st order
perturbation theory, which means the split is of smaller
magnitude compared to the intra-pair interactions. For
small systems with comparatively low spectral density,
this means that the small lifting likely fails to mix the
formerly degenerate states into their surrounding spec-
trum. Thus the LSR still reflects the near degeneracy
within the pairs, leading to level-attraction.

A similar argument can be made at very weak disorder
(I): Here the source of the degeneracy is the proximity
to the perfectly ordered case at W = 0.5 which has an
additional translation invariance. Weak disorder breaks
that symmetry but couples the symmetry sectors only
weakly, leading again to a very small energetic splitting of
degenerate states. We want to emphasize the reason for
level attraction being very different in nature in (I) and
(IV): Whereas in (I) the system is close to a system with
obvious conserved quantities due to symmetries, in (IV)
there is the emergent integrability of the MBL regime[8].

We conclude, that, in analogy to standard MBL, we
find a crossover in the level spacing distribution from a
regime with level repulsion to Poissonian gaps indicating
a localization crossover. At very strong disorder, we even
find a region with level attraction, the source of which can
be explained by the effective pair model.

B. Thouless parameter

Complementary to eigenvalue statistics, we also probe
eigenstate properties by computing the Thouless param-
eter

Gn = ln
| 〈n|V̂ |n+ 1〉 |
E′n+1 − E′n

(4)

introduced by Serbyn et al.[53]. This quantity is akin
to the Thouless conductance in single particle systems
and quantifies how well two states |n〉,|n+ 1〉 with per-

turbed energies E′n = En+ 〈n|V̂ |n〉 are coupled by a local

perturbation V̂ . In the thermal phase, states of similar
energy will have similar spatial structures, whereas in the
localized phase, eigenstates are products of LIOM eigen-
states and thus typically vary drastically from one to the
next. One can derive the scaling of the average G in the
thermal regime to be G ∝ log |H| and in the localized
regime to be G ∝ − log |H|, leading to the natural defini-
tion of the location of the crossover to be the point where
G = constant[53].

Figure 3 shows results using local operator V̂1 =

Ŝ
(1)
z . Data for local operators V̂2 = Ŝ

(1)
z Ŝ

(2)
z and V̂3 =

Ŝ
(1)
+ Ŝ

(2)
− + h.c. is visually identical. There is a very clear

point, where all curves intersect each other indicating the
crossover’s location. To the right of the crossing point
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FIG. 3. Thouless parameter. Spectrally averaged G vs.
disorder strengthW . Data shown uses local operator Ŵ = σ1

z .

in the localized regime, the curves are roughly evenly
spaced, reflecting the expectation of G ∝ − log |H|,
clearly signaling the localized regime.

C. Half-chain entropy

Having shown, that there is indeed a localization
crossover, we now demonstrate that our effective pair
model is indeed a good approximation. We start by
probing the half-chain entropy, S = −Tr ρA log2 ρA, with
ρA = TrB(ρ), i.e. the entanglement entropy between two
halves of the chain. For that we select

⌊
N
2

⌋
consecutive

spins and trace out the rest, resulting in two cuts due
to the periodic boundary conditions, and average over
all N possible choices of connected subsystems and all
eigenstates.

In an ergodic system, all bulk states should exhibit
volume-law entanglement meaning S ∝ N . In contrast,
in a localized setting all states show area-law entangle-
ment, which for d = 1 means S = const [3, 54].

To compute the half-chain entropy predicted by the
pair model, we need to determine how many pairs are
divided by each cut and how often these pairs are found
in one of the entangled states |±〉 = 1/

√
2(|↑↓〉 ± |↓↑〉).

Not all pairs consist of adjacent spins (see Fig. 1c), so
a cut can separate more than one pair. The amount of
cut bonds is easily determined from the position data
alone, by adding up the distances between paired spins.
Respecting periodic boundary conditions of the system
yields an additional factor of two, since there are two
cuts needed to divide the chain.

Considering the entropy contribution of a single bond,
if we were to average over all possible configurations of
pair states, each cut bond would contribute half an ebit
on average, as half of the pair states are maximally en-
tangled and the other half not entangled at all. However,
here we consider the sector of smallest positive magne-
tization, which yields a slightly larger entropy, because
it favors the entangled states |±〉 (which have zero net
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FIG. 4. Half-chain entropy. Average of half-chain entropy
for different system sizes across disorder and prediction by
pair description (black dashed line). Inset: Linear fits at fixed
disorder strengths indicated by the vertical dashed lines in the
main panel.

magnetization) over the fully polarized ones. This mod-
ification can be computed exactly (see appendix B for
details).

Taking into account both the effects of non-local pairs
and of the fixed total magnetization, we can compute a
prediction for the entanglement entropy directly from the
interaction matrix Jij . Figure 4 shows both the numer-
ically computed values for different system sizes (solid)
and pair-model prediction (dashed).

We clearly see the change between the ergodic and lo-
calized regime for the numerically computed data. For
strong disorder all lines collapse, confirming on one hand
the area law entanglement expected in the localized phase
and, on the other hand, validating the pair model as it
predicts the strong-disorder limit with striking accuracy.

Another piece of information that we can access easily
via the half-chain entropy is the location of the crossover.
To determine it, we calculate the variance of the half
chain entropy over different disorder realizations and
extract the maximum for each chain length N via a
quadratic fit [15]. Figure 5 shows no strong dependence
of the crossover point on N in the range of accessible
system sizes.

Interestingly, the crossover location is very close the
density given by Rényi’s parking constant, or jamming
limit, which is the maximal density attainable, by ran-
domly placing non-overlapping unit intervals on the num-
ber line [55]. As in experiments with Rydberg spins
atom positions result from such a random process, this
could imply, that these experiments might not be able
to reach the densities required for observing the fully er-
godic regime. However, it is unclear how the crossover
location generalizes to higher dimensions and larger sys-
tems.
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FIG. 5. Standard deviation of half-chain entropy. The
main plot shows the standard deviation of the half-chain en-
tropy across disorder realizations exhibiting a clear maximum
around which a quadratic polynomial is fitted. Inset: Posi-
tion of the maximum as extracted by the fits. Errors shown
are statistical errors extracted from the fits.

