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Abstract
HER2 over-expressing breast cancer (HER2+ BC) is an aggressive breast cancer subtype
that is responsible for approximately 20% of overall cases. Targeted therapies have been
developed against the HER2 driver oncogene which has significantly improved patient
outcomes. However, HER2+ BC still has comparatively high rates of relapses following
first-line neoadjuvant or adjuvant therapy, compared to other breast cancer sub-types.
These relapses are characterised by a poor prognosis, and metastatic tumors (de novo
origin or relapsed) are considered incurable. This presents a continued need to identify
therapeutic drugs that can be administered alongside first-line HER2-targeted therapy to
kill or prevent re-growth of residually surviving tumor cells in order to prevent subsequent
relapses.
Pirin (encoded by PIR) is a comparatively under-characterised iron-binding protein that
serves as a transcriptional regulator through interactions with NF-κβ. It has been sug-
gested in the literature as a potentially attractive target for cancer therapy. Preliminary
functional characterisation of a pirin ligand generated and characterised by the EMBL
Chemical Biology Core Facility (CBCF), named EMBL-703625, suggested anti-tumor effi-
cacy and excellent in vivo tolerability in mice. Transcriptomic data from HeLa cells treated
with EMBL-703625 from the EMBL-CBCF have identified multiple de-regulated cellular
processes as a result of pirin inhibition, such as glycolysis and the expression of heat
shock proteins. Many of these same processes have also been identified as mechanisms
of treatment evasion or relapse in HER2-targeted therapy resistant breast cancer cells.
This project characterised treatment with EMBL-703625 alongside lapatinib, which is a
clinically licensed HER2 tyrosine kinase inhibitor. Using a combination of biochemical
assays, synergy modelling and transcriptomic experiments, we demonstrated that this
combination synergistically reduces cell viability and increases toxicity in 3D grown, hu-
man, HER2-overexpressing breast cancer cell lines: BT-474 and SK-BR3. This appears
to be conferred through their largely unique effects on the cell transcriptome. Addition-
ally, it appears that this drug combination could also prevent re-growth of BT-474 cells
following treatment removal. Experiments on tumor-inducible primary mouse mammary
cells suggest that their combinatorial effect applies uniquely to neoplastically transformed
cells. As well as this, it is possible that lapatinib and EMBL-703625 confer their synergy, in
part, through glycolytic inhibition. One drug given after another may also enhance tumor
killing, which could allow patients to potentially avoid more severe side effects compared
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to simultaneous treatment.
Additionally, this project aimed to use light-sheet microscopy to characterize intercel-
lular cell heterogeneity on a 3-dimensional spatial and temporal basis. This was per-
formed through the light-sheet imaging of SK-BR3 cells transfected with a fluorescent
sensor named SoNar1, which reads out on the NAD+/NADH ratio of cells. Image anal-
ysis pipelines were established, with deconvolution of raw-light sheet images potentially
allowing an understanding of cell-cell heterogeneity in the future.
Finally, as part of a parallel analysis with data generated in the Jechlinger Lab, an in-
tegrated metabolomic and transcriptomic analysis from experiments on tumor-inducible
in vitro primary mouse mammary gland cells was performed. This highlighted potential
cellular pathways and processes related to cell metabolism that could serve as nodes of
vulnerability for residually surviving cells and/or tumor cells, which could inform on similar
experimental strategies in the future.
Overall, these results provide pre-clinical data that could provide a rationale for the pro-
gression of combined HER2 and Pirin inhibition into a clinical setting, pending additional
results from in vivo mouse experiments that are planned.
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Zusammenfassung
HER2-positiver Brustkrebs (HER2+ BK) ist ein aggressiver Untertyp des Mammakarzi-
noms bei dem das HER2-Gen überexprimiert ist und der für ca. 20% der Gesamtfälle
verantwortlich ist. Obwohl zielgerichtete Therapien gegen das HER2-Onkogen entwickelt
wurden, wodurch sich die Behandlungsergebnisse für die Patientinnen deutlich verbessert
haben, gibt es beim HER2+ BK immer noch relativ hohe Raten von Rückfällen nach
einer neoadjuvanten oder adjuvanten Erstlinientherapie. Diese Rezidive sind von einer
schlechten Prognose gekennzeichnet, und metastasierte Tumore (neu entstandene oder
rezidivierte) gelten als unheilbar. Daher besteht weiterhin Bedarf an der Identifizierung
von therapeutischen Medikamenten, die zusätzlich zur HER2-gerichteten Erstlinienther-
apie verabreicht werden können, um verbliebene überlebende Tumorzellen abzutöten
oder deren erneutes Wachstum zu verhindern und damit weitere Rückfälle zu vermeiden.
Pirin (kodiert durch das Gen PIR) ist ein relativ unzureichend charakterisiertes eisen-
bindendes Protein, das durch Interaktionen mit NF-κβ als Transkriptionsregulator dient.
Es wurde in der Literatur als potentiell attraktives Ziel für die Krebstherapie vorgeschlagen.
Eine vorläufige funktionelle Charakterisierung eines Pirin-Liganden, der von der EMBL
Chemical Biology Core Facility (CBCF) generiert und charakterisiert wurde und den Na-
men EMBL-703625 trägt, deutet auf eine anitumorale Wirksamkeit und eine sehr gute
Verträglichkeit in Mäusen hin. Transkriptomische Daten von HeLa-Zellen, die mit EMBL-
703625 aus der EMBL-CBCF behandelt wurden, haben mehrere deregulierte zelluläre
Prozesse als Folge der Pirin-Inhibition identifiziert, wie z.B. die Glykolyse und die Expres-
sion von Hitzeschockproteinen. Viele dieser Prozesse wurden auch als Mechanismen
identifiziert, die in Brustkrebszellen, die resistent gegenüber einer auf HER2 abzielenden
Therapie sind, für einen Rückfall oder eine Umgehung der Behandlung sorgen.
Mithilfe einer Kombination aus biochemischen Testverfahren, Synergiemodellierung und
Analyse des Transkriptoms wurde in diesem Projekt festgestellt, dass Lapatinib, ein klin-
isch zugelassener HER2-Tyrosinkinase-Inhibitor, bei gleichzeitiger Verabreichungmit EMBL-
703625 die Zellviabilität synergistisch reduziert. Darüber hinaus sorgte das Zusammen-
wirken der beiden Wirkstoffe dafür, dass sich die Toxizität in zwei humanen HER2- über-
exprimierenden Brustkrebszelllinien (BT-474 und SK-BR3) erhöht, die in 3D-Zellkultur
gezüchtet wurden. Diese Ergebnisse werden offenbar durch die größtenteils einzigarti-
gen Effekte der beiden Medikamente auf das Transkriptom der Zellen bewirkt. Außerdem
scheint es, dass diese Medikamentenkombination auch das erneute Wachstum von BT-
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474-Zellen nach Ende der Behandlung verhindern kann. Experimente an tumorinduzier-
baren primären Brustdrüsenzellen der Maus deuten darauf hin, dass die kombinatorische
Wirkung ausschließlich auf neoplastisch transformierte Zellen entfaltet wird. Darüber hin-
aus ist es möglich, dass Lapatinib und EMBL-703625 ihre Synergie zum Teil durch die
Inhibierung der Glykolyse vermitteln. Die sequenzielle Gabe der beiden Medikamente
könnte die gleiche Wirkung wie die gleichzeitige Gabe haben, wodurch den Patientinnen
schwere Nebenwirkungen erspart bleiben könnten.
Des Weiteren wurde in diesem Projekt die Lichtblattmikroskopie genutzt, um die Het-
erogenität zwischen verschiedenen Zellen auf 3-dimensionaler und zeitlicher Ebene zu
charakterisieren. Dafür wurden SK-BR3-Zellen mit dem Fluoreszenzsensor SoNar1, der
das intrazelluläre NAD+/NADH-Verhältnis anzeigt, transfiziert und per Lichtblattmikroskopie
untersucht. Für die Bildanalyse der so gewonnenen Daten wurden Pipelines etabliert,
wobei die Dekonvolution der Roh-Mikroskopiedaten in Zukunft zum Verständnis der Zell-
heterogenität beitragen könnte.
Parallel dazuwurden experimentelle Daten aus dem Jechlinger-Labor, die an tumorinduzier-
baren primären Brustdrüsenzellen von Mäusen in Zellkultur gewonnen wurden, mit Hilfe
einer integrierten metabolomischen und transkriptomischen Analyse ausgewertet. Dabei
hat sich herausgestellt, dass es zelluläre Vorgänge und Prozesse des Zellstoffwechsels
gibt, die potenziell verwundbare zentrale Knotenpunkte für verbleibende überlebende
Zellen und/oder Tumorzellen darstellen könnten. Darauf basierend könnten in der Zukunft
ähnliche experimentelle Strategien aufgebaut werden.
Insgesamt beinhaltet diese Arbeit präklinische Daten, die eine Grundlage für die Weit-
erentwicklung der kombinierten HER 2 und Pirin Inhibition in eine klinische Umgebung
darstellen könnten, unter der Voraussetzung, dass weitere Ergebnisse aus in vivo Exper-
imenten an Mäusen vorliegen.
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CHAPTER 1. INTRODUCTION

1.1 Introduction to Cancer
Cancer is a disease caused by the uncontrolled division of abnormal cells in the body. This
is due to the accumulation of genetic mutations, which usually occur gradually over time,
making cancer generally an age related disease. However, certain factors can increase
the rate of gain of these mutations. For example, DNA damaging agents (mutagens) such
as those found in tobacco smoke which cause some forms of lung cancer, or ultraviolet
light causing some forms of melanoma. They can also include signalling molecules, such
as the presence of estrogen in the blood, which is majorly implicated in many subtypes
of breast cancer. Additionally, certain bacteria and viruses can also lead to cancers. For
example, Helicobacter pylori is associated with forms of stomach cancer2, and Human
Papilloma Virus is associated with forms of cervical cancer3. Background genetic factors
also play a role in increasing or decreasing each individuals lifetime likelihood of devel-
oping particular cancers. In the vast majority of individuals, their overall genetic profile
is likely to increase or decrease their predisposition for a lifetime risk of a certain cancer.
However, there are certain examples of inherited genetic mutations which can drastically
increase an individuals chance of developing a certain cancer in their lifetimes. For exam-
ple, mutations in the RB1 gene significantly increase incidences of childhood retinoblas-
toma, often occurring in both retinas of a patient (bilateral retinoblastoma)4, or mutations
in the DNA repair BRCA1 or BRCA2 genes, which are associated with heritable forms of
breast and ovarian cancer5.
Whatever their causes, these mutations can alter the fundamental characteristics of these
cells. Mutations that cause increased cell growth and division rates, decreased respon-
siveness to apoptotic signals, or increased genomic instability, can in turn increase the
probability of these cells to gain further mutations. In this regard, cancer cell evolution has
many parallels with Darwinian evolution; cells that have acquired mutations that increase
survival probability (“fitter” from an evolutionary perspective) are more likely to become
over-represented in their cellular niche, in turn, meaning they are more likely to acquire
further mutations that could further increase their survival probability6. The mutations in
these cells can accumulate to the extent that they become unresponsive to normal cell
cycle regulatory mechanisms, both intrinsic and extrinsic, become immortalised, and di-
vide in an unregulated fashion, to form a growth of cells called a hyperplasia. As genetic
mutations further accumulate and the phenotypic characteristics of these cells are further
altered, these cells can gain invasive properties through a loss of cell polarity and ad-
hesion, and become more de-differentiated, with an altered cellular metabolism and cell
signalling, which can allow them to evade immune responses and recruit new blood ves-
sels (known as angiogenesis). This can lead them to leave their primary site and be able
to invade and divide in surrounding tissues and, eventually, other organs, which is known
as metastasis. Acquiring these invasive properties along with uncontrolled division and
immortality is referred to as a neoplastic phenotype. Cells that have acquired a neoplastic
phenotype are defined as cancerous.
The phenotypic differences that cancer cells have, relative to normal cells, are often re-
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ferred to as cancer cell hallmarks (summarised in Figure 3). Each of these hallmarks
can be considered a way that cancer cells are able to gain a selective growth advantage
over their normal counterparts; in combination they come together to be permissive of
a neoplastic phenotype. These neoplastic characteristics allow them to eventually grow
and migrate around the body which can lead to severe patient health problems. tumors
can grow and migrate to an extent that they can block capillaries and compromise organ
function, and/or lead to cachexia (body wasting due to competition for nutrients). In turn,
this leaves the patient vulnerable to secondary infections, internal bleeding, anaemia and
loss of pharmacological homeostasis. Combinations of these symptoms can eventually
lead to patient death.

Figure 1: The hallmarks of cancer, with examples of sub-hallmarks (outer circle). Althoughthe hallmarks are not unanimously agreed on, and definitions may differ between driving hallmarksand "passenger" hallmarks, a combination of these hallmarks can cause a cancerous phenotypeto develop. Figure adapted from Ref.7.
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Significant amounts of biological and clinical research have gone into slowing or stopping
cancer progression. The first modern anti-cancer therapies are now often referred to
as “shotgun” therapies, because they targeted actively proliferating cells, not delineating
between cancerous cells and normal “healthy” cells, therefore often causing significant
side effects in a patient. This originally involved radiation therapy and later chemotherapy
to induce DNA damage in actively dividing cells, leading to mitotic catastrophe. These
treatments were, and often still are, in combination with surgery (where possible). As
scientific understanding has improved, cancer therapy has gradually begun to take on
more patient tailored approaches, which is based on the unique complement of mutations,
and phenotypic characteristics that each patient has, in order to capitalise on their altered
cancer hallmarks, which can provide cancer-specific vulnerabilities. As specific molecular
drivers of a cancer-like phenotypes, called oncoproteins (coded for by oncogenes) have
been identified and characterised, therapeutics that specifically target these drivers have
also been developed and used in the clinic; this is often referred to as targeted therapy.
To further increase treatment effectiveness, modern therapies are often administered to
patients in combination to elicit the largest tumor killing effects, whilst minimising adverse
side-effects8, which is known as combination therapy. Also, in general, identifying cancers
at an earlier stage is associated with an improved prognosis, which has led to research
into diagnostic procedures, resulting in improvements in this area too9. Alongside these
biological and diagnostic improvements, better surgical techniques have also further im-
proved treatment effectiveness10. Because of a combination of these reasons, cancer
death rates have decreased. Across all cancers, races and ages, overall US yearly death
rates per 100,000 people decreased by 17.4% between 1953 and 201311.
Despite these improvements, cancer is still a major worldwide killer, being responsible for
approximately 9.5 million worldwide deaths in 201812. As the human population becomes
proportionally older, it is likely that cancer will affect an increasing number of people in their
lifetime, meaning that there is a need to continue improving cancer treatment13. In this
regard, there remain significant clinical challenges that still need to be addressed; many
patients have cancers that are still able to progress, despite treatment, and eventually
lead to death. One prominent issue is tumor recurrence, where a tumor returns after
apparently successful initial treatment, leading to significant research efforts to identify
mechanisms behind this, and develop therapeutics aimed at reducing or eliminating this
risk. Prevention of tumor recurrences will form a major part of the discussion of this thesis,
in the context of HER2 over-expressing breast cancer.
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1.2 Breast Cancer
1.2.1 Introduction
Breast cancer is formed by tumors developing in the glandular tissues in the breast, most
commonly from the milk producing mammary epithelium. Breast cancer can occur in
both sexes, but over 99% of cases occur in women. It is the most common form of fe-
male cancer worldwide, accounting for approximately 2.08 million new cases in 2018, and
approximately 627,000 deaths in the same year (11.6% of all worldwide cancer-related
deaths)12.
Apart from 5-10%of cases that are caused by inherited genetic mutations (such as BRCA1
and BRCA2 mutations)5, breast cancers primarily occur due to an accumulation of mu-
tations over time, primarily in epithelial cells lining the ducts and lobules of the glandular
tissues in the breast (responsible for producing milk after childbirth).
Breast cancer incidence is primarily associated with age, but lifetime probability of devel-
oping breast cancer is also influenced by higher long-term levels of the sex hormones
estrogen and progesterone, which can occur through lifestyle based factors such as obe-
sity, estrogen based therapies or having more lifetime estrous cycles because of a lack of
pregnancies and breastfeeding, or due to biological factors, such as a late menopause14.
These hormones are thought to increase breast cancer incidence because they induce
proliferation of the mammary epithelium, leading to a higher probability of mutational ac-
quisition after cell division. It is also possible that the presence of hormones such as
estrogen can also have chemical effects aside of their normal receptor based signalling,
that could also increase the rate of DNA damage15.
Because of the close association of the growth dynamics of the mammary epithelium with
hormonal cues, breast cancers are often found to be associated with the over-expression
ormutation of the cell surface receptors, such as the estrogen receptor (ER), progesterone
receptor (PR) and Human Epidermal Growth Factor Receptor 2 (HER2). The presence
of different combinations of these receptors often form the basis for different molecular
sub-classifications of breast cancer, which are further discussed in Section 1.2.4.
In the developed world, across all sub-types, 5-year survival rates are currently around
80-90%, improving from approximately 75% in the 1970’s11. Research by Narod et al.
(2015)16 suggested that this is mainly due to improved treatment. Notably, the devel-
opment of targeted therapies (for example, tamoxifen targeting the estrogen receptor,
or trastuzumab (Herceptin®) targeting the HER2 receptor) has led to demonstrable in-
creases in patient prognosis, particularly for primary cancers that have not yet metasta-
sised. Less improvement has been demonstrated in patients with recurrent or metastatic
tumors16.
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1.2.2 Anatomy of the breast
In order to understand how breast cancer first forms, it is important to consider the struc-
ture and function of the breast, particularly in the context of hormonal signalling. The
female breast primarily consists of adipose (fatty) tissue and glandular tissue, the latter
of which functions to produce milk in women following childbirth. In the glandular tissue,
milk is produced in the lobules, which consist of a cluster of acini. Surrounding each aci-
nus are luminal and myo-epithelial cells. Luminal cells function to produce milk, whereas
myo-epithelial cells act to contract, forcing the milk out of the lobule. From the lobule, milk
travels through the extra-lobular terminal duct, which connects it to the main duct, which
leads to the nipple. Each breast contains approximately 40 lobules.
These functional units of the breast are also known as Terminal Ductal Lobular Units
(TDLU’s). Each TDLU is surrounded by a layer basement membrane, contractile myo-
epithelial cells and luminal epithelial cells. The myo-epithelial cells serve to allow contrac-
tion, pushing the milk out of the lobule and into the duct, and the milk itself is produced in
the luminal epithelial cells.

Figure 2: Cross sections showing the anatomy of the breast, Terminal Ductal Lobular Units andthe cell types in a duct or lobule. Adapted from Pluchinotta et al., (2015)17.

1.2.3 Formation of breast cancer
Luminal cells in the TDLUs that have undergone malignant transformation lead to invasive
breast cancer. In the majority of breast cancer cases, tumors originate from luminal ep-
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ithelial cells in the mammary ducts or lobules. As these cells gain mutations that promote
increased rates of division and acquisition of DNA damage, they increase in numbers,
often forming a hyperplasia. Further genetic mutations can lead to changes in phenotypic
properties of these cells, for example, a loss of E-cadherin, which leads to the formation
of an atypical hyperplasia18. In a clinical setting, individuals diagnosed with an atypical
hyperplasia are considered at a higher risk of developing breast cancer and are often
subjected to further tests. An atypical hyperplasia can continue to divide, and acquire
further mutations and undergo resulting phenotypic changes to form a cancerous growth
that has not yet invaded surrounding tissues. This can form in the mammary ducts, or in
the lobules. These are known as Ductal Carcinoma In Situ or Lobular Carcinoma In Situ
(DCIS and LCIS, respectively).
DCIS may remain in a non-invasive state and never undergo a full malignant transforma-
tion to give rise to a invasive breast tumor, but are considered precursors to an invasive
state that has been able to infiltrate local surrounding tissues, known as invasive ductal
carcinomas (IDC). These invasive properties mean that IDC’s are considered to be in a
full cancerous state, and account for approximately 80% of breast cancer cases19. LCIS,
however, is unlikely to follow a similar trajectory; the majority of invasive lobular carcino-
mas originate as a DCIS. However, the presence of a LCIS is considered to be indicative
of a risk for eventual breast tumor formation, as it is possibly reminiscent of the fact that
cells in the TDLUs have accumulated mutations to put them into an atypical state.

Figure 3: Different stages of intitial breast cancer development, originating from the mam-mary duct. A ductal hyperplasia (also called usual hyperplasia) is usually characterised by agrowth of cells that appear relatively normal, relative to epithelial cells. An atypical ductal hyper-plasia is formed when these cells appear to be arranged in an abnormal way. A ductal carcinomain situ is formed when cells have acquired a cancerous stage, but have not yet invaded surround-ing tissues. This stage of breast cancer is referred to as stage 0, and rarely produces symptoms,and is usually only discovered through a routine mammography. An invasive ductal carcinomais when these cancerous cells have been able to invase surrounding tissues. At this stage, thelesion is considered cancerous. Figure adapted from Ref.20.
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1.2.4 Sub-types of breast cancer
Each individual case of breast cancer has its own unique complement of mutations that
drive tumor growth, progression and eventual likelihood to metastasise to new organs. As
breast cancer is primarily driven by the over-expression or mutation of hormone recep-
tors, each tumor is typically assigned a sub-type based on these, which more precisely
provides a general prognosis and strategy for tumor treatment. The three main receptors
implicated in breast cancer: ER, PR and HER2, provide the framework for this, along with
Ki67, a nuclear protein that is associated with cell proliferation and used as a marker for
it. The presence of different combinations of these tumor markers gives rise to the four
molecular breast cancer sub-types: Luminal A, Luminal B, HER2 over-expressing, and
triple negative (basal-like) (Table 1).

Sub-type Receptor Status Incidence (%)21
10-year rates
of metastatic
recurrence22

5-year survival21
Localised Metastatic

Luminal A ER+ and/or PR+,
HER2-

Low levels of Ki67.
74.6% 9.5 % 100% 30.6 %

Luminal B ER+ and/or PR+,
HER2+ or HER2-
High levels of Ki67.

10.5% 20 % 98.9 % 44.7 %
Triple Negative

(TNBC) ER-,PR-, HER2- 10.8% 23.2 % 91.2 % 12.2 %
HER2 over-

expressing (HER2+) ER-, PR-, HER2+ 4% 25.6% 96.7% 37.9%

Table 1: Breast cancer sub-types and incidence (2018). Incidence and 5-year survival is based offU.S. data21, and 10-year rates of metastatic recurrence is based on Netherlands data22, which isapproximately consistent with other similar studies performed from other countries. It is importantto note that data from patients of different ethnicities and/or countries that the analysis was per-formed in can result in different sub-type prevalence data and outcomes. For example, studies ofIndian breast cancer sub-types tend to have proportionally lower levels of Luminal A breast cancer,and higher Luminal B, TNBC and HER2+23.

Of the four sub-types, Luminal A is the least aggressive and has the best prognosis. This
is because it is more likely to respond to anti-hormone therapy, for example Tamoxifen,
which compromises estrogen receptor function, or aromatase inhibitors, which reduce
estrogen production24.
Triple negative breast cancer (TNBC) does not over-express any of the three main hor-
mone receptors; it has been postulated that risk factors for this sub-type originate from
common and rare causative germline mutations25. For example, BRCA1 mutations most
often result in TNBC compared to other subtypes26 Because of the lack of identifiable
driver mutations, it means that TNBC does not respond to targeted hormone therapy, and
in general, finding an optimal treatment regime is often challenging. In fact, TNBC is con-
sidered highly heterogenous, and identifying further biomarkers within this subtype is likely
to be important in finding more patient-tailored treatments27. For example, an integrated
genomic analysis identified that tumors that had androgen receptor and FOXA1 pathway
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mutations had an increased sensitivity to currently avaliable chemotherapy treatments28.
Luminal B breast cancer is characterised by the presence of ER and/or PR, with high
levels of Ki67, and is often further sub-divided into further sub-types, based on whether
the HER2 receptor is over-expressed or not. Occasionally, Luminal B breast cancer that
over-expresses HER2 is grouped as HER2 over-expressing breast cancer. Generally,
Luminal B (with or without HER2 over-expression) has a relatively good prognosis, second
only to Luminal A. This is partially due to its sensitivity to hormone therapy because of the
presence of ER/PR. Targeted therapies against HER2 can also be administered if it is
present29;30.
The final sub-type, HER2 breast cancer, is driven by the over-expression of the HER2 re-
ceptor, with an absence of ER and PR, meaning that it is not sensitive to hormone therapy.
Along with TNBC, HER2 over-expressing breast cancer is considered one with a relatively
poor prognosis, and is characterised by high rates of tumor relapses following therapy, a
statistic that has been improved by the development of targeted therapies against the
HER2 receptor.
The rest of this literature review, and thesis, will focus on HER2 over-expressing breast
cancer, both with and without the presence of the estrogen receptor.
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1.3 HER2 driven breast cancer, therapeutic challenges and fu-
ture perspectives

1.3.1 Introduction
HER2 over-expressing breast cancer is a particularly aggressive breast cancer sub-type
with a relatively poor patient prognosis, and accounts for approximately 15-20% of world-
wide breast cancer cases. It is characterised by over-expression of the ERBB2 gene,
which codes for the human epidermal growth factor receptor 2 (HER2) receptor. Because
of this, many therapies targeting the HER2 receptor have been developed. The introduc-
tion of these therapies have improved prognosis, but the disease still has relatively high
rates of metastatic recurrence (see Table 1), relative to other sub-types. Metastatic breast
cancer, regardless of sub-type, is considered incurable.

1.3.2 The HER2 receptor: A member of the HER receptor family
The HER2 receptor is a member of a the highly conserved HER family of membrane
traversing receptor tyrosine kinases, which has four members; HER1-4. Each member
of the HER family has a similar structure: an extracellular domain consisting of four sub-
domains, a transmembrane domain, and an intracellular kinase domain (See Figure 4).
The extracellular domain of each HER protein is required to induce dimer formation, which
happens through co-interactions of the sub-domain II. On HER2, the extracellular do-
main is in a conformation that makes sub-domain II readily available for interaction31;32,
but HER1 (commonly referred to as EGFR), HER3 and HER4 require ligand binding to
change the extracellular domain conformation in a way that permits sub-domain II in-
teractions33;34;35. A variety of extracellular signalling ligands have been identified that
interact with EGFR (7 in total)36, HER3 (4 in total)37;38, and HER4 (9 in total)33. HER2
has no known extracellular signalling ligands. Formation of these dimers allows interac-
tions between their respective kinase domains, leading to auto-phosphorylation of differ-
ent residues; this auto-phosphorylation mediates which downstream molecules are phos-
phorylated, and in turn, which pathways are activated39.
The signalling of the HER family of proteins is highly conserved, and has evolved into
a complex, multifaceted signalling network in higher eukaryotes across a multitude of
different tissue types. This complexity is due to a variety of reasons. Firstly, the HER
receptor proteins have an apparent hierarchy of preferred dimerisation partners, which is
important for the specific down-stream signalling pathways that are activated. HER2 is
the preferred dimerisation partner of each of the other HER family members40. Secondly,
the individual extracellular ligands that bind to HER-1, -3 or -4 can also influence their bias
to form certain dimers41. Thirdly, there is a high degree of cross-talk between the HER-
signalling network and other pathways, for example with SRC kinases, which interact with
the catalytic tyrosine kinase activity of the HER2 receptor, and potentiate its activity42;43;44.
Taken together, the expression dynamics of each HER receptor, coupled with the unique
30 M. Boucher
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complement of extracellular signalling ligands found in each tissue, and presence of in-
teracting RTKs and effector proteins, plethora of possible effects within each tissue, this
includes effects on cell proliferation, apoptosis, migration, adhesion and differentiation.

Figure 4: The HER-family of receptors, showing how protein domains interact with ligandsto induce dimer formation. EGFR (HER1), HER3 and HER4 are naturally in an inactive confor-mation that is not permissive of dimer formation until they are bound by an extracellular ligand.HER2 is naturally in a conformation that is permissive of dimer formation. Members of the HERfamily can then form homo- or heterodimers with one another which causes interactions betweentheir kinase domains, allowing downstream protein phosphorylation and induction of signallingcascades.

1.3.3 HER2 over-expression and induction of a neoplastic phenotype
Of the four HER- family members, EGFR and HER2 are the most commonly implicated
in a variety of cancers due to their ability to fundamentally change the characteristics of
the cell when mutated or over-expressed45;46. The transforming effect of HER2 in breast
cancer shall be the focus of this section.
In 1984, the first link between the HER2 oncogene and an aggressive form of breast can-
cer was identified47;48 and major research efforts have since been conducted to further
characterise this tumor driver. The oncogenic effects of HER2 are important to under-
stand in the context of HER- family signalling. HER2-driven breast cancer is primarily
caused by gene duplication resulting in over-expression48, and sometimes also acquiring
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activating mutations49. At normal expression levels, HER2 is already a more potent sig-
naller; HER2 is the preferred dimerisation partner of the other HER- family members40,
and has the strongest kinase activity of any of the receptors40;50, and these complexes
have more potent oncogenic signalling51;52;53. In particular, the HER2-HER3 heterodimer
transforms a cell towards a neoplastic phenotype more potently than any other HER-
based dimer54;55;56. In HER2 over-expressing breast cancer, the membrane density of
HER2 is increased57, which allows it to potentiate its signalling in multiple ways. HER2
distributes on the membranes in areas of localised high density, which is permissive for
homodimer formation58. Along with this, as HER2 is the preferred dimerisation partner
of the other HER family members, heterodimer formation is also increased, which has
critically important functions in cell transformation59. The increased HER2 signalling also
functions to increase its own stability in a positive feedback loop; HER2 over-expression
activates HSF-1, which increases HSP90 expression60, which in turn, functions to in-
crease EGFR and HER2 receptor membrane stability61. Further, EGFR signalling is also
indirectly increased because EGFR-HER2 heterodimers are not susceptible to endosomal
digestion, meaning that the membrane density of EGFR is partially de-regulated62.

The increased amount of HER2 based homodimers and heterodimers drives multiple phe-
notypic changes that can contribute to a neoplastic phenotype. Their signalling primar-
ily acts through the PI3K/AKT/mTOR and Ras/Raf/ERK signalling pathways, leading to
a multitude of different effects on the cell, these include: driving losses in cell polarity,
adhesion, cell proliferation, anti-apoptotic signals, migration, cell cycle deregulation and
metabolic changes63;64. HER2 homodimers and heterodimers are both integral to induc-
tion of a neoplastic phenotype. Inhibition of homodimer formation through treatment of
cells with the monoclonal antibody Trastuzumab (see section 1.3.5 for a comprehensive
discussion on targeted therapeutics) preferentially effects cells with higher homodimer
levels. With regard to heterodimers, different heterodimers have been associated with
tumor progression and resistance. For example, the EGFR-HER2 heterodimer has been
implicated in tumor cell motility through signalling of the STAT1 transcription factor65. Sim-
ilarly, the relevance of the HER2/HER3 heterodimer has become a large focus of research
in recent years due to its association with tumor relapse and metastasis because of its
strong transforming effect. This dimer has an rapid rate of tyrosine kinase activity and
potentiates multiple signalling pathways66. It has been demonstrated that HER3 provides
ways for HER2 to continue its signalling activity despite treatment with HER2-specific
tyrosine kinase inhibitors67. Levels of HER2-HER3 dimers in a tumor are also positively
correlated with the probability of a metastastic relapse in patients68, and associated with a
poor response to targeted treatment69. As well as heterodimer formation being important
for HER2 over-expressing breast cancer progression and resistance to treatment, homod-
imer formation is also important. Cells with a lack of HER2 homodimers were found to be
less responsive to drug treatment70. It has also been demonstrated that HER2 interacts
with a wide array of RTKs outside of the HER family; this is important for maintaining a tu-
mor phenotype in the absence of HER2 homodimer formation, and is therefore implicated
in therapy resistant tumors59.
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1.3.4 ’Addiction’ to the HER2 oncogene in HER2 overexpressing breastcancer
1.3.4.1 Oncogene addiction
With our modern understanding, it is now evident that cancer, including HER2 over-
expressing breast cancer, arises through a multi-stage process of sub-clonal evolution,
where many fundamental characteristics of the cell change due to genetic mutations,
accelerated by increased genomic instability, and also through selection due to micro-
environmental effects, such as access to nutrients and oxygen. This Darwinian-like se-
lection, typically over the course of multiple decades, eventually allows a neoplastic phe-
notype to develop.
An inherent result of genomic instability and diverse tumor micro-environments is a high
degree of inter- and intra-tumor heterogeneity (discussed in Section 1.4.1). However,
remarkably, despite this, the reliance of the vast majority of tumor cells on a single or
few driver oncogenes to maintain their neoplastic phenotype has long been identified
and characterised, dating back to the work by Duesberg and Vogt in 197071. This phe-
nomenon had been coined as ’oncogene addiction’72.
The notion that oncogenes can solely be responsible for tumor establishment and progres-
sion provided an attractive rationale for the development of molecules that compromise
their downstream functions73, potentially inhibiting cancer cell division and survival. This
research interest eventually gave rise to the advent of targeted cancer therapy, which is
now a major foundation of modern cancer therapy, along with more traditional systemic
therapies (chemotherapy and radiotherapy) along with surgery.

1.3.4.2 Experimental evidence of ’addiction’ to HER2 inHER2 overexpressing breast
cancer

Multiple experimental models have helped to verify that the concept of oncogene addic-
tion carries over to the HER2 oncogene in breast cancer. Silencing of HER2 expression
in HER2 over-expressing human breast cancer cell lines with siRNAs has been demon-
strated to inhibit proliferation and induce apoptosis74, whilst conversely, MCF10a cells,
considered a non-neoplastic human breast cell line, can take on tumor properties when
HER2 is over-expressed or mutated into a constitutively active form75, and can even
cause non-transformed neighbouring cells to take on a neoplastic phenotype by the re-
lease of exogenous signalling factors76. Inducible mouse models that over-express Neu
(rodent HER2 homologue) specifically in the mammary epithelium are also a well estab-
lishedmodel of in vitro and in vivo tumorigenesis, particularly when it is co-over-expressed
along with the MYC oncogene77;78. When the over-expression of these oncogenes is de-
induced (mimicking a “perfect” drug treatment), tumors regress in vitro and in vivo.
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1.3.5 Therapeutic exploitation of “addiction" to HER2 over-expression inbreast cancer: Targeted therapies
The notion that cancer cells are reliant on oncogene over-expression has led to a large
pharmaceutical effort to develop therapeutics that compromise their function. In 1998, the
FDA approved the first targeted therapeutic against the HER2 receptor called Trastuzumab
(marketed as Herceptin®, Genentech)79. This is a monoclonal antibody that binds to
the receptors extracellular domain, preventing homodimerisation and subsequent activa-
tion of downstream signalling pathways32;70. Consistent with HER2 knock-down and de-
induction experimental models, treatment of patients with HER2 over-expressing breast
cancer cell lines with trastuzumab ablates cell proliferation and survival80. On a clinical
level, trastuzumab has improved long-term prognosis for breast cancer patients in clinical
trials and is demonstrated as a safe method of treatment81;82.
In the time since the original licensing of Trastuzumab, further HER2-targeted agents have
been approved. These are often used as an adjuvant or neo-adjuvant therapy along with
trastuzumab and other chemotherapeutics, with some combinations being specifically li-
censed to target metastatic tumors. The current FDA-licensed HER2 targeted agents pri-
marily have three mechanisms of action. These are listed below and the corresponding
agents are listed in Table 2.
1. Attachment to the extracellular domain of the HER2 receptor (Trastuzumab, Per-
tuzumab and Margetuximab).

2. Inhibition of the intracellular tyrosine kinase activity of the receptor (Lapatinib, Ner-
atinib, Pyrotinib83 (Tucatinib)

3. Targeted delivery of a cytotoxic agent to HER2 over-expressing cells (Trastuzumab
Emantisine and Trastuzumab deruxtecan).

The year 2020 and early 2021 was perhaps the most encouraging time for HER2+ breast
cancer treatment, since the FDA approval of Trasutuzumab (Herceptin®, Genentech) in
1998. This is due to the regulatory approval in this period of Tucatinib (Tukysa®, Seagen)
and two drugs involving trastuzumab covalently linked to a cytotoxic payload (known as an
antibody-drug conjugate (ADC)): trastuzumab emtansine (Kadcyla®, Genentech) and the
very recently approved trastuzumab deruxtecan (Enhertu®, Daiichi-Sankyo/AstraZeneca).
In their respective Phase III clinical trials, each of these drugs improved patient outcomes,
relative to the comparator group. For example, Tucatinib, which is used in patients with
advanced or metastastic breast cancer, yielded a improved overall survival time, with a
1 year hazard ratio (relative risk of death) of 0.4884. This is partially due to the fact that
Tucatinib is able to cross the blood-brain barrier, allowing treatment of brain metastases
that are often inoperable through surgical methods.
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Drug(Marketedname)
Mechanismof action Current licensed therapeutic use Year of firstregulatoryapproval Key Data

Trastuzumab(Herceptin® Anti-HER2mAb + paclitaxel for HER2+ metastatic breastcancer 1998 (FDA) Overall survival HR of 0.76 compared tochemotherapy alone85.
Pertuzumab(Perjeta®) Anti-HER2mAb

Alongside trastuzumab and docetaxel inneoadjuvant HER2+ breast cancer 2013 (FDA) pCR rate: pertuzumab + trastuzumab + docetaxel;45.0%, trastuzumab + docetaxel; 29.0%86
+ trastuzumab and pertuzumab for adjuvantHER2+ breast cancer treatment 2017 (FDA) PFS HR of 0.82 of all 3 agents compared totrastuzumab + chemotherapy alone87.

Margetuximab(Margenza®) Anti-HER2mAb
+ chemotherapy for metastatic disease, with atleast 2 prior treatment regimens (at least 1 inthe metastatic setting) 2020 (FDA) PFS HR of 0.76 (median of 5.8 vs 4.9mos;margetuximab vs trastuzumab)88

Trastuzumabemtansine(Kadcyla®)
Anti-HER2ADC

Metastatic breast cancer patients who havereceived prior taxane + trastuzumab 2013 (FDA) PFS HR of 0.65 compared to lapatinib +capecitabine89.
Patients with residual-invasive disease afterneoadjuvant taxane + trastuzumab 2019 (FDA) PFS HR of 0.50 compared to trastuzumab. 10.5% ofrecurrences were metastatic, compared to 15.9 whentreated with trastuzumab90.

Trastuzumabderuxtecan(Enhertu®)
Anti-HER2ADC

Unresectable or metastatic HER2+ breastcancer after at least two prior failed lines oftherapy 2020 (FDA)
Single arm Phase II clinical trial. 60.3% ORR, mPFS:14.3 months. These data currently exceed efficacystatistics from other HER2 targeted treatments at thisHER2+ breast cancer stage. Two confirmatory PhaseIII double-blinded trials are currently ongoing91;92;93.Lapatinib(Tykerb®) EGFR andHER2 TKI

+ capecitabine for previously treated HER2+metastatic breast cancer 2007 (FDA) PFS HR of 0.57 compared to capecitabine alone94.
Neratinib(Nerlynx®) EGFR andHER2 TKI

+ capecitabine for advanced or metastaticHER2+ BC 2020 (FDA) PFS HR of 0.76 of neratinib + capecitabine comparedto lapatinib + capecitabine95.Extended adjuvant treatment followingtrastuzumab therapy 2017 (FDA) After 2 years, DFS HR of 0.66 compared toplacebo96.
Tucatinib(Tukysa®) HER2 TKI + trastuzumab + capecitabine for advancedunresectable or metastatic HER2+ BC,including patients with brain metastases 2020 (FDA) PFS HR of 0.54: tucatinib + trastuzumab +capecitabine compared to placebo + trastuzumab +capecitabine97.

Table 2: Currently approved HER2-targeted therapies, along with the mechanism of action, the therapeutic setting the drug is used in, year of original regulatoryapproval, and the key data that led to that approval. Abbreviations: PFS - Progression Free Survival, HR - Hazard Ratio, pCR - Pathological complete response,ORR - Overall response rate, DFS - Disease Free Survival, ADC - Antibody-drug conjugate, TKI - Tyrosine kinase inhibitor.
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Figure 5: The binding and mechanisms of action of currently licensed HER2-targeted thera-peutics. Currently, anti-HER2 drugs fall into three main categories for their mechanism of action:anti-HER2 antibodies (such as Trastuzumab) HER2 or pan-HER tyrosine kinase inhibitors (suchas lapatinib or Tucatinib), and more recently, antibody-drug conjugates (such as trastuzumab em-tansine) which are able to specifically deliver a cytotoxic payload to HER2-expressing cells andinduce mitotic catastrophe, similarly to how non-targeted chemotherapeutic agents work.
However, despite encouraging clinical data, there are still significant clinical challenges in
HER2+ breast cancer that need to be addressed as HER2+ breast cancer is still consid-
ered as one with a relatively poor prognosis. One particular challenge is tumor relapse -
tumors that re-occur in the body after apparently successful original treatment, often being
less responsive to treatment than previously because of tumor resistance. The following
section will discuss the clinical challenges brought on by tumor relapse in HER2+ breast
cancer, and how targeting tumor heterogeneity could help to prevent this from happening.
1.3.6 Therapeutic challenges: tumor relapse
A significant clinical challenge for HER2 positive breast cancer is tumor relapse, partic-
ularly metastatic relapse. A large portion of mortality from any cancer is due to eventual
metastatic spread, which compromises organ viability and function, which can occur in a
de novo fashion, or due to tumor relapse. As with all breast cancer metastases, HER2
driven breast cancermetastases, occurring in either way, are largely considered incurable.
This means that drugs such as tucatinib and trastuzumab deruxtecan, which are currently
only approved in advanced/metastatic patients, only prolong survival, and almost never
cause full disease remission. For example, tucatinib + trastuzumab + capecitabine led
to a median progression free survival of 7.6mos, compared from 5.6mos on the control
treatment (placebo + trastuzumab + capecitabine)84. Of concern in the context of tumor
relapse is that HER2+ breast cancer tumors that have recurred in a metastatic setting give
rise to particularly poor survival statistics98. On top of this, current treatment regimens
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that are licensed for earlier stages of breast cancer (before relapse or metastasis) appear
to lead to proportionally higher incidences of problematic brain metastases; the current
proportion of patients that develop brain metastases following targeted HER2 therapy is
now estimated to be 30-50%.99;100;101. As a first metastatic site, patients with metastatic
relapses are approximately 3.1 times more likely to be in the brain than de novo metas-
tases98.
Despite these statistics, HER2-targeted therapies have improved patient outcomes in all
lines of therapy, and are likely to continue to do so, particularly with the recent approval of
newer generation HER2-targeted treatment regimens (see Section 1.3.5). The approval
of trastuzumab emtansine in the adjuvant setting is likely to improve relapse statistics, as it
is a more effective treatment than the previous standard of care (although these statistics
will take approximately 8-10 more years to be fully mature). However, as it is still a HER2-
directed treatment, and resistance mechanisms to it have already been identified102, it
is also likely that subsequent relapses will remain a significant therapeutic challenge to
overcome.

1.4 Tumor relapses after HER2-targeted therapy
1.4.1 Tumor heterogeneity: a driving force behind tumor relapse
Because of the problems associated with tumor relapses, significant amounts of research
have been directed into understanding the processes that lead to them, so that they can
be treated or prevented. Central to this is the concept of tumor heterogeneity.
It has long been understood that cancer cells arise through a multi-stage process of sub-
clonal evolution, where many fundamental characteristics of the cell change due to ge-
netic mutations, accelerated by increased genomic instability. Because of the propensity
of tumor cells to mutate, and the different micro-environmental conditions found within
a single tumor (for example, cells in the middle of a tumor experiencing more hypoxia)
individual cancers experience a high degree of intra-tumor heterogeneity both on a ge-
netic and non-genetic level, including in HER2 positive breast cancer patients. For similar
reasons, patients with the same sub-types of cancer can still experience high degrees of
between-patient (inter-tumor) heterogeneity103.
Understanding both levels of tumor heterogeneity has, and is, likely to drive clinical ad-
vances in relation to tumor relapses. On a patient level, understanding the unique tumor
drivers and conditions that are unique to each patient has led to increasingly more per-
sonalised treatment approaches. These will be continue to improve patient prognosis
statistics. Eventually, approaches such as this may even make metastatic disease con-
sidered to be curable in some patients. However, whilst improving treatment of tumor
relapses (particularly metastases) is important, the presence of these relapsed tumors
leads to decreases in quality of life, economic and practical burdens on healthcare sys-
tems, and will involve significant amounts of financial and time investment to see a gradual
improvement in patient outcome statistics. From all of these standpoints, relapse and/or
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metastasis prevention would be a more effective and beneficial therapeutic strategy.
Earlier cancer prognosis is highly predictive of patient outcomes, and so developing reli-
able and affordable screening techniques would be effective at helping to improve patient
outcomes. On top of this, finding methods to target cells that would otherwise be able to
evade therapy could lead to improved treatment outcomes. Theoretically, increased intra-
tumor heterogeneity increases the probability that some cells will be able to survive initial
targeted treatment through compensatory survival mechanisms, possibly relocate to other
organs, and re-grow to form relapsed tumors. Consistent with this, a recent study demon-
strated that increased intra-tumor heterogeneity is associated with an increased risk of
metastasis and a decrease in overall patient survival104, backed up by another study fo-
cusing on HER2 copy number105. To further lower the probability of tumor progression or
recurrence despite treatment, a therapeutic regime would have to also compromise the
escape mechanisms in these cellular sub-populations.

1.4.2 A HER2 “blockade” as the current combination treatment strategy –successes and ongoing issues
As will be discussed in Section 1.5.1, one major way that HER2+ breast cancer is able
to evade therapy is through sustaining HER2 oncogenic signalling, either through HER2
mutations that render it insensitive to treatment, or through the reactivation of downstream
signalling.
To combat this, the majority of currently licensed treatment regimens involving HER2-
targeted agents focus on a dual-HER2 blockade, both in the neoadjuvant/adjuvant set-
ting, and also in the metastatic setting. For example, trastuzumab, pertuzumab and
chemotherapy are the standard of care for first-line HER2 positive breast cancer (al-
though this is likely to be overtaken by trastuzumab emtansine in the coming years). For
metastatic and relapsed patients, the newly-approved tucatinib is exclusively licensed
for treatment alongside trastuzumab and chemotherapy. Trastuzumab deruxtecan, also
newly approved, is currently approved as a monotherapy. The current late-phase clinical
pipeline also suggests that a general clinical strategy is a HER2-blockade. In line with
this, a relatively high proportion of Phase PII/III or Phase III clinical trials still involve a
HER2 blockade (38/81 (46.9%) ongoing or planned, as of August 2021)106.
Whilst it is that using a HER2 blockade has improved initial treatment outcomes, it may
not be optimally effective at preventing tumor relapses. Whilst more comprehensively in-
hibiting the main tumor driver (HER2) will cause more tumor cells to lose their driver and
therefore succumb to oncogene addiction, it does not account for cells that may be able
to survive through alternative pathways that are not reliant on HER2 expression. In line
with this, clinical evidence demonstrates that patients that did not achieve a pathological
complete response (pCR‡) had a 9.55x increased chance of subsequent relapse after
targeted HER-2 therapy (trastuzumab and/or lapatinib treated). As a percentage of total

‡Pathological complete response - the absence of any detectable residual cancer cells following treatment
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patient population, 14.7% of patients have HER2 negative residual disease§ after tar-
geted treatment, and these patients have a 2.41x higher chance of subsequent disease
relapse, compared to patients with HER2+ residual disease107. A longer-term follow up
data further confirmed these data; patients with HER2+ residual disease after adjuvant
therapy had a 84% 5-year overall survival, patients with HER2- residual disease had a
50% 5-year overall survival. As well as this, other clinical data suggest that approximately
24% of metastatic relapsed tumors lose HER2-expression, and this loss is positively as-
sociated with a poorer outcome108. Trastuzumab treatment did not significantly influence
the likelihood of this discordance, but in patients that did lose HER2 expression after ini-
tial trastuzumab treatment, patient prognosis was particularly poor, with all patients on
the study in this subgroup dying within two years108. This suggests that loss of HER2
expression could be selected for in some patients for metastatic progression, and that
these selected for cells are particularly aggressive.

§Residual disease - Surviving cancer cells following therapy
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1.5 Resistance mechanisms of HER2+ breast cancer cells to
current HER2-targeted treatment regimens

The following sub-sections discuss resistance mechanisms to HER2 targeted anti-cancer
therapies. A summary of these resistance mechanisms is displayed in Figure 6.

Figure 6: Mechanisms of drug resistance to currently licensed therapeutics. Text references (top tobottom): Trastuzumab:109;110;111;112;113;114;115;116;117;118 Trastuzumab emtansine:119;120;121 Tyrosinekinase inhibitors: Lapatinib:122;123;124 Neratinib:124 Tucatinib:124. Margetuximab is not included inthis figure as there are no mature data about it yet in this context.

1.5.1 Resistance mechanisms: Maintaining HER2 signalling through re-activation of downstream signalling pathways, or HER2 mutations
Evidence suggests that one reason for resistance to HER2 targeted therapies could be
the re-activation of downstream pathways that allow the effects of HER2 signalling to be
propagated, even when HER2 function is compromised by the presence of targeted ther-
apies. For example, dual inhibition of HER2 signalling and the downstream PI3K protein
is implicated in overcoming HER2 resistance125;126. Evidence also exists to suggest that
resistance to HER2 targeted therapies can also come at the level of the receptor through
the acquisition of activating mutations127. In fact, resistance to originally non-HER2 over-
expressing, ER+ breast cancer can occur through HER2 activating mutations128, high-
lighting a need for improved anti-HER2 therapy outside of this specific sub-type of breast
cancer. Furthermore, resistance in this way can also occur at the level of drug interactions;
for example, increased levels of mucins are implicated in trastuzumab resistance129. Evi-
dence also suggests that resistance to tyrosine kinase inhibitors such as lapatinib is asso-
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ciated with an increased resistance to the TRAIL apoptosis pathway which occurs through
differential phosphorylation of AKT, leading to changes in BCL-2 family members - inhibi-
tion of these is correlated with increased sensitivity in lapatinib resistant cells.130.
1.5.2 Resistance mechanisms: Utilisation of “escape” pathways
“Escape” pathways could be utilised to allow oncogenic effects to be propagated in the
absence of HER2 signalling. There are multiple lines of evidence to suggest that this is a
significant driver of tumor resistance. Examples of some prominent mechanisms of this is
described in the following sub-sections, relating to CDK4/6 expression, heat shock protein
(HSP) expression, and NF-κβ signalling.
1.5.2.1 CDK4/6 expression
Alterations of CDK4/6 expression in cancer are common, and have emerged as an at-
tractive therapeutic target131. In HR+/HER2- breast cancer, the CDK4/6 inhibitor Palbo-
ciclib was approved by the FDA in 2016132, after a successful Phase III clinical trial133.
Activation of CDK4/6 signalling has become an area of significant scientific and clinical
interest in HER2 breast cancer126, with certain studies currently in Phase II and III clini-
cal trails134;135;136. It has long been known that CDK4/6 signalling is important in breast
cancer survival137, and experimentally demonstrated to be synergistic in cell lines, and
have a significant combinatorial effect in xenograft models with no increases in toxicity in
mice138. On top of this, work with transgenic mousemodels have identified that resistance
to HER2-targeted therapy is overcome by using CDK4/6 inhibitors139.
1.5.2.2 HSP protein expression
HSP protein expression is modulated by HSF-1. Alterations in their expression can re-
program tumor cell metabolism (discussed in depth in Section 1.5.3). Human breast can-
cer cell lines over-expressing HER2, BT-474 and SK-BR3, have over-expression of HSF-1
and down-stream heat shock proteins, and resistance to both trastuzumab and lapatinib
comes through the failure of these drugs to regulate HSF-1 expression60. Cells that are
resistant to either of these drugs are sensitive to HSF-1 inhibition123;114, and it was demon-
strated that lapatinib resistant cells are also sensitive to downstream HSP-90 inhibition.
Six of the eight RTKs that were de-regulated in the lapatinib resistant mammary tumors
were HSP-90 clients140. Lapatinib resistant BT-474 cells maintain sensitivity to heat shock
protein inhibition, which is mediated through heat shock factor 1 (HSF-1) activity140. Con-
sistent with this, ganetspib, which is involved in HSP90 inhibition, was demonstrated to
preferentially reduce viability in BT-474 and SK-BR3 cells, compared to their non-HER2-
over-expressing counterparts141. Additionally, in line with this study, they also established
that ganetspib potentiates the effects of lapatinib in each cell line, with stronger combined
effects in BT-474, relative to SK-BR3141.
On top of this, a recent study found that 17-DMAG, a HSP90 inhibitor, was able to over-
come resistance to lapatinib in BT-474 and SK-BR3 cells. Interestingly, this same study
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also found that a combination of both lapatinib and 17-DMAG were able to more effec-
tively treat these resistant cell lines compared to either in monotherapy, which was also
the case in xenograft tumors as well, suggesting that the effects of this drug interaction
may carry over to resistant cells as well142.

1.5.2.3 NF-κβ signaling
NF-κβ expression is associated with HER2 over-expression143, and its signalling is ac-
tivated by HER2 through a canonical pathway with results in an invasive phenotype144.
Clinical evidence suggests that NF-κβ is a biomarker that is predictive of an aggressive
phenotype and poor prognosis145. Because of these reasons, the link between HER2+
and NF-κβ has long been identified and characterised as a potentially attractive node of
interference for therapy resistant breast cancer146;147. In the context of HER2+ breast
cancer specifically, there is also evidence for this. Trastuzumab-resistant BT-474 cells
have demonstrated activation of NF-κβ115. It has also been demonstrated that NF-κβ is
hyperactivated in breast cancer cells, and that combination inhibition of HER2 and NF-κβ
was effective in killing lapatinib resistant cells148. As well as this, RANK signalling, through
ERK and NF-κβ signaling mediates resistance to lapatinib in multiple HER2+ breast can-
cer cell lines149.

