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Abstract

We design innovative fast and robust numerical solvers by exploiting tensor structure for
high-order finite element discretizations of various partial differential equations (PDE). The
thesis’s main scientific contribution is the careful design and implementation of cost-efficient
subspace corrections concerning Schwarz smoothers on vertex patches (i.e., the union of cells
sharing a common vertex). Emphasis is put on matrix-free implementations of multilevel
solvers that are the method of choice in high-performance computing.

Schwarz smoothers on vertex patches lead to robust numerical solvers. They theoretically
enable scalability to extremely large applications on modern supercomputers. However,
naïvely computing subspace corrections is prohibitively expensive, negating their mathemat-
ical benefits and those of matrix-free operators. To this end, we develop tensor product
Schwarz smoothers, exploiting low-rank tensor representations of local solvers. Then, the
computational effort per unknown is linear in the polynomial degree, the cost for inverting
local matrices is asymptotically negligible, and their memory consumption per unknown
is constant. We develop smoothing algorithms for high-order DG and H1-conforming dis-
cretizations of the Laplacian, presenting the prototypical differential operator that preserves
separability to finite element operators. We demonstrate the high computational efficiency of
our implementations in terms of the number of floating-point operations, (strong) scaling
behavior, and time-to-solution. The superiority of multiplicative Schwarz methods on vertex
patches (MVS) over simple non-overlapping Schwarz smoothers is shown for higher-order finite
elements, arising from their superior mathematical efficiency. The mathematical efficiency
of restricted additive Schwarz smoothers comparable to MVS is studied, and extensions
to non-Cartesian meshes are discussed. The techniques are then extended to biharmonic
and Stokes problems that lack some separability assumptions for fast inversion. We still
develop cost-efficient subspace approximations for multilevel C0-IP methods. Given the
stream function method, similar smoothers are applied for Hdiv-IP discretizations of Stokes
problems in 2D: we design novel subspace corrections involving local stream functions and
local pressure post-processing for Raviart-Thomas elements.

Our implementations are designed with a holistic view on computational efficiency, i.e.,
carefully balancing arithmetic operations and data transfer to exploit the potential of modern
multi-core architectures with SIMD capabilities. Thus, optimal node-level performance is
achievable. The C++ software for tensor product Schwarz smoothers is publically available.





Zusammenfassung

Wir nutzen Tensorstrukturen aus, um innovative, schnelle und robuste numerische Löser für
Finite-Elemente-Verfahren höherer Ordnung für verschiedene partielle Differentialgleichungen
zu entwickeln. Der wissenschaftliche Hauptbeitrag der Dissertation beinhaltet das sorgfältige
Entwerfen und Implementieren kosteneffizienter Unterraumkorrekturen hinsichtlich Schwarz-
Glättungsverfahren auf Vertex-Patches (d.h. Untergebiete bestehend aus den Gitterzellen mit
einem gemeinsamen Eckpunkt). Ein Schwerpunkt liegt auf matrixfreien Implementierungen
von Mehrgitter-Lösern, die derzeit der Goldstandard im Bereich High-Performance Computing
sind.

Diese Art von Schwarz-Verfahren führt zu robusten numerischen Lösern, sodass theo-
retisch eine Skalierbarkeit auf sehr große Anwendungsprobleme für modernste Supercom-
puter ermöglicht wird. Allerdings ist die naive Berechnung von Unterraumkorrekturen
äußerst rechenintensiv oder gar unmöglich, sodass sowohl die mathematischen Vorteile als
auch die Vorteile der matrixfreien Verfahren konterkariert werden. Deshalb entwickeln wir
Tensorprodukt-Schwarz-Glätter, die die Tensordarstellungen der lokalen Löser niedrigen
Ranges ausnutzen. Dann ist der Rechenaufwand pro Freiheitsgrad linear zum Polynomgrad,
die Invertierungskosten lokaler Matrizen sind asymptotisch vernachlässigbar und ihr Spe-
icherbedarf pro Freiheitsgrad ist konstant. Wir entwickeln Glättungsalgorithmen bezüglich
DG und H1-konformen Diskretisierungen höherer Ordnung für den Laplace-Operator. Dieser
stellt einen prototypischen Differentialoperator dar, der die Separabilitätsbedingung für
zugehörige Finite-Elemente-Operatoren erhält. Wir weisen eine hohe Recheneffizienz unserer
Implementierungen nach, indem wir die Anzahl von Gleitkommaoperationen, das (starke)
Skalierungsverhalten und die Zeit-zum-Lösen untersuchen. Eine Überlegenheit der multiplika-
tiven Schwarz-Methoden auf Vertex-Patches (MVS) gegenüber einfachen nicht-überlappenden
Schwarz-Glättern lässt sich für Finite Elemente höherer Ordnung zeigen. Diese resultiert
aus der überlegenen mathematischen Effizienz. Wir zeigen, dass die mathematische Effizienz
von uns entwickelter eingeschränkter additiver Schwarz-Glätter vergleichbar mit MVS ist.
Zudem diskutieren wir Erweiterungen unserer Glättungsverfahren auf nicht-kartesische Git-
ter. Unsere Methoden werden danach für biharmonische und Stokes Probleme erweitert.
Für diese Probleme sind die Separabilitätsannahmen für schnelles Invertieren lokaler Ma-
trizen nicht gegeben. Dennoch ist es möglich kosteneffiziente Unterraumapproximationen
für Mehrgitter-Methoden bezüglich C0-IP Diskretisierungen eines biharmonischen Problems
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zu entwickeln. Mit Hilfe von Stromfunktionen lassen sich ähnliche Glätter auch für Hdiv-
IP Diskretisierungen eines zwei-dimensionalen Stokes Problems anwenden: wir entwerfen
dazu neue Unterraumkorrekturen basierend auf lokalen Stromfunktionen und einer (lokalen)
Nachberechnung des Drucks für Raviart-Thomas-Elemente.

Unsere Implementierungen sind mit einem ganzheitlichen Blick auf Rechenleistung konzip-
iert, d.h. ein sorgfältiges Ausbalancieren arithmetischer Operationen und des Datentrans-
fers, um das ganze Potential modernster Multi-Core-Architekturen mit SIMD-Fähigkeiten
auszuschöpfen. Auf diese Weise kann eine optimale Leistung auf Knotenebene erzielt werden.
Die C++ Software für unsere Tensorprodukt-Schwarz-Glätter ist öffentlich verfügbar.
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Chapter 1

Introduction

In this thesis, we will design innovative robust and fast numerical solvers through exploiting
tensor structure for (non-standard) high-order finite element discretizations of various partial
differential equations (PDE). The careful design of cost-efficient subspace approximations
for overlapping Schwarz smoothers will be the thesis’ guiding principle and major scientific
contribution.

1.1 Motivation and Perspective

We develop fast numerical solvers for three kinds of PDE problems, the Poisson, biharmonic,
and Stokes problem. They have a direct or indirect impact to computational fluid dynamics
(CFD) being part of methods or a preliminary step towards solving prominent incompressible
flow problems modeled by the Navier-Stokes equations, respectively. CFD is more than ever a
thriving field of research due to the fast-paced development of computer hardware (including
the world’s fastest supercomputers) over recent decades, providing society with simulations
of countless diverse flow problems.

Researching in the field of scientific computing as well as merging aspects of mathematics
and computer science, the author’s main motivation arises from the challenge of developing
robust mathematical methods and implementing them with an emphasis on cost-efficiency
such that fast numerical solvers on modern supercomputers are obtained. Mathematically,
we denote a numerical solver as robust if it converges uniformly with respect to characteristic
sizes of the underlying discretization, in our case, the generic mesh size and polynomial degree.
The robustness is essential for the PDE problem’s scalability, ensuring (almost) a constant
number of the solver’s iterative steps for any size of the discrete problem. In theory, we may
evaluate a numerical solver based on its convergence speed without considering computational
aspects. Thus, we measure mathematical efficiency by the reciprocal number of convergence
steps to reach a target accuracy.
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When it comes to engineering numerical solvers, we are limited by computational resources.
Moreover, we need to consider modern computer architectures’ capabilities. Developing fast
numerical solvers is a complex task, and implementing them is even more delicate. It starts
with developing the mathematical method to solve a given problem reliably, emphasizing
mathematical efficiency. Given the methodology, we want to derive algorithms that the-
oretically perform numerical procedures with optimal computational complexity in space
and time. It ends with application software for a class of target platforms, requiring careful
implementation of algorithms to exploit the full potential of underlying computer hardware.
The transition of the three fields, i.e., methods, algorithms, and implementations, is relatively
smooth, and mutual dependencies emerge. For instance, increasing mathematical efficiency
should also increase computational efficiency at first sight. However, to reduce the number of
iteration steps, we usually pay the price of a method’s increased sophistication, significantly
increasing the number of arithmetic operations and memory needed for a single algorithmic
step. Potentially, this growth in computational complexity negates all mathematical benefits
gained, resulting in prohibitively expensive algorithms for large-scale applications. Choosing
a metric to measure computational efficiency, i.e., how fast a numerical solver is, is not trivial.
Rooted in the field of algorithms, simple metrics are the ratio of the number of unknowns
to floating-point operations or consumed memory. However, these metrics do not factor in
computing capabilities. We may measure computational efficiency by the ratio of degrees
of freedom to the time-to-solution, where “time” literally refers to elapsed real-time. This
metric, in turn, may limit the comparison to a subset of target platforms, in particular,
given the heterogeneous computing landscape of the 21st century. The thesis’ core topic
is the design of algorithms that achieve high computational efficiency. Nevertheless, we
also address the other two related topics: developing new mathematical methods if needed
and carefully implementing algorithms focusing on modern (super)computers. We stress
the attribute “modern” because our algorithms will particularly account for the trend of
arithmetic capabilities evolving faster than memory bandwidth.

Multigrid methods accelerated by Krylov subspace solvers have become the method
of choice in high-performance computing. In particular, the success of matrix-free imple-
mentations is ever-growing for high-order finite element problems in modern HPC, among
others, referring to the state-of-the-art PDE solvers in (Arndt, Fehn, et al., 2020; Bastian,
Altenbernd, et al., 2020; Bauer et al., 2020; P. Fischer et al., 2020; Kronbichler and Kormann,
2012; Kronbichler and Kormann, 2019). At the beginning of our research, we identified that
mainly diagonal-based or nonoverlapping block-Jacobi methods were utilized for multilevel
smoothing. We were motivated to take a step beyond these cost-efficient “simple” smoothers,
developing fast and powerful Schwarz smoothers using nonoverlapping domain decomposi-
tions. To be competitive with matrix-free evaluation of discrete “forward” operators, (local)
“inverse” operators (inherent in Schwarz smoothers) need to be computed and applied at a
similar pace. In addition, smoothing algorithms shall have a comparable memory footprint
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(if stored at all). We strive to overcome these challenges by exploiting tensor structure,
advancing well-known concepts from the spectral element community (Couzy and Deville,
1994, 1995; P. F. Fischer and Lottes, 2005; P. F. Fischer, Tufo, et al., 2000; Lottes and
P. F. Fischer, 2005) and establishing new alternatives to recent methods for high-order
finite elements (Barker and Kolev, 2020; Bastian, Müller, et al., 2018; Pazner, 2020; Pazner
and Kolev, 2021; Pazner and Persson, 2018). To this end, the thesis’ main topic will be
designing and implementing innovative tensor product Schwarz smoothers with a holistic view
on computational complexity, i.e., (i) satisfying mathematical robustness and parallelism
to provide scalability of PDE problems on modern supercomputers, (ii) leveraging tensor
structure to obtain cost-efficient algorithms that minimize data transfer in main memory, and
(iii) exploiting the full potential of multi-core architectures for optimal node-level performance.
Then, solving various classes of PDE problems becomes feasible also at large scales.

Fast inversion is only achievable at the cost of losing generality, i.e., stricter assumptions
on the tensor structure exist than for the “forward” matrix-free operators. The critical reader
might argue that limiting us to Cartesian meshes and separable physical coefficients is too
restrictive. We suggest concepts throughout this monograph on overcoming these limitations.
Among others, we may apply our methods only partially in “regions” with (approximately)
regular structure. They may be combined with cut-cell or level-set methods allowing for
complex geometries, or may act as local preconditioners accelerating the local iterative solvers
in (Bastian, Müller, et al., 2018) that apply to generic meshes and differential operators,
respectively. We may extend them to the very recent smoothing algorithms of Brubeck and
Farrell (2021) that handle unstructured vertex patches and meshes. Besides, our algorithms
still prove valuable by achieving optimal computational complexity when regular structure is
given, following Albert Einstein’s principle: “Alles sollte so einfach wie möglich sein - aber
nicht einfacher.”

The author sees potential in using matrix-free implementations as comprehensive standard
in modern finite element software given the current advances in computer hardware and
easy access to cloud computing using state-of-the-art resources at various scales. Therefore,
developing and implementing fast preconditioners will be as crucial as the matrix-free operator
evaluation. We elaborate our design choices for the tensor product Schwarz smoothers, our
background in Exascale computing, and the thesis’ scientific contribution next.

Taking a methodological perspective, multigrid methods have proven to be the method of
choice for solving elliptic or parabolic PDE problems over recent decades. We utilize geometric
multigrid methods based on a hierarchy of uniformly refined Cartesian meshes. These methods
consist of several building blocks: a hierarchy of discretization matrices, smoothers, transfer
operators, and a coarse-grid solver. If these components are well-composed according to
the underlying PDE problem, linear arithmetic complexity in the number of unknowns NL

can be expected. L indicates the level of the most-refined mesh. Each level-related finite
element discretization is characterized by a generic mesh width hℓ and a level-independent
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polynomial degree k. The number of elements is proportional to h−D
L and the number of

degrees of freedom per element to kD such that NL = O(h−D
L kD). Outer Krylov subspace

solvers accelerate the multilevel methods.
Taking a technical perspective, matrix-free implementations of numerical solvers have

become the gold standard in HPC, in particular, for high-order finite elements (Arndt,
Fehn, et al., 2020; Bastian, Altenbernd, et al., 2020; Bauer et al., 2020; P. Fischer et al.,
2020; Kronbichler and Kormann, 2012; Kronbichler and Kormann, 2019). In its early days,
matrix-free methods were used to fit PDE solvers for large-scale applications into main
memory (Bergen et al., 2005). Due to the fast-paced development of computer hardware
with processing capabilities increasing faster than the memory throughput, (Kronbichler
and Kormann, 2012; Kronbichler and Kormann, 2019; May et al., 2014) have demonstrated
that well-designed matrix-free implementations are superior over sparse-matrix-based finite
element codes for cubic and higher finite element orders. In particular, the efficiency gap
grows quickly for increasing finite element orders. Traditionally, we iterate over elements
computing local integrals via numerical quadrature and ultimately storing the results in a
sparse matrix. In contrast, matrix-free operator evaluation folds both operations, the local
numerical integration and the matrix-vector product, into one. At the heart of each operator,
a technique called sum factorization is utilized, which is the root cause for the method’s
feasibility and success. Sum factorization leverages the tensor structure of finite elements
and quadrature formulas, reducing the arithmetic complexity per element from O(k3D) for
naïve processing of folded operations to O(DkD+1). A sparse-matrix-based code pays the
price of O(k3D) operations per element only once during the assembly stage, but a standard
matrix-vector product still requires O(k2D) operations per element. Using sum factorization
is universal for efficient matrix-free operators. Only their highly-optimized implementation
varies in prominent academic software libraries, among others1, mentioning deal.II (Arndt,
Bangerth, Blais, et al., 2020; Arndt, Bangerth, Davydov, et al., 2021; Arndt, Fehn, et al.,
2020), DUNE (Bastian, Altenbernd, et al., 2020; Bastian, Blatt, et al., 2021; Bastian, Engwer,
et al., 2016), and MFEM (Anderson et al., 2021).

Therefore, matrix-free operator evaluation is the computational baseline that we strive to
reach with well-designed algorithms and implementations of overlapping Schwarz methods for
multilevel smoothing. We focus on multiplicative Schwarz smoothers on vertex patches (MVS).
A vertex patch is the local decomposition of cells that share a common vertex, resulting
naturally in element-wise overlap. For the Poisson problem, MVS is optional but very
beneficial for high-order discretizations (equally for the conforming FEM and DG method)
since the solver’s convergence speed does not degrade with increasing polynomial degree. On
the contrary, it improves convergence speed leading almost to a direct solver. In Chapter 3,
we will observe their superiority over cell-based nonoverlapping Schwarz methods even in

1A more extensive list is found in Section 2.2.
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terms of computational efficiency. For the C0 and Hdiv interior penalty discretizations of
the biharmonic and Stokes problem, overlapping Schwarz methods on vertex patches were
developed in (Arnold, Falk, and Winther, 1997; Arnold, Falk, and Winther, 2000; Kanschat
and Mao, 2015; Kanschat and Sharma, 2014) to obtain mathematically robust multilevel
solvers. In the same context, nonoverlapping Schwarz smoothers or simple pointwise methods
fail to provide mathematical robustness, in particular, for high-order finite elements.

We have not addressed the major challenges of deploying Schwarz smoothers (on vertex
patches) cost-efficiently in multilevel solvers. Using naïve algorithms,

(i) multiplicative Schwarz smoothers are intrinsically sequential,

(ii) solving local PDE problems by standard methods requires O(k3D) operations,

(iii) if storing local inverses, O(k2D) floating-point numbers are needed, and

(iv) their standard matrix-vector products cost O(k2D) operations,

with Items (ii) to (iv) holding for each subdomain. Standard Schwarz smoothers would com-
pletely negate the benefits of matrix-free operator evaluation, dominating the computational
complexities in both time and space. For instance, in (Witte et al., 2021) we showed that the
one-time computational cost of standard implementations for cell-based Schwarz smoothers
(i.e., a block-Jacobi method) are 3000 times higher for tri-cubic polynomials and even 95000
times higher for polynomial degree k = 7 than the respective matrix-free Laplace operator.
For overlapping Schwarz smoothers on vertex patches, the gap is even more pronounced
since k in Items (ii) to (iv) is actually 2k. Furthermore, Item (i) prevents massively parallel
computations.

A remedy for Item (i) is well-known, using the domain decomposition concept called
coloring. All subspace corrections which are somewhat decoupled can be colorized equally
and processed in parallel. The coupling of sub-problems is determined by the overlap and
transmission conditions imposed at interfaces. At the discrete level, the coloring will be
derived from the “overlap” of local finite element stencils2. We only observe a load imbalance
for levels with few, very large sub-problems in computations.

The challenge lies in overcoming Items (ii) to (iv). We identified solving local problems as
a main limiting factor for cost-efficiency, given its cubic complexity for standard algorithms.
In addition, striving for algorithms with high arithmetic and low memory intensity, it is
infeasible to store dense matrices for each subdomain. To this end, we leverage the tensor
structure of finite elements, quadrature formulas, (almost) Cartesian mappings, and (almost)
separable differential operators through the fast diagonalization of local discretization matrices.
Compared to forward operators, we additionally pay the price of assumptions on the shape
of mesh cells and (local) differential operators (including physical coefficients) to break the

2Finite element stencils are understood in the sense of (Arndt, Fehn, et al., 2020, §1).
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curse of dimensionality. Fast diagonalization dates back to efficient finite difference methods
for certain classes of separable differential operators (Lynch et al., 1964). Their separability
is preserved one-to-one for finite difference operators. Unfortunately, the integration-based
nature of finite element methods does, in general, not allow such preservation, not even for
Cartesian meshes, e.g., see the Bilaplacian. In this regard, a contribution of this thesis is the
design of subspace approximations for PDE problems that do not satisfy the separability
assumptions completely. Using fast diagonalization, inverting boils down to computing D
one-dimensional (generalized) eigenvalue problems at the total cost of O(Dk3) arithmetic
operations. The obtained inverse is representable as a ternary matrix-matrix product of two
rank-1 matrices with a diagonal matrix in between such that only O(Dk2 + k3) floating-point
numbers must be stored per inverse. In addition, the matrix-vector product is amenable to
sum factorization, thus, requiring O(DkD+1) operations. Most importantly, the one-time
cost for inverting matrices are even one order of magnitude less. Storing local inverses is
proportional to the number of unknowns. We refer to this specific class of algorithms as
tensor product Schwarz smoothers, overcoming the challenges in Items (ii) to (iv).

The thesis is partly rooted in the field of HPC. My Ph.D. project was funded by the German
Research Foundation for the “ExaDG - High-order Discontinuous Galerkin for the Exa-scale”
project, being part of the second phase of the German priority programme “Software for
Exascale computing” (SPPEXA)3. The project ExaDG provides novel contributions in terms
of methods and software:

1. robust and accurate discretization methods for CFD-related PDE problems and devel-
opment of fast matrix-free implementations with a focus on high- order DG methods,

2. developing fast numerical solvers using robust and cost-efficient Schwarz smoothers and
matrix-free operator evaluation for high-order finite element methods

Our final report (Arndt, Fehn, et al., 2020) outlines the developed methods and implemented
algorithms. Given the latest TOP500 list, society is close to but still waiting for Exascale4.

The thesis has no particular focus on extensively demonstrating parallel computations
on extremely large scales. We will analyze the parallel performance of our implementations
at a smaller scale (using 2560 cores distributed over 64 compute nodes) with emphasis on
the smoothing algorithms’ computational efficiency. The thesis’ contributions are instead
designing cost-efficient algorithms and sound (early-staged) implementations, providing strong
scaling. Finite element solvers rely on nearest-neighbor communication based on the mesh’s
domain decomposition: matrix-free operator evaluation communicates at element level and
Schwarz smoothers at subdomain level. Since we use very small subdomains (at most a

3See http://www.sppexa.de/. Exascale computing refers to reaching 1018 floating-point operations per
second.

4Fugaku remained the No. 1 system achieving an HPL benchmark score of 0.442 Exaflop/s according to
https://www.top500.org/.

http://www.sppexa.de/
https://www.top500.org/
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vertex patch), both communications are comparable. Thus, subspace corrections with high
“sequential” efficiency are essential in reaching excellent node-level performance. To this end,
we focus on developing algorithms that reduce computational complexities by one or more
orders of magnitude (as explained above) rather than tweaking implementations to improve
runtime by a factor of 2-3. In this regard, while high arithmetic intensity is essential for
achieving peak performance, we prefer algorithms with higher numerical throughput (the ratio
of degrees of freedom per runtime) even if they result in lower hardware performance indicators
like memory throughput or arithmetic performance. In particular, tailoring implementations
to modern computer architectures, our software automatically profits from the fast-paced
advances of computer hardware.

1.2 Scientific Contribution and Outline

My work pursues two main goals. First, I design efficient algorithms for overlapping Schwarz
smoothers. Second, I develop software in C++ to run these algorithms with an arithmetic
intensity and computational efficiency comparable to matrix-free operators. A quick ref-
erence of my scientific contribution follows, highlighting the exclusive novelties in italic
font:

(i) For high-order DG [and H1-conforming] discretizations of the Poisson problem, I
designed [and design] cost-efficient algorithms for additive and multiplicative tensor
product Schwarz smoothers on vertex patches for geometric multigrid methods utilizing
fast diagonalization. Moreover,

(a) not only exact local solvers for Cartesian meshes, but also inexact local solvers for
more generic meshes were introduced,

(b) memory-distributed parallel computations using SIMD capabilities are analyzed con-
cerning strong scaling behavior and computational efficiency, comparing nonover-
lapping and overlapping Schwarz smoothers, and

(c) mathematical efficiency of restricted additive Schwarz smoothers on vertex patches
is shown for two simple weighting strategies.

(ii) For high-order C0-IP discretizations of the biharmonic Problem for two-dimensional
Cartesian meshes, this thesis presents a novel design of efficient algorithms for tensor
product Schwarz smoothers on vertex patches for geometric multigrid methods utilizing
fast diagonalization.

(iii) No tensor product smoothers existed for high-order Hdiv-IP discretizations of the
(simplified) Stokes Problem. To this end, for two-dimensional Cartesian meshes,
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(a) I present methods that apply subspace approximations of stream functions, thus,
developing a (local) pressure post-processing and local transfer operators between
stream function and velocity-pressure coefficients, and

(b) design efficient algorithms for tensor product Schwarz smoothers on vertex patches
for geometric multigrid methods using Hdiv-conforming Raviart-Thomas elements

The excellent mathematical efficiency and robustness of Schwarz smoothers on vertex
patches for all three PDE problems were well-studied before my work (Kanschat and Mao,
2015; Kanschat and Sharma, 2014; Pavarino, 1993), but the smoothers’ application (using
naïve algorithms) was prohibitively expensive for high-order discretizations. I fill this gap
with novel, cost-efficient algorithms given the quick reference’s outline. The DG-related
results of Item (i) and Item (i)(a) were published in (Witte et al., 2021), highlighted through
the past tense. Our work (Kronbichler, Kormann, Fehn, et al., 2019) proposed an innovative
finite element using a “Hermite-like” polynomial basis to improve data access of face integrals
(i.e., obtaining a “thinner” finite element stencil) and proved again the versatility of Schwarz
smoothers on vertex patches: the same mathematical efficiency as for standard finite elements
is observed. In (Arndt, Fehn, et al., 2020, §5) we proposed a fast Schur complement technique
for subspace corrections regarding standard DG discretizations of linear elasticity modeled by
the Lamé-Navier equations. I drew motivation from the findings and started to develop the
tensor product Schwarz methods using (non-standard) finite elements for Stokes flow (which
constitutes the limit of an (almost) incompressible material).

Other fast Schwarz methods or matrix-free preconditioners have been developed during
my studies. Stiller (2016, 2017) developed similar tensor product Schwarz methods for SIPG
discretizations of the Laplacian but used smoothers on other subdomains for p-multigrid
solvers. Furthermore, we refer to the works (Bastian, Müller, et al., 2018; Brubeck and
Farrell, 2021; Pazner, 2020; Pazner and Kolev, 2021; Pazner and Persson, 2018) that were
mentioned before. All methods (including my methods) mutually vary in applicability, and
mathematical and computational efficiency. I address their merits in more detail in the course
of this thesis. Highlighting contributions by other Ph.D. students, Niklas Fehn contributed
to ExaDG’s final report (Arndt, Fehn, et al., 2020) and to (Kronbichler, Kormann, Fehn,
et al., 2019) as a Ph.D. student at the Technical University of Munich.

I implemented tensor product Schwarz smoothers with a strong focus on high performance.
My academic software package TPSS5 is built upon the general-purpose finite element library
deal.II, in particular, making use of linear algebra and finite element classes as well as the
multigrid and matrix-free framework therein. TPSS adds new features upon deal.II:

• cost-efficient additive and multiplicative (overlapping) tensor product Schwarz smoothers
5The software package, see https://github.com/jwitte08/TPSS, will not be maintained in the future. Note

that it lacks any documentation beyond the README and inline documentation. Nevertheless, it may provide
a basis for interested researchers that follow the author with the same passion for the thesis’s topics.

https://github.com/jwitte08/TPSS
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– on Cartesian meshes or generic meshes using automated hyper-rectangles for
approximation (Witte et al., 2021)

– with support for deal.II’s H1- and L2-conforming Qk-based finite elements
(including the Hermite-like finite element (Kronbichler, Kormann, Fehn, et al.,
2019)), and the development of a new (moment-based) Raviart-Thomas element
making use of the anisotropic tensor structure,

– with support for shared-memory task and/or memory-distributed parallelism (via
MPI), using SIMD vectorization over subdomains, and

– with user-defined and graph-based6 coloring algorithms for additive and multi-
plicative methods

• restricted additive Schwarz smoothers6

• a highly-optimized tensor product matrix class enabling fast diagonalization and sum
factorization

• a Kronecker product singular value decomposition utilizing SIMD capabilities

• an (approximative) Gaussian block elimination (Arndt, Fehn, et al., 2020, §5.3)

An extensive list of TPSS’s features is found in Remark 3.4.1. In Chapters 3 to 5, we elaborate
which features have been used for numerical experiments.

Finally, let me outline the thesis’ structure according to the quick reference’s enumeration.
Local DG discretizations of the Laplacian preserve the operator’s separability on Cartesian
meshes. Thus, I choose them as an entry point to study their computational complexities.
In addition, I demonstrate that approximating generic-shaped subdomains through hyper-
rectangles is still sufficient in obtaining efficient smoothers. The results for Item (i) and
Item (i)(a) are summarized in Sections 3.1 and 3.4.1, and the smoothers’ parallel performance
(Item (i)(b)) is analyzed in Section 3.4.2, which was a missing piece of (Witte et al., 2021).
Similar studies are found in Section 3.2 for H1-conforming discretizations: in Section 3.4.2,
we see that the respective MVS performs best in computational terms although lagging a bit
behind in mathematical terms. Moreover, the smoothers for H1-conforming elements gain
more importance given hybrid multigrid methods (Fehn, Munch, et al., 2020). Motivated
by the deficient performance of AVS with relaxation, I take an excursion (Item (i)(c)) on
restricted additive Schwarz smoothers (RAVS). In Section 3.3, high mathematical efficiency
for RAVS using two simple weighting strategies is demonstrated.

In Section 4.1.2, I design the efficient algorithms from Item (ii). The exact local solvers
are not amenable to fast diagonalization. To this end, inexact local solvers are developed
that are both mathematically sound and cost-efficient. In Sections 5.2 and 5.3, I develop a

6not fully supporting MPI
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novel multilevel Schwarz method (Item (iii)) for (simplified) Stokes flow that goes beyond
purely algorithmic development (Item (iii)(b)). Leveraging the equivalence of C0-IP and
Hdiv-IP discretizations, I make use of local stream function approximations from Section 4.1.2
for subspace correction: they are cheap to compute and mathematically robust. For their
practical application, a pressure post-processing and transfer operators (Item (iii)(a)) are
developed in Section 5.2.3.



Chapter 2

PRELIMINARIES

In this chapter, we introduce the fundamental concepts and prepare the mathematical tools
that are utilized in subsequent chapters to develop and analyze tensor product Schwarz
smoothers for various partial differential equations (PDE). The chapter starts with introducing
tensor product methods that will constitute the heart of our tensor product Schwarz smoothers,
reducing the computational complexity of algorithms by one or more orders of magnitude. The
first section is subdivided into brief introductions of tensor products and spaces laying out the
notational baseline of this monograph (Section 2.1), the sum factorization technique utilized
to apply tensor-structured forward and inverse finite element operators in a highly-optimized
way (Section 2.1.2), the fast diagonalization enabling fast inversion of matrices with specific
tensor structure (Section 2.1.3), and the Kronecker product singular value decomposition
(KSVD) computing the best rank-r order-2 tensor product approximation of any matrix
(Section 2.1.4). While sum factorization and fast diagonalization constitute the kernel of
every tensor product Schwarz smoother developed in this work, the KSVD enables inexact
but efficient local stream function solvers in Chapters 4 and 5.

In Section 2.2 matrix-free operator evaluation is introduced: based on the standard
tensor product finite elements and quadrature formulas (Section 2.2.1) we exemplify efficient
operator application regarding finite element matrices on the basis of the Laplacian, in
particular, the importance of sum factorization is stressed, including the evolution of matrix-
free methods up to the state of the art in (prospective) Exascale computing. Setting the
baseline of computational effort and memory intensity for state-of-the-art PDE solvers on
modern hardware, matrix-free operator evaluation was a major motivation to start developing
our tensor product Schwarz smoothers.

Multilevel Schwarz methods, i.e., geometric multigrid methods using Schwarz smoothers,
are concisely introduced in Section 2.3. It starts with Section 2.3.1, summarizing the main
components of geometric multigrid methods and presenting the V-cycle algorithm that is
utilized in subsequent chapters. Afterward, Schwarz smoothers are elaborated in Section 2.3.2,
being the multigrid component of major interest for this work. We put particular emphasis on
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explaining why vertex patches are crucial for the biharmonic and Stokes problem, the coloring
of additive and multiplicative smoothers to enable parallelization at all, and discussing the
most central assumptions for the convergence analysis of Schwarz smoothers.

Note that all (sub-)sections in this chapter are condensed to its very minimum, discussing
only the common concepts and establishing consistent notation for the application-related
chapters. The fundamental concepts and methods used in this monograph, including finite
element methods, are well-studied. Thus, we will refer to respective textbooks and literature
for details in-place. Subsequent chapters will contribute by developing, analyzing, and
implementing tensor product Schwarz smoothers to obtain efficient PDE solvers, going
beyond the scope of these preliminaries. The intrinsic subtleties and technicalities, e.g.,
induced by the underlying PDE, are elaborated in the respective chapter

2.1 Tensor Products and Methods

The essential tensor product methods utilized in this monograph need a brief introduction of
tensor algebra and calculus, in particular, (algebraic) tensor products of vectors and matrices
in Section 2.1.1. We stick to the overview in (Hackbusch, 2012, 2014) and references therein.
In most cases, it suffices to understand tensors as multidimensional arrays. We primarily use
them in the context of coefficient spaces arising from numerical discretizations. The tensor
product techniques sum factorization, fast diagonalization, and the Kronecker product singular
value decompositions are motivated and presented in subsequent Sections 2.1.2 to 2.1.4.

2.1.1 Tensor Products and Spaces

Tensor notation, in particular multi-indexing, will ease the presentation of mathematical tools
and algorithms exploiting tensor structure for arbitrary spatial dimensions. In this section, a
brief overview of tensors and tensor products is given. We recommend reading (Hackbusch,
2012, §3) for a more detailed definition in the context of multilinear algebra.

While vectors have single-indexed entries vi and matrices have double-indexed entries
Aij tensors carry D indices, where D defines the tensor order. We refer to the d-th index
as direction or dimension d. The names originate from functions in D-dimensional spatial
coordinates x = (x1, . . . , xD). For each dimension d, let nd denote the finite number of
sub-dimensions. The definition of scalar multiplication αv and addition v + w of two tensors
is straighforward; thus, the set of these tensors has the algebraic structure of a vector space
over the field R. This set of tensors is denoted Rn1×...×nD . Mathematically, we define the
tensor product of vectors as follows.
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Rn1 × · · · × RnD φ //

⊗
��

RN

⊗D
d=1 Rnd

Φ

55

Fig. 2.1 Illustration of Definition 2.1.1 and Proposition 2.1.2 as commutative diagram.

Definition 2.1.1 (Tensor product). Let nd < ∞ for d = 1, . . . , D. For vectors v(d) ∈ Rnd ,
d = 1, . . . , D, we define the tensor product

v := v(1) ⊗ v(2) ⊗ . . .⊗ v(D) (2.1a)

entrywise by
vi1,...,iD = v

(1)
i1
v

(2)
i2
· · · v(D)

iD
, (2.1b)

for all id = 1, . . . , nd and d = 1, . . . , D.

The tensor space is accordingly defined by

D⊗
d=1

Rnd := span
{
v(1) ⊗ . . .⊗ v(D) | v(d) ∈ Rnd , d = 1, . . . , D

}
, (2.2)

that is the span over so-called elementary tensors v(1) ⊗ . . . ⊗ v(D). The “universality of
the tensor product” characterizes the relation between vector spaces Rnd , d = 1, . . . , D, and
Rn1 × · · · × RnD .

Proposition 2.1.2 (Universality of the tensor product). Let nd <∞ for d = 1, . . . , D and
N = ∏D

d=1 nd. Then, for any multilinear mapping φ : Rn1 × · · · × RnD → RN , there is a
unique linear mapping Φ: ⊗D

d=1 Rnd → RN such that

φ(v(1), . . . , v(D)) = Φ(v(1) ⊗ . . .⊗ v(D)) (2.3)

for all v(d) ∈ Rnd.

Proof. See (Hackbusch, 2012, Proposition 3.22).

Summarizing previous properties, we obtain a characterization of the (algebraic) tensor
space.
Remark 2.1.3 (Characterization of the tensor space). Let nd <∞ for d = 1, . . . , D. T is the
(algebraic) tensor space ⊗D

d=1 Rnd if there holds

1. span property:
T = span

{
v(1) ⊗ . . .⊗ v(D) | v(d) ∈ Rnd

}
,
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2. multilinearity: for any α, β ∈ R, v(d), w(d) ∈ Rnd , and any d ∈ {1, . . . , D} it holds

v(1) ⊗ · · · ⊗
(
αv(d) + βw(d)

)
⊗ · · · ⊗ v(D)

= αv(1) ⊗ · · · ⊗ v(d) ⊗ · · · ⊗ v(D) + βv(1) ⊗ · · · ⊗ w(d) ⊗ · · · ⊗ v(D), (2.4)

3. inheritance: if for each direction d = 1, . . . , D vectors v(d)
1 , . . . , v

(d)
nd are linearly indepen-

dent, then v
(1)
i1
⊗ . . .⊗ v(D)

iD
, id = 1, . . . , nd, are linearly independent in T.

The dimension of tensor space ⊗D
d=1 Rnd is the product of sub-dimensions n1n2 · · ·nD.

From the span property and taking all linear combinations of unit vectors in Rnd there holds

D⊗
d=1

Rnd = Rn1×···×nD . (2.5)

To be precise, “=” in (2.5) is well-defined as isomorphism between vector spaces that preserve
the algebraic vector space properties. We use Rn1×···×nD in the context of multidimensional
arrays or D-way arrays. In contrast, we use ⊗D

d=1 Rnd when explicitly using elementary
tensors or linear combinations of them. There exists an important difference between vector
space isomorphisms and tensor space isomorphisms, as detailed in (Hackbusch, 2012, §3.2.5).

Definition 2.1.4 (Tensor space isomorphism). A tensor space isomorphism is any bijection
Φ = ⊗D

d=1 φd, that is the tensor product of vector space isomorphisms φd.

A tensor space isomorphism considers the number of directions (tensor order), the ordering
of directions, and the dimension of each direction. For instance, the tensor spaces R2 ⊗ R6,
R4⊗R3 and R2⊗R2⊗R3 are isomorphic in the sense of vector spaces, all being vector space
isomorphic to R12. However, they differ in tensor order, or the dimension of at least one
tensor direction varies; thus, resulting in different tensor spaces in terms of characterizations
from Remark 2.1.3. We shall remember that any tensor space is a vector space, but vector
space isomorphisms between tensor spaces do not carry information on the tensor structure.

Definition 2.1.5 (Tensor rank). For nd <∞ with d = 1, . . . , D, we define the set of linear
combinations of elementary tensors

Rr :=


r∑

ν=1
v(1) ⊗ . . .⊗ v(D) | v(d) ∈ Rnd

 (2.6)

for any r ∈ N. The tensor rank of v ∈⊗D
d=1 Rnd is defined as

rank v := min
{
r | v ∈ Rr

}
. (2.7)

The minimum in (2.7) is well-defined since subsets of N have a minimum. We refer to
tensors with rank r as rank-r tensors and, in particular, to elementary tensors as rank-1
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tensors. It is essential to notice that the tensor rank is (only) invariant under tensor space
isomorphisms.

While in classical finite element codes tensor structures are sometimes ignored, the
algorithms in this work heavily make use of them. The tensor structure plays a crucial
role in the context of data structures: vectors, matrices, or multidimensional arrays are
usually implemented as contiguous, linear storage in scientific code. To access an element
by its multi-index the memory layout has to be known. For instance, row-wise consecutive
elements in a matrix with row-major order are contiguous in memory (G. Karniadakis, G. E.
Karniadakis, et al., 2003). In other words, the row index strides with the number of columns
as step width through the linear storage and, thus, “runs faster” than the column index. This
ordering is easily generalized to higher dimensions than two.

Definition 2.1.6 (Lexicographic ordering). Let nd <∞ for d = 1, . . . , D and N = ∏D
d=1 nd.

We define a bijective mapping ϕlxc : {1, . . . , n1} × · · · × {1, . . . , nD} → {1, . . . , N} between
index sets by means of the lexicographic ordering

ϕlxc(i1, . . . , iD) = 1 +
D∏
d=1

(id − 1)nd (2.8)

for all id = 1, . . . , nd with “collapsed” sub-dimensions

nD = 1 and nd =
D∏

k=d+1
nk, d = 1, . . . , D − 1. (2.9)

We will use the shorter notation i instead of ϕlxc(i1, . . . , iD) for the unrolled multi-index
i1, . . . , iD.

Taking the contiguous memory layout subject to lexicographic ordering into account,
caching and efficient access patterns are achieved (Kronbichler and Kormann, 2012; Kron-
bichler, Kormann, Fehn, et al., 2019; Kronbichler and Kormann, 2019). We postpone this
discussion for now: our implementations are elaborated later.

For deal.II users or interested readers of our article (Witte et al., 2021) we emphasize:

Remark 2.1.7 (Lexicographic ordering). In deal.II implementations, the x-coordinate “runs
slowest” such that indices concerning the first dimension (for example i1) stride with step
width one. In (Witte et al., 2021) we used a multi-indexing and ordering close to deal.II’s
source code,

1. index ranges start with zero (id = 0 or i = 0)

2. multi-indexing is subject to colexicographic ordering

In this monograph, we follow a multi-indexing and ordering that is more natural in mathe-
matical terms,
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1. index ranges start with one (id = 1 or i = 1)

2. multi-indexing is subject to lexicographic ordering

Taking the lexicographic ordering into account the vectorization vect : Rn1×···×nD → RN

of a tensor v is defined entrywise by

vi := vect(v)ϕlxc(i1,...,iD) := vi1,...,iD , 1 ≤ id ≤ nd. (2.10)

The vectorization is a vector space isomorphism, in particular, isometric with respect to the
Frobenius norm. The tensor structure is therefore not taken into account. In algorithms and
data structures, vectorization is often called “flattening” of a multidimensional data array.
The collapsed sub-dimension nd defines the step width required when striding through the
flattened array with all indices fixed except id.

The reverse operation is called tensorization: a vector is isomorphically transformed into
a tensor by imposing a fitting tensor structure. Formally, the tensorization tens : RN →
Rn1×···×nD reads

vi1,...,iD := tens(v)i1,...,iD := vϕlxc(i1,...,iD), 1 ≤ id ≤ nd, (2.11)

for sub-dimensions nd satisfying N = ∏D
d=1 nd. The tensorization, being the inverse vector

space isomorphism of the vectorization, does not carry any information on the particular
tensor structure, albeit called “tensorization”. Therefore, for finite dimension N <∞ each
tensorization has a non-unique representation as linear combination of rank-1 tensors (with
finite tensor rank r). As indicated by (2.10) and (2.11), we use from now on different fonts
to abbreviate notation: v denotes the tensorization of vector v and vice versa v denotes the
vectorization of tensor v.

We define the tensor product of matrices, which is often called Kronecker product, in
terms of tensors of linear mappings.

Definition 2.1.8 (Tensor product of matrices). Let md <∞ and nd <∞ for d = 1, . . . , D,
respectively. For linear mappings A(d) : Rnd → Rmd , d = 1, . . . , D, we define the tensor
product

A :=
D⊗
d=1

A(d) :
D⊗
d=1

Rnd →
D⊗
d=1

Rmd (2.12a)

by
A(v(1) ⊗ . . .⊗ v(D)) = A(1)v(1) ⊗ . . .⊗A(D)v(D) (2.12b)

for all v(1) ⊗ . . .⊗ v(D) ∈
⊗D

d=1 Rnd .

Since ⊗D
d=1 Rnd is spanned by elementary tensors v(1) ⊗ . . . ⊗ v(D) a tensor of linear

mappings is uniquely determined by (2.12b). In the context of matrices, the tensor product
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space is denoted

D⊗
d=1

Rmd×nd := span


D⊗
d=1

A(d) | A(d) ∈ Rmd×nd , d = 1, . . . , D

 , (2.13)

which exemplifies the structure of a tensor product between matrices. We refer to this
space as Kronecker product space and to its rank-1 elements as Kronecker tensors. Similar
to vectors and tensors of vectors, it is readily proven that there exists a vector space
isomorphism between the Kronecker product space ⊗D

d=1 Rmd×nd and matrix space RM×N

with factorizations N = ∏D
d=1 nd and M = ∏D

d=1md. Using the lexicographic ordering (2.8)
the so-called Kronecker product between two matrices is defined as follows.

Definition 2.1.9 (Kronecker product). Let A(d) ∈ Rmd×nd for d = 1, 2, then, the Kronecker
product A(1) ⊗A(2) is a R(m1m2)×(n1n2)-matrix such that

A(1) ⊗A(2) =


A

(1)
11 A

(2) . . . A
(1)
1n1A

(2)

...
...

A
(1)
m11A

(2) . . . A
(1)
m1n1A

(2)

 . (2.14)

In other words, the Kronecker product between a m1 × n1- and m2 × n2-matrix is a
m1×n1-block matrix with blocks in Rm2×n2 using lexicographic ordering of rows and columns,
respectively. For tensor orders higher than two a recursive block structure is obtained: the
respective vector isomorphism Φ: ⊗D

d=1 Rmd×nd → RM×N is defined entrywise by

Aij := Φ
( D⊗
d=1

A(d)
)
ϕlxc(i1,...,iD),ϕlxc(j1,...,jD)

:=
D∏
d=1

A
(d)
idjd

(2.15)

for matrices A(d) ∈ Rmd×nd , where i and j is the short notation for ϕlxc(i1, . . . , iD) and
ϕlxc(j1, . . . , jD), respectively. Each tensor direction d of the order-D Kronecker product
represents a “level” of the block structure. We refer to both, Φ(⊗D

d=1A
(d)) and ⊗D

d=1A
(d),

as order-D Kronecker product and will omit writting Φ(·) from now on but it becomes clear
from context if ⊗D

d=1A
(d) is understood as element in RM×N or ⊗D

d=1 Rmd×nd , respectively.
A multi-indexing subject to lexicographic ordering leads to Kronecker factors in (2.15) with
increasing tensor dimension from left to right, for instance A(1) ⊗ A(2) ⊗ A(3). In contrast,
using a colexicographic ordering as in (Witte et al., 2021), factors are unnaturally indexed
from right to left, i.e., A(3) ⊗A(2) ⊗A(1).

The vector space isomorphism Φ is analogous to the vectorization vect(·) which is
introduced in (2.10). We emphasize that Φ is defined only for rank-1 tensors of matrices
in (2.15). Nevertheless, due to its linearity and the span property of ⊗D

d=1 Rmd×nd , it is
well-defined for any tensor. We deliberately do not introduce the term “matricization” here
to avoid confusing the well-known tensor algebra concept of “matricization”, also known as
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“unfolding” or “flattening” (Kolda and Bader, 2009). Throughout this monograph, we will
use Kronecker tensors, which means rank-1 tensors of matrices or linear combinations of
them with low tensor rank; thus, in contrast to tensors of vectors, we will make no use of
the space R(m1×n1)×···×(mD×nD) which is vector isomorphic to ⊗D

d=1 Rmd×nd . As indicated in
(2.12) and (2.15) we write in short A for the “vectorization” of Kronecker tensors A and vice
versa A for the tensorization of A. Finally, we list some properties of the Kronecker product
used in subsequent chapters.

Lemma 2.1.10 (Properties of Kronecker products). Given matrices A,B,C and D of
appropriate sizes, in general, it holds

(A⊗B) ̸= (B ⊗A), (2.16a)
(A⊗B)(C ⊗D) = AC ⊗BD, (2.16b)

(A⊗B)T = AT ⊗BT, (2.16c)
(A⊗B)⊗ C = A⊗B ⊗ C = A⊗ (B ⊗ C) (2.16d)

and, A⊗B is invertible if and only if A and B are invertible and it holds

(A⊗B)−1 = A−1 ⊗B−1. (2.16e)

Proof. See (Van Loan, 2000) and references therein.

In particular, from (2.16b) and (2.16c) it follows that Q⊗P is orthogonal if and only if Q
and P are orthogonal. The generalizations of properties (2.16a) to (2.16c) are straightforward
for D-ary Kronecker products. For instance, the transpose of Kronecker tensor A = ⊗D

d=1A
(d)

is well-defined by successively using (2.16c),

AT =
D⊗
d=1

(
A(d)

)T
. (2.17)

It is worth noticing that the transpose operation does not revert the ordering of matrix factors
in the Kronecker product, as it does for the matrix-matrix multiplication. Kronecker products
are extensively studied in (G. H. Golub and Van Loan, 2013; Graham, 1981; Van Loan, 2000).

2.1.2 Sum Factorization

Sum factorization denotes the fundamental concept in which a multi-indexed sum is efficiently
refactored into sums carrying only a single index. Refactoring is possible whenever a certain
degree of separation of variables is present. Sum factorization is crucial for efficient operator
applications regarding both, the discretizations of “forward” and inverse differential operators.
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Utilizing sum factorization for matrix-free operator evaluations dates back to Orszag (1980).
Its background and usage in the context of matrix-free operators is detailed in Section 2.2.

Introducing the d-mode product between a matrix and a tensor allows us to concisely
discuss sum factorization arising from a Kronecker product matrix multiplied with a tensor
of vectors.

Definition 2.1.11 (d-mode product). Let nδ <∞ for δ = 1, . . . , D and md <∞ for fixed
direction d ∈ {1, . . . , D}. For a tensor v ∈ Rn1×···×nD and a matrix A ∈ Rmd×nd we define
the d-mode product

A×d v ∈ Rn1×···×nd−1×md×nd+1×···×nD (2.18a)

entrywise by

(A×d v)i1,...,iD =
nd∑
j=1

Aidj vi1,...,id−1,j,id+1,...,iD (2.18b)

for id = 1, . . . ,md and ik = 1, . . . , nk, k ̸= d.

Given two dimensions d and e with d ≠ e consecutive mode products with a common
tensor

A×d B ×e v = A×d (B ×e v) = B ×e (A×d v) (2.19)

commute for matrices A,B and tensor v of appropriate size (De Lathauwer et al., 2000).
While in mathematical terms, the order of mode products is irrelevant from an algorithmic
viewpoint, an ordering close to or even matching the memory layout improves computational
runtime (Kronbichler, Kormann, Fehn, et al., 2019; Kronbichler and Kormann, 2019).

For simplicity, we assume isotropic tensor directions meaning n = n1 = · · · = nD and
N = nD. Let v denote a tensor in Rn×···×n and A = ⊗D

d=1A
(d) a tensor of matrices in⊗D

d=1 Rn×n with vectorization v ∈ RN and Kronecker product A ∈ RN×N , respectively. The
naïve matrix-vector multiplication Av requires O(n2D) floating point operations. Taking
tensor structures into account, the matrix-vector multiplication of “matrix” A with “vector”
v is equivalent to Av and expressed in terms of D consecutive d-mode products,

Av = A(1) ×1 . . . A
(D−1) ×D−1 A

(D) ×D v. (2.20a)

From successive mode products (2.20a) we obtain a natural factorization of D sum factors,
each corresponding to the contraction over a single tensor direction, referred to as sum
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factorization. The matrix-vector product (2.20a) is efficiently evaluated as follows

(Av)i1,...,iD =
n∑

j1=1
A

(1)
i1j1
· · ·

n∑
jD−1=1

A
(D)
iD−1jD−1

n∑
jD=1

A
(D)
iDjD

vj1,...,jD

=
n∑

j1=1
A

(1)
i1j1
· · ·

n∑
jD−1=1

A
(D)
iD−1jD−1

v
[1]
j1,...,jD−1,iD

...

=
n∑

j1=1
A

(1)
i1j1

v
[D−1]
j1,i2,...,iD

= v
[D]
i1,...,iD

(2.20b)

Starting in (2.20b) with the first D-mode product, an intermediate tensor v[1] is computed.
This involves D fixed indices j1, . . . , jD−1 and iD as well as one contraction index jD of the
sum factor. Therefore, computing the D-mode product v[1] we require O(nD+1) floating-point
operations. Proceeding similarly for the D − 1 remaining sum factors, the matrix-vector
multiplication Av is evaluated at the cost of O(DnD+1) arithmetic operations.