D. Participation ratio

Now that we have seen, that the pair model captures
the spatial entanglement structure of the exact eigen-
states, we compare the predicted eigenstates directly to
the exact ones by computing the participation ratio (PR).
Intuitively, it measures how many states of a reference
basis B = {|b〉} contribute to a given eigenstate |φn〉

PRB(|φn〉) =

(∑

b∈B
| 〈b|φn〉 |4

)−1
. (5)

Usually in the MBL context, one chooses a product
basis as reference, because a low PR relative to product
basis means the eigenstates are close to product states.
”Low” in this context means a sublinear scaling of PR
with the dimension of the Hilbert space H: PR ∝ |H|τ
where τ < 1. In contrast, a thermalizing system always
has PR ∝ |H| with respect to any product basis [56–58].

Here we compare two different reference bases, the
z-basis Z = {|↑〉 , |↓〉}⊗N and the pair basis P =
{|±〉 , |ll〉}⊗N/2, introduced above, to determine how
well the pair model describes the eigenstates. If the pair
basis P was exactly equal to the eigenbasis, its PR would
be exactly 1. In this case the expected PR with respect
to the z-basis, averaged over the Hilbert space, Z will
be 1.5N/2, because a single pair has an average PR of
1.5. However, we only consider the sector of smallest
positive magnetization, which increases the expected PR
by a similar line of reasoning as for the entropy in the
previous section.

Figure 6(a) shows the PR relative to the two reference
bases as a fraction of the Hilbert space dimension |H|. We
see that the weakly disordered regime indeed has ergodic
eigenstates as the curves collapse onto each other. The
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FIG. 6. Participation ratio. (a) PR relative to Hilbert
space dimension |H| for different reference bases: z-basis in
blue, pair basis in red. The inset shows a magnification of
the region towards perfectly ordered systems. (b) shows the
growth in absolute PR with increasing system size in the lo-
calized regime. The used value of W is indicated by the dash-
dotted line in (a).

small offset between the two reference bases is plausible,
since a thermal systems eigenstates express volume law
entanglement and thus the overlap with a product basis
like Z is minimal. The states of the pair basis contain
pairwise entanglement and are thus a bit closer, which
manifest as slightly lower PR. Around W = 0.6 the scal-
ing with |H| starts to change to a sublinear relation as
we crossover to the localized regime.

Checking the PR deep in the localized phase (at around
W = 1.67) in Fig. 6(b), we can see that the PR rel-
ative to the z-basis (blue line) is slightly, but system-
atically, larger than the pair model’s prediction (dashed
green line). Consistent with this observation, we see that
the PR relative to the pair basis (red line), while being
much smaller, is still not constant across system sizes.

We conclude, that the pair states offer a good first or-
der approximation of the true eigenstates, but there are
higher order resonances that lead to further hybridization
for some states. The exponent of the remaining depen-
dence on system size is close toN/4, which hints at effects
stemming from interactions between pairs.

IV. CONCLUSIONS

We analyzed a disordered Heisenberg XXZ spin model
with power-law interaction and positional disorder, which
is naturally realized by many quantum simulation plat-
forms. Among these, cold Rydberg gases allow for easy
tuning of the disorder via the sample’s density due to
the Rydberg blockade. By using standard MBL indi-
cators, we showed numerically that this system under-
goes a localization crossover, which we interpreted in
terms of a simple physical model derived using an SDRG
ansatz. This model, consisting of an effective Ising model
of strongly interacting pairs of spins, was verified by con-
sidering the participation ratio of eigenstates with the
conjectured basis, which is drastically reduced compared
to the participation ratio relative to the z-basis. Still,
there was a weak dependence on system size left, which
means there are higher order corrections to our model.
Nonetheless, we also showed that this simple model can
already predict the entanglement entropy of the system
nearly perfectly.

With this model at hand, we can now make predic-
tions for large systems which may be tested in quantum
simulation experiments. Of course, one of the most in-
teresting questions will be, whether the location of the
crossover shifts towards stronger disorder for large sys-
tems, indicating a transition at infinite disorder strength
in the thermodynamic limit. For this purpose the easy
tunability of the disorder is a great advantage as both
sides of the crossover can be probed on the same plat-
form by changing the system parameters.

Note that the pair model cannot be used to predict
the crossover itself as it essentially requires the assump-
tion that one can find strongly interacting pairs, which is
only justified in the strongly disordered regime. Recent
arguments for the absence of localization postulate the
existence of rare thermal subregions within the system
[26–34]. This would of course break the base assumption
of the pair model. A possible direction for future research
would be to extended the model to include not only pairs
but also larger clusters, which would require one to track
all the kinds of interactions between clusters of different
sizes.

Interestingly, the dimensionality of the system does not
directly influence the pair model. As long as the cou-
plings are sufficiently disordered, such that pairs can be
defined, it will be a good approximation. Thus it suffices
to study how the distribution of couplings changes with
respect to the dimensionality d of the space and coupling
power α. Similar to resonance counting arguments ar-
guments [59], we conjecture the requirement d < α for
the pair model to be applicable. Hence, we expect our
results, while acquired in d = 1, to generalize well to
d > 1.
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state of Baden-Württemberg through bwHPC and the
German Research Foundation (DFG) through grant no
INST 40/575-1 FUGG (JUSTUS 2 cluster). This work
is supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s
Excellence Strategy EXC 2181/1 - 390900948 (the Hei-
delberg STRUCTURES Excellence Cluster) and under
SFB 1225 ISOQUANT - 27381111.

