
Essays on the Economics of Competition and
Innovation under Environmental Regulation

Dissertation

zur Erlangung des akademischen Grades
”doctor rerum politicarum”

an der Fakultät für Wirtschafts- und Sozialwissenschaften
der Ruprecht-Karls-Universität Heidelberg

vorgelegt von
Albert Roger Figuerola

geboren am 25. Januar 1987 in Barcelona

im Juli 2022





Tag der Disputation: 25.10.2022
Betreuer und Erstgutachter: Prof. Timo Goeschl, Ph.D., Universität Heidelberg
Zweitgutachter: Prof. Carlos J. Serrano, Ph.D., HEC Paris & Universitat Pompeu Fabra
Drittprüferin: Prof. Dr. Jale Tosun, Universität Heidelberg





A Ascensión Figuerola i Miquel Roger,
els meus pares.

i





Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Timo Goeschl for his
guidance, support, and advice during all these years.

I am grateful to Prof. Carlos J. Serrano for accepting to be an external examiner for this
dissertation.

I would like to thank Prof. Bernhard Ganglmair for his support, feedback, advice, and
inspiring talks. I am indebted to Prof. Ulrich J. Wagner for early guidance in my disser-
tation, advice, and feedback. Further, I am thankful to Georg Licht for his direct and
indirect support during all these years at ZEW.

I would like to thank my former colleagues and friends from ZEW, in particular: Claudio
Baccianti, Philipp Massier, Florence Blandinières, Wolfgang Habla, Nikolas Wölfing, and
Sebastian Voigt. We shared many good and bad moments together, but at the end, we
still had a good time.

To my friends in Mannheim, especially, Martina, Kathrin, and Eleonora. Many thanks for
the great time together, the laughs, trips, nice moments, inspiration, and for cheering me
up. To my friends in Barcelona and abroad. Thank you for your support.

To my family. Thank you for being there all these years.

Finally, I would like to thank my parents for being always an example of ethics, work,
perseverance, and resilience, and, of course, for their support and unconditional love. This
thesis is dedicated to them.

Albert Roger
Mannheim, July 2022

ii





Contents

Acknowledgements ii

1 Introduction 1

2 Method for Quantifying the Monetary Impact of an Environmental Regula-
tion on Patent Value 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 International Environmental Agreements and the Timing and Direction of
Technological Change: Evidence from the Kigali Amendment 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Regulatory Framework: The Kigali Amendment to the Montreal Protocol . 36
3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Empirical Analysis on the Impact of the Kigali Amendment on Patent Value 46
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Appendix 1: Lists of Substances . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8 Appendix 2: Patent Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.9 Appendix 3: Descriptive Statistics and Estimates . . . . . . . . . . . . . . 75
3.10 Appendix 4: Regulation Schedule . . . . . . . . . . . . . . . . . . . . . . . 86
3.11 Appendix 5: Nonparametric Estimates 2008-2019 . . . . . . . . . . . . . . 89

4 Patents as Options: Estimating Technological Gains and Losses from Inter-
national Environmental Agreements 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Data, Equations, and Assumptions . . . . . . . . . . . . . . . . . . . . . . 94

iii



Contents

4.4 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Robustness of Results, Caveats, and Measurement Error . . . . . . . . . . 112
4.7 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.9 Appendix 1: Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . 117
4.10 Appendix 2: Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.11 Appendix 3: Technical Specifications of the Estimation . . . . . . . . . . . 135
4.12 Appendix 4: Global Optimum First Step . . . . . . . . . . . . . . . . . . . 136
4.13 Appendix 5: Regulation Schedule . . . . . . . . . . . . . . . . . . . . . . . 137

5 Analyzing Technological Costs and Benefits from the Montreal Protocol:
Evidence from Patent Renewal 141
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.3 Overview of the Regulation: The Montreal Protocol . . . . . . . . . . . . . 144
5.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.5 Empirical Analysis of the Impact of the Environmental Regulation on

Patent Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.7 Appendix 1: Lists of Substances . . . . . . . . . . . . . . . . . . . . . . . . 179
5.8 Appendix 2: Patent Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.9 Appendix 3: Regulation Schedule . . . . . . . . . . . . . . . . . . . . . . . 191
5.10 Appendix 4: Panel Event Study Evidence . . . . . . . . . . . . . . . . . . 195
5.11 Appendix 5: Duration Analysis Estimates . . . . . . . . . . . . . . . . . . 203
5.12 Appendix 6: Timeline of Ozone Regulation in Germany . . . . . . . . . . . 210

Bibliography 215

iv







1 Introduction

Sustainable technologies such as renewable energies, electric cars, and energy-efficient
processes lie at both the core of the energy transition and of the fight against climate change.
Environmental economics is concerned with mechanisms to internalize negative externalities;
a market that would not take these externalities into account would produce them in excess.
Environmental regulations provide incentives to internalize these externalities and, by doing
so, they might influence the direction of technological change. In addition, technological
change suffers from the public goods problem, as the innovator cannot appropriate all the
value that he has generated. Therefore, without policies supporting R&D, there would
be suboptimal levels of innovation produced. Environmental innovations face, therefore,
a double externality, which requires intervention from policymakers. Environmental
regulations can provide incentives to induce innovation and direct technological change.
The intuition behind this mechanism stems from Hicks (1932), who argued that relative
changes in the costs of input factors induce innovation that makes efficient use of the most
expensive factor of production. This notion has been since then further developed by
others, including Acemoglu (1998; 2002) and Acemoglu et al. (2012). Newell et al. (1999)
and Popp (2002) have evaluated this theory in the context of environmental innovation.
More recently, Aghion et al. (2016) have further studied the impact of environmental
regulation on the direction of technological change, scrutinizing the effect of taxes that
target CO2 emissions on innovations in the automobile sector.

Climate change is caused by greenhouse gases, such as CO2. Once these gases are
emitted into the atmosphere, they disperse and accumulate, transforming a local negative
externality into an externality on a global scale. This makes the abatement of CO2

and other pollutants a public good because the benefits of reducing emissions have
both nonrival and nonexcludable properties (Murdoch and Sandler, 1997). International
environmental agreements (IEAs) are the central regulatory instrument in order to solve
global environmental externalities. However, IEAs have a self-enforcing nature themselves,
since countries can always withdraw themselves from the agreement once signed (Barrett,
1994). This characteristic of IEAs defines both the types of environmental regulations
pledged and their stringency. Consequently, studying the interaction between IEAs and
the direction of technological change is particularly important, as these agreements lie at
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1 Introduction

the core of the climate change challenge. Aside from work by Dekker et al. (2012) and
Dugoua (2021), this interaction has not been fully empirically explored.

International environmental agreements are key to solving global environmental prob-
lems. Negotiating the agreement, however, is often a lengthy process. This is primarily
because countries that sign and ratify the agreements might face certain costs, while their
benefits remain often more uncertain, netted out from the avoided environmental damages.
Quantifying the impact of IEAs on technological change would therefore be a major step
towards reducing the uncertainty surrounding future environmental agreements, although
doing so is not a trivial task. In this dissertation, I study how environmental regulations
impact incentives to innovate for competing clean and dirty technologies. I examine this
under the framework of international environmental agreements, and I specially focus on
the cases of the Montreal Protocol on Substances that Deplete the Ozone Layer and one
of its amendments, the Kigali Amendment. In order to analyze the effect of environmental
regulations on incentives to innovate, I focus on two dimensions that have received little
attention in environmental innovation, namely the timing of technological change and the
value of innovations, as measured by the value of patents.

Timing is particularly relevant in the analysis of the impact of international environ-
mental agreements on technological change. There are three main factors in the analysis
that have a time component. First, agents that are party to international environmental
agreements (i.e., countries) have incentives to anticipate their behavior (Aufhammer et al.,
2005); however, if the agreement is too lenient, its impact on technological change could
be delayed. Second, technological change is slow: there is often a time gap or lag between
the emergence of a new problem and the creation of an idea to solve it. This lag may
be particularly large if the idea’s authors pursue publication or if the new technology is
embodied in a product that must be produced. Third, the market’s expectations affect
clean and dirty technologies differently. Considering that dirty technologies are initially
more advanced, in a technology transition towards clean technologies, they will respond
to shocks on their short-term market, while clean technologies will be more reactive to
shocks regarding their long-term market (Dechezleprêtre and Hémous, 2022). This is
especially relevant for international environmental agreements, since their signature, as a
shock, might be interpreted differently by clean and dirty technology producers as their
time horizons differ.
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1 Introduction

Historically, the value of patents has been studied from different perspectives. Starting
with the work of Scherer (1965) showing that values of innovations are highly skewed, the
drivers of this skewness have been further studied by many scholars. One approach to
study patent value has explored the validity of several proxies for value stemming from
patent characteristics such as citations, family size, or renewal years (Griliches, 1990;
Trajtenberg, 1990; Harhoff et al., 1999; Pakes and Schankerman, 1984). A second approach
has exploited the stock market’s reaction to patent grant announcements to compute the
value of granted patents (Pakes, 1985; Hall et al., 2005; Kogan et al., 2017). Finally, a third
approach has used patent renewal decisions to compute the monetary value of patents,
using a structural method (Pakes and Schankerman, 1984; Pakes, 1986; Lanjouw, 1998;
Deng, 2011; Serrano, 2018). In this dissertation, I focus on the first and third approaches.

This dissertation is divided into two parts. In the first part, I develop and adapt two
new methods to study the impact of an environmental regulation on patent value. First, I
develop a dynamic discrete choice model of patent renewal under uncertain environmental
regulation. Together with a synthetic control group, this approach allows me to quantify
the monetary impact of an environmental regulation on patent value. This new method
allows me to estimate the technological gains and losses engendered by an environmental
regulation. Second, I adapt the nonparametric model of van den Bergh et al. (2020) to
study the impact of an environmental regulation on patent renewal, a proxy for patent
value. I examine this impact in the context of the Kigali Amendment to the Montreal
Protocol. This method allows me to estimate the average treatment effects on conditional
survival probabilities of clean and dirty patents around the signature of the agreement.
This new approach to the analysis of patent renewal rates enables me to explore the impact
of an international environmental agreement on technological change and on the timing of
technological change.

In the second part, I apply the methods that I developed and adapted in the first part.
First, I quantify the technological gains and losses induced by the Kigali Amendment to the
Montreal Protocol. This permits me to further shed light on the technological incentives
that countries face as they ratify international environmental agreements. Second, I apply
the nonparametric model that I adapted to patent data in the first part to scrutinize the
impact of the Montreal Protocol on Substances that Deplete the Ozone Layer and its
early amendments on the value of clean and dirty technologies, proxied by patent renewals.

3
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This enables me to shed further light on the various hypotheses regarding the original
drivers of the Protocol.

Synopsis
This dissertation is divided into four chapters. In Chapter 2, I develop a method for
quantifying the technological gains and losses induced by an environmental regulation. To
do this, I develop a model of patent renewal under environmental regulation uncertainty
and combine it with a synthetic control method approach. My model builds upon the
dynamic discrete choice models of patent renewal that were developed by Serrano (2018)
and Deng (2011), and adds to these models by incorporating the possibility of being affected
by an environmental regulation. This method enables me to estimate the monetary impact
of an environmental regulation on patent value. It builds upon several assumptions,
including monotonicity of the likelihood of the environmental regulation, which is intuitive
for stock pollutants, and unidirectionality of positive and negative shocks for clean and
dirty technologies, respectively. The method presupposes the existence of three similar
groups of patents (clean, dirty, and not affected) that likely would have had similar renewal
patterns in the absence of the environmental policy. Furthermore, it also assumes the
existence of positive and negative shocks on the value of clean and dirty patents, which
are proxied by abnormal hazard rates compared to the hazard rates of patents that are
not affected by the regulation. My method has the typical caveats and limitations of
synthetic control group methods and simulated method of moments structural estimations,
which I discuss further in the chapter. In Chapter 4, I provide an example of an empirical
application of this method. This chapter adds to the literature in several manners. First
it contributes to the literature on patent renewal models, since it is the first model of its
kind that incorporates uncertain environmental regulation. Second, it contributes to the
literature on structural methods for quantifying the monetary impact of environmental
policies by introducing the first method combining a structural model and a synthetic
control group.

In Chapter 3, I study the impact of international environmental agreements on the
timing and direction of technological change. I study the impact of the signature of
the Kigali Amendment to the Montreal Protocol on incentives to innovate. I focus
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especially on the value of clean and dirty patents. To do this, I construct a self-curated
dataset of patents which mention chemical substances that are regulated under the Kigali
Amendment or the Montreal Protocol, as well as patents that mention substances that can
be used as refrigerants. This enables me to create a dataset of dirty patents, clean patents
mentioning the clean substitutes to the regulated substances as well as non-regulated
patents. Furthermore, I adapt the nonparametric duration model of van den Bergh et al.
(2020) to the patent renewal framework. This allows me to estimate the average treatment
effects on the conditional survival probabilities capturing differences in the hazard rates
between treatment and control groups before, at the moment of, and after the signature
of the Amendment. I find that the Kigali Amendment to the Montreal Protocol had
first a negative impact on the value of dirty patents, although only almost significant
at a 5 percent level. Furthermore, I also find that the Amendment had a positive and
statistically significant impact at the 5 percentage level on the value of clean patents,
although the effect occurred some time after the negative shock. This chapter adds to the
literature in several ways. First, because this work proposes a new way to estimate shocks
on patent value using patent renewal data, it makes a contribution to the literature on
patent valuation. Second, it contributes to studies on innovation by constructing a unique
dataset of regulated patents and patents related to their substitute technologies. Third,
it also adds to the literature on innovation by proposing a new method to select patents
mentioning chemical substances. Fourth, it contributes to the literature on international
environmental agreements and the direction of technological change, by studying the
impact of the most recent and successful international environmental agreement targeting
a greenhouse gas. Finally, it also contributes to the literature on environmental innovation
and directed technological change by studying for the first time the difference in response
curves of clean and dirty technologies to a regulatory change.

In Chapter 4, I quantify the technological gains and losses induced by an international
environmental agreement. To do this, I use the method developed in Chapter 2 and
implement it to study the monetary gains and losses in patent value engendered by the
Kigali Amendment to the Montreal Protocol. To estimate the gains and losses I employ
the dataset that I constructed in Chapter 3. Before implementing my method, I discuss the
plausibility of the method’s assumptions and present the existing empirical evidence upon
which my method builds. Using counterfactual simulations, I find that the Amendment
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generated average total gains ranging between 1600 Euro and 50,000 Euro, while I find
that it induced only small average total losses of up to 200 Euro. Afterwards, I discuss the
goodness-of-fit as well as, robustness checks, measurement errors and limitations related
to my estimates. This work makes several key contributions to the literature. First, it
contributes to the literature on structural models in environmental economics, by providing
the first estimates from a novel structural patent renewal model with environmental
uncertainty and its combination with a synthetic control approach. Second, it contributes
to the literature on international environmental agreements and provides evidence for the
self-enforcing rationale of Barrett (1994). Finally, it also contributes to the literature on
international environmental agreements and directed technological change by providing
the first estimates of the technological gains and losses induced by an environmental
agreement.

In Chapter 5, I examine the impact of the Montreal Protocol and its successive amend-
ments on patent value, using patent renewal as a proxy. For this chapter, I built a unique
dataset of European patents which mention substances that are regulated under the
Protocol and clean patents citing their substitutes used in refrigeration. I employ the
nonparametric duration approach adapted from van den Bergh et al. (2020) in Chapter 3
and compute the average treatment effects on the conditional survival probabilities. Fur-
thermore, I use a new identification strategy to differentiate between patents applied for in
a period before discussions on the Montreal Protocol had started and patents applied while
discussions on the Protocol were ongoing, to shed further light on the different hypotheses
regarding the drivers of the Protocol. My results support the hypothesis of Barrett (1994)
arguing that benefits were higher than costs, as well as arguments made by Sunstein
(2007), who stated that the industry had already started developing substitute technologies
before the signature of the Protocol. Furthermore, my results also support the rationale
of Dugoua (2021) regarding the increasing stringency of the successive amendments to
the Protocol, but contradict the claims of Benedick (1998) by providing evidence showing
that firms had already partially anticipated the agreement and started moving before it
was signed. My results should be interpreted with caution, however, since they rely on a
relatively small sample. Future research should expand on this analysis by incorporating
data from additional countries. This work contributes to the literature in several ways.
First, it contributes to the literature on international environmental agreements and
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the Montreal Protocol by providing further evidence on the different hypotheses regard-
ing its success. Second, it contributes to the literature on international environmental
agreements and the direction of technological change by computing the impact of an
agreement on the value of clean and dirty patents. Finally, it contributes to research on the
Montreal Protocol by exploiting a new patent dataset and a novel identification strategy
to study the impact of an environmental regulation on the direction of technological change.

7
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2 Method for Quantifying the Monetary Impact
of an Environmental Regulation on Patent
Value∗

2.1 Introduction
The urgency of global warming requires us to accelerate the speed of the energy transition.
Traditionally environmental innovation has studied the direction of technological change
and how incentives might affect it. The current situation requires us, however, to go a
step beyond those type of questions and rather focus on studying the drivers of the speed
of directing technological change, i.e. of the rate of technological change. For this we need
to provide answers to questions related to the costs and benefits of directing technological
change. This work will focus on how environmental regulation might affect the value of
existing clean and dirty patents. This is particularly relevant if we want to understand
the impact of environmental regulation on the rate of technological change.

As argued by Langer et al. (2022), studying the drivers of the rate of clean versus
that of dirty innovation is key for understanding what shifts the technological equilibrium
towards a sustainable technology path. Studying the determinants of the private value
of clean and dirty technologies is essential assessing what shifts the relative growth path
(Langer et al., 2022). In their work, Langer et al. (2022) focus on the role of financial
constraints (related to the Great Recession of 2010) in the private value of clean and dirty
patents. For this, they use the Kogan et al. (2017) approach to measure patent value,
which is based on the stock market reaction to the grant event of a patent.

In this paper, I will study the drivers of green versus dirty innovation by examining how
environmental regulations impact on the private value of existing patents, depending on

∗I would like to thank Victor Aguirregabiria, Bernhard Ganglmair, Timo Goeschl, Wolfgang Habla,
François Laisney, Bettina Peters, Mar Reguant, Imke Reimers, John Rust, Carlos Serrano, Kenneth
Simons, and Ulrich Wagner for their helpful feedback and comments. Furthermore, I would like to thank
all participants to ZEW seminars, Econometric Society DSE 2018, MaCCI Annual Conferences 2020 and
2021, EAERE-ETH Winter School 2019, AURÖ 2019, MaCCI IO Day 2019, TECHNIS 2020, AERE
2020, Summer School on Data Algorithms for Science, Technology & Innovation Studies 2020, Mannheim
Energy Conference 2021, IX IEB Symposium, and WIPE 2021. The usual disclaimer applies.
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Patent Value

their environmental characteristics. In doing so, I add to the literature in several ways.
First, since I focus on the influence of an environmental regulation on the value of clean
and dirty technologies, it could help us quantify the double externality that environmental
innovations are suffering. Namely, the combination of the underinvestment in abatement
technologies in the lack of environmental regulations added to the suboptimal level of R&D
expenditures due to the inability of the innovator to capture all benefits from innovation.
The second advantage lies in focusing on the impact on already existing R&D assets.
This has a clear advantage compared to the Kogan et al. (2017) approach, that I focus
on innovations whose value has been evaluated several times after their grant date and
does not depend solely on the stock market expectations at the grant moment. Finally,
by analyzing the change in value of already existing clean and dirty R&D assets, I can
shed light on how the lack of environmental regulation undervalues clean innovations and
overvalues dirty ones. In order to implement my method, I develop a theory of patent
renewal under uncertain exogenous regulation. My model builds upon the work of Serrano
(2018), where he further develops the framework of Pakes (1986) by disentangling the
parameters governing the process of internal growth returns from the returns that are
external to the patent holder, which in his case are due to patent trade. In my model
the external shock to the patent returns is due to an environmental regulation, which is
exogenous to the patent holder. Since the main objective of this work is to estimate the
monetary impact of an environmental regulation on patent value, I will shortly summarize
the main challenges of my estimation method and how I overcome them.

As econometricians, we don’t observe the moment when a patent is regulated. We
can know at most that some patents belonging to a certain group might have received a
shock during their life cycle compared to similar patents not affected by the environmental
regulation. Therefore, I will focus on evaluating the effect of the regulation from the
moment it was introduced onwards. Since we are performing a structural estimation and
the information on when the regulation affects a certain patent is not on a unit level
anymore but on a group level, then we cannot use anymore the patents that might have
been affected by the regulation to estimate any other parameters besides the regulation
shocks. The intuition behind this is that the lack of information on the treatment at the
unit level requires us to treat partially the structural estimation as a regression since we
face the fundamental problem of causal inference. For this, I will combine the structural
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estimation with a synthetic control group approach. The intuition for this method is to
use a structural dynamic discrete choice model in the spirit of an integrated assessment
model in order to generate counterfactuals. Holland et al. (2016) use an integrated
assessment model to compute health damages resulting from a change in emissions of local
pollutants. Instead, I use a dynamic discrete choice model to compute counterfactuals,
where the first step would be the “calibration” of the integrated assessment model, in my
case the structural estimation of the dynamic discrete choice model without environmental
regulation with patents that have not been affected by the regulation. Then in the second
step I estimate the deviations from the generated counterfactuals of the first step with a
structural model of patent renewal allowing for environmental regulation.

This chapter is divided in the following sections, first I present the literature review,
then the modelling framework with the main theoretical assumptions, and finally I expose
the mechanics of the estimation routine including a discussion of the measurement error.

2.2 Literature Review
This work builds upon three different strands of the literature. The first one is the
development of measures for patent valuation. The second one is on patent renewal and
patent renewal models for assessing patent value, which could be considered as a sub-strand
of the first one but that can be treated as an independent strand and is the main literature
upon which this work builds. The third and final strand of the literature of this paper is
on counterfactual generation and synthetic controls.

The literature on measures of patent valuation started with Scherer (1965), Schmookler
(1966) and Griliches (1981; 1984) using patent counts for accounting for how innovative
the output of a firm or industry was. Scherer (1965) found that the distribution of patent
value is highly skewed. Therefore and since then several measures have been developed
to disentangle the heterogeneity of patent value such as patent citations (backward and
forward), references to scientific literature, renewal years, surveys, family size (i.e. in
how many countries a patent has been granted), number of claims, patent scope, and
the relation between firm’s market value and patent value. The relation between patent
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citations and economic value started being studied by Griliches (1990), Trajtenberg (1990),
Albert et al. (1991). Harhoff et al. (1999) used a survey to ask patent holders for the
amount at which they would have been willing to sell their patent. They find that more
valuable patents are cited more. Scherer and Harhoff (2000) using survey data further
analyze the skewness of the private patent value distribution. Furthermore, the work of
Hall et al. (2001) was a methodological milestone regarding the use of patent citations.
Harhoff et al. (2003) provide estimates of the private value of patents using survey data
and find evidence that patents with more references (to the scientific literature or other
patents), with more forward citations, and patents in opposition or annulment procedures
are of higher value. Lerner (1994) provides evidence that broader patents, in terms of
patent scope proxied by International Patent Classification are more valuable. Lanjouw
and Schankerman (2004) use additional measures for patent quality, besides citations, such
as family size and the number of claims, creating a composite measure they find that it is a
good predictor for a patent to be kept active more years. Nevertheless, Gambardella at al.
(2008) combining survey data with patent characteristics correlated with patent value find
that the typical measures used (i.e. citations, claims, references, and family size) capture
only a little part of the variation associated with patent value, suggesting that there is a
need for further research. Recent evidence from Abrams et al. (2018) contradicts prior
work suggesting that more valuable patents are more cited and find instead that there is
an inverted-U shape relationship, where high end patents are less cited than average ones.

Within the strand of the literature of patent valuation it is important to dedicate a
special mention to the works relating patenting activity and stock market valuation. This
last line of the research, that was initiated among others with the work of Pakes (1985),
was later extended by Austin (1993), Hall et al. (2005), and Nicholas (2008). More recently
it has been further developed by Kogan et al. (2017), creating a new way of assessing
the value of patents through stock market expectations. This method has also recently
been used in environmental economics by Langer et al. (2022) to compare the impact of
financial constraints on the value of clean and dirty innovations. They find that financial
constraints have reduced the relative share of clean versus dirty innovations because clean
innovations were perceived to be riskier. Also, recent works by Dechezleprêtre et al. (2021a;
2021b) use the approach of Hall et al. (2005) to compare the value of firm level clean and
dirty innovations. They find that clean innovations are more valuable than dirty ones.

12



2 Method for Quantifying the Monetary Impact of an Environmental Regulation on
Patent Value

The second strand of the literature is on patent renewal models which started with the
early works on patent renewal of Pakes and Schankerman (1984), Pakes (1986), Lanjouw
(1998), and Schankerman (1998). This literature is split between the deterministic models
and the stochastic ones. It started with the deterministic patent renewal model of Pakes
and Schankerman (1984), further developed in Schankerman and Pakes (1986) and in
Schankerman (1998), and the deterministic model of Sullivan (1994). Putnam (1996)
and later Deng (2007) modelled the international patent application with a deterministic
evolution of returns. Finally, the stochastic models, which are also the class of model that
I use in my work, started with the work of Pakes (1986), further developed by Lanjouw
(1998), the nonparametric approach of Pakes et al. (1989), the model of international
patent application of Deng (2011), and the model incorporating the option to trade a
patent of Serrano (2018) (although first working paper dates from 2005). It is important
to make a special mention to two works, Bessen (2008) and Schankerman (1998). The
first one, because using a version of the Pakes and Schankerman (1984) patent renewal
model he controls for patent characteristics and finds that patents with more citations
and litigated patents are more valuable. The second paper, because it is the first work
studying the impact of a shock on patent returns using a patent renewal model (although
a deterministic one). In particular he uses a version of the Schankerman and Pakes (1986)
model to study the oil shock of 1973 on the decay rate of patents in France for different
technology groups. This last paper would be the closest in the literature to the aim of my
work, although I build upon the stochastic modelling framework of Serrano (2018) for it.

The last strand of the literature upon which this work stands is on counterfactual
generation and synthetic controls. This literature started with the work of Abadie and
Gardeazabal (2003) estimating the economic cost of the Basque Country conflict, through
a synthetic control region without conflict, further developed in Abadie et al. (2010).
The fundamental problem of not having a good control available is relatively common in
environmental economics since many regulations are first of their kind. Recently several
works in this field have further implemented this approach for generating counterfactu-
als in the spirit of synthetic controls in different ways like integrated assessment models
(Holland et al. 2016) or machine learning approaches (Burlig et al. 2020, Abrell et al. 2022).
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2.3 Model
In this section I present a model of patent renewal under uncertain exogenous environmental
regulation. The section is divided in two parts, first I provide an overview of the model
intuition and then I present its mechanics.

2.3.1 Model Intuition

In my model the agent is a patent holder that each period, a, indicating patent age, decides
whether to renew or not a patent. In order to make this decision he takes into account
the current realization of different state variables as well as the expectations on their
future realizations. The framework follows the spirit of the reformulation of the patent
renewal model of Pakes (1986) by Serrano (2018). In particular each period a the agent
observes the renewal fees ca, the current per period returns xa, and he also observes if he
has received an information regarding the regulatory state of his technology, i.e. if the
technology is affected or not by the regulation that is under discussion σa.

0 1pa,t

1-pa,t 1

Figure 2.1: Evolution of environmental regulation

In this setting the patent holder can be in two possible states at any age. As shown
in the figure 2.1, patent holders might be in state ”0” (σa = 0), where they are not
regulated. From this state he can transition with probability pa,t to state ”1”, where he is
regulated (σa = 1). The probability of being regulated (pa,t) is increasing in patent age
a and accross patent cohorts t. When moving to that state, the patent holder readjusts
his per period returns xa by an external factor ge, such that in the first period when
he receives the information on his regulatory status σa he takes the decision of whether
to renew the patent or not given his new per period returns ya, defined as ya = gexa.
Similar to Serrano (2018), ge is a random variable drawn each period from a truncated
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exponential distribution with parameters γe, δe, and σe (see equation 2.1). The distribution
of ge captures whether the regulation affects positively patent returns σe, depreciates
them by an additional factor δe, or makes the technology obsolete γe, bringing them to zero.

F ge(ge) =


1 − γe if ge = 0

1 − γe + γe
[
1 − exp

(
−δe

σe

)]
if ge = δe

1 − γe + γe
[
1 − exp

(
−ge

σe

)]
if ge > δe

(2.1)

F ge(ge)

ge1.51δe0.50

1

1 − γe + γe
[
1 − exp

(
−δe

σe

)]

1 − γe

0.5

1

Figure 2.2: Representation of F ge(ge) (with γe = 0.9, δe = 0.7, and σe = 0.6)

2.3.2 Model

Patent renewal model without environmental regulation

My patent renewal model incorporates the framework of Serrano (2018) without allowing
for patent transfer. Patent holders annually need to decide whether to renew a patent or
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not. In order to be able to make this decision, they are informed about their current per
period returns xa and form expectations about their future internal growth return gi as
shown in equation (2.2) taking into account all information available in age a, Ωa. The
evolution of patent returns follows equation (2.3), where next period patent returns are
equal to the current period ones times the internal growth factor gi. Each period this
internal growth factor is drawn from a mixture with CDF F gi (equation 2.4). This mixture
captures the fact that patents might either become obsolete with probability 1 − γi, or
depreciate with a factor δi or learn new uses which improves their per period returns by gi

a.
In case a patent becomes obsolete it gets into an absorbing state of zero per period returns.
The model of Serrano (2018), like that of Pakes (1986), incorporates age-reducing learning
opportunities σi

a, i.e., it accounts for the fact that learning new uses for inventions gets
harder the older a patent is (equation 2.5). New learning opportunities are captured by
the parameters φ, representing upside opportunities, and σi representing internal growth
returns.

V (xa) = max{0 , xa + β E[V (xa+1)|Ωa] − ca} (2.2)

xa+1 = gi
axa (2.3)

F gi(gi
a) =


1 − γi if gi

a = 0

1 − γi + γi
[
1 − exp

(
−δi

σi
a

)]
if gi

a = δi

1 − γi + γi
[
1 − exp

(
−gi

a

σi
a

)]
if gi

a > δi

(2.4)

σi
a = σiφa−1 (2.5)

Patent renewal model with increasing external regulation threat

Having introduced the patent renewal model, I now present the details of how I introduce
environmental regulation into such a framework. The state variable that takes into account
that the patent holder might be informed that his patent is regulated in age a, σa, stems
from a Bernoulli trial. The variable σa can only take two values {0, 1}, with ”1” expressing
that a patent holder is told that he is regulated, and occurs with probability pa,t, a
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probability that is changing with age a and across patent cohorts t. Once a patent holder
is regulated he does not change his state. Equations (2.6) show the evolution of the
regulatory state.


Pr(σa+1 = 1|σa = 0) = pa+1,t

Pr(σa+1 = 0|σa = 0) = 1 − pa+1,t

Pr(σa+1 = 1|σa = 1) = 1

(2.6)

Assumption 1

The probability of being regulated pa,t is weakly increasing over time, i.e. in a and t such
that:

 pa−1,t ≤ pa,t

pa,t−1 ≤ pa,t

(2.7)

A typical example of an environmental regulation fulfilling Assumption 1 would be one
concerning stock pollutants.

Assumption 2

Patent holders do not anticipate environmental regulation.

 E[pa+1,t|σa = 0] = 0

E[pa+1,t|σa = 1] = 1
(2.8)

Assumption 2 might seem relatively strong, but it is in line with the work of Schankerman
(1998), where agents do not anticipate the oil shock. In my case the plausibility of the
assumption will have to be justified in the empirical implementation. A field of further
research could be relaxing this assumption with the help of either some survey data or
some prediction method, such as machine learning.
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Having seen how one could model patent renewal and environmental regulation inde-
pendently, I now combine the two models. To do so, I first need to specify the state
variables of my model. Each period, the agent (patent holder) observes the per period
returns realized xa, the per period returns that she would receive had she been regulated
ya, and her regulatory status σa. The econometrician, instead, only observes if he has
renewed a patent or not, the probability of being regulated pa,t, and whether she belongs
to Treatment Groups (T1, T2) or the Control Group (C). Given this setting, I have to
consider the decision the agent faces depending on whether he is regulated or not.

Before being regulated

I first consider the decision problem the patent holder faces before being regulated (σa = 0).
In this case, she not only has to form expectations about future realizations of per period
returns but also needs to take into account future probabilities of being regulated.

V (xa, ya, σa) = max{0 , xa + β Ex,y,σ[V (xa+1, ya+1, σa+1)] − ca} (2.9)

with xa+1 = gi
axa

The patent holder will form expectations only taking into account the probability of
being regulated next period.

Ex,y,σ[V (xa+1, ya+1,σa+1)] = pa,t Ex,y[V (xa+1, ya+1)]

+ (1 − pa,t) Ex,y,σ[V (xa+1, ya+1, σa+1)]
(2.10)

After being informed of the regulation

Two aspects need be considered in case the agent is informed of the regulation (σa = 1),
first how being regulated affects the patent holder and also from where he obtains the
information to know how regulation affects him.

I start with the information on how the regulation affects the technology owned by
the patent holder. I model this information shock in a similar manner as Serrano (2018)
models the arrival of transfer opportunities. In this case, I consider that the information
on how the regulation affects the patent holder stems from last period’s policy discussions.
That is, the information shock took place in the previous period but since the patent
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holder is only informed to be regulated in the current period, he takes the draw ge from
the last period to rescale his current per period returns. This random variable ge is drawn
from the mixture with CDF F ge and represents the external growth returns, where with
a certain probability returns either become zero (probability 1 − γe), depreciate by an
additional factor δe, or grow by a factor ge, where the parameter σe measures the mean of
the improvement factor. These draws are independent of patent age a.