Similarly, a rank-r tensor product matrix A = ∑r
ν=1

⊗D
d=1A

(d)
ν is multiplied with v at the

cost of O(rDnD+1) floating-point operations. Therefore, vectors can be efficiently applied to
matrices with inherent low-rank tensorization. The same holds for the transpose of matrix
A due to (2.17). Sum factorization is easily generalized to anisotropic tensors (including
non-square matrices) and computational costs are given as above with n being the maximum
of all sub-dimensions,

n = max {n1, . . . , nD,m1, . . . ,mD} ,

where nd and md denote the number of rows and of columns for each direction d, respectively.

2.1.3 Fast Diagonalization

While sum factorization reduces the complexity of the “forward” problem (that is, matrix-
vector products), we also want to compute and apply the inverse of a low-rank tensor product
matrix at reduced computational costs by taking tensor structure into account. To this end,
we discuss a technique called fast diagonalization, first introduced in (Lynch et al., 1964),
that efficiently inverts matrices with a specific low-rank tensor representation.

Definition 2.1.12 (Separable Kronecker representation). Let n1, . . . , nD,m1, . . . ,mD <∞.
For rank-1 tensors A = ⊗D

d=1A
(d) and M = ⊗D

d=1M
(d) with A(d) and M (d) in Rmd×nd , the

separable Kronecker representation reads

S := [A � M] :=
D∑
ν=1

Bν (2.21a)
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with rank-1 tensors Bν ∈
⊗D

d=1 Rmd×nd defined by

B(d)
ν =

A
(ν), if d = ν

M (d), otherwise
(2.21b)

for all ν = 1, . . . , D.

In (2.21a) S ∈ RMxN defines the “vectorization” of the sum of Kronecker tensors in the
sense of the vector isomorphism (2.15). We continue to tacitly use roman letters for the
vectorization of tensors, and Fraktur letters as abbreviation for rank-1 tensors of matrices, for
instance, I denotes the tensor of identity matrices ⊗D

d=1 I
(d) in short from. We note that the

separable Kronecker representation has tensor rank D. The definition (2.21a) is concise for
any number of dimensions but seems cryptic at first sight; thus, let us clarify the “separable”
tensor structure for three dimensions,

[A � I] = A(1) ⊗ I(2) ⊗ I(3) + I(1) ⊗A(2) ⊗ I(3) + I(1) ⊗ I(2) ⊗A(3), (2.22)

In analogy to separable differential operators, see (Hackbusch, 2012, §1.2.4.1), the “action”
of rank-1 tensor A is separated between tensor directions. For instance, the separable
representation (2.22) is obtained for finite difference discretizations of the Laplacian, which
is a separable differential operator (Lynch et al., 1964).

For simplicity, assume isotropic tensor structures n = n1 = · · · = nD = m1 = · · · = mD.
Furthermore, assume matrices A(d) are symmetric and matrices M (d) are symmetric, positive
definite for d = 1, . . . , D. Then, we have D well-defined generalized eigenvalue problems1

such that

(Z(d))TA(d)Z(d) = Λ(d),

(Z(d))TM (d)Z(d) = I(d).
(2.23)

The columns of matrix Z(d) are the juxtaposed generalized eigenvectors and the diagonal
matrix Λ(d) carries the corresponding generalized eigenvalues, respectively, for each direction
d. Using the Kronecker product properties in Lemma 2.1.10, the separable Kronecker
representation (2.21) is transformed into diagonal form

ZT [A � M]Z = [L � I] (2.24a)

with rank-1 tensors Z = ⊗D
d=1 Z

(d),L = ⊗D
d=1 Λ(d) and I = ⊗D

d=1 I
(d). The latter is the

Kronecker tensor of identity matrices. Let Z and Λ denote the vectorization of Z and L,
respectively, then

ZTSZ = Λ (2.24b)
1See (Saad, 2011).
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is equivalent to (2.24a) in the sense of vector space isomorphism Φ introduced in (2.15). S
was defined before in (2.21). It becomes apparent that the columns of Z are eigenvectors of
S with corresponding eigenvalues given by the diagonal matrix Λ. Therefore, the inverse of
S has the form

S−1 = ZΛ−1ZT, (2.25)

and is well-defined by the following lemma.

Lemma 2.1.13. Let n1, . . . , nD < ∞ and A(d) and M (d) in Rnd×nd be simultaneously
diagonalizable matrices, i.e.,

(Z(d))−1A(d)Z(d) = Λ(d) and (Z(d))−1M (d)Z(d) = I(d) (2.26)

with identity matrices I(d) and generalized eigenvalues given by Λ(d) = diag(λ(d)
1 , . . . , λ

(d)
nd ) for

d = 1, . . . , D. If
D∑
d=1

λ
(d)
id
̸= 0 (2.27)

for all 1 ≤ id ≤ nd, then the Kronecker product S of separable Kronecker representation
[A � M] is invertible.

Proof. Let A,M and Λ denote the vectorization of A, M and
[⊗D

d=1 Λ(d) �
⊗D

d=1 I
(d)
]
,

respectively. Following (2.23) to (2.25) we derive

S−1 = ZΛ−1Z−1,

which is well-defined if Λ = diag(λ1, . . . , λN ) and Z are invertible, where N = ∏D
d=1 nd.

Using the Kronecker product properties in Lemma 2.1.10, Z is regular since all (Z(d))−1

are well-defined. From the special tensor structure
[⊗D

d=1 Λ(d) �
⊗D

d=1 I
(d)
]

and (2.27),
immediately follows

λi =
D∑
d=1

λ
(d)
id
̸= 0

for all 1 ≤ id ≤ nd, such that Λ is invertible.

Naïve algorithms inverting a N×N matrix require O(N3) = O(n3D) arithmetic operations.
The inverse S−1 in diagonal form (2.25) involves the computation of D generalized eigenvalue
problems, each is computed at the cost of O(n3) floating point operations. Computing the
inverse of diagonal matrix Λ costs the same, namely O(n3) operations. Taking the separable
tensor structure (2.21) into account, the costs of computing the inverse of S are reduced
from O(n3D) floating-point operations to O((D + 1)n3) which is why we call exploiting the
Kronecker product form in (2.25) fast diagonalization: the exponential dependency on D is
eliminated and so is the “curse of dimensionality”.
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Not only the computation of S−1 profits from the tensor structure also sum factorization
(introduced in Section 2.1.2) is applicable when applying S−1 to a vector v since S−1 is a
juxtaposition of Kronecker tensors and a diagonal matrix. Let v denote the tensorization of
v, then, Zv = Zv and ZTv = ZTv are evaluated each at the cost of O(DnD+1) arithmetic
operations by means of (2.20). The matrix-vector product with diagonal matrix Λ−1 requires
as many operations as the inner product of two vectors, i.e., O(N) = O(nD) operations,
being negligible. Using sum factorization reduces the total computational effort to O(DnD+1)
floating point operations compared to the O(n2D) operations for a naïve evaluation.
Remark 2.1.14 (Computational effort). Given the notation and definitions in (2.23) to (2.25),

1. inverting S costs O(Dn3) arithmetic operations and

2. a matrix-vector product with S−1v costs O(DnD+1),

if fast diagonalization is utilized.
Another benefit which is often forgotten is the significant decrease in memory, that is

consumed to store the fast diagonalization efficiently.
Remark 2.1.15 (Memory intensity). The fast diagonalization (2.25) requires to store only
Dn2 and Dn values, arising from the D one-dimensional generalized eigenvectors Z(d) and
eigenvalues Λ(d), respectively.

2.1.4 Kronecker Product Singular Value Decomposition

For the biharmonic and Stokes problem, we obtain discretization matrices that do not
admit the low-rank tensor representations needed for the fast diagonalization technique of
previous Section 2.1.3. To this end, we seek the best low-rank approximation with the specific
tensor structure needed. Van Loan and N. Pitsianis (1993) studied this problem and referred
to it as nearest Kronecker product problem. The mathematical tool to compute the best rank-r
approximation of any matrix is the Kronecker product singular value decomposition (KSVD).
We emphasize that the KSVD computes only order-2 tensor product approximations, i.e., it
applies only to two-dimensional PDEs in the context of this work. Higher order techniques exist
and are still an active field of research, for instance, the tensor train decomposition (Oseledets,
2011) or the multilinear SVD (De Lathauwer et al., 2000). However, none of them enables a
fast and direct inversion in higher dimensions compared to fast diagonalization.

The section starts with the problem statement:

Definition 2.1.16 (Nearest Kronecker product problem). Let A ∈ RM×N with factorizations
M = m1m2 and N = n1n2. The nearest rank-r Kronecker product problem reads: find
matrices Bν ∈ Rm1×n1 and Cν ∈ Rm2×n2 , ν = 1, . . . , r that minimize∥∥∥∥∥∥A−

r∑
ν=1

Bν ⊗ Cν

∥∥∥∥∥∥
F

. (2.28)
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In theory, a similar minimization problem could be stated for higher tensor orders as well,
for instance, seeking an approximation of order-3 Kronecker products that minimizes∥∥∥∥∥∥A−

r∑
ν=1

Bν ⊗ Cν ⊗Dν

∥∥∥∥∥∥
F

.

However, in practice, we see next that the methodology to solve the nearest Kronecker product
problem is restricted to tensor order two: a reshuffling of A’s matrix entries enables us to
postulate an equivalent minimization problem to (2.28) that can be solved utilizing a standard
singular value decomposition. To the best of our knowledge, there is no generalization to
dimensions higher than two.

We recall that the vectorization vect(·) transforms any tensor into a column vector based
on the lexicographic ordering from Section 2.1.1. In the case of matrices, vect(MT) is a
column vector obtained by stacking the columns of matrix M .

Definition 2.1.17 (Matrix reshuffling). Given A ∈ Rm×n with factorizations m = m1m2

and n = n1n2 its matrix reshuffling R(A) ∈ R(m1n1)×(m2n2) is defined as

R(A) =



vect(AT
11)T

vect(AT
21)T

...
vect(AT

m11)T

...

...
vect(AT

m1n1)T


, (2.29)

where matrix blocks A11, . . . , Am1n1 ∈ Rm2×n2 are determined by the block structure of A,

A =


A11 . . . A1n1

... . . . ...
Am11 . . . Am1n1

 . (2.30)

The matrix reshuffling is demonstrated in Figure 2.2: blocks of the 2× 3-block matrix A
are vectorized into rows, stacking the columns of each block and transposing afterward. Given
this matrix reshuflling, the nearest Kronecker product problem (2.28) can be reformulated:

Lemma 2.1.18. Let A ∈ RM×N with factorizations M = m1m2 and N = n1n2. For
matrices Bν ∈ Rm1×n1 and Cν ∈ Rm2×n2, ν = 1, . . . , r, it holds∥∥∥∥∥∥A−

r∑
ν=1

Bν ⊗ Cν

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥R(A)−
r∑

ν=1
vect(BT

ν ) vect(CT
ν )T

∥∥∥∥∥∥
F

. (2.31)
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A =


1 3 9 11 17 19
2 4 10 12 18 20
5 7 13 15 21 23
6 8 14 16 22 24

  R(A) =



1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24



Fig. 2.2 Matrix reshuffling of a 4× 6-matrix sub-structured into 2× 2-blocks.

r determines the maximal Kronecker rank of
∑r
ν=1Bν ⊗ Cν .

Proof. See (Van Loan and N. Pitsianis, 1993).

Lemma 2.1.18 enables us to seek the best approximation of R(A) subject to the Frobenius
norm for the fixed (matrix) rank r. The best approximation is ensured using a singular value
decomposition and the Eckart-Young theorem. The singular vectors and singular values after
reshuffling solve the nearest Kronecker product problem:

Corollary 2.1.19 (Kronecker product singular value decomposition). Let A ∈ RM×N with
factorizations M = m1m2 as well as N = n1n2 and R = min {m1n1,m2n2}. Let the triplet
of matrices U ∈ R(m1n1)×R, V ∈ R(m2n2)×R and Σ = diag(σ1, . . . , σR) denote the singular
value decomposition of matrix reshuffling R(A), that is

UTR(A)V = Σ. (2.32)

Then, the matrices Bν and Cν defined entrywise for all ν = 1, . . . , r by

vect(BT
ν )i = √σνUiν , i = 1, . . . ,m1n1,

vect(CT
ν )i = √σνViν , i = 1, . . . ,m2n2,

(2.33)

minimize ∥∥∥∥∥∥A−
r∑

ν=1
Bν ⊗ Cν

∥∥∥∥∥∥
F

for a fixed tensor rank r ≤ R.

Proof. Use Lemma 2.1.18 and the best-approximation property of the singular value decom-
position.

We refer to the computation of Bν and Cν given by (2.33) as Kronecker product singular
value decomposition (KSVD). To allow for large matrices (arising from high-order finite
element discretizations) and exploiting tensor structure, we decide to use Golub-Kahan
bidiagonalization (G. Golub and Kahan, 1965) (which relates to Lanczos tridiagonalization)
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to efficiently compute good approximations of the largest r singular values, see Algorithm 1.
The key motivation for Algorithm 1 is that the algorithm involves the matrix A only through
matrix-vector products with its reshuffling R(A), and does not need access to single matrix
entries. The orthogonalization in lines 6 and 10 of Algorithm 1 accelerates the convergence
of σ̃1, . . . , σ̃r towards the largest singular values of R(A) (G. H. Golub and Van Loan, 2013).

For our purposes, i.e., computing KSVDs for Kronecker ranks not larger than two or
three, extra costs from orthogonalizing through a modified Gram-Schmidt process paid off.
Throughout this work, we choose a threshold ϵ close to the given floating-point accuracy
and NLanc = rA + 1, which means NLanc is larger by one than the tensor rank of the input
matrix A. Thus, the r largest singular values and singular vectors are computed up to the
accuracy given by ϵ. A smaller number NLanc might be used to compute the rank-r KSVD
with reduced computational complexity, but at least as large as r. However, the trade-off is
less accurate approximations of the leading singular values and singular vectors. For more
insights and subtleties to tweak Algorithm 1, we recommend (G. H. Golub, Luk, et al.,
1981; G. H. Golub and Van Loan, 2013; G. Golub and Kahan, 1965; Simon and Zha, 2000;
Van Loan and N. Pitsianis, 1993) to the interested reader.

Algorithm 1 The Kronecker product SVD computes A ≈∑r
ν=1Bν ⊗ Cν .

1: procedure KSVDr(A)
2: Choose initial p1 such that β1 ←∥p1∥2 = 1 and u1 ← 0
3: for k = 1 to NLanc do
4: vk ← β−1

k pk
5: rk ← R(A)vk − βk uk
6: Orthogonalize r1, . . . , rk
7: αk ←∥rk∥2
8: uk+1 ← α−1

k rk
9: pk+1 ← R(A)Tuk+1 − αkvk

10: Orthogonalize p1, . . . , pk+1
11: βk+1 ←∥pk+1∥2
12: if βk+1 < ϵ then
13: break
14: end if
15: end for ◃ stopped after n iterations
16: Û ←

[
u2| . . . |un+1

]
17: V̂ ←

[
v1| . . . |vn

]
18: Set bidiagonal matrix D with diagonal (α1, . . . , αn) and super-diagonal (β2, . . . , βn)
19: Compute rank-r SVD ŨTDṼ = Σ̃r with singular values Σ̃r = diag (σ̃1, . . . , σ̃r)
20: U ← Û Ũ
21: V ← V̂ Ṽ
22: Set Bν and Cν as detailed in (2.33) for ν = 1, . . . , r
23: return {Bν , Cν}ν=1,...,r
24: end procedure
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Assuming the input matrix A of Algorithm 1 has already a low-rank tensor representation
with rank rA, the matrix-vector product with R(A) and R(A)T is computed at the cost of
an inner product of vectors, respectively. For simplicity, consider a rank-1 matrix

A = A(1) ⊗A(2)

with A(1), A(2) ∈ Rn×n. The respective matrix reshuffling reads

R(A(1) ⊗A(2)) = vect(A(1)) vect(A(2))T. (2.34)

Note that the right-hand side in (2.34) is the outer product between two (column) vectors,
vect(A(1)) and vect(A(2)). Then, the computational costs of the matrix-vector product

R(A(1) ⊗A(2))v =
(
vect(A(2))T · v

)
vect(A(1)) (2.35)

are dominated by the inner product, requiring only O(n2) arithmetic operations in total.
Given a rank-rA matrix, the operations accumulate to O(rAn2). The computational effort
of a modified Gram-Schmidt process (used for orthogonalization in lines 6 and 10) is also
dominated by computing inner products; thus, we conclude:

Remark 2.1.20 (Reduced computational effort). Given an input matrix A with low-rank
tensor representation

A =
rA∑
ν=1

A(1)
ν ⊗A(2)

ν ,

where A(1)
ν and A

(2)
ν ∈ Rn×n, then, computing the rank-r KSVD through Algorithm 1 up

to floating-point accuracy requires only O(rArn2) arithmetic operations. Therefore, the
computational effort is linear in the number of unknowns, which is 2rn2.

For low ranks r, storing the rank-1 tensors of the rank-r KSVD requires much less memory
than storing the vectorization of Kronecker products in the sense of (2.15). We emphasize
that a single matrix entry is not accessible in this format. However, there is no need for this
access: in this work, we will either use the elementary tensors directly for fast diagonalization
or apply them to a vector. The latter is efficiently computed via sum factorization, see (2.20).

Remark 2.1.21 (Memory intensity). Storing the rank-r KSVD requires only 2rn2 values
arising from the r elementary tensors, each consisting of two n× n matrices.

2.2 Matrix-free Operator Evaluation

Assuming a discretization matrix A, “matrix-free” simply refers to repeatedly computing the
matrix-vector multiplication Av with interchanging vectors v without ever storing matrix
entries for subsequent multiplications in (main) memory. In other words, the matrix entries
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are re-computed on-the-fly. Conceptually, the memory intensity is significantly reduced but
at the price of repetitive arithmetic operations. The great success of and ever-growing interest
in matrix-free methods comes ultimately from leveraging a technique called sum-factorization
that constitutes the method’s heart by successively applying small parts of the discretization
matrix to the vector efficiently. In the context of finite elements, these “parts” are defined by
cells or facets.

In the context of integration-based evaluation, sum-factorization was first introduced
in the spectral element community, originating from the work in (Orszag, 1980). In the
90s and 00s first matrix-free methods were systematically improved and implemented by
the spectral element community. P. F. Fischer (1990) and P. F. Fischer and Patera (1991)
developed methods for high-order spectral element discretizations of unsteady incompressible
Navier-Stokes and Stokes equations in general three-dimensional domains, respectively, and
implemented them on medium-grained and distributed-memory parallel computers. The work
was continued later by tera-scale spectral element algorithms and implementations (Tufo
and P. F. Fischer, 1999), efficient overlapping Schwarz methods (P. F. Fischer, Tufo, et al.,
2000) and hybrid multigrid/Schwarz algorithms (Lottes and P. F. Fischer, 2005) on complex
three-dimensional geometries solving incompressible flow problems. In the past 10 to 15 years
their pioneering work has drawn attention to other researching communities, in particular, to
those studying high-order finite element methods.

First, Brown (2010), Cantwell, S. J. Sherwin, et al. (2011), and Vos et al. (2010) discussed
implementation strategies for non-linear solvers exploiting tensor product shape functions
in the context of hexahedral spectral/hp elements. Then, Kronbichler and Kormann (2012)
developed and discussed matrix-free methods in the context of continuous finite elements.
Later, these methods were extended, generalized or adapted to high-order discontinuous
Galerkin discretizations in (Kempf et al., 2020; Kronbichler and Allalen, 2018; Kronbichler
and Kormann, 2019; Kronbichler, Kormann, Pasichnyk, et al., 2017; Müthing et al., 2017).
We emphasize the recent activities of SPPEXA projects TerraNeo (Bauer et al., 2020), EXA-
DUNE (Bastian, Altenbernd, et al., 2020), and ExaDG (Arndt, Fehn, et al., 2020), and the
international collaboration (P. Fischer et al., 2020) striving towards Exascale computing and
continuing the work of (Gmeiner et al., 2015; May et al., 2014; Rudi et al., 2015): matrix-free
methods have proven to be the state-of-the-art implementation for numerical PDE solvers in
the high-performance computing context, in particular, when large-scale, high-performance
simulations are computed on the world’s fastest supercomputers.

The broad interest comes also from the fact that modern hardware consists of multi-
core architectures with steadily improving SIMD capabilities, increasing the computational
performance at a higher pace than the memory bandwith. Consequently, many researchers
actively developed matrix-free methods tailored to modern computer hardware, available in
well-known academic software:
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• deal.II (Arndt, Bangerth, Blais, et al., 2020; Arndt, Bangerth, Davydov, et al., 2021)

• DUNE (Bastian, Blatt, et al., 2021) and (Bastian, Altenbernd, et al., 2020; Bastian,
Engwer, et al., 2016)

• MFEM (Anderson et al., 2021)

• NGSolve (Schöberl, 2014)

• Firedrake (McRae et al., 2016; Rathgeber et al., 2016)

• Nek5000 (P. F. Fischer, Lottes, and Kerkemeier, 2008)

• Nektar++ (Cantwell, Moxey, et al., 2015)

Throughout this work, we utilize the matrix-free framework of the general-purpose
object-oriented finite element library deal.II for numerical implementations. The break-
even point at which matrix-free implementations of finite element operators are not only
competitive but superior to classical sparse matrix codes is already low on modern hardware:
Kronbichler and Kormann (2012), Kronbichler and Kormann (2019), and May et al. (2014)
proved that matrix-free methods are more efficient than matrix-based counterparts from
finite element order three onwards, with a quickly growing gap for high-order elements.
deal.II’s matrix-free framework features SIMD vectorizations over elements, optimized sum
factorization kernels (computing (2.20) with highest performance), various looping strategies
for integration (over cells and facets independently, or in a single sweep over elements involving
face integrals), efficient tensor structured mappings for generic and complex geometries, and
tailored finite elements like the Hermite-like variant in (Kronbichler, Kormann, Fehn, et al.,
2019) optimizing data access patterns. For more details and recent advances of deal.II’s
matrix-free framework, we refer to (Arndt, Bangerth, Davydov, et al., 2021; Arndt, Fehn,
et al., 2020; Kronbichler and Kormann, 2012; Kronbichler and Kormann, 2019). In addition,
we recommend other excellent works that demonstrate alternative concepts. For instance,
promising SIMD strategies in (Müthing et al., 2017) with the issue of code sustainability and
performance portability being mitigated by code generation in (Kempf et al., 2020).

In this section, we first introduce standard finite elements and quadrature rules with focus
on their tensor structure. Afterward, we exemplify on basis of discretizing the Laplacian
in which way tensor structure enables sum factorization. We explain how efficient operator
application leads to significantly reduced computational costs and memory intensity. In
particular, assuming isotropic polynomials with order n in D spatial coordinates, we highlight
that matrix-free operator evaluation reduces the cost of naïve operator evaluation from O(nD)
arithmetic operations per unknown to O(Dn), see also (Arndt, Fehn, et al., 2020; Kronbichler
and Kormann, 2012; Kronbichler and Kormann, 2019).
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2.2.1 Tensor Product Finite Elements

We start with the definition of tensor product finite elements, defining the tensor product of
polynomials first.

Definition 2.2.1 (Tensor product of polynomials). Let Pk be the space of univariate
polynomials of degree up to k and k1, . . . , kD < ∞. The tensor product of univariate
polynomials is defined by

φ̂(1) ⊗ φ̂(2) · · · ⊗ φ̂(D)(x) :=
D∏
d=1

φ̂(d)(xd), (2.36)

for φ̂(d) ∈ Pkd , d = 1, . . . , D. The tensor product space of polynomials is defined as

Qk1,k2,...,kD :=
D⊗
d=1
Pkd := span


D⊗
d=1

φ̂(d) | φ̂(d) ∈ Pkd , d = 1, . . . , D

 . (2.37)

If k = k1 = · · · = kD, tensors are called isotropic and the isotropic tensor product space is
denoted

Qk := Qk,k,...,k. (2.38)

Polynomials in Qk1,...,kD are multivariate, meaning they have as many variables as tensor
dimensions, here D. The elementary tensors of the form (2.36) are a product of univariate
functions, and thus this tensor structure is often referred to as separation of variables. Note
that Qk1,...,kD is a Hilbert space with the inner product being induced from the multiplication
of inner products for each Pkd . For more details on topological tensor products, in particular
tensor products of Hilbert spaces, we recommend (Hackbusch, 2012, §4). For instance, tensor
products for other classes of functions than polynomials are analogously defined, but one has
to be careful with the definition of the tensor space (2.38): in the infinite-dimensional case,
topological tensor spaces require closure with respect to some norm.

Lagrange element. We follow P. Ciarlet (1978) and introduce the Lagrange element as
a triplet of a domain (referred to as cell), shape function space, and set of node functionals.
In particular, using quadrilateral or hexahedral cells, we utilize their natural tensor structures.
In this section, we write Pk([0, 1]) or Qk([0, 1]D) to explicitly refer to univariate polynomials
on the unit interval or tensor product polynomials on the unit hypercube, respectively. In
subsequent sections, we will omit to specify the domain in favor of a concise notation.

Definition 2.2.2. The Lagrange element of degree k on the unit interval is the triplet
([0, 1],Pk([0, 1]),Σ1D). The shape functions φ̂i ∈ Pk([0, 1]) are defined as dual basis of
N̂ 1D
j ∈ Σ1D, that is

N̂ 1D
j (φ̂i) = δij
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for all i, j = 1, . . . , ndof. The node functionals are uniquely determined by the set of Gauss-
Lobatto support points

{
ŷj
}

in [0, 1],

N̂ 1D
j (φ̂) = φ̂(ŷj). (2.39)

The number of degrees of freedom ndof equals (k + 1).

We emphasize that any choice of support points defining linearly independent node
functionals is possible. For reasons of numerical stability, we choose Gauss-Lobatto support
points which are superior to equidistant nodal points (G. Karniadakis and S. Sherwin, 2005).
Using lexicographic ordering, we abbreviate multi-index notation i1, . . . , iD by i. Therefore,
we utilize the tensor product notation from previous sections to linear forms

Ni := N (1)
i1
⊗N (2)

i2
⊗ . . .⊗N (D)

iD
:=

D∏
d=1
N̂ (d)
id
. (2.40)

Here, (2.40) suffices to introduce tensor products of linear forms, which are elaborated
in (Hackbusch, 2012). The Lagrange element on the unit hypercube is defined as isotropic
tensor product.

Definition 2.2.3 (Lagrange element). The Lagrange element of degree k on the unit hyper-
cube K̂ = [0, 1]D is the triplet (K̂,Qk(K̂),Σ). The node functionals N̂j ∈ Σ are defined as
tensor product of univariate node functionals from (2.39),

N̂j(φ̂(1) ⊗ . . .⊗ φ̂(D)) =
D∏
d=1
N̂ 1D
jd

(φ̂(d)). (2.41)

The shape functions ϕ̂i ∈ Qk(K̂) are defined as dual basis of N̂j , that is

N̂j(ϕ̂i) = δij

for all i, j = 1, . . . , Ndof. The number of degrees of freedom Ndof is (k + 1)D.

We emphasize that basis node functionals N̂j are only defined for rank-1 tensors in (2.41).
However, due to linearity and span property (2.37) they are well-defined for any tensor product
polynomial in Qk. A favorable characteristic is that a tensor product of basis elements is a
basis element for its tensor product space. The Cartesian product of Gauss-Lobatto points
on the unit interval defines a Gauss-Lobatto point on the unit cell K̂,

ŷi = (ŷi1 , . . . , ŷiD).
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Consequently, the basis of shape functions determined by Definition 2.2.3 reads

ϕ̂i(x̂) =
D∏
d=1

φ̂
(d)
id

(xd) (2.42)

for all 1 ≤ id ≤ k + 1, d = 1, . . . , D, and is as such a nodal basis in Gauss-Lobatto points on
K̂ by duality.

The shape function spaces V (K) on actual mesh cells K are obtained by composition
with the mapping FK : K̂ → K such that the basis of shape functions reads

ϕK,i(x) = ϕ̂i ◦ F −1
K (x), x ∈ K, (2.43)

for all i = 1, . . . , Ndof.
Similarly, we define elements for the same polynomial space but with moment-based

degrees of freedom.

Definition 2.2.4. The Legendre element of degree k on the unit interval is the triplet
([0, 1],Pk([0, 1]),Σ1D

Leg). The shape functions φ̂i ∈ Pk([0, 1]) are defined as dual basis of
N̂ 1D
j ∈ Σ1D

Leg, that is
N̂ 1D
j (φ̂i) = δij

for all i, j = 1, . . . , ndof. The node functionals are uniquely determined by L2-orthogonality,

N̂ 1D
j (φ̂) =

∫ 1

0
φ̂φ̂j dx̂, (2.44)

involving a normalization condition for i = j. The number of degrees of freedom ndof equals
(k + 1).

We refer to this finite element as Legendre element since the shape function basis{
φ̂1, . . . , φ̂ndof

}
consists of the well-known Legendre polynomials, which are usually defined on [−1, 1] and
with different normalization condition. In literature, we frequently find the normalization
condition

φ̂i(1) = 1 (2.45)

instead of using
N̂ 1D
i (φ̂i) =

∫ 1

0
φ̂2
i dx̂

as part of (2.44). Both conditions have their own merits.
The definition is a construction principle that reflects the hierarchical character of Legendre

elements: starting with degree zero, φ̂1 ≡ 1 is uniquely determined by normalization. Then,
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from orthogonality to φ̂1 and normalization φ̂2(x) = x is obtained, and so on for higher degrees.
We still refer to N̂ 1D

j as node functionals, although strictly speaking, these functionals are
moments. The Legendre element on the unit hypercube is simply the isotropic tensor product
of univariate Legendre elements.

Definition 2.2.5 (Legendre element). The Legendre element of degree k on the unit hyper-
cube K̂ = [0, 1]D is the triplet (K̂,Qk(K̂),ΣLeg). The node functionals N̂j ∈ ΣLeg are defined
as tensor product of univariate node functionals from (2.44),

N̂j(φ̂(1) ⊗ . . .⊗ φ̂(D)) =
D∏
d=1
N̂ 1D
jd

(φ̂(d)). (2.46)

The shape functions ϕ̂i ∈ Qk(K̂) are defined as dual basis of N̂j , i.e.,

N̂j(ϕ̂i) = δij

for all i, j = 1, . . . , Ndof. The number of degrees of freedom Ndof is (k + 1)D.

The conformity of finite elements is determined by its degree of inter-element continuity.
To this end, it is crucial that degrees of freedom are closely related to geometrical entities,
like vertices, edges, faces, to impose some sort of continuity between elements, since they
are smooth in the interior of each element. For instance, Lagrange elements have degrees of
freedom associated with vertices, edges, and faces. Thus, it is possible to impose global C0

regularity. Whereas the moment-based functionals (2.46) are solely associated with the cell
which makes Legendre elements piecewise discontinuous approximations by nature. This topic
is, among others, comprehensively studied in (Arnold, Boffi, and Bonizzoni, 2014; Arnold,
Falk, and Winther, 2006, 2010) given the periodic table of finite elements2.

Quadrature. A quadrature formula on the unit cell K̂ is defined as D-fold tensor
product of one-dimensional quadrature formulas on the unit interval. Let the set of pairs{
(x̂qd , wqd)

}
q=1,...,nquad

characterize a one-dimensional quadrature rule. Then, abscissas and
weights of a D-dimensional quadrature formula are defined by

x̂q = (x̂q1 , . . . , x̂qD) and wq =
D∏
d=1

wqd , (2.47)

for all 1 ≤ qd ≤ nquad, d = 1, . . . , D. Choosing the same one-dimensional rule for each spatial
dimension implies isotropy such that q ∈ {1, . . . , Nquad}, where Nquad equals nDquad, denoting
the number of D-dimensional quadrature pairs.

Let Vh denote a generic finite element space associated with mesh Th of characteristic size
h such that uh|K ∈ V (K) for any uh ∈ Vh and K ∈ Th; “generic” in the sense that we do not

2See https://www-users.cse.umn.edu/~arnold/femtable/background.html.

https://www-users.cse.umn.edu/~arnold/femtable/background.html
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specify inter-element constraints. For instance, in case of discontinuous Galerkin methods for
elliptic problems

Vh =
{
v ∈ L2(Ω) | v|K ∈ V (K) ∀K ∈ Th

}
=
⊕
K∈Th

V (K),

which means no inter-element continuity is imposed (Arnold, Brezzi, et al., 2002). The global
basis

{ϕi}i=1,...,Nh

defines by duality the coefficient space RNh of the same dimension as Vh equipped with
the Euclidean inner product. In computations, this is the inner product used to compute
norms, such that we will identify Vh with the coefficient space and do not distinguish them
in notation: to be precise any finite element function uh ∈ Vh reads

uh(x) =
Nh∑
i=1

uh;iϕi(x),

where uh on the right-hand side is a coefficient vector in RNh . Nh denotes the number of
global degrees of freedom on the mesh Th.

2.2.2 Efficient Operator Application of the Laplacian

To demonstrate “matrix-free operator evaluation” or “efficient operator application”, respec-
tively, we assume applying a vector of coefficients uh to an abstract finite element matrix Ah.
Due to the domain decomposition given by a mesh Th, the matrix-vector product reads

Ahuh =
∑
K∈Th

ΠT
h;KAh;KΠh;Kuh =

∑
K∈Th

ΠT
h;KAh;KuK , (2.48)

where Ah;K represents the local contribution of Ah for each cell K. The transfer from
global degrees of freedom to local degrees of freedom is denoted by Πh;K , i.e., the restriction
operator to the local coefficient space RNdof . The transpose of the restriction prolongates
local coefficient vectors into the global coefficient space RNh . From now on, we suppress the
mesh index h if it occurs along with cell index K. For example, we write in short AK and
ΠK instead of Ah;K and Πh;K , respectively.

In classical finite element codes, the discretization matrix Ah is assembled from local
matrices AK and stored in a sparse matrix format. However, on modern computing archi-
tectures, in particular large-scale computer clusters, transferring data in main memory has
become the major limiting factor. In addition, most iterative methods utilize (discretization)
matrices only through matrix-vector products, not needing access to specific matrix entries.
Matrix-free methods leverage this fact, efficiently computing the numerical integration on-
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the-fly in each cell K, i.e., computing AKuK without storing local matrices AK or even the
sparse matrix Ah. To be competitive with or superior to classical sparse matrix formats
(in the sense of runtime), exploiting the tensor structure of finite elements and quadrature
rules is crucial. In that case, we refer to Ahuh as efficient operator application or matrix-free
operator evaluation to stress the integration-based application or evaluation. Consequently,
Ah is implemented as linear operator rather than as matrix.

The computational efficiency of matrix-free methods was claimed in this section’s intro-
duction, but it was not shown how it is realized. The efficiency comes from exploiting tensor
structure through sum factorization. Let us exemplify the benefits and implementation of
sum factorization on the basis of the Laplacian. The respective finite element discretization
for each cell K is given by

(AK)i,j =
∫
K

∇ϕK;j(x) ·∇ϕK;i(x) dx

=
∫
K̂

(
Ĵ−T
K (x̂)∇̂ϕ̂i(x̂)

)
·
(
Ĵ−T
K (x̂)∇̂ϕ̂j(x̂)

)
det
(
ĴK(x̂)

)
dx̂

(2.49)

for i, j = 1, . . . , Ndof. A simple change of variables from real to unit coordinates results in
the identity (2.49): the gradient of shape functions in real space expressed as gradient of unit
shape functions is the result of the multi-dimensional chain rule and (2.43), involving the
Jacobian, which is defined by

(ĴK)ij = ∂̂jFK;i.

Using the Gauss quadrature from (2.47) for integration, a cell-local operator application reads

(AKuK)i =
Nquad∑
q=1

det
(
ĴK(x̂q)

)
wq

(
Ĵ−T
K (x̂q)∇̂ϕ̂i(x̂q)

)
·

Ĵ−T
K (x̂q)

Ndof∑
j=1

∇̂ϕ̂j(x̂q)uK;j

 (2.50)

for i = 1, . . . , Ndof. Assuming tensor product finite elements, the number of quadrature
points Nquad and number of degrees of freedom Ndof is proportional to (ndof)D, respectively,
such that a naïve evaluation of (2.50) costs O((ndof)2D) arithmetic operations.

The computational complexity is reduced by factorizing both sums in (2.50), utilizing
tensor structure of finite elements and of quadrature rules, respectivley. Using isotropic
tensor product shape functions, the first vector component of ∇̂ϕ̂j decomposes into

∂1ϕ̂j(x̂) = φ̂′
j1(x1)φ̂j2(x2) . . . φ̂jD(xD). (2.51)

We introduce matrices Φ and Φ′ carrying the univariate shape functions and gradients,
respectively, each evaluated in each quadrature point,

Φi,q = φi(xq) and Φ′
i,q = φ′

i(xq) (2.52)



36 Preliminaries

for i = 1, . . . , ndof and q = 1, . . . , nquad. Let u be the tensorization of uK , the interpolation of
∂1uh on the reference cell K̂ can be written as D consecutive mode products,

Ndof∑
j=1

∂1ϕ̂j(x̂q)uK;j =
ndof∑
i1=1

φ̂′
i1(x̂q1)

ndof∑
i2=1

φ̂i2(x̂q2) · · ·
ndof∑
iD=1

φ̂iD(x̂qD)ui1,...,iD

=
(
Φ′ ×1 Φ×2 . . .Φ×D u

)
q1,...,qD

=: û∂1
q1,...,qD

(2.53)

It is computed at the cost of a single sum factorization, see Section 2.1.2 for details. We
have similar sum factorizations for remaining components ∂2uh, . . . , ∂Duh. The RD-valued
interpolation tensor of ∇uh on element K reads

u∇
q1,...,qD

:=


u∂1
q1,...,qD

...
u∂Dq1,...,qD

 (2.54a)

with

u∂dq1,...,qD =
D∑
r=1

(
Ĵ−T
K (x̂q)

)
d,r

û∂rq1,...,qD (2.54b)

for all 1 ≤ qd ≤ nquad. In other words, u∇ is a D-dimensional array where each element
u∂dq1,...,qD is a real-valued (column) vector in RD. Note that u∇ represents the term in square
brackets in (2.50).

The right-hand side of (2.50) without this term describes testing against the gradients of
shape functions ϕK;1, . . . , ϕK;Ndof . The sum over quadrature indices is again factorizable, but
a change of variables from real to unit space needs to applied first. To this end, we define
the intermediate RD-valued tensor

v̂q1,...,qD :=
(
v̂1
q1,...,qD , . . . , v̂

D
q1,...,qD

)
(2.55a)

by

v̂dq1,...,qD = det
(
ĴK(x̂q)

)
wq

D∑
r=1

u∂rq1,...,qD

(
Ĵ−T
K (x̂q)

)
r,d

(2.55b)

for all 1 ≤ qd ≤ nquad. wq refers to the quadrature weight introduced in (2.47). The number
of univariate quadrature points nquad is (almost) identical to ndof. Finally, the local operator
application from (2.50) reads

(AKuK)i =
D∑
d=1

v∂di1,...,iD :=
Nquad∑
q=1

v̂q1,...,qD∇̂ϕ̂i(x̂q) (2.56a)
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The right-hand side of (2.56a) is evaluated using a sum factorization analogous to (2.53), but
here over quadrature indices instead of degrees of freedom,

v∂1 = (Φ′)T ×1 ΦT ×2 . . .ΦT ×D v̂1 (2.56b)

Similar factorizations are obtained for v∂2 , . . . , v∂D . Consequently, the local matrix-vector
product AKuK is efficiently evaluated through successively computing the tensors in (2.53)
to (2.56). In total O(D2(ndof)D+1) arithmetic operations are required: the D sum factoriza-
tions in (2.53) and (2.56b) with O(D2(ndof)D+1) operations dominate the change of variables
in (2.54) and (2.55) with O(D2(ndof)D) operations, respectively. We emphasize that the
successive steps (2.53) to (2.56) for matrix-free operator evaluation AKuK are in prinicple
the same for other differential operators than the Laplacian. In particular, integrals over
facets which are inherent in discontinuous Galerkin discretizations are treated similarly in
theory. Moreover, a space-dependent coefficient, for instance, a diffusion coefficient in (2.49),
enters the transformation of the interpolation from real to unit space in (2.55) naturally. For
most tensor product elements, the number of univariate degrees of freedom ndof is almost
identical to a polynomial degree k, which is used in Remark 2.2.6. The section is concluded
with a remark on the computational effort.

Remark 2.2.6 (Computational effort). Instead of assembling Ah and applying a vector uh
afterward, i.e., computing Ahuh, the underlying integration and application given uh are
folded into a single operation, following the successive steps (2.48), (2.50) and (2.53) to (2.56).
Then, due to making use of sum factorization the arithmetic work per degree of freedom is
linear in k instead of kD. In that case, we refer to Ahuh as efficient operator application or
matrix-free operator evaluation.

2.3 Multilevel Schwarz Methods

The basic principle of multigrid methods traces back to Fedorenko and Bachwalow. In the
late 1970s, Brandt and Hackbusch independently developed multigrid methods that could
be applied in practice. The original work on Schwarz methods goes back to Schwarz (1870).
The review article (Xu, 1992) draws the link between the multigrid and Schwarz theory. In
view of this, we refer to a geometric multigrid method using Schwarz smoothers as multilevel
Schwarz methods.

2.3.1 Geometric Multigrid Method

A geometric multigrid method is a careful balance of components such as discretizations,
smoothers, and transfer operators concerning a common partial differential equation, deter-
mining the method’s success. If all components are chosen well and implemented correctly,
the arithmetic complexity is linear in the number of unknowns. A detailed convergence and
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complexity analysis is found in (Bramble, 2019; Hackbusch, 1985; Rannacher, 2017). This
monograph relies on V-cycle multigrid preconditioners with Schwarz smoothers. To this
end, we introduce their components in the finite element context next, in particular, the
components that are common to all problems in subsequent chapters.

Hierarchy. We subdivide the physical domain Ω into meshes Tℓ for levels ℓ = 1, . . . , L,
where the finest level L is the actual discretization level on which we want to solve the
finite element problem. The intermediate levels ℓ < L form the hierarchy for the geometric
multigrid method. Each mesh consists of a collection of quadrilateral/hexahedral cells K,
which are obtained by a mapping FK from the reference cell K̂ = [0, 1]D. The relation of
these meshes is defined by induction as follows: starting from a coarse mesh T1 consisting of
few cells at most, we generate a hierarchy of meshes Tℓ for levels ℓ = 1, . . . , L by recursively
splitting each cell in Tℓ with respect to its midpoint into 2D children in Tℓ+1. These meshes
are nested in the fashion that every cell of Tℓ is equal to the union of its 2D children in Tl+1

as well as conforming in the sense that either any edge/face of the cell is at the domain’s
boundary or an entire edge/face of an adjacent cell. Simplifying notation, we use the term
facet to denote an edge in two- and a face in three dimensions. In geometry, a facet is a
polytope of exactly one dimension less than the structure itself. Throughout this work, nested
spaces with hierarchic ordering are used,

V1 ⊂ . . . ⊂ Vℓ ⊂ . . . ⊂ VL, (2.57)

where Vℓ denotes a generic finite element space for level ℓ. We note that adaptive mesh
refinement is not trivially compatible with the Schwarz smoothers presented later; thus, we
limit ourselves to a uniform refinement policy as detailed before. The generic structure of a
single V-cycle multigrid step is summarized in Algorithm 2.

Transfers. If not stated otherwise we choose generic transfer operators between the
nested spaces: the prolongation I↑

ℓ : Vℓ → Vℓ+1 is the natural embedding from Vℓ into Vℓ+1.
The restriction I↓

ℓ+1 : Vℓ+1 → Vℓ is defined as the adjoint of the prolongation preserving
symmetry when transferring between meshes. To be precise, the adjoint is defined with
respect to the Euclidean inner product in the coefficient spaces, thus, in matrix form I↓

ℓ+1 is
the transpose of I↑

ℓ .
Smoothers. The discretization operators Aℓ and, in particular, smoothers Spre

ℓ and Spost
ℓ

for each level are the focal point of this monograph: these depend on the application at hand,
and will be developed and analyzed in subsequent chapters.

Coarse-grid solver. Assuming a coarse mesh T1 consisting of few cells at most, we
simply use a direct method as coarse-grid solver A−1

1 . We postpone the explicit definition of
the direct method.
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Algorithm 2 V-cycle of geometric multigrid method
1: procedure MGℓ(xℓ, bℓ)
2: if ℓ = 1 then
3: x1 ← A−1

1 b1 ◃ coarse-grid solver
4: end if
5: for k = 1 to mpre do
6: xℓ ← Spre

ℓ (xℓ, bℓ) ◃ pre-smoothing
7: end for
8: bℓ−1 ← I↓

ℓ−1

(
bℓ −Aℓxℓ

)
◃ restriction

9: eℓ−1 ← MGℓ−1(0, bℓ−1) ◃ recursion
10: xℓ ← xℓ + I↑

ℓ−1eℓ−1 ◃ prolongation
11: for k = 1 to mpost do
12: xℓ ← Spost

ℓ (xℓ, bℓ) ◃ post-smoothing
13: end for
14: return xℓ
15: end procedure

2.3.2 Schwarz Smoothers

We use the terms Schwarz smoothers or domain decomposition smoothers in the context
of geometric multigrid methods and many very small subdomains, on which we solve the
differential equation either exactly or sometimes approximately. Because of Xu’s review
in (Xu, 1992), which unifies the theory of iterative methods, domain decomposition methods,
and multigrid methods, we refer to the multigrid method from Section 2.3.1 using Schwarz
smoothers as multilevel Schwarz methods. We have a particular interest in solving the many
subspace problems cost-efficiently by exploiting tensor structure. In this context, we refer
to them as tensor product Schwarz smoother. We will develop and discuss different tensor
product Schwarz smoothers for various applications. A unified theory for second-order elliptic
problems using conforming finite element methods was developed by Dryja and O. B. Widlund
(1990) and O. Widlund and Dryja (1990). Two-level additive Schwarz methods, overlapping
and nonoverlapping, for discontinuous Galerkin discretizations were analyzed in (Feng and
Karakashian, 2001). Feng and Karakashian (2005) extended their theory to fourth-order
elliptic problems, namely the biharmonic equation. In addition, a theory for cell-based
smoothers for the symmetric interior penalty method was found in (Kanschat, 2008), which
has been generalized to singularly perturbed reaction-diffusion problems in (Lucero Lorca
and Kanschat, 2018): Lucero and Kanschat have also generalized the convergence analysis
from (Dryja and Krzyżanowski, 2016) to quadrilateral and hexahedral meshes. Further
examples from literature are Hdiv(Ω) and Hcurl(Ω) smoothers, introduced by Arnold, Falk,
and Winther (1997) and Arnold, Falk, and Winther (2000). This group of methods has
been successfully generalized to Stokes (Kanschat and Mao, 2015) and later Darcy-Stokes-
Brinkman (Kanschat, Lazarov, et al., 2017) problems. This collection of literature covers
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Kj vj

Fig. 2.3 Cell-based subdomain (left) and vertex patch (right).

Schwarz smoothers that will be discussed throughout this monograph - regarding discontinuous
and conforming elements, respectively, for the Poisson problem (Chapter 3), the biharmonic
problem (Chapter 4) and the Stokes problem (Chapter 5). The Schwarz smoothers referenced
before have in common that local solvers either on cells or on patches of cells around a vertex
were used.

1. cell-based smoothers: each subdomain of the spatial decomposition on level ℓ consists
of a single cell of the mesh Tℓ as depicted in Figure 2.3. After enumerating the cells in
Tℓ as Kj with j = 1, . . . , Jℓ, the subspaces Vℓ;j ⊂ Vℓ consist of functions with support
in the cell Kj . Details on subspaces are deferred to sections with a finite element
discretization specified. For instance, the spatial decomposition is nonoverlapping for
discontinuous finite elements, consequently, Vℓ is the direct sum of subspaces Vℓ;j .

2. vertex patch smoothers: each subdomain Ωj is a patch of cells sharing the vertex vj
(after enumeration) as shown in Figure 2.3. We refer to the local mesh Tℓ;j ⊂ Tℓ as
vertex patch. The subspaces Vℓ;j ⊂ Vℓ consist of functions with support in subdomain
Ωj for j = 1, . . . , Jℓ, where Jℓ is the number of interior vertices in Tℓ. The explicit
definition of subspaces, including local boundary conditions, is problem-dependent. As
typically 2D cells share a vertex and a cell has 2D vertices, the spatial decomposition is
overlapping and the sum of the subspaces is not direct.

In both cases, we define the local projections Pℓ;j : Vℓ → Vℓ;j by

aℓ(Pℓ;juℓ, v) = aℓ(uℓ, v) ∀v ∈ Vℓ;j . (2.58)

We denote the operator Aℓ;j that is associated with the restriction of bilinear form aℓ on
subspaces Vℓ;j × Vℓ;j . In that case, we refer to them as exact local solvers. From now on, we
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suppress the level index ℓ in expressions if it occurs together with the subdomain subscript,
for instance, writing Vj in short for Vℓ;j . We define the additive Schwarz operator for level ℓ
as

Pad;ℓ := ω
Jℓ∑
j=1

Pj = ω
Jℓ∑
j=1

RT
j A

−1
j RjAℓ, (2.59)

where ω ∈ R>0 is a relaxation parameter. Rj : Vℓ → Vj denotes the restriction operator
onto subspace Vj and RT

j : Vj → Vℓ the prolongation into Vℓ, the latter being the natural
embedding. These transfers are non-trivial in the coefficient space, and as indicated by
the notation the restriction Rj is defined as adjoint of RT

j with respect to the Euclidean
inner product. Although both operators are trivial in a functional context, we keep them to
emphasize the typical structure of Schwarz methods. The right-hand side of (2.59) highlights
the structure as a product of the additive Schwarz preconditioner

A−1
ad;ℓ =

Jℓ∑
j=1

RT
j A

−1
j Rj

and level matrix Aℓ. In contrast, the multiplicative Schwarz operator in its standard form
consists of a “long” product of single subspace corrections,

Pmu;ℓ := I −
(
I − ωPJℓ

)
. . .
(
I − ωP2

)(
I − ωP1

)
, (2.60)

where I denotes the identity operator.
Throughout this work, the computational performance of mathematical methods plays a

significant role. To this end, we have parallel execution by vectorization, multi-threading,
and MPI-parallelization on distributed systems in mind. Neither the standard form of the
multiplicative Schwarz operator nor the additive operator with overlapping vertex patches
is suited for such parallelism. While the additive Schwarz operator on vertex patches
suffers from race conditions, both the cell-based and the vertex patch multiplicative operator
are inherently sequential. Therefore, we use “coloring” of subdomains in order to recover
potential parallelism. Coloring depends on the discretization of local solvers and the domain
decomposition such that a particular description is postponed to sections with a finite element
method defined. In general, coloring refers to splitting the index set J = {1, . . . , Jℓ} of
subdomains into disjoint subsets Jc with color index c = 1, . . . , Ncol, such that the operations
within each subset can be performed in parallel overcoming the mathematical and technical
constraints mentioned before.

The latter includes data races that occur due to simultaneously reading and writing: two
memory operations conflict if they access the same location in memory and at least one
of them is a write operation (Adve et al., 1991). Here, data races might occur when two
subdomains share a degree of freedom and both local solvers are executed in parallel. Then,
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we might write simultaneously into the same array element during the prolongation of local
coefficients.

