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Arterielle Spin Markierung MRT für die nicht-invasive Quantifizierung der Perfusion im
Gehirn und in den Nieren
Arterielle Spin Markierung (ASL) Magnetresonanztomographie ermöglicht eine völlig nicht-invasive Quan-
tifizierung der Durchblutung, welche zur Bewertung der Gewebefunktion, -aktivität und -lebensfähigkeit
wertvoll ist. Jedoch hat sich diese Technik weltweit noch nicht in der klinischen Routine etabliert, teilweise
aufgrund fehlender Standardisierung. Ziel dieser Arbeit ist es einen Beitrag zum Übergang der ASL in die
klinische Routine zu leisten, indem Variabilitätsquellen in der AS-basierten Pefusionsquantifizierung im
Gehirn und in den Nieren untersucht werden. Erstens, wurden Quantifizierungsergebnisse, die mit unter-
schiedlichen Verarbeitungsoptionen und Korrekturen oder mit unterschiedlichen Aufnahmeparametern er-
halten wurden, verglichen. Dafür wurden synthetische Daten, Daten von gesunden Probanden und Patien-
tendaten analysiert. Es ergaben sich signifikante Unterschiede in der Perfusionsquantifizierung bei unter-
schidédlichen Verarbeitungsoptionen und Korrekturen und mit unterschiedlichen Aufnahmeparametern.
Zweitens, wurden synthetische ASL-Datensätze von den Nieren, die In-vivo Aufnahmen imitieren, gener-
iert. Eine Datenanalyse-Pipeline wurde entwickelt und anhand der synthetischen Datensätze getestet.
Die Registrierung verlief für beide Nieren gut, wobei die mittleren strukturellen Ähnlichkeitsindexmaße
um durchschnittlich 25% zunahmen. Die Quantifizierung der kortikalen und medullären Perfusionswerte
stimmte mit einem mittleren prozentualen Unterschied von 21% und 16% zu den für die Erzeugung
der synthetischen Datensätze angenommenen kortikalen und medullären Perfusionswerten überein. Die
Segmentierungsergebnisse aus der Verarbeitungspipeline stimmten gut mit den ursprünglichen Segmen-
tierungen überein, mit Dice-Indizes im Bereich von 0,80–0,93, 0,78–0,89, und 0,64–0,84 für gesamte Niere,
Kortex, und Medulla. Drittens, wurden ASL-Datensätze der Nieren in gesunden Probanden erhoben und
mit der entwickelten Datenanalyse-Pipeline analysiert. Für jede Person, wurden vier ASL-Messungen
durchgeführt, die zwischen freier Atmung oder synchronisierter Atmung und mit oder ohne Herz-Trigger
variiert haben. Die Registrierung war am erfolgreichsten, wenn das gesamte Bild betrachtet wurde, mit
einer Erfolgsquote von 87% und einer durchschnittlichen Dauer von 30 Minuten. Prozentuale Unter-
schiede zwischen Literaturwerten und mittleren Perfusionswerten waren gleich oder kleiner als 32%, 61%,
und 53% für die gesamte Niere, den Kortex, und die Medulla. Gemittelt über alle Probanden waren die
Perfusionswerte, die für die vier verschiedenen Messungen erhalten wurden, nur signifikant unterschiedlich
zwischen freier Atmung und synchronisierter Atmung bei Betrachtung der gesamten linken Niere. Das
zeitliche Signal-zu-Rausch Verhältnis wies keinen signifikanten Unterschied zwischen den vier Messungen
auf. Weiterhin war die gemessene Nierendurchblutung abhängig von der gewählten Triggerverzögerung
für den Herz-Trigger. Die Studienergebnisse legen nahe, dass eine Messung mit freier Atmung und ohne
Herz-Trigger die beste Wahl für klinische Anwendungen ist.

Arterial Spin Labelling MRI for non-invasive perfusion quantification in the brain and in
the kidneys
Arterial spin labelling (ASL) magnetic resonance imaging allows completely non-invasive quantification of
perfusion and is valuable for the evaluation of tissue function, activity, and viability. However, it has not
yet been established in the clinical routine world-wide partly due to a lack of standardisation. This thesis
aims to contribute to the transition of ASL into the clinical routine by investigating sources of variability
in ASL-based perfusion quantification in the brain and in the kidneys. Firstly, quantification results
obtained with different processing options and corrections or with different acquisition parameters were
compared using synthetic data, data from healthy volunteers, and patient data. Differences in acquisition
parameters and processing options used for analysis of brain ASL data resulted in significant differences
in perfusion quantification. Secondly, synthetic ASL data sets of the kidneys mimicking in vivo acqui-
sitions were generated. A data analysis pipeline was developed and evaluated using the synthetic data
sets. The registration performed well for both kidneys, with mean structural similarity index measures
increasing by 25% on average. The quantification yielded cortical and medullary perfusion values that
agreed with a mean percentage difference of 21% and 16% for cortex and medulla, respectively, to the
perfusion assumed for the generation of the synthetic data sets. Segmentation results from the processing
pipeline agreed well with original segmentation masks, with Dice indices ranging 0.80-0.93, 0.78-0.89, and
0.64-0.84 for whole kidney, cortex, and medulla, respectively. Thirdly, kidney ASL data were acquired
in healthy volunteers and analysed with the developed processing pipeline. Four ASL measurements
were performed for each subject varying between free breathing or synchronised breathing and with or
without cardiac triggering. Registration performed best when considering the entire image, with a 87%
success rate and a mean duration of 30 minutes. Percentage differences between literature values and
mean perfusion values were equal to or below 32%, 61%, and 53% for whole kidney, cortex, and medulla,
respectively. Across subjects, perfusion values obtained for the four different measurements were only
significantly different between the free breathing and synchronised breathing measurement when consid-
ering the whole left kidney. Temporal signal-to-noise ratio was not found to differ significantly between
the four measurements. Renal perfusion was found to depend on the trigger delay chosen for cardiac
triggering. This study’s results suggest that an acquisition in free breathing without cardiac triggering
is the best choice for clinical applications.
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CHAPTER 1

Introduction

Perfusion (blood flow) is an important indicator of tissue function, activity, and viabil-
ity as cells require continuous supply of nutrients and oxygen. This supply is delivered
by the blood via the arteries and capillary beds of tissue. A decreased perfusion (hypop-
erfusion) or absence of perfusion limits organ function and can result in cell death. An
increased perfusion (hyperperfusion) indicates an increased vascularisation and require-
ment of nutrients and oxygen, which is often linked to angiogenesis and abnormal cell
growth occurring during tumour development. Perfusion evaluation and accurate quan-
tification have important clinical relevance for various organs and diseases. This work
focuses on perfusion in the brain and in the kidneys.

A perfusion of about 50 mL/100g/min for the entire adult brain and a perfusion ra-
tio of 2-7 between grey and white matter is considered normal [Wintermark et al., 2004;
Zaharchuk , 2007; van Gelderen et al., 2008]. Cerebral blood flow (CBF) has been shown
to vary depending on age with differences from brain region to brain region [Wintermark
et al., 2004]. The study of CBF variations during brain development and growth are
useful for understanding brain function development as well as supporting diagnosis and
therapy of neurological disorders [Biagi et al., 2007]. The evolution of regional and lo-
cal CBF can also yield insights in mechanisms of cognitive ageing [Haller et al., 2016;
Staffaroni et al., 2019]. For example, the assessment of perfusion allows distinction be-
tween mild cognitive impairment and early-onset Alzheimer’s disease [Zhang et al., 2017]
and can predict the transition from mild cognitive impairment to dementia [Chao et al.,
2010]. CBF assessment can also provide information about potential occlusion of feeding
arteries. This is highly valuable as complete occlusion of the internal carotid artery, for
example, is known to heighten the risk of ischemic stroke occurrence and can result in
death [Thanvi and Robinson, 2007]. Perfusion imaging is also relevant for the diagnosis of
ischemic stroke and supports treatment decisions [Kim et al., 2014]. Another widespread
application in the medical field of perfusion assessment is oncology. Perfusion assessment
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supports differentiation between tumour types, determination of tumour margins, and
tumour grading [Cho et al., 2002; Provenzale et al., 2006].

Kidneys are highly perfused organs, with a normal whole kidney perfusion averaging
about 220-230 mL/100g/min in adults [Gillis et al., 2014, 2016]. Good kidney function
is directly dependent on normal blood flow, making it an important renal biomarker
[Ebrahimi et al., 2014]. Acute kidney injury and impaired perfusion are in fact closely
associated [Dong et al., 2013; Johnson et al., 2014]. Furthermore, cortical perfusion has
been found to be decreased in patients suffering from chronic kidney disease [Rossi et al.,
2012; Gillis et al., 2016; Cai et al., 2017; Li et al., 2017; Zhang and Lee, 2020] and to vary
depending on the disease stage [Mora-Gutiérrez et al., 2017]. Perfusion is also critical for
renal allografts [Lanzman et al., 2010; Hueper et al., 2015; Ren et al., 2016] and allows
differentiation between allograft rejection and tubular necrosis [Notohamiprodjo et al.,
2010]. Other clinical applications of renal perfusion assessment are artery stenosis and
tumours [Grenier et al., 2013].

The first quantitative assessment of perfusion in humans was performed by tracking
the inflow of inhaled gas in the subject’s blood stream by sampling arterial and venous
blood over time [Kety and Schmidt , 1945]. This approach is invasive, time and resource
intensive, and has since then been replaced by imaging methods such as positron emission
tomography (PET), single photon emission computed tomography (SPECT), computed
tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI). PET and
SPECT are based on the use of radioactive tracer molecules, which entails complex lo-
gistics and is invasive. CT is also an invasive imaging modality as it is based on ionising
radiation (x-rays) and requires the injection of contrast agent for perfusion assessment.
US imaging uses sound waves and is non-invasive. However, it is limited in imaging depth
and thus not suitable for every tissue in the human body. MRI makes use of the nuclear
magnetic resonance properties of nuclei in an external magnetic field. It is well known for
the variety of image contrasts achievable and can yield both anatomical and functional
(e.g. perfusion) information. PET with 15O labelled water tracer is considered as the gold
standard imaging modality for correct in vivo perfusion quantification [Herscovitch et al.,
1983; Raichle et al., 1983] but CT, US, and MRI are more commonly used in the clinical
routine due to higher availability and simpler logistics. This work focuses on MRI-based
perfusion quantification.

MRI-based perfusion techniques either use exogenous or endogenous contrast agents.
Protons in arterial blood are the relevant endogenous contrast agents and exogenous MRI
contrast agents are usually gadolinium-based. While older linear gadolinium-based MRI
contrast agents found to cause nephrogenic systemic fibrosis have been banned from use
in medicine [Thomsen et al., 2007], the use of gadolinium-based contrast agents in MRI
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still is an important topic in the medical community due to safety concerns [McDonald
et al., 2018]. In the past decade, multiple studies have shown that gadolinium present
in contrast agents commonly used for MRI perfusion imaging is retained in the skin, in
abdominal organs, in bones, and in important areas of the brain, such as the hypothala-
mus and cerebellum [Kanda et al., 2015; Radbruch et al., 2015; Quattrocchi and Van der
Molen, 2021; Al-Muhanna, 2022]. Even though no negative effects of this retention have
been demonstrated to date, it is preferred to avoid any contrast agent injection, especially
for the paediatric population, patients with poor kidney function, and patients requiring
multiple follow-ups for disease monitoring. The importance of a robust and accurate per-
fusion imaging technique without exposure to ionising radiation and exogenous contrast
agent is evident and motivated the focus of this work on the completely non-invasive
perfusion MRI technique called arterial spin labelling (ASL).

ASL makes use of blood water protons as an endogenous tracer to image perfusion. For
this, blood water protons present in the arteries delivering blood to the organ of interest
are magnetically labelled by spin inversion. After an inflow time, the labelled blood flows
into the imaging region and images are acquired. An ASL experiment consists of acquiring
a calibration image, referred to as M0, and one or multiple pairs of control and labelled
images. The difference between labelled and control images lies in the presence or absence
of labelling of the feeding arteries. After acquisition, labelled images are subtracted
from control images and averaged to obtain a perfusion-weighted image. A quantitative
perfusion map is then calculated based on a kinetic model with the perfusion-weighted
image, the M0 image, acquisition-dependent parameters, and other constants as input
[Alsop et al., 2015; Nery et al., 2020]. Despite its advantages, ASL faces multiple challenges
(e.g. low signal-to-noise ratio, motion sensitivity, lengthy acquisitions) and has not yet
made a breakthrough in the clinical routine worldwide. The lack of standardisation due to
the multitude of existing acquisition and processing schemes and the lack of experience of
clinicians with ASL are additional reasons for the absence of ASL in the clinical routine
[Essig et al., 2013a]. Nevertheless, the technique has shown promising results in both
children and adult patients for various clinical applications (e.g. vascular abnormalities
[Jezzard et al., 2018; Ho, 2018; Keil et al., 2019], ischemic stroke [MacIntosh et al., 2010;
Bokkers et al., 2012;Wintermark and Warfield , 2012; Ho, 2018; Keil et al., 2019], cognitive
impairment [Sun et al., 2016; Chandra et al., 2019], epilepsy [Pendse et al., 2010; Pasca
et al., 2021; Ho, 2018; Keil et al., 2019], tumours [Razek et al., 2019; Luna et al., 2022;
De Bazelaire et al., 2005; Lanzman et al., 2012], neurological disorders [Haller et al., 2016],
traumatic brain injury and infection [Ho, 2018], acute kidney injury [Dong et al., 2013;
Johnson et al., 2014], chronic kidney disease [Rossi et al., 2012; Gillis et al., 2016; Cai
et al., 2017], renal transplantation [Lanzman et al., 2010; Hueper et al., 2015; Ren et al.,
2016]). Improved standardisation of ASL across centres will allow large scale clinical trials
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to improve the understanding, diagnosis, treatment, and monitoring of blood flow altering
diseases.

Variability in evaluation of organ perfusion can be caused by various effects. The
measurement itself involves a large number of degrees of freedom, including the choice
of labelling, readout, scanner, as well as subject compliance and individual anatomy. In
addition to these data acquisition related sources of variability, differences in processing
pipelines across centres further hinder useful comparison of organ perfusion quantification.
This thesis aims to contribute to the standardisation of ASL for perfusion quantification
in the brain and in the kidneys. For this, three projects were pursued:

(i) The comparison of different processing options and corrections for perfusion quan-
tification in the brain.

(ii) The creation of synthetic ASL data sets of the kidneys for evaluation and comparison
of processing pipelines.

(iii) The evaluation of the choice of registration strategy, the effect of respiration strategy,
and the effect of electrocardiogram (ECG) triggering on ASL-based quantification
of renal perfusion.

For the first project, a processing pipeline for brain ASL data was developed. Data from
the ASL challenge [Anazodo and Croal , 2021; Anazodo et al., 2021] as well as healthy vol-
unteer data and patient data acquired at the University Hospital Mannheim were analysed.
The processing pipeline comprises the realignement of all ASL images, the segmentation
of the brain volume into gray matter, white matter, and CSF compartments, the registra-
tion of the anatomical data to the ASL data, the quantification according to the general
kinetic model [Buxton et al., 1998], and the generation of brain compartment specific
perfusion maps. It includes different options for the calculation of the perfusion-weighted
image, for the removal of outliers from the ASL data, and for corrections performed on
the M0 image. All different options were compared using the challenge and healthy vol-
unteer data. In addition, an evaluation of the effect of smoothing on the M0 image and a
comparison between segmentation performed on the anatomical data or on the M0 image
were performed. The patient data was analysed with the developed processing pipeline
to evaluate whether disease indications visible on anatomical images could be recognised
in the quantified perfusion maps.

For the second project, synthetic ASL data sets of the kidneys simulating in vivo acqui-
sitions were produced and a data processing pipeline for renal ASL data was developed.
The synthetic data sets were made publicly available1 for wide-spread use in the research

1https://doi.org/10.11588/data/QAHWSF, last accessed 26.08.2022

4

https://doi.org/10.11588/data/QAHWSF


CHAPTER 1. Introduction

community. Starting from models of the XCAT phantom [Segars et al., 2010], MRI data
of the abdomen was generated and perfusion signal was added based on the general ki-
netic model [Buxton et al., 1998]. Respiratory motion was included in the generated
data sets to mimic free breathing in vivo acquisitions. The processing pipeline consists of
registration, quantification, and segmentation steps. The processing pipeline was evalu-
ated step-by-step using the synthetic data sets. Registration performance was evaluated
qualitatively with line profiles and quantitatively with mean structural similarity index
measures [Wang et al., 2004]. Perfusion values obtained from the pipeline were com-
pared to the values assumed when generating the synthetic data. Segmentation masks
obtained by semi-automated procedure of the processing pipeline were compared to the
original XCAT organ masks using the Dice index [Dice, 1945]. Parts of this project were
published in [Brumer et al., 2022a].

For the third project, renal ASL data of healthy volunteers was acquired. Four ASL
measurements were performed on each subject varying between free breathing or syn-
chronised breathing and with or without ECG triggering. The available data was then
analysed using the previously developed processing pipeline. A focus was set on the
registration step and registration was performed with different area of the images to be
considered: whole image, half image for separate left and right kidney registration, small
manually drawn rectangle for separate left and right kidney registration. The quality of
registration was assessed qualitatively in terms of success rate and quantitatively with
mean structural similarity index measures [Wang et al., 2004] and entropy correlation
coefficients [Maes et al., 1997]. Finally, using the best registration option, the effect of
respiration strategy and ECG triggering on the final perfusion values was evaluated. Parts
of this project were presented at international conferences [Brumer et al., 2022b,c].
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CHAPTER 2

Theoretical Background

This chapter covers the theoretical principles necessary to understand the subsequent
work. In the first part, the fundamental processes of nuclear magnetic resonance (NMR)
will be described. In the second part, the components necessary for moving from the
detection of an NMR signal to the creation of a magnetic resonance (MR) image will
be illustrated.1 In the third part, the term perfusion will be defined and the technique
arterial spin labelling (ASL), which is central to this work, will be explained. In the final
part, basic anatomy information will be given for the organs considered in this work.

2.1 Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) can occur when a nucleus subject to a constant
external magnetic field is perturbed by a time-varying magnetic field. This perturbation
triggers a response of the nucleus in form of an electromagnetic signal with a character-
istic frequency depending on the nucleus and the external magnetic field. The physical
phenomenon of NMR happens when the perturbation frequency is close to the intrinsic
frequency of the nucleus, i.e., on-resonance. It is important to note, that this intrinsic
frequency depends on the chemical and magnetic environment of the nucleus.

The origin of nuclear magnetic resonance (NMR) can be set to the discovery of a
fundamental quantum mechanical property of nuclei, the intrinsic angular momentum or
spin, by Otto Stern and Walther Gerlach in 1922 [Gerlach and Stern, 1922]. In the 1930’s,
Isidor Isaac Rabi extended this experiment and was able to observe NMR in molecular
beams for the very first time [Rabi et al., 1938]. For this discovery, he obtained the Nobel

1For a more detailed description of NMR and MR imaging, the reader is referred to [Brown et al.,
2014] and [Nishimura, 1996].
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Prize in Physics in 1944. A decade after Rabi’s observations, Edward Mills Purcell and
Felix Bloch observed NMR in condensed matter [Purcell et al., 1946; Bloch, 1946], for
which they obtained the Nobel Prize in Physics in 1952. In the 1960’s and 1970’s, first
applications of NMR in chemistry (Richard R. Ernst and Kurt Wüthrich) and medicine
(Raymond V. Damadian) took place. To this date, NMR is still central to a multitude of
research projects in physics, chemistry, biology, and medicine.

In the following sections, the properties of nuclear spin and magnetic moment, the
Zeeman effect, the macroscopic magnetisation, and its dynamics governed by the Bloch
equations, as well as the typical NMR signal acquisition are detailed.

2.1.1 Nuclear spin and magnetic moment

Protons and neutrons make up atomic nuclei. These two nucleons are fermions and
possess an intrinsic angular momentum with spin quantum number s = 1/2. The total
angular momentum j of a nucleon is given by the sum of its orbital angular momentum
l and its spin angular momentum s: j = |l ± s| = |l ± 1/2|. Summing the total angular
momentum j of all nucleons contained in a nucleus yields the total angular momentum
of the nucleus itself, known as nuclear spin ~̂I. For an odd number of protons and/or
neutrons, the spins of the nucleons do not cancel each other out, resulting in a non-zero
nuclear spin. The nuclear spin being an angular momentum, its quantum mechanical
operator ~̂I fulfils the following commutator relations

[Îi, Îj] = i~εijkÎk [~̂Ii, Î2] = 0 (2.1)

with the Levi-Civita or permutation symbol εijk and the reduced Planck’s constant ~ =
h

2·π = 6.626·10−34Js
2·π . As Îi and Î2 commute, a complete basis can be constructed with their

mutual eigenstates |I, m〉. The eigenequations for the magnitude of the nuclear spin and
its z-component (assuming a quantisation axis along the z-axis, without loss of generality)
are

Î2 |I,mI〉 = I(I + 1)~2 |I,mI〉 Îz |I,mI〉 = mI~ |I,mI〉 (2.2)

with the nuclear spin quantum number I, and the magnetic quantum number mI . I

expresses the allowed spin states of the nucleus (I = 0, 1/2, 1, 3/2, ...) and mI describes
the spatial orientation of the spin with respect to the z-axis with values mI = −I,−I +

1, ..., I − 1, I. In the absence of an external magnetic field, there are (2I+1) degenerate
quantum states for a nucleus with nuclear spin I (mI degeneracy). The nucleus of a
hydrogen atom consists of a single proton (I = j = s = 1/2) and therefore Îz has two
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eigenvalues: m = ±1/2. These eigenvalues correspond to the spin up and spin down
states: |1/2,+1/2〉 and |1/2,−1/2〉, respectively.

Analogue to classical angular momenta, this nuclear spin is associated to a magnetic
moment

~µ = γ~I (2.3)

where γ is a nucleus-specific constant called the gyromagnetic ratio. It can be expressed
as multiples of the nuclear magneton µN

γ =
g µN
~

=
g e

2mp

(2.4)

with the experimentally determined Landé factor g, the proton charge e = 1.602 · 10−19

C, and the proton mass mp = 1.67 · 10−27 kg. For protons the Landé factor is g = 5.586.
Several nuclei present in the human body and their magnetic porperties are listed in Table
2.1.

Table 2.1: Different nuclei present in the human body and their magnetic prop-
erties - nuclear spin I, magnetic moment µ in units of nuclear magneton µN , and gyro-
magnetic ration γ divided by 2π. Adapted from [Brown et al., 2014].

Nucleus I µ/µN γ/(2π) [MHz/T]
1H 1/2 2.793 42.58

23Na 3/2 2.216 11.27
31P 1/2 1.131 17.25
17O 5/2 -1.893 -5.77
19F 1/2 2.627 40.08

2.1.2 Zeeman effect

As is common in NMR nomenclature, the magnetic flux density ~B will be referred to
as magnetic field in this work. In the presence of an external magnetic field, the energy
levels for nuclear spin states with same nuclear spin quantum number I but different
magnetic quantum numbers mI split up: the mI degeneracy can be resolved. Without
loss of generality, let us assume the external magnetic field with magnitude B0 is oriented
along the positive z-axis. The following Hamiltonian can then be used to describe the
interaction of the nuclear spin I with the external magnetic field ~B0 = (0, 0, B0)T :

Ĥ = −~̂µ · ~B0 = −γ~̂I · ~B0 = −γÎzB0 (2.5)
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Using this time-independent Hamiltonian, the stationary Schrödinger equation

Ĥ |I,mI〉 = Em |I,mI〉 (2.6)

can be used to calculate the eigenenergies Em of the system

Em |I,mI〉 = −m~γB0 |I,mI〉 (2.7)

For the case of I = 1/2, the eigenenergies are

E+1/2 = −~
2
γB0 E−1/2 = +

~
2
γB0 (2.8)

resulting in an energy difference between the two states of

∆E = γ~B0 (2.9)

The splitting of these two energy levels in the presence of an external magnetic field is
known as the Zeeman effect and is depicted in Figure 2.1.

energy

magnetic field strength

mI = -1/2

mI = +1/2

B0 = 0 T B0 = 3 T

Em = +1/2ħγB0

Em = -1/2ħγB0

ΔE = 127.7 MHz

Figure 2.1: Zeeman splitting of the nuclear energy levels for a system with
nuclear spin I = 1/2 and γ > 0, such as a hydrogen nucleus. When an external
magnetic field B0 is applied, the previously indistinguishable energy levels split up into
two states: spin down state with energy E−1/2 and spin up state with energy E+1/2. At a
field strength of 3 T, the energy difference between these two states is ∆E = 127.7 MHz
for the hydrogen nucleus.

According to the Planck Einstein relation between energy and frequency, a transition
between the two energy states is possible by absorption or emission of a photon with
frequency

ω0 = γB0 (2.10)
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The equation for the Larmor frequency (Equation 2.10) is the fundamental principle of
NMR and with it of magnetic resonance imaging (MRI). At a magnetic field strength of
3 T, common in the clinical routine, the Larmor frequency is 127.7 MHz for the hydrogen
nucleus.

2.1.3 Macroscopic magnetisation

A measured NMR signal usually comes from a large volume of nuclei and not from a
single one as considered up to now. To describe systems composed of multiple nuclei, a
macroscopic magnetisation ~M is used. It is defined as the sum of the expectation values
of the magnetic moments ~̂µi of the N individual nuclei present in a unit volume V

~M =
1

V

N∑
i=1

〈
~̂µi

∣∣∣ ~̂µi〉 (2.11)

In thermal equilibrium at a temperature T and in the presence of an external magnetic
field ~B0 = (0, 0, B0)T as described previously, the macroscopic magnetisation can further
be described using the population probabilities of the Zeeman levels with energy Em

~M =
N

V
γ~

I∑
m=−I

pmm ~z (2.12)

The population probabilities of the Zeeman levels follow the Boltzmann statistics

pm =
1

Z
e
− Em
kBT Z =

I∑
m=−I

e
− Em
kBT (2.13)

where kB = 1.38·10−23 J/K is the Boltzmann constant. For hydrogen nuclei with I = 1/2,
the ratio of the number of spins in the two available states (parallel N+1/2 and antiparallel
N−1/2 to the external magnetic field) can be calculated to be

N−1/2

N+1/2

=
p−1/2

p+1/2

=
e
− 1

2
~γB0
kBT

e
1
2

~γB0
kBT

= e
− ~γB0
kBT = e

− ∆E
kBT (2.14)

For kBT � ~γB0, the exponential function can be approximated by 1 − (γ~B0)/(kBT )

following a Taylor expansion. At a body temperature of T = 310 K and a field strength
of 3 T, the number of spins parallel to the external magnetic field exceeds the number of
spins antiparallel to the external magnetic field by only 3 nuclei per million.
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In the case mentioned above, the high temperature approximation kBT � ~γB0 can
be used and therefore, using the Taylor expansion of the exponential function to the
first order, the macroscopic magnetisation at thermal equilibrium of hydrogen nuclei in a
sample can be approximated by

M0 ≈
~2γ2

4kB

N

V

B0

T
(2.15)

This equation, known as Curie’s law, shows that, in thermal equilibrium, the net macro-
scopic magnetisation is approximately proportional to the spin density ρ = N/V and the
external magnetic field B0, and inversely proportional to the temperature T .

2.1.4 Magnetisation dynamics - Bloch Equations

The time evolution of the expectation value of a magnetic moment ~̂µ describes its motion
in an external magnetic field ~B. Using Ehrenfest’s theorem, the temporal evolution of the
expectation value of the magnetic moment operator is given by:

d
〈
~̂µ
∣∣∣~̂µ〉
dt

= γ
〈
~̂µ
∣∣∣~̂µ〉× ~B (2.16)

This equation reflects the classical description of the torque experienced by a magnetic
moment in an external magnetic field, aiming to align the magnetic moment with the
magnetic field. Considering that the magnetic momenta of all nuclei in a sample are
aligned, Bloch extended this description to the macroscopic magnetisation of all nuclei in
a sample [Bloch, 1946]:

d ~M

dt
= γ ~M × ~B (2.17)

According to Equation 2.17, the macroscopic magnetisation ~M will thus precess around
the external magnetic field ~B if it possesses a component which is not parallel to ~B.

2.1.4.1 Excitation

In thermal equilibrium, however, all spins of a spin ensemble in a static external mag-
netic field ~B0 = (0, 0, B0)T are oriented randomly and only show a small net magnetisation
along the z-direction. All components in the x-y-plane of the macroscopic magnetisation
statistically add up to zero as the individual spins don’t have any phase coherence. To
be able to measure an NMR signal, the component of the macroscopic magnetisation
in the x-y-plane, known as transverse magnetisation, has to be non-zero. This can be
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achieved by perturbing the thermal equilibrium using a time-dependent magnetic field
~B1(t) induced by a radio-frequency (RF) electromagnetic field, which is perpendicular to
the static magnetic field ~B0.

Given a static magnetic field along the z-direction ~B0 = (0, 0, B0)T and a left circularly
polarised RF field ~B1(t) with frequency ω1 in the x-y-plane

~B1(t) =

 B1cos(ω1t)

−B1sin(ω1t)

0

 (2.18)

the spin ensemble is subject to a total external magnetic field ~B = ~B0 + ~B1(t). The time
derivative of the macroscopic magnetisation in the resting frame of reference (Equation
2.17) then becomes (

d ~M

dt

)
(x,y,z)

= ~M × γ ~B

= ~M × γ

 B1cos(ω1t)

−B1sin(ω1t)

B0


(x,y,z)

(2.19)

The transverse component of the macroscopic magnetisation precesses around the z-axis
with angular velocity ω1. The motion of the macroscopic magnetisation is a superposition
of a precession around the B0-axis and the B1-axis.

To better understand the effect of an RF pulse on the magnetisation, a rotating frame
of reference (x′, y′, z′) with angular velocity ~Ω is introduced. When switching from a
resting frame of reference (x, y, z) to a rotating one, the time derivative of a function is
transformed. For the macroscopic magnetisation, Equation 2.17 becomes(

d ~M

dt

)
(x,y,z)

=

(
d ~M

dt

)
(x′,y′,z′)

+ ~Ω× ~M (2.20)

Using Equations 2.19 and 2.20, yields the following time derivative for the magnetisation
in the rotating frame (

d ~M

dt

)
(x′,y′,z′)

= ~M × γ ~B + ~M × ~Ω

= ~M × γ
(
~B +

~Ω

γ

) (2.21)

13



2.1. Nuclear Magnetic Resonance

In the rotating frame, the macroscopic magnetisation thus precesses about an effective
magnetic field ~Beff = ~B + ~Ω/γ. This effective magnetic field is the superposition of the
static external field and a mathematically fabricated magnetic field with magnitude |~Ω|/γ
directed along ~Ω.

Using Equation 2.21, Equation 2.19 can be transformed into a rotating frame with
angular velocity ~Ω = (0, 0,−ω1)T

(
d ~M

dt

)
(x′,y′,z′)

= ~M × γ

 B1

0

B0 − ω1/γ


(x′,y′,z′)

(2.22)

If we choose an RF field ~B1(t) with Larmor frequency ω1 = ω0, the effective magnetic
field will be aligned with the x′-axis of the rotating frame of reference. The macroscopic
magnetisation will then precess about the ~B1 field only, yielding a measurable transverse
magnetisation.

The angle by which the macroscopic magnetisation is tipped in respect to the static
magnetic field ~B0 depends on the properties of the applied RF pulse ~B1(t), namely its
duration τ and magnitude B1. This angle, called the flip angle α, can in general be
calculated as

α = γ

∫ t+τ

t

B1(t′)dt′ (2.23)

For rectangular RF pulses and small flip angles, a simplified formula can be used

α = γB1τ (2.24)

2.1.4.2 Relaxation

The macroscopic magnetisation ~M can be separated into a component parallel to the
external static field ~B0 = (0, 0, B0)T and a component perpendicular to it. The former is
known as the longitudinal magnetisationMz and the latter as the transverse magnetisation
Mxy. After applying an RF pulse, the magnetisation will return to the state of lowest
energy, its original thermal equilibrium. During this relaxation process, the spins interact
with their environment via dipole-dipole interactions and with surrounding spins. These
two effects are referred to as spin-lattice or longitudinal or T1 relaxation and as spin-
spin or transverse or T2 relaxation, respectively. In homogeneous media, the relaxation
process of the macroscopic magnetisation ~M following an excitation can mathematically
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be described by the Bloch equations [Bloch, 1946] with relaxation times T1 and T2

d

dt

 Mx

My

Mz

 =

 γ( ~M × ~B)x −Mx/T2

γ( ~M × ~B)y −My/T2

γ( ~M × ~B)z − (M0 −Mz)/T1

 (2.25)

Longitudinal relaxation - Spin-lattice coupling

To return to the original state of thermal equilibrium, a transfer of energy between the
spin system and the surrounding medium through vibrations and rotations takes place.
This process allows the longitudinal magnetisation Mz to grow back to its thermal equi-
librium value of M0 and is governed by the longitudinal relaxation time T1 (see Equation
2.25). The differential equation describing the longitudinal relaxation

dMz

dt
= γ( ~M × ~B)z −

M0 −Mz

T1

(2.26)

can be solved using an exponential function

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) (2.27)

For an RF field with flip angle α = 90◦, the longitudinal magnetisation right after the
excitation vanishes (Mz(0) = 0) and the equation of motion of the longitudinal magneti-
sation (Equation 2.27) simplifies to

Mz(t) = M0(1− e−t/T1) (2.28)

The longitudinal relaxation time T1 depends on the efficiency of energy transfer be-
tween the spin system and its environment and it therefore varies between different types
of materials and tissues. It is also influenced by the static magnetic field strength B0 as
it is directly related to the Larmor frequency of the spin ensemble. In case of an effi-
cient energy transfer, the longitudinal relaxation will reach its thermal equilibrium value
fast and longitudinal relaxation time will thus be short. In case of an inefficient energy
transfer, the longitudinal relaxation time will be long. Literature values for T1 times of
different human tissues are listed in Table 2.2.

