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LIST OF ABBREVIATIONS  

CARLIN CRISPR array repair lineage tracing 

cDNA complementary DNA 
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DAPI 4',6-diamidino-2-phenylindole 

DEP Dielectrophoresis 

DFS Disease free survival 

DNA Deoxyribonucleic acid 

ECM Extracellular matrix 

EMT Epithelial-mesenchymal transition 

EPCAM Epithelial cell adhesion molecule 

GEMM Genetically engineered mouse model 

GESTALT Genome editing of synthetic target arrays for lineage tracing 

HR Hazard ratio 

ISET isolation by size of epithelial tumor cells 

MEMS Micro-electro-mechanical system 

ORA Over-representation analysis 
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PBMC peripheral blood mononuclear cell 
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PDAC Pancreatic ductal adenocarcinoma 

PFS Progression free survival 

RNA Ribonucleic acid 

ROC Receiver operating characteristic 

RR Relative risk 

scRNA-seq Single-cell RNA sequencing 

TCGA The Cancer Genome Atlas 
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1 INTRODUCTION 

1.1 Pancreatic cancer 

Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is a highly fatal 

malignancy with a dismal prognosis. According to the Robert Koch Institute, 18,687 

people were diagnosed with pancreatic cancer in Germany in 2017.1 With 18,005 

deaths, the mortality approaches the incidence, leading to PDAC being the fourth 

common cause of death from malignant neoplasms1. Only 9% of patients survive 5 

years after diagnosis.1,2 Furthermore, both the age-standardized incidence and 

mortality have slightly increased since 2000, especially in the elderly.2  

Down to the histopathologic subtypes, pancreatic adenocarcinoma is the dominant 

diagnosis. Pancreatic adenocarcinoma occupies 85.8% (97,923/114,166) of all 

malignant pancreatic tumors.3 It is widely believed that pancreatic adenocarcinoma 

originates from cells lining the pancreatic duct.4 Therefore, pancreatic ductal 

adenocarcinoma (PDAC) is the most commonly used acronym.4 Of all PDAC patients, 

only 7.6% (7,436/97,923) are diagnosed in localized stages, and 15.6% 

(14,830/95,172) eventually undergo radical or palliative surgery.3 The 61.4% 

(60,169/97,923) of patients initially present with metastasis and have a median overall 

survival (OS) as low as 4.0 months.3 Even for those patients who are eligible for 

potentially curative resection, 54.7% (158/289) suffer from recurrence or distant 

metastases in the following months in a large, multicenter randomized trial.5 

Kamisawa et al.6 investigated 130 necropsy cases of PDAC and found that 80% 

(104/130) developed hematogenous metastases. Among the prevalent metastatic 

lesions, the liver is the principal target (62%, 81/130), followed by the lung (55%, 

71/130) and bone (25%, 32/130).6 This phenomenon is probably because the liver is 

the first line of defense—all the peripancreatic veins draining into the portal vein. 

Millions of CTCs are continuously shed into the liver microvasculature. Meanwhile, only 

12.3% (16/130) of patients showed macroscopic lymph node metastases without 

hematogenous metastases, microscopically peripancreatic lymph node metastases 

are are found in 52-78%.7,8 However, there are indications that the peripancreatic 

(“sentinel”) lymph nodes filter the lymphatic fluid and represent a cul-de-sac rather than 

a temporary intermediate station, thus not contributing to the development of distant 

metastases.9–11 

Although metastasis is one of the cardinal characteristics of pancreatic cancer and has 

a high lethality, its cascade remains incompletely understood. This dissertation will 

thus focus on hematogenous metastases in pancreatic cancer. 
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1.2 Circulating tumor cells 

Multiple studies investigate the molecular backgrounds of different steps of 

hematogenous dissemination, including tumor cell invasion12, migration13, and 

intravasation14. Traditionally, circulating tumor cells (CTC) are defined as tumor cells 

that detach from the primary tumor, intravasate, and spread in the bloodstream. It is 

also possible that tumor cells enter hematogenous circulation by infiltrating into the 

lymph node blood vessels.15–17 Independently of the mechanism of intravasation, 

CTCs are integral to the metastatic process in malignant tumors.18–22 

Solid tumors exhibit different degrees of metastatic organotropism. The mechanisms 

behind this are still incompletely understood. However, it is clear that the next capillary 

bed in the tumor-draining circulation (i.e., the liver in gastrointestinal malignancies) 