I will now explain how being regulated affects him. In case the patent owner is informed
to be regulated, the external growth returns factor ge only affects him in the first period,
in which he is regulated, thereby generating a change in levels of per period returns.
For exposition purpose I define the variable αa indicating whether his regulatory status
changed from the last period to the current one. After this period the agent faces the
simplest decision model of patent renewal: he then decides based only on the expected
realization of his internal growth returns gi.
At the introduction of the regulation, i.e., when σa = 1 and σa−1 = 0, then αa = 1
xa+1 = gi

aya with ya = gexa

V (xa, ya) = max{0 , ya + β Ex[V (xa+1)] − ca} (2.11)

After the continuation of the regulation, i.e., when σa = 1 and σa−1 = 1, then αa = 0
xa+1 = gixa

V (xa) = max{0 , xa + β Ex[V (xa+1)] − ca} (2.12)

Positive and negative impacts

The distribution of F ge presented in equation (2.1) is a general form of the impact of the
environmental regulation on the current per period returns. Assuming that patent returns
have been affected either positively or negatively, depending on the type of innovation, I
will define two distributions stemming from the CDF of equation (2.1). In particular I
define F ge,dirty as the CDF of the random variable capturing the negative impact of the
environmental regulation on the patent per period returns. Similarly I define F ge,clean as
the CDF of the random variable capturing the positive impact on patent returns.
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Assumption 3 Regarding the CDFs of positively and negatively affected patents, I
assume that γe

dirty < γe
clean ≤ 1, δe

clean = 1, and σe
dirty < σe

clean. Furthermore I assume that
some of these parameters have fixed values, i.e.: σe

dirty = 0, γe
clean = 1, and δe

clean = 1.

A direct consequence of Assumption 3 is that we can rewrite the CDFs of F ge,dirty and
F ge,clean in the following simplified forms.

F ge,dirty(ge) =


1 − γe

dirty if ge = 0

1 − γe
dirty + γe

A

[
1 − exp

(
−1

σe
dirty

)]
if ge = 1

(2.13)

So, we can simplify it to:

F ge,dirty(ge) =

 1 − γe
dirty if ge = 0

1 − γe
dirty + γe

A if ge = 1
(2.14)

F ge,clean(ge) = 1 − exp
( −ge

σe,clean

)
with ge ≥ δe

clean (2.15)

Proposition 1: Given the set of assumptions stated in Assumption (3) and the fact that
ge

a is a positive bounded random variable ge
a ∈ [0, B], then the CDF F ge,clean first-order

stochastically dominates the CDF F ge,dirty. This implies that:

F ge,clean(ge) ≤ F ge,dirty(ge) (2.16)

Proposition 2: For a certain patent age a, cohort t, and level of current per period
returns xa, given that F ge,clean(ge) ≤ F ge,dirty(ge), then V clean

a ≥ V dirty
a .

Propositions 1 and 2 as well as their proofs build upon the works of Serrano (2018) and
Ganglmair and Reimers (2019).
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2.4 Estimation Method
In this section I present the estimation method, which is divided in three parts. First, I
present the estimation challenges and the main statistics that I can build of existing data.
Second, I present the estimation routine, which consists of two steps. Finally, I define and
formalize the different sources of measurement error.

2.4.1 Estimation Challenge

The objective of the estimation is to recover estimates of the following vector of 18 param-
eters ω = (γi, σi, φi, δi, γe

dirty, σe
clean, µ, σR, bC,1, bC,2, bC,3, bC,4, bC,5, bC,6, bC,7, bC,8, bC,9, bC,10),

where as in Pakes (1986), I assume a fixed discount factor β of 0.9. Particularly important
are the parameters γe

dirty and σe
clean, which are responsible for quantifying the monetary

impact of the environmental regulation on patent value.
Unitary patent data does not contain information regarding whether an environmental

regulation has affected or not a particular patent. That is, the information regarding
when an environmental regulation might have affected a particular patent and whether the
impact of the regulation has been positive or negative to the value of that patent (proxied
by patent renewal) is not directly available in the patent data. If this information was
available I could have used the hazard rates of the patents that were to be regulated, but
hadn’t been yet, to estimate all parameters except γe

dirty and σe
clean, and the hazard rates

of those patents that are regulated to estimate γe
dirty and σe

clean. Nevertheless the only
information available to the econometrician is at best, what is presented in Proposition 3.

Proposition 3: Given some external empirical evidence, there exists either a positive or a
negative significant shock (or both) on the patent returns of the patents of the Treatment
Group in year Υ. The Treatment Group being defined as a group of patents similar in all
characteristics to another group of patent (Control Group), except that the latter is not
affected by the regulation.

Given that the best available information for the econometrician regarding when the
regulation affected certain patents is summarized in Proposition 3, I develop a method
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assuming the existence of three groups of patents. Namely, two Treatment Groups T = {1}
and T = {2}, and a Control Group C = {0}, built upon supporting empirical evidence
that patents from T = {1} have been affected negatively by the environmental regulation
and patents of T = {2} positively compared to the Control Group C = {0}.

Fundamental Problem of Causal Inference: Need for a Synthetic Control

Taking the data framework described above, one cannot use the patents from the Treatment
Group to identify the structural parameters driving patent renewal in the absence of
environmental regulation since we don’t know what would have been the fate of the
Treatment Group patents’ had there been no regulation. We are therefore facing the
fundamental problem of causal inference. In order to solve this problem we need to take a
synthetic control group approach and simulate what would have been the renewal pattern
of the Treatment Group patents in the absence of an environmental regulation.

Construction of Estimation Statistics

Since I want to perform an estimation using a simulated method of moments (SMM)
approach in the spirit of Deng (2007), I need to build the simulated and the sample hazard
rates. I build two types of hazard rates from two different groups of patents that I use
to estimate my parameters. First I compute the simulated hazard rate for those patents
that cannot be directly affected by the regulation πs

nr(a, t) to elapse at a given age a

being from cohort t. I compute the sample equivalent πnr(a, t) using the patents from the
Control Group as described above. Second I compute the simulated hazard rate for age a

of the patents that could have been affected by the regulation πs
r(a, t). For these patents I

compute the sample equivalent using the patents of the Treatment Groups.
In the model presented in the former section, I am considering two types of decision

problems, depending on whether or not the external growth returns factor needs to be taken
into account in the decision to renew the patent. For this reason, I define two types of cutoff
values. First for the patents that cannot be regulated, we have only one type of cutoff value
x̂nr

a . Second for the patents that might have been regulated, we have two cutoff values x̂r
a

and ŷr
a, the latter being the cutoff returns in the period where the patent holder receives the

information that he is regulated τ . Finally, before estimating the model I specify the sim-
ulated hazard rates for the two types of patents (following Deng (2011) and Serrano (2005)).
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I define the initial draw of per period returns specific to cohort t, where bC,t is the
cohort-specific coefficient of the cohort dummy Dt.

xt,1 = exp(bC,tDt + ξ) (2.17)

ξ ∼ N(µ, σ2
R) (2.18)

Hazard rates for non regulated patents

As in Serrano (2005) and Deng (2011), I first define the proportion of patent holders
renewing the patent at age a from cohort t, for the non-regulated patents as:

1 − Ha,t(x̂nr
t,a) = Pr

{
xnr

t,a ≥ x̂nr
t,a, xnr

t,a−1 ≥ x̂nr
t,a−1, ..., xnr

t,1 ≥ x̂nr
t,1

}
(2.19)

Where Ha,t(x̂nr
t,a) is the CDF of the returns xt,a given the initial distribution of returns of

xt,a=1 and the conditional distribution of growth returns of gi. So it is the probability that
the random variable xnr

t,a is below x̂nr
t,a in period a. Now I compute the hazard rate as the

proportion of patents expiring at age a and cohort t from those having renewed for the
same cohort until age a − 1.

πs
nr(a, t) =

Ha,t(x̂nr
t,a) − Ha−1,t(x̂nr

t,a−1)
1 − Ha−1,t(x̂nr

t,a−1)
(2.20)

Hazard rates for patents that can be regulated

For the patents that can be regulated I summarize the possible states in which a patent
holder can be by the variable j, which can take three values, {1, 2, 3} in a given cohort t

and age a, with:
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j = 1 ≡ σt,a = 0

j = 2 ≡ σt,a = 1, αt,a = 1

j = 3 ≡ σt,a = 1, αt,a = 0

With this I can define the following proportions of patent holders not paying the renewal
fees in age a and cohort t, being in state 1, 2 or 3 and having been in the former periods
in some state j ∈ {1, 2, 3}.



Ha,t(x̂r
t,a, 1) = Pr

{
xr

t,a,1 ≤ x̂r
t,a,1, xr

t,a−1,j ≥ x̂r
t,a−1,j, ..., xr

t,1,j ≥ x̂r
t,1,j

}
Ha,t(ŷr

t,a, 2) = Pr
{

yr
t,a,2 ≤ ŷr

t,a,2, xr
t,a−1,j ≥ x̂r

t,a−1,j, ..., xr
t,1,j ≥ x̂r

t,1,j

}
Ha,t(x̂r

t,a, 3) = Pr
{

xr
t,a,3 ≤ x̂r

t,a,3, xr
t,a−1,j ≥ x̂r

t,a−1,j, ..., xr
t,1,j ≥ x̂r

t,1,j

} (2.21)

I define the proportion of patent holders renewing a patent at age a from cohort t, for
those patent holders that are not regulated, (j = 1), as:

1 − Ha,t(x̂r
t,a, pa,t, σt,a = 0) = Pr

{
xr

t,a ≥ x̂r
t,a, xr

t,a−1 ≥ x̂r
t,a−1

, ..., xr
t,1 ≥ x̂r

t,1

} (2.22)

I define the proportion of patent holders renewing a patent at age a from cohort t, for
those patent holders that are regulated in age τ = a, (j = 2), as:

1 − Ha,t(x̂r
t,a, ŷr

t,a, pa,t, σt,a = 1, αt,a = 1) =Pr
{

yr
t,a ≥ ŷr

t,a, ...

, xr
t,1 ≥ x̂r

t,1

} (2.23)

I define the proportion of patent holders renewing a patent at age a from cohort t, for
those patent holders that have been regulated at age τ < a, (j = 3), as:
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1 − Ha,t(x̂r
t,a, ŷr

t,a, pa,t, σt,a = 1, αt,a = 0) =Pr
{

xr
t,a ≥ x̂r

t,a, ...,

yr
t,τ ≥ ŷr

t,τ , ...,xr
t,1 ≥ x̂r

t,1

} (2.24)

I define the proportion of patent holders renewing a patent at age a from cohort t, for
the regulated patents, as:

1 − Ha,t(x̂r
t,a, ŷr

t,a, pa,t, σt,a, αt,a) = 1 − [Ha,t(x̂r
t,a, 1) + Ha,t(ŷr

t,a, 2) + Ha,t(x̂r
t,a, 3)] (2.25)

Now I compute the hazard rate as the proportion of patents expiring at age a and cohort
t from those having renewed for the same cohort until age a − 1.

πs
r(a, t) =

Ha,t(x̂r
t,a, ŷr

t,a, pa,t, σt,a, αt,a) − Ha−1,t(x̂r
t,a−1, ŷr

t,a−1, pa−1,t, σt,a−1, αt,a−1)
1 − Ha−1,t(x̂r

t,a−1, ŷr
t,a−1, pa−1,t, σt,a−1, αt,a−1)

(2.26)

2.4.2 Estimation Routine

For the estimation of my model I proceed in two steps. In the first step I estimate all
parameters except the ones governing my regulatory shocks γe

dirty and σe
clean, for this I use

the patents from my Control Group sample N0. In the second step I estimate the two
remaining parameters using my Treatment Group patents N1 and N2

1. For both, the first
and the second steps I only use the moments from the year Υ of the empirically shown
shock onwards.

First Step: Structural Estimation of the Control Group parameters

In the first step I solely estimate the parameters related to gi and the cohort-specific
dummies of the initial draw of per period returns using the patents from the Control Group.
With this, I estimate the following vector of parameters: wC = (γi, σi, φi, δi, µ, σR, bC,1, bC,2,
bC,3, bC,4, bC,5, bC,6, bC,7, bC,8, bC,9, bC,10). For this I do a first structural estimation
using only the patents from my Control Group N0.

1Note that N = N0 + N1 + N2
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Equations (2.20) and (2.26) provide the moment conditions for the estimation, as shown
in equation (2.27). As in Deng (2011) I stack up the hazard probabilities for all cohort-age-
type as simulated by the model into an a vector π(ωC). I compute the sample equivalents
of those simulated hazards and stack them into a vector πN0 , where N0 is the sample size.

E
[
πN0 − π(ωC)

]
= 0 (2.27)

I then estimate the model with the SMM estimator ω̂C
N of the true parameter vector ωC

o .
With:

ω̂C
N = arg min

ωC

||πN0 − π̃N0(ωC)||WN (ωC) (2.28)

WN(ωC) = diag(
√

n/N) (2.29)

, where, as in Deng (2011), π̃(ω) is the vector of the simulated estimates given the
parameters ωC . WN (ωC) is a semi-definite weighting matrix. For computational purposes I
follow Deng (2007) and Lanjouw (1998), and instead of using the inverse of the asymptotic
variances of the moment conditions or the simulated estimates as a weighting matrix, I
use their proposed substitute (see equation 2.29). It is a semi-definite weighting matrix,
where n is the relative size of the cell versus the size of the whole sample N .

Assumption 4

I assume that patents from my Treatment Groups (T1, T2) would have had a similar
renewal pattern compared to the patents from the Control Group, had there been no
regulation.

This implies that the parameters of the internal growth returns gi are the same for
regulated and non-regulated patents and that the cohort-specific initial draw of per period
returns is also identic. Therefore I can assume the estimated vector of parameters from
my first step ω̂C for the second step.
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Assumption 5

I assume that the first step solution ω̂C must be able to accommodate the second step
shock following the ex-ante provided evidence, i.e.:

γe
dirty < 1 if a negative significant shock exists

σe
clean > 0 if a positive significant shock exists

Second Step: Structural Estimation of the Impact of the Environmental Regulation -
Deviations from the Control Group Simulations

Following Assumption 4, I use the parameter estimates from the first step and take them
as given to perform the second structural estimation using only the patents from my
treatment groups (T1, T2) to estimate the parameters capturing the positive and the
negative impact: ωT = (ω̂C , γe

dirty, σe
clean) = (γe

dirty, σe
clean)2. As for the first step, I compute

the sample equivalents of the simulated hazards and stack them into a vector πNT
, where

NT = N1 + N2.

E
[
πNT

− π(ωT )
]
= 0 (2.30)

I then estimate the model with the SMM estimator ω̂T
N of the true parameter vector ωT

o .
With:

ω̂T
N = arg min

ωT

||πNT
− π̃NT

(ωC)||WN (ωT ) (2.31)

Nevertheless, given that the objective of the estimation is to disentangle the unobserved
heterogeneity due to the environmental regulation, we need to do further adjustments. For
this reason I propose to use a new weighting matrix, with the following formula:

WN(ωT ) = diag(
√

wT
t,a) (2.32)

Where T refers to the treatment type (”1” for the Treatment Group patents possibly
affected negatively ”dirty”, and ”2” for the Treatment Group patents possibly positively
affected ”clean”), a to the patent age, and t to the patent cohort. Furthermore j refers to

2We use ω̂C estimated in the first step.
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the 3-digit level main patent IPC (International Patent Classification) class, and nT
t,a,j to

the number of patents still alive at a certain patent age a, from a given cohort t, and from
a specific IPC class j .

wT
t,a = αT βT

t

(γt,1n
T
t,a,1 + ... + γt,jn

T
t,a,j + ... + γt,JnT

t,a,J

N

)
(2.33)

With:

αT = N − N0
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(2.34)
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NT

NT
t

(2.35)

γt,j =
N0

t,j

N0
t

NT
t

NT
t,j

(2.36)

This new weighting matrix aims at doing three types of adjustments. First with αT , I
adjust for the relative weight of the samples N1 and N2 versus N0, such that the contribution
of the moments related to N1 and N2 is for each N−N0

2 . The second adjustment done
through βT

t aims at having the same cohort contribution for the cohorts of the Treatment
and Control Groups. Finally the adjustment done with γt,j seeks to control for the IPC
class composition within each cohort between each one of the Treatment Groups and the
Control Group. I adjust for the relative contribution of the IPC class j to the cohort t of
the sample NT with respect to the relative contribution of the IPC class j of the cohort t

of the Control Group.

2.4.3 Measurement Error

The estimation method that I have just presented allows us to overcome the fundamental
problem of causal inference and provide a first order approximation to the impact of the
environmental regulation on patent value. Yet, this approximation comes at a cost, i.e.
the measurement error. In order to understand to which extent this error might influence
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our results, I will explain the two parts that compose it.
The first component of the measurement error is the structural error stemming from

the inability of a structural model to perfectly generate the empirical moments even with
ideal patent data, i.e. without the need for a synthetic control. The second component is
the error due to the use of a synthetic control approach. This is illustrated in equation
(2.37), where the first term in the right handside represents the structural error and the
second term the synthetic control group error, whereas the left handside is the current
error from this method.

||πNT
− π̃NT

(ω̂C , γe
dirty, σe

clean)|| =||πNT
− π̃NT

(ωreal
T )||+

||π̃NT
(ωreal

T ) − π̃NT
(ω̂C , γe

dirty, σe
clean)||

(2.37)

As presented in Andrews et al. (2017) parameter estimates from moment estimations,
among others from simulated method of moments estimations, can be sensitive to the
selected moments used. Given that my method combines a structural model and a synthetic
control group approach, with the two sources of error just mentioned, a further robustness
check of the estimation results in the spirit of Andrews et al. (2017) could be highly
valuable. It could help us disentangle whether the monetary impact estimated by the
model is mainly driven by the results of some specific cohorts or if it is an average effect
across the different ones.

Finally, the modelling choice of the negative impact can also contribute to the structural
error. Given the general functional form of the external per period returns F ge(ge) (see
Equation 2.1), there are two ways of modelling a negative impact, either through an
additional depreciation rate δe or through the obsolescence rate γe. Schankerman (1998)
decided to model the oil shock through an additional depreciation rate, I instead chose
the obsolescence rate γe for one reason. Namely, that this method aims at capturing a
shock in one year, which is easily modelled and rationalized through γe than through δe.
The latter could lead to increased hazard rates in the years following the shock but has
the advantage of easily capturing smaller shocks that would lead instead to γe = 1.
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2.5 Conclusion
In this chapter I propose a method to estimate the technological monetary impact of
an environmental regulation on patent value. My method builds upon the work of
Serrano (2018) and combines a structural model with a synthetic control approach to
generate control group counterfactuals. This approach needs several assumptions such as
monotonicity of environmental policy or the lack of patent holder expectations regarding
the upcoming regulation. The first assumption is easy to hold in stock pollutants’ settings
and could allow us to transpose the method to other events with a “point of no return”
nature. Regarding the second assumption, it could be relaxed with some additional data,
such as survey data. The third assumption would be difficult to relax since identification
requires the existence of a shock in time for each type of technology, which could hardly
be positive and negative at the same time for the same type of technology. Only the
functional form of the negative shock could be modified as suggested in the measurement
error section. The fourth and fifth assumptions are more difficult to relax since they help
us overcome the fundamental problem of causal inference.

There are three points that are worth being remembered regarding the use of this
method. A first point is that this method is empirical and as such it needs to build upon
empirical evidence, therefore it requires a thorough analysis of the impact of the regulation
on different proxies for patent value, like patent citations or patent renewal. In this sense
any additional evidence regarding the impact of the environmental regulation on patent
value, through other methods, like the Kogan et al. (2017) approach or others, can only
provide further robustness to the potential findings. A second point is that this method
could contribute to quantify the double externality that environmental innovations are
suffering in the lack of an environmental regulation. Finally, it is worth remembering that
the validity and robustness of the estimation results depends on two main points: the
accuracy of the first step estimation and the sensitivity of the parameters to particular
moments, in particular for the second step. Therefore, in any implementation it would
be crucial to discuss these two issues. In the next chapters I will first provide empirical
evidence of the impact of an environmental regulation on difference measures of patent
value (Chapter 3) and present an implementation of this method in Chapter 4, given the
empirical evidence and the dataset presented in Chapter 3.
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2.6 Appendix: Proofs

2.6.1 Proofs of Proposition 1 and Proposition 2

Proposition 1: Given the set of assumptions stated in Assumption (3) and the fact that
ge

a is a positive bounded random variable ge
a ∈ [0, B],then the CDF F ge,clean first-order

stochastically dominates the CDF F ge,dirty. This implies that F ge,clean(ge) ≤ F ge,dirty(ge).
Proof:

In order to prove first-order stochastic dominance one only needs to show that the CDF
F ge,clean(ge) lies on or to the right of the CDF F ge,dirty(ge). For this to be true, we can
take ge = 1, where F ge,dirty(ge = 1) = 1 and F ge,clean(ge = 1) = 0.

Proposition 2: For a certain patent age a, cohort t, and level of current per period
returns xa, given that F ge,clean(ge) ≤ F ge,dirty(ge), then V clean

a ≥ V dirty
a .

Proof:

Knowing that:

E[V dirty
a+1 ] =E[V dirty

a+1 (xa+1, ya+1, σa+1|σa)]

=
∫∫

V dirty
a+1 (xa+1, ya+1, σa+1)f i

a(gi)f e,dirty
a,t (ge)dgidge

Then
E[V clean

a+1 ] ≥ E[V dirty
a+1 ]

Which implies by the definition of the value function:

V clean
a = max{0 , xa + β Ex,y,σ[V clean(xa+1, ya+1, σa+1)] − ca} (2.38)

That by symmetry:
V clean

a ≥ V dirty
a
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3 International Environmental Agreements and
the Timing and Direction of Technological
Change: Evidence from the Kigali
Amendment∗

3.1 Introduction
Today, we are facing a tremendous environmental challenge as we have never seen before.
Germany needs to reduce its emissions by 65 percent by 2030 and achieve net greenhouse
gas neutrality by 2045 (BMUV, 2021). Similarly, the EU has pledged to reduce emissions by
55 percent by 2030 and achieve greenhouse gas neutrality by 2050 (EU COMM, 2021). To
meet these targets and achieve emission reductions, clean technologies are key. Moreover,
it is not sufficient to direct innovation towards clean technologies, this process needs to be
accelerated.

Since Hicks (1932), we know that environmental regulation by the increasing prices of
dirty factor inputs would induce innovation towards more efficient utilization of those
factors. Recently, Aghion et al. (2016) showed that an increase in fuel prices directed
technological change from dirty to clean technologies by generating a negative effect on
dirty innovations and a positive one on clean technologies. However, little is known about
the timing of these effects and, in particular, of the relative shifts of dirty versus clean
technologies.

Relative shifts in the direction of technological change are important since they are
associated with the relative growth of clean versus dirty innovations and are the key to
ensure a sustainable technology path (Langer et al., 2022). Research has shown that clean
innovation responds to higher energy prices within a range of five years (Dechezleprêtre
and Hémous, 2022). However, little is known of the relative response. Only the intuition
that clean and dirty technologies are affected in a different manner from the market’s

∗I would like to thank Florence Blandinières, Thorsten Doherr, Robert Germeshausen, Timo Goeschl,
Georg Licht, Mar Reguant, Carlos Serrano, and Ulrich Wagner for their helpful feedback and comments.
Furthermore, I am grateful to Geert Boedt from the European Patent Office for providing latest update
from PATSTAT on renewal data. The usual disclaimer applies.
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“short-termism” (Dechezleprêtre and Hémous, 2022), i.e., that clean technologies’ market
is on the long-run whereas dirty technologies’ one is on the short-run. This paper aims
to shed further light on this question by providing first evidence. To do this, I study the
timing of the shocks on the incentives to innovate in clean and dirty technologies for the
case of an international environmental agreement (IEA).

In particular, I study the impact of an IEA on incentives to innovate, i.e., how the
signature of the Kigali Amendment (2016) to the Montreal Protocol affected the private
value of clean and dirty innovations over time. To do this, I build a unique dataset
of patents citing dirty substances that are regulated under the Kigali Amendment and
patents mentioning their clean substitutes. Furthermore, I adapt a nonparametric duration
framework developed by van den Bergh et al. (2020), to patent data, which allows me
to study the temporal dimension of the IEA’s impact on clean and dirty incentives to
innovate.

This paper is organized in the following manner. In sections 2 and 3, I summarize
the existing literature and introduce the regulatory framework of study. In section 4, I
present the dataset and descriptive statistics. In section 5, I describe the different empirical
analyses performed in the paper, first using a panel event study framework and later within
a nonparametric duration model setting. Finally, I summarize my findings in section 6.

3.2 Literature Review
This chapter is linked with four strands of the existing literature. First, to the literature
on directed technological change, which builds upon the work of Hicks (1932), followed by,
among others, Acemoglu (1998; 2002), and Acemoglu et. al (2012). Early evidence on
directed technological change and environmental regulation is provided by Lanjouw and
Mody (1996), Brunnermeier and Cohen (2003), and specifically on directed technological
change driven by energy prices by the works of Newell et al. (1999) and Popp (2002).
Newell et al. (1999) develop a method for testing Hicks’ induced innovation hypothesis
using product characteristics of durable goods and energy prices. Popp (2002) focuses
on patent data of energy efficient innovations and estimates the effect of energy prices
on patents. He finds a positive effect of prices and the quality of previous knowledge on
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clean innovations. More recently this literature has been extended with the works of Calel
and Dechezleprêtre (2016) and Aghion et al. (2016). The formers studying the impact
of the European Union Emissions Trading System (EU ETS) on technological change
provide evidence that it increased clean innovations. Aghion et al. (2016) scrutinizing the
impact of higher fuel prices on clean and dirty innovations in the automotive industry find
that higher prices lead to fewer dirty innovations and more clean ones. Furthermore, they
simulate the required increases in carbon taxes such that innovations in clean technologies
reach dirty innovations.

The second strand of the literature to which my work relates is the timing of directed
technological change. As discussed previously, this issue has not been directly studied
yet. Recently, however, Hémous and Dechezleprêtre (2022) have summarized the main
results on the innovation’s reaction to an increase in energy prices, which they obtained
from findings of diverse works on energy prices and the direction of technological change.
Gathering the so far found patent-to-price elasticities they conclude that the reaction of
clean innovations on a price increase occurs within the first five years.

The third strand of the literature that my work is related to includes the study of the
relation between IEAs and the direction of technological change. This last strand is scarce
and consists of the works of Dekker et al. (2012) and Dugoua (2021). In their seminal
paper, Dekker et al. (2012) study the impact of an IEA on the direction of technological
change. They find that the Convention on Long-Range Transboundary Air Pollution
provided incentives for firms to innovate in clean technologies by reducing investment
uncertainty. More recently Dugoua (2021) studied the impact of the signature of the
Montreal Protocol on innovation employing a synthetic control group method. Using
patents and scientific articles as proxies for inventive activity, the author finds that the
IEA induced clean innovations.

Finally, my work is also related to the still sparse literature on clean patent valuation.
Hall and Helmers (2013) study the differences in value of pledged patents under the
“Eco-Patent Commons” to other patents of the same firm or technology field. Using
various proxies for patent value within patent characteristics, they find that pledged
patents have a similar value to other patents of the same firm but a lower value than
other patents in the same field. Dechezleprêtre et al. (2021a; 2021b) in their work
use the Hall et al. (2005) market-based patent valuation approach and find that clean
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innovations have higher value than dirty ones comparing renewable energy generation
and electric cars innovations versus fossil fuel energy production and combustion engines
ones. Finally, Langer et al. (2022) use in their recent paper the Kogan et al. (2017)
patent valuation approach to study the impact of financial constraints on the value of
clean and dirty innovations. They find that a shock on financial constraints reduced the
relative share of clean versus dirty technologies since the former were perceived to be riskier.

3.3 Regulatory Framework: The Kigali Amendment to the
Montreal Protocol

The Kigali Amendment to the Montreal Protocol was signed on October 15, 2016 and
entered into force on January 1, 2019. The primary goal of the Kigali Amendment was to
phase-down and phase-out a particular family of greenhouse gases known as hydrofluoro-
carbons (HFCs). HFCs are gases with refrigerant properties widely used in air-conditioning
and refrigeration devices, but with a high 100-year global warming potential (Appendix
1.1 Annex F). They belonged to a group of greenhouse gases targeted by the Kyoto
Protocol (UNFCCC, 1997), with limited success. They were principally developed to
replace substances regulated under the Montreal Protocol on Substances that Deplete
the Ozone Layer (Montreal Protocol) (Sun and Ferris, 2018). The Montreal Protocol
was signed in 1987 and enforced in 1989. It aimed at phasing-out ozone-depleting sub-
stances (ODSs), such as the chlorofluorocarbons (CFCs). Some of the initial substitutes,
the hydrochlorofluorocarbons (HCFCs), were still ODSs with a smaller ozone depleting
potential and had to be replaced by other substances, including the HFCs. In a letter to
the President of the United States in June 15. 2009, the ambassadors of The Federated
States of Micronesia, Republic of Marshall Islands, Republic of Fiji Islands, and Papua
New Guinea asked Barack Obama to regulate and phase down HFCs under the Montreal
Protocol (as reported in the online newspaper Inside Climate News (Sassoon, 2009)). Since
then, discussions on the possible regulation of the HFCs under the Protocol took place at
regular policy meetings, which finally led to the agreement achieved in 2016. By November
2017, the minimum threshold for enforcement of 20 countries was achieved, and in 2018, it
was ratified by the European Union. Nevertheless, it was not until 2021 that through a
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joint statement, the U.S. and China pledged to implement it (DOS, 2021). In Appendix
1.1, I list the substances regulated under the Montreal Protocol and in Appendix 4, I
provide the phase-down schedules for HCFCs and HFCs.

3.4 Data

3.4.1 Dataset Construction

Patent Selection

The goal of my analysis is to study the impact of the signature of the Kigali Amendment
on patent value, proxied by the renewal decision and the number of forward citations. For
this purpose what is key is to have two comparable patent groups one that is affected
by the regulation and another that is not. In order to identify patents that are affected
by the regulation I will exploit the fact that patents cite chemical substances and that
the Kigali Amendment aimed at phasing down and out some particular greenhouse gases
developed as replacement solution for substances that had to be phased out under the
Montreal Protocol.

Therefore, my starting point will be to query the substances targeted by the Kigali
Amendment, which I report in Appendix 1 (UNEP, 2019). From those substances I will
only focus on the ones used as refrigerants. Substances that can be used as refrigerants are
clearly defined and listed in technical standards such as the ANSI/ASHRAE1 Standard
34-2019 (ASHRAE, 2019). I also list in Appendix 1 substances included in the refrigerant’s
standard. Furthermore, the technical standard provides an additional key information for
my analysis, namely it includes not only the refrigerating substances that were regulated
under the Kigali Amendment but also their potential replacements, i.e. alternative
substances that can also be used as refrigerants but are not regulated under the Kigali
Amendment. Combining these two sources of information will allow me to identify not
only the negative effect of the environmental regulation on the patents citing pollutants
but also the positive one on patents citing potential substitutes.

1ANSI stands for the ”American National Standards Institute” and ASHRAE refers to the ”American
Society of Heating, Refrigerating and Air-Conditioning Engineers”.
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Molecular Formula C4H2F6
Condensed Formula CF3CH = CHCF3
Chemical Name trans-1,1,1,4,4,4-hexafluoro-2-butene
Trade / Technical Name R-1336mzz(E)

Table 3.1: Main types of chemical substances names

SMILES C(= CC(F )(F )F )C(F )(F )F
Isomeric SMILES C(= C/C(F )(F )F ) C(F )(F )F
InChI InChI = 1S/C4H2F6/c5 − 3(6, 7)1 − 2 − 4(8, 9)10/h1 − 2H
InChI Key NLOLSXYRJFEOTA-UHFFFAOYSA-N

Table 3.2: Chemical Substances machine-readable names

For doing this the first and key step is to find all patents that cite certain chemicals.
In particular for the case of the Kigali Amendment, I will restrict my attention to the
substances regulated by the Montreal Protocol that have been used as refrigerants, which
includes some CFCs, HCFCs and HFCs. In order to collect all the patents mentioning
substances regulated under the Montreal Protocol, I first obtain the provided molecular
formula or condensed formula together with the technical name from the Handbook of the
Montreal Protocol (UNEP, 2019)2. In Table 3.1. I provide an overview of the main types
of chemical names that substances can have, which are also the ones that I use for my data
selection. Furthermore, a chemical substance might have different isomers that cannot be
differentiated from the list provided by the Handbook of the Montreal Protocol but that
would have been also regulated by it. Therefore, I use the molecular formula or condensed
formula provided together with the technical name to query PubChem34. I identify the

2Chemical substances can be written in several ways, e.g.: they have a chemical name (trans-
1,1,1,4,4,4-hexafluoro-2-butene), a molecular formula (C4H2F6), and might also have a condensed formula
(CF3CH = CHCF3) and a trade or technical name (R-1336mzz(E)).

3PubChem is a database built out of three different interlinked databases: ”PubChem Substance”,
”Pubchem BioAssay”, and ”PubChem Compound”. The ”PubChem Substance” database provides
information given by individual contributors on chemical substances. Then PubChem has created an
automatic process to compile the information provided by the individual contributors into a unique
database. The ”PubChem Compound” database is generated first checking the validity of the chemical
structure provided by the contributors and then normalizing the chemical representations thereby creating
a unique standardized chemical structure. Once this standardized chemical structure is created they
compute some general molecular properties such as the molecular weight and generate further chemical
identifiers such as SMILES and InChI (Kim et al., 2016).