Transverse relaxation - Spin-spin coupling

Directly after an excitation, the spins of the system are in phase coherence and add up
to a non-zero transverse magnetisation Mxy. As a result of Brownian motion, each spin
experiences a slightly different locally fluctuating magnetic field made of the superposi-
tion of the external magnetic field B0 and the magnetic moments of surrounding particles
Bloc(t). The Larmor frequency of each spin is thus slightly different depending on the
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2.1. Nuclear Magnetic Resonance

neighbouring spins ω(t) = γ(B0 + Bloc(t)). These differences in Larmor frequencies in
the spin ensemble lead to an increasing phase difference between spins and to an irre-
versible loss of phase coherence over time. The transverse magnetisation thus gradually
decreases due to dipole-dipole interactions between adjacent spins. Its equation of motion
is described by the following set of Bloch equations:

dMx

dt
= γ( ~M × ~B)x −

Mx

T2

dMy

dt
= γ( ~M × ~B)y −

My

T2

(2.29)

To solve this equation of motion more easily, the x and y components are combined
into a complex variable

Mxy(t) = Mx(t) + iMy(t) = |Mxy(t)| · eiφ(t) (2.30)

with the magnitude |Mxy(t)| and the phase φ(t). Assuming a static magnetic field B =

(0, 0, B0)T = (0, 0, ω0/γ)T , Equation 2.29 becomes

dMxy

dt
= −iγB0Mxy −

1

T2

Mxy (2.31)

The solution of this differential equation is

Mxy(t) = |Mxy(t)| · e−iφ(t) = Mxy(0) · e−t/T2 · e−iφ(t) (2.32)

The magnitude of the measured signal is thus |Mxy(t)| = Mxy(0) · e−t/T2 and its phase is
φ(t) = ω0 · t+ φ(0).

Transverse relaxation mainly depends on the local environment of the spins and is
mostly independent of the static magnetic field strength. The dephasing of the transverse
magnetisation is faster than the relaxation of the longitudinal magnetisation as visible in
Table 2.2.
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Table 2.2: Relaxation times T1 and T2 of the hydrogen nucleus for different
tissues at a static magnetic field strength of B0 = 3 T experimentally determined
and reported by aDe Bazelaire et al. [2004], bZhang et al. [2013], and cthe IT’IS Foun-
dation database for MR relaxation times (https://itis.swiss/virtual-population/
tissue-properties/database/relaxation-times/, last accessed 08.08.2022 ).

Tissue T1 in ms T2 in ms
brain - gray matter 1433c 92c
brain -white matter 866c 60c

kidney - cortex 1168c 76a
kidney - medulla 1545c 81a

blood 1650b; 1984c 275c

T ∗2 relaxation

In addition to tissue-specific local magnetic field fluctuations Bloc(t) causing the irre-
versible spin dephasing in the transverse plane, local field inhomogeneities of the static
field B0 accelerate this dephasing process. These local inhomogeneities result from an
imperfect static field or susceptibility-induced local field distortions caused by objects in
the field. The effect of local field inhomogeneities on the relaxation of the transverse
magnetisation is governed by the time T ′2 and can be reversed by applying a 180◦ RF
pulse. Taking into consideration both dephasing effects, the total or apparent transverse
relaxation time T ∗2 is given by

1

T ∗2
=

1

T2

+
1

T ′2
= R2 +R′2 (2.33)

The signal for the transverse magnetisation with relaxation rate 1/T ∗2 is known as the free
induction decay (FID).

The longitudinal and transverse relaxation processes are independent as they result from
different physical processes. Nevertheless, T1 relaxation inevitably leads to T2 relaxation.
The trajectory of the macroscopic magnetisation in the resting frame of reference is a
superposition of the motion ofMz(t) andMxy(t) and looks like a three-dimensional helical
spiral, moving from the x-y plane towards the z-axis as can be seen in Figure 2.2.
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Figure 2.2: Trajectory of the macroscopic magnetisation following an excitation.
~M describes a three-dimensional helical spiral, moving from the x-y plane towards the
z-axis.

2.1.5 Signal acquisition

To measure an NMR signal, the macroscopic magnetisation needs to have a component
perpendicular to the external magnetic field. The magnetisation is therefore excited and
tipped towards the transverse plane. The transverse component Mxy will then precess
around the external magnetic field, as described by Equation 2.32, and will create a time-
dependent magnetic flux Φ(t). Placing a receive coil with its symmetry axis perpendicular
to the external magnetic field, the transverse magnetisation can be measured using Fara-
day’s law of induction. Derived from Maxwell’s equations, the induction law states that
changes of magnetic flux dΦ/dt in the environment of a coil with area ~S induce a voltage
Uind in the coil

Uind(t) = −dΦ

dt
= − d

dt

∫
Scoil

~B(S, t) · d~S (2.34)

The external magnetic field ~B can be expressed as the rotation of a vector potential ~A

~B = ~∇× ~A

Making use of Stoke’s theorem, Faraday’s induction law can be rewritten as a line integral

Uind(t) = − d

dt

∫
Scoil

(~∇× ~A) · d~S = − d

dt

∮
~A · d~l (2.35)

A formula easy to apply for NMR signals can then be derived by using the explicit
expression of the vector potential ~A and the principle of reciprocity. This principle states
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that the flux induced through a coil by the magnetisation can be determined by calculating
the flux that would generate a magnetisation equal to the one inducing the flux in the
coil. The voltage induced in the coil by the precessing magnetisation in the sample is thus
given by

Uind(t) = − d

dt

∫
V

~B−1 (~r) · ~M(~r, t) d~r (2.36)

where ~B−1 is the receive field of the coil at position ~r and corresponds to the magnetic field
per unit current I generated by the coil at this position. The signal S detected by the
receive coil and associated electronics is proportional to the induced voltage: S ∝ Uind(t).

To measure the transverse magnetisation, reception coils are placed with their symmetry
axes perpendicular to the external magnetic field ~B = (0, 0, B0)T resulting in a coil receive
field approximately equal to its transverse component. To receive the complex magnetic
resonance signal, two coupled orthogonal coils with a fixed phase shift of 90◦ are used.
The obtained signal S is demodulated with reference sine and cosine signals oscillating at
the Larmor frequency. At time t = 0, the transverse magnetisation is equal to the spin
density ρ of the sample and the initial phase of the signal is usually considered to be zero.
The measured signal can then mathematically be expressed as

Uind(t) ∝ S(t) = S0

∫
V

ρ(~r)e−iγB0te−t/T2d~r (2.37)

2.2 Magnetic Resonance Imaging

In 1971, the physician Raymond V. Damadian reported that the relaxation times of
healthy and cancerous tissues differ [Damadian, 1971]. He understood early-on the po-
tential of nuclear magnetic resonance (NMR) in medicine, especially for in vivo tumour
detection, and was the first to investigate the possibility of using NMR for a new imaging
modality. He came up with a full-body magnetic resonance (MR) scanner as a single-point
imaging technique based on a saddle-shaped magnetic field, which was resonant in one
voxel only. To image an entire sample, the sample was manually moved in the scanner
in order to measure the signal from different areas in subsequent acquisitions. Using this
method, Damadian acquired the first full-body human MR image for cancer diagnosis
[Damadian et al., 1977]. However, the time intensive nature of his technique made it
impossible to use in the clinical routine.

Following Damadian’s demonstration of the potential of NMR in medicine, Paul C.
Lauterbur (a chemist) and Sir Peter Mansfield (a physicist) invented schemes using mag-
netic field gradients for a faster signal acquisition resulting in an imaging technique we
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now know as magnetic resonance imaging (MRI). By applying a magnetic field gradient,
Lauterbur was able to measure several one-dimensional NMR signals and created a two-
dimensional tomographic image by back-projecting these [Lauterbur , 1973]. Mansfield
used a linear magnetic gradient field applied during excitation to achieve a slice-by-slice
excitation [Mansfield and Grannell , 1973] and developed this idea further into a line-by-
line imaging technique [Mansfield and Maudsley , 1976]. The acquisition time was thus
reduced from multiple hours to a couple of seconds for comparable image quality. For
these achievements, both scientists were awarded with the Nobel Prize in Physiology or
Medicine in 2003, while Damadian’s contribution to the development of MRI remains
unhonoured.

In the following sections, the basics of MRI, in terms of spatial encoding, signal sam-
pling, standard image acquisition schemes, and image contrast, are described.

2.2.1 Spatial encoding

Creating a magnetic resonance (MR) image entails spatially localising NMR signals.
This spatial encoding can be achieved with magnetic field gradients ~G, which are super-
imposed on the static magnetic field ~B0 = (0, 0, B0)T (assumed to be directed along the
z-axis without loss of generality)

~G = (Gx, Gy, Gz) =

(
∂B0

∂x
,
∂B0

∂y
,
∂B0

∂z

)
(2.38)

The Larmor frequency, introduced in Equation 2.10, thus becomes dependent of the spatial
location

ω(~r) = γB(~r) = γ(B0 + ~r · ~G(~r)) (2.39)

After acquisition, Fourier analysis is applied to the spatially localised NMR signals and
the spatial information is reconstructed to create a MR image. For a two-dimensional (2D)
MR image, spatial encoding requires three steps each applied in one spatial direction and
known as slice selection, frequency encoding and phase encoding. For a three-dimensional
(3D) MR image, a slab or very large slice is excited instead of repeating the slice selection
step at different spatial locations to achieve the same sample coverage and the phase
encoding step is performed in two spatial directions to allow perform spatial encoding.
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2.2.1.1 Slice selection

To select a slice to be imaged, a magnetic gradient along the direction of the static
magnetic field ~B0 is applied simultaneously to the RF excitation pulse. The precession
frequency thus becomes dependent on the position along the z-direction:

ω(z) = γ(B0 +Gz · z) (2.40)

and only the magnetisation at a given z position remains at the resonant frequency and is
excited by the RF pulse. An infinitesimally small slice could be excited only in the case
of an RF pulse containing a single frequency, i.e., an RF pulse with an infinite length.
In reality, however, the RF excitation pulse is finite and thus possesses a bandwidth ∆ω.
The thickness of the excited slice ∆z depends on the RF pulse bandwidth and gradient
strength Gz as follows

∆z =
∆ω

γGz

(2.41)

This relationship is schematically explained in Figure 2.3.

Figure 2.3: Dependence of slice thick-
ness ∆z on RF pulse bandwidth ∆ω and
gradient strength Gz. For a given band-
width, the thickness of the slice where exci-
tation takes place is smallest for the stronger
gradient: ∆z1 < ∆z2 for Gz1 > Gz2 .

Gz2

Gz1

Δz1 Δz2

Δ
ω

ω

z

A sinc pulse is a typical RF pulse shape for slice excitation as it is paired with a
rectangular spatial shape rect(x) through the Fourier transform F :

F(rect(x)) = sinc(k) =
sin(k)

k
(2.42)

where k refers to points in the frequency domain also known as k-space, and x refers to
points in the spatial domain. As the duration of the RF excitation pulse is limited, the
excitation pulse is cut off after several side lobes of the sinc pulse, thus creating imperfect
slice profiles.

As the slice selection gradient Gz is played out simultaneously to the RF excitation
pulse, we can consider Gz to be centred on the RF pulse. Assuming the magnetisation is
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flipped instantaneously at the peak of the RF pulse, the resulting transverse magnetisation
will experience dephasing during the second half of Gz. The dephasing will depend on the
exact position z within the slice. To counteract this spatially dependent dephasing and
ensure the entire excited slice is in phase, a rephasing gradient lobe is played out after Gz.
In theory, complete rephasing is achieved when the area under the rephasing gradient is
equal to that of the gradient that caused the dephasing and both gradients have opposite
polarity.

2.2.1.2 Frequency encoding

Similarly to slice selection, a linear magnetic field gradient is also applied for the fre-
quency encoding step. The frequency encoding gradient is played out during the mea-
surement or readout and is sometimes also called readout gradient. Without loss of
generality, we can assume the frequency encoding gradient is along the x-direction. The
magnetisation precession frequencies measured thus depend on the spatial position along
the x-direction as follows

ω(x) = γ(B0 +Gx · x) (2.43)

A combination of single signals with different frequencies constitute the measured sig-
nal. To recover the amplitudes of all single signal frequencies, a one-dimensional (1D)
Fourier transform can be applied. The frequency amplitudes are then associated to their
position of origin along the x-direction using Equation 2.43. The transverse magnetisation
accumulates a phase during the time the frequency encoding gradient Gx is applied and
the received signal S is calculated according to

S(t, Gx) = S(t)

∫
e−iγ

∫ t
0 Gx(T )xdTdx (2.44)

where S(t) is given by Equation 2.37.

2.2.1.3 Phase encoding

With slice selection in z-direction and frequency encoding in x-direction applied, the
measured signal is a projection along the y-direction. Applying the frequency encoding
method simultaneously both in x- and y-direction will however not yield a completely
spatially encoded signal as it will only result in a projection perpendicular to the sum
of magnetic field gradients applied in x- and y-direction. The magnetisation along the
y-direction is therefore encoded before the frequency encoding and readout of the signal.
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The principle of phase encoding relies on the accumulation of phase a spin experiences
when a magnetic field gradient is applied for a given duration. Encoding in the third
spatial dimension is thus achieved by applying a gradient Gy along the y-direction be-
tween signal excitation and signal readout. At readout, spins will have distinct phases
depending on their y position. The measured signal is a combination of signals with iden-
tical frequency in y-direction but distinct phases. Note that the accumulated phase solely
depends on the strength and duration of the applied magnetic gradient field. To cover the
entire area to be imaged, the phase encoding step is repeated Ny times with a gradient
strength Gy incremented from −Gy,max to +Gy,max and a fixed gradient duration τy. Each
of these Ny measurements consists of a combination of single signals with varying phase
along the y-direction, forming a set of linear equations from which the y position of the
Ny signal amplitudes can be calculated. The received signal is calculated according to

S(t, τy, Gy) = S(t)

∫
e−iγ

∫ τy
0 Gy(T )ydTdy (2.45)

The process of frequency and phase encoding is illustrated in Figure 2.4.

Figure 2.4: Spatial encoding for a 2D
slice of a sample. After selection of a
slice of the sample using a gradient Gz along
the z-direction, steps of phase encoding in
the y-direction and frequency encoding in
the x-direction are performed using gradients
Gy and Gx, respectively. These steps allow
an association between frequency-phase pat-
terns and spatial location of the received sig-
nal.
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2.2.2 k-space sampling and image parameters

The total received signal from an excited and rephased slice of thickness ∆z is given by

S(t, ~G) = S0

∫ ∫
ρ(x, y)e−iγ

( ∫ t
0 Gx(T )xdT+

∫ t
0 Gy(T )ydT

)
dxdy (2.46)

(neglecting all relaxation effects in Equations 2.44 and 2.45).

Wave numbers kx and ky corresponding to the integrals in the exponent can be defined
as

kx =
γ

2π

∫ t

0

Gx(T )dT (2.47)

ky =
γ

2π

∫ t

0

Gy(T )dT (2.48)

With these definitions, Equation 2.46 can be simplified to

S(~k(t)) = S0

∫ ∫
ρ(x, y)e−i(2πkxx+2πkyy)dxdy = S0

∫
ρ(~r)e−2πi~k·~rd2~r = S0(Fρ)(~r) (2.49)

The complex MR signal Mxy(~r) can then be retrieved from the measured signal S(~k) by
applying an inverse Fourier transform

Mxy(~r) = S0 · ρ(~r) = F−1(S(~k)) =

∫
S(~k)e2πi~k·~rd2~k (2.50)

The continuum of possible frequency-phase combinations to be measured is thus linked
to the Fourier space, known as k-space in MRI. The entire k-space can be sampled by
adapting the properties of the magnetic field gradients and the RF pulses in order to
follow a chosen k-space trajectory.

The frequency domain where data is sampled can be represented in a 2D plot with
the wave numbers in x- and y-direction as axes. In this representation, the centre of
k-space contains the low frequencies while high frequencies are located in the periphery.
It is interesting to notice that considering only a central portion of k-space for image
reconstruction yields a blurry but contrast-rich and bright image. On the other hand,
considering everything but the central portion of k-space yields an image with poor con-
trast but with well-defined edges and sharp transitions. The contribution of k-space centre
and periphery is illustrated in Figure 2.5 for an axial brain slice.

In practice, k-space is not sampled continuously but in a discrete manner. Data points
in k-space are sampled using an analogue-to-digital converter (ADC). The most common
discrete sampling strategy is Cartesian sampling, where k-space is sampled in increments

24



CHAPTER 2. Theoretical Background

(a) (b)

(c) (d)

(e)

Figure 2.5: Contribution of k-space centre and periphery to reconstructed im-
age. (a) Image reconstructed using only the central 1/64 portion of k-space. (b) Image
reconstructed with the central 1/64 portion of k-space nulled. (c) Image reconstructed
using only the central 1/32 portion of k-space. (d) Image reconstructed with the central
1/32 portion of k-space nulled. (e) Image reconstructed using the fully sampled k-space.
In each image group, the data in frequency domain is on the right, and the magnitude of
the signal reconstructed in spatial domain is on the left. Images courtesy of René Botnar,
KCH lectures.

of ∆kx in frequency encoding direction and ∆ky in phase encoding direction. For sampling
in the frequency encoding direction, a gradient of fixed strength Gx is applied for a
duration tx allowing Nx points to be sampled in time increments ∆tx = tx/Nx. For
sampling in the phase encoding direction, a gradient is applied during a fixed duration ty
with a varying gradient amplitude Gy from −Gy,max to +Gy,max, allowing Ny increments
of ∆Gy = 2Gy,max/Ny. Cartesian sampling steps are thus given by

∆kx =
γ

2π
Gx∆tx (2.51)

∆ky =
γ

2π
∆Gyty (2.52)

The widths of the sampling steps in k-space determine the size of the imaged area of the

25



2.2. Magnetic Resonance Imaging

sample, known as field-of-view (FOV):

FOVx =
1

∆kx
(2.53)

FOVy =
1

∆ky
(2.54)

In image space, the signal consists of Nx ×Ny pixels, forming a 2D image. The in-plane
resolution of this image depends on the number of sampling increments Nx and Ny the
FOV is divided in:

∆x =
FOVx
Nx

=
2π

γGx∆txNx

(2.55)

∆y =
FOVy
Ny

=
2π

γ∆GytyNy

(2.56)

The in-plane resolution can be increased by increasing the FOV, which is either achieved
by decreasing the gradient strength Gx or duration increment ∆tx while keeping the num-
ber of sampling increments constant in the frequency encoding direction or by decreasing
the gradient strength increment ∆Gy or duration ty while keeping the number of sampling
increments constant in the phase encoding direction.

Acquisition acceleration

Further options can be applied to reduce the duration of acquisition while keeping sim-
ilar image quality and spatial resolution. One of these options is parallel imaging. In this
widespread technique, information about the position and sensitivity of the individual
coils used to receive signal is included to determine the spatial localisation of the signal.
The amplitude of the signal received will be highest in the coil closest to the position of
origin r of the signal as coils are more sensitive in the near field. The number of phase
encoding steps can be reduced, thus reducing the time of acquisition, when coil sensitivity
profiles are included to reconstruct the image. The coil sensitivity information can either
be incorporated in the spatial domain or already in the frequency domain (i.e., before
performing the inverse Fourier transform). The first method is known as SENSitivity
Encoding (SENSE) [Pruessmann et al., 1999] and the second is known as GeneRalized
Autocalibrating Partial Parallel Acquisition (GRAPPA) [Griswold et al., 2002]. To ensure
a good image contrast, the lines passing through the centre of k-space are usually sampled
completely and lines further away from the centre are sparsely sampled. Another option
to accelerate image acquisition is partial Fourier. This reconstruction technique makes
use of the conjugate symmetry property of the Fourier space where the frequency data is
sampled. Acquiring only part (at least half) of the entire frequency space is sufficient to
fully reconstruct an image as long as no phase errors occur during sampling. To reduce
the time of acquisition, a partial Fourier factor of 5/8, 6/8 or 7/8 is commonly used in
clinical MRI acquisitions. The higher the occurrence of phase errors, the higher this factor
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should be to ensure good image quality after reconstruction.

Noise

As in every imaging modality, an important parameter in MRI is the signal-to-noise
ration (SNR). It is defined as the ratio of mean signal within a region of interest (ROI)
containing the imaged sample (µsample) and the standard deviation of the signal within
a background ROI, i.e., a ROI containing no part of the imaged sample but only noise
(σbackground).

SNR =
µsample

σbackground
(2.57)

Background (random) noise in MRI is primarily thermal noise and comes from the imaged
sample itself or from the hardware used for imaging (coils, preamplifiers, etc.). In k-
space, the noise is assumed to be Gaussian distributed and the complex signal in imaging
space, which is linked via Fourier transform to k-space, is hence also Gaussian distributed.
However, the noise in magnitude MR images, which do not consider real and imaginary
part of the signal but solely its magnitude, is Rician distributed [Gudbjartsson and Patz ,
1995; Rice, 1944]. Nevertheless, in regions where the SNR is intrinsically high (≥ 5), this
noise can be approximated by a Gaussian distribution [Reeder , 2007].

The SNR of an image can be increased by acquiring NA single images and averaging
these. It can also be increased by increasing the voxel dimensions (∆x, ∆y, ∆z). In
addition, the SNR depends on the readout duration TRO and on the chosen pulse sequence.

SNR ∝ ∆x ·∆y ·∆z ·
√
NA ·

√
TRO · ζ (2.58)

where ζ contains all sequence dependencies, which are determined by tissue properties
(ρ, T1, T2), k-space coverage, and sequence timing [Nishimura, 1996].

2.2.3 Standard imaging sequences

To acquire a MR image with the desired image resolution, field of view, and contrast,
the necessary RF pulses and magnetic field gradients have to be arranged in a certain
order. Such an arrangement is called a pulse or imaging sequence and can be visualised
in sequence diagrams. In this section, the basic MRI sequences are described.

2.2.3.1 Gradient echo

In a gradient echo (GRE) sequence, a signal echo is created using magnetic gradient
fields. The sequence diagram and corresponding k-space trajectory of a 2D GRE sequence
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is shown in Figure 2.6. The imaging slice is first excited using an RF pulse with flip angle
α smaller than or equal to 90◦ and a slice-selective gradient in z direction (slice encoding
direction). The slice-selective gradient causes a dephasing of the magnetisation, which is
then corrected for with a gradient in the same direction but with opposite polarity and
half the duration. Simultaneously, the magnetisation is dephased along the x direction
(frequency encoding direction) and a phase encoding gradient is applied along the y

direction (phase encoding direction). Finally, a rephasing gradient (used as a readout
gradient) is applied in the x direction and an echo is generated. This frequency encoding
rephasing gradient has opposite polarity to the frequency encoding dephasing gradient and
is twice its size in order to create an echo at the centre of data acquisition, which occurs
when the readout gradient has reached a constant amplitude. With such an arrangement
of pulses, a single line in k-space can be read out. In order to acquire a full 2D image, the
pulse sequence is repeated after a repetition time (TR) with a different amplitude and
polarity of the phase encoding gradient for each k-space line to be acquired. The duration
of the image acquisition thus depends on the chosen number of phase encoding steps and
TR.

When using short TR times, some transverse magnetisation might remain instead of
completely relaxing back into thermal equilibrium. Two options exist to handle this
remaining transverse magnetisation: rewinding or spoiling. To rewind the remaining
magnetisation, all gradients are reversed so as to bring the magnetisation back to its
starting point at the centre of k-space. For spoiling, strong gradients are applied in the
transverse plane to dephase the remaining magnetisation as much as possible.

In a GRE sequence, the maximal measurable signal depends on the flip angle amongst
other parameters. To maximise the signal of a tissue with longitudinal relaxation time
T1, the flip angle α should follow the Ernst formula:

αE = arccos(e−TR/T1) (2.59)

With short TR times and appropriate Ernst flip angles, the entire k-space can be covered
with high efficiency. GRE sequences are sensitive to magnetic field inhomogeneities and
susceptibility related inhomogeneities as these are not compensated for in the sequence.
In GRE sequences the signal is governed by transversal magnetisation and the signal is
T ∗2 -weighted at the echo time TE.
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Figure 2.6: 2D gradient echo sequence diagram (a) and corresponding k-space
trajectory (b). The imaging slice is first excited using an RF pulse with flip angle
α ≤ 90◦ and a slice-selection gradient (1). Without loss of generality, the slice-selection
gradient was chosen along the z-direction. The dephasing caused by the slice-selective
gradient is then rephased. Simultaneously, the magnetisation is dephased in the frequency
encoding direction (x-direcrtion here) and a phase-encoding gradient is applied in the y-
direction (2). k-space is thus traversed from its origin to the k-space line to be read out.
Finally, a frequency-encoding gradient rephases the magnetisation along the x-direction,
producing an echo at time t = TE. The k-space line is sampled while the amplitude
of the gradient is constant (3). This frequency-encoding gradient is also referred to as
readout gradient. In order to sample the entire 2D k-space, this sequence of RF pulses
and gradients is repeated at a regular time interval TR with varying amplitude of the
phase-encoding gradient.

2.2.3.2 Spin echo

In a spin echo (SE) sequence, RF pulses are used to create an echo. The production
of a spin echo was first discovered and explained by Edward Hahn [Hahn, 1950]. A SE
sequence contains a 90◦ excitation pulse followed by a 180◦ refocusing pulse, which create
a spin echo. The principle of formation of such a spin echo is illustrated in Figure 2.7.
The 90◦ excitation pulse first flips the magnetisation from the longitudinal plane into
the transversal plane. The magnetisation then starts to dephase in the transversal plane
due to field inhomogeneities. The 180◦ pulse is applied at half the echo time (TE/2), so
that the precession direction is inverted and the spins rotating with lowest frequency find
themselves in front of those with highest frequency. All spins are then rephased and an
echo is produced at the echo time TE. The 180◦ refocusing pulse compensates for the
relaxation due to field inhomogeneities and tissue susceptibility differences, but does not
compensate for the temporally varying magnetic field. The signal of a SE sequence is

29



2.2. Magnetic Resonance Imaging

z'

x'

y'

z' z' z'

x' x' x'

y' y' y'

timet = TEt = TE/2t = 0
90° excitation pulse 180° refocussing pulse

Figure 2.7: Principle of formation of a spin echo. At time t = 0, the macroscopic
magnetisation (red arrow) is tipped to the transversal plane by a 90◦ RF excitation pulse.
Without loss of generality, the magnetisation is then aligned with the x’-axis of the ro-
tating frame of reference (no spin-lattice interaction considered). The magnetisation then
starts to dephase in the transversal plane due to T ∗2 relaxation. At time t = TE/2, the
precession direction of the spins is inverted by applying a 180◦ refocusing pulse around
the x’-axis. The magnetisation now starts to rephase in the transversal plane due to T ∗2
relaxation. At the echo time t = TE, all spins are coherent again and an echo is produced.

therefore T2-weighted at the echo time TE. In order to acquire a full 2D image, the pulse
sequence is repeated after a repetition time (TR) with a different amplitude and polarity
of the phase encoding gradient for each k-space line to be acquired. The sequence diagram
and corresponding k-space trajectory of a 2D SE sequence is shown in Figure 2.8. Using
the Bloch equations, the signal equation of a SE sequence can be written as

S = M0 ·
[
1− 2 · exp

(
− TR− TE/2

T1

)
· exp

(
− TR

T1

)]
· exp

(
− TE

T2

)
(2.60)

with M0 being the longitudinal magnetisation at thermal equilibrium. When T1 <<

TR− TE/2, this equation simplifies to

S = M0 ·
[
1− exp

(
− TR

T1

)]
· exp

(
− TE

T2

)
(2.61)
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Figure 2.8: 2D spin echo sequence diagram (a) and corresponding k-space tra-
jectory (b). The imaging slice is first excited using a 90◦ RF pulse and a slice-selection
gradient (1). Without loss of generality, the slice-selection gradient was chosen along the
z-direction. The dephasing caused by the slice-selective gradient is then rephased. Simul-
taneously, the magnetisation is dephased in the frequency encoding direction (x-direcrtion
here) and a phase-encoding gradient is applied in the y-direction (2). A 180◦ RF pulse is
then applied at the same time as a slice-selection gradient to rephase the magnetisation
(3). In k-space, the 180◦ refocussing pulse leads to a point reflection with respect to
the center of k-space. Finally, a frequency-encoding gradient rephases the magnetisation
along the x-direction, producing an echo at time t = TE. The k-space line is sampled
while the amplitude of this readout gradient is constant (4). In order to sample the entire
2D k-space, this sequence of RF pulses and gradients is repeated at a regular time interval
TR with varying amplitude of the phase-encoding gradient.

2.2.3.3 Inversion recovery

An inversion recovery (IR) experiment starts with a 180◦ RF pulse, which inverts the
magnetisation. Without loss of generality, let’s assume the magnetisation was along the
positive z-direction. After the 180◦ RF pulse, it will point along the negative z-direction.
The magnetisation will then relax back to its original position according to its longitudinal
relaxation time T1. The inversion pulse followed by a waiting time TI, known as inversion
time, thus prepares the magnetisation before an imaging sequence takes place. After this
preparation, any type of sequence that flips the existing longitudinal magnetisation into
the transversal plane (e.g. a gradient echo or a spin echo) can be used to readout the
signal. The measured signal depends on the T1 relaxation of the tissue studied and the
TI chosen as can clearly be seen from the signal equation of an IR experiment

Mz(TI) = M0 · (1− 2 · exp(−TI/T1)) (2.62)
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IR is therefore important for measuring T1 relaxation times or obtaining T1-weighted
images. To measure T1 relaxation times, a sequence with IR magnetisation preparation is
repeated for different values of TI. This allows to sample the recovery of the longitudinal
magnetisation Mz and estimate T1 by fitting the signal equation to the obtained data.
IR magnetisation preparation can also be used to null the signal from a specific tissue
or to maximise the contrast between two tissue types. As each tissue has a specific T1

relaxation time, the magnetisation from different tissue types will have different time
courses after an inversion pulse. To illustrate this, the time courses of the longitudinal
magnetisation of two tissues are shown in Figure 2.9. The TI can be chosen to coincide
with an non-existing longitudinal magnetisation for one of the tissues before the imaging
sequence so that no NMR signal originating from this tissue can be detected.

Figure 2.9: Time course of the lon-
gitudinal magnetisation of two tis-
sues with distinct longitudinal re-
laxation times T1 after a 180◦ RF
pulse (inversion recovery experi-
ment). The inversion time TI between
inversion pulse and readout can be cho-
sen to null the signal of one type of tis-
sue.
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2.2.3.4 Saturation recovery

Saturation recovery (SR) is another useful type of magnetisation preparation, which
can be applied before any type of imaging sequence. A SR experiment starts with a
90◦ RF pulse, which flips the magnetisation into the transversal plane. With time, the
longitudinal magnetisation will build itself back up. Multiple 90◦ saturation pulses can be
applied at small time intervals in order to saturate the NMR signal. After each pulse, the
longitudinal magnetisation will have little time to build up before being flipped back into
the transversal plane. This can be repeated until the magnetisation available for relaxing
back to the longitudinal plane is reduced to zero. No longitudinal magnetisation will thus
be left to tip into the transversal plane before the imaging sequence, so that no NMR
signal will be produced.
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2.2.4 Image contrast

The contrast in a MR image is a result of the different properties of tissue in terms of
proton density (PD) and relaxation times T1 and T2. Depending on the chosen imaging
parameters, the contribution of individual tissues can be more or less pronounced. The
time between consecutive identical points in a sequence with repeating RF pulses is called
repetition time (TR), and the time between the excitation pulse and the echo is called
echo time (TE). When a short TR is chosen, the net magnetisation has little time to
recover between one excitation and the subsequent one, which enhances the influence of
the longitudinal relaxation T1. On the other hand, if a short TE is chosen, the transverse
magnetisation has little time to dephase and the influence of the transversal relaxation
time T2 is limited. Images acquired with short TR and short TE generally enhance T1

contrast and are therefore referred to as T1-weighted images. Images acquired with long
TR and long TE generally enhance T2 contrast and are referred to as T2-weighted images.
When a long TR and a short TE are chosen for imaging, the effects of both longitudinal
and transversal relaxation times is limited and only contrast due to the PD of the different
tissue types is left. Such images are referred to as PD-weighted images. An optimal image
contrast is achieved when TR and TE are approximately equal to T1 and T2 of the tissue
of interest, respectively.