Appendix A: Derivation of pair picture

Here we derive the pair model of the main text by
means of Schrieffer-Wolff transformations [61]. Starting
with the full Hamiltonian of the system

HXXZ =
∑

i,j

Jij

(
S
(i)
+ S

(j)
− + S

(i)
− S

(j)
+ + 2∆S(i)

z S(j)
z

)

︸ ︷︷ ︸
≡H(i)(j)

pair

(A1)
suppose w.l.o.g. that J12 � J1j , J2j and set H0 =

J12H
(1)(2)
pair and V = HXXZ −H0. We label the eigenvec-

tors and eigenenergies of Hpair like:

state k energy Ek vector |k〉
1 2−∆

√
2
−1

(|↑↓〉+ |↓↑〉)
2 ∆ |↑↑〉
3 ∆ |↓↓〉
4 −2−∆

√
2
−1

(|↑↓〉 − |↓↑〉)

The projectors on these states are consequently named
Pk = |k〉〈k| ⊗ 1, but since the middle 2 states are degen-
erate, we need to use the projector on the full eigenspace
and call it P23 = P2 + P3.

To first order only diagonal terms PkV Pk contribute,
which in this case means the pair decouples and only an
effective Ising term remains:

Ĥ =
∑

i,j

JijĤ
(i)(j)
pair (A2)

≈ J12Ĥ(1)(2)
pair +

∑

i,j>2

JijĤ
(i)(j)
pair

+ Ŝ(1)(2)
z

∑

i>2

∆̃iŜ
(i)
z +O(V̂ 2) (A3)

where 2Ŝ
(1)(2)
z = |↑↑〉〈↑↑| − |↓↓〉〈↓↓| is akin to a spin-1

magnetization operator and ∆̃i = ∆(J1i + J2i) is the
renormalized Ising coupling. Note, that this first order
term lifts the apparent degeneracy of the |↑↑〉 and |↓↓〉

states. This elimination is a good approximation, if the
interaction within the pair is much stronger than any
other interaction between a spin of the pair and some
other spin.

We can now repeat this elimination step with remain-
ing spins by incorporating the effective Ising terms into
V . This is justified because its coupling is small and it is
already first order perturbation theory and thus includ-
ing it into the zeroth order of the next pair would mix
expansion orders inconsistently.

Further eliminations, now generate effective Ising
terms between the states |↑↑〉 and |↓↓〉 of the eliminated
pairs. After pairing up all spins, we find

Ĥ =
∑

i,j

JijĤ
(i)(j)
pair (A4)

≈
∑

〈i,j〉
JijĤ

(i)(j)
pair +

∑

〈i,j〉,〈i′,j′〉
∆̃(i,j),(i′,j′)Ŝ

(i)(j)
z Ŝ(i′)(j′)

z

(A5)

where the sum over 〈i, j〉 denotes pairs of spins and

∆̃(i,j),(i′,j′) = ∆(Ji,i′ + Jj,i′ + Ji,j′ + Jj,j′).

Also note that with each elimination step mean inter-
particle distance grows and thus the disorder in the sys-
tem increases [62, 63] making it more likely for later elim-
ination steps to be good approximations.

Appendix B: Pair entropy in a specific
magnetization sector

Averaged over all states, each cut separating a pair
gives an average entropy of 1

2 , since two of the pair’s
eigenstates are fully entangled and the other two possess
no entanglement. However, when we consider a sector of
fixed magnetization, this simple argument does no longer
hold as there are now dependencies among the eigen-
states given by the external constraint. Sectors around
zero magnetization will have more entropy on average
and strongly magnetized sectors less, simply because the
strongest magnetized eigenstates posses no entropy.

Given N the number pairs of spins where N+, N−,
and N0 pairs occupy the states |↑↑〉, |↓↓〉, and |↑↓〉±|↓↑〉,
we find the number of possible configuration with these
amounts to be

C(N+, N−, N0) =

(
N

N0

)(
N −N0

N+

)
2N0 (B1)

In the end we need the number of configurations
C(N, r) =

∑
N0
C(N, r,N0) given a total amount of pairs

N and an magnetization imbalance r = N+−N−, where

C(N, r,N0) =
∑

0≤N+,N−

C(N+, N−, N0)δN,N++N−+N0δr,N+−N− .

(B2)
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To evaluate this expression, we compute the generating
function

Z(x, y, z) =
∑

N>0

xN
∑

−N≤r≤N
yr
∑

N0>0

zN0C(N, r,N0)

(B3)

=
∑

0≤N+,N0,N−

xN++N0+N−yN+−N−zN0C(N+, N−, N0)

(B4)

=
∑

0≤N−

(
x

y

)N−∑

0≤N+

(xy)N+

(
N++N−
N+

)∑

N0

(
N

N0

)
(2z)N0

(B5)

=
y

y − 2xyz − xy2 − x (B6)

where we used the fact that (1 − x)−k−1 =
∑
n

(
n+k
k

)
xn

twice and then a geometric series.

From that follows directly, that

Z(x, y, 1) =
∑

N>0

xN
∑

−N≤r≤N
yrC(N, r) (B7)

=
y

y − 2xy − xy2 − x (B8)

=
1

1− x (y+1)2

y

(B9)

=
∑

0≤k
xk
(

(y + 1)2

y

)k
(B10)

=
∑

0≤k
xk

∑

0≤l≤2k
yl−k

(
2k

l

)
(B11)

and thus by identification of terms

C(N, r) =

(
2N

r +N

)
. (B12)

Singling out a specific pair and asking how often it is
in on of the entangled states given a set of configurations
described by values for (N+, N0, N−), we find that it’s
the case in

S(N+, N−, N0) = 2C(N+, N−, N0−1) =
N0

N
C(N+, N−, N0)

(B13)
configurations. Again we want to find this number for a
total amount of pairs N and an magnetization imbalance
r = N+ − N−. Fortunately, we can find the generating
function ZS(x, y, z) of S(N, r,N0) = N0

N C(N, r,N0) by
means of Z:

ZS(x, y, z) =

∫
dx

x
z
∂

∂z
Z(x, y, z) (B14)
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FIG. 7. Entropy value of a single cut for different magnetiza-
tion sectors.