1.5.3 Resistance mechanisms: Altered metabolism
1.5.3.1 Metabolism as a hallmark of cancer
It has long been understood that cancer cells fundamentally alter their metabolism, dating
back to the pioneering work by Otto Warburg in the 1920s, who determined that cancer
cells preferentially undergo anaerobic metabolism (glycolysis as the main source of ATP
production) despite the presence of readily available oxygen being present in the cellular
microenvironment150;151. Since then, alteredmetabolism has gone from being considered
a by-product of a neoplastic phenotype, to an active driver of tumorigenesis152.
The original work by Otto Warburg postulated that this increased glycolysis was due to
an accumulation of mitochondrial damage in cancer cells, meaning that glycolysis was re-
quired as the preferential source of energy production to maintain cell viability and support
growth150;151. Since then, it has become clear that mitochondrial metabolism is an essen-
tial part of cancer cell metabolism, albeit in an altered state. In quiescent, non-actively
dividing cells, ATP production preferentially comes from mitochondrial metabolism; this
form of aerobic respiration is more energy efficient. However, in actively proliferating cells,
including cancer cells, cell metabolism is shifted from ATP production to macromolecule
production. This system of metabolism is less energy efficient, but is important to meet
the macromolecular requirements for actively dividing cells. HER2 over-expressing breast
cancer cells have an altered metabolic phenotype, which, similar to many other cancers,
is shifted towards a state of macromolecule production, including with increased fatty
acid synthesis153 which preferentially comes through exogenous fatty acid uptake154,
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nucleotide biosynthesis155, and reliance on the pentose phosphate pathway156 which is
implicated in amino acid, nucleotide and fatty acid biosynthesis.

1.5.4 Altered metabolism in HER2 over-expressing breast cancer
The fundamental metabolic alterations in HER2 over-expressing breast cancer cells are
controlled through alterations inmolecular signalling pathways, including the PI3K/Akt/mTOR
and RAS/RAF/ERK pathways, both important pathways in HER2+ breast cancer. In par-
ticular, the PI3K/Akt pathway is implicated many altered downstream metabolic effects,
acrossmany different cancers157. In this pathway, phosphoinositide 3-kinase (PI3K) binds
to phosphorylated tyrosine residues following receptor trans-autophosphorylation, caus-
ing it to become activated. In turn, this activated form of PI3K binds to membrane bound
PIP2, causing an extra phosphate group to bind to it, converting it to PIP3. PIP3 is then
able activate the AKT kinase, which in turn can activate mTOR. mTOR has a multitude of
effects on a cells metabolism158. In HER2+ breast cancer, glucose uptake is enhanced
through increased levels of sodium-dependent Glucose Transporter 1 (SGLT1), which in
turn acts in a positive feedback loop to activate the PI3K/AKT/mTOR pathway. This path-
way is also implicated in the expression of an pyruvate kinase isozyme M2 (PKM2) in
HER2 over-expressing breast cancer159. This isoform is functional in glycolysis and is
associated with a highly proliferative phenotype. It is important for the survival of HER2
over-expressing cells; demonstrated by the fact that PKM2 inhibition compromises cell
viability160. mTOR also stimulates activation of lactate dehydrogenase in HER2 breast
cancer (LDH)161, through the activation of Heat Shock Factor 1 (HSF-1)162 to produce
lactate. The amount of exogenous lactate is correlated with the level of HER2 addiction
and response to targeted therapy163. There is also evidence to suggest lactate acts in
a positive feedback loop to further activate mTOR through activation of BCL-2 in can-
cer cells164. HSF-1 also stimulates the expression of heat shock proteins (HSPs) such
as HSP-70 and HSP90, both of which also are implicated in influencing the metabolic
characteristics of a variety cancers165;166. Both have been implicated in having a role in
HER2 over-expressing breast cancer and resistance to targeted therapy167;60. In partic-
ular, HSP90 has been a subject of particular interest, with many HSP90-targeting drugs
being tested in Phase I clinical trials168. A notable example is Ganetspib, due to its ef-
fectiveness across a range of breast cancer sub-types118. A Phase I clinical trial data
testing this inhibitor in combination with trastuzumab and paclitaxel produced encourag-
ing safety data169. As well as promoting a glycolytic phenotype, mTOR also promotes
Acetyl-CoA production, de novo lipogenesis and changes in mitochondrial physiology in
HER2 over-expressing breast cancer cells170.
Similarly, RAS/RAF signalling is also implicated in driving metabolic changes in a variety
of cancers171, and this includes an important role in in HER2 over-expressing breast can-
cer, which is mediated through heterodimer formation with EGFR, HER3 and CDKN1B172.
Up-regulation of this signalling pathway is is implicated in regulating the MYC transcrip-
tion factor173, which also promotes a glycolytic phenotype. MYC itself is widely implicated
in multiple cancers, and in HER2 over-expression alongside MYC over-expression is as-
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sociated with faster tumor progression and an increased probability of metastasis, which
was associated with higher levels of intra-tumor heterogeneity174.

1.5.4.1 Altered metabolism as a route of therapeutic resistance to HER2-targeted
therapy

Re-programming of metabolism is a common way that HER2-driven breast cancer cells
escape targeted therapies. Work from the Jechlinger Lab used an inducible mouse sys-
tem of tumorigenesis in 3D culture to characterise adaptations in cells following oncogene
induction and de-induction. Using doxycycline as an expression activator, Neu (Rodent
homologue of HER2) and MYC could be conditionally over-expressed using the reverse
tetracycline trans-activator (rtTA), which was specifically expressed in the mouse mam-
mary gland using the (MMTV) promoter. This experimental system is further discussed
and shown in Section 1.8.2. Using this methodology, oncogene expression could be de-
induced (through doxycycline removal), mimicking a “perfect” drug treatment. The surviv-
ing fraction of cells could then be analysed to explore their alterations. Using a combina-
tion of transcriptomics, targeted and un-targeted metabolomics, fundamental metabolic
alterations were identified in residually surviving cells, including an up-regulation of gly-
colysis (Preprint:175). Consistent with this, resistance of HER2 over-expressing cell lines
grown in 2D culture to trastuzumab or lapatinib also have fundamentally altered glycoly-
sis123;114;140.
Microarray and transcriptomic data from our lab using the system of inducible primary
mouse organoids also identified that fatty acid metabolism is up-regulated in residually
surviving cells176. Similarly to a re-programming of glycolysis, it is possible that changes
in fatty acid metabolism could also provide targetable vulnerabilities that could be cap-
italised on with combination therapy. For example, BT-474 and SK-BR3 cells have a
Warburg-like phenotype, and this phenotype supports fatty acid synthesis and invasive
tumor-like properties. When palmitate supplementation was used to inhibit glycolysis in
these cells, fatty acid synthesis was decreased and β-oxidation (catabolism of lipids) was
increased, suggesting a phenotypic shift away from themacromolecule -generating based
metabolic phenotype that cancer cells have177. In the context of combination therapy,
compromising fatty acid synthase function alongside HER2 targeted inhibition has in-
creased anti-tumor activity. Blankafort et al. (2015) generated SK-BR3 cells resistant
to lapatinib, trastuzumab and a combination of both. All three lines showed an increase of
EGFR, ERK1/2 and PI3KCA mutations, and dual resistant lines also had increased levels
of AKT. mTOR and fatty acid synthase (FASN) levels were stable in all three lines178.
Together, this suggests that a re-activation of downstream signalling is important for the
resistance of these cells to targeted therapy. When pertuzumab, a HER2 targeted agent
that compromises receptor dimerisation was used alongside FASN inhibitors, a synergis-
tic effect was identified in cell lines, and in patients with primary and trastuzumab and
lapatinib resistant HER2+ tumors, without signs of toxicity178. Similar sensitivity of HER2
targeted therapy resistant cells to fatty acid synthase inhibition has also been identified in
xenograft experiments179.
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Other areas of metabolism are also implicated in resistance to targeted therapies. ERRα
is a master regulator of cell metabolism, and its expression is important in cells that are
lapatinib resistant, which occurs through mTOR signalling. In these cells, ERRα triggers
metabolic adaptations favouring increased glutamine metabolism which facilitates mito-
chondrial energy metabolism180. Compromising activity of mitochondrial MAPK phos-
phatase 1, which is not well characterised, alongside HER2 inhibition also enhanced killing
of breast cancer cells that were resistant to HER2 targeted therapy181.

1.5.5 A lack of ongoing clinical trials combining HER2-targeted therapiesin combination with non-HER2 targeted agents: an unmet need forreducing numbers of patient relapses
In a neoadjuvant/adjuvant clinical setting, there are strikingly few currently ongoing thera-
peutic strategies to combine HER2-targeted therapy with other forms of targeted therapy.
As shown in Table 3, there are only a total of 5 current Phase II or III approaches in lo-
calised breast cancer that do this. These involve strategies of immune recruitment, a
cancer vaccine, or a CDK4/6 inhibitor.
The strategy of immune recruitment is currently a highly active area in cancer therapy.
This is typically through monoclonal antibodies targeting PD-1 (expressed on the surface
of immune cells), or PD-L1 or CTLA-4 (Antigens on cancer cells that allow them to evade
the immune system). Atezolizumab and Pembrolizumab, which are being tested in clinical
trials (Table 3) have already been approved for the treatment of various different cancers.
There is clinical evidence to support this therapeutic strategy in breast cancer treatment
also, as tumors that have recurred after trastuzumab therapy have increased PD-L1 ex-
pression182. This same rationale also supports the efforts to introduce a cancer vaccine
to reduce the probability of relapses. Over recent years, cancer vaccines have been a
clinical approach of increasing interest, but no cancer vaccine has yet been approved for
use in any type of cancer. Preliminary data from the Phase II trial in Table 3 suggest that
nelipeptimut-S + trastuzumab leads to no more side effects than trastuzumab alone183,
but efficacy data is not yet mature.
As discussed in Section 1.5.2.1, the combination of SHR-6390 (CDK4/6 inhibitor) and
HER2-targeted therapy are relevant in the context of currently existing evidence for re-
sistance to HER2-targeted therapy. However, there are multiple more trials of CDK4/6
inhibitors alongside HER2-targeted therapy in the metastatic setting, including two phase
III trials (PATINA and DETECT V).
In general, there is a disparity between the number of these approaches taken in the
(neo)adjuvant setting and advanced/metastatic setting184 This is likely to be largely due to
commercial interests; the 5-year survival rate for non-metastatic HER2+ breast cancer is
already favourable (96.7% across all races in the US11). A new therapeutic regimen would
have to at least be comparable to the safety and efficacy of these existing treatments to
obtain regulatory approval, and a strategy of licensing a therapeutic regimen based on
relapse statistics inherently takes a long amount of time to obtain statistically significant
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data. From this standpoint, it is more commercially attractive to test these drugs in the
metastatic setting first, which helps to provide clinical data to support a rationale for testing
in earlier lines of therapy.
Breast cancerclinical setting HER2-targetedagent

Non-HER2-targetedagent
Mechanism of action(non-HER2-targetedagent)

Clinical Trialphase (Reg.
number)

HER2+,adjuvant Trastuzumabemtansine Atezolizumab Anti-PD-L1 mAb(Immune recruitment) III(2020-003681-40)
HER2+,neoadjuvant

Trastuzumab +pertuzumab +chemo Atezolizumab Anti-PD-L1 mAb(Immune recruitment) III (NCT03595592)
HER2+,neoadjuvant Trastuzumab +pertuzumab Pembrolizumab Anti-PD-L1 mAb(Immune recruitment) II (NCT03988036)
HER2+,adjuvant,patients at highrisk of relapse*

Trastuzumab Nelipeptimut-S +GM-CSF Cancer vaccine +immunoadjuvant II (NCT02297698)

HER2+, ER+,neoadjuvant Trastuzumab +pyrotinib SHR-6390 +Anastrozole CDK4/6 inhibitor +anti-estrogen II(NCT04236310)**
Table 3: Ongoing or planned phase II or III clinical trials in the neoadjuvant or adjuvant settingof HER2-targeted agents in combination with non-HER2-targeted agents. The displayed HER2-targeted and non-HER2 targeted agents are all in combination with each other, not in comparison.*Patients did not achieve a pCR from initial neoadjuvant therapy **This trial is not yet recruiting,the others are recruiting or have finished recruiting.
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1.6 Pirin inhibition alongside targeted HER2 therapy as a po-
tential therapeutic regimen

1.6.1 Pirin: an iron-binding transcriptional regulator
One relatively poorly characterised, yet promising candidate for targeting metabolism in
tumor therapy is a protein known as Pirin (encoded by PIR). Pirin, a member of the cupin
superfamily, is a highly conserved, nuclear185, nonheme iron-binding protein that func-
tions as a sensor of oxidative stress. Like other members of the cupin superfamily, it has
two β-barrel domains, and is able to bind to iron in two states (Fe2+, Fe3+) in the domain
towards the N-terminus186. The binding of these different oxidised forms of iron mediates
its function; only Fe3+ facilitates the binding of pirin to the p65-DNA complex (an NF-κβ
subunit)187. Therefore, pirin is a sensor of iron cellular redox188;189. Pirin is known to inter-
act with the NF-κβ interacting BCL-3, and through this interaction, co-regulate the NF-κβ
pathway188;190. Recently, it was identified that pirin plays a role in modulating autophagy-
dependent ferroptosis191. Evidence also exists from data on fungi for a role of pirin in
pyruvate catabolism, suggesting that it could be a regulator of cell metabolism192.

Figure 7: Top and side view of pirin (crystal structure). Adapted fromPang et al. (2004)186. Coloredred to blue from the C-terminus to N-terminus. The side and top views both show the two β-barreldomains. β-barrel domain closest to the C-terminus (left) is able to bind iron (grey sphere) whichmediates the function of pirin.

1.6.2 Pirin in cancer
Although there is currently little literature about the function of pirin, there are multiple
lines of evidence that suggest an association between pirin and cancer. Recently, Perez-
Dominiguez et al. (2021) published an excellent review of the evidence in the current
literature to support the role of pirin in epithelial carcinogenesis193. However, no cur-
rent direct evidence exists in the literature on the role of pirin directly in HER2+ breast
cancer. In non-HER2 over-expressing breast cancer cell lines, pirin has been demon-
strated to up-regulate E2F1, which is important for their proliferation in vitro, and in mouse
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xenografts194. Pirin has also been shown to play a role in E-cadherin expression, but in-
dependently of BCL3-Slug signalling, suggesting that it also could play independent roles,
and also provides evidence that pirin could have a functional role in cancer metastasis
through activating an epithelial to mesenchymal transition (EMT)195.
1.6.3 Development of a small molecule inhibitor of Pirin, EMBL-703625, bythe EMBL-CBCF: promising anti-tumor activity, and a rationale forcombination with HER2-targeted therapy in breast cancer
The EMBL Chemical Biology Core Facility (CBCF) identified and developed a series of
ligands against pirin, which have been confirmed through co-crystal structures of these
ligands with the pirin protein (data not shown). Through the characterization of these
ligands, they have developed an encouraging rationale for the anti-tumor activity of these
compounds. One molecule, named EMBL-703625, has been characterized in multiple
tumor settings. In vitro data on cell lines from the EMBL-CBCF showed a broad antitumor
activity range, including activity against cancers of the colon, brain, breast, lung, ovary,
bone, pancreas and stomach (data not shown). The breast cancer cell lines also included
the HER2 over-expressing SK-BR3.
Transcriptomic data performed on HeLa cells also showed results that were relevant in the
context of current clinical and preclinical data for HER2 relapses. Firstly, many aspects of
cellular metabolism were down-regulated following EMBL-703625 treatment, including in
glycolysis (shown in Figure 8) and many signalling pathways involved in metabolism, and
also HER2 treatment resistance, such as the EGFR and IGF1R receptors, and PI3K/AKT
/mTOR signaling (data not shown). All of these have been implicated in HER2-targeted
treatment resistance. On top of this, many heat shock protein genes were also down-
regulated, including HSF1, one of the main transcription factors that regulates their ex-
pression. As previously discussed (Section 1.5.2.2, altered heat shock protein expression
is also a mechanism of HER2-targeted treatment resistance. On top of this, solute carrier
expression was also down-regulated by treatment with EMBL-703625. Recent evidence
has also shown that trastuzumab emtansine resistant cell lines have altered solute carrier
expression196, indicating that this is also a potential node of HER2-targeted therapeutic
resistance to what is likely to take over as the standard of care in early-stageHER2+ breast
cancer treatment. EMBL-703625 also showed inhibition of multiple histone deacetylases
(HDACs) and Sirtuin (SIRT) proteins, implying that it could also interfere with DNA repli-
cation and damage repair.
Taken together, these results from the EMBL-CBCF suggest an anti-tumor function of
pirin inhibition through EMBL-703625, and provide an exciting rationale for co-treatment
alongside HER2 inhibition, as it inhibits many of the cellular mechanisms known to be
associated with resistance to HER2 targeted therapy.
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Figure 8: An example of overlap of glycolytic enzymes inhibited by EMBL-703625 and those thatwere up-regulated in residual breast cancer cells in mice. Results such as this suggest that pirinmay impact nodes that residual cells use to survive. The mouse data were generated by Radic-Shechter et al. (2020)175 and transcriptomic results were found on HeLa cells by the EMBL Chem-ical Biology Core Facility.
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1.7 Project Hypothesis and Aims
1.7.1 Introduction summary and context for project hypothesis
As discussed, advances have been made in HER2+ breast cancer, significantly improving
patient prognosis through more advanced surgical techniques, earlier cancer diagnosis,
and the development of novel HER2-targeted therapies, to kill cancer cells that are "ad-
dicted" to the over-expression of the HER2 oncogene.
Despite these advances, tumor relapses after targeted therapy still present a significant
problem in the clinic for HER2+ breast cancer patients. Because of this, large amounts
of research are being focused on identifying ways in which some cells are able to evade
targeted therapy and re-grow to form tumors.
There are various ways that HER2+ breast cancer cells are able to evade treatment, for
example, through an altered cellular metabolism, signalling pathways such as the NF-
κβ pathway, truncated HER2 proteins, drug efflux transporters, and altered heat shock
protein activity. Partially successful efforts have been made to overcome some acquired
resistance characteristics, through targeting the HER2 receptor with more than one drug
in order to more comprehensively ablate its function. This is referred to as a "HER2
blockade".
Whilst a HER2 blockade during initial neoadjuvant or adjuvant treatment has led to de-
creased rates of tumor relapse and prolonged patient survival, many patients still relapse.
Because of this, some pre-clinical and clinical lines of enquiry are now to target other
proteins alongside the HER2 receptor, in order to prevent cells utilising "escape" path-
ways. A comprehensive understanding of how inhibition of other proteins impacts on cell
survival and their characteristics are of critical importance to successfully develop clinical
strategies that use this approach.
Targeting of Pirin, an iron binding transcriptional co-regulator that binds to NF-κβ, could
serve as a promising strategy alongside HER2-targeted treatment. A ligand against pirin,
EMBL-703625, developed by the Chemical Biology Core Facility (CBCF) at EMBL has
been demonstrated to show promising activity against lung tumor cell xenografts in mice,
and is very well tolerated by mice. A transcriptomic analysis, also performed by the EMBL
CBCF also showed that pirin inhibition through EMBL-703625, de-regulates many of the
processes that are shown to play a role in acquired resistance to HER2-targeted therapy,
such as a de-regulation of glycolysis and altered expression of heat-shock proteins.
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1.7.2 Project Hypothesis
Due to the overlap between the effects of pirin inhibition and mechanisms of tumor re-
sistance in HER2, and that EMBL-703625 is well tolerated in mice, and that is shows
anti-tumor effects against tumor xenografts, this project has the following hypothesis:
Pirin inhibition through EMBL-703625 administration targets pathways that HER2
over-expressing breast cancer cells may use to evade targeted therapy and re-grow
into relapsed tumors, therefore meaning in combination, dual HER2 and Pirin inhi-
bition could effectively kill these cells and reduce their ability to re-grow.
1.7.3 Project Aims
To address this hypothesis, this project has the following aims:
1. Develop and implement high-throughput experimental techniques on 3D grown cells
that will allow a comprehensive assessment of combination therapy with two differ-
ent drugs, that is reproducible and can be implemented in the future for different
cancer types and drugs

2. Use these experimental techniques to functionally characterise how combination
therapy with lapatinib and EMBL-703625 behave in combination with each other
to impact upon the survival and re-growth ability of HER2 over-expressing breast
cancer cells

3. Develop a microscopy pipeline that will allow a 3D spatio-temporal assessment of
the metabolic state of cells, and will allow an understanding of intra-tumor hetero-
geneity.

4. Analyse previously generated data from tumor-inducible transgenic mice, in order
to understand nodes of vulnerability in tumor and residual cells, compared to normal
mammary gland cells.
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1.8 Experimental systems used in this project: human HER2+
breast cancer cell lines and transgenic primarymousemam-
mary gland cells

1.8.1 BT-474 and SK-BR3: human, HER2 over-expressing breast cancercell lines
To address the aims of this project, two main experimental systems were used: human,
HER2+ breast cancer cell lines, BT-474 and SK-BR3, and transgenic mouse primary cells.
For both experimental systems, all experiments were conducted in 3D culture using ma-
trigel. The reason for 3D is because of the closer resemblance to in vivo conditions than
2D culture allows; it has been argued that culturing in 2D is a large reason as to why
pre-clinical data often do not correlate with clinical data197. As seen in Figure 9, these
cell lines both grow in matrigel, and form distinct 3D structures.
BT-474198 and SK-BR3199 are both well-characterised and studied breast cancer cell
lines. They have the advantage of convenience, low cost, and generating reproducible
results. As well as this, they can be used in many different experimental settings. To
inhibit HER2 and pirin in these cell lines, Lapatinib, an approved HER2 TKI (see Table
2) and EMBL-703625 were used, respectively. The initial characterisation of combination
HER2 and pirin inhibition was performed on these lines (Section 2.1.1), before in-depth
high-throughput experiments were performed to determine whether this interaction was
synergistic (Section 2.1.2). Further understanding of these results then came through
transcriptomic experiments of cells treated with lapatinib or EMBL-703625 in monother-
apy, or in combination with one another (Section 2.2). To gain an understanding into the
abilities of cells to re-grow following this treatment, re-growth experiments were also per-
formed, by selecting for persister cells following initial treatment, and then removing treat-
ment to observe if re-growth was more compromised by combination therapy, compared
to either agent in monotherapy (Section 2.3). As well as this, lapatinib or EMBL-703635
were characterised alongside treatment with oxamate, an inhibitor of cellular glycolysis,
based on the hypothesis that these drugsmay interact, in part, through cellular metabolism
(Section 2.4). BT-474 and SK-BR3 were also assessed to observe their responses to
consecutive treatment with lapatinib and EMBL-703625 (or vice versa) (Section 2.6). In
order to understand cell-cell heterogeneity SK-BR3 was transfected with a high dynamic
range fluorescent sensor for the NAD+/NADH ratio named SoNar, was characterised us-
ing light-sheet microscopy, where methods were established with the aim of being able to
understand cell-cell heterogeneity on a spatial and temporal basis (Section 2.7). Finally,
this project also re-analysed data generated by Radic-Shechter et al. (2020)175 in order to
observe metabolic nodes of vulnerability in mouse tumor and residual cells (Section 2.8).
These results could be used in future directions to inform on further pre-clinical strategies
in HER2-overexpressing cells.
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Figure 9: BT-474 and SK-BR3 organoids grown for 14 days in matrigel. BT-474 cells grown in3D culture using matrigel form "ball" like structures, where it is difficult to distinguish the boundariesof each cell. SK-BR3 cells are more loosely associated with each other, forming "grape" likestructures. Scale bar = 500µm.

1.8.2 Transgenic, doxycycline inducible mouse primary cells
Transgenicmouse primary cells were used to compare neoplastic cells with non-neoplastic
cells. Using the doxycycline inducible system described in Figure 10, mammary gland
derived cells were induced in vitro to induce oncogene over-expression and induce a
neoplastic transformation. These were compared to cells that were not induced (never
induced) to gain a direct comparison of how therapy with lapatinib and/or EMBL-703625
affected tumor cells compared to non-tumor cells (Section 2.5). Experiments are planned
in vivo to compare first-line efficacy of lapatinib and EMBL-703625 in combination ther-
apy, compared to either agent in monotherapy. This same murine experimental system
was also used in vitro by Ashna Alladin and Ksenija Radic-Shechter (et al.) to generate
transcriptomic and metabolomic data to assess differences between never induced, tu-
morigenic, and residual cells (following oncogene de-induction). As part of this project,
these data were analysed to identify any differing cellular processes or pathways that
could potentially serve as nodes of vulnerability in tumorigenic or residual cells (Section
2.8).
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Figure 10: The transgenic, doxycycline inducible mouse experimental system utilised bythe Jechlinger Lab (a) The mice are transgenic for the reverse tetracycline transactivator (rtTA)under the control of the mouse mammary tumor virus (MMTV) promoter, causing it to be uniquelyand constitutively expressed in the mouse mammary gland. The mice are also transgenic forMYC and/or Neu, under the control of the Tet operon (TetO). When doxycycline is introduced tothese cells, it interacts with rtTA, meaning that it can bind to the TetO and induce expression ofMYC and Neu. (b) This system can be used in vivo, through introducing doxycycline throughtheir food. It can also be used in vitro. 3-D grown organoids form a hollow acinus structure, upondoxycycline addition to themedia, the cells begin to divide and lose polarity77 and the acinus growsand becomes filled. In the in vivo and in vitro systems, removal of doxycycline causes the cells tolose "addiction" to these oncogenes and regress towards a residual state. In the in vivo system,a large number of these mice will eventually relapse, making them an ideal system to study howparticular treatment regimens affect tumor growth, and rates of relapse.
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In the Results and Discussion chapter, each section describes results from this project,
followed by a discussion of those results. A more generalised discussion with wider con-
texts and future directions for this project can be found in Chapter 3 (Page 155).

2.1 Assessing combinatorial interactions between Lapatinib
and EMBL-703625 in BT-474 and SK-BR3 cells

2.1.1 Lapatinib and EMBL-703625 have a large combinatorial effect on cellviability over time
Evidence from the literature surrounding mechanisms of relapses in HER2 overexpress-
ing breast cancer patients followingHER2-targeted therapies suggest that there aremech-
anisms of vulnerability that could be targeted to prevent tumor recurrence. Data from the
EMBL CBCF, coupled with data from the literature (see Section 1.6) suggest that targeted
inhibition of pirin, an iron binding transcriptional regulator that interacts with the NF-κβ
complex, coupled with HER2-targeted therapy, could potentially reduce the probability of
relapses. This is the hypothesis of this project.
To address this hypothesis, this project used lapatinib, an already licenced HER2 tyrosine
kinase inhibitor, and EMBL-703625, an inhibitor of pirin developed by the EMBL-CBCF.
This project used a combination of human HER2 overexpressing cell lines known as BT-
474 and SK-BR3 as well as tumor-inducible mouse primary mammary gland cells (these
are described in detail in Section 1.8).
In order to establish if lapatinib and EMBL-703625 had a combinatorial effect on BT-474
or SK-BR3 cell viability over time, combination treatment was compared to either agent
in monotherapy. In order to assess this, a time-designed experiment was used using the
CellTitre Glo viability assay (See Supplementary Figure S.1) using a black-walled 96-well
plate. This assay measures ATP levels in each individual well and gives a luminescent
read-out, which can be normalised to other wells to give relative values. BT-474 and
SK-BR3 cells were treated with lapatinib and EMBL-703625 at varying concentrations,
with or without a constant concentration of the other drug. Preliminary experiments de-
termined appropriate concentration ranges to gain sensitivity in these experiments (data
not shown). This would allow a first assessment of how how differing concentrations of
EMBL-703625 and lapatinib would have effects in monotherapy, and also as part of a
combination therapy. This also allowed an assessment of what particular combination
concentrations appeared to elicit the biggest combinatorial effects on cell viability; these
concentrations (displayed later in Table 4 (Page 71)) were used in further experiments
comparing monotherapy to combination therapy for transcriptomic (Section 2.2), consec-
utive treatment (Section 2.6) and, specifically for SK-BR3, for light-sheet microscopy ex-
periments (Section 2.7).
As shown in Figure 11(a and c), lapatinib monotherapy (blue bars) had a concentration-
dependent effect on cell viability for both lines. For SK-BR3 (part a), the lower concentra-
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tions of lapatinib (0.1-0.2µM) appeared to have a moderate effect, with viability read-outs
tending to remain relatively close to levels before treatment. In combination, treatment at
0.2µM lapatinib and 1µM EMBL-703625 appeared to have the most dramatic effect, and
so 0.2µM lapatinib was chosen as the constant concentration for varying concentrations
of EMBL-703625 (shown in part b). In BT-474 it was less apparent what concentration
combination yielded the most obvious change in effect (part c), and so 1µM lapatinib was
chosen as the constant concentration for part d. In both lines, EMBL-703625 showed
concentration-dependent effects on cell viability (part b and d) in a similar fashion to lap-
atinib.
In combination (red bars), the viability was lower across all concentrations tested com-
pared to monotherapy (blue bars). At certain concentrations, the difference more pro-
nounced, for example, in SK-BR3 cells at 1µMEMBL-703625 and 0.2µM lapatinib, monother-
apy treatment caused an approximate +0.2 and -0.1 fold change in viability, compared to
before treatment, respectively. However, in combination, there was an approximately -0.7
fold change in viability. Similarly, in BT-474, 1µM of EMBL-703625 or 1µM of lapatinib in
monotherapy caused +0.25 and -0.45 fold changes in viability, respectively. These two
same concentrations in combination led to an approximately -0.75 fold change in viability.
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Figure 11: Changes in cell viability measured over 72 hours in BT-474 and SK-BR3 cells,comparing singular drug treatment (blue bars) to combination treatment (red bars). Relativefold changes in viability are normalised to viability readings taken from 10 randomized wells froma parallel plate at the point of treatment addition. Five technical replicates were taken for eachtreatment and the mean was taken. Data points for each experimental replicate (Repeated 3times) are plotted. Each bar shows the mean for these three replicates. Statistical significancebetween bars were calculated using Šidák’s multiple comparisons test. Significance notation is asfollows: ns (not significant) - p ≥ 0.05; * - p < 0.05; ** - p < 0.01; *** - p < 0.001; **** - p < 0.0001.
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2.1.2 Assessing drug synergy between lapatinib and EMBL-703625 in BT-474 and SK-BR3 cells
2.1.2.1 The importance of testing for drug synergy, and synergy modelling strate-

gies
Combination treatment is used in cancer therapy in order to have a stronger therapeutic
effect and reduce the probability of tumor recurrence and/or resistance, whilst minimising
the patient side effects. Each drug administered to treat a tumor has its own level of
potency, and administering multiple drugs that are known to have anti-tumor properties
will likely have a larger tumor killing effect than any single drug on its own. However,
this often comes with the trade-off that off-target patient side effects are also increased,
causing many treatment regimens to fail to progress from early phase clinical trials. To
optimise treatment, drug combinations that have a greater than expected effect on cancer
cells (higher than the expected sum effects of all the individual drugs), also known as
drug synergy, are often considered attractive treatment regimens if they do not also lead
to increases in toxicity to healthy body tissues. This would allow lower dosages of each
drug to be administered to each patient, reducing the probability or severity of serious
side effects arising, whilst maximising tumor killing effects.
Although assessing drug synergy in cancer is designed to bring benefits at the level of the
patient, experimental synergy assessments are performed at a cellular level, because it
requires testing multiple drug concentrations on the same set of cells. There have been
multiple mathematical models developed to assess synergy. These are all based off dis-
tinct null hypotheses and assumptions, and therefore utilise different mathematical models
to achieve their effects, which inherently also bring their own set of strengths and weak-
nesses. The most commonly referred to models are the Bliss independence model200,
and the Loewe additivity model201. The Bliss independence model assumes the null hy-
pothesis that each drug has stochastic, independent effects. In other words, that there is
no added effect from drug-drug interactions. For example, if Drug A and B, both at 1.0µM,
reduced cell viability to 60% of the control, then the predicted combined additive effect,
assuming no synergy or antagonism, would be 36% (0.6 x 0.6 = 0.36) (Figure 12(a)).
A combined effect that leads to less than 36% remaining viability would be synergistic
(Figure 12(b)), and more than 36% would suggest drug antagonism (Figure 12(c)).
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Figure 12: Representations of Bliss Independence, Loewe Ad-ditivity and ZIP synergy models of drug interaction testing.Representations of the Bliss Independence Model (a),(b) and (c). (a) Each drug has its owneffect on cell viability; the null hypothesis of no interaction suggests that the drugs elicit theircombined effects as expected. (b) Drug synergy is when the combined killing effect is more thanexpected under the null hypothesis. (c) Drug antagonism is when their combined killing effect isless than expected under the null hypothesis. Representation of the Loewe Additivity Model (d).The graph displayed shows hypothetical dose response curves of combinations of drugs toreach a 50% reduction in cell viability. The Loewe Additivity model suggests that each drug hasa linear relationship with its effects, therefore, a combination of drugs that have no interactionwould also have a linear relationship (grey line). Drug synergism is shown when a lower thanexpected concentration of one or both drugs is required to reach the same level of killing.Drug antagonism is when a higher than expected concentration is required to do the same.Representation of ZIP synergy model (e). ZIP synergy modelling focuses on the changes in thedose response curve, taking into account the dose response curves of each individual drug, andwhen in combination with the other drug, at each concentration. ((e) is adapted from Yadav et al.,(2015)202.)
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In contrast, the Loewe additivity model focuses on the relationship between drug dosages
and effects. This model has the null hypothesis that each drug will elicit exactly the same
effect on the cells (thereby not being synergistic when in combination), and the effect of
each drug has a linear relationship to its dosage. For example, if Drug A had a concen-
tration of 2.0µM to elicit a 50% reduction in cell viability, and Drug B had a concentration
of 1.0µM to elicit a 50% reduction in cell viability, then half of their respective concentra-
tions (1.0µM Drug A + 0.5µM Drug B) in combination would also reduce viability by 50%
(both contributing to 25% of reduction of cell viability each). Any deviation from this lin-
ear relationship would either be drug synergy, or drug antagonism, depending on if the
combined effect was larger or smaller than the expected linear relationship under the null
hypothesis. A visualisation of this is illustrated in Figure 12(d)).
Both of these models are widely used, but however, have disadvantages. The Bliss model
fails to account for combined effects over a maximum possible drug effect threshold. For
example, if Drug A’s effect on cell viability plateaued at 75% (regardless of concentration),
then any added effect of Drug B would be, by definition, synergistic. The Loewe model as-
sumes a linear relationship between drug concentration and effect, but many drugs have
a non-linear effect on cell viability when their own concentration is increased. Steeper or
shallower parts of this dose-response curve, would indicate that a drug is synergistic, or
antagonistic, with itself, which is impossible.
The Zero Interaction Potency (ZIP) model is a more recently proposed model202 that is
designed to capitalise on the advantages of both the Bliss and Loewe models, without
their drawbacks. It focuses on the gradient of dose response curves of each individual
drug. If two drugs had no interaction, then there would be theoretically no changes to
the steepness of the drug-response curve. However, if there was a synergistic drug-drug
interaction, then the steepness of the curve would be increased. Conversely, antagonistic
drug-drug interactions would cause a decrease in the steepness of the curve.

2.1.2.2 Experimental design to assess drug synergy between lapatinib and EMBL-
703625

Because of the advantages of the ZIP synergy model, this model was chosen for the
following synergy experiments. These experiments were designed using BT-474 and SK-
BR3 cells grown in 3D culture to observe if lapatinib and EMBL-703625 had synergistic
interactions. These experiments involved increasing the concentration of each drug, indi-
vidually, and in combination with one another.
In order to assess possible synergy between lapatinib and EMBL-703625 using the ZIP
synergy model, experiments were designed using black-walled 96 well plates. Using mul-
tiplexing of the luminescent Promega CellTitre GloTM 3D cell viability and CellToxTM green
flourescent cytotoxicity assay, a comprehensive overview of the effect of combinatorial
treatment with the two drugs could be assessed. ZIP synergy calculations were based
on the results of the luminescent cell viability assay. This is because this assay is highly
sensitive with relatively little noise, and also because of the assay read-out; the viabil-
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ity assays give a read-out of 100% relative viability (only vehicle treated) to 0% viability
(absence of any ATP) whereas the cell-toxicity assay increases in read-out relative to the
control and it is not possible to determine what the upper limit of the assay is. This means
that ZIP synergy calculations are not possible with this assay. Therefore, the cell toxicity
assay was used as a secondary validation method to compare with the viability assay
results.
In this experimental design, it is important to have multiple drug concentration increments
as well as an appropriate number of technical replicates for accuracy. To serve both of
these purposes, a black-walled 96 well plate format was used, with the black-walls allow-
ing good quality read-outs from both the luminescent viability assay and the fluorescent
toxicity assay. To allow for multiple drug increment concentrations for accurate synergy
calculations, along with at least three technical replicates for each treatment, two 96 well
plates were used for each experiment, with the concentration of one drug at more specific
increments on one plate, and the other at more specific increments on the other (Figure
13).
To calculate the ZIP synergy scores, SynergyFinder 2.0, an open-source "R" based pack-
age, was used203. Data was outputted from SynergyFinder 2.0, and the synergy land-
scape was visualised in "R", using the "ggplot2" package. To combine the separate plates
for each experiment into a single landscape, data were interpolated using linear interpo-
lation and combined with each other, taking the mean of any specific treatments that
overlapped between the plates. Linear interpolation was used because it had very mini-
mal influence on the LL-4 dose response curves relative to the non-interpolated version
(data not shown). Quality control runs were also used on single plates (without combin-
ing with the other) to verify that resulting synergy landscapes were not influenced by the
interpolation, relative to non-interpolated data (data not shown).
Figure 13 (next page) shows an illustration of this experimental design.
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Figure 13: Schematic of how viability data was processed and outputted as synergy land-scapes. The CellTitre GloTM Viability Assay was used on cells grown in black-walled 96-well platesin order to obtain viability readings, which were normalised as a percentage to vehicle (DMSO)treated cells. To obtain viability readings for lapatinib and EMBL-703625 at a good number ofconcentration increments, whilst also using three technical replicates in each experiment, 8 con-centrations of one drug and four of another could be used on each 96-well plate. To allow for moreresolution in the synergy landscape, two 96-well plates were used in each experiment, with thedrugs used transposed between them, meaning that both drugs had 8 incremental concentrationsin the resulting synergy landscape after result combination. To combine the results, the viabil-ity readings were interpolated to account for specific concentration combinations that were onlyavailable on one plate, and then averaged (mean). The open-source "R" package "SynergyFinder2.0" was then used to calculate ZIP Synergy scores using these data, which is presented in alandscape, to visualise which concentration areas yield different synergy scores.
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2.1.2.3 Lapatinib and EMBL-703625 synergistically affect cell viability in BT-474
and SK-BR3 cells

Viability assay read-outs across the drug concentration ranges showed a large combina-
torial effect in both cell lines, with the combination treatment consistently having lower vi-
ability read-outs than their corresponding single drug treatments. Consistent with this, the
cell toxicity data showed a similar trend, with toxicity read-outs consistently being higher in
the combination treatments, relative to either of their corresponding singular treatments.
However, in contrast to the viability read-outs, the trends with the toxicity assay were not as
consistent. Certain combination treatments showed higher toxicity readings than others at
higher drug concentrations (for example, in Figure 14, 1.0µM EMBL-703625 + 1.0µM La-
patinib gave a toxicity read-out of 649.7%, compared to 2.0µM EMBL-703625 and 3.0µM
Lapatinib with a read-out of 524.1%). This could be due to simple noise from the assay
read-outs, or due to the nature of the assay; the cell toxicity assay gives a read-out of ex-
posed nucleotides, in more compromised cells in higher concentration treatments, higher
levels of cell lysis could mean a higher rate of diffusion of DNA into the cell media. The
diffuse DNA (and therefore flourescent signal) could possible lead to less intense plate
reader read-out values, particularly as flourescence was read from the bottom of the well
due to the position of the matrigel droplets.
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Figure 14: Viability heatmaps (from the Promega CellTitre GloTM 3D cell viability assay) for BT-474 (a) and (b) and SK-BR3 (c) and (d) cells treated with lapatinib and EMBL-703625 at varyingconcentrations. The experiment was repeated 3 times, and each experiment had 3 technicalreplicates.
Figure continued on next page.
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Figure 14: Heat-maps of relative cell viability (using the Promega CellTitre GloTM 3D cellviability assay) (a-d) and toxicity (using the CellToxTM green fluorescent cytotoxicity as-say) (e-h) for BT-474 and SK-BR3 cells treated with varying concentrations of lapatinib andEMBL-703625. Displayed values in bold are the means of 3 experimental replicates, which eachhad 3 technical replicates, the smaller text in italics is the SEM. Experiments were performed on96 well plates; in order to get a good resolution of different drug concentrations and appropriateamounts of technical replicates, treatments were performed on separate plates, which each drugregime transposed (see Figure 13).

An interesting note fromFigure 14 (a) and (b) is that lower concentrations of EMBL-703625
(0.1-0.2µM) led to small increases in viability of BT-474 cells, relative to the control. It is
unclear why this is, but also notable that this increase in viability is not carried over to
when in combination with lapatinib (relative to either single dose).
Although the combination treatments showed lower levels of viability and higher levels
of toxicity compared to either of their corresponding singular treatments, this is not nec-
essarily indicative of drug synergy. In fact, two drugs can kill more cells than either one
in monotherapy, and still be considered antagonistic (see Figure 13) for a full explana-
tion). To assess if these interactions were in fact synergistic, additive or antagonistic, ZIP
synergy scores were calculated for each specific concentration using SynergyFinder 2.0
after data were interpolated and combined. These data were visualised as a landscape
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(Figure 15). There is no consensus over which synergy score suggests drug synergy,
antagonism, or additivity, but it is largely agreed that scores above 10, or below -10 sug-
gest drug synergy or antagonism, respectively. Scores within this range suggest possible
additivity. To visualise this, a blue line was added in the synergy landscape to highlight
which areas had a synergy score above 10 or below -10 (although no results from any
experiements in this project had a ZIP synergy score below -10).
As shown in Figure 15(a) (BT-474) and (b) (SK-BR3), all ZIP-synergy scores were positive
values, suggesting a lack of drug antagonism across the concentration ranges used. BT-
474 showed drug a ZIP synergy score >10 (surrounded by blue line) across a wider
range of drug-concentrations tested than SK-BR3, reaching a peak score of 20 at between
0.25 - 1.0µM lapatinib, and 0.1 and 0.5µM EMBL-703625. SK-BR3 showed ZIP synergy
score peaks at two concentration ranges, 0.1-0.75µM Lapatinib and 0.1 - 0.25µM EMBL-
703625, and also 0.1 - 0.3µM Lapatinib and 0.6-1.3µM EMBL-703625. The data for the
non-interpolated and combined plates are shown in Supplementary Figure S.2. Overall,
this suggests that BT-474 and SK-BR3 both display drug synergy at certain lapatinib and
EMBL-703625 concentrations, but that synergy is generally stronger in BT-474 cells, both
in terms of the peak ZIP-synergy score and also in terms of the range of lapatinib/EMBL-
703625 concentrations.
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Figure 15: ZIP Synergy landscape of Lapatinib and EMBL-703625 for BT-474 (a) and SK-BR3 (b) ZIP synergy data was generated by SynergyFinder 2.0, and plotted in R using the ggplot2package. The blue line denotes ZIP synergy scores that are higher than 10; there is no consensusof which synergy scores denote synergy, but it is widely agreed that a synergy score above 10 isconfidently synergistic. To generate a combined synergy map from multiple plates, viability datafrom each plate layout were interpolated using linear interpolation (total of 25 data points for eachconcentration range) and processed using SynergyFinder 2.0 (See Figure 13 for a more detailedexplanation). The mean of data points that had overlapping values between plates were taken. Asa quality control, interpolation was performed on individual plates and synergy landscapes weregenerated, which minimal changes to the Synergy landscape using this method (data not shown).
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2.1.3 Discussion of Section 2.1: synergy between lapatinib and EMBL-703625
To address the criteria that a drug combination would need to be effective in initial tumor
reduction, lapatinib and EMBL-703625 were tested in the human HER2 over-expressing
breast cancer cells lines, BT-474 and SK-BR3. BT-474 represents a HER2+/ER+ sub-
type198 (also known as Luminal B), whereas SK-BR3 represents a HER2+/ER- sub-
type199. The latter subtype is associated with a worse prognosis and response to treat-
ment, which is partially because ER+ tumors respond relatively well to endocrine ther-
apy204;205. However, growing evidence suggests that cross-talk between the estrogen
receptor and HER2 receptor could serve as a mechanism of tumor resistance, including
to modern and widely used HER2-targeted therapies, such as trastuzumab206;207;208.
A drug combination that kills a larger than expected amount of cancer cells could translate
into high clinical efficacy. Figure 11 shows how combination treatment reduced viability of
these cell lines over time. In both cell lines, it is apparent that a combination of these drugs
are able to cause meaningful reductions in viability, whereas in monotherapy at certain
concentrations, they simply led to growth inhibition (viability was not increased). Figure 14
and 15 further validated these data, both by using a cell toxicity assay to validate the via-
bility data, but also because the experimental design allowed synergy modelling of these
drug interactions. In both cell lines, synergy between lapatinib and EMBL-703625 was
demonstrated, but this was higher across a wider range of concentrations in BT-474 cells
compared to SK-BR3, considering the concentration range of each drug had comparable
effects on cell viability and toxicity readings in monotherapy. There are different possi-
ble reasons that synergy is stronger in BT-474 cells, and it is likely due to the specific
genetic and transcriptomic profile that these cells have. To assess this, transcriptomic
experiments were conducted, and the results of these are further discussed in Section
2.2.
The fact that synergy was observed is particularly important when considering the clinical
setting, both from an efficacy and safety standpoint. The safety profile of a treatment
regimen is of critical importance when assessing new drugs or treatment combinations for
use in cancer patients; an acceptable safety profile is almost always the main assessment
criteria in Phase I trials, and is essential for a treatment to progress to further clinical trials.
Often, therapeutic regimens do not progress through clinical trials because an acceptable
dosage that is both safe and effective cannot be met. Synergistic interactions between
drugs make it more likely that their combination elicits a clinically meaningful effect, whilst
avoiding too many serious side effects.
The importance of drug interactions in cancer therapy is becoming more well understood.
Recent large-scale efforts have aimed to establish drug synergy predictions based on
responses of cancer cells in monotherapy209;210. As well as this, deep learning methods
have been established that also allow a more comprehensive prediction of how different
agents may act in combination with one another211.
Other studies have showed synergistic interactions between inhibitors in HER2+ breast
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cancer cells, which then went on to be approved for clinical use. A pre-clinical study using
BT-474 and SK-BR3 cells, using dual inhibition with trastuzumab along with lapatinib or
gefitinib (HER2 and EGFR TKIs, respectively) showed a synergistic effect by enhancing
apoptosis induction212. Along with this, pre-treatment with these combinations also en-
hanced the effect of chemotherapy, and also showed encouraging efficacy in pre-clinical
in vivomouse models. Similar results were also found with trastuzumab and pertuzumab,
both anti-HER2 monoclonal antibodies, in BT-474 and SK-BR3 cells, with the combina-
tion inhibiting the cell cycle, particularly in BT-474 cells213. In silico approaches have also
provided a rationale for how these two antibodies are both able to independently bind to
the HER2 receptor and lead to synergy214.
2.1.4 Future experiments (with relevance to results discussed in Section2.1.2)

Experiment Rationale
Antibody staining ofcell viability biomarkers

Antibody staining of key cell viability markers, such as caspase, give
another validation and read-out of these results, as well as potentially

giving more functional information about how each drug in
monotherapy, or in combination therapy elicits its effects

In vivo validation offirst-line safety andefficacy

Using the transgenic, inducible mouse models from the Jechlinger Lab,
lapatinib and EMBL-703625 can be administered together to test their
effect on mouse mammary gland tumors that overexpress MYC and
Neu. Protocols have already been established along with the EMBL
Animal Facility in order to do this. EMBL-703625 can be delivered
intra-peritoneally, whereas lapatinib can be delivered by oral gavage.

Characterisation ofEMBL-703625alongside targetedtherapy in cells linesfrom other cancer types

This will allow an assessment of whether EMBL-703625 elicits synergy
alongside already established targeted treatment regimens in other
cancer types, which will allow a first assessment of whether pirin

inhibition is a possibly effective therapeutic strategy in other forms of
cancer.
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2.2 Transcriptomic data reveal fundamental differences between
the actions of lapatinib and EMBL-703625 on BT-474 and
SK-BR3 cells, and a large combined effect

2.2.1 Rationale and experimental design
It is often hypothesised that synergistic interactions between different drugs is due to each
drug having a distinct effect on the cell phenotype. At a molecular level, this means that
compensatory pathways that are usually utilised to evade cell death in response to one
drug are compromised by the action of the other drug. To gain a further understanding of
the molecular mechanisms that lead to synergy between lapatinib and EMBL-703625 in
BT-474 and SK-BR3 cells, transcriptomic experiments were performed using treatments
with either a combination lapatinib and EMBL-703625, either drug in monotherapy, or
vehicle (DMSO) treatment as a control. These were performed at pre-selected concen-
trations of both drugs that were previously known to elicit a relatively large combinatorial
effect on viability, relative to either individual drug, based on the data from Figure 11. This
is shown in Table 4.

Cell Line Lapatinib conc.
(viability change
in monotherapy)

EMBL-703625 conc.
(viability change
in monotherapy)

Viability change
in combination

BT-474 1µM
(-0.45)

1µM
(+0.2) -0.75

SK-BR3 0.2µM
(-0.1)

1µM
(+0.2) -0.60

Table 4: Table of chosen lapatinib and EMBL-703625 concentrations, and the correspondingchanges in viability over 72h (see Figure 11) in monotherapy and also combination therapy. Theseconcentrations were chosen and used for transcriptomic and consecutive experiment treatments(This section and Section 2.6, respectively) due to the differences between viability changes inmonotherapy, compared to combination therapy. For SK-BR3, these concentrations were alsoused in the light-sheet experiments (Section 2.7).

Time course experiments were designed, taking measurements at 0h, 2h, 4h, 8h, 12h and
24h post-treatment addition in order to also observe how gene expression was altered
over time. After pre-processing of raw transcriptomic count data to produce reads-to-
genes data-sets, differential expression analysis using DeSeq2 was performed to allow
comparisons between each treatment over the time series.
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Figure 16: Schematic of transcriptomic experiment. After a 7 day growth period, total RNAsamples were taken at 0h, 2h, 4h, 8h, 12h and 24h post-treatment addition. Note: for SK-BR3,samples taken at 4h were omitted because one of the experiments RNA sample did not pass thequality control.

2.2.2 Variance Stabilising Transformation of count data and sample-to-samplerelationships
To understand the relationships between different treatments and time points, sample
distance maps and PCA plots were generated. In order to perform these comparisons
accurately, it is important to transform the data to allow a distribution of data where the
variation remains the same across multiple mean values (known as a homoskedastic dis-
tribution). To achieve this, a variance stabilising transformation (VST) was performed on
the data using DeSeq2, which removes the emphasis on low counts (data not shown).
Low counts have a high variance in nature; this statistical noise can erroneously con-
tribute to perceived variances between datasets. To remove any batch effects between
the two experimental replicates, "R"’s limma program was utlised. This fits a linear model
to the data, and removes unwanted variance that is caused by the effect of batch (see
Supplementary Figure S.5).
To observe the similarities between each sample, principle component analyses (PCA)
and sample-sample distances were plotted. As shown in Figure 17 (a - BT-474) and (c
-SK-BR3), PCA plotting of VST transformed data revealed that lapatinib (square sym-
bols) and EMBL-703625 ("+" symbols) had unique effects on the transcriptome of each
cell lines, and the combination treatment (triangle symbols) was a combination of both ef-
fects, in both cell lines. The vehicle treatment (circle symbols) saw little changes through-
out the time course. Interestingly, more variance was accounted for by EMBL-703625
compared to lapatinib, despite having less of a severe effect on cell viability at the chosen
concentrations (see Table 4).
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In line with the PCA data, the sample-sample distance heat map plotting (Figure 17b -
BT-474; d - SK-BR3) further confirmed the unique effect that lapatinib and EMBL-703625
had on the transcriptome of both cell lines. These could broadly be separated into three
different main groups:

1. Early time points and vehicle (control) treated
2. Lapatinib treated
3. EMBL-703625 and combination treated

Taken together, these results demonstrate that EMBL-703625 and lapatinib treatment
in monotherapy have distinct transcriptional effects on BT-474 and SK-BR3 cells, and
in combination, both partially account for the transcriptional effect, although more-so by
EMBL-703625.
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Figure 17: Figure continued on next page.
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Figure 17: PCA plot of VST transformed transcriptomic data (a) and (c) (BT-474 and SK-BR3,respectively) and sample-sample distances (b) and (d) (BT-474 and SK-BR3, respectively)(a) and (c): PCA plots for the 1st and 2nd prinicple component were plotted on VST-transformeddata for each sample. Symbols denote treatment, and colours denote the time point. (b) and(d): Sample-sample distance relationships of VST transformed data for each sample used in theanalysis. The three major groups that the samples segmented into were manually imposed afterthe generation of the figure in "R". The scale bar displays the Euclidean distance between samples.The experiment was repeated twice, the data points show all technical replicates.
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2.2.3 Lapatinib andEMBL-703625 have largely independent effects on geneexpression
The distinct differences between the effects of lapatinib and EMBL-703625 on overall gene
expression in both cell lines supported the hypothesis that each drug had an independent
effect on the cell, which could possibly explain the synergistic interactions observed. Fol-
lowing this logic, it would be expected that the de-regulation of genes through the action
of each drug would have minimal overlap, and that each monotherapy treatment would
contribute to a larger amount of de-regulated genes in the combination treatment.
To understand how different genes were de-regulated by each treatment, DeSeq2 was
used with a multi-factoral design, factoring in experimental replicates, time points and
treatments, and testing the interaction between the time points and treatment profiles.
Prior to this analysis, surrogate variable analysis (SVA) was performed on the DeSeq
data, which accounts for unknown and unwanted sources of noise in the data. It produces
surrogate variables, which can be used as covariates in subsequent analysis. Data pro-
cessing in this way has been previously demonstrated to remove artefacts and improve
experimental reproducibility215.
Using the time course designed, SVA-corrected DeSeq2 dataset, gene expression was
analysed and compared between the different treatments, using adjusted p-values that
take the entire time series into account. As shown in Figure 18(a) and (b), for both cell
lines, there was strikingly little overlap between significantly de-regulated (p<0.01) genes
from lapatinib or EMBL-703625 monotherapy, with a total of 55 genes in BT-474, and 4
genes in SK-BR3. As well as this, as expected, the number of significantly de-regulated
genes was greater in the combination therapy treated cells than in monotherapy, for both
cell lines. Consistently with the results from extracellular 17, EMBL-703625 in monother-
apy had a larger number of de-regulated genes compared to lapatinib in monotherapy
(1841 vs 1248 in BT-474 and 1026 vs 287 in SK-BR3, both respectively). As well as
this, EMBL-703625 also had more overlap with the combination treatment than lapatinib
in monotherapy (1346 vs 594 genes in BT-474, and 814 vs 126 genes in SK-BR3, both
respectively), suggesting that it accounts for more changes in the transcriptional profile of
the combination treatment, compared to lapatinib.
To view these data in terms of expression profiles, as well as significant p-values, the
top 500 differentially expressed genes for each treatment was plotted. These were then
directly compared to the expression trajectories of these same genes in the other treat-
ments. For example, in Figure 18(c)(iii), the top 500 differentially expressed genes for
EMBL-703625 monotherapy treated BT-474 cells were plotted in a heatmap, and these
same genes were compared to lapatinib monotherapy and combination treatment.
Consistent with the sample-to-sample plots and PCA data, genes that had significant
de-regulation with one drug in monotherapy, did not generally experience the same de-
regulation by the other, suggesting an independent drug effect. This was the case for
both cell lines. In the combination treatment, there was an apparent association with
each singular treatment; the trajectories of the monotherapies were generally in the same
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direction, but weaker than the combination therapy. This suggests that for these genes,
each drug helped to contribute to the de-regulation. Considering this, it is possible that
there are many genes that were de-regulated by EMBL-703625 or lapatinib on their own,
but the effect size was only large enough in the combination treatment to have an ad-
justed p-value below the cut off (p = 0.01), and therefore were shown as not statistically
significant in the monotherapy treatments.