Images of a representative brain slice acquired with a spin echo sequence with different
TR and TE values are shown in Figure 2.10. In T1-weighted images, tissues with a short
T1 relaxation time relax faster to equilibrium and thus yield more signal, while tissues
with a long T1, such as cerebrospinal fluid, will yield less signal. In T2-weighted images,
tissues with a short T2 relaxation time dephase faster and thus yield less signal, while
tissues with a long T2, such as cerebrospinal fluid, will yield more signal. T1-weighting
is thus preferred for morphological imaging, where soft tissue contrast is paramount, and
T2-weighting is used for comparing water content in different tissues and thus preferred
for imaging pathology. Further modifications in sequence and parameter choice allow the
creation of diffusion-weighted and perfusion-weighted image contrasts.

33



2.3. Perfusion

Figure 2.10: Dependence of im-
age contrast on chosen repeti-
tion time TR and echo time TE
exemplified on a sagittal brain
slice acquired with a spin echo
sequence.
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2.3 Perfusion

This section first introduces the term perfusion, then describes the different perfusion
MRI techniques with a focus on arterial spin labelling (ASL), and finally describes the
existing models for perfusion quantification of ASL data.

2.3.1 Definition

Perfusion or micro-vascular blood flow refers to the regional delivery of oxygen and
nutrients to the capillary bed of a tissue via arterial blood and includes the exchange of
water, hormones, electrolytes, and heat between the capillary bed and surrounding cells.
Quantitatively, perfusion is defined as the volume of arterial blood ∆V passing through
a tissue of weight m during a time interval ∆t

perfusion =
∆V

m ·∆t
(2.63)

Its unit is most often ml
100g·min .

Quantitative measurements of perfusion have a high clinical value as abnormal or re-
duced perfusion can indicate reduced organ function or vascular diseases. Positron emis-
sion tomography (PET) with 15O labelled water as radioactive tracer is considered as the
gold standard for in vivo perfusion measurements [Herscovitch et al., 1983; Raichle et al.,
1983]. However, due to the need of radioactive tracer molecules with the invasiveness and
complex logistics it entails, perfusion is more commonly assessed with other techniques
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such as MRI in the clinical routine. Normal ranges of perfusion values for the human
brain and kidneys are shown in Table 2.3.

Table 2.3: Normal range of perfusion values measured with ASL MRI for human brain
and kidney from aDeibler et al. [2008], bvan Gelderen et al. [2008], cRoberts et al. [1995],
dOdudu et al. [2018].

Organ perfusion [mL/100g/min]
brain - gray matter 40-70 a, 60-110 b

brain - white matter 10-80 b

kidney cortex 278± 55 c, 139-427 d

kidney medulla 55± 25 c

2.3.2 MRI-based perfusion

The MRI acquisition is less complex and less invasive than the gold standard method,
PET, as it does not require the production and intake of radioactively labelled molecules.
Multiple studies have been carried out to demonstrate the good agreement of quantitative
perfusion measurements resulting from PET and MRI acquisitions [Heijtel et al., 2014; Fan
et al., 2016]. Perfusion measurements based on MRI offer the possibility to quantitatively
assess multiple blood flow related variables.

2.3.2.1 Perfusion MRI techniques

Two types of MRI-based perfusion techniques exist, which can be differentiated by the
type of tracer used [Calamante et al., 1999]. The first one relies on the injection of an
exogenous contrast agent (usually an extracellular Gadolinium (Gd) based tracer), whose
uptake in tissue is then imaged. This type comprises two techniques known as dynamic
susceptibility contrast (DSC)-MRI, which makes use of the susceptibility effects of the
tracer, and dynamic contrast enhanced (DCE)-MRI, which makes use of the relaxivity
effects of the tracer [Essig et al., 2013a]. Tthe second type of MRI-based perfusion tech-
niques, known as arterial spin labelling (ASL), uses water molecules present in arterial
blood as a freely diffusible endogenous tracer [Williams et al., 1992; Detre et al., 1992].
In the next paragraphs, DSC-MRI and DCE-MRI are briefly introduced before focusing
on ASL.
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DSC-MRI and DCE-MRI

In the mid 1980s, MR images acquired before and after injection of an exogenous
contrast agent were used to measure tissue perfusion for the first time [Runge et al., 1984;
Pettigrew et al., 1986]. Gadolinium-based exogenous contrast agents pass through tissues
via the bloodstrream and create local magnetic field distortions, which reduce both the
longitudinal and transversal relaxation times (T1 and T2, respectively) [McRobbie et al.,
2017]. The analysis of the temporal evolution of the signal can then be used to determine
blood flow and volume.

DSC-MRI makes use of the spin dephasing due to susceptibility changes during the
passing of the contrast agent, resulting in a decrease in apparent T2 values [Calamante
et al., 1999]. For DSC-MRI, the injection of a contrast agent bolus is immediately followed
by rapid acquisition of multiple images in order to monitor the first pass of the bolus
[Essig et al., 2013a]. During such an acquisition, the contrast agent remains mainly in the
intravascular space. Parameters, such as time-to-peak of the bolus in the organ of interest
(linked to blood flow) or the total amount of contrast agent passing through a tissue region
(linked to blood volume), can then be easily determined in a semi-quantitative fashion. A
fully quantitative calculation of blood flow and blood volume from DSC images is however
challenging and may result in different values depending on the processing software used
[Essig et al., 2013b]. Furthermore, DSC-MRI is sensitive to susceptibility artefacts and
partial volume effects [Essig et al., 2013a].

Using time-resolved T1-weighted images, DCE-MRI allows imaging of the tracer dif-
fusion into extravascular extracellular space (EES) by tracking the concentration of the
contrast agent bolus [Essig et al., 2013b]. Due to shortened T1, areas with higher Gadolin-
ium concentration will appear brighter on the acquired MR images. Signal curves showing
the tracer concentration over time are then extracted in a voxel-wise fashion from the MR
images. For most tissues, the endothelium between intravascular space and EES is such
that the molecules of Gadolinium-based contrast agent can diffuse passively. For the brain
and spinal cord, however, the endothelium normally creates a tight blood-brain-barrier
(BBB) preventing the passage of contrast agnet molecules into the EES. If the BBB is
disrupted by a tumour or other pathology, a contrast enhancement can be observed on
DCE-MRI images, demonstrating that the tracer has passively diffused into the EES.
DCE can be used to quantitatively determine the exchange rate of tracer between the
intravascular space and EES (indication of vascular permeability) as well as blood flow
using pharmacokinetic models [Essig et al., 2013b]. Disadvantages of DCE-MRI are the
complex acquisitions and pharmacokinetic model processing needed [Essig et al., 2013a].
DCE-MRI has long been considered as the standard method for perfusion quantification
outside of the brain [Brix et al., 2004; Dujardin et al., 2005], yielding valuable functional
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parameters especially for kidneys [Sourbron et al., 2008].

However, especially for longitudinal follow-up of diseases, paediatric applications, and
in case of reduced kidney function or other contrast agent contraindications, exogenous
contrast-based MRI methods such as DCE and DSC are preferably avoided due to their
invasive nature. Furthermore, recent studies have shown that Gadolinium present in
contrast agents commonly used for MRI perfusion imaging is retained in important areas
of the brain such as the hypothalamus and cerebellum [Kanda et al., 2015; Radbruch et al.,
2015]. Even though no negative effects of this retention have been demonstrated to this
day, it is nevertheless preferred to avoid contrast agent injections as much as possible.

ASL

ASL makes use of blood water protons as an endogenous tracer to image perfusion. For
this, blood water protons present in the arteries delivering blood to the organ of interest
are labelled and after an inflow time TI, the labelled blood flows into the imaging region.
In the first introduction of ASL in 1992, the labelling of blood water protons was achieved
through repeated saturation [Detre et al., 1992]. Shortly after this first publication, the
group improved the technique by labelling the water molecules via adiabatic inversion
[Williams et al., 1992]. An ASL experiment consists of acquiring two (or multiples of
two) T1-weighted images, the control and the labelled image, and one proton density
weighted image, referred to as M0. The difference between labelled and control images
lies in the presence or absence of labelling pulses applied to the feeding arteries. After
acquisition, the labelled image is subtracted from the control image to obtain a perfusion-
weighted image. If the labelling pulse is perfect and relaxation effects are negligible,
the static tissue present in both the control and the labelled images will cancel out and
only signal from in-flowing blood will remain in the perfusion-weighted image. This is
illustrated schematically in Figure 2.11. For quantification of perfusion, the perfusion-
weighted image scaled by the M0 image and other factors is used to produce a quantitative
perfusion map. The process of acquisition and quantification of perfusion using ASL is
shown in Figure 2.12.

The ASL technique presents a clear advantage of being completely non-invasive as it
does not require the injection of exogenous contrast agent. In addition, it is not influenced
by blood-brain barrier leakages as is the case with exogenous contrast-based perfusion MRI
[Keil et al., 2019]. Furthermore, the quantification procedure is more straight forward
than for DSC- and DCE-MRI. Studies have also shown a good correlation between the
gold standard 15O PET and ASL measurements in brain for different conditions and in
different populations [Detre et al., 2009; Xu et al., 2010; Zhang et al., 2014; Heijtel et al.,
2014; Fan et al., 2016]. However, the perfusion difference signal is only 0.5-1.5% of the
measured signal for the brain [Petersen et al., 2006a] and of the order of 5% for the
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kidneys [Nery et al., 2020], which results in perfusion maps with low SNR. ASL is thus
very sensitive to motion, which makes it especially challenging for abdomen imaging (e.g.
for the kidneys). Furthermore, individual differences in the duration of transition of the
labelled blood to the imaging region, known as arterial transit time (ATT), can lead to
inaccurate perfusion quantification based on ASL data.

control

perfusion-weighted 
ΔM = control - label

label
t = 0 t = Taq

t = 0 t = Taq

Figure 2.11: Principle of ASL. ASL uses blood water protons as endogenous tracer
of perfusion. In order to do this, blood water protons flowing into the organ of interest
(the brain in this example) have to be labelled. The labelling is achieved by inverting
the spins of blood water protons in a slab proximal to the imaging slab (green box).
Labelled and control images of an ASL experiment differ in the presence or absence of
such an inversion slab (yellow box). In this schematic representation of the principle of
ASL, the spins of blood water protons are shown as arrows: blue and pointing upwards
for non-inverted spins or red and pointing downwards for inverted spins. The spins of
static tissue are indicated as light blue. At time t = 0, the spins located in the inversion
slab are inverted in case of the labelled image or remain pointing upwards in case of the
control image. At the time of image acquisition t = Taq, the blood water protons originally
located in the inversion slab will have flown into the imaging slab. If the inversion used
for labelling is perfect and relaxation effects are negligible, the static tissue in the control
and the labelled images will cancel out and only signal from in-flowing blood will remain
in the subtraction image of control and label, known as perfusion-weighted image. The
increased number of arrows representing the magnetisation of blood water proton spins in
the perfusion-weighted image illustrates the increased magnetisation magnitude resulting
from the subtraction of labelled and control images.
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Figure 2.12: Acquisition and basis of quantification of perfusion ASL MRI data
exemplified for brain imaging. An ASL experiment consists of acquiring two T1-
weighted images, the control and the label, and one proton density weighted image, re-
ferred to as M0. After acquisition, the labelled image is subtracted from the control
image to obtain a perfusion-weighted image ∆M. Finally, the perfusion-weighted and M0
images are used to produce a quantitative perfusion map. (For better visualisation, the
background around the head has been removed in all images.)

2.3.2.2 Adiabatic inversion

Adiabatic inversion pulses allow the uniform inversion of magnetisation with high ro-
bustness against B1 field inhomogeneities. This is advantageous for ASL as the achieved
perfusion signal directly depends on the inversion efficiency. The flip angle α by which
the magnetisation vector is flipped after an RF pulse usually depends on the magnetic
field which is induced by this RF pulse as described in Equation 2.23. This relation holds
for all RF pulses which have a constant frequency, as is the case for most RF pulses
used in MRI. For such pulses, an inhomogeneous B1 field will cause the magnetisation of
protons to be flipped by different angles depending on their spatial location. Adiabatic
inversion pulses overcome this problem by using a B1 field with modulated amplitude and
frequency, so that equation 2.23 does not hold anymore. For this reason, adiabatic pulses
are also called frequency modulated or chirped pulses [Bernstein et al., 2004]. Following
the adiabatic passage principle, the macroscopic magnetisation follows the direction of the
effective magnetic field during an adiabatic pulse, provided the magnetic field does not
change its direction during the duration of one precession of the magnetisation around it.
Mathematically, this adiabatic condition can be stated as∣∣∣∣ ddtarctan

(
Bxy

Bz

)∣∣∣∣ << γ| ~Beff | (2.64)
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where Bxy and Bz are the transverse and longitudinal components of the effective magnetic
field ~Beff in the rotating frame of reference, respectively. In case the adiabatic condition is
fulfilled, an initial magnetisation perpendicular to the effective magnetic field will precess
in a plane normal to the field and an initial magnetisation parallel to the field will remain
parallel to it. Common adiabatic pulses are the adiabatic half-passage (AHP) and the
adiabatic full-passage (AFP), which cause a rotation of the effective magnetic field of 90◦

or 180◦, respectively, the B1-insensitive rotation (BIR), which allow rotations of arbitrary
flip angles of all spins in a plane normal to the effective magnetic field. A hyperbolic
secant (HS) pulse is often used for selective adiabatic inversion and the special case of
frequency offset corrected inversion (FOCI) pulse [Ordidge et al., 1996], which is very
robust to off-resonance effects, is commonly used for labelling in PCASL sequences.

2.3.2.3 Magnetisation transfer

Magnetisation transfer (MT) processes occurring in biological tissue have to be taken
into consideration in ASL as they can lead to erroneous perfusion quantification. Protons
contributing to the MR signal from a biological tissue can be assumed to exist in two
pools: the free pool and the bound pool. Protons in free water and in some adipose tissue
make up the free pool, and macromolecules and water protons bound to these make up the
bound pool [Boer , 1995]. Magnetisation transfer refers to the exchange of magnetisation
(i.e., transfer of energy) between these two pools via chemical and physical processes such
as diffusion, chemical exchange, and cross relaxation [Boer , 1995]. Magnetisation transfer
effects were first observed in MR spectroscopy [Forsén and Hoffman, 1963] and later in
MR imaging [Wolff and Balaban, 1989]. The absorption spectrum of the free pool differs
from that of the bound pool. Free water protons have a sharp absorption peak (i.e.,
narrow resonant frequency range) due to their long transversal relaxation time T2, while
protons bound to macromolecules have a broad absorption spectrum due to their short
T2. Nevertheless, both pools are centred on the same resonant frequency ω (Figure 2.13).
The bound pool can be selectively saturated by an off-resonant RF pulse in respect to
the Larmor frequency ω0, which will lead to a difference in magnetisation between the
two pools. Water protons bound to macromolecules allow magnetisation to be transferred
from the bound pool to the free pool via chemical exchange and dipole-dipole coupling
[Henkelman et al., 2001]. This exchange eventually leads to a saturation of the free pool,
thus reducing its net magnetisation. In ASL, it is important that spins in both control
and labelled images experienced the same MT effects to ensure no signal arising from
differences in MT is present after subtraction.
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Figure 2.13: Simplified absorp-
tion spectrum of the free pool
(continuous blue line) and bound
pool (dashed red line) of protons.
Both spectrum are centred around
the same resonance frequency ω0.
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2.3.2.4 ASL labelling schemes

Different categories of ASL labelling schemes and implementation of these, presenting
distinct advantages and disadvantages, exist. These schemes will be described in the next
paragraphs following the historical development of ASL.

Continuous ASL

The first ASL technique, known as continuous ASL (CASL), was introduced in the late
20th century [Detre et al., 1992; Alsop and Detre, 1996, 1998]. In this technique, a contin-
uous RF wave (2-4 seconds) is used to label blood water protons. During this time, the
resonance frequency of the protons passing through the labelling region gradually changes
and is eventually inverted. This technique is also known as flow-driven adiabatic inver-
sion and was first introduced in MR angiography before being used for ASL measurements
[Dixon et al., 1986]. Theoretically, this technique has a high sensitivity, however in reality
full sensitivity is difficult to achieve due to labelling inefficiency [Alsop and Detre, 1998].
The labelling efficiency is highly dependent on flow velocity and CASL is thus sensitive to
vascular geometry [Chen et al., 2011], which complicates good labelling positioning. An
important drawback of CASL is the high power deposition in the body resulting from the
continuous RF wave employed, leading to high specific absorption rate (SAR) and poten-
tial tissue temperature increase [Chen et al., 2011]. In addition, the required continuous
RF wave is technically challenging to achieve and might require dedicated hardware [Detre
and Alsop, 1999]. Nowadays, CASL is rarely used for in vivo human MR measurements.
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Pulsed ASL

In pulsed ASL (PASL), a frequency-modulated adiabatic inversion pulse is used to
instantaneously invert a large blood volume [Kwong et al., 1992; Edelman et al., 1994;
Kim, 1995]. The inversion pulse used is about 10 milliseconds long [Chen et al., 2011]
and all PASL schemes use a thick labelling slab placed upstream of the organ of interest
and separated from the imaging slab by a gap. The main difference between the various
PASL labelling schemes lies in the strategy used to control for MT effects, which follow
two main ideas. The first idea is to saturate the bound pool before labelling to ensure no
magnetisation transfer is possible between the bound and free pool. The second idea is to
achieve the same level of MT in both control and labelled images by delivering the same
RF power to the tissue in both images but causing no inversion in the case of the control
image. The reader is referred to the resources of the Open Source Initiative for Perfusion
Imaging (OSPI)2 for an overview of existing PASL versions. A known drawback of the
PASL scheme is the inherently lower SNR achievable compared to CASL [Wong et al.,
1998a; Zaharchuk , 2007] but, at the same time, the labelling efficiency is higher than
in CASL and less dependent on the distribution of flow velocities [Wong et al., 1998a].
The PASL scheme has the clear advantage of lower SAR [Chen et al., 2011] but is more
sensitive to arterial transit time uncertainties than CASL [Alsop and Detre, 1996]. To
reduce this systematic error as well as reduce the inclusion of intravascular signal from
vessels in the imaging slice which are not perfusing the organ of interest, a technique called
Quantitative Imaging of Perfusion using a Single Substraction (QUIPSS) was developed
[Wong et al., 1996] and further improved (QUIPSS II) [Wong et al., 1997]. This technique
uses an RF saturation pulse (often referred to as QUIPSS or QUIPSS II saturation pulse),
which is applied to the imaging region (QUIPSS) or to the labelling region (QUIPSS II)
and played out at a delay time TI1 after the labelling pulse for both the labelled and the
control images. The saturation pulse ensures that the tail of the labelling bolus flowing
into the imaging region is cut off at a specific time. It limits the actual length of the
labelling bolus to a fixed temporal width of TI1, thus reducing uncertainties in blood flow
quantification. The labelled or control image is then acquired after a delay time δt, with
TI2 = TI1 + δt. For all PASL schemes, it is recommended to use a QUIPSS II saturation
pulse [Alsop et al., 2015].

Pseudo-continuous ASL

Pseudo-continuous ASL (PCASL) is a variant of CASL, which achieves flow-driven
adiabatic inversion with a time averaged gradient and a train of short selective RF pulses
(about one per millisecond) instead of a continuous RF pulse and thus reduces safety risks
and hardware demands [Dai et al., 2008]. The labelling is achieved through phase shifts

2https://osipi.org/resources/ and https://docs.google.com/document/d/
1vj0Tp4yur4dpJntF90yy2bOBUx33FG-w/edit, last accessed 31.08.2022
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resulting from the application of gradients between RF pulses [Chen et al., 2011]. For
PCASL, equation 2.64 can be rewritten in terms of velocity [Maccotta et al., 1997; Zhao
et al., 2017]:

γB2
1

Gave

< v <
B1

GaveT2

(2.65)

The range of flow velocities for which the adiabatic condition holds is thus limited by the
strength of the transmit field B1 and the transversal relaxation time T2. The average gra-
dient amplitude Gave of the labelling pulses set the velocity for which maximum labelling
efficiency is achieved. The waveform of the selective gradient applied between successive
RF pulses can be either balanced or unbalanced [Wu et al., 2007]. In the balanced case,
the gradient is not completely rephased and results in an average gradient applied during
labelling for both control and labelled images. In the unbalanced case, the gradient is
entirely rephased between subsequent RF pulses for the control image and not completely
rephased for the labelled image. The phase of the RF pulses are successively incremented
for the labelled image, while for the control image, subsequent RF pulses always have a
phase difference of 180◦. PCASL uses a thin labelling slab placed perpendicular to the
feeding artery and upstream of the organ of interest. For PCASL measurements in the
brain, the labelling plane should be placed 84 mm below the line connecting the anterior
commissure and posterior commissure (AC-PC line) [Aslan et al., 2010], refer to Figure
2.18. For PCASL measurements in the kidneys, the labelling plane should be placed 8-10
cm above the centre of the highest kidney [Nery et al., 2020]. PCASL depends less on
flow velocity and shows less MT effects than CASL [Chen et al., 2011; ?; Alsop et al.,
2015; Nery et al., 2020]. PCASL presents higher SNR and less T1 relaxation effects than
PASL but has lower labelling efficiency and robustness [Nery et al., 2018].

(Vessel) Selective ASL

Vessel selective (or territorial) ASL uses spatially-dependent labelling such as PASL or
(P)CASL to separately label different vessels involved in blood and nutrient supply to the
organ of interest [Davies and Jezzard , 2003]. This is especially interesting to check if and
from which artery a potential blood supply deficit arises. In certain pathologies involving
vessel malformations or occlusions and especially for brain imaging, this approach has
been shown to be of great diagnostic value [van Laar et al., 2008].

Velocity and acceleration selective ASL

Velocity selective and acceleration selective ASL (VSASL and AccASL) are the newest
additions to ASL labelling schemes [Wong et al., 2006; Schmid et al., 2014]. Instead of a
spatially selective labelling, VSASL and AccASL use the spin velocity and acceleration,
respectively, as labelling condition. These methods are thus transit time independent in
principle, which is their main advantage for clinical applications. The labelling condition is
ensured by employing motion sensitising gradients set to the cutoff velocity/acceleration.
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For the labelled image, spins that satisfy the labelling condition, i.e., spins with veloc-
ity/acceleration above or below the cutoff velocity/acceleration, acquire a phase shift with
each RF pulse and are completely inverted at the end of the labelling module. For the
control image, spins do not acquire a phase shift but are simply tipped back and forth
with each RF pulse pair, ensuring the same MT effect is present in control and labelled
images [Zaharchuk , 2007]. Two main types of VSASL labelling pulses, presenting various
advantages and disadvantages, exist: velocity-selective saturation pulses (dual refocused
hyperbolic secant [Wong et al., 2006], symmetric BIR-8 [Guo et al., 2014], multi-module
VSASL [Guo and Wong , 2015]) and Fourier transform velocity-selective inversion or satu-
ration pulses (rectangular envelope [Qin and van Zijl , 2016], sinc envelope [Landes et al.,
2020] or [Qin et al., 2016; Shin et al., 2013]). For a review of VSASL, the reader is re-
ferred to Qin et al. [2022]. VSASL and AccASL do not require a delay time to ensure
the labelled blood spins arrive in the organ of interest as they are spatially-independent
techniques, resulting in smaller TR. However, they have been shown to yield low SNR
and tSNR due to sensitivity to motion, diffusion effects, and eddy currents. Furthermore,
VSASL and AccASL labelling modules are more sensitive to B0 and B1 inhomogeneities
than PASL and PCASL [Hernandez-Garcia et al., 2019].

2.3.2.5 ASL readout schemes

In general, an ASL sequence is composed of three building blocks: the labelling, some
tissue preparation (e.g. saturation pulses) and the readout. The choice of readout is in-
dependent of the labelling scheme and should ideally provide a high signal-to-noise ratio
(SNR), good image quality, limited susceptibility artefacts, good coverage of the studied
organ, and short acquisition time (hence short echo time) [Cercignani et al., 2018; Nery
et al., 2020]. Whether a 2D or a 3D readout is chosen depends on the priorities and
limitations of individual studies and centres. 3D readouts mainly differ from 2D read-
outs by the use of a phase encoding gradient in a second spatial direction instead of a
slice-selective gradient. In comparison to 2D readouts, 3D readouts have the advantage
of yielding a higher SNR per volume with isotropic voxels and have a higher sensitivity
as the number of signals sampled per voxel is larger [Günther et al., 2005; Nery et al.,
2018]. Furthermore, no inter-slice correction has to be performed for 3D readouts as the
delay time between labelling and acquisition is independent of the slice position since
the entire image volume is excited. Optimal background suppression can be achieved
in 3D readouts but not in multi-slice 2D readouts due to the slice-dependent excitation.
However, 3D readouts are slower and more susceptible to physiological changes than 2D
readouts [Poser et al., 2010]. While various readouts have been reported for ASL MRI
in the literature, only the two readouts most commonly used and currently recommended
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for in vivo imaging of the kidneys [Nery et al., 2020] and the brain [Alsop et al., 2015] are
presented in the following paragraphs.

Echo-planar imaging

Echo-planar imaging (EPI) can achieve whole k-space sampling in a single excitation,
thus allowing fast image acquisition. The sequence diagram and k-space sampling of a
2D EPI sequence is shown in Figure 2.14. After excitation of the imaging slice, phase
and frequency encoding gradients are applied simultaneously to move from the centre of
k-space to one of its corners. A frequency encoding gradient is applied to sample the
first k-space line, followed by a short phase encoding gradient called blip. The blip al-
lows to jump from the already acquired k-space line to the k-space line to be acquired
next. The process of sampling and jumping to the next line is repeated by using a se-
ries of blips and frequency encoding gradients of alternating polarities and results in a
zig-zag-like coverage of k-space. EPI thus requires high frequency of gradient switching,
which makes the sequence hardware demanding and susceptible to off-resonance effects
and other artefacts. Despite these challenges, the potential of EPI for human imaging was
successfully demonstrated early on by Mansfield’s group [Mansfield , 1977] and 2D EPI
is currently the recommended readout for ASL imaging in the kidneys [Nery et al., 2020].
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Figure 2.14: 2D echo-planar imaging sequence diagram (a) and corresponding
k-space trajectory (b). After the excitation pulse, negative gradients in x- and y-
direction are applied followed by a positive readout gradient in x-direction for acquiring
the first k-space line. A short positive phase encoding gradient in y-direction, called
blip, is then applied to jump to the subsequent k-space line and another readout gradient
in x-direction with negative polarity is used to sample this k-space line. The process
of jumping and sampling is repeated for multiple lines with alternating polarity of the
readout gradient in x-direction. After a repetition time TR, the series of RF pulses and
gradients will be repeated to acquire a different part of k-space.
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Gradient and spin echo

The gradient and spin echo (GRASE) sequence [Oshio and Feinberg , 1991] combines
multiple gradient and spin echoes within a single TR and thus allows fast sampling of k-
space. The sequence diagram and k-space sampling of a 2D GRASE sequence is shown in
Figure 2.15. After excitation of the imaging slice using a 90◦ RF pulse, rephasing gradients
are applied on the frequency and slice axes. After a time TE/2, the slice is refocused using
a 180◦ RF pulse resulting in a spin echo being produced at time TE after the excitation
just as in the standard SE sequence (see section 2.8). In GRASE, additional gradient
echoes are produced before and after the spin echo to sample multiple k-space lines after
the refocusing pulse. The polarity of frequency gradients is alternated to switch directions
along the frequency encoding axis and gradient blips are employed to jump to the next
k-space line along the phase encoding direction. Still within the same TR, additional 180◦

refocusing RF pulses producing additional spin echoes surrounded by multiple gradient
echoes can be used to acquire additional k-space lines. The frequency gradients will
be identical for all spin echo trains within a TR. Whereas the phase gradients will be

180°90°

Gy

Gz

Gx

RF

time

TE/2 TE/2

180°

TE/2

s1 s3 s5

s2 s4

s6 s8 s10

s7 s9

(a) Sequence diagram

ky

kx

s1

s2

s3

s4

s6

s7

s5

s8

s9

s10

(b) k-space trajectory

Figure 2.15: 2D gradient and spin echo sequence diagram (a) and corresponding
k-space trajectory (b). After the excitation pulse, rephasing gradients in x- and z-
direction are applied and followed by a first 180◦ refocusing pulse at time TE/2. A
positive phase encoding gradient in y-direction followed by a positive frequency encoding
gradient in x-direction produce the first gradient echo (s1) of the first spin echo train (in
red). A negative gradient blip in y-direction and a change of polarity of the frequency
encoding gradient produce the second gradient echo (s2). Repeating negative gradient
blips and frequency encoding gradients of alternating polarity produce the spin echo (s3)
and additional gradient echoes (s4 and s5) of the first echo train. The second echo train
(in blue) uses the same scheme of frequency gradients and gradient blips as the first one
but the amplitude of the phase encoding gradients in y-direction are changed: the first
has a reduced amplitude while the last has an increased amplitude. This ensures all spins
have the same phase at the end and beginning of each spin echo train. In this example,
four gradient echoes and one spin echo are acquired in each spin echo train.
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modified for each spin echo train in order to cover different k-space lines while keeping the
phase at the end of each spin echo train identical. The number of signals acquired within
each TR depends on the number of spin echo trains NSE and the number of gradient
echoes NGRE. The GRASE sequence yields similar contrast as a spin echo sequence but
all necessary k-space lines can be acquired in much less time as a total of NSE · NGRE

signals are acquired within each TR. The GRASE readout is less sensitive to phase errors
resulting from field inhomogeneity than EPI but requires more complex signal reordering.
A 3D GRASE readout is the current recommendation for ASL measurements of the brain.

2.3.3 Perfusion quantification

The first quantification of perfusion in humans was performed by Kety and Schmidt
in 1945. They used an inhaled gas, nitrous oxide (N2O), as freely diffusible tracer and
measured the rate of gas inhalation, the arterial and venous tracer concentration until
an equilibrium was reached in order to estimate cerebral perfusion in healthy subjects.
Arterial and venous tracer concentrations were determined by direct measurements in
blood samples acquired at different time points after gas inhalation. Using Fick’s principle
[Fick , 1870], they calculated the cerebral perfusion f as

dCT
dt

= f · (CA(t)− CV (t)) (2.66)

where CT is the quantity of tracer concentration of N2O taken up by the brain tissue, CA
is the quantity of N2O brought to the brain by arterial blood, and CV is the quantity of
N2O removed by venous blood. This model was then adapted to MR perfusion imaging
by Detre et al. (1992), who modified the Bloch equation to take into account flow in order
to quantitatively calculate perfusion values from ASL data.

2.3.3.1 Modified Bloch equation

To include flow, the Bloch equation used to describe the longitudinal relaxation of tissue
magnetisation MT (t) can be modified to [Detre et al., 1992; Calamante et al., 1999]

dMT (t)

dt
=
M0,T −MT (t)

T1,T

+ f ·
(
Mb(t)−MT (t)

)
=
M0,T −MT (t)

T1,T

+ f ·Mb(t)−
f

λ
·MT (t)

(2.67)

where M0,T is the fully relaxed longitudinal magnetisation of tissue, f is the blood flow,
Mb is the inflowing longitudinal magnetisation of arterial blood, and λ is the blood-tissue
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partition coefficient. This equation assumes a well-mixed compartment model with water
as a freely diffusible tracer, so that the magnetisation of venous spins leaving the tissue
is given by MV = MT/λ [Detre et al., 1992]. In steady state, MT (t) becomes MSS,T and
the blood flow (perfusion) can then be quantified using following equation [Detre et al.,
1992]

f =
λ

T app1,T

(
1− MSS,T

M0,T

)
(2.68)

The apparent relaxation time of tissue, which is influenced by the blood flow, is defined
as

1

T app1,T

=
1

T1,T

+
f

λ
(2.69)

2.3.3.2 General kinetic model

In 1998, Buxton et al. [1998] introduced a general kinetic model (GKM) to quantify per-
fusion by considering the difference in longitudinal magnetisation, which is proportional
to the ASL signal, as the magnetisation delivered in a voxel by arterial blood. In this
model, the amount of magnetisation in a tissue depends on the delivery of magnetisation
through the arteries, the clearance of magnetisation through the veins (and urine in case
of the kidneys), and the longitudinal relaxation of the magnetisation. Mathematically, the
amount of magnetisation in a voxel at time t can thus be described using three functions:

1. the delivery function c(t): describes the normalised arterial concentration of mag-
netisation that arrives in the imaged voxel at time t

2. the residue function r(t, t′): describes the fraction of labelled water molecules arrived
in the voxel at the time of arrival t′ and remains in the voxel at time t

3. the magnetisation relaxation function m(t, t′): describes the fraction of longitudinal
magnetisation of the labelled water molecules in the voxel at the time of arrival t′

that remains at time t

The difference (control-label) in longitudinal magnetisation measured in a voxel at time
t can then be written as

∆M(t) = 2 ·M0,b · f ·
∫ t

0

c(t′) · r(t− t′) ·m(t− t′) dt′ (2.70)

Hereby, 2 · M0,b · f · c(t′) describes the history of magnetisation delivery to the voxel
with M0,b being the equilibrium longitudinal magnetisation of arterial blood and f the
local perfusion. r(t − t′) ·m(t − t′) represents the longitudinal magnetisation arrived at
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time t′ that remains in the voxel at time t. With this general model, processes such
as transit delay between labelling and imaging region, longitudinal magnetisation decay,
water exchange between blood and tissue, magnetisation clearance, and different labelling
schemes can be taken into account in the perfusion quantification by choosing appropriate
delivery, residue, and magnetisation relaxation functions.