Remark 2.3.1 (Coloring for additive Schwarz). A coloring scheme avoiding data races is
defined as follows: two subspaces Vj and Vi have the same color if

RiR
T
j = 0, (2.61)

this means Vj and Vi are orthogonal with respect to the inner product of Vℓ.

The colored version of the additive Schwarz operator reads

Pad;ℓ := ω
Ncol∑
c=1

∑
j∈Jc

Pj . (2.62)

The colored operator is mathematically equivalent to (2.59) and thus corresponds to the
assertion that there is only a technical challenge.

The multiplicative Schwarz operator, in its standard form (2.60), applies subspace cor-
rections sequentially. Therefore, a coloring should not just avoid race conditions but should
recover parallelism at all. To this end, we note that

(I − Pi)(I − Pj) = (I −RT
i A

−1
i RiAℓ)(I −RT

j A
−1
j RjAℓ)

= I − Pi − Pj +RT
i A

−1
i (RiAℓRT

j )A−1
j RjAℓ.

(2.63)

The parenthesis in the last term evaluates to zero if and only if Vi is Aℓ-orthogonal to Vj .

Remark 2.3.2 (Coloring for multiplicative algorithms). A coloring scheme for the multiplicative
Schwarz method is designed as follows: two subspaces Vj and Vi have the same color if

RiAℓR
T
j = 0. (2.64)

We emphasize that in computations Aℓ-orthogonality is usually a stronger assumption
than the orthogonality stated in (2.61); thus, a coloring scheme satisfying Aℓ-orthogonality
most likely prevents data races as well. The colored multiplicative Schwarz operator is defined
as

Pmu;ℓ := I −
(
I − ω

∑
j∈JNcol

Pj

)
. . .

(
I − ω

∑
j∈J1

Pj

)
. (2.65)

It may differ from the sequential operator (2.60) due to a reordering of factors.
The additive Schwarz operator factors as Pad;ℓ = A−1

ad;ℓAℓ. Consequently, the smoothing
step Sad;ℓ is encoded as shown in Algorithm 3. Here, we use a “for” loop for sequential
operations, while “Σ” indicates a concurrent summation. The colored multiplicative Schwarz
operator describes a preconditioned operator as well, but there exists no straightforward
splitting A−1

mu;ℓAℓ due to successive application of the factors in (2.65). However, in com-
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Algorithm 3 Additive Schwarz smoothing step
1: procedure Sad;ℓ(xℓ, bℓ)
2: rℓ ← bℓ −Aℓxℓ ◃ residual
3: for c = 1 to Ncol do
4: xℓ ← xℓ + ω

∑
j∈Jc R

T
ℓ;jA

−1
ℓ;jRℓ;jrℓ ◃ subspace correction

5: end for
6: return xℓ
7: end procedure

putations the application of Pmu;ℓA
−1
ℓ to a vector b(0)

ℓ is recursive over colors (without ever
computing A−1

ℓ ): given initial residual r(0)
ℓ = bℓ and vector x(0)

ℓ ≡ 0 intermediate residuals
r

(c)
ℓ = bℓ −Aℓx

(c)
ℓ are recursively defined by intermediate subspace corrections

x(c) = x(c−1) + ω
∑
j∈Jc

RT
ℓ;jA

−1
ℓ;jRℓ;jr

(c−1)
ℓ (2.66)

for each color c = 1, . . . , Ncol. Using

A−1
ℓ r

(c)
ℓ =

(
I − ω

∑
j∈Jc

Pj

)
A−1
ℓ r

(c−1)
ℓ

and the form in (2.65), the multiplicative smoother Smu;ℓ can be implemented as shown
in Algorithm 4, similar to the additive algorithm with the single change that computing
residuals happens inside the loop over all colors. Both methods are implemented as a

Algorithm 4 Multiplicative Schwarz smoothing step
1: procedure Smu;ℓ(xℓ, bℓ)
2: for c = 1 to Ncol do
3: rℓ ← bℓ −Aℓxℓ ◃ residual
4: xℓ ← xℓ + ω

∑
j∈Jc R

T
ℓ;jA

−1
ℓ;jRℓ;jrℓ ◃ subspace correction

5: end for
6: return xℓ
7: end procedure

“short” product (in the sense of a sequence of operations) over colors with parallel, additive
smoothers for each color. Since parallelization is only viable within each color, a small
number of colors with many subdomains per color is desirable. That is particularly important
for the multiplicative algorithm when each residual is computed using a complete operator
application Aℓ, i.e., looping over all cells.

We do not need to define local projections Pj by means of restrictions of the “global”
bilinear form aℓ onto subspaces Vj as in (2.58). Given symmetric, coercive local bilinear
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forms aj : Vj × Vj → R, local solvers Pj are defined by

aj(Pjuℓ, v) = aℓ(uℓ, RT
j v) ∀v ∈ Vj . (2.67)

Then, we refer to local bilinear forms differing from the restriction of the bilinear form aℓ

onto subspaces as inexact local solvers. If Vj ⊂ Vℓ the prolongation RT
j is trivial in continuous

space.
We follow Toselli and O. Widlund (2005) to briefly discuss the convergence of Schwarz

operators Pad;ℓ and Pmu;ℓ. Let ∥·∥aℓ denote the norm induced by aℓ(·, ·) and condP the
condition number of operator P with respect to this norm. In order to prove abstract bounds
for condPad;ℓ and ∥I − Pmu;ℓ∥aℓ , respectively, three assumptions are made.
Assumption 2.1 (Stable decomposition). There exists a constant Csd such that any v ∈ Vℓ
admits a decomposition

v =
J∑
j=0

RT
j vj , vj ∈ Vj , (2.68)

that satisfies
J∑
j=0

aj(vj , vj) ≤ C2
sd aℓ(v, v). (2.69)

The first assumption ensures a stable splitting of the global problem into many local
problems. In order to be satisfied, a valid decomposition of Vℓ by the family of subspaces
Vj is needed. In view of (2.67), local problems do not necessarily have to be restrictions of
the global problem. We note that j = 0 refers to a coarse problem; thus, in our multilevel
context, the problem for the next level ℓ− 1. Using coarse subspace corrections has proven to
be crucial to obtain robust two-level and multilevel methods, i.e., methods that have uniform
bounds for Csd (almost) independent of the size of the problem (for instance, characterized
by the mesh size hℓ or the polynomial degree k). We are particularly interested in finding
cost-efficient local solvers that admit uniform bounds of Csd close to one.
Assumption 2.2 (Strengthened Cauchy-Schwarz inequalities). It exist constants 0 ≤ Eij ≤ 1
for i, j = 1, . . . , J such that∣∣∣aℓ(RT

i ui, R
T
j vj)

∣∣∣ ≤ Eijaℓ(RT
i ui, R

T
i ui)

1/2aℓ(RT
j vj , R

T
j vj)

1/2 (2.70)

for all ui ∈ Vi and vj ∈ Vj . The spectral radius of matrix E is denoted ρ(E).
We note that local bilinear forms and the coarse space are not involved, thus, Assump-

tion 2.2 is solely a condition on the family of subspaces Vj , j = 1, . . . , J . Assuming aℓ is
symmetric, positive definite, the assumption is trivially satisfied utilizing the Cauchy-Schwarz
inequality (Eij = 1 for all i, j). However, this results in ρ(E) = J which is unacceptable since
the spectral radius of E bounds the error propagation of Pad;ℓ and Pmu;ℓ from above. The
matrix E depends on the Aℓ-orthogonality of subspaces. Consequently, when discussing a
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coloring for the multiplicative Schwarz operator in subsequent sections, we automatically find
a bound for ρ(E). In general, Gershgorin’s circle theorem proves that ρ(E) does not exceed
the number of adjacent subdomains (Toselli and O. Widlund, 2005), where adjacent depends
on the finite element discretization at hand.

Assumption 2.3 (Local stability). There exists a positive constant Cls such that

a(RT
j vj , R

T
j vj) ≤ Cls aj(vj , vj) ∀vj ∈ ImPj ⊂ Vj (2.71)

for all j = 0, . . . , Jℓ.

This assumption ensures that local/coarse bilinear forms are coercive and provides an
upper bound for ∥Pj∥aℓ . For exact local solvers, the constant Cls is trivially one. The local
stability constant Cls is anti-proportional to the relaxation factor ω of local problems. A
well-chosen relaxation will be a necessity to obtain robust solvers, in particular for inexact
local solvers. However, scaling local forms by ω effects the constant Csd in contrast to Cls;
thus, choosing a favorable scaling is generally not straightforward.

We conclude with abstract bounds for the additive and multiplicative Schwarz operator.

Theorem 2.3.3. Let Assumptions 2.1 to 2.3 be satisfied.

1. Then, the additive Schwarz operator satisfies

condPad;ℓ ≤ C2
sdCls(ρ(E) + 1). (2.72)

2. Suppose that Cls ∈ (0, 2), then, the multiplicative Schwarz operator satisfies

∥I − Pmu;ℓ∥aℓ ≤
2− Cls

(2Ĉ2 ρ(E)2 + 1)C2
sd
< 1, (2.73)

where Ĉ = max {1, Cls}.

Proof. See textbook (Toselli and O. Widlund, 2005).

Further details exceeding the abstract multilevel Schwarz theory are postponed to subse-
quent chapters. The abstract convergence theory will ease the discussion on mathematical
efficieny. In particular, in the context of inexact local solvers we will revisit Assumptions 2.1
to 2.3.





Chapter 3

POISSON PROBLEM

In this chapter, we discuss multilevel Schwarz methods for the model problem of Poisson’s
equation

−∆u = f in Ω,
u = g on ∂Ω,

(3.1)

where Ω is a polygonal domain in RD with D = 2, 3. f and g are given functions in L2(Ω)
and H1/2+ϵ(∂Ω), respectively.

Solving model problem (3.1) is essential to compute several kinds of diffusion problems:
we emphasize Darcy’s law describing fluid flow through porous media, Fourier’s law describing
heat conduction, or in general Fick’s law stating the flux of a diffusion process. In addition,
geometric multigrid methods for the Poisson problem may be one step towards efficient
incompressible flow solvers (Fehn, Wall, et al., 2017; Shahbazi et al., 2007): splitting methods
have proven to be among the most efficient solvers in the computational fluid dynamics
(CFD) community: the incompressible Navier-Stokes equations are decomposed into a Poisson
equation for the pressure and a (convection-)diffusion equation for the velocity. To this end,
engineers may demand more than 1010 spatial unknowns (resp. degrees of freedom) per time
step to resolve physical scales realistically. Consequently, high-performance implementations
are indispensable for the CFD community, solving model problem (3.1) at large scales on
supercomputers.

In view of cost-efficient “forward” finite element operators for this chapter, we follow
Kronbichler and others which have developed robust and accurate discretization schemes, fast
matrix-free operator evaluations and scalable geometric multigrid preconditioners over recent
years (Clevenger et al., 2020; Fehn, Munch, et al., 2020; Fehn, Wall, et al., 2017, 2018b,c;
Krank et al., 2017). We make use of highly-optimized implementations in the general-purpose
finite element library deal.II. The state of the art is summarized in our project’s final
report (Arndt, Fehn, et al., 2020). Moreover, the essential aspects of matrix-free operator
evaluation for the Laplacian were elaborated in Section 2.2.2.
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To obtain fast numerical solvers, matrix-free preconditioners and smoothers are as
important as matrix-free operator evaluation. The listed publications above have in common
that they apply multigrid methods utilizing only mathematically “simple” smoothers, for
instance, diagonal preconditioners or nonoverlapping Schwarz methods. In that case, the
multilevel solver’s convergence degrades with increasing polynomial degree. For instance, the
results in (Maitre and Pourquier, 1996) imply that using simple diagonal-based smoothers the
number of iterations is proportional to kD−1 for a (preconditioned) conjugate gradient solver
(PCG). Note that Krylov subspace solvers are usually utilized to accelerate multilevel methods.
To this end, we focus in this chapter on designing cost-efficient algorithms for overlapping
Schwarz smoothers, leveraging the separability of the Laplacian and the tensor structure of
finite elements, quadrature, and Cartesian meshes. To be precise, we apply Schwarz smoothers
on vertex patches, that result in multilevel solvers with uniform convergence regarding the
mesh size, polynomial degree, and the penalty parameter for DG methods (Antonietti, Sarti,
et al., 2017; Pavarino, 1993). However, they are prohibitively expensive when computing
them through standard algorithms, in particular, for high-order finite elements. To this end,
exploiting tensor structure, we design algorithms that are as computationally efficient as
matrix-free operator evaluation.

The tensor structure of local PDE problems is utilized through fast diagonalization (Lynch
et al., 1964), see Section 2.1.3 for an introduction. There exist other works concerning tensor
product Schwarz smoothers based on fast diagonalization: we refer to the element-centered
overlapping Schwarz methods in the context of spectral elements (P. F. Fischer and Lottes,
2005; P. F. Fischer, Tufo, et al., 2000; Lottes and P. F. Fischer, 2005) and similarly element-
centered and facet-centered overlapping Schwarz methods for high-order DG methods (Stiller,
2016, 2017), that are the most-related to our approach from a methodological perspective.
Nevertheless, we demonstrated in (Witte et al., 2021) and demonstrate here as first the
computational efficiency of tensor product Schwarz methods on vertex patches, in particular,
multiplicative methods utilizing coloring. We identified many benefits of this specific class of
Schwarz methods: (i) their mathematical robustness with respect to mesh size, polynomial
degree and penalty parameters providing scalability of PDE problems (in particular, using
multiplicative smoothers results in almost direct solvers), (ii) vertex patches being a union of
elements provide a simple memory layout, fast data access, and MPI communication similar
to forward operators, and (iii) their versatility, i.e., being applicable to many PDE problems
(see Chapters 4 and 5).

We recommend reading (Bastian, Müller, et al., 2018; Brubeck and Farrell, 2021; Pazner,
2020; Pazner and Kolev, 2021; Pazner and Persson, 2018) for other state-of-the-art matrix-free
preconditioners that differ (partly) to our algorithms in its methodology. In particular, the
methods from (Bastian, Müller, et al., 2018; Pazner and Persson, 2018) are applicable to
generic PDE problems on generic meshes. In (Witte et al., 2021), we have demonstrated that
our Schwarz methods may be used on non-Cartesian meshes to some extent. Pazner and
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Persson (2018) utilize also fast diagonalization for subspace corrections but they obtain low-
rank tensor products at the algebraic level, computing a low-rank KSVD (see Section 2.1.4)
of (arbitrary) local finite element matrices. While this methodology is optimal in two spatial
dimensions it becomes suboptimal in three. Bastian, Müller, et al. (2018) make use of local
Krylov subspace methods, solving local PDE problems according to a pre-defined accuracy
or number of iterations. Consequently, we may combine the concepts to solve other PDE
problems on more generic meshes efficiently, i.e., utilizing our low-rank (inexact) subspace
corrections as preconditioners for local Krylov solvers. In (Pazner, 2020; Pazner and Kolev,
2021) matrix-free subspace correction preconditioners were developed based on a space
splitting of high-order SIPG discretizations (Antonietti, Sarti, et al., 2017).

The outline of this chapter is as follows. In Section 3.1 and Section 3.2, multilevel
tensor product Schwarz methods using subspace corrections on a single cell or vertex patch
for the SIPG discretization and the conforming FEM, respectively, are developed: deriving
a low-rank tensor product representation which is used for fast diagonalization of local
solvers and discussing the mathematical efficiency of smoothers in terms of the iterative
solver’s convergence steps. Since standard additive smoothers on vertex patches suffer from
small relaxation factors, two simple variants of restricted additive Schwarz methods are
studied in Section 3.3. As addressed in Section 1.1, mathematical efficiency by itself does
not guarantee computational efficiency. To this end, we conclude the chapter with a study
of (parallel) performance in Section 3.4.2: we compare the computational efficiency of our
tensor product Schwarz smoothers and elaborate our C++ implementation. We discuss the
“sequential” efficiency in terms of arithmetic complexity, the strong scaling behavior and the
computational efficiency in terms of numerical throughput (measured in DoFs per second).

3.1 Symmetric Interior Penalty Method

The model problem is discretized through the symmetric interior penalty method (SIPG)
following (Arnold, 1982; Arnold, Brezzi, et al., 2002). In contrast to conforming finite element
methods, the inter-element continuity is not imposed by means of the functional space but
through penalty terms entering the bilinear form. Given the mesh Th with characteristic size
h, we introduce the broken Sobolev space

H1(Th) :=
{
v ∈ L2(Ω) | v|K ∈ H

1(K) ∀K ∈ Th
}
* H1(Ω) (3.2)

containing functions on Ω whose restriction to cell K ∈ Th is in H1(K).
To this end, we subdivide the physical domain Ω into many quadrilateral/hexahedral cells

K, which are obtained by a mapping FK from the reference cell K̂ = [0, 1]D. Unifying the
concept of an edge in two and a face in three dimensions, the expression facet is introduced.
As shape function spaces V (K) for actual mesh cells, we choose standard Lagrange elements



50 Poisson Problem

based on tensor product polynomials Qk, see Definition 2.2.3. The integer k characterizes
the polynomial degree for each coordinate direction. The finite element space on mesh Th is
then defined by

Vh :=
{
v ∈ L2(Ω) | v|K ∈ V (K) ∀K ∈ Th

}
=
⊕
K∈Th

V (K). (3.3)

The indexing of the basis {ϕK;i} follows the structure as a direct sum. This basis defines by
duality the coefficient space RNh of the same dimension as Vh equipped with the Euclidean
inner product. In computations, this is the inner product used to compute norms, such that
we will identify Vh with the coefficient space and do not distinguish them in notation. Nh

defines the number of degrees of freedom subject to the mesh Th. We refer to functions in Vh
as discontinuous tensor product elements, or in short discontinuous Qk-elements.

Let E◦
h be the set of all interior facets (i.e., “faces” of spatial dimension D − 1) between

any two cells K+ and K−. Then, we refer to traces of functions v ∈ H1(Th) on e ∈ E◦
h taken

from cell K± as v±. For a facet at the physical boundary, denoted by e ∈ E∂h , there is only a
trace from the interior, and thus we define average and jump operators as follows.

Definition 3.1.1 (Average and jump operator). Given v ∈ H1(Th) the average operator on
interior facets e ∈ E◦

h is defined by

{v} (x) = v+(x) + v−(x)
2 x ∈ e, (3.4)

and on boundary facets e ∈ E∂h

{v} (x) = v(x) x ∈ e. (3.5)

The jump operators are defined as

JvK (x) = v+(x) + v−(x) x ∈ e ∈ E◦
h, JvK (x) = v(x) x ∈ e ∈ E∂h . (3.6)

Same definitions hold for vector-valued functions, for example vn with n being the
outward pointing normal of cell K at facet e. We introduce the interior penalty bilinear form

aip;h(u, v) :=
∫

Th
∇u ·∇v dx

+
∫

Eh

(
γe JunK · JvnK− {∇u} · JvnK− JunK · {∇v}

)
dσ(x).

(3.7)

Here, the integrals over a set of cells Th (set of facets Eh) is an abuse of notation, denoting
the sum of individual integrals over corresponding cells (facets). From left to right, we refer
to the four integrals in (3.7) as the bulk, penalty, consistency and adjoint consistency term.
We still have to define the penalty parameter γe, which penalizes the jumps of the solution
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and yields stability of the bilinear form (Kanschat, 2003, §2.2.8). It is of the form

γe = γ0,e
2

( 1
h+ + 1

h−

)
on E◦

h, (3.8)

where h± is the (average) length of cell K± orthogonal to common facet e. For facet e ∈ E∂h
at the physical boundary, we let h+ = h− = h, where h is the length of the corresponding
cell orthogonal to e. Through the average operator a factor 1/2 enters the consistency and
the adjoint consistency term on interior facets such that half of the penalty factor γe suffices.
Consequently, we set γ0,e = k(k + 1) on interior facets e ∈ E◦

h and γ0,e = 2k(k + 1) on
boundary facets e ∈ E∂h . The pre-factor γ0,e has to be increased by an additional factor for
non-Cartesian cells to preserve the discretization’s stability. Finally, we state the symmetric
interior penalty method of model problem (3.1): find uh ∈ Vh such that

aip;h(uh, v) = F (v) ∀v ∈ Vh, (3.9)

where
F (v) :=

∫
Ω
fv dx +

∫
∂Ω

(γe gv − gn ·∇v) dσ(x), v ∈ H1(Th). (3.10)

Remark 3.1.2. The interior penalty method (3.9) is consistent and adjoint consistent. Let
u ∈ H1(Th) ∩H3/2+ϵ(Ω) solve the weak formulation

aip;h(u, v) = F (v) ∀v ∈ H1(Th) ∩H3/2+ϵ(Ω). (3.11)

Then, the rate of convergence of the finite element error u − uh is optimal subject to the
energy norm and L2-norm, respectively, (Arnold, Brezzi, et al., 2002).

3.1.1 Mathematical Efficiency of Schwarz Smoothers

Next, results for multilevel Schwarz methods on Cartesian meshes for a simple domain
Ω = [0, 1]D are presented, in two and three spatial dimensions. The coarse mesh T1 is the
decomposition of the hypercube into 2d congruent cells, thus, it consists of a single vertex
patch. A hierarchy of Cartesian meshes Tℓ for levels ℓ = 1, . . . , L is defined by induction
as outlined in Section 2.3.1. Consequently, the characteristic mesh sizes satisfy 2hℓ = hℓ−1

for ℓ = 2, . . . , L. The finest level L is the actual discretization level on which we want to
solve the finite element problem. The symmetric interior penalty method with homogeneous
Dirichlet conditions is used for each discretization level ℓ = 1, . . . , L, which leads to nested
finite element spaces,

V1 ⊂ . . . ⊂ Vℓ ⊂ . . . ⊂ VL. (3.12)

Spaces Vℓ := Vhl and bilinear forms aℓ(·, ·) := aip;hℓ(·, ·) are determined by (3.3) and (3.7),
replacing the generic mesh width h by hℓ.
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Fig. 3.1 The cell stencil (left) and vertex patch stencil (right) for SIPG given bi-cubic tensor
product elements. The degrees of freedom are represented by Gauss-Lobatto support points
( ). The shaded area highlights the subdomain Ωj , thus, the shape functions associated
with enclosed nodal points build a basis for the subspace Vℓ;j . Gaps between cells illustrate
discontinuities.

Following the notation from Section 2.3.2, Tℓ;j ⊂ Tℓ denotes the subset of cells that defines
the subdomain Ωj . Tj either contains a single cell for cell-based smoothers or all cells attached
to an interior vertex for vertex patch smoothers. We tacitly suppressed the level index ℓ

before when a subdomain index j was present and continue so hereafter. The discontinuous
Galerkin subspace Vj consists of all functions in Vℓ with support in the subdomain Ωj ,

Vj :=
⊕
K∈Tj

V (K). (3.13)

The shape function space V (K) was defined in (2.43). We assume exact local solvers, i.e.,
the local bilinear form is the restriction of the multilevel form onto Vj × Vj ,

aj(u, v) = aℓ(u, v) for all u, v ∈ Vj .

In this way, “homogeneous” boundary conditions are weakly imposed on ∂Ωj . In Section 3.3
we elaborate what we mean by “homogeneous” and see that actual boundary conditions are
inherent in the right-hand side of the local problem. Transfer operators between subspaces
and the level space are standard and were defined in Section 2.3.2.

Coloring. Given a regular mesh Tℓ, subspaces Vj and discretization matrix Aℓ, it is
straightforward to determine an optimal coloring scheme for the (multiplicative) Schwarz
algorithms introduced in Section 2.3.2 - optimal in the sense of a minimal number of colors.
Recalling the Remark 2.3.2, two subdomains Ωi and Ωj may have the same color if their
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(a) standard “red-black” (for cells) (b) “red-black parqueting” (for vertex patches)

Fig. 3.2 Optimal coloring for multiplicative Schwarz algorithms given DG elements.

corresponding subspaces are Aℓ-orthogonal, i.e.,

RiAℓR
T
j = 0.

Note that subdomain indices i and j are interchangeable since Aℓ is symmetric. Having the
coefficient space RNℓ associated with Vℓ in mind, we refer to coefficients as degrees of freedom.
The action of AℓRT

j to a local vector is visualized in Figure 3.1 in terms of discontinuous
Galerkin stencils1. For standard discontinuous Qk-elements, the SIPG cell stencil consists of
all degrees of freedom associated with its cell and with neighboring cells that share a joint
facet. The coupling with adjacent cells is due to the face integrals in (3.7). The SIPG vertex
patch stencil is simply the composition of DG cell stencils. The degrees of freedom in the
shaded area determine the local coefficients that the restriction Rj maps to. We emphasize
that two subspaces belonging to subdomains that mutually share only a common vertex or in
three dimensions even a joint edge are Aℓ-orthogonal. Consequently, the “red-black” coloring
illustrated in Figure 3.2a is optimal for multiplicative cell-based smoothers (MCS) in two and
three dimensions. Avoiding overlap demands an additional “parqueting” of regular vertex
patches for each of its 2D cells. Each parquet is colored red and black; thus, 2D+1 colors are
obtained for multiplicative Schwarz smoothers (MVS), see Figure 3.2b. In the case of more
general meshes, a graph coloring algorithm could be used. For instance, in (Witte et al., 2021)
we compared the red-black coloring from Figure 3.2 to a DSATUR graph coloring algorithm.

1Finite element stencils are understood in the sense of (Arndt, Fehn, et al., 2020, §1).
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To enable (shared memory) parallelism for additive Schwarz algorithms, the constraint
in Remark 2.3.1, i.e.,

RiR
T
j = 0,

has to be satisfied. Consequently, only overlapping cells must be avoided such that an
uncolored version of the parqueting in Figure 3.2b suffices for additive vertex patch smoothers
(AVS). The additive cell-based smoother (ACS) has no such overlap; thus, no coloring is
needed.

Relaxation. The classical Jacobi method might be damped by the factor

ωsym = 2
2− λmin − λmax

, (3.14)

where λmin and λmax denote the minimal and maximal eigenvalue of the corresponding error
propagation matrix. The ωsym-damped Jacobi method is optimal when used as iterative
solver: ωsym symmetrizes the spectrum of the error propagation matrix around zero, thus,
the method converges fastest for errors with mid-range frequencies and equally “bad” for
high and low frequencies (Meister, 2015). The same applies to block-Jacobi methods with
no overlap, including the additive cell-based smoother (ACS). The spectrum of the error
propagation matrix I−A−1

ad;ℓAℓ associated with the additive smoothing step in Algorithm 3 is
symmetric around zero for a damping parameter ω = 1. It is well-known that good multigrid
smoothers should efficiently smooth error modes with high to mid-high frequencies. Using a
parameter ω below one shifts the spectrum of I −A−1

ad;ℓAℓ to our needs: experiments have
shown that ω = 0.7 is reasonable.

An additive vertex patch smoothing step is a block-Jacobi step as well but with “overlap-
ping blocks”. For regular meshes, i.e., each vertex patch consists of 2D cells, most degrees of
freedom belong to 2D subspaces and are smoothed this many times. The undamped block-
Jacobi method would not converge, but damping with 2−D recovers convergence (Meister,
2015). Not all degrees of freedom are smoothed 2D times such that the spectrum of the error
propagation matrix is not expected to be symmetric around zero. One option to obtain a
good multigrid smoother is to compute the symmetrizing damping factor ωsym first for the
already 2−D-damped method and scale ωsym afterward by 0.7. Simple numerical experiments
have shown that both effects, symmetrizing and shifting by 0.7, nearly cancel each other
out. Therefore, we simply use a damping parameter ω = 2−D for the additive vertex patch
smoother (AVS).

We use a conjugate gradient method (CG) to accelerate the multigrid V-cycle (Algo-
rithm 2). The stopping criterion is the relative reduction of the initial residual by ϵrel = 10−8.
On each level of the V-cycle iteration a single pre- and post-smoothing step is performed.
On the coarse mesh T1 we solve exactly by computing the inverse SVD of the coarse-grid
discretization matrix A1. The CG method is well-defined for symmetric, positive definite
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Table 3.1 Fractional iterations νfrac for additive cell-based smoother (ACS). CG solver with
relative accuracy 10−8 preconditioned by multigrid with ACS. Entries “—” not computed,
showing results with 105 − 109 DoFs on level L.

Level L Convergence steps νfrac

2D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
5 — — — — — — 22.7 25.6
6 — — 14.5 16.5 16.8 18.7 22.6 25.4
7 12.2 14.5 14.4 16.5 16.8 18.7 22.6 25.4
8 12.2 14.5 14.4 16.5 16.8 18.7 22.6 25.4
9 12.2 14.5 14.3 16.4 16.8 18.7 22.6 25.4
10 12.2 14.5 14.3 16.4 16.8 18.7 22.6 25.4
11 12.1 14.4 14.3 16.4 16.8 18.7 22.6 —
12 11.9 14.4 14.3 16.4 16.8 — — —
13 11.9 — — — — — — —
3D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
2 — — — — — — 24.9 28.5
3 — — — 20.1 19.9 21.9 26.2 29.5
4 15.5 17.1 16.9 20.0 20.2 21.9 26.4 29.4
5 15.9 17.2 17.1 20.2 20.2 22.3 26.6 29.5
6 16.2 17.2 17.1 20.2 20.2 22.3 26.7 —
7 16.2 17.1 17.1 20.2 20.2 — — —
8 16.2 — — — — — — —

matrices. The (colored) multiplicative Schwarz smoothers are non-symmetric and thus is
the preconditioned system. To this end, the symmetrized multiplicative Schwarz operator
in (Toselli and O. Widlund, 2005) first traverses forwards through all colors and then backward
starting from the penultimate color. Numerical experiments have shown that this nearly
doubled the number of subspace corrections and residual computations in Algorithm 4 (only
subspace corrections of the last color are not applied twice but once) without (significantly)
decreasing the number of solver iterations. However, choosing the same multiplicative Schwarz
smoother for pre- and post-smoothing, except that during pre-smoothing colors are traversed
forward, and during post-smoothing backward, the multigrid V-cycle is symmetrized. The
CG method becomes applicable without increasing the computational effort.

Due to their efficiency, multiplicative vertex patch smoothers require three or less iterations
such that a fractional number of iterations νfrac for more accurate assessment of their
performance is considered. If the relative tolerance ϵrel is achieved after n solver iterations,
we compute

νfrac = log(ϵrel)
log(ρavg) (3.15)
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Table 3.2 Fractional iterations νfrac for multiplicative cell-based smoother (MCS). CG solver
with relative accuracy 10−8 preconditioned by multigrid with MCS. “Colors” refers to
coloring on mesh level L. Entries “—” not computed, showing results with 105 − 109 DoFs
on level L.

Level L Convergence steps νfrac Colors
2D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
5 — — — — — — 16.4 17.8 2
6 — — 9.9 12.4 12.3 13.7 16.3 17.7 2
7 8.6 10.4 9.9 12.4 12.3 13.7 16.2 17.7 2
8 8.6 10.3 9.9 12.4 12.3 13.7 16.3 17.7 2
9 8.6 10.3 9.9 12.4 12.3 13.7 16.3 17.7 2
10 8.5 10.3 9.9 12.4 12.3 13.7 16.3 17.7 2
11 8.5 10.3 9.9 12.4 12.3 13.7 16.3 — 2
12 8.5 10.3 9.9 12.4 12.3 — — — 2
13 8.5 — — — — — — — 2
3D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
2 — — — — — — 18.7 20.5 2
3 — — — 14.4 14.5 16.6 19.4 20.8 2
4 10.2 12.2 12.1 14.5 14.5 16.7 19.5 20.9 2
5 10.2 12.3 12.1 14.5 14.5 16.7 19.5 20.9 2
6 10.2 12.4 12.1 14.5 14.5 16.7 19.4 — 2
7 10.2 12.4 12.1 14.5 14.5 — — — 2
8 10.2 — — — — — — — 2

in terms of the average residual reduction

ρavg = (ρn/ρ0)1/n,

where ρn is the Euclidean norm of the residual after n steps.
The right-hand side f of our model problem (3.1) is manufactured such that the exact

solution u is given by a superposition of normalized multivariate Gaussian bell curves,

u(x) = 1
(
√

2πσ)D
3∑
i=1

exp
(
−∥x− xi∥2

σ2

)
, (3.16)

with width σ = 1/3 and sources at x1 = (0, 0, 0), x2 = (0.25, 0.85, 0.85) and x3 = (0.6, 0.4, 0.4).
In two dimensions, the source points are projected onto the xy-plane at z = 0.

The numerical results for additive and multiplicative cell-based smoothers are summarized
in Tables 3.1 and 3.2, where for each polynomial degree k fractional convergence steps νfrac

for discretizations on mesh level L are shown with 105 to 109 in two and three dimensions.
First, we observe that all iteration counts are independent of the mesh level. Consequently,
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Table 3.3 Fractional iterations νfrac for additive vertex patch smoother (AVS). CG solver with
relative accuracy 10−8 preconditioned by multigrid with AVS. Entries “—” not computed,
showing results with 105 − 109 DoFs on level L.

Level L Convergence steps νfrac

2D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
5 — — — — — — 24.0 25.7
6 — — 18.4 20.5 21.0 22.5 24.6 26.5
7 16.9 18.3 18.6 20.0 20.7 22.1 25.3 26.9
8 17.2 18.3 18.7 20.0 20.0 21.6 24.8 26.8
9 17.3 18.3 18.7 19.8 20.0 21.3 24.1 26.3
10 17.3 18.2 18.7 19.7 20.1 21.1 23.9 26.6
11 17.2 18.1 18.6 19.5 20.2 20.9 23.7 —
12 17.2 17.8 18.4 19.4 20.2 — — —
13 17.2 — — — — — — —
3D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
2 — — — — — — 21.3 20.9
3 — — — 28.5 28.5 28.9 29.5 29.6
4 27.7 29.5 30.6 32.8 32.9 33.8 36.7 37.5
5 28.7 31.8 33.4 35.6 35.8 38.1 41.9 44.5
6 29.4 32.2 34.2 37.1 38.5 40.8 45.9 —
7 29.5 32.1 33.6 37.2 39.2 — — —
8 29.2 — — — — — — —

uniform convergence with respect to the mesh size is confirmed. As discussed before, the
additive cell-based smoother (ACS) is damped by ω = 0.7. Table 3.1 shows a slight growth
of the number of iterations with respect to the polynomial degree. It takes about twice as
many steps as the multiplicative version (MCS). Given that MCS with red-black coloring
in (2.65) needs two applications of the operator Aℓ in each smoothing step, both cell-based
smoothers compare at similar levels.

Similarly, we compare both vertex patch smoothers in Tables 3.3 and 3.4. We previously
discussed the relaxation parameter ω = 2−D for the additive method (AVS) and see that
challenges pointed out there are confirmed by the numerical results here: only in two
dimensions uniform convergence with respect to the mesh size is observed. A subtle analysis
of optimal damping parameters might recover uniform convergence in three dimensions.
AVS is inferior to ACS due to a lower damping factor, requiring more iterations while
simultaneously having additional computational costs due to solving “larger” local problems.
For the model problem given, we recommend the additive cell-based smoother. However,
in Section 3.3 we introduce restricted additive Schwarz smoothers for vertex patches which
are even on par with the multiplicative vertex patch smoothers (MVS).
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Table 3.4 Fractional iterations νfrac for multiplicative vertex patch smoother (MVS). CG
solver with relative accuracy 10−8 preconditioned by multigrid with MVS. “Colors” refers
to coloring on mesh level L. Entries “—” not computed, showing results with 105− 109 DoFs
on level L.

Level L Convergence steps νfrac Colors
2D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
5 — — — — — — 2.6 2.4 8
6 — — 3.3 3.3 2.9 2.9 2.6 2.4 8
7 3.6 3.6 3.3 3.3 2.9 2.9 2.6 2.4 8
8 3.6 3.7 3.3 3.3 2.9 2.9 2.6 2.4 8
9 3.6 3.7 3.3 3.3 2.9 2.9 2.6 2.4 8
10 3.6 3.7 3.3 3.3 2.9 2.9 2.6 2.4 8
11 3.6 3.7 3.3 3.3 2.9 2.9 2.6 — 8
12 3.6 3.7 3.3 3.3 2.9 — — — 8
13 3.6 — — — — — — — 8
3D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
2 — — — — — — 2.4 2.2 16
3 — — — 3.1 2.9 2.8 2.6 2.4 16
4 3.4 3.4 3.2 3.2 2.8 2.8 2.6 2.4 16
5 3.4 3.4 3.2 3.2 2.8 2.8 2.6 2.4 16
6 3.4 3.4 3.2 3.2 2.8 2.8 2.6 — 16
7 3.4 3.4 3.2 3.2 2.8 — — — 16
8 3.4 — — — — — — — 16

The latter is the only smoother analyzed in this section that uniformly converges with
respect to both the mesh size and the polynomial degree k. Table 3.4 shows that we almost
obtain a direct solver, in particular, for high-order discretizations. In (Witte et al., 2021), we
compared the optimal red-black coloring depicted in Figure 3.2b to a graph coloring that
resulted in a few more colors. Both coloring schemes yielded iteration counts close to two
with a slight advantage for the red-black coloring. This result confirmed that reordering local
solvers in the multiplicative Schwarz operator (2.65) affects the smoother mathematically on
the one hand. On the other hand, for the given model problem (3.1) and a change in order
due to different coloring, the small difference in the fractional number of solver iterations is
not significant. If the mesh is regular, we recommend using the optimal coloring to reduce
the computational effort. However, generic graph coloring schemes are feasible as well.

We conclude that the multiplicative vertex patch smoother is mathematically sound
and may lead to fast numerical solvers if we manage to implement it cost-efficiently. Its
computational effort for a single smoothing step is relatively high compared to other smoothers.
Consequently, we must compare the computational effort of the complete solver to decide
on the optimal version. Numerical experiments and complexity analysis of naïve smoother
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algorithms in (Witte et al., 2021) show that inverting each local discretization matrix by
direct methods requires a tremendous computational effort, clearly dominating the effort of
the (iterative) finite element solver. Besides, storing each local matrix counteracts the benefits
of matrix-free algorithms that efficiently apply level matrices, particularly the significantly
reduced memory footprint. To this end, we will exploit tensor structure, which solves both
challenges equally well.

3.1.2 Tensor Product Schwarz Smoothers

The Laplacian is a separable differential operator on a quadrilateral or hexahedral cell, but it
remains to argue that the discontinuous Galerkin formulation on this type of cells or even on
a vertex patch of these cells is as well. Indeed, this holds for Cartesian meshes only, where
each cell K is a Cartesian product of intervals,

K = [a1, b1]× [a2, b2]× · · · × [aD, bD]. (3.17)

Let hd denote the length of the interval in dimension d, the Cartesian mapping for the cell
K is denoted

FK = (FK;1, . . . ,FK;D)T,

and determined by
FK;d(x̂) = ad + hdx̂ (3.18)

for all x̂ ∈ [0, 1]. The Jacobian of FK is the constant, diagonal matrix diag(h1, . . . , hD).
Using isotropic tensor product elements from Definition 2.2.3, the bulk integral in (3.7) for a
single cell K factorizes into

∫
K

∇ϕK;i ·∇ϕK;j dx =
D∑
d=1

∫ 1

0

1
hd
φ̂′
id
φ̂′
jd
dx̂d

D∏
δ=1,δ ̸=d

∫ 1

0
φ̂iδ φ̂jδhδ dx̂δ

 . (3.19)

The Cartesian mapping preserves the separation of unit coordinates in real space in (3.19).
Taking also the (exact) tensor product quadrature from Section 2.2 into account, we define
univariate mass and bulk matrices, respectively,

M
(d)
ij =

nquad∑
q=1

φ̂i(x̂q)φ̂j(x̂q)hdwq and L
(d)
ij =

nquad∑
q=1

1
hd
φ̂′
i(x̂q)φ̂′

j(x̂q)wq (3.20)

for i, j = 1, . . . , ndof. From the separable structure in (3.19) immediately follows that the
bulk integral for a single cell K has a separable Kronecker representation D⊗

d=1
L(d) �

D⊗
d=1

M (d)

 . (3.21)
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For details on this representation and its notation, we refer to Section 2.1.3. We want to
prove similar Kronecker representations for face integrals of the interior penalty formulation.
For simplicity, assume the two facets e0 and e1 of cell K having normals aligned with the
first coordinate that read

ep =
{
yp
}
× [a2, b2]× · · · × [aD, bD] (3.22)

with endpoints y0 = a1 and y1 = b1, respectively. Again a change of variables decomposes
the penalty integral in (3.7) on these facets into

∫
ep
γep ϕK;in · ϕK;jn = γep φ̂i1(p)φ̂j1(p)

D∏
d=2

∫ 1

0
φ̂id φ̂jdhd dx̂d. (3.23)

Similar decompositions hold for the two facets in each remaining dimension. We deliberately
omit to index a facet by its normal direction for readability because it is apparent from the
context. We note that the cell-based local solver Aj only involves shape functions in subspace
Vj , defined in (3.13), such that jump and average contributions involving adjacent cells are
not present. Let the univariate point mass matrices M (d)

p at unit endpoints p = 0 and p = 1
be determined by (

M (d)
p

)
ij

= φ̂i(p)φ̂j(p) (3.24)

for i, j = 1, . . . , ndof, then, the sum of penalty terms (3.23) over all facets of K admits a
separable form  D⊗

d=1

(
γe0M

(d)
0 + γe1M

(d)
1

)
�

D⊗
d=1

M (d)

 . (3.25)

It is an easy exercise to derive separable Kronecker representations for the consistency and
adjoint consistency integrals in (3.7) as well. For both, it suffices to define matrices G(d)

p by

(
G(d)
p

)
ij

= (−1)p+1 1
hd
φ̂i(p)φ̂′

j(p) (3.26)

for i, j = 1, . . . , ndof. Note that G(d)
p represents the normal gradient and the alternating sign

(−1)p+1 identifies the normal direction. Finally, for each dimension, the penalty, consistency,
and adjoint consistency integrals add up in this order to the matrix

N (d) =
∑

p∈{0,1}

(
γepM

(d)
p − ηepG(d)

p − ηep
(
G(d)
p

)T
)

(3.27)

with average factor ηe = 1/2 for interior facets e ∈ E◦
h, and ηe = 1 for facets e ∈ E∂h at the

physical boundary. We refer to N (d) as univariate Nitsche matrices since the face integrals
inherent in the SIPG bilinear form are traced back to Nitsche’s work (Nitsche, 1971). The



3.1 Symmetric Interior Penalty Method 61

cell-based local solver Aj has the separable Kronecker form D⊗
d=1

(
L(d) +N (d)

)
�

D⊗
d=1

M (d)

 . (3.28)

Consequently, inverting Aj becomes cost-efficient when utilizing the fast diagonalization
technique, as discussed in Section 2.1.3. Besides, the memory footprint is significantly reduced
as explained in Remark 2.1.15.

Still assuming Cartesian meshes, vertex patches Ωj have the same structure as in (3.17)
but each interval is the disjoint union of two subintervals,

D×
d=1

(
[a+
d , b

+
d ] ∪̇ [a−

d , b
−
d ]
)
.

For corresponding local solvers, we additionally have to consider integrals on interfaces,
involving the jump and/or average operator of discontinuous shape functions. The mass,
the bulk, and Nitsche contributions are determined by (3.20) and (3.27) for traces of shape
functions with support either exclusively in K+ or K−; thus, we denote them M

(d)
+ , L(d)

+ ,
and N

(d)
+ or M (d)

− , L(d)
− , and N

(d)
− , respectively.

For simplicity, assume two adjacent cells

K+ = [a+
1 , b

+
1 ]× [a+

2 , b
+
2 ]× · · · × [a+

D, b
+
D] and K− = [a−

1 , b
−
1 ]× [a+

2 , b
+
2 ]× · · · × [a+

D, b
+
D],

with interface
e = {b+

1 } × [a+
2 , b

+
2 ]× · · · × [a+

D, b
+
D],

that means b+
1 = a−

1 . The normals n+ = −n− are aligned with the first coordinate. The
penalty integral on this interface with test functions from K+ and ansatz functions from K−

reads ∫
e
γe ϕ

+
K;in

+ · ϕ−
K;jn− = −γeφ̂i1(1)φ̂j1(0)

D∏
d=2

∫ 1

0
φ̂id φ̂jdh

+
d dx̂d. (3.29)

The same applies to test functions from K− and ansatz functions from K+, interchanging −
and + in (3.29). We define the univariate point mass matrices M (d)

+− and M (d)
−+ by its entries(

M
(d)
+−

)
ij

= φ̂+
i (1)φ̂−

j (0) and
(
M

(d)
−+

)
ij

= φ̂−
i (0)φ̂+

j (1) (3.30)

for i, j = 1, . . . , ndof. The separable structure of (3.29) leads to the rank-1 Kronecker tensor

− γeM (1)
+− ⊗M

(2)
+ ⊗ . . .⊗M (D)

+ . (3.31)
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Similar rank-1 tensors are obtained for all remaining interfaces of vertex patch Ωj . Further-
more, separable structures for the consistency and adjoint consistency terms on interfaces
are derived analogously to (3.29) to (3.31). Then, interface matrices G(d)

+− and G
(d)
−+ for the

normal gradient are given by(
G

(d)
+−

)
ij

= 1
h−
d

φ̂i(1)φ̂′
j(0) and

(
G

(d)
−+

)
ij

= − 1
h+
d

φ̂i(0)φ̂′
j(1) (3.32)

for i, j = 1, . . . , ndof. For each dimension d, the univariate Nitsche matrix for a generic
interface e reads

N
(d)
e;∗ = γeM

(d)
∗ − 1

2G
(d)
∗ −

1
2
(
G

(d)
∗
)T

(3.33)

with placeholder ∗ for +− and −+, respectively. Then, the local finite element matrix Aj for
vertex patch Ωj has the separable Kronecker representation D⊗

d=1

(
L(d) + N (d)

)
�

D⊗
d=1

M (d)

 (3.34)

with the mass, the bulk, and Nitsche matrices defined by

M (d) =

M (d)
+ 0
0 M

(d)
−

 , L(d) =

L(d)
+ 0
0 L

(d)
−

 , and N (d) =

N (d)
+ N

(d)
−+

N
(d)
+− N

(d)
−

 . (3.35)

for each dimension d. Therefore, the fast diagonalization is applicable again such that the
computational effort of inverting and storing local matrices is significantly reduced.

Non-Cartesian Meshes

The separable Kronecker representation of the local discretization matrix, recalling (3.28) for
a single cell or (3.34) for a vertex patch, is intrinsically related to the Cartesian mapping of
cells. In other words, the separability of the Laplacian is not preserved for arbitrary meshes.
To this end, we have developed inexact local solvers in (Witte et al., 2021) that still admit
fast diagonalization: the actual subdomain was replaced by a surrogate subdomain with a
Cartesian structure. Averaging arc lengths of parallel edges as illustrated in Figure 3.3a lead
to an approximating hyper-rectangle, where parallel is understood in a topological sense.
Since the Laplacian is invariant under translation and rotation, the position and orientation
of the surrogate geometry did not matter.

The numerical experiments from (Witte et al., 2021) for the non-Cartesian meshes,
depicted in Figure 3.3b, showed that the number of CG iterations are still independent of
the mesh size for these types of inexact local solvers. Non-standard relaxation parameters ω
were used (which compensated the inexactness of the local solvers) such that only a few more
iterations were needed compared to exact local solvers, which are lacking tensor structure
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(a) surrogate hyper-rectangle (right) of the actual
subdomain (left) (b) non-Cartesian meshes from (Witte et al., 2021)

Fig. 3.3 Surrogate hyper-rectangle and non-Cartesian meshes from (Witte et al., 2021)

and, thus, are costly to compute. Although requiring more iterations, these inexact tensor
product smoothers outperformed their exact counterparts in terms of computational effort,
with a quickly growing gap for increasing polynomial degrees (Kronbichler, Kormann, Fehn,
et al., 2019; Witte et al., 2021).

To avoid substantial duplication, we refer the interested reader to (Witte et al., 2021,
§4) or (Arndt, Fehn, et al., 2020, §5.2) for more details. Therein, we elaborate the design
of inexact local solvers based on surrogate hyper-rectangles, discuss challenges arising from
Schwarz theory (surrounding the topic of relaxation), and demonstrate superior computa-
tional efficiency for the model problems illustrated in Figure 3.3b over standard smoothing
algorithms.

3.2 Conforming Finite Element Method

Compared to the symmetric interior penalty method, we may take a step back in the finite
element’s complexity and the methods’ chronology. H1-conforming finite element methods for
elliptic partial differential equations are well studied and covered in many popular textbooks.
We refer to (Braess, 2013; P. Ciarlet, 1978) as the two representatives of our choice. However,
designing cost-efficient algorithms of tensor product Schwarz smoothers for conforming finite
elements is also a natural step forward, in particular, in view of Chapters 4 and 5: the
multilevel Schwarz methods for the biharmonic and Stokes problem will also make use of
H1-conforming finite elements.

More importantly, we will see that the (multiplicative) Schwarz smoother on vertex
patches has some significant algorithmic benefits. We demonstrate that a “thinner” finite
element stencil2 for local solvers on vertex patches (implying also less colors for MVS) reduces
the computational complexity for a single smoothing step compared to DG elements. The
final comparison of Schwarz smoothers for conforming and discontinuous elements in terms
of computational efficiency follows afterward in Section 3.4. In addition, the cost-efficient
Schwarz smoothers gain more importance given the hybrid multigrid methods in (Fehn, Munch,

2Finite element stencils are understood in the sense of (Arndt, Fehn, et al., 2020, §1).
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et al., 2020). These multigrid methods utilize not only all kinds of geometric, polynomial,
and algebraic coarsening, but also a beneficial transfer from discontinuous to conforming
finite elements. In this regard, the tensor product Schwarz smoothers from Sections 3.1.2
and 3.2.2 are both of interest.

We define the ansatz space

V g =
{
v ∈ H1(Ω) | v|∂Ω = g

}
, (3.36)

imposing Dirichlet boundary conditions in a strong sense, where v|∂Ω is well-defined by the
trace operator. The Dirichlet problem for Poisson’s equation (3.1) in weak form reads: find
u ∈ V such that

a(u, v) = F (v) ∀v ∈ H1
0 (Ω), (3.37)

with bilinear form
a(u, v) :=

∫
Th

∇u ·∇v dx, (3.38)

and right-hand side operator
F (v) :=

∫
Ω
fv dx. (3.39)

Similar to the SIPG method, we choose local shape function spaces V (K) that are defined
by duality to nodal Gauss-Lobatto points, see Definitions 2.2.2 and 2.2.3. The difference here
is the additional inter-element continuity: the conforming finite element space Vh is defined
by

Vh =
{
v ∈ C0(Ω̄) | v|K ∈ V (K) ∀K ∈ Th

}
∩H1

0 (Ω). (3.40)

A conforming finite element space V g
h with nonzero boundary data is obtained when replacing

H1
0 (Ω) by V g. The finite element method for the model problem reads: find uh ∈ V g

h such
that

a(uh, v) = F (v) ∀v ∈ Vh. (3.41)

Well-posedness of the weak as well as finite element method and a rigorous error analysis is
studied in (Braess, 2013; P. Ciarlet, 1978), for instance.

3.2.1 Mathematical Efficiency of Schwarz Smoothers

The same numerical setup as in Section 3.1.1 is used, in particular, the way a hierarchy
of nested meshes Tℓ for ℓ = 1, . . . , L is obtained. We only show results for vertex patches
here. The cell-based Schwarz smoothers for conforming finite elements are inferior from an
algorithmic perspective. A closer look at local finite element stencils will reveal why.