often acts as a filter for CTCs and tumor microemboli and thus is a predilection site for 

distant metastases. Consequently, CTCs in portal vein samples are found more 

frequently23 and in greater numbers24 than in the peripheral venous blood of patients 

with pancreatic cancer. In addition to the spatial distribution, researchers reported a 

circadian rhythm in CTC release by longitudinal in vivo monitoring.25   

Although the number of blood cells exceeds the number of CTCs by about 

1:10.000.000 on average, there are still far more CTCs than clinically relevant 

metastases, reflecting that metastasis is an inefficient process. CTCs are faced with 

numerous challenges once they have entered circulation, including anoikis, fluid shear 

stress, and immune surveillance.9,26 Hence, CTCs have a short half-life of 1 – 2.4 

hours.27 The next capillary bed in the tumor-draining blood compartment is of higher 

risk of metastatic colonization.28 CTCs or circulating tumor microemboli can get lodged 

in the microvasculature, intraluminally expand, and ultimately penetrate the vessels29 

or extravasate by breaching vascular walls30. After extravasation, more obstacles are 

waiting for CTCs before developing into clinically relevant metastatic lesions,30 most 

prominently the requirement to adapt to and thrive in a foreign microenvironment.18 

Another crucial factor of macroscopic metastasis is angiogenesis, which is 

indispensable in tumorigenesis31 as implanted tumor cells cannot outgrow to lesions > 

~ 3 mm diameter without neoangiogenesis.32  

1.3 Mouse models for pancreatic CTCs research 

Due to the rarity of CTCs in the peripheral blood of PDAC patients, in vivo 

investigations of pancreatic CTCs with mouse models are often used to gain insights 

into the cellular biology of this cell population. Immunodeficient mice and genetically 

engineered mouse models are widely used. 
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1.3.1 Immunodeficient mouse models 

To date, several studies have attempted to monitor pancreatic CTCs in vivo through 

inoculating fluorescent protein-labeled commercial human PDAC cell lines into 

immunodeficient mice.33–35 Yu et al.33 found more CTCs in their orthotopic than 

subcutaneous xenograft tumor model using in vivo flow cytometric (IVFC) inspection. 

In another study34, researchers observed the peak of CTC burden at the fifth-week 

post-inoculation with multi-photo microscopy, Intravital Imaging System (IVIS). Rivera-

Báez and colleagues36 successfully established 3 CTC cell lines from their pancreatic 

cancer patients in a seminal study. To investigate the tumorigenicity and morphologic 

features recapitulation of the novel CTC cell lines, they injected cells subcutaneously 

into NSG mice and observed 100% tumor formation and widespread metastasis.36 

There are limited publications of patient-derived xenografts to investigate CTCs in 

pancreatic cancer.37,38 Dimitrov-Markov et al.38 generated extremely metastatic PDAC 

patient-derived xenograft (PDX) (subcutaneous) mouse models, and performed single-

cell RNA sequencing (scRNA-seq) of 10 CTC successfully.38 Torphy et al.37 found 

serial monitoring of CTC could predict and monitor therapy response to guide 

therapeutic regimens. 

While the above research reported positive results, accumulative evidence suggests 

that orthotopic xenograft models are superior to ectopic (i.e., subcutaneous) xenografts 

in metastasis research.39–41 In 1999, Killlion et al.40 reviewed the literature and 

demonstrated that subcutaneous xenografts lack distant metastases. This conclusion 

was supported by Dai et al.39, who established two orthotopic and one subcutaneous 

xenograft models. Thirty-six days after implantation, they showed that 80% (16/20) of 

the mice developed metastasis in the orthotopic models. In contrast, metastasis was 

absent in the subcutaneous model. This data suggests that the orthotopic environment 

can simulate the process of metastasis more accurately. 