For the standard ASL kinetic model, the delivery, residue, and magnetisation relaxation
functions are defined as [Buxton et al., 1998]

c(t) =



0 0 < t < ∆t

α e−t/T1,b (PASL) ∆t ≤ t < ∆t+ τ

α e−∆t/T1,b ((P)CASL) ∆t ≤ t < ∆t+ τ

0 ∆t+ τ ≤ t

r(t) = e−ft/λ

m(t) = e−t/T1,t

(2.71)

In this model, the labelling efficiency is taken into account by the factor α defined as
the fraction of actual change in longitudinal magnetisation achieved through labelling to
the maximum change available. For perfect inversion, α is equal to 1, and for perfect
saturation, α is equal to 0.5 [Alsop and Detre, 1996].

Assumptions of the GKM

This model is based on three main assumptions. Firstly, a uniform plug flow is assumed
for the delivery of labelled blood in a voxel. This means that no labelled blood arrives
before a certain arterial transit time ∆t; during the time from ∆t to ∆t+ τ , the labelled
blood arrives in the voxel; and after ∆t+ τ , the blood arriving in the voxel is unlabelled.
τ is thus the temporal duration of the labelled blood bolus and is known as labelling du-
ration or bolus duration or bolus length. During the ATT, the longitudinal magnetisation
will relax with the longitudinal time constant of arterial blood T1A. The delivery func-
tions resulting from these assumptions differ for PASL, and (P)CASL schemes as shown
schematically in Figure 2.16.
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Figure 2.16: Delivery function for the general kinetic model. The amount of
labelled blood arriving at a voxel, described by the delivery function, depends on the
amount of labelled spins and the amount of relaxation that has occurred after the labelling.
(a) In PASL, the distance between labelling and imaging is not identical for all spins since
a whole slab is used as labelling region. Labelled spins thus need different amounts of
time before reaching the imaging region, resulting in different amounts of relaxation after
labelling and with it an exponentially decreasing delivery of labelled spins to the imaging
region. (b) In (P)CASL, a single labelling plane is used so that the distance between
labelling and imaging is constant, resulting in a fixed amount of relaxation for all spins
after the labelling. The amount of relaxation is determined by the arterial transit time
∆t.

Secondly, a single compartment model is assumed for the exchange of water between
blood and tissue. This model considers tissue and blood to be homogeneous so that
all exchange of water between the vasculature and the tissue is instantaneous, i.e., the
exchange is rapid enough for concentration fractions of sub-units of blood or tissue to
remain unchanged. Therefore, it is assumed that the ratio of total tissue concentration
and venous concentration is constant and equal to the tissue-blood partition coefficient
of water λ. The residue function is thus a mono-exponential with perfusion dependent
decay rate f/λ.

Thirdly, this model assumes that water is immediately extracted from the vascular
space when arriving in the voxel. Thus, the longitudinal magnetisation of the labelled
water initially decays with the relaxation time of arterial blood T1,b but, at arrival in the
voxel, it decays with the relaxation time of tissue T1,t.

The three assumptions used for the general kinetic model allow a simplified description
of the measured ASL signal. To estimate the effect of these assumptions on the signal
description, Buxton et al. (1998) modified the delivery, residue, and magnetisation re-
laxation functions to better reflect the reality and compared the results to the standard
model. A smoother delivery function was chosen to take into account varying transit times
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from the labelling region to the imaging region. While this change resulted in no differ-
ence for the (P)CASL signal, the PASL signal was found to be stronger for short transit
times. In case of longer transit times, the perfusion signal will be underestimated by the
general kinetic model unless the delay time is adapted to be also longer. The residue
function was modified to take into account the time necessary for a water molecule to
leave the voxel as well as the incomplete extraction of water from blood into tissue. This
modification had little effect on the PASL signal compared to results obtained with the
general kinetic model. For (P)CASL, this modification resulted in a slight decrease in per-
fusion signal. The magnetisation relaxation function was modified to account for the time
between the entering of water molecules in the voxel and the beginning of exchange of the
water molecules between blood and tissue in the voxel. This modification resulted in a
strong difference in (P)CASL and PASL signals, indicating an overestimation of perfusion
when using the standard ASL kinetic model (i.e., assuming an instantaneous exchange of
water molecules).

Solutions of the GKM

Solving Equation (2.70) for the case of PASL, we obtain:

∆M(t) =



0 0 < t < ∆t

2 ·M0,b · f · (t−∆t) · α · e−t/T1,b · qp(t) ∆t ≤ t < ∆t+ τ

2 ·M0,b · f · τ · α · e−t/T1,b · qp(t) ∆t+ τ ≤ t

(2.72)

with

qp(t) =


ekt·(e−k∆t−e−kt)

k·(t−∆t)
∆t ≤ t < ∆t+ τ

ekt·(e−k∆t−e−k(τ+∆t))
k·τ ∆t+ τ ≤ t

and

k =
1

T1,b

− 1

T1,T

− f

λ
=

1

T1,b

− 1

T app1,T

The factor qp(t) can be understood as a correction factor, which accounts for (1) the change
in T1 relaxation due to the exchange of labelled blood magnetisation with unlabelled tissue
magnetisation leading to an apparent longitudinal relaxation time of tissue T app1,T , and (2)
the clearance of the labelled magnetisation by venous blood flow [Buxton et al., 1998;
Wong et al., 1998b]. Typically, these two effects are small, with qp(t) values ranging from
0.85 to 1.00 in practice [Wong et al., 1998b].
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Solving Equation (2.70) for the case of (P)CASL, we obtain:

∆M(t) =



0 0 < t < ∆t

2 ·M0,b · f · T app1,T · α · e−∆t/T1,b · qss(t) ∆t ≤ t < ∆t+ τ

2 ·M0,b · f T app1,T · α · e−∆t/T1,b · e−(t−τ−∆t)/Tapp1,T · qss(t) ∆t+ τ ≤ t

(2.73)
with

qss(t) =


1− e−(t−∆t)/Tapp1,T ∆t ≤ t < ∆t+ τ

1− e−τ/T
app
1,T ∆t+ τ ≤ t

Equations (2.72) and (2.73) show that the measured signal difference between control
and labelled image is directly proportional to the perfusion f . The proportionality factor
depends on properties of arterial blood (equilibrium longitudinal magnetisation M0,b),
properties of the tissue of interest (longitudinal relaxation time T app1,T , arterial transit time
∆t), as well as acquisition parameters (labelling/bolus duration τ and time of acquisition
t). For blood flow quantification, Equations (2.72) and (2.73) have to be solved for blood
flow f . For simplification, we can assume that the blood entering the voxel relaxes with the
longitudinal relaxation time of arterial blood (T1,b) and not the apparent the longitudinal
relaxation time of tissue (T app1,T ) used in the Buxton model [Hernandez-Garcia et al., 2019],
which reduces the model to a single-compartment model. With this assumption, the
quantification formula for PASL (Equation 2.72) simplifies nicely as k can be set to 0
and qp(t) to 1 [Buxton et al., 1998]. Furthermore, we can assume that acquisition takes
place at a time t ≥ ∆t+ τ . These two assumptions together are most commonly used for
ASL-based perfusion quantification and will be referred to as simplified GKM throughout
this document. The perfusion rate f is given in units of 1/s. In order to convert it into the
commonly used unit in medical perfusion quantification of ml/100g/min (f ′), we can use
the blood-tissue partition coefficient λ and make use of the relationM0,b = M0,T/λ, which
assumes instantaneous equilibrium between tissue and veins. The blood-tissue partition
coefficient indicates the relative composition of the organ of interest in terms of tissue
weight and blood volume. It is generally defined as the water weight per tissue weight
divided by the weight of water in grams per volume of blood in millilitres. It follows that
f ′ = 6000 · f · λ. For 3D or single-slice 2D ASL acquisitions, blood flow or perfusion is
then quantified in mL/100g/min using the following equation [Alsop et al., 2015; Nery
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et al., 2020]

f ′ =



6000 · λ ·∆M · eTI/T1,b

2 · α ·M0,T · TI1

PASL with QUIPSS II

6000 · λ ·∆M · ePLD/T1,b

2 · α ·M0,T · T1,b · (1− e−τ/T1,b)
(P)CASL

(2.74)

In case of 2D sequential multi-slice acquisitions, the inflow duration of the labelled spins is
slice dependent. Hence, the real PLD and TI are different for each slice and the equations
can be rewritten as:

f ′ =



6000 · λ ·∆M · e(TI+ts·(n−1))/T1,b

2 · α ·M0,T · TI1

PASL with QUIPSS II

6000 · λ ·∆M · e(PLD+ts·(n−1))/T1,b

2 · α ·M0,T · T1,b · (1− e−τ/T1,b)
(P)CASL

(2.75)

where n is the slice number and ts is the time between two subsequent slice acquisitions.
Equations 2.74 and 2.75 use the nomenclature convention adopted by the ASL and OS-
IPI3 communities [Alsop et al., 2015; Nery et al., 2020]. It can be seen that for PASL,
the acquisition time t has been replaced by the delay time (or inflow time) TI and the
bolus duration τ has been replaced by TI1 corresponding to the QUIPPSS/QUIPPSS
II controlled bolus duration. For (P)CASL, the acquisition time t has been replaced by
PLD+ τ , where PLD is the delay time (or post-labelling delay) and τ is the labelling du-
ration as previously defined. The simplified equations thus apply only for TI ≥ ∆t+ TI1

and PLD ≥ ∆t for PASL and (P)CASL, respectively.

Current consensus publications recommend values to be used for the tissue-blood parti-
tion coefficient λ, the labelling efficiency α, and the longitudinal relaxation time of arterial
blood T1,b. In the brain, a constant value of λ = 0.9 mL/g is commonly used [Herscovitch
and Raichle, 1985; Alsop et al., 2015] and the same is recommended for quantification in
the kidneys due to a lack of a reliable reference value specifically for the kidneys [Nery
et al., 2020]. A labelling efficiency of α = 0.95 and α = 0.85 are assumed for PASL and
(P)CASL, respectively [Alsop et al., 2015; Nery et al., 2020]. In case background suppres-
sion (BS) pulses are used for control and labelled images, these constant values need to
be corrected to account for the loss in labelling efficiency resulting from BS pulses applied
after the labelling pulses [Garcia et al., 2005; Nery et al., 2020]. The overall labelling
efficiency α′ is then given by α · 0.93nBS, where nBS denotes the number of BS pulses

3https://osipi.org/resources/ and https://docs.google.com/document/d/
1vj0Tp4yur4dpJntF90yy2bOBUx33FG-w/edit, last accessed 31.08.2022
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applied after the labelling pulses. The longitudinal relaxation of arterial blood is assumed
to be T1,b = 1.65 s at a field strength of 3T and T1,b = 1.48 s at a field strength of 1.5T
[Zhang et al., 2013].

2.3.3.3 Model-free approach

The assumptions of the GKM might not be accurate especially in pathological cases. To
move away from any restrictive assumption and allow a quantification for all pathologies,
a model-free ASL quantification was proposed [Petersen et al., 2006b]. This method is
based on deconvolution and requires the estimation of the arterial input function (AIF).
As such, it bears resemblance to the quantification of DSC-MRI data. In the model-free
ASL quantification method, the AIF is estimated by subtracting two perfusion-weighted
images acquired with and without crusher gradients, which remove the signal from spins
with high velocity. While the idea of reducing the number of assumptions is appealing,
this model-free approach also has several drawbacks. It requires additional acquisitions,
depends on the intrinsic scanner sensitivity and AIF estimation is affected by the crusher
gradient design. Therefore, the simplified GKM (Equations 2.74 and 2.75) remains more
widely used by the ASL community.

2.3.3.4 Limitations of quantification

The quality of quantification will depend on the accurate knowledge of labelling/bolus
duration, arterial transit time, T1 value of blood (and tissue for two-compartment models),
and the quality of field shim [Buxton et al., 1998]. Especially in patients with pathologies
such as stroke or vessel stenosis, the arterial transit time will be longer than in healthy
subjects. Therefore, the delay time has to be adjusted to avoid an underestimation of
perfusion in the affected areas. Most models assume that the T1 of tissue is equal to the
T1 of blood (single compartment models). In the case of brain perfusion, this leads to
an overestimation of perfusion in white matter as the actual T1 of white matter is lower
than the T1 of blood [Kwong et al., 1995; van Gelderen et al., 2008]. Furthermore, single
tissue compartment models do not take into account that some of the arterial blood water
passing through the voxel does not exchange with tissue water [Hernandez-Garcia et al.,
2019]. In addition, such models do not take into account the effect of partial volume due
to tissues surrounding the tissue of interest (e.g. cererbospinal fluid when quantifying
perfusion in brain). As the T1 of cerebrospinal fluid is longer than the T1 of both gray
and white matter, perfusion will be underestimated [Kwong et al., 1995]. Nevertheless,
single compartment models with delay times adapted to the studied population remain the
easiest to implement and are currently the most used in clinical and research applications.
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2.4 Basics of Anatomy and Physiology

2.4.1 Anatomical terminology

To facilitate the description of anatomy, terminology for different planes and directions
are commonly used and briefly introduced here. The sagittal plane goes from back to
front and from top to bottom. The transverse plane goes from left to right and from back
to front. The coronal plane goes from left to right and from top to bottom. Superior
refers to the direction from foot to head, and inferior from head to foot. Lateral describes
the direction from left to right or right to left. Dorsal refers to the direction from front
to back, and ventral from back to front. Anterior means in front and posterior means
behind. Figure 2.17 shows these planes and directions.

dorsal 
or posterior

lateral

sagittal superior

median

ventral
or anterior

medial

inferior

proximal

distal

transverse

coronal

Figure 2.17: Schematic definition of anatomical planes and direc-
tions. Image adapted from https://www.kenhub.com/en/library/anatomy/
anatomical-terminology, last accessed 08.08.2022
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2.4.2 Brain

The brain is a complex and multi-functional organ, which plays a central role in the
nervous system. A schematic sagittal view of the brain is depicted in Figure 2.18. The
brain is composed of two hemispheres connected by a fibre bundle known as the corpus
callosum. Each brain hemisphere can be separated into four lobes (frontal, parietal,
occipital, temporal) and a cerebellar hemisphere. Both cerebellar hemispheres form the
cerebellum, which controls motor functions and is probably also involved in many other
brain functions. The brain hemispheres (except the cerebellum) are responsible for body
functions in the opposite body side (i.e., the left hemisphere is responsible for the right
body side and the right hemisphere for the left body side) while the cerebellar hemispheres
are involved in functions in the same body side.

Frontal lobe Parietal lobe

Occipital lobe

Temporal lobe

Anterior 
Commissure

Posterior 
Commissure

Cerebellar 
hemisphere

Corpus 
callosum

Brain stem

Figure 2.18: Schematic sagittal view of the brain. Note the positions of the an-
terior comissure (AC) and posterior commissure (PC), which are important anatom-
ical landmarks for planning PCASL MRI acquisitions. Image adapted from https:
//wiki.tum.de/display/btt/Anatomy+of+brain, last accessed 08.08.2022

Brain tissue is separated into two groups: gray matter (GM) and white matter (WM)
[Wen and Chklovskii , 2005]. GM contains local networks of neurons, synapses and mainly
nonmyelinated axons. WMmainly contains myelinated axons, responsible for global trans-
mission. Circulating around the brain and in the brain ventricles, is the cerebrospinal fluid
(CSF). The role of the CSF is to ensure buoyancy of the brain, protect brain tissue, main-
tain the internal chemical and physical state of the brain, and clear waste products. GM,
WM and CSF can be clearly distinguished in MR images with appropriate repetition and
echo times. Figure 2.19 shows a MRI of a healthy brain with distinct signal levels in GM,
WM, and CSF regions.
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WM

CSF

GM

Figure 2.19: MRI of the brain: Axial (left) and sagittal (right) planes with clearly
distinguishable gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
areas.

Pathologies, which modify tissue characteristics, can be detected in MR images as
regions with abnormal signal intensities. Furthermore, pathologies also affect function
and can be described using functional MR images and derived quantitative maps such as
perfusion maps.

2.4.3 Kidney

The kidneys are bean shaped organs positioned on each side of the spine in the ab-
domen region. The liver and the spleen lie superior to the right kidney and left kidney,
respectively. The renal artery is positioned slightly anterior to both kidneys. A MRI of
a healthy volunteer depicting both kidneys, the liver, and the spleen is shown in Figure
2.20.

Kidneys are mainly responsible for the excretion of waste materials produced by body
metabolism via urine [Rayner et al., 2020]. They are also key for maintaining steady
internal chemical and physical conditions in the body. Amongst other, they control blood
pressure, acidity, haemoglobin levels, regulate the electrolyte balance, and are involved in
hormone syntheses. For excreting metabolic waste products from the body, about 80%
of the blood plasma is cleaned by active transporters on tubules close to tissue capillaries
and the rest is filtrated through the glomerular filtration barrier. Autoregulation of the
kidneys ensures the glomerular filtration rate (GFR) is kept steady over a range of artery
pressures.
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liver spleen

right
kidney

left
kidney

Figure 2.20: MRI of the abdomen showing the position of both kidneys, liver,
and spleen.

The inner structure of the kidney, schematically shown in Figure 2.21, has three main
compartments: the cortex, the medulla, and the renal pelvis. The cortex corresponds
to the outer tissue layer, has a granular structure, and contains arterioles, venules and
glomerular capillaries (blood vessels of different sizes). The medulla, makes up the in-
ner part of the renal tissue and is composed of triangular shaped structures known as
pyramids. These pyramids contain numerous nephrons, also called functional units of the
kidneys. Each nephron reaches from the cortex to the renal pelvis and ensures filtration
and regulation via a capillary network intricately wound around it and a glomerular cap-
sule at the cortex end. The kidney pelvis is the entry and exit point of the renal blood
vessels and nerves as well as the exit point of the ureters, which bring the urine from the
kidneys to the urinary bladder.
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Figure 2.21: Kidney anatomy. Perfusion quantification in the cortex and medulla are of
special interest in clinical kidney imaging. Image from https://openstax.org/books/
anatomy-and-physiology/pages/25-3-gross-anatomy-of-the-kidney, last accessed
08.08.2022
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CHAPTER 3

Materials and Methods

The first section of this chapter briefly describes the hardware used to acquire MRI
data. The following sections are divided according to the organ of interest, starting with
the brain and finishing with the kidneys. In each of these sections, the developed analysis
pipeline and the data used are described. The last section of this chapter briefly introduces
relevant metrics and statistical tests. Parts of this chapter have been published in [Brumer
et al., 2022a]1 and the description of the corresponding materials and methods is partly
replicated here.

3.1 Hardware

Two whole body MRI scanners with a field strength of 3 T available at the radiology
department of the University Hospital Mannheim, Germany, were used in this work:
the MAGNETOM Tim Trio and MAGNETOM Tim Skyra systems (Siemens Healthcare
GmbH, Erlangen, Germany) depicted in Figure 3.1. Both Trio and Skyra systems include
a superconducting coil cooled with liquid helium for the main magnetic field of 3 T, a
gradient system for spatial encoding, shim coils for improved homogeneity of the main
magnetic field, and a whole body transmit coil for RF pulse transmission. Additional
receive coils are available for different body parts. Scanner specifications can be found in
Table 3.1.

1CC BY License
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(a) Trio (b) Skyra

Figure 3.1: MRI systems used for data acquisition: (a) 3T MAGNETOM Tim Trio
(Siemens Healthcare GmbH, Erlangen, Germany) and (b) 3T MAGNETOM Tim Skyra
(Siemens Healthcare GmbH, Erlangen, Germany).

Table 3.1: MRI scanner system specifications for MAGNETOM Tim Trio and MAG-
NETOM Tim Skyra systems (Siemens Healthcare GmbH, Erlangen, Germany) available
at https://www.siemens-healthineers.com/magnetic-resonance-imaging (last ac-
cessed 08.08.2022 ).

MRI system Trio Skyra

field strength [T] 3 3

system length [m] 2.13 1.73

bore diameter [m] 0.60 0.70

maximum gradient amplitude [mT/m] 40 45

maximum gradient slew rate [T/m/s] 200 200

3.2 Brain

3.2.1 Analysis Pipeline

The data analysis pipeline for brain ASL data was developed as a MATLABR○ script
(Version 2020a, MathWorks, Natick, Massachusets) with SPM12 (Wellcome Trust Centre
for Neuroimaging, University College London, UK) batches. It is summarised in Figure
3.2 and the individual steps are detailed in the next sections.
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Figure 3.2: Analysis pipeline for brain ASL data. After acquisition of ASL (M0 and
control-label pairs) and anatomical images, the ASL data is first realigned. If available, the
anatomical data is segmented and then registered to the realigned M0 image. Otherwise,
the M0 image is used for segmentation after realignement. The realigned control and label
pairs are either (a) subtracted and averaged (SA mehtod) or (b) averaged and subtracted
(AS method) to calculate a mean perfusion-weighted image ∆M . A perfusion (CBF) map
is then calculated using the simplified general kinetic model Buxton et al. [1998]; Alsop
et al. [2015]; Nery et al. [2020]. In the quantification step, outliers can be removed from
the control and labelled time series or from the ∆M time series or from the CBF time
series depending on the chosen option. For the final results, the binarised and registered
segmentation masks are applied on the perfusion map and mean perfusion values are
calculated. For easier visualisation, only a single slice of the acquired brain volume is
shown here but the analysis pipeline works for any number of slices. Abbreviations used:
n - number of control-label pairs acquired; CSF: cerebrospinal fluid; GM: gray matter;
WM - white matter; REG - registered; bin - binarised; CBF - cerebral blood flow.

3.2.1.1 Realignement

After acquisition of the ASL (M0 and multiple label-control pairs) and the anatomical
data, all the images are loaded as matrices in MATLABR○. All ASL images are first re-
aligned to the mean image using a rigid body transformation provided in SPM12 (Realign
- Estimate and Reslice). This realignement is necessary to correct for subject motion dur-
ing the acquisition. The SPM12 graphics window allows a visualisation of the motion
(three translation and three rotation degrees of freedom) present in the entire time se-
ries. A final visual check of the realignement procedure is also possible within the SPM12
graphical user interface.
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3.2.1.2 Segmentation

Segmentation is performed on the anatomical data in the anatomical space or on the
M0 image in ASL space in case no anatomical data is available. The segmentation is based
on SPM12 (Segment). It separates all non-background voxels into 5 clusters (bone, soft
tissue, cerebrospinal fluid, gray matter, white matter) and creates tissue probability maps
for each cluster. In case of abnormal brain anatomy, manual segmentations of regions of
interest (ROI) can be used instead of automated tissue segmentation.

3.2.1.3 Registration

When the segmentation is performed in the anatomical space, a registration of the
anatomical space to the ASL space is necessary. A pairwise registration of the anatomical
data to the realigned M0 image is performed using standard SPM12 rigid body transfor-
mation with a 4-th order B-spline interpolation (Coregister - Estimate and Reslice). In
case of automated segmentation, the tissue probability maps for gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) are then transformed from the anatomical to
the ASL space using the transformation matrix obtained from the pairwise registration.
In case manual segmentation masks are available, these are also transformed from the
anatomical to the ASL space using the transformation matrix obtained from the pair-
wise registration. As a final step, the registered segmentation masks are binarised using
a threshold fixed at half the highest voxel value within the mask, thus yielding binary
segmentation masks in the ASL space.

3.2.1.4 Quantification

Quantification is performed based on the general kinetic model. Different methods for
the calculation of the perfusion-weighted image, options for the removal of outliers, and
corrections for the M0 image used in the quantification formula exist in the literature.
For comparison purposes, multiple options were implemented in the analysis pipeline.

Perfusion-weighted image calculation

The mean perfusion-weighted image can either be calculated by pairwise subtraction
of realigned control and labelled images followed by averaging (SA method) or by first
averaging all realigned control and all realigned labelled images before subtracting the
mean labelled image from the mean control image (AS method). Additional variations
consist in taking the absolute value of the subtracted images (|SA| and |AS| methods,
respectively). To visualise the quality of the ASL data, the signal averaged over the entire
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brain (CSF and WM and WM) or averaged over a specific brain compartment (CSF or
GM or WM) is plotted for each control and each labelled image acquired. In case the
SA method is used, the temporal SNR (tSNR) of the time series of perfusion-weighted
images is calculated and the evolution of the signal of the individual perfusion-weighted
images is plotted. In case the AS method is used, the tSNR of the time series of control
and labelled images is calculated and the evolution of the signal of the individual control
and labelled images is plotted.

Outlier removal

In addition to the choice of method for the calculation of the perfusion-weighted image,
seven options to exclude outlier images before the final quantification are implemented:

1. SA µ± 2 · σ

2. AS µ± 2 · σ

3. SA z-scoreVol

4. SA z-scoreSli

5. SA AOC

6. SA pAOCSL

7. SA SCORE

The options are either applicable for the SA or the AS method. Options 1 and 3 use
the perfusion-weighted (∆M) images, option 2 uses the control and labelled images, and
options 4-6 use the CBF images to determine outliers.
Option 1 is applicable for the SA method and consists of removing all control-label

pairs for which the mean perfusion-weighted signal intensity is outside the mean ± twice
the standard deviation (µ±2 ·σ) range of the entire perfusion-weighted image time series.
The mean and standard deviations are calculated over the entire brain (CSF and GM and
WM).
Option 2 is applicable to the AS mehtod and compares the mean signal intensity of all

control images or all labelled images to the mean ± twice the standard deviation (µ±2 ·σ)
range of the entire control image or labelled image time series, respectively. Here, the
removal criteria is checked for each brain compartment (CSF, GM, WM) individually and
an image is discarded if signal intensities are outside the comparison range for at least
two of the three compartments.
Options 3 and 4 are based on the method by Tan et al. (2009), which considers both the

mean and standard deviation distributions of the perfusion-weighted images to determine
outliers. The original method first creates a brain tissue mask by averaging all control and
labelled images and thresholding this mean image in order to discard background voxels.
In our pipeline, the brain is automatically segmented and the produced brain mask is used
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instead. Considering only the intensities of voxels within the brain, outliers are determined
on an image-by-image or slice-by-slice basis (z-scoreVol and z-scoreSli, repsectively). For
simplification, the following explanation is in terms of images but is also applicable to
slices. Images with mean value Mi and standard deviation Si for which either of the
following criteria applies are discarded as outliers: |Mi| > µM + 2.5 · σM and Si >

µS + 1.5 · σS. µM represents the mean of the distribution of means of tissue intensity
across all perfusion-weighted images and µS represents the mean of the distribution of
the standard deviations of tissue intensity across all perfusion-weighted images. σM and
σS represent the standard deviation of the distribution of means of tissue intensity and
the standard deviation of the distribution of the standard deviations of tissue intensity,
respectively. The factors 1.5 and 2.5 were empirically chosen based on clinical PASL data
as presented in the original publication of the method [Tan et al., 2009]. In addition, the
outlier removal procedure is only performed if ln(max(Si)−min(Si)) > 1, this condition
was added by Tan et al. (2009) to avoid overfiltering.
Option 5, published as adaptive outlier cleaning (AOC) [Wang et al., 2013], uses Pear-

son correlation coefficients (PCCs) to determine which CBF image has a correlation to
the mean CBF image below a fixed threshold or outside the range of mean ± standard
deviation of all PCCs. The removal procedure adopted here is iterative and the mean
CBF image is recalculated after each removal and new PCCs for each CBF image are
computed and compared to the fixed threshold. The threshold was set to 0.15, the sig-
nificance level for PCC calculation was set to 10−6, and the procedure was stopped after
two iterations as in the original publication [Wang et al., 2013].
Option 6 was introduced as an improvement of the AOC method and is called priors-

guided slice-wise adaptive outlier cleaning (pAOCSL) [Li et al., 2018a]. This method
employs a pseudo CBF image as reference to alleviate the issue that the mean CBF image
used as reference for PCC calculation in AOC already has poor SNR. As CBF contrast
is similar to that of a GM density map, a low-noise pseudo CBF image reproducing this
contrast is used as reference. The pseudo CBF image is created by thresholding the tissue
probability maps of GM and WM obtained in the segmentation step with a threshold
of 0.4 and 0.8, respectively, and combining these with a weighting of 1.8 for GM and 1
for WM [Li et al., 2018a]. For each slice, PCCs are then used to determine which CBF
image slice has a correlation with the corresponding pseudo CBF image slice below a fixed
threshold set to 1. For options 4 and 5, the freely available outlier removal functions from
the ASLtbx pipeline 2 were incorporated in the in-house developed analysis pipeline.
Option 7 corresponds to the implementation of the structural correlation-based outlier

rejection (SCORE) algorithm published by Dolui et al. (2017). In contrary to AOC and
pAOCSL, SCORE defines outlier CBF volumes as those most correlated to the mean

2https://cfn.upenn.edu/zewang/ASLtbx.php, last accessed 08.08.2022
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CBF. Using an iterative procedure, PCCs between individual CBF volumes of each brain
compartment (CSF, GM, WM) and the mean whole brain CBF volume are calculated.
The stopping criteria for the removal procedure is based on the pooled variance, which
reflects spatial variance in each brain compartment and should decrease after removing an
outlier with artefacts. The volume with the highest PCC accross all brain compartments is
removed in each iteration and the new pooled variance and mean CBF are then calculated.
If the new pooled variance is decreased compared to its previous value, a new iteration
takes place. Otherwise, the mean CBF from the previous iteration is taken as final CBF
map. As no significance level for the calculation of the PCCs is specified in [Dolui et al.,
2017] publication, it was set to 10−6 as for the AOC option.

M0 corrections

The realigned M0 image can be corrected for different effects. Five correction types
were considered:

• no correction

• T1 correction

• T2 or T ∗2 correction

• λ correction

• all corrections

The T1 correction (or long-TR calibration) corrects for signal loss due to choosing a TR
which does not allow for full relaxation of all labelled spins. For each brain compartment
BC ∈ {CSF, GM, WM}, the voxel-wise correction is applied according to the following
equation

MT1corr
0,b =

∑
BC

M0,T · BCM

1− e−
TRM0
T1,BC

(3.1)

M0,b being the voxel signal intensity of the blood M0 image, BCM being the specific brain
compartment binary mask, M0,T being the voxel signal intensity of the acquired tissue
M0 image and TRM0 the repetition time used to acquire it, and T1,BC the longitudinal
relaxation time of the brain compartment BC (T1,CSF = 4300 ms, T1,GM = 1300 ms,
T1,WM = 1000 ms).
The T2 or T ∗2 correction takes into account differences between the transversal relaxation

time of arterial blood (T2,b = 275 ms, T ∗2,b = 50 ms) and tissue, thus allowing the derivation
of an arterial M0 image from the acquired tissue M0 image. Whether the correction should
be T2 or T ∗2 depends on the readout used to acquire ASL data. For each brain compartment
BC ∈ {CSF, GM, WM}, the voxel-wise correction is applied according to the following
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equations

MT2corr
0,b =

∑
BC

M0,T · BCM · e
−TE·

(
1

T2,BC
− 1
T2,b

)

M
T ∗2 corr
0,b =

∑
BC

M0,T · BCM · e
−TE·

(
1

T∗
2,BC

− 1
T∗

2,b

) (3.2)

M0,b being the voxel signal intensity of the blood M0 image, BCM being the specific brain
compartment binary mask, M0,T being the voxel signal intensity of the acquired tissue
M0 image, TE the echo time used to acquire the ASL data, and T2,BC and T ∗2,BC the real
and apparent transversal relaxation time of the brain compartment BC (T2,CSF = 1710

ms, T2,GM = 92.6 ms, T2,WM = 60.8 ms; T ∗2,CSF = 400 ms, T ∗2,GM = 60 ms, T ∗2,WM = 50

ms), respectively.
The λ correction takes into account the different blood-tissue partition coefficients of

CSF (λCSF = 1.15 mL/g), GM (λGM = 0.98 mL/g), and WM (λWM = 0.82 mL/g)
instead of using a brain-averaged blood-tissue partition coefficient for the entire brain
(usually λ = 0.9 mL/g [Herscovitch and Raichle, 1985]). For each brain compartment
BC ∈ {CSF, GM, WM}, the voxel-wise correction is applied according to the following
equation

Mλ corr
0,b =

∑
BC

M0,T · BCM
λBC

(3.3)

M0,b being the voxel signal intensity of the blood M0 image, BCM being the specific brain
compartment binary mask, andM0,T being the voxel signal intensity of the acquired tissue
M0 image.
The fifth correction option consists in applying all the above mentioned corrections

together. Values for longitudinal relaxation times T1 and real transversal relaxation times
T2 of blood, GM, and WM at 3 T were taken from the IT’IS Foundation database3.
Values for real transversal relaxation times T2 of CSF at 3 T were taken from [Spijkerman
et al., 2018]. Values for the apparent transversal relaxation times of arterial blood and
tissues at 3 T and blood-tissue partition coefficients were taken from Pinto et al. [2020].
For reduction of spatial noise, the (corrected) M0 is smoothed with a Gaussian kernel
(SPM12 Smooth) before using it for the perfusion quantification.

Slice-timing correction

In case of 2D multi-slice acquisitions, the real inflow duration of the labelled spins has
to be determined for each slice. The time between two subsequent slice acquisitions ts

3https://itis.swiss/virtual-population/tissue-properties/database/relaxation-times/,
last accessed 08.08.2022
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can be determined as follows for a PCASL scheme:

TRmin = τ + PLD + nSli · ts (3.4)

where TRmin is the minimal possible repetition time of the sequence, τ is the labelling
duration, PLD is the post-labelling-delay, and nSli is the number of acquired slices. Hence
ts can be calculated as:

ts =
TRmin − τ − PLD

nSli
(3.5)

Finally, the simplified general kinetic model is applied following equations 2.74 and 2.75.