Figure 18: (a) and (b) (BT-474 and SK-BR3, respectively): Genes de-regulated by lapatiniband/or EMBL-703625 treatment, relative to vehicle (DMSO) treated cells. Adjusted p-valuethreshold was set at p<0.01. The number displayed outside the venn diagram is the number ofgenes that were not significantly de-regulated.Figure continued on next page.
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Figure 18: Figure continued on next page.
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CHAPTER2.RESULTSANDDISCUSSIONFigure 18: Gene expression changes (relative to non-treated) for the top 500 de-regulated genes for BT-474 (c) or SK-BR3 (d) cells treated with EMBL-703625 (i), Lapatinib (ii) or a combination of both (iii). For each panel, these expression patterns are shown across the three different treatments for acomparison visualisation. Red denotes an increase in expression, and blue denotes a decrease.
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2.2.4 Pathway analysis of transcriptomic data
In both cell lines, lapatinib and EMBL-703625 appear to have unique effects on the tran-
scriptomic profile of the cell, which both contribute to a larger overall combinatorial effect.
To characterise how these transcriptional changes may translate to effects on cellular
pathways, pathway enrichment analysis was performed using the “R” package “PathfindR”
to identify the most significantly de-regulated pathways in the different treatment condi-
tions, using the log(2)fold changes and adjusted P-values from across all time points from
the DeSeq2 analysis. PathfindR works by using information from protein-protein interac-
tion networks to identify sub-networks based on differential gene expression. Enrichment
analysis is then performed on these sub-networks. The p-value cut-off was chosen as
0.01, and the Gene Ontology (GO) database was used for this analysis.
Once these significantly de-regulated GO terms were obtained, they were hierarchically
clustered (also using PathfindR) into distinct subgroups based on their similarity to each
other, which was based on the genes that were de-regulated within these pathways.
These clusters each have a representative member, which was the member of the clus-
ter that had the lowest p-value. This clustering helps to present the data in a format that
shows the main aspects of cell biology that were de-regulated by each treatment. In Sup-
plementary Tables 14 - 19, the individual pathways, clusters, and de-regulated individual
genes are listed for each cell line and treatment.
As seen in Figure 19, combination treatment in both cell lines led to a higher number of
de-regulated clusters, compared to either drug in monotherapy. Interestingly, and consis-
tently with overall significant gene expression (see Figure 18(a) and (b)), EMBL-703625
had showed more overall similarity to the combination treatment, compared to lapatinib,
with more overlap. In line with this, the amount of de-regulated clusters were similar
between lapatinib and EMBL-703625 in BT-474 cells (20 and 21, respectively), but dif-
ferent in SK-BR3 (14 vs 39, respectively), which is roughly proportional to the amount of
genes de-regulated by either agent in monotherapy. Another result that was consistent
with the overall gene expression analysis, was that there was very minimal overlap be-
tween EMBL-703625 and lapatinib, further suggesting that these two drugs have largely
independent effects on these cell lines, at the level of the gene and pathway.
The individual GO terms are represented in extracellular 18 (Corresponding GO IDs are
displayed in Supplementary Tables 14 - 19 (Pages 189 - 212)). In both cell lines, a mul-
titude of different areas of cell biology were de-regulated in combination treatment (82 in
BT-474, and 68 in SK-BR3). In broad terms, both cell lines experienced similar types of
de-regulation in their corresponding treatments. In combination therapy, protein ubiquiti-
nation and general cellular responses to stress were de-regulated, as well as DNA repli-
cation, DNA repair, transcription factors and signalling pathways, such as NF-κβ or SMAD
signalling. EMBL-703625 in monotherapy also had a generally wide range of effects, in-
cluding protein ubiquitination related pathways, protein and DNA binding, and kinase and
phosphatase activity. Lapatinib had less of a range of different effects, primarily affecting
DNA repair and DNA binding, transcriptional effects, and translation and protein folding.
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Figure 19: Figure continued on next page
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Figure 19: Venn diagrams of the number significantly de-regulated clusters (p<0.01) forBT-474 cells (a) or SK-BR3 cells (b) treated with Lapatinib, EMBL-703625, or a combinationof both, with the corresponding representative terms for each cluster listed below. Dataabout the individual pathways de-regulated in each cell line and treatment, as well as p-valuesand GO-terms are displayed in Supplementary Tables 14 - 19.
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2.2.5 De-regulated pathways associated with cancer hallmarks are higherin combination treatment, compared to lapatinib or EMBL-703625monother-apy
The transcriptomic results shown thus far suggested that lapatinib and EMBL-703625
come together to have a multitude of effects on cell biology. In the context of cancer
therapy, it is important to be able to tackle different cancer hallmarks, which is what make
cancer cells unique, and potentially vulnerable, relative to normal cells.
To do this, representative GO terms for the different cancer hallmarks were used. These
were obtained after personal discussion with Bálint Mészáros, who has also now pub-
lished this work (Mészáros et al., 2021)102. This study manually curated these terms,
and confirmed that these terms were over-represented in publicly-available datasets102.
These GO terms were then compared to the significantly de-regulated pathways (before
hierarchical clustering as in the previous section) from the different treatments in both cell
lines. Significantly de-regulated GO terms (p<0.01) that matched the ones by Mészáros
et al. were summarised and displayed in Table 5 for BT-474, and Table 6 for SK-BR3.
As seen in both tables, the amount of hallmark-related deregulated GO terms was higher
in the combination treatment, compared to either agent in monotherapy, and there were
multiple de-regulated GO-terms that were not statistically significant with either agent in
monotherapy. Consistent with the gene expression data and pathway clustering (Figure
18 and 19, respectively), EMBL-703625 de-regulated more GO-terms than lapatinib in
both cell lines. In BT-474, there was minimal overlap between them, but between them,
they accounted for at least one de-regulated pathway in each hallmark. In SK-BR3, the
only two GO Terms that were de-regulated by lapatinib were "Cellular response to DNA
damage stimulus" and "DNA repair", both of which were also de-regulated by EMBL-
703625. In combination therapy for SK-BR3 cells, the only hallmark that did not have de-
regulated pathways was "Evading growth suppressors", which, however, was the case
for EMBL-703625 monotherapy.
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Hallmark GO Term
Treatment

Com
bin
atio

n

Lap
atin

ib

EM
BL-

703
625

Activating invasion and
metastasis

Cell migration X X

Epithelial to mesenchymal transition X

Avoiding immune
destruction Innate immune response X X X

De-regulating
cellular energetics

Regulation of glycolytic process X

Glucose homeostasis X X

Generation of precursor metabolites and
energy X

Cellular response to hypoxia X

Enabling replicative
immortality

Somatic stem cell population maintenance X

Telomere maintenance X

Cell aging X

Cellular senescence X

Regulation of telomere maintenance X

Evading growth suppressors Cell cycle arrest X X

Negative regulation of cell growth X X

Genome instability and
mutation

Cellular response to DNA damage stimulus X X

DNA repair X X

DNA damage checkpoint X

mismatch repair X

Sustaining proliferative
signalling

Regulation of cell proliferation X

Cell division X

Tumor promoting
inflammation

I-kappaB kinase/NF-κβ signaling X X

Fc-epsilon receptor signaling pathway X X

Regulation of inflammatory response X

Inflammatory response X

Table 5: BT-474 cells: GO-terms and corresponding cancer Hallmarks, as per Mészáros et al.(2021), for significantly de-regulated (adj. p value < 0.01) GO-terms. Displayed for combinationtherapy, or lapatinib or EMBL-703625 monotherapy, compared to vehicle (DMSO) treated.
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Hallmark GO Term
Treatment

Com
bin
atio

n

Lap
atin

ib

EM
BL-

703
625

Activating invasion and
metastasis

Cell migration X

Epithelial to mesenchymal transition X X

Avoiding immune
destruction Innate immune response X X

De-regulating cellular
energetics Cellular response to hypoxia X X

Enabling replicative
immortality

Cell aging X

Somatic stem cell population maintenance X

Regulation of telomere maintenance X

Telomere maintenance X

Evading growth suppressors Negative regulation of cell growth X

Negative regulation of cell cycle X

Genome instability and
mutation

Cellular response to DNA damage stimulus X X X

DNA damage checkpoint X

DNA repair X X X

Sustaining proliferative
signalling

Regulation of cell cycle X

Regulation of cell proliferation X

Tumor promoting
inflammation Fc-epsilon receptor signaling pathway X X

Table 6: SK-BR3 cells: GO-terms and corresponding cancer Hallmarks, as per Mészáros et al.(2021), for significantly de-regulated (adj. p value < 0.01) GO-terms. Displayed for combinationtherapy, or lapatinib or EMBL-703625 monotherapy, compared to vehicle (DMSO) treated.

2.2.6 Discussion of Section 2.2: Distinct effects of lapatinib and EMBL-703625, and a large combination effect
This discussion is divided into two parts. The first sub-section discusses general contexts
and implications for these results, and the second sub-section discusses the specific de-
regulated pathways that were found in this section.

2.2.6.1 General context and therapeutic implications
All currently licensed HER2-targeted breast cancer treatment regimens are based on a
HER2-targeted therapeutic alongwith another HER2-targeted therapeutic and/or chemother-
apy. This approach has been coined as a "HER2-blockade". As stated before, this ap-
proach has been demonstrated as effective. For example, a long term follow up study
demonstrated that adjuvant trastuzumab treatment significantly increased relapse-free
survival rates over 10 years, compared to chemotherapy216. However, relapses are still
an issue for HER2+ breast cancer patients, particularly those that are hormone nega-
tive216. Therefore, experiments were conducted to assess if co-pirin and HER2 inhibi-
tion were able to minimise the risk of tumor relapses. This was addressed by comparing
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monotherapy with either inhibitor to combination therapy in BT-474 and SK-BR3 cells with
two types of experiment. Firstly, transcriptomic experiments were conducted to assess
how each drug affected the transcriptional profile of the cell (This section); if they were
largely different, it could be suggestive that resistant-sub-populations would be less likely
to form. Secondly, re-growth experiments were conducted, where cells would be treated
with either or both drugs, surviving cells would be selected and further treatment, before
treatment was finally removed to see if re-growth could be observed. These regrowth
experiments are displayed and discussed in the next section (Section 2.3).
To achieve less surviving cancer cells, it would be optimal to treat them in such a way
that each drug in the combination has a largely distinct effect, which could simultaneously
enhance toxicity in cells that are susceptible to both drugs, and also increase the likelihood
of killing cells that have inherent or acquired resistance to either drug in monotherapy. In
line with this, the transcriptomic results presented in this thesis suggested that lapatinib
and EMBL-703625 had largely independent effects on gene expression, both at the level
of individual genes, and also at the level of the pathway (Figure 18 and 19). This helps
to validate the notion that these two drugs act synergistically with each other (as shown
in Figure 15), but also potentially means that monotherapy resistant cells could be more
likely to be killed by combination treatment. In line with this, a study from Palmer and
Sorger (2017)217 suggests that the added benefit from combination therapy can come
about because cells or individuals that may be unaffected by one drug can be affected
by the other. For example, a patients cancer that is not affected by lapatinib could be
affected by EMBL-703625 to achieve tumour remission, and vice versa. In this case, the
combination does not need to be synergistic or even additive to confer a combination
benefit. This means that on top of the benefit that is brought about by the synergistic drug
interaction between lapatinib and EMBL-703625, there is also an added benefit of the lack
of overlap between these two drugs.

2.2.6.2 De-regulated pathways
The de-regulated pathways referred to in this section can be seen in the clustering that
was done in Figure 19 (Page 82), and also in Supplementary Tables 14 - 19 (Pages 189
- 212).
De-regulation of heat-shock proteins by combination therapy and EMBL-703625
monotherapy
One group of genes that were found to be de-regulated by combination therapy in this
project, and also from transcriptomic data on HeLa cells from the EMBL CBCF were heat
shock proteins. Pirin has been linked to heat shock proteins previously in the literature.
A phenotypic screen that inhibited different heat-shock proteins identified that an inhibitor
of pirin had inhibitory downstream affects on heat shock factor 1 (HSF1) related path-
ways218.
There have also been a number of studies that highlight the link between heat shock pro-
teins and resistance to HER2-targeted therapy, as has been discussed in Section 1.5.2.2
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(Page 41). As dual treatment targets these pathways, it is possible that this treatment
regimen could help to overcome the formation of resistance through mechanisms related
to HSP activity.
With respect to the particularly strong synergy shown in BT-474 cells, estrogen receptor
signalling has been known to interact with heat shock proteins, suggesting that this sub-
type may be particularly reliant on the function of heat shock proteins. A previous study
established that lapatinib resistant BT-474 cells maintained sensitivity to heat shock pro-
tein inhibition, which is mediated through heat shock factor 1 (HSF-1) activity140. Con-
sistent with this, ganetspib, which is involved in HSP90 inhibition, was demonstrated to
preferentially reduce viability in BT-474 and SK-BR3 cells, compared to their non-HER2-
over-expressing counterparts141. In line with this project, they also established that ganet-
spib potentiates the effects of lapatinib in each cell line, with stronger combined effect in
BT-474, relative to SK-BR3141.
De-regulation of ubiquitination related pathways by combination therapy andEMBL-
703625 monotherapy
In both cell lines, multiple pathways involved ubiquitination were de-regulated by combi-
nation treatment. Ubiquitin and HSP pathways show degrees of cross talk, both being
involved in cellular responses to stress. It has been suggested that targeting the ubiquitin
degradation pathway could be effective in HER2+ breast cancer treatment. For exam-
ple, the histone H2B ubiquitin ligase RNF40 was recently demonstrated to be essential
for HER2-driven breast cancer tumorigenesis across multiple experimental models219. In
certain types of cancer, ubiqutin pathway inhibitors have shown encouraging data in a clin-
ical setting. For example, Pevonedistat, which targets NEDD-4, a ubiquitin-like protein,
has recently been given breakthrough-therapy designation by the US FDA220, which is a
designation that allows fast-tracking of therapeutics that have demonstrated encouraging
preliminary data.
In this study, it appeared that genes involved in proteasomal degradation were particu-
larly de-regulated. Evidence from the literature supports the notion that regulation of pro-
teasomal degradation is a point of vulnerability in the context of HER2-targeted therapy
resistance. It has been observed that proteasome inhibitors prevent cross-talk between
HER2 and the estrogen receptor, and leave them vulnerable to cell death in lapatinib or
endocrine therapy resistant cells221. A recent study on pirin itself has also shown that it
is a modulator of autophagy-dependent ferroptosis191.
De-regulation of NF-κβ pathways by combination therapy andEMBL-703625monother-
apy
Another de-regulated pathway from combination treatment that was consistent between
both cell lines was the NF-κβ pathway. NF-κβ expression is associated with HER2 over-
expression143, and its signalling is activated by HER2 through a canonical pathway with
results in an invasive phenotype144. On top of this, clinical evidence suggests that NF-
κβ is a biomarker that is predictive of an aggressive phenotype and poor prognosis145.
Because of these reasons, the link between HER2+ and NF-κβ has long been identi-
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fied and characterised as a potentially attractive node of interference for therapy resistant
breast cancer146;147. In the context of HER2+ breast cancer specifically, there is also ev-
idence for this, as discussed in the introduction (Section 1.5.2.3). To recap, trastuzumab-
resistant BT-474 cells have demonstrated activation of NF-κβ115. It has also been demon-
strated that NF-κβ is hyperactivated in breast cancer cells, and that combination inhibition
of HER2 and NF-κβ was effective in killing lapatinib resistant cells148. Although pirin is
generally relatively poorly characterised, it has been shown that it is an iron-dependent
regulator of NF-κβ signalling188;222 when it is activated by active Fe(III) form of Pirin187.
In oral cancer, pirin has also been demonstrated to act with NF-κβ223.
2.2.7 Future experiments (with relevance to results discussed in Section2.2)

Experiment Rationale

Integratedanalysis withmetabolomics

The role that cell metabolism plays in the survival of residual cells and tumor
relapse makes it an area of key interest. Therefore, performing metabolomics

would allow an understanding of how this plays a role in lapatinib and
EMBL-703625 synergy. Strategies to efficiently extract metabolites from 3D
grown cell lines have already been established as part of this project, as well
as a metabolite processing and analysis pipeline in collaboration with the

Zimmerman Lab at EMBL.

Fewer startingsamples with ahigher read depth

The experiments described in this thesis have established that lapatinib and
EMBL-703625 have distinct effects on the cellular transcriptomic profile, and
gives some insights into cellular processes that may be deregulated because
of them in monotherapy or combination therapy. Further experiments using a
higher concentration of starting material would make it more likely to achieve
a higher read depth, which would be important for an integrated analysis
alongside metabolomics. Certain pathways, for example, glycolysis, did not
have a sufficient read-depth in this project that conclusions about them could

be made in these experiments.
Table 7: Future experimental directions with regard to the data discussed in Section 2.2.
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2.3 Assessing the ability of BT-474 or SK-BR3 cells to re-grow
following lapatinib or EMBL-703625monotherapy, or in com-
bination

2.3.1 Experimental design and rationale
Amajor challenge facing modern cancer therapy is reducing the incidences of problematic
tumor relapses. Even with a synergistic drug response, tumor cell heterogeneity could
mean that certain cells are still able to re-grow following treatment removal. To assess this
in BT-474 and SK-BR3 cell lines, experiments were designed to treat cells with singular
treatments and combination treatments, remove these treatments, and assess their ability
to regrow. As displayed graphically in Figure 20, after a treatment period of 7 days, with
a drug replenishment every 3.5 days, cells were re-seeded to select for surviving cells.
This allowed an increase of sensitivity and also visualisation; re-growth of surviving cells
could be difficult to visualise with a large amount of surrounding cellular debris. This also
helped to control for possible micro-environmental effects; contact inhibition from cellular
debris could also potentially compromise re-growth, or slow it to an extent that would be
difficult to experimentally assess. It was also possible that certain cells may not have
been accessible by the drug due to blocking from other cells. Following re-seeding, cells
were kept on their respective treatments for a further 7 days to allow for further selection.
Following this, some cells were removed from their treatment, and others remained on
as a control. Multi-positioning was used on the Olympus ScanR to image the entirety
of the re-seeded gel, with image stitching used on the projected images to produce a
single image for each well (see Supplementary Figures S.3 and S.4; Pages 181 and 182,
respectively).

Figure 20: Schematic of experimental design for BT-474 and SK-BR3 re-growth removalfollowing EMBL-703625/Lapatinib monotherapy or combination therapy. As a control, somewells were left on treatment following day 21.

2.3.2 Imaging of cell regrowth using high throughput imaging on the Olym-pus ScanR
The Olympus ScanR was used in order to visualise cell re-growth over long time peri-
ods in a high throughput manner. This microscope had the capability of imaging matrigel
droplets in 3D in a 96 well plate format, meaning that multiple different treatment condi-
tions could be imaged simultaneously. The 96 well plate format also meant that same
3D structures could be consistently re-imaged, allowing for accurate comparisons. 3D
projection (Supplementary Figure S.3) and stitching (Supplementary Figure S.4) macros
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on ImageJ were used to provide a single overview image of each individual gel, giving a
comprehensive overview of all the structures within each gel.
2.3.3 EMBL-703625 and Lapatinib act together to compromise the abilityof BT-474 cells to re-grow after treatment removal
BT-474 cells were treated with varying concentrations of EMBL-703625, with or without
a combination of 1.0µM Lapatinib. This concentration of lapatinib had been previously
determined in preliminary experiments to be selective to BT-474 cells on its own, but
consistently allow these cells to re-grow after it was removed (data not shown).
Images were taken on the Olympus ScanR following re-seeding, immediately after drug
removal, and 7, 14 and 28 days after that. Across multiple concentrations, EMBL-703625
and Lapatinib together reduced the levels of re-growth in BT-474, relative to either treat-
ment alone. At a combination of 2.3µMof EMBL-703625 and 1.0µMof lapatinib, re-growth
was almost entirely compromised (Figure 21).
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Figure 21: Figure continues on next page.
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Figure 21: Projected and stitched ScanR images showing re-growth following treatment re-moval in BT-474 (a) and SK-BR3 (b) cells. Regions of interest were taken from larger stitchedimages to reflect representative re-growth. The experiment was repeated three times with consis-tent results. Scale bar = 500µm.

In contrast to BT-474, SK-BR3 cells did not experience an overall reduction in their abil-
ity to regrow following treatment removal, when comparing singular treatments to double
treatments (Figure 21). However, interestingly, the ability of SK-BR3 to re-grow was more
compromised by singular EMBL-703625 treatment when compared to BT-474. For exam-
ple, BT-474 is able to actively grow in the presence of 2.3µM of EMBL-703625, whereas
the ability of SK-BR3 to re-grow is nearly completely ablated in the presence of 1.3µM
EMBL-703625, despite the fact that BT-474 has an approx. 80% reduction in cell viability,
compared to an approx. 50% reduction in the SK-BR3 cells (See Figures 11 and 15).
Interestingly, BT-474 appeared to be relatively resilient to singular EMBL-703625 treat-
ments. As shown in Figure 22, BT-474 was able to actively begin to grow in the continued
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presence of certain concentrations of EMBL-703625 (albeit at slower than normal rates)
despite viability assay results demonstrating an approximately 80% reduction in viability,
suggesting there were cellular adaptations to allow cell survival and re-growth.

Figure 22: Time lapse of BT-474 cells re-growing in the presence of 2.3µM of EMBL-703625. Theexperiment was repeated three times, with consistent results. Regions of interest were taken fromlarger stitched images to reflect representative re-growth. Scale bars = 500µm.

2.3.4 Discussion of Section 2.3: Lapatinib and EMBL-703625 inhibit re-growth in BT-474 cells when in combination, but not in SK-BR3
2.3.4.1 Discussion of results
In an experimental setting, a functional way of validating whether lapatinib and EMBL-
703625 combination therapymay help to prevent relapses is to assess the ability of treated
cells to re-grow after treatment removal. The hypothesis brought forward by the transcrip-
tomic results is that EMBL-703625 and lapatinib having largely different impacts on gene
expression could make it more difficult for persister sub-populations to arise to each drug.
If this holds true, their combined effect should reduce the ability of these cells to re-grow,
more than either agent in monotherapy. To do this, experiments were set up that as-
sessed the re-growth in BT-474 and SK-BR3 cells. To be able to mimic a real-life situation
more accurately, these experiments involved a relatively long treatment period, and also
a re-seeding step to clear cellular debris that may adversely impact on cell growth or
behaviours, or make it more difficult to observe.
The results suggest that this mechanism of drug independence holds true for BT-474,
with an apparent negative impact on in the ability of these cells to re-grow in combina-
tion therapy, but not for SK-BR3. This is reminiscent of the current clinical setting when
considering the cancer sub-type that each cell line represents: HER2+ HR- (represented
by SK-BR3) is more likely relapse after targeted therapy than HER2+ HR+ (represented
by BT-474), although this is largely due to the sensitivity of HR+ tumors to anti-estrogen
therapy. Although cell lines are likely to be relatively homogenous compared to a real-
life tumor situation which has a much more diverse array of different micro-environmental
conditions and also degrees of genomic instability, a pre-print submitted by Roden et al.
(2018)224, using single cell transcriptomics on different breast cancer cell lines (includ-
ing BT-474 and SK-BR3), demonstrated a striking degree of heterogeneity. Along with
this, another recently submitted pre-print by Chang et al. (2020) that also used single cell
transcriptomics225, shows that surviving cells after lapatinib treatment form two distinct
molecular sub-types, reminiscent of an epithelial and mesenchymal state.
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2.3.4.2 Extrapolation of re-growth results into a clinical setting: in vivo consider-
ations, and experimental future directions

Patient variability and micro-environmental interactions
If these results carried over to an clinical setting, it could mean that patients with a HER2+
HR- tumor sub-type could still experience eventual tumor re-growth, despite apparent ini-
tial treatment success. HER2+ HR+ tumors, however, could be less likely to undergo
relapses. This is reflected in the clinical evidence, as has been previously discussed.
However, it is important to consider aspects of clinical treatment that are not reflected in
an in vitro experimental setting, and how these could be addressed in future experiments.
Firstly, patient-patient variability could translate into varying probabilities of tumor relapse,
highlighting the need of parallel strategies to appropriately stratify patients according to
bio-marker expression or transcriptomic, proteomic or metabolomic profiles. To this end,
various bio-markers are being characterised across multiple clinical trials225. Secondly,
a real life setting involves a high degree of micro-environmental and immune effects, in-
cluding endocrine, immune and ECM interactions, which are also likely to influence the
ability of a cell to remain dormant or not.
Immune system interactions: co-culturing with immune cells as a future direction
The cross-talk between cancers and the immune system is currently an area of exten-
sive clinical development, with anti-PD-L1, PD-1 or CTLA-4 monoclonal antibodies taking
precedent. Pembrolizumab (Keytruda®), an anti-PD-1 monoclonal antibody, has been
approved across a wide range of cancers, and is now the best selling and most widely
approved targeted-cancer therapy in history226, having been approved for use across
a wide range of cancers. It has shown encouraging results in Phase II clinical trials in
HER2+ breast cancer when administered along with trastuzumab227. In in vitro cell cul-
ture experiments such as these, the relevance and importance of co-culturing HER2+
cell lines with immune cells has been shown. On their own in culture, HER2+ murine
breast cancer cell lines do not over-express PD-L1, but this was induced once they were
co-cultured with human peripheral blood mono-nuclear cells228. Future co-culture exper-
iments would be useful to observe how interactions with the immune system impact on
HER2 and pirin inhibition synergy, and the ability of cells to re-grow. In the context of im-
mune effects, it would be useful to characterise this HER2 and Pirin synergy when using
trastuzumab as the HER2-inhibitor, given the immune recruiting effects that trastuzumab
has been demonstrated to have229.
Experimental vs real-life time scales, and tumor metastasis: in vivo experiments as
a future direction
Finally, the time scale of these experiments are different than the time scale of experiments
in a real-life setting, both in terms of treatment duration (months to years) and also the
time to tumor relapse, which normally takes place over years or even decades, rather
than the weeks in these experiments. Over these time scales, and given the inherent
tumor cell instability of tumor cells, and also the different tissues that these cells may have
metastasised to, a whole plethora of different cellular scenarios that impact on their ability
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to re-grow or not re-grow could be at play. The only appropriate way to experimentally
validate this on a practical experimental time scale (outside of real-world clinical trials) is
by performing in vivo mouse experiments and observing rates of relapses. As discussed
in Section 3.2.3.2, efforts for this are already planned and have been discussed with the
EMBL LAR Facility, by performing first-line treatment by comparing lapatinib or EMBL-
703625 monotherapy to combination therapy.
An equally as important experiment is to characterise how these combinations impact
on tumor relapses in local or metastatic sites, or whether HER2 and pirin inhibition is
appropriate after relapse (second-line treatment). Current evidence suggests that pirin
could plays a role in tumor metastasis. Importantly, long-term follow-up studies on breast
cancer patients found that pirin expression was positively associated with the likelihood of
tumor metastasis230. As well as this, evidence linking pirin expression to metastasis exists
from other tumor types. In cervical cancer cells, pirin has been shown to play a role in
metastasis through mediating EMT, which can be overcome with circumin treatment231.
Similarly, in HeLa cells, pirin has been shown to regulate EMT independently of Bcl3-
Slug signalling195. Additionally, mir-155, a microRNA encoded by the MIR155 gene has
been identified and characterised as an important regulator of metastasis, and also as a
regulator of pirin232. When inhibited, it has been shown to prevent metastasis of breast
tumor cells to the lung through EMT inhibition233.
The cell line experiments discussed thus far have demonstrated a large combinatorial ef-
fect on cell viability and toxicity, and demonstrated synergy between lapatinib and EMBL-
703625. As well as this, re-growth experiments have shown that this combination also
could inhibit the ability of HER2+ breast cancer cells to re-grow. Previous results from
the EMBL CBCF on HeLa cells suggest that EMBL-703625 has large impacts on cel-
lular metabolism, including glycolysis. Results from our lab (Section 2.8) also indicate
that metabolism is an attractive area of molecular targeting, and, in line with this, EMBL-
703625 and lapatinib show synergistic interactions, have largely distinct effects on the
cellular transcriptome, and may compromise the ability of some cells to re-grow after
therapy.
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2.3.5 Future experiments (with relevance to results discussed in Section2.3).
Experiment Rationale

In vivo relapseexperimentsusingtransgenicinducible mice

The experiments performed in this section suggest that lapatinib and
EMBL-703625 may come together to reduce the ability of cell lines to re-grow
after treatment removal. However, the complexity of the in vivo environment
makes in vivo experiments that characterise relapse rates more applicable to a
real life clinical setting. Lapatinib and EMBL-703625 can be administered
together in a first-line setting, with continued Doxycycline administration until
tumor remission. If enough mice have remission to have an appropriate sample
size, the average time to relapse and lifetime rates of tumor relapse can be

characterised.

If EMBL-703625 has an acceptable toxicity profile, this also gives rise to the
possibility that it could also separately be tested as a maintenance therapy.

These approaches would involve removal of the affected mammary fat pads by
surgery as part of the experiment, to mimick a real life clinical situation more

accurately.
Table 8: Future experimental directions with regard to the data discussed in Section 2.3. Althoughthe immune-co-culture experiments would be a good further direction, these experiments have notyet been explicitly planned or discussed.
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2.4 Co-inhibition of cellular glycolysis alongsideHER2 or Pirin
inhibition

2.4.1 Oxamate and EMBL-703635 show strong synergy together in reduc-ing the viability of BT-474 and SK-BR3 cells
Data from transcriptomic and metabolomic experiments on mice (see Section 2.8) and175
along with evidence from the literature152 suggest that metabolism is fundamentally al-
tered in tumor and residual cells, and therefore serves as an attractive point of interfer-
ence in combination therapy. In particular, data from the Jechlinger Lab175, data from the
EMBL-CBCF (See Figure 8 (Page 49), and data from various sources in the literature
(See Section 1.5.3), suggest that glycolysis is of particular importance in the acquisition
of resistance against HER2 targeted therapy.
To test how glycolytic inhibition potentiates the effects EMBL-703625 and Lapatinib on
BT-474 and SK-BR3 cells, cells were treated with oxamate, a lactate dehydrogenase
inhibitor, at varying concentrations along with varying concentrations of Lapatinib and
EMBL-703625, in an experimental design similar to the Lapatinib and EMBL-703625 syn-
ergy experiments described in Section 2.1.2.
Preliminary experiments were conducted to determine appropriate concentration ranges
of oxamate to use (50mM to 175mM). For both cell lines, oxamate had a severe impact on
cell viability at the highest concentration measured (175mM), with a comparatively more
severe effect on SK-BR3 cells compared to BT-474. The lowest concentration measured
(50mM) had a more moderate effect, with an approximately 20% reduction of viability in
BT-474 and 10% reduction in SK-BR3.
As seen in Figure 23, oxamate alongside lapatinib or EMBL-703625 had a combination
effect in both cell lines. However in both cell lines, for lapatinib and oxamate, this differ-
ence appeared less severe than for EMBL-703625 and oxamate. For example, in BT-474
cells, 0.1µM of lapatinib, or 1.0µM of EMBL-703625 had a similar effect on viability in
monotherapy (Figure 23(a) and (b), respectively), reducing viability to approximately 55%
of the vehicle treated control. 125mM of oxamate reduced viability to approximately 40%
of the control. When in combination, 0.1µM of lapatinib with 125mM of oxamate reduced
viability to 20.5% of the control, whereas 1µM of EMBL-703625 and 125mM oxamate
reduced viability to 4.7% of the control.
ZIP synergy calculations (using the same approach as in Section 2.1.2, but without the
plate interpolation and combination) supported these findings‡. As shown in Figure 23(e)
and (g), lapatinib and oxamate had generally less of an overall synergistic effect than
EMBL-703625 and oxamate (Figure 23(f) and (h)), both in terms of overall range, and top
synergy peak. For the majority of the SK-BR3 oxamate + lapatinib landscape, the interac-
tion was approximately around 0, or slightly above or below, generally being suggestive

‡In these oxamate combination experiments, plate interpolation was not used, as the number of differenttreatments would have led to an unpractical number of plates if each plate was transposed, as the numberof plates would have doubled.
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of additivity, but tending towards synergy in particular concentration areas. Overall, these
data suggests that HER2 inhibition alongside glycolytic inhibition is generally more addi-
tive, whereas pirin inhibiton alongside glycolytic inhibition is more synergistic.

Figure 23: Heat-maps of relative viability (normalised to dual vehicle treatment) with BT-474 cells(a and c) and SK-BR3 cells (b and d) treated for 72 hours with oxamate and Lapatinib, following7 days of 3D growth. Displayed values in bold are the means of 3 experimental replicates, whicheach had 3 technical replicates. The smaller written values in italics are the SEM. Experimentswere performed on black-walled 96 well plates.
Figure continued on next page.
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Figure 23: Figure continued on next page.
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Figure 23: BT-474 (g) and SK-BR3 (h) ZIP Synergy landscape of cells co-treated with oxa-mate and Lapatinib, and of cells co-treated with oxamate and EMBL-703625 (c: BT-474,d: SK-BR3). Data were processed as described in Figure 13. ZIP synergy data was generatedby SynergyFinder 2.0, and plotted in R using the "ggplot2" package. The blue line denotes ZIPsynergy scores that are higher than 10; there is no consensus of which synergy scores denotesynergy, but it is widely agreed that a synergy score above 10 is confidently synergistic.
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2.4.2 Discussion of Section 2.4: Inhibition of pirin and glycolysis showstrong synergy in BT-474 and SK-BR3 cells, inhibition of HER2 along-side glycolysis shows additivity
Oxamate was used to functionally characterise how metabolic inhibition works along-
side each individual inhibitor, and the results showed that oxamate and EMBL-703625
showed strong synergy with one another, and weaker synergy or additivity with lapatinib.
The strong synergy showed between oxamate and EMBL-703625 suggests a “blockade”
mechanism, where metabolism is more comprehensively inhibited due to the action of
more than one inhibitor on it.
Figure 23 (Page 100) shows that oxamate, a lactate dehydrogenase A inhibitor, and
EMBL-703625 show strong synergy in combination with each other in BT-474 and SK-
BR3 cells, but show additivity (apart from a small areas of synergy) when in combination
with lapatinib at concentrations that lead to similar treatment effectiveness. This suggests
that oxamate and EMBL-703625 act together to blockade glycolysis to a stronger degree
than oxamate and lapatinib do. Taken together, this suggests that lapatinib and EMBL-
703625 may converge on glycolysis, through separate mechanisms, which, in part, allows
them to elicit their combination effects.
There is evidence to support this notion in the literature and from EMBL CBCF-generated
data. Firstly, lactate dehydrogenase A, the target of oxamate, is upregulated by HER2
through the action of HSF1, and previous studies on HER2 overexpressing breast can-
cer cells have shown that oxamate selectively inhibits the growth of these cells162. In
terms of tumor resistance, changes in glycolysis appear to be a way that resistance to
HER2 targeted therapy is acquired, demonstrated in cell lines for trastuzumab and lap-
atinib resistance123;114;180 This suggests that HER2 inhibition influences glycolysis, and
cells that are able to alter their glycolysis are more likely to survive. As well as this, a
transcriptomic-based study using parental and persister BT-474 cells after transient la-
patinib treatment showed that many glycolysis based genes are altered in the persister
cells that are refractory to glycolysis treatment234, suggesting a relatively fast time scale
for resistant sub-populations to form. Furthermore, targeting glycolysis in HER2+ cells
makes them more sensitive to subsequent trastuzumab treatment114.
With regard to pirin, as it is currently poorly functionally characterised, no such exper-
iments that inhibit pirin alongside any glycolysis enzymes have been performed in the
literature. However, transcriptomic data generated from the EMBL CBCF suggested that
glycolysis enzyme expression was significantly altered by pirin inhibition in HeLa cells. In
the transcriptomic experiments in this thesis, it appears that the read depth on glycoly-
sis specific enzymes were too low to many conclusions in this respect. Nonetheless, the
CBCF data on pirin, combined with the HER2-inhibition related evidence from literature
led to the hypothesis that a part of EMBL-703625 and lapatinib synergy could be through
them both inhibiting certain aspects of glycolysis.
To characterise this in more detail, further experiments would be required to understand
how each particular inhibitor specifically influences glycolysis in HER2-over expressing
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breast cancer cells. To this end, at the time of this thesis submission, efforts to perform
metabolomic experiments had already been undertaken, with optimisation steps required
to isolate metabolites from the matrigel that cells are grown in. This partially uses the
methods pipeline developed by Radic-Shechter et al., (2020)175.
2.4.3 Future experiments (with relevance to results discussed in Section2.4)

Experiment Rationale
Characterising
lapatinib or

EMBL-703625
alongside other
inhibitors

A combination of the data from the EMBL CBCF and transcriptomic
data from this project suggest that there may be various nodes that
lapatinib and EMBL-703625 come together to elicit their synergy

through, for example, heat shock protein expression or the expression
of solute carriers. Using the methodology from this section, the effect
of inhibiting proteins involved in these different areas can be explored.

Table 9: Future experimental directions with regard to the data discussed in Section 2.4.
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2.5 Comparison of the response of non-neoplastic and neo-
plasticmousemammary cells treated with lapatinib and/or
EMBL-703625

2.5.1 Combination treatmentwith lapatinib andEMBL-703625more stronglyreduces viability in induced primary mouse mammary tumor cells,compared to never induced mammary cells
Although synergy is important in being able to minimise drug dosages whilst still achieving
effective tumor treatment, it is also important to ensure that this synergy does not affect
non-neoplastic cells. As well as this, in an experimental context, it is important to assess
drug interactions across multiple systems, to ensure robustness of data in a pre-clinical
setting. To address both of these issues, an experimental design was utilised involving in
vitro organoids derived from transgenic mouse mammary glands, which could be induced
into a tumorigenic state by over-expression of the HER2 and MYC oncogenes upon the
addition of doxycycline to the cell media (see Figure 10). This allowed for an in vitro
comparison between normal mammary gland epithelial cells and their tumor correlates.
Mouse mammary epithelial gland cells from mice transgenic for MMTV-rtTA, TetO-MYC,
and TetO-Neu were isolated, seeded in matrigel and grown on multiple black walled 96
well plates. After a growth period, half of the cells had doxycycline introduced into their
growth media in order to induce tumorigenesis, whilst the other half were kept on normal
media, to remain as un-transformed cells. After 6 days with or without doxycyline exposure
to induce a tumorigenic transformation, lapatinib and EMBL-703625 were introduced to
the cells in combinations at a range of different concentrations, ranging from 25µM to
0µM. Cells were maintained on their respective treatments for 48 hours before viability
assays were performed. The schematic for this experiment is displayed in Figure 24.

Figure 24: Schematic of experiments performed on non-neoplastic or induced-neoplastic mousemammary gland cells

This experiment was performed on four separate mice, all positive for MMTV-rtTA, TetO-
MYC and TetO-Neu. Figure 25 and 26 show the effects of singular treatment with either
drug, and their effects in combination, respectively. As seen in Figure 25(a),(b),(d) and
(e), the mice exhibited statistically significant heterogeneity for EMBL-703625 and lap-
atinib monotherapy. Overall, comparing tumour and never induced cells across all four
mice, tumor cells were significantly more sensitive to either treatment, compared to never
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induced (normal) cells (Figure 25(c) and (f)). Because of the heterogeneity between mice,
creating a synergy landscape, as was done for BT-474 and SK-BR3 cells, would not be
appropriate; ZIP synergy calculations rely on changes in dose-response curves, given
that these dose-response curves change between each mouse, taking an average for the
four replicates would not be reliable.
As shown in Figure 26, lapatinib and EMBL-703625 had a significantly larger inhibitory
effect on the viability of tumor cells, compared to never induced cells. The effect size of this
was most pronounced at the higher concentrations, as seen in Figure 26(c). Moreover,
this effect was consistent between all four mice (Supplementary Figures S.6 - S.9) despite
heterogeneity in responses to the individual drugs. Overall, this suggests that the synergy
between lapatinib and EMBL-703625 elicits its effects more specifically on tumor cells,
and less-so on normal, non-neoplastic cells.
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Figure 25: Dose response curves for each of the four mice used in the experiments, in tumor and never induced cells treated with either lapatinibor EMBL-703625. (a) and (d) show dose response curves for each mouse in tumor cells for EMBL-703625 and lapatinib, respectively. (b) and (e) show doseresponse curves for each mouse in never induced cells, for EMBL-703625 and lapatinib, respectively. (c) and (f) show the average for the four mice, comparingtumor and never induced cells. Data points are normalised to sole vehicle treatment (100% viability). Error bars show the SEM for technical replicates (n = 3)for parts a, b, d and e. Error bars show the SEM between all four mice for parts c and f. Curves and statistics were calculated through nonlinear curve fitting(using Prism), and p-values were calculated based on the null hypothesis that one curve could represent the dose response curves on each graph. Significancenotation is as follows: ns (not significant) - p ≥ 0.05; * - p < 0.05; ** - p < 0.01; *** - p < 0.001; **** - p < 0.0001.
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Figure 26: Dose response curves of Never Induced (Normal) or Induced (Tumor) cells at varying concentrations of lapatinib and EMBL-703625. (a), (b),and (c) show tumor and never induced (normal) cell dose response curves at 0, 2.778 and 25µM EMBL-703625 with different concentrations of lapatinib. (a) isthe same graph as in 25(f). Each data point is the mean of the average normalised viability for the four mice used in this experiment, and error bars show theSEM. Statistics were calculated through nonlinear curve fitting, and p values were calculated based on the null hypothesis that one curve could represent thedose response curves for Tumor and Never Induced cells. Significance notation is as follows: ns (not significant) - p ≥ 0.05; * - p < 0.05; ** - p < 0.01; *** - p <0.001; **** - p < 0.0001.
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2.5.2 Discussion of Section 2.5: Experiments on mouse-derived primarycells suggest a preferential effect on neoplastically transformed cells,compared to normal
As has been discussed previously, safety and efficacy are both important when choosing
and characterising new treatment regimes for cancer therapy. It is important that the
combination killing effect of drug combinations such as lapatinib and EMBL-703625 do
not carry over into non-tumor cells. This phenomenon is sometimes known as “synergistic
toxicity”. Currently, there is strong evidence to suggest that both drugs have an acceptable
safety profile in monotherapy. Lapatinib is an established clinical therapy, and is therefore
known to demonstrate acceptable safety in humans, as well as mice94;235. EMBL-703625
has been demonstrated by the EMBL-CBCF to have excellent tolerability in mice (data not
shown).
To experimentally deduce if this drug interaction was unique to tumor cells, the inducible
mouse systems that are utilized by the Jechlinger Lab were used (see Figure 24, Page
103). This system allows a direct comparison between the HER2-driven tumorigenic and
non-tumorigenic state in cells from the same source, allowing for an ideal experimental
control. Both drugs were tested in monotherapy at different combinations, and in combi-
nation therapy at these different concentrations.
Interestingly, in monotherapy, lapatinib had a comparable killing effect on tumor cells to
normal cells. Data do not exist for the effect of lapatinib or other HER2-targeted therapies
on the normal mammary gland cells. It is therefore possible that the endogenous HER2
that is expressed by normal mammary gland cells renders them sensitive to HER2 inhi-
bition, but it is also possible that removing primary cells from the context of the mouse
breast and growing them in culture renders them more or less sensitive to certain drugs.
In contrast, EMBL-703625 did have a steeper dose-response curve in induced (tumor)
cells compared to never induced (normal) for 3 of the 4 mice, suggesting that a neoplas-
tic transformation, even without the usual microenvironmental context of a tumor cell, is
enough to render cells sensitive to pirin inhibition. However, it is important to note that
for any drug in monotherapy, it is most important to test in an in vivo setting to test for
off-target effects in the many different tissues of the body, as well as immune and other
interactions with the tumor micro environment that cannot be properly recapitulated in
vitro.
In combination, lapatinib and EMBL-703625 had a stronger combined effect on neoplasti-
cally transformed cells, compared to non-transformed cells from the same source (Figure
26) showing that in mammary gland epithelial cells, HER2 and MYC-driven neoplastic
transformation is required for them to elicit their combinatorial killing effects. This sug-
gests that lapatinib and EMBL-703625 synergy happens solely on neoplastic cells driven
by HER2 and MYC oncogenes, which could reduce the incidence of side effects as a
result of this synergy. As well as this, these experiments provides a good rationale for
progression into in vivo experiments. A comprehensive discussion of the experiments
that could be conducted in an in vivo setting, and the value that these would bring, is
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discussed in Section 3.2.3.2.
2.5.3 Future experiments (with relevance to results discussed in Section2.5)
The main future direction for these experiments is to progress to in vivo approaches. The
two ways of doing this: assessing first-line efficacy, and monitoring relapse rates. These
have previously been discussed in Section 2.1.4 (Page 70) and Section 2.3.5 (Page 96),
respectively.
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2.6 Consecutive treatment
The results showing an apparent synergy between lapatinib and EMBL-703625 in human
cell lines, as well as the increased tumor inhibitory effect compared to normal cells in the
mouse system (Section 2.5), suggested that simultaneous combinatorial treatment with
both of these drugs could serve as a promising potential tumor treatment regimen in a
clinical setting. However, any treatment with multiple drugs comes with an increased risk
of serious side effects in the patient, and is a large reason for early phase clinical trial
discontinuation. One common way that this is addressed is by performing consecutive
drug treatment, where one drug is used as a first-line treatment, followed by the other
drug as a secondary or maintenance treatment to treat residual cells and/or relapsed
tumors. In breast cancer, there is normally surgery involved (for example, mastectomy or
lumpectomy) to remove the affected tissue and/or surrounding lymph nodes. In this case,
treatments are referred to as neoadjuvant (before surgery) and adjuvant (after surgery).
In order to assess whether initial lapatinib treatment gave rose to increased sensitivity to
EMBL-703625, and vice versa, experiments were designed using BT-474 and SK-BR3
cells that administered these drugs consecutively. The timings of the experiments and
methodology used to normalise and compare the data generated are displayed in Figure
27 (a) and (b), respectively.

Figure 27: Schematics of consecutive treatment experiments. (a) Experimental timings. Cellswere grown for 7 days, before they were treated with one treatment (Lapatinib, EMBL-703625 orvehicle (DMSO) for 72 hours followed by washing with PBS and then treatment with the secondarytreatment (any of these 3 treatments again). At the end, a viability reading was taken.Figure continued on next page.
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Figure 27: Schematics of consecutive treatment experiments. (b) Secondary treatments werecompared to DMSO-treated cells to obtain a normalised read-out. These normalised values werethen compared to understand which initial treatments had possibly led to tolerance or sensitisationto the secondary treatment. The example shown is for EMBL-703625 as the secondary treatment.This same process was also the case when lapatinib was the secondary treatment.

2.6.1 BT-474 cells are sensitised to pirin inhibition following treatment withlapatinib
As seen in Figure 28, sensitising treatment with lapatinib led to a significantly increased
sensitivity to subsequent EMBL-703625 treatment (One-way, two tailed, nested design
ANOVA, p<0.001), relative to cells not subjected to any sensitising treatment (vehicle
treated) in BT-474 cells, but not with SK-BR3 cells. The selected concentration of EMBL-
703625 alone does not lead to substantial changes in viability in either cell line (see Fig-
ure 11 and Table 4), suggesting that lapatinib is able to predispose cells to EMBL-703625
sensitivity, even at otherwise non-efficacious concentrations. No other comparative treat-
ments were statistically significant, although it is notable that SK-BR3 treated both times
with EMBL-703625 was close to the significance cut-off value (p=0.0505) when compared
to EMBL-703625 followed by vehicle treatment, suggesting that SK-BR3 cells could see
increasing sensitivity to continuous EMBL-703625 treatment.
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Figure 28: Viability readings (percentage normalised to vehicle treated) for BT-474 and SK-BR3 cells treated with EMBL-703625 (a and b, respectively) that have been pre-treated for72h with either vehicle (DMSO), Lapatinib or EMBL-703625. Each experiment was repeated 3times. Individual points display each technical replicate, colour coded to denote each experimentalrepeat. The black line shows the overall mean. *** denotes statistical p-values of <0.001, testedwith a one-way, two-tailed, nested design ANOVA. Non-significant differences have no label.

2.6.2 BT-474 cells begin to lose sensitivity to HER2-targeted therapy afterinitial treatment, whereas SK-BR3 cells do not
The previous subsection showed that BT-474 and SK-BR3 were sensitised to EMBL-
703625 treatment, following treatment with lapatinib. In contrast to this, neither BT-474 or
SK-BR3 cells were sensitised to lapatinib treatment, following initial sensitising treatment
with EMBL-703625. However, BT-474 did see a significant increase in tolerance to Lapa-
tinib, when treated in succession, suggesting that it is quickly able to become tolerant to
the drug. Interestingly, these results were not reflected in SK-BR3 cells, who did not lose
sensitivity to lapatinib treatment.
M. Boucher 111



CHAPTER 2. RESULTS AND DISCUSSION

Figure 29: Viability readings (percentage normalised to vehicle treated) for BT-474 and SK-BR3 cells (a and b, respectively) treated with Lapatinib that have been pre-treated for 72hwith either vehicle (DMSO), Lapatinib or EMBL-703625. Each experiment was repeated 3times. Individual points display each technical replicate, colour coded to denote each experimentalrepeat. The black line shows the overall mean. *** denotes statistical p-values of <0.001, testedwith a one-way, two-tailed, nested design ANOVA. Non-significant differences have no label.

2.6.3 Discussion of Section 2.6: Lapatinib may sensitise BT-474 cells tosubsequent EMBL-703625 treatment
The results in this project have established that lapatinib and EMBL-703625 exhibit syn-
ergy in human, HER2+ breast cancer cell lines when administered at the same time.
However, in the treatment of many cancers, including HER2+ breast cancer, treatment
regimens often involve neoadjuvant (before surgery) and adjuvant (after surgery) treat-
ment regimens. For example, the UK National Institute for Health and Care Excellence
(NICE) recommends pertuzumab + trastuzumab + chemotherapy as a neoadjuvant treat-
ment before breast surgery, followed by a variety of possible HER2-targeted treatments
based on the specific disease context, including trastuzumab emtansine, pertuzumab,
neratinib, or trastuzumab236. These decisions are made based on a combination of safety
and efficacy data, probability of relapse, and cost effectiveness.
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Whilst these have proven to be clinically effective, currently licensed adjuvant/neoadjuvant
therapeutic regimens are still all based solely on HER2-targeted therapy, usually in com-
bination with chemotherapy. As discussed in Sections 1.3.5 and 1.4, whilst these ap-
proaches are clinically effective, this may allow cells to find "escape" pathways or mecha-
nisms, which gives rise to the possibility of relapses. In fact, approximately 14% of patient
tumors lose HER2 expression after neoadjuvant treatment, and these patients are ap-
proximately 2-3x more likely to relapse, with disease-free survival being approximately
20% after 5 years107;237. On top of this, if these relapses are metastatic, they are dispro-
portionately found in the brain, and are difficult to treat99;100.
The consecutive treatment experiments were designed with these data in mind, particu-
larly as pirin inhibition may present itself as an attractive treatment regimen in a neoadju-
vant or adjuvant setting, to prevent selection for HER2 resistant sub-populations in early-
stage treatment. As shown in Figure 28, pre-treatment with lapatinib in BT-474 cells led
to sensitisation for later treatment with pirin inhibition, but there was no statistically signif-
icant difference in SK-BR3 cells. This could suggest that consecutive treatment could be
applicable in a HER2+ HR+ setting, but not in a HER2+ HR- setting. This could suggest
that solely HER2-driven cells have a degree of plasticity that allows them to not become
more sensitive to pirin inhibition following lapatinib pre-treatment. In this sense, these
results are reflective of the results seen from the re-growth experiments (Section 2.3). In
line with this, large amounts of evidence show that HER2-targeted therapy resistant cells
can utilise alternative oncogenic pathways, such as EGFR, HER3 or IGF-1 signalling238.
BT-474 also showed a significantly reduced killing effect of lapatinib when also pre-treated
with lapatinib, compared to when pre-treated with vehicle (DMSO) or EMBL-703625, sug-
gesting that BT-474 cells quickly acquire lapatinib tolerance. This would back up the fact
that BT-474 pre-treated with lapatinib is more sensitive to pirin inhibition, and suggests
that there is selection from lapatinib for persister sub-populations, even at early treatment
stages. In BT-474 cells, this is also backed up by evidence from the literature. Persister
BT-474 cells were able to be relatively quickly derived when treated in 2D culture with
lapatinib, and had a largely altered transcriptional profile. Interestingly, these results also
showed that lapatinib refractory BT-474 cells were sensitive to ferroptosis, which is me-
diated in part by pirin191. As discussed in section 1.6.3, a multitude of similar genes also
appear to be de-regulated in lapatinib refractory cells that are inhibited by EMBL-703625,
backing up the data from this project234.
Pre-treatment with EMBL-703625 did not sensitise either BT-474 or SK-BR3 cells to any
subsequent treatment, nor did it cause these cells to develop tolerance to further EMBL-
703625 treatment. This suggests that pirin inhibition in these cell lines does not cause
sensitization to subsequent HER2 inhibition, suggesting a degree of plasticity. However,
it is notable that at the 1µM concentration of EMBL-703625 selected for both cell lines
does not have strong effects on their viability, meaning that higher concentrations could
have more of a sensitising effect through phenotypic selection, or by influence on cellular
pathways. In the future, multiple pre-and post-treatment drug concentrations should be
used to understand how the severity of pre-treatment impacts on post-treatment for both
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of these drugs. Furthermore, transcriptomic experiments using this experimental design
would also help to gain clarity about how drug tolerance or sensitivity is acquired.
2.6.4 Future experiments (with relevance to results discussed in Section2.6)

Experiment Rationale
Expanding to
multiple

concentrations of
EMBL-703625
and lapatinib

The experiments outlined in this section were designed with
concentrations that elicited the largest possible effect in combination,
compared to either agent in monotherapy. However, this was based on
concurrent treatment, rather than consecutive treatment. It is possible

that maximum efficacy is gained with different concentrations,
especially those that are more likely to elicit phenotypic selection on

the cell population.
Transcriptomic
experiments on
successively
treated cells

To understand how (or if) cell sensitisation with one agent affects its
treatment with the other, transcriptomic analysis could be performed,
using similar techniques and analysis pipelines that were used in this
project. This would help in gaining an understanding of certain

vulnerabilities as a result of treatment with one agent, that the other
de-regulates in order to achieve a maximal killing effect.