4SMILES stands for ”Simplified Molecular-Input Line-Entry System” and was developed in 1986
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corresponding molecule in PubChem and download all patents linked through the InChI
Key5 from Patentscope. Then I also identify all possible stereoisomers6 from this molecule
and download all the patents via Patentscope. Similarly, I select the patents related to
any substance that can be used as a refrigerant using the list of possible refrigerants from
the ANSI/ASHRAE Standard 34-2019 (ASHRAE, 2019) (see Appendix 1). In Table 3.2 I
provide examples of the most common machine-readable chemical names, which I use to
differentiate between different isomers and stereoisomers.

Treatment and Control Groups

My primary data source are granted patents filed at the European Patent Office (EPO)
extracted from the database (PATSTAT) and the computed patent-specific characteristics
from the OECD patent datasets (Squicciarini et al., 2013). For my dataset construction
I will focus on European patents renewed in Germany and from some C and F IPC7

classes. I first select all European patents with renewal fees paid in Germany citing the
regulated substances (i.e. substances listed in Appendix 1.1 Annex F) that are also listed
as refrigerants in the ANSI/ASHRAE Standard 34-2019 (Appendix 1.2) and having either
a C or a F IPC class as their main class. This gives us a set of patents citing regulated
substances under the Kigali Amendment, which I define as TI and a vector of their IPC
classes that I list in Appendix 2.

by David Weininger at the U.S. Environmental Research Laboratory. It encodes stereochemistry in a
human-readable way and is used as a general-purpose chemical nomenclature (SMILES, 2020, July 10)
(O’Boyle, N.M., 2012).

5The InChI stands for ”International Chemical Identifier” and was developed in 1999 together by the
IUPAC (International Union of Pure and Applied Chemistry) and the National Institute of Standards
and Technology (NIST). The InChI aims to provide a unique identifier for chemical substances (O’Boyle,
N.M., 2012) (IUPAC, 2020, July 10). The InChI Key is a compact chemical identifier derived from the
InChI that has always only 27 characters (Heller et al., 2015).

6I identify the stereoisomers by selecting all the molecules having the same SMILES as the original
molecule identified previously but having a different Isomeric SMILES, i.e. those having isotopic and
chiral specifications (SMILES, 2020, July 10).

7IPC stands for International Patent Classification, C section includes Chemistry and Metallurgy, and
F section includes Mechanical engineering, lighting, heating, weapons, and blasting.
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TI TII

TIII : Other

Regulated

Control

Group

(IPC

Subclass)

Figure 3.1: Treatment and Control Groups

Before defining my treatment and control groups I will define three sets of patents citing
chemical substances in relation to TI , i.e. TII , and TIII , and will build my treatment and
control groups with respect to them. The set TII comprises those patents mentioning
refrigerant substances not regulated under the Montreal Protocol, i.e. those patents that
would be potentially positively affected by the Amendment’s negotiations (substances
from Appendix 1.2 that don’t appear in Appendix 1.1). Finally, the last set of patents is
TIII , which corresponds to patents mentioning substances regulated under the Montreal
Protocol that are not HFCs (i.e. substances from Appendix 1.1 others than the ones
included in Annex F). Using these three sets I define my treatment groups as: the set
T1 = TI\((TI ∩ TII) ∪ (TI ∩ TIII))8 is my treatment group of the dirty pollutants and the
set T2 = TII\((TI ∩ TII) ∪ (TII ∩ TIII)) is the treatment group of the clean substitutes.
Using these sets, I identify the control group as those patents similar to the ones affected
by the Kigali Amendment. For this I exploit patent classification and focus on patents of
sections C and F. In particular I define my control group as those patents in the 4-digits
IPC subclasses of the sections F and C of the patents in TI that are not included in my
treatment groups T1 and T2, and that don’t cite substances in TIII (see in Appendix 2,
Table 3.7 the list of IPC subclasses). Figure 3.1 shows a schematic representation of my
treatment and control groups.

Multiple Correspondence Analysis In order to have more dimensions for comparing
patents in the empirical analysis, I will first perform a multiple correspondence analysis

8The intersections are due to the fact that one patent might potentially cite substances from different
groups.
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with IPC subclass co-classification. Patents are classified into several IPC subclasses,
normally they have an “F” subclass, which is their main subclass and the remaining ones.
IPC subclass co-classification of the remaining subclasses besides the “F” subclass can
capture to some extent the technology type of the invention. Nevertheless, the main
challenge in exploiting this information is that some patents can be co-classified into
hundreds of patent subclasses. Therefore, in order to exploit that valuable information, I
will project the discrete IPC co-classification into five continuous dimensions through the
multiple correspondence analysis. In my case I project 566 co-classification dummies from
sections A, B, C, D, E, F, G, and H.

Exact Matching After the Multiple Correspondence Analysis, I perform a Coarsened
Exact Matching (CEM) using as matching variables: Application Year and IPC class
dummies (see Table 3.8 in Appendix 2 for a list of the IPC Classes used for the matching).
In order to perform the matching, I proceed in the following manner, first I do an exact
matching between the patents from T1 and T2. I build Application Year – IPC class
bins and keep only those having at least one patent from each one of the two groups.
Afterwards, in a second step, I select all the patents from my control group T0 belonging
to the Application Year – IPC class bins kept from the first step (a list of the resulting
dataset with the number of patents per bin is available in Appendix 3).

Statistic N Mean St. Dev. Min Max
Dim 1 0.008 0.080 −0.266 0.407
Dim 2 0.005 0.060 −0.543 0.237
Dim 3 −0.002 0.005 −0.033 0.026
Dim 4 0.003 0.025 −0.145 0.163
Dim 5 −0.023 0.051 −0.148 0.198
Grant Lag 2,294.896 987.860 468 5,685
Inventors 4.022 2.407 1 16
Applicants 1.097 0.316 1 4
Family Size 17.140 15.694 1 93
Sample Size 835

Table 3.3: Descriptive Statistics: Treatment Group T1
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3.4.2 Descriptive Statistics

After performing the Multiple Correspondence Analysis (MCA) and the Coarsened Exact
Matching (CEM), I will present the dataset that I will use for my empirical analyses. In
this paper I perform two empirical analyses on the impact of the environmental regulation
on patent value, one using forward citations as a proxy for patent value and the other
exploiting patent renewal, i.e. patent age, as a proxy for patent value. As a result from
the two pre-treatment methods, i.e. MCA and CEM, I have now three comparable sets
of European patents renewed in Germany, which have been applied for between 1997
and 2006. In particular, I have the set of patents that have been potentially negatively
affected by the environmental regulation, i.e. the ones that cite some pollutant (HFC), T1.
I have the set of patents citing some of the chemical substitutes T2, and the set of simi-
lar patents citing none of those types of chemical substances, which are my control group T0.

In Tables 3.3, 3.4, and 3.5 I present the descriptive statistics from the three types of
patents. Starting with a measure of the ex-ante patent value, i.e. the number of inventors,
we can see that dirty patents (T1) have more inventors than clean ones (T2) and the control
group ones (T0). This is confirmed by the analysis of the family sizes, where dirty patents
have also larger family sizes than clean ones and control group ones., i.e. also pointing out
to a higher ex-ante value. It is interesting to note that clean patents, which should be
the most novel technology have the smallest families of all. A hypothetical explanation
for this phenomenon could be that in the lack of environmental economic incentives (i.e.
environmental regulations), there are less incentives to innovate in clean technologies.
Note that this refers to the ex-ante value, i.e. the value at the patent application moment,
which corresponds to 1997 to 2006, hence several years before the Kigali Amendment.
Regarding the number of applicants and grant lags, our three sets of data are fairly similar.
Concerning the five MCA dimensions, values are not very different between the three types
of patents. Nevertheless, it is interesting to notice that extreme values for the control
group patents are much larger than the ones of T1 and T2, which could mean that the
large sample of patents from that group has a larger degree of unobserved heterogeneity,
which these five dimensions could help us control for. We will see in the empirical analyses
if this hypothesis is confirmed.

If we now proceed to a technology class comparison, as the one presented in Figure 3.2,
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Statistic N Mean St. Dev. Min Max
Dim 1 0.086 0.062 −0.168 0.413
Dim 2 −0.014 0.093 −0.614 0.486
Dim 3 −0.00000 0.008 −0.040 0.096
Dim 4 0.004 0.083 −0.874 0.431
Dim 5 0.006 0.060 −0.148 0.503
Grant Lag 2,278.194 996.228 582 6,572
Inventors 3.348 1.930 1 18
Applicants 1.077 0.312 1 4
Family Size 9.632 7.308 1 136
Sample Size 1,056

Table 3.4: Descriptive Statistics: Treatment Group T2

Statistic N Mean St. Dev. Min Max
Dim 1 −0.009 0.085 −0.329 0.762
Dim 2 −0.001 0.071 −1.003 1.178
Dim 3 0.0002 0.077 −0.063 9.540
Dim 4 −0.001 0.078 −2.968 0.664
Dim 5 0.006 0.071 −0.230 1.161
Grant Lag 2,286.081 995.016 265 6,840
Inventors 3.472 2.197 1 31
Applicants 1.100 0.381 1 13
Family Size 12.713 11.005 1 269
Sample Size 23,204

Table 3.5: Descriptive Statistics: Control Group T0
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we can see that the patent classes distributions are fairly similar for the patents from the
treatment groups T1 and T2. We can observe a gathering of patents in classes C07, C08,
and C09, which correspond to, “Organic Chemistry” (C07), “Organic Macromolecular
Compounds” (C08), and “Dyes, paints, polishes, natural resins, adhesives, and compositions
otherwise not provided for” (C09). In particular, we can see that the peak for dirty patents
T1 and control group patents is the same (C07), whereas the one for clean group patents is
C08. Furthermore, we notice a peak of control group patents in C12, which is not present
neither for T1 nor for T2, and that would provide further evidence on the unobserved
heterogeneity mentioned previously regarding technological classification. It will be
therefore essential for the analyses to control for patent classes.

Comparing the distribution of patent counts across patent cohorts (application year), we
see that all three groups have a similar increasing trend in the number of patents applied
for (Figure 3.3). Interestingly, we see that the number of patents applied for from the
dirty patents is the lowest across all and in the last three years it recovers and reaches
the level of the clean patents. On the opposite, we observe that clean patents (T2) and
control group ones follow a similar trend across all cohorts. A possible hypothesis for this
could come from the origin of the pollutants that I am analyzing. Namely, HFCs were
developed as a replacement for other substances that depleted the ozone layer. As one can
see in Appendix 1.1., the HFCs listed in Annex F have a corresponding 100-Year Global
Warming Potential but no Ozone-Depleting-Potential like CFCs from Annexes A and B
or HCFCs from Annex C. This means that as such they were seen as a clean solution to
the environmental problem that the Montreal Protocol aimed at addressing and therefore
considered as a clean technology between 1997 and 2006. Clean patents from T2, instead
were already seen as clean technologies from the beginning of the Montreal Protocol in
1987, and between 1997-2006 they were already considered to be clean. I consider patents
citing HFCs as dirty technology because they were addressed as such from 2016 onwards
under the Kigali Amendment.
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Figure 3.2: Patent counts by 3-digit IPC Class
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Figure 3.3: Patent counts by cohort year

3.5 Empirical Analysis on the Impact of the Kigali
Amendment on Patent Value

3.5.1 Forward Citations Evidence: Panel Event Study

As a first step I use a panel event study in order to analyze the impact of the Kigali
Amendment on patent value (proxied by yearly forward citations). In particular I do
two independent studies taking as the baseline year 2008. In the first one I compare the
patents from the substitutes T2 with those patents that cannot be regulated (T0). While
in the second study I compare the patents potentially affected negatively by the future
regulation, i.e. those from T1, to the patents from the control group (T0). I implement the
panel event study using Clarke and Tapia-Schythe (2021).
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Evidence on Clean Technologies In this first panel event study of clean technologies
(T2) compared to the control group ones (T0) I include 10 lags, 5 leads, and control for
patent validity, i.e. if the patent is still active or not, the five MCA dimensions, grant
lag, number of applicants, number of inventors, class fixed effects, application year fixed
effects, and year fixed effects.
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Figure 3.4: Panel Event Study Evidence of the Impact of the Kigali Amendment on Clean
Technologies (baseline: 2008)

yit = α +
10∑

j=1
βj(Lag j)it +

6∑
k=2

βk(Lead k)it + λt + X ′
itΓ + εit (3.1)

The estimates from the regression are shown in Figure 3.4 and allow us to see that the
negotiations seem to have had a positive significant effect on forward citations, i.e. on
patent value, and that this effect has been increasing over time. The exact results from
this estimation can be found in the Table 3.10 of Appendix 3.

If we scrutinize the estimation results, one can see that we find all ex-ante control
variables significant at 0.1 percent except two of them. The grant lag is not significant,
which is in line with the descriptive statistics findings as the values across the three groups
were similar. Similarly, Dim 3 from the MCA is not significant, which coincides with
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the descriptive statistics’ observations. In the previous sections, we noticed that extreme
values for some dimensions of the MCA were very different between the three groups, and
Dim 3 was the variable where this difference appeared to be clearer. Analyzing the leads
and the lags, I don’t find any lead significant, which would point towards no difference
in the forward citations pattern before the event. Conversely I find a positive significant
impact (at a 5 percent level) on the lags starting at the second lag, which from the fourth
lag onwards becomes significant at a 1 percentage level. It seems, therefore, that clean
technologies’ patents gained in value from 2010 onwards, with the largest effect in 2016,
which coincides with the year of the Amendment.

Evidence on Dirty Technologies The second panel event study compares the patents
expected to be affected negatively by the Kigali Amendment (T1) to the control group
patents (T0). The baseline, the control variables, as well as the number of leads and lags
are the same as for the first panel event study.
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Figure 3.5: Panel Event Study Evidence of the Impact of the Kigali Amendment on Dirty
Technologies (baseline: 2008)
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yit = α +
10∑

j=1
βj(Lag j)it +

6∑
k=2

βk(Lead k)it + λt + X ′
itΓ + εit (3.2)

The results from the second panel event study are very similar to the ones from the clean
technologies, in particular regarding the ex-ante controls. I find that the same controls
as in the first panel event study are significant at the same percentage level, and that
they have the same signs, i.e. Dim 4, Dim 5, and the number of applicants are negative,
whereas the remaining ones are positive. A more interesting result is, however, the analysis
of the leads and lags. As in the first study I find no effect of the leads, but now this can
be also extended to the lags. Only the last two lags are almost negatively significant at a
5 percent, but still fail to reject the null hypothesis.

Summing up my findings, the panel event study has provided first evidence that the
Kigali Amendment seems to have positively affected the value of clean technologies from
2010 onwards with a peak in 2016. This would be in line with the rationale of the impact
of an international environmental agreement, which would have a positive effect on clean
technologies. Conversely, evidence on dirty technologies remains unclear although they
seem to take a negative trend over time. Finally, the proposed set of controls, except for
the grant lag, seem to be relevant in capturing the otherwise unobserved heterogeneity in
patent value, including most of the dimensions from the MCA.

3.5.2 Patent Renewal Evidence: Nonparametric Duration Analysis

Duration Analysis Framework

From the previous section we have seen that the Kigali Amendment seems to have generated
a positive impact on the patent value (proxied by forward citations) of clean technologies,
whereas evidence on its impact on the value of dirty technologies remains inconclusive.
In this section, I will try to shed further light on this by analyzing another dimension
capturing patent value, i.e. patent renewal. Once a patent is granted, patent holders in
Europe need to pay an annual fee in order to keep their patent rights. Since it is costly for
the innovator to keep the rights on the invention, it follows that keeping a patent is a proxy
for the value of private patent rights. Given this setting a natural approach to analyze a
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renewal decision is a duration analysis. In particular, intuitively we would be interested
in the average treatment effects of the policy, i.e. the Kigali Amendment, on the hazard
rate at the treatment moment. Nevertheless, this is not a straightforward effect to analyze
without further assumptions, since depending on the framework of analysis subpopulations
might vary after treatment between comparison groups biasing our estimates. Furthermore,
and as pointed out by the panel event study, the effect might be diluted, i.e. it might not
directly happen at the moment of the change in policy regime but could instead be delayed.
If this is the case of the policy that we are studying, then the moment (treatment year) of
the policy analysis might drive the conclusions from our results, hence as econometricians
we would be very much interested in capturing the fate of the patents over time after
the regulatory change. In this regard, van den Bergh et al. (2020) have developed a
nonparametric approach that overcomes the two mentioned challenges if some changes are
done to apply it into a patent framework. In this section I summarize the main results,
assumptions and notations from the work of van den Bergh et al.(2020), explain how I
adapt their model to patent renewal data, and present the results of my analysis.

Notation Van den Bergh et al.(2020) focus in their paper on analyzing two magnitudes
of the impact of a policy on duration data. Namely, the impact of a policy at some t0

duration on the hazard rate and the impact on the conditional survival probability over
some period [t0, t1). They focus specially on the causal impact of a policy that starts at
some time s ∈ R+ = [0; ∞) after inflow or is not treated at all, i.e. s = ∞.

Definitions They define A = {R+} ∪ {∞}, and to each treatment s ∈ A corresponds a
random variable T (s) ≥ 0, that corresponds to the potential duration outcome if it gets
treatment s. In terms of interpretation, s can be understood as the individual elapsed
duration at which the unit is exposed, which in my case would correspond to the patent
age. They define two potential treatments s, s′ ∈ A with the corresponding potential
outcomes distributions T (s) and T (s′). The differences between the two potential outcome
distributions would correspond to the treatment effects. In their paper they focus on the
average effects of the treatments on the individual exit rates (i.e. on the hazard rates) and
on the individual conditional hazard probabilities.

They define the distribution function of the potential outcome T (s), FT (s), which is a
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function of the time t, the unit inflow. Then they define the integrated hazard rate ΘT (s),
as ΘT (s)(t) = −log(1 − FT (s)(t)), and the corresponding hazard rate θT (s)

9. With this they
define two main types of treatment effects that we will analyze:
The individual additive effect on the hazard rate at t:

θT (s′)(t) − θT (s)(t) for t ≥ 0 s′, s ∈ A (3.3)

The individual multiplicative effect on the hazard rate at t:

θT (s′)(t)
θT (s)(t)

for t ≥ 0 s′, s ∈ A (3.4)

Before-after Data Framework Bias As they argue, in the literature, the main approach
to a duration treatment effect analysis has been a before-after data framework (i.e. taking
only cohorts before the policy introduction and after the policy introduction), with X as
the observable characteristics and V as the unobservable ones. Such a framework would
lead to the following treatment effects10:

θT (0)(t|X, V ) − θT (∞)(t|X, V ) (3.5)

Below I show a Lexis Diagram of this framework (Figure 3.6), with c1, …, cN being the
cohorts from their inflow moment up to the last surviving specimen and τ ∗ the moment of
the policy change.:

9In the interest of clarity this does not include all the formal derivation steps. As mentioned at the
beginning of the section, it aims only at providing the main concepts to help the reader understand the
work performed in this paper.

10∞ stands for never treated.
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Elapsed duration t

calendar time τc1 c2 c3 c4 cNτ ∗

Figure 3.6: Lexis Diagram Before-after Data Framework

Their motivation for moving from a before-after framework to a setting with ongoing
spells is that such a framework leads to biased results due to the changing composition
of the comparison subpopulation in unobserved characteristics V . Therefore the average
treatment effects of interest are not nonparametrically identified.

Ongoing Spells Data Framework The advantage of a data framework with ongoing
spells at the treatment moment is that it allows us to take into account the changing
composition of the surviving subpopulations for the estimation. By defining a new concept
of average treatment effects in this framework van den Bergh et al. (2020) identify
nonparametrically the instantaneous average treatment effects and the average treatment
effects on the conditional survival probabilities, which are the two interesting magnitudes
for my work, in particular the second one. In my work, I perform two small modifications
of this framework to adapt their model to patent data. Figure 3.7 shows an example of an
ongoing spells data framework.
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Elapsed duration t

calendar time τc1 c2 c3 cN τ ∗

Figure 3.7: Lexis Diagram Ongoing Spells Data Framework

Before explaining the two modifications that I do to their analysis, I will remember the
assumptions upon which their results and mine build, which are essential for interpretation.

Assumption 1 (Assignment)

S ⊥⊥ T (s)|(X, V ) and S ⊥⊥ V |X (3.6)

This assumption is similar to the conditional independence assumption (CIA) but ad-
ditionally conditioning on the unobservables V. It allows for the inflow cohorts to have
systematically different distributions of (X, V ). The second part of the assumption means
that two different cohorts would have identical compositions of V |X.

Assumption 2 (No Anticipation)
For all s ∈ (0, ∞) and for all t ≤ s and all X, V :

ΘT (s)(t|X, V ) = ΘT (∞)(t|X, V ) (3.7)

In their paper they assume that agents do not anticipate the policy reform (treatment),
i.e. that the agents’ behavior does not depend on the time remaining until treatment.
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Assumption 3 (Multiplicative Unobserved Heterogeneity)

θT (s)(t|X, V ) = θ0
T (s)(t|X, V ) (3.8)

It means that the unobserved characteristics affect all hazard rates in the same manner,
i.e. that the individual multiplicative effects on the hazard rate at t are homogeneous
across units with different V .
In Figure 3.8 I present a direct application of the ongoing framework applied to my
patent analysis but without further modifications implemented yet, where τ rc is the right
censoring time, 2018, and τ ∗ the moment of the policy change, 2008. The reason why I
consider the moment of the policy change to be in 2008 and not 2016 (the year of the
signature of the Kigali Amendment) is because since firms do participate in the policy
meetings of the Montreal Protocol, there is a certain likelihood that some of them might
have anticipated that event or an event of that sort some years before 2016. Since non
anticipation of the policy is a key assumption for the implementation of the van den Bergh
et al. (2020) approach, I decided to consider that the regulatory change happened in 2008
and to focus on the average treatment effects on the conditional survival probabilities,
i.e. to consider the possible shocks from 2008 onwards as a delay effect of environmental
policies affecting technologies of two different nature. The argument for considering that
those technologies were considered of different nature (type) already in 2008 is supported
by the forward citations analysis, which finds that the clean patents were significantly
positively affected by the ongoing policy discussions, whereas the dirty ones were not
significantly affected but slightly taking a negative trend in value.
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Patent age a

calendar time τ1997 1998 1999 2006 τ ∗ = 2008 τ rc = 2018

Figure 3.8: Lexis Diagram Ongoing Spells (patent framework in absolute years with right
censoring)

The new average treatment effects that they define are the instantaneous causal effect of
the treatment and the conditional survival probabilities. The instantaneous causal effect
of the treatment, at the moment of the policy exposure is:

ATTS(s′, s, t|X) = E[θT (s′)(t|X, V ) − θT (s)(t|X, V )|X, T (s′) ≥ t] with s′ ≤ t, s (3.9)

They define the average treatment effects on conditional survival probabilities as:

ATTS(s′, s, t|X) = E[Pr(T (s′) > t + a|T (s′) ≥ t, X, V )

−Pr(T (s) > t + a|T (s) ≥ t, X, V )|X, T (s′) ≥ t] with s′ ≤ s and a > 0
(3.10)
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Patent age a

calendar time τ1997 1998 1999 2006

τ0

τ ∗ = 2008 τ rc = 2018

Figure 3.9: Lexis Diagram Ongoing Spells (patent framework in absolute years with left
and right censoring)

They use the second-order boundary kernel estimator of Müller and Wang (1999) to
estimate nonparametrically these effects. The aim of my duration analysis is to estimate
those effects with the presented patent data. Nevertheless in order to be able to estimate
them I need to perform two transformations of the data. The original data framework
that I have is presented in Figure 3.8, where the first cohort is 1997, the last one is 2006,
treatment year corresponds to 2008 and there is a right censoring in 2018. In order to be
able to use their framework I need to transform first all my cohorts into a single cohort
and aggregate them. This means that I will only keep and exploit renewal data to the
right of the dashed line τ0, as presented in Figure 3.9. For this, I will first drop all obsolete
patents from my treatment and control groups until 2006 and recompute the patent age
of the surviving ones from 2006 onwards such that 2006 becomes age 1 for all surviving
patents from all cohorts. By doing this I aggregate my data to one single cohort but of
course I add cohort dummies for the cohorts of origin. This results in the data framework
presented in Figure 3.10 where the starting age is 1 at τ0 = 2006, the treated patents
receive treatment in τ ∗ = 3, i.e. at patent age 3 that corresponds to year 2008, and we
have a right censoring at age τ rc = 13, which corresponds to 2018.
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Patent age a

Patent age a1

τ0 = 2006

τ ∗ = 3 τ rc = 13

Figure 3.10: Lexis Diagram Ongoing Spells (patent framework in patent ages with left
censoring, right censoring, and cross-cohorts aggregation)

In my framework I estimate now the instantaneous causal effect of the treatment at
τ ∗ = 3, i.e. in 2008 and the conditional survival probabilities from 2008 up to 2018. Since
my regulation, the Kigali Amendment to the Montreat Protocol was signed in 2016, what
is relevant for my analysis are the conditional survival probabilities (both the additive and
multiplicative ones11). The reason for this is that through Assumption 2, I am assuming
that the agents did not anticipate the Kigali Amendment before 2008, which is a reasonable
assumption. Then, through the computation of the conditional survival probabilities from
2008 onwards, I aim at capturing any difference between the treatment and control groups
from 2008 onwards, which could be interpreted as a delay effect of a treatment in 2008.
The shock that I present in the next sections should be therefore interpreted bearing this
in mind and as a delay effect from a difference in the nature of the technologies between
treatment and control groups that could have affected patent value from 2008 onwards
but not before. Therefore the formula of the instantaneous causal effect of the treatment
at the moment of the policy exposure is the following (with τ ∗ = 3):

ATTS(τ ∗, ∞, τ ∗|X) = E[θT (τ∗)(τ ∗|X, V )−θT (∞)(τ ∗|X, V )|X, T (τ ∗) ≥ τ ∗] with τ ∗ ≤ τ ∗, ∞
(3.11)

The average treatment effects on conditional survival probabilities are the following

11For the formulas and derivation of the multiplicative treatment effects refer to van den Bergh et al.
(2020).

57



3 International Environmental Agreements and the Timing and Direction of
Technological Change: Evidence from the Kigali Amendment

(with τ ∗ = 3 and a being the newly defined patent age):

ATTS(τ ∗, ∞, τ ∗|X) = E[Pr(T (τ ∗) > τ ∗ + a|T (τ ∗) ≥ τ ∗, X, V )

−Pr(T (∞) > τ ∗ + a|T (∞) ≥ τ ∗, X, V )|X, T (τ ∗) ≥ τ ∗] with τ ∗ ≤ ∞ and a > 0
(3.12)

Nonparametric Evidence

In this section I will present evidence stemming from three nonparametric duration analy-
ses. The first two on the comparison of clean and dirty patents respectively against the
control group, and the third one comparing renewal of dirty patents against renewal of
clean technologies. For all analyses I use the following control variables, i.e., the five MCA
dimensions, number of inventors, grant lag, number of applicants, family size, patent class
by application year dummy, and cohort dummies.
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Figure 3.11: Nonparametric Duration Evidence (2008-2018): Clean Patents VS Control
Group

Evidence on Clean Technologies In Figure 3.11 we can see the results from the
nonparametric duration model, in particular the graphic on the left side represents the

58



3 International Environmental Agreements and the Timing and Direction of
Technological Change: Evidence from the Kigali Amendment

difference in local hazard rates and the right one their ratio. In all graphics (including
Figures 3.12 and 3.13) the first point drawn corresponds to the instantaneous average
treatment effect of the policy respectively in differences (left side) or ratios (right side).
As mentioned in the previous subsection, we are not interested on the instantaneous
average treatment effect, which happened in 2008, but on the average treatment effects
on the conditional survival probabilities, which are the points drawn from 2008 onwards.
Generally, the graphics should be interpreted in the following way, i.e., we are interested
into significant differences either from 0, for the differences in local hazard rates (left
graphic), or from 1 for the ratios (right graphic). It is important to notice that if in any
graphic we have a positive significant difference, i.e. point estimate and 95% confidence
intervals are above 0 (for differences) or above 1 (for ratios), then that point can be
interpreted as a negative significant shock but from that moment onwards any further
difference cannot be interpreted anymore. The reason for this is that we are losing subjects
(patents) from our treatment group and therefore any shock afterwards could not be
interpreted as causal independently of the nature of the policy.

For the causal interpretations of the results shown in this graphic and their numerical
counterparts in Tables 3.12 and 3.13 of Appendix 3, it is essential to bear in mind the
regulation that we are studying and the evidence regarding the impact of this regulation
on dirty technologies. Namely, since we expect the impact of the Kigali Amendment to be
positive on clean technologies, we would be therefore prone to interpret the first positive
shocks observed in the graphics of Figure 3.11 (i.e., either below 0 or below 1) as the
causal positive impact of the regulation on clean technologies. Nevertheless, both the first
(2009-2010) and the second (2012-2013-2014) shocks are relatively early (the peak of the
second shock is in 2013) to attribute them to the Kigali Amendment. In order to shed
further light on this, I will later on analyze the behavior of dirty patents versus the control
group (Figure 3.12) and also compare renewal of dirty versus clean patents (clean patents
as control). The reason for doing these two further comparisons is that if we see that dirty
patents also receive these two positive shocks then it means that they are likely to be
related to the fact that these two types of technologies were substitutes to the HCFCs
(previously regulated under the Montreal Protocol) and not due to the Kigali Amendment.
This is confirmed by the HCFCs phase-down schedules presented in Appendix 4, where we
can see the phase-down consumption (Figure 3.15) and production (Figure 3.16) schedules
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for HCFCs corresponding to the Non-Article 5 and Article 5 countries12. Interestingly, we
observe that on January 1, 2010 there was a 75 percent reduction in both consumption and
production of HCFCs for the Non-Article 5 parties, which would explain the positive shocks
observed for both types of substances. Furthermore, on January 1, 2013 the production
and consumption levels for HCFCs were frozen to the baseline of 2009-2010 for Article 5
parties and in January 1, 2015 they were reduced an additional 10 percent. These two
measures concerning the HCFCs could explain why we observe positive shocks between
2012 and 2015 for the clean substances and the HFCs. More interestingly, we can see
a positive shock in the differences’ graphic of Figure 3.11 on the clean technologies in
2018. This significant positive shock on patent value is likely to be attributed to the Kigali
Amendment, which happened in 2016, depending on the outcome of the comparisons just
mentioned. In any case, since the shocks that we are observing are positive, we are not
losing patents before 2018, so the interpretation of the shock of 2018 could still be causal.
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Figure 3.12: Nonparametric Duration Evidence (2008-2018): Dirty Patents VS Control
Group

12The Montreal Protocol defined two types of countries: the so-called Non-Article 5 parties and the
Article 5 parties, where Article 5 countries are defined as “Any Party that is a developing country and
whose annual calculated level of consumption of the controlled substances in Annex A is less than 0.3
kilograms per capita on the date of the entry into force of the Protocol […].”(UNEP, 2019).
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Figure 3.13: Nonparametric Duration Evidence (2008-2018): Dirty Patents VS Clean
Technologies

Evidence on Dirty Technologies Turning to the evidence on dirty patents, I find two
positive significant shocks. The first in 2009, and the second in 2012, 2013, 2014, and 2015,
with a peak in 2012. Given that we would expect a negative shock on dirty technologies
due to the Kigali Amendment, these shocks would be cumbersome in lack of a context.
Now considering the framework of the Montreal Protocol, where HFCs were thought as
replacement to the HCFCs, then it makes sense to observe a positive significant shock
in their patent value when the market considered them to be clean. Furthermore, this
would be in line with the evidence found on the clean substances, since as both types were
substitutes for the HCFCs, both should have received these shocks in their patent value.
This evidence stemming from the dirty patents helps us better understand the results from
the clean patents’ analysis. From the clean patents’ analysis, we can now say that the
clean shock received in 2018 can be causally attributed to the Kigali Amendment, since
we do not observe such a shock in Figure 3.12 (numeric estimates can be found in Tables
3.15 and 3.16). Furthermore, regarding the results on the dirty technologies, we observe
an almost significant negative shock in ratios (right graphic of Figure 3.12) in 2016, which
we could guess that it could be attributed to the Kigali Amendment. Note, that in Figure
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3.11 we do not see this shock as clearly and the variation that we observe is certainly very
far from being significant.

Evidence on Dirty VS Clean Technologies Finally, I will compare the fate of dirty
patents to the one of clean technologies. The reason for doing this is to try to test to some
extent the robustness of the previous results. In Figure 3.13 we can see the nonparametric
local hazard rates in differences and ratios. There are two things to notice on these graphics,
first that in both of them we observe a positive shock in 2012, which corresponds to the
peak of the positive shock on the dirty technologies previously mentioned. This confirms
our rationale for considering the HFCs as clean substitutes of the HCFCs. Furthermore,
a possible interpretation of this shock could be that they were the most cost efficient
solution to the HCFCs’ replacement. This would justify the need for a latter environmental
regulation on the HFCs, since in the lack of this regulation the cleaner alternatives would
be costlier, hence not the preferred solution. The second interesting point from Figure
3.13 comes from the widening of the confidence intervals of the differences’ graphic. This
would further point towards two shocks in opposite directions starting from 2016 onwards,
which would confirm the almost significant negative shock on dirty patents in 2016 and
the positive significant shock (at a 5 percent level) on clean technologies in 2018.