3.2.1.5 Results

After quantification, the binarised (and registered) segmentation masks are applied on
the calculated perfusion map in the ASL space. The generated tissue perfusion maps can
be visualised for detection of local hypo- or hyperperfusion. In addition, mean perfusion
values and standard deviations are calculated for the different brain compartments and
can be used for intra- or inter-subject comparisons.

3.2.2 ASL Challenge
As part of an effort to standardise the processing of brain ASL data, the Open Science

Initiative for Perfusion Imaging (OSIPI)4 together with the International Society for Mag-
netic Resonance in Medicine (ISMRM) launched a challenge in 2021 [Anazodo and Croal ,
2021; Anazodo et al., 2021]. The data consisted of one population-averaged (Pop-Avg)
digital reference object (DRO) and nine synthetic DROs generated using the freely avail-
able ASL DRO framework [Oliver-Taylor et al., 2021a]. All necessary data information
for the ASL data is listed in Table 3.2. The anatomical data was acquired with a 3D
turbo field echo with TE/TR = 3.14/6.76 ms, FA = 9◦, voxel size = (1 mm)3 for the
population-averaged DRO and a magnetisation prepared rapid gradient echo (MPRAGE)
with TE/TR = 2.14/2400 ms, FA = 8◦, voxel size = (0.7 mm)3 for the synthetic DRO.

4https://osipi.org/index.html, last accessed 08.08.2022
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Table 3.2: Data information for the ASL data of the ASL challenge.

Pop-Avg Synthetic

field strength [T] 3 3

labelling strategy PCASL PCASL

delay time [ms] 2025 1800

labelling duration [ms] 1650 1800

readout 2D EPI 3D GRASE

TR control-label [ms] 4800 4800

TR M0 [ms] 10000 10000

TE [ms] 10.4 10.4

FOV [mm2] 220× 220 208× 300

number of slices 36 42

inter-slice time [ms] 43.7647 0

matrix size 64× 64 52× 75

voxel size [mm3] 3.5× 3.5× 4.5 4× 4× 4

number of background suppression pulses 0 0

number of ASL control-label pairs 30 30

The data from the ASL challenge data was used to evaluate different aspects of the
in-house developed analysis pipeline described in section 3.2. The effect of the choice of
perfusion-weighted image calculation method, the choice of outlier removal, the choice of
M0 correction option, the choice of smoothing kernel full width at half maximum (FWHM)
used for the M0 image, and the choice of image used for segmentation was investigated.
CBF values were calculated for the scenarios listed in Table 3.3. For scenario XIII, a T ∗2
correction was used for the population-averaged data as it used a (GRE-)EPI readout and
a T2 correction was used for the synthetic data as these are based on a GRASE sequence,
where the centre of k-space is acquired by spin echoes. Scenario I was considered as
reference and results from all other scenarios were compared to it in terms of mean CBF
values and SNR. Statistical significant differences in group mean CBF and SNR were
assessed with the Wilcoxon signed-rank test [Wilcoxon, 1992] because the mean CBF and
SNR values across data sets were not normally distributed as evaluated with the Lilliefors
test [Lilliefors , 1967]. The segmentation masks obtained in scenario I and XIX were
compared using the Dice index [Dice, 1945].
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Table 3.3: Scenarios for CBF calculation. | · | stands for the absolute value.

method outlier removal M0 correction FWHM [mm3] segmentation

I SA none none 6x6x6 anat

II |SA| none none 6x6x6 anat

III AS none none 6x6x6 anat

IV |AS| none none 6x6x6 anat

V SA µ± 2 · σ none 6x6x6 anat

VI AS µ± 2 · σ none 6x6x6 anat

VII SA z-scoreVol none 6x6x6 anat

VIII SA z-scoreSli none 6x6x6 anat

IX SA AOC none 6x6x6 anat

X SA pAOCSL none 6x6x6 anat

XI SA SCORE none 6x6x6 anat

XII SA none T1 6x6x6 anat

XIII SA none T2 or T ∗2 6x6x6 anat

XIV SA none λ 6x6x6 anat

XV SA none all 6x6x6 anat

XVI SA none none 1x1x1 anat

XVII SA none none 3x3x3 anat

XVIII SA none none 9x9x9 anat

XIX SA none none 12x12x12 anat

XX SA none none 6x6x6 M0

3.2.3 In vivo studies

3.2.3.1 ASL Imaging sequences

An unbalanced pseudo-continuous ASL (PCASL) sequence with 2D or 3D GRE-EPI
readout [Poser et al., 2010] was used for brain ASL imaging. The sequence diagrams for
the two sequences are shown in Figure 3.3. The thickness of the labelling plane was set
to 3 mm, an average gradient of 8 mT/m and a maximum to average gradient ratio of
7 were used for the labelling pulses. For the 2D readout, the PLD of each slice has to
be corrected for the inter-slice time ts. Using the values recommended in the brain ASL
consensus paper (τ = 1800 ms, PLD = 1800msforhealthysubjectsandPLD= 2000 ms for
patients [Alsop et al., 2015]) and equation 3.5, this yields ts = 42.86 ms for measurements
acquired with the PCASL 2D GRE-EPI sequence.
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EPI readout

labelling duration

TR

PLD

(a) PCASL with 2D GRE-EPI readout
EPI readout

labelling duration TR tag/controlPLD TR

TR x nSlices
GRAPPA 3D factor

(b) PCASL with 3D GRE-EPI readout

Figure 3.3: Sequence diagram for the PCASL (a) 2D and (b) 3D EPI sequences
used for brain ASL measurements. In both cases, an initial pre-saturation pulse
(in black) is followed by the PCASL labelling pulses (in blue) and, after a post-labelling
delay (PLD) time, the GRE-EPI readout (in green) is played out. To ensure complete
relaxation of all spins between subsequent acquisitions, the time between end of labelling
and following pre-saturation pulse should be at least 3 · T1, which is about 4950 ms for
human blood (T1,blood = 1650 ms [Zhang et al., 2013]).

3.2.3.2 Healthy subjects

Two cohorts of healthy volunteers measured with the Trio system using a 32-channel
head coil are considered in this work. All acquisitions were approved by the local ethics
committee. For Cohort 1, data from 11 non-smoker healthy volunteers was acquired
with the PCASL 2D and 3D GRE-EPI sequences. PLD and delay time τ were set to
1800 ms following current recommendations [Alsop and Detre, 1996]. All necessary data
information for the ASL data is listed in Table 3.4. The anatomical data was acquired
with a MPRAGE (TE/TR = 2.71/1900 ms, FA = 8◦, voxel size = (0.7 mm)3) for subjects
6-11 only. Cohort 2 is composed of data acquired as part of a study to evaluate the effect
of smoking on brain oxygenation [Thomas et al., 2020]. As part of this study, data from
10 non-smoker healthy volunteers was acquired with the PCASL 2D GRE-EPI sequence
using the same readout parameters as for Cohort 1. PLD and delay time τ were 1500
ms for Cohort 2 and only 49 of control-label pairs were acquired, corresponding to an
acquisition time of 510 seconds. No restrictions on food or caffeine intake before the ASL
acquisition were applied for either cohort.
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Table 3.4: Data information for the in vivo studies in healthy volunteers.

readout 2D GRE-EPI 3D GRE-EPI

TR control-label [ms] 5000 5000

TR M0 [ms] 5000 5000

TE [ms] 16 16

bandwidth [Hz/pixel] 2016 2016

FOV [mm2] 240× 240 240× 240

number of slices 28 32

inter-slice time [ms] 42.86 0

matrix size 80× 80 80× 80

voxel size [mm3] 3× 3× 3 3× 3× 3

phase oversampling 0% 0%

parallel imaging GRAPPA 2 2

partial Fourier off 7/8

number of background suppression pulses 0 0

number of ASL control-label pairs 50 50

acquisition time [s] 525 1048

For the analyses of the data from Cohort 1 and Cohort 2, the focus was set on the effect
of outlier removal options and M0 corrections. For this, analyses were run for scenarios I
and V-XV listed in Table 3.3. For scenario XIII, a T ∗2 correction was used as the data was
acquired with a GRE-EPI sequence. In addition, data from Cohort 1 was used to evaluate
the effect of number of control-label pairs on CBF quantification by down-sampling the
full ASL dataset with 50 pairs to data sets with 5 to 45 pairs in steps of 5, thus allowing
a comparison of 10 CBF maps for each subject. Data from Cohort 1 was also used for
a comparison between 2D and 3D readout. Scenario I was considered as reference and
results from all other scenarios were compared to it in terms of mean CBF values and
SNR. Differences in group mean CBF and SNR distributions were tested for significance
using paired t-test or Wilcoxon signed-rank test depending on the results of the Lilliefors
test for normality.

3.2.3.3 Patients

As part of a study on oxygen extraction fraction quantified using MRI, ASL data from
17 patients was acquired with the Trio system [Baazaoui et al., 2021]. The PCASL 3D
GRE-EPI sequence with a 32-channel head coil was used for the first two patients. For all
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other patients, the 12-channel head coil, which is routinely used for clinical acquisitions,
was used to reduce disturbance to the clinical workflow. The PCASL 2D GRE-EPI
sequence was used for all acquisitions with the 12-channel coil as the SNR achieved with
the 3D sequence was shown to be very low in a test measurement of a healthy volunteer.
For all measurements, 45 control-label pairs with a PLD of 2000 ms and a bolus duration
of 1800 ms were acquired. A longer PLD was chosen for the patient measurements than
for the healthy volunteer measurements to account for prolonged arterial transit times
which are common in patients [Alsop et al., 2015].
For each patient, the ASL data was analysed using the in-house developed processing

pipeline described in section 3.2 using scenario I (Table 3.3) to assess whether pathology
indications could also be recognised in the quantified perfusion maps.

3.3 Kidney

3.3.1 Analysis Pipeline
The analysis pipeline for kidney ASL data was developed as a MATLABR○ script (Ver-

sion 2020a, MathWorks, Natick, Massachusets). It consists of registration, quantification,
and segmentation steps as summarised in Figure 3.4. The individual steps are detailed in
the next sections.

3.3.1.1 Registration

The first pre-processing step is the registration of all images, which is performed using
the open-source elastix toolbox5 [Klein et al., 2009a; Shamonin et al., 2014]. All acquired
images are registered to a mean group image (groupwise registration). Different areas of
the image are considered for the registration. The five options are:

• W - whole image, both kidneys together

• H - half of the image with same image size as original (i.e. half of the image is filled
with zeros), left and right kidney separately

• H-c - half of the image cropped to half the size of the original image, left and right
kidney separately

• R - manually drawn rectangles to crop area around kidney with same image size as
original image (i.e. everything except the drawn rectangle is filled with zeros), left
and right kidney separately

5https://elastix.lumc.nl/, last accessed 08.08.2022
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Figure 3.4: Analysis pipeline for kidney ASL data. After acquisition of ASL im-
ages (one M0 and multiple control-label pairs), the data is registered using a groupwise
strategy. Five different areas of the image (W, H, H-c, R, R-c) can be considered for regis-
tration. The registered control and labelled images are subtracted and averaged to obtain
a mean perfusion-weighted image ∆M . RBF is quantified with the simplified general
kinetic model. For the segmentation, the kidney contour is first manually drawn for each
kidney. The obtained whole kidney masks are applied on the RBF map and a k-means
clustering algorithm is employed for cortex/medulla segmentation. The final results are
RBF maps of the whole kidneys, cortex, and medulla, as well as mean RBF values for
each. Abbreviations used: n - number of control-label pairs acquired; REG - registered;
RBF - renal blood flow.

75



3.3. Kidney

• R-c - images cropped to manually drawn rectangles around kidney of interest, left
and right kidney separately

All registrations are performed on a slice-by-slice basis and use a multi-resolution strategy
with a non-rigid transformation, a 3d-order B-spline interpolator, an adaptive stochastic
gradient descent optimiser [Klein et al., 2009b], and principal-component-analysis-based
metric (PCAMetric2) [Huizinga et al., 2016].
To evaluate the quality of registration, visual checks (scrolling through all images and

looking at line profiles) as well as metrics are used. Relevant metrics are the mean
structural similarity index measure (MSSIM) and a normalised version of the mutual
information metric (MI) known as entropy correlation coefficient (ECC). These metrics
are described in section 3.4.

3.3.1.2 Perfusion quantification

Once all images are registered, the ASL data is used to calculate a quantitative perfusion
map using the single-compartment quantification formulas (equation 2.74). Following the
consensus [Nery et al., 2020], a T1 of blood of 1650 ms at 3 T, a blood-tissue partition
coefficient 0.9 mL/g, and a labelling efficiency of 0.95 and 0.85 for PASL and PCASL,
respectively, with correction factor of 0.93nBS to account for nBS background suppression
pulses between labelling and readout, are assumed.

RBF =
6000 · 0.9 ·∆M · e1600/1650

2 · (0.85 · 0.93nBS) ·M0 · 1.65 · (1− e1200/1650)
(3.6)

No slice-dependent time correction for the inflow duration of the labelled spins is included
here as single-slice acquisitions are recommended for renal ASL [Nery et al., 2020].

3.3.1.3 Segmentation

Whole kidney segmentation is first performed manually on the M0 image. A k-means
clustering algorithm is then used to automatically segment cortex and medulla. The
clustering is applied on the quantified perfusion map masked by the manually drawn
whole kidney masks for left and right kidney separately. To further improve the accuracy
of the medulla segmentation mask, an additional erosion step is performed. For this, the
manually drawn whole kidney masks are eroded using [0 0 0 1 1; 0 0 1 0 0; 0 1 1 0 0; 1
1 0 0 0] and [1 1 0 0 0; 0 0 1 0 0; 0 0 1 1 0; 0 0 0 1 1] as structuring elements for left
and right kidney, respectively. The medulla mask produced by the clustering algorithm
is then multiplied with the eroded whole kidney mask to remove any voxels on the outer
edge of the kidney.
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3.3.1.4 Results

The final output of the analysis pipeline are the perfusion map and mean perfusion
values for the whole kidney, cortex, and medulla for left and right kidney, separately.

3.3.2 Synthetic data

3.3.2.1 Synthetic data generation

Synthetic MRI data was generated based on the anatomical structures provided by the
XCAT phantom [Segars et al., 2010], which offers multiple body models. These models
differ in overall size, organ shapes and dimensions, and fat content. XCAT voxel values
were first converted into MRI magnitude values using the spin echo sequence equation
(equation 2.61). Coronal-oblique slice position (rotation angle of 12◦), voxel dimension
of 3x3x5 mm3, repetition time TR = 5000 ms, and echo time TE = 23 ms were chosen
to match recommendations for in vivo acquisitions [Nery et al., 2020]. Relative proton
density ρ, T1 and T2 relaxation times at field strengths of 3 T were taken from the literature
[Wissmann et al., 2014; De Bazelaire et al., 2004; Stanisz et al., 2005] and are listed in
Table B.1. For the relative proton density, air is used as reference so any tissue or organ
filled with air (e.g. lung, intestine) will have a relative proton density ρ equal to one.
Noise was modeled as an additive white Gaussian noise to produce signal-to-noise ratio
similar to in vivo acquisitions. Respiratory motion during free breathing acquisition was
simulated by generating 100 synthetic MR images at equally spaced time points around
the exhalation part of the respiratory cycle.
The generated proton-density weighted MR images with respiratory motion were used

as basis for the M0 and multiple control-labelled image pairs. ASL data sets with fixed
number nMeas of images (one M0 and multiple control-label pairs) were then generated
by randomly selecting nMeas images from the available 100 time points. BS used for
control and labelled images was modelled by reducing the signal intensity of all control
and labelled images to 20% of the signal of the M0 image. Assuming the apparent longi-
tudinal relaxation time of tissue equals the longitudinal relaxation time of arterial blood,
the general kinetic model [Buxton et al., 1998] was used to create both pseudo-continuous
ASL (PCASL) and pulsed ASL (PASL) data sets using the following equations:
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PCASL:

∆M(PLD) =



0 0 < PLD < ∆t

2 · α′ ·M0,T · f ′

6000·λ · T1,b ·
(
e
− ∆t
T1,b − e−

(PLD+τ)
T1,b

)
∆t ≤ PLD < ∆t+ τ

2 · α′ ·M0,T · f ′

6000·λ · T1,b ·
(
e
−PLD
T1,b − e−

(PLD+τ)
T1,b

)
∆t+ τ ≤ PLD

(3.7)
PASL:

∆M(TI) =



0 0 < TI < ∆t

2 · α′ ·M0,T · f ′

6000·λ · (TI −∆t) · e−
TI
T1,b ∆t ≤ TI < ∆t+ TI1

2 · α′ ·M0,T · f ′

6000·λ · TI1 · e
− TI
T1,b ∆t+ TI1 ≤ TI

(3.8)

α′ accounts for the labelling efficiency of PCASL or PASL given by literature as well
as the applied BS pulses. To match sequences used for in vivo imaging, two BS pulses
were assumed, resulting in α′ = 0.85 · 0.932 and α′ = 0.95 · 0.932 for PCASL and PASL,
respectively.

3.3.2.2 Synthetic ASL data sets

Synthetic ASL data without respiratory motion was first considered. For this, a single
XCAT model (model 77) was used. 3 T PCASL and PASL data sets with 25 control-
labelled image pairs, PLD = 1200 ms and τ = 1600 ms for PCASL and TI = 1800 ms
and TI1 = 1200 ms for PASL were generated. To reproduce healthy kidneys, a perfusion
ratio of 5 was assumed between cortex and medulla [Roberts et al., 1995], with cortical
perfusion f ′c set to 250 mL/100g/min and medullary perfusion f ′m set to 50 mL/100g/min.
Arterial transit times ∆t of 1123 ms and 1141 ms were assumed for medulla and cortex,
respectively [Kim et al., 2017].
In a second step, healthy ASL data sets with respiratory motion composed of 25 control-

labelled image pairs, resulting in 51 images randomly selected from the 100 available
time points of the respiratory cycle, were generated. PCASL data was generated with
PLD = 1200 ms and τ = 1600 ms and PASL data was generated with TI = 1800 ms
and TI1 = 1200 ms to match recommendations for in vivo acquisitions. Data sets for 3
T were generated for 5 different XCAT body models (models 77, 80, 92, 93, 108).
Additionally to data sets presenting healthy kidney perfusion, a synthetic data set with

respiratory motion and showing decreased perfusion in the right kidney with cortical
perfusion f ′c set to 100 mL/100g/min and medullary perfusion f ′m set to 20 mL/100g/min
was generated (model 92). This additional data set was used to check that the abnormal
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perfusion present in the data set was not affected by the processing pipeline and would
still be distinguishable from the healthy data sets.
The synthetic ASL data sets with respiratory motion are publicly available at

https://doi.org/10.11588/data/QAHWSF (last accessed 26.08.2022 ).

3.3.2.3 Synthetic data evaluation

The perfusion signal evolution of the generated synthetic ASL data from one XCAT
model (model 77) was analysed by generating data sets of three images (i.e., single control-
labelled image pair) without respiratory motion for various time delays. ASL data was
generated for delay times (PLD or TI) ranging from 0 to 4000 ms in steps of 200 and
with τ = 1600 ms or TI1 = 1200 ms for PCASL and PASL data, respectively. The mean
perfusion-weighted signal in cortex and medulla was plotted against the delay time.

3.3.2.4 Analysis pipeline evaluation

All data sets were analysed with the analysis pipeline described in section 3.3.1. The
pipeline was evaluated in terms of registration, quantification, and segmentation.

Registration

The GR registration with six resolution levels (10, 8, 2, 4, 2, 1) was used. The registra-
tion parameter file can be found in Appendix B.2.1. To assess the effect of the registration
step in the absence of respiratory motion, the data set without respiratory motion was
analysed both with and without the registration step of the analysis pipeline. The ca-
pacity of the registration to correct respiratory motion was assessed qualitatively using
line profiles across the time dimension of the ASL data sets as well as quantitatively with
mean structural similarity index measures (MSSIMs) [Wang et al., 2004] calculated for
all possible image pairs of a data set.

Quantification

The quantification step was evaluated by comparing the mean cortical and medullary
perfusion obtained from the analysis to the values assumed to generate the data sets.

Segmentation

The segmentation results obtained from the processing pipeline were compared to the
segmentation masks provided by the XCAT phantom. For this, the organ masks from the
XCAT phantom were first transformed with the registration matrix used to correct for
the respiratory motion and then rebinarised. Whole kidney, cortex, and medulla binary
masks were finally compared using the Dice index [Dice, 1945].
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3.3.3 In vivo study

3.3.3.1 Imaging sequence

A PCASL sequence with 2D SE-EPI readout was used for perfusion quantification in
the kidneys [Echeverria-Chasco et al., 2021; Nery et al., 2020]. The parameters for the
SE-EPI readout are given in Table 3.5. The TE was set to the lowest possible value
to reduce scan duration. An oblique-coronal image orientation was adopted for all ASL
imaging sequences. Three background suppression (BS) pulses (FOCI pulses with timings
BS1 = 3008.7 ms, BS2= 1228.9 ms, BS3 = 289.8 ms prior to readout [Echeverria-Chasco
et al., 2021]) were applied to null the background tissue signal to 10% [Taso et al., 2019],
with the first BS pulse played out before the labelling and the two other BS pulses played
out between labelling and read-out. Each ASL measurement consisted of 25 control-label
pairs and an M0 image (without pre-saturation and inversion pulses) acquired at the
beginning of the measurement.

Table 3.5: Acquisition parameters of the SE-EPI readout used for the kidney
study.

readout 2D SE-EPI

TR control-label [ms] 5000

TR M0 [ms] 5000

TE [ms] 23

bandwidth [Hz/pixel] 1890

FOV [mm2] 288× 288

number of slices 1

matrix size 96× 96

voxel size [mm3] 3× 3× 5

phase oversampling 25%

parallel imaging GRAPPA 2

partial Fourier 6/8

fat suppression Yes (before excitation pulses)

number of background suppression pulses 3 (2 after labelling pulses)

number of control-label pairs 25

acquisition time [s] 270

The PCASL sequence adopts an unbalanced configuration with Hann-shaped pulses
(duration δ = 500 µs and period T = 1 ms), an average gradient of 0.4 mT/m, a maximum
to average gradient ratio of 7, and an average RF pulse amplitude B1 of 1.6 µT (flip angle
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24.6◦) [Echeverria-Chasco et al., 2021]. The PLD was set to 1200 ms and the labelling
duration to 1600 ms. The sequence diagram for the PCASL 2D SE-EPI sequence is
shown in Figure 3.5. For all acquisitions, the inversion plane with a thickness of 10 mm
was placed 8 cm above the centre of the highest kidney and kept perpendicular to the
aorta to ensure a high labelling efficiency. Details of the sequence planning are shown in
Figure 3.6.

PLDlabelling duration

TR

(b) with ECG triggering

SE-EPI

PLDlabelling duration

TR

(a) no triggering

BS BS BS

BS BS BS

pCASL labelling

pCASL labelling
SE-EPI

trigger 
delay

trigger 
delay

trigger trigger

Figure 3.5: Sequence diagram for the PCASL SE-EPI sequence used for kidney
imaging: (a) without triggering and (b) with ECG triggering.

In addition to sequences for ASL perfusion imaging, standard sequences for anatomical
imaging were used. A volumetric interpolated breath-hold examination (VIBE) sequence
with axial slice orientation was used to obtain T1-weighted images and a Half Fourier
Single-shot Turbo spin-Echo (HASTE) sequence with coronal slice orientation was used
to obtain T2-weighted images. Furthermore, a Modified-Look-Locker-Inversion (MOLLI)
recovery sequence [Messroghli et al., 2004] with the same oblique-coronal slice orientation
as the ASL sequences and 8 contrasts with different inversion times TI (174, 254, 1174,
1254, 2174, 2254, 3174, 4174 ms) was used for T1-mapping.
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imaging slice labelling plane

Figure 3.6: Planning for coronal-oblique PCASL kidney image acquisition. The
imaging slice, shown in yellow, is placed along the long kidney axis, and the labelling
plane, shown in red, is placed 8 cm above the centre of the highest kidney.

3.3.3.2 Measurement series

A total of eleven healthy volunteers were scanned with the Skyra system using a 18-
channel body coil. Four subjects were excluded after imaging as the ASL measurements
presented very low perfusion signal. The remaining subjects included 2 women and 5
men, aged 27± 3 years.
Each volunteer underwent a series of subsequent single-slice MR acquisitions amounting

to a total of 25 minutes and according to the following protocol:

1. Localiser

2. Anatomical images

• T2-weighted - HASTE sequence - transversal

• T1-weighted - VIBE sequence - coronal

3. Perfusion - PCASL 2D SE-EPI sequence - coronal oblique

• test for arm positioning

• no ECG triggering, free breathing

• with ECG triggering, free breathing

• test for synchronised breathing

• no ECG triggering, synchronised breathing

• with ECG triggering, synchronised breathing

4. T1 mapping - MOLLI sequence - coronal oblique
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The test measurements for arm positioning and synchronised breathing refer to short
ASL measurements performed to assess the effect of aliasing artefacts caused by arms po-
sitioned along the body and to allow the subject to adjust themselves to the synchronised
breathing pattern.
ECG triggering is set on the peak of the R-wave of the heart cycle as shown schemati-

cally in the sequence diagram in Figure 3.5. The trigger delay, i.e., the time between the
set off of the trigger and the start of the sequence, was set to 0 ms for this study. Addi-
tional measurements to evaluate the effect of the trigger delay duration were performed
on two subjects (Subject 1 and 6).
Synchronised breathing (SB) refers to a respiratory scheme where the readout occurs

in expiration state. Consequently, the subject always inhales after the SE-EPI readout,
which is acoustically well recognisable for the subject being scanned. To ensure a good
understanding and synchronisation for this respiration strategy, all scanned volunteers
had the opportunity to familiarise with the readout sound and try out the synchronisation
before the measurements and during the dedicated test measurement. The synchronised
respiration strategy is shown schematically in Figure 3.7.

respiratory cycle

PCASL
labelling SE-EPI

PLDlabelling duration

Figure 3.7: Ideal respiratory scheme for the synchronised respiration strategy.
The data acquisition should always occur during the expiration phase of the respiratory
cycle.

3.3.3.3 Data Analysis

The in vivo acquired data was analysed using the processing pipeline described in
section 3.3.1. Groupwise registration of all ASL images was performed with all available
image area options and using four resolution levels (2, 2, 1, 1). The registration parameter
file can be found in Appendix B.2.2. The labelling efficiency was set to 0.85 · 0.932 to
account for the two BS pulses played out after the labelling pulses.

83



3.4. Metrics and statistical tests

The different registration options were compared qualitatively with visual checks and
quantitatively in terms of MSSIM, ECC, and duration. Differences in MSSIM and ECC
distributions before and after registration were tested for statistical significance using
the t-test [Student , 1908] or Wilcoxon signed-rank test [Wilcoxon, 1992] depending on
the results of the Lilliefors test for normality [Lilliefors , 1967]. Considering the best
registration option, the influence of the cardiac cycle and respiration strategy on the ASL
measurement was then evaluated in terms of mean RBF distributions obtained for the
different measurements. Differences in mean RBF distributions were tested for statistical
significance using the t-test [Student , 1908] or Wilcoxon signed-rank test [Wilcoxon, 1992]
depending on the results of the Lilliefors test for normality [Lilliefors , 1967].

3.4 Metrics and statistical tests
Metrics used for image quality assessment, metrics for segmentation or registration

comparisons and statistical tests employed in this work are briefly introduced in this
section.

3.4.1 Signal-to-Noise Ratio

The quality of an image can be assessed by the signal-to-noise ratio (SNR) calculated
according to equation 2.57. In this work, the SNR of CBF maps was calculated as the
mean CBF signal across the whole brain divided by the standard deviation across every
voxel outside of the whole brain. The whole brain mask was composed of the automated
tissue segmentation masks obtained for CSF, GM, and WM.
Another useful metric used to assess signal variations over time is the temporal signal-

to-noise ration (tSNR). It is defined as the mean signal intensity of the time series divided
by its standard deviation. In this work, the tSNR of perfusion-weighted, control, or label
time series was calculated over the whole organ (brain or both kidneys together).

3.4.2 Dice Index

The Dice Index DI was first introduced as a coincidence index to quantify the natural
cooperation of two species [Dice, 1945]. Since then it has become a well-known metric in
the field of (medical) imaging where it is commonly used to compare binary segmentation
masks. The Dice Index compares the extent of overlap of two volumes A and B to the
sum of their total extent

DI =
2 · (A ∩B)

A+B
(3.9)

84



CHAPTER 3. Materials and Methods

As shown by the equation, DI ranges from 0 to 1, with 0 corresponding to no overlap
and 1 corresponding to complete overlap between the two considered volumes.

3.4.3 Structural Similarity Index Measure
To evaluate registration results, similarity metrics comparing image features are neces-

sary. The Structural Similarity Index Measure (SSIM) allows a pixel-by-pixel comparison
of two images considering luminance, contrast, and structure content [Wang et al., 2004].
It ranges from 0 to 1, with 1 corresponding to the comparison of two equivalent images.
It is recommended to calculate the SSIM locally rather than globally over entire images.
For this, the approach presented by Wang et al. (2004) was followed and is the basis for
the mathematical description below. This approach uses a 11 x 11 circular-symmetric
Gaussian weighting function with 1.5 standard deviation.
The luminance of an image composed of discrete signals is estimated as the mean signal

intensity. The luminance comparison function for two signals x and y is then defined as

l(x,y) =
2 · µx · µy + C1

µ2
x + µ2

y + C1

(3.10)

with the mean signal intensities

µx =
N∑
i=1

xi · wi and µy =
N∑
i=1

yi · wi

N is the total number of pixels per image and wi are the individual Gaussian weighting
factors. The constant C1 ensures stability of the luminance function when the sum of
squared signal intensities tends to zero. It is chosen to be C1 = (K1 · L)2, where L is the
dynamic range of the images and K1 << 1.
The contrast of an image is estimated by the standard deviation of the signal intensity.

The contrast function comparing two signals x and y is thus defined as

c(x,y) =
2 · σx · σy + C2

σ2
x + σ2

y + C2

(3.11)

with the standard deviation of signal intensities

σx =

√√√√ N∑
i=1

wi · (xi − µx)2 and σy =

√√√√ N∑
i=1

wi · (yi − µy)2

The constant C2 ensures stability of the contrast function when the sum of squared signal
contrasts tends to zero. Similarly to C1, it is chosen to be C2 = (K2 · L)2 with K2 << 1.
The structure of an image is estimated by the normalised signal intensity. The structure
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function comparing image signals x and y is then defined as

s(x,y) =
σxy + C3

σx · σy + C3

(3.12)

with

σxy =

√√√√ N∑
i=1

wi · (xi − µx)(yi − µy)

The constant C3 ensures stability of the contrast function, similarly to C1 and C2.
The SSIM is mathematically defined as a function of the above defined components

SSIM(x,y) = f
(
l(x,y), c(x,y), s(x,y)

)
= l(x,y)α · c(x,y)β · s(x,y)γ (3.13)

where α, β, γ control the importance of each component. Specifically, the parameters
were set as α = β = γ = 1, K1 = 0.01, K2 = 0.03, and C3 = C2/2 following [Wang
et al., 2004]. To facilitate comparison between two images, a single value can be defined
to quantify the overall similarity between two images. For this purpose, the mean SSIM
(MSSIM) is considered:

MSSIM(X,Y) =
1

M

M∑
j=1

SSIM(xj,yj) (3.14)

where X and Y are the original and registered images, respectively. xj and yj are the
local image content at the jth window. In this work, MSSIMs were calculated using
the pre-implemented MATLABR○ function [Wang et al., 2004] and were used to evaluate
registration results.

3.4.4 Mutual Information

Another useful similarity metric is the mutual information (MI) which stems from
information theory [Maes et al., 1997; Pluim et al., 2003]. It can be understood as the
quantity of information an image contains about another image. In the context of image
registration, a maximised MI, i.e., when the information about an image contained in
another image is maximal, corresponds to the best possible registration between two
images. Mathematically, the MI of images X and Y is defined as

MI = HX +HY −HX,Y (3.15)

HX and HY are the marginal entropies of images X and Y , respectively, and HX,Y is
the joint entropy of images X and Y . Using Shanon’s entropy formulation [Shannon,
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1948a,b], the marginal entropy of an image I with discrete values is defined as

HI = −K
∑
a

pI(a) · log(pI(a)) (3.16)

where K is a positive constant and pI(a) is the probability of signal intensity a in image
I. In the same formalism, the joint entropy of two images X and Y is defined as

HX,Y = −K
∑
a,b

pX,Y (a, b) · log(pX,Y (a, b)) (3.17)

where pX,Y (a, b) is the probability of the signal intensity pair (a, b) in the image pair
(X, Y ). The marginal and joint entropies are estimated using using histogram distribu-
tions of signal intensities. As demonstrated by Hacine-Gharbi et al. (2012), the optimal
total number of bins k is given by

k = round

(
ζ

6
+

2

3 · ζ
+

1

3

)
(3.18)

with ζ =
3
√

8 + 324 ·N + 12 +
√

36 ·N + 729 ·N2, N the total number of pixels in the
image, and round(·) indicating rounding to the closest integer.
On one hand, the marginal entropy of an image can be understood as the average

information contained in the image. On the other hand, the joint entropy of two images
can be understood as the total information contained in the two images. The MI thus
corresponds to the overlap of information contained in both images [Maes et al., 1997].
As the marginal entropies of two images are fixed, maximising the MI is achieved by
minimising the joint entropy and therefore corresponds to minimising the information
contained in the information overlap of the two images. As such, the information overlap
can be minimised without considering how well the information of the two images actually
correspond. To alleviate this drawback of the MI, two normalised metrics were introduced:
1) the entropy correlation coefficient (ECC) [Maes et al., 1997] and 2) the the normalised
mutual information (NMI) [Studholme et al., 1999]. These normalised metrics are defined
as follows:

ECC =
2 ·MI

Hx +Hy

(3.19)

NMI =
Hx +Hy

Hx,y

(3.20)

ECC and NMI are related by

NMI =
2

2− ECC
(3.21)

The ECC ranges from 0 to 1, with 1 indicating a perfect agreement between the two
images compared. The NMI ranges from 1 to 2, with 2 corresponding to the comparison
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of two identical images. In this work, the quality of registration is assessed using the
ECC as its range corresponds to the range of MSSIM, the other metric considered for
assessment of registration quality.

