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Zusammenfassung

In dieser Arbeit wird eine Erweiterung des Hydrodynamik-Codes Arepo vorgestellt,
der die Gleichungen der Hydrodynamik auf bewegten Gittern löst. Die ursprünglich
Newtonsche Implementierung wird auf allgemein relativistische Hydrodynamik erweit-
ert, um relativistische Systeme mit diesem numerischen Schema zu modellieren. Diese
Erweiterung beinhaltet die Kopplung an ein Modul, welches die Einsteinschen Feld-
gleichungen mithilfe der "conformal flatness" Näherung löst. Zur Validierung wird die
Entwicklung isolierter Neutronensterne simuliert und mit unabhängigen Rechnungen
verglichen. Eine erste relativistische Simulation einer Neutronensternverschmelzung
auf einem bewegten Gitter wird präsentiert. Die Dynamik des Systems und all-
gemeine Merkmale des Gravitationswellensignals stimmen dabei mit unabhängigen
Simulationen mit anderen Codes überein. Einige dynamische Merkmale nach der Ver-
schmelzung wie die quasi-radialen Oszillationsmoden und die Doppelkernstruktur des
Überrests bleiben jedoch in der Simulation mit Arepo länger erhalten, und das Grav-
itationswellensignal wird nach der Kollision der Sterne nur sehr langsam gedämpft.
Dies deutet auf eine geringere numerische Viskosität in Simulationen auf bewegten
Gittern hin und zeigt, dass dieser Ansatz für Modellierungen von verschmelzenden
Neutronensternen sehr vorteilhaft sein kann. Ein weiterer Teil dieser Arbeit unter-
sucht Schwingungsfrequenzen von isolierten Neutronensternen oder von Überresten
von Neutronensternkollisionen. Dabei wird gezeigt, dass die Streuung von Daten-
punkten in empirischen Relationen Informationen über die Zustandsgleichung von
Neutronensternmaterie enthält.

Abstract

We discuss the extension of the, originally Newtonian, moving-mesh hydrodynamics
Arepo code to study general relativistic systems. This includes the implementation
of general relativistic hydrodynamics and coupling Arepo to a solver for the Ein-
stein field equations, which adopts the conformal flatness approximation. We validate
the implementation by evolving static neutron stars and comparing to independent
calculations. We present the first general relativistic moving-mesh simulation of a
neutron star merger. We find that the general dynamics and features of the post-
merger gravitational wave emission agree with independent simulations performed
with smoothed particle hydrodynamics and static-mesh tools. We observe that dy-
namical features in the post-merger phase, such as the quasi-radial oscillation mode
and the double-core structure, survive longer in our moving-mesh simulation. Simi-
larly, the post-merger gravitational wave signal is damped very slowly. These features
suggest that the moving-mesh simulation has lower numerical viscosity and highlights
that the moving-mesh approach can be very beneficial in simulations of neutron star
mergers. As another part of this thesis, we examine relations between gravitational
wave frequencies from isolated stars or merger remnants and stellar properties, such as
the radius. We show that the scatter of points in such relations encodes information
about the equation of state.
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Nomenclature

List of acronyms

ADM Arnowitt-Deser-Misner
BNS binary neutron star
CFC conformal flatness condition
CFL Courant–Friedrichs–Lewy
EOS equation of state
GRHD general relativistic hydrodynamics
GW gravitational wave
MC monotonized central (slope limiter)
NS neutron star
SPH smoothed particle hydrodynamics
TOV Tolman–Oppenheimer–Volkoff
1D, 3D one-, three-dimensional

List of constants

c speed of light
G gravitational constant
M� solar mass
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background
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1. Introduction

1.1. Physical system and observational aspects

In 2017 gravitational waves (GWs) from a binary neutron star (BNS) merger, named
GW170817, were detected for the first time [6]. The latest stages before the merging,
commonly called the inspiral, of the binary were measured [6]. Extensive searches
were unable to detect a GW signal from the post-merger phase, placing such GW
emission beyond the sensitivity of the detectors at that time [8,11]. In addition to the
GW observation, an electromagnetic counterpart was found in many different bands,
from gamma rays to radio emission [7]. In particular, roughly 1.7 s after the time of
merging, a gamma-ray burst was independently detected [5, 7, 130, 259]. An optical
counterpart was observed about 11 h after the merger time, identifying NGC 4993 as
the host galaxy [7, 81, 271, 298]. Observations over the course of the next, roughly,
30 days followed the evolution of the ultraviolet, optical and infrared component (see
e.g. [7, 302] and references therein). Finally, X-ray and radio emission were found
roughly 9 and 16 days after the merger event, respectively [7, 140,204,293].

The event provided observational data that have already proved to be extremely
useful in our efforts to better understand BNS mergers as astrophysical sites, as well as
neutron stars (NSs) and their physics. The detection of gamma rays from the event
supports theoretical work which considers BNS systems as possible progenitors for
short gamma-ray bursts [54,107,216]. Interestingly, the observed gamma-ray emission
is sub-luminous compared to typical short gamma-ray bursts, while the identified
components in its spectrum, the overall spectral evolution and subsequent emission
(e.g. X-ray afterglow) are unlike other observed short gamma-ray bursts [7, 217, 236].
The interpretation of the gamma-ray (as well as X-ray and radio) observation and
the underlying mechanism which produced the emission are not yet fully understood,
e.g. [134,186,217,236].

The analysis of the observed light curves in ultraviolet, optical and infrared bands
provides strong evidence that heavy elements are synthesized in the ejecta of BNS
mergers [7, 163, 282, 306]. BNS mergers were proposed as a possible production site
of elements heavier than iron already decades ago [84, 106, 120, 183, 184, 279]. Ma-
terial becomes gravitationally unbound during these merger events and heavy el-
ement nucleosynthesis can take place in the ejecta via the rapid neutron capture
process (r-process). The radioactive decay of the newly formed, heavy, unstable nu-
clei can be observed as an electromagnetic transient, commonly referred to as kilo-
nova [188,208,209]. Modeling the observed light curves can help determine the proper-
ties of the ejected material, such as the total ejected mass, composition and velocities
(see e.g. [26, 164, 302]). Notably, based on the extracted r-process production rates,
BNS mergers might be the main site of r-process nucleosynthesis [302].

Focusing on the GW observation, the analysis of the GW signal from the inspiral
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1. Introduction

provided constraints for the tidal deformability and the radius of static NSs and,
subsequently, the equation of state (EOS) [6, 9, 10]. Such constraints are extremely
important in our effort to unveil the exact behavior of matter at the high densities
found in the interior of NSs. In particular, NSs reach densities of a few times the
nuclear saturation density (ρsat ≈ 2.7 · 1014 g · cm−3). The exact composition of
matter and the EOS at such high densities is only partially known [65,138,221]. Due
to the uncertainties, a large number of EOS models have been proposed.

The general relativistic equations governing hydrostatic equilibrium, widely known
as the Tolman–Oppenheimer–Volkoff (TOV) system [225, 289], uniquely link stellar
properties of static stars to the (zero-temperature) EOS. Under the assumption of
a specific EOS, the TOV system can be solved starting from a value for the central
density of the star. Different initial values for the central density yield distinct stellar
configurations, characterized by a number of properties such as the mass, radius,
moment of inertia and tidal deformability1. Collecting all the configurations modeled
by a specific EOS produces relations between e.g. the mass and the radius or tidal
deformability of static NSs. Each EOS results in unique relations between stellar
properties. Thus, measuring stellar parameters of static NSs directly translates to
constraints on the EOS (e.g. [191,192,194,195]).

The masses of some NSs have been measured with high precision (see e.g. [20,25,
227]). However, determining properties such as the radius through electromagnetic
observations is more difficult, which hinders our ability to strictly constrain the EOS.
Prior to the GW observation, arguably the main constraint on the EOS came from
mass measurements of massive NSs, which provide a lower limit on the maximum
mass that the EOS should be able to support [24, 28, 85, 90, 190]. Following the GW
observation, the analysis of the multi-messenger observation from various groups has
resulted in a number of constraints on the EOS and stellar properties of static stars
that an EOS should be able to reproduce, e.g. [9,10,47,112,169,203,241,244,248,255,
266]. This highlights the importance of BNS mergers in determining the high-density
EOS.

GWs from the inspiral of another event, GW190425, were observed in 2019 [3]. The
analysis of the event identified it as a probable BNS merger. A particularly interesting
aspect of the system is its high total mass of roughly 3.4 M�, which is significantly
higher compared to other observed galactic BNSs [3, 111]. Due to detectors being
either offline or having insufficient sensitivity to observe the (low signal-to-noise ratio)
event, GW190425 was a single-detector event. The extracted values for the tidal
deformability and the radius from this event did not provide additional constraints on
the EOS [3]. Moreover, despite efforts, no follow-up electromagnetic observation was
made [80].

The two observations of BNS mergers, GW170817 and GW190425, alongside a
number of other GW observations [2, 12, 283, 284], highlight the potential that GWs
offer for the detection and study of mergers of compact objects (such as NSs and
black holes). GW170817, jointly with the follow-up electromagnetic observations, has
already showcased that BNS mergers are extremely important in the study of topics
such as the high-density EOS, heavy element nucleosynthesis and the r-process2. What

1Note that the tidal deformability Λ is defined as Λ = 2
3k2

(
c2R
GM

)5

, where k2 is the tidal Love
number [86,151,152], while M and R refer to the mass and radius of the respective stellar model.

2Many other directions have been explored, including e.g. an independent determination of the
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1.1. Physical system and observational aspects

remains elusive up to now is the observation of the post-merger phase from a BNS
system.

Theoretical studies of the system based on full three-dimensional (3D) numerical
simulations show that, after the merging, different possibilities exist for the nature
of the remnant [31, 263, 267]. The outcome of the merger depends primarily on the
total mass of the binary system and the EOS [40, 155]. Binary systems with a total
mass above a threshold, EOS-dependent mass Mthres promptly collapse to a black
hole. The threshold mass, over which a direct collapse to a black hole takes place, is
informative about the EOS (e.g. [40–42]). Systems with a total binary mass below
Mthres result in hot, massive, differentially rotating NS remnants3, which are further
supported mainly by rotation. These systems can potentially also collapse to a black
hole on longer timescales, because the NS remnant dynamically evolves through differ-
ent mechanisms, such as energy and angular momentum losses due to GW emission,
mass loss, angular momentum redistribution and neutrino cooling. Angular momen-
tum redistribution gradually turns differential rotation into uniform rotation in the
remnant. However, differential rotation is able to support more mass than uniform
rotation [38]. Hence, remnants with masses below Mthres, but above the maximum
mass that uniform rotation can support [78, 79], also collapse to a black hole in a
delayed fashion. Remnants that can be supported by uniform rotation further spin
down. Thus, they also collapse on longer timescales, unless their total mass is smaller
than the maximum mass of static NSs that the EOS can support.

NS remnants form after the collision of the two companion stars, thus they exhibit
nonaxisymmetric deformations (e.g. double-core structure, spiral density arms) and
feature quasi-radial and nonaxisymmetric oscillations of the matter. The remnant
emits GWs (e.g. [31, 48, 268, 269]), while features of the post-merger GW spectrum
have been related to fluid oscillations [275]. Most importantly, the post-merger GW
emission carries information about the EOS [44,45,57,59,73,75,280,281,305]. Hence,
potential future GW observations of the post-merger phase offer the possibility to
constrain the EOS in a complementary way to what has already been done.

The Advanced LIGO [189], Advanced Virgo [13] and KAGRA [162] detectors cur-
rently undergo upgrades as we approach the next observing run [4]. Current estimates
predict that the number of BNS detections over a one-calendar-year observing run
could be of the order of 10 [4]. The efforts of these three detectors are further aided by
the GEO600 detector [96,161], while another detector (LIGO-India [158]) is planned,
which should increase detection rates and sky localization accuracy [110,257,261]. In
addition, next-generation detectors such as the Einstein Telescope [238] and the Cos-
mic Explorer [1] are planned with design sensitivities roughly an order of magnitude
higher than the design sensitivity of current detectors.

The extensive and ongoing effort to improve current GW detection capabilities
increases the likelihood of more BNS observations in the upcoming years. Electro-
magnetic observations from these systems can provide important data for understand-
ing the kilonova and the r-process. This highlights the need to devote similar efforts
to expand and improve our theoretical knowledge of the system. Modeling the late
inspiral stages, as well as the merger and the post-merger phase, can only be done

Hubble constant [6] and constraints on alternative theories of gravity [33].
3In this thesis, we consider only systems which produce a hot, massive NS remnant, which survives

at least for a few tens of milliseconds. Throughout the text, we employ the term “remnant” to directly
refer to such systems.
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1. Introduction

numerically. Hydrodynamical simulations are required to understand the post-merger
dynamics leading to the emission of GWs. Furthermore, these simulations determine
the properties of the ejecta (e.g. the amount, composition, entropy and density evolu-
tion of ejected material), which are necessary as initial conditions for realistic r-process
calculations. As a result, better understanding the system and interpreting potential
future GW or electromagnetic observations relies on further developing, ideally im-
proving, our numerical modeling and closely investigating the simulation results. This
thesis tries to take a step in this direction.

1.2. Numerical modeling

Numerical simulations of general relativistic systems require the treatment of general
relativistic hydrodynamics (GRHD), as well as a dynamical spacetime. In Chapter
5 we discuss in detail a BNS merger, which results in a remnant that is supported
against collapse to a black hole for at least a few tens of milliseconds. The discussion
highlights the many physical processes that a simulation code should be able to resolve.
These include, but are not limited to, the accurate evolution of the two stars in the
inspiral (which is crucial for GW waveform modeling, see e.g. [93]), the formation
of shocks and fluid instabilities particularly at the collision interface and the overall
angular momentum redistribution in the remnant during the post-merger phase. In
addition, investigating problems such as the nucleosynthesis of heavy elements in the
matter which becomes unbound relies on resolving small amounts of ejecta, which
move with high velocities over large distances.

Numerical studies with various codes suggest that simulation results feature un-
certainties. In BNS merger simulations, aspects such as the properties of post-merger
mass ejection, the orbital evolution in the inspiral and the characteristics of the GW
signal (e.g. inspiral GW waveforms) are influenced up to some extent by numerics
(e.g. resolution, employed numerical schemes) [43,56,154,167,215,243]. For instance,
ejecta masses extracted from simulations employing different resolutions admit rela-
tive errors of the order of ≈ 50% [243]. Studies with different codes report similar
uncertainties, e.g. [43, 123].

The most widely used approaches to treat relativistic hydrodynamics are Eulerian
grid-based methods, such as finite-difference, finite-volume or discontinuous Galerkin
schemes, and Lagrangian smoothed particle hydrodynamics (SPH) (see Sections 2.2
and 2.3). For more details and a better exposition of the various methodologies see for
example [17, 37, 115, 206, 249, 253, 265, 311]. A number of codes have been developed
and employed in the study of general relativistic systems based on these methodolo-
gies. For example, surveys of codes can be found in [32,115,119], while recently some
relativistic SPH implementations were introduced in [200] (adopting a fixed space-
time metric) and in [92, 254] (including a dynamical spacetime and applications to
BNS mergers). Both Eulerian grid-based methods and SPH have their respective
advantages and drawbacks.

Eulerian methods discretize the relativistic hydrodynamics equations employing
a fixed grid. Commonly, (adaptive) mesh refinement techniques are implemented in
addition to place resolution in regions of physical interest. Over the course of the
years, a set of high-resolution shock-capturing methods have been developed, which
ensure that grid-based methods resolve shocks and fluid instabilities with accuracy.
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1.2. Numerical modeling

On the other hand, Eulerian methods can suffer from grid orientation effects, while
they typically introduce an artificial, low-density atmosphere to treat formally vacuum
regions (see e.g. [117] and Section 3.8). Moreover, resolving the low-density, high-
velocity ejecta can be difficult.

SPH discretizes the GRHD equations based on a set of particles. Each particle
corresponds to a specific rest mass, which leads to excellent mass conservation. The
particles follow the fluid motion making the scheme Lagrangian. Due to its Lagrangian
nature, SPH resolves advection with high accuracy, while tracing ejecta trajectories is
straightforward. Vacuum translates to the absence of particles, so no additional effort
is required in zero-density regions. However, resolving shock and treating fluid insta-
bilities is more challenging for SPH compared to grid-based approaches (see however
e.g. [253] for recent developments). In addition, including a dynamical spacetime re-
quires to solve Einstein’s field equations. The metric field equations cannot be treated
on the particle level. Instead, they are solved on an independent grid and additional
effort is required to communicate between the particles and the metric grid. In prin-
ciple, the same holds for other fields which do not vanish in vacuum (e.g. magnetic
fields), i.e. where the method lacks resolving power.

Evidently, Eulerian grid-based methods and SPH both offer benefits. Moreover,
one can find cases where one method includes features that make it particularly ap-
pealing, while the other approach faces challenges and vice versa. In an attempt to
combine some of the best aspects of both approaches, the moving-mesh code Arepo
was developed [273].

Arepo discretizes the equations of Newtonian hydrodynamics on an unstructured
mesh. The mesh corresponds to the Voronoi tesselation of a set of mesh-generating
points. The mesh-generating points can in principle be distributed in an arbitrary way.
In addition, they can move freely (see Section 3.7 and [273] for more details), altering
the mesh geometry in a continuous way. Due to the discretization on a mesh, the
method inherits many of the benefits of grid-based methods, such as accurate shock
resolution. Moreover, the moving-mesh approach obtains a quasi-Lagrangian nature
if the mesh-generating points are moved with the local fluid velocity. In Chapter 3 we
discuss aspects of the moving-mesh scheme in more detail.

Since it was originally introduced, Arepo has been employed in the study of a
broad range of problems in fields such as cosmology, Type Ia supernovae, the common
envelope phase in binary stars and many more (e.g. [136, 174, 222, 230, 231, 260, 303,
307]). Several other moving-mesh codes have subsequently been introduced and used
to study various astrophysical systems [29,71,100–102,124,301,317]. Overall, studies
with the moving-mesh scheme have exhibited that it can be rather advantageous in
comparison to traditional approaches.

In the moving-mesh approach, the geometry of the initial mesh can be chosen to
be well-adapted to the properties of the physical system, while mesh-generating points
can follow the motion of the fluid. In addition, Arepo can split or merge cells based
on nearly arbitrary criteria. As a result, during a moving-mesh simulation, resolution
can follow the fluid motion reducing numerical errors due to advection, while locally
increasing or decreasing the resolution can further ensure that physically interesting
regions are resolved. These features make the moving-mesh approach particularly
appealing for simulations of compact objects, particularly BNS systems. Notably,
most of the moving-mesh codes treat Newtonian hydrodynamics. Only recently some
moving-mesh codes were extended to solve the GRHD equations [70, 256]. However,

9



1. Introduction

up to date, these implementations do not include a solver for a dynamical spacetime,
but the spacetime is kept fixed. Naturally, simulating BNS mergers requires the
inclusion of a dynamical spacetime. In this thesis, we present the first moving-mesh
implementation which includes a dynamical spacetime [196].

The main focus of this thesis is performing general relativistic simulations with
Arepo (using the upgraded version described in [232] as our basis code). This re-
quires implementing GRHD in the code and coupling the code to a metric solver.
The metric solver implementation originates from [220] and solves the metric field
equations employing the conformal flatness condition (CFC) [157,312]. Moreover, we
implement microphysics modules to account for the high-density EOS in NS simula-
tions. In the present work, we describe tests which validate our implementation. Most
importantly, we also discuss the first simulation of a BNS merger on a moving mesh.
More details about the implementation, the tests and the binary simulation can be
found in Part II of the thesis, while additional information and a short introduction to
the main concepts involved in the numerical modelling of general relativistic systems
are presented in Chapter 2. Our main results can be found in [196].

1.3. Gravitational wave asteroseismology

Another direction which we consider in this thesis is GW asteroseismology. Astero-
seismology employs stellar oscillations to study the internal structure of stars. Nat-
urally, this idea has been considered in the case of NS systems as well, e.g. [172].
The internal structure of NSs depends on the EOS, which is only partially known
(e.g. [148,178,180,182,221,226]). This makes fluid oscillations which lead to the emis-
sion of GWs particularly interesting. Relating the characteristics of the oscillation and
the resulting GW emission to stellar properties can be informative about the EOS.
From a theoretical standpoint, this requires to numerically calculate the characteris-
tics of the GW signal (e.g. the frequency) for a large set of EOSs and stellar models
and, subsequently, identify possible correlations with stellar parameters. This allows
to construct relations between the properties of the GW signal and stellar parameters
by fitting the data.

BNS systems are a prominent source of GWs. Hence, they are a very interesting
system to consider from the point of view of GW asteroseismology. The general
dynamics in the post-merger phase is rather complicated. A proper analysis is required
to relate features of the GW spectrum to the fluid dynamics [275]. In addition, fluid
oscillations in isolated stars, which are a simpler system, can be studied and provide
important knowledge that might be applicable in the case of BNS remnants as well. In
this thesis, we consider both these two very distinct NS systems, namely isolated NSs
and BNS merger remnants, in an effort to better understand GW asteroseismology
relations.

One of the main fluid oscillations in isolated NSs is the fundamental quadrupolar
fluid mode (f−mode), which is a strong GW emitter (see e.g. [172]). A number of dif-
ferent relations have been proposed, which relate the frequencies of the GW emission
due to the f−mode to stellar properties of isolated stars [22,68,185,295]. These rela-
tions are largely insensitive to the neutron star EOS. Moreover, they involve different
stellar parameters, such as the mass, radius, moment of inertia and tidal deforma-
bility. Hence, assuming the GW frequency of the f−mode for a particular stellar
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1.4. Aims and outline

configuration is measured, these relations offer the possibility to place constraints on
the stellar properties that an EOS should be able to reproduce.