Table 10: Future experimental directions with regard to the data discussed in Section 2.6.
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2.7 Establishment of a spatial and temporal light microscopy
pipeline, aimed at assessing intercellular metabolic het-
erogeneity via the use of a fluorescent metabolic sensor

One aim of this project was to develop an imaging pipeline that would allow a 3D spatial
and temporal assessment of the responses of cells to different drug treatments. Multiple
methods exist to study tumor metabolism, but rarely are able to resolve over time and
space simultaneously. Genetically encoded fluorescent sensors provide a unique way to
do this, and can be applied in multiple experimental settings, such as in high-throughput
plate reader-based approaches, in vivo settings, and in vitro, in the setting of light mi-
croscopy.
This project aimed to use an in vitro approach to characterize the NAD+/NADH ratio over
space and time. NAD+ is the oxidized form of NADH. Together, they are some of the
most important redox co-factors in cellular metabolism. Their main function is for NAD+
or NADH to serve as an electron acceptor or donor (respectively) in metabolic pathways,
including glycolysis, lipid metabolism, the TCA cycle, and the electron transport chain. As
well as this, NAD+ has a wider range of non-redox roles as a reaction cofactor, including
for PARP and SIRT proteins239.
In cancer cells, the ratio between NAD+ and NADH tends to be altered, with an increased
NAD+/NADH ratio relative to normal cells. Recent work suggests that high levels of NAD+
can lead to a Warburg phenotype; when the amount of NAD+ exceeds the demand for
ATP, NAD+ re-generation in the mitochondrial electron transport chain is slowed, which
promotes aerobic glycolysis240. In breast cancer, SIRT6, which is dependent on NAD+, is
associated with disease progression andmetastasis241. In fact, NAD+-dependent Sirtuins
are emerging as an area of interest research surrounding breast cancer metastasis and
drug-resistance242.
Taken together, given the importance of NAD+ and NADH in cellular metabolism, and their
central role in cancer cell metabolism, a read-out of the NAD+/NADH ratio is important
for informing on the overall metabolic state of the cell, which can have implications for its
phenotype. For example, in colon cancer, increased levels of NAD+ was associated with
disease progression243.
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2.7.1 The SoNar Sensor: a sensor for the cytosolic NAD+/NADH ratio
The sensor that was used for these experiments is called SoNar (Sensor of NAD(H)
Ratio)1. It is a flourescent peptide molecule based off subunits of the Rex protein from
Thermus aquaticus combined chimerically with circulary permutated YFP (cpYFP). The
Rex-derived subunits can bind to either NAD+ or NADH, which in turn causes conforma-
tional changes in the cpYFP domains of the chimer, changing their fluorescence charac-
teristics (Figure 30(a)). The changes in the fluorescence characteristics can be utilised
to obtain a read-out of the cellular NAD+/NADH ratio; when bound to NAD+, the major
excitation peak is at approx. 485-490nm, whereas when bound to NADH, it is approx.
405-420nm (Figure 30(b)). SoNar is particularly valuable because of its high dynamic
range compared to other sensors, with a 300% increase in the fluorescence ratio ob-
served when NADH was added1. Also, compared to other NAD+/NADH sensors, SoNar
is relatively resilient to pH changes, and does not have known problems forming tertiary
structures which has proven problematic for other sensors in certain cells. Furthermore,
it shows an obvious fluorescence response to NAD+, which is useful in the context of
high-throughput and in vivo experiments, which could be used in future experiments244
(Discussed further in the discussion of this section: Section 2.7.11.2).

Figure 30: SoNar sensor diagram, and excitation peaks, adapted from Zhao et al. (2015)1

The SoNar sensor was designed by its creators to be resilient to most environmental
condition changes within physiological limits (for example, pH or temperature changes).
However, it is still possible that environmental factors could have impacts on its character-
istics, as well as microscopy artefacts (for example, altered detection sensitivity between
experiments done at different times). It is important to control for this, and also to nor-
malise data so that it can be compared between experiments conducted at different times.
In order to do this, SoNar can be calibrated against cpYFP (Shown in Figure 31), which
has similar fluorescence properties to SoNar, but does not respond to NAD+ or NADH
addition. This can be used alongside the SoNar sensor with the dual purposes of acting
as an experimental control (shown in Figure 31), and also as a normalisation benchmark.
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Figure 31: A schematic, adapted from Zhao et al., (2017)245 of how cpYFP can be used tonormalise the ratio of SoNar to account for pH or other imaging artefacts. Additionally, cpYFPcan be used as a non-mathematical control to visually ensure ratio changes past a certain pointare genuine.

2.7.2 Establishment of SK-BR3 and BT-474 stably expressing SoNar andcpYFP using lentiviral transfection
To view cell lines expressing SoNar and cpYFP on a fluorescence microscope and get
sensitive and reliable readings, it was crucial to generate cells with strong and stable
expression of the sensor. Because of this, lentiviral transfection methods were used to
generate separate SK-BR3 and BT-474 lines that expressed SoNar and cpYFP under the
control of the CMV promoter; preliminary experiments established that the pCMV was
effective in expressing enough of each respective fluorophore to achieve a fluorescence
intensity that could be used in a microscopy setting (data not shown).
Lentivirally transfected cells were sorted from their non-transfected counterparts by flow
cytometry. The cells with the top 5% of fluorescence intensity were further separated us-
ing flow cytometry to generate a line of cells with the strongest and brightest SoNar or
cpYFP expression, to allow for a high dynamic range when imaging. Whilst BT-474 and
SK-BR3 expressing lines were generated (and fluorescence was confirmed) the experi-
ments discussed hereon-in used only SK-BR3 cells– this is because the 3D “grape”-like
organoids formed by SK-BR3 cells were easier to potentially analyse heterogeneity on,
compared to BT-474 “ball”-like organoids, which had very tightly packed cell-cell connec-
tions (3D structures shown in Figure 9, Page 53). BT-474 cells have been stored in liquid
nitrogen and are intended to be used in future experiments.
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Figure 32: The pLOVE lentirival vector expressing the SoNar sensor under the control of theCMV promoter. SoNar (shown) and cpYFP (Supplementary Figure S.10) were kindly providedby the original creators of the sensor1. These were cloned into the pLOVE vector using PCR-introduced restriction sites at each end of the gene. SoNar and cpYFP were both cloned into thesame position. Lentiviral particles were then produced, before transfection into BT-474 and SK-BR3 cells. The most strongly fluorescent 5% of cells were isolated through FACs to obtain cellswith a good dynamic range.

2.7.3 Light-sheet imaging of the SoNar sensor on the Leica SP8 DLS
Light-sheet imaging allows for imaging of fluorescent samples with decreased risks of
photo-bleaching or photo-toxicity, a high sample penetrance, and a high dynamic range,
compared to more conventional fluorescence microscopy techniques, such as confocal
microscopy, making it favourable for longer term 3-D imaging experiments.
The Leica SP8 DLS was used in order to image SK-BR3 cells expressing the SoNar sen-
sor. The Leica SP8 DLS at the EMBL ALMF utilises lasers at multiple excitation wave-
lengths, including 405nm and 488nm, making it ideal for both of the SoNar’s excitation
peaks (see Figure 30). Furthermore, multi-positioning techniques can be used to image
multiple positions in one experiment, giving more reliable overviews of how overall cell
metabolism was responding to drug or inhibitor treatment. On top of this, two magnifica-
tions could be used: 10x and 25x. For the figures shown here-on-in, the 10x lens was
used; this is because this image pipeline was designed with the aim of being able to gain
a representative overview of multiple different structures, which the 10x lens is able to
capture in its field of view. The 25x lens, however, provides a higher resolution, and was
118 M. Boucher



CHAPTER 2. RESULTS AND DISCUSSION

used as a secondary validation of the results found (Supplementary Figures S.11 and
S.12).
The following sections describe the establishment of experimental techniques used to
assess the SoNar sensor, which included: experimental set-up to allow simultaneous
imaging of SoNar and also cpYFP-expressing cell populations in normal cell culture con-
ditions, the establishment of an automated image analysis pipeline, and finally image
de-convolution, which has the potential to accurately resolve structures in 3D, giving an
accurate overview cell-cell heterogeneity.
2.7.4 Development of a mounting method to allow multi-positioning light-sheet imaging
To image on the Leica SP8 DLS, mounting methods had to be established in order to
have a sample growing in as close to normal growth conditions as possible, with minimal
sample movement or imaging artefacts, whilst allowing the light-sheet from the Leica SP8
DLS to pass freely through the sample. The Leica SP8 DLS operates by using two mirror
caps that come down on either side of a sample, these are angled at 45°, so that a beam
of fluorescent light coming from the illumination objective below can be directed through
it at a 90° angle (shown in Figure 33(c)). The resulting emission can then be read by the
detection objective, which is above the sample.
As discussed previously, it was also of crucial importance to be able to simultaneously
image cells expressing SoNar and cpYFP, meaning that they needed to be seeded and
grown on the same imaging plate. The Leica SP8 DLS had multi-positioning abilities,
meaning that more than one structure could be imaged in an experiment. However, this
meant that a mounting method was needed that allowed the microscope to move the
imaging plate hundreds of times (accounting for multiple time points) without damaging
the samples or causing them to drift.
To do this, a method was set up using a small glass “bridge” which was slightly elevated
(approximately 2mm) from the glass bottom of the imaging dish, and held in place by a
non-reactive glue, appropriate for imaging in this setting. On this bridge, Matrigel contain-
ing the two cell populations were seeded adjacent to each other. The glass "bridge" and
glass bottom of the imaging plate meant that light from the illumination objective could
reach the sample without compromising quality. The thickness of the "bridge" was cut to
be between 1.4-1.8mm wide, with a diamond ended pen to stop jagged edges forming, or
glass cracking, which could affect imaging. The "bridge" was narrow enough to allow the
two mirrors of the Leica SP8 DLS to fit either side of the sample. Being able to seed a rel-
atively small amount of Matrigel (typically 5-10µl) also meant that the samples were less
susceptible to drift, and could be imaged on a time period of multiple days (the longest
time length tested was 72 hours).
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Figure 33: Sample mouting for the Leica SP8 DLS. (a) and (b) The imaging chamber used togrow and image cells expressing the SoNar sensor. Glass strips, cut from a microscopy coverslip to a width of 1.4-1.8mm were elevated from the bottom of a glass bottomed plate, and heldin place with Picodent Twinsil®, an inert, culture-friendly quickly solidifying paste. Two droplets ofmatrigel, one containing cells expressing SoNar, and the other containing cells expressing cpYFPwere then seeded on the glass strip adjacent to one another. The cells within were left in a tissueculture incubator to grow to an appropriate size, before being imaged on the Leica SP8 DLS. Asshown in (b), the surface tension of the matrigel gave each droplet a 3-D appearance. This, alongwith the elevation of the glass strip, allowed the mirror caps shown in (c) to pass either side of thematrigel droplets, so that a light sheet could be passed through them.

2.7.5 Image analysis workflow
Using the mounting methods described in Section 2.7.4, an image analysis pipeline now
needed to be established. In order to do this, two workflows were set up, both using the
10x magnification lens. Firstly, a "fast" workflow was set up, to allow for a generalised
temporal overview of how SoNar expressing cells respond to different treatments or con-
ditions. However, as will be described (Section 2.7.6.3), image artefacts in the Z-plane
meant that cells could not be resolved on a single cell resolution, due to the 3D mean
blurring that was needed to correct for this. Instead, only a general overview of the ra-
tio response could be given. Therefore, another workflow was innovated using image
deconvolution to obtain a better 3D resolution, aimed at being able to resolve cells on
an individual basis. This workflow involved image fusion of each individual mirrors light-
sheet image (in the "fast" workflow the fused images generated by the Leica SP8 DLS
were used (Described in Section 2.7.6.1)). These two approaches can be used side-by-
side for experiments; the "fast" workflow allows an exploratory identification of conditions
or treatments that may influence the NAD+/NADH ratio of cells with a relatively quick and
automated workflow. The fusion and de-convolution workflow allows for a more in-depth
exploration of these treatments, and may allow a read-out on a cell-cell resolution. Figure
34 summarises the overall workflow, which is described over the next sections.
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Figure 34: Workflow of the two image analysis pipelines for the Leica SP8 DLS This projectpioneered two separate work-flow approaches, which allows a trade-off between experimentalspeed and convenience, and image resolution that could allow resolution of cells on an individualbasis.

2.7.6 Establishment of an automated big data image analysis pipeline
2.7.6.1 Processing of raw data to workable sizes
For each Z-plane, the Leica SP8 DLS takes an image with illumination from the right and
left light-sheets, and automatically merges them together in order to create a combined
image. This is useful for visualising a whole structure, and helps offset the “stripe” effect
which is a commonly seen artefact in light-sheet imaging experiments. For the analysis
done in this section, the combined images were used, with the individual mirror images
being visually inspected to verify that there were no misleading deviations in the combined
image.
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The combination of 3 high resolution images being taken for each Z plane, large Z-stacks,
multiple time points, channels, and positions meant that a single light-sheet experiment
typically generated between 400,000 and 800,000 high resolution images (2046x2046
pixels each), equating to approximately 4-6 terrabytes of data for a single experiment.
The large data sizes of each experiment meant that it was essential to reduce the size
of the dataset before analysis could be conducted; without this, analysis would require
unfeasibly long amounts of time, data storage, and computational power. Because of
this, the first step of the image analysis pipeline was to reduce image size through pixel
binning.
However, it was still important to be able to visualise data before file size reduction, so
that data could be pre-processed (for example, drift correction, chromatic shift correction
in the X, Y or Z plane between the two channels, and cropping of regions containing no
cells). To do this, Christian Tischer (ALMF, EMBL) developed an ImageJ plug-in called the
Big Data Processor 2 (BDP2), which worked via lazy-loading, allowing for image series
viewing without opening the whole dataset at once.
Using the BDP2, ImageJ macros were developed that allowed automation of data pre-
processing (with the exception of cropping, which was manually performed) and binned
the pixels to workable file sizes before saving. This binning was performed at 2-2-2; X-Y-Z.
The raw data was backed up to tape for long term storage.
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Figure 35: The processing pipeline of raw Leica SP8 DLS data using the BigDataProcessor2. The BigDataProcessor 2 is an ImageJ plug-in, created by Christian Tischer (ALMF, EMBL) thatallows visualisation, and automated processing and analysis of large image data sets, throughutilising "lazy" loading. In the context of these experiments, the BigDataProcessor 2 was utilised tocorrect chromatic Z-plane shifts between the 405 and 488 channels, and bin pixels, 2*2*2 (X*Y*Z)to drastically reduce file size, to make further downstream analysis computationally and temporallyfeasible.

2.7.6.2 Ratiometric viewing using lazy loading: The Lazy Ratio Viewer
Despite significant file reduction size achieved through pixel binning and cropping of areas
containing no cells, total experimental file sizes were still large (typically 100-150GB for
a single experiment across all positions). However, data could once again be visualised
using lazy loading with the BDP2.
In order to view and analyse ratiometric data, it was also necessary to utilise lazy loading
to do this because of the large file size. Therefore, Christian Tischer (ALMF, EMBL)
developed the “Lazy Ratio Viewer”. Similarly to the BDP2, this utilises Lazy loading to
visualise ratiometric images, and works by dividing the pixel intensity of one channel, by
the corresponding pixel intensity of the other channel. As shown in Figure 36, this had
different parameters that could be adjusted for optimisation. “Background” was used as
the baseline (i.e. the “zero” point), and “Threshold” was used to set a cut-off value; pixels
below this value would not be calculated in the output ratio image. This was useful for
areas of low intensity (for example, “halo” artefacts around the edge of cells) which created
noise and gave erroneous values. It was also useful for experiments where cells began
to die following drug treatment – these cells would still contain residual SoNar/cpYFP and
were also often auto-fluorescent at a low level. These cells would give erroneous ratio
values, but were also dimmer in both channels than the live cells, meaning the threshold
could be used to ensure these cells were omitted from experimental analysis.

M. Boucher 123



CHAPTER 2. RESULTS AND DISCUSSION

Figure 36: Creation and visualisation of ratio-metric images using the Lazy Ratio Viewer(ImageJ plug-in) The Lazy Ratio Viewer was created by Christian Tischer (ALMF, EMBL), tovisualise the ratio differences between images taken in each channel. To remove backgroundvalues and noise from dimmer cells or cell edges, background and threshold values could be setfor each channel. On the ratio-output images, look-up tables are applied for more convenientvisualisation of differing ratios. Calibration bars, scale bars and time stamps are added to ratioimages for real experiments.

2.7.6.3 Image artefact correction and noise reduction: 3D mean blurring
Upon inspection of initial set-up experiments using the Lazy Ratio Viewer and correspond-
ing channel images, it became apparent that further optimisation was also required to
reduce image noise, and also to correct for artefacts in the Z-plane. In particular, the
output from the 405nm excitation channel appeared spread in the Z-plane, particularly in
the direction of the detection objective. In the ratio output, this often created the artefact
that the ratio appeared lower at one end of the cell or of a group of cells. Whilst this was
largely corrected by setting appropriate background and threshold pixel values in the Lazy
Ratio Viewer (see previous subsection), it was important to develop strategies to account
for this fully, so that visualisation of the cells was not misleading, and also so that gener-
alised output such as overall statistics were not skewed. To do this in a practical way that
did not require high computation power, this was done be performing a 3D mean pixel
blur. Blurring inherently comes at the compromise of cell-cell resolution, but at the ad-
vantage that overall observations and statistical outputs can be made more reliable, and
performed on a feasible time-scale. Despite the blurring, it was still possible to visualise
ratiometric images, but was not reliable to do single-cell tracking and conclusions about
heterogeneity could only be made in a general sense. As stated before, this project aimed
to solve these problems through image deconvolution (Section 2.7.10.2).
Image blurring (particularly in the Z-plane) helped to reduce noise and generate more
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reliable ratio-metric images for visualisation (Figure 37) and output statistics such as his-
tograms of pixel ratios, which could then be further used for downstream analysis.

Figure 37: 3D mean blurring of light sheet images to reduce noise and correct for image artefacts

2.7.6.4 Generalised image analysis: Generation of histograms and normalised
means

Once image artefacts had been removed and noise had been reduced, it was now also
possible to visualise NAD+/NADH ratio changes in cells over their time course. It was
also desirable to generate a convenient and simple numeric output. One simple and
informative way to do this is to take the mean ratio values for each whole Z-stack, and ob-
serve how it changes over multiple time points. Imaging cells expressing cpYFP alongside
SoNar-expressing cells was critical for this; the mean value given from SoNar-expressing
cells could be normalised to the output from cpYFP-expressing cells variation not caused
by the NAD+/NADH ratio. For example, a change in the pH of the cell media that was
caused by the small differences in the environment of the microscope compared to the
normal cell culture incubator could cause changes in the fluorescence characteristics of
SoNar and cpYFP that is not to do with the NAD+/NADH ratio of the cell. Calibrating the
SoNar sensor against the cpYFP sensor helps to account for this.
However, whilst calculating the normalised mean of each position was useful and infor-
mative, it did not give a read-out of any cell-cell heterogeneity, which was one of the main
aims of this experimental pipeline. As stated before, one computationally intensive way
that is being established to do this is described in Section 2.7.10.2. However, generat-
ing histograms of ratio intensities for all the pixels in each Z-stack could be also used as
a convenient visualisation of any heterogeneity in a generalized sense. Similarly to the
mean value, these could be compared across time points to observe how the overall data
spread shifted when the cells were subjected to a particular treatment or condition.
Because of this, an ImageJ macro was written that would calculate the mean pixel value
for each time point, as well as generating a histogram, and saving a 3D TIFF file of Lazy
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Ratio Viewer output. These could all be visualised over the whole time series, and the
means of the SoNar sensor could be normalised to the cpYFP for each timepoint.

Figure 38: Histogram generation from 3-D ratio images 3-D ratio images were generated usingthe Lazy Ratio Viewer (see Figure 36) and macros were written to automatically generate statisticsabout the the 3-D ratio stack for each time point, including the generation of a histogram for overallviews of how the distribution of ratio values changed over the time course of the experiment.

2.7.7 Testing and characterising the functionality of the SoNar sensor witha oxamate, known NAD+/NADH ratio reducing agent
Once the mounting and image analysis pipeline had been established, it was important to
characterise the SoNar sensor. Previously, experiments were conducted to verify that the
SoNar sensor and cpYFP fluorophore could be imaged without photobleaching, photo-
toxicity, or unexpected behavioural changes in the cells for the duration of an experiment
(data not shown).
It was now important to establish that the SoNar sensor behaved in ways that were ex-
pected. Conveniently, oxamate (also used in combination treatment experiments in Sec-
tion 2.4), was recommended for this purpose by the creators of the SoNar sensor, due to
its known function in drastically reducing the NAD+/NADH ratio.
Oxamate is an non-competitive inhibitor of the lactate dehydrogenase enzyme, which
catalyses the conversion of pyruvate to lactate, using NADH as a co-factor to provide a
H+ ion (a proton), in turn, converting it to NAD+. When inhibited by oxamate, this means
that NADH accumulates in the cell, causing causing the NAD+/NADH ratio to decrease.
To visualise dynamic changes in the NAD+/NADH ratio of SK-BR3 cells, images were
taken every 10 minutes for 15 hours, at two positions for the SoNar sensor, and an-
other two for the cpYFP flourophore. Upon addition of 200mM of Sodium Oxamate, SK-
BR3 cells expressing the SoNar sensor displayed fast and dramatic reductions in their
NAD+/NADH ratio, with a relative increase in brightness in the NADH (405nm) channel
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(Figure 39(a)). In contrast, the cpYFP flourophore underwent very minimal changes in ei-
ther channel (Figure 39(b)). There was a slight increase in the initial ratio of the cpYFP flu-
orophore over the first few timepoints, which is consistent between multiple experiments.
This is possibly because of small changes in environmental conditions between the nor-
mal cell incubator and the microscope (for example, small differences in the atmospheric
CO2 concentration, causing a slight pH change).

Using the data generated from the oxamate addition, the three main established parts of
the imaging analysis pipeline: ratio-visualisation, histogram generation, and normalised
mean generation (shown in Figure 39) could be used. Consistent with the ratio-visualisation
and histogram generation, the normalised mean also showed a sharp decrease over the
15 hour time course.
M. Boucher 127



CHAPTER 2. RESULTS AND DISCUSSION

Figure 39: Figure continued on next page.
128 M. Boucher



CHAPTER 2. RESULTS AND DISCUSSION

Figure 39: Ratio changes in SK-BR3 cells expressing the SoNar sensor after the addition ofOxamate. SoNar (a) and cpYFP (b) expressing SK-BR3 cells after treatment with 100mM SodiumOxamate, showing representative ratio-metric images (top) and corresponding histograms for theentire Z-stack. (c) The overall mean NAD+/NADH ratio for the SoNar sensor, normalised at eachtime point to corresponding cpYFP-expressing cells. Ratio shown relative to time point 0.

2.7.8 Lapatinib treatment at close to IC50 concentrations reduces theNAD+/NADHratio of SK-BR3 cells over time
The image analysis pipeline had now been established, and the SoNar sensor had been
characterised with oxamate, showing consistent results with the data presented by the
SoNar creators244. To observe the effect that HER2 inhibition had on the NAD+/NADH
ratio, lapatinib was added to SK-BR3 cells at a concentration of 1.3µM. Prior experiments
(see Figure 11 and 15) had shown that 1µM of lapatinib was approximately the IC50 of
these cells over 72 hours, so 1.3µM was given to test this over a shorter time period (ap-
prox. 24 hours). Separately, Sylwia Gawrzak had also found similar results in independent
experiments on these cell lines (data not shown).
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Figure 40: SK-BR3 cells expressing the SoNar sensor, treated with 1.3µM lapatinib

This experiment was repeated twice, once with the 10x lens to visualise multiple structures
at once, and once with the 25x lens, to view cells at a higher resolution (Supplementary
Figure S.11). Results were consistent between both of the experiments, with the addition
of lapatinib causing overall reductions in the NAD+/NADH ratio of these cells. In contrast,
the cpYFP control flourophore showed only very little change in its overall fluorescence
ratio.

2.7.9 Lapatinib andEMBL-703625 act synergistically to reduce theNAD+/NADHratio of SK-BR3 cells
Results from biochemical assays and re-growth experiments demonstrated that EMBL-
703625 and lapatinib synergistically reduced the viability of BT-474 and SK-BR3 cells, and
compromised the ability of BT-474 cells to re-grow. In order to gain an understanding from
a metabolic perspective, light-sheet experiments were conducted with doses of lapatinib
and EMBL-703625 that caused relatively modest reductions in viability, but stronger re-
ductions when combined together. Cells were either treated with lapatinib alone (0.2µM),
EMBL-703625 alone (1µM) or together, and images were taken every 20 minutes until
widespread cell death was apparent after approximately 24 hours.
When treated with both inhibitors together, the vast majority of cells saw a steady decrease
in their NAD+/NADH ratio, and the majority eventually fell below the intensity threshold,
indicative that sensor expression itself had stopped. At the end of the 24 hour imaging
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period, a very small number cells were still able to maintain their initial ratio, whereas most
either had a decreased ratio or had fallen below the intensity threshold (Fig. 40 (a) and
(b)). Treatment with lapatinib (Fig. 40 (c) and (d)) or EMBL-703625 (Fig. 40 (e) and (f))
alone lead to a much less pronounced decrease in the ratio, with a far higher number of
cells able to maintain their initial ratio throughout the imaging period, and with only minor
changes in their overall mean ratio compared to the combination treatment in the first 24
hours (Fig. 40(g)). The experiment was also repeated with the 25x lens (Supplementary
Figure S.12) with consistent results.
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Figure 40: The NAD+/NADH ratio of SK-BR3 cells treated with combination therapy, or Lapa-tinib, or EMBL-703625 monotherapy at 0, 10, 20 and 25 hours. (a), (c) and (e) show represen-tative ratio images for SoNar-expressing SK-BR3 cells treated with combination therapy, lapatinibmonotherapy, and EMBL-703625 monotherapy, respectively. Time points in hours and minutesare shown at the bottom right of each image. (b), (d) and (f) show overall histograms for the ratioZ-stacks of each corresponding time point.

2.7.10 Image fusion and deconvolution, aimed to be able to improve imageresolution to visualise cell-cell heterogeneity
2.7.10.1 Background and Theory
The results presented so far have been able to generate a general understanding of how
the NAD+/NADH ratio of cells respond to different treatments over time. However, be-
cause of issues with resolving cells in 3D, this has not yet been able to provide a read-out
on cell-cell heterogeneity, which was the original project aim. Because of this, a further
pipeline was established that performed 3D image deconvolution using Huygens software
(http://svi.nl). Marko Lampe (ALMF, EMBL) performed the merging and deconvolution of
the Leica SP8 DLS raw data using Huygens software.
Deconvolution is a computational image analysis process that uses mathematical func-
tions to improve image resolution. This works by accounting for patterns of light diffraction.
All images taken under a microscope are subject to light diffraction, which occurs when
a light wave encounters an object, causing them to spread or curve around the object.
These diffracted wavelengths of light are then detected by the objective of the micro-
scope and are interpreted as the final image. This diffraction is a form of interference,
and often manifests as image blurring or smearing. The pattern of this diffraction can be
mathematically defined based on a combination of the wavelength of light emitted, and the
numerical aperture of the microscope, which known as the point spread function (PSF).
In simple terms, the real-life specimen, multiplied by the PSF, results in the convolved
image that is detected by the microscope. In practice, this can mean that two objects in
close proximity to each other cannot be resolved if their proximity is closer together than
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the PSF.
Deconvolution is designed to partially account for the PSF in the final image, and there-
fore generate images that have a higher resolution and contrast. This can help to resolve
structures that would have otherwise not been resolved because they were in closer prox-
imity than the PSF.
In the context of this experiment, deconvolution was aimed to be able to resolve individ-
ual cells in 3D, which was not possible from the raw images generated by the Leica SP8
DLS, particularly because of blurring or smearing in the Z-plane, which was dealt with in
the "fast" workflow by using a 3D mean blur, at the compromise that cell-cell resolution
was lost. As discussed previously (see Section 2.7.5), the Leica SP8 generates 3 sepa-
rate images of the same structure; 2 images resulting from light-sheets coming from the
left or right mirrors, and a merged version based from both of these images automatically
using Leica software. In the previous sections, this merged version was used to conduct
these experiments. However, to properly perform deconvolution, the raw images from
the left and right light sheets were merged using Huygens software, and deconvolution
was performed on these merged images. Prior to deconvolution a specific region of in-
terest was selected to reduce the computational time needed for these proof-of-principle
experiments.
2.7.10.2 Image deconvolution is able to better resolve cells in 3D
As shown in Figure 41(a), deconvolution improved image resolution, particularly in the
Z-plane, which is influenced by a large amount of light diffraction, particularly in the 405
excitation channel (shown). This allowed cells to be more resolved and distinguished
from one another in 3D. This presents an encouraging precedent for the image analysis
pipeline, as this makes cells possibly more amenable to processes such as segmentation
and 3D rendering, which could allow a greater understanding of cell-cell heterogeneity.
An example of this 3D rendering is shown in Figure 41(b).
This experiment was designed as a proof-of-principle, and therefore processed a single
channel (405nm excitation) in a particular region of interest, at a single time point, which
was practically feasible because of time constraints. However, this approach can be ex-
trapolated to multiple time-points, channels, and larger regions of interest, at the compro-
mise that this takes time and a large amount of computational power; typically over the
scale of 1-2 weeks for a single experiment, using up to 1TB of computer RAM. It is also
important to note that this approach is subject to further optimisation. A discussion of the
next steps in this regard, as well as the applicability of this approach with other sensors
or experimental systems follows in Section 2.7.11.
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Figure 41: 3D deconvolution of SoNar expressing SK-BR3 cells taken with excitation at405nm (a) Images taken in the XY, XZ, and YZ planes showing improvements in resolution fol-lowing deconvolution. Yellow lines show the planes of view for their perpendicular images. Theleft 3 images (under "Before" heading) are the merged images that are generated from the LeicaSP8 DLS software, which is used in the "fast" pipeline (outlined in Figure 34). The images underthe "After" heading were generated following fusion of the raw images generated by illuminationfrom the right and left mirror caps of the Leica SP8 DLS and deconvolved, both using Huygenssoftware. (b) 3D rendering of fused and deconvolved images of SoNar-expressing SK-BR3 cellsexcited at SoNar’s 405nm excitation peak. This image was taken by Marko Lampe (EMBL ALMF)using Huygens deconvolution software. For reference, the organoid shown in part (a) is shownhere in pink. Scale bars = 150µm.
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2.7.11 Discussion of Section 2.7: Light-sheet imaging of breast cancercells to obtain a spatial and temporal read-out of the redox statusof cells on cell-cell resolution
2.7.11.1 Discussion of results and further directions to further develop and opti-

mise the microscopy and image analysis pipeline
To our knowledge, this light-sheet microscopy-based experimental pipeline is the first that
could potentially resolve cancer metabolic heterogeneity simultaneously on a spatial and
temporal basis, although a similar approach that was recently published allows light-sheet
redox imaging of patient-derived organoids on a high-throughput, non-temporal basis246
(not using the SoNar sensor). Heterogeneity is of critical importance when assessing cell
responses, and the methodology established in this project could allow for a wide range
of different experimental approaches to be applied into this system.
To find a trade-off between experimental convenience and detail, two separate experi-
mental workflows were established. Both approaches are outlined in Figure 34 (Page
121). The “fast” approach (described in Section 2.7.5) allows for a convenient and auto-
mated general read-out of cellular NAD+/NADH ratios in response to different conditions.
This allows a first assessment of experiments or experimental designs that may show
results of further interest. The image fusion and deconvolution approaches (outlined in
Section 2.7.10.2) then allow a more intricate and detailed assessment on a cell by cell
resolution, with possible implications for studying cell heterogeneity. This comes with the
compromise of relatively long (1-2 weeks) image analysis timelines, with the requirement
for powerful computational memory (up to 1TB of RAM).
Using the “fast” approach, we showed that the NAD+/NADH ratio of cells decrease in
treatment conditions known to cause cell death from other experiments (Figures 40 and
2.7.9). Previous results suggest that increases or decreases in the NAD+/NADH ratio
are both predictive of cell death because of fundamental changes in cell metabolism. For
example, the high-throughput screening approaches with the SoNar sensor by Zhao et
al. (2017) found compounds that led to apoptosis in H1299 cells through ratio changes
in both directions1. In fact, changes in the NAD+/NADH ratio may also indicate that the
cell has acquired a more aggressive phenotype; at non-lethal levels, reductions in the
cellular NAD+/NADH ratio significantly increased in vivo metastasis in MDA-MB-231 and
MDA-MB-435 cells247.
Future experiments using the fusion and deconvolution pipeline will aim to understand
the degree of heterogeneity that these cells may experience when subjected to the same
treatments as in Figure 40. However, it is expected that human cell lines, such as SK-
BR3, are likely to be relatively homogenous compared to other experimental systems
such as mouse or patient derived organoids, particularly in the context of DNA stability.
In this context, it would be of interest to also image mouse-derived or patient-derived
organoids. To this end, attempts to generate mouse lines that stably express SoNar or
cpYFP were already attempted, but unfortunately failed and could not be repeated before
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the submission of this thesis. However, it is also possible to use the lentiviral approaches
also established in this lab to transfect primary in vitro mouse cells with the SoNar sen-
sor, as previously established by Alladin et al. (2020). Conveniently, this same approach
was used to originally generate the SoNar/cpYFP expressing SK-BR3 (and BT-474) ex-
pressing cells, meaning that the lentiviral vectors (including similar vectors using pCAG
or pEF1α as the promoter) to be used in this approach have already been generated.
It is of importance to note that the image deconvolution approaches are still in early stages
of development; the pipeline is subject to optimisation, which may further improve im-
age resolution. However, Figure 41 has shown that, as a proof of principle, it is pos-
sible to resolve these cells to a degree that allows them to be distinguished from one
another. To optimally visualise these cells and understand heterogeneity, it is likely that
cell segmentation approaches would be important. Using segmentation, each cell could
be given a "mask" and the ratiometric voxels within could be averaged to provide a mean
NAD+/NADH SoNar ratio for each cell. This would likely make for easier visualisation and
cell tracking. To this end, further approaches are planned to experiment with using live
nuclear and/or surface membrane dyes at red or far-red wavelengths (as to not interfere
with the SoNar sensor), which may further enhance cell segmentation approaches. Sim-
ilar approaches were previously undertaken in this project using lentivirally-transfected
mCardinal linked to Glycosylphosphatidylinositol (GPI) in order to anchor it to the cell
membrane, but the mCardinal unfortunately did not express at levels that allowed a us-
able intensity for these experiments.
If cells were able to be segmented and tracked, this would have large implications for
experiments that could be performed, as it would allow an understanding of how different
cellular phenotypes respond to different treatments. For example, if SoNar-expressing
SK-BR3 cells were treated with a concentration of lapatinib that led to certain cells having
different NAD+/NADH ratios than other cells, it could be assessed if these cells were more
resilient or sensitive to subsequent EMBL-703625 treatment. If primary mouse cells were
used, the level of pre-existing heterogeneity could be enough to make these conclusions
without a prior sensitising treatment.

2.7.11.2 Other possible future uses for the SoNar sensor, or similar sensors
This project focused on imaging and characterising the SoNar sensor using light-sheet
microscopy. However, there are multiple other experimental contexts that the SoNar sen-
sor could be used in. It was originally characterised in the context of high-throughput
screening, which makes it applicable for cancer drug discovery, an approach that is be-
yond the scope of this project. However, attempts were made to use the SoNar sensor
in the context of the synergy experiments described in Section 2.1.2, to understand in a
high-throughput way how the NAD+/NADH ratio would be affected by these drug com-
binations. However, at the resolution of a plate reader, the intensity of the flourescence
signal coming from the SoNar-expressing cells was not intense enough over the auto-
flourescence coming from the matrigel to produce accurate or sensitive results. However,
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preliminary approaches were established in collaboration with the EMBL ALMF to attempt
to do this using high-throughput confocal approaches, which had the added benefit that
there could be some basic read-outs of heterogeneity (although likely between organoids
rather than individual cells). These approaches appeared feasible, but had not been ex-
tensively characterised at the point of this thesis submission. Nonetheless, if these ap-
proaches continued to yield usable results, then there are different experimental workflows
that could be applied. Not only could high-throughput experiments be conducted that may
give a read-out on drug interactions, they could also be used for experiments on a longer
time-scale than is possible on the Leica SP8 DLS. In the context of cell re-growth, this
approach would be valuable to understand if any metabolic phenotype (with respect to
the NAD+/NADH ratio) correlates with re-growth ability.
On top of this, the authors of the SoNar sensor have also demonstrated that this sensor
is applicable for in vivo approaches in mice244. With this in mind, attempts were made to
generate transgenic mice that express SoNar or cpYFP, with the dual aim of being able
to do in vivo and in vitro approaches (see previous sub-section). Unfortunately, although
founder mice were generated, no flourescent signal for SoNar was observed in any PCR-
positive mice. However, in the future, this could be performed by transducing cells at
the ROSA-26 locus, which has been previously demonstrated to yield strong flourescent
expression248.
Finally, in a more general context, other metabolic sensors of interest could also be
amenable to the approaches described in this section. Of relevance, the authors that cre-
ated the SoNar sensor have since also generated a very similar sensor of NADP+/NADPH
known as iNAP249, which uses identical excitation and wavelengths, making it directly ap-
plicable to the experimental pipeline established in this project. Understanding this ratio
is of relevance to the transcriptomic results in this project, described in Section 2.2. This
is because many of the pathways that were de-regulated by combination lapatinib and
EMBL-703625 treatment are known to be directly or in-directly involved in ROS detoxifi-
cation, which NADPH plays an integral role in, in cancer cells250. This could further give
a read-out on a spatial and temporal basis in this context.
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2.8 Changes in tumor cells and during the formation of mini-
mal residual disease

2.8.1 Gene expression changes during tumor regression towards a resid-ual state
The results in this section were generated, and also analysed separately by Ashna Alladin and Ksenija Radic
Shechter. Ksenija Radic-Shechter further developed these results using a multi-omics based approach. At
the time of this thesis submission, these results have been submitted for publication; a pre-print can be found
at Reference175.
The results of lapatinib and EMBL-703625 synergy provide an encouraging pre-clinical
rationale for movement into a clinical setting, pending in vivo data. However, it is im-
portant to also understand how residually surviving cells differ from their normal coun-
terparts. This could inform on further clinical targeting strategies outside of lapatinib or
EMBL-703625. As well as this, some clinical strategies now focus on giving maintenance
treatment regimens in order to prevent relapse after initial treatment; understanding pos-
sible vulnerabilities of residual cells could help to inform which strategies could be better.
To assess this the differences between normal, tumor and residual cells, Ksenija Radic-
Shechter and Ashna Alladin designed and conducted transcriptomic experiments that
compared the transcriptional profile of induced primary mouse tumor cells to their normal
counterparts. These experiments transcriptionally profiled cells that resembled a tumori-
genic state (5 days on DOX) and cells that were transitioning from a tumorigenic state to
a residual state, following oncogene de-induction (see Figure 42(a)).
Gene expression over this time course was analysed, and adjusted p-values were gen-
erated for each gene (performed by Ashna Alladin, and analysed by Katharina Zirngibl
using the "R" package "DeSeq2"). Cellular processes that are de-regulated may act as
potential targetable nodes. Because of this, it was of interest to perform a parallel analysis
to identify pathways that had large numbers of de-regulated genes. From this, pathways
of interest could be selected, and further analysed. To assess which pathways that over-
represented with de-regulated genes, gene ontology analysis was performed on these
data by Matt Rogon (EMBL: Bio-IT).
Metabolic pathways were of particular interest to this project (See Section 1.5.3 for a
full explanation). Because of this, certain metabolic pathways, and signalling pathways
related to metabolism were selected for further analysis (shown as part of higher order
networks in Figure 42 (c-f)).
Observing how these pathways may interact with each other is important to further under-
stand how cell metabolism is altered as cells regress towards a residual state. To achieve
this, the genes in these pathways were analysed and visualised by Matt Rogon, using
the ClueGO plug-in, in Cytoscape. This plug-in allows a visualisation of all the known
interactions of expressed proteins in these networks. Significantly de-regulated pathways
with high degrees of interaction could suggest higher-order de-regulation, and suggest a
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fundamental change in a certain area of the biology of the cell.
From this analysis, networks involving sugarmetabolism (Figure 42(c)), amino acidmetabolism
(Figure 42(d)), mitophagy (Figure 42(e)), and cellular signalling pathways such as FoxO,
TGF-β, adipocytokine and Ras signalling (Figure 42(f)) were manually selected as path-
ways of particular interest.
A description and interpretation of the data shown in Figure 42 follows after the figure.

Figure 42: Experimental schematic and zoomed-in data display example (a) Schematic ofthe experiment detailed in this figure. Primary cells derived from mouse mammary glands wereseeded in matrigel and kept on DOX for 5 days to induce a tumor-like state. Following this, theDOX was removed, causing oncogene (HER2 and MYC) over-expression to stop, meaning thattumor cells regressed to a residual-like state. At the time points shown, RNA samples were takenand gene expression was analysed. (b) An example of a significantly de-regulated gene (adjustedp-value <0.01) profiling the log(2)fold gene expression changes (relative to never induced) at theprofiled time points. It is increased in size as genes in the rest of the figure are not possible toread.
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Figure 42: (c) Sugar metabolismContinued on next pages.

M. Boucher 141



CHAPTER 2. RESULTS AND DISCUSSION

Figure 42: (d) Amino acid metabolismContinued on next pages.
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Figure 42: (e) MitophagyContinued on next page.
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Figure 42: Significantly de-regulated genes in sugar (c), amino acid (d), mitophagy (e),and TGF-β and FoxO signalling pathways (f) during tumorigenesis and tumor de-induction.Known gene-gene interactions are shown with grey lines. Significantly de-regulated genes areenlarged and have their corresponding gene symbol below. Non-significantly de-regulated genesare shown as smaller squares, and their symbols are omitted for figure readability. In each signif-icantly de-regulated gene node, a graph is shown of the log(2) fold change, relative to never in-duced for each time-point. These experiments were designed and performed by Ashna Alladin andKsenija-Radic Shechter. Analysis of the data and clustering of gene trajectories was performedby Katharina Zirngibl. Based on these trajectories, Matt Rogon performed gene ontology analysisto decipher de-regulated pathways. I (Matthew Boucher) chose pathways of interest for furtheranalysis, and analysis on ClueGO, and importing of the results into cytoscape was performed byMatt Rogon. I directed which pathways should be analysed, and performed visualisation of thesepathways.
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As shown across Figure 42 for all the pathways included in this analysis, multiple genes
across the analysed pathways were de-regulated. As expected, the majority of genes,
whether up- or down-regulated, tended to show expression levels that were altered in the
tumor state (bar on the far left) and returning to levels comparable with never induced
cells, in line with the notion that they are largely re-acquiring typical mammary epithelial
characteristics. However, a subset of genes appeared to have atypical expression levels,
either on a transient basis, or staying de-regulated for the duration of the time points
assessed. These genes could indicate altered cellular characteristics that could serve as
points of interference, both as the cell is transitioning, and also as a longer-term residual
state.
As shown in Figure 42(c), networks involved in sugar metabolism included glycosamino-
glycan degradation, fructose and mannose metabolism, inositol phosphate metabolism,
glycosaminoglycan biosynthesis, propanoatemetabolism, and pyruvatemetabolism. Fruc-
tose and mannose, pyruvate and propanoate metabolism have high degrees of intra- and
inter-connectivity, along with Glycosaminoglycan biosynthesis and Addition of GlcNaC to
the TN antigen. Genes involved in fructose and mannose metabolism had increases in
expression as cells regressed towards a residual state, for example in Hk2, Pfkfb3, Aldoa
and Mpi. This suggests a shift towards using these two sugars as a source of energy pro-
duction in the cell. Hk2 and Pfkfb3 showed increased expression levels in the tumor state
- both of these genes promote glycolytic metabolism, in line with the notion that tumor
cells have increased glycolytic flux.
In contrast, pyruvate and propanoate metabolism had increases and decreases in the
expression of different genes. Focusing on cells in the tumor state (bar on the far left of
each graph), genes such as Me3 and Acss3 were down-regulated, which are both mito-
chondrial enzymes. Acyp2, which hydrolyses acyl phosphates, was also down-regulated,
although its wider physiologial role remains unclear. The other genes had small increases
or decreases in their expression.
As cells regressed towards a residual state, the majority of genes, such as Me2, Me3,
Mdh2, Acss3 and Dld appeared to return to expression levels comparable to normal,
whereas certain genes, such as Pkm, Grhpr and Acyp2 had small fluctuations (although
still statistically significant), the first two being involved in pyruvate production. Pdha1 ap-
peared to have increased expression levels across the time series, with a small increase
during cell regression - this is involved in the production of acetyl-coA from pyruvate.
The majority of genes that were significantly altered in glycosaminoglycan biosynthesis
and degradation were down-regulated in tumor cells, but appeared to taper back towards
a log(2) fold change of 0 as cells regressed towards a residual state, for example, Hexa,
Hexb, St3gal2, and St3gal3.
Interestingly, certain gene expression signatures suggested a shift towards the produc-
tion of keratan sulfate in tumor and residual cells. For example B3gnt7, which was up-
regulated in tumor and residual cells, is involved in keratan sulfate biosynthesis, and
Chst1, which was strongly down-regulated in tumor and residual cells, is involved in break-
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down of keratan sulfate through sulfation, although Chst2, which has a similar function
was moderately up-regulated as cells regressed.
Hyal1 and Hyal3, which are both involved in hyaluronic acid breakdown were moderately
decreased in tumor cells, but had an increase in expression as cells began to regress.
Hyaluronic acid is associated with breast cancer motility. Therefore its breakdown in line
with the notion that these cells are acquiring a more "normal" epithelial breast like state.
Themajority of significantly deregulated genes in glycosaminoglycan biosynthesis or degra-
dation returned to "normal" expression levels (relative to never induced cells) suggesting
that residual cells acquire relatively typical mammary epithelial like characteristics, in this
respect.
Focusing on tumor cells (far left bar), many of the gene expression changes in relation to
amino acid metabolism (Figure 42(d)) were associated with the urea cycle and creatine
biosynthesis in tumor cells. For example, Got2, Gls2, Gatm, Nos1, Nos2, Car8, Car9
and Car12 (all of which, apart from Nos1 and Car8, are significantly up-regulated) are all
associated with the urea cycle. The down-regulation of Nos1 and Car8 could be because
cancer cells are preferentially using their isoforms for the urea cycle.
Gamt, which is part of the creatine biosynthesis pathway, is significantly down-regulated
in tumor cells. In contrast with this, Ppat is up-regulated. Ppat is involved in purine biosyn-
thesis.
Taken together, the shift of sugar metabolism towards fructose and mannose metabolism,
and away from pyruvate and propanoate metabolism, as well as an apparent flux through
the urea cycle, down-regulation of creatine biosynthesis and up-regulation of genes in-
volved in biosynthesis, suggests a shift away from cellular energy production, and towards
macromolecule biosynthesis.
As cells regressed towards a more residual state, certain genes, such as Nos1, Nos2,
Car8, Car9 and Car12 appeared to stay de-regulated, and other genes, such as Gfpt1,
Gfpt2, GluI, Gamt and Maob appeared to have transient fluctuations in their expression.
The changes in Nos1, Nos2, Car8, Car9, Car12 would appear to suggest that the urea
cycle remains altered in residual cells, consistent with results from the parralel analysis
done by Ksenija Radic-Shechter et al. (2020)175. The changes in Gfpt1, Gfpt2, GluI, Gamt
and Maob suggest transient changes to metabolic pathways as cells become re-polarised
and adjust to becoming more epithelial in characteristics.
Mitophagy was also a pathway that had multiple genes that were de-regulated. In contrast
to sugar metabolism and amino acid biosynthesis pathways, many of these genes had
an expression trajectory where expression was increased, relative to the tumorigenic and
never induced state, when regressing towards a residual state. These include genes such
as Cited2, Bnip3, Nbr1, Bnip2l, Bnip3l, Mras, Mitf, Gabarapl1 and Atg9a. Genes such as
Bnip3 and Bnip3l are involved with apoptosis, consistent with the fact that the majority
of oncogene addicted cells undergo cell death following oncogene de-induction. Many of
these genes are also involved in autophagy such as Bnip3, Bnip3l, Nbr1, Gabarapl1 and
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Mitf are associated with autophagy. This suggests that mitochondrial components could
be used as sources of molecules for macromolecular production, and also for energy
production as cells acquire a residual state.
Many genes involved in FoxO signalling and TGF-β signalling were down-regulated in the
tumor state and had an upwards trajectory towards comparatively normal levels as they
progressed towards a residual state, for example, Chrd, Nbl1, Tgfbr2, TgfB3, Egfr and
Myc. Other genes, such as Inhbb and Epas1 and Igf1 also had similar trajectories but
stayed at down-regulated levels at the end of the time course - it is possible that these
genes could also return to comparatively normal levels over a longer time period.
However, in contrast, certain genes appeared to consistently stay de-regulated in a tumor-
like state, such as S1pr1, which stayed down-regulated, and Bmp7, which stayed up-
regulated. As well as Smad9, Dcn and Igf1, which also stayed de-regulated at the end of
the time course, but could possibly be decreasing at a slower rate than the time parame-
ters in this experiment. Interestingly, Bcl6, which is implicated in breast cancer prolifera-
tion, appeared to increase in the residual state after initially decreasing.
2.8.2 Residual cells resemble tumors, but have a unique metabolic pheno-type
In order to have an accurate and comprehensive understanding of how tumor and residual
cells differ from their normal mammary epithelium counterparts, Ksenija Radic-Shechter,
in collaboration with Eleni Kakifa, conducted metabolomic experiments, utilising GCMS
and LCMS to profile the intracellular and extracellular metabolites. Using a combination
of the GCMS, LCMS and transcriptomic data of tumor cells (5 days on DOX) and resid-
ual cells (7 days off DOX) (Figure 43(a)). Matt Rogon (EMBL) performed an integrated
analysis of the GCMS, LCMS and transcriptomic data to visualise cellular networks that
differed in these cells, relative to their normal counterparts. A detailed overview of how
this was performed is available in the materials and methods (Section 4.10).
This analysis created networks for intracellular and extracellular metabolites for each cel-
lular state (tumor and residual). These networks contained the altered metabolites, sig-
nificantly altered genes, and first and second neighbours of these genes, as well as asso-
ciated enzymes and reactions. These networks for intracellular and extracellular metabo-
lites were combined in a union, to display a combination of both, and then the data were
subsetted to observe which networks are consistent between the tumor and residual state
(Figure 43(b)) and which are unique to the residual state (Figure 43(c)).
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Figure 43: Continued on next pages. (a) Schematic for the experiment. Mouse mammaryprimary cells that were tumorigenic (5 days on DOX or residual (A further 7 days off DOX) hadtranscriptomic, and LCMS and GCMS data taken for metabolomic experiments. These data werethen processed and analysed (see Section 4.10) and compared to normal cells (Never Induced).The networks that were consistently de-regulated in tumour and residual cells (b) and uniquelyde-regulated in only residual cells (c) are displayed on the following pages.

148 M. Boucher



CHAPTER 2. RESULTS AND DISCUSSION

Figure 43: Continued on next page.
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Figure 43: Overlap of significantly de-regulated Compound-Reaction-Enzyme-Gene net-works. (a) between tumor cells (5 days on DOX) and residual cells (7 days off DOX),(b)Compound-Reaction-Enzyme-Gene networks unique to residual cells. GCMS, LCMS andTranscriptomic data were integrated (see Section 4.10 for a comprehensive explanation). Fol-lowed by simulated annealing algorithms in jActiveModules to generate Compound-Reaction-Enzyme-Gene networks, visualised in Cytoscape. Networks found in both 7 days off DOX and5 days on DOX networks are displayed. Interactions between metabolites, genes, reactions andenzymes are visualised by grey lines, with arrows signifying the direction of the reaction. Signifi-cantly changed metabolites (relative to never-induced) are shown as enlarged octagons, and theirborder signifies up-regulation (red) or down-regulation (blue). Non-significantly changed metabo-lites are shown as smaller octagons, with their names omitted for figure readability. Significantlyaltered genes, and their first and second neighbours are shown in the figure. Significantly alteredgenes are written in red.