3.4.5 Lilliefors test

The Lilliefors test is used to assess the normality of a distribution by comparing the
actual distribution of data points to a normal distribution [Lilliefors , 1967]. In contrary
to the Kolmogorov-Smirnov test [Kolmogorov , 1933; Smirnov , 1939] on which it is based,
it does not assume that the normal distribution used for comparison is the standard
normal distribution, i.e., with mean equal to zero and standard deviation equal to one.
As such, the Lilliefors test is convenient for testing normality of distributions, which are
expected to differ from the standard normal distribution. The calculation procedure is
similar to the one used for the Kolmogorov-Smirnov test, except for the initial calculation
of the mean and standard deviation of the distribution at hand instead of assuming the
properties of the standard normal distribution. All Lilliefors tests were performed using
the pre-implemented MATLABR○ function. The output of the Lilliefors test is a hypothesis
value h, which is 0 if the tested distribution is normal and 1 otherwise, and a probability
value p, which gives the significance level of the hypothesis rejection. A value of p < 0.05
was considered statistically significant.

3.4.6 Paired t-test

t-tests allow the comparison of the mean of two distributions [Student , 1908]. While one
sample t-tests use a reference distribution with mean equal to zero to which the available
sample is compared, two sample t-tests directly compare the mean of two samples. The
two samples can be either independent, in which case an unpaired t-test is used, or they
can be dependent and require a paired t-test. In this work, t-tests are used to compare
values obtained for the same data sets using different analysis options or obtained from
different measurements of the same subjects. Thus the paired t-test is relevant here. For
a small sample size, as is the case in this work, the results of a t-test are only meaningful if
the distributions being compared follow normal distributions. All t-tests were performed
using the pre-implemented MATLABR○ function. The output of the paired t-test is a
hypothesis value h, which is 0 if the difference of the tested distributions come from a
normal distribution with 0 mean and 1 otherwise, and a probability value p, which gives
the significance level of the hypothesis rejection. A value of p < 0.05 was considered
statistically significant.
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3.4.7 Wilcoxon signed-rank test
The Wilcoxon signed-rank test is used to compare the median of two distributions

[Wilcoxon, 1992]. Unlike the t-test, it is a non-parametric test and thus does not require
normal distribution of the samples even for small sample sizes. The Wilcoxon signed-rank
test is applicable for dependent samples that can be ranked, which corresponds to the
type of data compared in this work. All Wilcoxon signed-rank tests were performed using
the pre-implemented MATLABR○ function. The output of the Wilcoxon signed-rank test
is a hypothesis value h, which is 0 if the difference of the tested distributions come from
a normal distribution with 0 median and 1 otherwise, and a probability value p, which
gives the significance level of the hypothesis rejection. A value of p < 0.05 was considered
statistically significant.
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CHAPTER 4

Results

In this chapter, the results of the three projects are presented. First the results from
the brain project are shown followed by the results from the kidney projects, starting with
the synthetic data and finishing with the in vivo study. Parts of this chapter have been
published in [Brumer et al., 2022a]1 and the description of the corresponding results is
partly replicated here.

4.1 Brain

4.1.1 Output of processing pipeline

The final output of the processing pipeline developed for analysis of brain ASL data are
quantified perfusion maps for the whole brain, gray matter (GM), white matter (WM),
GM+WM as well as mean and standard deviation of the CBF distribution of these com-
partments. All slices of the perfusion maps calculated for GM and WM for the population-
averaged (Pop-Avg) data set of the ASL challenge are shown in Figure 4.1.

Another useful output of the processing pipeline is the evolution of the perfusion-
weighted (or control and label) signal averaged over the whole brain and all slices for the
different control-label pairs and the corresponding temporal SNR (tSNR). The evolution
of the perfusion-weighted signal obtained for the 2D acquisition of Subject 1 from Cohort
1 is shown in Figure 4.2.

1CC BY License
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Figure 4.1: Perfusion maps of GM and WM of the population-averaged data set of
the ASL challenge calculated with scenario I.

Figure 4.2: Evolution of the perfusion-weighted ∆M signal obtained for the 2D
acquisition of Subject 1 from Cohort 1 calculated with scenario I. Each data point is the
mean signal difference between a pair of subsequent control and labelled image. When
using scenario V to analyse the data, control-label pairs number 1, 13, and 33 would be
removed before perfusion quantification as they are outside of the range of mean µ ±
twice the standard deviation σ.

4.1.2 General remarks

Mean CBF and SNR values for all scenarios averaged over the different subject groups
(ASL challenge data, 2D Cohort 1, 3D Cohort 1, Cohort 2) are listed in the Appendix
A in Tables A.1, A.2, A.3, A.4, and A.5. Between subject variations are smaller for the
ASL challenge data than for the in vivo acquired data (Cohort 1 and Cohort 2). For the
reference scenario (scnario I), the standard deviation of mean CBF distributions range
5-6 and 4-10 for the ASL challenge data and the in vivo acquired data, respectively.
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In each scenario, the SNR of the population-averaged data with order of magnitude of
10−17 is substantially lower than that of any synthetic DRO data (order of magnitude
of 10−2). The SNR of the synthetic DROs show about half the SNR of any healthy
volunteer acquisition. All data sets of the ASL challenge showed very smooth signal
evolutions for the perfusion-weighted or control and labelled images with signal standard
deviations across control-label pair number of 0.1-1 a.u.. In vivo acquired data showed
signal standard deviations of up to 8 a.u. and 2 a.u. between control-label pairs for the
2D and 3D acquisitions, respectively.

4.1.3 Effect of perfusion-weighted image calculation

method - ASL challenge data

The contrast between gray and white matter perfusion is noticeably lower for the sub-
tract average (SA) method with absolute value (scenario II) than for the SA method
(scenario I) or the average subtract (AS) method with or without absolute value (scenar-
ios III and IV, respectively) as shown in Figure 4.3. The SA and AS methods (scenarios I
and III) show differences in mean CBF only for the population-averaged data set. Looking
at the individual voxels of the perfusion maps of the whole brain, a maximal difference of
the order of 10 is observed for the population-averaged data and 10−12 for the synthetic
data. The population-averaged data set is an outlier of the group for both scenarios I
and III and the subject ranking is identical in both scenarios (Figure 4.4). The differ-
ences in group mean CBF between scenarios I and III were found to be not significant
(Wilcoxon signed-rank test, p<0.05). Applying the absolute value to either SA or AS
method (scenarios II and IV) clearly shifts the mean CBF values to higher numbers and
yields significantly different group mean CBF distributions compared to scenario I (Figure
4.4). Especially for the SA method applying the absolute value (scenario II) yields mean
and standard deviation of individual data sets that are much higher than is to be expected
for healthy subjects, which leads to a large group standard deviation for scenario II. The
group SNR distributions are much broader for scenario II and IV than for scenarios I and
III but only scenario IV was found to differ significantly from scenario I.

93



4.1. Brain

Scenario IIIScenario I Scenario II Scenario IV

0 20 40 60 80 100
perfusion [mL/100g/min]

Figure 4.3: Representative slice of CBF maps obtained for scenarios I-IV for
DRO-1.
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Figure 4.4: CBF versus perfusion-weighted image calculation methods (scenar-
ios I and II-IV) for the data sets from the ASL challenge calculated for whole
brain, GM, WM, GM+WM. The red line in each boxplot shows the median of the
distribution of mean CBF across all data sets considered. The top and bottom part of
each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to
the highest and lowest data points not considered as outliers. Mean CBF values for each
data set are colour-coded and overlaid on the boxplots representing the entire cohort.
Statistically significant differences between each scenario and the reference scenario I are
indicated by the red stars (p<0.05).

94



CHAPTER 4. Results

I II III IV
Scenario

0

0.1

0.2

0.3

0.4

0.5

S
N
R

Pop-Avg DRO-1 DRO-2 DRO-3 DRO-4
DRO-5 DRO-6 DRO-7 DRO-8 DRO-9

Figure 4.5: SNR versus perfusion-weighted image calculation methods (scenar-
ios I and II-IV) for the data sets from the ASL challenge. The red line in each
boxplot shows the median of the distribution of SNR across all data sets considered. The
top and bottom part of each boxplot represent the 25th and 75th percentiles. The boxplots’
whiskers extend to the highest and lowest data points not considered as outliers. SNR
values for each data set are colour-coded and overlaid on the boxplots representing the
entire cohort. Statistically significant differences between each scenario and the reference
scenario I are indicated by the red stars (p<0.05).

4.1.4 Effect of outlier removal

4.1.4.1 ASL challenge data

Subject rankings of mean CBF and SNR slightly change depending on which outlier
removal option was chosen, especially for scenario VI and IX (Figures 4.6 and 4.7). How-
ever, no statistically significant differences in mean CBF distributions between scenario
I and scenarios V-XI were observed. Differences in SNR distributions were significant
between scenario I and scenarios IX-X. The number of volumes or slices removed before
the final perfusion map is calculated depends on the outlier removal option chosen as can
be seen in Table 4.1. Scenario VII discards no volumes as outliers in any of the data sets.
Scenario X removes more slices than scenario VIII for most data sets.
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Figure 4.6: CBF versus outlier removal options (scenarios I and V-XI) for
the data sets from the ASL challenge calculated for whole brain, GM, WM,
GM+WM. The red line in each boxplot shows the median of the distribution of mean
CBF across all data sets considered. The top and bottom part of each boxplot represent
the 25th and 75th percentiles. The boxplots’ whiskers extend to the highest and lowest data
points not considered as outliers. Mean CBF values for each data set are colour-coded
and overlaid on the boxplots representing the entire cohort. No statistically significant
differences between each scenario and the reference scenario I were found (p<0.05).
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Figure 4.7: SNR versus outlier removal options (scenarios I and V-XI) for the
data sets from the ASL challenge. The red line in each boxplot shows the median
of the distribution of SNR across all data sets considered. The top and bottom part of
each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

Table 4.1: Number of outlier volumes or slices removed during CBF quantifica-
tion for the ASL challenge data sets. Scenarios VIII and X discard individual slices
whereas all other scenarios remove entire volumes. Scenario VI removes control and label
volumes separately and the number of removed outliers are listed as control/label.

Pop-
Avg

DRO-
1

DRO-
2

DRO-
3

DRO-
4

DRO-
5

DRO-
6

DRO-
7

DRO-
8

DRO-
9

V 2 0 0 0 0 0 0 0 0 0

VI 0/0 0/0 1/1 0/0 0/0 0/1 0/0 0/1 3/2 2/1

VII 0 0 0 0 0 0 0 0 0 0

VIII 79 0 0 0 0 0 1 100 103 111

IX 12 6 6 7 7 5 6 9 13 11

X 426 41 34 42 31 26 176 159 102 111

XI 0 0 0 0 0 0 0 2 1 2
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4.1.4.2 In vivo studies - Healthy Volunteers

Cohort 1 2D

The subject ranking varies only little between the different outlier removal options, most
visible differences are for scenario IX (Figure 4.8). Statistically significant differences of
mean CBF distributions were only found between scenario I and scenarios X-XI for the
whole brain and GM, between scenario I and scenarios VI, XI for WM, and between
scenario I and scenario X for GM+WM. Scenario IX shows no statistically significant
difference when considering the entire cohort. However, on a subject-by-subject basis,
mean CBF values differ noticeably. Differences in SNR distributions were found to be
significant between scenario I and scenarios VII-X, with scenario IX yielding lower SNR
for most subjects (Figure 4.9). The number of volumes or slices removed by each outlier
removal option are listed in in Table 4.2.

Table 4.2: Number of outlier volumes or slices removed during CBF quantifi-
cation for the 2D data sets from Cohort 1. Scenarios VIII and X discard individual
slices whereas all other scenarios remove entire volumes. Scenario VI removes control and
label volumes separately and the number of removed outliers are listed as control/label.

Subject 1 2 3 4 5 6 7 8 9 10 11

V 3 4 2 2 1 3 2 2 3 3 3

VI 1/1 2/2 1/2 1/2 1/2 1/1 2/2 0/1 1/0 1/2 0/0

VII 5 4 3 3 4 5 2 4 4 2 5

VIII 118 137 87 107 146 133 70 110 104 98 99

IX 48 43 0 0 42 48 47 0 39 49 1

X 121 123 90 75 206 196 213 131 128 224 0

XI 0 0 0 0 0 1 0 0 0 0 0
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Figure 4.8: CBF versus outlier removal options (scenarios I and V-XI) for the
2D data sets from Cohort 1 calculated for whole brain, GM, WM, GM+WM.
The red line in each boxplot shows the median of the distribution of mean CBF across
all data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.9: SNR versus outlier removal options (scenarios I and V-XI) for the
2D data sets from Cohort 1. The red line in each boxplot shows the median of the
distribution of SNR across all data sets considered. The top and bottom part of each
boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

Cohort 1 3D

The subject ranking and the inter-subject variation of mean CBF vary only little be-
tween the different outlier removal options (Figure 4.10). Only scenarios V and IX for
the whole brain, scenario XI for GM and scenario VIII for WM show a clear asymmetry
of the group as the median is not centred between the 25th and 75th percentiles. Sta-
tistically significant differences of mean CBF distributions were found between scenario
I and scenarios VI, VIII-IX for the whole brain, GM, GM+WM, and between scenario
I and scenarios VI for WM. SNR distributions yield similar inter-subject variations but
scenario IX yields much lower values. Differences in SNR distributions were found to be
significant between scenario I and scenarios V-VI, VIII-X (Figure 4.11). The number of
volumes or slices removed by each outlier removal option are listed in in Table 4.3.
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Figure 4.10: CBF versus outlier removal options (scenarios I and V-XI) for the
3D data sets from Cohort 1 calculated for whole brain, GM, WM, GM+WM.
The red line in each boxplot shows the median of the distribution of mean CBF across
all data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.11: SNR versus outlier removal options (scenarios I and V-XI) for
the 3D data sets from Cohort 1. The red line in each boxplot shows the median
of the distribution of SNR across all data sets considered. The top and bottom part
of each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend
to the highest and lowest data points not considered as outliers. SNR values for each
data set are colour-coded and overlaid on the boxplots representing the entire cohort. No
statistically significant differences between each scenario and the reference scenario I were
found (p<0.05).

Table 4.3: Number of outlier volumes or slices removed during CBF quantifi-
cation for the 3D data sets from Cohort 1. Scenarios VIII and X discard individual
slices whereas all other scenarios remove entire volumes. Scenario VI removes control and
label volumes separately and the number of removed outliers are listed as control/label.

Subject 1 2 3 4 5 6 7 8 9 10 11

V 1 1 2 2 3 2 1 1 2 2 2

VI 1/0 2/2 1/0 2/4 2/1 1/1 2/2 1/0 2/3 4/3 2/2

VII 0 0 0 0 0 2 0 0 3 0 0

VIII 141 147 139 116 105 80 156 113 85 122 132

IX 46 45 48 39 45 46 46 39 48 0 1

X 245 141 186 267 270 272 220 110 272 324 0

XI 2 0 0 1 0 1 1 0 0 0 1
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Cohort 2

The inter-subject variation of mean CBF is smaller than for Cohort 1, with scenario
IX resulting in the largest variations (Figure 4.12). Statistically significant differences of
mean CBF distributions were found between scenario I and scenarios VIII, XI for the
whole brain, between scenario I and scenarios VII-VIII, XI for GM and GM+WM, and
between scenario I and scenarios VII-VIII, X-XI for WM. SNR distributions yield similar
inter-subject variation, with scenario VIII resulting in the smallest variation (Figure 4.13).
Scenario IX yields lowest SNR for all subjects except subject 8, for which no outliers were
detected. Statistically significant difference in SNR distributions were found between
scenario I and scenarios IX-X. The number of volumes or slices removed by each outlier
removal option are listed in in Table 4.4.
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Figure 4.12: CBF versus outlier removal options (scenarios I and V-XI) for the
data sets from Cohort 2 calculated for whole brain, GM, WM, GM+WM. The
red line in each boxplot shows the median of the distribution of mean CBF across all
data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.13: SNR versus outlier removal options (scenarios I and V-XI) for
the data sets from Cohort 2. The red line in each boxplot shows the median of the
distribution of SNR across all data sets considered. The top and bottom part of each
boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

Table 4.4: Number of outlier volumes or slices removed during CBF quantifica-
tion for the data sets from Cohort 2. Scenarios VIII and X discard individual slices
whereas all other scenarios remove entire volumes. Scenario VI removes control and label
volumes separately and the number of removed outliers are listed as control/label.

Subject 1 2 3 4 5 6 7 8 9 10 11

V 2 2 2 2 1 1 2 3 3 3

VI 1/1 1/1 1/1 2/1 3/3 2/3 1/2 1/1 1/2 2/2

VII 5 3 2 5 2 3 4 7 2 5

VIII 88 103 74 137 95 80 114 102 100 90

IX 44 47 42 31 47 44 44 0 47 40

X 121 232 125 165 121 204 146 156 70 156

XI 0 1 0 1 0 0 2 0 0 0
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4.1.5 Effect of M0 corrections

4.1.5.1 ASL challenge data

Brain compartment specific M0 corrections (scenarios XII-XV) all yield similar subject
ranking and degree of inter-subject variation of mean CBF (Figure 4.14). Scenario XV
yields the highest mean CBF values and scenario XIII yields the highest SNR (Figure
4.15). Differences in mean CBF and SNR distributions between scenario I and scenarios
XII-XVI were found to be statistically significant.

I XII XIII XIV XV
Scenario

0

10

20

30

40

50

C
B

F 
[m

L/
1

0
0

g
/m

in
]

Whole Brain

I XII XIII XIV XV
Scenario

0

10

20

30

40

50

C
B

F 
[m

L/
1

0
0

g
/m

in
]

GM

I XII XIII XIV XV
Scenario

0

10

20

30

40

50

C
B

F 
[m

L/
1

0
0

g
/m

in
]

WM

Pop-Avg DRO-1 DRO-2 DRO-3 DRO-4
DRO-5 DRO-6 DRO-7 DRO-8 DRO-9

I XII XIII XIV XV
Scenario

0

10

20

30

40

50

C
B

F 
[m

L/
1

0
0

g
/m

in
]

GM+WM

Figure 4.14: Mean CBF versus M0 correction options (scenarios I and XII-XV)
for the data sets from the ASL challenge calculated for whole brain, GM,
WM, GM+WM. The red line in each boxplot shows the median of the distribution
of mean CBF across all data sets considered. The top and bottom part of each boxplot
represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the highest and
lowest data points not considered as outliers. Mean CBF values for each data set are
colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).
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Figure 4.15: SNR versus M0 correction options (scenarios I and XII-XV) for
the data sets from the ASL challenge.The red line in each boxplot shows the median
of the distribution of SNR across all data sets considered. The top and bottom part of
each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

4.1.5.2 In vivo studies - Healthy Volunteers

Cohort 1 2D

Mean CBF subject rankings and inter-subject variations are also similar for scenarios
I and XII-XV (Figure 4.16). Scenario XIV yields highest mean CBF values and scenario
XIII yields highest SNR (Figure 4.17). Differences between mean CBF calculated over
the whole brain were found to be significant between scenario I and scenarios XII-XV.
Differences in mean CBF calculated over GM and GM+WM were found to be significant
between scenario I and scenarios XII-XIV. No statistically significant differences in mean
CBF calculated over WM were found between any of these scenarios, indicating that the
considered M0 corrections affect WM the least. Differences in SNR distributions between
scenario I and scenarios XII-XVI were found to be statistically significant.
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Figure 4.16: CBF versus M0 correction options (scenarios XII-XV) for for the
2D data sets from Cohort 1 calculated for whole brain, GM, WM, GM+WM.
The red line in each boxplot shows the median of the distribution of mean CBF across
all data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.17: SNR versus M0 correction options (scenarios I and XII-XV) for
for the 2D data sets from Cohort 1. The red line in each boxplot shows the median
of the distribution of SNR across all data sets considered. The top and bottom part of
each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

Cohort 1 3D

Mean CBF subject rankings and inter-subject variations are similar for scenarios I and
XII-XV (Figure 4.20). Scenario XIV yields highest mean CBF values for whole brain,
GM and GM+WM, while scenarios I and XIII yield highest mean CBF values for WM.
Scenario XIII yields highest SNR (Figure 4.21). Differences between mean CBF calculated
over the whole brain were found to be significant between scenario I and scenarios XII,
XIV. Differences in mean CBF calculated over GM were found to be significant between
scenario I and scenarios XII-XIV. Differences in mean CBF calculated over WM were
found to be significant between scenario I and scenarios XII, XIV, XV. Differences in
mean CBF distributions calculated over GM+WM were found to be significant between
scenario I and scenarios XII-XV. Differences in SNR distributions between scenario I and
scenarios XII, XV, XVI were found to be statistically significant.

108



CHAPTER 4. Results

I XII XIII XIV XV
Scenario

0

20

40

60

C
B

F 
[m

L/
1

0
0

g
/m

in
]

Whole Brain

I XII XIII XIV XV
Scenario

0

20

40

60

80

100

C
B

F 
[m

L/
1

0
0

g
/m

in
]

GM

I XII XIII XIV XV
Scenario

0

10

20

30

40

C
B

F 
[m

L/
1

0
0

g
/m

in
]

WM

Subject 1 Subject 2 Subject 3 Subject 4
Subject 5 Subject 6 Subject 7 Subject 8
Subject 9 Subject 10 Subject 11

I XII XIII XIV XV
Scenario

0

20

40

60

C
B

F 
[m

L/
1

0
0

g
/m

in
]

GM+WM

Figure 4.18: CBF versus M0 correction options (scenarios XII-XV) for for the
3D data sets from Cohort 1 calculated for whole brain, GM, WM, GM+WM.
The red line in each boxplot shows the median of the distribution of mean CBF across
all data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.19: SNR versus M0 correction options (scenarios I and XII-XV) for
for the 3D data sets from Cohort 1. The red line in each boxplot shows the median
of the distribution of SNR across all data sets considered. The top and bottom part of
each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

Cohort 2

Mean CBF subject rankings and inter-subject variations are similar for scenarios I
and XII-XV but show some differences when considering the whole brain (Figure 4.20).
Scenario XIV yields highest mean CBF values and scenario XIII yields highest SNR
(Figure 4.21). Differences between mean CBF calculated over the whole brain were found
to be significant between scenario I and scenarios XII-XV. Differences in mean CBF
calculated over GM and GM+WM were found to be significant between scenario I and
scenarios XIII-XV and differences in mean CBF calculated over WM were found to be
significant between scenario I and scenarios XII-XIV. Differences in SNR distributions
between scenario I and scenarios XII-XVI were found to be statistically significant.
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Figure 4.20: CBF versus M0 correction options (scenarios XII-XV) for for the
data sets from Cohort 2 calculated for whole brain, GM, WM, GM+WM. The
red line in each boxplot shows the median of the distribution of mean CBF across all
data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.21: SNR versus M0 correction options (scenarios I and XII-XV) for
for the data sets from Cohort 2. The red line in each boxplot shows the median of
the distribution of SNR across all data sets considered. The top and bottom part of each
boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

4.1.6 Effect of M0 smoothing - ASL challenge data

Increasing the size of the full width at half maximum (FWHM) of the isotropic Gaussian
smoothing kernel results in an increase of mean CBF and SNR values (Figures 4.22 and
4.23). SNR values are substantially worse for no smoothing (scenario XVI). Changing
the FWHM does not affect the subject ranking. Differences in mean CBF distributions
between scenario I and scenarios XII-XVI were all found to be statistically significant
except for WM and scenario XVII. Differences in SNR distributions between scenario I
and scenarios XII-XIX were also found to be statistically significant.
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Figure 4.22: CBF versus full width at half maximum of smoothing kernel ap-
plied on M0 image (scenarios I and XVI-XIX) for the data sets from the ASL
challenge calculated for whole brain, GM, WM, GM+WM. The red line in each
boxplot shows the median of the distribution of mean CBF across all data sets considered.
The top and bottom part of each boxplot represent the 25th and 75th percentiles. The
boxplots’ whiskers extend to the highest and lowest data points not considered as out-
liers. Mean CBF values for each data set are colour-coded and overlaid on the boxplots
representing the entire cohort. Statistically significant differences between each scenario
and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.23: SNR versus full width at half maximum of smoothing kernel applied
on M0 image (scenarios I and XVI-XIX) for the data sets from the ASL
challenge. The red line in each boxplot shows the median of the distribution of SNR
across all data sets considered. The top and bottom part of each boxplot represent the 25th
and 75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points
not considered as outliers. SNR values for each data set are colour-coded and overlaid on
the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).

4.1.7 Comparison of segmentations - ASL challenge data

CBF maps were calculated for the ASL challenge data using either the realigned M0
image or the registered anatomical image for the automated segmentation (scenarios I
and XX). The overlap of binary segmentation masks obtained from the two segmentation
options for CSF, GM, and WM is shown in Figure 4.24 for a representative slice of four
data sets. It is clearly visible that differences exist between masks, especially for CSF in
DRO-1, DRO-5, DRO-9, where segmentation using the M0 image classifies the ventricles
as GM instead of CSF. Similar observations can be made for the entire volume of the
segmentation masks, which were compared with the Dice index (DI) [Dice, 1945]. DIs
calculated for each brain compartment and each data set are plotted in Figure 4.25.
Agreement between the two segmentation options is good for GM and WM for all data
sets with DIs ranging from 0.69 to 0.78 and from 0.68 to 0.80, respectively. For CSF,
the agreement is poor for all synthetic data sets with DIs ranging from 0.18 to 0.25 and
yields a DI of 0.51 for the population-averaged data. As can be seen in Figure 4.26, the
subject ranking based on mean CBF differs between the two scenarios, indicating that
the agreement between segmentation masks is subject-dependent. Statistically significant
differences between mean CBF distributions were found for GM, WM, and GM+WM.
The difference between SNR distributions was also found to be significant (Figure 4.27).
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Figure 4.24: Comparison of binary masks obtained from automated segmenta-
tion on the M0 and on the anatomical image for a representative slice of four
data sets of the ASL challenge data. For each brain compartment, the masks ob-
tained from the M0 are shown in red, the masks obtained from the registered anatomical
data are shown in cyan, and pixels which are present in both masks are shown in white.
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Figure 4.25: Quantitative comparison of segmentation masks obtained from
automated segmentation on the M0 and on the anatomical image using the
Dice index.
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Figure 4.26: CBF versus segmentation image Sscenarios I and XX) for the data
sets from the ASL challenge calculated for whole brain, GM, WM, GM+WM.
The red line in each boxplot shows the median of the distribution of mean CBF across
all data sets considered. The top and bottom part of each boxplot represent the 25th and
75th percentiles. The boxplots’ whiskers extend to the highest and lowest data points not
considered as outliers. Mean CBF values for each data set are colour-coded and overlaid
on the boxplots representing the entire cohort. Statistically significant differences between
each scenario and the reference scenario I are indicated by the red stars (p<0.05).
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Figure 4.27: SNR versus segmentation image (scenarios I and XX) for the data
sets from the ASL challenge. The red line in each boxplot shows the median of the
distribution of SNR across all data sets considered. The top and bottom part of each
boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the
highest and lowest data points not considered as outliers. SNR values for each data set
are colour-coded and overlaid on the boxplots representing the entire cohort. Statistically
significant differences between each scenario and the reference scenario I are indicated by
the red stars (p<0.05).

4.1.8 Effect of number of control-label pairs - Cohort 1

data

Mean and standard deviation of CBF distributions versus number of control-label pairs
for 2D and 3D data sets of subjects 5-8 of Cohort 1 are shown in Figure 4.28. As expected,
the standard deviation decreases with increasing number of control-label pairs considered
for CBF quantification. However, in some subjects, the mean CBF also changes with
increasing number of control-label pairs and it is difficult to define an optimal number
of control-label pairs applicable to all subjects. Data points for the whole brain and for
GM+WM differ only slightly for all subjects, indicating that the CSF contributes only
little to the CBF, as is to be expected. Looking at the group mean CBF distributions
shown as boxplots in Figure 4.29, it is visible that the range between 25th and 75th

percentiles decreases with increasing number of control-label pairs, especially for up to
25 pairs. Furthermore, the median value decreases with increasing number of control-
label pairs for the 3D readout. Outliers are only present for 3D acquisitions of WM
and disappear for a number of control-label pairs higher than 25. For both 2D and 3D
acquisitions, group mean CBF of GM and WM are in the lower part or directly below the
literature range of CBF values for GM and WM of healthy subjects taken from [Deibler
et al., 2008; van Gelderen et al., 2008].
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Figure 4.28: CBF versus number of control-label pairs for 2D and 3D data sets of
subjects 5-8 of Cohort 1 (scenario I). Individual data points indicate mean CBF values
averaged over the whole brain, GM, WM, and GM+WM and corresponding standard
deviations are indicated by the error bars.
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Figure 4.29: Boxplots of group mean CBF versus number of control label-pairs
for all data sets of Cohort 1 (scenario I). The red line in each boxplot shows
the median of the distribution of mean CBF across all data sets considered. The top
and bottom part of each boxplot represent the 25th and 75th percentiles. The boxplots’
whiskers extend to the highest and lowest data points not considered as outliers. Outliers
are indicated as red +. The gray patches indicate the literature range of CBF values for
GM and WM of healthy subjects [Deibler et al., 2008; van Gelderen et al., 2008].
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4.1.9 Comparison of 2D and 3D readout -

Cohort 1 data

A comparison between 2D and 3D EPI readout can be made by analysing the group
mean CBF distributions shown in Figure 4.29. The first thing to notice, is the overall
higher mean CBF values obtained with the 3D readout. Furthermore, the inter-subject
variation (boxplot whiskers) is smaller with the 3D readout than with the 2D readout.
Interestingly, the inter-subject variation decreases substantially between 5 and 10 control-
label pairs for the 3D data sets, whereas for the 2D data sets, the inter-subject variation
only decreases slightly with increasing number of control-label pairs. Subject rankings
are not identical between 2D and 3D acquisitions as can be seen by comparing identical
scenarios in Figures 4.8 and 4.10.

4.1.10 Comparison of patients to healthy volunteers

A single slice of the anatomical image and perfusion maps obtained for GM and WM for
two patients and two healthy volunteers are shown in Figures 4.30 and 4.31, respectively.
From these examples, three main observations can be made. The first observation is the
lower signal intensity of the CBF maps in the patient measurements compared to healthy
volunteer measurements. This difference is due to the difference in number of channels
in the receive coil used for acquiring the data, only 12 for the patient data versus 32 for
the healthy volunteer data. The second observation concerns the distribution of perfusion
values across the brain. On the anatomical image, both patients present a pathology
with abnormal signal intensity compared to surrounding tissue and to the contralateral
side (same area in the other brain hemisphere). Around this area, the perfusion maps
show a decrease in perfusion compared to the contralateral side. This asymmetry of the
perfusion map is not observed in the healthy subjects. The third observation concerns
the performance of the automated segmentation. Looking at the tissue-specific perfusion
maps of the patients, a mismatch can be seen where areas corresponding to WM are
classed as GM by the segmentation and vice-versa. This can be explained by the intensity-
based nature of the segmentation procedure, which is confounded by the abnormal signal
intensities occurring due to the present pathology.
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(a) Patient 9

(b) Patient 17

Figure 4.30: Single slice of anatomical image (left) and perfusion map for GM
(middle) and WM (right) of patients 9 and 17. Images are shown in the ASL space.
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Figure 4.31: Single slice of anatomical image (left) and perfusion map for GM
(middle) and WM (right) of subjects 7 and 11 from Cohort 1 obtained for the 2D data
sets. Images are shown in the ASL space.
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4.2 Kidney - Synthetic data

4.2.1 Data evaluation

The M0, first control and first labelled images of synthetic single-slice PASL and PCASL
data sets are shown in Figure 4.32. The time course of the perfusion-weighted (∆M) signal
in cortex and in medulla for PASL and PCASL data sets are shown in Figure 4.33.

(a) PASL

(b) PCASL
0

20

40

60

75
signal intensity [a.u.]

0

5

10

15

20

25
signal intensity [a.u.]

0

20

40

60

75
signal intensity [a.u.]

0

5

10

15

20

25
signal intensity [a.u.]