Remnants of BNS mergers also feature fluid oscillations. The dominant fluid os-
cillation leads to the emission of GWs with a frequency (denoted by fpeak throughout
this work) of a few kHz. More details can be found for example in [44, 45, 57, 76,153,
218, 264, 268, 276, 281, 315] and also in reviews (and included references) such as [30,
51,53,55,93,122,258]. Unfortunately, the post-merger phase of both the BNS merger
GW170817 [6,8] and the potential BNS merger GW190425 [3] was outside the sensitiv-
ity limits of the detectors, not allowing a measurement of fpeak. Nevertheless, upgraded
current detectors operating at design sensitivity or more sensitive next-generation de-
tectors should be able to observe the post-merger phase in the near future and measure
fpeak [14, 15, 61, 62, 73, 75, 76, 104, 105, 126, 139, 147, 207, 224, 228, 292, 294, 318]. Simi-
larly to the case of the f−mode in isolated stars, various relations between fpeak and
different stellar parameters have been proposed, e.g. [44, 45, 57, 59, 281, 305]. Hence,
measuring fpeak would allow us to extract information about stellar properties which
are uniquely linked to the EOS.

The accuracy of the employed relation determines how strict the constraints that
we can place on the EOS are. A proper comparison between different relations re-
quires to extract them based on a consistent data set. In this thesis, we evaluate
the accuracy of GW asteroseismology relations both for isolated stars, as well as for
BNS remnants (see Section 6.2). We compute f−mode GW frequencies employing
a code which solves the linear perturbation equations [198], while fpeak is extracted
based on 3D simulations with an SPH code [219,220] (see Section 6.1). A comparison
between various proposed relations was presented in [74], which, however, considers
only isolated NSs, significantly less EOSs and a subset of the relations discussed here.

Furthermore, we investigate whether the scatter of the data points, particularly
how individual points distribute with respect to the fit to all data, contains additional
information about the high-density EOS. This direction has only been considered
recently in the literature in more detail [197, 245]. Various studies support that the
dominant fluid oscillation in BNS remnants originates from the f−mode [49, 53, 67,
276]. This motivates to study the scatter in relations for isolated NSs and BNS
mergers side by side. If the exact distribution of data points is strongly influenced by
the EOS and the underlying mechanism is prevalent enough, one would expect that
relations of the same type should exhibit many similarities for these two systems. In
this thesis, we discuss this aspect in detail (see Section 6.3) and investigate whether
this direction can provide tighter EOS constraints from observations. Our results are
presented in [197].

1.4. Aims and outline

We now briefly summarize the main goals and provide an outline of the thesis. This
work focuses on:

(i) Extending the moving-mesh code Arepo in order to study general relativis-
tic systems with a dynamical spacetime. The combined volume of simulations
discussed in this thesis tries to answer a series of questions. Can the moving-
mesh approach be employed to study general relativistic systems? Can we per-
form high resolution moving-mesh simulations with reasonable computational
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1. Introduction

demands? Is it possible that features of the moving-mesh approach observed in
Newtonian simulations, such as the low numerical diffusivity, persist in BNS sim-
ulations? Overall, can the moving-mesh approach be beneficial for simulations
of BNS mergers?

(ii) Analyzing the scatter in GW asteroseismology relations referring to either iso-
lated NSs or BNS merger remnants. We define frequency deviations as the
distance of individual data points from the fit to all data (measured in Hz) in
GW frequency versus stellar properties (e.g. the radius or tidal deformability)
plots. Based on the analysis of the data we address a number of questions. How
accurate are the various GW asteroseismology relations based on a consistent
data set? Do frequency deviations follow the same systematic behavior in iso-
lated NSs and BNS merger remnants? Do frequency deviations carry additional
information about the high-density EOS? How can we employ frequency devi-
ations to further constraint the EOS? Does the agreement between frequency
deviations in isolated NSs and post-merger NS remnants imply tight relations
between the f−mode GW frequency in single NSs and the dominant fluid oscil-
lation frequency fpeak in BNS remnants, even considering a broad range of total
binary masses and mass ratios?

The outline of the thesis is the following: In Chapter 2 we provide a brief overview
of the numerical techniques which we employ to study the dynamics of NS systems.
Chapter 3 discusses the moving-mesh approach and provides details of our GRHD
implementation in Arepo and the coupling to the metric solver. In Chapter 4 we
evolve isolated, static NSs on a fixed or dynamical spacetime with Arepo in order
to validate our implementation. We extract the frequency of the radial mode and
compare to results from independent codes, while we also discuss various aspects of the
simulations. In Chapter 5 we perform the first BNS merger simulation on a moving-
mesh with Arepo. We discuss extensively the details of the simulation. The main
focus is placed on the dynamics of the remnant and the post-merger GW emission.
Chapter 6 focuses on GW asteroseismology relations for isolated NSs and NS remnants
from BNS mergers. In particular, we extensively examine how individual models,
described by different EOSs, scatter w.r.t. to the respective fit to all models. Finally,
in Chapter 7 we provide a summary of our results, draw conclusions and outline future
directions. Additionally, Appendix A investigates aspects which affect the accuracy of
GW asteroseismology relations for BNS merger remnants and is particularly relevant
to the discussion of Chapter 6.

Additional notes: Throughout this thesis we employ four different codes, featuring
different degrees of complexity, to study NS dynamics4. The codes and my (main)
contributions are:

(i) The Arepo moving-mesh code [273]. As our basis version, we employ the
Newtonian version outlined in [232]. In this thesis, we discuss an extension to
simulate general relativistic systems [196]. The GRHD implementation in the
code was primarily developed by Andreas Bauswein. My main contributions

4Excluding codes used to generate initial data, which we reference in the appropriate places in
the text.
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include coupling the code to a metric solver, adding microphysics modules for
the high-density EOS, extensively testing to validate the implementation, setting
up the infrastructure for BNS simulations (e.g. importing BNS initial data for
unstructured meshes) and investigating how various aspects of the mesh (e.g.
initial mesh geometry and mesh motion) affect NS simulations. The metric solver
implementation originates from [220]. The simulations with Arepo discussed
in Chapters 4 and 5 and their analysis were carried out by me.

(ii) A 3D general relativistic SPH code [219, 220]. I am a user of the code and
have not actively contributed to its development. Data from the SPH code are
employed in Chapter 6. The analysis is performed by me.

(iii) A code which solves the linear perturbation equations for the fundamental
quadrupolar fluid mode in isolated NSs [198]. The code was developed by me.

(iv) A perturbative code computing radial modes in isolated NSs. The code was
developed by me.

References regarding the underlying theoretical formulations and numerical schemes
can be found in the respective places in the text.

1.5. Conventions

Throughout this thesis we set c = G = 1, unless otherwise specified. Greek indices
refer to space and time components and run from 0 to 3, while Latin indices denote
spatial components and run from 1 to 3. Unless otherwise stated, Einstein summation
notation is employed. Moreover, we adopt the signature (−,+,+,+) for the metric.
Differential operators ∆ and ∂i are with respect to the flat three metric.

In Part III we briefly discuss binary systems where the two NSs have different
masses. We define the mass ratio as q = M1/M2 ≤ 1, where M1 and M2 are the
masses of the two companion stars in the binary system. In addition, we construct
fits based on a number of data points and subsequently consider the deviations of
individual data points from the respective fit. Assuming a data set (Xi, Yi) consisting
of N points, we employ the notation δXY for deviations in Section 6.3. For a given
data point i we define its deviation from the respective fit to all data as

δXYi = Yi − Yfit(Xi). (1.1)

Here Yfit is the fit to the data. The maximum and average deviation then follow as

max (δXY ) = max
i

(|δXYi|), (1.2)

δXY =

∑N
i=1 |δXYi|
N

, (1.3)

where by | · | we denote the absolute value.
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2. Theoretical formulation and
numerical approaches

The numerical study of NS systems requires to treat GRHD, as well as capture
the dynamics of the spacetime. In this work, we carry out full 3D simulations, as well
as perturbative calculations. This chapter provides an overview of the main methods
that we employ, alongside details about their numerical implementation. We devote
Chapter 3 to a more extensive discussion on moving-mesh hydrodynamics, which is
the main focus of this thesis. Chapter 3, alongside Sections 2.1, 2.2, 2.4, 2.5.1 and
2.6, serve as the theoretical background for the simulations discussed in Chapters 4
and 5. We employ the techniques outlined in Sections 2.3, 2.4, 2.5.2 and 2.6 for the
results presented in Chapter 6.

2.1. General relativistic hydrodynamics

We consider the Arnowitt-Deser-Misner (ADM) 3+1 decomposition, which foliates
the spacetime into a set of non-intersecting spacelike hypersurfaces with a constant
coordinate time t [27]. In the ADM formalism, the general metric element reads

ds2 = gµνdx
µdxν =

(
−α2 + βiβ

i
)
dt2 + 2βidx

idt+ γijdx
idxj, (2.1)

where gµν is the spacetime 4−metric, α denotes the lapse function, βi is the shift
vector and γij the spatial 3−metric.

Throughout this work we assume a perfect fluid with an energy-momentum tensor

T µν = ρhuµuν + pgµν , (2.2)

where ρ is the rest-mass density, h = 1 + ε + p/ρ is the specific enthalpy, ε is the
specific internal energy, p is the pressure and uµ is the 4−velocity of the fluid.

A complete hydrodynamic description consists of determining at least 6 variables,
i.e. ρ, p, ε and ui. Assuming a typical EOS of the form

p = p(ρ, ε), (2.3)

eliminates the need to independently compute e.g. the pressure p. The remaining
variables form the set of primitive variables W = (ρ, υi, ε), where υi = (ui/u0 + βi)/α
is the fluid 3−velocity.

The hydrodynamic evolution follows from solving the local conservation laws for
the energy-momentum tensor and the matter current density Jµ = ρuµ, namely

∇µT
µν = 0, (2.4)

∇µ (ρuµ) = 0. (2.5)
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2. Theoretical formulation and numerical approaches

By introducing a set of appropriate conserved variables, we can cast the con-
servation laws into a system of first-order flux-conservative hyperbolic differential
equations, called the Valencia formulation [35, 115]. In the Valencia formulation, the
GRHD equations read

∂0

(√
γU
)

+ ∂i

(√
γFi
)

= S. (2.6)

The set of conserved variables form the state vector

U =




D
Si
τ


 =




ρW
ρhW 2υi

ρhW 2 − p−D


 , (2.7)

where W = αu0 = (1 − γijυ
iυj)−1/2 is the Lorentz factor. Furthermore, Fi and S

correspond to the flux and source vectors defined as

Fi = α




D
(
υi − βi

α

)

Sj

(
υi − βi

α

)
+ pδij

τ
(
υi − βi

α

)
+ pυi


 . (2.8)

and

S = α
√
γ




0
T µν

(
∂µgνj − Γλνµgλj

)

α
(
T µ0∂µ lnα− T µνΓ0

νµ

)


 , (2.9)

respectively. Here Γλνµ are the Christoffel symbols of the metric and γ = det(γij) the
determinant of the spatial 3-metric. We also introduce the definitions U =

√
γU and

F i =
√
γFi, which shall prove useful in Chapter 3, where we discuss in more detail

how we solve Eqs. (2.6) in a finite volume fashion in Arepo.
More formulations exist for the GRHD equations (see e.g. [115, 249, 265]). The

main advantage of the Valencia formulation is the hyperbolic, conservative nature
of the equations. This allows the extension of a number of high-resolution shock-
capturing schemes, initially developed for Newtonian hydrodynamics, to general rela-
tivistic applications. In the following section, we briefly discuss the standard method-
ology to solve the GRHD equations in the case of fixed-grid finite volume meth-
ods. We refrain from explicitly providing relations and extensive details. Our pur-
pose is to present a brief outline of the main steps. More details can be found in
e.g. [17,37,115,206,249,253,265,311]. We devote Chapter 3 to describe such schemes
in the case of moving-mesh hydrodynamics and in particular how they are imple-
mented in the general relativistic version of the Arepo code.

2.2. Fixed-grid finite volume method

In order to numerically solve the GRHD Eqs. (2.6), an appropriate discretization
scheme is necessary. Finite volume methods split the computational domain into a
set of discrete cells and define averages of the conserved quantities in each one of
the cells. The evolution of the system follows from updating each individual cell-
averaged state, based on the ingoing/outgoing fluxes through the corresponding cell’s
boundaries, over the course of an appropriately chosen time step.
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2.2. Fixed-grid finite volume method

At the core of finite volume methods lies the observation that one can define a local
Riemann problem at each interface between neighboring cells [129]. Computing the
fluxes through an interface requires to solve the corresponding Riemann problem. To
define the Riemann problem the fluid state on both sides of the common interface needs
to be computed. These two states are typically called the “left” and “right” states.
Computing the “left” and “right” states at any interface constitutes the reconstruction
step. Many different methods exist for reconstructing the states. We outline some of
the most commonly used ones here.

(i) Slope-limited piecewise linear reconstruction computes the value of a variable,
at any point within a cell, by constructing a linear function (see e.g. [290]).
The function includes a slope limiter, which modifies the slope by incorporat-
ing information about the value of the variable in the neighboring cells (see
Section 3.3). Various slope limiters have been proposed in the literature, in-
cluding the monotonized central (MC) [299], minmod [300] and superbee [250]
limiters. The motivation behind slope-limited reconstruction is to construct
total variation diminishing schemes, which eliminate spurious oscillations from
the solution [143,144]. The method achieves second-order accuracy at all points,
except for local extrema and shocks.

(ii) Other commonly used reconstruction methods include the piecewise parabolic
method [77], essentially non-oscillatory schemes [145], weighted essentially non-
oscillatory methods [201] and the monotonicity-preserving fifth-order reconstruc-
tion [278].

As soon as information about the “left” and “right” state at each interface is avail-
able, a Riemann solver is employed to compute the flux of conserved quantities through
the face. Multidimensional exact solvers are computationally expensive, thus approx-
imate solvers are typically used. Common choices include the HLLE [108, 146] and
HLLC [210, 291] solvers. Riemann solvers are classified as complete or incomplete,
based on the assumptions they make about the structure of the solution. In the case
of GRHD, the solution of the Riemann problem consists of three waves. HLLC is
a complete solver, because it includes all three possible characteristic waves, while
HLLE is a two-wave model and hence incomplete. Extending HLLE to curved space-
times is straightforward, while the solver yields accurate results. These features make
it a common choice in GRHD codes.

Up until this point, we have only discussed the spatial discretization of Eqs. (2.6).
The spatial and time discretization can be considered separately based on the method
of lines. In particular, by discretizing all spatial components, the initial set of par-
tial differential equations turns into ordinary differential equations in time. The time
integration can then be carried out with standard numerical integrators, such as ex-
plicit Runge-Kutta methods. In order to guarantee the convergence of the solution,
the time step of the integration needs to satisfy the Courant–Friedrichs–Lewy (CFL)
condition [82,83].

The GRHD equations include non-zero source terms due to the spacetime geometry
(see Eqs. (2.6) and (2.9)). Their contribution to the solution can either be added
alongside the fluxes, in accordance with the chosen time integrator, (unsplit methods)
or independently consider the flux and source terms (fractional-step methods). In the
second case, the solution is propagated in time in multiple steps, which consider either
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2. Theoretical formulation and numerical approaches

the flux terms only (thus solve a homogeneous set of differential equations) or focus
on the source terms alone and solve the corresponding ordinary differential equations
without the fluxes.

The overall accuracy of the solution is determined by the accuracy of the methods
used for both the spatial discretization and the time integration. As a result, it
is important to couple a high-order time integration scheme to similarly high-order
spatial schemes (e.g. reconstruction).

As a few final remarks on finite volume techniques we note the following. The
finite volume approach works with cell-averaged quantities. As a result, at the end of
each time step, we obtain the state vector of each cell, i.e. the conserved quantities.
From a physical point of view it is more useful to know the values of the primitive
variables at the cell centers. Even though computing the conserved quantities from the
primitive ones is straightforward based on the definitions (2.7), the inverse procedure
cannot be carried out analytically. Instead, a root-finding method is used to recover
the primitive variables from the conserved variables (see Section 3.5 for more details).

Furthermore, the standard Eulerian formulation that we discuss faces problems at
vacuum regions. A rather popular approach to circumvent the problem is to include
a very low density artificial atmosphere, many orders of magnitude below the max-
imum density within the computational domain [117] (see Section 3.8). Alternative
formulations have been proposed, which alleviate the issue [99].

2.3. Smoothed particle hydrodynamics

An alternative way to treat hydrodynamics is SPH [127, 202, 211]. Instead of solving
the GRHD equations on a grid, SPH employs a set of particles comoving with the fluid
and expresses dynamics in terms of operations at the particle level. Hence, SPH is a
purely Lagrangian method. We focus our description to a specific general relativistic
SPH code [219, 220], because in Chapter 6 we discuss results from [197] based on a
number of simulations employing the results from [45,48,219,220].

Similarly to the case of finite volume methods, we focus first on the spatial di-
mensions. Within SPH, the first step in this direction is an interpolation method.
In particular, a function f(r) (e.g. the density ρ) is approximated at a point with
coordinates r as

fI(r) =

∫
f(r′)W (r− r′, h)d3r′, (2.10)

where W is the kernel function and h the smoothing length, which determines the
integration domain (see e.g. [251]). The kernel function needs to be normalized and
have compact support. Furthermore, it should tend to the Dirac delta distribution
at the limit h → 0, so that we recover the function f(r) at the limit of vanishing
h. Unless otherwise stated, in the simulations discussed in this thesis we employ the
spherically symmetric spline kernel [213]. In a few cases, we opt for the Wendland
kernel [89,310].

Since SPH divides the fluid to a set of particles, the integral (2.10) can be approx-
imated as a summation over the particles

fS(r) =
∑

b

f(rb)
mb

ρ∗b
W (r− rb, h), (2.11)
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2.3. Smoothed particle hydrodynamics

where mb is the rest mass of the particle denoted by b. Computing the value of a
quantity at any point follows from Eq. (2.11), where in the summation we take into
account all the particles with a smoothing length around their position which includes
the point of interest. The smoothing length of each particle changes based on the local
particle density [211]. In the SPH code that we employ, the smoothing length of most
particles is regulated to include roughly 100 neighbors.

Similarly to the Eulerian formulation presented in Section 2.1, we define a set of
conserved quantities (ρ∗, ûi, τ ∗) such that

ρ∗ =
√
γρW, (2.12)

ûi = hui = hWυi, (2.13)

τ ∗ = hW − p

ρW
−
√

1 + γijûiûj. (2.14)

It is straightforward to relate ρ∗ and ûi to D and Si, while τ ∗ and τ differ more due
to the kinetic term $ =

√
1 + γijûiûj. The underlying reason is that evolving τ ∗

with the SPH code produces better results in regions where the kinetic energy is the
dominant contribution to the total energy. Note that τ ∗ is defined slightly differently
than in [219] to improve numerical stability. This modification dates back to early
studies with the code [48].

Taking into account that SPH is a Lagrangian approach, the time derivative oper-
ator d

dt
is related to the (Eulerian) time derivative ∂0 as d

dt
= ∂0 + ui

u0
∂i. The system of

differential equations for (ρ∗, ûi, τ ∗), namely the hydrodynamic evolution equations,
then reads

dρ∗

dt
=− ρ∗∂i

(
ui

u0

)
, (2.15)

dûi
dt

=− 1

ρ∗
αψ6∂ip− αû0∂iα + ûj∂iβ

j +
2ûjûj
ψ5û0

∂iψ, (2.16)

dτ ∗

dt
=− ψ6

ρ∗
αυi

(
1− hW

$

)
∂ip− ψ6 p

ρ∗
∂i
(
αυi
)

− 6ψ5 p

ρ∗
αυi∂iψ −

ûi
ψ4

(
1− hW

$

)
∂iα

+
1

ψ4

(
1

hW
− 1

$

)(
ûiûj∂jβ

i − 1

3
ûiûi∂jβ

j

)
, (2.17)

where the conformal flatness condition is imposed, namely γij = ψ4δij in Cartesian
isotropic coordinates, where ψ is the conformal factor (see Section 2.4 for more details).

Due to the differentiable nature of Eq. (2.11), spatial derivatives can be com-
puted by direct differentiation, without the need for a finite difference method. This
is an important aspect of SPH, because the hydrodynamic evolution equations (i.e.
Eqs. (2.15)-(2.17)) become a set of ordinary differential equations in time. Similarly
to fixed-grid finite volume methods, a standard numerical integration scheme can be
employed for the time integration. In particular, the code employs a fourth-order
Runge-Kutta method and determines the time step based on the CFL condition.

In order to accurately treat shocks SPH requires an artificial viscosity scheme
[212, 251–253]. The implementation in the code is outlined in [219]. The principal
idea is to consider each particle pair as the “left” and “right” state of a local Riemann
problem, similar in spirit to the discussion in Section 2.2.
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Furthermore, we note that the SPH code includes support for analytic EOSs
(i.e. ideal gas), zero-temperature microphysical EOSs supplemented by an ideal gas
thermal component (see Section 2.6), as well as full temperature- and composition-
dependent EOSs of the form p(ρ, ε, Ye), where Ye is the electron fraction.

Similarly to fixed-grid Eulerian approaches, Eqs. (2.12)-(2.14) highlight that the
conversion from (ρ∗, ûi, τ ∗) to the primitive variables requires a numerical approach.
On the contrary, SPH does not require the inclusion of an artificial atmosphere to
treat vacuum regions. Furthermore, fixed-grid approaches require the implementation
of (adaptive) mesh refinement techniques to locally increase or decrease the spatial res-
olution throughout a simulation. The discretization via particles, which comove with
the fluid, on its own guarantees adaptive resolution, thus making SPH an excellent
choice for many astrophysical problems.

2.4. Conformal flatness approximation

For the description of the spacetime, we adopt the ADM formalism, which leads to
the metric element (2.1). In addition, we employ the CFC approach [157,312], which
approximates the spatial 3−metric as

γij = ψ4γ̂ij, (2.18)

where γ̂ij is the flat metric. The metric solver employs Cartesian isotropic coordinates,
thus γ̂ij = δij.

Employing the maximal slicing condition trKij = 0, where Kij is the extrinsic
curvature, the Einstein field equations reduce to a set of five coupled nonlinear elliptic
differential equations for the metric components (e.g. [36])

∆ψ =− 2πψ5E − 1

8
ψ5KijK

ij, (2.19)

∆(αψ) =2παψ5(E + 2S) +
7

8
αψ5KijK

ij, (2.20)

∆βi =− 1

3
∂i∂jβ

j + 2ψ10Kij∂j

(
α

ψ6

)
+ 16παψ4Si, (2.21)

where

E = ρh
(
au0
)2 − p, (2.22)

S = ρh
[(
au0
)2 − 1

]
+ 3p, (2.23)

are matter contribution to the source terms, while Si = ρhαu0uµγiµ are the contravari-
ant components of Si defined in Eq. (2.7).