1.3.2 Genetically engineered mouse models (GEMMs) 

In genetically engineered mouse models (GEMMs), the genetic hallmarks of malignant 

disease are recapitulated in the respective organ of the mouse. The animals develop 

“their own” tumors, which is has been proven to mimic the human disease in multiple 

entities realistically.42–44 Cre/LoxP is the most commonly used tool for genetic 

manipulations in the mouse.45–48 Cell type-specific44,45,49,50 and/or tamoxifen-inducible 

Cre (“CreERT2”)51–53 promoters allow spatial and temporal control of the expression of 

the target genes. As the host organisms are immunocompetent, GEMMs are ideal 

models to investigate host-tumor interactions. 
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In the PDAC cohort from the cancer genome atlas program (TCGA), Kras (93.3%, 

140/150) and TP53 (72.0%, 108/150) are the two most frequent genes harboring 

oncogenic mutations. As a result, the most prominent GEMM of PDAC incorporates 

mutant Kras and Trp53 to obtain a compound mutant strain.44,54,55 Hingorani et al.44,55 

established this mouse model of pancreatic intraepithelial neoplasia (PanIN) and 

histopathologically confirmed that the lesions eventually progressed to invasive and 

metastatic tumors. This mouse model is known as KPC (LSL-KrasG12D/+, LSL-

Trp53R172H/+, Pdx1-Cre). A few years later, Bardeesy et al.56 crossed Trp53lox/lox or 

lox/+rather than Trp53R172H/+ with Pdx1-Cre and LSL-KrasG12D/+ (KPfC) and found a more 

rapid progression of PDAC.  

In subsequent studies, researchers introduced the reporter allele RosaYFP into 

KPfC/KPC (KPfCY/KPCY) mice for lineage labeling.57,58 Rhim et al.57 explored the 

circulating pancreatic cells by flow cytometry and found YFP+ circulating cells even 

before tumor formation. Ko and colleagues59 employed the KPfCY mouse model to 

validate the efficiency of CTC isolation in a novel microfluidic chip. A pioneering study 

was conducted by Simeonov and colleagues60, who developed a method 

(macsGESTALT, multiplexed, activatable, clonal, and subclonal; genome editing of 

synthetic target arrays for lineage tracing) and applied it to an orthotopic allograft 

mouse model with KPCY cells. They were able to  reconstruct the dissemination of 

single cells derived from multiple metastatic sites, including CTCs, using single-cell 

barcoding by the macsGESTALT construct.60 

1.4 CTC capture technologies  

Due to unresolved biological and technical issues induced by the rarity of these cells, 

our understanding of CTCs and their fates are incomplete.  

Although up to 4 x 106 CTCs per gram of primary tumor are shed into the systemic 

circulation daily61, CTCs are extremely rare compared to billions of hematocytes per 

milliliter of blood. As a result, various CTC enrichment/capture technologies with a 

different selection and isolation principles were developed in the past decades, mainly 

based on biological or physical features distinguishing CTCs from other 

mononucleated blood cells.62 Since a series of reviews62–65 have summarized the 

existing CTC isolation technologies very well, this dissertation will introduce this part 

only briefly. 

1.4.1 Biological properties 

Generally, CTCs are a heterogeneous cell population, and there is currently no uniform 
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marker available which identifies all CTCs while excluding all other cells present in the 

blood.66–69 

Epithelial cell surface markers, most prominently Epithelial Cell Adhesion Molecule 

(EPCAM)) are widely used to positively select CTCs.70–75 However, to acquire the 

invasive features required for escape from the primary tumor bulk, CTCs experience 

epithelial-mesenchymal transition (EMT). As a result, carcinoma cells undergoing 

partial or complete EMT acquires mesenchymal properties while downregulating 

epithelial traits.76–78 In fact, recent research demonstrated that metastatic lesions are 

predominantly derived from CTCs in a late-hybrid EMT state and were EPCAM 

negative.60 Furthermore, previous studies confirmed that EPCAM-negative CTCs are 

also involved in the metastatic cascade.79–81 

CD45 (PTPRC) is a popular marker for the negative selection of CTCs via the depletion 

of hematopoietic cells.82 CD45 depletion of whole blood samples leaves a diverse cell 

population that includes most CTCs but is not a pure CTC sample. In addition, this 

method might be limited by losing CTC-leukocyte aggregates, which would be depleted 

from such a sample.  

Generally, combinations of multiple markers promise more selective CTC capture83,84, 

but at the same time only isolate increasingly selected subgroups of CTCs while losing 

the other CTCs not included in the marker combination. 

1.4.2 Physical properties 

Techniques that rely on physical properties to distinguish CTCs from hematopoietic 

cells by density, size, or elasticity have unique advantages. They are unbiased and 

independent of cell surface markers, which might be present only in subfraction CTCs 

depending on their physical state.  

Density gradient centrifugation is the most widely used strategy to enrich CTCs. 