Figure 4.32: Exemplary PASL (a) and PCASL (b) single-slice data sets (model
77). Left column: M0 images; middle column: first control images; right column: first
labelled images. The signal intensity of control and labelled images is lower than that of
the M0 due to background suppression.

122



CHAPTER 4. Results

(a) PASL (b) PCASL

Figure 4.33: Time course of the perfusion-weighted (∆M) signal in cortex and in
medulla for the PASL (a) and PCASL (b) data sets of model 77.

4.2.2 Pipeline evaluation

4.2.2.1 Registration

As expected, the registration step has no effect on the images in the absence of res-
piratory motion. Horizontal and vertical line profiles for both right and left kidneys of
a synthetic ASL data set with respiratory motion are shown in Figure 4.34(a). Some
movement is visible between subsequent ASL images in both horizontal and vertical di-
rection before registration. The movement is noticeably reduced after the registration
as indicated by the smoother line profiles and the less abrupt changes in signal inten-
sity. Quantitative evaluation of the registration for all available healthy data sets with
respiratory motion is shown in Figure 4.34(b) in terms of MSSIM distributions before
and after registration. For each model, the MSSIMs increase after registration, indicating
that the resemblance between all images compared increases with the registration. Before
registration, mean and standard deviation of MSSIMs across all healthy data sets with
respiratory motion are 0.4± 0.2 and 0.4± 0.1 for PASL and PCASL, respectively. After
registration, mean and standard deviation of MSSIMs across all healthy data sets with
respiratory motion are 0.5 ± 0.2 and 0.5 ± 0.1 for PASL and PCASL, respectively. The
comparison includes the comparison of identical images, which explains the MSSIM out-
liers equal to 1 in each distribution. The lowest MSSIMs are obtained for comparisons
between M0 and all control or labelled images as M0 differs from all other ASL images in
terms of intensity due to the assumed background suppression. As expected, the MSSIM
values differ little between PASL and PCASL data sets. Across all models, no difference
in MSSIM distributions can be observed between left and right kidney (0.4 ± 0.2 before
registration and 0.5± 0.1 after registration for both).
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4.2. Kidney - Synthetic data

Figure 4.34: Registration evaluation. (a) Line profiles across all ASL images before and
after registration (model 93, PASL). (b) MSSIMs calculated before and after registration
for all possible image pairs within each healthy data set with respiratory motion. The
black line in each boxplot shows the median of the distribution of mean perfusion across all
models. The top and bottom part of each boxplot represent the 25th and 75th percentiles.
The boxplots’ whiskers extend to the highest and lowest data points not considered as
outliers. Outliers are shown as black ‘+’.

4.2.2.2 Quantification

Perfusion maps obtained for the healthy and abnormal PCASL data sets from model 92
are shown in Figure 4.35(a). The decreased perfusion in the right kidney of the abnormal
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data set is well distinguishable from the normal perfusion. The distributions of perfusion
values in each data set for whole kidney, cortex and medulla are shown in Figure 4.35(b).
A clear difference between both data sets is visible for the right kidney with mean perfusion
and standard deviation of 220±40 mL/100g/min and 90±30 mL/100g/min for the cortex
and 50 ± 50 mL/100g/min and 10 ± 30 mL/100g/min for the medulla for healthy and
abnormal data sets, respectively. At the same time, both data sets present very similar
perfusion distributions for the left kidney with mean and standard deviation of 210 +/- 50
mL/100g/min for the cortex and 30 +/- 50 mL/100g/min for the medulla. This indicates
a good reproducibility of the generation of synthetic ASL data as well as the quantification
step of the processing pipeline.
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Figure 4.35: Healthy versus abnormal perfusion (a) M0 image cropped to rectangles
used for separate left and right registration with overlaid perfusion map obtained for the
healthy (left) and abnormal (right) PCASL data sets of model 92. (b) Distributions of
perfusion values for both data sets.
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4.2. Kidney - Synthetic data

Looking at all the data sets with healthy perfusion (Figure 4.36), a narrow interquartile
range of mean perfusion can be observed for whole kidney, cortex, and medulla for both
left and right kidneys and for both labelling strategies. For the whole kidney, mean and
standard deviation of renal perfusion across all healthy data sets with respiratory motion
are 150±40 mL/100g/min and 130±10 mL/100g/min for PASL and PCASL, respectively.
For the cortex, mean and standard deviation of renal perfusion across all healthy data
sets with respiratory motion are 240± 40 mL/100g/min and 210± 20 mL/100g/min for
PASL and PCASL, respectively. For the medulla, mean and standard deviation of renal
perfusion across all healthy data sets with respiratory motion are 50± 20 mL/100g/min
and 49 ± 8 mL/100g/min for PASL and PCASL, respectively. This corresponds well to
the perfusion values originally assumed to generate the synthetic data (250 mL/100g/min
and 50 mL/100g/min for the cortex and medulla, respectively).
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Figure 4.36: Mean renal perfusion averaged over the whole kidney, the cortex,
and the medulla for all healthy data sets with respiratory motion. The black line in
each boxplot shows the median of the distribution of mean perfusion across all models.
The top and bottom part of each boxplot represent the 25th and 75th percentiles. The
boxplots’ whiskers extend to the highest and lowest data points not considered as outliers.
Outliers are shown as black ‘+’.

4.2.2.3 Segmentation

A comparison of segmentation masks obtained for one of the data sets is shown in Figure
4.37(a). The segmentation masks for whole kidney, cortex and medulla obtained from the
processing pipeline match the XCAT segmentation masks well. Dice index distributions
across all models for PASL and PCASL data sets can be found in Figure 4.37(b). Very
good agreement between segmentations is found for whole kidney and cortex, with Dice
indices ranging from 0.80 to 0.93 and from 0.79 to 0.89, respectively. Differences between
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medulla masks are larger but still reasonably good, with Dice indices ranging from 0.64
to 0.84.
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Figure 4.37: Segmentation evaluation. (a) Comparison of segmentation masks of the
PCASL data set of model 108 obtained from the processing pipeline (red) and the XCAT
phantom (cyan). White areas correspond to pixels present in both masks being compared.
(b) Boxplots of Dice indices calculated for the 5 models for the PASL and PCAL data sets
for whole kidney, cortex, and medulla. The black line in each boxplot shows the median
of the distribution of mean Dice index across all models. The top and bottom part of
each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to
the highest and lowest data points not considered as outliers. Outliers are shown as black
‘+’.
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4.3 Kidney - In vivo study

4.3.1 Effect of registration

Registration of all data sets was first visually checked for remaining displacement and
distortions present after each registration option. These qualitative results for all subjects
and the four measurements are shown in Figure 4.38. The bad registration result obtained

Figure 4.38: Regis-
tration distortions.
Green indicates a
good registration for
both kidneys. Yel-
low indicates some
movement or small
distortion is present
after registration on
either left or right
kidney or both. Red
indicates a severe
distortion on either
left or right kidney
or both. No SB ECG
measurement was
obtained for subject
7 due to poor sig-
nal from the ECG
electrodes.
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for subject 3 can be attributed to poor SNR present in all measurements. For subject 4,
the SNR of the first measurement (FB) was visibly better than that of the three subse-
quent measurements (FB ECG, SB, SB ECG). This explains the poor performance of the
registration on all measurements except FB for subject 4. Interestingly, the registration
option R-c is successful despite poor SNR for two out of three measurements (FB ECG,
SB) for subject 4. All measurements of subject 5 contained an artefact of unclear origin
(bright spot) above the right kidney in all control and labelled images, which was not vis-
ible on the M0 images. Reducing the image in any manner resulted in a bad registration
of the M0 image with severe distortion of the right kidney. The registration considering
the whole image (W) had, however, no problem with this artefact. Overall, registration
option R has the lowest percentage of successful registration (48%) and registration option
W has the highest (87%). The percentage of successful registration is 79%, 79%, and 70%
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for H, H-c, and R-c, respectively.

Considering only the kidneys with good registration, quantitative results in terms of
MSSIMs and ECCs calculated before and after registration for the different registration
options are shown in Figure 4.39 and 4.40, respectively. In each case, MSSIMs and ECCs
are significantly higher after registration than before (Wilcoxon signed-rank test with
p<0.05). MSSIMs and ECCs are lowest for the registration options R and R-c. Highest
MSSIMs and ECCs were obtained with the registration option H for all measurements.
Overall, the increases of mean MSSIMs and mean ECCs from before to after registration
are small. The increase of mean MSSIMs from before to after registration is largest with
the registration option R for FB (0.099), SB (0.092), SB ECG (0.10), and with R-c for FB
ECG (0.086). This increase is smallest with the registration option H-c for FB (0.016),
Sb (0.062), and SB ECG (0.048), and with the registration option R for FB ECG (0.054).
The increase of mean ECCs from before to after registration is largest with the registration
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Figure 4.39: Boxplots of MSSIM calculated before and after registration for all regis-
tration options considering only the kidneys with successful registration. The black line in
each boxplot shows the median of the distribution of MSSIMs. The top and bottom part
of each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend to
the highest and lowest data points not considered as outliers. Outliers are shown as black
‘+’. All MSSIM distributions were found to be statistically different after registration
compared to before for each registration option (Wilcoxon signed-rank test, p<0.05).
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Figure 4.40: Boxplots of ECC calculated for before and after registration for all regis-
tration options considering only the kidneys with successful registration. The black line
in each boxplot shows the median of the distribution of ECCs. The top and bottom part
of each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend
to the highest and lowest data points not considered as outliers. Outliers are shown as
black ‘+’. All ECC distributions were found to be statistically different after registration
compared to before for each registration option (Wilcoxon signed-rank test, p<0.05).

option H for FB (0.093), with R-c for FB ECG (0.074) and SB (0.076), and with R for
SB ECG (0.078). This increase is always smallest with the registration option H-c.

The distribution of registration duration measured across all subjects and measurements
for the five registration options is shown in figure 4.41. As expected, option W requires
the least amount of time (31 ± 4 minutes). The H-c option requires the most time with
73 ± 1 minutes and the other three options require about 60 minutes (H - 60 ± 3 minutes;
R - 58 ± 2 minutes; R-c - 55 ± 11 minutes).

The registration option W neither achieves the highest nor the lowest increase in
MSSIMs or ECCs from before to after registration. However, considering the registration
success rate and the duration, the registration option W stands out as the best suited
one.

130



CHAPTER 4. Results

W H H-c R R-c

2000

3000

4000

5000

Ti
m

e
 [

s]

Figure 4.41: Registration duration measured for all registration options considering all
subjects and measurements together. The black line in each boxplot shows the median
of the distribution of registration duration. The top and bottom part of each boxplot
represent the 25th and 75th percentiles. The boxplots’ whiskers extend to the highest and
lowest data points not considered as outliers. Outliers are shown as black ‘+’.

4.3.2 Influence of cardiac cycle and respiration strategy

Based on the results of section 4.3.1, the registration considering the entire image was
chosen and only the data sets with good registration were considered for evaluating the
influence of cardiac cycle and respiration strategy on ASL-based renal perfusion quantifi-
cation.

While non ECG triggered acquisitions took 4 minutes and 27 seconds, ECG triggering
resulted in acquisitions of up to 6 minutes 57 seconds and was not possible for one of the
measurements (subject 7 SB ECG) as the detected electrode signal was too low.

RBF maps obtained for one representative subject for each measurement are shown
in Figure 4.42. Mean perfusion values calculated for whole kidney, cortex, and medulla
for all subjects and each measurement are shown in Figure 4.43. Mean and standard
deviation of perfusion in whole kidney, cortex, and medulla averaged over all kidneys
with good registration for each measurement type are listed in Table 4.5. Differences in
perfusion are noticeable between the four measurements when considering only a single
subject but when considering all subjects, the distributions of mean perfusion are similar.
Only the distribution of mean perfusion for the whole left kidney obtained with the SB
measurement was found to be significantly different from the FB results (t-test, p<0.05).
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Figure 4.42: RBF maps for subject 2 for each measurement.

Table 4.5: Mean and standard deviation of perfusion in whole kidney, cortex, and
medulla averaged over all kidneys with good registration for each measurement type.

FB FB ECG SB SB ECG
whole kidney
[mL/100g/min]

121 ± 35 118 ± 41 109 ± 42 128 ± 39

cortex
[mL/100g/min]

158 ± 62 162 ± 75 148 ± 72 173 ± 68

medulla
[mL/100g/min]

31 ± 26 37 ± 33 31 ± 24 39 ± 28
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Figure 4.43: Mean perfusion distributions for all subjects and each measurement. The
black line in each boxplot shows the median of the distributions. The top and bottom part
of each boxplot represent the 25th and 75th percentiles. The boxplots’ whiskers extend
to the highest and lowest data points not considered as outliers. No outliers are present
in any of the distributions. Only the distribution of mean RBF obtained with the SB
measurement for the whole left kidney was found to be significantly different from the FB
results (t-test, p<0.05).
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The temporal SNR (tSNR) of the perfusion-weighted signal calculated for all subjects
for each measurement is shown in Figure 4.44. Mean and standard deviation of tSNR
across all subjects were 0.9 ± 0.2 for FB, 0.9 ± 0.2 for FB ECG, 0.8 ± 0.3 for SB, and
0.9 ± 0.2 for SB ECG. Results of the t-test showed no statistically significant difference
between tSNR distributions of the four measurement types (p<0.05).
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Figure 4.44: Temporal SNR of the perfusion-weighted signal calculated for all subjects
for each measurement. No statistically significant difference in tSNR is present (t-test,
p<0.05).

The effect of the trigger delay used for ECG triggering on the perfusion quantification
is shown in Figure 4.45 for two subjects. The subject’s heart rate was 72 beats per minute
and 63 beats per minute, and their interval between subsequent R-wave peaks were 835 ±
5 ms and 962 ± 32 ms, for subject 1 and subject 6 respectively. Each subject demonstrates
an individual evolution of the perfusion with increasing trigger delay. For both subjects,
this evolution is however similar for both left and right kidneys and for whole kidney,
cortex, and medulla. For subject 1, the highest perfusion is obtained for a trigger delay
of 300 ms for whole kidney and cortex, and 200 for the medulla. In contrast, subject 6
has a drop in perfusion at a trigger delay of 400 ms.
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Figure 4.45: RBF versus trigger delay for two subjects (columns) and whole kidney,
cortex, and medulla (rows).
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CHAPTER 5

Discussion

The findings of the three projects of this thesis are discussed in this chapter. First, the
comparison of processing options for brain ASL data is addressed. Second, the generation
of synthetic ASL data of the kidneys and evaluation of the in-house developed processing
pipeline are discussed. Third, the evaluation of the influence of cardiac triggering and
respiration strategy on ASL-based renal perfusion quantification is considered. Parts
of this chapter have been published in [Brumer et al., 2022a]1 and the corresponding
discussion is partly replicated here.

5.1 Brain

A total of 42 data sets from the ASL challenge and from healthy volunteers acquired with
different sequences and ASL parameters were analysed. Different methods to calculate
the perfusion-weighted image, to remove outliers, to correct the M0 image, to smooth
the M0 image, and to obtain segmentation masks that were implemented in the in-house
developed processing pipeline presented in section 3.2 were used. The aim of this project
was to assess differences in CBF quantification and in perfusion map SNR arising from
processing options and acquisition parameters.

1CC BY License
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5.1. Brain

5.1.1 Effect of mean perfusion-weighted image calcula-

tion method

The calculation of the mean perfusion-weighted image is central for blood flow quan-
tification based on ASL MRI. The analyses effectuated in this work show that the order
of subtraction and averaging of the individual control and labelled images (SA or AS)
does not yield any significant difference in CBF. Furthermore, no absolute value of sig-
nal difference should be taken as this results in erroneous perfusion values. Subtraction
and averaging are two linear operations and therefore changing the order in which these
operations are performed should not affect the final mean perfusion results. This is true
for all synthetic data sets but not for the population-averaged data, for which higher
mean CBF values were obtained with the AS method. This difference might indicate the
limitations of synthetically generated data: it is difficult to reproduce in vivo acquired
data with perfect accuracy. When looking at the available brain ASL literature, all above
considered methods are used and often it is unclear how the perfusion-weighted image
was calculated exactly, especially in more clinical publications.

5.1.2 Effect of outlier removal

Seven outlier removal options based on volume or slice rejection were compared in
terms of CBF and SNR distributions. No statistically significant differences between CBF
distributions obtained with different outlier removal options was observed for the data sets
from the ASL challenge and the SNR was found to be significantly decreased when using
the AOC (scenario IX) and pAOCSL (scenario X) options. For the data sets from Cohort
1 and Cohort 2, CBF and SNR distributions seem similar but are significantly different in
some cases. AOC always yielded a larger inter-subject variation and resulted in the lowest
SNR for most subjects. Across all considered cohorts, only the SA mean ± two standard
deviation option (scenario V) yielded no statistically significant difference to no outlier
removal (scenario I). The difference between results obtained with the ASL challenge data
sets and the in vivo acquired data, highlights an important reality: synthetic data and
digital reference objects (DROs) are of great value but the transfer of findings based on
DROs to actual data is limited and further investigation is warranted to understand the
origin of the observed differences. In this case, difference may originate from differences
in the employed readout and ASL parameters for the population-averaged data set.

Previous ASL publications focusing on outlier removal options assess the quality of out-
lier removal options in terms of SNR, reproducibility, and differentiability of CBF maps.
Tan et al. (2009) introduced the z-score based filtering approach on a volume-by-volume
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and a slice-by-slice basis (scenarios VII and VIII, respectively). They demonstrated that
these filters allowed the reduction or even removal of ring, CSF shine-through, and edge
artefacts. In many cases where perfusion maps were found to be useless when using
all acquired data, it was possible to produce diagnostically valuable perfusion maps af-
ter outlier removal. Nevertheless, some of the observers (three neuroradiologists and a
physician) preferred the unfiltered images presenting a slightly higher SNR to the filtered
images, highlighting the importance of image evaluation by specialised diagnosticians.
Maumet et al. (2014) applied a Huber’s M-estimator for voxel-by-voxel outlier removal
using simulated and real data. They demonstrated that both their method and the z-score
method yielded more robust CBF maps, with a clear superiority of their method for the
simulated data. Fazlollahi et al. (2015) compared the z-score method [Tan et al., 2009]
to the Huber’s M-estimator method [Maumet et al., 2014] and to a generalised linear
model (GLM) approach [Wang , 2012]. They observed an improvement in CBF reliability
for all outlier removal options they considered. The generalised linear model approach
yielded the largest improvement in CBF and was the only one resulting in an increased
tSNR. Wang et al. (2013) first introduced the adaptive outlier cleaning (AOC) algorithm
(scenario IX), which uses Pearson correlation coefficients between individual CBF maps
and the mean CBF map and removes volumes with smallest correlation. However, their
study focused on multi-site CBF evaluation in cognitively normal adults and adults with
mild Alzheimer’s disease and did not explicitly evaluate or discuss the effect of outlier
removal. Dolui et al. (2017) introduced the SCORE algorithm (scnario XI), which makes
an opposite assumption than the AOC algorithm and removes CBF volumes with highest
correlation to the mean CBF. They compared SCORE to volume-based z-score [Tan et al.,
2009], Huber’s M-estimator [Maumet et al., 2014], GLM [Wang , 2012] and AOC [Wang
et al., 2003] methods. They found SCORE to outperform all other methods in terms
of reproducibility in healthy subjects and differentiability between healthy and diseased
subjects. While all methods were able to differentiate between healthy and diseased sub-
jects, SCORE yielded the lowest standard errors leading to higher statistical power for
lower sample sizes. Overall, more volumes were discarded by SCORE than by z-score and
AOC. In our much smaller group of data sets, SCORE always removed less volumes than
z-score and AOC. The AOC method was later refined by including prior knowledge of the
expected perfusion contrast and modifying it to a slice-by-slice method called pAOCSL
(scenario X) [Li et al., 2018a]. The work demonstrated that pAOCSL yields significantly
higher SNR than AOC and further improves repeatability of CBF quantification. This
finding was reproduced in the cohorts considered here, with AOC yielding much lower
SNR than pAOCSL for nearly all subjects. In some cases (e.g. Subject 8 from Cohort 2),
no outlier was found with the AOC option but some slices were removed by the pAOCSL
option, resulting in a decrease in SNR.
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Overall, the literature is consistent in recommending the removal of outliers. However,
as applying different outlier removal options partly results in significantly different CBF
values, it is impossible to determine the best option as long as no CBF ground truth is
available. Furthermore, a detailed evaluation of the effect of outlier removal on patient
data is warranted to ensure real perfusion abnormality remain after outlier removal.

5.1.3 Effect of M0 corrections

The individual and combined effect of T1, T2 or T ∗2 , λ corrections applied to the M0
image in comparison to no correction was assessed in terms of CBF and SNR. Overall,
the T1 correction had the smallest effect of all individual corrections on CBF. This is
not surprising as all data sets were acquired or generated with a TR longer or equal to 5
seconds, which allows for sufficient relaxation of the labelled spins between each excitation.
The T2 or T ∗2 correction lead to an increase of CBF values for all cohorts except the 3D
data sets from Cohort 1. Proper T ∗2 correction would require dedicated measurements as
the apparent relaxation time is dependent on the scanner. This was not done in this work
as it would have increased the acquisition time. Instead, the values reported by Pinto
et al. (2020) were assumed. The λ correction yields an increase of CBF values for GM
and a decrease for WM. Combining all corrections resulted in an increase of CBF for the
ASL challenge data but a decrease for all other cohorts. This suggests the T1 correction
has most impact on the healthy volunteer data acquired at our institute whereas the other
corrections are more important for the challenge data sets. This finding highlights that
the effect of different corrections is cohort dependent and might have to be assessed for
each imaging centre individually. Differences in SNR are overall small but statistically
significant. The highest SNR was achieved with the T2 or T ∗2 correction for all cohorts.

The approach used in this work, combines the available brain compartment segmen-
tation masks and literature values for blood-tissue partition coefficients and relaxation
times to obtain the equilibrium magnetisation of blood M0,b from the measured mag-
netisation equilibrium M0,BC of all brain compartments (GM, WM, and CSF). Several
studies have also looked into the estimation ofM0,b. Using literature values and own mea-
surements for apparent transversal relaxation times, Çavuşoğlu et al. (2009) compared
three methods to obtain M0,b from M0,BC from global scaling factor from WM, or CSF,
or local scaling from GM. They found highest CBF values for the method based on GM
and lowest CBF for the method based on CSF. They used a blood-tissue partition coeffi-
cient λ of 0.84, 1.15, 1.02 for WM, CSF, and GM, respectively. The apparent transversal
relaxation time measured were 44.7 ms, 74.90 ms, and 44.2 ms for WM, CSF, and GM,
respectively. While the blood-tissue partition coefficient differ only little from the values
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assumed in this work, the apparent transversal relaxation times are all lower in the study
by Çavuşoğlu et al. (2009), especially for CSF. Fazlollahi et al. (2015) reproduced the
methods compared by Çavuşoğlu et al. (2009) and an additional method with global
scaling from GM. They found the method using local scaling to yield best reproducibility
and highlight its advantage with respect to the correction of B1 inhomogeneities. More
recently, Pinto et al. (2020) looked into the effect of using a brain-averaged blood-tissue
partition coefficient versus a brain compartment specific or a partial volume corrected
coefficient. Overall, they found considerable differences in quantified CBF depending on
the choice of coefficient.

M0 corrections based on local corrections are theoretically most accurate but the accu-
racy directly depends on precise knowledge of the correction factors (relaxation times and
blood-tissue coefficient). This can be challenging in patients presenting brain compart-
ments with altered relaxation properties, carrying the risk of a wrong perfusion quantifi-
cation when using this type of corrections. It is therefore of the utmost importance that
any perfusion quantification reports include all details about corrections employed as no
meaningful comparison between studies is otherwise possible.

5.1.4 Effect of M0 smoothing

The M0 image used as scaling in the perfusion quantification model is often smoothed
before it is used in order to diminish spatial noise. In this work, smoothing was performed
with a Gaussian filter and its full width at half maximum (FWHM) was varied in multiples
of the voxel size of the ASL challenge data. The smoothing procedure always showed to
have a significant effect on the final CBF quantification. The larger the FWHM, the less
variation in CBF was observed between analysed data sets. This could be explained by
excessive blurring (oversmoothing) occurring when using large FWHM. Nevertheless, it
is recommended to use some smoothing to reduce the effect of partial volume present at
voxel sizes larger than the anatomical structure detail as is the case in ASL data.

Fazlollahi et al. (2015) evaluated the effect of smoothing both the perfusion-weighted
and M0 image and compared different filters (Gaussian smoothing, Wiener, anisotropic
diffusion, wavelets). They found the Gaussian filter to yield best reproducibility but
noticed it also caused some oversmoothing. Pinto et al. (2020) compared median filters
with different kernel sizes applied to smooth the M0 image. They found also significant
differences between the final CBF values but emphasised that these differences are small.
But, contrary to the results in this study, they found the default smoothing kernel to yield
no significant difference as compared to using no smoothing. No assessment in terms of
SNR was performed by Pinto et al. (2020).
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From this work and previous work, it remains unclear which filter is best and this
choice probably also depends on the data to be analysed. Nonetheless, the smoothing
filter used and its properties have a significant impact on the perfusion quantification
(noise reduction, oversmoothing) and should therefore be reported in full detail to allow
meaningful comparison between multiple studies.

5.1.5 Comparison of segmentations

To obtain CBF values specific for GM and WM, a segmentation is necessary. Two
images can be considered as basis for the segmentation: an anatomical image if available
or the M0 image used for perfusion quantification. A direct comparison of these two
segmentation possibilities has not been performed before and most published studies use
an anatomical image. The M0 image has a lower resolution than the anatomical image so
a segmentation performed on the higher resolution image is expected to be more accurate,
which the analysis shown here also confirms. While CBF values calculated over the entire
brain are unaffected by the image chosen to perform the segmentation, differences in mean
CBF values obtained for GM and WM are statistically significant. Nevertheless, when no
anatomical data is available or in cases where the registration between anatomical and
ASL data is challenging, using the M0 image as basis for the segmentation is feasible and
still yields useful perfusion information.

5.1.6 Effect of number of control-label pairs

Increasing the number of control-label pairs acquired increases the SNR of the perfusion
map at the expense of increased acquisition time. A total of 50 pairs of control and
labelled images was acquired for the healthy volunteer data and perfusion quantification
was performed on sub-samples of the images to assess the change in CBF with increasing
number of images considered for the analysis. Overall, the change in CBF mean and
standard deviation calculated across the whole brain, GM, WM is subject-dependent and
it was not possible to determine an optimal number of control-label pairs that would fit
all measured subjects. Choosing the number of control and labelled images acquired for
ASL-based perfusion quantification depends on numerous factors and the number of pairs
used varies from study to study. It always has to be a compromise between achieved SNR
and acquisition time, especially for clinical applications.
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5.1.7 Comparison of 2D and 3D readout

Two PCASL sequences using 2D or 3D GRE-EPI readout were used for the healthy
volunteer data acquisition. CBF values obtained with the two different readouts are
not necessarily comparable as final CBF values across the healthy volunteers considered
here showed overall higher values obtained with the 3D readout. This is because a 3D
readout yields higher SNR per volume thus ensuring a better signal level for the perfusion-
weighted image and quantified perfusion map. The sequences used here do not include
any background suppression. Therefore the effect of a varying background suppression
efficiency across slices in the 2D acquisitions does not have to be considered. When
choosing which sequence to use, it is important to take all aspects into consideration. 3D
acquisitions have an SNR advantage but 2D multi-slice acquisitions contain additional
valuable information. As each acquired slice has a different effective delay time, a single
delay time 2D multi-slice acquisition is intrinsically a multi-delay time acquisition. This
additional information can be used to determine the arterial transit time [Camargo and
Wang , 2022].

5.1.8 Comparison of patients to healthy volunteers

The in-house developed pipeline was able to reproduce perfusion asymmetries resulting
from brain tumour or metastases in patients. Unfortunately, no segmentation of the
tumour and surrounding oedema was available for the patient data. As such it was not
possible to do the standard comparison of perfusion in pathology and normal appearing
contralateral side. Instead, automated segmentation into CSF, GM, WM was performed
and yielded erroneous brain compartment masks close to the pathology. An interesting
approach to avoid this issue are deformable brain atlases, which account for changes in
tissue appearance and position due to pathology. Future work should look into expanding
the developed analysis pipeline to yield more valuable perfusion information for patient
data sets.

5.1.9 Limitation

The main limitation of the comparison of processing options presented here is the lack
of ground truth. For in vivo acquired data, literature values of healthy organ perfusion
can be used for comparison but the range of perfusion values currently found for brain
is large. Furthermore, the influence of the measurement chosen to assess perfusion is not
straightforward and differences between literature values and measured values may well
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arise from differences in measurement method (e.g. sequence type and parameters). For
the data provided by the ASL challenge, the ground truth information will be available
once the results have been published but the exact publication date has been postponed
and is still unknown. Once the ground truth is available, the scenarios evaluated here
should be compared to it in order to assess which of the scenarios yield CBF distributions
closest to the ground truth.

5.2 Kidney - Synthetic data

Synthetic data mimicking in vivo acquisitions is of great value as it does not include any
variability stemming from acquisition and allows focusing solely on data processing. For
this purpose, synthetic renal ASL data sets of the kidneys simulating in vivo acquisitions
were generated using body models from the XCAT phantom, the general kinetic model
and literature values for tissue properties. Sequence and ASL parameters were set in
accordance with the current consensus [Nery et al., 2020]. The synthetic data was then
used to evaluate the in-house developed renal ASL processing pipeline (section 3.3.1) in
terms of registration, quantification, and segmentation.

5.2.1 Data evaluation

The generation of synthetic renal ASL data presented in this work allows flexible choice
of parameters and benefits from the multitude of available XCAT body models presenting
different organ sizes and shapes. An additional style transfer to further increase the
resemblance between synthetic and real ASL data would be beneficial. This could be
done using CycleGAN networks as previously demonstrated [Bauer et al., 2021]. The five
models included in this work were selected at random from the available adult models.
Future work should also involve the expansion of the synthetic data sets to additional
models as well as include additional pathological data sets (e.g. representing different
stages of chronic kidney disease).

In 2019, Antolak and Jackson (2019) introduced a simple ASL digital reference object
to compare software packages. It consists of a square block of voxels with a range of
perfusion values (10-210 mL/100g/min), considering only PCASL labelling and including
noise [Antolak and Jackson, 2019]. This simple approach does not resemble real-life
cases and thus allows only limited evaluation or comparison of processing software. More
recently a brain ASL digital reference object was introduced [Oliver-Taylor et al., 2021a]
and used to set up a challenge for comparison of ASL processing options employed in
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research and clinical settings [Anazodo and Croal , 2021; Anazodo et al., 2021]. The authors
also looked into generating synthetic ASL data of the kidneys using the same framework
[Oliver-Taylor et al., 2021b]. Their approach used cortex and medulla segmented from an
in vivo MR scan of a single healthy volunteer and a perfusion of 215 mL/100g/min and 81
mL/100g/min were assigned to cortex and medulla, respectively. This approach requires
actual MRI acquisitions, which can be challenging to obtain due to scanner availability
and potential artefacts.

5.2.2 Pipeline evaluation

5.2.2.1 Registration

Good registration to correct for respiratory motion is crucial for accurate perfusion
quantification based on ASL MRI data as it requires the subtraction of labelled images
from control images. A mismatch of anatomical structures between any of the images
used for calculation of the perfusion map would result in erroneous perfusion values.

The registration strategy employed in the in-house developed processing pipeline per-
forms well on the synthetic data. A separate registration of left and right kidney was
chosen as each organ may experience a different motion during the respiratory cycle. As a
coronal oblique slice positioning was used, the respiratory motion, which is mainly along
the craniocaudal direction, will result in a displacement of the kidneys not only within
the plane of imaging but also out of it. This can result in varying organ shapes across the
ASL time series and motivated the choice of a non-rigid registration strategy.

Finding the best suited registration strategy and parameters is difficult and some adap-
tion might be necessary when analysing data from different cohorts. The performance
of groupwise registration applied to ASL might be hindered by the difference of signal
intensity between M0, and control and labelled images. Another registration strategy
which has been shown to yield good results for motion correction in ASL of the my-
ocardium consists of a combination of groupwise registration of control and of labelled
images followed by pairwise registration of mean control image and mean labelled image
to the M0 image [Vidaurreta, 2020]. Variational frameworks for non-rigid registration
have been shown to yield good results for dynamic contrast enhanced (DCE) MR images
of the kidneys [Merrem et al., 2013] and could be evaluated for renal ASL. Deep learning
based registration is also an interesting alternative as it has already demonstrated great
potential [Zöllner et al., 2020]. However, the success and transferability of this approach
is limited by the amount of data available for training. The framework for generation of
synthetic ASL data presented here can be used to complement in vivo acquired data for
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network training purposes, as previously suggested for other imaging applications [Bauer
et al., 2021].

5.2.2.2 Quantification

The quantification model employed here is a single compartment model and assumes
the same longitudinal relaxation time for tissue and blood. While this corresponds to
the current recommendations [Nery et al., 2020], it contains a number of assumptions
simplifying the complexity of blood and nutrient delivery to an organ. The framework
for generation of synthetic ASL data presented here can easily be modified to include
perfusion-weighting in the images based on a different and more complex model. In
addition, it offers a large flexibility to modify other assumed tissue properties to simulate
diseases involving impaired renal perfusion as well as altered tissue relaxation times and
arterial transit times.