What was discussed before for a mesh Th with generic size h readily translates to each level
mesh Tℓ. For each discretization level finite element spaces Vℓ := Vhℓ are defined by (3.40)
substituting h by hℓ. As before, let Tj ⊂ Tℓ denote the vertex patch, that is the local mesh
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of the subdomain
Ωj =

⋃
K∈Tj

K.

The local finite element space Vj consists of all functions in Vℓ with vanishing trace on ∂Ωj ,

Vj =
{
v ∈ C0(Ω̄) | v|K ∈ V (K) ∀K ∈ Tj and v|∂Ωj = 0

}
. (3.42)

Note that local functions in Vj are simply extended by zero outside the local subdomain Ωj .
Bilinear forms for each level and each subdomain are simply the restrictions of a(·, ·) to each
finite element space Vℓ and each subspace Vj , respectively. Consequently, Dirichlet problems
with homogeneous boundary conditions are solved on each subdomain.

The local finite element stencil is illustrated in Figure 3.4a. The face integrals which
were essential for the shape of the SIPG stencils in Figure 3.1 are, on the one hand, not
present. On the other hand, the inter-element continuity introduces a different coupling
between degrees of freedom. Fortunately, degrees of freedom associated with the subdomain’s
boundary are constrained to zero, such that the stencil does not spread out to adjacent cells,
i.e., the closest neighbors of the vertex patch. Cell-based Schwarz smoothers should smooth
each degree of freedom. To this end, the local finite element space associated with a single cell
K is spanned by basis shape functions with support in K, including basis functions associated
with degrees of freedom at ∂K. This minor difference has a major effect, illustrated by the
stencil in Figure 3.4b. While the ratio of the number of the subspace’s degrees of freedom
to those for its stencil is about 1/3D for cell-based subdomains, it is almost one for vertex
patches. In (P. F. Fischer and Lottes, 2005; P. F. Fischer, Tufo, et al., 2000; Lottes and
P. F. Fischer, 2005; Stiller, 2016, 2017) element-centered patches with a minimal overlap were
studied that have intermediate sizes compared to the cell-based and vertex patches. However,
we decided for the generous overlap of vertex patches because it simplifies data structures and
communication for memory-distributed parallelism. Moreover, exploiting tensor structures to
break the curse of dimensionality, the more generous overlap is computationally negligible.
Thus, most important will be the localization of stencils to the vertex patches’ union of cells.

In general, finite element stencils with very good data locality (Chang and Grady, 2019)
can improve parallel performance, particularly when using distributed memory parallelism. To
this end, we developed in (Kronbichler, Kormann, Fehn, et al., 2019) a so-called Hermite-like
finite element based on discontinuous tensor product polynomials Qk to obtain also more
localized SIPG stencils than those of standard Lagrange elements from Figure 3.1. The
number of iterations for the same solver as in Section 3.1.1 with Hermite-like finite elements
were almost identical to the numbers in Tables 3.1 to 3.4, using tensor product Schwarz
smoothers similar to Section 3.1.2. At the same time, the performance was increased. It
underlines again the versatility of Schwarz smoothers on vertex patches.
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(a) vertex patch stencil (b) cell stencil

(c) “parqueting” (for vertex patches)

Fig. 3.4 The vertex patch stencil (top-left), cell stencil (top-right), and a coloring for MVS
(bottom) for H1-conforming discretizations given bi-cubic Lagrange elements are illustrated.
Degrees of freedom are represented by Gauss-Lobatto support points ( ). The shaded areas
highlight the subdomain Ωj , a vertex patch (top-left) and a single cell (top-right), thus, the
shape functions associated with included nodal points form a basis for the subspace Vℓ;j .
Hatched and dotted areas (bottom) show the parquet-like coloring satisfying Aℓ-orthogonality.
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Coloring. The vertex patch stencil visualizes the action of AℓRT
j to local coefficients:

Figure 3.4a shows that the action is limited to degrees of freedom associated with the
cells that constitute the vertex patch. Since functions in Vi have vanishing trace at ∂Ωi,
Aℓ-orthogonality (2.64) is not satisfied if two subdomains Ωj and Ωi overlap by a joint
cell. To this end, a parqueting of regular vertex patches as illustrated in Figure 3.4c is the
optimal coloring for multiplicative Schwarz smoothers. In contrast to the symmetric interior
penalty method, an additional red-black coloring for each parquet is not required (compared
to Figure 3.2b) such that only half of the colors are needed here. Accordingly, the number of
residual computations in a single multiplicative smoothing step (Algorithm 4) is halved. To
enable shared memory parallelism for additive Schwarz smoother, the very same coloring is
optimal since two subdomains without any joint cell satisfy (2.61).

Relaxation. A single additive smoothing step, see Algorithm 3, on vertex patches is a
damped block-Jacobi method with overlap. Damping with the reciprocal number of cells (that
is, with 2−D) is natural and guarantees convergence when used as iterative solver (Meister,
2015). Computing ωsym as given by (3.14) the optimal iterative solver is determined. Using
the rule of thumb that a good iterative solver relaxed by 0.7 is a good smoother, damping
with ω = 0.7ωsym is a reasonable choice. From numerical experiments for discretizations
factors with a few thousand unknowns, relaxation factors slightly larger than 2−D proved
to be optimal. However, the improvement in the number of solver iterations was at most
one, such that numerical results for additive Schwarz smoothers damped by 2−D are shown
below, regardless of the polynomial degree k and the mesh size. Further studies of relaxation
parameters are left to the interested reader.

The fractional iteration counts νfrac for the same solver setup used for the multilevel
symmetric interior penalty method in Section 3.1.1 are discussed now. Numerical results
are shown for relaxed additive Schwarz smoothers (AVS) in Table 3.5 and for multiplicative
Schwarz smoothers (MVS) in Table 3.6.

First of all, both smoothers lead to robust solvers with a few iteration steps needed, thus
being readily scalable to discretizations with very many unknowns. A solver is robust if it
uniformly converges regarding one or several parameters of interest: here we observe that
iteration counts are independent of the most refined mesh level L and the polynomial degree
k. This is satisfied even for additive Schwarz smoothers in contrast to the SIPG method
in Section 3.1.1.

The symmetric interior penalty method has by definition more degrees of freedom for the
identical multilevel hierarchy of meshes than the conforming finite element method. Easing
the comparison, we consider only the discretizations on the most refined level L with the
number of degrees of freedom in a given range, here 105 to 109 in two and three dimensions.
Most noticeable is the outstanding performance of the relaxed additive smoothing (AVS)
here in contrast to its SIPG counterpart, compare Table 3.5 to Table 3.3. We recall that
both additive vertex patch smoothers are relaxed by the same factor ω = 2−D, without
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Table 3.5 Fractional iterations νfrac for additive vertex patch smoother (AVS) regarding
conforming FEM. CG solver with relative accuracy 10−8 preconditioned by multigrid with
AVS. Entries “—” not computed, showing results with 105 − 109 DoFs on level L.

Level L Convergence steps νfrac

2D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
5 — — — — — — 10.9 10.8
6 — — — 11.2 11.3 11.2 10.8 10.7
7 — 11.6 11.7 11.1 11.2 11.1 10.8 10.6
8 12.2 11.6 11.6 11.1 11.2 11.1 10.7 10.6
9 12.1 11.6 11.5 11.0 11.1 11.1 10.7 10.5
10 11.9 11.6 11.3 10.9 11.1 11.1 10.7 10.5
11 11.8 11.6 11.2 10.9 11.1 11.1 10.7 10.5
12 11.7 11.6 11.0 10.9 11.0 11.0 — —
13 11.7 11.6 — — — — — —
3D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
2 — — — — — — — 13.7
3 — — — — 15.9 15.3 14.8 14.7
4 — 16.8 16.8 15.5 16.1 15.1 14.7 14.5
5 20.0 16.8 16.8 15.3 16.1 14.9 14.5 14.2
6 20.0 16.6 16.7 15.1 15.9 14.8 14.3 13.9
7 19.9 16.4 16.6 15.0 15.8 14.8 — —
8 19.8 16.3 — — — — — —
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tuning either of them. The multilevel solvers using AVS for the SIPG method lack uniform
convergence concerning the mesh level and the polynomial degree, with steadily growing
iteration counts from 30 to 45 iterations regarding polynomial degrees from 2 to 15 in three
dimensions. The Table 3.5 does not only confirm the solver’s robustness but at least more
than a 30% decrease compared to the numbers before. With 14 versus 45 iterations (i.e., 68%)
for the highest polynomial degree shown, additive vertex patch smoothers for the conforming
finite element method prove superior, particularly for high-orders.

Let us compare the results for both methods presented in this section, the additive and
multiplicative smoother. On the hand hand, the multilevel solver using AVS requires four to
five times more iterations than using MVS in three dimensions (three to four times more in
two dimensions). On the other hand, MVS needs eight colors (four colors in two dimensions)
compared to a single for AVS (if no shared-memory parallelism is utilized). Assuming that
each residual computation in Algorithms 3 and 4 has the same computational costs regardless
of the underlying color, a multiplicative smoothing step costs almost eight times (or four times
in two dimensions) more than a single additive smoothing step; neglecting the computational
effort of computing subspace corrections which is the same for each kind of smoothing step.
In theory, AVS is slightly favored in computational terms. In Section 3.4.2, we will see
that using time-to-solution as metric for computational efficiency, a solver using MVS will
outperform one using AVS.

A comparison of fractional iterations between MVS for the SIPG method as well as for the
conforming finite element method slightly favors the former in total numbers, with 3.6 versus
4.5 in two dimensions and with 3.4 to 5.0 in three dimensions for quadratic polynomials,
respectively. Both gaps in iteration counts are closed with increasing polynomial degree.
Keeping in mind that MVS for the SIPG method has twice as many colors given an optimal
coloring, it will be interesting to compare the computational efficiency of both multiplicative
smoothers in Section 3.4.2.

We conclude that the additive vertex patch smoother for the conforming finite element
method performs remarkably well. Both multiplicative Schwarz smoothers, the one presented
here and the one from Section 3.1.1, are sound and superior when it comes to mathematical
efficiency. However, each multiplicative smoothing step consists of many sub-iterations, each
with a computational effort similar to a single additive smoothing step. The amount of
sub-iterations depends on the number of colors. Therefore, if each of these three candidates
can be computed efficiently, it remains to show which is the best in computational metrics. To
this end, we introduce tensor product Schwarz smoothers for H1-conforming finite elements
in the next section. Then, a study of (parallel) performance follows in Section 3.4.
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Table 3.6 Fractional iterations νfrac for multiplicative vertex patch smoother (MVS) regarding
conforming FEM. CG solver with relative accuracy 10−8 preconditioned by multigrid with
MVS. “Colors” refers to coloring on mesh level L. Entries “—” not computed, showing
results with 105 − 109 DoFs on level L.

Level L Convergence steps νfrac Colors
2D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
5 — — — — — — 2.8 2.6 4
6 — — — 3.8 3.4 3.4 2.9 2.6 4
7 — 4.4 3.8 3.8 3.4 3.4 2.9 2.6 4
8 4.5 4.4 3.8 3.8 3.4 3.4 2.9 2.6 4
9 4.5 4.4 3.8 3.8 3.4 3.4 2.9 2.6 4
10 4.5 4.4 3.8 3.8 3.4 3.4 2.9 2.6 4
11 4.5 4.4 3.8 3.8 3.4 3.4 2.9 2.6 4
12 4.5 4.4 3.8 3.8 3.4 3.4 — — 4
13 4.5 4.4 — — — — — — 4
3D k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 11 k = 15
2 — — — — — — — 2.4 8
3 — — — — 3.3 3.3 2.8 2.6 8
4 — 4.4 3.8 3.7 3.4 3.4 2.9 2.6 8
5 5.1 4.4 3.8 3.7 3.4 3.4 2.9 2.7 8
6 5.1 4.4 3.8 3.7 3.4 3.4 2.9 2.7 8
7 5.0 4.4 3.8 3.7 3.4 3.4 — — 8
8 5.0 4.4 — — — — — — 8
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3.2.2 Tensor Product Schwarz Smoothers

Using standard methods, local solvers for vertex patches are very memory-intense and
inverting local discretization matrices through direct methods is infeasible, in particular, for
high-order finite element methods. In analogy to the tensor product Schwarz smoothers
from Section 3.2.2, fast diagonalization of local matrices amenable to a separable Kronecker
representation overcomes these challenges.

Proving the separable Kronecker representation is even simpler than for the symmetric
interior penalty method since face integrals are missing. Taking homogeneous Dirichlet
boundary conditions and inter-element continuity into account will be straightforward.
Assuming a Cartesian mesh Tℓ, a vertex patch Ωj is the Cartesian product of intervals, each
subdivided into two subintervals,

Ωj =
D×
d=1

[a+
d , b

+
d ] ∪ [a−

d , b
−
d ]. (3.43)

The Cartesian mapping FK : K̂ → K for cells K ∈ Tℓ was defined in (3.18). The local bilinear
form is given as restriction of aℓ(·, ·) to Vj × Vj , only consisting of the bulk integral on the
vertex patch Ωj . For each K ∈ Tℓ a set of shape functions ϕi ∈ Vℓ that form a local shape
function basis for V (K),

ϕK;i := ϕi|K = ϕ̂i ◦ F −1
K , (3.44)

The Cartesian mapping preserves the separation of unit coordinates in real space such that
the separation of variables for unit shape functions ϕ̂i, being introduced in Definition 2.2.3,
is preserved as well for shape functions ϕK;i. Assuming any two basis functions ϕ and ψ in
Vj , we denote by K the set of cells on which both functions have non-trivial support. As
in (3.19), the bulk integral for a generic cell K factorizes into

∫
K

∇ϕ ·∇ψ dx =
D∑
d=1

∫ 1

0

1
hd
φ̂′
id
φ̂′
jd
dx̂d

D∏
δ=1,δ ̸=d

∫ 1

0
φ̂iδ φ̂jδhδ dx̂δ

 , (3.45)

with ψ|K = ϕK;i and ϕ|K = ϕK;j . For the local problem on the vertex patch Ωj , we have

aℓ(ϕi, ϕj) =
∑
K∈K

∫
K

∇ϕ ·∇ψ dx

where each cell integral on the right-hand side admits the factorization in (3.45). It is apparent
that the local discretization Aj corresponding to section 3.2.2 has a separable Kronecker
representation, but we do not have univariate mass and bulk matrices as simple as in (3.35),
where the indexing of the shape function basis followed the structure of a direct sum (3.3).
The direct sum implied block-structured matrices. Deriving the explicit separable Kronecker
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(a) vertex patch (b) local nodal points

Fig. 3.5 Visualization of a Cartesian vertex patch Ωj (shaded area) with two adjacent cells K+

and K− (left) and corresponding shape functions in Vj (right) characterized by Gauss-Lobatto
support points for bi-cubic Lagrange elements. The Cartesian product structure is given by
intervals [a±

d , b
±
d ] for each spatial dimension d. Semi- and quarter circles identify (by coloring)

shape functions with support on two or four cells, respectively.

representation of Aj , becomes a tedious juggling with indices, in particular, indices i and j

in (3.45) implicitly depend on the cell K.
We keep it simple by focusing on a specific Cartesian vertex patch Ωj for two spatial

dimensions, illustrated in Figure 3.5. To this end, two adjacent cells

K+ = [a+
1 , b

+
1 ]× [a+

2 , b
+
2 ] and K− = [a−

1 , b
−
1 ]× [a+

2 , b
+
2 ]

are introduced with b+
1 = a−

1 . The interface e reads

e = {b+
1 } × [a+

2 , b
+
2 ]. (3.46)

Local shape functions are visualized by their nodal points in Figure 3.5b. Shape functions
with exclusive support either in K+ or in K− have colored circles ( ) or ( ), respectively.
Bicolored circles characterize basis functions exclusively belonging to the interface e. Likewise,
the bicolored semicircle illustrates the single shape function associated with the interior
vertex, with support in four cells. Due to the Cartesian product in (3.43) any nodal point
is uniquely assigned either to (a+

1 , b
+
1 ), to (a−

1 , b
−
1 ) or to the “midpoint” {b+

1 }. Following
the indexing of univariate Lagrange elements from Definition 2.2.2, if on cell K+ the last
shape function φ̂ndof belongs to e, on cell K− it is the first φ̂1. The same applies to any other
dimension and generalizes to Cartesian vertex patches with more than two spatial dimensions.
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Using the tensor product Gaussian quadrature from Section 2.2 the univariate mass
matrix with respect to [a+

d , b
+
d ] ∪ [a−

d , b
−
d ] reads

M (d) =


M

(d)
++ M

(d)
+e 0

(M (d)
+e )T M

(d)
ee (M (d)

−e )T

0 M
(d)
−e M

(d)
−−

 (3.47)

with (
M

(d)
±±

)
ij

=
nquad∑
q=1

(
φ̂i+1(x̂q)φ̂j+1(x̂q)h±

d wq
)
,

(
M (d)
ee

)
11

=
nquad∑
q=1

(
φ̂ndof(x̂q)φ̂ndof(x̂q)h+

d wq + φ̂1(x̂q)φ̂1(x̂q)h−
d wq

)
,

(
M

(d)
+e

)
i1

=
nquad∑
q=1

(
φ̂i+1(x̂q)φ̂ndof(x̂q)h+

d wq
)
,

(
M

(d)
−e

)
i1

=
nquad∑
q=1

(
φ̂i+1(x̂q)φ̂1(x̂q)h−

d wq
)
,

(3.48)

for all i = 1, . . . , ndof−2 and j = 1, . . . , ndof−2. Here, h±
d denotes the length of interval [a±

d , b
±
d ].

The subscript e indicates the joint vertex b+ = a− between both intervals. Consequently, the
block M (d)

ee has a single entry. We emphasize that the index i+ 1 in definitions of M (d)
±±,M

(d)
+e

and M (d)
−e skips i = 1 and leaves out i = ndof, thus neglecting shape functions associated with

∂Ωj . Neglecting shape functions at the boundary implicitly imposes homogeneous Dirichlet
boundary conditions for the local finite element problem. Similarly, univariate bulk matrices
L(d) are defined,

L(d) =


L

(d)
++ L

(d)
+e 0

(L(d)
+e)T L

(d)
ee (L(d)

−e)T

0 L
(d)
−e L

(d)
−−

 (3.49)

with (
L

(d)
±±

)
ij

=
nquad∑
q=1

(
1
h±
d

φ̂′
i+1(x̂q)φ̂′

j+1(x̂q)wq
)
,

(
L(d)
ee

)
11

=
nquad∑
q=1

(
1
h+
d

φ̂′
ndof(x̂q)φ̂

′
ndof(x̂q)wq + 1

h−
d

φ̂′
1(x̂q)φ̂′

1(x̂q)wq
)
,

(
L

(d)
+e

)
i1

=
nquad∑
q=1

(
1
h+
d

φ̂′
i+1(x̂q)φ̂′

ndof(x̂q)wq
)
,

(
L

(d)
−e

)
i1

=
nquad∑
q=1

(
1
h−
d

φ̂′
i+1(x̂q)φ̂′

1(x̂q)wq
)
,

(3.50)
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The specific ordering of blocks in (3.47) and (3.49) is crucial such that the lexicographic order
from Definition 2.1.6 for the shape function basis of subspace Vj is obtained. Consequently,
the separable Kronecker representation of the local discretization matrix Aj reads

Aj =

 D⊗
d=1

L(d) �
D⊗
d=1

M (d)

 , (3.51)

This tensor representation enables fast diagonalization, which overcomes the memory-intensity
of local solvers and significantly reduces the arithmetic complexity, while still computing
exact inverses. We refer to Section 2.1.3 a theoretical comparison of using fast diagonalization
instead of direct methods for inverting matrics. In practice, we highlight these benefits
in Section 3.4, where we compare to the efficient operator application from Section 2.2 and
study the (parallel) performance of our algorithms.

3.3 Restricted Additive Schwarz Methods

In Section 3.1.1, we observed that additive vertex patch smoothers for the SIPG method
led to slow non-uniform solver convergence, most likely due to small relaxation factors. On
the contrary, the same smoothers for the H1-conforming multilevel method performed much
better. To this end, we present a variant of additive vertex patch methods that do not need
relaxation at all.

Restricted additive Schwarz methods (RAS) were accidentally found and first discussed
in (Cai and Sarkis, 1999). The authors showed that a RAS preconditioner leads to fewer
iterations than the standard additive Schwarz preconditioner (AS), both accelerated by
GMRES, for a finite difference scheme with a five-point stencil concerning Poisson and
convection-diffusion problems, respectively. Efstathiou and Gander (2003) addressed the
question: Why is RAS a convergent or even faster converging iterative solver than AS?
We note that in both publications the (standard) additive Schwarz methods (AS) was used
without relaxation.

We focus on restricted additive Schwarz smoothers for vertex patches, answering the
question: Are RAS smoothers superior in terms of the solver’s convergence steps when
compared to their AS counterparts using a simple relaxation factor? The latter smoothers were
presented in Sections 3.1.1 and 3.2.1. Stiller, 2016, 2017 studied restricted additive Schwarz
smoothers using nonuniformly weighting functions for the SIPG method from Section 3.1,
but not for smoothers on vertex patches. We compare our results later.

First, for each subdomain Ωj a weighting operator Wℓ;j is introduced which satisfies a
partition of unity.
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Assumption 3.1 (Partition of unity). The restriction operators Rℓ;j and weighting operators
Wℓ;j define a partition of unity if

Jℓ∑
j=1

RT
ℓ;jWℓ;jRℓ;j = id, (3.52)

where id is the respective identity operator for the finite element space Vℓ.

The standard additive Schwarz smoothers were introduced in Section 2.3.2. We refer
there for the corresponding notation used here. For brevity, we suppress the level index ℓ.
In computations, we identify the finite element subspace Vj with the coefficient space RNj

and do not distinguish them in notation. Similarly, Wj defines a square matrix RNj×Nj with
respect to the coefficient space. In Algorithm 5, the restricted additive Schwarz smoother
(RAS) is defined (not suppressing the level index for the sake of completeness). Assuming Wj

is simply the identity matrix for each subdomain, RAS is identical to the standard additive
Schwarz smoother without relaxation, i.e., Algorithm 3 with ω = 1. In general, given two

Algorithm 5 Restricted Additive Schwarz smoothing step
1: procedure Sad;ℓ(xℓ, bℓ)
2: rℓ ← bℓ −Aℓxℓ ◃ update residual
3: for c = 1 to Ncol do
4: xℓ ← xℓ +∑

j∈Jc R
T
ℓ;jWℓ;jA

−1
ℓ;jRℓ;jrℓ ◃ apply local solvers

5: end for
6: return xℓ
7: end procedure

overlapping subdomains Ωj and Ωi, to satisfy Assumption 3.1 it is impossible that Wj = id
as well as Wi = id.

The transmission conditions3 play an important role for restricted Schwarz methods,
see (St-Cyr et al., 2007; Efstathiou and Gander, 2003; Gander, 2006). They define the
coupling of local problems in overlapping regions of adjacent subdomains. A study of them
helps to define a partition of unity at the discrete level.

We start with discussing transmission conditions for the standard H1-conforming method,
which was introduced in Section 3.2. Given the vertex patch Ωj , we assume that global
degrees of freedom are ordered such that the discretization matrix on level ℓ has the form

Aℓ =

Aj Bj�

B�j A�

 , (3.53)

where the generic subscript � indexes the coefficient space that complements the coefficient
space associated with Vj . The complementation is then the coefficient space dual to Vℓ.

3See (Toselli and O. Widlund, 2005, §1) for a definition in the context of domain decomposition methods.
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Assuming Vj consists only of functions with support in Ωj , see Section 2.3.2, the local matrix
Aj discretizes the model problem (3.1) on Ωj with homogeneous Dirichlet boundary. Let us
have a closer look at the respective local subspace correction

xℓ +RT
jWjA

−1
j Rjrℓ

for the previous iterate xℓ and its corresponding residual rℓ = Aℓxℓ− bℓ. We refer to A−1
j Rjrℓ

as local solution update in view of

A−1
j Rjrℓ = Rjxℓ +A−1

j (Rjbℓ −Bj�x�), (3.54)

where x� complements local coefficients to xℓ following the structure in (3.53),

xℓ =

xj
0

+

 0
x�

 ,
where xj is the restriction of xℓ according to Rj . The previous local solution Rjxℓ is updated
by ∆xj , which is the solution of the local finite element problem at matrix level

Aj∆xj = Rjbℓ −Bj�x�. (3.55)

Following Efstathiou and Gander (2003), strong Dirichlet transmission conditions in discrete
form enter through Bj�x�. Boundary conditions on ∂Ωj ∩ ∂Ω were lifted already at the
global level; thus, they implicitly enter the equation through Rjbℓ. By global we refer here
to the continuous and/or discrete problem on mesh level ℓ. The boundary conditions and
transmission conditions for local problems are both implicitly enforced by the residual. For
strong Dirichlet transmission conditions, only the degrees of freedom associated with ∂Ωj are
affected by adjacent cells; thus, a very localized finite element stencil is obtained, which was
elaborated in Section 3.2.1.

For the symmetric interior penalty method, the local problems have in the absence of
strong transmission conditions normal fluxes at interfaces that arise from penalty terms.
Assuming standard tensor product elements, the fluxes couple to all degrees of freedom
of adjacent cells, which leads to a broader finite element stencil (see Figure 3.1) than for
conforming finite elements. We start again at the algebraic level with the specific block
structure (3.53). First, let e be a facet at the subdomain’s boundary ∂Ωj that is not at the
physical boundary ∂Ω. The outward-pointing normal at ∂Ωj is denoted nj . We introduce
n� = −nj . Let uℓ ∈ Vℓ be the finite element function associated with the coefficient vector
xℓ. Similarly, the complementing function u� = uℓ|Ω\Ωj is defined by duality to x�. The
transmission condition at interface e, enforced by (−Bj�x�) in (3.55) at the discrete level, is
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refactored at the continuous level into

−
∫
e

(
γe u�n� · vnj −

1
2∇u� · vnj −

1
2u�n� ·∇v

)
dσ(x)

= 1
2

[∫
e

(
2γe u� · v − u�∇v · nj

)
dσ(x)

]
+ 1

2

[∫
e

∇u� · njv dσ(x)
] (3.56)

for any v ∈ Vj ; derived from the penalty, the consistency, and the adjoint consistency terms
in (3.7). The penalty factor γe at interior facets is scaled by 1/2 compared to the identical
penalty at a physical boundary ∂Ω; thus, 2γe is the natural penalty when defining the SIPG
method on subdomain Ωj , see the discussion following (3.8). The first bracket in (3.56)
defines the typical boundary conditions for the SIPG method (see (3.10), replacing the
boundary data g by u�), weakly enforcing Dirichlet conditions. Here, they weakly impose
Dirichlet transmission conditions weighted by 1/2. The second bracket imposes Neumann-type
transmission conditions with prescribed normal flux ∇u� ·nj , also weighted by 1/2. For facets
e at the physical boundary, the respective boundary conditions enter through Rjbℓ the local
discrete problem (3.55), where bℓ is defined by duality to the right-hand side operator Fℓ of
the SIPG method in (3.10). Consequently, we have weak Dirichlet conditions at the physical
boundary and equally weighted Dirichlet and Neumann transmission conditions. Schwarz
smoothers with weak Dirichlet transmission conditions at the boundary ∂Ωj were studied
by Antonietti and Ayuso (2007, 2008), avoiding equally weighted Dirichlet and Neumann
conditions. However, local solvers A−1

j in (3.54) are then inexact.

3.3.1 Mathematical Efficiency of Restricted Additive Schwarz Smoothers

Next, we study two variants of weighting matrices Wj that satisfy the partition of unity
assumption. Finding a nonoverlapping domain decomposition at the algebraic level is the
first option. To this end, each degree of freedom is associated with one and only one vertex
patch Ωj such that Assumption 3.1 is satisfied. We refer to this variant as boolean restricted
additive Schwarz method (bRAS) since all entries in Wj are either 0 or 1. In literature,
this method is referred to as the original restrictive Schwarz method (Cai and Sarkis, 1999).
Note that we postpone discussing the algorithm which determines a nonoverlapping domain
decomposition from an original decomposition of overlapping vertex patches to Section A.1.

The second variant to obtain a partition of unity at the algebraic level is counting the
number of subdomains each degree of freedom corresponds to and then using the reciprocal
count as the weight for each matrix Wj . We refer to the method with this kind of weighting
matrix as the weighted restricted additive Schwarz (wRAS). Both variants were suggested
in the original work (Cai and Sarkis, 1999) but only the former was studied in numerical
experiments.

The numerical setup of comparing the solver’s fractional convergence steps is almost
identical to previous sections, particularly the multilevel SIPG method in Section 3.1 and the
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Table 3.7 Fractional iterations νfrac for (standard) additive vertex patch smoother (AVS),
for either H1-conforming or discontinuous Lagrange elements using Qk. GMRES solver
with relative accuracy 10−8 preconditioned by multigrid. Entries “—” not computed due to
restricting experiments to 105 − 108 unknowns on level L.

Level L Convergence steps νfrac

H1-conforming SIPG
2D k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5
6 — — — 9.5 — — 16.9 18.3
7 — 9.6 9.7 9.3 15.6 16.3 16.8 17.6
8 10.2 9.5 9.5 9.2 15.7 16.3 16.7 17.4
9 9.9 9.3 9.4 9.0 15.9 16.0 16.9 17.2
10 9.8 9.2 9.3 8.9 15.7 16.0 16.5 16.7
11 9.7 9.1 8.9 — 15.5 15.9 — —
3D k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5
3 — — — — — — — 26.5
4 — 14.2 14.4 13.3 25.3 27.7 29.4 31.2
5 16.9 13.7 13.9 12.9 26.1 27.9 31.1 32.7
6 16.7 13.5 13.7 12.6 26.2 27.7 31.1 33.6
7 16.5 12.9 — — 25.5 — — —

multilevel H1-conforming method in Section 3.2. In general, the restricted additive Schwarz
smoothing step (Algorithm 5) is intrinsically non-symmetric due to applying weighting
matrices only before prolongation and not after restriction. To this end, a preconditioned
GMRES solver is utilized for acceleration instead of a conjugate gradient method. For
reasons of comparability, we compute fractional convergence steps for standard additive
Schwarz smoothers on vertex patches (AVS) again, but this time utilizing a GMRES solver,
see Table 3.7. AVS is relaxed by the factor 0.25 in two spatial dimensions and by 0.125 in
three, as elaborated in previous sections. Compared to the convergence steps for the CG
solver in Tables 3.3 and 3.5, the absolute numbers do not differ significantly. The dependency
of the solver’s convergence on the mesh size hL and the polynomial degree k is as expected
identical for both, CG and GMRES. For conforming finite elements, the solver’s convergence
is uniform with respect to both hL and k. On the contrary, for the SIPG method, convergence
steps slightly increase with an increasing polynomial degree for both dimensions and slightly
grow with respect to the mesh size in three dimensions. Furthermore, the number of iterations
is again higher for the SIPG method compared to the conforming finite element method: for
k = 5, the fractional number of steps νfrac is about 85% higher in two dimensions and even
160% higher in three dimensions.

Let us continue with the restricted additive Schwarz smoothers (RAVS) on vertex patches,
first for H1-conforming finite elements. Compared to the convergence steps in Table 3.7, the
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Table 3.8 Fractional iterations νfrac for both restricted additive vertex patch smoothers, the
weighted as well as boolean RAVS, for H1-conforming Lagrange elements. GMRES solver
with relative accuracy 10−8 preconditioned by multigrid. Entries “—” not computed due to
restricting experiments to 105 − 108 unknowns on level L.

Level L Convergence steps νfrac

boolean RAVS weighted RAVS
2D k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5
6 — — — 3.9 — — — 5.2
7 — 4.6 3.8 3.9 — 4.8 5.0 5.2
8 5.2 4.5 3.7 3.9 4.6 4.8 5.0 5.1
9 5.2 4.5 3.7 3.8 4.5 4.7 4.9 5.1
10 4.9 4.4 3.6 3.7 4.5 4.7 4.9 5.0
11 4.9 4.3 3.6 — 4.5 4.6 4.8 —
12 4.8 — — — 4.4 — — —
3D k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5
3 — — — — — — — —
4 — 5.1 4.5 4.2 — 5.3 5.1 5.0
5 6.2 4.9 4.5 4.2 5.9 5.2 4.8 4.9
6 5.9 4.8 4.4 3.9 5.8 5.2 4.7 4.8
7 5.8 4.8 — — 5.7 5.1 — —

numbers in Table 3.8 for each RAVS variant are significantly lower, with slight advantages
for the boolean RAVS. For k = 5 and boolean RAVS, the fractional iteration steps are 55%
less in 2D than with the standard AVS, even 70% less in 3D. With the weighted RAVS, we
normally need one step more than with the boolean RAVS. Nevertheless, with each variant
the GMRES solver converges uniformly concerning both the mesh size and the polynomial
degree. It is noteworthy that there is almost no difference in iteration counts for two and
three spatial dimensions. Recalling the results of the multiplicative vertex patch smoother
from Table 3.6 (there, using a CG solver), boolean RAVS and MVS compare at similar levels.
However, RAVS requires one instead of eight residual computations per smoothing step in
three dimensions, one instead of four computations in two dimensions. The additional cost of
applying weighting matrices Wj should be negligible.

Table 3.9 shows the behavior using restricted additive Schwarz smoothers for the SIPG
method. Comparing both RAVS variants against each other, convergence steps differ only
by one or two for quadratic polynomials in two or three dimensions, respectively, with the
boolean RAVS having the edge over the weighted RAVS. However, the gap in steps continues
to grow for higher polynomial degrees. Recalling the results of the standard AVS for the SIPG
method from Table 3.7, RAVS is superior because the GMRES solver converges uniformly
with respect to the mesh size and the polynomial degree, needing only a few steps in total.
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Table 3.9 Fractional iterations νfrac for both restricted additive vertex patch smoothers, the
weighted as well as boolean RAVS, for SIPG discretizations using discontinuous Qk-elements.
GMRES solver with relative accuracy 10−8 preconditioned by multigrid. Entries “—” not
computed due to restricting experiments to 105 − 108 unknowns on level L.

Level L Convergence steps νfrac

boolean RAVS weighted RAVS
2D k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5
6 — — 4.2 4.1 — — 7.1 7.5
7 5.4 4.6 4.2 3.9 6.2 6.8 6.9 7.3
8 5.3 4.6 4.1 3.9 5.9 6.6 6.7 7.2
9 5.2 4.5 4.1 3.8 5.7 6.5 6.6 6.9
10 5.2 4.5 3.9 3.8 5.6 6.3 6.4 6.8
11 5.1 4.4 — — 5.5 6.2 — —
3D k = 2 k = 3 k = 4 k = 5 k = 2 k = 3 k = 4 k = 5
3 — — — 3.9 — — — 9.2
4 5.2 4.0 4.1 3.9 7.1 8.2 8.2 9.2
5 5.1 3.9 4.1 3.9 6.9 7.8 7.8 8.7
6 5.1 3.9 4.0 3.8 6.7 7.6 7.6 8.5
7 5.0 — — — 6.5 — — —

For k = 5 and boolean RAVS, only 1/5 of the fractional steps νfrac are needed compared to
the standard AVS in two dimensions, only 1/8 of the steps in three dimensions. Comparing
to the numbers in Table 3.4, only one convergence step more is needed using boolean RAVS
instead of MVS. The former requires only a single residual computation per smoothing step,
instead of the eight computations of MVS in two dimensions and even 16 in three dimensions.

Stiller (2016) studied restricted additive Schwarz smoothers on element-centered subdo-
mains with minimal overlap and face patches (i.e., the union of cells with joint face) studied
for the SIPG method. Nonuniformly weighting functions were used to impose a partition
of unity. We can not compare numerical results directly because Stiller (2016) made use
of polynomial multigrid while we are utilizing geometric multigrid. However, comparing
restricted and standard additive Schwarz smoothers in each work the same tendencies are
observed, although different multilevel methods and partion of unities are used.

To conclude, we introduced restricted additive Schwarz smoothers that lead to robust
solvers, needing only a few iterations to converge. Thus, avoiding relaxation by a partition
of unity improves the solver’s convergence significantly. Given the lower computing costs
in theory, the boolean RAVS may lead to faster numerical solvers than MVS in practice.
However, CG solvers do not consume as much memory as GMRES methods and require less
communication of data. We would need to compare time-to-solution to decide on the best
computational efficiency. However, implementing RAVS given memory-distributed parallelism
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was out of the thesis’ scope; thus, we do not consider RAVS for the performance analysis
in Section 3.4.

Outlook on Optimized Schwarz Methods

In particular, the significant improvement for the SIPG method using restricted additive
Schwarz smoothers instead of standard smoothers with relaxation surprised us. Assuming
non-standard transmission conditions (for instance, conditions involving partial derivatives
effectively), there exists the theory on optimized Schwarz methods. Replacing standard
Dirichlet transmission conditions with more general Robin-type conditions in (St-Cyr et
al., 2007), improved the solver’s convergence significantly for a positive definite Helmholtz
problem. The interested reader can also find therein references to optimized Schwarz methods
for the indefinite Helmholtz problem and the convection-diffusion problem. We have seen
before that the inferred transmission conditions for the SIPG method are also not the standard
Dirichlet conditions imposed at the physical boundary: the transmission conditions are of
equally weighted Dirichlet-type (imposed weakly) and Neumann-type. On the one hand, we
may have obtained an optimized Schwarz method.

On the other hand, we recall the discussion on local finite element stencils, that determine
the size of the overlap or at least the part of the overlap where we need to transmit values
from neighbors. Because of the theory in (St-Cyr et al., 2007) this overlap has to be “small
enough”. It is questionable that we satisfy this minimum overlap assumption using standard
Lagrange elements based on Qk-polynomials. Consequently, elaborating on this topic may be
beneficial for a deeper understanding but was also beyond the scope of this work.

3.4 Performance of Tensor Product Schwarz Smoothers

Before showing computational efficiency in terms of time-to-solution, and analyzing strong
and weak scaling of tensor product Schwarz smoother implementations, we quantify the
arithmetic complexity of their one-time setup and application. In theory, the key technique
is fast diagonalization (see Section 2.1.3) significantly reducing the memory intensity as well
as arithmetic operations needed to invert and apply local matrices, compared to standard
implementations of Schwarz smoothers. By standard we refer to inverting and applying local
matrices without exploiting tensor structure. We will show that tensor product Schwarz
smoothers (if well implemented) keep up with the efficient operator application of Aℓ (see Sec-
tion 2.2) in terms of both computational complexity and memory footprint. In particular,
for high-order finite elements, standard implementations of Schwarz smoothers on vertex
patches are prohibitively expensive.
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3.4.1 Analysis of Computational Complexity

High-performance iterative solvers for large-scale finite element problems rely on nearest-
neighbor communication based on the domain decomposition into mesh cells. The matrix-free
operators communicate at element level (looping over elements), while subspace corrections
inherent in Schwarz smoothers communicate at subdomain level. Only very small subdomains
(at most a vertex patch) such that both communications are comparable. Subspace corrections
with a high “sequential” efficiency are essential in achieving optimal node-level performance.
Therefore, counting floating-point operations is a sound hardware-independent metric to
measure the computational efficiency of our implementations, despite the ever-growing
complexity of modern multi-core architectures.

We assume the same numerical setting on the unit cube Ω = [0, 1]3 as in previous sections.
Here with the most-refined level L = 3, such that the mesh TL consists of 4096 cells. The
number of vertex patches JL equals 3375. At the heart of the efficient operator application
is the sum factorization (2.20b), which requires O(D(ndof)D+1) arithmetic operations for
each cell, elaborated in Section 2.2 for the model problem (3.1). In our case ndof = k + 1,
thus, we simply use the polynomial degree k as the characteristic size when discussing the
arithmetic complexity. In view of Remark 2.1.14, the fast diagonalization of the local matrix
Aj has a one-time cost of O(Dk3) operations. The corresponding matrix-vector product
A−1
j xj requires O(DkD+1) arithmetic operations, again benefitting from a sum factorization.

A single additive smoothing step Sad(xL, bL), see Algorithm 3, consists of two parts, the
residual update bL−ALxL and a sum of subspace corrections, that includes applying inverses
A−1
j to local coefficients for each subdomain.

The total number4 of floating-point operations (FLOP) is counted through the performance
monitoring tool likwid-perfctr (Treibig et al., 2010) on an Intel Xeon Gold 6142M processor.
Normalizing the number of floating-point operationsNFLOP by a respective number of subunits
Nunit and an expected arithmetic complexity korder, the leading factor of the (asymptotic)
workload per subunit is obtained by

Cload = NFLOP
Nunit × korder . (3.57)

For the additive vertex patch smoother (AVS), the respective subunit is a vertex patch,
Nunit = JL. For additive cell-based smoothers (ACS) and computations of the residual,
respectively, the subunit is a cell, Nunit = Ncell.

Table 3.10 shows that the leading factor Cload levels off with increasing polynomial degree,
which confirms the asymptotic computational complexity (last column) we expect. The
slight decrease of Cload for high-order polynomials is explained by a closer look at the SIPG

4We accumulate the retired floating-point instruction counters (FP_ARITH_INST_RETIRED_*_DOUBLE in
likwid notation with ’*’ classifying scalars and different vector lengths), where vector instructions are
weighted with their respective vector length.



3.4 Performance of Tensor Product Schwarz Smoothers 83

Table 3.10 The (asymptotic) workload per cell (residual and ACS) or per vertex patch
(AVS) of additive Schwarz smoothers in three dimensions given by the leading factor Cload,
see (3.57). The complexity of the one-time setup is independent of the dimension, dominated
by D one-dimensional eigenvalue solvers. The factor Cload of applying the local inverse is
independent in k because inverses are assembled once. Adapted from (Witte et al., 2021).

Routine Workload Cload Complexity
Degree k: 7 11 15 19 23 27 31
bL −ALxL 32 25 21 19 18 18 17 ×kD+1

ACS: Sad(xL, bL) 45 38 34 32 31 30 29 ×kD+1

setup of Sad 96 77 67 63 57 54 52 ×k3

A−1
L;jRjxL 12 12 12 12 12 12 12 ×kD+1

AVS: Sad(xL, bL) 236 227 222 219 218 217 216 ×kD+1

setup of Sad 506 419 369 393 365 354 341 ×k3

A−1
L;jRjxL 195 195 195 195 195 195 195 ×kD+1

form (3.7): the integration cost of lower-order face terms become less prominent when
increasing the polynomial degree. We emphasize that the one-time setup of Sad, consisting
of integration and fast inversion5, is independent of the spatial dimension D. Highlighting
the paramount importance of fast diagonalization, we compared a standard and tensor
product implementation of ACS in terms of FLOP counts in (Witte et al., 2021): for tri-cubic
polynomials the setup cost of standard smoothers are more than 4500 times higher, for Q7

even more than 250000 times higher. Therein, local matrices Aj were inverted through a
singular value decomposition6 for the standard implementation. The absurdly large difference
in computational effort reflects the theoretical complexity of O(Dk3) for a fast diagonalization
and O(k3D) for a standard SVD. Moreover, it was noticed that the setup cost for each tensor
product smoother, either ACS or AVS, are lower than the cost of one (four) smoothing
steps Sad(xL, bL) for ACS (for AVS). Consequently, the one-time setup cost of our tensor
product Schwarz smoothers are negligible compared to iteratively solving the PDE problem.
In addition, the cost of subspace corrections are also significantly reduced when utilizing sum
factorizations to apply A−1

j to local coefficients as detailed in Section 2.1.3. We confirmed
this in (Witte et al., 2021) by counting FLOPs: the floating-point operation counts reflected
well the theoretical computational complexities of O(DkD+1) (tensor product) versus O(k2D)
(standard). A benefit of tensor product smoothers which might be overlooked is the reduced
consumption of memory: only O(Dk2) floating-point numbers need to be stored for each
inverse Aj , namely the D univariate eigendecompositions, in contrast to O(k2D) floating-point
numbers for a standard SVD. The reduction in memory aligns perfectly with matrix-free
operator evaluation and is crucial for the feasibility of Schwarz smoothers on vertex patches

5The D one-dimensional generalized eigenvalue problems are solved by means of the LAPACK routine DSYGV.
6The singular value decomposition is computed by the LAPACK routine XGESDD.
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for high-order finite elements. Historically, matrix-free methods were primarily used to fit
large-scale computations in memory at all (Bergen et al., 2005). Nowadays, on state-of-the-art
computing architectures, these methods provide excellent (parallel) performance. A very high
computational intensity paired with outstanding numerical throughput is achieved, such that
classical finite element implementations utilizing sparse-matrix formats are outperformed
for cubic or high-order finite elements (Kronbichler and Kormann, 2012; Kronbichler and
Kormann, 2019; May et al., 2014).

3.4.2 Computational Efficiency and Parallel Performance

Counting floating-point operations confirmed (theoretical) computational complexities. It is
a simple hardware-independent metric gaining first insight about computational efficiency.
However, the metric is not sufficient to evaluate parallel performance on large, complex
clusters of compute nodes. Our implementations of tensor product Schwarz smoothers make
use of different types of parallel programming: SIMD vectorization at instruction level7 as well
as shared-memory parallelism using Intel TBB (Threading Building Blocks) and distributed-
memory parallelism utilizing Open MPI (Message Passing Interface implementation) at task
level, respectively. We note that our implementation SIMD-vectorizes over subdomains
similar to the vectorization strategy of deal.II’s matrix-free operators, which vectorize over
mesh cells, see (Arndt, Fehn, et al., 2020; Kronbichler and Kormann, 2012; Kronbichler
and Kormann, 2019). Nevertheless, we do neither analyze in detail the effect of SIMD
vectorization nor the effect of processing tasks in parallel in shared memory. We focus on the
MPI scaling analysis here.

In most recent years, matrix-free routines in deal.II were continuously improved, in
particular, driven by the German Exascale project ExaDG. Their excellence performance
was studied in (Arndt, Fehn, et al., 2020; Kronbichler and Kormann, 2012; Kronbichler and
Kormann, 2019) and references therein. The efficient operator application in deal.II has
been improved to a point such that respective matrix-vector products were computed so
efficiently that they no longer dominated the conjugate gradient solver. See our final project
report (Arndt, Fehn, et al., 2020, §3) for more details - for instance, a benchmark problem8

introduced by the US Exascale initiative “Center for Efficient Exascale Discretization” (CEED)
was studied to confirm high performance. In (Fehn, Munch, et al., 2020) and (Clevenger et al.,
2020), latest advances of deal.II’s geometric multigrid implementations were discussed. The
latter publication provided strong scaling experiments for the h-multigrid V-cycle based on
uniform mesh refinement.

7The instruction set architecture (ISA) extension is user-specified: for instance, using the AVX 256-bit
extension on x86 architectures with 64-bit floating point data type leads to processing four floating-point
numbers in parallel. Each floating-point number fitting into the extension possesses a so-called SIMD lane.

8The benchmark problem BP5 (P. Fischer et al., 2020) involves a conforming finite element discretization of
the Laplacian operator in 3D, using a CG solver with efficient operator application and diagonal preconditioner.
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First, we emphasize that an technical analysis and performance tweaks as found in (Arndt,
Fehn, et al., 2020; Fehn, Munch, et al., 2020) exceed the scope of this thesis. Nevertheless,
our implementations are far beyond a proof of concept. They are carefully designed with
parallel computing in mind but have not reached a maturity level comparable to deal.II’s
matrix-free framework. Second, we want to be open9 to the interested reader and new
contributors. Consequently, we make use of standard implementations10 of the conjugate
gradient solver, geometric multigrid preconditioner, and matrix-free operator evaluation.
Furthermore, we try to discuss our methods on a high level of computing abstraction. We
elaborate on prospective optimizations at the end of this section. Concerning our numerical
experiments, note that we refer to implementations according to the release version 9.2 of
deal.II (Arndt, Bangerth, Blais, et al., 2020).

During the studies for this thesis, efficient implementations for tensor product Schwarz
smoothers (TPSS) were developed with the following features:

Remark 3.4.1 (TPSS). The software package TPSS for tensor product Schwarz smoothers
provides the following features:

• support for continuous and discontinuous tensor product elements, including (moment-
based) Raviart-Thomas elements, see Definition 5.2.5

• additive and multiplicative Schwarz smoothers on cells or vertex patches for uniformly
refined meshes (including non-Cartesian cells, see Section 3.1.2 and (Witte et al., 2021))

• restricted additive Schwarz smoothers11

• support for shared memory task parallelism and/or MPI implementations, particu-
larly supporting deal.II’s vector class LinearAlgebra::distributed::Vector that
provides linear algebra functionality with distributed storage

• SIMD vectorization across subdomains

• user-defined coloring and graph coloring11 to avoid data races and/or enable parallelism
for multiplicative smoothers

• a tensor product matrix class TensorProductMatrixSymmetricSum12 that enables fast
diagonalization (Section 2.1.3) and a matrix-vector product using sum factorization
(Section 2.1.2), respectively

• a Kronecker product singular value decomposition (Section 2.1.4) supporting SIMD
vectorization

9https://github.com/jwitte08/TPSS
10See deal.II’s tutorial program step-37 for details.
11Not (fully) compatible with MPI implementations

https://github.com/jwitte08/TPSS
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• an (approximative) Gaussian block elimination following the ideas in (Arndt, Fehn,
et al., 2020, §5.3)

In analogy to deal.II’s matrix-free framework, we use flat data arrays with contigu-
ous memory layout following the lexicographic ordering from Definition 2.1.6. It enables
fast and direct access to data as well as facilitates SIMD vectorization. At the very
heart of our implementation of tensor product Schwarz smoothers is the matrix class
TensorProductMatrixSymmetricSum12. Given a matrix with separable Kronecker repre-
sentation (2.21), the matrix is inverted by fast diagonalization: the generalized eigenvalues
and eigenvectors are computed by the LAPACK function xSYGVX. The matrix and its inverse
are not stored explicitly but only in terms of univariate matrices, univariate generalized eigen-
vectors and eigenvalues, see (2.21) and (2.25), respectively. Consequently, it is not possible to
access a single entry of the matrix or its inverse. However, it is only the matrix-vector product
regarding the inverse matrix that is needed for subspace corrections (the same applies to
the matrix-vector product with the matrix itself), efficiently computed via sum factorization.
From a technical perspective, the d-mode products involved in the sum factorization (2.20)
are computed by the highly optimized kernel EvaluatorTensorProduct. The same kernel
that is used to compute sum factorizations for deal.II’s matrix-free operator evaluation.
Thus, algorithmic components on all levels, numerical smoothers, preconditioners, and solvers,
profit when improving this kernel.

Computational resources. All computations were conducted on the bwUniCluster
2.013. Each compute node consists of a 2× 20 core Intel Xeon Gold 6230 Cascade Lake and
has main memory with 96 GB RAM. Intel processors are operated at 2.1 GHz and run with
two-way hyperthreading14, that makes 80 threads per node. We use the AVX-512 FMA units
for SIMD vectorization, which means 8 SIMD lanes with 64-bit floating-point numbers (the
default double-precision on the x86 architecture). The C++ implementation is compiled with
OpenMPI 4.1 and GCC 10.2, using optimization level 3 with loop unrolling enabled. We
assign an MPI rank to each physical core. The main memory of each compute node is evenly
distributed among the 40 MPI ranks.