Typically, the density of a density gradient medium is 1.077 g/ml, like Ficoll-paqueTM or 

LymphoprepTM. After centrifugation, CTCs should be theoretically enriched in the 

peripheral blood mononuclear cell (PBMC) layer. However, this method is prone to 

losing CTC clusters as a result of their higher density.85 Other isolation methods based 

on density, such as OncoQuick86 and AccuCyte87  were also reported. 

Size-based enrichment assays developers postulate that CTCs are larger than other 

blood cells. Filtration is label-free, fast, and convenient. However, the size overlap of 

CTCs and other blood cells limits the purity of the resulting samples. Hao et al.88 

reviewed size-based technologies for CTC isolation in 2018. Based on the same 

principle, techniques such as ISET (isolation by size of epithelial tumor cells)89, MEMS 
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(micro-electro-mechanical system)-based microfilter approaches90, ScreenCellTM 91 

have similar limitations. 

DEPArray™ 92,93 is an image-based cell sorter based on dielectrophoresis. It utilizes 

the dielectric charge across the cell membrane of CTCs to arrest and manipulate them 

without physical touch.77 

1.4.3 Microfluidics 

In CTC research, microfluidic techniques enrich corpuscular objects of different sizes 

or densities in biological fluids. A multitude of different microfluidic devices for CTC 

enrichment or quantification have been developed.94 As an example, Stott et al.95 

developed a herringbone-chip, which generates micro vortices that direct CTCs toward 

capture on the EpCAM antibody-coated walls. Another team optimized imaging and 

characterization functions in the CTC-iChip microfluidic system.96 This strategy 

integrates nucleated cell separation, size-based sorting, and immunoaffinity 

selection.96 A more popular platform, Parsortix, was reported in 2015.97 However, it 

requires further identification and isolation methods (usually surface-marker based) to 

obtain relatively pure CTC samples like most other microfluidic devices solely based 

on physical characteristics of CTCs.97 

1.5 Clinical value of CTC in pancreatic cancer 

Several groups have shown that CTCs occur in any stage of pancreatic cancer.70,98 

While most research validated the prognostic function of CTCs in pancreatic 

cancer23,24,70,99,100, some articles support opposite conclusions101,102. This controversy 

may result from different CTC identification techniques, leading to different CTC 

subpopulations to be investigated. Since there is no consensus isolation strategy for 

pancreatic CTCs, the results can be compared only to a minimal degree. 

1.5.1 Overall survival (OS) 

Pancreatic cancer patients with detectable CTCs in the peripheral blood have the 

significantly worse OS. The translational arm of an international randomized phase III 

trial published in 2013 reported that CTC positivity of 79 pancreatic patients at baseline 

and/or 2 months correlated with shorter OS in both univariate (log-rank test) and 

multivariable analysis (Cox proportional hazards model) (RR = 2.5, p = 0.01).103 A 

similar result was seen in another prospective study with 69 patients. In this study, the 

presence of CTCs lead to decreased survival in univariate (p = 0.030) and multivariate 

analysis (HR = 2.093; CI, 1.081–4.050; p = 0.028).74 Poruk et al.104 attempted to assess 
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CTCs with different markers and separately analyzed the influence of epithelial (CK+, 

DAPI+, CD45-) and mesenchymal (CK+, Vimentin+, DAPI+, CD45-) CTCs on survival. 

They found that only the detection of epithelial CTCs was associated with worse OS 

(p = 0.008), while the presence of mesenchymal-like CTCs did not (p = 0.39).104 

Not all research groups chose the qualitative detection of CTCs (positivity vs. negativity) 

as cut-offs. Other authors used a semi-quantitative scale in order to classify different 

groups. A pilot study with 20 PDAC patients revealed that increased CTC numbers (> 

10 CTCs/ml) predict dismal OS (p < 0.001).100 

1.5.2 Disease/recurrence free survival (DFS/RFS) 

In addition to OS, disease/recurrence free survival (DFS/RFS) is another popular 

outcome in clinical trials involved in cancer metastasis.74,75,104,105 

In a prospective cohort with long-term following-up, 98 patients with resectable 

pancreatic cancer were recruited.75 Although this trial only detected CTCs in 7 cases 

with the widely used CellSearch ® system, all patients with detectable CTCs developed 

metastasis in the postoperative follow-up with significantly shorter DFS than patients 

without CTCs (HR = 2.8; p = 0.008).75 Effenberger et al.74 illustrated similar results in 