The extrinsic curvature, under the conformal flatness assumption, depends on the
metric as

Kij =
ψ4

2α

(
δik∂jβ

k + δjk∂iβ
k − 2

3
δij∂kβ

k

)
. (2.24)

The equation for βi can be cast into two Poisson-like differential equations through
the definition βi = Bi − 1

4
∂iχ [36]. The differential equations for Bi and χ read

∆Bi =2ψ10Kij∂j

(
α

ψ6

)
+ 16παψ4Si, (2.25)

∆χ =∂iB
i. (2.26)
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In the metric solver implementation, the equations for ψ, αψ, Bi and χ are dis-
cretized on a Cartesian uniform grid. A multipole expansion up to quadrupole order
provides boundary conditions for Eqs. (2.19) and (2.20). Fall-off boundary conditions
are imposed for Eqs. (2.25) and (2.26). The equations are then solved iteratively until
they converge employing a multigrid approach [63]. The metric solver implementation
was originally introduced in [220].

The CFC approximation ignores off-diagonal spatial metric terms. Hence, it omits
gravitational waves. In order to extract the gravitational wave signal and include
the backreaction to matter, a small, non-conformally flat correction to the metric is
added. The scheme was derived in [113], while elements of the calculation can be
found in [60]. This approach leads to post-merger gravitational wave frequencies,
black-hole formation, ejecta and torus masses which are in good agreement with full
general relativistic simulations of BNS systems [41, 43, 45, 173]. More details on any
aspect of the metric solver implementation can be found in [219].

Finally, we note that we employ almost identical metric modules to treat gravity
in the SPH code and Arepo1. However, the coupling between the metric and the
hydrodynamics modules of the two codes differs. From the purely technical point of
view, the SPH code (hydrodynamic and metric modules) is written in Fortran and
parallelized with OpenMP. Arepo on the other hand is written in C and employs
the MPI protocoll for parallelization. So the communication and synchronization
between Arepo and the metric modules is more challenging. Furthermore, modelling
the interaction of the fluid with the spacetime requires mapping hydrodynamic data
from the SPH particles or Arepo cells to the metric grid points and vice versa.
Regarding the first direction, SPH provides a native interpolation method. In the
case of Arepo, the situation is different and we provide more details in Section 3.6.
Mapping metric fields to any point (e.g. SPH particle or cell center positions) is easier
because the metric is known on a uniform Cartesian grid (see Section 3.6 for more
details on how it is done in Arepo).

2.5. Perturbative approach

In the previous sections, we discussed a formulation and numerical approaches which
allow for a full 3D dynamical study of NS systems. Such simulations are rather
demanding computationally, which made them practically impossible in early studies
of the system. Another powerful tool, which has been and is still being used extensively
to study certain aspects of the system, is perturbation theory (see e.g. [172] and
references therein).

The perturbative approach considers an equilibrium state of the system as the
background solution. In the case of static, spherically symmetric NSs, this requires
to solve the TOV equations. Without loss of generality, the background metric in
Schwarzschild coordinates is written as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.27)

where ν(r) is a metric potential and e2λ(r) =
(

1− 2m(r)
r

)−1

withm(r) the gravitational

1The main difference is that, in the case of the SPH code, some metric grid related operations are
carried out at the level of particles, while in Arepo we opt to map and compute everything on the
metric grid.
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mass inside a radial distance r. We highlight that this ansatz for the metric is only
relevant for the discussion on perturbative methods. The modeling of the spacetime
for the 3D codes discussed in this thesis is outlined in Section 2.4.

In order to model small perturbations in the fluid and the spacetime, the perturbed
Einstein equations and the variation of the energy-momentum tensor conservation
need to be solved, i.e.

δ (Gµν − 8πT µν) = 0, (2.28)
δ (∇µT

µν) = 0, (2.29)

where Gµν is the Einstein tensor.
In principle, we can consider perturbations up to an arbitrary order in a pertur-

bation parameter. However, the problem becomes quite difficult already at second
order [64, 128]. Hence, we focus our attention to first-order perturbations. Linear
perturbations ignore mode couplings and thus do not capture the full dynamics of the
system. Nevertheless, they are successful in computing the frequencies of both fluid
and spacetime oscillations for various types of perturbations and they are extremely
useful in better understanding the basic dynamics of the system.

In the following, we examine two different types of oscillations, the radial mode
and the f−mode. Our main motivation behind studying radial pulsations is that
they constitute a standard test for 3D general relativistic hydrodynamic codes. We
present such tests with Arepo in Chapter 4. For additional flexibility in these tests,
we developed a code to compute radial modes which supports the polytropic EOS, as
well as zero-temperature microphysical EOSs in the form of piecewise polytropes [246].

In Chapter 6 we examine the accuracy of universal relations between f−mode
frequencies and stellar parameters. Furthermore, we consider the main gravitational
wave frequency from the post-merger phase of BNS merger remnants. We try to
identify possible EOS signatures in the post-merger signal. A number of arguments
support that the dominant frequency is produced by the f−mode oscillation in the
remnant [49, 53, 67, 276]. For this reason, we employ also perturbative calculations of
the f−mode for zero-temperature microphysical EOSs, provided in tabulated form,
to further investigate EOS effects in a simpler system. We extract post-merger fre-
quencies with the SPH code discussed in Section 2.3 (see [45, 48, 219, 220] for more
details), while we obtain perturbative f−mode frequencies with the code presented
in [198].

2.5.1. Radial mode

The radial pulsation equations were derived in [69]. Since then various different for-
mulations have been proposed in the literature (e.g. [72, 131, 171]). We follow [131]
because their formulation is singularity-free at the surface and also does not contain
derivatives of the adiabatic index Γ (see relevant discussion in [131]), which makes it
easier to apply to piecewise polytropic EOSs.

The functional form of the perturbations should preserve the spherical symmetry
of the background solution. Furthermore, we assume a harmonic time dependence for
all perturbations. If we denote the radial displacement of a fluid element, located at
a distance r in the background solution, as ∆r(r, t), we can explicitly decompose ∆r
as e.g.

∆r(r, t) = G(r)eiωt, (2.30)
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2.5. Perturbative approach

where G(r) is the radial dependence, which remains to be determined. The remaining
perturbed variables are treated in the same way, i.e. ∆p(r, t) ∝ eiωt, etc.

The system of differential equations governing radial oscillations then reads

dξ

dr
=− 1

r

(
3ξ +

∆p

Γp

)
− dp

dr

ξ

ε+ p
, (2.31)

d(∆p)

dr
=ξ

[
ω2e2(λ−ν)(ε+ p)r − 4

dp

dr

]

+ ξ

[(
dp

dr

)2
r

ε+ p
− 8πe2λ(ε+ p)pr

]

+ ∆p

[
dp

dr

1

ε+ p
− 4πe2λ(ε+ p)r

]
, (2.32)

where ξ = ∆r/r is the relative radial displacement and ε = ρ(1+ ε) is the total energy
density.

Solving the equations requires boundary conditions. In order to ensure that Eq.
(2.31) is regular at the center and due to the normalization of eigenfunctions, it follows
that

(∆p)c = −3(ξΓp)c, (2.33)
ξc = 1, (2.34)

where we use c to denote that these relations hold at the stellar center. Moreover, the
pressure at the surface of the star by definition drops to zero, which results in

(∆p)R = 0, (2.35)

where R is the stellar radius.
In order to solve the equations, we employ the boundary conditions (2.33) and

(2.34) to integrate from the center to the surface for a trial value of the frequency ω.
Determining the spectrum of eigenvalues ω2 for a particular stellar model translates
to tracking down the values of ω2 which satisfy the boundary condition (2.35). The
spectrum contains an infinite number of eigenvalues ω2

n. Furthermore, we note that
ω2 > 0 holds for real values of ω, while ω2 < 0 means that ω is imaginary. If the
spectrum contains only positive eigenvalues, namely ω2

n > 0 ∀n, the solution is purely
oscillatory and the configuration is stable. On the contrary, if the spectrum contains
at least one negative eigenvalue, the corresponding frequency is imaginary. Based
on the harmonic time dependence assumption the perturbation is now exponentially
growing. As a result, the configuration is unstable. The maximum mass stable model
for a given EOS is directly related to the instability under radial perturbations [142].

2.5.2. Quadrupole mode

Quadrupole oscillations produce gravitational waves. As a consequence, it does not
suffice to study only the NS interior, but we also need to model the perturbed space-
time outside the star as well. We start the discussion from the study of the quadrupole
mode in the interior of NSs. A number of works investigated the problem of nonradial
oscillations in NSs [66, 156, 237,285–287]. We adopt the formulation from [91], which
builds on top of earlier work [193]. For extensive reviews on the topic see [121,172].
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2. Theoretical formulation and numerical approaches

The symmetries of the background allow us to decompose the perturbations into a
sum of quasi-normal modes, which correspond to different spherical harmonics. The
angular part of scalar, vector and tensor quantities is represented with scalar, vector
and tensor spherical harmonics, respectively. Furthermore, we assume a harmonic
time dependence for all perturbations, where the frequency

ω = 2πf +
i

τdamp

(2.36)

is now complex. The real part is the frequency of the oscillation f , while τdamp is the
damping timescale due to gravitational waves.

We can then expand perturbations, e.g. the Lagrangian perturbation of the pres-
sure ∆p, as

∆p(t, r, θ, φ) = rl∆plm(r)Ylme
iωt, (2.37)

where ∆plm(r) is the radial part of the perturbation and Ylm are the spherical har-
monics. We focus on the (l,m) = (2, 0) mode.

Based on [91], in order to determine all the perturbation functions (e.g. ∆plm(r)),
we need to solve a system of four first-order differential equations which read

dH lm
1

dr
=− 1

r

[
l + 1 +

2me2λ

r
+ 4πr2e2λ(p− ε)

]
H lm

1

+
e2λ

r

[
H lm

0 +K lm − 16π(ε+ p)V lm
]
, (2.38)

dK lm

dr
=

1

r
H lm

0 +
l(l + 1)

2r
H lm

1 −
[
l + 1

r
− dν

dr

]
K lm − 8π(ε+ p)

eλ

r
W lm, (2.39)

dW lm

dr
=− l + 1

r
W lm + reλ

[
e−ν

c2
s(ε+ p)

X lm − l(l + 1)

r2
V lm +

1

2
H lm

0 +K lm

]
, (2.40)

dX lm

dr
=− l

r
X lm +

(ε+ p)eν

2

{(
1

r
− dν

dr

)
H lm

0 +

(
rω2e−2ν +

l(l + 1)

2r

)
H lm

1

+

(
3
dν

dr
− 1

r

)
K lm − 2l(l + 1)

r2

dν

dr
V lm

−2

r

[
4π(ε+ p)eλ + ω2eλ−2ν − r2

2

d

dr

(
2e−λ

r2

dν

dr

)]
W lm

}
, (2.41)

where cs the speed of sound, while H lm
1 (r), K lm(r) refer to spacetime perturbations

and W lm(r), X lm(r) to fluid perturbations. The functions H lm
0 (r), V lm(r) can be

directly related to H lm
1 , K lm, W lm and X lm. Once we determine this set of four func-

tions (H lm
1 , K lm,W lm, X lm), we can express all the spacetime and fluid perturbations

in the interior of the star with respect to them (e.g. ∆plm = eνX lm) [91, 193,287].
Eqs. (2.38)-(2.41) are singular near the center. Hence, their solution is approxi-

mated based on a second-order expansion near r = 0. The lowest-order term of the
expansion provides constraints for H lm

1 and X lm at r = 0, which means the solution
from the center is the combination of two linearly independent bounded solutions at
r = 0. We pick two sets of linearly independent boundary conditions for (K lm,W lm)
and employ the expansion to compute the two solutions close to the center. We then
integrate outwards to extend both solutions up to some point r∗ ≈ 0.2R. In addition,
we have a single boundary condition at the surface, X lm(R) = 0, since the pressure
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2.6. Equation of state

should vanish. As a result, at the surface, the unique solution is a linear combination
of three linearly independent solutions which satisfy this condition. We pick three sets
of linearly independent boundary conditions for (H lm

1 , K lm,W lm) and integrate them
inwards up to r∗. At r = r∗ we match the linear combination of the two solutions from
the center to the linear combination of the three solutions from the surface in order
to determine a single solution for the system, which is unique up to a multiplication
factor. For more details see [91,193].

In order to compute the frequencies ω, we need to study the exterior of the NS
as well. In the vacuum, the fluid perturbations vanish, so only the spacetime pertur-
bations are relevant. The perturbation functions H lm

1 and K lm can be combined into
a single function called the Zerilli function, which satisfies a second-order differential
equation known as the Zerilli equation [109, 319]. In order to solve the equation, the
Zerilli function and its first derivative are matched to the interior solution at the sur-
face. For a general value of ω, the Zerilli function behaves as the sum of an ingoing and
an outgoing wave at infinity. The eigenvalues ω2 correspond to the discrete set of ω
for which the solution at infinity is purely outgoing, namely no incoming gravitational
radiation drives the oscillation.

In our code, we adopt a different formulation for the exterior problem which was
presented in [23]. The problem is reformulated to obtain a differential equation with
a significantly less oscillatory solution than the Zerilli equation. The differential equa-
tion which we need to solve reads

1

2q

d2q

dr2
− 3

4q2

(
dq

dr

)2

+ q2 − U(r) = 0. (2.42)

Here q(r) is a function related to the perturbations (see [23]), while

U(r) =

(
1− 2M

r

)−2 [
ω2 − Vz(r) +

2M

r3
− 3M2

r4

]
, (2.43)

where M the stellar mass and Vz(r) an effective potential given by

Vz(r) = e−2λ2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2
, (2.44)

with n = (l − 1)(l + 2)/2.
The value of the potential U(r) does not vary significantly at r → ∞. Hence,

we neglect the derivative terms in Eq. (2.42) at infinity and approximate the solu-
tion as q(r) ≈

√
U(r). We employ this expression to construct initial conditions for

integrating Eq. (2.42). The overall procedure is described in more detail in [23].

2.6. Equation of state

An important part of the description of NSs, as well as one of the main reasons for
which we study the system, is the nuclear EOS. NSs reach densities of a few times
the nuclear saturation density ρsat, while binary neutron star mergers can also reach
temperatures of several tens of MeV or possibly even more. However, the EOS of
ordinary matter at densities above ρsat is quite uncertain [65, 138, 221]. Terrestrial
experiments involving nuclei set constraints up to roughly ρsat, while heavy-ion colli-
sions provide additional information for hot, approximately symmetric nuclear matter
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2. Theoretical formulation and numerical approaches

up to a few times ρsat [179,180,221,226]. A number of different microphysical models
and nuclear parametrizations exist to model matter behavior at such high densities
(see e.g. [65, 114, 138, 221]). Throughout this study we employ a number of different
EOSs. We refrain from explicitly discussing each EOS and instead provide references
to the works in which every individual EOS was introduced and is described in detail.

In order to accurately simulate BNS mergers we need EOSs which cover the whole
range of thermodynamic conditions in the post-merger phase, i.e. densities up to a few
times ρsat, temperatures which can exceed 100 MeV and also an excess of neutrons
over protons. A number of such EOSs with full temperature dependence, which also
cover a range of electron fractions, exist2. Moreover, the significantly greater number
of available EOSs for cold (zero-temperature) matter in neutrino-less beta-equilibrium
can also be complemented by an ideal gas to approximate thermal effects [159]. The
full “hybrid” EOS reads

p = pcold + pth, (2.45)
ε = εcold + εth, (2.46)

where pcold = pcold(ρ) and εcold = εcold(ρ) refer to the microphysical cold EOS in beta-
equilibrium, while pth and εth describe the thermal part. The hydrodynamic evolution
determines ρ and ε. Then, εth = ε− εcold(ρ) and the thermal pressure is given by

pth = (Γth − 1)ρεth, (2.47)

where typical values for the adiabatic constant Γth lie in the range 1.5 − 2 (see [46]
for a detailed discussion).

In addition to microphysical EOSs, one can also employ an analytic EOS to model
NSs. A typical choice is the polytropic EOS which reads

p = KρΓ, (2.48)

where K is the polytropic constant and Γ the polytropic index.
Modelling NSs as polytropes is not very precise, because the two available parame-

ters are not enough to accurately describe the whole density range realized within NSs.
Nevertheless, simulations with polytropes still capture part of the dynamics, especially
for configurations that are close to equilibrium. Furthermore, evolving (isentropic)
polytropes is less computationally demanding, mainly because the specific internal
energy follows analytically from the density as

ε =
KρΓ−1

(Γ− 1)
, (2.49)

which eliminates the need to evolve the hydrodynamic equation for τ .
Evolutions with the (isentropic) polytropic EOS fail to capture a number of dy-

namical processes, such as shocks. An ideal gas EOS instead provides a more physical
description of the system. Hence, in some of our Arepo tests we construct initial
data with the polytropic EOS and then employ

p = (Γ− 1)ρε, (2.50)

throughout the evolution. In this case, both ρ and ε follow from solving the GRHD
equations.

2For clarification, we employ EOSs with full temperature and composition dependence only in the
resuls presented in Chapter 6. We briefly summarize the microphysics modules currently implemented
in Arepo in Section 3.8, based on the discussion presented in the current section.
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Part II

General relativistic moving-mesh
hydrodynamics with Arepo
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Preface

Introductory and concluding remarks for the results discussed in Chapters 3, 4 and 5
can be found in Sections 1.2 and 7.1, respectively. Chapter 2 provides more details
on the theoretical formulation and the numerical modeling. The bulk of this study
follows [196]1, submitted to Monthly Notices of the Royal Astronomical Society. The
text, figures and tables have been modified and adapted to suit this thesis.

1https://arxiv.org/abs/2208.04267
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3. Moving-mesh hydrodynamics for
general relativistic systems

3.1. Voronoi mesh in the Arepo code

In this study we employ the Arepo code [273]. Arepo solves hydrodynamics on a
moving mesh. The basis of the moving-mesh construction is a discrete set of mesh-
generating points. For a given set of points, the code constructs a so-called Voronoi
tessellation. Each mesh-generating point corresponds to a different Voronoi cell. By
definition, each Voronoi cell contains the region of space which is closer to its respective
generating point than any other point. As a result, the Voronoi tesselation decomposes
space into a set of discrete cells. This enables a finite volume formulation of the
(general relativistic) hydrodynamic equations on a Voronoi mesh (see Section 3.2).

Arepo constructs the Voronoi tessellation by first creating a so-called Delaunay
tessellation corresponding to the set of mesh-generating points. The Delaunay tessella-
tion is the topological dual of the Voronoi diagram and computationally less expensive
to generate. It is a specific triangulation of space where the points serve as vertices
to form tetrahedra in 3D. The defining property of the Delaunay triangulation is that
the circumsphere of each tetrahedron does not contain any of the remaining mesh-
generating points. For more details on how to compute the Delaunay tesselation,
see [273] and references therein.

As soon as the Delaunay tesselation is available, one can extract the Voronoi mesh.
In particular, the mid-points of the circumspheres around each tetrahedron correspond
to the vertices of the Voronoi cells. Based on the defining properties of the Voronoi
mesh, one can compute the geometric characteristics of each Voronoi cell, i.e. the cell’s
center of mass and volume, as well as the face area between neighbouring cells. In
principle, cell centers do not coincide with the positions of the mesh-generating points
except for special cases, such as the Cartesian mesh.

The moving nature of the mesh originates from the fact that the mesh-generating
points can move freely, which leads to a new mesh construction in each time step. The
velocities of mesh-generating point can be chosen arbitrarily. Point motion changes
the Voronoi mesh in a continuous way, which ensures that no mesh-tangling problems
occur throughout the mesh evolution. For more details on the initial point distribution
and motion, see Section 3.7.

3.2. Time integration

The original implementation of Arepo solves Newtonian hydrodynamics. However,
the aim of this thesis is to simulate general relativistic systems with the moving-mesh
approach. This requires extending the code with two main components, the necessary
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3. Moving-mesh hydrodynamics for general relativistic systems

modules to solve the GRHD equations (i.e. Eqs. (2.6)) and a solver for the dynamical
spacetime (see Sections 2.4 and 3.6). In this section we describe how we discretize the
GRHD equations in a finite volume fashion and integrate in time to update the state
of the system. Our basis version of the code includes the upgrades described in [232].

In Section 2.2 we present the outline of finite volume methods in GR. It was shown
in [273] that the hydrodynamics equations can be discretized on an unstructured
Voronoi mesh and solved in a moving-mesh fashion. For each cell i we define the
volume integrated conserved variables as

Qi =

∫

Vi

UdV. (3.1)

Arepo employs Heun’s method for time integration, i.e. to update the state Qn
i from

time tn to tn+1 = tn + ∆t, where ∆t is the time step [232]. Heun’s method is a
second-order Runge-Kutta method which computes the time-updated state Qn+1

i as

Qn+1
i =Qn

i −
∆t

2

(∑

j

AnijF̂
n
ij(W

n
ij,W

n
ji) +

∑

j

A′ijF̂
′
ij(W

′
ij,W

′
ji)

)

+
∆t

2

(
Sn
i + Ŝ

′
i

)
, (3.2)

rn+1
i =rni +

∆t

2
(wn

i + w′i) . (3.3)

Here ri are the coordinates of the mesh-generating point for cell i and wi is the point’s
velocity. Eq. (3.3) describes how the mesh changes during the time step. Focusing on
Eq. (3.2), the index j accounts for all the neighbouring cells of cell i, while Aij is the
oriented interface area between cells i and j. F̂ij is an approximate Riemann solver
estimate for the fluxes through the interfaces, which depends on the reconstructed
primitives from the center of cell i (or j respectively) to the cell interfaces denoted
by Wij (or Wji respectively) (see also Sections 3.3 and 3.4). Si =

∫
Vi
SdV are the

volume-integrated source terms computed for cell i. Primed quantities are explained
in Eqs. (3.4) and (3.5).