As shown in Figure 43(b) and consistently with parallel analyses done by Radic-Shechter
et al. 2020175, there was a significant overlap between the tumor and residual states, with
respect to the networks that were altered. Consistent with the time-course transcriptomic
data, networks related to the urea cycle appeared to be significantly altered, with both
isoforms of Ornithine (L- and D-) and L-Arginine significantly de-regulated.
On top of this, multiple sugars and amino acids were significantly up- or down-regulated.
The vast majority of metabolites were not associated with signficantly de-regulated genes,
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with only OGDHL (shown on the left of Figure 43(b))) being changed. This implies that
the transcriptomic changes and metabolic changes happened over different timescales,
with metabolic changes changing more slowly. The interplay between transcriptomics and
metabolomics is complex, also meaning that changes in metabolically related enzymes
and the actual metabolites themselves may not necessarily be consistent.
Figure 43(c) shows significantly altered metabolic networks that were just unique to resid-
ual cells. The size of the network was smaller than the overlap (Figure 43(b)), suggesting
that the metabolism of residual cells is partially unique, but largely reminiscent of tumor
cells. Also compared to Figure 43(b), the size of the extracted metabolic networks tended
to be smaller, implying smaller high order metabolic changes.
2.8.3 Discussion of section 2.8: Metabolic differences of tumor and resid-ual cells, compared to normally mammary epithelial cells
Ksenija Radic-Shechter and Ashna Alladin conducted the experiments detailed in this
section with the aim to understand how tumor cells, residual cells and normal mammary
epithelial cells differed from one another, and led transcriptional and metabolomic exper-
iments on inducible and de-inducible transgenic murine experimental systems in order
to understand this further. As part of a parallel analysis, this project also independently
analysed these data with a particular focus on metabolism to understand how metabolism
differed in tumour and residual cells compared to normal. Metabolic differences that carry
over to residual cells after initial tumor regression could be particularly important to target,
possibly as part of a maintenance therapy treatment regimen.
This difference was assessed in two ways: temporally using transcriptomic data, based
on already generated time-adjusted p-values from a prior analysis of the data (performed
by Katharina Zirngibl), and an integrated analysis, using a combination of metabolomics
and transcriptomics.
2.8.3.1 Sugar metabolism: potential shifting towards an altered state of sugar

metabolism in residual cells
As shown in Figure 42, a large number of genes across multiple different pathways ap-
peared to return to comparatively similar expression levels as never induced cells over
time. These results are consistent with previous microarray gene expression data from
our lab176 and also a separate analysis of these data that have been submitted by Radic-
Shechter et al. for a preprint175. Overall, these results are indicative that these cells
regress towards a “dormant” state, which is reminiscent of “normal” cells but still maintain
unique properties.
Focusing more specifically, some genes involved in sugar metabolism appeared to in-
crease in their expression, either transiently, or as long as the time series was assessed
for (168h), possibly meaning that these particular genes remain up-regulated indefinitely
in these cells. In particular, this was the case in genes involved in fructose and mannose
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metabolism. Without more in depth functional analysis of the particular genes involved,
it is difficult to speculate on what specific cellular characteristics may be affected by this.
However, a number of genes with this expression trajectory, including Hk2, Aldoa, Al-
doc and Pfkfb3 have been associated with treatment resistance across different cancers,
implying that they may have a functional role rather than being expression artefacts as
cells undergo regression and re-polarisation. On a pathway level, increased utilisation of
fructose metabolism (fructolysis) has also been positively associated with breast cancer
development251. This means that fructolysis may also play a functional role in the eventual
re-initiation of tumorigenesis, and partially account for why residual cells are drastically
more likely to form tumors than their normal counterparts.
Genes involved in pyruvate and propanoate metabolism, as well as glycosaminoglycan
and degradation pathways had transient increases or decreases in their expression, but
returned to similar levels compared to never induced cells by the end of the time course.
This implies that changes of the genes involved in these networks are either transiently
required in the regression towards a residual state, or are artefacts from other cellular
processes.
2.8.3.2 Sugar metabolism: up-regulation of keratan sulfate biosynthesis in tumor

and residual cells
Interestingly, B3gnt7 and Chst1 were highly up- and down-regulated in the tumor state
and during the whole of the regression time course, respectively. B3gnt7 is implicated
in keratan sulfate biosynthesis, and Chst1 is implicated in its metabolism, suggesting an
up-regulation of keratan sulfate (KS) in tumor and regressing cells. KS is a glycosamino-
glycan that has a wide range of physiological roles, including in the cornea of the eye,
the central and peripheral nervous system and has some implications in tumorigenesis.
Its characterisation in cancer is limited, but plays roles in the malignancy of pancreatic
cancer. A publication by Miyamoto et al (2011)252 also performed histological staining on
multiple different human tumor samples, and found expression in multiple cancer types,
including cancer of the breast, lung, pancreas, thyroid, mesothelium, endometrium, ovary
and cervix, with particularly high expression in thyroid, endometrial and ovarian cancer.
Overall, these results on sugar metabolism suggest that there are transient and perhaps
longer-term changes in the expression of metabolic enzymes, which may be indicative of
a metabolic shift during tumor regression, whilst maintaining certain tumor characteristics.
Maintaining these tumor characteristics could mean that cells are in a metabolic state that
is more likely to be permissive of a transition back to a neoplastic phenotype, compared
to their normal (not previously cancerous) mammary epithelial cell counterparts.
2.8.3.3 Amino acid metabolism: potential for a deregulated urea cycle contribut-

ing to HER2+ breast cancer relapses
In amino acid metabolism, many of the genes that were de-regulated were involved with
the urea (ornithine) cycle. In a normal setting, this pathway is primarily functional in the
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liver as a part of amino acid catabolism, where toxic ammonia is converted into urea for
secretion. De-regulation of the urea cycle has been characterised across many different
cancers; with a wide variety of cancers having at least two enzymes involved in the urea
cycle that are de-regulated253. In cancer patients, this is reflected by the changes in the
ratio of nitrogenous compounds, for example, increased an increase pyrimidines such as
uracil and thymidine is observed in the urine of prostate cancer patients. In the results
from this project, many of the genes involved in the urea cycle stayed de-regulated as
far as the experimental time series measured, indicative of more permanent changes to
the urea cycle in these cells. De-regulation of the urea cycle is associated with increased
cell proliferation, mutagenesis and cell migration, and leads to worse patient prognosis.
Taken together, these results could indicate that a de-regulated urea cycle is a potential
way that residual tumor cells could eventually be re-induced into a neoplastic state through
accumulation of further mutations and already retaining previous cancer hallmarks.
2.8.3.4 Mitophagy: a source ofmacromolecule production as cells enter a residual

state
Similarly to the gene expression trajectories found in sugar and amino acid metabolism,
the expression characteristics of genes involved mitophagy were predominantly transient,
with most expression trajectories appearing to tend towards a comparatively normal state
as the time course progressed. Some genes, such as Cited2, Bnip3 and Nbr1, Atg9a and
Tax1bp1 appeared to increase in their expression part way through the time course. It is
possible that Bnip3 and Cited2 may stay expressed for longer time periods.
Overall, these expression signatures are likely to be due to the majority of cells undergo-
ing autophagy as the main oncogene drivers are removed. However, it is also important
to consider that the link between mitophagy and cellular metabolic reprogramming in can-
cer cells is well characterised. As mitochondria are broken down and metabolised, this
means that more of the cells energy production has to come through glycolysis, contribut-
ing to the Warburg effect. If there is any retained metabolic characteristics with respect to
mitophagy, it would help to put dormant cells in a metabolic state that is geared towards
macromolecule production and away from energy efficient ATP synthesis. Interestingly,
Cited2 and Bnip3, which are two genes that look as though they could potentially stay
upregulated beyond the experimental time course, are both implicated in breast cancer
progression and also resistance.
2.8.3.5 TGF-β and FoxO signalling pathways: regulators of tumor metabolism
TGF-β and FoxO both play roles in regulating cellular metabolism, and are both implicated
in tumor metabolism. TGF-β normally acts as a tumor suppressor, but in the context
of HER2 over-expression, acts to promote different cancer hallmarks, including migra-
tion, invasion and survival characteristics. In the context of metabolism, TGF-β and cell
metabolism interact with one another, with TGF-β signalling stimulating glycolysis during
EMT, with an upregulation of HK2.
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Almost all the significantly deregulated genes in TGF-β and FoxO signalling were down-
regulated in the tumor state, which remained the case during regression, with expression
appearing to slowly return to normal levels, although it is possible that signalling remained
down, reminiscent of tumor signalling. The notable exception to this is BCL-6, which was
up-regulated in tumor state, and then quickly lost expression before regaining it after 24h.
BCL-6 acts as a transcriptional repressor, and the high expression shown in this experi-
ment is consistent with breast cancer cell line data, including SK-BR3 cells, which func-
tionally characterised BCL-6 as being important for cancer cell growth across multiple
breast cancer sub-types.
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3.1 Recap and overview of results
Recently, multiple new targeted therapeutic options have been approved for HER2+ breast
cancer patients. These are likely to improve patient prognosis as the licensing of HER2
targeted drugs such as trastuzumab, pertuzumab and lapatinib have already done (See
Table 2, Page 35). However, an unmet need remains in HER2+ breast cancer, with re-
gard to problematic tumor recurrences98;99;100;101. Tumors that have recurred have a
worse prognosis, and tumors that have been able to metastasise are still considered in-
curable. Tumors that have metastasized after therapy relapse are regarded as having a
particularly poor prognosis98.
Therefore, it is important to develop treatments that minimize the risk of tumor relapses,
as well as treatments that are effective during initial treatment. With regard to HER2
and Pirin inhibition, this project aimed to conduct experiments to address both of these
criteria. Lapatinib, an already approved HER2 and EGFR tyrosine kinase inhibitor94, was
used to inhibit the function of the HER2 driver oncogene. EMBL-703625 is an inhibitor
of the function of the Pirin protein, which is relatively poorly characterized, but acts as a
transcriptional regulator, and interacts with NF-κβ and BCL-3188;190. Data from the EMBL
CBCF characterizing this inhibitor on HeLa cells and A549 lung tumor xenografts showed
encouraging efficacy, tolerability in mice, and appeared to have deregulate areas of cell
biology that are known to be involved in HER2+ breast cancer relapses and/or resistance,
such as effects related to glycolysis, heat shock protein expression, and the expression
of solute carriers.
Rather than establishing a lapatinib resistant line and then treating with EMBL-703625,
which is reminiscent of an already relapsed setting, this project instead focused on mim-
icking a combination first-line approach. The data from this project showed that lapatinib
and EMBL-703625 had a synergistic effect with each other (Section 2.1) and that they had
a largely individual transcriptomic effect which led to a larger overall combination effect
(Section 2.2). Re-growth experiments suggested that in one cell line, BT-474, this may
compromise re-growth (Section 2.3). As well as this, experiments that co-inhibited lactate
dehydrogenase (LDH) with oxamate suggested that these two drugs could both kill cells,
in part, through a blockade mechanism on glycolysis (Section 2.4). In mouse primary
cells, a direct comparison between neoplastic and non-neoplastic cells from the same
source suggested that lapatinib and EMBL-703625 predominantly target neoplastically
transformed cells (Section 2.5). In succession, it appears possible that EMBL-703625
could sensitise BT-474 for subsequent treatment with lapatinib also (Section 2.6). For the
future, this project also aimed to establish a microscopy experimental pipeline that could
image cell-cell heterogeneity in 3D over time (Section 2.7). Finally, data generated from
experiments led by Ashna Alladin and Ksenija Radic-Shechter were analysed to identify
any areas of vulnerability for tumor and residual cells; consistently with the pre-print sub-
mitted by Radic-Shechter et al. (2020)175, areas of cell metabolism were identified as
particular nodes of vulnerability, which could inform on future experimental approaches
related to understanding mechanisms of tumor heterogeneity and treatment evasion or
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resistance (Section 2.8).

3.2 Future directions: Characterising synergy between dual
HER2 and Pirin inhibition, or pirin inhibition monotherapy
across other cancer types

The future directions outlined in this section are directions this project could take over a
medium-longer term time scale in order to expand upon the results found in this thesis.
More immediate and specific future directions can be found at the end of each results and
discussion section (Sections 2.1 - 2.8).
3.2.1 Multiple different tumor types over-express or expressHER2 and there-fore could be susceptible to dual HER2 and pirin inhibition
There are currently a plethora cancer types addicted to the HER2 oncogene that HER2
and pirin inhibition synergy could carry over to. These include gastric cancer, non-small
cell lung cancer, biliary tract cancer, ovarian, endometrial, cervical, prostate, bladder, col-
orectal, and pancreatic. In all of these tumor types, HER2-targeted therapies are being
developed and clinically tested, but currently, only breast cancer (See Table 2 (Page 35)
for full details) and gastric cancer (trastuzumab and trastuzumab deruxtecan254), have
HER2-targeted licensed therapies against them.
In many of HER2 over-expressing cancer sub-types, clinical trials have found no signifi-
cant benefit for classical HER2 targeted agents inmonotherapy. For example, trastuzumab
in HER2 over-expressing NSCLC found no statistically significant clinical benefit com-
pared to the standard of care255. However, with the recent development of multiple
new, more effective HER2 targeted therapeutics, including antibody-drug conjugates such
as trastuzumab emtansine and trastuzumab deruxtecan, multiple clinical trials across
these various tumour subtypes are now ongoing, often in combination with other tar-
geted agents. Preliminary data appear encouraging across different tumour types, for
example, trastuzumab emtansine monotherapy in HER2+ salivary gland cancer256, and
trastuzumab deruxtecan inmonotherapy against HER2 over-expressingmetastatic NSCLC257.
As more targeted agents are characterised and approved in HER2+ over-expressing can-
cers, it gives rise to the possibility of more agents being combined with them to further
increase treatment efficacy, such as agents like EMBL-703625.
As well as this, as HER2-targeted agents continue to improve, it is possible that HER2-low
patients (those that express HER2, but not at high levels) in cancers such as breast cancer
and gastric cancer may also benefit from HER2-targeted therapies. This could largely
extend the niche for HER2-targeted therapeutics, and by extension, extend the potential
for combination therapies. Currently, multiple different clinical trials aim to assess this with
different HER2-targeted agents, including in breast cancer, for example, with trastuzumab
deruxtecan in the Phase 3 DESTINY-Breast04258 (HR-) and DESTINY-Breast06 (HR+)
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trials259. Although these trials have not yet presented any preliminary data, and will take at
least two more years to reach their primary endpoint, other HER2-low trials have reported
encouraging preliminary data (Reviewed in Eiger et al., 2012260). The majority of these
trials are testing HER2-targeted drugs in combinations with other drugs. However, it is
also important to note that this synergy between HER2 and pirin inhibition may not carry
over to tumor types where HER2 is not a driver of a neoplastic phenotype.
Taken together, this means that the clinical landscape is showing benefit of expanding
HER2-targeted therapies in combination with other targeted agents across multiple dif-
ferent cancer types, and in sub-types that were previously considered not amenable to
HER2 targeted therapy. This presents a large potential niche for HER2 and Pirin inhibition
synergy, and presents an exciting rationale when considering the wide reaching function
that pirin appears to have across different cancers.
3.2.1.1 An example of a cancer type that dual HER2 and Pirin inhibition may ben-

efit: Non-Small Cell Lung Cancer
An example of an important cancer for which dual HER2 and pirin inhibition could carry
over to is non-small cell lung cancer (NSCLC). NSCLC is characterised by poor progno-
sis and survival rates, and very high rates of relapse. Many different sub-types of NSCLC
that are addicted to a particular oncogenic driver exist, including those driven by mutant
EGFR (15% of cases in Europe, 40% of cases in Asia) and mutant HER2 (approximately
2% of cases). There is currently no standard of care for HER2 driven NSCLC, and al-
though EGFR-targeted tyrosine kinases such as osimertinib are licensed for EGFR-driven
NSCLC, tumor relapses often occur. This means that there is a large unmet need for these
patients.
Many of the nodes that were found to be affected by pirin inhibiton are relevant in lung
cancer. Firstly, data using EMBL-703625 on A549 lung xenografts by the EMBL CBCF
have demonstrated potent tumor inhibitor activity (data not shown). The incidence of lung
cancer is majorly increased by cigarette smoking. A study by Gelbman et al. (2007)261
found that pirin expression is up-regulated in the bronchial epithelial cells of smokers,
and appears to have a role in promoting the apoptosis of these cells. Further evidence
for the role of pirin in lung cancer comes through the current data on NF-κβ signalling.
Similarly to breast cancer, NF-κβ signalling is also implicated as a therapeutic target in lung
cancer therapy across multiple experimental models (Reviewed in Rasmi et al., 2020262).
Critically, a meta-analysis of clinical patients found that NF-κβ expression is associated
with a shorter overall survival in non-small cell lung cancer (NSCLC) patients263.
Specifically to EGFR/HER2 signalling, NF-κβ is a known player in EGFR-targeted ther-
apy resistance. Single cell transcriptomic studies show an upregulation of NF-κβ sig-
nalling genes in persister sub-populations after EGFR TKI treatment264. As well as this,
other nodes that are affected by pirin inhibition are also relevant here. HSP90 inhibi-
tion in NSCLC has an effect on EGFR, HER2, and HER3 expression265 and is shown
to have strong tumor inhibitory effects266. Clinical data using the HSP90 inhibitor 2,4-
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dimethoxychalcone sensitises T790M mutant EGFR NSCLC (a particularly prevalent mu-
tant) to EGFR targeted therapy267. As well as this, glycolysis, which appears to also be a
node that pirin acts through to encourage tumor resistance, has been also demonstrated
to support cell survival and growth in EGFR mutant NSCLC by inhibiting EGFR turnover
pathways268;269.
3.2.2 Evidence to support further characterisation of pirin inhibiton inmonother-apy, or alongside other targeted treatments, across multiple tumortypes
Currently, there is very limited characterisation of the function of pirin in cancer therapy,
but there is evidence to suggest that pirin could play a potential role across multiple can-
cers, including: breast, lung, prostate, ovarian, head/neck, gastrointestinal, oral, and cer-
vical193. All of these cancers, with the exception of breast (this project) and lung (EMBL
CBCF data) , have not yet been functionally characterised through pirin inhibition in a can-
cer setting, but expression and interaction data suggest that pirin expression and function
could be responsible for the development of many cancer properties across these differ-
ent indications. Perez-Dominguez et al. (2021)193 recently published an excellent review
of the evidence to support the role of pirin in epithelial carcinogenesis across these cancer
types
Notably, this project demonstrated that pirin inhibition appears to be important for multiple
cellular functions, including protein degradation, NF-κβ signalling, and heat shock protein
networks. These same networks are often to be important for carcinogenesis and ther-
apy resistance across multiple cancer types. NF-κβ signalling is highly complex, and its
downstream targets can be implicated across almost every hallmark of cancer. In breast
cancer, NF-κβ activation is implicated with resistance to lapatinib and endocrine therapy in
ER+ sub-types, and in lung cancer, NF-κβ activation is implicated in resistance to EGFR
TKIs.
One downstream network fromNF-κβ activation is ubiquitin mediated protein degradation.
In the results from BT-474 and SK-BR3 cells, pirin-inhibition caused widespread expres-
sion changes in genes involved in this process. The importance of these pathways in
carcinogenesis and therapy resistance is well characterised, and multiple FDA approved
drugs have been approved that inhibit genes involved in these pathways, although the
majority only in haematological cancers. However, multiple research efforts are now be-
ing undertaken to characterise this across a range of tumor types.
Heat shock proteins have also been well characterised in a cancer setting, and (outside
of the inhibitions already shown for breast cancer) have been widely implicated in many
different types of cancer, and aspects of the neoplastic phenotype270.
In summary, there are multiple lines of evidence to suggest that pirin inhibiton should
be functionally characterised across a wide range of tumor types, which would support
clinical development in this setting. Firstly, functional characterisation in breast cancer in
this project, as well as lung cancer and HeLa cells from the EMBL-CBCF demonstrate that
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pirin inhibition has anti-tumor effects. Expression evidence across a wide range of tumor
types suggest that pirin plays a role in tumorigenesis, and widely characterised functional
evidence in clinical and pre-clinical settings from demonstrated downstream targets of
pirin inhibition support the notion that it could be important for tumorigenesis, and therapy
resistance, and therefore an attractive therapeutic target.
3.2.3 Methods to characterise HER2 andPirin inhibition across other tumortypes
3.2.3.1 Cell lines
To characterise whether dual HER2 and Pirin inhibition show synergistic interactions across
other HER2 positive tumor types, applying the synergistic models used in this thesis could
be a highly useful tool to observe which tumor types this synergy affects. Each of the tumor
types that have HER2+ driven or positive sub-types (described in Section 3.2.1) have cor-
responding HER2+ cell lines that have been characterised and are available for use271.
Using the methodology established in this project to seed large quantities of cells in 3D,
treat with different drug concentrations, conduct biochemical assays on them, and per-
form synergy measurements, it would be relatively convenient and fast to apply generate
data similar in nature to this project across multiple different cell lines.
3.2.3.2 In vivo approaches
To progress to in-human trials, data from an in vivo setting are essential. In vivo ap-
proaches in mice allow for an important pre-clinical validation step of safety and efficacy,
before characterisation in humans in clinical trials.
A logical next step for this project in a practically feasible experimental workflow and on
a reasonable time scale would be to characterise dual lapatinib and EMBL-703625 treat-
ment in the inducible mouse models that are used in the Jechlinger Lab77. To this end,
in vivo experiments are already planned and have been discussed with the EMBL Animal
(LAR) facility, with the aim of the experiment to generate overall survival and relapse-
free survival Kaplain-Meyer curves of monotherapy compared to combination therapy in
primary tumors after induction.
On a larger practical and temporal scale, in vivomouse approaches could also be used to
characterise EMBL-703625 efficacy, with or without HER2 inhibition in a variety of other
tumor types. Recently, Lundin et al. (2020)272 reported on the development of a Doxycy-
cline inducible mouse system that allows convenient gene editing and conditional expres-
sion in different tissues in an in vitro setting, making it an ideal in vivo method for cancer
drug characterisation.
This convenient method of mouse gene editing would allow conditional induction of tumors
through oncogene expression across multiple tissue types. After initial in vitro validation
with cell lines, these mice would present a valuable pre-clinical model to generate in vivo
data, that could inform future clinical trial design.
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3.2.4 Patient-derived organoids
Using 3D organoids that are derived from patient tumor cells is an approach that has
been utilised commonly in recent years, and present an encouraging experimental ap-
proach for characterising patient responses. Of particular relevance for the implications
from this project is that patient-derived organoids have a higher degree of heterogeneity
than cell lines, making them important in understanding the mechanisms behind patient
relapses. This is discussed in detail by Liu et al. (2021)273. In the Jechlinger Lab, Syl-
wia Gawrzak has pioneered approaches to optimising 3D growth conditions from patient
derived organoids.

3.3 Future directions: Single cell -omics based approaches to
understand cell heterogeneity in response to drug treat-
ment

The results presented in this thesis demonstrate that HER2 and Pirin inhibition synergise
with one another in HER2+ breast cancer cells. However, tumor resistance occurs be-
cause of tumor heterogeneity, meaning that certain sub-populations within a tumor could
be less susceptible to this drug synergy. One method that this project aimed to establish
to understand heterogeneity was through the light-sheet microscopy approaches aim to
characterise spatially and temporally how cells differ from one another (See Section 2.7
(Page 115)).
An important way to provide additional insight to the results already generated and under-
stand lapatinib-EMBL-703625 synergy with more granularity is through single cell -omics
based approaches. Single-cell transcriptomics, in particular, has seen the most innova-
tion in understanding cancer. This is particularly important in the context of treatment
relapses because it allows a more precise overview of initial cell sub-populations before
and how these evolve during treatment. An experimental design that compares lapatinib
or EMBL-703625 monotherapy to combination therapy will be able to understand how
each monotherapy gives rise to persister sub-populations, and how this differs in combi-
nation therapy. The re-growth experiments suggest that SK-BR3 cells also had surviving
sub-populations even after combination therapy; these approaches could provide some
insight as to how these cells were able to survive, and therefore how to kill these cells.
An excellent example of how an experimental design like this could be utilised comes from
a recently published study by Aissa et al. (2021)274. They used single-cell transcriptomics
on EGFR mutant NSCLC cells that were treated with EGFR TKIs and ALK/ROS1 TKIs.
Their analysis found a diverse array of different drug tolerant cell states to EGFR TKIs,
with high amounts of heterogeneity, which was the case in cell lines, xenograft tumors
and patient samples.
On top of solely performing transcriptomic experiment on tumor cells, samples that come
from in vivo or patient samples, allow stratification and analysis of neoplastic and non-
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neoplastic samples into different sub-populations, allowing an understanding of the inter-
play between tumor cells, and cells in the local micro-environment. This can be important
for understanding tumor relapses, as demonstrated in a study in HER2+ breast cancer by
Wang et al. (2019)275. They characterised a CDK4/6 inhibitor Palbociclib, which is cur-
rently under review in HER2+ breast cancer by the FDA after demonstrating encouraging
data in clinical trials. In tumors that are resistant to this inhibitor, they found a immature
myeloid cell population that helped these resistant sub-populations avoid this response.
Targeting these myeloid cell populations with TKIs and also introducing immune check-
point therapy (anti-PD(L)1 or CTLA4 antibodies) overcame this resistance.
In vivomouse experiments for this project are planned at the time of this thesis submission.
Tumor samples that are taken from mice in primary tumors, or after disease remission in
a primary or metastatic site could be applicable to a single cell transcriptomic workflow
to allow an intricate understanding of the neoplastic sub-populations that give rise to re-
current tumors, and also how non-neoplastic cells in the surrounding micro-environment
contribute to this. This could inform on how to optimise dual lapatinib and EMBL-703625
treatment to maximise efficacy and minimise probabilities of relapses.

3.4 Future directions: Progressing with HER2 and Pirin inhi-
bition into a clinical setting

This project has aimed to assess whether dual HER2 and Pirin inhibition could display
a synergistic effect in HER2+ breast cancer, and whether it could potentially reduce the
risk of problematic relapses, as well as developing light-sheet microscopy based methods
aimed at eventually understanding cell-cell heterogeneity in 3D space over time. The data
from these aims has put forward an encouraging rationale for progressing into a clinical
setting, pending results from in vivo experiments. It is highly important for any project that
characterises drugs efficacy or interactions to consider the therapeutic situation, which
starts with clinical trials. Surrounding clinical trials are both scientific and business-related
considerations, which are both discussed here.
3.4.1 HER2+ breast cancer clinical trials involving Pirin inhibiton
Characterising whether a drug combination, such as lapatinib and EMBL-703625, reduces
the risk of tumor relapses takes an inherently long amount of time, possibly over a scale of
decades to obtain statistically meaningful data. Whilst long-term follow ups are important,
to progress through clinical trials and be approved, drug combinations would have to
show a efficacy and safety profile at least as good as the current standard of care. That
is why this project aimed to establish if HER2 and pirin inhibiton displayed synergy with
one another, which provides evidence that they may have strong efficacy.
From a commercial aspect, pharmaceutical companies may see limited investment op-
portunities for drug combinations that are unlikely to gain a large market share, given the
high costs of clinical research and development. This could be the case if the HER2/Pirin
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inhibition combination did not yield significant initial clinical benefit over the current stan-
dard of care, meaning that these combinations would never reach a clinical setting, even
if this combination realistically lowered the rate of relapses over the long term.
From this standpoint, it could be commercially more attractive to test EMBL-703625 (or
equivalent) in a basket clinical trial design, which tests this drug in an early clinical phase
setting (Phase 1 or 2) across multiple different HER2-(over)expressing tumor types (listed
in Section 3.2.1, in combination with a HER2 (or potentially EGFR) inhibitor to assess
safety and provide a first insight to how clinical efficacy, although normally with a sample
size too small to generate meaningful statistics. This trial design is common for first-in-
human characterisations of new drugs. If pirin inhibition could potentially be used across
multiple different tumor types, then this would provide increased commercial attractive-
ness. This is why testing EMBL-703625 across multiple other HER2-(over)expressing
tumor types (discussed in Section 3.2.1) is an attractive rationale for future experiments,
based off the data from this project.
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4.1 Biochemical Assays
4.1.1 Cell Toxicity Assay
The CellTox™ Green Cytotoxicity Assay (Promega) was used in order to assess relative
cell toxicity. The CellTox™ Green Cytotoxicity Dye was added to flourobrite media in a
concentration of 0.06µl of dye for every 10µl of media. 10µl of this solution was then
added to 50µl of flourobrite media already in each well, making a total volume of 60µl of
flourobrite media, with the working concentration of the CellTox™ Green Cytotoxicity Dye
at 1:1000.
Measurements were taken using a Tecan Infinite® M1000 PRO plate reader. Fluores-
cence measurements were taken at 485nm excitation and 525nm emission, with both
bandwidths set as 10nm. Readings were taken from the bottom, and gain was set manu-
ally at 100. Multiple reads were taken from different positions in each well, in a 4x4 pattern
(type: Square, Border: 50um (in the Tecan software)).
4.1.2 3D Cell Viability Assay
The CellTiter-Glo® 3D Cell Viability Assay (Promega) was used in order to assess relative
ATP levels as a read-out of relative cell viability. This assay can be multiplexed with
the CellTox™ Green Cytotoxicity Assay and was therefore performed directly after Cell
Toxicity readings were taken. 50µl of CellTiter-Glo® 3D Reagent was added to each
well of a black-walled 96 well plate (Corning), covered in aluminium foil and shaken for 5
minutes at room temperature at approximately 550RPM on a bench-top shaker to facilitate
full homogeneising of each gel. The plate was then left in the aluminium foil for a further
25 minutes before luminescence measurements were taken. Measurements were taken
using a Tecan Infinite® M1000 PRO plate reader, to measure luminescence. Integration
time was set as 1000ms and settle time was 0ms. Attenuation was set to none.

4.2 General cloning methods
4.2.1 Restriction Digestions
Restriction digestions of plasmid DNA were all carried out at 37°C for in a thermo-cycler
for one hour. For each reaction, DNA concentration was measured via a NanoDrop, and
1200ng of DNAwas added to each 20µl reaction volume. A table showing the components
of a restriction digest used is below:
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Reagent Volume
Plasmid DNA Appropriate volume to make up 1200ng

Restriction enzyme 1 1µl
Restriction enzyme 2 1µl

rSAP* 1µl
FastDigest green buffer 2µl

Water Added to make a final reaction volume of 20µl
*rSAP was added to plasmid vectors in order to prevent re-annealing, but not added to digestions of inserts.

Table 11: Typical restriction digestion reaction conditions

4.2.2 Ligation Reactions
Digested vectors and inserts were added at a ratio of 7:1; Insert:Vector. This was calcu-
lated using the NEBioCalculator (https://nebiocalculator.neb.com/!/ligation). Two separate
control reactions containing no ligase enzyme and no insert, respectively, were used to
verify colony formation was likely to be genuine, and not due to background growth. A
table showing the components of a ligation reaction is below.

Reagent Volume
Ligase buffer 1µl

Insert Appropriate volume to make up 175ng
Vector Appropriate volume to make up 25ng

T4 DNA ligase enzyme 1µl*
Nuclease free water Added to make a final reaction volume of 10µl

Table 12: Ligation reaction conditions when ligating cut vector and insert. *In the control reactions,either the vector or T4 DNA Ligase enzyme were not added; the volume was replaced with water.

4.2.3 Heat Shock Transformation of competent E. coli
Transformation of E. coli was carried out using heat shocking. 2 µl of ligation mix was
added to 50µl of competent cells and kept on ice for 30 minutes. The cells were then
included in a 42C water bath for 45 seconds, followed by a further 2 minutes on ice. 50µl
of SOC media at 37°C was then added and incubated at 37°C for 30 minutes, before
streaking on an agar plate with an appropriate antibiotic, and overnight storage at 37°C.
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4.3 Transfection and imaging of the SoNar Sensor in SK-BR3
cells

4.3.1 Cloning of lentiviral vectors to generate SoNar or cpYFP-expressingBT-474 and SK-BR3 cells
Lentiviral transfection methods were used in order to express the SoNar sensor and
cpYFP flourophore in BT-474 and SK-BR3 cells. The respective sensors were first cloned
into lentiviral pLOVE backbones under the control of the CMV promoter. The SoNar and
cpYFP gene constructs (pCDNA 3.1-SoNar and pcDNA 3.1-cpYFP) were provided as
a gift by Yuzheng Zhao, East China University of Science and Technology. The SoNar
and cpYFP genes were amplified from their original construct using primers to introduce
an EcoRI and NheI restriction site to the 5’ and 3’ end of each gene and ligated into the
lentiviral pLOVE vector. These sequence of these primers (5’ - 3’) was TAAGCAGAATTC-
CGATGAACCGG to add the EcoRI site, and TAAGCAGCTAGCGGGCCCTCTAGACTC
to add the NheI site. pLOVE-SoNar and pLOVE-cpYFP were then transfected into Top
10 E. coli cells using heat-shock transformation and plated on ampicillin containing agar
plates. After colony selection, frozen stocks containing half LB suspension and half 50%
glycerol were used for both plasmids. Sanger sequencing was used to verify that no
genetic mutation had taken place on miniprep (Qiagen) extracted DNA.
4.3.2 Production and counting of lentiviral particles for transduction
To produce the lentiviruses, a protocol developed by Lucas Chaible (Jechlinger Lab,
EMBL) was followed. 3.2 x 107 HEK-293T cells (Lenti-X, Clonetech Catalogue C6628)
were thawed from frozen stocks and seeded in 500cm2 cell culture dishes. The cell media
was DMEM High Glucose supplemented with 1% glutamine, 1% sodium pyruvate, 10%
FCS, and cells were passaged for 3 passages. The morning of the lentiviral transfection
of HEK-293T cells, the media was supplemented with 25mM chloroquine diphosphate
(Sigma-Aldrich Cat. - C6628). The HEK-293T cells were incubated with this media for
5 hours. The cells were then transfected with backbone plasmids: 20µg pMD2.G (Ad-
dgene Cat. - 8454) and 30µg psPAX2 (Addgene Cat. -12260), 1mg/ml of PEI (Poly-
Science Cat. 23966-1), 40µg of pLOVE-pCMV-SoNar or pLOVE-pCMV-cpYFP, which
was transferred with 9ml of Opti-MEM. After 2, 3 and 4 days post-transfection, the me-
dia was harvested (and replaced by fresh media), and pelleting of the lentiviruses was
performed using an ultracentrifuge Beckman Sw32 rotor) at 25,000RPM for 2 hours at
4°C. The lentivirus pellet was then re-suspended in 1ml of HBBS buffer, which was then
aliquoted and stored at -80°C. Quantification of the amount of viable lentiviral particles
in the solution was performed by seeding 75000 HEK-293T cells in each well of a 6-well
plate. After 24 hours, one well trypsinised and counted, to be used for calculations. For
the other 5 wells, medium was removed and fresh DMEM was added at 10µl, 5µl, 1µl,
0.5µl, 0.1µl to each well for 2 days, with medium changed every 18 hours. The cells were
then trypsinised and counted by FACS sorting. This was then compared to the amount of
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virus pipetted and number of cells that were counted after the trypsinisation step.
4.3.3 Production and counting of lentiviral particles for transduction
The lentiviral vectors expressing pLOVE-SoNar or pLOVE-cpYFP were transfected into
BT-474 and SK-BR3 cells in the following method. Each cell line was seeded onto a
collagen coated 6 well plate, 24 hours prior to transfection. The media was then removed,
and replaced with fresh medium containing the lentirviral particles, and was incubated
for 24 hours, followed by a media change and incubation for a further 24 hours. Cells
were briefly checked for a fluorescent signal, passaged onto a 175cm2 tissue culture flask
with filter cap (ThermoFisher NuncTM - Cat. #178985) to increase numbers, and briefly
checked under a fluorescence microscope to confirm fluorescence. The cells were then
sorted through FACs, selecting for GFP fluorescence, to select for the 5% of brightest
cells. Before and after FACs sorting, cells were frozen as liquid nitrogen stocks. FACs-
sorted cells were used for all described experiments.

4.4 Light-sheet Microscopy on the Leica SP8 DLS
4.4.1 Mounting for Light-Sheet Microscopy
To mount samples for the Leica SP8 DLS microscope, glass cover slips were cut into
slices 1.4-1.8mm in width and elevated into place at approx 2mm in height with Picodent
Twinsil® glue. The Picodent Twinsil® glue was prepared by adding the two elements, the
base and catalyst, in a 1:1 ratio, mixing, and applying to the bottom of a MatTek glass
bottom microwell dish, either side of the circular glass bottom. The cut glass was then
applied on top of this glue, and was allowed to set for at least one hour. The imaging dish
was then sterilised with 70% ethanol and UV light. Matrigel containing cells expressing
either SoNar or cpYFP could then be seeded adjacent to one another on the glass slice,
over the circular glass bottom. To delinate one end from the other, a dot was drawn on
the side of the plate nearest to the cells expressing the SoNar sensor.
4.4.2 Light-sheet imaging on the Leica SP8 DLS
Light-sheet imaging on SK-BR3 cells expressing SoNar or cpYFP was conducted using
the Leica TCS SP8 DLS microscope, primarily using 10x magnification. Conditions were
kept at 37°C and 5% atmospheric CO2 for the duration of the imaging. The imaging
chamber was surrounded with water, which was also heated to 37°C to prevent media
evaporation; this water was replaced every 24 hours to ensure it did not evaporate itself.
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4.5 Cell Lines
4.5.1 Cell line authentication
SK-BR3 cells were obtained from the Cell Lines Service in Heidelberg, and BT-474 cells
were obtained as a kind gift from the Edward Lemke lab at EMBL Heidelberg. Both lines
were authenticated by STR profiling (Multiplexion), including SoNar or cpYFP expressing
cells. Cells were also routinely checked for 2D and 3D morphology and growth charac-
teristics, and tested for mycoplasma contamination through PCR testing.
4.5.2 Culturing of cell lines (2D)
4.5.2.1 Media
Cell lines were routinely grown in 2D on collagen coated plates - 3D culture was used
purely for experimental purposes, whereas 2D was used for cell cultivation in prepara-
tion for experiments, or to create frozen stocks. The media conditions used were as
follows: Phenol Red containing high glucose DMEM (Gibco - Cat. #41965120), supple-
mented with 10% heat-inactivated FBS, 2mM (final concentration) L-glutamine (Gibco
- Cat. #25030149), HEPES buffer (made in-house at EMBL), 100x concentrated non-
essential amino acids (NEAAs) (Gibco - Cat. #11140050), penecillin/streptomycin (Gibco -
Cat. #15070063) and 1mM (final concentration) sodium pyruvate (Gibco - Cat. #11360070).
Cells were grown typically on a collagen-coated 175cm2 tissue culture flask with filter cap
(ThermoFisher NuncTM - Cat. #178985).
4.5.2.2 Passaging
After cell lines reached approximately 70-80% confluency, both lines were split in a 1:3
ratio onto a new 175cm2 tissue culture dish. This was performed in the following way.
Firstly, media was aspirated off and the flask was washed with an equivalent amount of
PBS (10ml for a 175cm2 flask). The PBS was then aspirated off, and 0.25% trypsin (Gibco
- Cat. #25200056) was added at enough volume to cover the bottom of the flask (typically
2ml for a 175cm2 flask). The flask was then incubated at 37°C for 3 minutes. After this,
the cells were briefly checked for detachment under a microscope, and then cell culture
media (See Section 4.5.2.1) was added 5:1 media:trypsin and circulated to ensure the
trypsin was deactivated by the FCS in the media. One third (typically 3ml) of this volume
was then put onto a new flask, with a further 2 parts (typically 6ml) of fresh media added,
being placed back in the 37°C incubator. The remaining cells were either discarded or
frozen as liquid nitrogen stocks (see following section).
4.5.2.3 Generating liquid nitrogen stocks of cell lines or primary mouse cells
To generate liquid nitrogen stocks, cells were passaged as in the previous subsection.
Instead of being put into a new flask, the cell containing media was introduced into a 15ml
centrifuge tube, and centrifuged at 1000RPM for 5 minutes. The media was then removed
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from the resulting pellet. For each 175cm2 flask, three 2ml cryotubes were prepared for
liquid nitrogen storage. For a 175cm2 flask, this meant the pellet was resuspended in
6ml of CELLBANKER 2 (AMSBio) mediun, before 2ml was pipetted into a 2ml cryotube.
These were then frozen in a -80°C freezer for 24 hours, before long-term storage in liquid
nitrogen.

4.6 Mouse Genotyping
The Jechlinger Lab has bred mice to develop tri-transgenic mouse strains for TetO-MYC,
TetO-Neu, MMTV-rtTA. All mice were bred into an FVB background. All mice were bred
and housed in the EMBL Laboratory Animal Resources (LAR) in accordance with the
European Commission Guidelines, revised Directive 2010/63/EU and AVMA Guidelines
2007, under vetinary supervision. Mice had constant access to drinking water and food,
kept in cages of up to 6 other mice. In the animal facility, mouse were kept on a 12
hour light and dark cycle, with a constant temperature and air humidity (23C +/- 1C and
60% +/- 8%). The EMBL LAR facility provided tail cuts which were used to provide PCR
results on the presence or absence of MYC, Neu and rtTA. Each tail clipping was kept in
a 1.5ml centrifuge tube. This was firstly digested to obtain genomic DNA. 70ul of Na0H
25mM, EDTA 0.2mM was added and heated to 98C for at least 30 minutes at 650rpm
shaking. After this, the cells were briefly centrifuged to ensure all liquid was at the bottom
of the tube, and then 70ul of Tris-HCl (40mM, pH 5.5) was added to neutralise, before a 5
minute centrifuge (1000 RPM). 1.1ul of this solution was then used in the genotyping PCR
reactions. The primer sequences and the size of the PCR product are shown in the Table
13. PCR products were subjected to agarose gel electrophoresis, using a gel consisting
of 1.5% agarose (Sigma, Cat. A9539-500G), eith 0.5µg/ml (Sigma, Cat. E1510-10ML).
The gels were imaged under UV light to test for the presence of a band at the correct size
(band length shown in Table 13), using Quantam-Capt1 (Peqlab).

Gene Forward primer (5’ - 3’) Reverse primer (5’ - 3’) PCR product
size (bp)

TetO-Neu GACTCTCTCTCCTGCGAA-
GAATGG

CCTCACATTGCCAAAA-
GACGG 630

TetO-Myc TAGTGAACCGTCAGATCGC-
CTG

TTTGATGAAG-
GTCTCGTCGTCC 386

MMTV-rtTA GTGAAGTGGGTCCGCG-
TACAG

GTACTCGTCAATTC-
CAAGGGCATCG 380

Table 13: Primer sequences used in mouse genotyping

4.7 Harvesting of primary mouse mammary gland cells and
culturing

Female mice of the required genotype were sacrificed 8-10 weeks old, and sacrificed by
cervical dislocation. The skin was cut along the front of the mouse, starting at the chin
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and ending at the pubis, this was then pinned outwards, exposing the subcutaneousmam-
mary glands. All 10 mouse mammary glands were isolated and put into a 50ml polypropy-
lene centrifuge tube. These were then digested in 5ml of digestion media consisting of
DMEM/F12 (Lonza) buffered with HEPES, and supplemented with L-glutamine (Gibco -
Cat. #25030149), and 20µg/ml liberase blendzyme 2 (Roche- Cat. 05401020001) and
5ml penecillin/streptomycin (Gibco - Cat 15140-122). These were digested for 16 hours
at 37°C, 5% atmospheric CO2 with the tube cap screwed on loosely. After this digestion,
45ml of PBS was added, and centrifuged for 5 min at 1000 RPM. This formed a cell pel-
let, an interphase, and a top layer of fat that still contains some mammary gland cells.
The interphase was aspirated away. 5ml of 0.25% trypsin (Gibco - Cat. #25200056)
was added and incubated for 40 minutes at 37°C, 5% atmospheric CO2 with the tube
cap screwed on loosely. The trypsin was then inactivated with the addition of 25ml of
DMEM/F12 containing 10% tetracycline-free FCS, as well as HEPES and L-glutamine
(Gibco - Cat. #25030149), and 5-15 mg/ml of DNase I (ThermoFisher - Cat. EN0525)
(here-on-in referred to as STOP media) to prevent cells from sticking to one another.
This was then centrifuged for another 5 min at 1000 RPM, and dissociated cells were
suspended in MEBM media (Lonza - Cat. CC-3151), which was supplemented with the
MEGM BulletKit (Lonza - Cat. CC-3150) and plated onto collagen coated 6-well plates.
24 hours later, the media was aspirated, cells were washed with pre-warmed PBS, and
cells were detached using 0.25% trypsin-EDTA until detachment. Once again, trypsin was
inactivated with STOP media, and the cells were pipetted into a 15ml centrifuge tube and
centrifuged at 1000 RPM for 5 minutes. Cell pellets were then quantified by counting on a
hemocytometer and seeded in black-walled 96 well plates, as described in Section 4.7.3.
4.7.1 3D seeding of Cell lines
To seed cell lines in Matrigel, cells were pelleted as in Section 4.5.2.2. The pellet was
then re-suspended in an appropriate amount of PBS to facilitate accurate cell counting
on a hemocytometer before suspension in matrigel. For every 5µl of matrigel, 625 cells
were seeded. The PBS-cell mix was further diluted or re-centrifuged to obtain a concen-
tration of cells that could be added at 1 part PBS to 4 parts matrigel. Before mixing with
matrigel, the PBS-cell mix was incubated on ice for 5 minutes. The PBS and matrigel
were then mixed, with gentle pipetting as to not introduce bubbles, before pipetting. The
matrigel droplets containing the cells were allowed to polymerise at room temperature for
30 minutes, before media was added, and incubation at 37°C.
4.7.2 3D seeding of primary mouse cells
Primary mouse cells were seeded in a very similar method as described above (Section
4.7.1), using the same numbers of cells and matrigel conditions, but grown in MEBM
supplemented with 10%FCS. To induce the primary mouse cells into a tumourigenic state,
200ng/ml of doxycycline was added to the MEBM media after 6 days of growth in normal
MEBM. Media containing doxycycline was replenished every 48 hours.
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4.7.3 High-throughput seeding
To ensure accuracy and convenience, high throughput experiments that used 96 well
plates were seeded using a multi-channel multi-dispenser pipette (Integra). Matrigel con-
taining cells were prepared as described in Section 4.7.1 or 4.7.2. An extra 30-40% of
Matrigel-cell mix was prepared to account for dead volume. This was pipetted into a cell
culture reagent reservoir, and kept on ice in a metal 3-D printed trough that was made by
the EMBL Workshop in collaboration with Slywia Gawrzak to allow stability and also keep
the mix at temperatures below 4°C to prevent Matrigel polymerisation. The multi-channel
multi-dispenser was then used to take up the matrigel into 8 separate pipette tips, and
each was dispensed at 5µl. No more than 6 wells worth of matrigel was taken into each
tip to prevent polymerisation before plating. There was also 5µl of dead volume before and
after the pipetting, which allowed for accuracy and decreased the likelihood of bubbles in
the matrigel. The plates were incubated for 30 minutes at room temperature before 100µl
media was added and incubation at 37°C. Media was changed every 2-3 days using a
manual multi-channel pipette, taking the media from the corners in order to not disturb or
break the matrigel pellet containing the cells.
4.7.4 Re-seeding of cell lines for re-growth experiments
For re-seeding experiments, cells were initially seeded as above, but in 40µl droplets.
Cells were grown for 7 days, with media changes every 2-3 days. Drugs were then
added as above. Re-seeding took place on day 14. Media was aspirated off, and the
matrigel droplets were washed with ice cold PBS, with pipetting up and down in order to
homogenise the gel as much as possible. They were transferred to a 15ml centrifuge tube,
which was filled up with more PBS, and then centrifuged for 5 min at 1000RPM to create
a matrigel-cell pellet. The PBS was then removed, and the pellet was re-suspended in
1.5ml of 0.25% trypsin, and incubated at 37°C for 5 minutes. FCS containing media was
then added to the centrifuge tube up to a volume of 10ml, and further centrifuged for 5
minutes at 1000RPM. The cell pellet was then appropriately diluted in matrigel and cell
media to have a concentration of cells that was appropriate for re-seeding. Cells were
reseeded by manual pipetting, as 5µl matrigel droplets
4.7.5 High throughput imaging: Olympus ScanR
96 well plates were imaged on the Olympus ScanR using the 10x lens, with Z-stack in-
crements 100µm apart, typically taken over 21 Z-planes. The imaging chamber was kept
at 37°C and 5% atmospheric CO2 for the duration of imaging.
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4.8 Transcriptomic experiments
4.8.1 RNA isolation, processing and analysis
Total RNA was isolated using the mirVana miRNA Isolation Kit, using the total RNA isola-
tion procedure outlined in the protocol of the kit. At each time point, 400µl of lysis buffer
was added to each matrigel pellet after media was removed, pipetted up and down to
homogenize, and then transferred to a centrifuge tube, where it was immediately frozen
at -20°C until thawing and processing with the mirVana kit. Each RNA sample was qual-
ity checked for integrity on a Bioanalyzer (Aligent Technologies) using RNA NanoChips
(Aligent Technologies) before stranded mRNA sequencing on the Illumina NextSeq 500
platform. Read length was set at NextSeqHigh75 single-ended, 1-laned.
4.8.2 Transcriptomic Data analysis
Raw RNA sequencing reads were pre-processed by the EMBL Genomics Core Facility
to generate BAM files and reads-to-genes tables. Briefly, the raw sequencing reads were
quality checked by FastQC version 0.11.3, processed using CutAdapt (version 1.9.1) to
remove adapter sequences, followed by quality trimming and filtering with FaQCs version
1.34 (Code parameters: -q, -minL = 25, -n=5, -discard=1). Reads were then alighted to a
human reference genome (hs hg38) using Tophat2 version 2.0.10. Differential expression
analysis only used reads with unique mappings (not that appeared in multiple genomic
positions), and HTSeq was used to obtain reads-to-genes tables. The "R" package DE-
Seq2 (version 3.13) was used to perform differential analysis on these reads-to-genes
tables. The workflow, including time course designed workflow, outlined by Love et al.
(2019)276 was used to perform the analysis. Data were normalised using a variance sta-
bilising transformation (VST) the first two surrogate variables were removed using the "R"
package "sva". The "R" package "PathfindR" was used to generate significantly altered
GO-terms, using the "GO-All" database using the Bonferroni method. P-value thresholds
were set as 0.01. Hierarchical clustering was performed using the default parameters;
1-κ was used as the distance metric.
4.8.3 Image fusion and deconvolution
All images were fused and deconvolved with Huygens Professional version 19.04 (Scien-
tific Volume Imaging, The Netherlands, http://svi.nl). Deconvolution parameters were set
as the following: Maximum iterations - 40; Signal to noise ratio - 20; Quality threshold-
0.1; Iteration mode - Optimised, Brick layout - Auto; Area radius (micron) - 0.7; Estimation
mode - Lowest; Numerical apeture - 0.300, Excitation wavelength (nm) - 488, Emission
wavelength (nm) - 520; X and Y voxel size (nm) - 358; Z voxel size (nm)- 1000; Multi-
photon excitation - 1. Images were output as an Imaris File format, and were converted
to TIFF files using ImageJ, which were then visualised using orthagonal viewing. The 3D
visualisation that features in Figure 41(b) was visualised by Marco Lampe using Huygens.
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4.9 Inhibitors: lapatinib, EMBL-703625 and Oxamate
Lapatinib was acquired from Selleckchem (Cat #S2111) as 10mM DMSO solution, and
stored at 20µl aliquots at -80°C. EMBL-703625 was prepared by the EMBL-CBCF and
stored as 20µl aliquots of 100mM stock solution at -20°C. Sodium oxamate was acquired
from Sigma-Aldrich and stored as powder form at room temperature.