69 PDAC patients, CTC positivity lead to shorter PFS in univariate (p = 0.009) and 

multivariate analysis (HR = 4.543; CI, 1.549–13.329; p = 0.006).74 

Although it did not influence OS, the detection of vimentin-positive CTCs increased the 

risk of cancer recurrence significantly (HR = 2.78, CI, 1.31–5.88, p = 0.01).104 

While most researchers isolated CTCs from peripheral venous blood, Tien et al.24 also 

quantified CTCs in the portal vein. In this study, 84.6% (11/13) of patients with a high 

portal CTC burden developed hepatic metastases within 6 months. The metastatic 

incidence in patients with lower CTC counts was significantly lower (12.8%, 6/47, p < 

0.001). 

1.6 Single-cell RNA sequencing (scRNA-seq) 

1.6.1 Technologies 

In 1990, researchers used PCR technology to achieve exponential amplification of 

cDNA molecules, and for the first time, showed that it is feasible to perform 

transcriptome analysis on single cells.106 Two decades later, Tang et al.107 made 

technical adjustments to make single cells compatible with high-throughput 

technologies, and for the first time, conducted a completely unbiased transcriptome-

wide study of mRNA in a single cell.107 

Early single-cell research aims to conduct in-depth research on a small number of 
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precious cells.107–109 Later technological evolution proved that different cell types could 

be identified without pre-sorting cells.110 

Since single-cell transcriptome sequencing technology was first reported in 2009, 

transcriptome sequencing technology has evolved rapidly.111–114 Groups from Harvard 

University combined microfluidic technology with scRNA-seq and developed Drop-

seq115 and inDrop116, respectively. Both technologies use microfluidics to generate 

drops of single cells and barcoded microbeads, and the reverse transcription-

amplification library is realized in the droplets. This way, multiple transcriptomes can 

be sequenced and assigned to individual cells using single-cell barcode information. 

This technology has made it possible to analyze thousands of single cells' gene 

expressions in a single sequencing run. 

scRNA-seq seems like an ideal technology for CTC research, as each cell can be 

tracked and analyzed. Transcriptome information can be extracted from the data, and 

subsequent analysis can be performed through bioinformatics strategies. Even though 

the vast majority of sequenced cells are mere blood cells and only a few CTC 

transcriptomes are contained in the large datasets, the CTC expression data can be 

extracted and analyzed from the datasets. 

1.6.2 Bioinformatics 

The immense potential of scRNA-seq sparked the development of corresponding 

analysis tools117. Powerful toolkits were published in the past years,  including Seurat118, 

Scater119, or Scanpy120. Satija and colleagues118 developed Seurat in 2015, which 

provides integrated pipelines to analyze single-cell sequencing data with in situ RNA 

patterns and is widely used.121–123 

Generally, cells are classified into clusters according to the similarity of transcriptomic 

profiles via distance metrics. This approach allows researchers to identify different cell 

types from one merging sample, which means technical feasibility for pointing CTCs 

out from the hematogeneous cells. 

Another integral procedure is trajectory analysis, which can investigate intrinsic 

differentiation or transition processes and biological function dynamics.124 In brief, the 

single-cell sequencing map resembles a snapshot of a continuous process, and 

transcriptional distances from a root cell are portrayed according to the pseudotime, a 

proxy for developmental time.125,126 The emerging of Monocle127 and Wanderlust128 are 

important tools for trajectory analysis. 
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1.6.3 Frontiers 

The eruption of scRNA-seq technologies and bioinformatic strategies has fueled CTC 

biology research considerably.129–132 However, there is only very limited data on 

pancreatic CTCs.60,133 

In 2014, Ting et al.133 applied CTC-iChip96 to the KPfC mouse model, enabling antigen-

agnostic isolation of CTCs and the following scRNA-seq. Notably, they revealed that 

various extracellular matrix (ECM) transcripts were enriched in pancreatic CTCs and 

concluded that the expression of cell-autonomous ECM genes might contribute to 

blood-borne dissemination.133 

Recently, single-cell barcoding technology was expanded to in vivo lineage tracing, 

including but not limited to GESTALT (genome editing of synthetic target arrays for 

lineage tracing)134, PolyloxExpress135, and CARLIN (CRISPR array repair lineage 

tracing)136. These inducible lineage recorders allow the identification of metastasis-