So we compute:

ZS(x, y, z = 1) =
∑

N

xN
∑

r

yrS(N, r) (B15)

=

∫
dx

x

2xy2

(y − x(y + 1))2
(B16)

=
2y2

(y + 1)2
1

y − x(y + 1)2
(B17)

= 2
∑

k

xk
∑

l

yl−k+1

(
2k − 2

l

)
(B18)

⇒ S(N, r) = 2

(
2N − 2

r +N − 1

)
(B19)

Thus cutting a single pair contributes

S̄(N, r) =
S(N, r)

C(N, r) (B20)

= 2
N2 − r2

4N2 − 2N
(B21)

bits of entropy on average over all states in a given mag-
netization sector.

For the prediction of the average entropy in Fig. 4, we
extracted the size of the pairs from the position data,
which directly determines how many times a pair is cut,
when moving along the chain. The number of cut pairs is
then divided by the number of cuts made – which equal
to the number of spins – and multiplied by the average
entropy contributed by cutting a pair, computed here.

Appendix C: Drawing blockaded positions

In the following, we restrict ourselves to N spins in d =
1 dimension and measure every distance in units of the
blockade radius rb. We define the density of spins 0 ≤ ρ =
1

2W ≤ 1, the corresponding volume of the space L = N
ρ

and set out to construct a scheme to efficiently generate
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a set of independently drawn positions {xi}, that respect
the blockade condition

|xi − xj | ≥ rb ∀i 6= j. (C1)

A priori, all positions are drawn i.i.d. from a uniform
distribution over the full space U [0, L] and the naive way
would be to just draw N positions and reject the sample
if the blockade condition (Eq. C1) is violated. This is
essentially equivalent to a random sequential adsorption
process where the expected density in d = 1 is given
by Renyi’s parking constant m ≈ 0.748 [55]. It directly
follows, that the rejection rate will become essentially 1
for any ρ > m and we certainly will not get close to the
fully ordered regime.

To circumvent this problem, we parameterise the po-

sitions like

xi = is+ σi, (C2)

where s = 1
ρ = 2W is the mean inter-spin distance and

σi ∼ U [−σ, σ] are i.i.d. random variables. For σ = L
2

this ansatz is certainly equivalent to the naive scheme.
Note that, in the highly ordered case ρ = 1− ε, where

ε is small, each realization of the experiment looks es-
sentially like a regularly spaced chain with s = 1

1−ε ≈
rb(1 + ε) where each site has small fluctuations around
the mean. This means, in this limit we get away with
choosing σ ≈ ε.

For our simulations, we used the just described method
in the region W < 1.0 and chose σ = 1.5( 1

ρ − 1). For

W ≥ 1.0, we used the naive sampling strategy. One
can see a slight jump in all plots at W = 1.0 where the
sampling method changes.
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[53] M. Serbyn, Z. Papić, and D. A. Abanin, Physical Review
X 5, 041047 (2015), arXiv:1507.01635.

[54] J. Eisert, M. Cramer, and M. B. Plenio, Reviews of Mod-
ern Physics 82, 277 (2010), arXiv:0808.3773.
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C O N C L U S I O N

In Part I of this thesis, we have discovered that strongly disordered
spin systems feature slow, universal relaxation dynamics such that
they remain out-of-equilibrium on experimentally relevant timescales
and hence are non-ergodic (see Figure 5.1 (a-c)). In the following,
we will discuss Part II, where we have explored whether a steady-
state can break ergodicity and be non-thermal. We will summarize
how it was achieved to explore this question by measurements of
the global magnetization. Also, we will provide an intuitive picture
of how the emergence of quasi-local integrals of motion leads to
the absence of thermalization and investigate how this absence of
thermalization is related to the strength of disorder in the system.
Finally, we will discuss whether quantum thermalization is also absent
in the thermodynamic limit.

global magnetization as a probe for the absence of ther-
malization

In the first part, the measurement of the global magnetization after
a Ramsey sequence has provided a useful tool to study the slow
relaxation dynamics because all observed dynamics are beyond mean-
field prediction. However, at late times, both the magnetization and
the ensemble-averaged single-spin purity will have relaxed to zero,
which was explained by the global U(1) symmetry of the system.
Therefore, both the diagonal ensemble, which describes the steady
state of a quantum system, and all thermal ensembles predict a fully
depolarized state (see Figure 8.1 (a)). Thus, the total magnetization
seems to be not an adequate observable to distinguish a localizing
from a thermalizing system.

To overcome this challenge, we have applied an external field in
Part II of this thesis to break the global U(1) symmetry. If the field
was aligned orthogonally to the direction of the spins, the field would
induce Rabi oscillations which are damped due to interactions (see
Figure 8.1 (b)). This experiment has been also accomplished in a dipo-
lar interacting spin-1/2 system realized with Rydberg atoms [76]. This
investigation has revealed that the damping of the oscillations is not
completely captured by mean-field approximation and that primordial
quantum fluctuations need to be taken into account to quantitatively
explain the observed dynamics. However, this configuration of the
external field does not benefit from the previously discussed advan-
tages of the initial state, which does not evolve at all within mean-field
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Figure 8.1: Relaxation dynamics of a disordered quantum spin system with
external field applied. The upper column shows the time evolu-
tion of the magnetization, the lower column illustrates the field
configuration on a Bloch sphere. The red arrow depicts the evolu-
tion of the magnetization expectation value from early (pale red)
to later times (bright red). The blue arrow shows the direction
of the field. (a) If no external field is applied, the magnetization
relaxes to zero. (b) If the field is orthogonal to the direction of the
spins, the magnetization features an oscillation that is effectively
damped to zero by interactions. (c) If the field is aligned in the di-
rection of the spins, the external field effectively locks the weakly
interacting spins. Therefore, the steady-state magnetization be-
comes dependent on the field strength.

approximation. In addition, the magnetization is still expected to relax
to zero at late times. Both of these disadvantages can be overcome if
the external field is aligned in the direction of the spins (see Figure 8.1
(c)). In this case, the initial state is still an eigenstate of the mean-
field Hamiltonian such that any dynamics are still a consequence
of quantum fluctuations. Most importantly, the external field locks
the magnetization at a finite value dependent on the interplay of
interactions and field strength.