Time measurement. To avoid noisy wall time measurements of algorithmic components
that require not more than 10−2 seconds, we run each component in a loop. Then, the whole
loop’s wall time is recorded and divided afterwards by the number of iterations. The number
chosen guarantees that a single execution of the loop takes at least 0.1 seconds. The wall-clock
time is measured independently for each MPI rank and communicated after executing the
algorithmic component in a loop. We take the maximum wall time among all MPI ranks
as runtime into account. Furthermore, each component-in-a-loop measurement is repeated

12There exists a more general class TensorProductMatrix (not merged into deal.II yet) that extends
functionality to more tensor product representations than (2.21), used in Chapters 4 and 5

13The author acknowledges support by the state of Baden-Württemberg through bwHPC.
14Focusing on the MPI implementation, we disable the usage of (hyper-)threading, although we may use

Intel TBB for the assembly of local matrices or applying subspace corrections.
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20 − 50 times, depending on the algorithm: for instance, measuring the time-to-solution,
which means running the preconditioned CG solver until a relative residual reduction of
10−8 is reached, was repeated only 20 times. While measurements for the efficient operator
application or a single smoothing step were repeated 50 times. The wall-clock time shown in
figures and tables is the median of these repetitions.

Multilevel Schwarz methods. For the subsequent numerical experiments, the identical
multilevel hierarchy of uniformly refined meshes on the domain [0, 1]3 as in Section 3.1.1
(SIPG) and Section 3.2.1 (H1-conforming) is used. Note that L denotes the most-refined
mesh level. Furthermore, the same optimal coloring and relaxation factors are used. As
before, a single pre- and post-smoothing step respectively is applied with an order of subspace
corrections that symmetrizes the multigrid V-cycle preconditioner. This enables using a CG
method for acceleration.

Strong and weak scaling. We start with results for the SIPG discretization of the
Laplacian. In Figure 3.6 and Figure 3.7 runtimes for computing the matrix-free operator
evaluation ALxL, its residual (delineated in blue) and a single tensor product smoothing
step (ACS, MCS, or MVS) are shown for polynomial degree k = 3 and k = 7, respectively.
The greyish-dotted lines are references for perfect (strong) scaling. Weak scaling is seen
by horizontally matching line markers (that means diamonds, triangles, and others) with a
factor of eight in the number of cores.

As expected, the more degrees of freedom are processed per compute node, the better
the scaling of algorithmic components. In particular, both cell-based smoothing steps, the
additive (ACS) in Algorithm 3 and multiplicative (MCS) in Algorithm 4, have almost identical
weak and strong scaling compared to the efficient operator application, for both polynomial
degrees given. Recalling both algorithms, the reasoning lies in the nature of cell-based tensor
product methods, which loop for the residual update and subspace corrections over cells
(or a subset of cells with the same color). The local work is either the integration-based
computation and application of AL;j , or its inverse: since both rely on sum factorization,
both are computed equally efficient, see Sections 2.1.3 and 2.2. The multiplicative smoothing
step requires two colors such that the residual is computed twice. Consequently, it is expected
that MCS requires more time than ACS. We will elaborate on absolute time measurements
below.

For tri-cubic elements in Figure 3.6, the scaling behavior of the vertex patch smoother
(MVS) compares at similar levels, with a larger and growing gap to the perfect scaling line
when the workload for each CPU decreases. Nevertheless, the scaling does not deteriorate
that much, except for discretizations with two million degrees of freedom. The gaps start
to become more significant in Figure 3.7 (k = 7): the difference between more subdomains
with less work (k = 3) and fewer subdomains with more work (k = 7) for the same amount
of unknowns is apparent, but only for MVS. Pointing to scaling results also for very high
polynomial degree k = 15 in Figure A.3, we see that this trend is continued for elements
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Fig. 3.6 MPI scaling analysis of one smoothing step for ACS (top-right), MCS (bottom-left),
and MVS (bottom-right) given SIPG discretizations using tri-cubic Lagrange elements.
Smoothing is compared against the matrix-free operator evaluation (top-left) and its residual
bL −ALxL delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.
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Fig. 3.7 MPI scaling analysis of one smoothing step for ACS (top-right), MCS (bottom-left),
and MVS (bottom-right) given SIPG discretizations using Q7-elements. Smoothing is
compared against the matrix-free operator evaluation (top-left) and its residual bL −ALxL
delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.



90 Poisson Problem

80 160 320 640 1280 2560

10 5

10 4

10 3

10 2

10 1

W
al

l t
im

e 
[s

]

912kDoFs

7MDoFs

57MDoFs

454MDoFs
3GDoFs

ALxL (residual in blue)

80 160 320 640 1280 2560
Number of cores

10 4

10 3

10 2

10 1

912kDoFs

7MDoFs

57MDoFs

454MDoFs 3GDoFs

AVS: Sad(xL, bL)

80 160 320 640 1280 2560
Number of cores

10 4

10 3

10 2

10 1

100

W
al

l t
im

e 
[s

]

912kDoFs

7MDoFs

57MDoFs

454MDoFs 3GDoFs

MVS: Smu(xL, bL)

Fig. 3.8 MPI scaling analysis of one smoothing step for AVS (top-right) and MVS (bottom-
left) given H1-conforming discretizations using tri-cubic Lagrange elements. Smoothing
is compared against the matrix-free operator evaluation (top-left) and its residual bL −ALxL
delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.
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Fig. 3.9 MPI scaling analysis of one smoothing step for AVS (top-right) and MVS (bottom-left)
given H1-conforming discretizations using Q7-elements. Smoothing is compared against
the matrix-free operator evaluation (top-left) and its residual bL −ALxL delineated in blue.
Perfect strong scaling is seen along greyish-dotted lines.
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with very high-order. For MVS, subspace corrections are computed as a loop over vertex
patches: fast diagonalization makes applying inverses very efficient, but each inverse has
twice the size in each dimension compared to cell-based smoothers. The increase of workload
per subdomain by a factor of 16 was observed before in Table 3.10, and we also observe it
here by looking at runtimes. Another effect leading to more runtime is computing 16 times
the residual per smoothing step due to a red-black coloring with parqueting, see Figure 3.2b.

What is the reasoning for the quickly growing gap? To this end, we compared runtimes
between MPI ranks and found significant variance in measurements without stating any times
explicitly. We found some reasons that led to these imbalances.

First, the current way we distribute vertex patches across MPI ranks is as follows.

1. The MPI process owning15 the most cells of the vertex patch takes ownership

2. If there exist two or more MPI processes owning the maximum number of cells of the
subdomain, the process with the lowest rank (an integer in C++) takes ownership

This distribution leads to imbalanced workloads between MPI ranks. In addition, to avoid
branching through conditional statements, our implementation groups subdomains either
at the physical boundary or in the domain’s interior, further aggravating the imbalances.
The respective subspace corrections are then processed in two successive loops. Since we
SIMD-vectorize over subdomains, having fewer (physical) subdomains than SIMD lanes we
use a padding of leftover lanes with dummies. The grouping mentioned before leads to more
dummies than necessary. Aggravating imbalances further, we also have this effect of grouping
through coloring. Looking at the colored multiplicative smoothing step given by Algorithm 4,
each color has only a subset of subspace corrections, basically another group. It explains
why, in particular MVS, which requires 16 colors, shows growing gaps to the perfect scaling
line for high-order elements.

For discretizations with few subdomains but large CPU workload per subdomain, for
instance Figure 3.7 (k = 7) or Figure A.3 (k = 15), these imbalances result in a loss of
scaling capability. A smarter distribution of vertex patches across MPI boundaries is easy
to implement. Vectorizing over evaluation points, like quadrature points and/or degrees of
freedom, or grouping shape function values and gradients together may leverage imbalances.
The latter was implemented with great success by the EXA-DUNE project, see (Bastian,
Altenbernd, et al., 2020). Nevertheless, in cases where each core is sufficiently loaded with
work, strong and weak scaling can be observed for all smoothing steps presented. Therefore,
the scaling results are promising.

For the H1-conforming multilevel method runtimes for both vertex patch smoothers
AVS and MVS are shown in Figures 3.8 and 3.9 for k = 3 and k = 7, respectively. We

15We refer to (Bangerth et al., 2011): algorithms and data structures for meshes stored in distributed
memory across many processors are studied, and what is meant by owning and ownership is elaborated.



3.4 Performance of Tensor Product Schwarz Smoothers 93

achieve strong scaling for tri-cubic elements. For Q7-polynomials, AVS shows the same scaling
behavior as the efficient operator application. At the same time, a slightly growing gap is
observed for MVS, particularly when the CPU workload is low. In Figure A.4 for k = 15, the
imbalances discussed before lead to largely growing gaps for MVS and smaller growing gaps
for AVS. In general, the vertex patch smoothers for the conforming finite element method
scale better than for SIPG discretizations. The coloring explains this observation: MVS for
conforming finite elements does need only a parqueting, i.e., eight colors per smoothing step
instead of 16 colors for parqueting with red-black coloring. In this way, twice as many local
inverses per color are distributed across the same number of MPI ranks which mitigates
workload imbalances. The mitigation becomes even more prominent when compared to AVS,
where a single color is needed. It explains why AVS scales much better and nearly as good as
cell-based smoothers. As motivated in the introduction of this chapter, deal.II’s matrix-free
operator evaluation achieves excellent performance for state-of-the-art benchmarks from
CEED16. Therefore, we consider the efficient operator application as a baseline or benchmark
for our tensor product Schwarz smoothers. Achieving runtimes close to this baseline speaks
in favor of our methods.

The pure wall-clock time of algorithmic components Tmeth is compared best in numbers.
For convenience, see the results in Table 3.11 where we gather runtimes for both finite element
methods, limiting ourselves to 1 billion DoFs for SIPG and 454 million or 721 million DoFs
for conforming elements with k = 3 or k = 7, respectively. We use the time to compute the
residual Tres as a baseline since computing residuals is the integral part of Schwarz smoothers
besides subspace corrections. Smoothers are compared in units of the residual computation
by displaying Tmeth/Tres. The (standard) matrix-free operator evaluation needs only 75− 85%
of the residual’s time. In the last column, we state the number of residuals Nres that are
computed per smoothing step.

Starting with ACSDG, subspace corrections require twice the time of computing the
residual. For MCSDG it is close to three times, indicating an overhead due to coloring.
For MVSDG, subspace corrections need 15 − 20 times Tres. On the one hand, applying a
local inverse needs around 16 times more arithmetic operations than cell-based smoothers.
On the other hand, we have slightly fewer vertex patches than cells. Therefore, MVSDG

compares well. MVS for conforming finite elements compares at similar levels as MVSDG,
while AVS is even better, needing only 5−8 times the amount of Tres. The difference between
AVS and MVS indicates an imbalance again due to coloring. Taking into account that our
implementations have not reached such a maturity level as deal.II’s matrix-free operator
evulation and having identified some imbalances, the results are promising.

Next, we have a look at time-to-solution, i.e., the wall-clock time the CG solver needs to
reach a relative residual reduction of 10−8. From Sections 3.1.1 and 3.2.1 the open question

16https://ceed.exascaleproject.org/

https://ceed.exascaleproject.org/
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Table 3.11 Analysis of one smoothing step and matrix-free operator evaluation ALxL in units
of residual computations: the measured wall time Tmeth for each method, i.e., either the
matrix-vector product or application of the smoother, is divided by the time Tres to compute
the respective residual. Smoothers indexed by DG refer to the SIPG discretization in 3D
with 1 GDoFs for polynomial degrees k = 3 and k = 7. Unindexed smoothers refer to the
conforming FEM with 454 MDoFs for k = 3, 721 MDoFs for k = 7. Nres states the number
of residual computations within a single (colored) smoothing step. Runtime measurements
are the same as in Figures 3.6 to 3.9. Entries “—” not computed due to exceeding main
memory limits.

Method Tmeth/Tres Nres

Ncores: 80 160 320 640 1280 2560 Q3

ADGL xL 0.82 0.81 0.83 0.82 0.83 0.84 —
ACSDG — 3.08 2.71 2.74 2.84 2.89 1
MCSDG — 5.06 4.73 4.52 4.74 4.82 2
MVSDG — — 31.33 31.41 32.42 34.94 16
ALxL 0.78 0.78 0.79 0.79 0.81 0.85 —
AVS — 6.16 6.19 6.82 7.13 7.42 1
MVS — 19.34 19.63 20.87 23.78 25.62 8
Ncores: 80 160 320 640 1280 2560 Q7

ADGL xL 0.81 0.80 0.81 0.83 0.84 0.85 —
ACSDG 2.91 2.89 2.71 2.74 2.67 2.62 1
MCSDG 4.77 4.82 4.52 4.62 4.45 4.41 2
MVSDG — 30.74 31.81 32.35 33.81 36.42 16
ALxL 0.74 0.76 0.75 0.76 0.79 0.80 —
AVS — 7.45 7.29 7.59 8.28 9.01 1
MVS — 21.59 21.97 23.25 25.45 30.02 8
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will be answered: which tensor product Schwarz smoother leads to the numerical solver with
the highest computational efficiency? MPI scaling results are shown in Figure 3.10 for SIPG
discretizations, in Figure 3.11 for the conforming FEM. The strong and weak scaling is not
perfect but promising: overcoming the imbalances identified before it should scale better. In
particular, down to one second of runtime, solvers scale already well. The previous trends
continue: the cell-based smoothers almost provide perfect scaling, while the vertex patch
smoothers for conforming FEM scale better than MVS for SIPG discretizations.

Besides the time-to-solution also the time to compute the smoothers is delineated in blue.
Noticing the discussion on arithmetic complexities in Section 3.4.1, we have identified that
mainly the tremendous computational effort of computing local inverses makes patch-based
Schwarz smoothers infeasible if computed naïvely. For our tensor product Schwarz smoothers,
it completely changes due to fast diagonalization. The assembly of univariate discretization
matrices and the one-dimensional generalized eigenvalue problems are solved so fast that only
a fraction of the time-to-solution is spent setting up the tensor product Schwarz smoothers.
Similar scaling results are shown in Figures A.5 and A.6 for polynomial degree k = 7,
respectively.

We see in Figures 3.10 and 3.11 that the time-to-solution for different smoothers compares
at similar levels. To answer the previous question on the computational efficiency in detail,
we consider the numerical throughput as metric, i.e., the number of million DoFs processed
per second. Thus, the higher the numerical throughput, the better. Algorithms are preferred
that increase this metric, even if it may lead to lower hardware performance indicators,
traditionally measured in FLOPs per second (arithmetic performance) and/or Gigabytes per
second (memory throughput). The reasoning is that algorithms needing many arithmetic
operations per DoF may scale well but are not necessarily very efficient. Maximizing the
computational intensity is one side of the coin. However, the ultimate goal should be to
reduce computational complexity per unknown while keeping the computational intensity
sufficiently high.

Comparing number of DoFs per node against the numerical throughput in Figure 3.12,
we confirm many conclusions from previous scaling results. The numerical throughput is
high given a sufficiently high workload, such as around 106 DoFs per node for tri-cubic
elements, see Figure 3.12a. For this range of DoFs per node, the numerical throughput
starts to level off, particularly for conforming finite elements. The cell-based tensor product
smoothers, ACSDG and MCSDG (slightly) outperform the vertex patch smoothers. They
have the best tradeoff between computational complexity per smoothing step and the number
of CG iterations needed. Furthermore, they do scale best. Nevertheless, by exploiting tensor
structure, the vertex patch smoothers also achieve high numerical throughputs, with MVS
being the “winner”, having only eight residual computations plus subspace corrections and
needing only five CG steps to converge. Although AVS does scale better than MVS, it is
inferior in numerical throughput.
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Fig. 3.10 MPI scaling analysis of the numerical solver, i.e., measuring time-to-solution (black
lines), for SIPG discretizations using tri-cubic elements. The CG solver accelerating the
multilevel method with ACS (top-left), MCS (top-right), or MVS (bottom-left), respectively,
solves with relative accuracy 10−8. The respective time to compute pre- and post-smoothers
before solving is delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.
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Fig. 3.11 MPI scaling analysis of the numerical solver, i.e., measuring time-to-solution
(black lines), for H1-conforming discretizations using tri-cubic elements. The CG solver
accelerating the multilevel method with AVS (top-left) or MVS (top-right), respectively,
solves with relative accuracy 10−8. The respective time to compute pre- and post-smoothers
before solving is delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.

Table 3.12 The underlying number of CG iterations according to the time-to-solution in Fig-
ure 3.12 (there shown in terms of numerical throughput). Any smoother leads to solvers with
uniform convergence independent of the mesh size; thus, the iteration count is the same for
varying DoFs per node.

CG iterations
AVS MVS MVSDG MCSDG ACSDG

k = 3 k = 7 k = 3 k = 7 k = 3 k = 7 k = 3 k = 7 k = 3 k = 7
16 15 5 4 4 3 13 17 18 23
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Fig. 3.12 Analysis of the computational efficiency for tensor product Schwarz smoothers
in terms of numerical throughput, i.e., measuring million DoFs per second, for SIPG dis-
cretizations (with suffix _DG) and the conforming FEM (without suffix). Underlying times
are the times-to-solution from Figures 3.10 and 3.11 using 2560 MPI cores (= 64 compute
nodes with 40 cores each).
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Switching to PDE solvers using Q7-polynomials and looking at the evolution of CG
iteration steps from Table 3.12, Figure 3.12b shows that vertex patch smoothers become
superior to cell-based smoothers. Although cell-based smoothers scale by far the best and
as good as for tri-cubic elements, they suffer from requiring more and more iteration steps
to solve for high-order elements. In contrast, both multiplicative vertex patch smoothers
significantly improve their throughput given sufficient workload per compute node. Sufficient
DoFs per node mitigate their technical shortcomings. Both profit from requiring one CG
iteration less, which translates to 20% and 25% of total steps less for MVS and MVSDG,
respectively. AVS improves only slightly due to requiring 6% of total steps less. MVS
has the edge over MVSDG due to needing half the colors while its CG solver needs only a
single convergence step more. Compared to PDE solvers in (Arndt, Fehn, et al., 2020), we
achieve good numerical throughput, albeit the known shortcomings of our implementation.
For high-order elements, the superior mathematical efficiency of multiplicative vertex patch
smoothers seems to be a game-changer.

3.5 Conclusion

Let us conclude the performance analysis and thereby this chapter as we have finally addressed
all questions raised. For low-order finite elements, the Poisson problem (3.1) leads to a
linear system of equations that can be tackled by simple multigrid smoothers, for instance,
cell-based Schwarz methods or a Chebyshev smoother17 with inner pointwise preconditioner,
see (Arndt, Fehn, et al., 2020; Fehn, Munch, et al., 2020; Kronbichler, Kormann, Fehn, et al.,
2019). With increasing polynomial degree, the outer solver’s iteration steps do not deteriorate
for these kinds of smoothers significantly. Therefore, if implemented well it is very challenging
to “beat” them in numerical throughput. However, we have shown that already for k = 7
using tensor product smoothers on vertex patches led to higher throughputs than using
cell-based smoothers if the workload was sufficiently balanced between MPI ranks. Recalling
the arithmetic complexities from Section 3.4.1, Schwarz smoothers that invert local matrices
by standard direct methods and store them in standard matrix formats completely dominate
numerical solvers in runtime due to tremendous one-time setup costs and an infeasibly high
memory intensity, particularly for high-order finite elements. Exploiting tensor structure
overcomes both problems. Storing only what is needed for the Kronecker product presentation
of local matrices and their inverses as well as inverting and applying inverses using fast
diagonalization and sum factorization, respectively, Schwarz smoothers on vertex patches for
high-order finite elements become not only feasible. Their computational efficiency improves
to the point where subspace corrections compare similarly to state-of-the-art matrix-free
operator evaluation used to compute residuals.

17See (Varga, 2009).
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Furthermore, using coloring enables parallel computing of multiplicative Schwarz smoothers
at all. If we fix the identified shortcomings of our implementation, we expect to improve
towards ideal scaling, and outstanding numerical throughput for fewer workloads per com-
pute node. For sufficiently many DoFs per node, we have already observed good (parallel)
performance and computational efficiency. Tackling the load imbalances between MPI ranks
exceeded the scope of this thesis, albeit some of them may be easily improved.

For the monograph’s second half, we focus on developing tensor product Schwarz smoothers
on vertex patches for more (challenging) finite element problems. First, for the biharmonic
problem in Chapter 4, i.e., methods have to be extended to second-order derivatives. Second,
for the Stokes problem in Chapter 5 (also closely related to linear elasticity in the limit
of (nearly) incompressible material), we extend our concepts to a vector-valued partial
differential equation. For both, cost-efficient numerical solvers rely on well-designed Schwarz
smoothers on vertex patches. Simple pointwise or nonoverlapping block smoothers do not
suffice from a mathematical perspective. We already note that we will not perform any
performance analysis in the following chapters. From a technical perspective, we require only
minor adjustments. In this regard, what has been observed here should be almost identical
there. Therefore, our tensor-based implementations for the Laplace problem are prototypical
for cost-efficient numerical solvers in subsequent chapters.



Chapter 4

BIHARMONIC PROBLEM

In this chapter, we discuss a method for the model problem of the biharmonic equation

−∆2 u = f in Ω,
u = g on ∂Ω,

∇u · n = j on ∂Ω,

(4.1)

where Ω is a polygonal domain in RD with D = 2. The numerical results shown in this
chapter are limited to two spatial dimensions. However, we will point out which of our tensor
product Schwarz methods are (easily) extensible to dimensions higher than two and use the
generic number of dimensions D when needed.

Several applications from thin bending theory, e.g., bending Poisson-Kirchhoff plates or
Bernoulli-Euler beams, rely on the biharmonic equation and the strain gradient theory of
Toupin-Mindlin as surveyed by (Engel et al., 2002) and references therein. By “thin”, we
mean that no transverse shear deformation exists. For more extensive studies, we refer the
reader to textbooks on structural mechanics, for example (P. G. Ciarlet, 1988, 1997, 2000),
or in the context of finite elements to (Braess, 2013; Hughes, 2012). The volumetric load f

and boundary functions g and j are given, where their regularity is defined when needed. In
the case of modeling thin structures, boundary conditions as specified in (4.1) are referred to
as clamped boundary conditions: the thin structure, determined by the displacement u, is
clamped at a certain height g with a specific angle j against the horizontal. For the remainder
of this chapter, we refer to the boundary conditions as “clamped”, albeit not committing
ourselves to thin structure applications.

In the context of computational structural mechanics, many finite element methods have
been developed over the past decades for the biharmonic equation (4.1). The focal point of
many methods was to answer the question: how do we impose the essential C1 inter-element
continuity? In the early days, straightforward answers were classical C1 elements like the
Bogner-Fox-Schmit element (Bogner et al., 1965), elements of the TUBA family, (Argyris
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et al., 1968) or the macro-element approach (J. J. Douglas et al., 1979). For C1-continuous
elements or, shortly, C1-elements, both the function value and its first-order derivatives
are continuous across cell interfaces. These methods have in common that they are very
challenging to implement, particularly at the time they were developed.

Then, researchers began focusing on mixed formulations by introducing rotations as
an auxiliary independent field beside the primary displacement field. Independent C0-
interpolations for displacement and rotation were sufficient to avoid common challenges of
C1-elements. The benefits gained came at the cost of additional unknowns, sophisticated
formulations, and shear-locking difficulties. The latter were tackled by inf-sup considera-
tions (Babuška, 1971; Brezzi, 1974), the reduced-integration approach (Malkus and Hughes,
1978) or nonconforming elements (Arnold and Falk, 1989). Nowadays, these methods are
based on a rich mathematical foundation, and the interested reader may find more details in
textbooks (Boffi et al., 2013; Brezzi and Fortin, 1991). Besides, nonconforming rotation-free
methods have been developed that ignore the C1-continuity requirements at all (Oñate and
Cervera, 1993; Oñate and Zárate, 2000; Phaal and Calladine, 1992a,b), or impose them
weakly by penalization (Babuška and Zlámal, 1973).

Finally, arising out of the great success of discontinuous Galerkin methods the C0 interior
penalty method (C0IP) by (Brenner, 2011; Brenner and Sung, 2005) has been developed,
originating from (Engel et al., 2002). In the original work, the method was referred to as
the continuous/discontinuous Galerkin method. It is rotation-free and nonconforming as
the methods mentioned before. However, the C0IP method is superior to the penalization
method (Babuška and Zlámal, 1973) due to symmetric interior penalties that lead to optimal
convergence in energy and L2 norm, see the results below. The symmetric penalties are
traced back to Arnold (Arnold, 1982) for second-order elliptic partial differential equations,
or even the original work from Nitsche (Nitsche, 1971). In the context of second-order
elliptic problems, the differences of both penalization ideas were discussed in (Arnold, Brezzi,
et al., 2002). In contrast to the SIPG method, C0 Lagrange elements are used and interior
penalty terms of first-order derivatives will enter the variational formulation, weakly imposing
C1-continuity.

We have found some studies on two-level and multilevel Schwarz methods for C0 interior
penalty discretizations of the model problem (4.1). In (Brenner and Wang, 2005) two-level
additive Schwarz preconditioners with a generic overlap at the scale of fine-level elements
were analyzed to prove that the preconditioned system’s condition number is bounded by
O(1 +H3/δ3). H is the coarse-level mesh size and the overlap δ is a multiple of the fine-level
mesh size h. Similarly, in (Feng and Karakashian, 2005), theory on two-level non-overlapping
additive and multiplicative Schwarz smoothers was provided, showing also that the condition
is bound by O(H3/h3). The same bounds were demonstrated for isogeometric discretizations
in (Cho et al., 2018). Kanschat and Sharma (2014) followed Kanschat and Mao (2015)
to study the (algebraic) identity of C0IP and Hdiv-conforming interior penalty methods
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for biharmonic and Stokes problems, respectively, in two spatial dimensions. They proved
that using multilevel Schwarz methods on vertex patches results in mathematically efficient
numerical solvers with uniform convergence.

These works mainly focused on mathematical efficiency and did not address the challenge
of gaining computational efficiency. We have already motivated and seen that overlapping
Schwarz methods are prohibitively expensive in computational terms, in particular, for
high-order discretizations. We emphasize that overlap is essential to obtain numerical solvers
with uniform convergence. To this end, we extend the work in (Kanschat and Mao, 2015;
Kanschat and Sharma, 2014), designing innovative algorithms to compute Schwarz smoothers
on vertex patches cost-efficiently. In view of Chapter 3, we propose tensor product Schwarz
smoothers such that the residuals are efficiently computed by matrix-free operator evaluation
and the subspace corrections by fast diagonalization. Although the Bilaplacian is a separable
differential operator, we will see that local discretization matrices do not (directly) admit
a separable Kronecker representation (see Definition 2.1.12). However, we will utilize the
Kronecker product singular value decomposition (KSVD) to obtain low-rank tensor product
approximations that are amenable to fast diagonalization.

The chapter starts with a brief introduction of the C0 interior penalty method regarding
the Biharmonic model problem (4.1). In Section 4.1.1 numerical results underline the mathe-
matical efficiency of multilevel Schwarz methods on vertex patches. Then, our main scientific
contribution in obtaining fast and robust numerical robust solvers follows in Section 4.1.2:
first, the low-rank tensor representation of local C0IP discretization matrices is derived.
Afterward, inexact local solvers amenable to fast diagonalization are designed that provide us
with both, high mathematical and computational efficiency. Finally, we conclude the chapter
by discussing computational costs and relate (prospective) implementations to the observed
(parallel) performance for the Poisson problem.

4.1 C0 Interior Penalty Method

We want to develop multilevel Schwarz smoothers by extending the concepts from Chapter 3.
To this end, the main advantages of the C0 interior penalty method are that it is well-defined
for arbitrary finite element orders. Second, we can rely on standard tensor product structures
again, which were introduced in Section 2.2. Consequently, the respective multilevel method
is easy to implement, even for high-order elements, unlike the C1-finite element methods
mentioned before. If necessary, C1-finite element approximations can be obtained from the
interior penalty solutions via the post-processing procedure in (Brenner and Sung, 2005). We
will see that not much of our implementation for the Poisson problem needs to be adapted
to obtain efficient PDE solvers. For sufficiently smooth solutions of the model problem,
the C0 interior penalty method converges (quasi)-optimally in the energy as well as L2

norm (Brenner, 2011) (convergence in L2 norm is suboptimal only for quadratic polynomials).
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Furthermore, in Chapter 5 we will make use of the relation between stream function solutions
of the C0 interior penalty method and Stokes flow solutions of a corresponding interior
penalty method in two dimensions. Thus, the smoothers developed here will be used later to
solve the Stokes problem efficiently.

The natural (weak) solution space for the biharmonic equation with clamped boundary
conditions reads

Vg,j =
{
v ∈ H2(Ω) | Tr v = g and Tr ∇v · n = j on ∂Ω

}
. (4.2)

Assuming homogeneous boundary conditions, i.e., g ≡ 0 and j ≡ 0 above, we use the
abbreviated notation V instead of explicitly writing V0,0 for the solution space. Then, V
coincides with the definition of Sobolev space H2

0 (Ω) in (Adams and Fournier, 2003). The
C0-continuity and vanishing trace at the physical boundary already imply that the tangential
derivative vanishes as well at ∂Ω. Any v ∈ Vg,j is decomposable into v = v0 + ũ, where
v0 ∈ V is the homogeneous part and ũ ∈ Vg,j a particular lifting of the boundary conditions
in (4.1). Thus, we assume from now on homogeneous clamped conditions, which simplifies
notation without losing generality. Then, the weak problem reads: find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V, (4.3)

where
a(u, v) =

∫
Ω

∇2u : ∇2v dx, (4.4a)

and
F (v) =

∫
Ω
fv dx. (4.4b)

The second-order tensor ∇2v is the Hessian matrix of a scalar field v and the double dot
product A :B denotes the full contraction of second-order tensors A and B.

Given mesh the Th with characteristic size h, we define the piecewise Sobolev space with
differential index r > 0,

Hr(Th) :=
{
v ∈ L2(Ω) | v|K ∈ H

r(K) ∀K ∈ Th
}
* Hr(Ω). (4.5)

We choose standard C0-continuous Lagrange elements based on Qk-polynomials, denoted as
the finite element space Vh,

Vh =
{
v ∈ C0(Ω̄) | v|K ∈ Qk ∀K ∈ Th

}
∩H1

0 (Ω) ⊂ H2(Th). (4.6)

From the definition, it becomes apparent that Vh is nonconforming, this means Vh is not a
subspace of H2

0 (Ω).
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We adopt the notation from the symmetric interior penalty method in Section 3.1: let E◦
h

and E∂h denote the set of interior and boundary facets, respectively, and v+ or v− the trace
of v on the interface K+ ∩K− seen from cell K+ or K−, respectively. We choose n to be
the outward pointing normal on boundary facets. On interior facets, it denotes the normal
pointing from K+ to K−, i.e., n = n+. We follow Definition 3.1.1 in defining average and
jump operator for higher-order derivatives,

s
∂v

∂n

{
(x) = ∂v+

∂n+ (x) + ∂v−

∂n− (x) x ∈ e ∈ E◦
h,

s
∂v

∂n

{
(x) = ∂v

∂n
(x) x ∈ e ∈ E∂h ,

(4.7)

and {
∂2v

∂n2

}
(x) = 1

2

(
∂2v+

∂n2 (x) + ∂2v−

∂n2 (x)
)

x ∈ e ∈ E◦
h,{

∂2v

∂n2

}
(x) = ∂2v

∂n2 (x) x ∈ e ∈ E∂h .
(4.8)

We emphasize that superscripts + and − for the normal vector were omitted due to the
square and n− = −n.

By multiplying (4.1) with a test function, integration by parts and stabilizing by Nitsche
terms, the C0 interior penalty formulation reads: find uh ∈ Vh such that

ac0ip;h(uh, v) = Fh(v) ∀v ∈ Vh (4.9)

with the bilinear form

ac0ip;h(u, v) :=
∫

Th
∇2u : ∇2v dx

+
∫

Eh

γe s
∂u

∂n

{ s
∂v

∂n

{
−
{
∂2u

∂n2

}s
∂v

∂n

{
−

s
∂u

∂n

{{
∂2v

∂n2

} dσ(x),
(4.10)

and the right-hand side operator

Fh(v) :=
∫

Th
fv dx. (4.11)

Due to the average of second-order derivatives at edges, the bilinear form is well-defined for
functions in H5/2+ϵ(Th). The integrals over a set of cells Th or set of facets Eh is an abuse of
notation, abbreviating the sum of individual integrals over each cell or facet, respectively. We
refer to the cell integral of bilinear form (4.10) as bulk term and to the three face integrals,
from left to right, as penalty, consistency and adjoint consistency term. The bilinear form
was derived as follows: the (discrete) ansatz and test functions vanish at ∂Ω because the
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tangential derivatives are continuous between elements, given homogeneous clamped boundary
conditions (actually g ≡ 0 suffices) and the C0-continuity in Ω. To this end, the first-order
normal derivatives are penalized, which imposes C1-continuity in the limit h → 0. In the
case of a heterogeneous boundary function j in (4.1), the right-hand side operator extends to

Fh(v) =
∫

Th
fv dx +

∫
E∂
h

γe j ∂v
∂n
− j

{
∂2v

∂n2

} dσ(x). (4.12)

We choose here the same interior penalty parameter as before for the SIPG method of the
Poisson problem. The penalty factor was defined in (3.8). The numerical experiments below
show that this penalty factor leads to a stable discretization.
Remark 4.1.1 (Elliptic regularity). Given F ∈ H−2+α(Ω), then, for some α ∈ (1/2, 1] the weak
solution u in (4.3) is H2+α-regular and satisfies the stability estimate

∥u∥2+α,Ω ≤ CΩ∥F∥−2+α,Ω , (4.13)

see (Brenner and Sung, 2005) and references therein. We refer to α as the index of elliptic
regularity.

The index of elliptic regularity depends on the interior angles of ∂Ω’s vertices. For a
convex polygonal domain α = 1 is possible. Later, we consider the unit square as a domain,
for which α is one.
Remark 4.1.2 (Well-posedness). The C0 interior penalty method (4.9) is consistent and
well-posed (Brenner and Sung, 2005), and adjoint consistent (Engel et al., 2002).

We define a mesh-dependent seminorm in terms of

|v|2h =
∑
K∈Th

|v|22,K +
∑
e∈Eh

γ0,e
he

∥∥∥∥∥
s
∂v

∂n

{∥∥∥∥∥
2

e

, (4.14)

where he = diam e and γ0,e is the interior penalty constant in (3.8). By a standard inverse
estimate (P. Ciarlet, 1978) this seminorm is equivalent to the energy norm induced by
ac0ip;h(·, ·) on the finite element space Vh .
Remark 4.1.3 (Energy error). Let f ∈ Hs(Ω), s ∈ N0, and the weak solution u in (4.3) belong
to H2+α(Ω) with (elliptic) regularity index α ∈ (1/2, s+2]. Then, the interior penalty solution
uh in (4.9) satisfies the energy error estimate

|u− uh|h ≤ Ch
min{α,k−1}, (4.15)

see (Brenner, 2011).
When u is sufficiently smooth, that means α ≥ k − 1, higher-order elements lead to an

optimal convergence order (k − 1) of the discretization error measured in the energy norm.
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Table 4.1 The energy error |u− uh|h and its order of convergence p for the biharmonic problem
with clamped boundary on Ω = [0, 1]2. Finite element solutions uh for varying polynomial
degree are computed on a Cartesian mesh Th subject to uniform refinement. Entries “—” are
not computed.

2D Q2 Q3 Q4

h |u− uh|h p |u− uh|h p |u− uh|h p

1/4 8.1× 10+0 — 2.2× 10+0 — 4.0× 10−1 —
1/8 3.7× 10+0 1.20 5.9× 10−1 2.03 5.2× 10−2 3.06
1/16 1.8× 10+0 1.10 1.4× 10−1 2.04 6.2× 10−3 3.15
1/32 9.0× 10−1 1.04 3.7× 10−2 2.03 7.5× 10−4 3.07
1/64 4.4× 10−1 1.02 9.3× 10−3 2.02 9.3× 10−5 3.03
1/128 2.2× 10−1 1.01 2.3× 10−3 2.01 1.4× 10−5 2.72
1/256 1.1× 10−1 1.00 5.8× 10−4 2.01 — —

In what follows, assume u to be the superposition of Gaussian bell curves from (3.16). Then,
u is smooth and the volumetric load f and boundary functions g and j are determined
for the biharmonic model problem (4.1) with domain Ω = [0, 1]2. We emphasize that the
Dirichlet boundary condition is imposed by using a particular lifting uh;g of the boundary
function g as described before. Then, the respective C0 interior penalty method is given
by (4.9) when additionally subtracting ac0ip;h(uh;g, v) from the right-hand side Fh(v). In
that context we speak of lifting the boundary data. The operator Fh is defined in (4.12)
which weakly imposes the boundary condition ∂u

∂n = j. The solution uh;0 ∈ Vh obtained
is the “homogeneous” solution that needs to be added to the particular lifting computing
the discrete solution uh = uh;0 + uh;g. For standard C0-continuous Lagrange elements (4.6)
based on Qk-polynomials with degree k = 2, 3 or 4 optimal convergence of the energy error is
confirmed in Table 4.1. The discrete solution is computed for a sequence of uniformly refined
Cartesian meshes Th, obtained by dividing the mesh width h in half. What is denoted as
order of convergence p in Table 4.1 is the logarithm of the error reduction,

p = log2
∥u− uh∥
∥u− uh/2∥

, (4.16)

here defined for any arbitrary norm or seminorm ∥·∥. If the weak solution u of the model
problem is not smooth enough the convergence rate is restricted to O(hα).

For our smooth solution, however, we expect from the theory in (Engel et al., 2002) optimal
L2-error convergence of order (k + 1) for polynomial degrees equal to or larger than three:
adjoint consistency of the C0 interior penalty method is essential here. Table 4.2 confirms
our expectations. For quadratic tensor product polynomials, we obtain the suboptimal
convergence order of p = 2. When analyzing the iterative solvers’ convergence in terms of
iterations in the next section, we will observe further deficiencies for quadratic polynomials
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Table 4.2 The L2-error ∥u− uh∥Ω and its convergence order p for the biharmonic problem
with clamped boundary on Ω = [0, 1]2. Finite element solutions uh for varying polynomial
degree are computed on a Cartesian mesh Th subject to uniform refinement. Entries “—” are
not computed.

2D Q2 Q3 Q4

h ∥u− uh∥Ω p ∥u− uh∥Ω p ∥u− uh∥Ω p

1/4 3.1× 10−2 — 3.3× 10−3 — 2.0× 10−4 —
1/8 8.5× 10−3 2.03 1.7× 10−4 4.50 9.7× 10−6 4.59
1/16 2.2× 10−3 2.01 1.0× 10−5 4.22 3.4× 10−7 4.92
1/32 5.8× 10−4 2.00 6.3× 10−7 4.09 1.1× 10−8 4.98
1/64 1.4× 10−4 2.00 3.9× 10−8 4.04 1.6× 10−8 −0.56
1/128 3.7× 10−5 2.00 1.9× 10−8 1.01 2.2× 10−7 −3.77
1/256 9.3× 10−6 1.99 2.1× 10−7 −3.46 — —

compared to higher-order polynomials. Due to limitations of floating-point arithmetic and
an ill-conditioned discretization matrix (∼ h−4), the errors do not decrease beyond 10−8 in
Table 4.2.

4.1.1 Mathematical Efficiency of Schwarz Smoothers

Similar to the Poisson problem in Chapter 3, we first show the efficiency of Schwarz smoothers
in terms of the solver’s convergence steps, without taking any tensor structure into account.
Later, we will derive low-rank tensor approximations of local solvers which enable sum
factorization or fast diagonalization, see Section 2.1.2 or Section 2.1.3 respectively.

We begin with a coarse mesh T1 subdividing the unit square Ω = [0, 1]2 into four congruent
cells. We follow the induction in Section 2.3.1 to define a hierarchy of uniform Cartesian
meshes Tℓ, l = 1, . . . , L. The finite element spaces Vℓ, defined by substituting Th with Tℓ
in (4.6), are nested. Multilevel bilinear forms are defined by

aℓ(·, ·) := ac0ip;hℓ(·, ·).

Following Section 2.3.1, we use standard transfer operators between levels. It remains to
define smoothers for the multigrid V-cycle step given by Algorithm 2. To this end, we define
finite element subspaces Vℓ;j consisting of all functions in Vℓ with vanishing trace at the
subdomain’s boundary,

Vℓ;j =
{
v ∈ C0(Ω̄) | v|K ∈ Qk ∀K ∈ Tj and v|∂Ωj = 0

}
.

We note that these are the same subspaces used for the Poisson problem, but we apply them
here with one order higher due to the second-order derivatives in (4.9). Thus, the lowest-order
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element consists of quadratic polynomials. The local problem is simply the restriction of the
C0 interior penalty method restricted to the subspace Vℓ;j . In that case, we obtain exact local
solvers in the sense of (2.58). We emphasize that besides the strongly imposed boundary
conditions uj |∂Ωj = 0, boundary conditions for ∂uj

∂n are weakly imposed with different weights
at the physical boundary ∂Ωj∩∂Ω and at interior parts of the subdomain’s boundary ∂Ωj∩Ω,
respectively. Section 3.3 provides the details of what is meant by “different weights”.

We only consider smoothers on vertex patches for the biharmonic problem. Using
smoothers on a single cell leads to either slow convergence or no convergence at all for
high-order finite elements. In addition to the mathematical inferiority, we would have the
same technical disadvantage as discussed in Section 3.2.1 for the Poisson problem. The
disadvantage refers to a wide stencil of C0-continuous finite elements, which results in even
more colors than vertex patches.

The numerical setup is almost unchanged compared to the previous section and Sec-
tion 3.1.1. We continue with the reference solution u defined in (3.16), which is a superposition
of Gaussian bell curves. We use standard C0-continuous Lagrange elements with Gauss-
Lobatto nodal points, see Definition 2.2.3. However, we perform two pre- and post-smoothing
steps (instead of one), respectively, for the multigrid V-cycle from Algorithm 2. We will
develop inexact local solvers that enable exploiting tensor structure. We observed a significant
decrease in the outermost solver’s iterations when applying two smoothing steps (the gain
was negligible for three or more). Thus, to achieve a fair comparison, we already use two
smoothing steps for our exact local solvers here. Apart from this deviation, the sequence of
uniformly refined Cartesian meshes, using a conjugate gradient solver until a relative residual
reduction of ϵrel = 10−8 is reached and traversing colors backward when post smoothing
continues to be the same. It remains to discuss the coloring and relaxation.

Coloring. In Section 3.1.1 the coloring was specified by face integrals inherent in the
SIPG form, whereas in Section 3.2.1 the C0-continuity of conforming finite elements was
decisive. For the C0-IP method, we have to consider both. Identifying by duality the nodal
shape function basis of Vj with the local coefficient space RNj , the stencil in Figure 4.1a
shows the action of AℓRT

j to those local coefficients. The stencil spreads out to adjacent
cells as depicted due to face integrals inherent in the C0 interior penalty form (4.10). The
shape function basis of Vj is illustrated by nodal points, which are included in the shaded
area, highlighting the restriction Rj of coefficients onto RNj . Degrees of freedom associated
with ∂Ωj are excluded such that the homogeneous Dirichlet boundary conditions uj = 0
are strongly imposed, part of homogeneous clamped conditions. Furthermore, the stencil
has on purpose no nodal points at the physical boundary ∂Ω of the mesh since the same
homogeneous conditions are strongly imposed at the global level. By global, we refer to the
generic level ℓ. Therefore, two subspaces Vj and Vi are Aℓ-orthogonal, i.e., satisfying

RiAℓR
T
j = 0,
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(a) vertex patch stencil (b) “red-black parqueting” (coloring)

Fig. 4.1 Illustration of the vertex patch stencil (left) given H1-conforming Q3-elements, i.e.,
presenting the action of AℓRT

j , and optimal coloring for MVS (right) for C0-IP discretizations.
Gauss-Lobatto support points ( ) represent degrees of freedom. The shaded area highlights
the subdomain Ωj ; thus, shape functions associated with included nodal points form a basis
for the subspace Vℓ;j . Hatched and dotted areas on the right-hand depict a multiple red-black
coloring satisfying Aℓ-orthogonality, same as Figure 3.2b for SIPG discretizations.

if their corresponding subdomains do not share a common facet. The parqueting with
red-black coloring in Figure 4.1b is optimal for regular vertex patches, optimal in the sense
of a minimal number of colors.

Relaxation. The natural relaxation parameter for additive vertex patch smoothers is
1/4 due to possible overlap of cells. Following the discussion in Section 3.1.1, numerical
experiments with a few thousand degrees of freedom and polynomial degrees less than four
have shown that factors slightly larger than 1/4 are slightly better, needing one or two solver
iterations less. However, we also found a slight dependency of the polynomial degree regarding
optimal factors. For convenience, we decided to use the natural relaxation parameter 1/4 for
the numerical results shown below.

In Table 4.3 solver iterations for both the additive and multiplicative vertex patch
smoother are compared. Both smoothers lead to robust solvers with a few iterations needed:
the number of solver iterations is independent of the discretization level L and the polynomial
degree k (except for k = 2). For the Poisson problem, the number of iterations decreases
with increasing finite element order for the multiplicative method. Iteration counts remain
on similar levels for the additive variant when increasing the polynomial degree. Similar to
the discretization errors discussed in Tables 4.1 and 4.2, biquadratic finite elements seem
to be deficient. Without the constrained degrees of freedom to strongly impose or weakly
impose boundary conditions, i.e., g or j, respectively, only a single degree of freedom locally
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Table 4.3 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with exact local solvers, respectively. CG solver with relative
accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring on mesh level L.
Entries “—” not computed only levels L with 5× 104 to 107 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

5 — — — — — 10.9 1
6 — — 10.3 10.1 10.4 10.9 1
7 21.9 11.7 9.9 9.5 10.2 10.5 1
8 22.8 11.7 9.8 9.5 9.8 10.3 1
9 23.3 11.6 9.8 9.5 9.8 — 1
10 23.9 11.5 — — — — 1

MVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
5 — — — — — 2.3 8
6 — — 2.9 2.6 2.5 2.3 8
7 8.8 4.4 2.9 2.6 2.5 1.9 8
8 8.9 4.4 2.9 2.5 2.4 1.9 8
9 9.2 4.4 2.9 2.5 2.4 — 8
10 9.3 4.4 — — — — 8

remains unconstrained. Thus, we believe AVS and MVS nearly act like “point-wise” Jacobi
and Gauss-Seidel smoothers.

4.1.2 Tensor Product Schwarz Smoothers

We derive the low-rank tensor representation of local C0 interior penalty matrices. Unfortu-
nately, we do not obtain the separable Kronecker representation from Definition 2.1.12 that
enables fast diagonalization. In two spatial dimensions, we use, among other options, the
Kronecker product singular value decomposition (KSVD), which computes the best rank-2
approximation from the low-rank tensor representation of local matrices. The rank-2 approx-
imation can then be fast diagonalized. Derivations will be presented for two dimensions but
are easily extended to higher dimensions. However, we note that the KSVD is only applicable
to order-2 tensor products and, to the best of our knowledge, there is no higher-dimensional
generalization.

The Bilaplace operator

∆2 = (∂11 + ∂22)2 = ∂1111 + 2∂11∂22 + ∂2222

is not separable on its own, but it is the square of a separable differential operator, obviously
the Laplacian operator. From (Lynch et al., 1964) it is known that the finite difference
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matrix L̂ of the Laplacian preserves the tensor product structure of the differential operator
one-to-one,

L̂ = L̂(1) ⊗ I(2) + I(1) ⊗ L̂(2). (4.17)

L̂(d) denotes the univariate discretization matrix corresponding to ∂dd and I(d) the iden-
tity matrix for d = 1, 2. Let the unitary matrix Q̂(d) and diagonal matrix Λ̂(d) define a
diagonalization of L̂(d), that means

(Q̂(d))TL̂(d)Q̂(d) = Λ̂(d),

for d = 1, 2. Then, the finite difference matrix B̂ of the Bilaplacian is diagonalizable due to
the diagonalization of L̂ in (4.17),

B̂ = L̂2 = Q̂(1) ⊗ Q̂(2)
(
Λ̂(1) ⊗ I(2) + I(1) ⊗ Λ̂(2)

)2 (
Q̂(1) ⊗ Q̂(2)

)T
. (4.18)

Thus, a fast diagonalization, see Section 2.1.3, can be used to efficiently compute the inverse of
B̂, i.e., reducing computational costs significantly. The diagonalization of the finite difference
method is studied in (Lynch et al., 1964): Lynch, Rice, and Thomas show that in general
finite difference discretizations of the product of a separable differential operator are fast
diagonalizable.

Unfortunately, in the context of finite elements this does not even hold for Cartesian
meshes as seen in the following. Each Cartesian cell K ∈ Th is the Cartesian product of
intervals,

K = [a1, b1]× [a2, b2].

The length of each interval is denoted by hd = bd − ad, d = 1, 2. Evaluating the double
contraction of second-order tensors, the bulk term of (4.10) becomes∫

K
∇2u : ∇2v dx =

∫
K

(∂11u∂11v + 2∂12u∂12v + ∂22u∂22v) dx. (4.19)

The bulk term was obtained by integration by parts of the Bilaplacian, which does not preserve
the separable tensor structure. Moreover, we derive next that the finite element discretization
of the Bilaplacian is not the product of a separable Kronecker representation. Nevertheless, it
still admits a low-rank tensor decomposition. We adapt the notation from Sections 2.2, 3.1.2
and 3.2.2 and recall that Cartesian meshes preserve the separation of unit coordinates in real
space. The mapping FK : K̂ → K from reference to real space was defined in (3.18). Besides,
by definition (4.6) of Vh there exists for each K ∈ Th a set of shape functions ϕi ∈ Vh such
that their restrictions define a local shape function basis,

ϕK;i := ϕi|K = ϕ̂i ◦ F −1
K , (4.20)
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for i = 1, . . . , Ndof. The space spanned by shape functions ϕK;i is denoted V (K). The
unit shape functions ϕ̂i, being introduced in Definition 2.2.3, are subject to a separation of
variables,

ϕ̂i(x1, x2) = φ
(1)
i1

(x1)φ(2)
i2

(x2), (4.21)

and lexicographic order, that means i denotes the unrolled multi-index i1, i2 as detailed
in Definition 2.1.6. We derive a low-rank tensor representation for a single cell K first. In
this way, it is easier to introduce some concepts, keeping the notational effort low. We
emphasize that we do not use any cell-based Schwarz smoother. Afterwards, we derive the
tensor represenation is derived for a Cartesian vertex patch Ωj .

To this end, we assume boundary and transmission conditions u = 0 at the boundary ∂K
of a generic cell K. The homogeneous Dirichlet condition is implicitly imposed by omitting
all shape functions from V (K) that do not vanish at ∂K. In view of Definition 2.2.3, any
basis function ϕK;i needs to be omitted, where at least for one dimension d either id = 1 or
id = ndof holds. The space which is spanned by remaining basis functions ϕK;i is denoted
V ◦(K) ⊂ V (K).