initiating subclones.60  

1.7 Cancer stem cells in pancreatic circulating tumor cells 

Although intensive research efforts focus on CTCs, the metastasis-initiating 

subpopulation of CTCs is still essentially unknown.137 Therefore, no therapeutically 

addressable target has been identified on CTCs to date. A complex set of remarkable 

cellular properties is required to complete the metastatic cascade, including migration 

and invasion capabilities, immune escape strategies, and, ultimately, colony-forming 

capability.137 As only a small subpopulation of CTCs can perform all necessary steps 

of metastasis, the number of CTCs shed over time is exponentially more than the 

number of overt metastases.138 As a result, CTCs are highly heterogeneous and 

usually non-tumorigenic.139 

While myriad CTCs are shed into the bloodstream, the sum of macroscopic metastases 

is less by several orders of magnitude.84 Therefore, it can be assumed that merely a 

small population of CTCs metastasis-initiating, i.e., colonizing distant organs and 

forming overt metastases.20,137 Hence, this metastatic cascade requires self-renewal 

and tumor-initiating capacities of CTCs, which are hallmarks of cancer stem cells 

(CSC).10 A subfraction of CTCs must therefore have intrinsic pluripotency. 

In a study with 24 metastatic PDAC patients, investigators found that 70.8% of patient 

blood samples contained CTCs with stem cell properties (CD133+, CK+, CD45-, 

DAPI+).73 In contrary, Semaan et al.78 found a significantly lower number of stem-like 

CTCs (CD133+, DAPI+, CD45-) (2.4 ± 0.5 cells/7.5 ml), accounting for 8.2% of CTCs 

from 74 PDAC patients. Franses et al.140 evaluated a panel of stemness genes in CTCs 
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from PDAC patients, including CD133, CD24, CD44, KLF4, and LIN28B. They knocked 

out LIN28B through CRISPR both in vitro and in vivo and found a less metastatic 

phenotype.140 

1.8 Rationale and objectives 

To date, the discovery and validation of universal and specific markers for pancreatic 

CTCs are still in their infancy, while immunoaffinity assays are, despite their limitations, 

the most popular CTC harvesting strategies. The biology of CTCs and their role in the 

metastatic cascade are still unclear. As only a rare fraction of CTCs carries cancer 

stem cells features and can initiate metastases, the identification of this population is 

crucial for the subsequent development of anti-metastatic targeted therapies. 

Therefore, the objectives of this work are: 

1) To identify novel biomarkers of pancreatic CTCs. 

2) To characterize pancreatic CTCs with stem-like features. 
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2 RESULTS  

2.1 GAS2L1 is a latent biomarker of pancreatic CTC. 

Dissertation relevant publication: 

Zhu L, Kan KJ, Grün JL, Hissa B, Yang C, Győrffy B, Loges S, Reißfelder C, Schölch 

S. GAS2L1 Is a Potential Biomarker of Circulating Tumor Cells in Pancreatic Cancer. 

Cancers (Basel). 2020 Dec 15;12(12):3774. doi: 10.3390/cancers12123774.(141) 

Summary: The research presented here aimed to identify latent biomarkers of 

pancreatic CTCs.  

Therefore, the publicly available dataset GSE51372133 was re-analyzed with Seurat. 

157 murine cells were assigned to 5 clusters after data cleaning, normalization, and 

dimensional reductions (PCA and t-Distributed stochastic neighbor embedding (t-

SNE)). Three heterogeneous clusters of CTCs were observed. Clusters 1 and 3 are 

pure CTCs, while cluster 0 is a mixture of murine cells.  

The following functional enrichment analysis revealed distinct biologic functions of CTC 

clusters. While the proteoglycans in the cancer pathway was enriched in cluster 1, 

cluster 3 exhibited the enrichment of the platelet activation pathway. However, both 

clusters showed enrichment of the focal adhesion pathway.  

Nine transcripts were up-regulated in pancreatic CTCs, and two (Clic4 and Gas2l1) 

were identified as cluster markers. However, only Gas2l1 could be shown to better 

identify CTCs than the current gold standard Epcam (positive control). 

Additional receiver operating characteristic (ROC) examination demonstrated the 

synergistic function of CTC identification through combining Gas2l1 and Epcam. 

Moreover, no transcriptomic and proteomic expression overlap was observed between 

these two markers.  