Heun’s method consists of two substeps, as can be seen in Eqs. (3.2) and (3.3). The
two substeps require information at the beginning and the end of the time step, re-
spectively. The input for the second substep follows from a forward Euler integration1

which reads

Q′i =Qn
i −∆t

∑

j

AnijF̂
n
ij(W

n
ij,W

n
ji) + ∆tSn

i , (3.4)

r′i =rni + ∆twn
i . (3.5)

Based on the estimates Q′i, we compute the fluxes F̂′ij and source terms Ŝ
′
i at the end

of the time step.
Formally, Heun’s method requires two different mesh constructions for rni and r′i.

Arepo imposes that the mesh-generating point velocity remains constant during the
whole time step, i.e. w′i = wn

i . Then

rn+1
i = rni +

∆t

2
(wn

i + w′i) = rni + ∆twn
i = r′i, (3.6)

1Note that the Newtonian version of Arepo follows a different approach [232].
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which means that the mesh which was constructed for the second substep of Heun’s
method in the current time step can be reused in the first substep of the next time
step, i.e. in Eq. (3.2) A′ij = An+1

ij . Hence, only one mesh construction is necessary per
time step, which reduces the computational effort.

We update the metric at the beginning of each Heun substep. We solve the metric
field equations in both substeps of Heun’s method in the nine first time steps and,
subsequently, in the first substep of every fifth time step. In all other substeps we
estimate the metric based on a parabolic extrapolation using the last three metric
solutions, which reduces the required computational effort. Explicitly calling the
metric solver in the initial timesteps is necessary to obtain the required metric solutions
for the extrapolation, as well as guarantee the stability of the scheme after importing
initial data. We find this approach to be in excellent agreement with solving the field
equations in every substep, provided that the metric fields do not vary significantly
between successive time steps. The frequency with which we call the metric solver
can be adjusted to the problem in hand based on the time step ∆t.

Evolving the system requires to determine the time step ∆t. For each cell with
volume Vi, we compute the maximum allowed time step ∆ti as

∆ti = CCFL
Ri

|λmax
i |

, (3.7)

whereRi = (3Vi/(4π))1/3 is an effective cell radius and λmax
i is the maximum eigenvalue

of the Jacobian of the GRHD equations (see [35]) for this particular cell. Moreover,
we apply the CFL condition with a CFL factor CCFL, which we typically set to 0.3.

Arepo can update cell states based on a global time step or consider individual
time steps for each cell based on a power-of-two hierarchy to achieve synchronization
(see [273,308] for more details). In our implementation we opt for a global time step
defined as

∆t =
Ttot

2N
, (3.8)

where Ttot is the total simulation time and N is the smallest integer which satisfies
∆t < mini ∆ti. The total simulation time Ttot can be chosen freely.

3.3. Primitive variables reconstruction

Arepo approximates any quantity φ within a cell linearly as

φ(r) = φ(si) + 〈∇φ〉i · (r− si), (3.9)

where si is the position of the cell’s center of mass, r any other point within the cell
and 〈∇φ〉i is an estimate for the gradient of φ in cell i. To compute 〈∇φ〉i in each
cell, the code relies on the fact that we know the value of φ at the center of mass of
all the cells. Moreover, for any cell j which is a neighbour of cell i, we can estimate
φ at its center of mass sj based on Eq. (3.9) as

φest
j = φ(si) + 〈∇φ〉i · (sj − si). (3.10)

To determine the gradient 〈∇φ〉i we demand that the estimate φest
j is accurate. In

particular, we employ a least-squares method to minimize the weighted sum of the
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deviations over all neighbouring cells of cell i
∑

j

gj
(
φ(sj)− φest

j

)2
, (3.11)

where gj = Aij/|si − sj|2 (see [232] for more details). Based on the gradient estimate
〈∇φ〉 we can directly employ Eq. (3.9) to reconstruct primitives to the mid-points of
the faces.

Alternatively, we can apply a slope limiter to the gradient estimate to construct a
total variation diminishing scheme. We adopt the approach presented in [87] for the
extension of slope limiters to unstructured grids (see also [229]). We denote the cells
associated with a face as left (L) and right (R). To extrapolate a primitive variable
from the center of mass of the left cell to the interface, the method relies on the scalar

rL =
∇φL · sLR
φR − φL

− 1, (3.12)

where ∇φL is the gradient of φ at the center of mass of the left cell, sLR is the vector
from the center of the left cell to the center of the right cell and φL, φR are the values
of the primitive variable at the center of the left and right cells, respectively. Then,
the reconstructed value of the primitive variable from the left cell to the interface is
given by

φface
L = φL +

1

2
Ψ(r)(φR − φL), (3.13)

where Ψ(r) is the slope limiter function. A similar process is followed to extrapolate
from the center of the right cell to the interface.

Unless otherwise stated, in the simulations presented in this thesis we employ
slope-limited reconstruction using the gradient estimate 〈∇φ〉 computed in the left
cell as the value of ∇φL. Various options for the slope limiter exist. Our choice is the
MC slope limiter [299], because it performs better in simulations of single relativistic
stars [116].

3.4. Riemann problem

In a moving-mesh approach the face between neighbouring cells is moving. To ac-
curately resolve the Riemann problem at the face, we need to take this motion into
account. The Newtonian version of Arepo considers the face motion by solving the
Riemann problem in the rest-frame of the face. This requires boosting the cell states
by the velocity of the face. The code then reconstructs the primitive variables at
both sides of the mid-point of each face to construct the left (L) and right (R) states.
After rotating the reconstructed states, such that they align with the normal vector
of the face, a one-dimensional (1D) Riemann solver can be applied. The solution is
rotated and boosted back to the original non-moving frame and the fluxes can now be
computed. This process requires an estimate for the face’s velocity, which the code
approximates as

w̃ =
w̃R + w̃L

2
+

(w̃L − w̃R) · [f − (rR + rL)/2]

|rR − rL|
(rR − rL)

|rR − rL|
, (3.14)

where rL/R, w̃L/R are the positions and velocities of the mesh-generating points associ-
ated with the respective face, while f is the position of the mid-point of the face. The
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first term is the average velocity of the two mesh-generating points, while the second
term captures the residual motion due to the fact that the center of mass of the two
points does not generally coincide with the mid-point of the face (see also [273]).

In our general relativistic implementation, we follow a different approach, which
was introduced in [100], and solve the Riemann problem in the non-moving frame.
We employ the HLLE solver [108, 146]. Because the face is moving with velocity w̃,
we sample the solution along the curve x/t = w̃ · η̂ in order to capture the correct
HLLE state. Here η̂ is the outward normal vector to the face. In contrast, in Eulerian
codes the faces are not moving and the solution is sampled along the curve x/t = 0.
The fluxes entering Eq. (3.2) then read

F̂ij = F1D
ij − w̃ij · η̂U1D

ij , (3.15)

where F1D
ij and U1D

ij are the HLLE fluxes and state vector, the indices i, j label the
two cells which share the face and the advective (second) term appears due to the
face’s motion.

3.5. Primitive variables recovery

The time evolution equations are written for the set of volume integrated conserved
variables Q (see Eq. (3.2)). Hence, at the end of the time step we know the vari-
ables Q from which we can directly extract the conserved variables U. In contrast
to Newtonian hydrodynamics, computing the primitive variables W from the set of
conserved variables cannot be done analytically and a numerical recovery scheme is
required.

We employ a rather common recovery scheme (see e.g. [249]). We start by defining

S2 = γijSiSj = (ρhW )2(W 2 − 1), (3.16)
Q = τ + p+D = ρhW 2. (3.17)

It is then straightforward to show that

ρ =
D
√
Q2 − S2

Q
, (3.18)

ε =

(
√
Q2 − S2 − pQ√

Q2 − S2
−D

)/
D, (3.19)

where it is evident that ρ and ε do not depend only on the conserved variables, but also
on the pressure. The problem of converting the conserved to the primitive variables
now translates to identifying the set of ρ, ε, p which satisfy the EOS. For a generic
EOS of the form p = p(ρ, ε) this requires to solve the equation

p− p̂ [ρ (U, p) , ε (U, p)] = 0, (3.20)

based on a root-finding scheme. Here p is the value which we wish to determine,
while p̂ [ρ (U, p) , ε (U, p)] is the value produced by the EOS based on the conserved
variables and the (guess for the) pressure p. We employ a Newton-Rapshon method
and use the pressure at the cell center in the previous time step as an initial guess

35



3. Moving-mesh hydrodynamics for general relativistic systems

to accelerate root-finding. The Newton-Rapshon method requires to compute the
derivatives ∂p̂/∂ρ, ∂p̂/∂ε, ∂ρ/∂p and ∂ε/∂p. We numerically differentiate the EOS to
compute the first two derivatives, while the latter two are easy to compute analytically
based on Eqs. (3.18) and (3.19).

To eliminate possible unphysical solutions, at the end of the Newton-Raphson step
for each cell we check if p < 0. Moreover, we identify cells for which ρ < ρthr, where
ρthr is a threshold density related to the artificial atmosphere. In both cases, we set the
primitive variables to atmosphere values and recompute the conserved variables based
on the new primitives (see Section 3.8 for more details on the artificial atmosphere).

3.6. Voronoi mesh and metric grid coupling

Arepo solves the GRHD equations on an unstructured Voronoi mesh. The metric
equations are solved iteratively on an independent uniform Cartesian grid, which
covers the physical domain of interest (see Section 2.4 for more details). However,
a number of hydrodynamical operations such as moving the mesh-generating points,
computing the interface fluxes or recovering the primitive variables require knowledge
of the metric fields at a number of different points, like the mesh-generating point
positions, the center of mass of Voronoi cells or the mid-point of the interfaces between
neighbouring cells. Similarly, in order to solve the metric field equations we need to
know the values of the hydrodynamic variables at the positions of the metric grid
points. Hence, we need to establish mapping techniques between the Voronoi mesh
and the metric grid, which practically constitute the coupling between hydrodynamics
and space time.

(i) Metric grid to hydrodynamic mesh: We know the metric fields on a uniform
Cartesian grid. Hence, it is straightforward to interpolate to any position within
the domain of the metric grid. At the moment, we employ a third-order Lagrange
polynomial. For points which lie outside the metric grid limits we follow a
different approach. We compute the metric fields at their position based on the
multipole expansion and fall-off boundary conditions that we use to compute
boundary conditions for Eqs. (2.19), (2.20) and (2.25), (2.26), respectively.

(ii) Hydrodynamic mesh to metric grid : Mapping from the Voronoi cells to the
metric grid points is significantly more difficult due to the unstructured nature
of the Voronoi mesh. We perform a tree walk [273] to identify which Voronoi cell
lies closest to each metric grid point. The values of all necessary hydrodynamic
variables are then directly passed from the Voronoi cell to the metric grid point.
This is rather accurate, because hydrodynamic resolution is higher at physically
important regions, i.e. currently regions with ρ > ρthr. Naturally, increasing the
hydrodynamic resolution, i.e. the number of mesh-generating points, improves
the accuracy. In principle, this approach can be extended to account for the fact
that the moving-mesh cell center and the closest metric grid point generally do
not coincide. One way, which would practically leave the computational effort
almost unaffected, is to employ the gradient of each variable (see discussion on
〈∇φ〉 in Section 3.3).
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3.7. Mesh geometry and motion

The moving-mesh approach offers significant flexibility with respect to the mesh ge-
ometry. The mesh-generating points can be distributed in an arbitrary way, as long
as the mesh-construction algorithm can successfully create the Voronoi tessellation.
Hence, the mesh geometry can be chosen based on the physical and geometrical char-
acteristics of the problem, such as the mass distribution and the symmetries of the
simulated physical system. For a fixed number of mesh-generating points, focusing
the resolution on physically important regions captures the physics more accurately
compared to other point distributions not adjusted to the problem. In the various
simulations that we perform, we employ different initial point distributions, i.e. we
start from different initial mesh geometries.

During the simulation, the mesh evolves based on the motion of the mesh-generating
points. The velocities of the points can be chosen nearly arbitrarily. In our moving-
mesh simulations each point moves with the local fluid coordinate velocity, while in
cases where a cell becomes too irregular a corrective velocity component is added to
suppress possible discretization errors and mesh noise [100,273,304]. To compute the
distortion of a cell, we define for each cell the parameter

αmax = max
i

(
1

hi

√
Ai
π

)
, (3.21)

where the index i runs over all the faces of the cell, hi is the distance from the mesh-
generating point to the face and Ai is the face area. Large values of αmax indicate
irregular cells. The corrective velocity term for each cell then reads

vcor =





0 , αmax ≤ 0.75 β

fshaping
αmax−0.75β

0.25β
vchar , 0.75 β < αmax ≤ β

fshaping vchar , αmax > 0.75 β

, (3.22)

where vchar is a local characteristic speed which we take to be the speed of sound
in the cell, β a parameter which determines when the corrective velocity term is
applied (i.e. which cells are classified as irregular) and fshaping determines the fraction
of the characteristic speed applied to the mesh-generating point. Typical values are
β ≈ 2.25 and fshaping ≈ 0.5. This prescription to ensure mesh regularity was originally
introduced in [304] (see also [308]).

Creating a mesh-generating point distribution which is well-adapted to the prob-
lem and drifting the mesh-generating points primarily based on the local fluid veloc-
ity reduces, up to some extent, the need for adaptive mesh refinement. Nevertheless,
Arepo can dynamically increase or decrease the local resolution by refining or derefin-
ing cells. The process of cell refinement consists of splitting a cell into two distinct cells
by inserting a new mesh-generating point within a distance of 0.025Ri from the cell’s
original point. Here Ri is the cell’s effective radius (see discussion of Eq. (3.7)), while
the exact position of the new mesh-generating point is randomly generated within the
described region. The conserved variables are conservatively distributed to the two
new cells, while the mesh regularization algorithm steers the points away from each
other over the next few time steps. Notably, refinement does not affect the geometry
of any cell outside the one involved in the process. On the other hand, cell derefine-
ment is achieved by removing a cell and distributing the conserved variables to the
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surrounding cells, based on the fraction of the original cell’s volume that each one of
the neighbors claims. Nearly arbitrary criteria can be used to trigger the refinement or
derefinement of a cell, which makes these two operations particularly useful in many
different scenarios, such as maintaining a roughly constant mass resolution during the
evolution, increasing the resolution in physically interesting regions or decreasing the
resolution to reduce the computational effort. For more details see [273].

In addition to the moving-mesh simulations, we also perform static-mesh simu-
lations, i.e. simulations where the cells do not move, but stay fixed at their initial
positions. Static-mesh simulations enable a more direct comparison to existing liter-
ature results. Overall, we provide details on the initial mesh geometry, mesh motion
and whether we employ the functionality of cell refinement and derefinement when we
discuss each simulation.

3.8. Additional details

In Section 2.6 we describe different possible approaches to the EOS. In Arepo we
implemented a high-density EOS module, which supports zero-temperature tabulated
microphysical EOS complemented with a thermal ideal gas component. We employ
this approach in simulations of isolated, static NSs, which also serve as a test of
the implementation. Furthermore, we present a BNS merger with this microphysics
description. In addition, the code can run simulations based on either a polytropic or
an ideal gas EOS. We run test simulations of isolated stars employing the ideal gas
EOS.

As it is typical in grid-based treatments of hydrodynamics, we employ an artificial
atmosphere for vacuum regions. In particular, we define a floor density ρatm and cover
vacuum regions with cells of this density. Every time that we recover the primitive
variables, i.e. in every Heun substep of the time integration, we identify all cells
with density below a threshold value ρthr > ρatm and reset their density to ρatm. In
addition, we reset the velocities in atmosphere cells to zero and compute the pressure
and specific internal energy based on a polytropic EOS with K = 100 and Γ = 2. We
then recompute the conserved variables in the cell, based on the new values of the
primitives. In the simulations which we discuss in this work, the atmosphere density
is defined to be in the range ρatm/ρmax = 10−7 − 10−8, where ρmax is the maximum
density in the whole numerical domain at a given time. We set the threshold density
to ρthr = 10× ρatm. The ratios ρatm/ρmax and ρthr/ρatm are code parameters that can
be chosen by hand.

In our implementation the GRHD equations are solved on a Voronoi mesh, while
the metric equations are solved on an independent uniform Cartesian grid. In Section
2.4 we describe how we obtain boundary conditions for the metric grid. In the case of
the hydrodynamic mesh, we adopt periodic boundary conditions, which however do
not influence our evolutions because the boundaries of the Voronoi mesh are carefully
placed at a large distance from the regions of physical interest. Due to the fact that
a small number of large atmosphere cells suffices to cover these distant regions, the
computational demand is practically unaffected by the size of the hydrodynamic mesh.
We provide more information on the size of both the Voronoi mesh and the metric grid
in the discussion of each simulation. In all cases the metric grid covers the regions
of interest and the Voronoi mesh extends even further and defines the size of the
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numerical domain.
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4. Static neutron stars on a
moving mesh

4.1. Radial pulsation test

A standard test for general relativistic codes consists of extracting the radial pulsation
frequencies of isolated NSs. Initially, we compute stellar models of static stars by
solving the TOV equations. The equations describe static, spherically symmetric
solutions, which makes them 1D. Hence, they can be integrated with a very small
spatial step of the order of meters or even less. The high resolution solution is then
mapped to the 3D mesh of Arepo.

The stellar configurations are formally static. However, because of the finite reso-
lution of 3D codes, truncation errors at the surface and the center of the star (i.e. at
the points where the solution exhibits extrema and the hydrodynamical schemes be-
come lower order) excite small amplitude radial oscillations. These radial pulsations
correspond to normal modes of pulsation of the star. The amplitude of the pulsation
decreases as the resolution used in the 3D code increases. Hence, the amplitude does
not carry any physical information about the system. On the other hand, the fre-
quencies of the radial pulsations do carry information about the system, because they
should match the values computed based on perturbative calculations for the radial
mode of single NSs (see Section 2.5.1). Hence, extracting the frequencies of the radial
oscillation from evolutions of isolated NSs based on a Fourier analysis and comparing
to perturbative calculations or results from independent codes, serves as a test for 3D
implementations.

In this chapter we perform two distinct tests. In the first test, we evolve an
isolated NS described by a polytropic EOS on a fixed spacetime, namely we keep the
metric fixed and neglect all spacetime perturbations (Cowling approximation). This
evolution employs our hydrodynamics modules alone and aims to evaluate our GRHD
implementation. In the second test, we evolve a NS described by a microphysical EOS
and dynamically evolve the spacetime as well. This more demanding setup tests all
the main components of the code, i.e. the GRHD implementation, the metric solver
and their coupling, as well as the microphysics module.

To ensure that we specifically excite the radial eigenmode and enhance the oscil-
lation amplitude, we add a radial 3-velocity perturbation of the form

δυr = A sin
(πr
R

)
(4.1)

to the initial data. Here A is the perturbation amplitude, r is the radial distance from
the stellar center and R is the radius of the star. We provide more information about
the setup that we use in each test in the respective sections.
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4.2. Cowling approximation

4.2.1. Initial data

We solve the TOV equations using a polytropic EOS with K = 100 and Γ = 2.
Starting from a central density ρc = 1.28× 10−3 ≈ 7.91× 1014 g · cm−3, we construct
a stellar model with a gravitational mass 1.4 M� and radius R ≈ 12 km (in isotropic
coordinates). This particular configuration is a common choice in radial pulsation
tests, which allows us to compare to independent literature results (e.g. [116]).

We map the 1D TOV solution to the 3D Voronoi mesh, such that the center
of the star is located at the center of the simulation domain in Arepo. We set the
numerical domain to be a cube with side 58 M� ≈ 85.6 km and place mesh-generating
points to construct a mesh. Around the center of the domain, where the star lies, we
distribute mesh-generating points to obtain a high-resolution uniform Cartesian grid
with a side of 24 M� ≈ 35.4 km, where each cell has a side h = 0.1 M� ≈ 147.6m.
Throughout the whole evolution, this Cartesian grid covers the star. We cover the rest
of the domain with points which result in a lower resolution. These outer cells do not
affect the evolution and are only required to guarantee a successful mesh construction.
Employing a Cartesian mesh around the star enables a direct comparison with [116],
which presents results from a Cartesian grid code.

We evolve the initial data based on an ideal gas EOS, i.e. we evolve the energy
equation in the system (2.6) as well. Any cell with density ρ < 10 × ρatm is reset to
be part of the atmosphere, where we pick ρatm = 10−8 × ρmax. During the simulation
this criterion captures many cells of the central Cartesian grid (see Fig. 4.3), as well
as all the cells which lie further away. In the simulations discussed in this section we
explicitly disable refinement and derefinement. In addition, the spacetime is static.
We interpolate the high resolution metric profile, which we obtain from the TOV
solution, to any position in the domain where knowledge of the metric fields is required.
Finally, we induce by hand a radial excitation with an amplitude A = −0.005 to the
initial data based on Eq. (4.1).

4.2.2. Simulations

We perform both a moving-mesh and a static-mesh simulation with the same setup.
In particular, we evolve the initial data for roughly 10 ms. Figure 4.1 presents the
evolution of the maximum rest-mass density ρmax, throughout the whole simulation
domain, normalized to its initial value. Due to the radial pulsation, i.e. the contraction
and expansion of the stellar model, the maximum density oscillates. The blue line
refers to the moving-mesh simulation, while the orange line shows the static-mesh
simulation, i.e. a simulation where the cells are kept fixed.

In Fig. 4.2 we present the spectrum of the oscillation, which we extract based on a
Fourier transform of the density evolution. Colors are kept the same as in Fig. 4.1. The
vertical dashed lines correspond to the frequencies presented in [116], namely they refer
to frequencies computed with an independent 3D code. Focusing on the fundamental
frequency, we obtain 2.672 kHz for the moving-mesh and 2.682 kHz for the static-
mesh simulation, respectively. Both frequencies are in excellent agreement with the
value reported in [116], which is 2.696 kHz. In addition, higher frequency modes are
excited in the two simulations that we perform and are visible in the spectrum. In
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Figure 4.1: Evolution of the normalized maximum rest-mass density for a 1.4 M�
TOV NS modelled as a polytrope with K = 100 and Γ = 2. The blue and orange
lines refer to a moving- and static-mesh simulation, respectively. In both simulations
the spacetime is kept fixed. For details regarding the simulation setup see the main
text. Figure adapted from [196].

the moving-mesh evolution, we can identify a total of six overtones. The first two
overtones are quite pronounced. All the higher mode frequencies match excellently
those discussed in [116]. Similarly, in the static-mesh simulation, we clearly identify
two overtones, which also align well with the benchmark frequencies. The overall
agreement in the frequencies of the fundamental mode, as well as higher frequency
modes, validates our GRHD implementation.