The idea of this thesis has been to compare this dependence of the
steady state magnetization on the strength of the external field with
the expectation from thermal ensembles. For a thermal system, this
curve is expected to be smooth, which we could show in numerical
simulations of up to 14 spins of dipolar and Van-der-Waals interacting
systems. However, in both exact numerical simulations and the experi-
ment, we have found a sharp cusp feature if the system is sufficiently
strongly disordered. Therefore, we can conclude that the system has
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not thermalized even at late times when the magnetization is already
decayed to zero.

The advantage of this measurement protocol is that it does not
rely on microscopic resolution like transport measurements which
are typically used to study localization [62, 63, 64, 65]. Even more
challenging are measurements of how the entanglement entropy scales
with system size [29, 30, 31]. This simplicity of our method allows us
to probe the absence of thermalization for system sizes approaching
the thermodynamic limit. In addition, measurements of the global
magnetization are feasible in a range of various quantum simulator
platforms ranging from polar molecules [147] over nuclear spins [145]
and color centers in diamond [146] to magnetic atoms [148, 149] which
paves the way toward studying quantum thermalization for a large
class of disordered spin systems in a scalable fashion.

pairs as local integrals of motion

In Part I of this thesis, we have already seen that small, localized
clusters of spins can explain the universal relaxation dynamics of
disordered spin systems. In Part II, we were able to extend this model
by including mean-field interactions between multiple pairs (see Fig-
ure 8.2). Thereby, the pair model can also qualitatively reproduce
the dependence of the late-time magnetization on the external field
including the features that indicate the absence of thermalization, like
the observed asymmetry and the sharp cusp (see also supplement I in
Article [5]).

Figure 8.2: A simpli-
fied model that takes
into account the full
quantum interactions
within strongly interact-
ing pairs, but treats in-
teractions between dif-
ferent pairs only within
mean-field approxima-
tion.

In addition, the existence of strongly interacting pairs is also able
to reproduce many properties calculated via exact diagonalization.
For example, isolated pairs can reproduce the scaling of the half-
chain entanglement entropy with system size (Article [6]). Also, we
could confirm by calculating the participation ratio that product states
of eigenstates of localized pairs are a good approximation to the
real eigenstates of a full quantum system (Article [6]). Finally, the
existence of strongly interacting pairs also explains the properties of
the eigenspectrum including the observation that the initial state is
not energetically localized in the spectrum, and that ETH is violated
in small spin systems (supplement F in Article [5]).

The finding that localized clusters of spins lead to an absence of
thermalization relates quantum spin systems where disorder is due to
random couplings to the phenomenon of many-body localization [37,
135, 38]. In the prototypical MBL system, a strong disorder in the
external field term leads to the breakdown of thermalization. In these
systems, transport is inhibited due to the emergence of local integrals
of motions (LIOMs) τ

(i)
α = Ûσ

(i)
α Û† which are single-spin operators

σ
(i)
α (α ∈ {x, y, z}) transformed by a quasilocal operator Û [39, 151]

(see Figure 8.3 (a)). In the case discussed in this thesis, where the
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Figure 8.3: Illustration of LIOMs. (a) For the standard model of MBL where
disorder is due to random external fields (represented by blue
arrows), the LIOM is the Pauli operator σz transformed by a local
rotation Û with exponentially decaying support (illustrated by
green area). Adapted from [150]. (b) If the disorder is due to
random couplings, projectors P̂↕↕ onto the eigenstates of local
pairs play the role of LIOMs.

couplings are random instead of the external field, we propose that
projectors onto the eigenstates of pairs play the role of LIOMs (see
Figure 8.3 (b)).

crossover between the thermalizing and non-thermalizing

regime

At weak disorder, we expect the isolated quantum system to thermal-
ize according to ETH. Indeed, numerical simulations in Article [5]
have shown that the sharp cusp feature disappears for an increased
blockade radius indicating thermalization. As expected from ensemble
equivalence in a thermal system [134], the diagonal ensemble expecta-
tion value is consistent with thermal ensembles like the microcanonical
and the canonical ensembles. Only the microcanonical ensemble shows
small deviations at large external field values, which can be attributed
to finite size effects leading to gaps in the spectrum such that the
microcanonical ensemble averages over too few eigenstates. Generally,
the ensembles coincide even to a larger degree compared to the nu-
merical investigation in [27], where the canonical ensemble slightly
deviates from the diagonal and microcanonical ensembles.

To access the thermalizing regime in the experiment, we have sat-
urated the Rydberg excitation leading to a strong Rydberg blockade
effect which reduces the spatial disorder. In addition, we have changed
the spin system from a Van-der-Waals interacting system to a dipolar
interacting system. The more long-range interactions couple each spin
to a large number of neighboring spins at a similar coupling strength
which effectively decreases disorder even further. In this regime, the
cusp feature disappears, and the steady state magnetization becomes
a smooth function of the applied locking field. This shows that it is
possible to tune from a non-thermalizing to a thermalizing system by
decreasing the strength of the disorder and increasing the range of
interactions.
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The finding of both a thermalizing and a non-thermalizing regime
opens the question of whether, at a given strength of disorder, a
phase transition between these regimes occurs [151, 130, 152]. In MBL
systems, the existence of this putative transition is actively discussed.
Some of the open questions involve at which strength of disorder this
transition occurs [42], whether the transition is rather a crossover, and
what the scaling properties at this transition are [153, 154, 155]. In
the following, we aim to discuss the existence of this transition for
quantum systems where the disorder is due to random coupling.