Lastly, to evaluate the prognostic value of GAS2L1, we explored it in the TCGA PDAC 

cohort. Notably, GAS2L1 shows significant over-expression in PDAC compared to 

normal pancreatic tissue and a prognostic value for RFS but not OS. 
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2.2 The adherens junction pathway in pancreatic CTC with stem features 

Dissertation relevant publication: 

Zhu L, Hissa B, Győrffy B, Jann JC, Yang C, Reissfelder C, Schölch S. 

Characterization of Stem-like Circulating Tumor Cells in Pancreatic Cancer. 

Diagnostics (Basel). 2020 May 15;10(5):305. doi: 10.3390/diagnostics10050305 (142) 

Summary: The objective of this study was to characterize pancreatic CTCs with stem-

like features. 

A pool of phenotypic markers was utilized to characterize the murine pancreatic CTC 

dataset GSE51372.142 The marker panel including EMT-transcription factors, 

epithelial, mesenchymal, stem-like/pluripotency, and proliferation markers. 

The principal component analysis (PCA) of 72 pancreatic CTCs displayed a 

heterogeneous distribution. Depending on cells with (CTC-S) or without stem-like 

features (CTC-N), CTCs were divided into two groups. The following heatmap with 

hierarchical clustering analysis supported this classification. 

We found hybrid EMT markers expression in the CTC-S group. Not surprisingly, severe 

heterogeneity was found for most markers. Surprisingly, the commonly used 

pancreatic stem cell marker Cd44 was significantly reduced in the CTC-S group while 

other stem markers (Klf4, Aldh1a2) and mesenchymal markers (Fn1, Vim) were 

significantly over-expressed. 

Both over-representation analysis (ORA) and weighted gene co-expression network 

analysis (WGCNA) revealed that the adherens junction pathway is significantly 

enriched in CTC-S. Ctnnb1 is the vital consensus component of the adherens junction 

pathway in integrated bioinformatics strategies. Further correlation analysis between 

Ctnnb1 and stem cell markers indicated a significant positive relationship with Klf4. 

The prognostic value of CTNNB1 and KLF4 was examined in the TCGA PDAC cohort. 

Higher CTNNB1 predicts worse progress-free survival and relapse-free survival in this 

cohort. 
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3 DISCUSSION AND CONCLUSION 

As early as 2014, pioneering research attempted to establish scRNA-seq of pancreatic 

CTCs from KPfC mice.133 A stromal protein, SPARC, was identified to be enriched 

abundantly in pancreatic CTCs.133 However, this result has not been confirmed in the 

following years, and only limited related data was published.143 

On the other hand, it is widely accepted that disseminated tumor cells require stem cell 

features to establish overt distant colonization10,144. Some researchers established 

CTC in vitro culture with hypoxia or serum-free conditions, believing that only stem 

cells could survive and probably represent the progenitor population of 

metastasis.145,146 It is unclear whether the resulting CTC cell lines still exhibit the same 

biology as their parental CTCs in circulation. Regardless, using stem markers to define 

CTCs with stem cell phenotype is a popular strategy.34,73,140 

This cumulative dissertation attempted to address the biomarker and stem fraction 

characterization based on one central dataset (GSE521372) of CTC single-cell RNA 

sequencing.147 

In the first part, Gas2l1 was found to be a useful marker for CTC identification, 

especially when combined with Epcam as biomarkers for pancreatic CTCs. Previous 

literature introduced GAS2L1 as an essential protein for cell polarization and 

migration.148,149 Therefore, it is reasonable that pancreatic CTCs rely on Gas2l1 and 

its guiding microtubules to focal adhesions for migration. Notably, Rowley et al.150 

demonstrated that Gas2l1 is expressed in murine platelets abundantly. The gene 

ontology analysis of pancreatic CTCs in this study also confirmed the enrichment of 

platelets markers. This reflects the alternative possibility that Gas2l1 expression on 

pancreatic CTCs results from platelets covering CTCs and thus leading to 

transcriptomic contamination.  

The second publication demonstrated that the adherence junction pathway was 

enriched in murine pancreatic CTCs with stem cell characteristics. It is conceivable 

that this phenomenon reflects CTC-S preparing for attachment to the vessel wall in the 

target organ. The downregulation of the canonical Wnt pathway found in the study 

suggests that Klf4 and β-catenin interact on the protein rather than the transcriptomic 

level in the pancreatic CTC-S group. The Klf4 / β-catenin interaction may help CTCs 

acquire stemness, regain intercellular adhesion capabilities, and form cell clusters 

through actin cytoskeleton remodeling.151  

As both publications represent in silico analysis, their translational value needs further 

experimental validation. Immunocytochemistry or single-cell RT-PCR in lineage-traced 
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pancreatic CTCs would be suitable methods to validate Gas2l1 expression. In vivo 

genetic manipulation (e.g., using the cre/loxP system), knocking out individual stem 

cell markers followed by the analysis of the metastatic phenotype of the model would 

constitute a stem-feature verification experiment. 