5.2.2.3 Segmentation

The segmentation procedure employed in the in-house developed processing pipeline is
a compromise between time-intensive manual segmentation and accuracy of automated
segmentation. Automated whole kidney segmentation is complicated, especially for the
left kidney due to the closeness of the spleen, which presents similar intensities as the
kidneys in the M0 image used for segmentation. Automated segmentation of cortex and
medulla works well on the quantified perfusion map as perfusion differs greatly between
cortex and medulla in healthy kidneys. However, this approach will not yield good results
in cases where cortical and medullary perfusion are similar and further improvement is
warranted for application in clinical cohorts.

Kidney segmentation based on k-means clustering has previously been used on entire
MR images with three clusters (cortex, medulla, background) [Zöllner et al., 2009] instead
of running it on each kidney separately and thus using only two clusters (cortex and
medulla) as done in this work. In the ASL processing pipeline used here, the image is
already separated in two for separate registration of left and right kidney. A segmentation
performed separately on each kidney is thus more straightforward. Another automated
segmentation for DCE MR images yielding good results uses wavelet-based clustering [Li
et al., 2012]. However, it is not directly applicable to ASL images as it makes use of the
DCE-specific changes in signal intensity during contrast agent uptake, which reflect kidney
functionality. An automated segmentation of the kidneys in twelve concentric objects
(TLCO) has been introduced for evaluation of renal oxygenation [Milani et al., 2017].
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However, this method does not allow separation of cortical and medullary compartments
of the kidneys and is thus less appealing for assessment of renal perfusion. Deep learning
has also successfully been applied for kidney segmentation for both healthy and diseased
kidneys [Schnurr et al., 2019; Zöllner et al., 2021; Bones et al., 2022]. In most cases,
cortex/medulla segmentation is performed on anatomical T1-weighted or T2-weighted data
or even on quantified relaxometry maps [Zöllner et al., 2021, 2012; Bones et al., 2022].
However, this requires an additional step of registration of the anatomical and ASL data,
which is not always easily achievable.

5.3 Kidney - in vivo study

While a consensus on ASL acquisition and processing has been published in 2015 for
brain imaging [Alsop et al., 2015], kidney ASL imaging had been lacking such a consensus
until recently. In 2020, a consensus for kidney ASL imaging based on experts’ answers to
questionnaires was published [Nery et al., 2020]. To assess in more detail certain aspects
of kidney ASL imaging and support this first consensus with data, a study in healthy
volunteers was performed in collaboration with the radiology department of the Clínica
Universidad de Navarra, Pamplona, Spain. The project aimed to determine whether
the cardiac cycle and respiration strategy have a significant effect on renal perfusion
quantification based on ASL MRI data. For each volunteer, ASL data was acquired both
in free breathing and synchronised breathing and with or without ECG triggering.

5.3.1 Effect of registration strategy

The registration is an essential part of the processing of ASL data as the perfusion
quantification requires the subtraction of labelled images from control images and any
mismatch of structures would result in erroneous perfusion values. A total of 27 data sets
of healthy volunteers was analysed using the in-house developed processing pipeline with
each of the five registration options. Good registration was only obtained in 73% of the
cases. This was partly due to poor SNR, especially of labelled images (subject 3 and 4),
or due to prominent artefacts close to a kidney (subject 5). From the five image areas
considered for registration, best results were obtained when considering the whole image
(good registration for 47 out of 54 kidneys). The MSSIMs and ECCs calculated for each
image pair of a data set increased significantly after registration compared to before for all
registration options, indicating that all registration options improve the similarity between
all ASL images. Overall, MSSIMs were always larger than ECCs but both metrics showed
equivalent results for the comparison of registration options. Another important aspect
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is the duration of registration. Only the whole image option performs the registration for
left and right kidney simultaneously and was therefore the fastest (31 ± 4 minutes). For
all other options, where left and right kidney are registered separately, the duration of
registration is not linear with the number of pixels present in the image area considered
for registration. Registration considering the image cropped to half took the longest (73
± 1 minutes) and the three other options took about 60 minutes for both kidneys. Based
on these results, the non-rigid groupwise registration performs best when considering the
entire image and registering both kidneys simultaneously. This option was used for the
subsequent measurement comparisons.

The current consensus for renal ASL [Nery et al., 2020] recommends a separate regis-
tration of left and right kidney as the kidneys might be subject to different directions of
movement during the subject’s respiratory cycle. This is especially important when using
rigid registration, which would not allow local differences in the transformation field. A
non-rigid transformation was considered in this work to better account for the through
plane motion of the kidneys during the respiratory cycle. As all images were acquired
in a coronal-oblique orientation, motion within and through the imaging plane might be
present between the different ASL images. The registration parameters were optimised on
the first couple of data sets and the same parameters were used for all data sets. It might
be possible to further optimise the registration parameters to obtain good registration
even for the more challenging data sets. However, this is a lengthy procedure and it is in
no way certain that it will lead to registration parameters that work well for every data
set.

5.3.2 Influence of cardiac cycle and respiration strategy

Perfusion values for all kidneys with good registration were below the expected range
of 151 ± 37 mL/100g/min for the whole kidney [Conlin et al., 2017], and 278 ± 5
mL/100g/min and 55 ± 25 mL/100g/min for cortex and medulla, respectively [Roberts
et al., 1995]. Percentage differences between literature values and mean perfusion values
averaged over all kidneys with good registration were equal to or below 32%, 61%, and 53%
for whole kidney, cortex, and medulla, respectively. Across all subjects, no statistically
significant difference in perfusion and tSNR was found between the four measurements,
except for the synchronised breathing measurement when considering the whole left kid-
ney. These results suggest that the choice of respiration strategy and ECG triggering has
little impact on renal perfusion quantification using PCASL.

Blood flow in the aorta where labelling occurs for ASL-based renal perfusion quantifi-
cation is known to be pulsatile and the flow velocity varies with the cardiac cycle [Kröner
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et al., 2014; Echeverria-Chasco et al., 2021]. The labelling efficiency achieved by adia-
batic inversion is dependent on the flow velocity of the spins (equation 2.65) and thus
also varies with the cardiac cycle [Maccotta et al., 1997; Nezamzadeh et al., 2010; Zhao
et al., 2017; Schollenberger et al., 2020; Echeverria-Chasco et al., 2021]. Therefore, the
hypothesis was that because of these physiological attributes, ASL-based renal perfusion
quantification depends on the cardiac phase in which the data was acquired. An ECG
triggered measurement should ensure a constant labelling efficiency as the labelling always
occurs at the same time point of the cardiac cycle. A potential explanation for the absence
of difference between triggered and non-triggered acquisition is that multiple control and
labelled images are subtracted and averaged to obtain perfusion values. Thus, differences
in labelling efficiency between the different images can be averaged out, yielding the same
results as in ECG triggered measurements. This work focused on ECG triggering with
a trigger delay set to 0 ms to obtain the shortest possible acquisition time. However,
the dependence of perfusion quantified with ECG triggered ASL on the chosen trigger
delay seems to be subject dependent (Figure 4.45). Choosing a trigger delay of 0 ms
instead of a longer delay could also be the reason for the absence of difference between
triggered and non-triggered measurements. The ECG triggered measurements lasted up
to 150 seconds longer than non-triggered measurements lasting 270 seconds in total. Fur-
thermore, difficulties with low electrode signal were encountered, which lengthened the
overall duration of the imaging examination and resulted in an impossibility to perform
the measurement in one case. Despite theses challenges, a more detailed analysis would
be beneficial for better understanding of the effect of the cardiac cycle on ASL-based renal
perfusion quantification.

So far only one published work looked into the difference in renal perfusion quantified by
ASL acquisitions with and without ECG triggering [Takei et al., 2018]. They found that
only diastolic triggering yielded robust perfusion-weighted images while systolic triggering
or no triggering resulted in signal reduction and thus required the acquisition of a larger
number of control and labelled images to achieve the same quality of perfusion maps. Most
ASL literature focuses on the brain and a few studies have assessed the influence of the
cardiac cycle on measured cerebral perfusion. In these studies, triggering was performed
either based on a pulse oxymeter or an ECG. The first study found cardiac pulsation to
significantly affect the ASL signal [Wu et al., 2006]. Wu et al. (2009) compared the effect
of pulsatile flow on PASL and CASL and found PASL to be more affected by it, which is
to be attributed to the difference in labelling duration between the two labelling schemes.
Furthermore, the CASL signal stability was not improved by using triggering. Fushimi
et al. (2013) looked at the difference in transit delay of the labelled spins to the imaging
volume and found it to be longer in diastolic phase than in systolic phase. They found
that triggering has a high impact on cerebral perfusion quantification. Chen et al. (2017)
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investigated the influence of cardiac triggering on the labelling efficiency of PCASL applied
to the brain and found an increased stability when using triggering. Verbree and van Osch
(2018) also focused on PCASL in the brain and evaluated the effect of cardiac triggering
applied at the end of the labelling pulses. Their simulations demonstrated that putlsatile
flow influences both the generation and the delivery of labelled spins to the imaging
volume and that lower heart rates lead to larger signal variations over the cardiac cycle.
However, they found no difference in mean ASL signal or temporal evolution of the ASL
signal in their in vivo experiments. Li et al. (2018b) investigated the effect of pulsatile
flow on PCASL acquisitions and showed that non-triggered acquisitions yield unstable
signal especially close to large vessels and can even result in ghosting artefacts. They
estimated that 44% of the noise in ASL data is to be attributed to pulsatile flow. They
found cardiac triggering to increase the SNR and tSNR of PCASL and noticed that both
control and labelled images vary with the cardiac phase according to the same pattern.
They also observed a higher perfusion signal when triggering occurred in systolic phase
instead of diastolic phase. Franklin et al. (2020) looked into the dependence of PCASL,
VSASL, and AccASL on the cardiac phase. They found signal changes of up to 26%, 36%,
64% for PCASL, VSASL, and AccASL, respectively. They also noticed that the peak of
PCASL signal coincides with the flow velocity peak. Schollenberger et al. (2020) evaluated
the difference between triggered and non-triggered acquisitions in terms of image quality
assessed blindly by four observers and by calculating SNR and tSNR for two ROIs as
well as contrast-to-noise ratio (CNR). The observers agreed that triggered acquisitions
yielded less artefacts from pulsatile flow and thus an improved image quality. While no
significant differences in SNR and tSNR were observed, the CNR was significantly better
in triggered acquisitions. Overall, the results from these studies in the brain show partly
contradictory results and the general use of cardiac triggering is not recommended before
further evidence is available [Hernandez-Garcia et al., 2022].

Choosing a synchronised breathing pattern does not make registration redundant as
respiratory motion was still visible for all subjects. Furthermore, the registration did not
perform better on the measurements in synchronised breathing than on the measurements
in free-breathing. It is also difficult to assess whether a subject correctly performs the
pattern of synchronised breathing and there is a risk that having to breathe in a spe-
cific manner increases a patient’s stress level during the imaging examination. Various
prospective and retrospective strategies exist to correct for respiratory motion in abdom-
inal imaging when breath-hold is not possible. These include respiratory triggering, syn-
chronised breathing, breathing pattern prediction, image sorting, and image registration
[Martirosian et al., 2004; Robson et al., 2009; Song et al., 2017; Taso et al., 2019; Bones
et al., 2019]. Each of these approaches either require additional effort for the acquisition
and planning (e.g. navigator placement) or for the image post-processing (e.g. lengthy
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sorting or registration procedure). In a clinical setting, it is advantageous to minimise the
complexity of the imaging examination as a whole and thus free-breathing acquisitions
followed by retrospective motion correction are especially well suited. At the same time,
however, retrospective motion correction approaches usually make it impossible to visu-
alise a quantified perfusion map directly at the scanner due computational requirements.
A different motion mitigation approach can thus be beneficial depending on the context
of the imaging.

A compromise between acquisition duration, patient compliance and results always has
to be found for applications in the clinical routine. Based on the results presented here,
the simplest measurement (free breathing, no ECG triggering) seems to be the best suited
option.

Limitations of this study are the low number of subjects as well as their youth and
fitness. This does not accurately reflect the patient population who might benefit from
completely non-invasive perfusion quantification. These patients might have cardiac or
respiratory difficulties and a synchronised breathing pattern or ECG triggering might be
even more challenging than in healthy subjects. Future work should look into increasing
the number and diversity of subjects considered to increase the relevance of the results.
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5.3. Kidney - in vivo study
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CHAPTER 6

Conclusion and Outlook

Quantitative assessment of organ perfusion is highly relevant for the evaluation of tissue
function, activity, and viability. Arterial spin labelling (ASL) allows completely non-
invasive perfusion imaging by magnetic labelling of arterial blood. This technique has
tremendous potential for a wide range of medical applications. However, despite recent
technical advances, it has not yet been established in the clinical routine due to a lack of
standardisation. This work aimed to contribute to the transition of ASL into the clinical
routine by investigating sources of variability in ASL-based perfusion quantification in the
brain and in the kidneys. To this end, three projects were pursued.

For the first project, a processing pipeline for the analysis of brain ASL data was
written. It included multiple options and corrections: four perfusion-weighted image cal-
culation methods, seven outlier removal options, five M0 corrections, four full width at
half maximum (FWHM) sizes for the Gaussian smoothing kernel used for the M0 image,
and a choice between two images to be used for segmentation. Perfusion and signal-to-
noise ratio (SNR) results obtained with different processing options and corrections or
with different acquisition parameters were compared using data from the ASL challenge
as well as data acquired in healthy volunteers. The pipeline was also used to analyse
patient data. For the comparison of processing options and acquisition parameters, no
ground truth perfusion data was available and the observed differences were sometimes
small despite being statistically significant. This makes proposing recommendations for
processing of brain ASL data difficult. The perfusion-weighted image can be calculated by
first subtracting control and labelled images and then averaging or by averaging all control
and labelled images followed by subtraction of mean control and mean labelled image, as
no significant difference in perfusion or SNR was observed between these two approaches.
Different options to remove outliers from the ASL time series yielded significantly differ-
ent perfusion and SNR results. Correcting the M0 image for relaxation effects or for the
percentage of blood in different brain compartments also yielded statistically significant
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differences in perfusion and SNR. Smoothing the M0 image with Gaussian filters of dif-
ferent kernel sizes yielded significant differences in perfusion and SNR. The segmentation
into gray and white matter, necessary to report tissue type specific perfusion, was more
accurate when performed on a high resolution T1-weighted image than on the M0 image.
Differences in perfusion were observed with varied number of control and labelled images
considered for quantification. However, it was impossible to determine a single number of
control and labelled images acquired for ASL-based perfusion quantification, which would
have been optimal for all subjects. Perfusion values obtained with 2D or 3D readout
were found to be different, with a shift towards higher values for the 3D data. Regional
perfusion abnormalities caused by tumours or metastases were observed in patient data,
but the analysis of patient data suffered from segmentation inaccuracies.

For the second project, synthetic ASL data sets of the kidneys mimicking in vivo acqui-
sitions were generated using body models from the XCAT phantom, the general kinetic
model, and literature values for tissue properties. The data sets included respiratory mo-
tion, and both PASL and PCASL labelling schemes were simulated. Healthy perfusion
was assumed for ten data sets with two kidneys each. The eleventh data set mimicked a
patient with decreased perfusion in the cortex and the medulla of the right kidney and
normal perfusion in the left kidney. A processing pipeline for the analysis of renal ASL
data was developed and all data sets were used to evaluate it in terms of registration,
quantification, and segmentation. The registration performed well for both left and right
kidneys, with smoother line profiles after registration and mean structural similarity index
measures (MSSIMs) increasing by 25% on average. The quantification yielded cortical and
medullary perfusion values which matched the assumed perfusion for healthy kidneys (250
mL/100g/min and 50 mL/100g/min for cortex and medulla, respectively) within 1-52%
and for diseased kidney (100 mL/100g/min and 20 mL/100g/min for cortex and medulla,
respectively) within 6-17%. Segmentation results from the processing pipeline agreed
well with original segmentation masks, with Dice indices ranging 0.80-0.93, 0.78-0.89, and
0.64-0.84 for whole kidney, cortex, and medulla, respectively. The proposed method of
generation of synthetic renal ASL data allowed flexible choice of parameters and the gen-
erated data sets were well suited for evaluation of the processing pipeline. Efforts should
be made to use the generated renal ASL data sets in an international Grand Challenge
to achieve the necessary standardisation of ASL-based renal perfusion quantification.

For the third project, ASL data sets of the kidneys were acquired in healthy volunteers
and analysed with the pipeline developed in the second project. Four ASL measurements
were performed for each subject varying between free breathing or synchronised breathing
and with or without cardiac triggering. Groupwise non-rigid registration was performed
on different areas of the ASL images and results were compared. Perfusion values ob-
tained for the different measurements were evaluated and tested for statistical difference.
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CHAPTER 6. Conclusion and Outlook

Registration performed best when considering the entire image, with a 87% success rate
and a mean duration of 30 minutes. Percentage differences between literature values
and mean perfusion values were equal to or below 32%, 61%, and 53% for whole kid-
ney, cortex, and medulla, respectively. Across subjects, perfusion values obtained for the
four different measurements were only significantly different between the free breathing
and synchronised breathing measurement when considering the whole kidneys. Temporal
signal-to-noise ratio (tSNR) was not found to differ significantly between any of the four
measurements. Issues with electrode signal and lengthened acquisition duration made
cardiac triggered acquisitions more complicated. Renal perfusion was found to differ de-
pending on the chosen trigger delay for the cardiac triggering. The dependence of the
assessment of renal perfusion on the cardiac cycle should be investigated further for better
understanding of this potential source of variation. The synchronised breathing pattern
neither removed the need of a registration nor increased the registration quality com-
pared to free breathing acquisitions, and thus presented no advantage over free breathing
acquisitions.

In summary, differences in acquisition parameters and processing options used for anal-
ysis of brain ASL data result in significant differences in perfusion quantification. This
work demonstrated that it is essential that all studies describe their data acquisition and
analysis in full detail to allow meaningful comparisons of results across studies and sup-
port the transition of ASL into the clinical routine. Synthetic renal ASL data sets were
generated and used to evaluate the developed processing pipeline. This work showed that
the developed data sets are well suited for pipeline evaluation and that the pipeline is
reliable in terms of registration, quantification, and segmentation. From the results of the
study in healthy volunteers, an acquisition in free breathing without cardiac triggering
seems to be the best choice for renal perfusion quantification in clinical applications, as
these require a compromise between acquisition duration, patient compliance, and result
accuracy. Taking all these findings into consideration, the transition of ASL into the clin-
ical routine is within reach and will be an enrichment for clinical perfusion applications,
as it provides a good alternative to more invasive perfusion quantification techniques.
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APPENDIX A

Brain

A.1 CBF

Mean CBF values for all scenarios averaged over the different subject groups (ASL Chal-
lenge data, 2D Cohort 1, 3D Cohort 1, Cohort 2) are listed in Tables A.1, A.2, A.3, A.4,
respectively.
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Table A.1: Mean and standard deviation of CBF calculated over the whole brain (WB),
over gray matter (GM), over white matter (WM), and over GM and WM for all data sets
of the ASL Challenge. Statistically significant differences between each scenario and the
reference scenario I are indicated with a star (p<0.05).

CBF WB CBF GM CBF WM CBF GM+WM
[mL/100g/min] [mL/100g/min] [mL/100g/min] [mL/100g/min]

I 25 ± 5 32 ± 5 18 ± 6 26 ± 5

II 80 ± 80 * 80 ± 70 * 40 ± 30 * 60 ± 50 *

III 25 ± 7 32 ± 7 19 ± 8 27 ± 7

IV 31 ± 9 * 36 ± 6 * 20 ± 6 * 29 ± 6 *

V 25 ± 5 32 ± 5 18 ± 6 26 ± 5

VI 25 ± 5 32 ± 4 18 ± 6 26 ± 5

VII 25 ± 5 32 ± 5 18 ± 6 26 ± 5

VIII 25 ± 5 32 ± 4 18 ± 6 26 ± 5

IX 24 ± 6 31 ± 6 19 ± 6 26 ± 5

X 24 ± 5 31 ± 5 18 ± 6 26 ± 5

XI 25 ± 5 32 ± 4 18 ± 6 26 ± 5

XII 24 ± 5 * 31 ± 5 * 18 ± 6 * 26 ± 5 *

XIII 26 ± 5 * 34 ± 5 * 20 ± 6 * 28 ± 4 *

XIV 26 ± 6 * 34 ± 5 * 18 ± 6 * 27 ± 5 *

XV 28 ± 5 * 36 ± 5 * 20 ± 5 * 29 ± 5 *

XVI 24 ± 5 * 30 ± 5 * 18 ± 6 * 25 ± 5 *

XVII 24 ± 5 * 31 ± 5 * 18 ± 6 26 ± 5 *

XVIII 25 ± 5 * 33 ± 5 * 18 ± 6 * 27 ± 5 *

XIX 26 ± 5 * 34 ± 5 * 19 ± 6 * 27 ± 5 *

XX 25 ± 5 29 ± 5 * 14 ± 6 * 25 ± 5 *
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Table A.2: Mean and standard deviation of CBF calculated over the whole brain (WB),
over gray matter (GM), over white matter (WM), and over GM and WM for all data
sets of Cohort 1 acquired with the 2D EPI readout. Statistically significant differences
between each scenario and the reference scenario I are indicated with a star (p<0.05).

CBF WB CBF GM CBF WM CBF GM+WM
[mL/100g/min] [mL/100g/min] [mL/100g/min] [mL/100g/min]

I 45 ± 8 60 ± 10 20 ± 4 44 ± 8

V 45 ± 9 60 ± 10 20 ± 4 44 ± 9

VI 48 ± 7 61 ± 9 31 ± 4 * 48 ± 7

VII 45 ± 9 60 ± 10 20 ± 4 44 ± 8

VIII 45 ± 9 60 ± 10 20 ± 3 44 ± 8

IX 40 ± 30 60 ± 30 20 ± 10 40 ± 20

X 45 ± 7 * 60 ± 10 * 20 ± 3 43 ± 7 *

XI 45 ± 8 * 60 ± 10 * 20 ± 3 * 44 ± 8

XII 41 ± 7 * 50 ± 10 * 20 ± 3 41 ± 7 *

XIII 46 ± 8 * 60 ± 10 * 20 ± 3 44 ± 8 *

XIV 48 ± 8 * 60 ± 10 * 20 ± 3 47 ± 8 *

XV 45 ± 8 * 60 ± 10 19 ± 3 44 ± 8
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Table A.3: Mean and standard deviation of CBF calculated over the whole brain (WB),
over gray matter (GM), over white matter (WM), and over GM and WM for all data
sets of Cohort 1 acquired with the 3D EPI readout. Statistically significant differences
between each scenario and the reference scenario I are indicated with a star (p<0.05).

CBF WB CBF GM CBF WM CBF GM+WM
[mL/100g/min] [mL/100g/min] [mL/100g/min] [mL/100g/min]

I 50 ± 6 63 ± 8 32 ± 4 50 ± 5

V 48 ± 5 61 ± 8 31 ± 4 49 ± 5

VI 48 ± 7 * 61 ± 9 * 31 ± 4 * 48 ± 7 *

VII 49 ± 6 61 ± 9 31 ± 5 50 ± 6

VIII 48 ± 6 * 59 ± 9 * 31 ± 5 48 ± 6 *

IX 30 ± 20 * 40 ± 20 * 20 ± 20 30 ± 20 *

X 48 ± 5 61 ± 7 32 ± 4 49 ± 5

XI 49 ± 6 * 60 ± 9 * 31 ± 4 49 ± 8 *

XII 47 ± 5 * 58 ± 7 * 31 ± 4 * 48 ± 5 *

XIII 50 ± 6 60 ± 10 * 32 ± 4 49 ± 6 *

XIV 53 ± 6 * 66 ± 9 * 31 ± 4 * 53 ± 6 *

XV 50 ± 6 62 ± 9 30 ± 4 * 50 ± 5 *
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Table A.4: Mean and standard deviation of CBF calculated over the whole brain (WB),
over gray matter (GM), over white matter (WM), and over GM and WM for all data sets
of Cohort 2. Statistically significant differences between each scenario and the reference
scenario I are indicated with a star (p<0.05).

CBF WB CBF GM CBF WM CBF GM+WM
[mL/100g/min] [mL/100g/min] [mL/100g/min] [mL/100g/min]

I 44 ± 5 58 ± 8 22 ± 3 44 ± 5

V 43 ± 3 57 ± 5 22 ± 2 43 ± 3

VI 44 ± 3 57 ± 6 22 ± 3 44 ± 3

VII 46 ± 4 61 ± 5 * 24 ± 2 * 47 ± 3 *

VIII 47 ± 4 * 61 ± 5 * 24 ± 2 * 47 ± 3 *

IX 40 ± 20 50 ± 30 20 ± 20 40 ± 20

X 46 ± 4 60 ± 6 24 ± 3 * 46 ± 4

XI 47 ± 4 * 62 ± 7 * 24 ± 3 * 47 ± 4 *

XII 44 ± 4 58 ± 6 23 ± 3 * 45 ± 4

XIII 48 ± 4 * 61 ± 7 * 24 ± 3 * 47 ± 4 *

XIV 51 ± 5 * 66 ± 7 * 24 ± 3 * 50 ± 4 *

XV 48 ± 4 * 62 ± 7 * 23 ± 3 47 ± 4 *
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A.2 SNR

Mean SNR values for all scenarios averaged over the different subject groups (ASL Chal-
lenge data, 2D Cohort 1, 3D Cohort 1, Cohort 2) are listed in Table A.5.

Table A.5: Mean and standard deviation of SNR for all brain ASL data. Statistically
significant differences between each scenario and the reference scenario I are indicated
with a star (p<0.05). N/A - not applicable

ASL Challenge Cohort 1 2D Cohort 1 3D Cohort 2

I 0.05 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.11 ± 0.01

II 0.1 ± 0.1 N/A N/A N/A

III 0.05 ± 0.02 N/A N/A N/A

IV 0.10 ± 0.05 * N/A N/A N/A

V 0.05 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 * 0.110 ± 0.009

VI 0.05 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 * 0.109 ± 0.009

VII 0.05 ± 0.02 0.11 ± 0.02 * 0.12 ± 0.02 0.10 ± 0.01

VIII 0.05 ± 0.02 0.06 ± 0.04 * 0.11 ± 0.02 * 0.109 ± 0.009

IX 0.05 ± 0.02 * 0.11 ± 0.02 * 0.04 ± 0.05 * 0.03 ± 0.03 *

X 0.05 ± 0.02 * 0.12 ± 0.02 * 0.11 ± 0.01 * 0.10 ± 0.009 *

XI 0.05 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.112 ± 0.009

XII 0.05 ± 0.02 * 0.11 ± 0.02 * 0.11 ± 0.01 * 0.104 ± 0.009 *

XIII 0.05 ± 0.02 * 0.12 ± 0.02 * 0.12 ± 0.02 0.11 ± 0.01 *

XIV 0.04 ± 0.02 * 0.11 ± 0.02 * 0.012 ± 0.02 * 0.108 ± 0.009 *

XV 0.05 ± 0.02 * 0.11 ± 0.02 * 0.11 ± 0.02 * 0.102 ± 0.009 *

XVI 0.02 ± 0.02 * N/A N/A N/A

XVII 0.05 ± 0.02 * N/A N/A N/A

XVIII 0.05 ± 0.02 * N/A N/A N/A

XIX 0.05 ± 0.02 * N/A N/A N/A

XX 0.05 ± 0.02 * N/A N/A N/A

162



APPENDIX B

Kidney

B.1 Literature values of tissue specific param-
eters
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Table B.1: Literature values of relative proton density ρ, and T1 and T2 relax-
ation times at a field strength of 3 T.

organ T1 [ms] T2 [ms] ρ

myocardium 1232.9 37.2 80
blood 1984.4 275 95

subcutaneous fat (body) 382 68 70
muscle 1232.9 37.2 80
liver 809 34 90

gall bladder 1142 154 90
lung 1 1 0

esophagus 1718 15.3 70
esophagus content 1142 154 90

stomach wall 1718 15.3 70
stomach content 1142 154 90

pancreas 725 43 90
kidney cortex 1142 154 90
kidney medulla 1545 81 90
adrenal gland 1142 154 90
renal pelvis 382 68 70

spleen 1328 61 90
rib 586 49 25

cortical bone 586 49 25
spine 586 49 25

spinal cord 993 78 70
bone marrow 586 49 25
articulation 1984.4 275 95

vein 1984.4 275 95
ascending colon 1322 65.5 90
transversal colon 1322 65.5 90
descending colon 1322 65.5 90
small intestine 1322 65.5 90
pericardium 382 68 70
cartilage 250 20 25

intestine air 1 1 0
ureter 1718 15.3 70

tracheobronchial tree 1 1 0
skin 382 68 70
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B.2 Registration parameter file

B.2.1 Synthetic data

// *********************
// * ImageTypes
// *********************
(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")
(FixedImageDimension 3)
(MovingImageDimension 3)
(UseDirectionCosines "true")
// *********************
// * Components
// *********************
(Registration "MultiResolutionRegistration")
(Interpolator "ReducedDimensionBSplineInterpolator")
(ResampleInterpolator "FinalReducedDimensionBSplineInterpolator")
(Resampler "DefaultResampler")
(BSplineInterpolationOrder 1)
(FinalBSplineInterpolationOrder 3)
(FixedImagePyramid "FixedSmoothingImagePyramid")
(MovingImagePyramid "MovingSmoothingImagePyramid")
(Optimizer "AdaptiveStochasticGradientDescent")
(HowToCombineTransforms "Compose")
//Choose on of the following groupwise transforms:
//(Transform "BSplineTransform")
(Transform "BSplineStackTransform")
//(Transform "AffineLogStackTransform")
//Choose one of the following groupwise metrics:
(Metric "PCAMetric2")
//(Metric "PCAMetric")
//Specific for the PCAMetric
(NumEigenValues 3)
// *********************
// * Groupwise Metric settings
// *********************
(SubtractMean "true")
(MovingImageDerivativeScales 1 1 0)
//Choose one of the following settings:
(FinalGridSpacingInPhysicalUnits 8)
//(FinalGridSpacingInPhysicalUnits 16)
//(FinalGridSpacingInPhysicalUnits 32)
// *********************
// * Optimizer settings
// *********************
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(NumberOfResolutions 6)
(AutomaticParameterEs4imation "true")
(ASGDParameterEstimationMethod "Original")
(MaximumNumberOfIterations 500)
// *********************
// * Pyramid settings
// *********************
(ImagePyramidSchedule 10 10 0 8 8 0 2 2 0 4 4 0 2 2 0 1 1 0)
// *********************
// * Sampler parameters
// *********************
(NumberOfSpatialSamples 2048)
(NewSamplesEveryIteration "true")
(ImageSampler "RandomCoordinate")
(CheckNumberOfSamples "true")
// *********************
// * Mask settings
// *********************
(ErodeMask "false")
(ErodeFixedMask "false")
// *********************
// * Output settings
// *********************
(DefaultPixelValue 0)
(WriteResultImage "true")
(ResultImagePixelType "float")
(ResultImageFormat "mhd")
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B.2.2 In-vivo study

// *********************
// * ImageTypes
// *********************
(FixedInternalImagePixelType "float")
(MovingInternalImagePixelType "float")
(FixedImageDimension 3)
(MovingImageDimension 3)
(UseDirectionCosines "true")
// *********************
// * Components
// *********************
(Registration "MultiResolutionRegistration")
(Interpolator "ReducedDimensionBSplineInterpolator")
(ResampleInterpolator "FinalReducedDimensionBSplineInterpolator")
(Resampler "DefaultResampler")
(BSplineInterpolationOrder 1)
(FinalBSplineInterpolationOrder 3)
(FixedImagePyramid "FixedSmoothingImagePyramid")
(MovingImagePyramid "MovingSmoothingImagePyramid")
(Optimizer "AdaptiveStochasticGradientDescent")
(HowToCombineTransforms "Compose")
//Choose on of the following groupwise transforms:
//(Transform "BSplineTransform")
(Transform "BSplineStackTransform")
//(Transform "AffineLogStackTransform")
//Choose one of the following groupwise metrics:
(Metric "PCAMetric2")
//(Metric "PCAMetric")
//Specific for the PCAMetric
(NumEigenValues 3)
// *********************
// * Groupwise Metric settings
// *********************
(SubtractMean "true")
(MovingImageDerivativeScales 1 1 0)
//Choose one of the following settings:
(FinalGridSpacingInPhysicalUnits 8)
//(FinalGridSpacingInPhysicalUnits 16)
//(FinalGridSpacingInPhysicalUnits 32)
// *********************
// * Optimizer settings
// *********************
(NumberOfResolutions 6)
(AutomaticParameterEs4imation "true")
(ASGDParameterEstimationMethod "Original")
(MaximumNumberOfIterations 500)
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// *********************
// * Pyramid settings
// *********************
(ImagePyramidSchedule 2 2 0 2 2 0 1 1 0 1 1 0)
// *********************
// * Sampler parameters
// *********************
(NumberOfSpatialSamples 2048)
(NewSamplesEveryIteration "true")
(ImageSampler "RandomCoordinate")
(CheckNumberOfSamples "true")
// *********************
// * Mask settings
// *********************
(ErodeMask "false")
(ErodeFixedMask "false")
// *********************
// * Output settings
// *********************
(DefaultPixelValue 0)
(WriteResultImage "true")
(ResultImagePixelType "float")
(ResultImageFormat "mhd")
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