4.10 Analysis and integration of GCMS, LCMS and transcrip-
tomic data

LRPath was used to perform ametabolic pathway enrichment analysis against metabolism-
focused databases: EHMN, KEGG and Reactome. This LRPath output was then inputted
intoMetScape, a cytoscape plug-in designed for visualisation and analysis of metabolomic
data. Gene filtering was applied at the Metscape level at cut-off values of a log(2) fold
change of at least 1.5, and a p-value of 0.05. To integrate the metabolomic data, the
data from the GCMS and LCMS analysis were combined by using Fisher’s method to
obtain a combined p-value and a median log(2) fold change for each cellular state (tu-
mor and residual) and used for down-stream analysis. The complete dataset for GCMS
was used, along with significant values from the higher throughput LCMS data. Metscape
was then used to integrate the transcriptomic and metabolomic data. jActiveModules, an-
other cytoscape plug-in that generates expression activated sub-networks was used to
sub-set this data, using a simulated annealing algorithm with the following parameters:
2500 to 10000 iterations tested, start temp 1, end temp 0.01, quenching and hubfinding,
non-random starting graph seed 1623495108.
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Figure S.1: The CellTiter Glo (a) and CellTox Green Cytotoxicity (b) Assays
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Figure S.2: Supplementary figure continued on next page
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Figure S.2: Non-interpolated ZIP synergy landscapes for BT-474 or SK-BR3 cells treatedwith lapatinib and EMBL-703625
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Figure S.3: 3D Image projection pipeline for high-throughput ScanR data. Transmission im-ages of BT-474 cells grown for 7 days in normal growth conditions are shown. Each Z-stack istaken 100µm apart and combined using extended depth of field projections. This pipeline wasdeveloped by Sylwia Gawrzak in collaboration with the EMBL ALMF. The ImageJ macro was pro-duced by Anna Lladó and Sébastian Tosi (IRB Barcelona). All scale bars = 500µm
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Figure S.4: Stitching of projected images to obtain a whole-well overview of a 96-well plate.Projected images (see Figure S.3) were stitched together to allow a single image overview froma well of a 96-well plate, allowing a more convenient and comprehensive overview of how cellshave re-grown over time. This pipeline was developed by Sylwia Gawrzak in collaboration withthe EMBL ALMF. The ImageJ macro was produced by Anna Lladó and Sébastian Tosi (IRBBarcelona). All scale bars = 500µm

Figure S.5: Batch correction of transcriptomic data using limma to correct for variancebetween technical replicates before subsequent analysis. Group a and b refer to each exper-imental replicate.
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Figure S.6: Individual effects on cell viability of lapatinib and EMBL-703625 treatment, at differentconcentrations, for mouse 1. Dots represent technical replicates, the line passes through themeanat each point

Figure S.7: Individual effects on cell viability of lapatinib and EMBL-703625 treatment, at differentconcentrations, for mouse 2. Dots represent technical replicates, the line passes through themeanat each point
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Figure S.8: Individual effects on cell viability of lapatinib and EMBL-703625 treatment, at differentconcentrations, for mouse 3. Dots represent technical replicates, the line passes through themeanat each point

Figure S.9: Individual effects on cell viability of lapatinib and EMBL-703625 treatment, at differentconcentrations, for mouse 4. Dots represent technical replicates, the line passes through themeanat each point
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Figure S.10: pLOVE lentiviral vector containing cpYFP under the control of the CMV promoter

Figure S.11: SK-BR3 expressing SoNar or cpYFP treated with 1.3µM lapatinib.
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Figure S.12: SK-BR3 expressing SoNar or cpYFP treated with 1µM EMBL-703625 and 0.2µMlapatinib
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Table 14 BT-474 - Lapatinib monotherapy: Hierarchical clustering
ID Term_Description Fold_Enrichmentsupport Adj p value Up_regulated Down_regulated Cluster Status
GO:0004672 protein kinase activity 1.762 0.032 1.910E-11 MAP3K3, PDK2, MAP2K5, DYRK1B, RPS6KA5, TESK2,MAP4K1, SGK3, HSPB8, PINK1 AKT1, MAP3K5, PRKAA2, SRPK1, MAP3K14, TNIK, MMD,TRIB2 1 Representative
GO:0004674 protein serine/threonine ki-nase activity 1.346 0.032 4.492E-10 PIM1, MAP3K12, ULK1, STK19, RPS6KA5, TESK2,MAP4K1, PINK1

AKT1, PLK3, LIMK1, MAP3K5, MAP3K9, PRKAA2,SRPK1, MAPKAPK3, RPS6KA4, MAP3K14, PLK2, NEK6,TNIK, STK39 1 Member
GO:0005524 ATP binding 1.436 0.043 1.303E-05 INSR, PDK2, PIM1, TAP1, RPS6KA5, CLPX, CLP1,MAP4K1, PINK1 ACLY, AKT1, CDK6, HSPA8, MAP3K5, NME1, NVL, OAS3,SRPK1, TDG, RPS6KA4, NEK6, FICD 1 Member
GO:0016301 kinase activity 1.939 0.032 1.045E-03 PIK3C3, ULK1, PINK1 AKT1, MAP3K14, STK39, TRIB3 1 Member
GO:0004842 ubiquitin-protein trans-ferase activity 1.103 0.011 2.211E-11 TRIM23, SIAH2, TRIM21, KLHL21, RNF13, TRIM2,RNF135 BIRC3, BARD1, TRAF3, DTX4, KLHL42, TRIM47 2 Representative
GO:0061630 ubiquitin protein ligase ac-tivity 0.644 0.005 1.101E-02 SIAH2, RNF125, RNF122, RNF135, TRIM52 2 Member
GO:0008013 beta-catenin binding 1.780 0.022 1.676E-08 FOXO3, SMAD7, FOXO4, CALCOCO1 PXN, VCL, GSKIP, AMER1 3 RepresentativeGO:0051018 protein kinase A binding 3.671 0.005 1.013E-02 WASF1, AKAP10 EZR, AKAP5, GSKIP 3 MemberGO:0003779 actin binding 1.455 0.005 3.076E-02 GSN, AVIL, SYNE1, SCIN ALDOA, CEACAM1, TPM1, VCL, EZR, MICAL2, CORO1A 3 MemberGO:0045296 cadherin binding 1.049 0.005 4.483E-02 NDRG1 VCL 3 Member
GO:0031625 ubiquitin protein ligasebinding 1.782 0.177 1.941E-08 CAMLG, CLU, ERBB3, JAK1, SMAD7, ATXN3, SPOP,BCL10, TXNIP, DDX58, GABARAPL1, ANKRA2, MOAP1,PINK1

ACTG1, HSPA8, PA2G4, TRAF3, VCL, FZD4, FZD6,MFHAS1, TRAF4, TUBA1B, NEK6, TRIB2, TRIB3,UBE2J2, TUBB 4 Representative
GO:0031996 thioesterase binding 2.670 0.005 5.571E-04 TRAF3, TRAF4 4 MemberGO:0050699 WW domain binding 3.092 0.005 4.241E-03 CDC25C, SCNN1G, WBP1 TRAF4 4 Member
GO:0003713 transcription coactivatoractivity 1.541 0.016 4.064E-08 HMGB2, PRMT2, SMARCA2, BCL10, DYRK1B, CITED2,WBP2, WWTR1, NUPR1, ING4, CALCOCO1, JMY PER2, SRA1, TCERG1, RRP1B, JMJD6 5 Representative
GO:0030331 estrogen receptor binding 2.025 0.005 4.677E-02 PRMT2, WBP2 NKX3-1, PPARGC1B 5 Member
GO:0008134 transcription factor binding 1.708 0.091 1.061E-07 HMGB2, FOXO4, PIM1, TFDP2, THRA, TWIST1, BCL10,HDAC5, RBFOX2, BCAS3

CCND1, BCL3, E2F4, FHL2, GATA2, GTF2A2, NKX3-1,PIK3R1, PPARG, MAPK9, LMO4, TNFRSF10A, HDAC4,PDCD11, TRIB2 6 Representative

GO:0000976 transcription regulatoryregion sequence-specificDNA binding 1.836 0.043 2.950E-06 ATF6B, ERBB4, FOXO3, HMGB2, SMAD7, SMARCA2,THRA, HDAC5, HINFP, ZBTB20, SOX6, CALCOCO1,FOXK1
EGR1, ETV5, NKX3-1, PPARG, SOX11, PER2, HDAC4,SOX18, SUV39H2, GLIS2 6 Member

GO:0000978 RNA polymerase II prox-imal promoter sequence-specific DNA binding 1.367 0.022 1.093E-04 CHD2, ATF6B, ELF1, FOXO3, HOXC4, TBX2, TGIF1,KLF7, HDAC5, PRDM4, KLF8, WBP2, EHF, CALCOCO1 E2F4, ELK3, ETS2, ETV1, ETV4, MYCN, NKX3-1, SOX11,FOSL1, ONECUT2, CLOCK, HDAC4, SOX18 6 Member
GO:0043565 sequence-specific DNAbinding 1.561 0.016 3.639E-04 FOXO3, IRF6, FOXO4, TBX2, ZNF224, HOXB13, HEY2,CALCOCO1, FOXP2 CBFB, E2F3, EGR1, HNRNPAB, HOXA13, NKX3-1,PPARG, ZNF35, CLOCK, HDAC4, MAFF, GRHL3, PBX4 6 Member
GO:0001228 DNA-binding transcriptionactivator activity, RNApolymerase II-specific 1.878 0.022 6.998E-04 ATF6B, DBP, ELF1, FOXO3, FOSL2, GTF2I, HOXC4, IRF2,FOXO4, RXRB, STAT6, TFDP2, KLF7, PRDM4, HINFP,EHF, CREBRF

E2F3, E2F4, EGR1, ELK3, ETV1, ETV4, ETV5, MYCN,SOX11, ONECUT2, CLOCK, MAFF, SOX18, GRHL3,GLIS2, MACC1 6 Member
GO:0042826 histone deacetylase bind-ing 1.285 0.005 1.035E-03 CIR1, HDAC5, HEY2, ANKRA2 CCND1, NKX3-1, HDAC4 6 Member
GO:0000977 RNA polymerase II reg-ulatory region sequence-specific DNA binding 1.748 0.005 1.337E-03 DBP, FOSL2, IRF2, MXI1, RXRB, SATB1, STAT6, TFDP2,HINFP, CREBRF E2F3, EGR1, ETV5, LMX1B, MACC1 6 Member

GO:0001227 DNA-binding transcriptionrepressor activity, RNApolymerase II-specific 1.546 0.011 1.394E-03 FOXO3, MXI1, NFATC4, SATB1, TBX2, TGIF1, ZNF224,HOXB13, KLF8, HEY2, ZNF350, FOXK1 ELK3, ETS2, BHLHE40, CHCHD3 6 Member

GO:0000981 DNA-binding transcriptionfactor activity, RNA poly-merase II-specific 1.708 0.005 4.528E-02 SP100, TWIST1, KLF7, HEY2 GATA2, LMX1B, BHLHE40, CLOCK, KLF2, FOXO6 6 Member
GO:0051087 chaperone binding 2.512 0.086 1.122E-06 CLU, GRN, TSC1, DNAJB4, GET4, FNIP1 CDC25A, HSPA8, DNAJB1, UBL4A, FICD, DNAJB5, SACS 7 RepresentativeGO:0051082 unfolded protein binding 1.708 0.038 2.192E-04 CLU HSPA2, HSPA8, DNAJB1, GRPEL1 7 MemberGO:0051117 ATPase binding 1.534 0.011 8.827E-03 ATXN3, BBC3, SNX10, SLC2A13 DNAJB1, EZR, METTL21A 7 MemberGO:0030544 Hsp70 protein binding 3.147 0.011 3.416E-02 TSC1 DNAJB1, FICD, SACS, DNAJC2, METTL21A 7 MemberGO:0031072 heat shock protein binding 1.546 0.005 4.584E-02 TPR HSPA8, LIMK1, METTL21A 7 Member
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Table 14 continued: BT-474 - Lapatinib monotherapyID Term_Description Fold_Enrichmentsupport Adj p value Up_regulated Down_regulated Cluster Status
GO:0004843 thiol-dependent ubiquitin-specific protease activity 1.566 0.011 4.260E-05 ATXN3, USP19, OTUD5, VCPIP1, OTUD1 USP18, UCHL5, USP38 8 Representative
GO:0061578 Lys63-specific deubiquiti-nase activity 4.005 0.005 8.801E-03 ATXN3, OTUD5 STAMBPL1 8 Member
GO:0070628 proteasome binding 2.937 0.005 4.395E-02 SACS, UCHL5 8 Member
GO:0004713 protein tyrosine kinase ac-tivity 1.658 0.038 4.713E-05 ERBB3, ERBB4, IGF1R, INSR, JAK1 RET, SRMS 9 Representative
GO:0004714 transmembrane receptorprotein tyrosine kinaseactivity 2.937 0.016 1.305E-03 ERBB4 EPHA2, RET 9 Member
GO:0005154 epidermal growth factor re-ceptor binding 3.496 0.005 2.281E-02 EGF, ERBB4, FAM83B AGR2, EPGN 9 Member
GO:0003714 transcription corepressoractivity 2.190 0.027 6.126E-05 EZH1, SIAH2, SAP30, CIR1, CITED2, RBFOX2 CCND1, CBFA2T3, FHL2, DNAJB1, RBBP8, NR0B2,LIMD1, TCERG1, LMCD1, WNT4, TRIB3 10 Representative
GO:0001103 RNA polymerase II re-pressing transcriptionfactor binding 2.554 0.005 6.306E-03 BBS2, BBS4 RBBP8, TCERG1 10 Member
GO:0019903 protein phosphatase bind-ing 2.068 0.022 9.368E-05 CDKN1B, JAK1, STAT6, KIFAP3 CEACAM1, MAP3K5, PIK3R1, PXN, TRAF3, ANAPC7 11 Representative
GO:0030332 cyclin binding 1.088 0.016 3.553E-03 CDKN1B CDK6 11 Member
GO:0004861 cyclin-dependent proteinserine/threonine kinaseinhibitor activity 1.468 0.005 4.121E-02 CDKN1B 11 Member
GO:0003684 damaged DNA binding 2.368 0.016 1.034E-04 HMGB2, CUL4B RBBP8, TDG, AUNIP 12 RepresentativeGO:0008144 drug binding 1.433 0.005 9.004E-03 HMGB2 MT2A, PNP, PPARG 12 Member
GO:0003690 double-stranded DNAbinding 1.108 0.005 1.092E-02 HMGB2, SATB1 PPARG, TDG 12 Member
GO:0043621 protein self-association 2.570 0.005 2.802E-02 AGXT, BCL10, FOXP1 NKX3-1, PPARG, TDG, FHOD1 12 MemberGO:0004879 nuclear receptor activity 2.719 0.005 3.841E-02 RXRB, THRA NKX3-1, PPARG, VDR 12 MemberGO:0046965 retinoid X receptor binding 2.937 0.016 4.677E-02 PPARG, VDR 12 Member
GO:0019904 protein domain specificbinding 2.514 0.027 1.630E-04 CAPG, GUSB, INSR, KCNN2, NUMA1, RAB27B, SP100,TFDP2, THRA, CITED2, VPS11, CHMP1B, CNTROB E2F4, ETS2, KPNB1, MAP3K5, PLAUR, SRSF7, EZR,NR0B2, BHLHE40, RAPGEF3, PLXND1, FHOD1 13 Representative
GO:1990841 promoter-specific chro-matin binding 1.224 0.005 1.246E-02 RBL2 E2F4, EGR1 13 Member
GO:0019843 rRNA binding 3.671 0.005 1.571E-03 DDX21, FASTKD2, NGRN 14 RepresentativeGO:0030515 snoRNA binding 4.895 0.005 3.669E-02 NOP14, DDX21, NOP56, NUDT5 14 MemberGO:0005198 structural molecule activity 1.708 0.065 1.732E-03 NUMA1 ASPH, TUBA1B, TUBA1C, TUBB 15 Representative
GO:0008022 protein C-terminus binding 1.345 0.005 1.826E-03 FOXN3, NUMA1, PEX12, BCL10, MAGI1, VPS4B, OPTN,CALCOCO1 HRAS, PPARG, FBLN5, CORO1A 15 Member
GO:0097718 disordered domain specificbinding 1.915 0.005 1.611E-02 NUMA1 HSPA2, PPIL1 15 Member
GO:0043022 ribosome binding 2.937 0.011 2.875E-03 EIF2S1, SRP72, NAA10, GEMIN5, NAA15 16 Representative
GO:0003743 translation initiation factoractivity 2.719 0.005 4.747E-02 EIF2D, EIF3F EIF2S1, EIF4G2, EIF2B3 16 Member
GO:0005159 insulin-like growth factorreceptor binding 6.119 0.005 3.858E-03 IGF1, INSR, SOCS2 PIK3R1, YWHAG 17 Representative
GO:0005080 protein kinase C binding 1.224 0.005 1.358E-02 HDAC5 PKP2, YWHAG 17 MemberGO:0060090 molecular adaptor activity 1.984 0.005 2.902E-02 AKAP9, ISCU PKP2, PSMG1, CHCHD3 17 Member
GO:0005085 guanyl-nucleotide ex-change factor activity 2.098 0.005 4.204E-03 SOS1, VAV3, ARFGEF1, TIAM2, FGD3, FNIP1 EIF2B3, RAPGEF3, DOCK5, MON1A, FGD5 18 Representative
GO:0005096 GTPase activator activity 2.021 0.011 1.662E-02 SOS1, RABGAP1L, VAV3, ARFGEF1, TBC1D15, ARAP1 RAP1GAP, RGS3, RGS16, CDC42EP2, TBC1D30, ER-RFI1, RALGAPA2, SGSM1, ARHGAP27 18 Member
GO:0050431 transforming growth factorbeta binding 5.140 0.005 4.134E-02 LTBP1, TWSG1, WFIKKN1, CD109 TGFB3, HYAL2, VASN 19 Representative
GO:0004708 MAP kinase kinase activity 1.468 0.005 4.677E-02 MAPKAPK3 20 Representative
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Table 14 continued: BT-474 - Lapatinib monotherapyID Term_Description Fold_Enrichmentsupport Adj p value Up_regulated Down_regulated Cluster Status
Table 14: De-regulated genes and networks (see section 2.2 for details on how significance was calculated) in BT-474 cells treated with 1µM lapatinib.
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Table 15 BT-474 - EMBL-703625 monotherapy: Hierarchial clustering
ID Term Description Fold En-richment support Adj p-value Up regulated Down regulated Cluster Status
GO:0005516 calmodulin binding 2.169 0.013 1.04E-10 VAMP2, TRPV6 CEACAM1, MBP, MYO9B, PPP3CB, TRPV1, CAMKK2,UNC13A, PLCB1, IQCG 1 Representative
GO:0035091 phosphatidylinositol bind-ing 2.232 0.020 3.45E-02 ITPR1, SNX5, SNX12 HIP1, MAPT, PITPNA, TRPV1, MCF2L 1 Member
GO:0031625 ubiquitin protein ligasebinding 1.292 0.288 1.54E-10 ARRB2, ATP6V0C, BAG1, CDKN1A, GPR37, PCBP2,PML, POLR2A, VCP, CXCR4, FZD5, BCL10, CASC3,FBXW7, OTUB1, RNF20

BRCA1, CASP8, EGFR, PRKACB, RB1, TP53, IKBKE,TANK, ERLIN2, NLK, DET1 2 Representative
GO:0051087 chaperone binding 1.354 0.052 2.20E-07 DNAJB9, SOD1, BAG3 MAPT, TBCE, TP53, BAG2, TIMM9, RNF207 2 MemberGO:0002020 protease binding 1.271 0.020 6.29E-04 TNFAIP3, BCL10, RNF139 BRCA2, TP53, FADD, PYCARD, LONP2, THAP5 2 Member
GO:0043621 protein self-association 2.859 0.039 1.10E-03 DYRK1A, SLC2A1, VAMP2, TNFAIP3, BCL10, KCTD9,ZFYVE27 ADAM8, TP53, RNF112 2 Member
GO:0019903 protein phosphatase bind-ing 1.289 0.059 1.19E-03 LGALS3, VCP, MTMR9 CEACAM1, EGFR, MET, TP53, IKBKE 2 Member
GO:1990841 promoter-specific chro-matin binding 1.588 0.059 2.29E-03 PRDM1, HNRNPU, POLR2A, KLF4 TP53 2 Member
GO:0097718 disordered domain specificbinding 0.995 0.007 8.74E-03 RB1, TP53 2 Member
GO:0035035 histone acetyltransferasebinding 1.806 0.007 3.31E-02 EPAS1, ECD TP53 2 Member
GO:0001085 RNA polymerase II tran-scription factor binding 1.173 0.007 3.40E-02 PITX1, KLF4 HCLS1, TP53 2 Member
GO:0004402 histone acetyltransferaseactivity 3.812 0.046 6.15E-10 TAF9, SRCAP, KAT7, TAF5L, ING3 BRCA2, TADA2A, TAF10, TAF12, KAT8 3 Representative
GO:0003713 transcription coactivatoractivity 1.130 0.013 2.95E-03 TAF9, TAF11, BCL10, AIP, MED21, MED6, SRCAP, TAF5L,HCFC2, RNF20, TADA1 BRCA1, TAF12, RUVBL1, TRIP11, HTATIP2 3 Member
GO:0070063 RNA polymerase binding 2.859 0.020 3.06E-03 ANP32B, PHRF1 BRCA1, TAF10 3 Member
GO:0016251 RNA polymerase II generaltranscription initiation fac-tor activity 2.745 0.007 1.43E-02 GTF2E2 GTF2E1, GTF2H3, TAF10, TAF12, SNAPC5 3 Member
GO:0004843 thiol-dependent ubiquitin-specific protease activity 1.830 0.020 1.07E-08 TNFAIP3, USP4, OTUD3, OTUD6B, OTUB1, USP35,USP36, ZC3H12A, OTULIN TANK, USP30, USP51 4 Representative
GO:0003682 chromatin binding 1.557 0.078 1.40E-06 BCL6, HNRNPU, BRD2, ATF5, PELP1, GMNN, SIRT7,ZC3H12A, PWWP2A

EGFR, MLH1, SMARCE1, TFAP2A, TP53, MORC2,POLR1A, NUCKS1, NKAP, ZKSCAN3, GLYR1, USP51,ZNF431, PRIMPOL 4 Member
GO:0042393 histone binding 1.654 0.007 2.49E-02 ANP32B, COPRS, RNF20, PWWP2A, UHRF2 MLLT6, PRMT6, SAP30L, PARP9, GLYR1, DTX3L, USP51 4 Member
GO:0000976 transcription regulatoryregion sequence-specificDNA binding 1.119 0.052 5.06E-08 ATF3, FOS, NFE2L2, NFYC, SOX4, TAF9, TCF7L2, KLF4,NR1D1, ATF5 BRCA1, MEN1, TAF2, TFAP2A, TP53, NR1H3, ZNF658,GABPB2 5 Representative

GO:0000978 RNA polymerase II prox-imal promoter sequence-specific DNA binding 0.986 0.020 1.14E-05 PRDM1, KLF5, KLF6, ETS2, HNRNPU, IRF7, MXD1,MTF1, NFYC, SOX4, TCF7L2, NR1D1, NKRF, ZGPAT ESR2, ESRRB, MYBL1, TFAP2A, TP53, IRF9, TCFL5,BHLHE41, ZKSCAN3, NLRC5, ZNF431 5 Member
GO:0008134 transcription factor binding 1.489 0.052 1.14E-05 EPAS1, FOS, IGHMBP2, PIM1, TCF7L2, TLE1, BCL10,AIP, MAFB, MED6, PELP1, CXXC5, HDAC8 E2F5, ESRRB, PURA, PURB, RB1, TAF12, TP53, ATG7,ATF7, IRF2BP1, NLK, NUCKS1, HDAC11, KAT8, METTL23 5 Member
GO:0043565 sequence-specific DNAbinding 1.160 0.007 1.33E-04 BCL6, EGR4, EPAS1, NFE2L2, POLRMT, TCF7L2, USF1,MAFB, ATF5, CXXC5, ZGPAT, OSR2, YY2 ESRRB, MAPT, TFAP2A, ZNF76, SPDEF, ZBTB4,ZKSCAN3, ZC3H8 5 Member
GO:0001228 DNA-binding transcriptionactivator activity, RNApolymerase II-specific 0.842 0.020 7.00E-04 ATF3, KLF5, CDC5L, KLF6, EGR4, MTF1, NR4A2, SOX4,BARX2, KLF4, ATF5, NKRF, YY2 ESRRB, MYBL1, TFAP2A, TP53, ZNF76, ZNF175 5 Member

GO:0001102 RNA polymerase II acti-vating transcription factorbinding 1.173 0.007 3.40E-02 FOS, NFE2L2 IFI27, BHLHE41 5 Member
GO:0004842 ubiquitin-protein trans-ferase activity 1.521 0.072 2.64E-05 TNFAIP3, UBE2D2, RNF139, RNF115, MYLIP, UBE2R2,CHFR, RNF20, ZNRF1, UHRF2, ZNF738 XIAP, BRCA1, DZIP3, FBXW2, FBXW8, FBXO4, UBE2D4,TRIM56, RNF135, TRIM69, DTX3L, NHLRC1 6 Representative
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Table 15 continued: BT-474 - EMBL-703625 monotherapy
ID Term Description Fold En-richment support Adj p-value Up regulated Down regulated Cluster Status
GO:0061631 ubiquitin conjugating en-zyme activity 1.634 0.013 4.43E-03 UBE2D2, UBE2R2 UBE2D4 6 Member
GO:0061630 ubiquitin protein ligase ac-tivity 1.605 0.013 2.86E-02 RNF139, RNF115, MYLIP, ASB1, PELI1, IRF2BPL, ZNRF1,UHRF2, RNF19B XIAP, RNF112, RNF113A, TRAF3IP2, IRF2BP1, RNF135,SH3RF2 6 Member
GO:0003723 RNA binding 1.587 0.111 3.63E-05 HNRNPU, IGHMBP2, PCBP2, PSMA6, RBM4, SRSF6,SNRNP70, SNRPD3, DUSP11, PKP3, RBM15, RPF1,ZC3H12A

BRCA1, IREB2, MAPT, RNASEL, SRSF1, NOL3, DZIP3,ADAT1, RBM15B, CPSF3, APOBEC3F 7 Representative
GO:0003729 mRNA binding 2.287 0.026 6.14E-03 RBM4, ARC, LUC7L3, RBM25, RBM15, ZC3H12A,RBPMS2 DHFR, PURB, SRSF1, TDRD7, NSRP1, NUDT16 7 Member
GO:0047485 protein N-terminus binding 1.613 0.026 2.46E-04 GADD45A, GLRX, TAF11, ALG2 ATM, ERCC4, GTF2H3, MEN1, SMARCE1, TP53, THAP7 8 RepresentativeGO:0003684 damaged DNA binding 1.107 0.007 2.06E-02 XPA ERCC4, OGG1 8 Member
GO:0004861 cyclin-dependent proteinserine/threonine kinaseinhibitor activity 4.575 0.020 4.35E-04 CDKN1A, CDKN2D, HEXIM1 HEXIM2 9 Representative
GO:0030332 cyclin binding 2.542 0.013 8.36E-03 CDKN1A, RBM4, CDK12, FBXW7 CDK6, PROCA1 9 Member
GO:0044877 protein-containing com-plex binding 1.220 0.007 4.60E-04 CDKN1A, HNRNPU, USF1, FZD5, NAPA, SPATA2, NOD1,PSMG4 ATM, ITGA2, MTHFR, PEX1, PEX6, TERF2, CBX5, DET1 10 Representative
GO:0008022 protein C-terminus binding 1.310 0.026 4.94E-03 POLR2A, COIL, KSR1, BCL10 BRCA2, CDC20, ERCC4, PEX1, PEX6, PEX12, TERF2,XRCC4, MDC1, TNNI3K, IFT46 10 Member
GO:0042162 telomeric DNA binding 1.634 0.026 7.00E-03 TERF2, POT1, TINF2 10 Member
GO:0004722 protein serine/threoninephosphatase activity 1.733 0.007 5.85E-04 PPM1D, CDC14B PPP1R3D, PTEN, RPAP2 11 Representative
GO:0003697 single-stranded DNA bind-ing 2.062 0.007 7.48E-04 HNRNPU, IGHMBP2, WBP11 BRCA2, ERCC4, MAPT, MLH1, PURA, PURB, NABP1,SWSAP1 12 Representative
GO:0000993 RNA polymerase II com-plex binding 2.042 0.007 2.15E-02 HNRNPU, SMYD2, RPRD1B ESRRB, ELP4 12 Member
GO:0036002 pre-mRNA binding 3.119 0.007 3.63E-02 HNRNPU, SRSF6, RBM22 12 Member
GO:0004674 protein serine/threonine ki-nase activity 1.001 0.020 9.84E-04 ACVR1, MAP3K8, DYRK1A, GSK3A, PDK3, PIM1,PRKCD, SGK1, PPM1D, STK17A ATM, ATR, MAP3K10, MAP3K11, SYK, MKNK1, HTATIP2,STK38, IRAK4, NLK, ALPK1 13 Representative
GO:0005524 ATP binding 1.372 0.013 5.47E-03 ACVR1, ATP1B1, HNRNPU, IGHMBP2, PDK3, PIM1,KSR1, STK17A, CLP1, YARS2, PRKAG2, PI4K2A

CAD, CDK6, MYO9B, PEX1, PEX6, PRKACB, TP53,TRPV1, MKNK1, ABCB8, STK38, MORC2, PPIP5K2, NLK,SRR 13 Member
GO:0031593 polyubiquitin modification-dependent protein binding 2.018 0.007 1.69E-03 VCP, TNIP2 DZIP3 14 Representative
GO:0016887 ATPase activity 1.549 0.033 5.67E-03 ATP1B1, PSMC1, RFC3, VCP MYH3, MYO9B, PEX1, PEX6, RUVBL1, ABCC3, MORC2,C10orf88, SWSAP1 14 Member
GO:0044389 ubiquitin-like protein ligasebinding 2.691 0.007 9.97E-03 VCP CCNB1, PARP9, DTX3L 14 Member
GO:0050700 CARD domain binding 4.399 0.007 1.82E-03 BCL10, NOD1 CARD8, MAVS, CARD14 15 RepresentativeGO:0019900 kinase binding 1.307 0.007 3.28E-02 GADD45A, POLR2A, PRKCD, BCL10, ATF5 CEACAM1, RB1, WWC3 15 Member
GO:0004713 protein tyrosine kinase ac-tivity 1.476 0.020 3.26E-03 DYRK1A, LYN EGFR, MET, PTK6, SRMS, SYK, CAMKK2 16 Representative
GO:0004715 non-membrane spanningprotein tyrosine kinaseactivity 2.199 0.013 7.19E-03 DYRK1A, LYN, TEC PTK6, SYK 16 Member
GO:0000149 SNARE binding 2.542 0.007 3.58E-03 VAMP2, NAPA, CAPN10 SNAPIN 17 Representative
GO:0008092 cytoskeletal protein bind-ing 2.859 0.013 3.58E-02 CAPN10, MYLIP ALDOA, ANK3, PKD2, RPH3AL, MYPN 17 Member
GO:0004879 nuclear receptor activity 1.694 0.007 7.18E-03 NR4A2 ESR2, THRB, NR1H3 18 Representative
GO:1990756 protein binding, bridging in-volved in substrate recog-nition for ubiquitination 4.765 0.007 1.01E-02 SKP1, SPSB1, ARRDC4 DET1, SPSB2 18 Member
GO:0008013 beta-catenin binding 0.693 0.007 1.70E-02 NR4A2, SKP1, TCF7L2 CBY1 18 MemberGO:0030674 protein binding, bridging 1.400 0.007 1.67E-02 FBXW7 ANK3, MAPT, MEN1, CBX5, MLPH 19 RepresentativeGO:0035064 methylated histone binding 1.225 0.007 3.89E-02 ING3, SPIN3 CBX5, THAP7, KAT8, GLYR1 19 Member
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Table 15 continued: BT-474 - EMBL-703625 monotherapy
ID Term Description Fold En-richment support Adj p-value Up regulated Down regulated Cluster Status
GO:0051015 actin filament binding 0.852 0.007 1.70E-02 EGFR, HIP1, MYH3, FSCN2, DBNL, POF1B, ANTXR1 20 RepresentativeGO:0051117 ATPase binding 1.195 0.007 2.61E-02 ATP1B1, ATP1B3, TAF9 EGFR, PKD2, TRPC1, TMTC4 20 MemberGO:0043015 gamma-tubulin binding 2.859 0.007 4.33E-02 TUBGCP3, RAB11FIP5, BLOC1S2 BRCA2 21 Representative

Table 15: De-regulated genes and networks (see section 2.2 for details on how significance was calculated) in BT-474 cells treated with 1µM EMBL-703625
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Table 16 BT-474 - Lapatinib + EMBL-703625 combination therapy: Hierarchical clustering
ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status

GO:0004842 ubiquitin-protein trans-ferase activity 1.941 0.28 4.207E-58

AMFR, BIRC2, TRIM23, TRIM37, CNOT4, RNF2, SIAH1,SIAH2, TNFAIP3, TRAF6, UBE2B, UBE2D1, UBE2D3,UBE2G1, UBE2H, UBE2L3, VHL, RNF103, BRAP, CUL3,CDC23, PJA2, KLHL21, TRIM28, TOPORS, WWP2,RNF139, RNF13, PDZRN3, TRIM2, NEDD4L, FBXO7,ARIH1, FBXL3, FBXO2, FBXO3, RNF115, MYLIP, RLIM,FANCL, TRIM36, RNF20, SMURF1, HACE1, UBE2O,SMURF2, RMND5A, CBLL1, KCTD10, UBE2Q2, UHRF2,UBR3, ZNF738, RC3H1, RNF168, RNF152

BIRC3, XIAP, BRCA1, ERCC8, TRIM27, TNFAIP1, UBE2A,RNF40, RNF41, DTX4, FBXW8, FBXO4, UBE2T, UBE2D4,RNF43, TRIM62, KLHL42, RNF213, RNF25, TRIM56,TRIM47, TRIM69, FBXL14, DTX3L, KCTD13, NHLRC1
1 Representative

GO:0061630 ubiquitin protein ligase ac-tivity 1.796 0.095 3.409E-40
AMFR, CDC42, TRIM37, SIAH1, SIAH2, TRAF6, RNF103,BRAP, CUL3, TRIM24, TRIP12, RNF10, TOPORS,WWP2, RNF139, MKRN1, RNF11, RNF115, MYLIP,MEX3C, UBR5, ASB1, RNF125, FANCL, SMURF1, PELI1,UBE2O, IRF2BPL, SMURF2, RNF122, TMEM129, UHRF2,RNF19B, RC3H1, RNF38, RNF152, ZNRF2

XIAP, NFX1, TRIM27, PPP1R11, RNF112, RNF144A,RNF41, TRAF3IP2, PPIL2, IRF2BP1, RNF43, RFWD3,SH3RF3 1 Member

GO:0004674 protein serine/threonine ki-nase activity 1.775 0.165 4.133E-36

ACVR1, ACVR1B, ACVR2A, ACVR2B, AKT2, BRAF,CDK1, CDK7, CLK1, CLK3, MAP3K8, CSNK1A1, CSNK1E,CSNK1G3, CSNK2A2, DYRK1A, MKNK2, GSK3A, ILK,MAP3K1, NEK2, PIM1, PRKCE, PKN2, MAPK1, MAPK8,MAP2K1, RAF1, ROCK1, SGK1, SRPK2, STK3, STK4,CDKL5, TGFBR1, ULK1, STK24, MAP4K3, PPM1D,RIPK2, RIOK3, MAP3K13, RPS6KA5, MAPKAPK2,STK17B, STK17A, EIF2AK3, SLK, TLK1, OXSR1, AKT3,HIPK3, TESK2, MAP3K2, TLK2, PIM2, LMTK2, STK38L,SIK3, ULK3, TBK1, MINK1, SNRK, CLK4, UHMK1,ACVR1C, NEK7, TTBK2, SIK1, CDK11A

ATR, IRAK1, LIMK1, MAP3K5, MAP3K9, MAP3K10,MAP3K11, PHKG2, PRKACA, PRKCA, PRKD1, MAPK13,EIF2AK2, RPS6KA3, MAPK12, NEK4, STK10, SYK, VRK2,MAPKAPK3, MAPKAPK5, MKNK1, RIPK1, RPS6KA4,MAP3K14, PLK2, TNIK, DAPK2, PRKD2, IRAK4, FAM20C,MARK4, MASTL, EIF2AK4
2 Representative

GO:0004672 protein kinase activity 1.693 0.135 3.398E-25

ABL1, ACVR1, BRAF, CDK1, CDK7, CDK8, CSNK1A1,CSNK1E, CSNK1G3, DYRK1A, EPHA4, MAP3K1,MAP3K3, NEK2, CDK17, PDK2, PRKAA1, PKN2, MAP2K1,ROCK1, STK3, STK4, CDKL5, TGFBR1, STK24, MAP4K3,CDK13, DYRK1B, RPS6KA5, MAPKAPK2, STK17B,AKT3, HIPK3, TESK2, MAP3K2, HSPB8, TBK1, MINK1,CDK12, STK26, TTBK2

ATR, CAD, EPHA1, IRAK1, MAP3K5, PRKACA, PRKCA,EIF2AK2, RPS6KA3, SYK, CDC7, RIPK1, MAP3K14,DCLK1, IKBKE, RASSF2, TNIK, PRKD2, TRIB2, IRAK4,MLKL
2 Member

GO:0016301 kinase activity 1.391 0.02 3.224E-10 ABL1, CDK7, CSNK1A1, EPHA4, PIK3C3, PIK3CA, PKN2,MAPK1, MAPK8, CDKL5, WEE1, ULK1 IRAK1, PRKD1, CDC7, MAP3K14, TRIB3, MASTL 2 Member

GO:0005524 ATP binding 1.402 0.045 4.010E-06

ABCA1, ABCA2, ABL1, ACVR1, ACVR1B, AKT2, ATP1A1,ATP1B1, ATP7B, ERCC6, MKNK2, HNRNPU, HSPA1B,HSPA5, INSR, MYO1B, PDK2, PIM1, TWF1, ABCD3,SRPK2, STK3, STK4, CDKL5, TGFBR1, MAP4K3, KSR1,RPS6KA5, STK17B, STK17A, TLK1, OXSR1, AKT3, CLPX,PAPOLA, CLP1, TLK2, STK38L, SIK3, MINK1, YARS2,STK26, SNRK, PI4K2A, PANK3, SIK1, CDK11A

ACLY, ABCD1, BLM, CAD, CDK6, GALK1, GSS, KCNJ11,MAP3K5, MVK, MYO9B, NVL, OAS3, TP53, TRPV1,MKNK1, EIF2B2, RPS6KA4, LONP1, ABCB6, PMVK,FICD, ABCB8, MORC2, DAPK2, VPS4A, SRR, NOL9,MLKL, MYO18A
2 Member

GO:0008134 transcription factor binding 1.714 0.405 2.605E-28

APBB1, ARNT, CCNT1, CEBPG, CENPF, CREBBP,CTNNB1, EP300, FOSB, GATA6, GTF2B, HMGB1,HMGB2, RBPJ, SMAD2, SMAD3, FOXO4, NFKBIA, NPM1,PAX6, PIM1, PPID, REST, RORA, RPS3, TRAPPC2,STAT3, STK4, TCF7L2, TFDP2, THRA, TWIST1, SUMO1,VHL, ZBTB17, USP7, KAT6A, HDAC3, KAT2B, BCL10,AIP, PIAS2, HDAC9, MAFB, MED6, HDAC5, ARID5A,PPARGC1A, WWP2, KDM1A, SIRT1, KAT6B, RBFOX2,UBXN7, CXXC5, HDAC8, MED25

CCND1, BCL3, CEBPA, DDIT3, DNMT3A, E2F5, ESRRB,FHL2, NKX3-1, PPARG, MED1, MAPK9, PURB, RARA,RB1, SMARCA4, TAF12, MLX, TP53, LMO4, TNFRSF10A,HDAC4, SNF8, PDCD11, CAMTA2, IRF2BP1, TRIB2,PARD6A, NUCKS1, HDAC11, METTL23, SDR16C5,KCTD1
3 Representative
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Table 16 continued: BT-474 - Lapatinib + EMBL-703625 combination therapy
ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status

GO:0003713 transcription coactivatoractivity 1.871 0.325 1.369E-22

ABL1, BIRC2, BRDT, CREBBP, CTNNB1, DAXX, EP300,HMGB1, HMGB2, JUP, LMO2, NFKBIB, NPM1, PSMD9,KDM5A, RFXAP, SMARCA2, TAF9, UBE2L3, KAT6A,NCOA3, NRIP1, NCOA1, TRIM24, KAT2B, BCL10, AIP,DYRK1B, MED21, MED23, MED17, MED26, LPIN2,MAML1, THRAP3, MED6, TRIM28, CITED2, YAP1,ZBTB18, NCOA2, KAT5, SRCAP, PPARGC1A, SUB1,RBPMS, SNW1, PRPF6, WWTR1, TAF5L, MED4, HCFC2,ING4, RNF20, ENY2, JADE1, MED30, TADA1, JMY,CITED4, ASXL1

BRCA1, DDIT3, MED1, SMARCA4, TAF12, RUVBL1,PER2, TRIP11, SRA1, CAMTA2, JMJD6, ARL2BP, CCAR1 3 Member

GO:0003714 transcription corepressoractivity 1.976 0.225 5.019E-19
CREBBP, DAXX, EZH1, HNRNPU, PAWR, PFDN5, SIAH2,NRIP1, PIAS1, URI1, CREG1, SAP30, HDAC3, CBFA2T2,CDYL, CIR1, NCOR1, HDAC9, TRIM28, SAP18, CITED2,YAP1, KDM5B, ARID5A, SNW1, SIRT1, RBFOX2,ZMYND8, TBL1XR1

CCND1, CBFA2T3, DNMT3A, ATN1, FHL2, MAP3K10,MED1, SMARCA4, NR0B2, CASP8AP2, PRMT5,MYBBP1A, EID1, IRF2BP1, LMCD1, WNT4, CCAR1,TRIB3, NSD1, PARP9, AJUBA, TCP10L, SDR16C5,BEND6, KCTD1, IRF2BP2
3 Member

GO:0000976 transcription regulatoryregion sequence-specificDNA binding 1.447 0.205 4.455E-27

ARNTL, ATF3, ERBB4, FOXO3, GABPA, GATA6, HMGB1,HMGB2, IRF1, JUND, SMAD3, SMAD4, SMAD7, NFE2L2,NFYA, NFYC, KDM5A, RBBP5, REST, RXRA, SIX1,SMARCA2, SOX4, STAT3, TAF9, TCF7L2, THRA, YY1,ZNF217, MAFK, KLF11, KLF4, NR1D1, NCOR1, RNF10,HDAC5, YAP1, CTCF, ATF5, GRHL1, SOX6, CREB3L2,TBL1XR1, FOXK1, ZNF568

BRCA1, RUNX1, CEBPA, DDIT3, ETV5, SMAD6, NKX3-1, PPARG, TAF2, TFAP2A, TP53, TFEB, KMT2D, PER2,HDAC4, NR1H3, ZNF658, SOX18, CREB3L1, GABPB2 4 Representative

GO:0000978 RNA polymerase II prox-imal promoter sequence-specific DNA binding 1.497 0.16 1.085E-26

ARNTL, ZFHX3, PRDM1, KLF5, CHD2, KLF6, ATF2,ELF1, ELK4, FOXO3, GABPA, NR3C1, HNRNPU, HOXA5,HOXB7, HSF2, RBPJ, IRF1, IRF7, MXD1, SMAD1,SMAD2, SMAD3, SMAD4, SMAD5, MITF, MTF1, NFIL3,NFYA, NFYC, NONO, PAX6, PER1, POU2F1, REL,REST, RORA, RXRA, SAFB, SIX1, SOX4, SOX9, STAT3,TBX2, TCF7L2, TFAP2C, TGIF1, NR2C2, UBP1, ZNF148,ZBTB17, ZNF217, NRIP1, YBX3, KLF7, ZBED1, LRRFIP1,LITAF, TBPL1, NR1D1, THRAP3, NR1D2, HDAC5, CTCF,NFAT5, KLF8, EHF, GRHL1, ZNF219, THAP1, ZNF395,NKRF, ZBTB2, ZNF750

RUNX1, DDIT3, DNMT3A, ELK3, ESRRB, ETV1, ETV4,SMAD6, MYCN, NKX3-1, POU4F3, RARA, RELB, TFAP2A,TP53, XBP1, ZNF202, FOSL1, ONECUT2, CLOCK,HDAC4, IRF9, CREB3, TCFL5, FOXP3, SOX18, CCAR1,NSD1, BHLHE41, E2F8, NLRC5, ZNF431
4 Member

GO:0001228 DNA-binding transcriptionactivator activity, RNApolymerase II-specific 1.381 0.095 1.075E-19

ATF1, ATF3, KLF5, CDC5L, CEBPG, KLF6, ATF2, DBP,ELF1, ELF3, ELK4, FOXO1, FOXO3, FOSL2, GABPA,NR3C1, GTF2I, HOXA5, HOXB7, HSF2, RBPJ, IRF1,SMAD1, SMAD2, SMAD3, SMAD4, MITF, FOXO4, MTF1,NR4A2, REL, RFXAP, RXRB, SIX1, SOX4, SOX9,STAT3, TFAP2C, TFDP2, NR2C2, UBP1, ZNF24, ZBTB17,PRDM2, BARX2, KLF7, ZBED1, KLF4, LITAF, TBPL1,NFAT5, ATF5, MLXIP, FOXJ3, ATMIN, EHF, GRHL1, NKRF,ZNF750, CREBRF, YY2

RUNX1, CEBPA, DDIT3, E2F3, ELK3, ESRRB, ETV1,ETV4, ETV5, HLF, MYCN, NHLH1, PLAGL2, PLSCR1,POU4F3, TFAP2A, TP53, ZNF175, ONECUT2, CLOCK,CREB3, SOX18, GRHL3, GRHL2, CREB3L1, MACC1
4 Member

GO:0001227 DNA-binding transcriptionrepressor activity, RNApolymerase II-specific 1.509 0.045 1.473E-12
ZFHX3, BACH1, PRDM1, FOXO3, NR3C1, HOXD9, MXD1,MAX, MNT, MXI1, NFIL3, REST, SKI, TBX2, TFAP2C,TGIF1, YY1, CNBP, ZNF148, ZNF217, PRDM2, MAFK,LRRFIP1, NR1D1, ZBTB5, ZNF263, ZBTB18, HOXB13,CTCF, KLF8, ZNF219, THAP1, ZBTB2, OVOL2, ZNF350,IKZF5, HMBOX1, IRX2, FOXK1

CREM, ELK3, NFX1, MLX, TFAP2A, ZNF85, ZNF140,ZNF175, ZNF202, BHLHE40, TCFL5, ZBTB21, ZNF589,ZBTB4, BHLHE41, E2F8, CREB3L1 4 Member

GO:0043565 sequence-specific DNAbinding 1.424 0.075 6.433E-11

ARNT, ARNTL, BCL6, CEBPG, FOXD1, FOXO1, FOXO3,RBPJ, IRF6, SMAD3, SMAD4, FOXO4, NFE2L2, POLRMT,POU2F1, RORA, RXRA, SIX1, SOX9, SP4, TBX2, TCF7L2,NR2F2, NR2C2, USF1, ZNF24, ZNF148, PRDM2, MAFK,ZBED1, MAFB, ZBTB33, ZNF263, TRIM28, ZBTB18,HOXB13, CTCF, ARID5A, PPARGC1A, ATF5, FOXJ3,GRHL1, CXXC5, THAP1, HMBOX1, OSR2, IRX2, YY2

CENPB, E2F3, ESRRA, ESRRB, FOXD4, HLF, HOXA13,MAPT, NKX3-1, PLAGL2, PPARG, TFAP2A, ZNF35,ZNF140, LONP1, CLOCK, HDAC4, ZNF274, SPDEF,FOXP3, ZBTB4, GRHL3, GRHL2, ZC3H8
4 Member
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GO:0000977 RNA polymerase II reg-ulatory region sequence-specific DNA binding 1.495 0.055 4.345E-07
ATF1, ATF3, CDC5L, ATF2, DBP, EP300, FOSL2, NR3C1,HOXD9, HSF2, MAX, MEF2D, MNT, MXI1, NFIL3, RORA,RPS3, RXRA, RXRB, SP3, TFDP2, NR2C2, CNBP,PRDM2, BARX2, NR1D1, ZBTB5, ATF5, MLXIP, IKZF5,CREBRF

RUNX1, CREM, E2F3, ETV5, LMX1B, NFX1, NHLH1,RARA, MLX, ZNF175, CREB3, ZNF589, ZBTB4, STOX1,MACC1 4 Member

GO:0031625 ubiquitin protein ligasebinding 1.731 0.605 2.751E-26

APBB1, APC, ARRB2, ATP6V0C, BAG1, CALR, CAMLG,CDKN1A, CKB, CLU, DAXX, FOXO1, GPR37, HSPA1B,HSPA5, JAK1, SMAD2, SMAD3, SMAD5, SMAD7,ATXN3, TRIM37, NFKBIA, PCBP2, PER1, PML, POLR2A,PRKAR1A, RPL5, RPL11, SKI, SUMO2, TMBIM6, TRAF6,UBE2B, UBE2G1, UBE2L3, SUMO1, VCP, YWHAE,CXCR4, FZD5, USP7, BAG6, SPOP, CUL3, BCL10,BAG4, PRDX6, SCAMP3, TRIM28, TXNIP, PPARGC1A,GABARAP, GABARAPL2, CASC3, SYT11, GABARAPL1,FBXO7, ARIH1, UBXN7, USP25, SNX9, UBE2J1, FANCL,FBXW7, LAPTM4B, AMBRA1, RNF20, RTN4, MOAP1,DERL1, MAP1LC3B, MAP1LC3A, CCDC50, ZNF675

BRCA1, CASP8, EGFR, HSPA1L, LTBR, SMAD6, MID1,SLC22A18, PRKACA, RB1, TP53, UBE2A, FZD8, RIPK1,TRAF4, IKBKE, RNF40, RRAGA, TRIOBP, FAF2, TRIB2,UBE2T, TRIB3, HM13, ARRDC1
5 Representative

GO:0002039 p53 binding 1.668 0.17 8.763E-20 PTTG1IP, CREBBP, DAXX, TAF9, TP53BP2, USP7,TRIM24, KDM1A, SIRT1, BRD4, RNF125, RNF20, SMYD2 BLM, SMARCA4, TP53, MAPKAPK5, TP63, PSME3,PRMT5, RFWD3, SETD7 6 Representative
GO:0070577 lysine-acetylated histonebinding 1.950 0.01 8.300E-06 BRDT, MLLT3, BRD2, YEATS4, TRIM24, BRD4, ZMYND8,PHIP SMARCA4, THAP7 6 Member

GO:0003723 RNA binding 1.917 0.37 2.494E-18

ACO1, FMR1, HNRNPU, CAPRIN1, MBNL1, NPM1,PCBP2, PPP1R8, PSMA1, PSMA6, RBM4, UPF1, RPL19,RPL30, RPL34, RPL37, RPL38, RPL39, RPL41, RPS3,RPS14, RPS16, SRSF6, SNRNP70, SNRPA, SSB,HSP90B1, YY1, DUSP11, RAE1, RNMT, PUM1, RBM7,C1D, KHDRBS1, CELF1, PPARGC1A, RBPMS, NUDT21,CPSF6, RCAN3, SCAF8, EXOSC7, PUM2, SF3B1, RB-FOX2, PRPF6, PABPC1, SND1, MEX3C, CWC15, RBM15,RPF1, ZC3H12A, MEX3B, YTHDC1, NAF1, RBM20

BRCA1, IREB2, MAPT, RANGAP1, RNASEL, MRPL12,SRSF1, SRSF3, SURF6, NOL3, EMG1, DHX30, JMJD6,TARDBP, ADAT1, RBM15B, CPSF3, XPO5, NIFK, PHF5A,MEX3A, JAKMIP1, APOBEC3F
7 Representative

GO:0003729 mRNA binding 2.205 0.185 8.050E-08
ZFP36L1, CALR, DXO, FMR1, RBM4, RPL7, RPS2, RPS3,RPS5, RPS13, SSB, TPR, RBM5, CELF1, NUDT21,CPSF6, ARC, SF3B6, LUC7L3, METTL14, RBM25,RBM15, ZC3H12A, FYTTD1, HNRNPLL

DHFR, PURB, SRSF1, IGF2BP1, TDRD7, ESRP1, XPO5,ESRP2, NSRP1, NUDT16 7 Member

GO:0003730 mRNA 3’-UTR binding 1.410 0.12 1.108E-07 AUH, CIRBP, FMR1, HNRNPU, RBM4, RPL5, RPL41,RPS7, YBX3, PUM1, PUM2, CARHSP1, PABPC1, RNF20,ZC3H12A, RC3H1 TP53, RNF40, IGF2BP1, TARDBP, DND1 7 Member
GO:0048027 mRNA 5’-UTR binding 1.862 0.065 6.824E-05 FMR1, RPL5, RPL26, RPL41, RPS3A, RPS7, RPS13,RPS14 SHMT1, IGF2BP1 7 Member
GO:0035198 miRNA binding 1.695 0.02 1.125E-04 FMR1, RBM4, PUM1, MATR3, PUM2, ZC3H12A, RC3H1,NEAT1 ZNF346, ZC3H10, PNPT1, DND1 7 Member

GO:0004843 thiol-dependent ubiquitin-specific protease activity 1.693 0.035 4.541E-17
CYLD, ATXN3, TNFAIP3, USP4, USP7, USP15, USP3,USP19, OTUD3, USP24, USP49, USP25, DESI2, USP53,OTUD4, ZRANB1, USP35, USP28, USP46, VCPIP1,ZC3H12A, USP42, OTULIN, USP12, OTUD1

USP18, BRCC3, USP38, USP32, USP51, USP27X 8 Representative

GO:0061578 Lys63-specific deubiquiti-nase activity 2.978 0.05 3.138E-04 CYLD, ATXN3, TNFAIP3, DESI2, OTUD4 STAMBPL1, BRCC3, USP27X 8 Member
GO:1990380 Lys48-specific deubiquiti-nase activity 2.048 0.015 1.376E-02 ATXN3, USP7, USP15, DESI2 USP27X 8 Member
GO:0004197 cysteine-type endopepti-dase activity 1.251 0.005 4.649E-02 CASP3, CASP9, CTSB, CTSL, PDIA3, LGMN, USP7,USP15, USP49, USP12 CASP8 8 Member
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Table 16 continued: BT-474 - Lapatinib + EMBL-703625 combination therapy
ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status

GO:0003682 chromatin binding 1.817 0.375 1.168E-16

APBB1, ATRX, BCL6, CCNT2, CREBBP, CTNNB1, ELK4,EP300, ERCC6, EZH1, FOXO1, FMR1, GPER1, HNRNPU,JARID2, MLLT3, NONO, PRKAA1, UPF1, REST, RNF2,BRD2, SAFB, SHMT2, SOX9, TOP2B, TPR,MLLT10, URI1,TRIM24, HDAC3, KAT2B, CDYL, TRIM28, CITED2, CBX1,ATF5, BAHD1, KDM1A, BRD4, GMNN, SIRT7, ZC3H12A,PWWP2A, KLHDC3, PHF13, RNF168

RCC1, EGFR, SMAD6, MLH1, PPARG, MED1, RARA,TFAP2A, TP53, ZNF274, MORC2, DHX30, CAMTA2,POLR1A, UBE2T, APTX, FANCM, NSD1, NUCKS1, NKAP,KDM8, GRWD1, MCM8, GLYR1, CREB3L1, USP51,ZNF431, PRIMPOL
9 Representative

GO:0035064 methylated histone binding 1.682 0.04 9.529E-11 ATRX, FMR1, ING1, PHF1, KDM5A, RBBP5, TRIM24,CDYL, SPIN1, MTF2, ZMYND8, CXXC1, ING4, ING3,KMT2E, SPIN4, SPIN3 CBX5, PHF19, KDM8, THAP7, L3MBTL2, GLYR1 9 Member