In Article [6], we have numerically probed how tuning the strength
of disorder by the blockade radius affects the crossover between the
thermalizing regime at weak disorder and localization at strong dis-
order. For this purpose, the variance of the half-chain entropy over
different disorder realizations was computed for varying disorder
strengths and system sizes. The location of the maximum variance de-
termines the crossover between thermalization and localization. This
location varies only weakly with system size, and also agrees well
with the location of the crossover calculated via the level spacing ratio
or the Thouless parameter. However, it should be noted that in MBL
systems, finite-size scaling is highly challenging, and strong finite size
effects exist even at system sizes of up to 20 spins, potentially leading
to false conclusions about a possible localization transition [28].

In addition to the blockade radius, the range of the power-law inter-
actions also changes the effective disorder in the system and influences
the MBL transition. For short-range interactions (α > d), each spin
interacts mostly with its nearest neighbor, and the coupling to other
spins further away is strongly reduced. In this limit, we expect local
pairs to describe the system in a good approximation. On the other
hand, long-range interactions (α < d) couple each spin to a large
number of neighboring spins at a similar coupling strength, which
increases the probability of delocalizing the MBL phase. This discus-
sion can be made more quantitative by resonance counting arguments
suggesting that α = d is the critical case between thermalization and
localization [48].

Indeed, the numerical simulations studying ETH in this critical case
(appendix G in Article [5]) show that the cusp feature, indicating the
absence of thermalization, is less pronounced and only visible in the
limit of a vanishing blockade radius compared to the case of Van-der-
Waals interactions (α = 6 = 2d). Also, the simulation in the case α = d
suffers from strong finite size effects which are also indicative of a
critical case.
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absence of quantum thermalization in the thermody-
namic limit

It remains an open question whether a localization phase exists at infi-
nite late times and for infinite system sizes, or whether thermalization
is always recovered in the thermodynamic limit.

The numerical simulations have the advantage of being able to com-
pute the whole eigenspectrum, entanglement entropy, and expectation
values at infinite late times. However, they are limited to small system
sizes of up to 16 spins depending on the symmetry of the Hamiltonian.

Using the quantum simulator experiment, we could drastically
increase the available system size to up to 4000 spins. These large
systems are well beyond the reach of quantum simulations on classical
computers because the Hilbert space grows exponentially in system
size. Generally, ETH is expected to become exponentially more precise
with system size [156, 157]. Therefore, we can assume that the system
size is sufficiently large to probe the thermodynamic limit. However,
to prove the existence of an MBL phase in the true thermodynamic
limit, it would be required to confirm the absence of thermalization
at both infinite system size and infinite late times. The experiment
is limited to finite observation times of 10 µs which is chosen to be
short compared to the Rydberg lifetime to ensure unitary dynamics.
During this time, at interaction strengths of Jmedian = 0.78 MHz for
the Van-der-Waals interacting system, respectively Jmedian = 3.4 MHz
for the dipolar interacting system, information can spread maximally
over 8 to 30 neighbors corresponding roughly to the radius of our 3D
system assuming ballistic transport. Yet, due to disorder, the velocity
of spreading of correlations might be drastically reduced such that the
steady state of the system might be reached only at much later times.

Therefore, adapting the terminology of Morningstar et. al. [42], we
interpret our observation not as an MBL phase, but as an MBL regime,
i.e., the absence of thermalization at either finite time or finite system
size.

Understanding whether and how thermalization might be recovered
in the thermodynamic limit is an important goal for future research.
One approach would be to extend the numerical investigation of the
crossover between thermalization and localization of Article [6] to
larger system sizes. For example, shift invert methods could possi-
bly calculate exact eigenstates of a part of the spectrum for up to
26 spins [158]. Unfortunately, it is expected that some delocalization
processes are based on rare events and can possibly not be directly
observed in the small systems accessible by numerics based on exact
diagonalization. One example of these processes is the existence of
resonances between distant spins. These system-wide resonances are
known to delocalize Anderson-isolators for long-range interacting sys-
tems where the power-law exponent α is smaller than the dimension
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d [32]. In the prototypical MBL scenario where disorder is due to
random external fields, resonances between two pairs of spins even
lead to thermalization in systems where α < 2d [159, 160]. It might
be a promising approach to extend this analysis of the probability
for resonances to systems with disorder due to random couplings
along the lines of [161]. Even if no system-wide resonances exist in
systems where α > 2d, rare weakly disordered regions could exist that
thermalize and seed thermalizing avalanches. These are claimed to
delocalize the standard model of MBL with power-law interactions or
in d > 1 [41, 44, 45, 46, 42]. This process of thermalizing avalanches
could be directly studied in both numerics and experiments by cou-
pling disordered quantum systems to a thermal region and observing
if and how avalanches of thermalization get transported through the
medium.

If isolated quantum systems with disorder due to random couplings
thermalized at infinite times (Figure 5.1 (e)), the here observed absence
of thermalization would rather hint toward ergodicity breaking due
to anomalously slow relaxation similar to spin glasses. This type of
ergodicity breaking due to glassines in long-range interacting quantum
systems was recently theoretically explored for the Kotliar-Anderson-
Stein spin glass model [161]. This leads to the question of whether and
how glassiness and localization are related, whether an MBL and a
spin glass phase might coexist [162, 163] or whether the two phases are
separated by a phase transition [131, 127]. An exciting aspect for future
experiments would be the measurement of the Edwards-Anderson
correlator, which is the spin glass order parameter [164], allowing us
to confirm directly the existence of spin glass order in non-ergodic
systems.