Before concluding this chapter, I would like to note that I have limited my analyses
until 2018. The reason for this is that my renewal information ends in 2020 and evidence
for 2019 is not clear, see Appendix 5. As it is difficult to assess whether the reason
of the unclear results for 2019 (large confidence intervals for the last point estimate)
stems from effects going into opposite directions or problems in estimating the last data
point, I will extend this analysis with additional renewal years as soon as those are available.

3.6 Conclusion
In this work, I study the impact of the Kigali Amendment to the Montreal Protocol on
the timing and direction of technological change. To do this, I construct a unique dataset
combining patents mentioning substances regulated under the Kigali Amendment and
under the Montreal Protocol, and patents citing substances that could potentially replace
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them in refrigeration applications. Furthermore, I adapt the nonparametric duration
model of van den Bergh et al. (2020) to the patent data framework, which allows me
to study new average treatment effects, such as the average treatment effects on the
conditional survival probabilities of clean and dirty patents affected by the Amendment
to the Montreal Protocol. This allows me to explore a new dimension in the direction of
technological change and the environment, that has been only studied indirectly so far in
the literature, i.e., the timing of technological change. I find that the IEA first affects dirty
patents negatively, with an almost significant negative effect (at a 5 percent level), and
only later positively clean patents. This delay in the effect of the environmental regulation
on the direction of technological change would be in line with the rationale suggested by
Dechezleprêtre and Hémous (2022), claiming that dirty innovations would respond more
to short-run market changes whereas clean innovations would depend more of long-run
market incentives.

My work adds to the literature in several manners. First, I contribute to the literature
on patent valuation developing a new approach to study the impact of a regulation on
patent value proxied by patent renewal adapting the model of van den Bergh et al. (2020)
to patent data. Second, I contribute to the innovation literature by constructing a unique
dataset that includes patents on technologies that substitute each other. Third, I contribute
to the literature on directed technological change and the environment by exploring the
timing dimension for clean and dirty innovations, which was still scarcely studied. Finally,
I contribute to the literature on IEAs and the direction of technological change by studying
the impact of the Kigali Amendment on patent value.
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3.7 Appendix 1: Lists of Substances

3.7.1 Appendix 1.1: Substances Regulated under the Kigali
Amendment

Figure 3.14: Source: ”Handbook for the Montreal Protocol on Substances that Deplete
the Ozone Layer” Annexes, Section 1.1., latest version available here (UNEP,
2019).
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3.7.2 Appendix 1.2: Substances in the ASHRAE Standard

ASHRAE Refrigerant Designations: tables from the ANSI/ASHRAE 34-2019 ”Designation
and Safety Classification of Refrigerants” Standard, latest version available here (ASHRAE,
2019).

Table 3.6: ASHRAE Refrigerant Designations: tables separated by chemical family
Number Chemical Name Chemical Formula

Methane Series
11 trichlorofluoromethane CCl3F
12 dichlorodifluoromethane CCl2F2
12B1 bromochlorodifluoromethane CBrClF2
13 chlorotrifluoromethane CClF3
13B1 bromotrifluoromethane CBrF3
13I1 trifluoroiodomethane CF3I
14e tetrafluoromethane (carbon tetrafluoride) CF4
21 dichlorofluoromethane CHCl2F
22 chlorodifluoromethane CHClF2
23 trifluoromethane CHF3
30 dichloromethane (methylene chloride) CH2Cl2
31 chlorofluoromethane CH2ClF
32 difluoromethane (methylene fluoride) CH2F2
40 chloromethane (methyl chloride) CH3Cl
41 fluoromethane (methyl fluoride) CH3F
50 methane CH4
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Number Chemical Name Chemical Formula
Ethane Series

113 1,1,2-trichloro-1,2,2-trifluoroethane CCl2FCClF2
114 1,2-dichloro-1,1,2,2-tetrafluoromethane CClF2CClF2
115 chloropentafluoroethane CClF2CF3
116 hexafluoroethane CF3CF3
123 2,2-dichloro-1,1,1-trifluoroethane CHCl2CF3
124 2-chloro-1,1,1,2-tetrafluoroethane CHClFCF3
125 pentafluoroethane CHF2CF3
134a 1,1,1,2-tetrafluoroethane CH2FCF3
141b 1,1-dichloro-1-fluoroethane CH3CCl2F
142b 1-chloro-1,1-difluoroethane CH3CClF2
143a 1,1,1-trifluoroethane CH3CF3
152a 1,1-difluoroethane CH3CHF2
170 ethane CH3CH3

Number Chemical Name Chemical Formula
Ethers

E170 Methoxymethane (dimethyl ether) CH3OCH3

Number Chemical Name Chemical Formula
Propane

218 octafluoropropane CF3CF2CF3
227ea 1,1,1,2,3,3,3-heptafluoropropane CF3CHFCF3
236fa 1,1,1,3,3,3-hexafluoropropane CF3CH2CF3
245fa 1,1,1,3,3-pentafluoropropane CHF2CH2CF3
290 propane CH3CH2CH3

Number Chemical Name Chemical Formula
Cyclic Organic Compounds

C318 octafluorocyclobutane -(CF2)4-
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Miscellaneous Organic Compounds
Number Chemical Name Chemical Formula
hydrocarbons
600 butane CH3CH2CH2CH3 A3
600a 2-methylpropane (isobutane) CH(CH3)2CH3 A3
601 pentane CH3CH2CH2CH2CH3
601a 2-methylbutane (isopentane) CH(CH3)2CH2CH3
oxygen compounds
610 ethoxyethane (ethyl ether) CH3CH2OCH2CH3
611 methyl formate HCOOCH3
sulfur compounds
620 (Reserved for future assignment)

Number Chemical Name Chemical Formula
Nitrogen Compounds

630 methanamine (methyl amine) CH3NH2
631 ethanamine (ethyl amine) CH3CH2(NH2)

Number Chemical Name Chemical Formula
Inorganic Compounds

702 hydrogen H2
704 helium He
717 ammonia NH3
718 water H2O
720 neon Ne
728 nitrogen N2
732 oxygen O2
740 argon Ar
744 carbon dioxide CO2
744A nitrous oxide N2O
764 sulfur dioxide SO2
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Number Chemical Name Chemical Formula
Unsaturated Organic Compounds

1130(E) trans-1,2-dichloroethene CHCl=CHCl
R-1132a 1,1-difluoroethylene CF2=CH2
1150 ethene (ethylene) CH2=CH2
R-1224yd(Z) (Z)-1-chloro-2,3,3,3-tetrafluoropropene CF3CF=CHCl
1233zd(E) trans-1-chloro-3,3,3-trifluoro-1-propene CF3CH=CHCl
1234yf 2,3,3,3-tetrafluoro-1-propene CF3CF=CH2
1234ze(E) trans-1,3,3,3-tetrafluoro-1-propene CF3CH=CHF
1270 propene (propylene) CH3CH=CH2
1336mzz(E) trans-1,1,1,4,4,4-hexafluoro-2-butene CF3CH=CHCF3
1336mzz(Z) cis-1,1,1,4,4,4-hexaflouro-2-butene CF3CHCHCF3
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3.8 Appendix 2: Patent Classes

Section IPC Subclasses

C

C09K, C08G, C08L, C11D, C07C, C08J, C07D, C07K, C07F, C10M, C02F, C22C, C12N, C08K

C10N, C07J, C08F, C25D, C09D, C07H, C23C, C06B, C01B, C12Q, C23F, C04B, C12P, C09B

C12M, C07B, C01F, C03C,C09J, C23G

F F01K, F25B, F04B, F04C, F28F, F16N, F16D, F16K, F17C

Table 3.7: C and F IPC Subclasses from the Substances Regulated under the Kigali
Amendment

Section IPC Classes

C C01, C02, C03, C04, C06, C07, C08, C09, C10, C11, C12, C22, C23, C25

F F01, F04, F16, F17, F25, F28

Table 3.8: C and F IPC Classes for the Coarsened Exact Matching
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3.9 Appendix 3: Descriptive Statistics and Estimates

3.9.1 Results from the Exact Matching

App. year IPC Control Group (T0) Dirty (T1) Clean (T2)
1997 C07 476 17 10
1997 C08 301 17 39
1997 C09 142 6 7
1997 C23 60 4 3
1997 F17 9 2 1
1997 F25 20 3 1
1998 C01 42 1 5
1998 C07 539 14 4
1998 C08 266 12 38
1998 C09 128 2 7
1999 C07 606 19 5
1999 C08 363 16 93
1999 C09 155 3 7
1999 C12 925 8 1
1999 C23 84 2 1
1999 F04 118 1 2
1999 F17 19 1 2
1999 F25 36 5 3
2000 C04 107 1 1
2000 C07 762 18 10
2000 C08 427 15 65
2000 C09 184 4 13
2000 C10 20 7 1
2000 F25 51 6 2
2001 C01 62 1 5
2001 C07 933 36 12
2001 C08 501 33 76
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App. year IPC Control Group (T0) Dirty (T1) Clean (T2)
2001 C11 70 2 1
2001 C12 992 5 1
2001 C23 156 5 4
2001 F04 222 2 1
2001 F25 69 3 1
2002 C07 1069 41 10
2002 C08 513 31 79
2002 C09 242 5 25
2002 C23 171 1 6
2002 F04 231 1 1
2003 C07 1253 47 7
2003 C08 565 38 92
2003 C09 317 10 22
2003 C10 13 1 4
2003 C12 980 5 2
2003 C23 208 4 6
2004 C01 61 3 4
2004 C07 1284 68 9
2004 C08 646 40 84
2004 C09 352 8 13
2004 C10 15 2 7
2004 C23 225 1 5
2004 F25 90 1 1
2005 C01 67 2 2
2005 C07 1287 67 8
2005 C08 591 43 104
2005 C09 378 16 15
2005 C10 20 2 4
2005 C12 977 1 2
2005 C23 213 1 5
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App. year IPC Control Group (T0) Dirty (T1) Clean (T2)
2006 C07 1303 70 6
2006 C08 666 41 89
2006 C09 379 10 13
2006 C10 23 1 4
2006 C23 221 3 5

Table 3.9: Result from the Exact Matching
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3.9.2 Estimates Panel Event Study

Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Dim1 3.178*** 0.434 7.317 0.000 2.327 4.030
Dim2 3.591*** 0.361 9.953 0.000 2.883 4.298
Dim3 0.829 0.485 1.709 0.087 -0.122 1.779
Dim4 -2.407*** 0.325 -7.412 0.000 -3.044 -1.771
Dim5 -2.871*** 0.429 -6.689 0.000 -3.712 -2.030

Grant Lag 0.000 0.000 0.287 0.774 -0.000 0.000
Applicants -0.362*** 0.093 -3.894 0.000 -0.544 -0.180
Inventors 0.272*** 0.016 17.157 0.000 0.241 0.303

Family Size 0.042*** 0.003 14.875 0.000 0.036 0.048
Active 0.599*** 0.078 7.657 0.000 0.446 0.752

App. year * 0.018*** 0.002 11.795 0.000 0.015 0.021
IPC Class FE
1998.year 0.000 . . . 0.000 0.000
1999.year 0.363 1.700 0.213 0.831 -2.969 3.695
2000.year 0.761 1.589 0.479 0.632 -2.354 3.875
2001.year 1.154 1.547 0.746 0.456 -1.878 4.185
2002.year 1.510 1.529 0.987 0.324 -1.488 4.507
2003.year 1.858 1.520 1.222 0.222 -1.122 4.838
2004.year 2.164 1.516 1.428 0.153 -0.806 5.135
2005.year 2.362 1.512 1.562 0.118 -0.602 5.326
2006.year 2.583 1.510 1.710 0.087 -0.377 5.543
2007.year 2.835 1.508 1.880 0.060 -0.120 5.791
2008.year 3.037* 1.507 2.015 0.044 0.082 5.991
2009.year 3.362* 1.507 2.231 0.026 0.409 6.315
2010.year 3.756* 1.506 2.494 0.013 0.805 6.708
2011.year 4.164** 1.506 2.765 0.006 1.213 7.115
2012.year 4.587** 1.505 3.047 0.002 1.637 7.538
2013.year 4.989*** 1.505 3.315 0.001 2.039 7.939
2014.year 5.332*** 1.505 3.543 0.000 2.382 8.282
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
2015.year 5.629*** 1.505 3.740 0.000 2.679 8.579
2016.year 5.889*** 1.505 3.912 0.000 2.939 8.839
2017.year 6.053*** 1.505 4.021 0.000 3.103 9.003
Lead5 0.026 1.033 0.025 0.980 -1.999 2.051
Lead4 0.217 0.865 0.251 0.802 -1.479 1.912
Lead3 0.339 0.737 0.460 0.646 -1.106 1.784
Lead2 0.444 0.647 0.686 0.493 -0.825 1.712
Lead1 0.460 0.583 0.788 0.431 -0.684 1.603
Lag1 0.814 0.498 1.633 0.103 -0.163 1.791
Lag2 1.006* 0.473 2.129 0.033 0.080 1.933
Lag3 1.137* 0.456 2.491 0.013 0.242 2.031
Lag4 1.222** 0.444 2.754 0.006 0.352 2.091
Lag5 1.160** 0.429 2.705 0.007 0.319 2.000
Lag6 1.227** 0.422 2.906 0.004 0.400 2.055
Lag7 1.224** 0.414 2.957 0.003 0.413 2.034
Lag8 1.255** 0.409 3.067 0.002 0.453 2.057
Lag9 1.162** 0.404 2.875 0.004 0.370 1.954
Lag10 1.161** 0.403 2.880 0.004 0.371 1.951
_cons -1.359 1.510 -0.900 0.368 -4.317 1.600

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Table 3.10: Panel Event Study Estimates of Clean Technologies
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Dim1 2.103*** 0.434 4.840 0.000 1.251 2.954
Dim2 3.180*** 0.366 8.683 0.000 2.462 3.898
Dim3 0.785 0.482 1.627 0.104 -0.160 1.729
Dim4 -2.676*** 0.332 -8.058 0.000 -3.327 -2.025
Dim5 -3.170*** 0.431 -7.353 0.000 -4.015 -2.325

Grant Lag -0.000 0.000 -0.607 0.544 -0.000 0.000
Applicants -0.514*** 0.094 -5.443 0.000 -0.699 -0.329
Inventors 0.253*** 0.016 15.813 0.000 0.221 0.284

Family Size 0.032*** 0.003 11.694 0.000 0.027 0.037
Active 0.626*** 0.079 7.929 0.000 0.471 0.780

App. year * 0.017*** 0.002 10.920 0.000 0.014 0.020
IPC Class FE
1998.year 0.000 . . . 0.000 0.000
1999.year 0.375 1.690 0.222 0.824 -2.937 3.688
2000.year 0.779 1.580 0.493 0.622 -2.318 3.875
2001.year 1.165 1.538 0.757 0.449 -1.850 4.179
2002.year 1.524 1.521 1.003 0.316 -1.456 4.505
2003.year 1.871 1.512 1.237 0.216 -1.092 4.834
2004.year 2.174 1.507 1.443 0.149 -0.779 5.127
2005.year 2.372 1.504 1.577 0.115 -0.576 5.319
2006.year 2.592 1.502 1.726 0.084 -0.351 5.535
2007.year 2.769 1.500 1.846 0.065 -0.171 5.708
2008.year 3.044* 1.499 2.031 0.042 0.106 5.981
2009.year 3.368* 1.498 2.248 0.025 0.432 6.304
2010.year 3.764* 1.497 2.514 0.012 0.829 6.699
2011.year 4.171** 1.497 2.786 0.005 1.236 7.105
2012.year 4.594** 1.497 3.069 0.002 1.660 7.527
2013.year 4.996*** 1.497 3.338 0.001 2.062 7.929
2014.year 5.339*** 1.497 3.568 0.000 2.406 8.272
2015.year 5.637*** 1.497 3.767 0.000 2.704 8.571
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
2016.year 5.898*** 1.497 3.941 0.000 2.964 8.831
2017.year 6.063*** 1.497 4.051 0.000 3.130 8.997
Lead5 -0.461 1.541 -0.299 0.765 -3.481 2.559
Lead4 -0.751 1.216 -0.618 0.537 -3.135 1.633
Lead3 -0.651 1.049 -0.621 0.535 -2.707 1.405
Lead2 -0.724 0.950 -0.762 0.446 -2.585 1.137
Lead1 -0.780 0.855 -0.912 0.362 -2.457 0.896
Lag1 -0.793 0.718 -1.104 0.269 -2.200 0.614
Lag2 -0.739 0.666 -1.109 0.267 -2.044 0.566
Lag3 -0.648 0.632 -1.025 0.306 -1.887 0.591
Lag4 -0.738 0.603 -1.223 0.221 -1.920 0.445
Lag5 -0.961 0.577 -1.665 0.096 -2.092 0.170
Lag6 -0.966 0.560 -1.725 0.085 -2.063 0.131
Lag7 -0.903 0.550 -1.643 0.100 -1.981 0.174
Lag8 -0.945 0.535 -1.766 0.077 -1.994 0.104
Lag9 -1.016 0.530 -1.918 0.055 -2.055 0.022
Lag10 -1.024 0.530 -1.933 0.053 -2.062 0.014
_cons -0.917 1.501 -0.611 0.541 -3.859 2.026

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Table 3.11: Panel Event Study Estimates of Dirty Technologies
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3.9.3 Estimates Nonparametric Duration Model

Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
2008 0.099 0.097 2.969 3.630 0.000 0.000
2009 0.096 0.045 3.052 4.514 0.000 0.000
2010 0.107 0.057 2.582 4.315 0.000 0.000
2011 0.074 0.056 3.597 5.408 0.000 0.000
2012 0.230 0.165 1.481 2.765 0.000 0.001
2013 0.268 0.124 1.549 3.146 0.000 0.000
2014 0.281 0.190 1.447 2.991 0.000 0.001
2015 0.300 0.229 1.692 2.601 0.000 0.001
2016 0.368 0.400 1.785 1.869 0.000 0.003
2017 0.936 0.921 0.797 0.797 0.001 0.020
2018 1.338 0.988 0.797 0.797 0.002 0.024

Table 3.12: Nonparametric Estimates Clean Patents VS Control Group (Hazard Rates)

Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
2008 -0.002 0.977 0.028 0.000 -0.034 0.030 0.647 1.308
2009 -0.051* 0.472* 0.049 0.000 -0.072 -0.029 0.040 0.904
2010 -0.049* 0.538* 0.041 0.000 -0.074 -0.024 0.139 0.937
2011 -0.018 0.757 0.036 0.000 -0.040 0.004 0.384 1.130
2012 -0.066* 0.715 0.025 0.001 -0.120 -0.012 0.406 1.024
2013 -0.143* 0.465* 0.030 0.001 -0.191 -0.095 0.124 0.806
2014 -0.091* 0.675* 0.023 0.001 -0.152 -0.031 0.379 0.971
2015 -0.070 0.765 0.024 0.001 -0.143 0.002 0.462 1.068
2016 0.032 1.088 0.022 0.003 -0.083 0.147 0.797 1.378
2017 -0.015 0.984 0.025 0.021 -0.301 0.272 0.674 1.295
2018 -0.350* 0.739 0.026 0.027 -0.670 -0.030 0.424 1.053

∗p < 0.05

Table 3.13: Nonparametric Estimates Clean Patents VS Control Group (Hazard Rates’
Differences and Ratios)
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Variable Description
Obc Optimal Bandwidth Control Group
Obt Optimal Bandwidth Treatment Group
aVc Asymptotic Variance Control Group
aVt Asymptotic Variance Treatment Group
aVr Asymptotic Variance Ratio
aVd Asymptotic Variance Difference

LB-Diff Lower Bound Difference
UB-Diff Upper Bound Difference
LB-Ratio Lower Bound Ratio
UB-Ratio Upper Bound Ratio

Table 3.14: Description of Variables from the Nonparametric Estimates
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Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
2008 0.099 0.079 2.969 4.155 0.000 0.000
2009 0.096 0.045 3.052 5.210 0.000 0.000
2010 0.107 0.074 2.582 3.794 0.000 0.000
2011 0.074 0.048 3.597 4.967 0.000 0.000
2012 0.230 0.058 1.481 4.818 0.000 0.000
2013 0.268 0.151 1.549 2.895 0.000 0.001
2014 0.281 0.130 1.447 3.459 0.000 0.001
2015 0.300 0.199 1.692 2.574 0.000 0.002
2016 0.368 0.474 1.785 1.895 0.000 0.006
2017 0.936 0.795 0.797 0.797 0.001 0.030
2018 1.338 1.203 0.797 0.797 0.002 0.050

Table 3.15: Nonparametric Estimates Dirty Patents VS Control Group (Hazard Rates)

Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
2008 -0.020 0.798 0.052 0.000 -0.056 0.016 0.350 1.246
2009 -0.050* 0.475 0.075 0.000 -0.076 -0.024 -0.061 1.011
2010 -0.032 0.697 0.065 0.000 -0.071 0.006 0.197 1.197
2011 -0.026 0.647 0.081 0.000 -0.054 0.001 0.091 1.203
2012 -0.172* 0.252* 0.070 0.000 -0.209 -0.136 -0.267 0.770
2013 -0.117* 0.562* 0.047 0.001 -0.185 -0.050 0.138 0.986
2014 -0.151* 0.462* 0.049 0.001 -0.213 -0.090 0.031 0.894
2015 -0.100* 0.665 0.046 0.002 -0.187 -0.013 0.243 1.086
2016 0.107 1.291 0.031 0.007 -0.052 0.265 0.947 1.634
2017 -0.141 0.850 0.048 0.031 -0.487 0.205 0.419 1.280
2018 -0.134 0.899 0.036 0.053 -0.584 0.315 0.529 1.270

∗p < 0.05

Table 3.16: Nonparametric Estimates Dirty Patents VS Control Group (Hazard Rates’
Differences and Ratios)
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Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
2008 0.097 0.079 3.630 4.155 0.000 0.000
2009 0.045 0.045 4.514 5.210 0.000 0.000
2010 0.057 0.074 4.315 3.794 0.000 0.000
2011 0.056 0.048 5.408 4.967 0.000 0.000
2012 0.165 0.058 2.765 4.818 0.001 0.000
2013 0.124 0.151 3.146 2.895 0.000 0.001
2014 0.190 0.130 2.991 3.459 0.001 0.001
2015 0.229 0.199 2.601 2.574 0.001 0.002
2016 0.400 0.474 1.869 1.895 0.003 0.006
2017 0.921 0.795 0.797 0.797 0.020 0.030
2018 0.988 1.203 0.797 0.797 0.024 0.050

Table 3.17: Nonparametric Estimates Dirty VS Clean Patents (Hazard Rates)

Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
2008 -0.018 0.817 0.069 0.001 -0.064 0.029 0.304 1.330
2009 0.000 1.007 0.123 0.000 -0.031 0.031 0.320 1.694
2010 0.017 1.296 0.132 0.000 -0.026 0.060 0.583 2.009
2011 -0.008 0.854 0.105 0.000 -0.042 0.025 0.220 1.488
2012 -0.107* 0.352* 0.073 0.001 -0.165 -0.049 -0.177 0.881
2013 0.026 1.209 0.090 0.002 -0.050 0.102 0.622 1.797
2014 -0.060 0.685 0.058 0.002 -0.138 0.018 0.211 1.158
2015 -0.030 0.869 0.063 0.003 -0.138 0.077 0.378 1.359
2016 0.075 1.187 0.056 0.010 -0.117 0.266 0.721 1.652
2017 -0.126 0.863 0.065 0.050 -0.563 0.311 0.365 1.362
2018 0.215 1.218 0.072 0.075 -0.321 0.751 0.692 1.743

∗p < 0.05

Table 3.18: Nonparametric Estimates Dirty VS Clean Patents (Hazard Rates’ Differences
and Ratios)
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3.10 Appendix 4: Regulation Schedule

Figure 3.15: HCFCs Phase-down Consumption Schedule.
Source: ”Handbook for the Montreal Protocol on Substances that Deplete
the Ozone Layer”, Section 1.2., latest version available here (UNEP, 2019).
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Figure 3.16: HCFCs Phase-down Production Schedule (UNEP, 2019)

87



3 International Environmental Agreements and the Timing and Direction of
Technological Change: Evidence from the Kigali Amendment

Figure 3.17: HFCs Phase-down Production and Consumption Schedule (UNEP, 2019)
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3.11 Appendix 5: Nonparametric Estimates 2008-2019
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Figure 3.18: Nonparametric Duration Estimates (2008-2019): Clean Patents VS Control
Group
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Figure 3.19: Nonparametric Duration Estimates (2008-2019): Dirty Patents VS Control
Group
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4 Patents as Options: Estimating Technological
Gains and Losses from International
Environmental Agreements∗

4.1 Introduction
International environmental agreements (IEAs) are a key regulatory instrument for solving
global environmental problems engendered by stock pollutants1. Nevertheless, the uncer-
tainty related to the consequences of their signature makes them prone to long negotiations.
This longer time scope makes it harder to quantify their impact, since stakeholders (i.e.:
firms and countries) might anticipate their signature, reacting before their implementation,
or if the negotiated terms are too lenient, deciding to postpone their reaction. Therefore,
understanding and quantifying the economic implications of IEAs is a challenging but still
essential task towards enabling future climate agreements.

In this paper I propose a new method to study the impact of regulations negotiated in
IEAs on technologies. To achieve this, I take as a first approximation of the technological
impact, the technological gains and losses an IEA generates in form of patent rights.
Technological change measured as the publication of new ideas (e.g. patent applications)
suffers from the lag between the decision to innovate and the actual publication of the
innovation, which added to the slow and delayed nature of IEAs makes it even harder to
back out the impact of IEAs on innovation. Instead, in order to disentangle the impact
of an IEA on technological change, I use patent renewal, which as a yearly decision that
patent holders make, does not suffer from this caveat. Therefore, exploiting patent renewal

∗I would like to thank Victor Aguirregabiria, Bernhard Ganglmair, Timo Goeschl, Wolfgang Habla,
François Laisney, Bettina Peters, Mar Reguant, Imke Reimers, John Rust, Carlos Serrano, Kenneth
Simons, and Ulrich Wagner for their helpful feedback and comments. Furthermore, I would like to thank
all participants to ZEW seminars, Econometric Society DSE 2018, MaCCI Annual Conferences 2020 and
2021, EAERE-ETH Winter School 2019, AURÖ 2019, MaCCI IO Day 2019, TECHNIS 2020, AERE
2020, Summer School on Data Algorithms for Science, Technology & Innovation Studies 2020, Mannheim
Energy Conference 2021, IX IEB Symposium, and WIPE 2021. Lucas van Doorn provided excellent
research assistance. The usual disclaimer applies.

1Stock pollutants are defined as those generating a negative externality through their accumulation in
the environment (Phaneuf and Requate, 2017). This is the case of greenhouse gases like CO2 but also of
ozone-depleting substances (ODS), regulated under the Montreal Protocol.
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variation, I estimate a model of patent renewal under uncertain exogenous environmental
regulation, developed in Chapter 2.

In order to estimate my model, I use a unique self-constructed dataset2 of European
patents on substances regulated under an IEA, the Kigali Amendment to the Montreal
Protocol, and their substitutes. IEAs often specify reduction targets for environmental
harmful substances, which become binding environmental regulations in the signatory
countries. In particular, I study the technological impact of the HFCs’3 regulation under
the Kigali Amendment. This pollutant-specific dataset on patent renewal decisions of
clean and dirty patents allows me to estimate structural parameters of my patent renewal
model and compute counterfactuals on the technological gains and losses associated to
patent rights induced by the Amendment.

This chapter is structured in the following manner, first I shortly review the literature,
second, I present the dataset used for estimation, summarize the theoretical modelling
framework, and enumerate and explain the underlying assumptions of the models. Follow-
ing this, I present the estimation results and discuss the goodness-of-fit. Finally, I close
the chapter with a discussion of the caveats and measurement errors of the method and
present the counterfactual results of the estimation.

4.2 Literature Review
This chapter stands upon three strands of the literature. First, on the literature of
structural models in environmental economics. This literature started with the work of
Ryan (2012) using a dynamic oligopoly model to estimate the welfare costs of changes in
the Clean Air Act on the cement industry. Fabra and Reguant (2014) employ a structural
estimation on optimal bidding in the electricity market to study how emissions costs are
passed-through to electricity prices. Fowlie et al. (2014) building upon the work of Ryan

2Dugoua (2021) built a data set on U.S. patents and articles mentioning substances regulated under
the Montreal Protocol.

3Hydrofluorocarbons (HFCs) are organic compounds containing hydrogen and fluorine atoms. HFCs
have been widely used as substitutes for hydrochlorofluorocarbons (HCFCs), and chlorofluorocarbons
(CFCs), which contain the chlorine atom responsible for the photo-induced reaction that depletes the
ozone layer. HFCs do not harm the ozone layer but are powerful greenhouse gases. All three families of
chemical compounds are regulated under the Montreal Protocol.
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(2012) estimate the long-run consequences of a marked-based regulation of CO2 emissions.
Ito and Reguant (2016) quantify the welfare effects of arbitrage in a framework with
sequential markets under imperfect competition and restricted entry in the framework
of the Iberian electricity market. Wagner (2016), using a timing game in an oligopoly
setting, estimates the sign and the magnitude of the strategic behavior of the parties
to the Montreal Protocol in their ratification decision. Miravete et al. (2018) estimate
an oligopoly model of horizontal differentiated goods applied to the Spanish automobile
market and find that European carmakers profited from pro-diesel fuel taxes and lax
NOx emission policy to earn profits from diesel cars’ sales. Grigolon et al. (2018) study
the effect of fuel taxes versus product taxes in reducing fuel consumption estimating a
random coefficients demand model with European car market data. Reynaert (2021) uses
a structural model of consumer demand and firm behavior to study the welfare effect of
the EU-wide emission standard on the car market. He finds that the regulation was not
welfare improving. Finally, Blundell et al. (2020) estimate in a dynamic model of a plant
and a regulator the effects on pollution damages of the dynamic enforcement policy used
by the U.S. Environmental Protection Agency to enforce air regulations.

Second, my work builds upon the literature on optimal R&D policy under the existence
of environmental externalities. This literature provides the theoretical intuitions of the
forces driving the results shown in this paper. The work of Goeschl and Perino (2007)
illustrates particularly well the technological dilemma faced by innovating firms under the
Montreal Protocol. In particular, their modelling framework depicts in an accurate manner
the interaction between the stock pollutants’ nature of emissions and the lack of a backstop
technology, which leads to sequential innovations. This innovation dilemma of undertaking
R&D knowing that the outcome might not be a silver bullet to the environmental problem
is further studied in their following work, Goeschl and Perino (2009). In their paper
they model the uncertainty of clean innovations, which could result in either backstop
technologies or engender a new pollution problem.

The third and last strand of the literature upon which this work stands is the literature
on patent valuation of clean and dirty technologies. This literature is still relatively
scarce. Hall and Helmers (2013) studied the characteristics of patents pledged under the
“Eco-Patent Commons” and compare them to patents of the same firm or to patents in
the same technologies. They find that pledged patents are of similar value to the ones of
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the pledging firm but of lower value compared to the patents in their technology class.
Dechezleprêtre et al. (2021a; 2021b), employing the Tobin Q approach of Hall et al.
(2005), compare the value of clean and dirty technologies and find that clean innovations
are more valued than dirty ones. Finally, recently Langer et al. (2022), using the stock
market approach of Kogan et al. (2017), study the impact of financial constraints on clean
and dirty innovations. They find that clean innovations are more affected by financial
constraints due to their perception as riskier assets.

4.3 Data, Equations, and Assumptions
In this section I will first shortly summarize the main datasets that I use for my method
as well as the empirical evidence upon which it builds. Second, I describe the implemen-
tation of the method, explaining the equations and models used. Finally, I present the
assumptions upon which my results build and discuss their viability.

4.3.1 Data

Estimation Dataset

In order to implement the method and quantify the monetary technological gains and
losses engendered by the environmental regulation I use two sorts of data, i.e., patents
with their renewal information and the corresponding renewal fees.

Patents The objective of this study is to estimate the technological gains and losses
generated by an IEA using patent data. Therefore, I first need to identify the patents that
might have won or lost value due to the Kigali Amendment as well as the set of comparable
patents that should have not been directly affected by it. In particular, I need to identify
patents citing substances that have been regulated by the Kigali Amendment, i.e., citing
HFCs, so-called “dirty patents”, as well as clean patents. In order to define clean and
dirty patents I focus my study on patents used in refrigeration. The reason for this is that
substances that can be used as refrigerants are clearly defined as of the ANSI/ASHRAE
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Standard 34-2019 (ASHRAE, 2019). There, all substances with refrigeration properties
are listed, i.e., both the ones regulated under the Montreal Protocol (including the Kigali
Amendment) and their potential clean substitutes. The exact construction of the dataset
is presented in Chapter 3 and in this work I employ that same set of data. In particular, I
use European patents renewed in Germany, applied between 1997 and 2006 belonging to
the F and C IPC 4 sections. For further details on patent selection and the dataset, please
refer to Chapter 3. The main descriptive statistics are reported in the Appendix 1 of the
present chapter.

Renewal fees Besides patent data I gathered patent renewal fees from the Official
Journal of the European Patent Office (EPO). The scope is from 1980 to 2020. Following
Pakes (1986), since renewal fees were obtained in nominal domestic currency, I converted
them to real domestic currency, using the country’s own implicit G.D.P deflator and then
transferred them to 1999 Euros, using the official exchange rates in 1999.