GO:0042393 histone binding 2.023 0.105 6.130E-09
APBB1, ATRX, BRDT, CHD2, CTSL, DAXX, MLLT3, NASP,NPM1, KDM5A, MLLT10, TNKS, SART3, USP3, ANP32B,KDM5B, SIRT1, BRD1, USP49, UIMC1, RSF1, CO-PRS, RNF20, TBL1XR1, ANP32E, PWWP2A, UHRF2,SPTY2D1, RNF168

RCC1, MLLT6, PRMT6, IPO9, SFMBT2, PARP9, GRWD1,L3MBTL2, GLYR1, DTX3L, USP51, KDM1B 9 Member

GO:0019003 GDP binding 2.409 0.06 1.257E-15
TRIM23, GNAI1, GNAI3, RAB2A, RAB4A, RAB27B,RAB5C, RAP1B, RAP2B, RHEB, SRP54, RAB7A, RAB11B,RAB9A, RAB35, RAB18, RAB21, DYNC1LI1, RAB14,RAB8B, ARL8B, RRAGD, RRAGC, RAB17

ARL3, RAB8A, RAB3B, MIEF1, RERG, RASEF 10 Representative

GO:0003924 GTPase activity 1.591 0.07 8.119E-09
TRIM23, ARF1, ARF3, ARL1, CDC42, GNAI1, GNAI3,RAB1A, RAB2A, RAB4A, RAB6A, RAB27B, RAB5C, RAC1,RAP1B, RASA1, RGS2, RHEB, SRP54, RAB7A, RAB11A,RAB11B, RAB9A, GTPBP1, RRAGB, RAB35, TPPP,RAB21, RAB14, RRAGD, RRAGC, RAB17, RAB33B,RAB6C

ARHGDIB, RAB8A, RAB3B, RGS3, RNF112, ARFRP1,RGS19, RGS14, RRAGA, MTG2, MFN1, RERG, DIRAS1 10 Member

GO:0005525 GTP binding 1.781 0.05 9.217E-08
TRIM23, ARL1, CDC42, EEF1A1, GLUD1, GNAI1, INSR,RAB2A, RAB4A, RAB6A, RAB27B, RAC1, RAP1B, RAP2B,RHEB, SRP54, RAB7A, RAB11B, RAB9A, ARL4A, RRAGB,RAB35, RAB21, DYNC1LI1, RAB14, ARL8B, RRAGD,RRAGC, RHEBL1

RHOH, ARL3, RAB8A, MX2, RNF112, EIF2B2, RRAGA,ARFIP2, NUDT16, DIRAS1, RASEF 10 Member

GO:0031489 myosin V binding 2.184 0.025 1.549E-04 RAB6A, RAB27B, RAB11A, RAB11B, RAB14 RAB8A, RAB3B, RAB3D 10 Member
GO:0004713 protein tyrosine kinase ac-tivity 1.189 0.065 8.982E-14 ABL1, DYRK1A, EPHA7, ERBB2, ERBB4, FGFR1, IGF1R,INSR, JAK1, LYN, TWF1 EGFR, EPHB2, MET, PTK6, SRMS, SYK, CAMKK2 11 Representative
GO:0001784 phosphotyrosine residuebinding 1.084 0.025 1.104E-06 ABL1, CRKL, GRB2, RASA1, NCK2 PTPN3, SH3BP2, SYK, LDLRAP1 11 Member
GO:0004715 non-membrane spanningprotein tyrosine kinaseactivity 1.260 0.03 7.666E-06 ABL1, CLK1, DYRK1A, JAK1, LYN, TEC PTK6, SYK 11 Member
GO:0046875 ephrin receptor binding 1.445 0.005 3.003E-05 ABL1, EFNA1, EFNA5, EFNB3, GRB2, LYN 11 MemberGO:0070064 proline-rich region binding 1.575 0.01 1.978E-02 ABL1, APBB1, CYLD CCND1, WBP4 11 Member
GO:0070411 I-SMAD binding 3.276 0.09 6.495E-13 CTNNB1, SMAD1, SMAD2, SMAD4, SMAD7, TGFBR1,SMURF1 SMAD6 12 Representative
GO:0070412 R-SMAD binding 1.509 0.03 4.963E-06 SMAD2, SMAD3, SMAD4, PAX6, PPM1A, SMURF1 SMAD6 12 MemberGO:0070410 co-SMAD binding 1.638 0.025 2.008E-04 SMAD1, SMAD2, SMAD3 SMAD6 12 Member
GO:0001223 transcription coactivatorbinding 1.638 0.01 1.978E-02 CCNT2, SMAD3, SMAD4, RORA, ZBTB17, MED25 12 Member
GO:0048156 tau protein binding 0.945 0.005 3.903E-02 CLU, DYRK1A, SMAD2 12 Member
GO:0004402 histone acetyltransferaseactivity 2.594 0.11 9.724E-13 ATF2, CREBBP, EP300, TAF9, KAT6A, NCOA3, KAT2B,KAT5, SRCAP, KAT7, KAT6B, TAF5L, ING3, EPC1 BRCA2, TADA2A, TAF12, CLOCK, BAZ1A 13 Representative
GO:0016407 acetyltransferase activity 3.003 0.09 1.309E-07 CREBBP, EP300, GTF2B, KAT6A, KAT2B, KAT5, KAT6B,ELP3, ESCO1 NAA10, ESCO2 13 Member
GO:0005516 calmodulin binding 1.200 0.005 6.681E-12 MYO6, PPP3CA, RGS2, STRN, VAMP2, UNC13B, TRPV6 CEACAM1, MBP, MYO9B, PPP3CB, TRPV1, IQCB1,CAMKK2, DAPK2, IQCG, MYLK2 14 Representative
GO:0051059 NF-kappaB binding 1.706 0.02 7.810E-12 EP300, NFKBIA, NPM1, PSMA6, TAF4B, TP53BP2,HDAC3, BCL10 RNF25, SETD6 15 Representative
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GO:0033613 activating transcription fac-tor binding 1.575 0.06 8.868E-08 EP300, GABPA, SMAD2, MEF2D, NPM1, PTMA, TAF9 PPARG, HDAC4, SDR16C5 15 Member
GO:0030957 Tat protein binding 1.638 0.015 6.790E-03 NPM1, CTDP1, GABARAPL1 SMARCA4 15 Member
GO:0035257 nuclear hormone receptorbinding 2.315 0.17 9.920E-12 CRY1, CTNNB1, EP300, TCF7L2, NCOA3, NRIP1,NCOA1, BUD31, NCOR1, NCOA2, SNW1, SIRT1 MED1 16 Representative
GO:0030374 nuclear receptor transcrip-tion coactivator activity 1.989 0.065 6.703E-07 SS18, NCOA1, BUD31, MED17, RBM14, NCOA2,PPARGC1A, BRD8, KDM1A, ENY2 MED1, PSMC3IP, CCAR1, WDR77, ZMIZ2, SFR1,PPARGC1B 16 Member
GO:0003712 transcription coregulatoractivity 2.176 0.08 2.134E-06 CNOT2, PTPN14, KAT2B, MED17, MED26, THRAP3,PPARGC1A, RALY, BRD4, SND1, MED4, HES6, MED30 MED1, TRIP13, NSD1, PPARGC1B 16 Member
GO:0046966 thyroid hormone receptorbinding 2.389 0.055 4.922E-06 GTF2B, TACC1, TRIP12, ZNHIT3, MED17, THRAP3,ARID5A, BRD8, MED4, MED30, JMJD1C GTF2H1, MED1, NSD1 16 Member
GO:0016922 nuclear receptor binding 1.911 0.04 9.793E-06 RXRA, TACC1, NCOA3, NCOA1, NCOA2, PPARGC1A MED1 16 MemberGO:0030331 estrogen receptor binding 1.836 0.025 1.907E-05 CTNNB1, PPID, STRN, TACC1, NRIP1, NCOA1, ARID5A NKX3-1, MED1, PADI2, NSD1, PAGR1, PPARGC1B 16 MemberGO:0046965 retinoid X receptor binding 2.867 0.015 7.769E-03 NR4A2, TACC1, ARID5A, MED25 PPARG, VDR, NSD1 16 Member
GO:0042974 retinoic acid receptor bind-ing 2.234 0.005 2.368E-02 TACC1, SNW1, MED25, ASXL1 MED1, NSD1 16 Member
GO:0000981 DNA-binding transcriptionfactor activity, RNA poly-merase II-specific 1.333 0.03 2.165E-11 ARNT, ARNTL, ZFHX3, ELF2, GATA6, IRF1, IRF7, SMAD3,MAX, MEF2D, PAX6, POU2F1, SOX9, SP100, TWIST1,USF1, KLF11, KLF7, ZMYM5, ARX

ESRRB, LMX1B, TFAP2A, TP53, BHLHE40, CLOCK,CREB3, BHLHE41 17 Representative

GO:0001102 RNA polymerase II acti-vating transcription factorbinding 1.575 0.125 3.418E-09 ATF2, CREBBP, CTNNB1, EP300, GTF2I, ID2, LMO2,SMAD3, NFE2L2, LDB1, NCOR1, SIN3A TBX6, BHLHE40, BHLHE41 17 Member
GO:0070888 E-box binding 1.199 0.015 3.547E-05 ARNTL, MAX, MITF, NONO, PER1, TWIST1, PSPC1 PPARG, BHLHE40, CLOCK, PRMT5, BHLHE41 17 Member
GO:0043425 bHLH transcription factorbinding 2.048 0.02 2.911E-03 LMO2, SMAD3, PSMD9, TWIST1, USF1, SIRT1 FHL2, MAP3K10, BHLHE40, BHLHE41 17 Member

GO:0047485 protein N-terminus binding 2.153 0.185 2.771E-11
BIRC2, CSNK2A2, DAXX, GADD45A, EPB41, ERCC5,ERCC6, GLRX, HSPA1B, EIF3E, PPP1CC, MAP2K1,PEX5, RPS21, SDCBP, TARBP2, TRAF6, TSC1, NCOA3,NCOA1, MORF4L1, YWHAQ, PDCD10, PHB2, NIPBL,DCTN4, TBL1XR1, ALG2

ERCC2, ERCC4, GTF2H2, GTF2H3, PEX19, SMARCA4,TP53, VWF, SNF8, APTX, CHMP6, THAP7, VPS25 18 Representative

GO:0008022 protein C-terminus binding 1.563 0.215 3.925E-09
ABL1, DST, CDK7, CENPF, FOXN3, CTNNB1, EP300,EPB41, ERBB2, ERCC6, FBLN1, BCAM, NUMA1,POLR2A, MAP2K1, SIAH1, TOP2B, USP7, YEATS4,COIL, KSR1, BCL10, MAGI1, VPS4B, OPTN, PRDX3,PHB2, PRRC2C, SASH1, SIRT1, NIPBL, PABPC1, VTA1,PCGF1

BRCA2, CDC20, ERCC1, ERCC2, ERCC4, LIG4, PPARG,TERF2, MDC1, SNX17, PIAS3, FBLN5, CORO1A, SNF8,VPS4A, MIF4GD 18 Member

GO:0051087 chaperone binding 1.832 0.155 4.544E-11 AMFR, BIRC2, ATP1A1, CALR, CLU, GRN, HLA-B, HSPA5,DNAJB9, PFDN4, SOD1, TSC1, BAG3, DNAJB6, DNAJA2,ERP29, DNAJB4, GET4, FNIP2, FNIP1
CDC25A, MAPT, TBCE, TP53, VWF, UBL4A, PFDN6,FICD, DNAJB5, SACS, TIMM10, TIMM9, TSACC, RNF207 19 Representative

GO:0051879 Hsp90 protein binding 1.152 0.01 1.730E-04 ARNTL, CYP1A1, NR3C1, PPID, RPS3, TSC1, USP19,HDAC8 MAPT 19 Member
GO:0030544 Hsp70 protein binding 1.755 0.01 2.404E-02 CYP1A1, GPR37, PPID, RPS3, TSC1, HDAC8 FICD, SACS, DNAJB12, IQCG, METTL21A, RNF207 19 Member
GO:0050681 androgen receptor binding 1.820 0.07 5.557E-11 CALR, DAXX, EP300, ARID5A, SNW1, KDM1A, KDM4C,PRPF6, FOXP1, KDM3A SMARCA4, NSD1 20 Representative
GO:0042162 telomeric DNA binding 1.170 0.005 7.891E-03 UPF1, KDM1A, TERF2IP, HMBOX1 TERF2, TINF2 20 Member
GO:0032454 histone demethylase activ-ity (H3-K9 specific) 1.638 0.01 1.074E-02 KDM1A, KDM4C, KDM3A, JMJD1C 20 Member
GO:0019903 protein phosphatase bind-ing 1.903 0.245 5.773E-11 CTNNB1, ERBB2, JAK1, JUP, LGALS3, NEK2, MAP2K7,STAT3, HSP90B1, VCP, SHOC2, MTMR3, MTMR4,EIF2AK3, KIF3A, TBK1, ANAPC5, PPP6R3, MTMR9

CEACAM1, CDC27, CDH5, EGFR, KCNN4, MAP3K5,MET, PPP1R3C, TP53, IKBKE, PPME1, ANAPC7,STYXL1, SIRPA 21 Representative

GO:0004714 transmembrane receptorprotein tyrosine kinaseactivity 1.638 0.03 1.047E-03 ERBB2, ERBB4 EGFR, EPHA2, EPHB4, DDR2 21 Member
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GO:0042826 histone deacetylase bind-ing 1.536 0.13 5.986E-11

HSPA1B, MEF2D, PKN2, MAPK8, TOP2B, TRAF6,USF1, YWHAB, YWHAE, HDAC3, KAT2B, CIR1, NCOR1,HDAC9, HDAC5, NUDT21, NIPBL, AKAP8L, GMNN,BEX4, MIER1
CCND1, NKX3-1, TP53, HDAC4, CAMTA2, FOXP3,BHLHE41, THAP7, KCTD21 22 Representative

GO:0033558 protein deacetylase activity 1.862 0.04 2.854E-06 HDAC3, HDAC9, HDAC5, SIRT1 HDAC4 22 Member
GO:0004407 histone deacetylase activ-ity 2.048 0.035 2.625E-05 HDAC3, HDAC9, HDAC5, SIRT1, HDAC8, MIER1 HDAC4, HDAC11 22 Member
GO:0070491 repressing transcriptionfactor binding 1.502 0.05 2.999E-04 ARNTL, HMGB1, RBPJ, SKI, HDAC9, HDAC5, KAT5,ZMYND8 HDAC4, CBX5, TCP10L 22 Member
GO:0005080 protein kinase C binding 1.365 0.015 1.143E-02 ABL1, DSP, HINT1, HSPB1, ITGAV, TOP2B, ADAM9,HDAC9, HDAC5 PKP2, PRKD2, TIRAP 22 Member
GO:0019789 SUMO transferase activity 2.048 0.035 1.837E-10 PIAS1, PIAS2, ZBED1, TRIM28, TOPORS HDAC4, PIAS3 23 Representative
GO:0046332 SMAD binding 1.872 0.055 7.514E-10 ACVR1, ACVR1B, CTNNB1, FKBP1A, SMAD2, SKI,TGFBR1, TGFBR2, TGFBR3, YY1, TGFBRAP1, USP15,IPO7, SNW1, SMURF2 CREB3L1 24 Representative
GO:0019838 growth factor binding 1.686 0.005 1.758E-03 ACVR1B, ACVR2B, ERBB2, IL6ST, LIFR, TGFBR1,ACVR1C 24 Member
GO:0008013 beta-catenin binding 1.179 0.04 3.589E-09 APC, SHROOM2, CDH1, CDH2, CTNNA1, CTNNB1,EP300, FOXO1, FOXO3, SMAD7, FOXO4, NR4A2, PT-PRK, SKP1, TCF7L2, TBL1XR1 CDH5, CBY1, BCL9L 25 Representative
GO:0045295 gamma-catenin binding 2.457 0.015 4.292E-09 APC, CDH1, CDH2, CTNNA1, PTPRK, TCF7L2 25 Member
GO:0045296 cadherin binding 1.170 0.035 3.126E-04 ACVR1, APC, CTNNA1, CTNNB1, CTNND1, JUP, CD46,NDRG1 25 Member
GO:0003735 structural constituent of ri-bosome 2.168 0.06 2.124E-08 RPL10, RPL19, RPL30, RPL37, RPL39, RPLP0, RPLP1,RPLP2, RPS4X, RPS23 MRPS12, MRPS16, MRPS7, MRPS18A, MRPS15,MRPS11, MRPL57, MRPL52 26 Representative
GO:0061631 ubiquitin conjugating en-zyme activity 1.755 0.045 6.926E-08 UBE2D1, UBE2D3, UBE2G1, UBE2L3, UBE2J1, UBE2O UBE2A, UBE2T, UBE2D4 27 Representative
GO:0051015 actin filament binding 1.002 0.03 2.548E-07 SHROOM2, MYO1B, MYO6, MYO10, FSCN1, SPTB,HIP1R, DSTN, BLOC1S6, LIMA1, MAP1S, CAMSAP3,SCIN

EGFR, HIP1, MYH3, TPM1, TRIOBP, CORO1A, DBNL,POF1B, AIF1L, MYO18A 28 Representative

GO:0003779 actin binding 1.181 0.04 2.417E-04 ANG, SHROOM2, EPS8, GSN, HNRNPU, ITGB1, MYO6,P4HB, PAWR, TWF1, FSCN1, SPTB, CXCR4, PDLIM1,MAEA, SORBS1, SYNE2, SCIN, GAS2L3
ALDOA, CEACAM1, DMD, MAPT, MYO9B, TNNT2, TPM1,MICAL2, CORO1A, MSRB2, DBNL, MSRB1, MYO19 28 Member

GO:0008092 cytoskeletal protein bind-ing 2.194 0.01 1.273E-02 ABI1, SORBS1, CAPN10, TOR1AIP1, MYLIP, LIN7C ALDOA, DUSP3, TOR1A, PKD2, TPM1, RPH3AL,CORO1A, PACSIN3, MYPN 28 Member
GO:0031593 polyubiquitin modification-dependent protein binding 2.409 0.06 2.984E-07 EPS15, RAD23B, VCP, BAG6, OPTN, ZFAND6, TNIP2 RAD23A, BRCC3, SHARPIN 29 Representative
GO:1990381 ubiquitin-specific proteasebinding 2.340 0.09 3.099E-05 AMFR, SUMO1, VCP, BAG6, SART3, SPATA2, DERL1 RAD23A 29 Member
GO:0003697 single-stranded DNA bind-ing 1.746 0.035 5.159E-07 ERCC5, HMGB1, HMGB2, HNRNPU, RAD23B, SUB1,RTF1, WBP11

BLM, BRCA2, ERCC1, ERCC4, MAPT, MLH1, POLR2H,PURB, RAD23A, RAD51D, SETMAR, TOP3A, POLR3C,NEIL3, REXO4, NABP1, NABP2, SWSAP1 30 Representative
GO:0003684 damaged DNA binding 1.717 0.08 1.678E-06 CREBBP, DDB1, EP300, HMGB1, HMGB2, RPS3, XPA,CUL4B, SDE2 ERCC1, ERCC4, OGG1, APTX 30 Member
GO:0003690 double-stranded DNAbinding 1.545 0.045 2.405E-06 CRY1, ERCC5, HMGB1, HMGB2, HNRNPU, SMAD2,RXRA, SAFB, YBX3 HLF, MAPT, PPARG, SETMAR, POLR3F, TARDBP,ZNF638, APTX, NEIL3, REXO4, NUCKS1 30 Member
GO:0043130 ubiquitin binding 1.274 0.025 6.490E-07 BIRC2, HSPB1, SMAD3, TNFAIP3, CXCR4, USPL1,FBXO7, UBXN7, UBAP1, DDI2, RNF19B, RNF168 FAF2, NUP62 31 Representative
GO:0003743 translation initiation factoractivity 1.365 0.02 6.853E-07 EIF2D, EIF3E, EIF3F, EIF3H, EIF3L EIF2S1, EIF2B4, EIF2B2, EIF2B5 32 Representative
GO:0031369 translation initiation factorbinding 2.048 0.005 2.693E-03 FMR1, RPS24 EIF2B4, EIF2B5, TBL2 32 Member
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Table 16 continued: BT-474 - Lapatinib + EMBL-703625 combination therapy
ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status
GO:0005096 GTPase activator activity 1.353 0.005 9.019E-07

ALDH1A1, BNIP2, ARHGAP35, LLGL1, RASA1, RGS2,EVI5, RAPGEF2, RABGAP1L, DLC1, VAV3, ARFGEF1,RALBP1, ACAP2, TBC1D7, ALS2, TBC1D15, SYDE2,ARHGAP11B, ARAP1, TBC1D20, ARHGAP42, FLCN
ABR, ARHGAP1, MYO9B, RANGAP1, RGS3, CDC42EP2,RGS14, GMIP, RALGAPA2, ARAP3, ELMOD3, EVI5L,SGSM1 33 Representative

GO:0017137 Rab GTPase binding 1.675 0.005 1.286E-02 ATP6AP1, CHML, EVI5, ULK1, RABGAP1L, OPTN,NDRG1, KIF3A, BICD2, TBC1D7, HACE1, RIC1, ALS2,RILP, RAB11FIP4, IFT20, TBC1D20
ARHGAP1, RAB8A, NSF, RGP1, GOLGA5, AP3M1, HPS6,MICALL1, EVI5L, SGSM1 33 Member

GO:0016887 ATPase activity 1.706 0.135 1.346E-06
ABCA2, ATP1B1, ATP2B1, CHD3, CLU, EIF4A2, HSPA1B,HSPA5, PSMC2, PSMC6, ABCD3, RFC3, VCP, WRN,DDX39B, VPS4B, ATP8A1, CLPX, KIF1B, ATP13A2, RSF1,WRNIP1

ABCD1, BLM, DNA2, TOR1A, MYH3, MYO9B, NSF,DHX16, RUVBL1, ABCC3, LONP1, MORC2, VPS4A,RNF213, C10orf88, MYO19, SWSAP1, MYO18A 34 Representative
GO:0004386 helicase activity 2.048 0.015 1.041E-04 EIF4A2, SUPV3L1, WRN, SNRNP200 BLM, DNA2, DDX23 34 MemberGO:0003678 DNA helicase activity 1.609 0.03 1.888E-04 CHD3, ERCC6, SUPV3L1, WRN, RAD54B BLM, ERCC8, DNA2, RUVBL1, SETX, ZRANB3 34 Member
GO:0008094 DNA-dependent ATPaseactivity 1.950 0.02 2.379E-04 CDK7, ERCC6, SMARCA2, CHD6 BLM, ERCC8, RAD51D, SMARCA4, TTF2, SMARCAL1 34 Member
GO:0003724 RNA helicase activity 1.792 0.015 3.605E-04 UPF1, SUPV3L1, DDX39B, SNRNP200, RAD54B DDX23, DHX30 34 Member
GO:0000400 four-way junction DNAbinding 2.816 0.015 1.640E-03 ABL1, HMGB1, HMGB2, WRN, YY1 BLM, RAD51C, RAD51D, XRCC2, XRCC3, GEN1 34 Member
GO:0000987 proximal promotersequence-specific DNAbinding 1.698 0.01 1.762E-06 ARNT, ATF2, HMGB2, SMAD3, MTF1, SOX9, SP3, YY1,KLF4, ZNF516, TIPARP, YY2 E2F3, ESRRB, XBP1, E2F8, E2F7 35 Representative

GO:0070530 K63-linked polyubiquitinmodification-dependentprotein binding 2.633 0.02 2.149E-06 ZBTB1, TAB2, UIMC1, ZRANB1, RNF168, RNF169 IKBKE, ZRANB3, ATRIP 36 Representative
GO:0031491 nucleosome binding 2.835 0.02 4.227E-03 NAP1L4, MLLT10, HP1BP3, RNF168, RNF169 RCC1, MLLT6, GLYR1, DNTTIP1 36 Member
GO:0001085 RNA polymerase II tran-scription factor binding 0.945 0.135 3.100E-06 CREBBP, CTNNB1, KLF4, HDAC5, WWP2, KDM1A TBX6, TP53, HDAC4 37 Representative
GO:0097718 disordered domain specificbinding 1.781 0.035 3.940E-04 CALM1, CALM3, SMAD2, NUMA1, NCOA3, FKBP8 BCL2L2, RB1, TP53, PPIL1 37 Member
GO:1990841 promoter-specific chro-matin binding 1.251 0.065 8.641E-04 PRDM1, GTF2B, HNRNPU, POLR2A, KLF4, TRIM28,KDM1A, NIPBL, ZNF304, ZNF750 TP53 37 Member
GO:0035035 histone acetyltransferasebinding 1.293 0.005 2.208E-03 PAX6, CITED2, ECD TP53, EID1, FOXP3 37 Member
GO:0004879 nuclear receptor activity 1.972 0.065 4.805E-06 NR3C1, NR4A2, RXRA, RXRB, STAT3, NR2F2, THRA,NR1D2 NKX3-1, PPARG, RARA, VDR, NR1H3 38 Representative
GO:0031490 chromatin DNA binding 1.733 0.005 5.513E-04 FOXO3, HNRNPU, PER1, STAT3, ZIC2, PPARGC1A,GRHL1 RARA, CLOCK, GRHL3, GRHL2 38 Member
GO:0051393 alpha-actinin binding 1.365 0.005 3.881E-02 KCNN2, MAGI1 PPARG, RARA 38 Member
GO:0030332 cyclin binding 1.668 0.03 4.835E-06 CDK1, CDKN1A, PTCH1, RBM4, CDK13, HDAC3, CDK12,FBXW7, FBXO31 CDK4, CDK6 39 Representative
GO:0004861 cyclin-dependent proteinserine/threonine kinaseinhibitor activity 2.048 0.02 1.233E-02 CDKN1A, CDKN2D, KAT2B, HEXIM1 HEXIM2 39 Member
GO:0004860 protein kinase inhibitor ac-tivity 2.048 0.005 4.125E-02 CDKN1A, CDKN1C, GMFB, NCK1, NPM1, DNAJC3,SOCS3, SH3BP5, MBIP DUS2, PPP1R1B 39 Member
GO:0044325 ion channel binding 1.305 0.005 5.671E-06 CALM1, CALM3, AP2M1, CTNNB1, FKBP1A, FMR1,ID2, LYN, TRAPPC2, SLC5A3, SRI, YWHAE, HERPUD1,RIMS3, AKAP9, GPD1L, NEDD4L

BAK1, CDH5, FGF12, KCNJ11, PDE4B, PDE4D, PKD2,PKP2, HOMER1, RIMS2, GOPC, RNF207 40 Representative
GO:0017080 sodium channel regulatoractivity 1.117 0.005 2.581E-02 SGK1, GPD1L, NEDD4L FGF12, PKP2, PTPN3 40 Member
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Table 16 continued: BT-474 - Lapatinib + EMBL-703625 combination therapy
ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status

GO:0008270 zinc ion binding 1.405 0.06 2.182E-05

ALPP, BIRC2, CA2, CALR, CBLB, CYLD, FNTB, GTF2B,LTA4H, SMAD3, MMP13, PAM, PGGT1B, PHEX, KDM5A,RNF2, RPS29, RXRA, SIAH1, SKI, SOD1, KAT6A, KLF7,TNKS, TNFSF10, TRIM24, LITAF, TRIM28, LANCL1,SEC24B, SLU7, CTCF, KDM5B, SMPDL3A, KDM4C,ATP13A2, ZMYND8, ARIH1, RNF11, CXXC5, SIRT6,TET2, RNF125, THAP1, IKZF5, ESCO1, RC3H1, ZD-HHC20

ADAM8, BLM, CAD, GALT, KPNB1, MBD1, MT2A, NQO2,ENPP3, PPARG, TK1, TP53, ZNF185, HDAC4, SEC24D,MORC2, MSRB2, SIRT5, TIMM10, TIMM9, TIMM8B, ZC-CHC4, APIP, LACTB2, MSRB1, FBXL19, ACER3, NSD1,PHF5A, APOBEC3F, PRIMPOL, KDM1B, MSRB3, ZACN
41 Representative

GO:0019888 protein phosphatase regu-lator activity 2.048 0.01 2.223E-05 PPP2R2A, PPP2R5A, PPP2R5D, SHOC2, ARPP19,PPP4R2 PPP1R7, EIF2AK2, ANKLE2, PPME1, PPP1R1B 42 Representative
GO:0051721 protein phosphatase 2Abinding 1.950 0.005 6.475E-04 FOXO1, STRN, ARPP19, BOD1, DAB2IP MAPT, TP53, ANKLE2, PPME1, MASTL 42 Member

GO:0044877 protein-containing com-plex binding 1.420 0.05 2.422E-05
CDKN1A, CDKN1C, CLU, DDB1, ERCC5, ERCC6, FBLN1,HNRNPU, INSR, ITGB1, NDUFA4, NUMA1, SLC25A3,RAC1, RAP1A, RAP1B, RPS3, SPAST, STRN, USF1,WRN, FZD5, ULK1, NAPA, VPS4B, CIR1, IST1, SPATA2,NOD1, APPL1, LZTFL1, BRK1, ATG101, VIPAS39, HM-BOX1, POLDIP3, MB21D2, DAB2IP, FLCN

ERCC8, EPHB2, ITGA2, NSF, PFKP, TERF2, RIPK1,CBX5, VPS4A, CHMP6, ADM2, TNKS1BP1, MLKL 43 Representative

GO:0000993 RNA polymerase II com-plex binding 1.609 0.02 3.222E-05 ERCC5, GTF2B, HNRNPU, NCOA3, URI1, ELP2, SMYD2,CCAR2, RPRD1B, CDC73 ESRRB 44 Representative
GO:0001046 core promoter sequence-specific DNA binding 1.638 0.03 5.968E-04 NR3C1, GTF2B, NPM1, ZBTB17, FOXP1 TP53 44 Member
GO:0000979 RNA polymerase II corepromoter sequence-specific DNA binding 0.683 0.005 2.500E-02 GTF2B, POU2F1 44 Member
GO:0005154 epidermal growth factor re-ceptor binding 1.950 0.015 7.139E-05 ERBB4, GRB2, SNX1, SNX2, SNX4, FAM83B HIP1, PLSCR1, AGR2, EPGN 45 Representative
GO:0035091 phosphatidylinositol bind-ing 1.898 0.005 8.520E-04 GRB7, NUMA1, SNX1, SNX4, HIP1R, SNX13, APPL1,SNX5, SNX8, SNX12, SNX9, MITD1 HIP1, MAPT, PITPNA, TRPV1, SNX17, C2CD2L, MCF2L 45 Member
GO:0005158 insulin receptor binding 1.792 0.005 6.631E-03 GRB10, IGF1, IGF1R, SNX1, SNX2, SNX4, SORBS1 45 MemberGO:1990459 transferrin receptor binding 1.638 0.01 1.677E-02 CD81, SNX1, SNX2, SNX4 45 Member
GO:0051020 GTPase binding 1.966 0.01 7.500E-05 BNIP3, GOLGA4, RASA1, ULK1, RRAGB, ATG14,FNBP1L, AMBRA1, RRAGD, RRAGC STOML2, LAMTOR1 46 Representative

GO:0019904 protein domain specificbinding 1.655 0.07 1.458E-04
ARF1, ARL1, CALM1, CALM3, GUSB, HSPA5, INSR,KCNN2, MLF1, NFE2L2, NUMA1, PPP3R1, PRKAR1A,RAB6A, RAB27B, SKI, SKP1, SP100, TFDP2, THRA, VCP,XPA, YWHAB, MBD2, HGS, VAPA, IST1, CITED2, NCOA2,KHDRBS1, DICER1, ZMYND8, LIN7C, RCC2, CHMP1B,IKZF5, CNTROB, MITD1, MPP7, OCLN

DFFA, ATN1, ERCC1, ESRRA, KPNB1, MAP3K5, PLAUR,RARA, VRK2, NR0B2, BHLHE40, AP4M1, RNF41, EFS,RAPGEF3, PLXND1, VPS4A, FHOD1, MRPL17 47 Representative

GO:0000149 SNARE binding 2.048 0.005 1.974E-04 VAMP2, STX7, NAPA, BAIAP3, CAPN10, GABARAPL2 NSF, SEC24D, SNAPIN 48 Representative
GO:0019905 syntaxin binding 1.877 0.005 2.661E-02 ABCA1, ABL1, PTPN2, VAMP2, STX7, BAIAP3, STX6,BLOC1S6 GOLGA2, VPS18, STXBP4 48 Member
GO:0051082 unfolded protein binding 1.333 0.065 2.189E-04 CALR, CLU, HSPA1B, HSPA5, NAP1L4, NPM1, AIP,TOMM20, DNAJB6, DNAJA2, AFG3L2, ERLEC1 HSPA1L, GRPEL1 49 Representative
GO:0031072 heat shock protein binding 1.401 0.01 2.453E-04 DAXX, GPR37, HSPA1B, PPID, TPR, DNAJB6, LMAN2 HSPA1L, ITGB2, LIMK1, METTL18, METTL23, METTL21A 49 Member
GO:0044183 protein binding involved inprotein folding 2.048 0.02 3.053E-04 CALR, HSPA1B, HSPB1, PFDN1, FKBP8 DFFA 49 Member
GO:0016791 phosphatase activity 1.517 0.005 2.484E-04 ACPP, PPP1CB, PPP1CC, SBF1, DUSP11, DUSP10,SACM1L DUSP3, DUSP4, DUSP16 50 Representative
GO:0004721 phosphoprotein phos-phatase activity 1.424 0.02 5.180E-03 PPP1CC, PPP2CA, PPP2R5A, PPP2R5D, CTDP1 CDC25A, CDC25B, DUSP16 50 Member
GO:0004722 protein serine/threoninephosphatase activity 1.986 0.01 6.408E-03 PPM1A, PPM1B, PPP1CC, PPP2CA, PPP3CA, PPP4C,PPM1D, MTMR3, MTMR4, PDP1, PPTC7 CDKN3, PPP1R3C, PPP1R3D, PPM1F, RPAP2 50 Member
GO:0019900 kinase binding 1.463 0.03 2.535E-04 CTNNB1, GADD45A, EEF1A1, PER1, POLR2A,PPP2R5A, RPS3, SP100, TAX1BP1, BCL10, PRDX3,ATF5, CAB39, TOLLIP, PARP16, LAPTM4B, DAB2IP

CEACAM1, CDC6, CEBPA, MYCN, RAD23A, RB1, TRIP6,WWC3 51 Representative
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Table 16 continued: BT-474 - Lapatinib + EMBL-703625 combination therapy
ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status
GO:0017124 SH3 domain binding 1.450 0.025 3.199E-04 ABL1, CASP9, DPYSL3, GRB2, ADAM15, ADAM9, ABI1,WASF2, LANCL1, KHDRBS1, CD2AP, DAB2IP MAPT, PLSCR1, AKAP5, RUFY1, MYPN 52 Representative
GO:0008237 metallopeptidase activity 0.921 0.005 2.436E-03 ADAM10, LNPEP, ADAM17, ADAM15, ADAM9, ECEL1,AFG3L2 ADAM8, BRCC3 52 Member
GO:0005178 integrin binding 1.001 0.01 4.530E-03 ANXA7, DST, CALR, CD81, HMGB1, IGF1, ITGAV, ITGB1,P4HB, PTPN2, ADAM17, ADAM15, ADAM9, F11R S1PR3, ITGB2, PRKCA, CX3CL1, SYK, VWF, FBLN5,FERMT3 52 Member
GO:0003725 double-stranded RNAbinding 1.191 0.015 3.567E-04 HNRNPU, ILF3, MBNL1, SUPV3L1, TARBP2, TLR3, LR-RFIP1, RFTN1, DICER1, RC3H1 OAS3, EIF2AK2, DHX30, ZNF346, APTX, DUS2 53 Representative
GO:0036002 pre-mRNA binding 1.862 0.01 2.490E-03 HNRNPU, SRSF6, TARBP2, CELF1, RBM22 53 MemberGO:0097602 cullin family protein binding 1.536 0.005 3.909E-04 DDB1, SKP1, RNF7, KLHL21, KCTD9 KCTD21 54 Representative
GO:1990756 protein binding, bridging in-volved in substrate recog-nition for ubiquitination 2.389 0.02 1.006E-02 SKP1, VHL, PDCD6, FBXO7, SPSB1 SPSB2, ARRDC1 54 Member

GO:0051117 ATPase binding 1.467 0.015 4.782E-04 ABCA1, ATP1B1, ATP1B3, FBL, ATXN3, SNU13, PPP3CA,TAF9, GABARAPL2, NCSTN, TOR1AIP1, BBC3, USP25,SNX10, DERL1, SLC2A13
ATP6V0A1, EGFR, PDE4D, PKD2, PTPN3, PEX19,TMTC4, METTL21A 55 Representative

GO:0001671 ATPase activator activity 1.536 0.01 3.824E-03 ATP1B1, ATP1B3, DNAJB6, DNAJA2, DNAJB4, TOR1AIP1 55 Member
GO:0002020 protease binding 1.365 0.02 6.208E-04 ANXA2, COL1A1, CST3, CSTB, ITGAV, ITGB1, FURIN,SERPINA1, PSAP, SRI, STIM1, TNFAIP3, UBC, CFLAR,BCL10, ATP9A, RNF139, DERL1, SLC2A13

BRCA2, TP53, VWF, FADD, TNFRSF10A, FLOT1, PY-CARD, TYSND1 56 Representative
GO:0031996 thioesterase binding 1.489 0.01 7.167E-04 CDC42, RAC1, TRAF6 TRAF4 57 Representative
GO:0031624 ubiquitin conjugating en-zyme binding 2.048 0.005 4.157E-03 FOXL2, TRAF6, ARIH1, RNF125 57 Member
GO:0031435 mitogen-activated pro-tein kinase kinase kinasebinding 1.638 0.005 3.140E-02 TRAF6, SASH1, DAB2IP MAP3K11 57 Member
GO:0035925 mRNA 3’-UTR AU-rich re-gion binding 1.862 0.03 7.195E-04 ZFP36L1, ILF3, KHSRP, HNRNPA0, NUDT21, CPSF1,ZC3H12A, CPEB2 EXOSC9, EXOSC4 58 Representative
GO:0043022 ribosome binding 1.311 0.005 2.555E-02 FMR1, RPSA, BAG6, ZC3H12A, CPEB2, YTHDF3 EIF2S1, NAA10 58 MemberGO:0050700 CARD domain binding 2.205 0.015 7.882E-04 RIPK2, BCL10, NOD1 CARD8, MAVS, CARD9, CARD14 59 RepresentativeGO:0051219 phosphoprotein binding 2.205 0.025 8.654E-04 EPB41, YWHAB, YWHAE, URI1, THRAP3, MID2, TBK1 MID1, PKD2, RB1, TRPV1, RRAGA, TBL2, APTX 60 Representative

GO:0046982 protein heterodimerizationactivity 1.273 0.09 1.253E-03
ADRA2C, ARNT, ATF3, ATP1A1, ATP1B1, GADD45A,ERBB2, EXT2, FMR1, HEXA, ITGB1, MCL1, NR4A2,P4HB, PPP2CA, SDCBP, SNX1, SNX2, SRI, SUPT5H,TOP2B, USF1, YWHAE, FXR1, SMC3, VAPA, KATNA1,PHB2, ZBTB1, FBXO7, GCA, RRAGD, RRAGC, ALG2,MICU2

BAK1, RCC1, DDIT3, HIP1, IRAK1, CEACAM6, PDGFB,MLX, TCOF1, TP53, TPM1, XBP1, BHLHE40, PSMF1,GABBR2, PRMT5, RRAGA, LSM5, RALGAPA2, BHLHE41 61 Representative

GO:0030971 receptor tyrosine kinasebinding 1.585 0.01 1.346E-03 GRB14, NCK1, PTPN2, PTPN14, SOCS5, DOCK4, TOB1 DUSP3, TP53, HYAL2, RNF41, PITPNM3 62 Representative
GO:0017160 Ral GTPase binding 1.024 0.005 2.779E-02 RALBP1 MYO1C, RNF41 62 MemberGO:0008143 poly(A) binding 1.463 0.05 1.588E-03 HNRNPU, PABPC4, KHDRBS1, RBPMS, PABPC1 63 RepresentativeGO:0008266 poly(U) RNA binding 1.792 0.015 2.852E-03 FMR1, SSB, PABPC4, KHDRBS1, PABPC1, DIS3L2 PNPT1 63 Member
GO:0017116 single-stranded DNA-dependent ATP-dependentDNA helicase activity 1.706 0.01 2.522E-03 RFC3 DNA2, RFC4, RFC5, CHTF8 64 Representative
GO:0050750 low-density lipoprotein par-ticle receptor binding 1.433 0.005 2.708E-03 AP2M1, CLU, LRPAP1, HSP90B1, LANCL1 SNX17, LDLRAP1 65 Representative
GO:0034236 protein kinase A catalyticsubunit binding 1.575 0.005 2.806E-03 GSK3A, PRKAR1A, SOX9, PJA2 PRKAR1B 66 Representative
GO:0050699 WW domain binding 1.724 0.01 3.531E-03 SCNN1G, LITAF, RAPGEF2, DAZAP2, WBP11, NDFIP2 TP63, TRAF4 67 RepresentativeGO:0008327 methyl-CpG binding 1.675 0.005 3.581E-03 MBD2, ZBTB33, HOXB13, CXXC5 MBD1, PRMT5, ZBTB21, ZBTB4, WDR77 68 RepresentativeGO:0097110 scaffold protein binding 0.683 0.005 7.057E-03 BRAF, DSP, MAP2K1, YWHAE CASP8, PDE4D, TCOF1, AKAP5 69 RepresentativeGO:0004708 MAP kinase kinase activity 1.638 0.005 1.151E-02 MAP2K1, MAP2K7 MAPKAPK3, MAPKAPK5 69 Member
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ID Term Description Fold En-richment Support Adj p-value Up regulated Down regulated Cluster Status

GO:0005102 signaling receptor binding 1.029 0.005 9.500E-03

ABCA1, ADM, ALCAM, ANG, ANXA1, APP, ARRB2, BMP3,CLU, CTNND1, EDA, EFNA1, F2RL1, GFRA1, GLG1,GSK3A, GUSB, HLA-A, HLA-B, HLA-E, HSPA1B, IGFBP2,LRP6, LRPAP1, NCK1, SERPINE2, RASA1, SCP2, SRI,BAG6, TNFSF10, RIPK2, TRIM24, AKAP9, SEMA4D,ARPP19, TMED1, PANX1, RND1, PCSK1N, RAB8B, LEP-ROT, CAPRIN2

CDH5, MYO1C, PKD2, PLAUR, RARA, CX3CL1, TN-FSF15, ABCA12, STOML2 70 Representative

GO:0034450 ubiquitin-ubiquitin ligaseactivity 1.862 0.01 1.210E-02 AMFR, UBR5, PELI2, PELI1 PPIL2 71 Representative
GO:0070063 RNA polymerase binding 2.048 0.005 1.333E-02 CCNT1, CCNT2, STOM, PKN2, ANP32B, PHRF1 BRCA1, YTHDC2 72 RepresentativeGO:0019843 rRNA binding 1.365 0.005 1.906E-02 ANG, FASTKD5 PTCD3, DDX28 73 Representative
GO:0015631 tubulin binding 1.404 0.005 1.936E-02 DCTN1, STMN1, NUMA1, RPS3, TPR, TPPP, ATF5,MAP1S ALDOA, TTLL12, EML2, RITA1 74 Representative

GO:0008017 microtubule binding 1.242 0.005 2.910E-02
APC, DCTN1, FMR1, NUMA1, RP1, RPS3, SPAST,ZNF207, RAE1, RAB11A, VAPA, KIF23, NDRG1, MID2,TPPP, KATNA1, SUN2, MAP1S, RCC2, REEP4, FAM83D,WHAMM, CCSAP, RMDN2, GAS2L3

ARL3, KRIT1, GAS8, GOLGA2, MAPT, MID1, RGS14,EML2, MAP10, MARK4, TUBGCP5, SKA2 74 Member
GO:0070840 dynein complex binding 1.927 0.005 4.397E-02 APC, CENPF, FMR1, NUMA1, TPR, SMC3, BICD2, ATMIN 74 Member
GO:0031994 insulin-like growth factor Ibinding 1.862 0.005 2.139E-02 IGF1R, IGFBP2, INSR, ITGAV ITGB4 75 Representative

GO:0005509 calcium ion binding 1.080 0.005 2.180E-02
ANXA1, BNIP2, BRAF, C1R, CALM1, CALM3, CALR,CDH2, FBLN1, GSN, HSPA5, MMP13, PAM, SRI, STIM1,TKT, TPD52, TPT1, HSP90B1, BAIAP3, PGS1, PDCD6,MAN1B1, SYT11, GCA, GLCE, SDF4, STIM2, MEX3B,SCIN, AGRN

ADAM8, DNASE1L2, GJB2, IDS, ENPP3, PKD2, PLSCR1,PPP3CB, PSPH, TRPM2, DYSF, NOL3, SLC25A13,CAMKK2, PADI2, ACER3, MAN1C1, SRR, PITPNM3,CRACR2A, CANT1, S100A16
76 Representative

GO:0004857 enzyme inhibitor activity 1.170 0.005 2.831E-02 PPP1R12A, PRPSAP1, CCAR2 PRPSAP2, PARP9, DTX3L 77 Representative
GO:0048306 calcium-dependent proteinbinding 0.853 0.01 3.171E-02 ANXA1, ANXA2, ANXA7, VAMP2, PDCD6IP, PDCD6,VPS37C, RBM22, VPS37B, ALG2 78 Representative
GO:0004535 poly(A)-specific ribonucle-ase activity 1.862 0.005 3.444E-02 CNOT2, CNOT8, CNOT6L, PAN3 TOE1 79 Representative
GO:0000175 3’-5’-exoribonucleaseactivity 2.503 0.005 3.609E-02 CNOT8, XRN2, DIS3, EXOSC7, DIS3L2 ISG20, EXOSC2, ISG20L2, PNPT1, TOE1, DIS3L 79 Member
GO:0004601 peroxidase activity 1.260 0.005 3.671E-02 HBA1, PRDX1, PRDX5 GPX8 80 Representative
GO:0018024 histone-lysine N-methyltransferase activity 1.755 0.005 4.010E-02 SETD2, KMT2E, SMYD3 TTLL12, N6AMT1, SETD7 81 Representative
GO:0008047 enzyme activator activity 1.820 0.005 4.790E-02 TRIM23, ARL1, CASP9, DDOST, GMFB, PPP1R12B,CTSA, PRKCE, PSAP, RFC1, CFLAR MMP17, DPM2, DBNL, SLX4, DTX3L 82 Representative

Table 16: De-regulated genes and networks (see section 2.2 for details on how significance was calculated) in BT-474 cells treated with 1µM lapatinib and 1µMEMBL-703625
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Table 17 SK-BR3 - Lapatinib + EMBL-703625 combination therapy: Hierarchial clustering
ID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status

GO:0004842 ubiquitin-protein trans-ferase activity 2.352 0.132 5.906E-29

AMFR, TRIM23, SIAH1, TNFAIP3, TTC3, UBE2D1,UBE2G1, UBE2H, RNF103, PJA2, AREL1, TOPORS,UBE2C, RNF139, TRIM2, NEDD4L, FBXO7, ARIH1,FBXL3, FBXO3, RNF115, MYLIP, TRIM33, RNF20,SMURF1, HACE1, UBE2O, SMURF2, RMND5A, CBLL1,KCTD10, ZNRF1, UHRF2, UBR3, RC3H1, RNF168,RNF152, RNF144B

XIAP, BRCA1, ERCC8, RBBP6, TRIM27, TNFAIP1,UBE2A, RNF40, RNF41, TRIM13, STUB1, DTX4, UBE2T,RNF220, TRIM62, KLHL42, RNF213, RNF25, LRSAM1,TRIM69, DTX3L, NHLRC1
1 Representative

GO:0061630 ubiquitin protein ligase ac-tivity 2.320 0.085 2.037E-25
AMFR, CDC42, SIAH1, RNF103, TRIM24, TRIP12, RNF10,TOPORS, RNF139, MKRN1, RNF11, RNF115, MYLIP,MEX3C, UBR5, SMURF1, PELI1, UBE2O, IRF2BPL,SMURF2, ZNRF1, UHRF2, RNF19B, RC3H1, RNF38,RNF152, ZNRF2

XIAP, NFX1, RBBP6, TRIM27, RNF144A, RNF41, TRIM13,STUB1, TRAF3IP2, CBLC, RFWD3, LRSAM1 1 Member

GO:0004843 thiol-dependent ubiquitin-specific protease activity 2.170 0.058 2.760E-22
CYLD, ATXN3, TNFAIP3, USP4, USP7, USP9X, USP8,USP3, OTUD3, USP24, USP21, USP25, DESI2, USP53,OTUD4, ZRANB1, USP31, USP35, VCPIP1, USP42,OTULIN, OTUD1

UCHL1, BRCC3 2 Representative

GO:0061578 Lys63-specific deubiquiti-nase activity 4.316 0.058 1.427E-06 CYLD, ATXN3, TNFAIP3, DESI2, OTUD4 STAMBPL1, BRCC3 2 Member
GO:1990380 Lys48-specific deubiquiti-nase activity 2.713 0.005 4.493E-03 ATXN3, USP7, USP9X, DESI2 2 Member
GO:0004197 cysteine-type endopepti-dase activity 1.130 0.005 8.657E-03 LGMN, USP7, USP8 CASP8, CTSK, UCHL1 2 Member

GO:0004674 protein serine/threonine ki-nase activity 1.922 0.116 2.025E-19

ACVR1, ACVR1B, ACVR2A, ACVR2B, BRAF, CDK7,CLK1, CLK3, MAP3K8, CSNK1A1, CSNK1E, CSNK1G3,CSNK2A2, DYRK1A, MKNK2, ILK, MARK3, MAP3K1,NEK2, PIM1, PRKCD, MAPK1, MAPK8, RAF1, ROCK1,SGK1, SRPK2, TGFBR1, MAP4K3, PPM1D, RIOK3,MAP3K13, STK17A, EIF2AK3, ROCK2, CDC42BPB,SLK, TLK1, OXSR1, HIPK3, MAP3K2, LMTK2, STK38L,UHMK1, NEK7, SIK1

ATR, CDK2, PLK3, LIMK1, MAP3K10, MAP3K11, PHKG2,PKN1, MAPK4, EIF2AK2, NEK4, STK10, SYK, VRK2, AU-RKB, HTATIP2, DAPK2, PRKD2, STK39, IRAK4, MASTL,NIM1K
3 Representative

GO:0004672 protein kinase activity 1.356 0.053 8.197E-10
ACVR1, BRAF, CDK7, CSNK1A1, CSNK1E, CSNK1G3,DYRK1A, MAP3K1, NEK2, CDK17, PRKAA1, PRKCD,PTK2, ROCK1, TGFBR1, MAP4K3, CDC42BPB, HIPK3,MAP3K2

ATR, CAD, EPHA1, PRKAB1, PKN1, EIF2AK2, SYK, IK-BKE, PRKD2, IRAK4, MLKL 3 Member

GO:0005524 ATP binding 1.356 0.011 5.421E-03
ABCA1, ACVR1, ACVR1B, ATP1A1, ATP1B1, ERCC6,MKNK2, HNRNPU, INSR, MYO1B, PIM1, PRPS1,SRPK2, TGFBR1, SMARCA5, MAP4K3, KSR1, STK17A,CDC42BPB, TLK1, OXSR1, STK38L, PI4K2A, N4BP2,PANK3, PIF1, SIK1

ACLY, ABCD1, CAD, CDK6, GALK1, MVK, OAS3,PRKACB, PYGL, TRPV1, TNK1, EIF2B2, ABCB6, ABCB8,MORC2, DAPK2, NIM1K, MLKL 3 Member

GO:0000978 RNA polymerase II prox-imal promoter sequence-specific DNA binding 1.356 0.095 6.822E-16

ZFHX3, PRDM1, KLF5, CHD2, ATF2, ELF1, FOXO3,GABPA, NR3C1, HDAC1, HNRNPU, HSF2, RBPJ, IRF7,MXD1, SMAD1, SMAD4, SMAD5, MITF, NFATC3, NFYA,NFYC, NONO, PLAG1, REL, REST, SOX4, SOX9, STAT3,TFAP2C, TGIF1, NR2C2, UBP1, ZBTB17, ZNF217, NRIP1,KLF7, LRRFIP1, LITAF, THRAP3, NR1D2, HDAC5, CTCF,EHF, GRHL1

ASCL2, ETV1, ETV4, SMAD6, NFIC, NPAS2, RELB,ZNF202, HDAC4, RUVBL2, CCAR1, BHLHE41, E2F8 4 Representative

GO:0001228 DNA-binding transcriptionactivator activity, RNApolymerase II-specific 1.341 0.037 1.427E-12
ATF1, KLF5, CDC5L, ATF2, ELF1, ELF3, FOXO3, FOSL2,GABPA, NR3C1, GTF2I, HIF1A, HOXC10, HSF2, RBPJ,SMAD1, SMAD4, MITF, FOXO4, NFATC3, PLAG1, REL,RXRB, SOX4, SOX9, STAT3, TFAP2C, NR2C2, UBP1,ZNF24, ZBTB17, PRDM2, BARX2, KLF7, LITAF, FOXJ3,ATMIN, EHF, GRHL1, CREBRF, YY2

E2F3, ETV1, ETV4, HLF, NFIC, PLSCR1, RFX5, ZNF76,ZNF175, SCX 4 Member

GO:0000976 transcription regulatoryregion sequence-specificDNA binding 1.253 0.095 1.467E-11
CRY2, FOXO3, GABPA, GATA6, HDAC1, SMAD4, SMAD7,MSX2, NFE2L2, NFYA, NFYC, REST, SOX4, STAT3, TAF9,YY1, ZNF217, KLF11, SOX13, NCOR1, RNF10, HDAC5,CTCF, GRHL1, CREB3L2, TBL1XR1

BRCA1, SMAD6, RFX5, TAF2, ZNF174, TFEB, HDAC4,GABPB2 4 Member
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Table 17 continued: SK-BR3 - Lapatinib + EMBL-703625 combination therapyID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status
GO:0001227 DNA-binding transcriptionrepressor activity, RNApolymerase II-specific 1.472 0.021 3.094E-09