Independent of whether disordered quantum spin systems even-
tually thermalize in the thermodynamic limit, this thesis has shown
that disorder leads to ergodicity breaking for remarkably long times.
During this time, the strongly interacting many-body system can be
efficiently described by small localized clusters, already a description
via pairs is sufficient to capture the qualitative behavior for both the
glassy dynamics (Part I) and the quasi-steady-state magnetization
(Part II). This enormous simplification leads to a universal behavior of
disordered quantum spin systems in the sense that dynamics become
independent of the strength of disorder, the symmetry and type of
the Hamiltonian, and the energy of the initial state. In addition, the
localization avoids heating in driven Floquet systems, which paves
the way for studying new emergent phenomena like time crystals (see
next chapter for a more detailed discussion of the next steps on the
Heidelberg Rydberg experiment).
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N E X T S T E P S O N T H E H E I D E L B E R G RY D B E R G
Q UA N T U M S I M U L AT O R P L AT F O R M

In his famous essay "More is Different", P. W. Anderson describes how
the complexity of a large ensemble of elementary particles can lead
to qualitatively different behavior [165]. In this spirit, the physics
of a single Rydberg atom is well-understood thanks to enormous
progress being made in the understanding and experimental control
of hydrogen-like atoms since the discovery of the simple formula
for the emission of electromagnetic radiation in hydrogen by Johann
Balmer and Johannes Rydberg at the end of the 19th century. However,
the interplay of many strongly interacting Rydberg atoms leads to the
emergence of new phenomena, which became a new area of active
research in recent years. This thesis has used a large ensemble of
Rydberg atoms for quantum simulations of disordered spin systems.
Here, Rydberg atoms are just a tool featuring long lifetimes and strong
interactions well suited for studying generic many-body physics like
glassy dynamics, quantum thermalization, or many-body localization.

In the following, we propose the next steps on the Rydberg quantum
simulator platform which build on the results presented in this thesis
and aim to further deepen the understanding of far-from-equilibrium
dynamics of disordered quantum spin systems.

glassy dynamics at low energy densities : a many-body

mobility edge and aging?

A key difference between the quantum system discussed in this the-
sis and classical spin glasses is the role of thermal fluctuations. In
classical spin glasses, dynamics are induced by thermal fluctuations.
Hence, the temperature of the sample plays a decisive role, the stretch-
ing exponent generally is temperature dependent, and the glassy
dynamics break down above a critical, spin glass temperature [112].
So, the ergodicity breaking in spin glasses is a phenomenon that can
be associated with low temperatures, where the system is trapped
in local minima of the free energy landscape, where the system can
be described as in quasi thermal equilibrium. This contrasts with the
quench experiment presented in this thesis, where we have excited
eigenstates spread over the whole energy spectrum.

This leads to the question of how dynamics in disordered quan-
tum spin systems depend on the energy density of the initial state.
An interesting aspect could be the existence of a mobility edge, a
critical energy density that separates an ergodic delocalizing from

121



122 next steps

a non-ergodic localizing phase. This mobility edge is well known
to exist for the Anderson transition [32, 166], and was proposed as
a many-body mobility edge for many-body localizing systems [163,
161]. Interestingly, the many-body mobility edge does not necessarily
coincide with the spin glass transition, which is found at even lower
energy densities[130, 54, 131, 127].

A possible protocol to probe the low energy spectrum of the dis-
ordered quantum spin system would be to initiate the spins in the
x-direction of the Bloch sphere and lock the magnetization using a
strong external field that is aligned in the direction of the spins. In this
configuration, the spins are prepared in the paramagnetic ground state
of the transverse field spin Hamiltonian. Subsequently, the strength of
the field can be slowly reduced, such that the system remains mostly
adiabatically in the ground state. Depending on the speed of the
field ramp, this protocol can prepare various initial states at different
energies.

Figure 9.1: Preparing low energy density states by adiabatic ramps. (a) Ini-
tially, a strong locking field is aligned with the spins in x-direction.
Slowly, this field is ramped to zero. A sudden quench of the field
allows probing of the linear response. (b) Magnetization as a
function of time for the protocol depicted in (a). During the slow
initial ramp of the external field, the magnetization slowly relaxes
to zero. The quench of the external field leads to a sudden re-
sponse of the magnetization which depends on the external field
hx after the quench (color-coded in red (strong field) to grey (zero
field)).

If the external field is sufficiently slowly ramped to zero, the result-
ing state is fully depolarized but the response to a small perturbation
in the external field is finite and depends linearly on the strength of the
external field (see Figure 9.1). The measurement of the linear response
corresponds to the measurement of the unequal time commutator, and
it enables a variety of new experiments: Firstly, the dependence of
the linear response on the ramp speed might reveal signatures of the
many-body mobility edge or a possible spin glass phase transition. Sec-
ondly, the dynamics of the response might depend on the waiting time
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between the ramp and the perturbation. This phenomenon is called
aging and is known in spin glass systems where the thermoremanent
magnetization (TRM) relaxes slower if more time has passed since
the cooling of the sample [20]. Finally, in thermal equilibrium, the
responses to a coherent and an incoherent perturbation are related via
the fluctuation-dissipation theorem [167, 168]. For a non-interacting
system, we have already devised a protocol and shown the proof of
principle that the fluctuation-dissipation theorem can be measured
with Rydberg atoms [12]. If the fluctuation-dissipation theorem is
fulfilled, this allows the measurement of temperature in a thermal
quantum spin system. Otherwise, if the fluctuation-dissipation theo-
rem does not hold, this directly shows the absence of thermalization.
For a spin glass system, a generalized fluctuation-dissipation theorem
holds where the effective temperature is time-dependent [169].

measurement of local observables by fluorescence imag-
ing

In this thesis, we have shown that global measurements, like the
magnetization, can reveal new insights into how disordered quantum
spin systems relax, and even probe the absence of thermalization. In
the previous section, we proposed a series of measurements, which
also only rely on global observables, to further explore thermalization,
many-body localization, and a possible spin glass phase. In this section,
we want to give an overview of possibilities to probe local observables
in Rydberg spin systems.

Since no closed optical transition exists for Rydberg states, Ryd-
berg atoms can not be directly imaged by fluorescence or absorption
imaging. This problem can be avoided by probing Rydberg atoms
with an ion microscope which can resolve atoms with high spatial
resolution [170]. Alternatively, Rydberg atoms can be de-excited to the
ground state, which can then be imaged, for example, by fluorescence
imaging. However, for this last method to work, no additional atoms
must populate the ground state such that only the Rydberg atoms are
detected.