The first- and second-order derivatives of FK read

∂̂iFK;k(x̂) = δikhk and ∂̂ijFK;k(x̂) = 0, x̂ ∈ K̂, (4.22)

for i, j = 1, . . . , D. For a scalar field f : Rn → R and vector field g : Rm → Rn second-order
derivatives of its composition (f ◦ g) are determined by means of the chain and product rule,

∂̂ij(f ◦ g)(x̂) =
n∑

k,l=1
∂klf(x)∂̂igk(x̂)∂̂jgl(x̂) +

n∑
k=1

∂kf(x)∂̂ijgk(x̂), x = g(x̂), (4.23)

for i, j = 1, . . . ,m. With FK substituting g and some shape function ϕK substituting f we
obtain

∂̂ij(ϕK ◦ FK)(x̂) = hihj∂ijϕK(x), x = FK(x̂), x̂ ∈ K̂. (4.24)

The bulk integral evaluated for tensor product shape functions factorizes into∫
K

∇2ϕK;j : ∇2ϕK;i dx =
∫ 1

0

1
h3

1
φ̂′′
j1 φ̂

′′
i1 dx̂1

∫ 1

0
φ̂j2 φ̂i2h2 dx̂2

+ 2
∫ 1

0

1
h1
φ̂′
j1 φ̂

′
i1 dx̂1

∫ 1

0

1
h2
φ̂′
j2 φ̂

′
i2 dx̂2

+
∫ 1

0
φ̂j1 φ̂i1h1 dx̂1

∫ 1

0

1
h3

2
φ̂′′
j2 φ̂

′′
i2 dx̂2,

(4.25)
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following the ordering of summands in (4.19). We recall from (3.20) the definition of univariate
mass matrices and discretizations of the Laplacian for each interval [ad, bd],

M
(d)
ij =

nquad∑
q=1

φ̂i+1(x̂q)φ̂j+1(x̂q)hdwq

L
(d)
ij =

nquad∑
q=1

1
hd
φ̂′
i+1(x̂q)φ̂′

j+1(x̂q)wq,
(4.26)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. (x̂q, ŵq) denote pairs of quadrature support
points and weights on the unit interval, for q = 1, . . . , nquad. We emphasize that index i+ 1
(resp. j + 1) is used on purpose in (4.26) omitting shape functions associated with ∂K.
Similarly, for each dimension d, we obtain one-dimensional discretizations of the Bilaplacian
by

B
(d)
ij =

nquad∑
q=1

1
h3
d

φ̂′′
i+1(x̂q)φ̂′′

j+1(x̂q)wq, (4.27)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. Then, the discretization matrix of the bulk
term (4.25) is a rank-3 tensor product of matrices,

B(1) ⊗M (2) + 2L(1) ⊗ L(2) +M (1) ⊗B(2). (4.28)

Still assuming the auxiliary local problem on a generic cell K with homogeneous Dirichlet
condition u = 0 at ∂K, it remains to derive low-rank representations for the face integrals of
the C0 interior penalty formulation (4.10), namely the consistency, adjoint consistency and
penalty terms. We begin by discussing the latter. Let e0 and e1 denote the facets of cell K
which are aligned with the first coordinate such that

ep = yp × [a2, b2] (4.29)

for p = 0, 1, with endpoints y0 = a1 and y1 = b1. The normal vector reads n = (±1, 0)T with
negative sign at e0 and positive at e1. For a basis function ϕK;i ∈ V ◦(K) the jump of normal
derivatives at facet ep simplifies to

s
∂ϕK;i
∂n

{
= ∂ϕK;i

∂n
.

Consequently, the penalty term reads∫
ep
γep

∂ϕK;i
∂n

∂ϕK;j
∂n

dx = γep
1
h2

1
φ̂′
i1(p)φ̂′

j1(p)
∫ 1

0
φ̂i2 φ̂j2h2 dx̂2, (4.30)
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for p = 0, 1. To this end, we define discretization matrices G(d)
p for normal derivatives in a

single unit coordinate, either p = 0 or p = 1,
(
G(d)
p

)
ij

= 1
h2
d

φ̂′
i(p)φ̂′

j(p), (4.31)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. The discretization matrix of the penalty term
in (4.30) has a separable Kronecker representation,(

γe0G
(1)
0 + γe1G

(1)
1

)
⊗M (2) +M (1) ⊗

(
γe0G

(2)
0 + γe1G

(2)
1

)
. (4.32)

For the same set of shape functions, the average of second-order normal derivatives simplifies
to {

∂2ϕK;i
∂n2

}
= ηe

∂2ϕK;i
∂n2 ,

where ηe = 1 for any facet e at the physical boundary and 1/2 otherwise. For facets ep
from (4.29), the consistency term in (4.10) factorizes into

−
∫
ep
ηep

∂ϕK;i
∂n

∂2ϕK;j
∂n2 dx = ±

ηep
h3

1
φ̂′
i1(p)φ̂′′

j1(p)
∫ 1

0
φ̂i2 φ̂j2h2 dx̂2, (4.33)

with positive sign for p = 0 and negative for p = 1. We define univariate matrices for
higher-order normal derivatives in a single coordinate, p = 0 or p = 1, as

(
H(d)
p

)
ij

= 1
h3
d

φ̂′
i(p)φ̂′′

j (p), (4.34)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. The discretization matrix of consistency terms
admits a separable Kronecker representation as well,(

ηe0H
(1)
0 − ηe1H

(1)
1

)
⊗M (2) +M (1) ⊗

(
ηe0H

(2)
0 − ηe1H

(2)
1

)
. (4.35)

Using the same finite elements for both ansatz and test functions, the tensor representation
of the adjoint consistency terms is simply the transpose of (4.35). We sum up the matrices
from before,

N (d)
p = γepG

(d)
p ± ηepH(d)

p ± ηep
(
H(d)
p

)T
, (4.36)

for d = 1, 2, with positive sign for p = 0 and negative for p = 1. We refer to N (d)
p as Nitsche

matrix. Finally, the discretization matrix of the C0 interior penalty formulation on a single
cell K (excluding shape functions associated with ∂K) has a rank-3 tensor representation

B(1) ⊗M (2) + 2L(1) ⊗ L(2) +M (1) ⊗B(2), (4.37)
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where
B(d) = B(d) +N

(d)
0 +N

(d)
1 , (4.38)

for d = 1, 2. What has been observed for the SIPG discretization of the Poisson problem is
also confirmed here: contributions of Nitsche terms preserve the tensor structure of the bulk
term on a single cell subject to Cartesian mapping. Consequently, B(d) is the one-dimensional
C0 interior penalty discretization on interval [ad, bd]. In other words, Nitsche terms do not
contribute to the Kronecker product L(1) ⊗ L(2) in (4.37).

We are interested in tensor product Schwarz smoothers on vertex patches. To this end, we
extend the concepts for the auxiliary local problem to one on Cartesian vertex patches. First,
we recall that the conforming finite element method for the Poisson problem had the same
local space Vj . In particular, here and there, homogeneous Dirichlet conditions are imposed
locally. Here, we additionally have homogeneous boundary conditions for normal derivatives,
∂u
∂n = 0, which are imposed weakly. Therefore, we simply extend what has been done for the
Poisson problem in Section 3.2.2 to what needs to be done for the bulk integral here. Due to
the inter-element continuity of shape functions dealing with cell-local and patch-local indices
for shape functions leads to an overwhelming amount of sub- and superscripts. To this end,
we try to keep it simple and consider a generic but specific Cartesian vertex patch

Ωj = [a+
1 , b

+
1 ] ∪ [a−

1 , b
−
1 ]× [a+

2 , b
+
2 ] ∪ [a−

2 , b
−
2 ]

illustrated in Figure 3.5. We add to the notation from Section 3.2.2 that n+ = (1, 0)T = −n−

denote respective outward pointing normal vectors at

e = {b+
1 } × [a+

2 , b
+
2 ], (4.39)

the edge between cells K+ and K−. Given any two basis functions ϕ and ψ in Vj we define
K as the set of cells for which both functions have non-trivial support. The bulk integral on
vertex patch Ωj reads∫

Ωj
∇2ϕ : ∇2ψ dx =

∑
K∈K

∫
K

∇2ϕK;j : ∇2ϕK;i dx,

where each integral over K admits a separation of variables as in (4.25). There are two points
to notice. First, index i depends on K. Second, it follows the indexing in Definition 2.2.3: if
K = K+ in view of Figure 3.5, i.e., that i1 ̸= 1 and i2 ̸= 1 such that ϕ ∈ Vj . Both points
apply to index j as well. Univariate mass matrices and discretizations of the Laplacian,
namely M (d) and L(d), are defined for each interval [a+

d , b
+
d ] ∪ [a−

d , b
−
d ] in (3.47) to (3.50).
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Similiarly, we define one-dimensional discretizations of the Bilaplacian,

B(d) =


B

(d)
++ B

(d)
+e 0

(B(d)
+e )T B

(d)
ee (B(d)

−e )T

0 B
(d)
−e B

(d)
−−

 (4.40)

with
(
B

(d)
±±

)
ij

=
nquad∑
q=1

(
1

(h±
d )3 φ̂

′′
i+1(x̂q)φ̂′′

j+1(x̂q)wq
)
, (4.41a)

(
B(d)
ee

)
11

=
nquad∑
q=1

(
1

(h+
d )3 φ̂

′′
ndof(x̂q)φ̂

′′
ndof(x̂q)wq + 1

(h−
d )3 φ̂

′′
1(x̂q)φ̂′′

1(x̂q)wq
)
, (4.41b)

(
B

(d)
+e

)
i1

=
nquad∑
q=1

(
1

(h+
d )3 φ̂

′′
i+1(x̂q)φ̂′′

ndof(x̂q)wq
)
, (4.41c)

(
B

(d)
−e

)
i1

=
nquad∑
q=1

(
1

(h−
d )3 φ̂

′′
i+1(x̂q)φ̂′′

1(x̂q)wq
)
, (4.41d)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. As before in (3.48) and (3.50), indices i+ 1
and j + 1 are used such that all shape functions associated with ∂Ωj are omitted. The
matrices B(d)

±± in (4.41a) are identical to B(d) from (4.27) for the respective interval, that
is, substituting [ad, bd] with [a+

d , b
+
d ] or [a−

d , b
−
d ]. The shape functions associated with nodal

points in the interior of [a+
d , b

+
d ] or [a−

d , b
−
d ], respectively, are continued by zero in the other

interval, such that matrices B(d)
±∓ are zero in (4.40). The discretization of the bulk integral

for a Cartesian vertex patch has the same rank-3 tensor representation as in (4.28),

B(1) ⊗M (2) + 2L(1) ⊗L(2) + M (1) ⊗B(2). (4.42)

We emphasize that the ordering of blocks in the definitions of B(d),M (d) and L(d) is crucial
to obtain Kronecker products subject to the lexicographic ordering from Definition 2.1.6.

It remains to derive a low-rank tensor representation also for the face integrals, present
in the C0 interior penalty bilinear form (4.10). For generic ansatz and test functions ϕ and
ψ in Vj , both having only support on a single cell, a representation was found in (4.36). For
simplicity, consider in this paragraph two adjacent cells K+ and K− with interface e defined
in (4.39). Given two basis functions ϕe and ψe in Vj , each is defined by duality to a nodal
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point at e, visualized as bi-colored circle in Figure 3.5. Then, the penalty term reads

∫
e
γe

s
∂ϕe
∂n

{ s
∂ψe
∂n

{
dx =

γe

 φ̂′
ndof(1)φ̂′

ndof(1)
h+

1 h
+
1

−
φ̂′
ndof(1)φ̂′

1(0)
h+

1 h
−
1

−
φ̂′

1(0)φ̂′
ndof(1)

h−
1 h

+
1

+ φ̂′
1(0)φ̂′

1(0)
h−

1 h
−
1


∫ 1

0
φ̂j2 φ̂i2h

+
2 dx̂2. (4.43)

We applied that FK+(1) = b+
1 = a−

1 = FK−(0). Furthermore, index i1 is fixed for each cell
given, namely ψe|K+ (b+

1 , y) = φ̂1(0)φ̂i2(ŷ) and ψe|K− (a−
1 , y) = φ̂ndof(1)φ̂i2(ŷ). Since shape

functions associated with ∂Ωj are omitted index i2 can not equal one. Defining in analogy
to (4.31) the univariate matrix of normal derivatives evaluated at the single point e,

(
G(1)
ee;e

)
11

=
φ̂′
ndof(1)φ̂′

ndof(1)
h+

1 h
+
1

−
φ̂′
ndof(1)φ̂′

1(0)
h+

1 h
−
1

−
φ̂′

1(0)φ̂′
ndof(1)

h−
1 h

+
1

+ φ̂′
1(0)φ̂′

1(0)
h−

1 h
−
1

, (4.44)

a Kronecker product of univariate discretization matrices for the exemplary penalty inte-
gral (4.43) exists, (

γeG
(1)
ee;e ⊗M

(2)
++

)
i2j2

, (4.45)

for i2 = 1, . . . , ndof − 2 and j2 = 1, . . . , ndof − 2. The number of subscripts in (4.44) starts to
become overwhelming: the first two subscripts e refer to the test and ansatz basis function
being associated with interface e, the third refers to the point evaluation at e = b+

1 = a−
1 .

Deriving matrices for shape functions associated with the interior of [a+
1 , b

+
1 ] or interior of

[a−
1 , b

−
1 ] follows the same principle.

As in Section 3.2.2, we distinguish between sets of univariate shape functions associated
with the interior of [a+

d , b
+
d ], the interior of [a−

d , b
−
d ] and “interface” e, identified by symbols +,

− and e. Discretization matrices of the Laplacian evaluated at the one-dimensional “interface”
e between intervals [a+

d , b
+
d ] and [a−

d , b
−
d ] for the spatial dimension d are defined by

(
G(d)
ee;e

)
11

=
φ̂′
ndof(1)φ̂′

ndof(1)
h+
d h

+
d

−
φ̂′
ndof(1)φ̂′

1(0)
h+
d h

−
d

−
φ̂′

1(0)φ̂′
ndof(1)

h−
d h

+
d

+ φ̂′
1(0)φ̂′

1(0)
h−
d h

−
d

, (4.46a)

(
G

(d)
+e;e

)
i1

=
φ̂′
i+1(1)φ̂′

ndof(1)
h+
d h

+
d

−
φ̂′
i+1(1)φ̂′

1(0)
h+
d h

−
d

, (4.46b)

(
G

(d)
−e;e

)
i1

=
φ̂′
i+1(0)φ̂′

1(0)
h−
d h

−
d

−
φ̂′
i+1(0)φ̂′

ndof(1)
h−
d h

+
d

, (4.46c)

(
G

(d)
+−;e

)
ij

= −
φ̂′
i+1(1)φ̂′

j+1(0)
h+
d h

−
d

, (4.46d)
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for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. The univariate shape function associated with
the one-dimensional “interface” e has not a single-valued trace of the first-order derivative,
i.e., φ̂′

ndof(1) seen from [a+
d , b

+
d ] or φ̂′

1(0) seen from [a−
d , b

−
d ], already being transformed to unit

space. Shape functions defined by duality to nodal functions in the interior of the interval
[a+
d , b

+
d ] have only a nonzero trace “on their side”, i.e., φ̂′

i+1(1) for i = 1, . . . , ndof−2. The same
applies to shape functions associated with the interval [a−

d , b
−
d ]. Consequently, four summands

arise from the jumps of ansatz and test functions in (4.46a), and two summands in (4.46b)
and (4.46c), respectively. Due to discontinuities, there exist also nonzero contributions G(d)

+−;e.
Besides the interface e = b+

d = a−
d , we have to consider contributions at the left- and right-

hand boundary of the merged interval, that is e+
0 = a+

1 and e−
1 = b−

1 . These contributions
were derived in (4.31) for the auxiliary local problem on a single cell K. Replacing the generic
interval [ad, bd] by [a+

d , b
+
d ] or [a−

d , b
−
d ], respectively, we obtain

1
(h±
d )2 φ̂

′
i(p)φ̂′

j(p), (4.47)

for admissible indices i, j and unit coordinate p identifying the evaluation at e±
p . Combining

the point-evaluations at e+
0 , e and e−

1 , the univariate discretization matrices of the penalty
term reads(

P (d)
ee

)
11

=
γe+

0

(h+
d )2 φ̂

′
ndof(0)φ̂′

ndof(0) + γe
(
G(d)
ee;e

)
11

+
γe−

1

(h−
d )2 φ̂

′
1(1)φ̂′

1(1), (4.48a)(
P

(d)
+e

)
i1

=
γe+

0

(h+
d )2 φ̂

′
i+1(0)φ̂′

ndof(0) + γe

(
G

(d)
+e;e

)
i1
, (4.48b)(

P
(d)
−e

)
i1

= γe

(
G

(d)
−e;e

)
i1

+
γe−

1

(h−
d )2 φ̂

′
i+1(1)φ̂′

1(1), (4.48c)(
P

(d)
+−

)
ij

= γe

(
G

(d)
+−;e

)
ij
, (4.48d)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. The derivation of univariate discretizations for
the consistency term follows the same concepts, in particular, in view of (4.34). Skipping
a detailed derivation, the point-evaluation matrices at e+

0 , e and e−
1 concerning univariate

consistency terms are defined by

(
C(d)
ee

)
11

= +
ηe+

0

(h+
d )3 φ̂

′
ndof(0)φ̂′′

ndof(0)− 1
2
(
H(d)
ee;e

)
11
−

ηe−
1

(h−
d )3 φ̂

′
1(1)φ̂′′

1(1), (4.49a)(
C

(d)
+e

)
i1

= +
ηe+

0

(h+
d )3 φ̂

′
i+1(0)φ̂′′

ndof(0)− 1
2

(
H

(d)
+e;e

)
i1
, (4.49b)(

C
(d)
−e

)
i1

= −1
2

(
H

(d)
−e;e

)
i1

+
ηe−

1

(h−
d )3 φ̂

′
i+1(1)φ̂′′

1(1), (4.49c)(
C

(d)
+−

)
ij

= −1
2

(
H

(d)
+−;e

)
ij
, (4.49d)
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with matrices for higher-order derivatives at the one-dimensional “interface” e

(
H(d)
ee

)
11

=
φ̂′
ndof(1)φ̂′′

ndof(1)
h+
d (h+

d )2 +
φ̂′
ndof(1)φ̂′′

d(0)
h+
d (h−

d )2 −
φ̂′
d(0)φ̂′′

ndof(1)
h−
d (h+

d )2 − φ̂′
d(0)φ̂′′

d(0)
h−
d (h−

d )2 , (4.50a)

(
H

(d)
+e

)
i1

=
φ̂′
i+1(1)φ̂′′

ndof(1)
h+
d (h+

d )2 +
φ̂′
i+1(1)φ̂′′

d(0)
h+
d (h−

d )2 , (4.50b)

(
H

(d)
−e

)
i1

= −
φ̂′
i+1(0)φ̂′′

d(0)
h−
d (h−

d )2 −
φ̂′
i+1(0)φ̂′′

ndof(1)
h−
d (h+

d )2 , (4.50c)

(
H

(d)
+−

)
ij

=
φ̂′
i+1(1)φ̂′′

j+1(0)
h+
d (h−

d )2 , (4.50d)

for i = 1, . . . , ndof − 2 and j = 1, . . . , ndof − 2. ηe is one for facets e at the physical boundary
∂Ω and 1/2 otherwise, which explains the factor of 1/2 in (4.49) for contributions at the
joint point e. Combining point-evaluations at e+

0 , e and e−
1 for the penalty, consistency and

adjoint-consistency terms, the respective univariate Nitsche matrix

N (d) =


N

(d)
++ N

(d)
+e N

(d)
+−

(N (d)
+e )T N

(d)
ee (N (d)

−e )T

(N (d)
+−)T N

(d)
−e N

(d)
−−

 (4.51)

is defined by

N
(d)
±± = N

(d)
±±;0 ±N

(d)
±±;1, (4.52a)

N (d)
ee = P (d)

ee + C(d)
ee + (C(d)

ee )T, (4.52b)

N
(d)
±e = P

(d)
±e + C

(d)
±e + (C(d)

±e )T, (4.52c)

N
(d)
+− = P

(d)
+− + C

(d)
+− + (C(d)

+−)T. (4.52d)

Replacing the generic interval [ad, bd] in (4.36) by [a+
d , b

+
d ] or [a−

d , b
−
d ], respectively, the

matrices N (d)
±±;p in (4.52a) are defined, either at endpoints e+

p or at e−
p , p = 0, 1. The C0

interior penalty discretization matrix for a Cartesian vertex patch admits a rank-3 tensor
representation,

B(1) ⊗M (2) + 2L(1) ⊗L(2) + M (1) ⊗B(2), (4.53)

with
B(d) = B(d) + N (d). (4.54)

We notice that (4.54) defines the one-dimensional C0 interior penalty discretization for each
merged interval [a+

d , b
+
d ] ∪ [a−

d , b
−
d ], d = 1, 2.

The local C0 interior penalty problem is not amenable to fast diagonalization because (4.53)
is not identical to the separable Kronecker representation (2.21) needed. However, omitting
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the elementary tensor L(1) ⊗ L(2) in (4.53) a separable Kronecker product is obtained.
We refer to this local solver as Bila since it involves only univariate mass matrices and
discretizations of the one-dimensional C0 interior penalty formulation of the Bilaplacian.
Another way fast diagonalization may be exploited is to compute a best rank-r Kronecker
product approximation using a Kronecker singular value decomposition (KSVD). We note that
this option is restricted to two spatial dimensions. The KSVD with its best approximation
property was introduced in Section 2.1.4. In what follows, we analyze the number of solver
iterations with respect to these local solvers for the same solver settings given in Section 4.1.1.

Bila. If the term L
(1)
j ⊗L

(2)
j which involves mixed-partial derivatives arising from the

bulk term is omitted, local solvers are inexact in the sense of (2.67). However, they admit
then the separable Kronecker representation

Ãj = B
(1)
j ⊗M

(2)
j + M

(1)
j ⊗B

(2)
j , (4.55)

that enables fast diagonalization. The matrices B
(d)
j and M

(d)
j are symmetric, positive semi-

definite or symmetric, positive definite, respectively, for d = 1, 2. Consequently, generalized
eigenvalue problems are well-defined, such that a fast diagonalization is feasible. From now
on, We use the subscript j to explicitly refer to the local solver for vertex patch Ωj . The
positive definiteness of Ãj ensures that the Assumption 2.3 of local stability is satisfied.

Comparing the number of solver iterations in Table 4.4 to those for exact local solvers
in Table 4.3, we observe that additive vertex patch smoothers using the inexact method are
slightly better concerning this metric. This observation is unexpected, but supposedly more
inaccurate local solvers may lead to “better” smoothing. In addition, the differences are
minimal. For low polynomial degrees k, the multiplicative vertex patch methods compare at
similar levels. Still, with a growing gap in favor of exact local solvers. Using inexact local
solvers, on the one hand, the number of iterations grows slowly with increasing polynomial
degrees. On the other hand, a descending trend of the number of iterations is observed using
exact local solvers. Nevertheless, the gap in iteration counts is moderate, and the solver’s
convergence speed is excellent for both kinds of local solvers. The computational cost and
memory intensity of these inexact but fast diagonalizable local solvers (which we refer to
as Bila local solvers) is significantly reduced, discussed in detail in Section 4.2. Therefore,
Schwarz smoothers with Bila solvers are expected to be superior in computational efficiency.

The Kronecker product singular value decomposition (KSVD), which was introduced
in Section 2.1.4, computes a best rank-r approximation Ãj of some matrix Aj ,

Aj ≈ Ãj =
r∑
i=1

Ã
(1)
j;i ⊗ Ã

(2)
j;i , (4.56)
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Table 4.4 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with Bila local solvers, respectively. CG solver with relative
accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring on mesh level L.
Entries “—” not computed only levels L with 5× 104 to 107 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

5 — — — — — 10.9 1
6 — — 9.2 9.9 10.3 10.8 1
7 19.2 10.4 9.0 9.3 9.8 10.3 1
8 19.6 10.3 9.0 9.2 9.5 9.9 1
9 19.9 10.3 9.0 9.1 9.4 — 1
10 20.1 10.2 — — — — 1

MVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
5 — — — — — 5.8 8
6 — — 4.2 4.5 5.2 5.8 8
7 9.2 4.8 4.2 4.5 5.2 5.7 8
8 9.4 4.8 4.2 4.5 5.1 5.7 8
9 9.5 4.8 4.2 4.4 4.9 — 8
10 9.5 4.8 — — — — 8

for a fixed tensor rank r. Using Algorithm 1 to compute the KSVD for a matrix Aj

admitting a low-rank tensor representation, the computational costs are significantly reduced,
see Remark 2.1.20. We recall that the exact local solvers have the rank-3 representation (4.57).

It is noteworthy that a rank-3 KSVD approximation Ãj of the local C0 interior penalty
discretization matrix

Aj = B
(1)
j ⊗M

(2)
j + 2L

(1)
j ⊗L

(2)
j + M

(1)
j ⊗B

(2)
j , (4.57)

is identical as “matrix”. However, the three elementary tensors in (4.56) differ in general
from those in (4.57) due to the best approximation property of the KSVD. Let us state some
structural properties of the KSVD that are relevant in our context, found in the original
works (N. P. Pitsianis, 1997; Van Loan and N. Pitsianis, 1993):

1. If A is symmetric, each of the r elementary tensors of the respective rank-r KSVD is
symmetric.

2. If A is symmetric, positive definite, then its rank-1 KSVD is symmetric and positive
definite, so are both matrices Ã(1)

1 and Ã
(2)
1 .

We emphasize that positive definiteness is only preserved for the rank-1 KSVD and not for
higher ranks.
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We will refer to local solvers based on a Kronecker product singular value decomposition
with appropriate but fixed rank r as KSVD1i, where the subscript 1 means using the best
rank-1 approximation,

Ã
(1)
j;1 ⊗ Ã

(2)
j;1,

and the subscript i using a second rank-1 tensor from (4.56),

Ã
(1)
j;i ⊗ Ã

(2)
j;i

with 1 < i ≤ r. The second elementary tensor is optional and is omitted for the first option
discussed.

KSVD1. The first approach is to approximate local problems only by means of a rank-1
KSVD

Ã
(1)
j;1 ⊗ Ã

(2)
j;1. (4.58)

Since local matrices Aj are symmetric and positive definite, eigenvalue decompositions are
well-defined,

(Q(d))TÃ
(d)
j Q(d) = Λ(d) (4.59)

for d = 1, 2. The diagonal matrix Λ(d) consists of eigenvalues and the columns of Q(d)

are corresponding eigenvectors. Given these eigendecompositions, a fast diagonalization is
obtained,

(Q(1) ⊗Q(2))T Ã
(1)
j;1 ⊗ Ã

(2)
j;1 (Q(1) ⊗Q(2)) = Λ(1) ⊗ Λ(2), (4.60)

which is even simpler than (2.24), but enables the same fast inversions as in Section 2.1.3.
Compared to previous exact or inexact local solvers, the smoothing quality obtained by
inexact local solvers based on the rank-1 KSVD is inferior, shown by the numerical results
in Table 4.5. Looking at bi-cubic elements, the iteration counts are for both smoothers,
additive and multiplicative, more than a factor of two higher; with a growing gap for higher-
order elements, for instance, more than a factor of seven for the polynomial degree k = 7.
However, we notice that these rank-1 local solvers smooth well enough to obtain a numerical
solver whose convergence is uniform with respect to the mesh size.

Table 4.4 has shown that “separable” rank-2 local solvers (referred to as Bila local solvers)
smooth well. Thus, using the best rank-2 approximation of the local matrix Aj instead, we
expect to perform equally well. However, we will encounter some difficulties that make it
infeasible to apply the exact inverse of the rank-2 KSVD. Let

Ãj = Ã
(1)
j;1 ⊗ Ã

(2)
j;1 + Ã

(1)
j;2 ⊗ Ã

(2)
j;2 (4.61)

denote the rank-2 KSVD of the local matrix Aj . We note that due to the best approximation
property Ã(1)

j;1 and Ã
(2)
j;1 are identical in (4.58) and (4.61). In other words, we simply add a
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Table 4.5 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with KSVD1 local solvers, respectively. CG solver with relative
accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring on mesh level L.
Entries “—” not computed only levels L with 5× 104 to 107 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

5 — — — — — 63.5 1
6 — — 27.3 27.3 41.6 66.9 1
7 31.4 26.3 27.4 27.4 41.5 70.3 1
8 34.7 26.5 26.7 26.7 41.3 73.4 1
9 37.4 26.8 26.5 26.5 40.6 — 1
10 39.9 26.8 — — — — 1

MVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
5 — — — — — 19.6 8
6 — — 11.5 14.4 16.3 19.4 8
7 10.0 11.5 11.5 14.3 16.3 18.9 8
8 10.1 11.6 11.5 14.3 16.2 18.8 8
9 10.1 11.6 11.5 13.9 15.9 — 8
10 10.1 11.7 — — — — 8

second elementary tensor,
Ã

(1)
j;2 ⊗ Ã

(2)
j;2,

to the local problems of the rank-1 approximation in (4.58). Since local matrices Aj are
symmetric so are the Kronecker factors Ã(d)

j;i from (4.61), for i = 1, 2 and d = 1, 2. In addition,
Ã

(1)
j;1 and Ã(2)

j;1 are positive definite. Consequently, there generalized eigenvalue decompositions
are well-defined,

(Z(d))TÃ
(d)
j;2Z

(d) = Λ(d),

(Z(d))TÃ
(d)
j;1Z

(d) = I(d),
(4.62)

with real eigenvalues Λ(d), generalized eigenvectors Z(d) and identity matrices I(d) of appro-
priate size, for d = 1, 2. In that case, Ãj diagonalizes into

(Z(1) ⊗ Z(2))T Ãj (Z(1) ⊗ Z(2)) = I(1) ⊗ I(2) + Λ(1) ⊗ Λ(2), (4.63)

where the sum of Kronecker products on the right-hand side is a diagonal matrix. Therefore,
the rank-2 approximation Ãj can be inverted cost-efficiently, similar but not identical to the
fast diagonalization in (2.25). Nevertheless, the computational complexities remain the same
as discussed in Remark 2.1.14.
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Table 4.6 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with KSVD13 local solvers, respectively. CG solver with
relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring on mesh level
L. Entries “—” not computed only levels L with 5× 104 to 107 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

5 — — — — — 63.7 1
6 — — 27.3 32.7 41.6 67.8 1
7 31.3 26.3 27.4 32.4 41.5 71.4 1
8 34.7 26.5 26.9 32.5 41.3 74.7 1
9 37.5 26.9 26.6 31.8 40.7 — 1
10 40.1 26.9 — — — — 1

MVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
5 — — — — — 19.5 8
6 — — 11.5 14.4 16.4 19.3 8
7 10.1 11.6 11.5 14.3 16.3 18.9 8
8 10.1 11.6 11.5 14.2 16.3 18.8 8
9 10.1 11.7 11.5 13.9 16.2 — 8
10 10.2 11.7 — — — — 8

Although the local matrix Aj is positive definite, it is not guaranteed that Ãj is, which
violates a necessary assumption of the Schwarz theory; to be precise, the Assumption 2.3
of local stability is not satisfied. Numerical experiments have shown this is not only posing
a problem in theory: in practice, most rank-2 KSVDs based on the C0 interior penalty
formulation of local biharmonic problems were indefinite, in particular for higher-order finite
elements and small mesh size h, which frequently resulted in diverging CG solvers.

KSVD13. One approach to overcome this problem is computing the rank-3 KSVD and
using the sum of the first and third elementary tensor. We refer to this approximation
as KSVD13. Since Aj has a rank-3 tensor representation and is positive definite, it is
straightforward to prove positive definiteness of such approximations. Numerical results
in Tables 4.5 and 4.6 reveal that adding the third tensor to the best rank-1 approximation
from (4.58) does not improve smoothing at all. The numbers in Table 4.5 refer to using the
KSVD1 local solvers, i.e., using the inverse of the rank-1 KSVD for subspace corrections.
We recall that the elementary tensors of the KSVD approximation are naturally ordered by
their approximation quality. On the one hand, we obtain cost-efficient and feasible smoothers
for KSVD13 local solvers. On the other hand, they lead to numerical solvers with inferior
convergence. Therefore, we do not recommend applying these local solvers.

KSVD12(α) Instead, we recommend a second option that is considering the best rank-2
approximation Ãj in (4.61), but scaling Ã(1)

j;2 ⊗ Ã
(2)
j;2 by a positive factor α less than one such
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Table 4.7 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with KSVD12(α) local solvers, respectively. CG solver with
relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring on mesh level
L. Entries “—” not computed only levels L with 5× 104 to 107 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

5 — — — — — 17.8 1
6 — — 13.6 14.6 16.3 17.0 1
7 21.8 11.1 13.3 14.6 16.3 16.8 1
8 22.5 11.1 12.9 14.3 15.9 16.7 1
9 22.9 11.0 12.8 13.8 15.8 — 1
10 23.5 10.9 — — — — 1

MVS k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
5 — — — — — 4.9 8
6 — — 4.1 4.3 4.6 4.8 8
7 8.8 4.4 4.1 4.3 4.6 4.8 8
8 8.9 4.4 4.1 4.3 4.5 4.8 8
9 9.3 4.4 4.1 4.3 4.5 — 8
10 9.3 4.4 — — — — 8

that a positive definite approximation is obtained. The approximation reads

Ãα;j = Ã
(1)
j;1 ⊗ Ã

(2)
j;1 + αÃ

(1)
j;2 ⊗ Ã

(2)
j;2, (4.64)

which is better than the rank-1 KSVD but worse than the rank-2 KSVD with respect to the
approximation quality measured in the Frobenius norm. The closer α is to one, the better
its approximation. The additional error concerning the Frobenius norm compared to the
rank-2 KSVD is given by ασ̃2, with singular value σ̃2 being computed in Algorithm 1. After
computing the rank-2 KSVD and the generalized eigenvalue problems (4.62), the factor α is
easily determined and a diagonalization of Ãα;j is given by

(Z(1) ⊗ Z(2))T Ãα,j (Z(1) ⊗ Z(2)) = I(1) ⊗ I(2) + αΛ(1) ⊗ Λ(2), (4.65)

without any extra computational costs. Let λmin denote the minimal eigenvalue with respect
to Λ(1) ⊗ Λ(2), then, µmin = 1 + λmin characterizes the minimal eigenvalue of Ãj in (4.61).
If µmin is negative, Ãα,j is positive definite for any α < αmax with αmax = −1/λmin. In
computations, we use α = αmax − ϵ utilizing a small positive ϵ that sufficiently bounds the
smallest eigenvalue of Ãα,j away from zero. Then, the Assumption 2.3 of local stability is
satisfied.
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Comparing the numerical results in Table 4.7 to the Tables 4.3 and 4.4, we observe that
the inexact local solvers given by (4.64) smooth well. For additive vertex patches, the iteration
counts grow slightly but steadily with increasing polynomial degrees compared to exact and
Bila local solvers. For multiplicative vertex patch smoothers, numerical solvers with uniform
convergence are obtained, also independent of the polynomial degree: in particular, requiring
slightly more iteration steps than for exact local solvers, but slightly less than for Bila local
solvers. We believe that the relaxation factor ω = 0.25 is sub-optimal for our KSVD12(α)
local solvers because MVS smoothers that do not require relaxation perform better and
compare at similar levels as with exact local solvers. However, this claim needs to be proved
in theory and in practice, exceeding the scope of this work.

4.2 Conclusion

An extensive (parallel) performance analysis of the tensor product Schwarz smoothers
from Section 4.1.2 also exceeds the thesis’s scope. However, we will elaborate next why
almost the same computational efficiency as for the Poisson problem, see Section 3.4, can be
expected. Thus, a performance analysis would not add new major findings.

4.2.1 Computational Efficiency

At the time when the numerical experiments in Section 4.1.2 were conducted, deal.II’s
matrix-free framework did not provide the functionality to compute integration-based evalua-
tions involving second-order derivatives of shape functions, not even for standard Lagrange
elements. However, in theory, not much needs to be changed to obtain an efficient operator
application for the Bilaplacian, compared to the efficient operator application of the Laplace
operator in Section 2.2. Computing the cell-based operator application AKuK for the bihar-
monic model problem follows the same structure as equation (2.50) and subsequent equations.
In analogy to the RD-valued interpolation of gradients u∇ from (2.54), we have to compute
RD×D-valued interpolation of Hessians here,

u∇2
q1,...,qD

:=


u∂11
q1,...,qD . . . u∂1D

q1,...,qD
...

u∂D1
q1,...,qD . . . u∂DDq1,...,qD


Note that u∇2 is a multi-dimensional array of order D, where each entry is the second-
order derivative of a corresponding ansatz function u evaluated in the quadrature point
(xq1 , . . . , xqD). The interpolation tensor of each second-order derivative u

∂ij
q1,...,qD (simultane-

ously evaluated in all quadrature points) is efficiently computed using a sum factorization
similar to (2.53). The same applies to the second sum factorization in (2.56), testing against
second-order derivatives of test functions. An analogous rationale holds for efficient operator
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Table 4.8 Comparing computational complexities of standard and tensor-based algorithms for
Schwarz smoothers on vertex patches. “Standard” refers to using inverse SVDs for subspace
corrections. We compare against the two tensor product Schwarz smoothers from Section 4.1.2
with the equally-best mathematical efficiency, i.e, using either Bila or KSVD12(α) local solvers.
The last column (Ext.) refers to a method’s extensibility to dimensions higher than two.

Method Summary Comp. complex. Memory Ext.
setup apply

Exact A−1
j by inverse SVD O(n3D) O(n2D) n2D No limit

Bila Omit L⊗ L from Aj — — — No limit
A−1

j by fast diagonalization O(Dn3) O(DnD+1) Dn2 No limit
KSVD12(α) Rank-2 KSVD of Aj O(6n2) — 4n2 Only in 2D

A−1
j by fast diagonalization O(Dn3) O(DnD+1) Dn2 No limit

evaluations concerning the face integrals of the C0 interior penalty method. Due to the
symmetry of second-order derivatives, further arithmetic operations can be saved. The change
from unit to real space (and vice versa) needs to be adapted. However, this is particularly easy
for Cartesian coordinate transformations, for instance, see (4.24) for second-order derivatives
of shape functions. Implementing efficient matrix-free operator evaluation is the only missing
piece in our software for multilevel Schwarz methods. Then, forward operators and especially
the residuals of Schwarz smoothers are computed cost-efficiently.

Computing subspace corrections is already highly-optimized, using the implementations
of the software package TPSS for tensor product matrices as well as their fast diagonal-
ization and KSVDs. If the input matrix admits already a low-rank tensor representation,
our implementation of the KSVD given by Algorithm 1 (based on the Lanczos tridiag-
onalization) makes use of it such that the arithmetic complexity and memory intensity
are reduced, see Remarks 2.1.20 and 2.1.21, respectively. The “small-sized” singular value
decomposition in Algorithm 1 is computed via the LAPACK routine XGESDD. For similar
but different fast diagonalizations in (4.60) and (4.65), we have extended our tensor prod-
uct matrix class TensorProductMatrixSymmetricSum in deal.II to the more general class
TensorProductMatrix in TPSS. For more details on TPSS’s functionality, we refer to Re-
mark 3.4.1 and Section 1.2.

Besides the simple modifications for matrix-free operator evaluation, we rely on the
same implementations of cost-efficient tensor product Schwarz smoothers compared to the
Poisson problem, see Remark 3.4.1. In Table 4.8 the two tensor product Schwarz smoothers
with the best mathematical efficiency, i.e., using either Bila or KSVD12(α) local solvers,
are summarized and compared to smoothers with exact local solvers (not amenable to
fast inversion) in terms of arithmetic operations and memory consumption. Although we
assumed two spatial dimensions throughout this chapter, the derivation of the low-rank tensor
presentation of (local) C0 interior penalty discretizations and some tensor techniques are
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readily extensible to three dimensions. Thus, we explicitly state the number of dimensions D
in Table 4.8 when comparing computational complexity (abbreviated by Comp. complex.)
and memory intensity in Table 4.8. In particular, the one-time cost of inverting local matrices
is drastically reduced: O(Dn3) for fast diagonalized but inexact local solvers versus O(Dn6)
for exact local solvers based on standard inversion (i.e., utilizing standard SVDs for inversion),
already in two dimensions. We note that n = 2k − 1, the number of degrees of freedom per
dimension per vertex patch. An efficient operator application requires O(DnD+1) arithmetic
operations. Therefore, using any tensor product Schwarz smoother, either with Bila or
KSVD12(α) local solvers, we can expect a similarly high computational efficiency of numerical
solvers as already being observed in Section 3.4.2 for the Poisson problem. For the tensor
product Schwarz smoothers summarized in Table 4.8, we observed a comparable mathematical
efficiency of respective numerical solvers in Tables 4.3, 4.4 and 4.7.

4.2.2 Outlook

In the future, we want to extend the matrix-free operator evaluation in deal.II to second-
order derivatives first, obtaining high-performance computations for large-scale biharmonic
problems. We recommend the tensor product Schwarz smoothers using KSVD12(α) local
solvers for two spatial dimensions: the best-approximation property of the KSVD may
handle other “sources of inexactness”, for instance, using non-Cartesian meshes or non-trivial
coefficients depending on spatial coordinates. However, it is also appealing to extend our
smoothers with Bila local solvers to three dimensions, and examine if they compare equally
well to exact local solvers as in two dimensions. In the next chapter, we will make use of the
efficient local solvers developed here to develop tensor product Schwarz smoothers for the
Stokes problem there.





Chapter 5

STOKES PROBLEM

In this chapter, we discuss a method for the model problem of Stokes equations

−2∇ · ϵ(u) + ∇p = f in Ω, (5.1a)
∇ · u = 0 in Ω, (5.1b)

u = g on ∂Ω, (5.1c)

where Ω is a polygonal domain in RD with D = 2. Although restricting ourselves to two
spatial dimensions, we use a generic dimension index D since many concepts can easily be
extended to three dimensions. The vector fields f and g are given and sufficiently regular.
The symmetric gradient of a vector field v : RD → RD is defined by

ϵ(v) = ∇v + (∇v)T

2 (5.2)

with

∇v =


∂1v1 . . . ∂Dv1

...
...

∂1vD . . . ∂DvD

 . (5.3)

The divergence of a tensor-field σ : RD → RD×D is given by

∇ · σ =


∑D
j=1 ∂jσ1j

...∑D
j=1 ∂jσDj

 . (5.4)

The Stokes equations (5.1), determining the equations of motion for Stokes flow, are the
limit of the steady-state Navier-Stokes equations for very low Reynolds numbers. Assuming
viscous forces dominate over inertial forces, the latter are eliminated from the momentum
balance in Navier-Stokes equations which leads to (5.1a). The conservation of mass is modeled
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by (5.1b), assuming a steady state and a fluid density which is constantly one. Stokes flow is
also referred to as creeping flow since it models flow where the viscosities are large or fluid
velocities are assumed to be slow. There exist many use cases, ranging from movement of
microorganisms over viscous polymers to the flow of magma.

Nevertheless, the biggest motivation comes from the fact that it models a special case of
incompressible flow of Newtonian fluids. Developing efficient and robust numerical solvers for
the model problem (5.1) is a major step towards fast solvers for (incompressible) flow. Fluid
dynamics is ubiquituous, thus, there is no need to mention all its real-world applications here.
The computational fluid dynamics (CFD) community demands robust and efficient numerical
solvers that solve flow simulations with millions of time steps and trillions of space-dependent
unknowns in a reasonably low amount of elapsed time.

Among many others, we refer to a series of works (Fehn, Kronbichler, et al., 2019; Fehn,
Wall, et al., 2017, 2018a,b,c; Piatkowski and Bastian, 2019; Piatkowski, Müthing, et al., 2018)
for fast and robust numerical solvers given stable DG discretizations of (incompressible) flow
problems. An overview of these works, in particular, how they relate mutually and to other
state-of-the-art numerical solvers, is given in (Arndt, Fehn, et al., 2020; Bastian, Altenbernd,
et al., 2020). In the series of literature mentioned, consistent stabilization strategies are
developed to weakly enforce inter-element mass conservation and the divergence-free constraint.
In (Piatkowski and Bastian, 2019) a pressure-robust formulation with Hdiv-reconstruction
was used. For details on pressure-robustness we refer to (Linke, 2014; Linke et al., 2016).
The other works cited before apply stabilized L2-conforming discretizations, which were
compared to exactly divergence-free Hdiv-conforming discretizations in (Fehn, Kronbichler,
et al., 2019).

We focus on the latter, following (Kanschat and Mao, 2015; Kanschat and Sharma, 2014).
In particular, we utilize the (exact) algebraic relation of C0 and Hdiv-conforming interior
penalty methods for biharmonic and Stokes problems, respectively, presented therein. The
multilevel Schwarz methods in (Kanschat and Mao, 2015; Kanschat and Sharma, 2014) show
high mathematical efficiency. More importantly, they lead to numerical solvers with uniform
convergence and, thus, are scalable in size. However, the overlapping Schwarz smoothers on
vertex patches are known to be prohibitively expensive, in particular, for high-order finite
elements.

In this chapter, we will address this challenge, designing cost-efficient algorithms for
Schwarz smoothers. Simultaneously to our research, other fast and efficient multilevel
Schwarz methods utilizing matrix-free operators and preconditioners were developed for
Hdiv-conforming discretizations concerning. We refer to Barker and Kolev (2020) who
designed state-of-the-art preconditioners for high-order Hcurl-conforming discretizations of
the Maxwell operator based on the auxiliary space framework. Hcurl-conforming methods
naturally relate to Hdiv-conforming methods in view of finite element exterior calculus (Arnold,
Falk, and Winther, 2000, 2006; Hiptmair, 2002). In (Brubeck and Farrell, 2021), fast and
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robust multilevel additive Schwarz methods on vertex patches are presented for a mixed
formulation of linear elasticity (being equivalent to the Stokes problem in the limit of a
(nearly) incompressible material) based on the FEM-SEM equivalence studied in (Pazner,
2020). Their efficient algorithms are even applicable to unstructured vertex-patches and may
handle mixed derivatives. However, they do not achieve optimal computational complexity
in general.

We put in this chapter emphasis on designing algorithms that optimally compute Schwarz
smoothers on structured vertex patches, presenting our main scientific contribution. To this
end, we make use of the (algebraic) equality of C0 and Hdiv-conforming interior penalty
method from (Kanschat and Mao, 2015; Kanschat and Sharma, 2014) for subspace corrections.
It enables us to utilize the tensor product Schwarz methods from Chapter 4 for cost-efficient
smoothing. In addition, we will see that a (local) reconstruction of the pressure is needed.
Thus, we adopt the concepts in (Caussignac, 1987) to the model problem (5.1) and extend
the pressure post-processing to numerically stable Raviart-Thomas elements.

The chapter starts with introducing the Stokes equations, in particular, the well-posedness
of its weak formulation and basic notations. In Section 5.2, the Hdiv-conforming interior
penalty method, the known relation to stream functions, and our strategy for a pressure
post-processing is elaborated for the simplified Stokes problem. The high mathematical
efficiency of Schwarz smoothers on vertex patches and respective numerical solvers with
uniform convergence are demonstrated by numerical experiments. Our main scientific contri-
bution, namely computing tensor product Schwarz smoothers via cost-efficient algorithms, is
presented in Section 5.2.5. Briefly discussing necessary modifications given the (actual) Stokes
equations, similar mathematical efficiency and cost-efficient algorithms for tensor product
Schwarz smoothers are demonstrated in Section 5.3. The chapter concludes with discussing
computational complexity, relating to the performance analysis in Section 3.4 for the Poisson
problem, and giving an outlook on highly-optimized (prospective) implementations.

5.1 The Stokes Equations

We adopt the nomenclature from the computational fluid dynamics (CFD) community. We
refer to u and p in (5.1) as velocity and pressure field, respectively. Vector-valued or, more
generally, tensor-valued differential operators, functions and associated function spaces are
highlighted in bold font. A vector field v is called divergence-free, if there holds

∇ · v = 0. (5.5)

Flow described by a divergence-free function is called incompressible, thus, refering to (5.1b) as
incompressibility condition. The natural velocity space for Dirichlet boundary conditions (5.1c)
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is
V =

{
v ∈H1(Ω) | Tr v = g

}
, (5.6)

and, in particular, V = H1
0 (Ω) if homogeneous boundary conditions are considered. In the

context of flow problems, homogeneous Dirichlet conditions are called no-slip conditions.
If we assume for some velocity v ∈ V that v · n = 0 on the whole boundary ∂Ω, then, by
integration of parts we obtain∫

Ω
∇ · vp dx = −

∫
Ω

v ·∇p dx +
∫
∂Ω

v · npdσ(x) = −
∫

Ω
v ·∇p dx. (5.7)

Consequently, if the velocity solution u in (5.1) satisfies

u · n = 0 on ∂Ω, (5.8)

testing the first equation (5.1a) by velocities in H1
0 (Ω) reveals that the pressure solution p

is only determined up to a constant. For simplicity, we assume no-slip conditions for the
remainder of this chapter. In case of nonzero boundary data g a lifting of any particular
function endowed with this boundary condition results in simply solving the Stokes equations
with no-slip conditions and a modified right-hand side. The natural pressure space is defined
as

Q = L2
0(Ω) :=

{
q ∈ L2(Ω) |

∫
Ω
q dx = 0

}
, (5.9)

the space of mean value free functions in L2(Ω). The weak formulation of the model problem
reads: Find the velocity-pressure pair (u, p) ∈ V ×Q = H1

0 (Ω)× L2
0(Ω) such that

a(u,v) + b(v, p) = F (v) ∀v ∈ V , (5.10a)
b(u, q) = 0 ∀q ∈ Q, (5.10b)

with bilinear forms

a(u,v) =
∫

Ω
2ϵ(u) : ϵ(v) dx, (5.11a)

b(v, q) = −
∫

Ω
∇ · vq dx, (5.11b)

and the right-hand side operator

F (v) =
∫

Ω
f · v dx. (5.12)

We refer to (5.10) as saddle point system and the associated bilinear form on the product
space V ×Q reads

a((u, p) , (v, q)) := a(u,v) + b(v, p) + b(u, q). (5.13)
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Instead of postulating conditions on a(·, ·) for well-posedness of the saddle point problem, the
well-posedness is guaranteed by assumptions on a(·, ·) and b(·, ·), respectively, see (Brezzi,
1974). Following the abstract theory on saddle point problems in (Brezzi and Fortin, 1991,
Chapter 2), crucial for existence and uniqueness of solutions in (5.10) is that the divergence
operator ∇· : V → Q′ (i.e. the operator associated with b(·, ·) from (5.11b)) satisfies the
inf-sup condition,

∃β > 0 such that inf
q∈Q

sup
v∈V

b(v, q)
∥v∥1,Ω∥q∥Ω

> β, (5.14)

and the bilinear form a(·, ·) is coercive on Ker(∇·). The kernel of ∇· can be written as

Ker(∇·) =
{
v ∈ V | b(v, q) = 0 ∀q ∈ Q

}
. (5.15)

The orthogonal complement of Ker(∇·) as a subspace of V is denoted by Ker(∇·)⊥.

Lemma 5.1.1. Let Ω be connected. Then, the map ∇· : Ker(∇·)⊥ → Q′ is an isomorphism.
There exists a positive constant β such that

∀q ∈ Q ∃v ∈ Ker(∇·) with ∇ · v = Iq and β∥v∥1,Ω ≤∥q∥Ω , (5.16)

where I denotes the L2 Riesz isomorphism.

Proof. See (Girault and Raviart, 1986) and, in particular, (Ladyženskaja, 1969) for the
estimate in (5.16).

Remark 5.1.2 (Well-posedness). The inf-sup condition (5.14) follows from Lemma 5.1.1 and
from a Korn inequality in (Duvaut and Lions, 1976) that a(·, ·) is coercive on V . Then, the
weak formulation (5.10) of the Stokes problem (5.1) with no-slip conditions is well-posed
(Brezzi and Fortin, 1991, Chapter 2).