Empirical Evidence on the Existence of Positive and Negative Shocks on Patent
Value

Before presenting a summary of the main equations and steps implemented in my method,
I will present some results on the empirical evidence upon which my estimation approach
builds. The empirical strategy of my method builds upon exploiting differences in renewal
behavior between clean or dirty patents and the control group, and estimating different sets
of parameters, which would allow us through a simulation approach to provide monetary
estimates of the impact of that regulation. Nevertheless, this approach builds upon a
cornerstone, namely on the existence of differences in renewal patterns between the two
types of treated patents (clean and dirty) and those from the control group. Therefore,
the aim of this subsection is to discuss the empirical evidence sustaining this exercise.

4IPC stands for International Patent Classification.
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Figure 4.1: Nonparametric Duration Evidence (2008-2018): Clean Patents VS Control
Group

To do this, I will build upon the results of Chapter 3, where I adapted the nonparametric
duration model from van den Bergh et al. (2020). The adaptation that I performed
allowed me to estimate two types of treatment effects, i.e., the instantaneous causal effect
of the treatment at the moment of the policy change and the average treatment effects
on conditional survival probabilities. The latter ones will be the most relevant for this
analysis, since they would allow me to consider any significant difference in the local hazard
rates as causal, provided that they are not preceded by a selection in renewal event, i.e.,
that we are not losing patents before that moment. I spare the reader the technical details,
which are available in Chapter 3 and will present now the main results and framework
from this analysis.
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Figure 4.2: Nonparametric Duration Evidence (2008-2018): Dirty Patents VS Control
Group

Regarding the framework of the analysis, I use patent renewal variation from the patent
datasets presented in Chapter 3, whose main statistics are summarized in Appendix 1.
I first recompute patent ages for all cohorts such that new age 1 corresponds to 2006
and drop patents elapsed before that age. Then I aggregate these recomputed duration
data into a single cohort and add specific cohort dummies. Controlling additionally for
five multiple correspondence analysis dimensions (Dim 1 to Dim 5), number of inventors,
grant lag, number of applicants, family size, and including patent class by cohort year
dummies, I perform a nonparametric estimation. Results for clean and dirty technologies
are depicted in Figures 4.1 and 4.2. For both the analysis on clean technologies as well
as for the analysis on dirty patents, I assume that treatment occurred in 2008, hence the
instant causal effect would not be that relevant for us, and instead the average treatment
effects on conditional survival probabilities would be at the center of our analysis. The
reason for this is that since the Kigali Amendment was signed in 2016 it would allow us to
capture any differences after 2008 and thereby observe if there was an anticipated reaction
to the Amendment or if its effect was rather delayed. My analysis is limited until 2018
since my renewal information ends in 2020 and evidence for 2019 is not clear. As it is
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difficult to assess whether the reason of the unclear results for 2019 stems from effects
going into opposite directions or problems in estimating the last data point, I will extend
this analysis to additional renewal years as soon as those are available. Results from the
nonparametric analysis until 2019 are available in Appendix 5 of Chapter 3.

Turning now to the main findings, I first observe a similar pattern in positive signif-
icant (at a 5 percent level) shocks for both types of technologies before 2015, which I
attribute to both types of substances, i.e., HFCs and their clean substitutes, being HCFCs’
substitutes. This is confirmed by the HCFCs’ phase-down schedules presented in the
Appendix 5, which show several reduction deadlines coinciding with those positive shocks.
Further discussion of the shocks happening before 2015 is treated in Chapter 3. The
foremost conclusion from these first observations for the present analysis is that there
is no selection in renewal happening before 2016, i.e., we are not losing observations
due to the existence of some negative significant shock. Taking this into account allows
us to consider future negative shocks as causal. In particular, this is what happens for
dirty patents in 2016 (Figure 4.2). In the graphic depicting the ratio of local hazard
rates we observe an almost significant (at a 5 percent level) negative impact on the
hazard rates. Likewise for clean technologies, we find a positive significant shock on the
differences in hazard rates in 2018. These will be the two shocks whose monetary impact
on the respective patent value of clean and dirty technologies I will estimate in this chapter.

4.3.2 Main Equations

In this section, I will present the sequential steps of the method, including the equations
and models. As explained in Chapter 2, the method requires having three sets of com-
parable patents, one having been positively affected by the environmental regulation, a
second having been affected negatively by the regulation (the treatment groups), and
a last group that hasn’t been affected by it (control group). Furthermore, it requires
the existence of a positive and a negative shock on the patent value for the respective
treatment groups, which I summarized in the previous subsection. Once these conditions
are met, the method proceeds in two steps. First, I perform a structural estimation of a
patent renewal model without environmental regulation for the control group patents. The
parameter estimates from this first estimation will allow me to generate a synthetic control
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group from which I compute deviations in my second step. In particular, in the second
step I realize a second structural estimation of a patent renewal model with environmental
regulation, where I use the parameters from the control group estimation (first step) to
generate the hazard rates of patents before and after being regulated. The difference in
hazard rates itself is captured by the parameters governing the environmental regulation.
In the next subsections I shortly present the different patent renewal models and their
estimation procedures. Further extended details on the models and estimation techniques
are presented in Chapter 2.

Synthetic Control Group: Patent Renewal Model without Environmental Regulation

The first step of my method is a structural estimation of a patent renewal model with the
control group sample. The model is the modification of the Pakes (1986) done by Serrano
(2018), where each period the patent holder decides whether to renew a patent or not.
She takes this decision given the expected patent returns, current returns xa and renewal
fees ca, as well as the expected sequence of renewal fees. Equation 4.1 shows the value
function of a patent at a certain age a. Each period (age) a, the per period returns xa get
an age-specific stochastic shock gi

a, which is independent of former returns xa (equation
4.2). The random shock stems from a truncated distribution (equation 4.3), where returns
might get to 0, when the technology becomes obsolete. This happens with probability
1 − γi. Otherwise, returns might either depreciate at a certain rate δi or increase if some
new uses are found. This last characteristic is governed by σi

a (equation 4.4), which has an
age specific component φa−1, capturing the fact that opportunities for gains are decreasing
over time, and an age-independent characteristic σi.

V (xa) = max{0 , xa + β E[V (xa+1)|Ωa] − ca} (4.1)

xa+1 = gi
axa (4.2)

F gi(gi
a) =


1 − γi if gi

a = 0

1 − γi + γi
[
1 − exp

(
−δi

σi
a

)]
if gi

a = δi

1 − γi + γi
[
1 − exp

(
−gi

a

σi
a

)]
if gi

a > δi

(4.3)
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σi
a = σiφa−1 (4.4)

ξ ∼ N(µ, σ2
R) (4.5)

xt,1 = exp(bC,tDt + ξ) (4.6)

Employing a simulated method of moments approach, I estimate the vector of param-
eters governing the patent renewal process. Specifically, besides the already presented
parameters, I also need to estimate the initial distribution of per period returns (equation
4.5). Initial returns stem from a log-normal distribution, with ξ being a random normally
distributed shock of mean µ and standard deviation σR, where bC,t are cohort-specific
dummies, which allow for the initial draw to be different across cohorts. I perform the
estimation using empirical and simulated hazard rates for years 2016, 2017, 2018, and 2019.
The reason for this is that since my shocks happen in 2016 and 2018, and they are the main
objective of this exercise, it is reasonable to consider only differences from 2016 onwards
to perform the second step, estimation. Specifically, in the second step I will realize a
structural estimation, but also only for years 2016 to 2019. Hence, in my second step, what
I aim at capturing will be deviations from the estimated first step hazard rates, that I simu-
late in the treatment groups’ estimation. As a result from the first step estimation, I obtain
the following vector of estimated parameters5: wC = (γi, σi, φi, δi, µ, σR, bC,1, bC,2,
bC,3, bC,4, bC,5, bC,6, bC,7, bC,8, bC,9, bC,10).

Treatment Groups: Patent Renewal Model with Environmental Regulation

In the second step I perform a structural estimation with the treatment groups, i.e., the
dirty (T1) and clean (T2) patent samples. In particular, I develop now a model of patent
renewal with uncertain environmental regulation. As presented in equation 4.7, this model
is an extension of the previous and builds upon the model of patent renewal with the
option to patent trade of Serrano (2018). Specifically, each period (age) a the patent owner
decides whether to renew the patent or not given his current returns xa, the returns she
would get if the patent is affected by the environmental regulation ya, and the information
indicating whether the patent has been affected by the regulation or not. Besides this,

5Details on the weighting matrix are specified in Chapter 2.
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he takes the decision taking into account the renewal fees and the probability of being
regulated, which for a certain patent age a and cohort t is pa,t. The expected returns from
the patent holder will now depend on whether she has been regulated or not. Figure 4.3
shows the state evolution of the patent holder at each age and cohort.

V (xa, ya, σa) = max{0 , xa + β Ex,y,σ[V (xa+1, ya+1, σa+1)] − ca} (4.7)

with xa+1 = gi
axa

Ex,y,σ[V (xa+1, ya+1,σa+1)] = pa,t Ex,y[V (xa+1, ya+1)]

+ (1 − pa,t) Ex,y,σ[V (xa+1, ya+1, σa+1)]
(4.8)

0 1pa,t

1-pa,t 1

Figure 4.3: Evolution of environmental regulation

At the moment when the regulation is introduced then his per period returns are
pre-multiplied by an exogenous shock ge, which stems from two different CDFs, depending
on the type of technology that the patent holder is renewing (these CDFs are derived
applying Assumption 3 from a general functional form presented in equation 4.16). This
regulatory shock is then multiplied by the random shock gi

a explained in the previous
section. In particular, if she has a clean technology she might receive a positive shock
stemming from the CDF F ge,clean(ge) (equation 4.10), where his returns are increased.
Conversely, if he owns a dirty technology, she might receive a negative shock stemming
from the CDF F ge,dirty(ge) (equation 4.9), where with probability 1 − γe

dirty his returns
become obsolete.

F ge,dirty(ge) =

 1 − γe
dirty if ge = 0

1 − γe
dirty + γe

dirty if ge = 1
(4.9)
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F ge,clean(ge) = 1 − exp
( −ge

σe,clean

)
with ge ≥ δe

clean = 1 (4.10)

Then, at the introduction of the regulation, i.e., when σa = 1 but σa−1 = 0, patent
returns evolve as following xa+1 = gi

aya with ya = gexa such that the value function that
the patent holder faces is the one of equation 4.11.

V (xa, ya) = max{0 , ya + β Ex[V (xa+1)] − ca} (4.11)

After the continuation of the regulation, i.e., when σa = 1 and σa−1 = 1, patent returns
evolve as following xa+1 = gixa and the value function of the agent is:

V (xa) = max{0 , xa + β Ex[V (xa+1)] − ca} (4.12)

Given these models I use a simulated method of moment approach, where I assume all
parameter that are not related to the environmental regulation to be those estimated with
the control group, ω̂C . This allows me to estimate the two shocks on patent value due
to the environmental regulation ωT , i.e., the clean one and the dirty shock (see equation
4.13). As mentioned in the first step, I realize this second structural estimation using only
hazard rates for years 2016 up to 20196.

ωT = (ω̂C , γe
dirty, σe

clean) = (γe
dirty, σe

clean) (4.13)

4.3.3 Assumptions

In this subsection I will present the assumptions upon which my method builds.

Assumption 1

The probability of being regulated pa,t is weakly increasing over time, i.e. in a and t, such
that:

6Details on the weighting matrix are specified in Chapter 2.
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 pa−1,t ≤ pa,t

pa,t−1 ≤ pa,t

(4.14)

A typical example of an environmental regulation fulfilling Assumption 1 would be
one concerning stock pollutants. First, through the phase-down schedules, we can clearly
see that this is fulfilled for the substances regulated under the Montreal Protocol (see
phase-down schedules in Appendix 5). Second, since the HFCs were one of the stock
pollutants targeted by the Kyoto Protocol (UNFCCC, 1997) then it is plausible to assume
that their likelihood of being affected by a regulation is weakly increasing over time.

Assumption 2

Patent holders do not anticipate environmental regulation.

 E[pa+1,t|σa = 0] = 0

E[pa+1,t|σa = 1] = 1
(4.15)

This assumption is closely linked to the ex-ante empirical evidence that shows the existence
of the positive and negative shocks. In Chapter 3, I find that there have been a positive
and a negative shock on patent value for clean and dirty substances (Figure 4.1 and
4.2). This evidence builds upon Assumption 2 (of Chapter 3), saying that there has been
no anticipation of those shocks by the patent holders. In the setting of Chapter 3, no
anticipation means that patent holders did not anticipate the Kigali Amendments before
2008, i.e., that any deviation from that moment onwards could be attributed to the Kigali
Amendment, unless otherwise justified. Under the setting of Chapter 3, I find that the
negative shock happened in 2016 and the positive one in 2018. Therefore, in the framework
of the structural analysis, I assume no anticipation of those shocks.
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Assumption 3

Regarding the CDFs of positively and negatively affected patents, I assume that γe
dirty <

γe
clean ≤ 1, δe

clean = 1, and σe
dirty < σe

clean. Furthermore I assume that some of these
parameters have fixed values, i.e.: σe

dirty = 0, γe
clean = 1, and δe

clean = 1.

This assumption allows us to simplify the general functional form of the external regula-
tion shocks (equation 4.16). We would assume first two general form CDFs F ge,clean(ge)
for the clean patents and F ge,dirty(ge) for the dirty ones having the form of equation 4.16,
which we would simplify through Assumption 3 into the ones presented in equations 4.9
and 4.10. A way to understand this assumption is that clean patents, if affected by the
environmental regulation, then they have gained in value. Symmetrically for dirty patents,
if they have been affected, then they lost value.

F ge(ge) =


1 − γe if ge = 0

1 − γe + γe
[
1 − exp

(
−δe

σe

)]
if ge = δe

1 − γe + γe
[
1 − exp

(
−ge

σe

)]
if ge > δe

(4.16)

Assumption 4

I assume that patents from my treatment groups (T1, T2) would have had a similar re-
newal pattern compared to the patents from the control group, had there been no regulation.

This implies that the parameters of the internal growth returns gi are the same for
regulated and non-regulated patents and that the cohort-specific initial draw of per period
returns is also identic. This allows me to assume the estimated vector of parameters from
my first step ω̂C for the second step and use the first step as a synthetic control group
for the second structural estimation. The reasoning behind this assumption comes from
the empirical evidence presented in Figures 4.1 and 4.2, where we can see that if the
environmental regulation shocks had not existed then the renewal pattern of treatment
group patents and control group ones would not have been significantly different from
each other from 2016 onwards.
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Assumption 5

I assume that the first step solution ω̂C must be able to accomodate the second step shock
following the ex-ante provided evidence, i.e.:

γe
dirty < 1 if a negative significant shock exists

σe
clean > 0 if a positive significant shock exists

The motivation for imposing Assumption 5 is closely related to the main purpose of
this paper, namely, quantifying the monetary impact of an environmental regulation on
patent value. A preliminary condition for the application of the method is that there
has been an environmental regulation, which had an impact on patent value, proxied by
patent renewal. Hence that the renewal rate of patents affected by the regulation was
significantly different from that of non-affected similar patents (at some significance level
provided by the researcher). I provide evidence in Chapter 3 that this has been the case
for the Kigali Amendment with the dataset that I use. Since I will now simulate the
datasets and estimate the parameters that generate those simulations, first the one of the
non-regulated patents and then the one from the regulated ones, I need the parameters
to follow the ex-ante empirical evidence. Namely, if we found a positive significant shock
with the ex-ante analysis, then σe

clean must be strictly positive and γe
dirty strictly inferior to

the unit.
Nevertheless, finding σe

clean > 0 or γe
dirty < 1 does not solely depend on the result from

the second estimation, it also depends on the solution from the 1st step, wC . The intuition
for this is that the optimization algorithm for the first step will try to find an optimum that
is able of explaining as much variation as possible with the vector of solution parameters.
Since the problem that we are analyzing is of a cross-cohort nature, i.e. we are trying to
estimate the hazard rates from different cohorts differing only by a dummy in the initial
draw of per-period returns, the cross-cohort dummy is likely to capture only partially
the cross-cohort differences. This means that the algorithm, in order to try to minimize
the error of the first estimation, is likely to choose a set of parameters that would allow
for many different possible shapes of the hazard rates. For example, by allowing for a

105



4 Patents as Options: Estimating Technological Gains and Losses from International
Environmental Agreements

high stochasticity of positive (σi, φi) and negative shocks (δi, γi). This would deliver a
solution that would be an optimum for the first step, but without any further restriction
it might lead to a situation where the second step is unable of capturing any difference
from the simulated control group hazard rates because hazard rates of regulated (positive
or negative) patents could have been just another realization of the stochastic parameters
from the first step solution. We would therefore find in the second step no shocks although,
the ex-ante evidence showed that they existed.

This is a challenge in my approach, since I try to replicate the evidence from a nonpara-
metric model in a parametric setting. As it is shown in van den Bergh et al. (2020), a
shock on the hazard rate will appear smaller in a parametric framework (e.g. proportional
hazards model) than in a nonparametric one. So, it is likely that with the nonparametric
model we can capture smaller shocks than with the structural estimation. To my knowledge,
there is no clear solution for this problem and any solution would require the researcher to
engage into a trade-off. Namely, accepting a lower quality first step solution that has a
higher error in simulating the shapes of the cross-cohort hazard rates from the control
group but that would still allow for the existence of the respective shocks following the
ex-ante evidence. This is what is implied by Assumption 5. In the estimation shown in
this chapter I haven’t built in a restriction in the first step estimation, but I chose the best
solution allowing for the existence of the second step shocks in line with the evidence from
Chapter 3. In Appendix 4, I present the results of the first step global optimum, which
does not fulfill Assumption 5 and I therefore reject. As commented above, comparing
the estimated values with the ones presented in Table 4.1, we find a higher degree of
stochasticity of the positive and negative shocks.

4.4 Estimation Results

4.4.1 Synthetic Control Group Estimates

I will now discuss the results from my two estimations, first from the synthetic control
group estimates and then the ones from my treatment groups. In Table 4.2 I report
the results from the first step structural estimation of the common parameters to the
three patent groups, i.e., the two treatment groups (T1, T2), and the control group (T0).
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Compared to the parameter estimates of Serrano (2018), my non-obsolescence parameter
γi is relatively high, pointing to a lower degree of obsolescence compared with his findings.
Conversely my depreciation rate is much lower than the one he finds, pointing to higher
losses over time. On the other side both my internal growth of returns σi are higher than
his results, while the upside opportunities φi are lower than his. Regarding the mean of
the lognormal initial returns distribution, my initial returns are higher while the standard
deviations are similar. The cohort-specific dummies are difficult to compare since he does
not use them.

Turning to the accuracy of the estimation my standard errors are very small, much
smaller than the ones he finds. I compute the mean squared error (MSE) in a similar way
as he does, i.e., performing the sum of the squared residuals of the difference between
simulated and empirical moments divided by the number of moments (34). I find a MSE
fifty percent smaller than the one he finds.

Table 4.1: Parameter Estimates (1st Estimation)
Description (Parameter) Estimate s.e.

A. Patent initial returns
Mean parameter of the lognormal initial distribution (µ) 11.0301 8.9115 e-15
Std. deviation parameter of the lognormal initial distribution (σR) 1.7917 6.6837 e-16
bC,1 -0.9359 1.1139 e-16
bC,2 0.1518 1.1139 e-16
bC,3 -0.6175 3.3418 e-16
bC,4 -0.0297 0
bC,5 0.0262 3.4811 e-18
bC,6 -0.0056 0
bC,7 -0.2802 2.7849 e-16
bC,8 -0.4970 5.5697 e-17
bC,9 0.0479 0
bC,10 0.1650 1.3924 e-16

B. Internal growth of returns
Depreciation factor (δi) 0.7618 2.2279 e-16
Not obsolescence (γi) 0.9785 3.3418 e-16
Internal growth of returns (σi) 0.6390 5.5697 e-16
Upside opportunities (φi) 0.5481 4.4558 e-16
MSE 1.5360 e-04
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4.4.2 Treatment Groups Estimates

I estimate the second step doing three counterfactual scenarios based on the knowledge of
the policy and the ex-ante evidence on the existence of a negative and a positive shock on
patent renewal in 2016 and 2018 respectively (Chapter 3). In Scenario 1, I assume that pa,t

turns from 0 to 1 in 2016 for all patents, i.e. for T1 and T2. In Scenario 2, I assume that
pa,t for the dirty patents turns 1 in 2016, whereas pa,t for the clean substitutes becomes
1 in 2018. Finally, in Scenario 3, I allow for patents to be affected by the regulation at
different years. This aims at capturing the fact that not all patents might have been
affected at the same time and therefore the former scenarios might downward bias my
estimates on the monetary impact. For this reason, in Scenario 3, I allow pa,t to evolve
from 25% in 2016 to 100% in 2019 by 25% annual increases. Table 4.3 summarizes values
of pa,t for the three scenarios and patent types. From the parameters of the distributions of
interest, i.e. F ge,dirty and F ge,clean , only γe

dirty has a direct interpretation7. This parameter
refers to the additional non-obsolescence probability due to the environmental regulation.
The estimated values are 1 for the first two scenarios, corresponding to a 0% additional
obsolescence rate of the negatively affected patents due to the Kigali Amendment. Only
the third scenario captures a tiny negative shock. This is in line with the nonparametric
estimates from Chapter 3, where the negative shock from the causal nonparametric duration
model was almost significant at 5 percent level. A possible explanation of these results
might come from the different natures of the shocks, i.e., the additional obsolescence shock
is a very radical shock since it reduces returns to zero such that marginal values rapidly
generate large hazard rates. Therefore, when we employ Scenario 3, as the likelihood
of the regulation is only 25% in 2016 it “de facto” reduces the size of the obsolescence
impact in that year. A possible way to verify this rationale would be to replace the form
of the negative shock and instead of an additional obsolescence rate use an additional
depreciation rate δe, which will likely capture smaller shocks. This is particularly relevant
for the negative impact as we have two limitations, first we try to capture an “almost”
significant shock, and second, this shock was found using nonparametric methods (i.e.,
more sensitive) while we have a parametric approach.

Analyzing now estimates on the positive impact, I find interestingly a positive impact

7σe
clean requires some additional derivations in order to be able to interpret it. This is also the case

for the set of parameters from the internal growth returns process.
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different from zero in Scenarios 1 and 3. This is particularly striking, since nonparametric
evidence on the positive impact pointed towards a shock in 2018, whereas my method
does not capture it in 2018 and instead finds the stronger impact in 2016 followed by the
differed impact over time of Scenario 3. A potential explanation of this results is aligned
with the difference in the nature of the shock between an additional obsolescence shock
γe and an additional depreciation rate shock δe. Namely, our positive shock σe is of a
similar nature as δe, which means that a positive impact through σe is likely to have a
delayed effect on the hazard rate. This rationale would explain why we find the largest
positive impact in Scenario 1. If we now focus on the standard errors, as it was the case
of the first estimation, they are very small. Regarding the MSE, which I compute in the
same manner as described for the first step with the only difference that I now have 68
moments, my results are one order of magnitude larger than the ones of Serrano (2018).
This is normal since I am adding two errors, the one from the second estimation and
the one from using the synthetic control, as explained in Chapter 2. We will study now
further measures of the goodness-of-fit, which might help us shed further light on our results.

Table 4.2: Parameter Estimates (2nd Estimation) for the three Scenarios
Description (Parameter) Estimate s.e.

A. Scenario 1
External not obsolescence (γe

dirty,1) 1.0000 0
External growth of returns (σe

clean,1) 0.3815 1.6709 e-16
MSE 0.0046

B. Scenario 2
External not obsolescence (γe

dirty,2) 1.0000 0
External growth of returns (σe

clean,2) 0 0
MSE 0.0047

C. Scenario 3
External not obsolescence (γe

dirty,3) 0.9997 1.1139 e-16
External growth of returns (σe

clean,3) 0.2258 2.7849 e-17
MSE 0.0046
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Scenario 2015 2016 2017 2018 2019
1 pa,t 0 1 1 1 1

2 pdirty
a,t 0 1 1 1 1

pclean
a,t 0 0 0 1 1

3 pa,t 0 0.25 0.50 0.75 1

Table 4.3: Scenarios for pa,t

4.5 Goodness-of-Fit
In this section I will discuss the differences between empirical hazard rates and simulated
moments for the two estimations and the three scenarios. I have depicted in Appendix 2
the different hazard rates for each cohort as well as their corresponding weights employed
in the weighting matrices for each estimation. The legend of the goodness-of-fit plots is
identic for all scenarios and cohorts, i.e., black color stands for control group, red for dirty
patents, and blue for clean ones. Furthermore, dashed lines represent empirical hazard
rates, full lines represent simulated ones, and dots weights. A general observation for all
figures in Appendix 2 is that the simulated control group lines (full black lines) are always
masked by simulated hazard rates for dirty technologies (full red lines). This is normal
since, as reported in Table 4.2, I “de facto” find no negative impact, i.e., the tiny negative
shock of Scenario 3 is not sufficient to appear in a graphical representation.

Starting with the hazard rates for the cohort of 1997 for all scenarios (Appendix 2.1),
I only find a positive shock in Scenario 1. Furthermore, it is interesting to see that all
empirical hazard rates for dirty technologies are smaller that the simulated ones from the
control group (full black line and full red line), this explains why an additional negative
impact could not be accommodated given the synthetic control. Additionally, we see
empirical moments for clean technologies higher than those of dirty ones, which already
indicates that one of the two shocks will be 0 if this is the case for the remaining cohorts.
The rationale for this is that ideally for finding a positive and a negative impact, we would
need to have black full and dashed lines in the middle, red full and dashed above the
black lines and both blue lines below the black ones. If the red dashed line (empirical
hazard rate of dirty patents) is below the black full line (simulated hazard rates for the
control group) for most of the high-weighted cohorts (red dots), then it is impossible for
this method to capture a negative impact, since it could only capture deviations above
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the full black line. The explanation regarding the ability of the model to capture positive
shocks is symmetric to the one just mentioned.

Analyzing results for dirty technologies in Scenario 1 (Appendix 2.2.), we can see that
the red dashed lines for cohorts with relatively high weights, e.g., values around 0.2, are
often below the full black lines (which are the full red lines, as I explained above). This
tells us that the model will struggle to find a negative impact and that the error gains
from including one would not outweigh the losses hence leading to a no negative impact
solution as the one found. Regarding results for the clean technologies, the situation is
different. Now, we can see that for several cohorts having high weight values the blue
dashed line is below the full black or red line, hence the model will try to accommodate a
positive shock simulating the full blue line between both. High weighting values mean that
relative to the whole sample and its cohort-technology composition8, for those particular
years of that cohort there were many observations.

Regarding Scenario 2 (Appendix 2.3), the graphical representation helps us better
understand why we find no positive impact in this scenario. Before discussing the figures,
it is important to remember that in Scenario 2 the positive impact happened in 2018,
hence what would be relevant for the model would be those cohorts with high weights
for clean patents (blue dots) for which in the years 2018 and 2019 the blue dashed line
would be below the red or black full line. Looking at the graphics, we see that this is
rarely the case and if it might be the case for some cohorts (e.g., 2000, 2001), it is not for
many others (e.g., 1999, 2002, 2003, 2006). Since accommodating a shock would generate
a positive deviation for all cohort in this scenario then the best solution is found with no
positive impact.

Finally, turning to the results for Scenario 3 (Appendix 2.4), the increasing probability
of being affected by the regulation complicates the interpretation of the results. The reason
for this is that there are many effects occurring simultaneously. First, the shock might
be accommodated differently across cohorts due to the initial differences in per period
returns, hence the impact of the shock will not be the same for a same year in different
cohorts (this would also happen in Scenario 1). Second, since the shock first leads to a
reduction of the hazard rate it also leads to an increase in hazard rates with a certain delay,

8Further details on the construction of the weighting matrix of the second step are provided in Chapter
2.
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which would also occur in the first scenario. Third and singular to Scenario 3, is that now
the positive shock might occur twice for a same cohort but for different patents, which
would modify the simulated hazard rates in an additional manner, likely generating more
noise. This could be a possible explanation to the lower estimate in the third scenario,
where the additional noise generated by the increasing treatment probability likely engaged
in the trade-off of generating more error than reducing it, hence resulting in a lower estimate.

4.6 Robustness of Results, Caveats, and Measurement
Error

After presenting the main results of the goodness-of-fit, I will now discuss the main caveats
of this method, which have been partially mentioned in the previous section. Furthermore,
I will present several robustness exercises, which could help certify the size of the estimates,
which are related to the sensitivity of each step’s estimates.

Nevertheless, and before discussing the different potential sensitivity analyses, I would
like to discuss the main challenge and caveat of the current results. This refers to the
number of moments, i.e. renewal years used to estimate the models. Since the environ-
mental regulation that I am studying occurred in 2016, using a synthetic control group
approach combined with a structural model forces me to limit the number of years used
for estimation to those after the regulation. In particular, as the last available patent data
version only provides information until 2020, which is a right-censoring year (last year), I
can only perform my analysis until 2019, which means that I have at most 4 moments
per cohort. This number of moments is very limited and constrains the identification of
my structural estimations. In future versions of this work, I will extend my dataset to
include further renewal years in order to tackle this issue. I will now discuss robustness
tests related to the sensitivity of the estimates for each step.

First Step Estimation Sensitivity I start focusing on the sensitivity of the synthetic
control group estimation. In order to discuss this, it is important to bear in mind the
overarching goal of this method. Namely, estimating the technological monetary impact
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of an environmental regulation (the Kigali Amendment) on patent value. The approach
that I propose in this work is to combine a synthetic control group method and structural
estimations, where I use estimates from a first structural estimation to generate synthetic
controls in the second estimation. Therefore, a key point regarding the robustness of the
estimates is related to the quality of the first step estimates. Specifically, it is key to assess
how much the size of the monetary impact depends on the quality of the first step estima-
tion. This issue is common to other works using models to generate counterfactuals, such
as Holland et al. (2016), where they use an integrated assessment model to assess health
damages related to local pollutants’ emissions. A main caveat of their approach is that
their health damages estimates depend on some parameters of the integrated assessment
model, hence they have to assess how other values would modify their estimates. In this
line of thought, simulated methods of moments heavily depend on the weights assigned to
each moment, which might lead to having some particular years heavily driving our results.
Therefore, assessing the sensitivity of the first step estimates to particular moments in
the spirit of Andrews et al. (2017) could help us bound the impact from this source of error.

Second Step Estimation Sensitivity Regarding the sensitivity of the second step esti-
mation, there are several factors that might influence it. First and as just mentioned for
the first step, checking the moment specific sensitivity as Andrews et al. (2017) could be a
first straightforward robustness check. Second, as I have discussed in previous sections,
the parametric form limits the ability of the method to capture positive and negative
deviations. Yet, the objective remains that of capturing in the best possible manner the
shown nonparametric shocks to be able to compute their monetary impact. Therefore, it
will be needed to verify the robustness of the results to other shock forms, in particular
for the negative impact, such as using an additional depreciation rate, δe, instead of an
additional obsolescence shock, γe. Furthermore, since we have seen that the impact of the
shock might be delayed, it could be relevant to verify the robustness of my results using
other treatment combinations.
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Figure 4.4: Average Total Gains by Cohort

4.7 Counterfactuals
In this section I will present the counterfactuals on the monetary impact engendered by
the Kigali Amendment on patent value. For this, I use the parameter estimates exposed
in Tables 4.1 and 4.2 and perform 10,000 simulations. I compute the average present dis-
counted value (PDV) of the patents affected positively, negatively, and those non-regulated.
Then I compare the PDVs of the regulated patents to the ones of the control group for
each cohort. I compute differences in PDV only from the moment of the shock onwards
and compute average total gains and losses using only patents that have survived until
the shock event. I show results on the average total monetary gains in Figure 4.4. for
the three scenarios. It is straightforward to see that gains for Scenario 2 are non-existent
since there is no positive impact captured by our estimate. Then, as expected, gains for
Scenario 1 (up to 50,000 Euro) are larger than for Scenario 3 (up to 1,600 Euro), which
follows estimated values. If we turn now to the average total monetary losses depicted in
Figure 4.5, we see that those are very small (up to 200 Euro) compared to the gains and
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that they only exist for the scenario where we found a negative impact, i.e., Scenario 3.
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Figure 4.5: Average Total Losses by Cohort

4.8 Conclusion
In this chapter I propose a method to quantify the technological gains and losses engendered
by an IEA, in particular the Kigali Amendment to the Montreal Protocol. For this I apply
the patent renewal model under uncertain environmental regulation that I developed in
Chapter 2 to quantify the monetary impact of the environmental regulation on patent
value. With this structural model I estimate the monetary shocks on patent value triggered
by the Kigali Amendment that I identified in Chapter 3. Using a counterfactual simulation,
I find that average total gains depend on patent cohort and treatment years definition
ranging by treatment type from 1,600 Euro up to 50,000 Euro. Conversely, I almost find
no losses. Only in a scenario where treatment can occur at several periods, I find average
total losses going up to 200 Euro. These results are in line with the rationale of the
self-enforcing agreements’ work by Barrett (1994), suggesting that the original Montreal
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Protocol was successful because benefits outweighed costs. Although this work only
considers technological costs and benefits proxied by patents, it supports his hypothesis on
the original agreement. Of course, measurements on the environmental damages avoided
and additional measures of economic benefits would help confirm this theory.