An elegant solution to this problem is to trap individual ground
state atoms in optical tweezer arrays [171, 172, 173, 60]. Using a stimu-
lated Raman adiabatic passage (STIRAP), these can be excited with
high efficiency to Rydberg atoms such that no additional ground
state atoms remain [174]. The optical tweezer arrays also feature addi-
tional advantages like the possibility to position the atoms in arbitrary
geometries [175], and they can trap the atoms during fluorescence
imaging. Tweezer arrays allow imaging atoms with single-atom resolu-
tion, which allows the direct observation of transport. In the context of
spin glasses, the single atom resolution enables the direct observation
of the Edwards-Anderson spin glass order parameter.
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An alternative approach to removing the ground state atoms is
to apply a strong magnetic field that separates states with different
magnetic quantum numbers in energy. This allows to optically pump
the ground states atoms in states with different magnetic quantum
numbers that are no longer resonant to the imaging light. The required
magnetic field strengths can be provided by the MOT coils in the
Heidelberg Rydberg experiment, which can be switched from Anti-
Helmholtz to Helmholtz configuration with an H-bridge (see section
Section 2.2.1). A new imaging system has already been designed and
build for the Heidelberg Rydberg experiment which features a spatial
resolution of 5 µm for the 780 nm imaging light. This resolution is
similar to the blockade radius obtained by exciting the Rydberg state
|48S⟩ with a 1 µs excitation pulse. Fluorescence imaging of Rydberg
atoms would enable us to directly observe the transport of avalanches
of thermalization that originate from thermal regions that are coupled
to the disordered Rydberg system.

floquet mbl and time crystals

One of the main results of this thesis was the observation of an MBL
regime. For future experiments, MBL might be a tool that avoids
heating of the many-body system in driven Floquet systems. This
opens the path toward studying new emergent phenomena like time
crystals [176]. A time crystal is a many-body phenomenon in driven
quantum systems where the discrete-time translation symmetry is
spontaneously broken. Since the original proposal by Frank Wilczek
in 2012 [177, 178], the theoretical understanding of time crystals has
made enormous progress, and time crystals have been observed in
various experiments [179, 180, 181, 182]. Still, many open questions
remain, especially about the importance of many-body localization
for the existence of a time crystalline phase, whether time crystals are
robust with respect to coupling to an external bath [183], and about
the properties of the phase transition between a time crystal and a
trivial Floquet insulator [184].

Figure 9.2 shows preliminary results of time-crystalline behavior
observed in the Heidelberg Rydberg quantum simulator. Here, we
have applied a sequence of π/2-pulses which each inverse the z-
magnetization (Figure 9.2 (a)). The oscillation is damped due to in-
teractions during the pulses and possible small phase errors. If the
duration of each pulse has an error of 2%, the spins are rotated slightly
too far after each pulse. As a result, the magnetization reveals a beat-
ing signal (Figure 9.2 (b)). In Figure 9.2 (c), we let the system interact
for 45 ns in between each π/2-pulse. This interaction stabilizes the
oscillation at the original frequency without the 2% error, such that
the beating is no longer visible on the signal and the decay of the oscil-
lation is reduced. This robustness of the periodic order to perturbation
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Figure 9.2: Preliminary signature of a time crystalline phase. (a) A sequence
of π/2-pulses leads to a damped oscillation (left panel) of the
magnetization at a period of 2 pulses. In Fourier space (right
panel), this corresponds to a frequency of 0.5. (b) Increasing the
pulse duration by 2% induces a beating, which can be seen in
Fourier space as the emergence of 2 peaks. (c)By introducing a
delay time of 45 ns in between each π/2-pulse, the interaction
restores the original frequency and reduces the damping of the
oscillation.

due to interactions presents a first signature of a time-crystal similar
to the experiments of Choi et. al. [179].
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[143] Žnidarič, M. et al. Feb. 2008. “Many-Body Localization in the
Heisenberg $XXZ$ Magnet in a Random Field.” In: Physical
Review B 77.6, p. 064426. doi: 10.1103/PhysRevB.77.064426.

[144] Günther, H. 2013f. NMR Spectroscopy: Basic Principles, Concepts
and Applications in Chemistry. Third, completely revised and

https://doi.org/10.1103/PhysRevB.93.104205
https://doi.org/10.1103/PhysRevB.17.4384
https://doi.org/10.1103/PhysRevLett.52.1156
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1080/00018732.2016.1198134
https://arxiv.org/abs/1509.06411
https://doi.org/10.1038/s41567-018-0295-5
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1007/s10955-016-1511-2
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevE.100.012139
https://doi.org/10.1103/PhysRevLett.106.140405
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevB.77.064426


bibliography 137

updated edition. Weinheim: Wiley-VCH. isbn: 978-3-527-33000-
3 978-3-527-33004-1.

[145] Álvarez, G. A. et al. Aug. 2015. “Localization-delocalization
transition in the dynamics of dipolar-coupled nuclear spins.”
In: Science 349.6250, p. 846. url: http://science.sciencemag.
org/content/349/6250/846.abstract.

[146] Waldherr, G. et al. 2014h. “Quantum error correction in a solid-
state hybrid spin register.” In: Nature 506.7487, pp. 204–207.
issn: 1476-4687. url: https://doi.org/10.1038/nature12919.

[147] Yan, B. et al. Sept. 2013. “Observation of dipolar spin-exchange
interactions with lattice-confined polar molecules.” In: Nature
501.7468, pp. 521–525. doi: 10.1038/nature12483. url: http:
//dx.doi.org/10.1038/nature12483.

[148] de Paz, A. et al. Oct. 2013. “Nonequilibrium Quantum Mag-
netism in a Dipolar Lattice Gas.” In: Phys. Rev. Lett. 111 (18),
p. 185305. doi: 10.1103/PhysRevLett.111.185305. url: https:
//link.aps.org/doi/10.1103/PhysRevLett.111.185305.

[149] Baier, S. et al. 2016k. “Extended Bose-Hubbard models with
ultracold magnetic atoms.” In: Science 352.6282, pp. 201–205.
issn: 0036-8075. doi: 10.1126/science.aac9812. url: https:
//science.sciencemag.org/content/352/6282/201.
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