Based on Fig. 4.1, both the moving- and static-mesh evolutions preserve the value
of the maximum density quite well over the course of the roughly 10 ms for which
we simulate the system. Namely, the secular evolution of the maximum rest-mass
density is small and, at the end of the simulation time, the stellar configurations are
still very close to the initial static equilibrium. The two evolutions are quite similar
during the first few milliseconds. However, the moving-mesh simulation exhibits some
damping at later times, which probably originates from the surface. Based on the
excitation that we add, the star initially contracts. Stellar cells, namely cells with
ρ > ρthr, move away from atmosphere cells (i.e. cells where ρ < ρthr). This creates a
gap between them, effectively lowering the resolution locally. During the expansion
of the star, stellar cells move beyond the equilibrium radius of the model and into
what originally was atmosphere. Throughout this oscillation, cells close to the surface
which initially belonged to the star can cross below ρthr and become atmosphere and,
vice versa, atmosphere cells can become stellar and start moving. Overall, this process
lowers the resolution close to the surface. This can be seen in Fig. 4.3, which shows
snapshots of the rest-mass density along the equator for both the moving-mesh (left
panel) and static-mesh (right panel) run. We only present the region [0, 14] km in
both the x- and y-axis, while we overplot the grid with white lines. Already after
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Figure 4.2: Fourier spectrum of the normalized density evolution in a moving-mesh
(blue) and a static-mesh (orange) Cowling evolution of a static 1.4 M� stellar model.
The NS is described by a polytropic EOS with K = 100 and Γ = 2. Vertical dashed
lines correspond to frequencies computed with an independent 3D code [116]. The
fundamental frequency and higher overtones in our results are in excellent agreement
with the literature results. The units of the vertical axis are arbitrary.

≈ 2 ms of evolution, larger cells (i.e. lower resolution) form due to mesh motion close
to the surface in the moving-mesh simulation, compared to the static-mesh run. This
decrease of the resolution close to the surface is quite possibly the main reason for
the oscillation damping, considering that the radial pulsation is quite sensitive to the
surface.

Figure 4.3 also shows that the mesh in the moving-mesh run changes due to cell
motion. Already, within roughly 2 ms from the simulation start, the mesh differs from
how it was in the beginning of the simulation. In particular, close to the surface the
resolution is lower, while many cells accumulate right outside the surface and a thin
high resolution layer forms. This highlights that, in moving-mesh simulations, even
defining a single resolution in terms of a characteristic length is practically impossi-
ble. Hence, a direct comparison between moving-mesh simulations and fixed grids is
not necessarily straightforward. Even if the initial mesh in a moving-mesh setup is
identical to a static mesh, the motion of mesh-generating points quickly changes the
positions, shapes and sizes of the cells.

In addition, we comment on the choice of a Cartesian mesh as a starting point for
moving-mesh simulations of isolated NSs. Cartesian grids do not take the spherical
symmetry of the system into account. Moreover, they have (initially) the same reso-
lution in all regions, regardless of the mass distribution of the system. As it is shown
in Fig. 4.3, this can lead to issues, especially close to the surface, where NSs exhibit a
very steep density gradient. In particular, the small cells which form right outside the
surface can, in principle, lower the (global) time step and increase the computational
effort. This issue can be alleviated by derefining small cells, which however we do not

44



4.2. Cowling approximation

0 2 4 6 8 10 12 14
x [km]

0

2

4

6

8

10

12

14
y

[k
m

]
t = 1.97 [ms]

107

108

109

1010

1011

1012

1013

1014

ρ
[g
·c

m
−

3
]

0 2 4 6 8 10 12 14
x [km]

t = 1.97 [ms]

Figure 4.3: Rest-mass density along the equator (z = 0 plane). We focus in the
range [0, 14] km in both the x- and y-axis. This region is covered by a high resolution
Cartesian grid, which is overlaid in white lines. The left and right panels correspond
to the moving- and static-mesh Cowling simulations (discussed in Section 4.2.2), re-
spectively. Both snapshots show the state of the system after evolving the initial data
for almost 2 ms. Mesh rearrangement in the moving-mesh simulation is evident in the
left panel, in particular close to the surface.

do in the simulations discussed in this section. Finally, independently of the simu-
lated system, the mesh construction algorithm typically takes more time to generate
a Cartesian grid, compared to other distributions with the same number of mesh-
generating points, due to the extra effort required to resolve geometric degeneracies
during the mesh construction.

It is important to remark that an essential part of moving-mesh simulations is to
identify the setup which better captures the simulated systems dynamics. In the case
of isolated stars, it is evident that a Cartesian grid is not the most appropriate choice.
Since our main focus is BNS mergers, we do not examine this point in detail in the
current context. However, we highlight that different initial mesh geometries, mesh
motion parameters or the use of refinement/derefinement can, in principle, lead to
better results.

In addition, the overall evolution of the system is sensitive to the exact choice of
hydrodynamics schemes, regardless of whether the simulation employs a moving or
static mesh (see e.g. [116] for the dependence of static-mesh simulations on different
slope limiters and Riemann solvers). Due to cell rearrangement in a moving-mesh run,
the exact effect of the chosen hydrodynamics schemes on the evolution might differ, up
to some extent, between moving- and static-mesh simulations. We briefly examine how
a different slope limiter affects our moving-mesh evolution in Fig. 4.4, where we present
two moving-mesh simulations. The blue line refers to the moving-mesh simulation that
we have already discussed, i.e. matches the blue line in Fig. 4.1. The orange line is
another moving-mesh simulation, which differs only in the way that the primitive
variables are reconstructed to the cell faces. In particular, instead of our standard
recipe, which involves Eq. (3.13) and the MC slope limiter, we employ Eq. (3.9)
directly. Clearly, the two evolutions are rather similar in the first few milliseconds.
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At later times, employing Eq. (3.9) for the reconstruction leads to less damping.
Focusing on the new simulation (orange line), the oscillation is still sizeable at the
end of the simulation time, while overtones can be identified in the rest-mass density
evolution even at late stages. We obtain 2.677 kHz for the main frequency of the
radial mode, namely slightly higher compared to the original run with the MC slope
limiter. The differences between the two simulations most probably originate from the
fact that slope-limited reconstruction becomes first-order accurate at local extrema
by construction, while Eq. (3.9) has no such property. Hence, the simulation with the
MC slope limiter should, in principle, be more dissipative. At the same time, slope
limiters resolve sharp discontinuities without introducing spurious oscillations, which
is why they are our standard choice in this work.
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Figure 4.4: Maximum rest-mass density evolution in two moving-mesh simulations,
which differ only in the employed reconstruction scheme. The blue line refers to a
run with MC slope-limited reconstruction, while the orange line corresponds to an
evolution where the primitive variables are reconstructed to the cell faces based on
Eq. (3.9).

Figure 4.4 shows that a more detailed analysis of the effect of the employed hydro-
dynamics schemes to moving-mesh simulations can in principle lead to better results.
A similar argument can be made for the details of the mesh setup (e.g. initial mesh
geometry and cell motion). We briefly examine the impact of grid orientation effects,
originating from the initial mesh geometry, in the next section.

4.3. Dynamical spacetime

4.3.1. Initial data

We solve the TOV system with the H4 EOS [176] modelled as a piecewise polytrope
[246] and construct a 1.41 M� stellar model. The configuration has a radius R ≈
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11.69 km in isotropic coordinates and central density ρc = 9.545 × 10−4 ≈ 5.9 ×
1014 g · cm−3.

In Arepo we employ a spherical distribution for the mesh-generating points.
Based on this setup, we construct a spherical grid around the center of the simulation
domain. The grid consists of 85 shells which extend to a distance of 11 M� ≈ 16.2 km.
The distance between consecutive shells is fixed and equal to ≈ 191 m. In addition, to
make sure that the mesh-construction algorithm can generate the Voronoi tesselation,
we cover the numerical domain with a coarse Cartesian grid. The numerical domain’s
size is the same as in our Cowling tests (i.e. a cube with side 58 M� ≈ 85.6 km), while
our mesh is clearly different. This setup corresponds to our standard resolution. In
addition, we perform higher and lower resolution simulations to examine the depen-
dence of our results over a (limited) range of resolutions. The mesh setup for these
additional resolutions is similar to our standard resolution. In the high resolution
setup, we employ 100 shells, which correspond to a radial separation between cells
of ≈ 162.4 m. At the same time, the low resolution setup features 64 shells, i.e. a
resolution of ≈ 253.7 m. Finally, we also explore the influence of grid effects on the
results by considering a fourth mesh, which closely follows the standard resolution
grid, but we randomly distribute the mesh-generating points on each shell.

In this section we do not compare our radial frequency results to a Cartesian grid,
as we do in Section 4.2. We instead compute the radial frequencies employing pertur-
bation theory based on an independent code which we developed (see Section 2.5.1).
We explore this additional flexibility and simulate the system with the mesh setups
that we describe, which in principle capture the geometrical characteristics of a single
star better than a Cartesian grid.

We evolve the initial data with the H4 EOS, which we complement with a Γth =
1.75 thermal ideal-gas component. In the simulations which we present in this sec-
tion, we consider a dynamical spacetime by solving the metric field equations on an
independent, uniform Cartesian grid with a resolution hM = 0.3 M� and a total of
1293 grid points. Similarly to our Cowling simulations, we set the atmosphere density
to ρatm = 10−8 × ρmax and the atmosphere threshold value to ρthr = 10 × ρatm. Fur-
thermore, we do not refine or derefine cells. A radial perturbation with an amplitude
A = −0.001 is added to the initial data based on Eq. (4.1).

4.3.2. Simulations

Similarly to our Cowling tests, we perform moving- and static-mesh simulations. In
Fig. 4.5 we present the evolution of the normalized maximum rest-mass density for the
moving-mesh (blue) and static-mesh (orange) evolutions with the standard resolution
setup. In both runs we evolve the system for roughly 10 ms. We extract the main
radial pulsation frequency from the density oscillation. We obtain 2.343 kHz for the
moving-mesh and 2.358 kHz for the static-mesh runs. To compare, we compute the
radial mode frequency based on the perturbative code and find 2.385 kHz. The small
deviations we find are comparable to what is found by other codes, e.g. [116].

In both simulations, there is no significant drift in the density, which highlights
that the code preserves the initial TOV equilibrium rather well. The rest-mass density
oscillation features some damping in the moving-mesh simulation. Still, it can be
clearly identified for as long as we evolve the system. Similarly to our Cowling tests,
this behavior quite possibly originates from the surface. Spherical grids are well-
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Figure 4.5: Normalized maximum rest-mass density from a moving-mesh (blue line)
and a static-mesh (orange line) evolution of a 1.41 M� star described by the H4 EOS.
The spacetime is evolved dynamically and the metric field equations are solved on a
grid with 1293 points and resolution 0.3 M�. The pulsation is excited with a radial
velocity perturbation with amplitude −0.001. See the main text for a description of
the initial mesh-generating point distribution. Adapted from [196].

adapted to the spherical symmetry of the TOV solution. However, they do not take
into account the mass distribution in the system and are prone to the same issues
that we faced with a Cartesian grid in the region close to the surface (see Fig. 4.3
for Cartesian grid). In principle, modifications in the moving-mesh simulation setup,
which target the mesh motion and resolution close to the surface, can improve the
behavior. However, we do not investigate this point further.

To evaluate the effect of resolution to the radial mode frequency and density evo-
lution, we also perform moving-mesh simulations with the lower and higher resolution
mesh setups. We show the normalized maximum density for these runs in Fig. 4.6.
The blue line corresponds to the standard resolution moving-mesh run, while the
green and orange curves correspond to the lower and higher resolution runs, respec-
tively. We extract the main oscillation frequency, based on a Fourier tranform, for
the lower and higher resolution simulations. We obtain frequencies of 2.318 kHz and
2.352 kHz respectively, i.e. the frequency approaches the perturbative value with in-
creasing resolution. We present the frequencies alongside the perturbative result in
Fig. 4.7. Evidently, increasing the resolution positively affects the results. We remark
that a proper convergence analysis is not possible, because the simulations do not
span a broad range of resolutions.

In Fig. 4.5 it is evident that the resolution affects the evolution of the maximum
density. The lower resolution run exhibits more damping, while the density drift
towards smaller values is more pronounced. On the contrary, increasing the resolution
reduces the secular drift of the maximum rest-mass density, i.e. preserves the TOV
equilibrium more accurately. Similarly, the oscillation is damped less in the high
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Figure 4.6: The green, blue and orange lines correspond to simulations with resolutions
≈ 253.7 m, ≈ 191 m and ≈ 162.4 m respectively, in which we complement the H4
EOS with a Γth = 1.75 thermal ideal-gas. Increasing the resolution leads to smaller
oscillation damping and less density drift. The gray dashed line shows an adiabatic
evolution (see text) with a resolution ≈ 191 m. Contrary to the other simulations,
the (minor) secular evolution of the rest-mass density in the adiabatic run is towards
higher densities. Note that the blue line is the same as in Fig. 4.5.

resolution simulation compared to both the lower and standard resolution cases. For
all the resolutions that we examine, the oscillation survives for the≈ 10 ms of evolution
that we present, while the drift of the maximum density is minimal. Namely, all three
moving-mesh evolutions remain very close to the initial TOV stellar model.

In addition to the different resolution runs, we perform a moving-mesh simulation
on a grid similar to our standard resolution of ≈ 191, which, however, also includes
an additional random component in the positions of the mesh-generating points. We
obtain a frequency of 2.349 kHz, which is slightly higher compared to the run with
standard resolution, but without the random offset. The rest-mass density evolution is
rather similar between the two standard resolution moving-mesh runs (with and with-
out random component). The oscillation damping is only slightly more pronounced
when randomly placing the points on the shells. Moreover, by inspecting the positions
and velocities of the mesh-generating points throughout both evolutions, we note that
adding the random component reduces grid orientation effects.

In all the runs which we discussed in this section, we complement the H4 EOS
with a Γth = 1.75 thermal ideal-gas. In principle, the inclusion of a thermal com-
ponent should not affect the evolution significantly, which is what we see in all the
simulations with a dynamical spacetime that we discussed up to now. For the de-
scription of stable stellar models which remain close to the initial TOV equilibrium,
we can also perform adiabatic evolutions, i.e. do not evolve the specific energy, but
instead compute it alongside the pressure based on the tabulated H4 EOS in each time
step. Such an evolution is not appropriate for systems in which thermal effects are
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Figure 4.7: Main radial mode frequency of a 1.41 M� TOV star described by H4.
The crosses correspond to 3D simulations with different resolutions. The filled circle
refers to the perturbative calculation. The dashed lines connect consecutive points
and carry no extra information.

significant. However, it should be rather accurate in evolutions of stable TOV config-
urations close to equilibrium. We perform an adiabatic simulation with the standard
resolution ≈ 191 m. We find that such evolutions are more prone to grid orientation
effects. Hence, we add an additional random component to the initial positions of the
mesh-generating points, which eliminates axis effects.

The evolution of the normalized rest-mass density is shown in Fig. 4.6 with a
gray dashed line. For this particular simulation we obtain a frequency of 2.37 kHz,
which is even closer to the perturbative value. This further supports the validity of
our implementation. In addition, we note that the secular evolution of the maximum
density is slightly different than what we observe in our evolutions with a thermal
ideal-gas component. Specifically, the density exhibits a very minor increase over the
simulation time. This difference in the behavior of the maximum density drift between
adiabatic runs and simulations where we also evolve the energy equation aligns with
what is reported in [116].

The overall agreement between the frequencies extracted from the 3D evolutions
discussed in this section and the perturbative frequency validates the GRHD and
metric solver implementation, their coupling, as well as the EOS module.
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5. Binary neutron star mergers on a
moving mesh

5.1. Preface

In this chapter we apply our moving-mesh approach to a BNS system. This is the
first BNS merger simulation on a moving mesh. In the following sections, we describe
our setup, present our results in detail and compare to simulations performed with
independent SPH and Eulerian grid-based codes.

5.2. Initial data

In our simulation we model the NSs with the DD2 EOS [150,297]. Formally, the DD2
model computes the full temperature and composition dependence of the EOS. In this
simulation, for convenience, we adopt the “hybrid” approach discussed in Section 2.6.
In particular, we employ a slice of the DD2 EOS at T = 0.1 MeV as our zero-
temperature model and supplement it with an ideal-gas component with Γth = 1.75 to
describe thermal effects. The DD2 EOS is in full agreement with current observational
constraints on the maximum NS mass that an EOS should support [24,28,85,90,190],
while also marginally compatible with constraints on the tidal deformability from the
analysis of the inspiral of GW170817 [6, 10].

We generate initial data with the open-source library LORENE1 [135]. LORENE
constructs quasiequilibrium configurations of either corotating or irrotational BNS
systems in the inspiral phase. The code employs multi-domain spectral-methods,
which allow to directly map the initial data to arbitraty positions. We consider a BNS
system with two equal-mass companions with a gravitational mass of M = 1.35 M�
(as measured at infinite binary separation). We place the two stars at an initial
separation of 26 M� ≈ 38.4 km. LORENE adopts the CFC approximation, just
like our code, which allows to start our evolutions from such close orbits without
unphysical transients. In contrast, fully relativistic simulations would detect and
react to the fact that the initial data do not contain GWs. The stars are chosen to be
irrotational, because it is considered to be a more realistic scenario [58,170].

In Arepo we construct an initial mesh, which follows approximately the mass
distribution in the binary system, and map the LORENE data to this cell arrangement.
In particular, around each one of the two companion stars, we create spherical shells.
On each shell we distribute cells based on the HEALPix algorithm presented in [133].
The main purpose is to construct cells which have roughly a mass of mcell,0, where
mcell,0 can be chosen freely. For this particular simulation we set mcell,0 = 1.68 ×

1http://www.lorene.obspm.fr/
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5. Binary neutron star mergers on a moving mesh

10−6 M�. In [223] it is discussed in detail how to obtain this grid setup. In order to
estimate the size of the shells and guarantee that we obtain cells with approximately
the same mass content mcell,0, we need to provide an estimate for the mass profile
of each one of the stars. For this purpose, we employ the mass profile m(r) of a
1.35 M� TOV star described by the DD2 EOS, which however we modify in the outer
parts of the star. In particular, we consider the radial distances rin = r(ρc/2) and
rout = 1.1×R, where ρc is the central density and R the radius of the TOV star. When
computing m(r), we keep ρ√γ = ρψ6 fixed and equal to its value at rin between the
distances rin and rout . This modification serves two purposes. By modifying the mass
profile we guarantee that the resolution does not drop significantly close to the surface
because of the steep density gradient of the actual TOV solution. Instead, these outer
stellar regions are also resolved. Moreover, the grid covering each star extends up to
a distance rout, i.e. it extends beyond the stellar surface. This is important because
the stars in a binary are not perfect spheres, but are (tidally) deformed. As described
in [223], applying the HEALPix algorithm requires a coordinate system. In each shell
we randomly rotate this coordinate system in space, which results in a mesh with no
grid orientation effects.

We cover the rest of the simulation domain, i.e. the (vacuum) regions outside the
two spheres with radius rout centered at each star, with a coarse Cartesian grid with
resolution 10.1 M� ≈ 14.91 km. We employ an artificial atmosphere approach for the
vacuum, where we adopt the parameters ρatm = 10−7 × ρmax and ρthr = 10 × ρatm

(see Section 3.8). The metric fields equations are solved on an independent, uniform
Cartesian grid with a resolution of 0.8 M� and a total of 1293 grid points.

Contrary to the TOV simulations which we discuss in Chapter 4, in our binary
simulation we employ the cell refinement and derefinement capabilities offered by
Arepo. We adopt a number of refinement and derefinement criteria. To ensure that
most cells have a similar mass content mcell during the simulation, we refine cells with
mass mcell > 2 × mcell,0 and derefine cells with mass mcell < mcell,0/2. In addition,
for each cell we identify the smallest neighbouring cell. We denote the volume of the
cell as V and the volume of the smallest neighbouring cell as V min

ngb . To avoid abrupt
changes in the resolution, we do not derefine cells for which V > 1.5 × V min

ngb holds.
Furthermore, we refine cells which are significantly larger than their neighbouring
cells, particularly any cell that satisfies V > 5×V min

ngb . Cell refinement can in principle
create an irregular mesh. To avoid this possibility, we do not refine any highly distorted
cell. We define cell distortion based on the parameter αmax (see Section 3.7 for the
definition) and specifically identify any cell with αmax ≥ 3.375 as highly distorted [304].
This combination of refinement and derefinement criteria guarantees that, during the
simulation, the mesh consists of cells with comparable mass content, while also the
regions close to the surface are resolved with decent resolution. Based on the chosen
value for mcell,0 and the set of refinement and derefinement criteria, we end up with
roughly 1.7×106 cells with ρ > ρthr, which resolve physically interesting regions. Most
cells outside the stars are quickly derefined in the very early stages of the simulation.
Since only a small number of atmosphere cells are required, the size of the numerical
domain does not significantly affect the required computational effort in our approach.

Finally, we investigate if our method for producing initial data is robust. We
examine this by performing an independent simulation of an isolated 1.35 M� TOV
star described by DD2. The mesh setup, metric resolution, atmosphere parameters
and refinement/derefinement criteria are the same as in our binary system simulation.
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In both the binary, as well as the single star simulation, truncation errors due to the
finite resolution excite oscillations in the maximum density and the minimum lapse
function. We compare the oscillations in maximum density (see Fig. 5.1) and lapse
function evolution from the first few milliseconds of our BNS simulation to those from
the single star simulation. We find similar oscillation frequencies, while the amplitudes
are slightly higher in the isolated NS simulation. Thus we conclude that the process we
follow to construct initial data performs well and no additional errors are introduced
except for those which are expected, i.e. discretization errors.