My method combines a synthetic control group approach and two structural estimations.
As such, it has the caveats of both methods, i.e., the quality of my estimates strongly
depends first, on the quality of the synthetic control group estimation, and second, on the
weights of the different moments of my structural estimation. I discuss the goodness-of-fit
and propose a series of tests and sensitivity analyses to verify the robustness of my results.
With this work, I add to the literature in several ways. First, I contribute first to the
literature on international environmental agreements by providing an approximation to
the technological gains and losses engendered by the signature of the Kigali Amendment
to the Montreal Protocol. As mentioned, technological gains and losses are only a partial
proxy of the costs and benefits of an IEA, that would require, among others, avoided
damages benefits etc. Nevertheless, it provides a flair for the underlying incentives of
the signature of the Amendment. Second, this chapter contributes to the literature on
structural models in environmental economics by estimating the first model including
environmental regulation in patent renewal. Finally, it also contributes to the literature
on IEAs and directed technological change by providing estimates of how an IEA directs
innovation and affects clean and dirty technologies.
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4.9 Appendix 1: Descriptive Statistics

Statistic N Mean St. Dev. Min Max
Dim 1 0.008 0.080 −0.266 0.407
Dim 2 0.005 0.060 −0.543 0.237
Dim 3 −0.002 0.005 −0.033 0.026
Dim 4 0.003 0.025 −0.145 0.163
Dim 5 −0.023 0.051 −0.148 0.198
Grant Lag 2,294.896 987.860 468 5,685
Inventors 4.022 2.407 1 16
Applicants 1.097 0.316 1 4
Family Size 17.140 15.694 1 93
Sample Size 835

Table 4.4: Descriptive statistics: Treatment Group T1

Statistic N Mean St. Dev. Min Max
Dim 1 0.086 0.062 −0.168 0.413
Dim 2 −0.014 0.093 −0.614 0.486
Dim 3 −0.00000 0.008 −0.040 0.096
Dim 4 0.004 0.083 −0.874 0.431
Dim 5 0.006 0.060 −0.148 0.503
Grant Lag 2,278.194 996.228 582 6,572
Inventors 3.348 1.930 1 18
Applicants 1.077 0.312 1 4
Family Size 9.632 7.308 1 136
Sample Size 1,056

Table 4.5: Descriptive statistics: Treatment Group T2
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Statistic N Mean St. Dev. Min Max
Dim 1 −0.009 0.085 −0.329 0.762
Dim 2 −0.001 0.071 −1.003 1.178
Dim 3 0.0002 0.077 −0.063 9.540
Dim 4 −0.001 0.078 −2.968 0.664
Dim 5 0.006 0.071 −0.230 1.161
Grant Lag 2,286.081 995.016 265 6,840
Inventors 3.472 2.197 1 31
Applicants 1.100 0.381 1 13
Family Size 12.713 11.005 1 269
Sample Size 23,204

Table 4.6: Descriptive statistics: Control Group T0
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4.10 Appendix 2: Goodness-of-Fit

4.10.1 Appendix 2.1: Cohort 1997 (All Scenarios)
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Figure 4.6: Goodness-of-Fit 1997 Cohort (All Scenarios, Year: 2016)
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4.10.2 Appendix 2.2: Scenario 1
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4.10.3 Appendix 2.3: Scenario 2
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4.10.4 Appendix 2.4: Scenario 3
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4.11 Appendix 3: Technical Specifications of the
Estimation

In this Appendix, I shortly specify the technical details for both estimations:

• Cohorts: 1997-2006

• Renewal Years: 2016-2019

Algorithms employed:

1) Particle Swarm:
Swarm Size: 1000, Function Tolerance: 1e-20, Minimum Neighbors Fraction: 1, Self-
adjustment Weight: 1.9, Maximum Iterations: 400. Convergence achieved through
relative change in objective value being less than function tolerance.

2) Simulated Annealing:
Using as starting point the solution from the Particle Swarm, I perform a bounded
simulated annealing with the following specifications: Function Tolerance: 1e-6,
Maximum Function Evaluations: 900000.

3) Nelder-Mead:
For the computation of the standard errors I use the bounded Nelder-Mead transfor-
mation performed by John D’Errico (D’Errico, 2022), with the following specifications:
Number of Bootstraps: 150, Tolerance X: 10e-20, Function Tolerance: 10e-20, Maxi-
mum Function Evaluations: 100000.

135



4 Patents as Options: Estimating Technological Gains and Losses from International
Environmental Agreements

4.12 Appendix 4: Global Optimum First Step

Description (Parameter) Estimate
A. Patent initial returns

Mean parameter of the lognormal initial distribution (µ) 10.18
Std. deviation parameter of the lognormal initial distribution (σR) 1.95
bC,1 -0.5000
bC,2 -0.4906
bC,3 -0.4567
bC,4 -0.4853
bC,5 -0.4884
bC,6 -0.4851
bC,7 -0.0806
bC,8 -0.1911
bC,9 -0.4888
bC,10 -0.3319

B. Internal growth of returns
Depreciation factor (δi) 0.7724
Not obsolescence (γi) 0.9664
Internal growth of returns (σi) 1.000
Upside opportunities (φi) 0.7157

Table 4.7: Parameter Estimates (First Step)
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4.13 Appendix 5: Regulation Schedule

Figure 4.7: HCFCs Phase-down Consumption Schedule.
Source: ”Handbook for the Montreal Protocol on Substances that Deplete the
Ozone Layer”, Section 1.2., latest version available here (UNEP, 2019).
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Figure 4.8: HCFCs Phase-down Production Schedule (UNEP, 2019)
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Figure 4.9: HFCs Phase-down Production and Consumption Schedule (UNEP, 2019)
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5 Analyzing Technological Costs and Benefits
from the Montreal Protocol: Evidence from
Patent Renewal∗

5.1 Introduction
The Montreal Protocol of the Substances that Deplete the Ozone Layer (Montreal Protocol)
aimed at phasing-down and phasing-out the so-called ozone-depleting substances (ODSs).
Signed in 1987 and enforced in 1989, it is commonly seen as the most successful international
environmental agreement (IEA) achieved so far. The drivers behind that success, however,
are still not clear and have been the topic of discussions since early 1990s. There are two
main hypotheses regarding its success. First, that the agreement was not very costly, and
costs outweighed the benefits (Barrett, 1994). Second, that technologies were already
available, and that the industry had started already moving (Sunstein, 2007). This second
hypothesis, however, contradicts a statement by the U.S. chief negotiator at the Montreal
Protocol, Richard Elliot Benedick, who said that the Protocol made the industry move in
directions that would have been unexpected some years before (Benedick, 1998). Dugoua
(2021), recently provided evidence supporting that the Protocol induced innovation in
clean technologies and shows with a model of global collective goods that the agreement
is best seen as a series of successive pledges increasing in stringency. Furthermore, her
results would support the claims of Benedick (1998). In this paper, I aim at shedding
further light to these questions by taking a different approach. To achieve this goal, I use
a novel approach that combines a unique self-curated dataset of patents citing the ODSs
and their substitutes. Furthermore, I use a new econometric method for studying shocks
on the private value of patents developed in Chapter 3, and use a different identification
strategy to the ones used in previous studies.

In particular, my identification strategy focuses on the impact of the Montreal Protocol
and subsequent amendments to the value of R&D assets (patents) that had been applied

∗I would like to thank Timo Goeschl and Wolfgang Habla for preliminary discussions on this chapter.
Furthermore, I am grateful to Ulrich Wagner for discussions on the Montreal Protocol during my time at
ZEW that indirectly benefited this work. The usual disclaimer applies.
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either long-before the Protocol or just-before the Protocol was signed. Specifically, I define
two periods, a first period before negotiations on the Protocol had started (1979-1983) and
a second period during negotiations on an international agreement on ODSs (1984-1987).
Then I study the impact of the Montreal Protocol and the following amendments on the
hazard rate of clean and dirty patents applied in those two periods. This allows me to
disentangle the role of the industry in achieving the Protocol and helps me shed further
light on the different hypotheses behind the success of the Protocol.

The rationale behind my approach is that in the first period, one can assume that the
industry had no expectations yet on the realization of a future agreement, such that if
the agreement would have been exogenous it should have been experienced as such by the
patent holders. Namely, dirty technology holders would have received a negative shock on
the value of their patent assets and clean technology owners a positive one. Conversely,
the second period started around the Vienna Convention for the Protection of the Ozone
Layer (1985), which was the steppingstone upon which the Montreal Protocol was achieved.
As such, one can assume that firms likely had a certain degree of information regarding
the probability of a future agreement, i.e., some expectations on its realization. Therefore,
one can hypothesize that if the agreement and its subsequent amendments were exogenous
to those firms, then their impact should have been similar to the one we would expect
firms having in the first period. If the impact differs then we could hypothesize that they
adapted their innovation behavior to their expectations.

This chapter is structured in the following manner. In sections 2 and 3 I review the
literature and present the environmental regulation that I study. In section 4, I present the
dataset construction as well as the definition of treatment and control groups. Afterwards,
in section 5, I describe the empirical analyses performed, first presenting empirical evidence
stemming before the beginning of the discussions on the Montreal Protocol (1979-1983)
and then evidence stemming from the period whilst discussions on an international en-
vironmental agreement were ongoing (1984-1987). Within each section I provide first
descriptive statistics of the datasets, then present evidence from a panel event study, and
finally nonparametric evidence from a duration model. I close this chapter summarizing
my results in section 6.
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5.2 Literature Review
This chapter stands upon three strands of the literature. First, the literature studying
the ozone regulation and the Montreal Protocol. This literature started with the work of
Barrett (1994) on self-enforcing agreements, where international environmental agreements
are modeled as a non-cooperative game between countries. The Montreal Protocol and in
particular the participation of the U.S. in the Protocol is interpreted in that framework,
i.e., that the benefits from implementing the Protocol compared to its costs associated
would have made the U.S. implement the negotiated measures independently of the agree-
ment. Murdoch and Sandler (1997) further studied the reduction of chlorofluorocarbons
(CFCs) as the voluntary provision of a public good and sustain that the initial emission
reduction pledges were the outcome from the voluntary public good provision and not from
cooperation. Beron et al. (2003) develop a probit model to study the decision of countries
regarding whether to ratify the Montreal Protocol or not. Their findings suggest that
countries ratified the Protocol without taking the behavior of other countries into account,
in particular they reject free riding as a reason for not ratifying the agreement. Aufhammer
et al. (2005) model the strategic behavior of countries prior to signing an IEA. Within
the framework of a two player Nash-Cournot game they find evidence that the strategic
anticipation behavior of the countries resulted in an increase of global CFC production.
Goeschl and Perino (2007) developed a model of optimal R&D with stock pollutants, where
technologies are not perfect backstops and find that innovation is sequential. Their model
provides the intuition of the innovation challenge faced by agents within the framework of
the Montreal Protocol. Wagner (2009) further studies the results of Murdoch and Sandler
(1997) and questions their findings using UNEP emissions data reported by countries
instead of their heavily imputed emissions dataset from the World Resources Institute that
overstated emissions reduction and influenced their conclusions. This article was replied by
the formers in Murdoch and Sandler (2009). More recently, Wagner (2016) estimates in a
dynamic structural model the sign and magnitude of the strategic behavior of the countries
in the ratification procedure of the Montreal Protocol. Finally, Dugoua (2021) using a
synthetic control method approach finds that the Montreal Protocol induced innovation.

The second strand of the literature refers to the works on directed technological change
and international environmental agreements, consisting of two main papers. First, the
seminal work of Dekkers et al. (2012) scrutinizing the impact of an IEA on clean innovation
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exploiting the difference between “mother” innovations and family patents. They find
that the Helsinki and Oslo protocols induced inventive activities and the diffusion of
knowledge. Second, Dugoua (2021), as already mentioned, finds evidence of the impact of
the Montreal Protocol on clean innovation using patents and scientific articles and finds
that the Protocol induced clean inventive activities.

The last strand of the literature refers to the value of clean and dirty patents. First,
Hall and Helmers (2013) study a pledge on clean innovations, the so-called “Eco-Patent
Commons”. For this they compare the value of the pledged patents to other patents from
the same multinational or from the same technology field. They find that although the
value of the pledged patents is similar to others from the same firm, they have a lower
value compared to those of their technology field. Recently, Dechezleprêtre et al. (2021a;
2021b), using the stock-market approach of Hall et al. (2005) find that clean innovations
are higher valued than dirty ones, while Langer et al. (2022) employing the Kogan et
al. (2017) patent valuation method find that clean innovations suffer from financial
constraints. In particular, they find that the economic crisis of 2010, which imposed severe
financial constraints, affected negatively the relative share of clean versus dirty innovations.

5.3 Overview of the Regulation: The Montreal Protocol
The Montreal Protocol was signed in 1987 and entered into force in 1989. Signing par-
ties agreed to implement phase-down and phase-out schedules for reducing emissions of
ozone-depleting substances (the full list can be found in Appendix 3). In the following
years, subsequent amendments were signed extending the list of regulated substances and
tightening the phase-down schedules of the original treaty. The main family of pollutants
regulated under the Montreal Protocol are the so-called chlorofluorocarbons (CFCs), which
are molecules having particular thermodynamic and chemical properties making them
suitable for a large set of applications such as aerosols, working fluids in refrigeration and
air conditioning devices (RAC) (i.e., fridges, freezers, etc.), and foams’ blowing agents.
Their large use made their phase-out be a considerable challenge for the industry such
that alternative substances had to be developed, and devices adapted to other potential
chemicals. One family of replacement chemicals employed as replacement for CFCs were
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hydrochlorofluorocarbons (HCFCs), which are substances with similar thermodynamic
properties but with a smaller ozone depleting potential than CFCs (see Appendix 1.1).
Besides HCFCs, the so-called hydrofluorocarbons (HFCs) were also used as replacement,
since they are not ODSs but their global warming potential is much higher than that of
CO2 (see Appendix 1.1).

5.4 Data

5.4.1 Dataset Construction

The dataset used for the analysis of this paper is a subset of the original dataset described
in Chapter 3 on patents citing substances regulated under the Montreal Protocol and
their clean substitutes in the refrigeration sector. In Chapter 3 using the lists of regulated
substances provided in the Handbook of the Montreal Protocol (UNEP, 2019) and the
list of refrigerants, as of defined by ANSI/ASHRAE 1 Standard 34-2019 (ASHRAE, 2019)
(see Appendix of this Chapter 1.1 and 1.2), I select all European patents renewed in
Germany citing the listed substances. This dataset focuses on patents citing the following
types of substances, i.e., chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs),
hydrofluorocarbons (HFCs), other ozone-depleting substances (ODS) regulated by the Mon-
treal Protocol, non-patented chemicals with refrigerant properties2, and hydrofluoroolefins
(HFOs).

Treatment and Control Groups

Since the aim of this paper is to further shed light on the impact of the Montreal Protocol
on patent value, then treatment group selection will be different from that of Chapter 3.
In particular, as we are interested in the impact of the original Protocol, we will focus
primarily on patents citing the first family of chemicals regulated under the IEA, i.e.,

1ANSI stands for the ”American National Standards Institute” and ASHRAE refers to the ”American
Society of Heating, Refrigerating and Air-Conditioning Engineers”.

2Following the ASHRAE (2009) definition: “Natural refrigerants occur in nature’s biological and
chemical cycles without human intervention. These materials include ammonia, carbon dioxide, natural
hydrocarbons, water and air”.
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the CFCs. Besides patents citing the original pollutants, we will be also interested in
patents citing their substitutes. Given that we want to study the original Protocol, then we
will consider as “clean” substitutes patents citing HCFCs, HFCs, HFOs, or non-patented
chemicals. I will now define the treatment and control groups of the analysis.

First, I define as TI the group of patents citing CFCs, i.e., as patents citing substances
from Annex A and Annex B of Appendix 1.1 also included in the ASHRAE list of Appendix
1.2. Then as TII , those patents citing any of the clean substitutes mentioned above, i.e.,
any substance from the ASHRAE list of Appendix 1.2 not included in Annex A or Annex
B of Appendix 1.1. Finally, I define TIII as those patents citing any other substance
regulated under the Montreal Protocol, i.e., listed in Appendix 1.1, not included in either
TI or TII . Those three patent groups can be represented in a Venn diagram, see Figure 5.1.
In order to define the control group, I use the patents from TI . Namely, I first define a
vector with the IPC3 subclasses of the patents from TI belonging to either F or C sections4

(see Table 5.8 in Appendix 2), and then I consider as control group all patents from those
IPC subclasses that do not belong to TI , TII , or TIII .

As one can observe in the Venn diagram (Figure 5.1), the three sets of treated patents
(TI , TII , and TIII) intersect each other. The rationale for this is that technologies were
developed to be able to work with different types of chemicals, i.e., pollutants and their
substitutes. This includes not only the mechanical components of refrigeration devices
such as compressors or valves, but also additional chemicals used in those devices such as
lubricants or additives. Since patents citing both types of substances could generate noise
in my analysis, I decide to keep only those citing single sorts of substances. Therefore, I
redefine the treatment groups as following. T1 is the group of patents citing solely CFCs,
i.e., T1 = TI\((TI ∩ TII) ∪ (TI ∩ TIII)). T2 is the group of patents mentioning only their
substitutes, i.e., T2 = TII\((TI ∩TII)∪ (TII ∩TIII)). The control group contains all patents
from the IPC subclasses of the patents from TI netted out of the patents of TI , TII , or
TIII . Before presenting the empirical analysis, I will describe two further steps in the data
selection process and explain the timeframe of my analysis.

3IPC stands for International Patent Classification.
4C section includes Chemistry and Metallurgy, and F section includes Mechanical engineering, lighting,

heating, weapons, and blasting.
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Figure 5.1: Treatment and Control Groups

Multiple Correspondence Analysis and Coarsened Exact Matching After having
defined the treatment and control groups, I will now perform an additional step for further
capturing the unobserved technological heterogeneity of the different patents’ samples.
In particular, I exploit that patents are co-classified into several IPC subclasses5 for
disentangling the technological space to which the invention belongs. With this purpose
I perform a multiple correspondence analysis of the co-classified IPC subclass dummies
into 5 dimensions. This will allow me later in my empirical analysis to further control for
technological similarities between two patents. The second and final step before describing
the timeframe of the analysis is a coarsened exact matching. Specifically, in order to
increase the comparability of the three different groups (T1, T2, and control group), I
implement a coarsened exact matching at the application year and patent class level. I
impose an additional constraint on the matching, i.e., I only keep the matched “bins”
where there are at least one observation of T1 and one of T2 (in Table 5.9 of Appendix 2 I
present the matched IPC classes). The result from this matching for the period described
in the next paragraph constitutes the final dataset of my analysis (Table 5.10 in Appendix
2 presents the matched bins of the whole dataset, i.e., not constrained to the cohorts of
analysis).

Cohorts of analysis Since I aim at scrutinizing the consequences of the signature, en-
forcement, and of the early amendments to the Montreal Protocol, I will focus on European
patents renewed in Germany applied for years between 1979 and 1987 (bearing in mind

5A patent is assigned an “F” IPC subclass and additional IPC subclasses, which I call the “co-classified”
IPC subclasses. The list of co-classified IPC subclasses can be of hundreds for a single patent.
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that the Protocol was signed in 1987). The reason for focusing on patents applied for
before the Montreal Protocol was signed is that I want to analyze the fate of the existing
R&D assets (proxied by patents) after the signature of the Protocol. Later on, I will
split my analysis in two, first focusing on patents applied for “before discussions” on the
Montreal Protocol had started, i.e. those patents applied between 1979 and 1983, and
then on those “during discussions” on the Montreal Protocol, i.e., those having application
dates between 1984 and 1987. The decision to split the sample and the analysis in two is
because the Montreal Protocol was preceded by the Vienna Convention for the Protection
of the Ozone Layer, which started in March 1985 and was the steppingstone towards
achieving the Montreal Protocol. For this reason, I consider that from the Vienna Conven-
tion onwards (I take one year lead that I consider as of “preparation” of the conference)
countries and industries could foresee and make assumptions of an IEA on ozone depleting
substances. As a consequence, one can hypothesize that the patenting behavior of firms
(R&D strategy) between 1984 and 1987 is not naïve to the Montreal Protocol. We will
study this hypothesis later on in the empirical analysis. Conversely, one can hypothesize
that patents applied for between 1979 and 1983 are early enough to the Montreal Protocol
such that patent holders could not guess at the application date that in 1987 the Montreal
Protocol would be signed. The comparison of the impact of the Montreal Protocol on
the value of those two sorts of patents, proxied by forward citations and patent renewal
would allow us to further shed light on the different hypotheses regarding the rationale of
the Protocol’s drivers. In the next section I will present evidence on the impact of the
IEA on patent value, first for the dataset ”before discussions” on the Montreal Protocol
(1979-1983) and then for the one ”during discussions” on the Montreal Protocol (1984-1987).

5.5 Empirical Analysis of the Impact of the Environmental
Regulation on Patent Value

In this section I present the empirical analysis of the impact of the Montreal Protocol
on patent value. My analysis is divided in two parts referring to two different periods
and datasets. In the first part, I study the time before official discussions on Montreal
Protocol had started, which I define from 1979 to 1983. Afterwards I scrutinize the period
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during which discussions on the Montreal Protocol happened, which I define from 1984
until 1987. The reference point for splitting the two analyses is the Vienna Convention,
which happened in 1985, but whose effect might have already started before, hence I start
the second period in 1984. Each one of the analyses has three parts. First, I provide
some descriptive statistics of the data sample related with patent value and technological
similarity. Second, I study the impact of the Protocol on patent value using forward
citations as a proxy for patent value. Finally, I scrutinize the impact on patent value using
nonparametric duration techniques for my two types of patents. For the duration analysis
I exploit patent renewal as a proxy for patent value and use the adaptation of the van den
Bergh et al. (2020) approach that I developed in Chapter 3.

5.5.1 Evidence Before Discussions on the Montreal Protocol
(1979-1983)

Concerns about the potential threat that CFCs represented for the ozone layer started in
1974 with the evidence provided by Molina and Rowland (1974). This research milestone
sparked worries that soon led to political action. In Germany, for instance, already in 1975
the German Federal Government started gathering further evidence on the effects of the
CFCs on the atmosphere and in 1977 there was a commitment to cut the quantity of CFCs
used in aerosols by 1979. Yet, since the CFCs and other ODSs were used on a global scale,
international action was essential and there was still a long way to go until reaching global
pledges. As I present in Appendix 6, in a retranscription of a report from the German
Environmental Agency (UBA, 2017), between 1974 and the Vienna Convention (1985)
there were already some events on the ozone regulation. Those events and regulations
were, however, limited to either some specific uses or some CFCs. The most relevant ones
affecting Germany in the period 1974-1985, and in particular the refrigeration sector, were
the resolution from the Council of the European Community in 1978 that prevented the
increase in production of CFC-11 and CFC-12, and the agreement of the Council in 1980 on
freezing their production. Given this information, we can conclude that during the period
from 1974 until 1985 there were strong concerns on the threats that CFCs represented for
the ozone layer. Furthermore, we can also conclude that national and international action
had already started at a sector level and that some industry players in certain countries were
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already aware of the problem caused by ODSs. Yet, that some countries and sectors had
started actions doesn’t mean that stakeholders, such as countries or firms, could imagine
that a pledge at a world level was likely to happen. Taking this into account, in this part
of the paper I will analyze how the signature of the Montreal Protocol affected the patent
value of European patents applied between 1979 and 1983, which were renewed in Germany.
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Figure 5.2: Patent counts by cohort year 1979-1983

Descriptive Statistics

In Tables 5.1 to 5.3 I present descriptive statistics from the three data samples T1, T2,
and control group T0. I provide values of different proxies of ex-ante patent value such
as number of inventors, number of applicants, family size, and grant lag, as well as five
proxies for technological space resemblance stemming from the multiple correspondence
analysis (MCA). First of all, it is noteworthy mention the difference in sample sizes between
treatment groups and control group. In line with the finding from Dugoua (2021), there
were not many patents in the sector, either mentioning dirty substances (CFCs) or their
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Statistic N Mean St. Dev. Min Max
Dim 1 0.041 0.026 −0.008 0.112
Dim 2 0.0004 0.005 −0.016 0.008
Dim 3 0.006 0.061 −0.163 0.157
Dim 4 −0.003 0.005 −0.022 0.005
Dim 5 −0.005 0.022 −0.060 0.051
Grant Lag 1,308.971 437.124 586 2,511
Inventors 2.914 1.560 1 7
Applicants 1.000 0.000 1 1
Family Size 7.629 3.598 4 19
Sample Size 35

Table 5.1: Descriptive Statistics 1979-1983: Treatment Group T1

substitutes (T2). Given that sample sizes are about 35 patents each, this clearly limits the
interpretation of the estimates from this analysis. Nonetheless, even if only as descriptive
evidence, it could help shed further light on the impact of the Protocol on patent value.
Extending the analysis to further countries might help overcome this clear shortcoming.

Statistic N Mean St. Dev. Min Max
Dim 1 0.048 0.035 −0.012 0.158
Dim 2 0.00003 0.004 −0.008 0.009
Dim 3 0.012 0.048 −0.081 0.125
Dim 4 0.002 0.014 −0.010 0.074
Dim 5 −0.007 0.018 −0.060 0.025
Grant Lag 1,373.294 460.387 714 3,005
Inventors 2.735 1.310 1 5
Applicants 1.000 0.000 1 1
Family Size 6.206 4.305 3 24
Sample Size 34

Table 5.2: Descriptive Statistics 1979-1983: Treatment Group T2

Besides the sample size discussion, it is interesting to notice that the three samples have
similar number of applicants, inventors, and grant lags, which are three known measures
of ex-ante patent value. Regarding the pre-grant patent value measure, only family size
seems to be slightly larger for the control group sample than for my treatment group ones.
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Concerning the technological space, we can see that treatment groups (T1, T2) have very
close values of MCA dimensions 1 and 2. Furthermore, T1 and control group have also
similar values of dimension 4. In general differences across the three samples are not large,
which would speak for a similar technological space across samples.

Statistic N Mean St. Dev. Min Max
Dim 1 0.012 0.060 −0.331 0.412
Dim 2 −0.002 0.005 −0.021 0.039
Dim 3 −0.017 0.064 −0.193 0.744
Dim 4 −0.005 0.008 −0.049 0.226
Dim 5 0.004 0.033 −0.332 1.327
Grant Lag 1,284.201 460.826 499 4,965
Inventors 2.699 1.539 1 16
Applicants 1.035 0.212 1 4
Family Size 8.916 7.277 2 79
Sample Size 3,365

Table 5.3: Descriptive Statistics 1979-1983: Control Group T0

Regarding technological distribution, proxied by the “F” or primary IPC class, I present
in Figure 5.2 the figures for my three samples. It is straightforward to notice that treatment
groups (T1, T2) have very close distributions, with patents from the C08 class dominating6.
Conversely patents from control group seem rather be stemming from the C07 class7.
Regarding the distribution of patents by cohort, it is interesting to see that the number
of patents from T1 (dirty patents) decreases over time. Likewise, it is also noteworthy
mentioning that patents from T2 (clean patents) have similar cohort count patterns as
those from the control group, slightly diverging in 1983, where the number of clean patents
decreases.

Forward Citations Evidence

I will now present evidence stemming from a panel event study on the impact of the
Montreal Protocol on patent value, proxied by forward citations. I consider that the event
date is 1987, which corresponds to the signature of the Protocol. In my study, both for

6C08 stands for “Organic Macromolecular Compounds; Their Preparation or Chemical Working-up;
Compositions based Thereon”.

7C07 stands for “Organic Chemistry”.
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my clean and dirty technologies’ analyses, I include 3 leads and 13 lags. Furthermore, I
control for the five MCA dimensions, grant lag, number of applicants, number of inventors,
family size, a dummy indicating whether the patent is still active, application year by IPC
subclass fixed effects, and I also include year fixed effects. I use the panel event study
implementation of Clarke and Tapia-Schythe (2021).
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Figure 5.3: Patent counts by 3-digit IPC Class 1979-1983

Evidence on Clean Technologies I consider first, evidence for clean technologies, i.e.,
comparing T2 to the control group patents. I implement the panel event study presented
in equation 5.1. As shown in Figure 5.4, this analysis delivers no significant negative nor
positive effects. Nevertheless, the size of the confidence intervals is considerably large
compared, for instance, to that from the analysis of Chapter 3. This could be attributed to
both the limited sample size and the small magnitude of the effects. As already mentioned,
increasing sample size by extending this analysis to other countries would benefit the
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analysis in general terms and could potentially help disentangle this question. Even if the
effects are not significant, it is still possible to observe a positive trend in forward citations.
This would be in line with what we would expect happening. As the Montreal Protocol
imposed phase-down schedules for CFCs (see Appendix 3), it is intuitive to think that the
value of clean substitutes to those substances would increase, although evidence is here
not significant at a 5 percent level.

yit = α +
13∑

j=1
βj(Lag j)it +

4∑
k=2

βk(Lead k)it + λt + X ′
itΓ + εit (5.1)
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Figure 5.4: Panel Event Study Evidence of the Impact of the Montreal Protocol on Clean
Technologies (baseline: 1987)

I report estimates from this analysis in Table 5.11 of Appendix 4.1. It is interesting
to note that all controls are significant at 0.1 percent level except dimension 5 from the
MCA analysis, which is significant at a 1 percent level and the subclass-application year
interaction, which is significant at a 5 percent level. Besides this, all year fixed effects are
significantly positive at 0.1 percentage level from 1990 onwards, while year fixed effects for
1987 and 1988 are significantly positive at 5 percent level and that of 1989 is significantly
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positive at 1 percent. The fact that year fixed effects are significantly positive, but the lags
are not, could point towards an overall impact of the Montreal Protocol on innovation, for
both clean and control group patents, since year fixed effects before 1987 are not significant.
It could, however, also be attributed to the fact that forward citations are likely to be
increasing over time. We could further study this through the panel event study on dirty
technologies.
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Figure 5.5: Panel Event Study Evidence of the Impact of the Montreal Protocol on Dirty
Technologies (baseline: 1987)

Evidence on Dirty Technologies Turning now to the analysis on dirty technologies,
also following equation 5.1, I find again no significant (at a 5 percent level) positive nor
negative impact of the Montreal Protocol on patent value proxied by forward citations
(see Figure 5.5). It is possible, however, to distinguish a negative trend in the lags, which
would confirm the expected rationale on the impact of an environmental regulation on
dirty technologies. As for the evidence on clean technologies, confidence intervals are very
large for the first lags and slightly decreasing for the latter. Similarly to the previous
analysis, this could be due to either the lack of the effect or also due to the small sample
size available for estimation.
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If we analyze estimates reported in Table 5.12 of Appendix 4.1, we see that results
on controls and year fixed effects are almost identic to the ones from the first regression.
The sign, significance, and size of coefficients for the ex-ante control variables are the
same as for the regression on clean technologies. Only dimension 4 from the MCA is now
significant at 1 percent level instead of at 0.1 percent. Reported year fixed effects have
same sign, significance levels and sizes. This result points out that treatment samples are
similar in their comparison to the control group referring to the characteristics responsible
for additional forward citations that I control for. Besides this, the increasing trend in
significance and size of the year fixed effects remains the same as for the clean technologies
but their interpretation is still difficult due to the nature of the variable (forward citations).

Patent age a

Patent age a1

τ0 = 1983

τ ∗ = 2 τ rc = 14

Figure 5.6: Lexis Diagram Ongoing Spells for Cohorts from 1979 to 1983 (patent frame-
work in patent ages with left censoring, right censoring, and cross-cohorts
aggregation)

Patent Renewal Evidence

After the first and rather preliminary evidence from the panel event study, I will now
try to further disentangle the impact of the Montreal Protocol on patent value analyzing
another dimension related with it, i.e., patent renewal. For the study of patent renewal,
I will use a duration analysis framework. In particular, I implement the adaptation of
the van den Bergh et al. (2020) nonparametric duration model that I have presented in
Chapter 3. As presented in Figure 5.6, I first redefine patent ages for the different cohorts
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such that the new first renewal year corresponds to τ0 = 1983. For this I drop patents
that have not survived until that year. Afterwards, I consider that the moment of the
policy change is in 1984 (age τ ∗ = 2) and analyze the average treatment effects on the
conditional survival probabilities until 1996 (age τ rc = 14). This would help us capture
any differences between treatment and control groups in the renewal pattern that could be
attributed to an event occurring from 1984 onwards. The reason for taking this approach
is that the event of interest is the signature of the Montreal Protocol in 1987. Nevertheless,
since the Vienna Convention, which was the enabler of the Protocol, took place in 1985,
the effects of the Montreal Protocol might have been slightly anticipated. Likewise, since
the Protocol was only enforced in 1989, its effects might have been delayed. Therefore, an
approach that could allow us to take into account those anticipation and delay effects is
key to shed light on the impact of the Montreal Protocol on patent value.

Evidence on Clean Technologies I start studying the impact of the signature of the
Montreal Protocol on the renewal of clean patents (T2). To do this, I use the duration
framework described before and add further controls. Specifically, I control for the five
dimensions of the MCA, number of inventors, number of applicants, family size, patent
class by application year dummy, and cohort dummies. I present the estimated average
treatment effects on the conditional survival probabilities from 1984 until 1996. Before
describing the graphical results, I will shortly comment on the estimates that I report
in Tables 5.15 and 5.16 of Appendix 5.1. Particularly relevant are results of Table 5.16,
since we find that many years do not report any estimates, which is the case for (1985,
1986, 1987, 1988, and 1990). If we look at results from Table 5.15, we can see in the
hazard rate estimation for treatment and control groups that the missing results stem
principally from the treatment group hazard rate estimation, although the algorithm also
seems not to be able to compute results of 1986 for the control group. I hypothesize that
the reason of this caveat is the lack of variation, which in the case of the treatment group
could come from the small sample size. Further explorative evidence is needed to further
disentangle the reasons behind this caveat and will be performed in future versions of this
paper. Taking this into account and bearing in mind that the reduced sample size limits
the causal interpretation of the results, I will now discuss the findings.