Assuming a vanishing trace on (a part of) ∂Ω, a simplified Korn inequality can be found
in (Braess, 2013). An equivalent statement to Lemma 5.1.1 for ∇ : L2(Ω)→ V ′, the adjoint
operator of the divergence, was proved even earlier by Nečas (Nečas, 1967). The equivalence
between both statements and the inf-sup condition relies on implications of the closed range
theorem (Yosida, 1965).
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5.2 The Simplified Stokes Equations

We analyze and develop tensor-structured Schwarz smoothers for the simplified Stokes
equations,

−∆ u + ∇p = f in Ω, (5.17a)
∇ · u = 0 in Ω, (5.17b)

u = 0 on ∂Ω, (5.17c)

The Laplacian of a vector field v : RD → RD is the Laplacian applied to each vector
component,

∆ v =


∆ v1

...
∆ vD

 . (5.18)

For any divergence-free velocity u ∈H1
0 (Ω) ∩H2(Ω) there holds

2(ϵ(u), ϵ(v))Ω = (∇u,∇v)Ω ∀v ∈H1
0 (Ω) ∩H2(Ω), (5.19)

which justifies the simplification if no-slip boundary conditions are present. Given nonzero
boundary data g, the simplified Stokes equations become a physically inexact model for
(slow) flow problems. Nevertheless, from a methodological perspective these equations still
retain their appeal for preconditioning and smoothing. The solution of the simplified Stokes
equations approximates well the solution of the physically correct model problem (5.1).

Replacing in (5.11a) symmetric gradients, we define the so-called simplified bilinear form

ã(u,v) =
∫

Ω
∇u : ∇v dx. (5.20)

The weak formulation of the simplified model problem with no-slip boundary conditions
reads: Find (u, p) ∈H1

0 (Ω)× L2
0(Ω) such that

ã(u,v) + b(v, p) = F (v) ∀v ∈ V , (5.21a)
b(u, q) = 0 ∀q ∈ Q, (5.21b)

with b(·, ·) and F previously defined in (5.11b) and (5.12), respectively. The well-posedness
of the simplified formulation is already implied by Remark 5.1.2.

5.2.1 Hdiv Interior Penalty Method

In this section we discuss multilevel Schwarz methods exploiting tensor structure for the
simplified model problem (5.17). First results for multigrid methods in Hdiv and in Hcurl are



5.2 The Simplified Stokes Equations 137

traced back to Hiptmair (Hiptmair, 1998; Hiptmair, 1997). The theory therein was unified
and simplified in (Hiptmair and Toselli, 2000): it relies on the overlapping Schwarz methods
defined in (Smith et al., 2004). The multilevel Schwarz methods we use are more related to
the theoretical studies by Arnold, Falk and Winther. For example, see the Hdiv-conforming
multilevel methods in two spatial dimensions (Arnold, Falk, and Winther, 1997), which
were generalized to three dimensions and Hcurl (Arnold, Falk, and Winther, 2000). In both
publications Schwarz methods for boundary value problems associated with the differential
operator

Λ = id− grad div

were developed and analyzed. Moreover, it was shown that local problems on vertex patches
are necessary to obtain robust multigrid solvers and that, for example, simple cell-based
or face-based smoothers are not sufficient. The same concepts were extended to a Hdiv-
conforming interior penalty method for the simplified Stokes equations in (Kanschat and
Mao, 2015), using the equivalence between mixed formulations and singularly peturbed,
divergence-dominated elliptic forms as introduced in (Schöberl, 1999a,b). In all studies
a (discrete) Helmholtz decomposition relying on exact sequences of (discrete) spaces was
the essential mathematical tool. The decomposition leverages the special properties of the
divergence operator. More recently, this concept was studied in the broader context of finite
element exterior calculus, presenting a unified tool for many finite element applications
(Arnold, Boffi, and Bonizzoni, 2014; Arnold, Falk, and Winther, 2006, 2010; Bonizzoni and
Kanschat, 2021; Hiptmair, 2002). We will make use of this theory when exploiting the
identity between the Hdiv-conforming interior penalty method here and the C0 interior
penalty method from Section 4.1, see (Kanschat and Sharma, 2014). Therefore, we solve
the latter problem locally on each vertex patch obtaining a local stream function ϕj such
that ∇× ϕj is the divergence-free velocity solving the corresponding Hdiv interior penalty
formulation locally. The multilevel finite element discretizations will be given by a hierarchy
of Hdiv interior penalty methods, thus, local pressure solutions are reconstructed from
corresponding stream function solutions. To this end, we adopt a similar two-step post-
process as in (Caussignac, 1987). To our best knowledge such Schwarz smoothers have not
been applied before. Furthermore, we will discuss inexact local solvers for stream functions
following Section 4.1.2, which significantly reduce computational costs and memory-intensity.

We begin with defining the divergence-conforming Sobolev space

Hdiv(Ω) =
{

v ∈ L2(Ω) | ∇ · v ∈ L2(Ω)
}
, (5.22)

endowed with the inner product

⟨u,v⟩div,Ω =
∫

Ω
u · v dx +

∫
Ω
∇ · u∇ · v dx, (5.23)
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which induces the norm ∥·∥div,Ω. The next lemma defines the leading principle when con-
structing Hdiv-conforming finite elements.

Lemma 5.2.1. Let Th be a mesh of domain Ω with E◦
h being the set of interior facets, the

following statements are equivalent:

(i) v ∈Hdiv(Ω)

(ii) v|K ∈Hdiv(K) for all K ∈ Th and Jv · nK = 0 on each e ∈ E◦
h

Proof. See (Raviart and Thomas, 1977) and references therein.

Consequently, Hdiv-conforming finite elements have continuous normal components
between elements. Furthermore, from a hierarchy of nested meshes nested Hdiv-conforming
approximation spaces are naturally obtained. The normal component also plays a major role
when imposing essential boundary conditions:

Lemma 5.2.2. The (normal) trace operator Trn : C∞(Ω) → C∞(∂Ω), v 7→ v · n, can be
extended to a continuous, linear mapping

Trn : Hdiv(Ω)→ H−1/2(∂Ω), (5.24)

where H−1/2(∂Ω) is the dual of H1/2(∂Ω). Furthermore, the trace operator in (5.24) is
surjective.

Proof. See (Girault and Raviart, 1986).

This lemma justifies the characterization of Hdiv
0 (Ω) := C∞

0 (Ω)∥·∥div,Ω as the equivalent
of Hdiv(Ω) with vanishing trace of the normal component, that is

Hdiv
0 (Ω) =

{
v ∈Hdiv(Ω) | v · n|∂Ω = 0

}
, (5.25)

where v · n|∂Ω is an abuse of notation for Trn v.
As velocity approximation space Vh we choose Hdiv-conforming finite elements, in

particular, Vh ⊂ Hdiv
0 (Ω) since assuming no-slip conditions. Two prominent options are

the Raviart-Thomas elements (RT) on quadrilateral meshes (Raviart and Thomas, 1977)
(generalized by Nédélec to hexahedra (Nédélec, 1980)) or Brezzi-Douglas-Marini elements
(BDM) on quadrilateral meshes (Brezzi, J. Douglas, and Marini, 1985) (generalized to
hexahedra in (Brezzi, J. Douglas, Durán, et al., 1987; Nédélec, 1986)). The matching pressure
approximations Qh are discontinuous Qk-finite elements for RT and discontinuous Pk-finite
elements for BDM to obtain stable discretizations (Boffi et al., 2013), respectively. We choose
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Raviart-Thomas elements due to the natural tensor structure of its matching pressure space,

Vh =
{

v ∈Hdiv(Ω) | v|K ∈ RTk ∀K ∈ Th, v · n|∂Ω = 0
}
, (5.26a)

Qh =
{
q ∈ L2(Ω) | q|K ∈ Qk ∀K ∈ Th,

∫
Ω
q dx = 0

}
. (5.26b)

A detailed definition of Raviart-Thomas polynomials RTk and the corresponding Raviart-
Thomas finite element is postponed to Section 5.2.3, where we make excessive use of the
definition of node functionals. In contrast to original works (Nédélec, 1980; Raviart and
Thomas, 1977), we will explicitly highlight the anisotropic tensor product structure, that
enables efficient operator application.

The attentive reader has noticed that Vh is a nonconforming approximation space of V

(which consists of H1(Ω)-regular velocities). To this end, interior penalties (Arnold, 1982)
are used again obtaining consistency (and adjoint consistency).

Remark 5.2.3. The jump JσK and average {σ} of any tensor-field σ : RD → RD×D are
component-wise defined as for scalar fields in Definition 3.1.1, i.e, interchanging v there with
σij here.

Assuming no-slip boundary conditions, i.e., g = 0 on ∂Ω, the Hdiv interior penalty
method for simplified Stokes flow reads: Find the velocity-pressure pair (uh, ph) ∈ Vh ×Qh
such that

ãip;h(uh,v) + bh(v, ph) = F̃h(v) ∀v ∈ Vh, (5.27a)
bh(uh, q) = 0 ∀q ∈ Qh, (5.27b)

where the bilinear forms are defined by

ãip;h(u,v) =
∫

Th
∇u : ∇v dx (5.28a)

+
∫

Eh

(
γe Ju⊗ nK : Jv ⊗ nK− {∇u} : Jv ⊗ nK− Ju⊗ nK : {∇v}

)
dσ(x),

bh(v, q) = −
∫

Th
∇ · vq dx +

∫
Eh

Jv · nK {q} dx, (5.28b)

and the right-hand side operator by

F̃h(v) =
∫

Th
f · v dx (5.29)

For vector fields u,v ∈ L2(Ω) the identity∫
Eh
γe Ju⊗ nK : Jv ⊗ nK dσ(x) =

∫
Eh
γe JuK · JvK dσ(x) (5.30)
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simplifies the penalty term in (5.28a). The method’s well-posedness and a priori estimates
were studied in (Cockburn et al., 2006; Montlaur et al., 2008). In particular, the bilinear form
ãip;h(·, ·) is continuous and coercive on V , see (Hansbo and Larson, 2002). For Cartesian
meshes of the simple domain Ω = [0, 1]2, numerical experiments have shown that the same
penalty factor as for the Poisson problem provides a stable discretization, see Section 3.1 for
reference. Consequently, we obtain optimal error convergence in the energy as well as L2(Ω)
norm.

Given the local normal vector n, any vector field v : RD → RD is decomposable into
v = v⊥ + v∥, i.e., its normal vector field

v⊥ = (v · n) n, (5.31)

and tangential vector field
v∥ = v − v⊥. (5.32)

It would be more accurate to refer to (5.27) as symmetric interior penalty method since
interior penalties are used concerning the complete vector field u. However, from Lemma 5.2.1
it is known that only the tangential vector field v∥ for any v ∈ Vh is discontinuous along
interfaces. Thus, interior penalties for the tangential vector field suffice to handle the non-
conformity of velocity approximations in Vh for the (simplified) Stokes problem. No-slip
boundary conditions are implicitly and weakly imposed by the right-hand side operator (5.29).
Note that u · n = 0 is also strongly imposed by the definition of Vh.

Given nonzero boundary data g we have to be more subtle when enforcing the boundary
conditions for the normal and tangential vector field, see (Brezzi and Fortin, 1991; Cockburn
et al., 2006). The boundary condition regarding the normal component may only be strongly
imposed through the approximation space: usually, the degrees of freedom associated with the
physical boundary are constrained subject to the L2(∂Ω)-projection of g ·n. Furthermore, the
tangential component g∥ may only be weakly imposed through interior penalties. Considering
interior penalties only for the tangential vector fields, we guarantee both quite naturally.
Then, the generic Hdiv interior penalty formulation reads: Find the velocity-pressure pair
(uh, ph) ∈ Vh ×Qh such that

ãdiv;h(uh,v) + b(v, ph) = F̃h(v) ∀v ∈ Vh, (5.33a)
b(uh, q) = 0 ∀q ∈ Qh, (5.33b)
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where the bilinear form regarding the Laplacian is defined by

ãdiv;h(u,v) =
∫

Th
∇u : ∇v dx

+
∫

Eh

(
γe

r
u∥

z
·
r

v∥
z
−
{

∇u∥
}

:
r

v∥ ⊗ n
z
−

r
u∥ ⊗ n

z
:
{

∇v∥
})

dσ(x),

(5.34)
and the right-hand side operator by

F̃h(v) =
∫

Th
f · v dx +

∫
E∂
h

(
γe g∥ · v∥ − g∥ ⊗ n : ∇v∥

)
dσ(x). (5.35)

The bilinear form b(·, ·) is defined in (5.11b). Given no-slip boundary conditions both
formulations (5.27) and (5.33) are equal. In particular, ãdiv;h(·, ·) and ãip;h(·, ·) are equal on
Vh ⊂Hdiv(Ω). In practice, we prefer computing ãip;h(uh,v) such that, among others, the
“sophisticated” gradient ∇u∥ is avoided. If ∇v∥ needs to be computed (for example, due to
nonzero boundary data), the identity

∇v∥ n = ∇v n− (∇v : n⊗ n)n

is leveraged for Cartesian meshes.

5.2.2 Stream Function Formulation

Instead of solving the simplified Stokes problem (5.17) in its mixed formulation (5.21), it is
also possible to solve the problem directly on the subspace of divergence-free functions, thus,
enforcing the incompressibility condition as part of the solution space and not as part of the
variational formulation (5.21b). The subspace of divergence-free velocities is defined by

V 0 = Ker(∇·) =
{
v ∈ V | ∇ · v = 0 a.e.

}
. (5.36)

The weak form of the so-called reduced problem for the simplified Stokes equations reads:
Find u ∈ V 0 such that

ã(u,v) = F (v) ∀v ∈ V 0, (5.37)

where the bilinear form ã(·, ·) and linear operator F are defined in (5.12) and (5.20), respec-
tively. The pressure is eliminated from (5.10a) due to the velocity subspace V 0. Then, the
challenge consists in constructing finite element approximations that satisfy the incompress-
ibility condition in the strong sense given by (5.36).

In two spatial dimensions, there exists a curl operator for scalar as well as vector fields.
The scalar curl of a vector field v is defined by

∇× v = ∂1v2 − ∂2v1, (5.38)
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and the vector curl of a scalar field ψ by

∇× ψ =

 ∂2ψ

−∂1ψ

 (5.39)

The latter is the gradient of ψ rotated clockwise by 90◦. Similarly, the unit tangential vector
t is obtained by rotating the unit normal vector n counterclockwise by 90◦,

t =

−n2

n1


In (Falk and Neilan, 2013) two Stokes complexes were studied, one being the Hilbert

cochain complex defined by

R ⊂−−→ H2(Ω) ∇×−−→ H1(Ω) ∇·−−→ L2(Ω) −−→ 0. (5.40)

The attribute complex means that the composition of two consecutive mappings in (5.40) is
zero, for instance, from vector calculus it is well-known that the divergence of a rotational
vector field ∇ × ψ is always zero. The Stokes complex is exact if Ω is simply connected
(Girault and Raviart, 1986), i.e., the image of each map is the kernel of the succeeding linear
mapping. From exactness of the cochain (5.40) follows that if v ∈ H1(Ω) with ∇·v = 0, then
v = ∇× ψ for some stream function ψ ∈ H2(Ω). The stream function space Ψ matching the
velocity space V with no-slip boundary conditions reads

Ψ =
{
ψ ∈ H2(Ω) | ψ|∂Ω = 0 and (∇ψ · n)|∂Ω = 0

}
(5.41)

In Section 4.1 the boundary conditions inherent in Ψ were called clamped boundary conditions.
The expression matching spaces refers to the exactness of any (co)chain complex. The Stokes
complex with boundary conditions reads

0 ⊂−−→ Ψ ∇×−−→ V
∇·−−→ Q −−→ 0. (5.42)

Q is the space of mean value free pressure functions matching the velocities in V as discussed
earlier. The Hodge decomposition, implied by sequence (5.42), characterizes the divergence-
free velocities by

V 0 = ∇×Ψ, (5.43)

if the physical domain Ω is simply connected. The finite element method introduced next
will be applied ultimately on each vertex patch, thus, assuming Ω to be simply connected
domain from now on is reasonable.
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In Section 4.1 we discussed how challenging the implementation of H2(Ω)-conforming
finite elements is. To this end, we follow (Kanschat and Sharma, 2014) in using Hdiv(Ω)-
conforming velocity approximations and H1(Ω)-conforming stream functions. Kanschat and
Sharma have shown the equivalence of the Hdiv interior penalty method and the C0 interior
penalty method from Section 4.1 for these finite elements. We emphasize that this allows
the use of tensor product finite elements from preceeding sections. Let us elaborate on the
equivalence of both methods, which facilitates introducing relevant notations. If Ω is simply
connected, the L2 de Rham complex,

R ⊂−−−−→ H1(Ω) ∇×−−−−→ Hdiv(Ω) ∇·−−−−→ L2(Ω) −−−−→ 0, (5.44)

is exact (Arnold, Falk, and Winther, 2006): if ∇·v = 0 for any v ∈Hdiv(Ω), then v = ∇×ψ
for some ψ ∈ H1(Ω). Compared to the exact Stokes complex (5.40), we are lacking H2(Ω)-
and H1(Ω)-regularity for stream functions and velocities, respectively. Consistency to the
Stokes problem as well as the biharmonic problem is retained by means of interior penalties,
respectively, as explained earlier. The exactness of the L2 de Rham complex implies again
a Hodge decomposition which justifies in analogy to (5.43) nonconforming divergence-free
velocities as the vector curl of nonconforming stream functions in H1(Ω).

Given a quadrilateral mesh Th, we define the approximation space of stream functions

Ψh =
{
ψ ∈ H1(Ω) | ψ|K ∈ Qk+1 ∀K ∈ Th, ψ|∂Ω = 0

}
, (5.45)

which matches the velocity and pressure finite element space, Vh and Qh, respectively, in the
sense that an exact Hilbert cochain subcomplex of (5.44) is obtained,

0 ⊂−−−−→ Ψh
∇×−−−−→ Vh

∇·−−−−→ Qh −−−−→ 0. (5.46)

The interested reader finds more details in (Arnold, Boffi, and Bonizzoni, 2014). Those parts
of the boundary condition missing in Ψh and Vh to obtain clamped and no-slip conditions,
respectively, are weakly enforced by the C0 interior penalty and Hdiv interior penalty
formulations, (4.9) and (5.33), respectively. The exact sequence of discrete spaces (and the
fact that Ker(∇·) ⊂ L2(Ω) is closed) implies a (discrete) Hodge decomposition.

Lemma 5.2.4 (Discrete Hodge decomposition). Let Ω ⊂ R2 be simply connected. The space
Vh admits a L2-orthogonal decomposition with respect to the (discrete) divergence operator
∇· : Vh → Q′

h into
Vh =: V 0

h ⊕V ⊥
h (5.47)

with characterization
V 0
h = ∇×Ψ = Ker(∇·), (5.48)
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and its orthogonal complement

V ⊥
h =

{
vh ∈ Vh | ∃qh ∈ Qh : (w,vh)Ω = −(∇ ·w, qh)Ω ∀w ∈ Vh

}
. (5.49)

Proof. For a complete proof see (Girault and Raviart, 1986). We note that characteriza-
tion (5.48) follows from the exactness of the discrete L2 de Rham subcomplex (5.46) and
(5.49) is implied by the closed range theorem.

Given characterization (5.48) of divergence-free velocities, the reduced Hdiv interior
penalty method for simplified Stokes flow reads: Find a solution φh ∈ Ψh such that

ãdiv;h(∇× φh,∇× ψ) = Fh(∇× ψ) ∀ψ ∈ Ψh. (5.50)

The bilinear form ãdiv;h(·, ·) and the right-hand side operator F̃h are defined in (5.34) and (5.35),
respectively, with g ≡ 0. In (Kanschat and Sharma, 2014) the equivalence

ac0ip;h(φ, ψ) ≡ ãdiv;h(∇× φ,∇× ψ) (5.51)

for any stream functions φ and ψ was shown. There is a single missing piece before constructing
local solvers subject to the stream function formalism: the local pressure functions need to
be computed as well.

5.2.3 Post-processing Pressure

We want to develop Schwarz smoothers which solve the reduced model problem (5.37) locally
by utilizing the C0 interior penalty method (5.50). For each level ℓ of our geometric multigrid
preconditioner the Hdiv-conforming interior penalty method (5.33) is used, defining the finite
element discretization matrix Aℓ from Algorithm 2. Therefore, subspace corrections need to
be added to both, the velocity solution uℓ and pressure solution pℓ. To this end, given the
local velocity solution uℓ;j = ∇×φℓ;j the local pressure pℓ;j needs to be computed as well. For
the assumptions of the previous section, Kanschat and Sharma (2014) have shown that the
velocity and pressure solution of the simplified Stokes equations can be computed decoupled:
while the adjoint of the divergence operator ∇∗

ah
, introduced in (Kanschat and Sharma,

2014, Corollary 3.3.), is intuitive in its theoretical nature, its numerical computation is not
straightforward. To this end, we generalize the concepts of (Caussignac, 1987) to reconstruct
the pressure pℓ;j from the stream function solution φℓ;j . Caussignac solved a stream function-
vorticity problem to compute the velocity-pressure pair of a simplified Stokes flow. The
pressure approximate was obtained by post-processing the known vorticity approximate.
Caussignac’s post-processing relies on defining Raviart-Thomas elements subject to monomial
bases. We extend the concept to compute discrete pressure solutions from stream function
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approximates. In addition, for reasons of numerical stability1, we generalize the pressure
post-processing to Raviart-Thomas elements with arbitrary ansatz polynomials, for both the
shape function basis and the generation of node functionals.

We elaborate on Raviart-Thomas elements to construct a basis for the L2-orthogonal
complement V ⊥

h from Lemma 5.2.4, that is essential for the pressure post-processing. The
space of anisotropic tensor product polynomials Qk1,k2,...,kD was defined in in Definition 2.2.1.
From previous chapters, we are familiar with the isotropic tensor product space Qk, which
abbreviates the special case Qk,...,k in notation. We simplify notation of the product space
Qk ×Qk by writing [Qk]2 and, similarly,×N

n=1 Qk by writing [Qk]N for N vector components.

Definition 5.2.5. The Raviart-Thomas element of degree k on the unit hypercube K̂ =
[0, 1]D is the triplet (K̂,RTk,ΣRT). The shape function space is given by

RTk = Qk+1,...,k × · · · ×Qk,...,k+1 (5.52)

The set of node functionals is

ΣRT =
{
N̂ ◦

j

}
j=1,...,N◦

dof
∪
{
N̂ ∂
j1,j2

}
j1=1,...,2D;j2=1,...,Ne

dof
(5.53)

with

N̂ ◦
j (v̂) =

∫
K̂

v̂ · ŵj dx̂, ŵj ∈ Qk−1,k,...,k × · · · ×Qk,...,k,k−1, (5.54a)

N̂ ∂
j1,j2(v̂) =

∫
êj1

v̂ · n̂q̂j2 dσ(x̂), q̂j2 ∈ Qk(êj1), êj1 ⊂ ∂K̂. (5.54b)

The number of interior degrees of freedom N◦
dof equals D(k + 1)kD−1 and the number of

degrees of freedom per facet N e
dof is (k + 1)D−1. The unit normal n̂ in (5.54b) points always

in positive direction.

We will use the notation RTk interchangeably for both, the polynomial space (5.52) and
as short form for Raviart-Thomas elements of degree k. The compact notation of the tensor
product space (5.52) refers to

Qk+1,k ×Qk,k+1

in two dimensions, and
Qk+1,k,k ×Qk,k+1,k ×Qk,k,k+1

in three dimensions.

Lemma 5.2.6. For Raviart-Thomas elements of degree k there holds

∇ · RTk = Qk, (5.55)
1Numerically stable Legendre and Lagrange polynomials are used in computations.
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and for each e ⊂ ∂K̂ and each v ∈ RTk there holds

v · ne ∈ Qk. (5.56)

Proof. See (Boffi et al., 2013).

Assuming no-slip conditions, the incompressibility condition (5.1b) and (5.55) imply that
weakly divergence-free velocities in Vh are also pointwise divergence-free, see (Cockburn et al.,
2006). In view of Lemma 5.2.1, Raviart-Thomas elements are Hdiv-conforming if the degrees
of freedom (5.54b) associated with interfaces are single-valued. Consequently, their normal
component is continuous along interfaces.

For arbitrarily shaped cells a divergence-preserving mapping is needed. The Piola
transform maps a vector field v̂ under the mapping FK : K̂ → K to a vector field

v = det(ĴK)−1ĴK v̂, (5.57)

where ĴK denotes the Jacobian matrix of FK . On affine meshes the divergence is preserved
pointwise up to a factor under the Piola transform ,

∇ · v(x) = det(ĴK)−1∇̂ · v̂(x̂), x = FK(x̂), x̂ ∈ K̂. (5.58)

As a consequence there holds:

Lemma 5.2.7. Let q and q̂ be scalar fields related by q ◦ FK = q̂, and v the Piola transform
of v̂ under FK , then, there holds∫

K
v ·∇q dx =

∫
K̂

v̂ · ∇̂q̂ dx̂, (5.59a)∫
K
∇ · vq dx =

∫
K̂
∇̂ · v̂q̂ dx̂, (5.59b)∫

∂K
v · nq dx =

∫
∂K̂

v̂ · n̂q̂ dx̂. (5.59c)

The Lemma 5.2.7 implies that the definition of Hdiv-conforming finite elements, in
particular, Raviart-Thomas elements, is sufficient on the unit hypercube K̂ as the conformity
is preserved under Piola transforms for any cell K ∈ Th. There are some caveats for non-affine
meshes, where det(ĴK) in (5.58) is not constant, such that the approximation quality may
suffer (Arnold, Boffi, and Falk, 2005).

We conclude by highlighting the (anisotropic) tensor structure of Raviart-Thomas elements,
for simplicity only in two spatial dimensions. The unit square K̂ = [0, 1]2 provides a
natural separation of coordinates. Basis scalar fields and components of vector fields used
in Definition 5.2.5 possess a separation of variables. Basis function indices j or j2 in (5.54a)
and (5.54b) are subject to the lexicographic ordering from Definition 2.1.6. To be precise,
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the lexicographic ordering holds for each vector component of ŵj only and varies depending
on its anisotropic structure. To this end, a primitive basis of Qk−1,k × Qk,k−1 is assumed,
i.e., basis functions associated with the first component are enumerated first,

ŵj =

ŵd;j

0

 , j = 1, . . . , N◦
dof/2, (5.60)

and those associated with the second component afterward,

ŵj+N◦
dof/2 =

 0
ŵd;j

 , j = 1, . . . , N◦
dof/2, (5.61)

where {
ŵd;1, . . . , ŵd;N◦

dof/2

}
is a basis of Qk−1,k for d = 1 and a basis of Qk,k−1 for d = 2, respectively. We define a first
set of moment-based functionals on the unit interval,

N̂ 1D
j (φ̂) =

∫ 1

0
φ̂ q̂j dx̂, q̂j ∈ Pk([0, 1]), j = 1, . . . , k + 1, (5.62)

which reminds us of the Legendre element from Definition 2.2.5. We define another set
of degrees of freedom on the unit interval consisting of both, node value functionals and
moments,

M̂1D
1 (φ̂) = φ̂(0), (5.63a)

M̂1D
k+2(φ̂) = φ̂(1), (5.63b)

M̂1D
j (φ̂) =

∫ 1

0
φ̂ q̂j−1 dx̂, q̂j−1 ∈ Pk−1([0, 1]), j = 2, . . . , k + 1. (5.63c)

Let us assume êj1 = {0} × [0, 1] for j1 = 1 such that n̂ = (1, 0)T: the Raviart-Thomas
functionals associated with ê1 decompose into

ˆ̂N ∂
0,j2(v̂) = v̂

(1)
1 (0)

∫ 1

0
v̂

(2)
1 q̂j2 dx̂2 = M̂1D

1 ⊗ N̂ 1D
j2 (v̂(1)

1 ⊗ v̂
(2)
1 ), (5.64)

for q̂j2 ∈ Qk(ê1) = Pk([0, 1]), j2 = 1, . . . , k + 1. For the opposite edge êj1 = {1} × [0, 1]
only M̂1D

1 needs to be replaced by M̂1D
k+2. Similarly, Raviart-Thomas node functionals with

nonzero first component of ŵj decompose into

N̂ ◦
j (v̂) =

∫ 1

0
v̂

(1)
1 ŵ

(1)
1;j1 dx̂1

∫ 1

0
v̂

(2)
1 ŵ

(2)
1;j2 dx̂2 = M̂1D

j1+1 ⊗ N̂ 1D
j2 (v̂(1)

1 ⊗ v̂
(2)
1 ), (5.65)
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(a) M̂1D
j1 ⊗ N̂ 1D

j2 (first component) (b) N̂ 1D
j1 ⊗ M̂1D

j2 (second component)

Fig. 5.1 Illustrating degrees of freedom of the RT2 element in two spatial dimensions. The
tensor product of node functionals on the left- or right-hand side determine basis functions with
nonzero first (i.e., v̂1) or nonzero second component (i.e., v̂2), respectively. One-dimensional
moment-based functionals are illustrated through (the long edge of highlights the
integration variable (in this case x1)), node value functionals are illustrated by .

for ŵ1;j ∈ Qk−1,k, j1 = 1, . . . , k, j2 = 1, . . . , k + 1 with index notation j = (j1, j2) in short
form. The first vector component of primitive basis functions in RTk is uniquely determined
by the tensor product of functionals. In analogy, decompositions for functionals associated
with nonzero second component of ŵj and edges aligned with the second coordinate uniquely
determine the remaining basis functions in RTk. The degrees of freedom are schematically
visualized in Figure 5.1. If we follow the enumeration of functionals M̂1D

j a lexicographic
ordering for each vector component is obtained. Therefore, efficient operator applications
using Raviart-Thomas elements are possible, see Section 5.4 for more details.

Equipped with the knowledge on the structure of Raviart-Thomas elements, we can tackle
the original problem of this section: computing the pressure solution ph ∈ Qh from the stream
function φh ∈ Ψh that solves the reduced Hdiv interior penalty method (5.50). Testing (5.33)
with the curl of discrete stream functions, the pressure solution ph is eliminated. To this end,
we seek the pressure solution ph such that

−
∫

Ω
∇ · vph dx = Fh(v)− ãdiv;h(∇× φh,v), (5.66)

for all v ∈ Vh with ∇·v ̸= 0. In view of the discrete Hodge decomposition from Lemma 5.2.4,
the test space contains the L2-orthogonal velocities in V ⊥

h , i.e., orthogonal with respect to
the kernel of the divergence operator). Introducing the discrete gradient ∇h : Qh → Vh which
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is implicitly defined in (5.49) as adjoint of the divergence,

(∇hqh,v)Ω = −(qh,∇ · v)Ω, ∀v ∈ Vh, (5.67)

the discrete Hodge decomposition from Lemma 5.2.4 reads

Vh = ∇hQh⊕∇×Ψh, (5.68)

described in detail in (Arnold, Falk, and Winther, 1997; Arnold, Falk, and Winther, 2000;
Brezzi, Fortin, and Stenberg, 1991). In the context of finite elements, the duality of the
adjoint gradient is characterized by the definition of node functionals. To this end, we will
use a polynomial basis of ∇Qk generating a subset of those Raviart-Thomas node functionals
in (5.54a) and (5.54b) to construct a shape function basis of V ⊥

h .
For brevity, the notation Qk is used interchangeably for Qk(RD),Qk(K̂) and Qk(K), that

is, the space of tensor product polynomials of degree up to k on RD, on the unit cell K̂ or
on any cell K, respectively. The same applies to other polynomial spaces, for instance, RTk.
The tensor product polynomial space of degree k ≥ 0 admits a decomposition

Qk = Q0⊕Q⊥
k , (5.69)

where Q⊥
k is well-defined as L2-orthogonal complement of Q0 ⊂ Qk. Thus, any pressure

ph ∈ Qh is decomposed into
ph =

∑
K∈Th

p0
K + p⊥

K , (5.70)

with both p0
K ∈ Q0(K) and p⊥

K ∈ Q⊥
k (K) being extended by zero to the whole domain

Ω. In computations, we make use of Legendre polynomials which inherently admit the
decomposition (5.69), see Definition 2.2.5.

First, we define node functionals on the unit cell K̂ = [0, 1]2,

N̂⊥◦
j (v̂) =

∫
K̂

v̂ · ∇̂p̂⊥
j dx̂, p̂⊥

j ∈ Q⊥
k , j = 1, . . . , N⊥◦

dof , (5.71a)

N̂⊥∂
j (v̂) =

∫
K̂

v̂ · n̂ dσ(x̂), êj ⊂ ∂K̂. j = 1, . . . , 4, (5.71b)

We note that the unit normal vector n̂ points either in positive x- or y-direction, thus,
omitting the facet index j. Furthermore, N⊥◦

dof = (k+ 1)2− 1 and p̂⊥
j denotes a basis function

of Q⊥
k . Since

∇Q⊥
k ⊂ Qk−1,k ×Qk,k−1,

the span of node functionals N̂⊥◦
j is a subspace of the span of Raviart-Thomas functionals N̂ ◦

j .
Similarly, the span of N̂⊥∂

j is a subspace of the span of N̂ ∂
j1,j2

. Note that we implicitly used
a constant-valued test polynomial equal to one in (5.71b), coinciding with q̂j2 ≡ 1 in (5.54b).
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From here on, only technical arguments are missing for constructing a shape function basis
of V ⊥

h , which is postponed to Section B.1, consequently.
Integrating by parts and applying boundary conditions from Vh, we obtain

−
∫

Ω
∇ · vph dx = −

∫
E◦
h

v · JphnK dσ(x) +
∫

Th
v ·∇ph dx ∀v ∈ V ⊥

h . (5.72)

In view of Lemma 5.2.1, v · JphnK is well-defined because the normal component of Hdiv-
conforming vector fields is continuous along interfaces. We notice that piecewise constant
pressure functions affect only integrals over interfaces. Moreover, the right-hand side of (5.72)
consists of the two kinds of moment-based functionals (5.71). It is straightforward to derive
a two-step post-processing similar: first, the piecewise non-constant contributions p⊥

K are
computed and afterward the piecewise constants p0

K .

Lemma 5.2.8. Let ph ∈ Qh admit decomposition (5.70) with

p⊥
K =

N⊥◦
dof∑

i=1
αKi (p̂⊥

i ◦ F −1
K ).

and solve equation (5.66). Let v⊥◦
K;i be basis functions of V ⊥

h as defined in Lemma B.1.2.
Then, it holds

αKi = Fh(v◦
K;i)− ãdiv;h(∇× φh,v◦

K;i), (5.73)

for any i = 1, . . . , N⊥◦
dof , such that ph is determined up to piecewise constants.

Lemma 5.2.9. Let ph ∈ Qh admit decomposition (5.70) and solve equation (5.66). Let v⊥∂
e

be basis functions of V ⊥
h as defined in Lemma B.1.2. Then, it holds

p0
K+ − p0

K− = −Fh(v⊥∂
e ) + ãdiv;h(∇× φh,v⊥∂

e )−
∫
e

v⊥∂
e · (p⊥

K+n+ + p⊥
K−n−) dσ(x), (5.74)

for any interface e ∈ E◦
h with e = K+ ∩K−.

From Lemma 5.2.8 and Lemma 5.2.9 the algorithmic procedure for computing the discrete
pressure solution ph of (5.66) in essentially two steps becomes apparent:

Remark 5.2.10 (Post-processing pressure). Given the stream function solution φh ∈ Ψh

of (5.50), the pressure solution ph ∈ Qh of (5.66), admitting the decomposition (5.70) based
on Legendre polynomials, is computed by following steps:

(S1) For each cell K ∈ Th compute p⊥
K as described in Lemma 5.2.8.

(S2) Choose a single cell K0 ∈ Th to determine the subset of interfaces Ẽ◦
h as described

in Remark B.1.1, and set p0
K0

= 0. Solve the system of equations given by (5.74), with
as many equations as interfaces in Ẽ◦

h, which determines p0
K for each cell K ∈ Th.
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(S3) Reset p0
K0

such that the mean value condition
∫

Ω ph dx = 0 is satisfied.

Utilizing piecewise Legendre polynomials, we emphasize that a single constant p0
K may

be used to satisfy the mean value condition of Qh. Thus, computing the remaining constants
p0
K in Step (S2) requires only as many interfaces as in Ẽ◦

h ⊂ E◦
h. The proofs of Lemmas 5.2.8

and 5.2.9 are found in Section B.1.

5.2.4 Mathematical Efficiency of Schwarz Smoothers

We compare now two classes of algorithms computing the Schwarz smoothers on vertex patches
from (Kanschat and Mao, 2015) in different ways. They are used to compute geometric
multigrid preconditioners for the Hdiv interior penalty method (5.33). In view of Sections 5.2.2
and 5.2.3, we emphasize that both classes of algorithms lead to mathematically equivalent
Schwarz smoothers.

HdivSC Schwarz smoothing steps computing exact local solvers based on local Hdiv interior
penalty discretizations

SFSC Schwarz smoothing steps based on exact local solvers that compute local velocities
through the stream function formulation and post-process local pressure solutions

The first class of algorithms, called (HdivSC), relies on Subspace Corrections based on local
Hdiv interior penalty discretizations, that were studied first in (Kanschat and Mao, 2015).
The main difference of the second class, referred to as (SFSC), is computing local Stream
Function solutions based on an equivalent C0 interior penalty method. Post-processing the
local stream functions leads to local velocity-pressure Subspace Corrections. The (algebraic)
identity of the DG discretizations was studied in (Kanschat and Sharma, 2014), but to
the best of our knowledge the class of smoothing algorithms (SFSC) has not been studied
before. In this section, we focus on the mathematical efficiency of Schwarz smoothers for
simplified Stokes flow (5.17). Cost-efficient algorithms will be discussed in Section 5.2.5.
Conducting numerical experiments, we want to confirm that our implementations of both
classes of algorithms result in identical results in mathematical terms. Both classes will lead
to numerical solvers with uniform convergence concerning the mesh size and polynomial
degree, needing only very few iterations to converge, in particular, for high-order finite
elements. We stress that the multilevel forward operators Aℓ are subject to Hdiv interior
penalty discretizations, i.e., stream functions are computed only locally when using (SFSC).
The details will follow.

Let the domain Ω again be the unit square [0, 1]2. We follow Section 3.1.1 in defining
a hierarchy of uniform Cartesian meshes Tℓ, ℓ = 1, . . . , L, starting from a single vertex
patch T1 consisting of four congruent cells. The Hdiv interior penalty method with no-slip
boundaries is solved on each level. To this end, nested approximation spaces Vℓ := Vhℓ
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and Qℓ := Qhℓ are defined in (5.26) by substituting Th with Tℓ. Accordingly, bilinear forms
aℓ(·, ·) := ãdiv;hℓ(·, ·) are defined, i.e., replacing h by hℓ in (5.34). The divergence-related
bilinear form b(·, ·) from (5.11b) is independent of the mesh width and, thus, simply restricted
to the finite element spaces Vℓ and Qℓ. We use standard level transfers, which were introduced
in Section 2.3.1.

Defining local solvers based on the Hdiv interior penalty method is analogous to the
definitions of local interior penalty solvers for the Poisson or biharmonic problem. Let
Tℓ;j ⊂ Tℓ denote the vertex patch of subdomain Ωj as introduced in Section 2.3.2. From now
on, we suppress the level index ℓ whenever a subdomain index j is present simultaneously.
For instance, we write Tj instead of Tℓ;j . For each vertex patch the simplified Stokes problem
with no-slip boundary conditions is solved locally by means of the Hdiv interior penalty
method. The local velocity and pressure subspaces consist of those piecewise polynomials in
Vℓ and Qℓ, respectively, which have only support on the respective subdomain Ωj ,

Vℓ;j =
{

v ∈Hdiv(Ω) | v|K ∈ RTk ∀K ∈ Tℓ;j , v · n|∂Ωj = 0
}
, (5.75a)

Qℓ;j =
{
q ∈ L2(Ω) | q|K ∈ Qk ∀K ∈ Tℓ;j ,

∫
Ωj
q dx = 0

}
. (5.75b)

We continue defining the subspace corrections for the first class of algorithms (HdivSC).
The local bilinear form ãdiv;j(u,v) is defined by replacing Th with Tj in (5.34) for all u,v ∈ Vj .
The divergence bilinear form b(·, ·) from (5.11b) is simply restricted to Vj and Qj . Then, the
local solver is given by the weak formulation that reads: Find a solution (uj , pj) ∈ Vj ×Qj
such that

ãdiv;j(uj ,v) + b(v, pj) =
∫

Ωj
f · v dx ∀v ∈ Vj , (5.76a)

b(uj , q) = 0 ∀q ∈ Qj . (5.76b)

We emphasize that the right-hand side in (5.76a) implicitly imposes u
∥
j = 0 on ∂Ωj . However,

since ãdiv;j(·, ·) is simply the restriction of ãdiv;hℓ(·, ·) to local approximation spaces, u
∥
j = 0 is

weakly imposed with different penalty factors for local facets at the physical boundary ∂Ω∩∂Ωj

and facets in the domain’s interior Ω ∩ ∂Ωj , respectively. In particular, at Ω ∩ ∂Ωj we obtain
half a Dirichlet-type and half a Neumann-type condition regarding the tangential component
u

∥
j , which was elaborated in Section 3.3 for the Poisson problem. Consequently, there are

nearly but not exactly no-slip boundary conditions imposed for each local problem (5.76).
The condition uj · n = 0 on ∂Ωj is always imposed strongly through Vℓ;j on every part
of the subdomain’s boundary ∂Ωj . We use standard transfer operators between Vj × Qj
and Vℓ × Qℓ, see Section 2.3.2 for details. To be executed in parallel, the multiplicative
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Fig. 5.2 The vertex patch stencil for Hdiv-IP discretizations schematically shows the action
of AℓRT

j given velocity-pressure ansatz polynomials in RT2 × Q2. Degrees of freedom for
Raviart-Thomas elements are visualized in cyan (see Figure 5.1 for details). Degrees of
freedom for Legendre elements are highlighted in orange. Degrees of freedom inside the
shaded area illustrate the local basis functions of Vj ×Qj .
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smoothing Algorithm 4 requires a coloring satisfying Aℓ-orthogonality, i.e.,

RiAℓR
T
j = 0,

where Aℓ is the discretization matrix associated with ãdiv;hℓ(·, ·). The action of AℓRT
j is

illustrated by the vertex patch stencil in Figure 5.2. The vertex patch Tj consists of all shaded
cells. The coefficients of adjacent cells are coupled through the inter-element continuity of
Raviart-Thomas elements and face integrals inherent in the Hdiv interior penalty method,
where the latter dominates the stencil width. The shaded area marks local degrees of freedom
and, thus, those coefficients Rj restricts to. We emphasize that velocity degrees of freedom
associated with ∂Ωj and ∂Ω (the boundary of the 5× 5 grid) are excluded to strongly impose
boundary conditions of Vj and Vℓ, respectively. Two subdomains Ωj and Ωi may have the
same color if they do not share any joint facet. Consequently, the optimal coloring is given
by the red-black parqueting depicted in Figure 4.1b.

The second class of algorithms (SFSC) numerically solves the reduced Hdiv interior penalty
method (5.50) on each vertex patch via the stream function formulation from Section 5.2.2.
The local pressure solution is then post-processed from the stream function, as detailed
in Section 5.2.3. To this end, a biharmonic problem (4.1) is solved for each vertex patch Tj .
We define the local subspace of stream function approximations similar to (5.75),

Ψℓ;j =
{
ψ ∈ H1(Ω) | ψ|K ∈ Qk+1 ∀K ∈ Tℓ;j , ψ|∂Ωj = 0

}
. (5.77)

The stream functions in Ψj have support only on Ωj and a vanishing trace on ∂Ωj . Each
subdomain Ωj is simply connected such that the exact sequence of subspaces

0 ⊂−−−−→ Ψj
∇×−−−−→ Vj

∇·−−−−→ Qj −−−−→ 0 (5.78)

implies a discrete Hodge decomposition

Vj = ∇×Ψj ⊕V ⊥
j (5.79)

subject to the L2(Ωj)-inner product. Then, there holds

ac0ip;j(φ, ψ) ≡ ãdiv;j(∇× φ,∇× ψ) for all φ, ψ ∈ ψj , (5.80)

where the bilinear form ac0ip;j(φ, ψ) is defined by substituting Th with Tj in (4.10) for all
φ, ψ ∈ Ψj . We emphasize that in (Kanschat and Sharma, 2014) the equivalence (5.51) was
shown for “global” finite element problems, where the no-slip boundary condition matches the
clamped boundary condition in the sense of (5.42). Using restrictions of global bilinear forms
ac0ip;h(·, ·) and ãdiv;h(·, ·) with respective subspaces, we have seen in the previous discussion
on (HdivSC) and in Section 4.1.1 that we obtain nearly but not exactly no-slip and clamped
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boundary conditions, respectively. Due to different penalty factors at the physical boundary
∂Ω ∩ ∂Ωj and the interfaces on Ω ∩ ∂Ωj , equally weighted Neumann- and Dirichlet-type
conditions are imposed for the latter. Nevertheless, continuing the concepts from (Kanschat
and Sharma, 2014), it is straightforward to show equivalence also for this pair of boundary
conditions.

The arithmetically dominant part of (SFSC) is solving the local velocity approximation
with respect to the equivalence (5.80): Find a stream function φj ∈ Ψj such that

ac0ip;j(φj , ψ) =
∫

Ωj
f ·∇× ψ dx ∀ψ ∈ Ψj . (5.81)

Then, the divergence-free velocity solution uj of (5.76) is determined by ∇× φj . The second
step is post-processing the local pressure solution pj given the stream function φj . Let Ẽ◦

j

denote the subset of interfaces from Remark B.1.1, here concerning the vertex patch Tj
instead of Th. In analogy to Lemma B.1.2, we obtain a local basis for V ⊥

j that is used to
compute pj from φj by utilizing the pseudo-algorithm explained in Remark 5.2.10: Find a
pressure pj ∈ Qj such that

−
∫

Ωj
∇ · vpj dx =

∫
Ωj

f · v dx− ãdiv;j(∇× φj ,v) ∀v ∈ V ⊥
j . (5.82)

Let f̃j denote the L2(Ωj)-projection of the local restriction f |Ωj . Then, fj is implicitly
decomposed regarding the discrete Hodge decomposition,

fj = f̃0
j + f̃⊥

j .

Testing in (5.81) against ∇ × ψ for any ψ ∈ Ψj , the solution φj only depends on the
divergence-free part f̃0

j ∈∇×Ψj . Similarly, the solution pj of (5.82) only depends on the
orthogonal part f̃⊥

j ∈ V ⊥
j . In computations, we explicitly need to distinguish the coefficients

associated with f̃0
j and f̃⊥

j , respectively. The coefficient vector f̃j ∈ RN
v
j , which is defined

by duality to the L2(Ωj)-projection f̃j given the local shape function basis of Vj , is passed
to the local solver algorithm. We used the notation f̃j for both the coefficient vector and the
L2(Ωj)-projection and continue so hereafter, underlining the duality. Nv

j and Nψ
j denote the

dimension of Vj and Ψj , namely the number of local velocity and stream function degrees of
freedom, respectively.

Let ψ̂1, . . . , ψ̂Nψ
dof
∈ Qk+1 denote the unit shape function basis of the Lagrange element

from Definition 2.2.3. The canonical interpolation defined by Raviart-Thomas node functionals
(5.54) prolongates ∇̂× ψ̂i into RTk on the unit cell. Taking the matching essential boundary
conditions of Vj and Ψj into account, the cell-wise canonical interpolation under Piola
transformation defines naturally a prolongation from ∇ × Ψj into Vj . In the context of



156 Stokes Problem

coefficients, the prolongation operator is determined by the matrix

(Rψj )T ∈ RN
v
j ×Nψ

j ,

that prolongates the coefficient vector of any stream function in Ψj into a coefficient vector
dual to a velocity approximation in Vj . We continue the notation from Section 2.3.2, defining
the prolongation as the transposed restriction operator Rψj of (dual) coefficients. Consequently,
it holds

f̃0
j = Rψj f̃j .

Then, the local stream function solver (5.81) reads in matrix form

Aψ
j φj = Rψj f̃j , (5.83)

where Aψ
j denotes the discretization matrix associated with ac0ip;j(·, ·).

In analogy, we obtain restriction matrices R⊥◦
j and R⊥∂

j , defined by duality to the local
basis functions

v◦
K;i ∈ V ⊥

j , K ∈ Tj , i = 1, . . . , N⊥◦
dof ,

and
v∂e ∈ V ⊥

j , e ∈ Ẽ◦
j ,

respectively. Then, following the pseudo-algorithm given by Remark 5.2.10, we make use
of the restricted vectors R⊥◦

j f̃j in Step (S1) and R⊥∂
j f̃j in Step (S2), respectively: to be

precise, (R⊥◦
j f̃j)K;i and (R⊥∂

j f̃j)e provide the values Fh(v◦
K;i) and Fh(v⊥∂

e ) in computations
of (5.73) and (5.74), respectively. Following the algorithmic steps from (5.83) until here, we
successively compute the local velocity approximation vj = ∇× φj and the local pressure
solution pj .

The same standard restriction Rj and prolongation RT
j operators are used here, transfer-

ring coefficients between Vj ×Qj and Vℓ×Qℓ as for the (HdivSC) class of Schwarz smoothers.
Therefore, the same coloring is optimal, namely the red-black parqueting from Figure 4.1b.

Finally, we compare both classes of algorithms numerically, in particular, we expect the
same number of iteration steps, only with slight deviations due to round-off errors. The
right-hand side f in the simplified Stokes equations (5.17) is manufactured from reference
solutions v = ∇× ϕ and p,

ϕ(x, y) = φ(x)φ(y), (5.84a)
p(x, y) = cos(2πx) cos(2πy), (5.84b)

with
φ(x) = x2(x− 1)2

√
2πσ2

exp
(
−(x− µ)2

σ2

)
. (5.85)
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Table 5.1 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with exact Hdiv-IP local solvers, respectively. CG solver
with relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring on mesh
level L. Entries “—” not computed, only levels L with 5× 103 to 5× 106 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 11.0 11.9 11.9 1
4 — 11.3 10.5 11.2 11.7 12.0 11.8 1
5 21.7 11.5 10.2 10.1 11.3 11.3 11.0 1
6 22.4 11.7 9.4 9.2 9.7 10.5 10.5 1
7 23.7 12.1 9.4 9.5 8.9 9.5 10.0 1
8 25.4 12.3 9.5 9.3 — — — 1
9 26.0 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 3.8 3.6 3.6 8
4 — 5.9 4.6 4.1 4.2 3.9 3.9 8
5 11.2 6.0 4.8 4.4 4.3 4.1 4.0 8
6 12.4 6.5 5.0 4.6 4.3 4.1 4.0 8
7 13.2 6.9 5.0 4.6 4.3 4.1 4.0 8
8 13.5 7.1 5.2 4.6 — — — 8
9 14.0 — — — — — — 8
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Table 5.2 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with exact C0-IP stream function local solvers, respectively.
CG solver with relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring
on mesh level L. Entries “—” not computed, only levels L with 5× 103 to 5× 106 DoFs. The
convergence steps should be (and are) identical to Table 5.1 except for round-off errors.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 11.0 11.9 11.9 1
4 — 11.3 10.5 11.2 11.7 12.0 11.8 1
5 21.7 11.5 10.2 10.1 11.3 11.3 11.0 1
6 22.4 11.7 9.4 9.2 9.7 10.6 10.5 1
7 23.7 12.1 9.4 9.5 8.9 9.6 10.0 1
8 25.4 12.3 9.5 9.4 — — — 1
9 26.0 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 3.8 3.6 3.6 8
4 — 5.9 4.6 4.1 4.2 3.9 3.9 8
5 11.2 6.0 4.8 4.4 4.3 4.1 4.0 8
6 12.4 6.5 5.0 4.6 4.3 4.1 4.0 8
7 13.2 6.9 5.1 4.6 4.3 4.1 4.0 8
8 13.5 7.7 5.1 4.6 — — — 8
9 14.1 — — — — — — 8
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The vector curl of a scalar field is always divergence-free. Thus, v satisfies the incompress-
ibility condition. The numerator x2(x − 1)2 exists to satisfy no-slip boundary conditions.
Furthermore, the mean value condition is satisfied by definition.