5.3. Simulations

5.3.1. General dynamics

In Fig. 5.1 we present the maximum rest-mass density evolution throughout the whole
simulation. We express time w.r.t. the moment of merging of the two NSs. We
define the merging time tmerg as the time when |h(t)| =

√
h2

+(t) + h2
×(t) reaches its

maximum value. Here h is the GW signal, while h+ and h× denote the plus and
cross GW polarizations, respectively. By definition, tmerg separates the evolution into
two phase, the inspiral (t < tmerg) and the post-merger phase (t > tmerg). Figure 5.2
shows snapshots of the rest-mass density in the orbital plane at different stages of the
binary evolution. The top and middle row panels are on a logarithmic scale, while
the bottom row panels are on a linear scale. Regarding the evolution stage, the top
left and top right panels present snapshots from the inspiral and shortly after tmerg,
respectively. The middle and bottom row panels correspond to 20 ms and 39.5 ms
after merging. We evolve the binary for a total of roughly 39.5 ms in the post-merger
phase.

During the inspiral the two companions revolve around each other. The emitted
GWs carry away energy and angular momentum from the system, which leads to a
decrease in the orbital separation. Small oscillations can be identified in the evolution
of the maximum rest-mass density during the inspiral, especially in the early times (see
Fig. 5.1). As discussed, these oscillations originate from discretization errors, which
excite dominantly the radial mode. As the orbital separation decreases, the stars
become deformed due to tidal effects. These deformations can be identified in the
top left panel of Fig. 5.2, which presents a snapshot of the system a few milliseconds
before the merger.

After a few revolutions, the stars collide. As soon as the stars merge, the maximum
density suddenly increases (Fig. 5.1), while the temperature2 T of material at the
collision interface rises due to shock-heating. In Fig. 5.3 we present the temperature
in the orbital plane of the binary. The top row shows snapshots right after the two
stars merge, when the highest temperatures are reached in the system. The bottom
row presents two later times in the post-merger phase, which match the times shown in
the middle and bottom row of Fig. 5.2. In all the panels of Fig. 5.3, we include contour
lines corresponding to two different densities. The dashed white line marks where the
density is 1013 g · cm−3. Hence, it is indicative of the regions where most of matter is

2In our “hybrid” EOS approach, we estimate the temperature from the thermal energy (see
Eq. (2.46)) via the relation εth = kT

mB(Γth−1) , where k denotes the Boltzmann constant and mB

is the baryon mass.
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Figure 5.1: Evolution of the maximum rest-mass density for a BNS merger of two
1.35 M� NSs described by the DD2 EOS. The vertical dashed line denotes the merging
time. Adapted from [196].

found. The solid white line indicates where the density equals 2.7× 1014 g · cm−3, i.e.
the nuclear saturation density.

High-density matter, with the exception of material at the collision interface, re-
mains cold during the merger phase. Matter at the collision interface heats up,
reaching temperature of ≈ 90 MeV. The high thermal pressure, occurring as a re-
sult of the high temperature, lowers the density in these regions to slightly below
2.7× 1014 g · cm−3, as seen in the top row of Fig. 5.3. These lower density regions can
also be identified in the top right panel of Fig. 5.2 and form as material from the two
stars mixes right after merging (see e.g. [165]). When the outer layers of the two stars
come into contact, the velocity parallel to the orbital plane exhibits a discontinuity.
Hence, these regions are subject to the Kelvin-Helmholtz instability and the creation
of local vortices. The distribution of thermal energy, and in turn temperature, is in-
dicative of the local vorticity (see e.g. [166]). As a result, the upper row snapshots in
Fig. 5.3 follow, up to some extent, the formation and evolution of vortices.

The two stellar cores do not directly merge in the post-merger phase. Instead, a
double-core structure forms, which, in our simulation, survives for more than 20 ms
after merging. The two distinct cores can be identified at t − tmerg = 20 ms in the
middle left and bottom left panels of Fig. 5.2, as well as in the bottom left panel of
Fig. 5.3 in the region enclosed by the solid white line. The highest density parts of the
two cores merge roughly 28 ms after tmerg, which is significantly longer compared to
Eulerian grid-based simulations (see e.g. [141,165]). Notably, the high-density material
does not settle to a single, spherically-shaped core throughout the almost 40 ms in the
post-merger phase for which we simulate the system. Even at the latest times in the
post-merger phase that we simulate (i.e. ≈ 39.5 ms), the high-density material has a
bar-shaped structure. We note that, as shown in Fig. 5.1, the quasi-radial oscillation
also lasts for similar timescales as the double-core phase.

54



5.3. Simulations

−40 −20 0 20 40

−40

−20

0

20

40
y

[k
m

]
t− tmerg = −7.33ms

1010

1011

1012

1013

1014

ρ
[g
·c

m
−

3
]

−40 −20 0 20 40

t− tmerg = 0.16ms

−40 −20 0 20 40

−40

−20

0

20

40

y
[k

m
]

t− tmerg = 20.00ms

1010

1011

1012

1013

1014

ρ
[g
·c

m
−

3
]

−40 −20 0 20 40

t− tmerg = 39.50ms

−15 −10 −5 0 5 10 15

x [km]

−15

−10

−5

0

5

10

15

y
[k

m
]

t− tmerg = 20.00ms

−15 −10 −5 0 5 10 15

x [km]

t− tmerg = 39.50ms

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ρ
[g
·c

m
−

3
]

×1014

Figure 5.2: Rest-mass density in the orbital plane for the BNS merger simulation. The
upper and middle row panels are shown on a logarithmic scale, while the bottom row
panels are on a linear density scale and present only the high-density material in the
merger remnant. Snapshots from the inspiral and right after merging are displayed in
the top row panels. The middle row panels show two times in the late stages of the
post-merger evolution. The times in the bottom row panels are identical to those in
the middle row. Adapted from [196].
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Figure 5.3: Temperature snapshots for the BNS merger simulation. Each panel shows
a slice through the orbital plane of the binary. The bottom row focuses at times right
after merging, when the temperature increases and reaches T ≈ 90 MeV, which is
the highest during the whole evolution. The bottom row presents late times in the
post-merger phase. Densities corresponding to 1013 g · cm−3 and 2.7 × 1014 g · cm−3

are shown as white dotted and solid contour lines, respectively. High-density material
remains cold even at late stages of the evolution. Figure adapted from [196].
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High-density matter remains cold throughout the whole post-merger phase, as
shown in the bottom row panels in Fig. 5.3. High temperatures up to ≈ 40 MeV occur
at the outer edges of the contact interface between the two cores at later times in the
post-merger phase. Notably, even at the end of our simulation, i.e. t−tmerg = 39.5 ms,
spiral density arms starting from the central remnant can be identified both in the
middle right panel in Fig. 5.2, as well as in the bottom right panel in Fig. 5.3.

It has been proposed that in remnants of equal-mass binary systems an m = 1 in-
stability might occur, which would also contribute to the GW signal [103,187,233,240].
The occurrence of odd modes requires a breaking of the initial data symmetry. In our
BNS simulation, we cannot identify a pronounced m = 1 instability by examining
rest-mass density snapshots in the orbital plane for the whole duration of the simu-
lation. In addition, we perform a simulation of the binary system with an SPH code
also adopting the CFC approximation [219,220]. We employ a total of ≈ 3×105 SPH
particles3, while we adopt the same “hybrid” EOS approach. We can clearly identify
the m = 1 instability in the SPH simulation. We cannot exclude that the instabil-
ity occurs on longer timescales in the moving-mesh simulation, beyond the simulated
time. Still, the m = 1 instability seems to be sensitive to the hydrodynamics schemes
employed and the overall details of the simulation. We highlight that we do not im-
pose any symmetries in our simulation, namely we simulate the whole 3D domain.
This is crucial because the m = 1 instability violates the π-symmetry of the initial
data. As a result, imposing certain symmetries to the simulated numerical domain4

can fully suppress the instability.
We now focus on the rotational profile of the merger remnant in the equatorial

plane. In Fig. 5.4 we present the time- and azimuthially-averaged angular velocity Ω
at different times in the post-merger phase5. Originally, the center of the remnant
exhibits the highest angular velocity. The central peak gradually decreases, as angular
momentum redistributes in the remnant. We notice that an off-center peak emerges
at a radial distance of ≈ 4 km, roughly 28 ms after tmerg. Angular momentum transfer
towards larger radial distances shifts the position of the off-center peak. By the end
of the simulation time, the off-center peak has moved outwards to a radial distance
of ≈ 7 km. The rotational profiles agree qualitatively with results from indepen-
dent simulations (see e.g. [137, 141, 165, 268]), but Ω evolves over longer timescales,
which clearly suggests that angular momentum redistributes at a slower rate. Very
high resolution simulations also result in an overall slower evolution of the angular
velocity [168]. We note, however, that the simulations in [168] use a different EOS,
while they also take magnetic fields into account. Hence, a direct comparison is not

3We note that a comparison between the number of SPH particles and the number of cells in a
grid-based application is not necessarily meaningful. SPH computes quantities based on a number
of “neighbour” particles and thus, effectively, has a lower resolution. In addition, the discussed SPH
simulation employs a lower number of particles, compared to the cells in the moving-mesh simulation.

4For example, equal-mass BNS systems are sometimes simulated in the literature imposing reflec-
tion symmetry with respect to the orbital plane and π-symmetry with respect to the axis normal to
the orbital plane, i.e. only the x, z > 0 region is simulated.

5We define the angular velocity as xvy−yvx√
x2+y2

, where vi = ui/u0 is the coordinate velocity. We

determine all quantities with respect to the center of mass of high-density matter with ρ > 0.95×ρmax.
To construct the rotational profiles shown in Fig. 5.4, we average the angular velocity along the
azimuthial direction and over a 1 ms time window. Since we employ an unstructured mesh, we
sample the angular velocity on a polar grid centered at the (previously described) high-density
matter center of mass, which greatly simplifies the angular averaging.
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Figure 5.4: Time- and azimuthially-averaged angular velocity Ω on the equatorial
plane at various times after merging. Time windows of 1 ms are considered for the
averaging. The times included in the legend refer to the midpoint of the considered
time interval for each line. Adapted from [196].

Overall, we find that the general dynamics of our moving-mesh simulation qual-
itatively agree with independent SPH and Eulerian fixed-grid results. Notably, the
quasi-radial oscillations and the double-core structure survive for longer times. Fur-
thermore, the rotational profile or the remnant also evolves slower and an off-center
angular velocity peak appears only at the late stages of our simulation. That is, an-
gular momentum redistributes over longer timescales. These characteristics suggest
that the moving-mesh setup, which we employ, features lower numerical viscosity.
This point is further supported by the discussion on the GW signal damping in Sec-
tion 5.3.2.

Finally, we consider the resolution of our simulation. In Section 5.2 we remark that
we employ roughly 1.7× 106 cells, which roughly follow the mass distribution within
the system. In addition, we employ a number of refinement and derefinement criteria
based on the mass content of each cell, the cell shape and the overall local geometry of
the mesh. Hence, the volume of cells varies throughout the numerical domain, while
cells also do not have a fixed shape during the simulation. This makes it practically
impossible to define a single resolution. We can however focus on specific regions
of the numerical domain and, under some assumption for the cell shape, estimate
the local resolution. We consider material with ρ > 0.5 × ρmax at a given time and
compute the average cell volume. Assuming that cells are spheres, we compute the
mean cell radius. The distance between cell centers of neighbouring cells can then be
estimated as twice the mean cell radius. We consider this estimate to be indicative of
the local resolution. Focusing on the post-merger phase, the mean distance between
cell centers is approximately 0.11 M� ≈ 162 m in regions with ρ > 0.5 × ρmax. This
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number provides only an estimate of the local resolution. Naturally, some cells have
greater or smaller volume than what this number indicates. The reported resolution
is roughly comparable to what is employed nowadays in BNS simulations, although
with high-order schemes. Performing higher resolution simulations is part of our future
plans. Given the modest computational demand of our simulation (a few weeks on
192 cores) higher resolutions are well achievable.

5.3.2. Gravitational waves

We now focus on the GW emission from the system. Figure 5.5 presents the plus
polarization of the GW signal along the polar direction6. We assume that the system
is at a distance of 40 Mpc. Similarly to Section 5.3.1, time in figures is expressed
with respect to the moment of merging tmerg (indicated with a vertical dashed line
in Fig. 5.5). During the inspiral, the emitted GWs have a frequency of two times
the orbital frequency. As the orbital separation decreases, the orbital frequency and,
it turn, the GW frequency increases. Similarly, the amplitude of the GW signal
increases, until it becomes maximum at the moment of merging. Due to the collision
of the two NSs, a number of modes are excited in the remnant, which contribute to
the post-merger GW signal.
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Figure 5.5: Plus polarization of the binary system’s GW signal at a distance of 40 Mpc.
The time of merging is indicated with a dashed line. Adapted from [196].

We note that the amplitude of the GW signal decreases very slowly during the
almost 40 ms of post-merger evolution. This is in full agreement with our observation
in Section 5.3.1, that our simulation features low numerical diffusivity. By employing
the GW signal modelling from [272], we estimate the damping time to be τpeak ≈

6We extract the GW signal based on the quadrupole formula, which is known to underestimate
the amplitude by a few ten percent (30 − 40% reported in [268], likely closer to 100% based on
examination of more recent simulations [272]). Hence, we multiply the GW signal by a (moderate)
numerical factor 1.4.
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48 ms. For comparison, the SPH calculation briefly discussed in Section 5.3.1 results
in τpeak ≈ 10.5 ms for the same binary system. In [272] damping times for a variety
of masses are presented, based on full general relativistic simulations. The damping
times, extracted for all their simulated models and employed resolutions, are always
smaller than 11 ms (the binary system with total gravitational mass of 2.7 M� yields
τpeak ≈ 7 ms). A direct comparison is however not possible, because in [272] a different
EOS is employed.

Figure 5.6 shows the GW spectrum based on a Fourier transform of h+(40 Mpc).
The solid line refers to the full GW signal from the whole simulation as presented in
Fig. 5.5. The dotted line takes into account only the signal for t > tmerg. Further-
more, with the upper and lower dash-dotted lines we denote the design sensitivities
of Advanced LIGO [189] and the Einstein Telescope [238], respectively. We identify a
number of different peaks in the GW spectrum. The dominant oscillation frequency
is found at fpeak = 2.56 kHz. This is in good agreement with the SPH calculation for
which we extract fpeak = 2.62 kHz. We note that the features in the moving-mesh
GW spectrum are more pronounced compared to SPH spectrum, possibly because the
GW signal is damped slower.
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Figure 5.6: GW spectrum of the plus polarization for the binary simulation. The
solid line refers to the full simulation, while the dotted line is the spectrum of the
post-merger phase alone. The vertical dashed lines mark the position of four peaks
in the spectrum, i.e. fpeak, fspiral, f2−0 and f2+0. The upper (orange) and lower (blue)
dash-dotted curves indicate the design sensitivity of Advanced LIGO [189] and the
Einstein Telescope [238], respectively. Figure adapted from [196].

We also compare the dominant post-merger oscillation frequency to full gen-
eral relativistic, fixed-grid simulations of the same binary system from the CORE
database7 [94]. The database includes two simulations with finest grid resolutions of
0.125 M� and 0.083 M� for our setup (see [239, 242] for more details). We extract

7http://www.computational-relativity.org
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fpeak = 2.57 kHz and fpeak = 2.65 kHz for these two resolutions respectively, which are
both in good agreement with our result. We note that the full temperature-dependent
EOS is employed in these Eulerian grid-based simulations. In principle, one can ex-
pect differences up to a few percent in the extracted fpeak between calculations which
employ a “hybrid” EOS approach and simulations where thermal effects are treated
consistently in the EOS [46].

In Fig. 5.6 we also indicate a number of subdominant features, some of which
can, in principle, be observed based on the sensitivity curves of the detectors. We
denote the most prominent of the secondary features in our simulation by fspiral. The
spiral mode originates from the rotation of two antipodal tidal bulges, which form
immediately after merging. These lower density tidal tails rotate slower compared
to the high-density material [50]. We extract fspiral = 1.79 kHz in our moving-mesh
simulation. In the respective SPH calculation, we obtain a frequency roughly 200 Hz
higher for the spiral mode. The difference in the extracted values for fspiral suggests
a dependence of the feature on the employed hydrodynamics schemes, given that
both the moving-mesh and the SPH simulations employ practically the same metric
modules.

We mark two more frequencies in Fig. 5.6 as f2+0 and f2−0. These peaks originate
from the non-linear coupling of the dominant oscillation mode fpeak to the quasi-
radial mode f0 [275] and have frequencies f2±0 ≈ fpeak ± f0. In order to identify
these couplings in the spectrum, we extract f0 based on a Fourier analysis of the lapse
function evolution in the post-merger phase. Then, based on the extracted values for
fpeak and f0, we locate the peaks in the spectrum occurring at roughly fpeak ± f0.
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Preface

Introductory and concluding remarks for the results discussed in Chapter 6 can be
found in Sections 1.3 and 7.2, respectively. Appendix A provides more details relevant
to the work presented here. The bulk of this study follows [197], published in Physical
Review D 104, 0430111. The text, figures and tables have been modified and adapted
to suit this thesis.

1https://doi.org/10.1103/PhysRevD.104.043011
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6. Gravitational wave frequency
deviations

6.1. Setup and data

In this chapter we consider fluid oscillations in two distinct physical systems. We
employ the perturbative approach, discussed in Section 2.5.2, to compute GW fre-
quencies originating from the fundamental quadrupole mode in static isolated stars.
In addition, we extract the GW frequencies corresponding to the dominant fluid os-
cillation in BNS merger remnants based on 3D relativistic hydrodynamics simulations
with an SPH code [219,220]. The two data sets are presented below.

6.1.1. Linear quadrupole perturbations

In Section 2.5.2 we discuss nonlinear oscillations in NSs, placing the attention on
the fundamental quadrupole (l,m) = (2, 0) mode, i.e. the f−mode. To compute the
perturbative GW frequencies, which we denote as fpert, we employ the code presented
in [198]. We consider a number of different EOSs (see Section 6.1.3). For each EOS
we compute the f−mode frequency for stellar configurations with masses in the range
[1.1, 1.9]M� with a step of 0.05M�. Our main goal is to compare with GW frequencies
from BNS remnants. The most massive binary systems taken into account in this
study have a total gravitational mass of 3 M� (see Section 6.1.2). The maximum
rest-mass densities in remnants of such massive systems are similar to the central
rest-mass densities admitted by static NSs with masses up to roughly 1.9 M�. Hence,
even though all the EOSs considered here can produce stellar models with masses
above 1.9 M�, we do not include these models in our study.

6.1.2. Binary neutron star data sets

Our binary systems data sets consist of calculations with a 3D SPH code, which adopts
the CFC approximation, employing results from [45, 48, 219, 220]. In each simulation
we employ a total of roughly 3×105 SPH particles and start from irrotational binaries
(i.e. the stars have initially no intrinsic spin) about three orbits before the merger.
All but 6 of the EOS models that we employ provide the full temperature dependence.
If the full temperature dependence is not provided, we supplement the EOS with a
thermal ideal-gas component with an index Γth = 1.75. We provide a quick overview
of the EOS models we employ in Section 6.1.3.

The data set consists of 57 equal-mass binary systems. Table 6.1 summarizes which
EOSs are simulated, as well as the total mass of each system. Binary systems with a
total mass of Mtot = 3 M� result in a prompt collapse to a black hole for most of the
EOSs that we consider [41]. Hence, the set of 1.5 + 1.5 M� systems is comparatively

67



6. Gravitational wave frequency deviations

smaller than the sets referring to different total binary masses. For each one of the
57 binary systems, we extract the dominant post-merger GW frequency, which we
denote by fpeak. All systems are simulated up to roughly 20 ms after merging, which
suffices for an accurate determination of fpeak. We verify that the dominant post-
merger frequency is mostly unaffected by the initial orbital separation and resolution
for a some of the binary systems. This aspect is furthered discussed in Section 6.3.1,
while more simulations and details can be found in e.g. [44, 45].

Table 6.1: Summary of EOSs simulated for each binary system mass. The first column
indicates binary system masses. The second column presents all EOSs simulated for
the respective binary mass. The table is adapted from [197].

System masses [M�] Simulated EOSs

1.2 + 1.2

APR, BHBLP, BSK20, BSK21,
DD2, DD2F, DD2Y, WFF2,
LS220, LS375, GS2, SFHO,
SFHOY, SFHX, SLY4, TMA

1.35 + 1.35

ALF2, APR, BHBLP, BSK20,
BSK21, DD2, DD2F, DD2Y,
WFF2, LS220, LS375, GS2,
NL3, SFHO, SFHOY, SFHX,

SLY4, TM1, TMA

1.4 + 1.4

APR, BHBLP, BSK20, BSK21,
DD2, DD2F, DD2Y, WFF2,
LS220, LS375, GS2, SFHO,
SFHOY, SFHX, SLY4, TMA

1.5 + 1.5
BHBLP, BSK21, DD2, LS375,

GS2, TMA

6.1.3. Equations of state

We compute f−mode frequencies for a total of 20 EOSs (ALF2 [18, 247], APR [16],
BHBLP [34], BSK20 [132], BSK21 [132], DD2 [150, 297], DD2F [21, 296, 297], DD2Y
[118,205], WFF2 [313], LS220 [181], LS375 [181], GS1 [262], GS2 [262], NL3 [150,177],
SFHO [274], SFHOY [118, 205], SFHX [274], SLY4 [97], TM1 [149, 277], TMA [149,
288]). We extract the post-merger GW frequencies for a marginally smaller subset of
these EOSs (see Section 6.1.2 and Table 6.1).