In order to interpret the results I will assume that there is no selection in renewal during
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the periods for which I don’t have estimates on ratios and differences of hazard rates.
Taking this into account, I find that there have been three positive significant shocks on
the differences in hazard rates at the 5 percent level. The first one in 1984, which would
be the instantaneous average treatment effect of the hazard rate (since I assume that the
change in policy regime happened in 1984), the second in 1989, and the last one in 1992. If
we want to be able to interpret these results it is important to bear in mind the regulatory
changes related to ODSs happening in Germany during that period.

-1
0

1
2

1982 1987 1992 1997
Years

Difference in local hazard rates
-1

0
1

2
3

1982 1987 1992 1997
Years

Ratio of local hazard rates

Clean Patents VS Control Group (1979-1983)

Figure 5.7: Nonparametric Duration Evidence: Clean Patents VS Control Group 1979-1983

The reasons behind those shocks are potentially multiple. Since it is very difficult to
disentangle the exact origin of each shock without additional sectoral data such as exports,
market sizes, etc., or interviews with industry experts or policymakers, I will limit my
analysis to an exposition of the possible origin for each shock. Given that my dataset
focuses on Germany, I use two main sources for the possible origin of the shocks, i.e., the
Montreal Protocol phase-down schedules presented in Appendix 3, and the regulatory
changes on ODSs in Germany summarized in Table 5.24 of Appendix 6. Regarding the
shock of 1984, in the table summing the ozone-related regulations in Germany we only
find the Vienna Convention signed in 1985. It doesn’t make sense to find an event in
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the Montreal Protocol phase-down schedules of Appendix 3, since those happened after
the enforcement of the Protocol itself in 1989. Concerning the second shock, in 1989,
interpretation is a bit blurrier since in 1988 the European Council agreed on a regulation on
some CFCs and halons, limiting their import, production and use (see Table 5.24 Appendix
6 (UBA, 2017)). At the same time, in 1988, Germany ratified the Montreal Protocol, which
was enforced in 1989 (UBA, 2017). Under the Protocol, already in 1989 Annex A/I CFCs
(see Appendix 3) saw their production and consumption frozen in Non-article 5 parties8,
i.e., in industrialized countries. Since this second reason was likely a larger incentive for
innovators for revising positively the value of their clean R&D assets than the former, I
will take it as the reason for this second positive shock. Finally, we observe a last positive
significant (at a 5 percent level) shock in 1992. Again, several reasons might potentially
explain this shock. Focusing first on potential regulations implemented in Germany, we see
in Table 5.24 that in 1991 there was an ordinance on the prohibition of CFCs and halons in
Germany, that completely phased-out these substances in every area of use by 1995 (UBA,
2017). Furthermore, in 1991 the resolutions from the London Amendments of the 2nd

conference of the parties to the Montreal Protocol were implemented. Those Amendments
tightened the phase-out schedule for production and use of CFCs by 2000 and included
further substances to the Protocol (UBA, 2017). Besides this, in 1992 during the 4th

conference of the parties to the Montreal Protocol, the phase-down schedules of halons
and CFCs became stricter, and parties decided to forbid manufacturing of CFCs by 1996
(UBA, 2017). Interestingly, HCFCs, which were considered so far as “clean” substitutes
become also regulated under the Montreal Protocol, but at that moment it is decided
that their production would be banned from 2020 onwards (UBA, 2017). In my analysis,
HCFCs belong to T2. If we now search in the phase-down schedules of Appendix 3, only
the 20% reduction of Annex B/I CFCs in 1993 could explain the existence of a positive
shock. Taking all the possible reasons into account it seems that the larger potential effect
might have been the 4th conference of the parties to the Montreal Protocol in Copenhagen.
Although some patent holders of patents citing CFC-substitutes, e.g. HCFCs, also receive
the information that HCFCs will be banned in from 2020 onwards, as the patents that I

8Under the Montreal Protocol countries were classified into Article 5 and Non-Article 5 countries,
where Article 5 countries are defined as “Any Party that is a developing country and whose annual
calculated level of consumption of the controlled substances in Annex A is less than 0.3 kilograms per
capita on the date of the entry into force of the Protocol […].”(UNEP, 2019).
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analyze now were applied between 1979 and 1983. It is reasonable to assume that this
won’t affect negatively to their renewal behavior.

From the analysis on clean technologies, bearing in mind the limitations and caveats of
the nonparametric estimation, I find that the Vienna Convention, the enforcement of the
Montreal Protocol and the Copenhagen Amendment had positive impacts on the value of
clean technologies. Furthermore, this evidence points out towards supporting the Sunstein
(2007) argument that clean substitutes were already available before the Protocol, which
facilitated achieving the agreement.

Evidence on Dirty Technologies I present now nonparametric duration model evidence
on the impact of the Montreal Protocol on dirty technologies. In this paragraph my
analysis will be symmetric to the one on clean technologies with the only difference that
I consider now as treatment patents those from T1, i.e., the ones citing CFCs. I show
graphical results from the estimation in Figure 5.8 and present the corresponding estimates
in Tables 5.18 and 5.19 of Appendix 5. Before discussing the graphic results, it is important
to note that we encounter in this estimation the same problems as for the one on clean
technologies. Namely, that the algorithm is unable to compute estimates for one hazard
rate of the control group (again 1986), and four hazard rates from the treatment group
(now 1986, 1987, 1988, and 1995). The hypothesis on the reason for this caveat is the
same as in the previous analysis and will require further study and robustness checks to
confirm the results deduced from this analysis. Assuming, as for the clean patents’ study,
that there has been no selection in renewal for the years for which we cannot compute the
estimates, i.e., that we are not losing observations, I will present the shocks that I find.
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Figure 5.8: Nonparametric Duration Evidence: Dirty Patents VS Control Group 1979-1983

As we can graphically see in Figure 5.8 and further confirm in Table 5.19, I find two
positive shocks in differences significant at a 5 percent level, one in 1989 and one in
1990. Furthermore, I find an almost negative significant (at a 5 percent level) shock in
ratios in 1994. First of all let’s discuss the positive shocks, which seem to be the most
counterintuitive ones. In 1989, as we had seen for clean technologies, the most likely
largest shock on technologies related to the Montreal Protocol that could have happened
is the enforcement of the Protocol, which led to the establishment of the phase-down
schedules for Non-Article 5 countries regarding the Annex A/I CFCs (see Appendix 3)
(UBA, 2017). This is unexpected, since it seems that the enforcement of the Montreal
Protocol and the official implementation of the phase-down schedules might have had
a positive impact on the value of European patents applied for between 1979 and 1983
that were renewed in Germany citing CFCs. This result is very interesting since it would
provide evidence supporting the argument from Barrett (1994), i.e., that IEA’s benefits
outweighed cost, which seems to be also true for dirty technology holders, and that it
would be an additional reason for explaining why the IEA was successful. Of course, given
that we cannot compute estimates for the years between 1986 and 1988, included, this
result should be taken carefully, and further descriptive evidence should be analyzed for
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confirming it, among others, increasing sample size. Regarding this, the broad confidence
intervals in the ratio estimation might be misleading since the point estimates for those
years could not be estimated for the treatment group. Interestingly, the results on the
negative almost significant (at a 5 percent level) shock from 1994 support the hypothesis
on the positive shocks. In particular, if there has been no selection in patent renewal for
the treatment group patents before 1994, then it seems that the dirty patents applied
between 1979 and 1983 were only impacted negatively by 1994. After the signature and
enforcement of the Protocol, countries decided to tighten the phase-down schedule, e.g.,
in 1990 during the London conference of the parties as explained for clean technologies,
such that the 75% reduction schedule for CFCs of both Annex A/I and Annex B/I is in
1994 (see Appendix 3). Since this was a major regulatory milestone for CFCs, it might
have been the reason behind the negative shock. It is nonetheless interesting to note that
the event is still not significant (at a 5 percent level), so it could support the rationale of
Dugoua (2021) that the Montreal Protocol was an agreement where benefits outweighed
costs (Barrett, 1994) but that it enabled future stricter commitments.

To conclude this analysis on the evidence on R&D assets stemming before the signature
and enforcement of the Montreal Protocol, I summarize my main findings and take-aways.
From the evidence on clean technologies, I find that the successive conferences of the
parties from the Montreal Protocol and their related tightening of the CFCs phase-down
schedules had a positive impact on the value of clean innovations. This main finding on
clean technologies is in line with the expected rationale on the impact of environmental
regulations on environmentally friendly innovations. Furthermore, since the cohorts of
analysis are selected to be before discussions on the Montreal Protocol had started, then
these positive impacts would support the argument of Sunstein (2007), claiming that clean
technologies were already available before the signature of the Protocol. Conversely, the
results from the analysis on dirty technologies are challenging the expected results and
instead provide first evidence on the rationale supported by Barrett (1994) claiming that
the Montreal Protocol was easy to achieve because benefits outweighed costs. In particular,
I find that the IEA had a positive impact on the value of existing dirty technologies.
Furthermore, my findings also support the rationale suggested by Dugoua (2021), that
builds upon the Barrett (1994) argument, claiming that the Montreal Protocol was signed
because benefits outweighed costs (Barrett, 1994) but that it enabled future more stringent
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regulations. The negative and almost significant effect (at a 5 percent level) on dirty tech-
nologies in 1994 together with the positive shocks in 1989 would support these arguments.
These results need, however, to be further confirmed with additional evidence increasing
the sample size of the analysis by potentially extending it to other countries and providing
further descriptive evidence justifying that the caveats encountered do not falsify my results.

5.5.2 Evidence During Discussions on the Montreal Protocol
(1984-1987)

After having studied the impact of the Montreal Protocol on the value of R&D assets
existing before discussions on the Montreal Protocol were at stage, I study the impact of
the Protocol on patents applied during the time while the Protocol was being prepared,
i.e., between 1984 and 1987. To do this, I consider the Vienna Convention (1985) as the
steppingstone that enabled the Montreal Protocol (1987). In order to take into account
a possible anticipation to the Vienna Convention I also include in my analysis patents
applied for in 1984. In the next section I present some descriptive statistics of my dataset.
Afterwards, I will proceed to symmetric analyses to the ones performed for the data
sample from 1979 to 1983, i.e., first a forward citations panel event study and then a
nonparametric duration model. The motivation for this second analysis using patents
from this later period is to seek confirmation (or to refute) the findings from the first
period. Namely, that the Montreal Protocol was a successful international environmental
agreement because it successively increased the stringency of the regulations first offering
an agreement where benefits outweighed costs (Barrett, 1994), which would enable future
stricter regulations, rationale suggested by Dugoua (2021). Furthermore, this second
analysis also aims at shedding further light on the Sunstein (2007) hypothesis sustaining
that replacement technologies were already available at the moment of the agreement.

Descriptive Statistics

Before starting the empirical analysis, I will provide some descriptive statistics of the
dataset that I use. In Tables 5.4 to 5.6 we can see some statistics from the main character-

163



5 Analyzing Technological Costs and Benefits from the Montreal Protocol: Evidence from
Patent Renewal

istics of the patents analyzed. Specifically, I provide means from the five dimensions of the
multiple correspondence analysis, grant lags, number of inventors, number of applicants,
and family size. The first and most striking difference compared to the previous analysis
lies in the sample sizes. If in the previous empirical analysis treatment group samples
(T1, T2) were similar, we notice now a large difference between them. The sample of patents
mentioning clean substitutes almost doubles that of those citing pollutants. This could
already point out to a selection mechanism in what is decided to be patented, which goes
in line with the decreasing number of CFCs’ patents in the first sample. If we now focus
on the other characteristics, we find that three samples have similar grant lags, number
of inventors, and number of applicants. Only regarding family sizes we observe slight
differences, with patents from the control group having on average the largest family size,
followed by patents citing dirty substances (T1), and those citing clean substitutes (T2).
This is interesting since on the one hand it points towards lower ex-ante value of clean
innovations, but on the other hand it might just show that clean innovations stand upon
“smaller shoulders”. This could mean that they have a smaller ex-ante value, that they are
developed by different types of innovators, or that the innovation targets a smaller market.
If we now turn to the proxies of the technological space, i.e., the five dimensions of the
MCA, I find in general that differences between the three samples are not large, although
this is particularly true for dimension 4 comparing dirty patents and the control group,
and for dimensions 2, 3, and 4 between treatment groups.

Statistic N Mean St. Dev. Min Max
Dim 1 0.037 0.047 −0.080 0.171
Dim 2 −0.0001 0.005 −0.011 0.011
Dim 3 0.012 0.067 −0.116 0.220
Dim 4 −0.001 0.007 −0.018 0.014
Dim 5 −0.007 0.025 −0.083 0.036
Grant lag 1,622.235 728.169 777 4,716
Inventors 2.853 1.579 1 7
Applicants 1.000 0.000 1 1
Family Size 7.382 4.645 4 26
Sample Size 34

Table 5.4: Descriptive Statistics 1984-1987: Treatment Group T1
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Statistic N Mean St. Dev. Min Max
Dim 1 0.053 0.037 −0.109 0.160
Dim 2 0.001 0.004 −0.015 0.013
Dim 3 0.027 0.060 −0.155 0.234
Dim 4 0.009 0.038 −0.019 0.184
Dim 5 −0.004 0.056 −0.096 0.363
Grant Lag 1,610.472 476.459 869 2,940
Inventors 2.321 1.173 1 5
Applicants 1.038 0.275 1 3
Family Size 6.245 3.075 3 24
Sample Size 53

Table 5.5: Descriptive Statistics 1984-1987: Treatment Group T2

Statistic N Mean St. Dev. Min Max
Dim 1 0.011 0.071 −0.429 0.250
Dim 2 −0.001 0.033 −0.020 2.110
Dim 3 −0.005 0.072 −0.200 1.110
Dim 4 −0.003 0.017 −0.057 0.520
Dim 5 0.001 0.044 −0.214 1.549
Grant Lag 1,668.617 562.855 575 6,543
Inventors 2.767 1.613 1 16
Applicants 1.043 0.229 1 4
Family Size 8.839 6.181 2 50
Sample Size 4,195

Table 5.6: Descriptive Statistics 1984-1987: Control Group T0

165



5 Analyzing Technological Costs and Benefits from the Montreal Protocol: Evidence from
Patent Renewal

Turning now to the technology class distribution across the three samples, as depicted
in Figure 5.9. I find similar IPC class distributions for treatment group patents (T1, T2).
It is noteworthy mention that the main IPC class for those patents remains C08, followed
by C07, as in the previous analysis. Now, however, we can also find patents from other
classes, i.e., C09, C10, and C239. Regarding control group patents, as in the first analysis,
C07 is the predominant class and is followed by C08. Focusing now on the distribution
of patents across cohorts, as presented in Figure 5.10, we can see that the three sorts of
patents follow a similar shape in numbers of patents from each cohort. In general the peak
year is 1985, while the number of patents seems to decrease from 1986 onwards.
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Figure 5.9: Patent counts by 3-digit IPC Class 1984-1987

9C09 stands for “Dyes; Paints; Polishes; Natural Resins; Adhesives; Compositions not otherwise
provided for; Applications of materials not otherwise provided for”, C10 corresponds to “Petroleum, gas or
coke industries; Technical gases containing carbon monoxide; Fuels; Lubricants; Peat”, and C23 includes
“Coating metallic material; Coating material with metallic material; Chemical surface treatment; Diffusion
treatment of metallic material; Coating by vacuum evaporation, by sputtering, by ion implantation or
by chemical vapour deposition, in general; Inhibiting corrosion of metallic material or incrustation in
general”.
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Figure 5.10: Patent counts by cohort year 1984-1987
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Figure 5.11: Panel Event Study Evidence of the Impact of the Montreal Protocol on Clean
Technologies 1984-1987 (baseline: 1991)
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Forward Citations Evidence

In this section I present the empirical evidence stemming from a similar panel event
study to the one described in the first analysis. As for the first evidence, I employ as
the dependent variable the number of forward citations received by the patent, which I
explain with the following controls: grant lag, number of inventors, number of applicants,
a dummy indicating whether a patent is still active, family size, and the five dimensions
from the MCA. Furthermore, as in the first regressions, I include application year by IPC
class fixed effects and year fixed effects. The general form of the regression is presented
in equation 5.2, where for both, the clean and the dirty technologies analyses, I include
three leads and 9 lags. Apart from this, it is noteworthy mentioning that I use now
1991 as the event year. The reason for this is twofold, first that since I focus on patents
being applied for between 1984 and 1987, I cannot analyze an event immediately close
to the last cohort, since I will likely have few observations, i.e., many zeros, which will
difficult drawing conclusions from the results. Second and foremost, that the goal of this
analysis is to shed further light on whether the Montreal Protocol was successful because
it successively increased the stringency of the pledges, departing from a starting point
where clean technologies might have been already available (Sunstein, 2007; Dugoua, 2021).

Evidence on Clean Technologies Now, I present the panel event study evidence from
clean technologies. Since the cohort years that I exploit for my study are very close to the
signature of the Montreal Protocol, I cannot analyze the event of the signature itself nor
the enforcement. Instead, I will focus on the impact of the main first amendments to the
Montreal Protocol on patent value. As depicted in Figure 5.11, I find no positive impact
in 1991 nor a negative one, but instead I find a negative trend in forward citations. This
would point towards a decreasing value of the analyzed clean technologies, but results
are not significant (at a 5 percent level). A possible explanation for this could be that
the sustainability of the initial substitutes (above all HCFCs) started to be questioned,
principally in 1992 during the Copenhagen conference (UBA, 2017). The duration analysis
as well as the panel event study evidence on dirty technologies might help us shed further
light on the rationale. Regarding the estimates on controls used for the regression, results
differ from the ones in the first analysis. As shown in Table 5.13 of Appendix 4.2, now
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some coefficients of the control variables are not significant. In particular, two dimensions
of the MCA, dimension 2 and dimension 5 are not significant even at the 5 percent level,
and dimension 4 is significant at a 5 percent whereas the remaining ones are significant
at a 0.1 percent. This is particularly interesting compared to the first analysis, where all
dimensions were significant for clean and dirty technologies at least at a 1 percent level.
Furthermore, we also see that now the number of inventors is not significant, and that
the IPC subclass application year interaction is significant at a 0.1 percent level, while
in the previous study it achieved only a 5-percentage significance. This result and its
difference compared to the first analyses points toward an increase in the patent technology
heterogeneity in this new period, which was initially already suggested by the IPC class
distribution. Particularly striking is the non-significance of the number of inventors. A
possible explanation of this is that the sample analyzed is more homogeneous on the type
of innovators and that differences that would otherwise be captured by this variable are
now taken into account by the number of applicants. Besides this, year fixed effects are
increasing in coefficient over time and the significance pattern is close to the one of the first
analysis. The rationale for this is, as before, difficult to interpret since forward citations
are themselves generally increasing over time.

yit = α +
9∑

j=1
βj(Lag j)it +

4∑
k=2

βk(Lead k)it + λt + X ′
itΓ + εit (5.2)

Evidence on Dirty Technologies Performing a similar analysis on dirty technologies I
find likewise no negative nor positive significant effects (at a 5 percent level). Furthermore,
as depicted in Figure 5.12, we observed point estimates consistently aligning with the
zero-effect line. This evidence is difficult to interpret as in the case of the clean substances
and for the first analysis, since samples sizes are small and confidence intervals are large.
Nevertheless, if these results would be true, then it would point out towards dirty tech-
nologies following a similar forward citations’ pattern as that of the control group and
that of the clean substitutes. If we now focus on the coefficient estimates for the control
variables, we find similar results as for the clean substances. As reported in Table 5.14 of
Appendix 4.2, similarly to the clean technologies’ analysis dimensions 2 and 5 of the MCA
are not significant and dimension 4 is only significant at a 5 percent level, whereas the
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remaining ones are at a 0.1 percentage level. Furthermore, I find the same non-significance
result regarding the number of inventors, a similar decrease in significance level regarding
the IPC class application year interaction, and an identic pattern for the year fixed effects
as the one of the clean technologies. The reasoning behind these findings should be the
same as for the clean treatment group.
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Figure 5.12: Panel Event Study Evidence of the Impact of the Montreal Protocol on Dirty
Technologies 1984-1987 (baseline: 1991)

Patent Renewal Evidence

In this section I present evidence on the impact of the Montreal Protocol and the sub-
sequent amendments on patent value, proxied by patent renewal. As for the analysis
of the first period I use the adaptation to patent data performed in Chapter 3 of the
nonparametric duration model developed by van den Bergh et al. (2020). In Figure 5.13,
I present the Lexis diagram of the duration analysis that I perform in this section. In
particular, I aggregate cohorts’ data, drop observations of patents elapsed before τ0 = 1987
and consider thereon as the new starting patent age. I assume that the change in policy
regime happened in τ ∗ = 2, i.e., 1988, and will be interested into the average treatment
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effects on the conditional survival probabilities, which would allow me to capture the
differences in hazard rates between treatment and control occurred between the treatment
event τ ∗ = 2 and the right censoring τ rc = 12 (1998). As in the first analysis, after the
first negative significant shock on the hazard rates, later positive or negative significant
shocks cannot be interpreted since we have a selection in renewal between the two groups,
i.e., we are losing observations. I will now present the results first for clean technologies
and afterwards for patents citing dirty pollutants. For both analyses I control for the five
dimensions of the multiple correspondence analysis, number of inventors, grant lags, num-
ber of applicants, family size, patent class by application year dummy, and cohort dummies.

Patent age a

Patent age a1

τ0 = 1987

τ ∗ = 2 τ rc = 12

Figure 5.13: Lexis Diagram Ongoing Spells for Cohorts from 1984 to 1987 (patent frame-
work in patent ages with left censoring, right censoring, and cross-cohorts
aggregation)

Evidence on Clean Technologies The objective of the nonparametric duration analysis
on clean technologies is to study the impact of the Montreal Protocol and its successive
Amendments on the value of clean technologies. Point estimates from this analysis
together with their 95% confidence intervals are presented in Figure 5.14. From the
graphic representation of the effects, we can see at first glance that there seem to be three
positive significant (at a 5 percent level) shocks in differences in years 1992, 1993, and
1996, and that there are also three negative significant (at a 5 percent level) shocks in
ratios in years 1989, 1991, and 1998. This is confirmed in Tables 5.20 and 5.21 of Appendix
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5.2, where I report estimation results. Nevertheless, before engaging in the discussion of
the results, it is noteworthy comment two points from this estimation exercise. First, that
as for the analysis on the first period, samples sizes are small and further reduced since
I drop observations of patents not renewed up to 1987. This point limits in general the
causal interpretation of the results, for which I would rather claim to be of descriptive
and preliminary nature. Second, that as in the first period analysis, due to the limited
variation and number of observations for the treatment group, some hazard rates could
not be computed. This is not the case anymore for the control group but remains for years
1988 and 1994 in the treatment group. As in the first period analysis, I will assume for
the interpretation of results that in those years there has been no shock that has brought
selection in renewal.

Turning now to the interpretation of the effects, we need to be cautious. In the right
graphic we observe early on a negative significant (at a 5 percent level) shock, in 1989,
which limits any causal interpretation of the remaining shocks as it has generated an early
selection in renewal. First of all, this shock is somehow counterintuitive, since we would
expect the Montreal Protocol to have a positive effect on the value of clean technologies
instead of a negative one. It is also noteworthy mention that the effect in differences is
also almost significant (at a 5 percent level) in 1989, which adds further evidence to this
shock. Since nor from the timeline on the ozone regulation in Germany (UBA, 2017)
(Appendix 6) nor from the phase-down schedules of Appendix 3 (UNEP, 2019), we can
find an explanation to this shock, we might rather turn to the differences in periods of
analysis. In this section, we are analyzing patents applied during 1984 and 1987, i.e.,
during the time while the discussions on the Montreal Protocol were taking place. A
negative impact on clean technologies might only have two reasons, first that discussions
on a future ozone regulation generated an overinvestment in clean technologies such that
the resulting agreement, with its phase-out schedules, was too lenient for clean technology
producers. This would have resulted in a drop in the expectations’ horizon for recovering
their investment, which might have generated the negative impact. This would be in line
with the positive shock on dirty technologies found for patents applied between 1979 and
1983. Since it would mean that the initial agreement was too lenient, hence easy to achieve
and that benefits outweighed costs, also in terms of technologies, supporting Barrett
(1994). Second, that some patents citing clean substances were “de facto” dirty patents

172



5 Analyzing Technological Costs and Benefits from the Montreal Protocol: Evidence from
Patent Renewal

but that my selection method was unable to identify. On the second reason, extending the
analysis to more countries would allow verify the robustness of the results and perform
leave-one-out robustness checks by leaving alternatively different clean substitutes out of
the regression.

For the interpretation of the remaining shocks after 1989, we should bear in mind that
we are referring to a selection of the initial sample of patents citing clean substances and
that our analysis would be always conditional on not having been affected by the previous
shock. Taking this into account, I find that there is a negative significant (at a 5 percent
level) shock in 1991 followed by two positive significant shocks in 1992 and 1993 (at a
5 percent). In 1991 the London conference resolutions were implemented (UBA, 2017),
which represented a further tightening of the phase-down schedule for CFCs. This second
negative shock might further point either towards a misclassification of clean patents what
were actually referring to a dirty technology or, as before, to a deception regarding the
stringency of the environmental regulation. The positive significant (at a 5 percent) shocks
of 1992 and 1993 are in line with the evidence from the first analysis and would suggest
that the subsample composition at that moment would be of similar technology type as of
the one from the first period. The interpretation of the remaining shocks is speculative, but
the positive significant (at a 5 percent) shock of 1996 coincides with the 100% reduction
date for the CFCs and with the freeze in HCFCs’ consumption for Non-Article 5 countries
(Appendix 3). Given that the shock is positive, we could think of being due to the CFCs’
phase-out, but this is just speculative. The negative shock in 1998 is difficult to assess
and would require, as this overall analysis, of extending the data sample for performing
further robustness regressions.

To conclude with the analysis on clean technologies, we found similar results as for the
clean technologies in the first period, i.e., a positive shock in the tightening of the CFCs’
phase-down around 1992-1993. Nevertheless, we found also two negative shocks that are
counterintuitive and could either support the Barrett (1994) argument stating that the
original Protocol had more benefits than costs. In this sense the Protocol and the early
Amendments would have had a negative impact on the value of clean technologies because
there might have been an overinvestment in them, this might be true since the period of
analysis is the time while the Protocol was discussed, i.e., expectations might have been
high. At the same time, I might be capturing some patents that I misclassify as “clean”
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while instead they are dirty patents. Regarding this last point extending the analysis to
more countries might help us shed further light.
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Figure 5.14: Nonparametric Duration Evidence: Clean Patents VS Control Group 1984-
1987

Evidence on Dirty Technologies Focusing now on the analysis on dirty technologies, I
will first give an overview of the graphical results, and later comment on exact estimates
and their interpretation. In Figure 5.15 we can see the representation of the point estimates
and their 95% confidence intervals. From a first inspection, we observe an almost significant
negative impact in ratios in 1990, an almost positive significant shock in differences in 1994
and a negative significant shock in ratios in 1997. Looking now at the reported estimates in
Tables 5.22 and 5.23 of Appendix 5.2, we see, first, a similar pattern in missing coefficients
as for the clean estimates. As before, the algorithm manages to compute estimates for
the control group but fails for 3 ages of the treatment group. Given the small sample size
of the dirty patents and the dropped observations before 1987, the insufficient variation
is likely responsible for this. This matter needs to be further scrutinized to understand
exactly the origin of the missing estimates. Similarly to the previous duration analyses, I
will assume that the reason is the insufficient variation and therefore that there has been

174



5 Analyzing Technological Costs and Benefits from the Montreal Protocol: Evidence from
Patent Renewal

no selection in renewal during those periods. This problem happens in 1988, 1989, and
1998.
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Figure 5.15: Nonparametric Duration Evidence: Dirty Patents VS Control Group 1984-
1987

Further scrutinizing estimates from Table 5.23, our first impressions are confirmed,
and we find indeed almost significant shocks in 1990 and 1994 as well as a significant
negative shock in 1997 (at a 5 percent). These results are interesting, even more if we
compare them with our former analyses. The almost significant negative shock of 1990
could be related with the London conference and the accelerated phased-down schedule for
CFCs. This almost negative shock would confirm our hypotheses for the analysis on clean
technologies, i.e., that the shock was related to the London conference and that the effect
found in clean technologies might have been due to hybrid technologies. Turning now
to the almost significant positive shock of 1994, which coincides with the 75% reduction
deadline for CFCs. It could be proof of further evidence that the method that I used for
classifying patent into clean and dirty technologies is not perfect and is an approximation.
Specifically, it is likely that some clean patents might have cited some “CFCs” in their
corpus and I tagged them as dirty while they were clean and vice versa. Alternatively, it
could be that dirty patents of the first period (1979-1983) versus those of the second period
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(1984-1987) belonged to two different technology generations. While the first generation
was developed before the Protocol’s discussions, hence it was impacted negatively by the
75% reduction deadline for the CFCs in 1994, the second was developed with the possibility
of an agreement in mind. Therefore, this second generation might have already taken into
account the possibility of having those types of deadlines. Further scrutinizing the last,
and only significant, shock of this analysis, we find a negative significant effect in 1997.
This effect almost coincides with the 100% reduction of CFCs, which was scheduled in
1996, and with the freeze of HCFC consumption for Non-Article 5 countries (UBA, 2017).
This last shock confirms the hypothesis mentioned before that some CFC technologies
were developed having the agreement in mind and therefore were impacted negatively
with the 100% CFC reduction deadline, i.e., one could think of low consumption CFC
devices or processes. In the analysis on clean technologies, I also find a significant negative
effect (at a 5 percent) in a close period (1998), which might have happened either due to
the existence of hybrid technologies or due to misclassification reasons. Since the size and
significance of the effects for the shock in the dirty technologies is larger than the one for
the clean patents around 1997-1998, I attribute the shock to the CFC consumption and
production phase-out.

Summing up the analysis on dirty technologies, evidence further points towards the
Sunstein (2007) hypothesis, even more if we compare the results with those of clean and
dirty technologies from the first period. Yet, further evidence will be needed to confirm
these results and extending the analysis to additional countries might help us further
disentangle between the different hypotheses.

5.6 Conclusion
In this paper I study the impact of the Montreal Protocol and its successive amendments
on the value of clean and dirty patents. For achieving this, I combine a unique dataset
of patents citing substances regulated under the Protocol and their substitutes used in
refrigeration, a novel nonparametric technique that I adapted in Chapter 3 to estimate
shocks on patent value, and a different identification approach exploiting the fate of R&D
assets developed in two different periods before the signature of the Protocol. In particular,
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I study patent renewal patterns for clean and dirty European patents renewed in Germany
applied either long before the signature of the Protocol or few years before the Protocol.
This difference allows me to consider the first time period as a time “before discussions on
the Montreal Protocol had started” and the second period as a time when “discussion on
the Montreal Protocol were on-going”. I use as a difference and turning point the Vienna
Convention for the Protection of the Ozone Layer (1985). This empirical setting allows
me to shed further light on the different hypotheses regarding the origin of the success
of the Protocol such as the ones argued by Barrett (1994), Benedick (1998), Sunstein
(2007), and Dugoua (2021). Specially, my findings support the hypotheses of Barrett (1994)
stating that the agreement was achieved because benefits outweighed costs, Sunstein (2007)
claiming that substitute technologies were already available, and Dugoua (2021) arguing
that the Montreal Protocol was a first step having relatively lenient pledges that enabled
future stricter agreements. The main outcome from my analysis, however, is that it seems
that firms were not completely naïve, nor had not anticipated nor started innovating before
the agreement. This result would contradict the argument of Benedick (1998) but not the
findings of Dugoua (2021) stating that the agreement induced innovation.

My analysis has strong caveats and limitations, the main one being the small sample
size of my treatment groups for the two periods, which not only limits the interpretation
of my results but also prevents me from being able to provide estimates for all years
within my periods of analysis. To further assess the robustness of my results this analysis
would strongly benefit from being extended to more countries. This chapter adds to the
literature on several ways. First, it contributes to the literature on IEAs and the Montreal
Protocol by providing evidence for different hypotheses regarding the origin of the IEA.
Second, it provides new evidence on the impact of the Montreal Protocol on the direction
of technological change using a novel dataset. Third, it exploits a new variation in patent
data not used so far to study the Montreal Protocol and implements a novel identification
strategy not exploited so far in the study of this IEA.
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5.7 Appendix 1: Lists of Substances

5.7.1 Appendix 1.1: Substances Regulated under the Kigali
Amendment

Figure 5.16: Source: ”Handbook for the Montreal Protocol on Substances that Deplete
the Ozone Layer” Annexes, Section 1.1., latest version available here (UNEP,
2019).
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5.7.2 Appendix 1.2: Substances in the ASHRAE Standard

ASHRAE Refrigerant Designations: tables from the ANSI/ASHRAE 34-2019 ”Designation
and Safety Classification of Refrigerants” Standard, latest version available here (ASHRAE,
2019).