For additive smoothers (AVS), local solutions (uj , pj) are relaxed by a factor ω = 1/4. A
conjugate gradient method preconditioned by the multigrid V-cycle (Algorithm 2) solves the
multilevel Hdiv interior penalty method until the Euclidean norm of the initial residual is
reduced by 10−8. A transposed order of colors in post-smoothing compared to pre-smoothing
steps symmetrizes the V-cycle as explained in Section 3.1.1. Numerical experiments have
shown, that two pre- and post-smoothing steps each are beneficial for the tensor product
Schwarz smoothers presented in the next section. For the sake of comparability, we also use
two smoothing steps here.

The coarse-grid solver A−1
1 belonging to the bilinear form ãdiv;h1(·, ·) is the inverse SVD

of A1. To be precise, we compute the pseudo-inverse neglecting the smallest singular value,
which is zero since the mean value of the pressure is not unique. Consequently, the mean
value is implicitly fixed. Similarly, we solve each local Hdiv interior penalty method (5.76) by
means of a truncated SVD. Local stream functions φj in (5.83) are computed by SVDs, too.
In contrast to the standard Hdiv-IP local solver, Step (S3) in Remark 5.2.10 takes explicitly
care of the mean value condition in Qj .

Fractional iteration steps νfrac
2 regarding the Schwarz smoothers computed by (HdivSC),

i.e., using standard Hdiv-IP local solvers, are listed in Table 5.1. The experiments concerning
Schwarz smoothers computed by the second class of algorithms (SFSC), i.e., those using
the local stream function solvers, are summarized in Table 5.2. We observe that except for
rounding errors identical numbers of iterations are shown, which verifies the local equiva-
lence (5.80) and confirms our post-processing algorithm of pressure approximates numerically.
Both, the additive (AVS) as well as multiplicative Schwarz smoothers on vertex patches
(MVS), lead to uniform convergence of numerical solvers with very few iterations needed
(except for bi-linear elements): the iteration count is independent of the polynomial degree k
and the mesh-refinement level L. The multiplicative smoother is mathematically superior
because it does not need relaxation. Using MVS, even the number of iterations decreases
with increasing polynomial degree. In mathematical terms, we have developed an efficient
numerical solver.

5.2.5 Tensor Product Schwarz Smoothers

In computational terms, we face again the problem of inverting local discretization matrices
cost-efficiently. Solving the local problems by means of SVDs is prohibitively expensive, in
particular, for high-order finite elements. Both classes of Schwarz smoothers introduced

2The definition of νfrac is given by (3.15).
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in Section 5.2.4 do not admit a direct fast inversion of local matrices, although the matrices
or, to be precise, the blocks of the matrices have low-rank tensor structures.

Let us have a closer look to the Schwarz smoothers obtained by (HdivSC). Skipping
detailed derivations as in previous chapters, the local matrix for the Hdiv interior penalty
method on the subdomain Ωj reads

Aj =

Adiv;j BT
j

Bj 0

 (5.86)

with

Adiv;j =

L
(1)
ip ⊗M (2) + M (1) ⊗L

(2)
ip 0

0 L
(1)
ip ⊗M (2) + M (1) ⊗L

(2)
ip

 (5.87)

and
Bj =

[
D

(1)
qv ⊗M

(2)
qv M

(1)
qv ⊗D

(2)
qv

]
. (5.88)

The univariate discretization matrix D
(d)
qv relates to the d’th partial derivative arising from

the divergence bilinear form b(·, ·), restricted to the d’th interval of the Cartesian product
defining vertex patch Ωj . Similarly, M

(d)
qv denotes the univariate mass matrix with velocity

ansatz and pressure test functions. In view of L
(d)
ip , we emphasize that in one dimension the

bilinear forms ãdiv;h(·, ·) and ãip;h(·, ·) from (5.28) and (5.34) are identical. In other words,
the Hdiv and symmetric interior penalty method are identical on a subdivision of intervals.
Furthermore,

L
(d)
ip = L(d) + N (d)

is the univariate SIPG discretization of the Laplacian, here applied to the d’th vector
component of the local velocity field, d = 1, 2. The bulk matrix L(d), Nitsche boundary
contributions N (d) and the mass matrix M (d) were defined in (3.35).

Since each diagonal block of Adiv;j admits the separable Kronecker representation (2.21),
Adiv;j can be computed efficiently via fast diagonalization. However, no method was known
to us that computed the local matrix Aj cost-efficiently and at the same time results in robust
numerical solvers. We developed in (Arndt, Fehn, et al., 2020) an approximate Gaussian
block elimination of local matrices that leverages the separable Kronecker representation of
Adiv;j and the rank-1 tensor structure of Bj . However, here and there for the similar but
slightly different local matrices concerning linear elasticity (in the limit of an incompressible
material), numerical experiments have shown that we do not obtain robust numerical solvers,
in particular, not for high-order finite elements.

Our Gaussian block elimination approach in (Arndt, Fehn, et al., 2020) computed an
approximate velocity-pressure pair locally given the algebraic problem, i.e., given local
discretization matrices. The structure of underlying differential operators was neglected,
which is not the case for the Schwarz smoothers utilizing (SFSC). Using local stream function
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solvers, computing the local velocity and pressure solution is decoupled into (5.81) and (5.82),
respectively. Moreover, it enables us to compute only an approximate stream function
φ̃j of (5.81) which then leads to an approximate but still divergence-free velocity solution
ũj = ∇× φ̃j by definition, regardless of the quality of the stream function approximation.
A local pressure approximation p̃j , which is mean value free on Ωj , can be computed from
any known φ̃j following (5.82). Consequently, any local stream function approximation in Ψj

results in an approximate velocity-pressure pair in (∇×Ψj)×Qj . The studies in (Arnold,
Falk, and Winther, 1997; Arnold, Falk, and Winther, 2000; Kanschat and Mao, 2015) have
shown that satisfying the discrete Hodge decomposition (5.79) is crucial for constructing
efficient Hdiv-conforming Schwarz smoothers. Then, we are able to obtain robust numerical
solvers.

We have shown in Section 4.1.2 that the finite element matrix Aψ
j has a rank-3 tensor

representation for each Cartesian vertex patch,

Aψ
j = B(1) ⊗M (2) + 2L(1) ⊗L(2) + M (1) ⊗B(2). (5.89)

To this end, we utilize the approximations of Aψ
j from Chapter 4, which admit fast inversions

based on the tensor product techniques from Section 2.1. Before comparing numerical
experiments, we emphasize that exact local solvers (computing stream function solutions)
implies that the class of algorithms (SFSC) is computed through the standard implementations
given in Section 5.2.4. “Standard” refers to computing local inverses via singular value
decompositions. In contrast to that, we will introduce next a series of subspace corrections
that may be cost-efficiently computed via fast diagonalization.

The same numerical setup as in Section 5.2.4 is used for the numerical results discussed
next. The first experiment shall highlight that not necessarily any low-rank stream function
approximation φ̃j automatically results in “good” velocity-pressure solutions (ũj , p̃j). In other
words, satisfying only the incompressibility and mean value free condition is not sufficient for
“good” smoothing. We still require subspace corrections that approximate the Hdiv interior
penalty discretizations of local Stokes problem well enough.

To this end, we start with the simple approximation (4.58) utilizing the rank-1 KSVD of Aψ
j

which leads to KSVD1 local solvers concerning the C0-IP discretization. In Table 5.3 fractional
convergence steps are shown for the Schwarz smoothers based on (SFSC), but computing local
stream function approximations via inexact KSVD1 instead of exact local solvers (see results
in Table 5.2). Similarly to Section 4.1.2 (there comparing results from Tables 4.3 and 4.5,
respectively), we observe that using KSVD1 local solvers is also inferior here. Although the
numerical solver converges uniformly with respect to the discretization level L, iteration
steps quickly grow with increasing polynomial degree k. Comparing absolute numbers,
significantly more iteration steps are needed in contrast to using exact stream function solvers:
from k = 2 to k = 7 the gap grows from 2.5 times more iterations to over ten times more
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Table 5.3 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with KSVD1 stream function local solvers, respectively.
CG solver with relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring
on mesh level L. Entries “—” not computed, only levels L with 5× 103 to 5× 106 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 43.3 57.2 >100 1
4 — 26.0 30.8 37.0 44.9 64.2 >100 1
5 27.2 26.7 30.8 35.8 47.9 65.4 >100 1
6 30.2 27.5 31.5 35.5 47.2 68.2 >100 1
7 33.9 28.0 31.1 38.0 46.6 69.1 >100 1
8 38.6 29.0 31.6 36.9 — — — 1
9 41.6 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 14.9 16.7 18.7 8
4 — 13.8 11.9 16.0 15.9 16.7 18.6 8
5 15.2 14.6 12.5 16.3 15.7 17.5 20.2 8
6 15.9 15.6 12.6 16.4 16.2 17.9 20.6 8
7 15.9 16.2 12.7 16.4 16.0 18.3 20.9 8
8 15.6 16.8 12.8 16.4 — — — 8
9 16.7 — — — — — — 8
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Table 5.4 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with Bila stream function local solvers, respectively. CG
solver with relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring
on mesh level L. Entries “—” not computed, only levels L with 5× 103 to 5× 106 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 12.8 13.3 13.7 1
4 — 10.4 12.1 12.8 12.5 12.6 13.8 1
5 19.0 10.6 11.4 11.6 11.9 12.1 11.5 1
6 20.2 10.6 10.3 10.4 10.8 11.4 11.0 1
7 20.9 10.7 9.7 10.1 10.0 10.4 10.5 1
8 22.5 10.7 10.1 10.2 — — — 1
9 22.5 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 6.4 6.8 7.7 8
4 — 5.9 5.7 5.8 6.6 7.3 7.9 8
5 11.0 6.0 5.9 5.9 6.6 6.9 7.7 8
6 11.9 6.7 6.0 5.9 6.6 6.5 7.1 8
7 12.9 7.1 6.0 5.9 5.9 5.8 6.7 8
8 13.4 7.5 6.0 5.7 — — — 8
9 13.7 — — — — — — 8

for AVS, from two times more iterations to five times more for MVS. We emphasize that
especially for MVS the growing gap is not only affected by increasing convergence steps for
KSVD1 local solvers but also by decreasing numbers for exact local solvers. The numerical
solver with MVS converges uniformly regarding the mesh refinement, and almost uniformly
regarding the polynomial degree. We conclude that the additive smoother used in Table 5.3
is deficient. MVS is feasible but mathematically inferior compared to its counterpart using
exact stream function solvers. The quality of KSVD1-related stream function approximations
is not sufficient to obtain numerical solvers with uniform convergence.

In Section 4.1.2 we have developed two more inexact local solvers with significantly better
smoothing quality than KSVD1 local solvers. Both variants utilize better approximations
of Aψ

j and still enable fast inversion. The first variant omitted the elementary tensor
involving mixed partial derivatives to obtain an approximate but separable rank-2 tensor
representation (4.55) of Aψ

j . We referred to this method as Bila local solver because only the
univariate C0-IP discretization matrices concerning the “one-dimensional” Bilaplace operator
are considered. Table 5.4 shows that the numerical solver using either the additive or the
multiplicative vertex patch smoother with inexact Bila local solvers converges uniformly
concerning both the level of mesh refinement and the polynomial degree. In addition, we
obtain a robust solver needing almost as few iterations as the iterative solver with Schwarz
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smoothers using exact stream function solvers. In particular, AVS compares at similar levels
for both kinds of local solvers. For MVS we observe that convergence steps do not decrease
with increasing polynomial degree in Table 5.4, leading to a slightly growing gap compared to
the numbers in Table 5.2. To conclude, we have developed a tensor product Schwarz smoother
that performs well in mathematical and computational terms. The topic of computational
efficiency is postponed to Section 5.4.

A final remark before we continue with the next local solver, we also performed numerical
experiments for the complementary part of (4.53), i.e., only using the mixed partial derivatives
which admit a rank-1 tensor approximation (comparing to KSVD1 local solvers)

Aψ
j ≈ 2L(1) ⊗L(2).

The obtained smoothing quality is deficient. For both smoothers, AVS and MVS, the
respective CG solver needs more than 200 iterations regardless of the polynomial degree,
thus, no numerical results are displayed here. In view of Section 4.1.2, the inferior smoothing
quality does not surprise because all face integrals from the interior penalty method are
omitted. The Schwarz smoothers based on KSVD1 local solvers offer significantly better
results, which underlines the best approximation property of the rank-1 KSVD of Aψ

j . In
addition, it shows again that not any low-rank stream approximation φ̃j leads automatically
to “good” subspace corrections.

The second option is computing the best rank-2 approximation of Aψ
j by means of a KSVD.

The approximation is rescaled given a factor α which guarantees positive definiteness locally,
see the discussion in Section 4.1.2 for details. We referred to this method as KSVD12(α) local
solvers. The convergence steps in Table 5.5 show that the multiplicative smoother results in a
robust solver, while the additive smoother results in slowly growing numbers with increasing
polynomial degree. The same tendencies were observed for solving the global biharmonic
problem in Chapter 4. Here and there we suspect that the relaxation factor ω = 1/4 is
sub-optimal because smoothing with MVS using the same local solvers is nearly as good as
smoothing with MVS using exact local solvers, see Table 5.2 for comparison. Furthermore,
convergence steps are almost identical for polynomial degree k = 1 to k = 4 for MVS. For
polynomial degree k = 5 to k = 7 a gap appears and grows slowly such that 1.4 times more
fractional steps are needed with KSVD12(α) local solvers for the highest polynomial degree.
However the inexact local solvers are amenable to fast inversion, thus, theoretically superior
in computational terms. Comparing to Bila local solvers (which have also a tensor rank of
two), the iteration steps for AVS are more compared to Table 5.5, but on the contrary MVS
smooths better using KSVD12(α) local solvers.

We conclude that Schwarz smoothers using either Bila or KSVD12(α) local solvers achieve
similarly high mathematical efficiency than those using exact local solvers. The overall
conclusion, i.e., discussing also computational efficiency, follows in Section 5.4.
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Table 5.5 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with KSVD12(α) stream function local solvers, respectively.
CG solver with relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring
on mesh level L. Entries “—” not computed, only levels L with 5× 103 to 5× 106 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 16.8 17.5 18.6 1
4 — 11.1 13.6 14.9 16.7 17.7 18.1 1
5 20.4 11.1 13.8 14.2 16.4 17.8 17.8 1
6 22.7 11.2 13.1 14.4 16.1 16.3 17.9 1
7 23.7 11.3 13.1 13.6 15.4 16.4 17.2 1
8 24.6 11.4 13.3 13.8 — — — 1
9 25.8 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 5.3 5.6 5.8 8
4 — 6.1 4.9 5.2 5.5 5.7 5.8 8
5 11.3 6.4 4.8 5.1 5.4 5.6 5.7 8
6 12.5 6.8 4.8 5.1 5.4 5.6 5.6 8
7 13.3 7.0 4.8 5.1 5.3 5.6 5.6 8
8 13.7 7.5 4.8 5.1 — — — 8
9 14.4 — — — — — — 8
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5.3 Multilevel Methods for the Stokes Equations

Finally, we return to the initial model problem (5.1), the (non-simplified) Stokes problem. In
comparison to the weak formulation (5.21) for simplified Stokes equations, only the bilinear
form and right-hand side operator need to be changed, replacing the Laplacian with the
symmetric gradient in (5.10). We follow (Girault, Kanschat, et al., 2014; Kanschat and Mao,
2015; Kanschat and Rivière, 2010; Kanschat and Sharma, 2014) in stating a multilevel Hdiv

interior penalty method for the Stokes problem (5.1). Then, we will develop (tensor product)
Schwarz smoothers utilizing (inexact) local solvers based on a stream function formulation
and pressure post-processing similar to (5.81) and (5.82).

5.3.1 Mathematical Efficiency of Schwarz Smoothers

We consider the same numerical setup as in Section 5.2.4 on the simple domain Ω = [0, 1]2,
using a hierarchy of Cartesian meshes Tℓ, ℓ = 1, . . . , L. Therefore, the finite element spaces
Vℓ and Qℓ are the same as before, i.e., imposing parts of no-slip boundary and mean value
conditions, respectively. Then, the Hdiv interior penalty method for (non-simplified) Stokes
flow reads: Find the velocity-pressure pair (uℓ, pℓ) ∈ Vℓ ×Qℓ such that

adiv;hℓ(uℓ,v) + b(v, pℓ) =
∫

Ω
f · v dx ∀v ∈ Vℓ, (5.90a)

b(uℓ, q) = 0 ∀q ∈ Qℓ, (5.90b)

with

adiv;hℓ(u,v) =
∫

Tℓ
2ϵ(u) : ϵ(v) dx

+
∫

Eℓ
2
(
γe

r
u∥

z
·
r

v∥
z
−
{

ϵ(u∥)
}

:
r

n⊗ v∥
z
−

r
n⊗ u∥

z
:
{

ϵ(v∥)
})

dσ(x).

(5.91)
The divergence-related bilinear form b(·, ·) was defined in (5.11b). The right-hand side
in (5.90a) implicitly imposes the complementary part of no-slip boundary conditions through
penalties. We use standard transfer operators between multigrid levels, see Section 2.3.1 for
details.

For Schwarz methods, we use the same finite element subspaces Vj and Qj defined
in (5.75). Let Tj denote the vertex patch regarding subdomain Ωj , see Section 2.3.2 for
details. The local bilinear form adiv;j(·, ·) is the restriction of adiv;hℓ(·, ·) onto Vj × Vj , i.e.,
replacing Tℓ and Eℓ through local sets Tj and Ej in (5.91). The local solver reads: Find
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Table 5.6 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with exact local solvers for Stokes flow, respectively. CG
solver with relative accuracy 10−8 preconditioned by multigrid. “Colors” refers to coloring
on mesh level L. Entries “—” not computed only levels L with 5× 103 to 5× 106 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 10.5 11.1 11.4 1
4 — 11.7 10.7 10.7 11.2 11.7 11.4 1
5 28.4 11.6 9.7 9.9 10.6 10.8 10.5 1
6 30.7 11.9 9.3 9.0 9.4 9.9 10.7 1
7 31.3 12.1 9.2 9.5 8.8 9.4 9.8 1
8 32.4 12.3 9.5 9.5 — — — 1
9 31.2 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 3.9 3.7 3.7 8
4 — 6.0 4.9 4.2 4.3 4.0 4.0 8
5 16.9 6.4 5.0 4.5 4.4 4.2 4.1 8
6 19.4 6.7 5.3 4.7 4.5 4.2 4.1 8
7 20.8 7.4 5.3 4.4 4.3 3.8 3.8 8
8 22.5 6.4 4.9 4.3 — — — 8
9 20.3 — — — — — — 8

uj ∈ Vj and pj ∈ Qj such that

adiv;j(uj ,v) + b(v, pj) =
∫

Ωj
f · v dx ∀v ∈ Vj , (5.92a)

b(uj , q) = 0 ∀q ∈ Qj . (5.92b)

Due to restricting the bilinear form adiv;hℓ(·, ·) onto subspaces, penalty factors associated with
the physical boundary ∂Ωj ∩ ∂Ω differ by a factor two to those associated with the “interior”
boundary ∂Ωj ∩ Ω. Thus, we impose almost but not exactly no-slip boundary conditions
locally, for details we refer to the discussion below equation (5.76).

We use the same numerical setup as in Section 5.2.4 for our experiments: manufacturing
the right-hand side data f from reference solutions (5.84), using a CG solver preconditioned
by V-cycle multigrid (Algorithm 2) and utilizing Schwarz smoothers with two pre- and
post-smoothing steps each. The additive Schwarz smoother is relaxed by ω = 1/4 and the
coloring used for the multiplicative smoother is illustrated in Figure 4.1b.

Table 5.6 shows that we obtain numerical solvers with uniform convergence for both
Schwarz methods, the additive (AVS) and multiplicative vertex patch smoother (MVS). The
absolute numbers of iteration steps are as expected small, with MVS needing only half of the
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steps than AVS, and are comparable with those in Table 5.1 for the simplified Stokes flow.
Mathematically, both Schwarz smoothers perform well and are numerically efficient.

5.3.2 Tensor Product Schwarz Smoothers

Albeit their high mathematical efficiency, the computational efficiency of previous Schwarz
methods using exact3 local solvers is low since the inversion of local discretization matrices
are costly and their memory consumption is high compared to matrix-free operators. The
same held true concerning the smoothers in Table 5.1 for simplified Stokes flow.

To this end, we develop tensor product Schwarz smoothers as in Section 5.2.5. Using
velocity and pressure subspaces Vj and Qj , we again make use of the exact sequence of
subspaces (5.78), thus, we utilize the stream function subspaces Ψj defined in (5.77). However,
using symmetric gradients of velocity fields for Stokes flow, the local Hdiv and C0 interior
penalty bilinear forms are not equal compared to (5.80),

adiv;j(∇× φ,∇× ψ) ̸= ac0ip;j(φ, ψ) ∀φ, ψ ∈ ψj . (5.93)

Therefore, we use the Hdiv interior penalty bilinear form to define a local solver for the
velocity solution uj : Find the stream function φj ∈ Ψj such that

adiv;j(∇× φj ,∇× ψ) =
∫

Ωj
f ·∇× ψ dx ∀ψ ∈ Ψj , (5.94)

uj = ∇ × φj . For reasons of disctinction, we refer to (5.94) as modified C0 interior
penalty method. Due to the transpose of vector field gradients (∇v)T inherent in the
symmetric gradient ϵ(v), additional terms enter the left-hand side in (5.93) being not
included in ac0ip;j(·, ·). In this regard, we do not explicitly derive a modified C0-IP bilinear
form extending ac0ip;j(·, ·), but simply use the Hdiv-IP bilinear form to define the modified
C0 interior penalty method. For such explicit derivation, we refer the interested reader
to (Kanschat and Sharma, 2014, §4.2).

We need to adapt (5.82) slightly for the post-processing of the local pressure solution:
Find a pressure pj ∈ Qj such that

−
∫

Ωj
∇ · vpj dx =

∫
Ωj

f · v dx− adiv;j(∇× φj ,v) ∀v ∈ V ⊥
j . (5.95)

The construction of a local shape function basis for V ⊥
j is unchanged and, thus, also defined

in Section B.1.
The computational cost of post-processing local pressure solutions is negligible compared

to solving the modified C0 interior penalty problems (5.94). In addition, a local pressure pj
3Exactness implies that standard inversion techniques, e.g., the SVD, must be used in computations.
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is computed from the local stream function φj as before, utilizing the pseudo-algorithm given
by Remark 5.2.10 and only replacing in Lemmas 5.2.8 and 5.2.9 the simplified bilinear form
ãdiv;j(·, ·) by adiv;j(·, ·). Computational subletities were discussed below (5.82) for simplified
Stokes flow that can be taken over one to one.

In contrast to (5.89), the local discretization matrix Aψ
j associated with the stream

function problem (5.94) for non-simplified Stokes flow has a larger tensor rank than three
due to the transpose vector field gradients arising from symmetric gradients. For instance, it
holds ∫

Tj
2ϵ(u) : ϵ(v) dx =

∫
Tj

∇u : ∇v dx +
∫

Tj
∇u : ∇vT dx. (5.96)

The first integral on the right-hand side is what we obtained for simplified Stokes flow, which
decomposed into a rank-3 tensor product representation for respective local ansatz and test
functions, i.e., substituting u = ∇× φj and v = ∇× ψi, respectively,

B(1) ⊗M (2) + 2L(1) ⊗L(2) + M (1) ⊗B(2).

See Section 4.1.2 for definitions and notation. In analogy, we obtain a similar rank-3 tensor
product representation for the rightmost integral in (5.96),

2L(1) ⊗L(2) −H(1) ⊗ (H(2))T − (H(1))T ⊗H(2). (5.97)

The derivation of this tensor presentation and definition of H is postponed to Section B.2. Pro-
ceeding analogously for the interior penalty terms, the local discretization matrix associated
with (5.94) admits a rank-5 tensor representation in total,

Aψ
j = B(1)⊗M (2) + M (1)⊗B(2) + 4L(1)⊗L(2)−H(1)⊗ (H(2))T− (H(1))T⊗H(2). (5.98)

For the definition of H we refer the interested reader to Section B.2. All remaining matrices
were derived and defined in Section 4.1.2.

We use the same experimental setup as before to show the mathematical efficiency of
tensor product Schwarz smoothers for Stokes flow. First, we tested three inexact local stream
function solvers for the second class of algorithms (SFSC). We simply omit some of the
elementary tensors in (5.98) such that tensor product approximations of Aψ

j are obtained
that enable fast diagonalization,

Aψ
j ≈ B(1) ⊗M (2) + M (1) ⊗B(2), (5.99a)

Aψ
j ≈ −H(1) ⊗ (H(2))T − (H(1))T ⊗H(2), (5.99b)

Aψ
j ≈ 4L(1) ⊗L(2). (5.99c)
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Table 5.7 Fractional iterations νfrac for additive vertex patch smoother (AVS) or multiplicative
vertex patch smoother (MVS) with KSVD12(α) stream function local solvers for modified
C0-IP discretizations, respectively. CG solver with relative accuracy 10−8 preconditioned by
multigrid. “Colors” refers to coloring on mesh level L. Entries “—” not computed only levels
L with 5× 103 to 5× 106 DoFs.

Level L Convergence steps νfrac Colors
AVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

3 — — — — 19.6 20.7 22.6 1
4 — 13.6 16.5 18.3 19.4 21.5 21.6 1
5 27.7 14.2 16.4 17.7 19.6 20.4 22.4 1
6 29.6 14.5 16.8 17.2 18.3 19.6 21.3 1
7 30.6 14.6 15.8 17.2 18.6 19.0 21.3 1
8 31.2 14.8 15.8 16.6 — — — 1
9 31.5 — — — — — — 1

MVS k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
3 — — — — 6.5 7.1 7.2 8
4 — 6.5 5.9 6.7 6.9 7.5 8.1 8
5 16.9 6.9 6.2 6.5 6.7 7.2 7.7 8
6 18.7 7.0 6.2 6.5 6.7 7.1 7.7 8
7 19.5 7.1 6.1 6.5 6.7 7.1 7.7 8
8 20.7 7.2 6.2 6.5 — — — 8
9 21.1 — — — — — — 8

However, none of the respective local stream function solvers was sufficient in obtaining
uniform solver convergence. In particular, none of them did converge with less than 200
conjugate gradient iteration steps for higher-order finite elements. Consequently, we do not
present any fractional iteration steps here. Note that (5.99a) defines the so-called Bila local
solvers used in Sections 4.1.2 and 5.2.5.

Second, we apply KSVD12(α) local solvers: computing the rank-2 KSVD of Aψ
j , which is

then re-scaled by factor α to guarantee positive definiteness and efficiently inverted through
fast diagonalization. For more details see Sections 4.1.2 and 5.2.5.

Table 5.7 shows the respective fractional convergence steps for both additive (AVS) and
multiplicative Schwarz smoothers (MVS). Skipping the deficient linear case, we obtain uniform
solver convergence regarding both the mesh level L and the polynomial degree k for MVS.
For AVS we observe a similar steady increase of iterations with increasing polynomial degree
as in Table 5.5 for simplified Stokes flow. In view of Table 5.6, MVS with KSVD12(α) local
solvers compares well to MVS with exact local solvers, not needing more than a factor of two
times the iterations for any polynomial degree: we require 1.1 times the iterations for k = 2,
with a steadily increasing gap to 2.0 times the iterations for k = 7.
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We conclude that we have designed algorithms for tensor product Schwarz smoothers
that are both mathematically and computationally efficient. The few more CG solver steps
are easily compensated by a much lower computational cost and memory consumption. The
computational complexity compares at similar levels to the matrix-free operators of Hdiv

interior penalty methods. More details follow in the next section.

5.4 Conclusion

It remains to discuss the computational efficiency of our tensor product Schwarz smoothers.
We show below that an extensive analysis of (parallel) performance is not required and why
similar performance results as in Section 3.4 for the Laplace operator can be expected here.

5.4.1 Computational Efficiency

At the time when the numerical experiments in Sections 5.2.5 and 5.3.2 were conducted,
deal.II’s matrix-free framework did not support efficient operator application for Raviart-
Thomas elements. However, given the anisotropic tensor structure of Raviart-Thomas
elements (elaborated in Section 5.2.3) not much needs to be modified theoretically to obtain
matrix-free operators for Hdiv-IP discretizations compared to those for SIPG discretizations
of the Laplacian. The matrix-free operator evaluation for the Laplace operator was detailed
in Section 2.2.

Computing the cell-based operator application AKuK for the Stokes problem follows the
same concepts as before. Similar to (2.50), we want to efficiently evaluate, among other
terms, ∫

K
∇ uh|K : ∇ϕK;i dx (5.100)

for all i = 1, . . . , Ndof, utilizing numerical integration. To this end, in analogy to the
RD-valued interpolation u∇ from (2.54) for the gradient ∇u, we compute RD×D-valued
interpolations of vector field gradients,

u∇
q1,...,qD

:=


u∂1

1;q1,...,qD
. . . u∂D1;q1,...,qD...

u∂1
D;q1,...,qD

. . . u∂DD;q1,...,qD


We emphasize that u∇ is a multi-dimensional array of order D where each entry is the
evaluation of the ansatz vector field gradient ∇uh in a quadrature point xq = (xq1 , . . . , xqD),
respectively. Following the sum factorization in (2.53) concerning the (scalar) Laplace
operator, the underlying array û∇ for the vector field gradient in unit space is cost-efficiently
computed. Compared to (2.54b), the contributions from the cell transformation change due
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to using the Piola transform (5.57) instead of a standard transform such that

u∂dc;q1,...,qD =
∣∣∣det ĴK(x̂q)

∣∣∣−1 D∑
r,s=1

(
Ĵ−1
K (x̂q)

)
c,r
û∂sr;q1,...,qD

(
ĴK(x̂q)

)
s,d
.

ĴK denotes the Jacobian of the cell mapping FK . Computing the array û∇ requires D2 sweeps
of the sum factorization (2.53) and, thus, O(D4(ndof)D+1) arithmetic operations4 in total.
Applying the Piola transform costs only O(D3(ndof)D) operations. Consequently, computing
u∇ is dominated by the sum factorizations associated with the unit gradient û∇. Testing
against the cell-local shape functions ϕK;i utilizes again the application of the Piola transform
and D2 sweeps of sum factorizations (see (2.56) for further details). Consequently, computing
(5.100) requires O(D4(ndof)D+1) arithmetic operations asymptotically. More importantly,
the computational complexity here has the same order of magnitude as needed for the
Laplacian. Beside (5.100), other integrals in adiv;h(uh,ϕK;i) associated with cell K are
evaluated similarly, including also the face integrals inherent in interior penalty methods.

What seems to be easily achieved in theory, requires some amount of work in practice.
For instance, we implemented highly-optimized moment-based Raviart-Thomas elements
in TPSS, leveraging the anisotropic tensor structure entirely. However, due to the anisotropic
tensor structure of Raviart-Thomas elements, deal.II’s innermost tensor product evaluation
kernels need some carefully-designed modifications, that exceeded the scope of the thesis.
We implemented only prototypes of anisotropic tensor product kernels in TPSS, using them
to handle anisotropic tensor product matrices, see the C++ class TensorProductMatrix.
However, satisfying the requirements to be part of deal.II (for example, the applicability
to generic meshes) exceeded this work’s scope. We note that these topics are recently an
active field of development in deal.II.

Using matrix-free operator evaluations for adiv;h(∇ × φ̃j , ·), also the local pressure co-
efficients in (5.73) and (5.74) can be computed very cost-efficiently. Thus, post-processing
pressure solutions locally by means of the algorithm stated in Remark 5.2.10 aligns well with
matrix-free operator evaluations for Hdiv interior penalty discretizations. Therefore, the
cost of computing pressure approximates p̃j via the pseudo-algorithm in Remark 5.2.10 are
negligible compared to solving the C0 interior penalty problems (5.83).

Taking all of this into account, the numerical solvers introduced in this chapter have
computational complexities comparable to the Poisson problem. We argued in Section 4.2
that the same (parallel) performance as for the Laplacian can be expected for the Bilaplacian.
In particular, we discussed our highly-optimized implementations of Bila and KSVD12(α)
local solvers in Section 4.2, see Table 4.8 for an overview on computational complexities.
In Sections 5.2.5 and 5.3.2, we demonstrated that the Schwarz smoothers on vertex patches

4Without loss of generality, we assume the same number of univariate quadrature points and basis functions,
i.e., nquad = ndof.
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utilizing either Bila or KSVD12(α) local solvers achieve (almost) an identical mathematical
efficiency than the smoothers using exact local solvers. The latter is prohibitively expensive
due to computing inverses at the cost of O((ndof)3D) arithmetic operations, thus, clearly
lacking computational efficiency. On the contrary, we can expect for multilevel solvers based
on our tensor product Schwarz smoothers a computational efficiency as high as demonstrated
for the Laplace operator in Section 3.4.

We conclude that both tensor product smoothers qualify as mathematically sound and
cost-efficient smoothers for simplified Stokes flow, but only the smoother using KSVD12(α)
local solvers proves viable for (actual) Stokes flow. Constructing subspace corrections that
preserve the exact sequence of subspaces (5.78) and have low-rank tensor structure, is essential
to obtain fast and robust numerial solvers in this chapter.
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Appendix A

POISSON PROBLEM

A.1 Restricted Additive Schwarz Method

In Section 3.3.1 we postponed describing how to obtain a partition of unity for boolean
restricted additive Schwarz (bRAS). To this end, we use illustrations Figure A.1 and Figure A.2
for H1-conforming and discontinuous finite elements with quadratic and cubic polynomial
degrees in two dimensions: a nodal shape function basis is visualized through Gauss-Lobatto
support points. We recall that local basis functions on a vertex patch were already illustrated
in Figures 3.1 and 3.4a.

We want to uniquely assign each degree of freedom (illustrated as a cross ×) to a single
“nonoverlapping vertex patch”. For conforming finite elements, we start with assigning a
unique number to each degree of freedom associated with an interior vertex. This enumeration
identifies our nonoverlapping subdomains, i.e., those subdomains with a unique association
of degrees of freedom. The assignment of remaining degrees of freedom is done by a closest
distance measure with respect to the interior vertices. The Chebyshev distance is used as
metric for the grid of support points. If a support point has minimal Chebyshev distance to
more than one interior vertex, the nonoverlapping vertex patch with the higher numbering
takes “ownership”. Examples are shown in Figure A.1.

For DG elements, we proceed similarly. However, four degrees of freedom per interior
vertex and two per interior edge are obtained in two dimensions. The degrees of freedom
belonging to interior vertices are enumerated first. Then, we apply the same decision rule
based on the Chebyshev distance, where we additionally take into account to which element
a degree of freedom belongs. The results are depicted in Figure A.2.



186 Poisson Problem

1

1

4

4

6

6

6

1

1

4

4

6

6

6

2

2

0

0

7

7

7

2

2

0

0

7

7

7

3

3

5

5

8

8

8

3

3

5

5

8

8

8

3

3

5

5

8

8

8

(a) k = 2

1

1

1

4

4

4

6

6

6

6

6

1

1

1

1

4

4

4

6

6

6

6

1

1

1

1

4

4

4

6

6

6

6

2

1

1

1

4

4

4

6

6

6

7

2

2

2

2

0

0

0

7

7

7

7

2

2

2

2

0

0

0

7

7

7

7

3

2

2

2

0

0

0

7

7

7

8

3

3

3

3

5

5

5

8

8

8

8

3

3

3

3

5

5

5

8

8

8

8

3

3

3

3

5

5

5

8

8

8

8

3

3

3

5

5

5

8

8

8

8

8

(b) k = 3

Fig. A.1 Boolean partition of unity for H1-conforming FEM methods Qk-polynomials.
Degrees of freedom are represented as nodal values (×) and its owning nonoverlapping
subdomain is given by superscripts 0, . . . , 8. Degrees of freedom at the boundary of the
physical domain are neglected due to strongly imposed Dirichlet conditions.
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Fig. A.2 Boolean partition of unity for SIPG discretizations with discontinuous Qk-
polynomials. Degrees of freedom are represented as nodal values (×) and its owning subdomain
through superscripts 0, . . . , 8. Nodal values on edges and vertices are associated with one
degree of freedom per mesh cell attached. It is apparent to which cell each comma-seperated
patch superscript belongs.
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A.2 Parallel Performance

In this section, we show some more strong and weak scaling results Figures A.3 and A.4
for a very high polynomial degree k = 15. These results append those from Section 3.4.2.
In addition, we display time-to-solution results for polynomial degree k = 7 in Figures A.5
and A.6.
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Fig. A.3 MPI scaling analysis of one smoothing step for ACS (top-right), MCS (bottom-left),
and MVS (bottom-right) given SIPG discretizations using Q15-elements. Smoothing is
compared against the matrix-free operator evaluation (top-left) and its residual bL −ALxL
delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.
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Fig. A.4 MPI scaling analysis of one smoothing step for AVS (top-right) and MVS (bottom-left)
given H1-conforming discretizations using Q15-elements. Smoothing is compared against
the matrix-free operator evaluation (top-left) and its residual bL −ALxL delineated in blue.
Perfect strong scaling is seen along greyish-dotted lines.
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Fig. A.5 MPI scaling analysis of the numerical solver, i.e., measuring time-to-solution
(black lines), for SIPG discretizations using Q7-elements. The CG solver accelerating the
multilevel method with ACS (top-left), MCS (top-right), or MVS (bottom-left), respectively,
solves with relative accuracy 10−8. The respective time to compute pre- and post-smoothers
before solving is delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.
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Fig. A.6 MPI scaling analysis of the numerical solver, i.e., measuring time-to-solution (black
lines), for H1-conforming discretizations using Q7-elements. The CG solver accelerating
the multilevel method with AVS (top-left) or MVS (top-right), respectively, solves with
relative accuracy 10−8. The respective time to compute pre- and post-smoothers before
solving is delineated in blue. Perfect strong scaling is seen along greyish-dotted lines.



Appendix B

STOKES PROBLEM

B.1 Post-processing Pressure

This section extends Section 5.2.3 with a rigorous construction of V ⊥
h ’s basis functions. For

some notations and definitions we refer to Section 5.2.3. Without loss of generality, we
assume that the N⊥◦

dof first Raviart-Thomas node functionals N̂ ◦
j from (5.54a) are generated

through polynomials ŵj = p̂⊥
j ∈ ∇Q⊥

k , and the four node functionals N̂ ∂
j1,1 from (5.54a)

through q̂1 ≡ 1. In other words, we assume

N̂ ◦
j = N̂⊥◦

j , j = 1, . . . , N⊥◦
dof , (B.1a)

N̂ ∂
j1,1 = N̂⊥∂

j1 , j1 = 1, . . . , 4, (B.1b)

for the functionals from (5.54) and (5.71), respectively. The remaining Raviart-Thomas node
functionals

N̂ ◦
j , j = N⊥◦

dof + 1, . . . , N◦
dof, (B.2a)

N̂ ∂
j1,j2 , j1 = 1, . . . , 4, j2 = 2, . . . , k + 1, (B.2b)

are generated by (arbitrary) polynomials

ŵj , j = N⊥◦
dof + 1, . . . , N◦

dof, (B.3a)
q̂j2 , j2 = 2, . . . , k + 1, (B.3b)

extending p̂⊥
j , j = 1, . . . , N⊥◦

dof , and q̂1 ≡ 1 to form a basis of Qk−1,k × Qk,k−1 and Qk,
respectively.
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We are interested in the unit shape functions v̂⊥◦
i dual to p̂⊥

j ,

N̂ ◦
j (v̂⊥◦

i ) = δij , j = 1, . . . , N◦
dof, (B.4a)

N̂ ∂
j1,j2(v̂⊥◦

i ) = 0, j1 = 1, . . . , 4, j2 = 1, . . . , k + 1. (B.4b)

for i = 1, . . . , N⊥◦
dof , and unit shape functions v̂⊥∂

i dual to q̂1 ≡ 1 and unit facet êi,

N̂ ◦
j (v̂⊥∂

i ) = 0, j = 1, . . . , N◦
dof, (B.5a)

N̂ ∂
j1,j2(v̂⊥∂

i ) = δij1 δ1j2 , j1 = 1, . . . , 4, j2 = 1, . . . , k + 1. (B.5b)

for i = 1, . . . , 4.
For a fixed cell K ∈ Th, global shape functions v⊥◦

K;i are defined by the Piola transform of
v̂⊥◦

i onto cell K,

v⊥◦
K;i(x) =

(
det(ĴK)−1ĴK v̂⊥◦

i

)
(x̂), x = FK(x̂), x̂ ∈ K̂. (B.6)

Shape functions are extended by zero to Ω \K such that v⊥◦
K;i ∈ Vh. For a fixed interface

e ∈ E◦
h with e = K+ ∩K−, there exist unit face indices i+ and i− such that êi+ is mapped to

e under FK+ and êi− to e under FK− , respectively. A corresponding global shape function
v⊥∂
e is defined by each Piola transform of v̂⊥∂

i ,

v⊥∂
e |K± (x) =

(
det(ĴK±)−1ĴK± v̂⊥∂

i±

)
(x̂), x = FK±(x̂), x̂ ∈ K̂. (B.7)

The shape function is extended by zero to Ω \ (K+ ∪K−) such that v⊥∂
e ∈ Vh.

Before stating the lemma that presents a shape function basis of V ⊥
h , we define a subset

of interfaces Ẽ◦
h ⊂ E◦

h by recursion:

Remark B.1.1. We choose a cell K0 ∈ Th and define a set of cells Kh = {K0}. The set of
interfaces Ẽ◦

h is recursively defined by

(S1) For each K ∈ Kh: If K̃ ∈ Th is adjacent to K with interface e = K ∩ K̃ and K̃ /∈ Kh
add the cell K̃ to Kh and the interface e to Ẽ◦

h, respectively.

(S2) If Kh ̸= Th return to Step (S1), otherwise stop.

We note that computing Ẽ◦
h boils down to computing a graph problem which may be

solved by a more efficient (parallel) algorithm than the simple (pseudo-)algorithm stated
in Remark B.1.1, especially for many interfaces. However, in this monograph we are only in-
terested in finding Ẽ◦

h for vertex patches. Consequently, the pseudo-algorithm in Remark B.1.1
suffices us.
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Lemma B.1.2. Let Ẽ◦
h be as defined in Remark B.1.1, and v⊥◦

K;i and v⊥∂
e as defined in (B.6)

and (B.7), respectively. Then, the shape functions

v⊥◦
K;i, K ∈ Th, i = 1, . . . , N⊥◦

dof ,

v⊥∂
e , e ∈ Ẽ◦

h,

form a basis of V ⊥
h .

Proof. Integrating the characteristic equation (5.49) of V ⊥
h by parts,

(w,vh)Ω = −(∇ ·w, qh)Ω = −
∫

E◦
h

w · JqhnK dσ(x) +
∫

Th
w ·∇qh dx,

it directly follows that v⊥◦
K;i and v⊥∂

e are elements in V ⊥
h , for any K ∈ Th, i = 1, . . . , N⊥◦

dof ,

and e ∈ Ẽ◦
h, respectively. The linear independence follows from the same arguments that

proved the unisolvence of the Raviart-Thomas element, see the textbook (Boffi et al., 2013)
or original works by Nédélec (1980) and Raviart and Thomas (1977).

Moreover, it holds ∇ ·RTk = Qk, see for instance (Boffi et al., 2013). Therefore, choosing
N⊥◦

dof = (dimQk − 1) basis shape functions v◦
K;i for each cell K, there is exactly one degree

of freedom per cell left to define a basis for V ⊥
h . The remaining shape functions v⊥∂

e for
each facet e ∈ Ẽ◦

h add up to (Ncell − 1), where Ncell denotes the number of cells in Th. While
it seems we are lacking a single shape function, the identity V ⊥

h = ∇hQh known from the
Hodge decomposition (5.68) reveals that (Ncell − 1) basis functions are sufficient: the mean
value condition in Qh leads to one constraint degree of freedom for V ⊥

h . Therefore, counting
dimensions concludes this proof. We note that by involving no basis shape functions v⊥∂

e for
facets e ∈ E∂h , the boundary conditions inherited from Vh are implicitly imposed.

We emphasize that we do not need to use the generating polynomials from (B.1). This
assumption was made to simplify the derivation of Lemma B.1.2. In computations, we make
use of ansatz polynomials in Definition 5.2.5 (Raviart-Thomas elements) that provide us with
numerical stability, in particular, for high polynomial degrees. Nevertheless, the restriction
from Raviart-Thomas shape functions to those shape functions generated by the subset of
node functionals (5.71) on the unit cell is readily computed. To this end, let

v̂◦
i , i = 1, . . . , N◦

dof,

v̂∂i1,i2 , i1 = 1, . . . , 4, i2 = 1, . . . , N e
dof,

denote the dual basis to the Raviart-Thomas node functionals (5.54). For simplicity, we
simplify the notation to v̂i utilizing a contiguous index i: thus, enumerating first the functions
v̂◦

i , and then the functions v̂∂i1,i2
, where i1 strides faster than i2. We proceed similarly with

the Raviart-Thomas node functionals, N̂⊥
j , the basis functions from (B.4) and (B.5), v̂⊥

i , and
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their associated node functionals from (5.71), N̂⊥
j . We seek a representation

v̂⊥
i =

Ndof∑
l=1

αilv̂l. (B.10)

Due to the duality of v̂⊥
i to N̂⊥

j , there holds

N̂⊥
j (

Ndof∑
l=1

αilv̂l) = δij . (B.11)

Given rectangular matrices A = (αij)ij and N = (N̂⊥
i (v̂j))ij , from (B.11) it follows

A = N−T. (B.12)

The pseudo-inverse of NT is computed via singular value decomposition.
In Section 5.2.3 we skipped the proofs of Lemma 5.2.8 and Lemma 5.2.9, amending them

now.

Proof of Lemma 5.2.8. We recall that ph ∈ Qh admits the decomposition (5.70),

ph =
∑
K∈Th

p0
K + p⊥

K ,

with

p⊥
K =

N⊥◦
dof∑

j=1
αKj (p̂⊥

j ◦ F −1
K ).

Testing against v⊥◦
K;i in (5.66) and using (5.72), we obtain

−
∑
e⊂∂K

∫
e

v⊥◦
K;i · phn dσ(x) +

∫
K

v⊥◦
K;i ·∇ph dx = Fh(v⊥◦

K;i)− ãdiv;h(∇× φh,v⊥◦
K;i) (B.13)

for i = 1, . . . , N⊥◦
dof . The integrals over facets vanish by definition (see (B.4) and (B.6)) of

shape functions, for any cell K ∈ Th, any facet e ⊂ ∂K and any local index i. To be precise,
due to the Piola transform’s preservation property (5.59c) it holds∫

e
v⊥◦
K;i · phn dσ(x) =

∫
ê

v̂⊥◦
i · p̂n̂ dσ(x̂) = 0, (B.14a)

where p̂ = ph ◦FK . The integral over the unit facet is a linear combination of the functionals
N̂ ∂
j1,j2

evaluated in v̂⊥◦
i and, consequently, equals zero. Using similar arguments, in particular,
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preservation property (5.59a), it holds

∫
K

v⊥◦
K;i ·∇ph dx =

N⊥◦
dof∑

j=1
αKj

∫
K̂

v̂⊥◦
i · ∇̂p̂⊥

j dx̂ = αKi

The last equation follows from v̂⊥◦
i being dual to N̂⊥◦

j . Then, from (B.13) immediately
follows (5.73).

Proof of Lemma 5.2.9. The proof follows the same structure as the previous previous proof,
thus keeping it concise. Without loss of generality we choose K+ such that the unit normal
n̂ mapped to n+ points in positive direction. Inserting v∂e into (5.66) and (5.72), it holds

Fh(v⊥∂
e )− ãdiv;h(∇× φh,v⊥∂

e )

= −
∫
e

v⊥∂
e · JphnK dσ(x) +

∫
K+

v⊥∂
e ·∇ph dx +

∫
K−

v⊥∂
e ·∇ph dx

= −(p0
K+ − p0

K−)
∫
e

v⊥∂
e · n+ dσ(x)−

∫
e

v⊥∂
e · (p⊥

K+n+ + p⊥
K−n−) dσ(x),

(B.15)

The integrals over K+ and K− vanish because by definition it holds N̂ ◦
j (v̂⊥∂

i ) = 0. The
definition of v⊥∂

e implies
∫
e v⊥∂

e · n+ dσ(x) = 1, thus, (5.74) immediately follows from (B.15).

B.2 Modified Stream Function Formulation

It remains to derive the low-rank tensor representation (5.97) given the local integral

∫
Tj

∇uT : ∇v dx =
D∑
c=1

∫
Tj
∂cuc∂cvc dx +

D∑
c,d=1;c ̸=d

∫
Tj
∂cud∂dvc dx (B.16)

for the generic vertex patch Tj . In two dimensions, the vector curl of a scalar field ψ was
defined in (5.39). Substituting u and v by ∇× φ and ∇×ψ in the right-hand side of (B.16),
we obtain

2∑
c=1

∫
Tj
∂cuc∂cvc dx =

∫
Tj
∂12φ∂12ψ + ∂21φ∂21ψ dx (B.17)

and
2∑

c,d=1;c̸=d

∫
Tj
∂cud∂dvc dx =

∫
Tj
−∂11φ∂22ψ − ∂22φ∂11ψ dx. (B.18)

The first integral is known from Section 4.1.2, resulting in the low-rank representation

2L(1) ⊗L(2). (B.19)
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In analogy to (4.40) and (4.41), we define the one-dimensional discretization matrix

H(d) =


H

(d)
++ H

(d)
+e 0

(H(d)
+e )T H

(d)
ee (H(d)

−e )T

0 H
(d)
−e H

(d)
−−

 (B.20)

with
(
H

(d)
±±

)
ij

=
nquad∑
q=1

(
1

(h±
d )
φ̂′′
i+1(x̂q)φ̂j+1(x̂q)wq

)
, (B.21a)

(
H(d)
ee

)
11

=
nquad∑
q=1

(
1

(h+
d )
φ̂′′
ndof(x̂q)φ̂ndof(x̂q)wq + 1

(h−
d )
φ̂′′

1(x̂q)φ̂1(x̂q)wq
)
, (B.21b)

(
H

(d)
+e

)
i1

=
nquad∑
q=1

(
1

(h+
d )
φ̂′′
i+1(x̂q)φ̂ndof(x̂q)wq

)
, (B.21c)

(
H

(d)
−e

)
i1

=
nquad∑
q=1

(
1

(h−
d )
φ̂′′
i+1(x̂q)φ̂1(x̂q)wq

)
, (B.21d)

for i = 1, . . . , ndof−2 and j = 1, . . . , ndof−2. Then, (B.18) admits the low-rank representation

−H(1) ⊗ (H(2))T − (H(1))T ⊗H(2), (B.22)

Combining (B.19) and (B.22), we finally derive the rank-5 tensor product representation (5.97).
Proceeding similarly for the face integrals∫

Eℓ

(
−
{

∇uT
}

: Jn⊗ vK− Jn⊗ uK :
{

∇vT
})

dσ(x),

we may define matrices H in analogy to B from Section 4.1.2.
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