Figure 6.1 presents the gravitational mass M versus radius R relation for all
the EOSs which we consider. All of the employed EOSs are fully compatible with
current observational constraints on the maximum NS mass at the two sigma level
[24, 28, 85, 90, 190]. Furthermore, most EOSs are compatible with the less strict tidal
deformability constraint originating from the analysis of the inspiral of GW170817,
namely that the tidal deformability of 1.37 M� stars is smaller than 800 [6, 10]. Six
EOSs (LS375, GS1, GS2, NL3, TM1, TMA) are incompatible with the tidal deforma-
bility constraint and are depicted with dashed lines in Fig. 6.1. Nevertheless, we take
them into account to increase the size of the data set. Employing a larger set of EOSs
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tests our relations more extensively and further strengthens their reliability. We do
not include any quark or hybrid EOSs in our analysis. Clearly, the EOS sample under
consideration covers a broad part of the allowed M −R parameter space.
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Figure 6.1: Gravitational mass-radius relations for all EOSs employed in this chapter.
EOSs which are incompatible with current tidal deformability constraints are shown
with dashed lines. Figure adapted from [197].

6.2. Accuracy of empirical relations

Relations between properties of the GW signal and stellar parameters are the basis of
GW asteroseismology. In the context of static, isolated stars, many such relationships
have been proposed, which exhibit a different degree of accuracy. For example, the
f−mode GW frequency fpert has been related to parameters like the mass M , radius
R, moment of inertia I and tidal deformability Λ (see e.g. [22, 68, 185, 295]). Turning
to BNS systems, a number of relations involving fpeak exist referring to systems of
different masses and mass ratios [44, 45, 57, 59, 281,305]. These relations can describe
either a broad range of masses of focus on a fixed mass.

Such relations allow us to extract information about the stellar parameters of
the system, based on the measurement of GW frequencies. The scatter in these
relations is a source of error and needs to be taken into account when employing such
relations to determine stellar parameters. In this section, we examine the accuracy of a
number of different relations using a consistent data set, which allows for an objective
comparison between different relations. Initially, we focus on isolated NSs and discuss
relations proposed in the literature, as well as relations newly introduced in [197]. We
investigate whether these relations carry information about the high-density EOS by
looking into new relations, which excise the low-density parts of the star and focus
on the properties of the innermost region. In addition, we extend the discussion to
relations for binary systems.
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6. Gravitational wave frequency deviations

We consider the maximum and mean deviation between the data points and the
corresponding fit to the data, as metrics to quantify the scatter of a given relation.
The maximum deviation captures extreme models. Hence, it serves as a conservative
estimate of the accuracy of a relation, i.e. the maximum error introduced by the
relation if it is employed in a GW observation. The maximum deviation is biased by
extreme models and does not necessarily capture how most of the points distribute
with respect to the fit, which is why we also present the mean deviation. We note,
however, that the EOS sample is not a statistical ensemble. As a result, the mean
deviation might not be fully representative of the error. In all cases, for completeness,
we include both the maximum and mean deviation. Generally, the behavior of the
two figures of merit is consistent.

6.2.1. Isolated neutron stars

We start by discussing relations in the case of isolated stars, namely between fpert and
stellar parameters. Table 6.2 summarizes all the relations discussed in this section,
including the maximum and mean deviation for each relation based on our data.

Some very well known relations between fpert and the stellar mass M and radius
R exist. Andersson and Kokkotas proposed a correlation between fpert and the mean
density of the star [22]. Later, Tsui and Leung employed a different scaling, which
relates the mass-scaled frequency Mfpert to the compactness M/R [295]. This func-
tional form leads to accurate relations for both fpert, as well as the damping time τdamp.
Moreover, it can successfully be applied to frequencies and damping times of other
families of modes. Figures 6.2a-6.2b show both relations based on our perturbative
f−mode data. In both diagrams we include second-order fits to our data, shown as
solid curves. We construct fits based on our data to quantify the data scatter around
them. Employing a consistent data set for all the relations enables an accurate com-
parison between them1. Based on the deviations of each relation (see Table 6.2), the
relation involving the mass-scaled frequency is more accurate. However, both relations
still exhibit some sizable data scatter.

Lau et al. [185] suggested a different relation, which involves the moment of inertia.
They remarked that quark stars were not accurately described by previously proposed
relationships, because the stellar structure of quark stars and NSs differs. Instead of
employing the compactness M/R, they defined an effective compactness based on the
moment of inertia I. Their main motivation was that I is sensitive to the matter
distribution within the star and thus better captures the stellar structure for both
types of stars. In Table 6.2 we present both second- and fourth-order fits to our
data2, following the functional form proposed in [185]. We note that the relation is
very tight, while its accuracy remains practically the same as we increase the order of
the fit.

Chan et al. [68] proposed that fpert should tightly correlate with the tidal de-
formability Λ (see also [309]). The moment of inertia tightly correlates with the
tidal deformability based on the I-Love-Q relations [316], while the relation involv-
ing fpert and I is also highly accurate [185]. In [68] they suggest a relation the form
Mfpert(ln Λ).

1To ensure an accurate comparison, we report all deviations in terms of absolute frequencies, even
for relations with mass-scaled frequencies.

2We note that [185] presented a second-order fit.
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Figure 6.2: Relations between the f−mode frequency, the mass and the radius of
non-rotating stellar configurations. Panel (a) shows fpert versus the mean density of
the star, which was originally proposed in [22]. Panel (b) displays the relation between
the mass-scaled frequency and the compactness as suggested in [295]. In both panels
we present a second-order fit to our data as a solid line. In panel (b) we also include
the fractional error of the data with respect to the fit. Figure adapted from [197].

In addition, we note that the compactness and Λ−1/5 are directly related. Hence,
a relation of the form Mfpert(Λ

−1/5) should exist. Figure 6.3 shows a relation of this
functional form. The solid line depicts a second-order fit to the data. The mean and
maximum deviations with respect to the fit are 3 Hz and 17 Hz, which supports that
this relation is highly accurate. We also construct a fourth-order fit (see Table 6.2),
similarly to what was presented in [68]. The use of either Λ−1/5 or ln Λ leads to very
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6.2. Accuracy of empirical relations

tight fits.
Comparing the accuracy of relations involving the moment of inertia I and the

tidal deformability (either Λ−1/5 or ln Λ), we note that I leads to tighter second-order
fits. However, contrary to the fit involving I, the accuracy of tidal deformability fits
improve as we increase the order. Thus, fourth-order relations employing either Λ−1/5

or ln Λ are tighter compared to the fourth-order relation involving I and the most
accurate of all the functional forms that we examine.
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Figure 6.3: Relation between the mass-scaled fpert and Λ−1/5. The solid curve shows
a second-order fit to our data. We also present the fractional errors for both the
second-order fit shown in the plot, as well as the fourth-order fit discussed in the text
and included in Table 6.2. The legend refers to the fractional errors and explains the
colors of the symbols. Figure adapted from [197].

By examining the accuracy of all reported relation in Table 6.2, it is evident that
relations involving Λ are more accurate than those connecting the f−mode frequency
to M and R. Interestingly, compared to the compactness, the tidal deformability is
less sensitive to the low-density parts of the star, particularly the crust [125, 235]. In
contrast, the radius R is also sensitive to the low-density stellar interior. Naturally,
this raises the question whether the scatter admitted by relations involving M and
R originates solely from the crust. In order to investigate this point, we define two
distinct excision procedures and focus on the high-density parts of the star.

As a first method, we define a new effective radius R90% as the radius of the sphere
which contains 90% of the gravitational mass of the static stellar model. By removing
the outermost layers of the star containing 10% of its mass, R90% is insensitive to
the low-density EOS, in particular the crust. Based on this definition, for the various
stellar models constructed, we excise the outermost 1.26− 2.41 km. Interestingly, for
all the EOSs and stellar configurations considered, the pressure at a radial distance
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6. Gravitational wave frequency deviations

R90% is 3 − 5% of the central pressure pc of the respective stellar model3. Hence, an
alternative definition could be to define for every star a fixed pressure surface of e.g.
p∗ = 0.04× pc.

We can now examine the accuracy of relations involving M and R, but employing
the newly defined radius. Figure 6.4 shows the same relations as in Fig. 6.2, but the
mean density and compactness are now defined with respect to R90%. Notably, the
accuracy of both relations is increased. This is explicitly shown in Table 6.2, where
the mean and maximum deviations are presented for all relations. The improvement
is more pronounced in the case of the relation involving the mean density. When
considering the sphere containing 90% of the mass, relating fpert to the mean density
is equally accurate to relating the mass-scaled fpert to the compactness. Overall, we
conclude that the f−mode frequency in isolated stars accurately captures the mean
density of the innermost part of the star, which contains 90% of its gravitational mass.

As a second excision procedure, we consider the crust-core transition density ρcc

and disregard material with densities below ρcc, i.e. formally the crust. The crust-core
transition density is not publicly available for most of the EOS models. Hence, we need
to estimate ρcc. The dynamical crust-core transition density correlates with the slope
of the symmetry energy L [98]. So, we determine ρcc by employing its relation to L
from [98] and calculating L approximately through the pressure at nuclear saturation
density, as given in the EOS table for neutrino-less beta-equilibrium. For each stellar
configuration we identify the crust-core transition point and define the radius Rcc and
mass M cc corresponding to the respective sphere.

Similarly to the first excision method, i.e. viaR90%, we examine how the accuracy of
relations involving the mean density or compactness changes when these quantities are
computed for the core region contained within Rcc. We provide the new relations and
their mean and maximum deviations in Table 6.2. Evidently, employing only the core
region improves the accuracy of the relation involving the mean density by a factor of
roughly two. The situation is different for the relation with respect to the compactness,
where focusing on the core region does not affect the accuracy significantly compared
to considering the whole star. We note that this might be related to how we estimate
crust-core transition densities. A more accurate determination of ρcc, for every EOS
under consideration, can potentially result in both relations becoming tighter.

Overall, we note that excising low-density material through either R90% or Rcc

does not completely remove the scatter from relations between fpert, M and R. The
correlation of the f−mode frequency with Λ−1/5 is still significantly more accurate.
Hence, we conclude that the scatter in relations involving the mean density or com-
pactness does not entirely originate from the low-density EOS. This suggests that
the way data points distribute with respect to the corresponding fit might encode
additional information about the high-density EOS.

6.2.2. Binary neutron star mergers

A number of relations have been proposed also in the case of BNS systems, particularly
between the dominant post-merger oscillation frequency fpeak and stellar properties of
(typically static) stars. The use of properties of static stars is motivated by the fact

3We note that, even though the pressure at R90% has dropped to roughly 4% of the central
pressure for all stellar models, the density at this radial distance corresponds to about 25 − 47% of
the central rest-mass density ρc, namely it exhibits some sizable scatter.
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Figure 6.4: Same relations as in Fig. 6.2, but the mean density (panel (a)) and com-
pactness (panel (b)) correspond to the sphere containing 90% of the gravitational
mass of the corresponding stellar model. Both relations are tighter in comparison to
those presented in Fig. 6.2. Adapted from [197].

that one cannot define quantities such as the mass or radius of the merger remnant
in an unambiguous way. In [44, 45, 52] tight relations are found between fpeak for
BNS systems with a fixed mass and the radii of fixed-mass static stars. Mass-scaled
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6. Gravitational wave frequency deviations

relations, which consider a broad range of masses, have also been proposed, but are
less tight in comparison to fixed-mass relations [53, 57]. Here we consider relations
between fpeak and R90%, Rcc or Λ−1/5, motivated by our observation that, in the case
of isolated stars, relations involving these quantities are more accurate than relations
with the radius R.

Table 6.3 provides fit parameters and the mean and maximum deviation for all
the relations discussed in this section. We consider relations of the form fpeak(Rx),
fpeak(R90%

x ), fpeak(Rcc
x ) and fpeak(Λ

1/5
x ) for binary systems with a fixed mass. We

provide relations for every total binary mass considered here (see Table 6.1), while x
refers to the mass of a static star. For each binary system we pick x such that the
central densities of the static stellar models are roughly comparable with the maximum
rest-mass densities exhibited in the first few milliseconds in the post-merger phase of
the binary. We discuss this point more extensively in Appendix A. Based on this
procedure, we relate binary systems with a total mass of 2.4, 2.7, 2.8 and 3 M� to
static stars with a mass of 1.4, 1.6, 1.7 and 1.75 M�, respectively. As an illustrative
case, we present relations involving R, R90% and Λ1/5 for 1.2 + 1.2 M� systems in
Fig. 6.5.

In Table 6.3 we express all mean and maximum deviations in terms of frequencies,
which enables a direct comparison between the various relations. We compare the ac-
curacy of relations for each binary system, i.e. for fixed total binary masses. Evidently,
relations involving R90% or Λ−1/5 are more accurate compared to relations depending
on R or Rcc (see Table 6.3 and Fig. 6.5). We remark, however, that deviations depend
up to some extent on the chosen fiducial mass x. In particular, the chosen fiducial
mass x is closer to the optimal mass for relations involving R90% than for relations
with Rcc (see Table A.1). Overall, we note that relations between fpeak and Λ−1/5

are, marginally, the most accurate. This observation aligns with the discussion in the
previous section, which focuses on static stars and a broad range of masses. In the
case of 1.5 + 1.5 M� systems, relations involving R are similarly accurate as relations
w.r.t. R90% or Λ−1/5. The underlying reason for this behavior is that the data set of
1.5 + 1.5 M� systems is smaller compared to the sets referring to less massive binary
systems. In Table 6.3 we also include for each system a relation between fpeak and
the tidal deformability of the inspiraling stars. In all cases this results in less tight
relations compared to picking a higher fiducial mass. The optimal mass range for each
relation and binary system is discussed more extensively in Appendix A (see also [305]
for relations considering a range of binary masses).

The maximum deviation in such relations serves as an estimate for the error.
Hence, we conclude that extracting R90% can be up to twice as accurate compared to
determining R. In the scenario of a GW frequency measurement, extracting stellar
properties of a static star relies on the inverted relations, e.g. Rx(fpeak) or R90%

x (fpeak).
By examining the R90%

x (fpeak) relations, we find a mean deviation of roughly 70 m for
all binary systems. As a result, an observation of an equal-mass binary system can
accurately determine R90% of a fixed-mass static star. Notably, just like the radius
R, the newly defined radius R90% serves as a proxy for the EOS, particularly the
high-density regime.
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6. Gravitational wave frequency deviations
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Figure 6.5: Post-merger frequencies fpeak for 1.2 + 1.2 M� binary systems versus
various stellar parameters of 1.4 M� static stars described by different EOSs. The
independent variable in the top panel is the radius R1.4, in the middle panel the radius
including 90% of the mass R90%

1.4 and in the bottom panel the fifth-root of the tidal
deformability Λ

1/5
1.4 . Adapted from [197].
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6.3. Frequency deviations

In this section we examine in detail how individual data points scatter with respect
to the corresponding fit to all data points and show that the exact point distribution
encodes additional information.

6.3.1. Scatter in frequency relations

Figure 6.5 presents empirical relations between fpeak for 1.2 + 1.2 M� systems and
three independent variables, namely R, R90% and Λ−1/5, computed for 1.4 M� static
stars described by the same EOS. We observe that the data points scatter in a very
similar manner in all the panels4. In particular, EOSs which lie above the respective
fit in one of the panels, typically lie above the corresponding fit in the rest of the
panels as well. Similarly, EOSs below the empirical relation in one panel tend to be
below the respective fit in the other panels too. Notably, the data points distribute
in a systematic way with respect to all three empirical relations. Moreover, the very
similar point scatter with respect to the fpeak(R) and fpeak(R90%) empirical relations
supports that the deviations are sensitive to the high-density regime within the star.

We now examine how the points scatter in plots referring to binary systems (i.e.
fpeak) compared to the point distribution from isolated NSs (i.e. fpert). We present
such a comparison in Fig. 6.6, focusing on 1.35 + 1.35 M� systems. We start by
comparing the panels on the left. In the upper left panel, the dominant post-merger
frequency fpeak is plotted as a function of the radius of R1.6, namely the radius of
1.6 M� static stars. In the middle left panel, we present the perturbative f−mode
frequency fpert, computed for 1.6 M� isolated stars, versus the same independent
variable, i.e. R1.6. We emphasize that the independent variable is the same in both
panels, while the frequencies refer to binaries and isolated stars in the upper and
middle panel, respectively.

We compare how points distribute with respect to the corresponding fit in these
two panels. EOSs which lie on the same side of the empirical relation in both panels
are shown as black symbols. These points exhibit the same behavior in both plots,
even though the frequencies refer to two very different systems. Data points which
lie on opposite sides of the fit in these two panels do not follow the same systematic
behavior. However, identifying all such points as outliers would be rather strict. In
particular, points which are quite close to the respective fit in both panels cannot
safely be classified as outliers, even if they are found on different sides of the fit.
Performing the same analysis with a different set of EOSs or employing a different
functional form for the fit would result in a different fit and possibly change whether
a point is found above or below the fit. Points rather close to the fit are most prone
to such a change in the character of the deviation. Hence, we identify actual outliers
based on a refined criterion.

We consider green shaded bands around frequency fits in Fig. 6.6. The bands have
a total width of 30 Hz, namely they extend 15 Hz towards both sides of the fits. If an
EOS lies within the band in both panels, it is shown with a black marker and is not

4We highlight that each data point refers to a different EOS. Namely, the calculation for each
EOS results in specific values for fpeak, R, R90% and Λ−1/5, which we then plot. Hence, in the text
we shall employ the term “EOS” to refer to the actual data point corresponding to the calculation
with the respective EOS.
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Figure 6.6: In the various panels fpeak refers to post-merger frequencies for 1.35 +
1.35 M� binary systems, fpert,1.6 are the perturbative frequencies for 1.6 M� stars,
R1.6 are the radii of static 1.6 M� stars, while Λ

1/5
1.35 and Λ

1/5
1.6 correspond to the fifth-

root of the tidal deformabilities of 1.35 M� and 1.6 M� stars, respectively. Panels (a)
and (c) display fpeak and fpert,1.6, respectively, versus the same independent variable
R1.6. Panels (b) and (d) show fpeak and fpert,1.6, respectively, as a function of Λ

1/5
1.35 in

both plots. Panels (e) and (f) present Λ
1/5
1.6 as a function of R1.6 and Λ

1/5
1.35, respectively.

In all plots, a second-order fit to the data is shown as a solid curve. In frequency plots,
we include a band with a total width of 30 Hz around each fit. The symbols’ colors
are explained in the main text. Adapted from [197].
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classified as an outlier regardless of how it deviates from the two fits. If an EOS lies
outside the band in at least one of the two panels and it also deviates in an opposite
way in the two plots, we consider it an outlier and mark it with a yellow symbol. We
note that including such a band is justified. The mean deviation for the fpeak(R1.6)
relation is 48 Hz (see Table 6.3). Hence, most points in the fpeak versus R1.6 plot lie
outside the green shaded band and are not captured by this criterion. In particular,
only 4 out of 19 points lie within the band in the upper left panel of Fig. 6.6.

Remarkably, even though we compare two very different systems, most EOSs de-
viate in the same systematic way in the fpert−R and fpeak−R relations displayed in
Fig. 6.6. In particular, 17 out of 19 EOSs scatter in the same way when considering
the classification that we introduced. We also note that, based on the discussion of
Fig. 6.10 in Section 6.3.2, in reality all data points follow the same systematic trend
in the way that they deviate.

Table 6.4: The fourth column indicates the number of outliers found when comparing
frequency deviations between the pairs of relations listed in columns two and three.
Outliers are defined as data points which lie on opposite sides of the respective fits
and outside a 30 Hz band around each fit. The values of fpeak in each relation refer
to the binary system shown in the first column. Table adapted from [197].

Binary masses Relation 1 Relation 2 Number of outliers
[M�]

1.2 + 1.2 fpert,1.4(R1.4) fpeak(R1.4) 1/16

1.2 + 1.2 fpert,1.4(Λ
1/5
1.2 ) fpeak(Λ

1/5
1.2 ) 0/16

1.2 + 1.2 fpert,1.4(R1.2) fpeak(R1.2) 1/16

1.2 + 1.2 fpeak(Λ
1/5
1.2 ) fpeak(R1.2) 1/16

1.2 + 1.2 fpeak(R1.4) fpeak(R1.2) 1/16

1.35 + 1.35 fpert,1.6(R1.6) fpeak(R1.6) 2/19

1.35 + 1.35 fpert,1.6(Λ
1/5
1.35) fpeak(Λ

1/5
1.35) 1/19

1.35 + 1.35 fpert,1.6(R1.35) fpeak(R1.35) 2/19

1.35 + 1.35 fpeak(Λ
1/5
1.35) fpeak(R1.35) 1/19

1.35 + 1.35 fpeak(R1.6) fpeak(R1.35) 1/19

1.4 + 1.4 fpert,1.7(R1.7) fpeak(R1.7) 3/16

1.4 + 1.4 fpert,1.7(Λ
1/5
1.4 ) fpeak(Λ

1/5
1.4 ) 2/16

1.4 + 1.4 fpert,1.7(R1.4) fpeak(R1.4) 2/16

1.4 + 1.4 fpeak(Λ
1/5
1.4 ) fpeak(R1.4) 1/16

1.4 + 1.4 fpeak(R1.7) fpeak(R1.4) 2/16

1.5 + 1.5 fpert,1.75(R1.75) fpeak(R1.75) 1/6

1.5 + 1.5 fpert,1.75(Λ
1/5
1.5 ) fpeak(Λ

1/5
1.5 ) 0/6

1.5 + 1.5 fpert,1.75(R1.5) fpeak(R1.5) 0/6

1.5 + 1.5 fpeak(Λ
1/5
1.5 ) fpeak(R1.5) 0/6

1.5 + 1.5 fpeak(R1.75) fpeak(R1.5) 2/6

We now consider the top and middle right panels in Fig. 6.6. In the top right panel
we plot fpeak for 1.35 + 1.35 M� binary systems versus Λ

1/5
1.35, namely the fifth-root
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6. Gravitational wave frequency deviations

of the tidal deformability corresponding to the inspiraling stars. In the middle right
panel we show fpert for 1.6 M� stars as a function of Λ

1/5
1.35. Based on our classification

criterion, we can identify only a single outlier data point. That is, 18 out of 19 EOSs
distribute in the same way with respect to the corresponding fits. Moreover, we note
that the points distribute quite similarly in all four plots in the top and middle rows
in Fig. 6.6.