Table 5.7: ASHRAE Refrigerant Designations: tables separated by chemical family
Number Chemical Name Chemical Formula

Methane Series
11 trichlorofluoromethane CCl3F
12 dichlorodifluoromethane CCl2F2
12B1 bromochlorodifluoromethane CBrClF2
13 chlorotrifluoromethane CClF3
13B1 bromotrifluoromethane CBrF3
13I1 trifluoroiodomethane CF3I
14e tetrafluoromethane (carbon tetrafluoride) CF4
21 dichlorofluoromethane CHCl2F
22 chlorodifluoromethane CHClF2
23 trifluoromethane CHF3
30 dichloromethane (methylene chloride) CH2Cl2
31 chlorofluoromethane CH2ClF
32 difluoromethane (methylene fluoride) CH2F2
40 chloromethane (methyl chloride) CH3Cl
41 fluoromethane (methyl fluoride) CH3F
50 methane CH4
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Number Chemical Name Chemical Formula
Ethane Series

113 1,1,2-trichloro-1,2,2-trifluoroethane CCl2FCClF2
114 1,2-dichloro-1,1,2,2-tetrafluoromethane CClF2CClF2
115 chloropentafluoroethane CClF2CF3
116 hexafluoroethane CF3CF3
123 2,2-dichloro-1,1,1-trifluoroethane CHCl2CF3
124 2-chloro-1,1,1,2-tetrafluoroethane CHClFCF3
125 pentafluoroethane CHF2CF3
134a 1,1,1,2-tetrafluoroethane CH2FCF3
141b 1,1-dichloro-1-fluoroethane CH3CCl2F
142b 1-chloro-1,1-difluoroethane CH3CClF2
143a 1,1,1-trifluoroethane CH3CF3
152a 1,1-difluoroethane CH3CHF2
170 ethane CH3CH3

Number Chemical Name Chemical Formula
Ethers

E170 Methoxymethane (dimethyl ether) CH3OCH3

Number Chemical Name Chemical Formula
Propane

218 octafluoropropane CF3CF2CF3
227ea 1,1,1,2,3,3,3-heptafluoropropane CF3CHFCF3
236fa 1,1,1,3,3,3-hexafluoropropane CF3CH2CF3
245fa 1,1,1,3,3-pentafluoropropane CHF2CH2CF3
290 propane CH3CH2CH3

Number Chemical Name Chemical Formula
Cyclic Organic Compounds

C318 octafluorocyclobutane -(CF2)4-
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Miscellaneous Organic Compounds
Number Chemical Name Chemical Formula
hydrocarbons
600 butane CH3CH2CH2CH3 A3
600a 2-methylpropane (isobutane) CH(CH3)2CH3 A3
601 pentane CH3CH2CH2CH2CH3
601a 2-methylbutane (isopentane) CH(CH3)2CH2CH3
oxygen compounds
610 ethoxyethane (ethyl ether) CH3CH2OCH2CH3
611 methyl formate HCOOCH3
sulfur compounds
620 (Reserved for future assignment)

Number Chemical Name Chemical Formula
Nitrogen Compounds

630 methanamine (methyl amine) CH3NH2
631 ethanamine (ethyl amine) CH3CH2(NH2)

Number Chemical Name Chemical Formula
Inorganic Compounds

702 hydrogen H2
704 helium He
717 ammonia NH3
718 water H2O
720 neon Ne
728 nitrogen N2
732 oxygen O2
740 argon Ar
744 carbon dioxide CO2
744A nitrous oxide N2O
764 sulfur dioxide SO2
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Number Chemical Name Chemical Formula
Unsaturated Organic Compounds

1130(E) trans-1,2-dichloroethene CHCl=CHCl
R-1132a 1,1-difluoroethylene CF2=CH2
1150 ethene (ethylene) CH2=CH2
R-1224yd(Z) (Z)-1-chloro-2,3,3,3-tetrafluoropropene CF3CF=CHCl
1233zd(E) trans-1-chloro-3,3,3-trifluoro-1-propene CF3CH=CHCl
1234yf 2,3,3,3-tetrafluoro-1-propene CF3CF=CH2
1234ze(E) trans-1,3,3,3-tetrafluoro-1-propene CF3CH=CHF
1270 propene (propylene) CH3CH=CH2
1336mzz(E) trans-1,1,1,4,4,4-hexafluoro-2-butene CF3CH=CHCF3
1336mzz(Z) cis-1,1,1,4,4,4-hexaflouro-2-butene CF3CHCHCF3
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5.8 Appendix 2: Patent Classes

Section IPC Subclasses

C

C07D, C01F, C08F, C23C, C09D, C09J, C07F, C07C, C07K, C12P, C12N, C08G, C09K, C23G

C11D, C08L, C25B, C08J, C10M, C03C, C09B, C07B, C14C, C01B, C25D, C12S, C10L, C04B

C12Q, C08B, C07H, C12L, C08K, C07J, C03B, C23F, C30B, C02F, C08C, C06D

F F16J, F26B, F25B

Table 5.8: C and F IPC Subclasses from the Substances Regulated under the Montreal
Protocol

Section IPC Classes

C C01, C02, C03, C04, C06, C07, C08, C09, C10, C11, C12, C14, C23, C25, C30

F F16, F25, F26

Table 5.9: C and F IPC Classes for the Coarsened Exact Matching
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App. year IPC Control Group (T0) Dirty (T1) Clean (T2)
1979 C07 352 1 1
1979 C08 328 12 1
1980 C07 469 2 2
1980 C08 381 10 5
1981 C07 517 3 2
1981 C08 442 6 7
1982 C07 464 1 1
1982 C08 424 6 11
1983 C07 507 1 2
1983 C08 534 4 8
1984 C07 568 1 2
1984 C08 588 8 10
1984 C09 157 1 2
1985 C07 696 2 3
1985 C08 739 10 12
1985 C09 140 1 3
1985 C23 87 2 1
1986 C07 714 5 1
1986 C08 666 7 13
1986 C09 139 1 2
1986 C10 43 1 2
1987 C07 737 1 1
1987 C08 527 5 10
1988 C07 729 4 5
1988 C08 526 4 9
1988 C09 165 4 4
1989 C07 567 7 11
1989 C08 460 9 10
1989 C09 151 1 2
1990 C07 621 6 9
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App. year IPC Control Group (T0) Dirty (T1) Clean (T2)
1990 C08 521 16 19
1990 C09 194 2 4
1990 C10 51 1 8
1991 C07 384 9 11
1991 C08 513 14 14
1991 C10 17 1 5
1992 C07 410 14 13
1992 C08 481 13 21
1992 C09 163 2 6
1992 C10 21 1 1
1992 F25 14 2 2
1993 C07 421 24 15
1993 C08 377 27 29
1993 C09 108 3 13
1993 C10 14 2 9
1993 C12 387 2 2
1993 F25 19 3 3
1994 C01 38 1 1
1994 C04 68 1 1
1994 C07 412 18 22
1994 C08 379 25 40
1994 C09 112 1 3
1994 C12 428 3 1
1995 C07 403 29 22
1995 C08 313 21 46
1995 C09 95 2 3
1995 C12 517 4 2
1995 F25 19 1 2
1995 F26 15 1 3

Table 5.10: Results from the Exact Matching
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5.9 Appendix 3: Regulation Schedule

Figure 5.17: CFCs Annex A/I Phase-down Production and Consumption Schedule (UNEP,
2019) Latest version available here.
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Figure 5.18: CFCs Annex B/I Phase-down Production and Consumption Schedule (UNEP,
2019)
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Figure 5.19: HCFCs Phase-down Consumption Schedule (UNEP, 2019)
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Figure 5.20: HCFCs Phase-down Production Schedule (UNEP, 2019)
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5.10 Appendix 4: Panel Event Study Evidence

5.10.1 Appendix 4.1: Pre-Montreal Negotiations (1979-1983)

Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Dim 1 -7.667*** 0.514 -14.924 0.000 -8.674 -6.660
Dim 2 -58.515*** 14.330 -4.083 0.000 -86.602 -30.429
Dim 3 9.279*** 1.197 7.750 0.000 6.933 11.626
Dim 4 -14.103** 4.403 -3.203 0.001 -22.733 -5.473
Dim 5 2.420** 0.903 2.680 0.007 0.650 4.191

Grant Lag 0.001*** 0.000 20.550 0.000 0.001 0.001
Applicants 0.387*** 0.116 3.344 0.001 0.160 0.613
Inventors 0.071*** 0.016 4.532 0.000 0.040 0.102

Family Size 0.121*** 0.004 33.764 0.000 0.114 0.128
Active 1.373*** 0.057 24.015 0.000 1.261 1.485

App. year* -0.005* 0.002 -2.202 0.028 -0.010 -0.001
IPC Class FE
1980.year 0.000 . . . 0.000 0.000
1981.year 0.102 0.793 0.128 0.898 -1.453 1.656
1982.year 0.148 0.738 0.200 0.841 -1.298 1.593
1983.year 0.349 0.721 0.484 0.628 -1.064 1.762
1984.year 0.572 0.714 0.802 0.423 -0.827 1.972
1985.year 0.957 0.710 1.348 0.178 -0.435 2.349
1986.year 1.178 0.708 1.664 0.096 -0.209 2.566
1987.year 1.437* 0.707 2.033 0.042 0.051 2.822
1988.year 1.794* 0.706 2.541 0.011 0.410 3.178
1989.year 2.165** 0.706 3.067 0.002 0.781 3.548
1990.year 2.547*** 0.705 3.611 0.000 1.165 3.930
1991.year 2.930*** 0.705 4.155 0.000 1.548 4.312
1992.year 3.304*** 0.705 4.685 0.000 1.921 4.686
1993.year 3.683*** 0.705 5.223 0.000 2.301 5.065
1994.year 4.015*** 0.705 5.693 0.000 2.633 5.397
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
1995.year 4.325*** 0.705 6.132 0.000 2.942 5.707
1996.year 4.630*** 0.705 6.563 0.000 3.247 6.013
1997.year 4.919*** 0.706 6.972 0.000 3.536 6.302
1998.year 5.156*** 0.706 7.307 0.000 3.773 6.539
1999.year 5.447*** 0.706 7.717 0.000 4.063 6.830
Lead3 0.557 2.302 0.242 0.809 -3.956 5.069
Lead2 0.581 1.718 0.339 0.735 -2.785 3.948
Lead1 0.479 1.290 0.371 0.711 -2.049 3.006
Lag1 0.610 1.125 0.542 0.588 -1.595 2.816
Lag2 1.253 1.125 1.114 0.265 -0.952 3.458
Lag3 1.018 1.075 0.947 0.343 -1.089 3.125
Lag4 1.190 1.052 1.131 0.258 -0.872 3.253
Lag5 0.901 0.958 0.941 0.347 -0.977 2.779
Lag6 0.860 0.912 0.943 0.346 -0.928 2.649
Lag7 1.141 0.912 1.251 0.211 -0.647 2.929
Lag8 1.312 0.912 1.439 0.150 -0.476 3.100
Lag9 1.258 0.898 1.400 0.162 -0.503 3.018
Lag10 1.259 0.898 1.402 0.161 -0.502 3.020
Lag11 1.152 0.898 1.282 0.200 -0.609 2.912
Lag12 0.999 0.885 1.129 0.259 -0.736 2.734
Lag13 0.895 0.885 1.012 0.312 -0.839 2.630
_cons -2.871*** 0.718 -4.000 0.000 -4.278 -1.464

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Table 5.11: Panel Event Study Estimates of Clean Technologies 1979-1983
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Dim 1 -7.621*** 0.513 -14.848 0.000 -8.627 -6.615
Dim 2 -55.240*** 14.275 -3.870 0.000 -83.220 -27.260
Dim 3 8.984*** 1.193 7.528 0.000 6.645 11.322
Dim 4 -14.531** 4.502 -3.228 0.001 -23.355 -5.706
Dim 5 2.443** 0.903 2.705 0.007 0.673 4.213

Grant Lag 0.001*** 0.000 20.997 0.000 0.001 0.001
Applicants 0.383*** 0.116 3.312 0.001 0.156 0.609
Inventors 0.081*** 0.016 5.149 0.000 0.050 0.111

Family Size 0.120*** 0.004 33.573 0.000 0.113 0.127
Active 1.353*** 0.057 23.723 0.000 1.241 1.465

App. year* -0.005* 0.002 -2.056 0.040 -0.009 -0.000
IPC Class FE
1980.year 0.000 . . . 0.000 0.000
1981.year 0.098 0.792 0.124 0.902 -1.454 1.650
1982.year 0.141 0.737 0.191 0.848 -1.303 1.585
1983.year 0.342 0.720 0.475 0.635 -1.069 1.753
1984.year 0.565 0.713 0.792 0.428 -0.833 1.963
1985.year 0.946 0.709 1.335 0.182 -0.444 2.336
1986.year 1.167 0.707 1.651 0.099 -0.218 2.553
1987.year 1.426* 0.706 2.019 0.043 0.042 2.809
1988.year 1.783* 0.705 2.529 0.011 0.401 3.166
1989.year 2.154** 0.705 3.056 0.002 0.772 3.535
1990.year 2.535*** 0.704 3.598 0.000 1.154 3.916
1991.year 2.916*** 0.704 4.140 0.000 1.536 4.296
1992.year 3.288*** 0.704 4.669 0.000 1.908 4.668
1993.year 3.666*** 0.704 5.205 0.000 2.285 5.046
1994.year 3.996*** 0.704 5.674 0.000 2.616 5.377
1995.year 4.305*** 0.704 6.112 0.000 2.924 5.686
1996.year 4.609*** 0.705 6.542 0.000 3.228 5.990
1997.year 4.897*** 0.705 6.951 0.000 3.516 6.279
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
1998.year 5.133*** 0.705 7.284 0.000 3.752 6.514
1999.year 5.423*** 0.705 7.693 0.000 4.041 6.805
Lead3 0.296 1.433 0.207 0.836 -2.512 3.105
Lead2 0.040 1.378 0.029 0.977 -2.661 2.741
Lead1 0.213 1.215 0.175 0.861 -2.168 2.594
Lag1 0.273 1.124 0.243 0.808 -1.930 2.476
Lag2 -0.064 1.098 -0.059 0.953 -2.216 2.087
Lag3 -0.421 1.010 -0.417 0.677 -2.401 1.559
Lag4 -0.425 0.974 -0.436 0.663 -2.333 1.484
Lag5 -0.302 0.941 -0.321 0.748 -2.146 1.542
Lag6 -0.283 0.941 -0.301 0.763 -2.127 1.560
Lag7 -0.292 0.925 -0.315 0.753 -2.105 1.522
Lag8 -0.320 0.897 -0.356 0.722 -2.078 1.439
Lag9 -0.263 0.897 -0.293 0.769 -2.021 1.495
Lag10 -0.462 0.884 -0.523 0.601 -2.194 1.270
Lag11 -0.579 0.871 -0.665 0.506 -2.287 1.128
Lag12 -0.605 0.871 -0.694 0.487 -2.312 1.102
Lag13 -0.703 0.871 -0.807 0.420 -2.411 1.004
_cons -2.895*** 0.717 -4.038 0.000 -4.300 -1.490

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Table 5.12: Panel Event Study Estimates of Dirty Technologies 1979-1983
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5.10.2 Appendix 4.2: During-Montreal Negotiations (1984-1987)

Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Dim 1 -9.892*** 0.439 -22.549 0.000 -10.752 -9.032
Dim 2 -1.505 0.819 -1.837 0.066 -3.110 0.100
Dim 3 4.120*** 0.442 9.331 0.000 3.254 4.985
Dim 4 -4.029* 1.613 -2.498 0.012 -7.190 -0.868
Dim 5 -0.381 0.640 -0.596 0.551 -1.636 0.874

Grant Lag 0.001*** 0.000 12.272 0.000 0.001 0.001
Applicants 0.872*** 0.114 7.633 0.000 0.648 1.096
Inventors 0.014 0.017 0.795 0.426 -0.020 0.047

Family Size 0.119*** 0.005 25.646 0.000 0.109 0.128
Active 1.497*** 0.068 22.154 0.000 1.364 1.629

App- year* 0.008*** 0.002 3.594 0.000 0.004 0.013
IPC Class FE
1985.year 0.000 . . . 0.000 0.000
1986.year 0.234 0.846 0.276 0.783 -1.425 1.892
1987.year 0.438 0.805 0.545 0.586 -1.139 2.016
1988.year 0.787 0.793 0.993 0.321 -0.767 2.341
1989.year 1.135 0.788 1.440 0.150 -0.410 2.680
1990.year 1.648* 0.786 2.096 0.036 0.107 3.188
1991.year 2.235** 0.785 2.846 0.004 0.696 3.774
1992.year 2.810*** 0.785 3.581 0.000 1.272 4.348
1993.year 3.375*** 0.785 4.302 0.000 1.837 4.913
1994.year 3.915*** 0.785 4.990 0.000 2.377 5.452
1995.year 4.385*** 0.785 5.589 0.000 2.847 5.923
1996.year 4.844*** 0.785 6.174 0.000 3.306 6.382
1997.year 5.295*** 0.785 6.748 0.000 3.757 6.833
1998.year 5.709*** 0.785 7.275 0.000 4.171 7.247
1999.year 6.076*** 0.785 7.742 0.000 4.538 7.614
Lead3 0.845 2.472 0.342 0.732 -4.000 5.690
Lead2 0.535 1.597 0.335 0.738 -2.596 3.665
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Lead1 0.411 1.067 0.385 0.700 -1.681 2.502
Lag1 0.265 0.846 0.313 0.754 -1.393 1.923
Lag2 0.432 0.827 0.523 0.601 -1.188 2.053
Lag3 0.016 0.801 0.020 0.984 -1.553 1.586
Lag4 -0.280 0.784 -0.357 0.721 -1.818 1.257
Lag5 -0.430 0.784 -0.549 0.583 -1.968 1.107
Lag6 -0.442 0.769 -0.575 0.566 -1.949 1.066
Lag7 -0.364 0.769 -0.474 0.636 -1.872 1.143
Lag8 -0.464 0.762 -0.610 0.542 -1.958 1.029
Lag9 -0.209 0.762 -0.274 0.784 -1.702 1.284
_cons -3.402*** 0.797 -4.270 0.000 -4.963 -1.840

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Table 5.13: Panel Event Study Estimates of Clean Technologies 1984-1987
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Dim 1 -9.781*** 0.439 -22.265 0.000 -10.642 -8.920
Dim 2 -1.519 0.820 -1.853 0.064 -3.126 0.088
Dim 3 4.018*** 0.444 9.050 0.000 3.148 4.888
Dim 4 -3.684* 1.666 -2.211 0.027 -6.949 -0.419
Dim 5 -0.377 0.648 -0.582 0.560 -1.646 0.892

Grant Lag 0.001*** 0.000 12.305 0.000 0.001 0.001
Applicants 0.827*** 0.115 7.169 0.000 0.601 1.053
Inventors 0.018 0.017 1.072 0.284 -0.015 0.052

Family Size 0.120*** 0.005 26.028 0.000 0.111 0.129
Active 1.509*** 0.068 22.239 0.000 1.376 1.642

App. year* 0.008*** 0.002 3.432 0.001 0.003 0.012
IPC Class FE
1985.year 0.000 . . . 0.000 0.000
1986.year 0.234 0.847 0.276 0.783 -1.426 1.894
1987.year 0.439 0.806 0.545 0.586 -1.140 2.018
1988.year 0.787 0.794 0.991 0.322 -0.769 2.342
1989.year 1.134 0.789 1.438 0.151 -0.412 2.681
1990.year 1.642* 0.787 2.087 0.037 0.100 3.184
1991.year 2.234** 0.786 2.843 0.004 0.694 3.775
1992.year 2.810*** 0.785 3.577 0.000 1.270 4.350
1993.year 3.376*** 0.785 4.299 0.000 1.837 4.915
1994.year 3.917*** 0.785 4.988 0.000 2.378 5.456
1995.year 4.388*** 0.785 5.588 0.000 2.849 5.927
1996.year 4.848*** 0.785 6.173 0.000 3.308 6.387
1997.year 5.300*** 0.785 6.748 0.000 3.760 6.839
1998.year 5.714*** 0.785 7.275 0.000 4.175 7.254
1999.year 6.081*** 0.786 7.741 0.000 4.542 7.621
Lead3 0.542 1.960 0.277 0.782 -3.299 4.384
Lead2 0.539 1.750 0.308 0.758 -2.891 3.969
Lead1 0.915 1.479 0.619 0.536 -1.983 3.813
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Variable Coeff. S.E. t p-val Min 95% C.I. Max 95% C.I.
Lag1 0.132 1.066 0.124 0.901 -1.956 2.221
Lag2 -0.044 0.995 -0.044 0.965 -1.994 1.906
Lag3 0.027 0.979 0.028 0.978 -1.892 1.946
Lag4 -0.013 0.964 -0.013 0.989 -1.903 1.877
Lag5 -0.014 0.964 -0.014 0.988 -1.903 1.876
Lag6 0.057 0.964 0.060 0.953 -1.832 1.947
Lag7 0.197 0.964 0.204 0.838 -1.692 2.086
Lag8 0.647 0.964 0.671 0.502 -1.243 2.536
Lag9 0.348 0.950 0.367 0.714 -1.513 2.209
_cons -3.392*** 0.798 -4.252 0.000 -4.955 -1.828

∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

Table 5.14: Panel Event Study Estimates of Dirty Technologies 1984-1987
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5.11 Appendix 5: Duration Analysis Estimates

5.11.1 Appendix 5.1: Pre-Montreal Negotiations (1979-1983)

Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
1984 0.403 0.160 1.520 3.299 0.000 0.007
1985 0.071 . 1.718 . 0.000 .
1986 . . . . . .
1987 -0.006 . 6.463 . 0.000 .
1988 0.021 . 2.706 . 0.000 .
1989 0.258 0.068 1.520 6.859 0.000 0.002
1990 0.334 . 1.520 . 0.000 .
1991 0.397 0.321 1.520 3.497 0.001 0.015
1992 0.497 0.258 1.520 3.893 0.001 0.013
1993 0.498 0.395 1.520 2.904 0.001 0.031
1994 0.354 0.355 1.915 1.915 0.001 0.052
1995 0.858 1.295 0.927 0.927 0.003 0.447
1996 0.779 . 0.927 . 0.003 .

Table 5.15: Nonparametric Estimates Clean Patents VS Control Group 1979-1983 (Hazard
Rates)
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Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
1984 -0.242* 0.398 0.267 0.007 -0.409 -0.076 -0.615 1.411
1985 . . . . . . . .
1986 . . . . . . . .
1987 . . . . . . . .
1988 . . . . . . . .
1989 -0.190* 0.264 0.333 0.002 -0.273 -0.106 -0.867 1.394
1990 . . . . . . . .
1991 -0.076 0.808 0.150 0.016 -0.322 0.169 0.049 1.566
1992 -0.239* 0.519 0.200 0.014 -0.471 -0.007 -0.357 1.396
1993 -0.104 0.792 0.202 0.032 -0.454 0.247 -0.088 1.672
1994 0.001 1.003 0.419 0.053 -0.450 0.452 -0.266 2.273
1995 0.437 1.510 0.277 0.450 -0.878 1.753 0.479 2.541
1996 . . . . . . . .

∗p < 0.05

Table 5.16: Nonparametric Estimates Clean Patents VS Control Group 1979-1983 (Hazard
Rates’ Differences and Ratios)

Variable Description
Obc Optimal Bandwidth Control Group
Obt Optimal Bandwidth Treatment Group
aVc Asymptotic Variance Control Group
aVt Asymptotic Variance Treatment Group
aVr Asymptotic Variance Ratio
aVd Asymptotic Variance Difference

LB-Diff Lower Bound Difference
UB-Diff Upper Bound Difference
LB-Ratio Lower Bound Ratio
UB-Ratio Upper Bound Ratio

Table 5.17: Description of Variables from the Nonparametric Estimates
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Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
1984 0.403 0.292 1.520 3.102 0.000 0.013
1985 0.071 0.051 1.718 3.893 0.000 0.002
1986 . . . . . .
1987 -0.006 . 6.463 . 0.000 .
1988 0.021 . 2.706 . 0.000 .
1989 0.258 0.106 1.520 6.463 0.000 0.003
1990 0.334 0.164 1.520 5.277 0.000 0.006
1991 0.397 0.239 1.520 4.881 0.001 0.010
1992 0.497 0.489 1.520 3.497 0.001 0.031
1993 0.498 0.583 1.520 2.904 0.001 0.057
1994 0.354 0.723 1.915 1.915 0.001 0.139
1995 0.858 . 0.927 . 0.003 .
1996 0.779 1.295 0.927 0.927 0.003 0.671

Table 5.18: Nonparametric Estimates Dirty Patents VS Control Group 1979-1983 (Hazard
Rates)
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Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
1984 -0.111 0.724 0.153 0.013 -0.337 0.115 -0.042 1.490
1985 -0.019 0.727 0.807 0.002 -0.111 0.072 -1.034 2.488
1986 . . . . . . . .
1987 . . . . . . . .
1988 . . . . . . . .
1989 -0.151* 0.413 0.241 0.003 -0.259 -0.044 -0.551 1.376
1990 -0.169* 0.492 0.206 0.006 -0.320 -0.018 -0.397 1.382
1991 -0.158 0.603 0.172 0.010 -0.357 0.041 -0.211 1.417
1992 -0.008 0.984 0.130 0.031 -0.354 0.339 0.276 1.692
1993 0.085 1.171 0.171 0.058 -0.385 0.556 0.360 1.983
1994 0.369 2.041 0.285 0.140 -0.364 1.102 0.994 3.088
1995 . . . . . . . .
1996 0.516 1.662 0.415 0.674 -1.094 2.125 0.399 2.925

∗p < 0.05

Table 5.19: Nonparametric Estimates Dirty Patents VS Control Group 1979-1983 (Hazard
Rates’ Differences and Ratios)
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5.11.2 Appendix 5.2: During-Montreal Negotiations (1984-1987)

Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
1988 0.001 . 7.650 . 0.000 .
1989 0.054 0.110 1.718 5.870 0.000 0.002
1990 0.108 0.119 1.718 6.859 0.000 0.002
1991 0.189 0.364 1.718 2.706 0.000 0.013
1992 0.305 0.044 1.520 4.684 0.000 0.001
1993 0.350 0.071 1.520 3.695 0.000 0.002
1994 0.374 . 1.520 . 0.000 .
1995 0.314 0.249 1.520 2.508 0.000 0.013
1996 0.354 0.091 1.718 1.915 0.000 0.007
1997 0.632 0.405 0.927 0.927 0.001 0.066
1998 0.674 1.295 0.927 0.927 0.002 0.224

Table 5.20: Nonparametric Estimates Clean Patents VS Control Group 1984-1987 (Hazard
Rates)
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Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
1988 . . . . . . . .
1989 0.056 2.026* 0.191 0.002 -0.026 0.137 1.169 2.883
1990 0.011 1.100 0.126 0.002 -0.071 0.092 0.406 1.795
1991 0.175 1.927* 0.115 0.014 -0.053 0.404 1.262 2.593
1992 -0.262* 0.143 0.587 0.001 -0.334 -0.189 -1.359 1.645
1993 -0.279* 0.203 0.470 0.003 -0.381 -0.177 -1.142 1.547
1994 . . . . . . . .
1995 -0.064 0.795 0.210 0.013 -0.290 0.161 -0.103 1.692
1996 -0.263* 0.257 0.837 0.007 -0.430 -0.095 -1.536 2.050
1997 -0.227 0.641 0.402 0.067 -0.734 0.280 -0.601 1.883
1998 0.621 1.921* 0.147 0.225 -0.310 1.551 1.168 2.673

∗p < 0.05

Table 5.21: Nonparametric Estimates Clean Patents VS Control Group 1984-1987 (Hazard
Rates’ Differences and Ratios)
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Year Haz. Rate Control Haz. Rate Treatment Obc Obt aVc aVt
1988 0.001 . 7.650 . 0.000 .
1989 0.054 . 1.718 . 0.000 .
1990 0.108 0.177 1.718 6.859 0.000 0.004
1991 0.189 0.273 1.718 4.684 0.000 0.009
1992 0.305 0.456 1.520 3.299 0.000 0.025
1993 0.350 0.317 1.520 3.497 0.000 0.021
1994 0.374 0.176 1.520 3.893 0.000 0.013
1995 0.314 0.485 1.520 2.904 0.000 0.050
1996 0.354 0.243 1.718 1.915 0.000 0.051
1997 0.632 1.766 0.927 0.927 0.001 0.832
1998 0.674 . 0.927 . 0.002 .

Table 5.22: Nonparametric Estimates Dirty Patents VS Control Group 1984-1987 (Hazard
Rates)

Year Diff Ratio aVr aVd LB-Diff UB-Diff LB-Ratio UB-Ratio
1988 . . . . . . . .
1989 . . . . . . . .
1990 0.069 1.643 0.133 0.004 -0.050 0.189 0.927 2.358
1991 0.084 1.445 0.129 0.009 -0.103 0.272 0.742 2.148
1992 0.151 1.495 0.124 0.025 -0.158 0.460 0.804 2.185
1993 -0.033 0.905 0.209 0.021 -0.317 0.251 0.010 1.800
1994 -0.198 0.471 0.413 0.013 -0.422 0.027 -0.788 1.730
1995 0.172 1.547 0.222 0.051 -0.269 0.612 0.625 2.470
1996 -0.111 0.687 0.861 0.051 -0.554 0.333 -1.131 2.506
1997 1.134 2.795* 0.295 0.833 -0.655 2.923 1.730 3.861
1998 . . . . . . . .

∗p < 0.05

Table 5.23: Nonparametric Estimates Dirty Patents VS Control Group 1984-1987 (Hazard
Rates’ Differences and Ratios)
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5.12 Appendix 6: Timeline of Ozone Regulation in
Germany

Year Event
1974 Scientists Rowland and Molina highlight the risk to the ozone layer

due to CFCs for the first time.
1975 The German federal government conducts some initial studies on CFCs

and supports more than 20 projects to explore the earth’s atmosphere.
1977 Voluntary commitment by German industry to reduce the amount

of CFCs used in aerosol cans to 30 % below the 1975 level by 1979.
(26/04- The first international governmental conference on CFCs in Washington, DC
28/04) calls for a reduction of CFC emissions, in particular from aerosols

just as the second conference in Munich in 1978, which is organised
by the German federal government.

1978 UBA Blue Angel ecolabel for CFC-free aerosol cans.
(30/05) Resolution from the Council of the European Community on

preventing increasing production of CFC-11 and CFC-12.
Furthermore, industry is instructed to seek alternative products.

1980 The Council of the European Community agrees on freezing the production
capacity of CFC-11 and CFC-12 as well as on a 30% reduction
on the amount of CFCs used in aerosols.

1985 21 Nations sign the Vienna Convention. First international framework
agreement to demand measures to protect the ozone layer (enforced in 1988).

Autumn Evidence reported in Nature on the ”ozone hole”.
1986 Germany specifies binding limit values for equipment emitting CFCs.
1987 Adoption of the Montreal Protocol. Commitment to limit the production

of 8 CFCs and halons. Parties aim to reduce the use of CFCs to half of
the 1986 levels by 1999.

1988 Agreement of the European Council Regulation on certain chlorofluorocarbons
and halons depleting the ozone layer, limiting their import, production, and use.

(16/12) Germany ratifies the Montreal Protocol.
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Year Event
1990 2nd conference of the Parties to the Montreal Protocol in London.

Significant tightening by ending the production and use of CFCs by the
year 2000. Inclusion of additional substances and support mechanisms.

1991 Implementation of the London resolutions of the Montreal Protocol,
the European Regulation on ozone depleting substances (ODS).
Ordinance on the Prohibition of CFCs and Halons, Germany legislates
to completely phase out these ODS in almost every area of use by 1995
at the latest.

1992 4th conference of the Parties to the Montreal Protocol in Copenhagen.
Montreal Protocol becomes stricter: halons will no longer be manufactured
or used by 1994 and CFCs by 1996, while HCFCs and methylbromide are also
included in the Protocol with their production being banned from 2020 onwards.

1993 The new European Council Regulation to speed up the phasing-out of
ODS (No 3952/92) enters into force.
The production and imports of halons are banned from 1994,
of CFCs from 1995, and of certain solvents from 1995/96 onwards.

1994 Revision and tightening of the European Council Regulation
on ODS (now No 3093/94).

1997 9th conference of the Parties to the Montreal Protocol.
Amendment of the timetables for the phase-out of the production of ODS.
Agreement on measures to prevent their trade on the black market.

1999 11th conference of the Parties to the Montreal Protocol.
Inclusion of bromomethane and trade restrictions for HCFCs.

2000 The European Regulation ODS (No 2037/2000) is enacted.
It applies immediately in Germany and tightens certain rules.

2006 European regulation and directive to reduce the emissions of fluorinated
greenhouse gases in refrigerators and air conditioning systems
and other applications (No 842/2006 and 2006/40) are enacted.
They include some prohibitions for HFC and SF6 in certain applications.
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Year Event
2007 The German federal government agrees to an integrated climate and energy

programme (IEKP). Point 23 includes steps to reduce HFC emissions and
to support refrigeration systems which use natural refrigerants.

2008 A Chemicals Climate Protection Ordinance is enacted in Germany
for the first time. This supplements the European F-gas Regulation and
also contains limit values for specific refrigerant losses in stationary systems.

2009 The European Regulation on ODS No 1005/2009 replaces
and tightens regulation enacted in the year 2000. It applies
immediately in Germany.

2014 The new European F-gas Regulation (No 517/2014) with further bans and
the step-by-step placing on the market limits (“phase-down”) of
hydrofluorocarbons (HFC) is agreed.
By 2030, the quantity of HFCs on sale should be reduced to one
fifth of the current quantity.

2016 28th conference of the Parties to the Montreal Protocol in Kigali.
HFCs are included in the Montreal Protocol as their use as a
CFC replacement is rapidly increasing.

2017 Amendment of the German Chemicals Climate Protection Ordinance
from 2008 according to the new European F-gas Regulation.

2018 According to the F-gas Regulation, the HFC quantity available
on the market will go down to 63% of the initial quantity.

2020 Refrigeration systems with HFC (GWP > 2,500) are banned, as well as
Year mobile household air conditioning units with HFC (GWP > 150).

Table 5.24: Author’s summarized retranscription of the graphical timeline from (UBA,
2017). Latest version available here.
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