ZFHX3, BACH1, PRDM1, FOXO3, NR3C1, MXD1, MAX,MXI1, NFATC3, REST, TFAP2C, TGIF1, YY1, ZNF217,PRDM2, LRRFIP1, ZBTB5, ZNF263, CTCF, HEY1,ZNF350, IKZF5, HMBOX1, IRX2
ASCL2, CREM, NFX1, MLX, ZNF175, ZNF202, BHLHE41,E2F8, JDP2 4 Member

GO:0000977 RNA polymerase II reg-ulatory region sequence-specific DNA binding 1.561 0.085 7.069E-07
ACTN4, ATF1, CDC5L, ATF2, EP300, FOSL2, NR3C1,HIF1A, HOXC10, HSF2, MAX, MEF2D, MXI1, RPS3,RXRB, SP3, NR2C2, TRPS1, PRDM2, BARX2, ZBTB5,IKZF5, CREBRF

CREM, E2F3, NFX1, MLX, ZNF175, STOX1 4 Member

GO:0043565 sequence-specific DNAbinding 1.278 0.032 1.526E-05
ARNT, BCL6, EPAS1, FOXO3, HIF1A, RBPJ, IRF6,SMAD4, FOXO4, MSX2, NFE2L2, SOX9, NR2C2, USF1,ZNF24, PRDM2, SOX13, MAFB, ZNF263, CTCF, FOXJ3,GRHL1, CXXC5, HMBOX1, OSR2, IRX2, YY2

CENPB, E2F1, E2F3, FOXD4, HLF, RFX5, ZNF76,ZNF174, HDAC4, ZNF274, ZC3H8, SCX 4 Member

GO:0031625 ubiquitin protein ligasebinding 1.646 0.238 2.834E-15
APC, CALR, CAMLG, CLU, DAXX, DIO2, GPR37, HIF1A,JAK1, SMAD5, SMAD7, ATXN3, POLR2A, PRKAR2B,RPL5, RPL11, TMBIM6, UBE2G1, CXCR4, USP7, BCL10,BAG4, LRPPRC, TXNIP, GABARAP, GABARAPL2,GABARAPL1, FBXO7, ARIH1, UBXN7, USP25, UBE2J1,AMBRA1, RNF20, RTN4, DERL1, MAP1LC3B, CCDC50

BRCA1, CASP8, LTBR, SMAD6, PRKACB, RB1, RPA2,UBE2A, UCHL1, VCL, FZD8, NAE1, TRAF4, IKBKE,RNF40, STUB1, FAF2, UBE2T, SMC6, UBE2J2 5 Representative

GO:0043130 ubiquitin binding 1.658 0.005 2.353E-07 TNFAIP3, CXCR4, FBXO7, UBXN7, UBAP1, DDI2,RNF19B, RNF168 UCHL1, FAF2, NUP62 5 Member

GO:0003714 transcription corepressoractivity 1.725 0.127 4.049E-15
CREBBP, DAXX, DNMT3B, HDAC1, HNRNPU, PAWR,PFDN5, TLE1, NRIP1, URI1, CBFA2T2, CDYL, CIR1,NCOR1, CITED2, KDM5B, SIRT1, RBFOX2, SFMBT1,TBL1XR1

CCND1, MAP3K10, CASP8AP2, PRMT5, MYBBP1A, RU-VBL2, CCAR1, TCP10L, KCTD1 6 Representative

GO:0002039 p53 binding 1.884 0.122 3.904E-13 PTTG1IP, CREBBP, DAXX, HDAC1, HIF1A, TAF9,TP53BP2, USP7, TRIM24, SIRT1, RNF20 PLK3, PSME3, PRMT5, RFWD3 6 Member

GO:0008134 transcription factor binding 1.609 0.243 9.514E-13
ADD1, ARNT, CCNT1, CENPF, CREBBP, CTNNB1, EP300,EPAS1, GATA6, GTF2B, HDAC1, HIF1A, RBPJ, FOXO4,ENPP2, PIM1, REST, RPS3, TRAPPC2, STAT3, TLE1,ZBTB17, USP7, BCL10, AIP, MAFB, HDAC5, SIRT1,KAT6B, RBFOX2, UBXN7, CXXC5, HDAC8

CCND1, E2F1, E2F5, HYAL1, MAPK9, PURB, RB1, TAF12,MLX, TFCP2, TNFRSF10A, HDAC4, ATG7, PDCD11,CAMTA2, NUCKS1, METTL23, KCTD1 6 Member

GO:0042393 histone binding 2.206 0.079 5.479E-14 ATRX, CHD2, DAXX, MLLT3, NASP, MLLT10, SMARCA5,USP3, KDM5B, BAZ2A, SIRT1, BRD1, SFMBT1, RSF1,RNF20, TBL1XR1, UHRF2, SPTY2D1, RNF168
PKN1, HIRA, PRMT6, GRWD1, L3MBTL2, GLYR1, DTX3L,KDM1B 7 Representative

GO:0003682 chromatin binding 1.726 0.153 1.209E-11
ATRX, BCL6, CCNT2, CREBBP, CTNNB1, EP300, ERCC6,FMR1, GPER1, HNRNPU, JARID2, MLLT3, NONO,PRKAA1, REST, BRD2, SOX9, TPR, MLLT10, URI1,TRIM24, CDYL, CITED2, CBX1, SIRT7, KLHDC3, PHF13,RNF168

SMAD6, PKN1, CHAF1B, ZNF274, MORC2, CAMTA2,POLR1A, UBE2T, WAC, APTX, NUCKS1, GRWD1, MCM8,GLYR1, LRWD1 7 Member

GO:0035064 methylated histone binding 2.180 0.048 8.690E-09 ATRX, FMR1, ING1, PHF1, TRIM24, CDYL, SPIN1,CXXC1, ING3, KMT2E, KDM7A, SPIN3 CBX5, PHF19, THAP7, L3MBTL2, GLYR1, LRWD1 7 Member
GO:0070577 lysine-acetylated histonebinding 1.615 0.005 9.309E-03 MLLT3, BRD2, TRIM24, BAZ2A THAP7 7 Member

GO:0003713 transcription coactivatoractivity 1.633 0.148 9.486E-14
ACTN4, CREBBP, CTNNB1, DAXX, EP300, TAF9, NCOA3,NRIP1, NCOA1, TRIM24, BCL10, AIP, MED14, MED26,LPIN2, MAML1, THRAP3, CITED2, NCOA2, SRCAP,WWTR1, USP21, TAF5L, RNF20, JADE1, MED30, TADA1,JMY, ASXL1

BRCA1, TAF12, RUVBL1, MED24, HTATIP2, CAMTA2,JMJD6, ARL2BP, CCAR1, ZMIZ1 8 Representative

GO:0035257 nuclear hormone receptorbinding 2.949 0.185 1.410E-12 ACTN4, CTNNB1, EP300, HIF1A, NCOA3, NRIP1,NCOA1, NCOR1, NCOA2, SIRT1 8 Member
GO:0030374 nuclear receptor transcrip-tion coactivator activity 1.938 0.021 3.601E-06 ACTN4, TMF1, NCOA1, RBM14, NCOA2, BRD8 PKN1, CCAR1, WDR77, SFR1 8 Member
GO:0016922 nuclear receptor binding 1.809 0.016 6.139E-03 TACC1, NCOA3, NCOA1, NCOA2 8 MemberGO:0030331 estrogen receptor binding 1.169 0.005 4.776E-02 CTNNB1, STRN, TACC1, NRIP1, NCOA1 8 MemberGO:0070411 I-SMAD binding 4.748 0.090 5.634E-12 CTNNB1, SMAD1, SMAD4, SMAD7, TGFBR1, SMURF1 SMAD6 9 RepresentativeGO:0070410 co-SMAD binding 2.713 0.011 3.666E-05 SMAD1, USP9X, TRIM33 SMAD6 9 MemberGO:0070412 R-SMAD binding 1.785 0.011 6.559E-04 SMAD4, PPM1A, TRIM33, SMURF1 SMAD6 9 Member

204
M.Boucher



CHAPTER5.SUPPLEMENTARYFIGURES

Table 17 continued: SK-BR3 - Lapatinib + EMBL-703625 combination therapyID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status
GO:0003723 RNA binding 1.803 0.180 1.422E-09

FMR1, HNRNPH1, HNRNPU, RPS3, RPS14, SRSF6,SON, HSP90B1, YY1, EIF3A, RNMT, PUM1, RBM7, C1D,CELF1, CPSF6, BAZ2A, SCAF8, PUM2, SF3B1, RB-FOX2, AGO1, PABPC1, SND1, MEX3C, RBM15, MEX3B,YTHDC1

BRCA1, CSTF2, DRG2, RANGAP1, MRPL12, SRSF1,SURF6, NOL3, EMG1, JMJD6, ADAT1, GPKOW, RBM15B,CPSF3, XPO5, METTL16, PHF5A, PATL2 10 Representative

GO:0003729 mRNA binding 2.191 0.069 1.347E-04 ZFP36L1, CALR, FMR1, RPL7, RPS3, RPS5, TPR, CELF1,CPSF6, LUC7L3, METTL14, RBM15, HNRNPLL DHFR, PURB, SRSF1, XPO5, UPF3B, ESRP2, NSRP1,NUDT16 10 Member
GO:0061631 ubiquitin conjugating en-zyme activity 2.584 0.011 2.124E-09 UBE2D1, UBE2G1, UBE2C, UBE2J1, UBE2O UBE2A, UBE2T, UBE2J2 11 Representative
GO:0044389 ubiquitin-like protein ligasebinding 1.596 0.005 2.118E-02 STAM, UBE2C CCNB1, DTX3L 11 Member
GO:0047485 protein N-terminus binding 2.174 0.074 2.441E-09 CSNK2A2, DAXX, GADD45A, ERCC6, HDAC1, MNAT1,PPP1CC, SDCBP, TSC1, NCOA3, NCOA1, MORF4L1,PDCD10, SRRM2, NIPBL, DCTN4, TBL1XR1

ERCC2, ERCC4, GTF2H3, STX5, ZWINT, APTX, THAP7,VPS25 12 Representative
GO:0004402 histone acetyltransferaseactivity 3.165 0.074 3.064E-09 ATF2, CREBBP, EP300, TAF9, NCOA3, SRCAP, KAT7,KAT6B, TAF5L, ING3, EPC1 TADA2A, TAF12, BAZ1A 13 Representative
GO:0001102 RNA polymerase II acti-vating transcription factorbinding 1.739 0.127 3.982E-09 ATF2, CREBBP, CTNNB1, EP300, GTF2I, NFE2L2,NCOR1, SIN3A MAD2L2, BHLHE41 13 Member
GO:0016407 acetyltransferase activity 2.261 0.021 7.293E-03 CREBBP, EP300, GTF2B, KAT6B, ESCO1 13 MemberGO:0005516 calmodulin binding 1.403 0.005 3.724E-09 MYO6, STRN, VAMP2, IQGAP1, UNC13B, TRPV6 MIP, PPP3CB, TRPV1, IQCB1, DAPK2, IQCG 14 Representative
GO:0005096 GTPase activator activity 1.680 0.016 7.656E-09

ALDH1A1, ARHGAP35, RASA1, RGS10, IQGAP1,RAPGEF2, USP6NL, ARHGAP44, DLC1, VAV3, RALBP1,ACAP2, ARFGAP3, RACGAP1, TBC1D15, SYDE2,TBC1D20, FLCN
ABR, RANGAP1, NPRL3, DEPDC5, CDC42EP2, SH3BP1,GMIP, ELMOD3, TBC1D16 15 Representative

GO:0003779 actin binding 1.344 0.011 1.662E-08 ACTN4, ADD1, ANG, EPS8, HNRNPU, ITGB1, ABLIM1,MYO6, PAWR, PTK2, FSCN1, TNNI2, CXCR4, MICAL3,GAS2L3 TPM1, VCL, CORO1A, DBNL, MSRB1, CORO7, MYO19 16 Representative
GO:0051015 actin filament binding 1.154 0.016 1.466E-06 ACTN4, ADD1, MYO1B, MYO6, MYO10, FSCN1, LRP-PRC, DSTN, CYFIP1, BLOC1S6, LIMA1 HIP1, TPM1, CORO1A, DBNL, AIF1L 16 Member
GO:0003684 damaged DNA binding 2.407 0.132 7.700E-08 CREBBP, CRY2, DDB1, EP300, RPS3, CUL4B, SDE2 ERCC4, OGG1, RPA2, APTX 17 Representative
GO:0003697 single-stranded DNA bind-ing 1.779 0.016 8.158E-03 CRY2, HNRNPA1, HNRNPU, RAD23B, RTF1 ERCC4, POLR2H, PURB, RAD23A, RAD51D, RPA2,TOP3A, POLR3C, NEIL3, TDP1, NABP1 17 Member
GO:0046332 SMAD binding 1.744 0.042 8.464E-08 ACVR1, ACVR1B, CTNNB1, TGFBR1, YY1, IPO7,SMURF2 STUB1, ZMIZ1 18 Representative
GO:0019838 growth factor binding 2.394 0.005 8.889E-03 ACVR1B, ACVR2B, ERBB2, IL6ST, LIFR, TGFBR1 18 MemberGO:0051059 NF-kappaB binding 1.696 0.005 1.279E-07 EP300, HDAC1, TP53BP2, BCL10 RNF25, SETD6 19 Representative
GO:0042826 histone deacetylase bind-ing 1.441 0.042 3.372E-06 HDAC1, MEF2D, MAPK8, USF1, CIR1, NCOR1, HDAC5,NIPBL, AKAP8L, MIER1 CCND1, PKN1, RAD9A, HDAC4, CAMTA2, BHLHE41,THAP7 19 Member
GO:0033558 protein deacetylase activity 2.466 0.106 3.208E-05 HDAC1, HDAC5, SIRT1 HDAC4 19 Member
GO:0004407 histone deacetylase activ-ity 2.543 0.111 1.743E-04 HDAC1, HDAC5, SIRT1, HDAC8, MIER1 HDAC4 19 Member
GO:0001085 RNA polymerase II tran-scription factor binding 1.043 0.069 1.915E-04 CREBBP, CTNNB1, HDAC1, HDAC5 HIRA, HDAC4 19 Member
GO:0033613 activating transcription fac-tor binding 1.826 0.032 5.345E-04 EP300, GABPA, HDAC1, MEF2D, PTMA, TAF9 HDAC4 19 Member
GO:0070491 repressing transcriptionfactor binding 1.356 0.016 1.970E-03 HDAC1, RBPJ, HDAC5 HDAC4, CBX5, TCP10L 19 Member
GO:0000981 DNA-binding transcriptionfactor activity, RNA poly-merase II-specific 1.341 0.021 9.875E-07 ARNT, ZFHX3, ELF2, GATA6, HIF1A, IRF7, MAX, MEF2D,MSX2, SOX9, SP100, USF1, KLF11, KLF7, HEY1 E2F1, BHLHE41 20 Representative

GO:0000987 proximal promotersequence-specific DNAbinding 1.654 0.016 2.381E-04 ARNT, ATF2, SOX9, SP3, YY1, YY2 E2F1, E2F3, TFCP2, E2F8 20 Member
GO:0003712 transcription coregulatoractivity 1.696 0.011 3.685E-06 PTPN14, MED14, MED26, THRAP3, SND1, MED30 PIR, MED24 21 Representative
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Table 17 continued: SK-BR3 - Lapatinib + EMBL-703625 combination therapyID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status
GO:0046966 thyroid hormone receptorbinding 2.543 0.011 3.942E-05 GTF2B, TACC1, TRIP12, ZNHIT3, THRAP3, BRD8,MED30, JMJD1C MED24 21 Member
GO:0005154 epidermal growth factor re-ceptor binding 2.584 0.021 4.418E-06 GRB2, SNX1, SNX2, SNX4 EFEMP1, HIP1, PLSCR1, CBLC 22 Representative
GO:0035091 phosphatidylinositol bind-ing 2.316 0.005 9.756E-03 GRB7, NUMA1, SNX1, SNX4, SNX13, APPL1, SNX5,SNX12, APPL2, ESYT2 HIP1, PITPNA, TRPV1, PITPNC1 22 Member
GO:0005158 insulin receptor binding 1.696 0.005 2.748E-02 IGF1R, SNX1, SNX2, SNX4 22 Member
GO:0035198 miRNA binding 2.573 0.069 5.213E-06 FMR1, HNRNPA1, PUM1, MATR3, PUM2, AGO1, RC3H1,NEAT1 ZNF346, ZC3H10, PNPT1 23 Representative
GO:0003730 mRNA 3’-UTR binding 1.334 0.026 1.243E-04 CIRBP, FMR1, HNRNPU, RPL5, PUM1, PUM2, CARHSP1,PABPC1, RNF20, RC3H1 PARN, RNF40 23 Member
GO:0008266 poly(U) RNA binding 2.119 0.011 2.618E-02 FMR1, HNRNPH1, PABPC1 MCRS1, PNPT1 23 MemberGO:0043022 ribosome binding 1.356 0.011 2.650E-02 FMR1, YTHDF1, EIF2A, CPEB2, YTHDF3 23 Member
GO:0008013 beta-catenin binding 1.233 0.079 7.563E-06 APC, CTNNA1, CTNNB1, EP300, FOXO3, SMAD7,FOXO4, DLG5, TBL1XR1 VCL, RUVBL2, AJAP1 24 Representative
GO:0045296 cadherin binding 1.696 0.053 1.521E-05 ACVR1, APC, CTNNA1, CTNNB1, CTNND1, NDRG1 VCL 24 Member
GO:0070530 K63-linked polyubiquitinmodification-dependentprotein binding 3.391 0.021 8.954E-06 ZBTB1, TAB2, ZRANB1, RNF168, RNF169 IKBKE, ATRIP 25 Representative
GO:0031491 nucleosome binding 3.652 0.021 1.168E-03 NAP1L4, MLLT10, HP1BP3, RNF168, RNF169 GLYR1, DNTTIP1 25 Member
GO:0005085 guanyl-nucleotide ex-change factor activity 1.762 0.011 1.032E-05 TIAM1, TRIO, LAMTOR3, ARHGEF7, NET1, VAV3, AR-FGEF2, FNIP1, DOCK11, SPATA13 ABR, TBXA2R, VAV1, EIF2B4, EIF2B3, EIF2B2, PREB,RAPGEF3, TIAM2, MON1A 26 Representative
GO:0003743 translation initiation factoractivity 2.010 0.011 4.461E-03 EIF3A, EIF3F, EIF3H, EIF3L, EIF2A EIF2B4, EIF2B3, EIF2B2 26 Member

GO:0008022 protein C-terminus binding 1.553 0.111 1.101E-05
DST, CDK7, CENPF, FOXN3, CTNNB1, EP300, ERBB2,ERCC6, NUMA1, POLR2A, SIAH1, USP7, KSR1, BCL10,MAGI1, PRRC2C, SASH1, SIRT1, NIPBL, PABPC1, SD-CBP2

ERCC2, ERCC4, LIG4, TERF2, XRCC4, PEX16, MDC1,CORO1A, MIF4GD 27 Representative

GO:0019900 kinase binding 1.744 0.095 1.148E-05 CTNNB1, GADD45A, DLG3, EEF1A1, POLR2A,PPP2R5A, PRKCD, RPS3, SP100, TIAM1, TAX1BP1,BCL10, PARP16 CDC6, RAD23A, RB1, AURKB, STUB1 28 Representative
GO:0001784 phosphotyrosine residuebinding 1.596 0.026 2.997E-05 CRKL, GRB2, RASA1, NCK2 PTPN3, SYK, VAV1, CBLC 29 Representative
GO:0017124 SH3 domain binding 1.696 0.021 1.530E-04 GPX1, GRB2, ADAM9, ABI1, WASF2, CD2AP, REPS1 PLSCR1, RAD9A, CBLC, RUFY1, AFAP1L2 29 MemberGO:0050681 androgen receptor binding 1.758 0.011 3.946E-05 CALR, DAXX, EP300, TMF1, KDM4C, KDM3A PKN1 30 Representative
GO:0044183 protein binding involved inprotein folding 1.130 0.005 2.393E-02 CALR DFFA 30 Member
GO:0019903 protein phosphatase bind-ing 1.719 0.053 4.865E-05 CTNNB1, ERBB2, JAK1, NEK2, PTK2, STAT3, HSP90B1,IQGAP1, MTMR3, EIF2AK3, KIF3A, PPP6R3, MTMR9 RPA2, IKBKE, ANAPC7, STYXL1, PPP1R3F 31 Representative
GO:0004713 protein tyrosine kinase ac-tivity 1.094 0.032 6.060E-05 DYRK1A, ERBB2, IGF1R, INSR, JAK1, PTK2 CSF1R, PTK6, SYK, TNK1 32 Representative
GO:0048156 tau protein binding 1.565 0.005 8.729E-05 APOE, CLU, DYRK1A 32 Member
GO:0004715 non-membrane spanningprotein tyrosine kinaseactivity 1.565 0.011 3.574E-02 CLK1, DYRK1A, JAK1, PTK2 PTK6, SYK 32 Member
GO:0048365 Rac GTPase binding 2.188 0.005 6.149E-05 EPS8, SOD1, WASF1, DOCK4, RALBP1, CYFIP1, RCC2,HACE1 PKN1, ARFIP2 33 Representative
GO:0036002 pre-mRNA binding 2.466 0.053 8.529E-05 HNRNPA1, HNRNPU, SRSF6, CELF1 34 RepresentativeGO:0031490 chromatin DNA binding 1.565 0.011 9.412E-03 ACTN4, FOXO3, HNRNPU, STAT3, GRHL1 RUVBL2 34 Member
GO:0043021 ribonucleoprotein complexbinding 1.615 0.005 4.230E-02 HNRNPU, UHMK1 PRMT5, CBX5, GEMIN4 34 Member
GO:0000993 RNA polymerase II com-plex binding 2.180 0.005 9.428E-05 GTF2B, HNRNPU, NCOA3, URI1, AGO1, ELP2, RPRD1B,CDC73 WAC 35 Representative
GO:0001046 core promoter sequence-specific DNA binding 2.261 0.016 1.077E-04 NR3C1, GTF2B, HDAC1, ZBTB17, AGO1 35 Member
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Table 17 continued: SK-BR3 - Lapatinib + EMBL-703625 combination therapyID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status
GO:0000979 RNA polymerase II corepromoter sequence-specific DNA binding 1.696 0.005 4.881E-03 GTF2B, HDAC1 RUVBL2 35 Member
GO:0017025 TBP-class protein binding 1.596 0.005 1.961E-02 DR1, GTF2B RUVBL1, RUVBL2 35 MemberGO:0031489 myosin V binding 2.261 0.011 1.077E-04 RAB6A, RAB27B, RAB14 RAB8A, RAB3A 36 Representative
GO:0003924 GTPase activity 1.345 0.016 3.220E-03 TRIM23, ARF3, ARL1, CDC42, GNAI3, GNB1, RAB1A,RAB6A, RAB27B, RAB5C, RASA1, RGS10, RHEB,RAB9A, GTPBP1, RRAGB, TPPP, RAB14, RAB33B DRG2, RAB8A, RAB3A, RGS19, RERG 36 Member

GO:0005525 GTP binding 1.474 0.011 4.876E-03 TRIM23, ARL1, CDC42, EEF1A1, GLUD1, INSR, RAB6A,RAB27B, RHEB, RAB9A, ARL4A, RRAGB, RAB14, ARL8B,ARL8A RAB8A, EIF2B2, RAB31, ARFIP2, NUDT16 36 Member
GO:0019003 GDP binding 1.729 0.021 1.611E-02 TRIM23, GNAI3, RAB27B, RAB5C, RHEB, RAB9A, RAB18,RAB14, RAB8B, ARL8B RAB8A, RAB31, RERG 36 Member
GO:0051879 Hsp90 protein binding 1.696 0.021 1.561E-04 CYP1A1, NR3C1, HIF1A, RPS3, TSC1, HDAC8 NPAS2, STUB1 37 RepresentativeGO:0030544 Hsp70 protein binding 2.180 0.005 3.643E-03 CYP1A1, GPR37, RPS3, TSC1, HDAC8 STUB1, IQCG, METTL21A, RNF207 37 MemberGO:0031072 heat shock protein binding 1.428 0.005 1.268E-02 DAXX, GPR37, TPR FKBP4, LIMK1, STUB1, METTL23, METTL21A 37 Member
GO:0098505 G-rich strand telomericDNA binding 2.713 0.021 3.256E-04 HNRNPA1, TERF2IP RPA2, TERF2 38 Representative
GO:0042162 telomeric DNA binding 1.938 0.011 1.230E-03 TERF2IP, HMBOX1, PIF1 TERF2, TINF2, ACD 38 Member
GO:0016887 ATPase activity 1.413 0.005 3.689E-04 ATP1B1, ATP2B1, CHD3, CLU, EIF4A2, DDX39B,SMARCA5, VWA8, KIF1B, RSF1 ABCD1, TOR1A, NSF, RUVBL1, RUVBL2, MORC2,RNF213, C10orf88, MYO19, SLFN11 39 Representative
GO:0003678 DNA helicase activity 1.453 0.005 1.973E-02 CHD3, ERCC6, RAD54B ERCC8, RUVBL1, RUVBL2 39 Member
GO:0051087 chaperone binding 1.517 0.021 4.466E-04 AMFR, ATP1A1, CALR, CLU, GRN, SOD1, TSC1, ERP29,GET4, DNAJA4, FNIP2, FNIP1, HSPB6 STUB1, PFDN6, TIMM9, RNF207 40 Representative
GO:0051082 unfolded protein binding 1.735 0.011 3.416E-03 CALR, CLU, NAP1L4, AIP, TOMM20, DNAJA4, UGGT1,HSPB6 CHAF1B, RUVBL2, GRPEL1 40 Member
GO:0005178 integrin binding 0.980 0.005 5.639E-04 ACTN4, ANXA7, DST, CALR, ITGAV, ITGB1, PTK2,PTPN2, ADAM17, ADAM9 S1PR3, ICAM1, SYK 41 Representative
GO:0004879 nuclear receptor activity 1.256 0.011 6.961E-04 NR3C1, RXRB, STAT3, NR1D2 VDR 42 Representative
GO:0001103 RNA polymerase II re-pressing transcriptionfactor binding 1.180 0.011 1.269E-02 HDAC1, RBPJ, STAT3 MKKS 42 Member

GO:0044877 protein-containing com-plex binding 1.583 0.048 9.627E-04
APOE, CDKN1C, CLU, DDB1, ERCC6, GNB1, HNRNPU,INSR, ITGB1, NUMA1, RAP1A, RPS3, STRN, USF1,CIR1, CDC42BPB, IST1, NOD1, APPL1, STRN3, LZTFL1,APPL2, HMBOX1, POLDIP3, FLCN

ERCC8, NSF, PFKP, TERF2, DEPDC5, CBX5, AJAP1,ACD, SCAMP5, MLKL 43 Representative
GO:0030332 cyclin binding 0.754 0.005 1.272E-03 CDK2, CDK4, CDK6 44 Representative
GO:0031593 polyubiquitin modification-dependent protein binding 1.995 0.011 1.283E-03 EPS15, RAD23B, ZFAND6 RAD23A, BRCC3 45 Representative
GO:0008327 methyl-CpG binding 1.541 0.016 1.498E-03 CXXC5 PRMT5, MBD3, WDR77, LRWD1 46 RepresentativeGO:0070888 E-box binding 1.323 0.005 9.381E-03 MAX, MITF, NONO, PSPC1 ASCL2, PRMT5, BHLHE41, SCX 46 Member
GO:0003735 structural constituent of ri-bosome 1.596 0.011 1.618E-03 RPL10, RPLP0 MRPS12, MRPS16, MRPS7, MRPS11, MRPL57, MRPL55 47 Representative
GO:0034450 ubiquitin-ubiquitin ligaseactivity 2.466 0.016 2.348E-03 AMFR, UBR5, PELI1 STUB1 48 Representative
GO:1990381 ubiquitin-specific proteasebinding 1.453 0.011 5.105E-03 AMFR, DERL1 RAD23A 48 Member
GO:0030674 protein binding, bridging 1.799 0.011 1.081E-02 AMFR, DDB1, NCK1, ST13, CRADD, CDYL, CNKSR1,ICE1, SERINC1 ERCC2, FKBP4, STUB1, CBX5 48 Member
GO:0031267 small GTPase binding 2.035 0.016 3.107E-03 ABCA1, BRAF, RAF1, IQGAP1, RCC2, RNF152 49 RepresentativeGO:0097110 scaffold protein binding 0.424 0.005 2.861E-02 BRAF, DSP CASP8 49 Member
GO:0070300 phosphatidic acid binding 3.768 0.005 5.559E-03 RAPGEF2, PACSIN2, SESTD1 PITPNC1, JPH2, GRAMD1B, MAPKAP1, PLEKHN1, MI-CALL1, UQCC3 50 Representative
GO:0005547 phosphatidylinositol-3,4,5-trisphosphate binding 2.593 0.016 9.088E-03 MYO1B, MYO10, OGT, IQGAP1, CYTH3, GAB2, RAC-GAP1, ZFYVE1, PLEKHB2, KIF16B, PARD3 JPH2, MAPKAP1 50 Member
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Table 17 continued: SK-BR3 - Lapatinib + EMBL-703625 combination therapyID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status
GO:0017080 sodium channel regulatoractivity 1.541 0.005 5.886E-03 SGK1, GPD1L, NEDD4L PKP2, PTPN3 51 Representative
GO:0042800 histone methyltransferaseactivity (H3-K4 specific) 0.969 0.005 6.352E-03 CXXC1, KMT2C 52 Representative
GO:0005095 GTPase inhibitor activity 2.261 0.005 6.728E-03 IQGAP1, CPEB2 PDE6D, CDC42SE1 53 RepresentativeGO:0044548 S100 protein binding 1.565 0.016 8.144E-03 ANXA2, IQGAP1, AHNAK 53 Member
GO:0019904 protein domain specificbinding 1.672 0.016 7.078E-03

ARL1, CALM3, DDX6, ACSL3, GUSB, HIF1A, HNRNPA1,INSR, MLF1, NFE2L2, NUMA1, OSBP, PPP3R1, RAB6A,RAB27B, SP100, TRPS1, IQGAP1, VAPA, IST1, CITED2,NCOA2, RCC2, IKZF5, MPP7, OCLN
CDK2, DFFA, DFFB, PLAUR, VRK2, AP4M1, RNF41,RAPGEF3, FHOD1, MRPL17 54 Representative

GO:0070840 dynein complex binding 3.192 0.032 1.178E-02 APC, CENPF, FMR1, NUMA1, PAFAH1B1, TPR, BICD2,ATMIN 55 Representative
GO:0015631 tubulin binding 1.744 0.005 2.754E-02 DCTN1, STMN1, NUMA1, RPS3, TPR, TPPP TTLL12, IFT81, RITA1 55 Member
GO:0008017 microtubule binding 1.279 0.005 3.116E-02 APC, DCTN1, FMR1, KIF5B, NUMA1, PAFAH1B1, RPS3,ZNF207, VAPA, LRPPRC, NDRG1, TPPP, KATNA1, RAC-GAP1, RCC2, REEP4, FAM83D, CCSAP, GAS2L3 GAS8, REEP1, PSRC1, TUBGCP5 55 Member
GO:0031996 thioesterase binding 1.233 0.005 1.210E-02 CDC42 TRAF4 56 RepresentativeGO:0050699 WW domain binding 1.428 0.005 1.354E-02 LITAF, RAPGEF2 TRAF4, FAM189B 56 MemberGO:0008289 lipid binding 1.292 0.005 1.247E-02 APOE, HDLBP, PSAP BAD, BAX, S1PR3, LPAR2, COQ9 57 Representative
GO:0005543 phospholipid binding 1.792 0.005 3.151E-02 JAG1, APOE, ARHGAP35, PSAP, VAMP2, ARHGAP44,SMURF1, SYTL4 BAD, F3, PAFAH2, PTAFR, DYSF, CPTP 57 Member

GO:0046982 protein heterodimerizationactivity 1.341 0.016 1.595E-02
ADD1, ARNT, ATP1A1, ATP1B1, GADD45A, EPAS1,ERBB2, EXT2, FMR1, HEXA, HIF1A, ITGB1, MCL1, SD-CBP, SNX1, SNX2, USF1, FXR1, VAPA, KATNA1, ZBTB1,FBXO7, GCA, SDCBP2

BAX, BOK, HIP1, PDGFB, MLX, TPM1, NAE1, GABBR2,PRMT5, ZHX2, BHLHE41 58 Representative

GO:0005089 Rho guanyl-nucleotide ex-change factor activity 2.142 0.011 1.739E-02 TIAM1, TRIO, FARP2, FARP1, AKAP13, DNMBP 59 Representative
GO:0051721 protein phosphatase 2Abinding 1.292 0.005 2.375E-02 STRN, ARPP19, STRN3 MASTL 60 Representative
GO:0016301 kinase activity 1.408 0.011 2.632E-02 CDK7, CSNK1A1, PIK3CA, MAPK1, MAPK8, WEE1,SCYL3 DGKE, PKMYT1, STK39, MASTL 60 Member
GO:0030971 receptor tyrosine kinasebinding 2.188 0.005 3.001E-02 NCK1, PTPN2, PTPN14, SOCS5, DOCK4, TOB1 DUSP3, HYAL2, RNF41, PITPNM3 61 Representative
GO:0000146 microfilament motor activ-ity 0.904 0.005 3.536E-02 MYO1B, MYO5B 62 Representative
GO:0035035 histone acetyltransferasebinding 1.071 0.005 3.750E-02 EPAS1, HIF1A, CITED2 63 Representative
GO:0002020 protease binding 1.507 0.005 4.002E-02 ANXA2, COL1A1, ITGAV, ITGB1, PSAP, STIM1, TNFAIP3,CRADD, CFLAR, BCL10, ATP9A, RNF139, DERL1 F3, FADD, TNFRSF10A, ADAMTSL4, TYSND1 64 Representative
GO:0051219 phosphoprotein binding 1.826 0.005 4.015E-02 PAFAH1B1, URI1, THRAP3 RB1, TRPV1, TBL2, APTX 65 Representative
GO:0034236 protein kinase A catalyticsubunit binding 2.087 0.005 4.062E-02 PRKAR2B, SOX9, PJA2 PRKAR1B 66 Representative
GO:0000149 SNARE binding 2.261 0.005 4.519E-02 VAMP2, STX7, VTI1B, GABARAPL2 NSF, SNAPIN 67 Representative
GO:0004535 poly(A)-specific ribonucle-ase activity 3.083 0.005 4.772E-02 CNOT8, CNOT6L, PAN3 PARN, TOE1 68 Representative

Table 17: De-regulated genes and networks (see section 2.2 for details on how significance was calculated) in SK-BR3 cells treated with 0.2µM lapatinib and1µM EMBL-703625
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Table 18 SK-BR3 - Lapatinib monotherapy: Hierarchial clustering
ID Term_Description Fold_Enrichmentsupport highest_p Up_regulated Down_regulated Cluster Status
GO:0004842 ubiquitin-protein trans-ferase activity 1.673 0.010 6.472E-06 PJA2, RNF13, TRIM2, RNF152 TRAF3, UHRF1 1 Representative
GO:0031996 thioesterase binding 4.385 0.010 5.985E-03 TRAF3 1 Member
GO:0034236 protein kinase A catalyticsubunit binding 3.710 0.005 6.944E-03 PJA2 1 Member
GO:0061578 Lys63-specific deubiquiti-nase activity 8.770 0.128 1.002E-05 CYLD, ATXN3 2 Representative
GO:0004843 thiol-dependent ubiquitin-specific protease activity 3.216 0.046 6.096E-05 CYLD, ATXN3, USP53 USP2, USP18 2 Member
GO:0070064 proline-rich region binding 7.421 0.046 1.018E-02 CYLD CCND1 2 Member
GO:1990841 promoter-specific chro-matin binding 2.680 0.005 2.351E-04 RBL2 E2F4 3 Representative
GO:0008134 transcription factor binding 0.897 0.010 2.966E-03 KAT6B CCND1, E2F1, E2F4 3 MemberGO:0003684 damaged DNA binding 4.668 0.015 6.876E-04 CRY2 FEN1, UNG 4 RepresentativeGO:0008409 5’-3’ exonuclease activity 10.719 0.015 3.208E-03 FEN1, EXO1 4 Member
GO:0000987 proximal promotersequence-specific DNAbinding 5.882 0.031 8.323E-04 ATF2 E2F1, E2F3, UHRF1, E2F7 5 Representative
GO:0003779 actin binding 2.607 0.005 1.401E-03 IQGAP2, NCALD EMD, TPM1, CORO1A, COTL1 6 RepresentativeGO:0051015 actin filament binding 2.566 0.005 1.993E-02 IQGAP2, LIMA1 BIN1, TPM1, CORO1A 6 Member
GO:0008092 cytoskeletal protein bind-ing 3.445 0.005 3.352E-02 TPM1, CORO1A 6 Member
GO:0005159 insulin-like growth factorreceptor binding 8.039 0.010 5.877E-03 SOCS2 YWHAG 7 Representative
GO:0031625 ubiquitin protein ligasebinding 1.413 0.005 6.254E-03 CAMLG, ATXN3, GABARAPL1, ANKRA2 TRAF3, USP2, MFHAS1 8 Representative
GO:0030332 cyclin binding 3.573 0.005 3.114E-02 CDK2, USP2 8 MemberGO:0048156 tau protein binding 3.710 0.005 1.018E-02 BIN1 9 RepresentativeGO:0051087 chaperone binding 3.173 0.005 4.769E-02 GET4, FNIP1 BIN1, CDC25A, UBL4A 9 Member
GO:0001228 DNA-binding transcriptionactivator activity, RNApolymerase II-specific 1.870 0.010 1.507E-02 ATF2, ZNF24, POU2F3, HINFP, EHF, CREBRF E2F3, E2F4, ETV4, NFIC 10 Representative

GO:0000978 RNA polymerase II prox-imal promoter sequence-specific DNA binding 1.331 0.010 2.378E-02 ATF2, KLF8, POU2F3, EHF, CALCOCO1 E2F4, ETV4, NFIC 10 Member

GO:0001227 DNA-binding transcriptionrepressor activity, RNApolymerase II-specific 0.952 0.005 2.512E-02 NFATC4, KLF8 JDP2 11 Representative
GO:0070412 R-SMAD binding 2.539 0.010 3.537E-02 LDLRAD4 12 RepresentativeGO:0051059 NF-kappaB binding 2.010 0.010 3.589E-02 BRMS1 13 Representative
GO:0001784 phosphotyrosine residuebinding 1.419 0.005 4.968E-02 BCAR3 14 Representative

Table 18: De-regulated genes and networks (see section 2.2 for details on how significance was calculated) in SK-BR3 cells treated with 0.2µM lapatinib
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Table 19 SK-BR3 - EMBL-703625 monotherapy: Hierarchial clustering
ID Term_Description Fold_Enrichmentsupport Adj p-value Up_regulated Down_regulated Cluster Status

GO:0004842 ubiquitin-protein trans-ferase activity 3.342 0.165 1.553E-28
AMFR, RNF2, SIAH1, UBE2D1, UBE2D3, UBE2E1,UBE2L3, RNF103, AREL1, TOPORS, RNF139, ARIH1,RCHY1, FBXL3, FBXO22, FBXO3, RNF115, MYLIP,TRIM33, SMURF1, CBLL1, ZFP91, UBE2Q2, UHRF2,RC3H1

XIAP, BRCA1, RNF41, TRIM62, TRIM56, TRIM69, DTX3L,NHLRC1 1 Representative

GO:0061630 ubiquitin protein ligase ac-tivity 3.227 0.065 1.886E-17 AMFR, CDC42, SIAH1, RNF103, RNF10, TOPORS,RNF139, RCHY1, RNF11, RNF115, MYLIP, MEX3C,SMURF1, PELI1, UHRF2, RNF19B, RC3H1 XIAP, NFX1, RNF41, TRAF3IP2 1 Member
GO:0061631 ubiquitin conjugating en-zyme activity 5.005 0.075 2.394E-10 UBE2D1, UBE2D3, UBE2E1, UBE2L3, UBE2J1 UBE2J2 2 Representative
GO:0031625 ubiquitin protein ligasebinding 1.539 0.065 2.050E-05 FOXO1, GPR37, JAK1, SMAD5, POLR2A, TMBIM6,UBE2L3, BCL10, BAG4, TRIB1, ARIH1, USP25, UBE2J1,OTUB1, DERL1, CCDC50 BRCA1, LTBR, TP53, DET1, UBE2J2 2 Member
GO:0004843 thiol-dependent ubiquitin-specific protease activity 3.270 0.02 1.077E-09 USP4, USP15, USP3, OTUD3, USP24, USP25, DESI2,OTUD6B, OTUD4, OTUB1, USP46, USP42, USP45 BRCC3 3 Representative
GO:0000976 transcription regulatoryregion sequence-specificDNA binding 1.619 0.055 5.503E-08 AHR, MSX2, NFE2L2, NFYA, NFYC, REST, TAF9, YY1,KLF11, RNF10, GRHL1, TBL1XR1 BRCA1, RFX5, TAF2, TP53, GABPB2 4 Representative

GO:0000981 DNA-binding transcriptionfactor activity, RNA poly-merase II-specific 1.222 0.01 2.766E-03 MAX, MSX2, KLF11, HEY1 TP53, HIF3A 4 Member

GO:0004674 protein serine/threonine ki-nase activity 1.971 0.04 2.513E-07
ACVR2A, MAP3K8, CSNK1G3, DYRK1A, MAP3K1,MAPK1, MAPK6, MAPK8, RAF1, SGK1, SRPK2, DYRK2,PPM1D, MAP3K13, STK17A, SLK, TLK1, HIPK3, MAP3K2,PLK2, UHMK1, NEK7, SIK1

MAP3K10, SYK, DAPK2, IRAK4 5 Representative

GO:0004672 protein kinase activity 1.635 0.005 3.704E-02 CHUK, CSNK1G3, DYRK1A, MAP3K1, CDK17, PRKAA1,RPS6KB1, HIPK3, TRIB1, MAP3K2 CAD, SYK, IRAK4, MLKL 5 Member
GO:0042393 histone binding 2.533 0.015 1.870E-06 MLLT10, SMARCA5, USP3, KDM5B, SIRT1, SFMBT1,TBL1XR1, UHRF2, SPTY2D1 PRMT6, L3MBTL2, DTX3L 6 Representative
GO:0003714 transcription corepressoractivity 1.690 0.005 4.297E-04 PAWR, NRIP1, URI1, KDM5B, SIRT1, RBFOX2, SFMBT1,TBL1XR1 MAP3K10, PPP1R13L, KCTD1 6 Member
GO:0003729 mRNA binding 3.234 0.035 2.687E-06 ZFP36L1, DDX3X, CELF1, CPSF6, LUC7L3, METTL14,RBM25, RBM15 PURB, UPF3B, NSRP1, NUDT16 7 Representative
GO:0003723 RNA binding 2.228 0.075 5.880E-05 DDX3X, HNRNPH1, AGFG1, SON, YY1, PUM1, RBM7,CELF1, CPSF6, SCAF8, RBFOX2, AGO1, MEX3C,RBM15, NAF1

BRCA1, RANGAP1, RNASEL, NOL3, EMG1, RBM15B,CPSF3 7 Member
GO:0003682 chromatin binding 1.659 0.035 1.121E-05 BCL6, CCNT2, CTNNB1, ELK4, FOXO1, PRKAA1, REST,RNF2, BRD2, MLLT10, URI1, CHD7 TP53, MORC2, CAMTA2, NUCKS1 8 Representative
GO:0008134 transcription factor binding 1.793 0.07 1.302E-05 AHR, CCNT1, CEBPG, CTNNB1, DDX3X, EPAS1, GTF2B,RBPJ, REST, BCL10, TRIB1, SIRT1, RBFOX2 PURB, TAF12, MLX, TP53, CAMTA2, NUCKS1, KAT8,METTL23, KCTD1 8 Member
GO:0008022 protein C-terminus binding 1.872 0.05 1.659E-05 CTNNB1, POLR2A, SIAH1, TAF13, BCL10, MAPRE1,SIRT1, NIPBL ERCC4, PEX6, TERF2, XRCC4, MDC1, IFT46 9 Representative
GO:0019900 kinase binding 1.502 0.01 2.032E-03 CTNNB1, POLR2A, SNAI1, TAX1BP1, BCL10, UBQLN1 9 Member
GO:0000978 RNA polymerase II prox-imal promoter sequence-specific DNA binding 0.906 0.015 6.469E-05 KLF5, ELK4, HSF2, RBPJ, SMAD5, NFYA, NFYC, REST,TGIF1, UBP1, NRIP1, GRHL1, NKRF TP53, HIF3A 10 Representative

GO:0001228 DNA-binding transcriptionactivator activity, RNApolymerase II-specific 1.222 0.005 3.489E-02 ATF1, KLF5, CDC5L, CEBPG, ELK4, FOXO1, HSF2,RBPJ, UBP1, PRDM2, FOXJ3, GRHL1, NKRF, YY2 RFX5, TP53, ZNF76, SCX 10 Member
GO:0004402 histone acetyltransferaseactivity 4.088 0.02 1.292E-04 TAF9, SRCAP, KAT7, TAF5L TADA2A, TAF12, KAT8 11 Representative
GO:0003713 transcription coactivatoractivity 1.406 0.01 1.515E-03 CTNNB1, TAF9, UBE2L3, NRIP1, BCL10, MED26, LPIN2,SRCAP, TAF5L, TADA1 BRCA1, TAF12, CAMTA2 11 Member
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Table 19 continued: SK-BR3 - EMBL-703625 monotherapy
ID Term_Description Fold_Enrichmentsupport Adj p-value Up_regulated Down_regulated Cluster Status
GO:0047485 protein N-terminus binding 2.920 0.035 2.593E-04 GLRX, MNAT1, PPP1CC, SDCBP, MORF4L1, PDCD10,NIPBL, DCTN4, TBL1XR1 ERCC4, STX5, TP53, THAP7 12 Representative
GO:0042826 histone deacetylase bind-ing 1.314 0.01 6.716E-03 MAPK8, NIPBL, MIER1 TP53, CAMTA2, THAP7 12 Member
GO:0001784 phosphotyrosine residuebinding 2.061 0.015 3.396E-04 CRKL, GRB2 SYK, VAV1 13 Representative
GO:0002039 p53 binding 1.622 0.035 5.554E-04 TAF9, TP53BP2, SIRT1, RCHY1 TP53 14 Representative
GO:0035257 nuclear hormone receptorbinding 2.285 0.015 1.952E-03 CTNNB1, NRIP1, SIRT1 14 Member
GO:0004407 histone deacetylase activ-ity 2.190 0.005 5.704E-03 SIRT1, MIER1 14 Member
GO:0033558 protein deacetylase activity 1.593 0.005 4.094E-02 SIRT1 14 Member
GO:0044389 ubiquitin-like protein ligasebinding 2.061 0.005 6.088E-04 STAM DTX3L 15 Representative
GO:0004713 protein tyrosine kinase ac-tivity 2.543 0.015 1.070E-03 DYRK1A, JAK1, TWF1, RYK, DYRK2 CSF1R, PTK6, SYK, TNK1 16 Representative
GO:0035035 histone acetyltransferasebinding 2.766 0.025 1.072E-03 EPAS1, ECD TP53 17 Representative
GO:0051087 chaperone binding 0.692 0.005 1.826E-02 AMFR, BAG2 TP53 17 Member
GO:0051721 protein phosphatase 2Abinding 2.503 0.005 1.850E-02 FOXO1, STRN TP53 17 Member
GO:0043621 protein self-association 1.752 0.01 2.385E-02 DYRK1A, BCL10, KCTD9 TP53 17 Member
GO:0031369 translation initiation factorbinding 5.256 0.005 1.207E-03 DDX3X EIF2B4, TBL2 18 Representative
GO:0035613 RNA stem-loop binding 3.504 0.005 4.677E-02 DDX3X, RC3H1 18 Member
GO:0001046 core promoter sequence-specific DNA binding 3.504 0.005 1.321E-03 GTF2B, AGO1 TP53 19 Representative
GO:0000993 RNA polymerase II com-plex binding 3.754 0.005 7.416E-03 GTF2B, URI1, AGO1, RPRD1B, CDC73 ELP4 19 Member
GO:1990841 promoter-specific chro-matin binding 1.947 0.025 7.774E-03 GTF2B, POLR2A, NIPBL TP53 19 Member
GO:0003779 actin binding 0.789 0.005 1.589E-03 EPS8, ABLIM1, PAWR, TWF1, MICAL3 20 RepresentativeGO:0005516 calmodulin binding 1.812 0.005 1.673E-03 RGS2, STRN PPP3CB, TRPV1, DAPK2, IQCG 21 RepresentativeGO:0070412 R-SMAD binding 2.766 0.005 2.218E-03 PPM1A, TRIM33, SMURF1 22 Representative
GO:0001227 DNA-binding transcriptionrepressor activity, RNApolymerase II-specific 1.268 0.03 2.294E-03 BACH1, MAX, REST, SNAI1, TGIF1, YY1, PRDM2, HEY1,ZNF350 NFX1, MLX 23 Representative
GO:0070888 E-box binding 2.136 0.005 1.546E-02 AHR, MAX, SNAI1, PSPC1 SCX 23 Member
GO:0000977 RNA polymerase II reg-ulatory region sequence-specific DNA binding 1.251 0.015 2.432E-02 ATF1, CDC5L, HSF2, MAX, SNAI1, SP3, PRDM2 NFX1, MLX 23 Member
GO:0071889 14-3-3 protein binding 5.005 0.005 2.573E-03 ZFP36L1, PPP1R12A, SRPK2, RBM7, SIK1 KLHL22 24 RepresentativeGO:0016791 phosphatase activity 2.595 0.005 2.596E-03 PPP1CB, PPP1CC, DUSP10 DUSP18 25 Representative
GO:0004722 protein serine/threoninephosphatase activity 3.185 0.005 1.041E-02 PPM1A, PPP1CC, PPP2CA, PPM1D PPP1R3D, PPM1F 25 Member
GO:0004721 phosphoprotein phos-phatase activity 2.285 0.005 1.455E-02 PPP1CC, PPP2CA CDC25B 25 Member
GO:0008013 beta-catenin binding 1.062 0.015 3.119E-03 CTNNB1, FOXO1, TBL1XR1 CBY1 26 RepresentativeGO:0046332 SMAD binding 2.503 0.02 7.133E-03 CTNNB1, YY1, TGFBRAP1, USP15, IPO7 26 Member
GO:0001085 RNA polymerase II tran-scription factor binding 0.898 0.01 2.385E-02 CTNNB1 TP53 26 Member
GO:0070411 I-SMAD binding 3.504 0.015 3.856E-02 CTNNB1, SMURF1 26 Member
GO:0008270 zinc ion binding 1.173 0.01 3.503E-03 GTF2B, LIMS1, MNAT1, PGGT1B, RLF, RNF2, SIAH1,KDM5B, ARIH1, RCHY1, RNF11, RC3H1 CAD, TP53, MORC2, SIRT5 27 Representative
GO:0051020 GTPase binding 3.504 0.005 5.657E-03 BNIP3, GNB1, RRAGB, ATG14, FNBP1L 28 Representative
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Table 19 continued: SK-BR3 - EMBL-703625 monotherapy
ID Term_Description Fold_Enrichmentsupport Adj p-value Up_regulated Down_regulated Cluster Status
GO:0043022 ribosome binding 2.102 0.005 7.089E-03 YTHDF1, EIF2A, YTHDF3 29 RepresentativeGO:0000049 tRNA binding 3.369 0.005 3.129E-02 EIF2A PTCD1, THG1L, PUS1, SLFN11 29 Member
GO:0046982 protein heterodimerizationactivity 1.386 0.02 7.506E-03 AHR, ATP1B1, CHUK, EPAS1, PPP2CA, SDCBP, FXR1,VAPA, ZBTB1, GCA MLX, TP53, GABBR2, ZHX2 30 Representative
GO:0019888 protein phosphatase regu-lator activity 1.593 0.005 8.594E-03 PPP2R5E PPP2R3B 31 Representative
GO:1990381 ubiquitin-specific proteasebinding 3.754 0.005 8.973E-03 AMFR, SPATA2, DERL1 32 Representative
GO:0005525 GTP binding 2.285 0.01 1.056E-02 CDC42, RAB9A, RRAGB, DYNC1LI1, RAB14, ARL8B,LSG1, ARL8A RAB31, ATL1, THG1L, NUDT16 33 Representative
GO:0019003 GDP binding 3.092 0.01 4.604E-02 GNAI3, RAB9A, RAB18, DYNC1LI1, RAB14, RAB8B,ARL8B RAB31, RERG 33 Member
GO:0003924 GTPase activity 2.172 0.005 4.916E-02 ARF3, CDC42, DDX3X, GNAI3, GNB1, RGS2, RAB9A,RRAGB, RHOQ, RAB14, LSG1, RAB33B RGS19, ATL1, RERG 33 Member
GO:0035064 methylated histone binding 2.503 0.01 1.441E-02 ING1, SPIN1, MTF2, SPIN3 CBX5, THAP7, L3MBTL2, KAT8 34 Representative
GO:0070530 K63-linked polyubiquitinmodification-dependentprotein binding 6.257 0.01 1.522E-02 ZBTB1, TAB2, RNF169 ZRANB3, ATRIP 35 Representative
GO:0031593 polyubiquitin modification-dependent protein binding 4.122 0.015 1.662E-02 RAD23B, UBQLN1, ZFAND6 BRCC3 36 Representative
GO:0016301 kinase activity 0.992 0.01 2.033E-02 MAPK1, MAPK8, RPS6KB1 37 Representative
GO:0003725 double-stranded RNAbinding 1.911 0.005 2.272E-02 SUPV3L1, DICER1, AGO1, RC3H1 ZNF346, DUS2 38 Representative
GO:0044877 protein-containing com-plex binding 1.285 0.005 4.612E-02 GNB1, RAP1A, STRN, IST1, SPATA2, LZTFL1 PEX6, TERF2, CBX5, DET1, MLKL 39 Representative

Table 19: De-regulated genes and networks (see section 2.2 for details on how significance was calculated) in SK-BR3 cells treated with 1µM EMBL-703625
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