This dissertation has shown that the combination of GAS2L1 and EPCAM may be a 

highly sensitive marker combination for identifying CTCs in pancreatic cancer patients. 

The second major finding of this work is that pancreatic CTCs with stem-like features 

exhibit elevated Ctnnb1 expression, which may contribute to the metastatic properties 

of CTCs through activation of intracellular adherens junctions pathway. However, 

despite the advances in our understanding of CTCs in pancreatic cancer, major steps 

of the metastatic cascade are still incompletely understood and require further 

investigations before clinically relevant breakthroughs can be made. 
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4 SUMMARY 

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in humans 

due to high recurrence rates and early systemic dissemination.1–3 This major health 

burden leads to tremendous research efforts to decipher the metastatic cascade of 

PDAC.11,152–156 CTCs, as a well-known intermediary step between primary and 

secondary tumors, have been a lasting research topic for decades.60,102,157–160  

Although exponentially increasing numbers of publications are investigating CTCs, 

there has been no consensus marker for CTCs in the past decades, most likely as a 

result of CTC heterogeneity. Universally, researchers applied EPCAM for 

immunoaffinity isolation of pancreatic CTCs to harvest a particular CTC; however, this 

subpopulation is controversial and may not represent the metastasis-initiating 

subfraction of CTCs.60 

GEMMs are valuable tools to investigate pancreatic CTCs.60,133 Since they retain 

histopathological features, consistent transcriptomics alterations, and the mutational 

landscape of human PDAC,44,55 the CTCs derived from GEMMs should resemble 

human pancreatic CTCs closely.  

Previous pioneering research already attempted scRNA-seq of pancreatic CTCs from 

KPfC mice. The re-analysis was performed on their dataset (GSE51372) with Seurat. 

Three heterogeneous clusters of CTCs with distinct biologic phenotypes were 

identified. In this study, the Gas2l1 exhibited better CTC identification than Epcam, 

Cd45, Sparc, and absence expression in peripheral blood mononuclear cells. 

Probably, pancreatic CTCs realize migration through Gas2l1 guiding microtubules to 

focal adhesions. Notably, few pieces of the literature demonstrated that Gas2l1 is in 

murine platelets. This reflects the possibility that pancreatic CTCs cloak with platelets. 

Regardless, GAS2L1 shows significant over-expression in PDAC compared to normal 

pancreatic tissue and a remarkable indicator value of relapse-free survival in the PDAC 

cohort (The Cancer Genome Atlas Program). Future immunocytochemistry and single-

cell RT-PCR in lineage-traced pancreatic CTCs are necessary to validate its efficiency. 

Generally, stem markers were used to identify CTCs with stem-like features. In case a 

single marker distorted the stem-related classification, a pool of phenotypic markers 

was applied on the same murine pancreatic CTC dataset (GSE51372). Combined with 

the following principal component analysis and hierarchical clustering, Murine 

pancreatic CTCs were divided into with and without stem-like features groups. Both 

over-representation analysis and weighted gene co-expression network analysis 

revealed that the adherens junction pathway is significantly enriched in pancreatic 



 

53 

stem-like CTCs. Transcription factor, Klf4 was found to have a significant association 

with stem-like population. Reasonable speculation is that the stem fraction CTCs 

regain intercellular junction and form cell clusters through actin cytoskeleton 

remodeling. However, further transcriptomic comparisons between CTCs and CTC 

clusters, genetic manipulations are alternative solutions for validations. 

In summary, pancreatic CTCs are vital components of hematogeneous metastasis. 

The emerging scRNA-seq techniques and corresponding bioinformatic toolkits 

accelerated the development of CTC research. Despite limitations existing, these two 

in silico analyses of scRNA-seq data of pancreatic CTCs derived from GEMM and 

explored biomarkers and stem-like populations of these CTCs. As scRNA-seq 

technology is evolving rapidly, the dawn of uncovering more secrets of CTCs is 

breaking. 
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