We perform the same analysis for other binary systems and pairs of relations and
consistently find similar results. Table 6.4 lists our findings. Notably, for all the
binary systems considered here, we can identify many pairs of relations, where most
EOSs deviate in the same way with respect to the corresponding fits. Many pairs
of relations included in Table 6.4 compare frequency deviations between post-merger
frequencies and perturbative calculations. The very low number of outliers across all
such pairs, binary masses and independent variables corroborates our observation that,
even though binary system remnants and isolated stars are very different systems, the
data points distribute in a very similar way when comparing frequency plots for these
systems (see also Fig. 6.10).

We find that the agreement is even more pronounced in plots where the data
points exhibit overall larger mean deviations. In such plots the data points lie further
away from the respective fit and frequency deviations are more pronounced. Hence,
it is more straightforward to classify points as exhibiting the same behavior or being
outliers. In addition, in such cases data points are less sensitive to changes in the fit.
This further supports that the way in which individual points scatter with respect
to the respective fit, which depicts some kind of average behavior, is systematic and
determined by the EOS. An example of such plots are relations where the independent
variable (R or Λ1/5) corresponds to stars with the same mass as the inspiraling stars.

We note that one can identify a quite similar data point distribution in plots such as
Fig. 6.6. Broadly speaking, the points form very similar clusters and the scatter shows
some general pattern. This is quite interesting given that merger simulations are quite
complex calculations, significantly more complicated than perturbative calculations.

We expect that the results will not be significantly affected by including more
EOSs. The fit is constructed based on a large number of EOSs, which cover a broad
range in the M − R diagram, even parts which are excluded based on observations.
Hence, considering additional EOSs should not affect the fit significantly and, subse-
quently, frequency deviations should remain largely unaffected.

It is important to stress out that the agreement in frequency deviations from
the respective fit when comparing merger simulations and perturbative calculations
is rather unexpected. Perturbative frequencies fpert refer to static, cold and non-
rotating stars. Binary remnants are rapidly rotating, reach high temperatures and
have significantly higher masses. Moreover, in the early post-merger phase, when fpeak

is extracted, the remnant is still dynamically evolving. Hence, the striking similarity
of frequency deviations in these two systems strongly suggests that an underlying
mechanism is responsible for shifting each frequency in a particular direction. Since
the EOS is the only common component in both systems, frequency deviations very
likely contain additional information about the EOS. We further examine this point
in Section 6.3.2.

In principle, the frequency deviations may be observable. The fit is constructed
based on numerical simulations. Thus, highly accurate simulations are required. Mea-
suring the frequency and corresponding stellar property and comparing to the theo-
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6.3. Frequency deviations

retical fit informs us about how the frequency deviates. Observations of BNS mergers
can provide us with the frequency fpeak, as well as the radius R and the tidal deforma-
bility Λ. Alternatively, R or Λ can be measured independently from a different merger
or type of event. We note that frequency deviations can potentially correlate with
other features of the GW signal from a merger event. Secondary features of the GW
signal apparently deviate in a similar way as the dominant peak (see Fig. 6 in [49]).

Naturally, applying these ideas requires high precision measurements. Both in
terms of high accuracy observations, as well as in terms of the numerical modelling
of the system. This serves as additional motivation to further develop new numerical
approaches, such as the moving-mesh approach extensively discussed in this thesis.

We also comment on the accuracy of the employed numerical results, as well as the
sensitivity of frequency deviations to numerical aspects of the modelling. We already
pointed out that the 3D numerical simulations of binary systems are significantly
more complex than linear perturbation calculations. Perturbative frequencies can be
computed with a very high resolution, which ensures that the results have converged
and are robust. Hence, it is rather promising that 3D hydrodynamical simulations
with the employed resolution can resolve frequencies accurately enough to capture the
underlying physics behind frequency deviations. This does not necessarily imply that
systematic uncertainties of the numerical modelling and frequencies are resolved at
the level of (a few) 10 Hz, namely the magnitude of frequency deviations. Numerical
artifacts can in principle even be the reason which leads to the identified outliers5.
However, the overall agreement in the behavior of data points in frequency plots for
these two very different systems and numerical approaches is quite encouraging.

In addition, we examine the robustness of frequency deviations in binary systems
with respect to numerical details of the modelling. In particular, we perform additional
simulations for 1.35 + 1.35 M� systems employing the DD2F and SFHX EOSs. These
two EOSs yield comparable values for R1.6 of roughly 12 km, while they result in
opposite frequency deviations. DD2F lies above the respective fit, while SFHX yields
a smaller fpeak than the one computed from the fit. Initially, we evaluate the effect
of the inspiral on our results. We simulate the systems starting from a larger initial
separation (4 and 5 orbits before merging respectively) and find that the character of
the deviations remains unaffected.

Furthermore, we perform different resolution simulations for DD2F to assess the
effect of resolution. We employ roughly 100,000 and 600,000 SPH particles, namely
lower and higher resolutions compared to our default choice of 300,000 particles. We
find that the extracted value for fpeak exhibits statistical fluctuation of the order of
a few 10 Hz. However, the differences in the frequencies are smaller that frequency
deviations and the data points from different resolutions always lie on the same side
of the fit (constructed from our standard resolution binary data set). Neither the
number of orbits before merging nor resolution changes frequencies in a systematic
way, which supports that frequency deviations are actually caused by the underlying
EOS and not aspects of the numerical modelling.

As an additional, rather demanding test, we also simulate 1.37 + 1.37 M� binary
systems employing the same set of EOSs as for 1.35+1.35 M� binaries (see Table 6.1).
In these simulations we employ the C6 Wendland kernel function [89,310], instead of
the spherically symmetric spline kernel which is our standard choice. We construct the

5We note however that outliers behave also in a very consistent way (see Fig. 6.10 and relevant
discussion)
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6. Gravitational wave frequency deviations

respective empirical relation and examine frequency deviations for these calculations.
Notably, the individual data points distribute in the exact same way with respect
to the fit as for 1.35 + 1.35 M� systems. The fact that the character of frequency
deviations remains unaffected by the slightly increased binary mass and the different
SPH kernel function highlights that our observation is robust against certain aspects
of the numerical modelling.

Overall, we find that the exact details of the numerical treatment do affect the
absolute values of the frequencies up to some extent. But the pattern of frequency
deviations seems to be rather robust. The fact that we employ the same setup in all
our binary simulations also suggests that our results are affected only by statistical
fluctuations, which seemingly are smaller than the typical magnitude of frequency
deviations.

Finally, we briefly consider unequal-mass systems. We simulate binaries with a
total mass of 2.7 M� and mass ratios of q = 0.95 and q = 0.9 for DD2F and SFHX.
The extracted frequencies are quite similar to the ones from equal-mass systems. In
particular, the differences in the frequencies between equal-mass systems and systems
with q = 0.95 and q = 0.9 are of the order of a few 10 Hz and they also seem to be
dominated by statistical fluctuations. We thus expect that for a relatively small range
of q, namely systems with relatively small mass asymmetry, the underlying physics
leading to frequency deviations is more prevalent than the effects of the mass ratio.

6.3.2. Encoded equation of state information

In Section 6.3.1 we examine how data points deviate from the respective fit in fre-
quency versus R or Λ1/5 plots for two very different systems. In particular, we uncover
a striking similarity between frequency deviations referring to BNS merger remnants
and isolated NSs. This observation indicates that frequency deviations should carry
additional information about the EOS, considering that the position of the data points
in such plots is determined by the EOS. In this section we explore this direction focus-
ing on perturbative frequencies, which are arguably more robust and accurate. This
allows to reliably examine the position of individual points in frequency plots. We
then extend the discussion to frequency deviations in binary systems, which is rather
straightforward because deviations defined based on fpert(Rx) and fpeak(Rx) relations
are very similar, as shown in Section 6.3.1.

In Section 6.2.1 we show that, considering isolated stars with masses in the range
1.1 − 1.9 M�, the relation Mfpert(Λ

−1/5) is extremely tight (see also Fig. 6.3 and
Table 6.2). Naturally, focusing on a single static star mass, also results in very accurate
relations between fpert and Λ−1/5. We present such a relation in Fig. 6.7 for 1.6 M�
stars and find a maximum deviation of only 2.2 Hz (see Table 6.5). Other values for
the fixed mass result in similarly, highly accurate relations. As a result, for any given
stellar model, fpert and Λ−1/5 are practically equivalent.

Notably, relations between fpert and the radius computed for the same mass are
not as tight (see Table 6.2). Indeed, we notice that the points exhibit some sizable
scatter in Fig. 6.6c, contrary to Fig. 6.7 which features practically no scatter6. Hence,
focusing on Λ1/5−R relations should help determine which EOS properties cause the

6Note that in Fig. 6.6d fpert and Λ1/5 refer to isolated star with different masses, which is the
reason behind the scatter.
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Table 6.5: Fixed-mass relations presented in different plots. The first column lists the
plot where the relation is shown. The second column lists the relations. The third and
fourth columns present the mean and maximum deviations for each of the relations.
The f−mode frequencies fpert are in kHz, radii are in km and tidal deformabilities
are dimensionless. The number in the subscript of each variable denotes the mass of
the isolated star to which it refers. Table adapted from [197].

Position Fit Mean dev. Max dev.
[Hz] [Hz]

Fig. (6.6c) fpert,1.6 = 7.04− 0.631R1.6 + 1.708× 10−2R2
1.6 15 36

Fig. (6.6d) fpert,1.6 = 5.11− 1.255Λ
1/5
1.35 + 9.618× 10−2Λ

2/5
1.35 17 45

Fig. (6.7) fpert,1.6 = 4.988− 1.539Λ
1/5
1.6 + 1.546× 10−1Λ

2/5
1.6 1 2.2

Fig. (6.6f) Λ
1/5
1.6 = 0.205 + 0.614Λ

1/5
1.35 + 0.036Λ

2/5
1.35 0.073 0.029

frequency deviations7.
Focusing on a fixed mass, we can employ fpert and Λ1/5 interchangeably. This

suggests that frequency deviations defined based on fpert,x(Rx) relations for a given
fiducial mass x, are tightly anti-correlated with deviations defined based on Λ

1/5
x (Rx)

relations (e.g. compare panels panel (c) and (e) in Fig. 6.6). In Fig. 6.8 we illustrate
that this is the case for stars with mass x = 1.6 M�. Frequency deviations, which
we denote as δRfpert, are defined between the data points and the respective second-
order fit in panel (c) of Fig. 6.6. Similarly, we define deviations δRΛ1/5 between data
points and the second-order fit in panel (e) of Fig. 6.6. Evidently, the two types of
deviations are indeed strongly anti-correlated and the point distribution in Fig. 6.8
follows a linear trend. We note that we verify that this behavior is independent of
the chosen fiducial mass by examining plots like Fig. 6.8 for all the static star masses
that we consider here, i.e. fixed masses in the interval [1.1, 1.9] M�.

Evidently, frequency deviations δRfpert, and ultimately δRfpeak, for a fixed mass
relate to deviations in Λ1/5(R) relations. As a reminder, the tidal deformability is
defined as Λ = 2

3
k2( c

2R
GM

)5. This suggests that frequency deviations can be linked to
the tidal Love number k2. Notably, k2 correlates roughly with the inverse compactness
R/M . For example, in [88] they find Λ ' α( c

2R
GM

)6 with α = 0.0093±0.0007. Based on
the definition of tidal deformability, this relation implies an average kav

2 = 3
2
α( c

2R
GM

).
Deviations between k2 and kav

2 determine the scatter in Λ1/5 − R plots and, subse-
quently, frequency deviations in fpert(R) and fpeak(R) relations. We note that k2

can be accurately computed for each EOS, while kav
2 indicates some average behavior

based on the inverse compactness. We conclude that constraining frequency devia-
tions based on observations is informative about k2 and can be used to break the
degeneracy between Λ, k2 and R.

In Fig. 6.9, we apply our reasoning to 1.6 M� static models. In the upper panel we
show k2 as a function of R/M . The green solid line is a second-order fit to the data.

7We note that the tidal deformability is less sensitive than the radius to the low-density regime.
In Section 6.2.1, we introduce two different radii, R90% and Rcc, based on the sphere containing 90%
of the mass of the stellar model and the crust-core transition density, respectively. They are thus
sensitive to the high-density parts of the star. By examining relations involving these two radii, we
find that they still exhibit sizable scatter, which shows that frequency deviations encode information
about the high-density EOS.
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Figure 6.7: f−mode frequency as a function of Λ
1/5
1.6 for isolated 1.6 M� stars. The

solid line displays a second-order fit to the data, which exhibits a maximum deviation
of 2.2 Hz. Adapted from [197].
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Figure 6.8: Deviations of data points and a second-order Λ
1/5
1.6 (R1.6) relation (denoted

as δRΛ1/5) as a function of frequency deviations in a second-order fpert(R1.6) empirical
relation (denoted as δRfpert,1.6). We refer to panels (e) and (c) of Fig. 6.6 for the two
deviations, respectively. A first-order fit to the data is shown (solid line). Figure is
adapted from [197].
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Data points, namely calculations for different EOSs, approximately follow the fit with
some sizable point-to-point scatter around it. We display the maximum deviation
from the fit with the gray shaded area.

We argued that the deviations in the upper panel of Fig. 6.9 are directly related
to frequency deviations δRfpert referring to 1.6 M� stars. Based on this argument,
we apply a correction to k2 based on the frequency deviations defined for isolated
stars. In particular, the “corrected” k2 reads k2 − b δRfpert,1.6, where we determine
b = −0.2206 kHz−1 based on a single fit to the deviations of the data points from
the fit in the upper panel in Fig. 6.9. We plot k2 − b δRfpert,1.6 as a function of
R/M in the middle panel of Fig. 6.9. The solid line is the same second-order fit
presented in the upper panel, while the gray shaded area again depicts the maximum
deviation from the fit. Taking frequency deviations into account results in a very tight
correlation between the “corrected” k2 − b δRfpert,1.6 and R/M , which validates our
argument that frequency deviations are directly related to deviations of k2 from some
average estimate for its value based on a large EOS sample. We explicitly present the
analysis for 1.6 M� stars, but we find similar behavior for other masses in the range
1.1− 1.9 M�. We also note that, alternatively, one can include the correction in the
independent variable R/M and determine k2 based on the value of R/M − b′ δRfpert

with high accuracy8.
We extend the discussion to frequency deviations δRfpeak, defined as the deviation

of data points from the respective fit in post-merger frequencies versus radii plots. In
Fig. 6.10, we plot δRfpeak defined in panel (a) of Fig. 6.6 as a function of δRfpert,1.6.
The green shaded box has a side length of 30 Hz and corresponds to the green shaded
bands that we introduce in frequency plots in Fig. 6.6 to identify outliers. We also
present a first-order fit to the data as a solid line. We refer to the fit as δRf |fit (see
caption of Fig. 6.10 for the exact expression).

In the bottom panel of Fig. 6.9, we employ the fit δRf |fit to compute a “corrected”
value for k2 based on frequency deviations from binary systems. The solid line matches
the second-order fit shown in the upper panel of Fig. 6.9, the gray shaded area indicates
the maximum deviation from the fit, while b has the same value as in the middle
panel. Evidently, including the correction term b δRf |fit(δRfpeak) reduces the scatter
of data points around the second-order fit. We find a decrease of 33% and 36% in
the average and maximum deviation from the fit, respectively. The improvement is
even more pronounced for EOSs which yield R/M < 5.5. Moreover, the maximum
deviation is practically determined by a single data point with R/M ' 5.83, which
arguably deviates considerably more compared to any other data point. We consider
also deviations defined on fpeak versus radius plots, where the radii are computed for
different choices of the static mass. We find that they also decrease the scatter when
included as corrections in k2. Notably, considering deviations in relations of fpeak for
1.35 + 1.35 M� binary systems and radii R1.35 of 1.35 M� stars leads to even better
results than those shown in the bottom panel of Fig. 6.9. We remark that, in principle,
the analysis of the inspiral can potentially provide an estimate for R1.35.

Directly measuring frequency deviations δRfpeak can be a challenge. However,
determining the sign of δRfpert provides already important information. The sign
indicates whether the respective data point is located above or below the corresponding
k2(R/M) relation. Hence, the error in computing k2 from the corresponding fit is

8Note that b′ is determined by fitting δRfpert,1.6 to the horizontal deviations between the data
points and the fit in the upper panel of Fig. 6.9. Subsequently, b′ 6= b.
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Figure 6.9: The upper panel displays the tidal Love number k2 versus the inverse
compactness R/M for 1.6 M� static stars. In the middle panel we “correct” k2 based
on the frequency deviations δRfpert,1.6 defined in panel (c) of Fig. 6.6. In the bottom
panel k2 is corrected based on δRfpeak and the first-order fit shown in Fig. 6.10. The
value of b in the middle and bottom panels is −0.2206 kHz−1. The maximum deviation
in each panel is displayed with a gray shaded band. The solid curve is the same in all
panels and represents a second-order fit to k2(R/M). The figure is adapted from [197].
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Figure 6.10: Frequency deviations between data points and second-order fits to the
data in panels (a) and (c) of Fig. 6.6, respectively. The green-shaded box represents
the bands shown in frequency plots in Fig. 6.6 and has a side length of 30 Hz. The solid
green lines depicts a first-order fit to the data and reads δRfpert,1.6 = 0.2697 δRfpeak.
Adapted from [197].

reduced by half. We also note that simulated injections support that the post-merger
frequencies can be extracted with an accuracy of ∼ 10 Hz with future ground-based
detectors, provided a sufficient signal-to-noise ratio (SNR) [73, 75]. This highlights
that inferring frequency deviations largely depends on constructing accurate empirical
relations between frequencies and properties of static stars to which we can compare
measured frequencies. The main work in this thesis, namely extending the moving-
mesh code Arepo to simulate general relativistic systems on dynamical spacetimes,
is in this direction.

Overall, our analysis shows that frequency deviations δRfpert and δRfpeak can be
employed to improve the accuracy in determining k2. This can lead to stricter EOS
constraints, considering that Λ and R can potentially be extracted from the analysis
of the inspiral. Moreover, Fig. 6.10 clearly shows that, when comparing δRfpert and
δRfpeak, all data points follow a systematic trend, including the two outliers (see
also Fig. 6.6 and Table 6.4). This suggests that our criterion to identify outliers
might be too strict and possibly prone to numerical artifacts in simulations of binary
systems. This further supports our observation that frequency deviations referring
to the f−mode in isolated stars and the dominant post-merger oscillation in merger
remnants is robust.

6.3.3. Relation to tidal deformability of high-mass neutron stars

In Section 6.3.2 we discuss extensively deviations on frequency versus radius plots and
connect them to the tidal Love number k2. We now examine deviations in frequency
versus tidal deformability plots.

As discussed in Section 6.3.2, the perturbative f−mode frequency is practically
equivalent to Λ1/5 for stellar models with a fixed mass (see Fig. 6.7 for 1.6 M� configu-
rations). Hence, fpert−Λ1/5 plots, where fpert and Λ1/5 are computed for two different
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masses, practically show the relation between Λ1/5 at these two masses. For example,
in Fig. 6.6d we plot fpert,1.6 referring to 1.6 M� models versus Λ

1/5
1.35 corresponding

to 1.35 M� configurations. Thus, Fig. 6.6d essentially shows the relation between
Λ

1/5
1.6 and Λ

1/5
1.35, i.e. Λ1/5 at two different masses. The difference between values of

Λ1/5 computed at two different masses approximates its derivative with respect to the
mass.

In the upper panel of Fig. 6.11, we plot the derivative dΛ1/5/dM computed at
M = 1.35 M� as a function of Λ

1/5
1.35. The green solid line is a second-order fit to

the data, while the gray shaded area depicts the maximum deviation from the fit.
The data points roughly follow the fit, but they exhibit some sizable scatter. This
is expected, because different EOSs admit different derivatives at 1.35 M�, even for
similar values of Λ

1/5
1.35.

Clearly, the value of the tidal deformability at higher masses contains information
about the slope of Λ(M). Hence, we expect that the frequency deviations defined
in plots like Fig. 6.6d (or frequency deviations which correlate with them such as
δ

Λ
1/5
1.35
fpeak) can be used to reduce the scatter in the upper panel of Fig. 6.11. We

explicitly show this in the middle and lower panels of Fig. 6.11, where we “correct” the
derivative dΛ1/5/dM through frequency deviations following an analogous procedure
as in Fig. 6.9. In the middle panel we employ δ

Λ
1/5
1.35
fpert,1.6, while in the lower panel

we use δ
Λ
1/5
1.35
fpeak. In both panels we display the same second-order fit as in the upper

panel. Gray shaded areas display the maximum deviation of data points from the fit.
Evidently, the relations for the “corrected” derivatives become tighter. In particular,
the maximum deviation is reduced by 80% in the middle panel, where we employ the
accurate and robust perturbative frequencies.

Figure 6.11 practically shows that a single BNS observation, where we extract
the tidal deformability based on the analysis of the inspiral and measure fpeak in the
post-merger phase, in essence determines also the derivative of the tidal deformability
with respect to the mass. As a result, measuring the frequency deviations can help
us probe Λ(M) at higher masses, without directly measuring Λ at higher masses.

In our analysis we employ deviations defined on a fpert,1.6 − Λ
1/5
1.35 plot, but our

results are not restricted to a mass of 1.6 M�. In principle, tighter relations for the
derivative dΛ1/5/dM can be obtained by considering fpert of any mass. Moreover,
similar results hold for other binary masses. Finally, we remark that the arguments
discussed here might be reversible. An estimate of the derivative dΛ1/5/dM , e.g.
from two distinct measurements of Λ at different masses, can potentially provide
information on the frequency deviations leading to a more accurate prediction of
fpeak.

6.4. Direct relations between gravitational wave
frequencies of merger remnants and isolated
neutron stars

As it is evident based on the previous discussion, perturbative f−mode frequencies
fpert, as well as dominant post-merger oscillation frequencies fpeak, correlate with
stellar properties of isolated stars. This suggests that a direct relation between fpert

and fpeak should exist. Moreover, in Sections 6.3.1 and 6.3.2, we find that frequency
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Figure 6.11: The upper panel displays the derivative dΛ1/5/dM at a fixed mass of
1.35 M� versus Λ

1/5
1.35. In the middle panel we "correct" the derivative based on the

deviations δ
Λ
1/5
1.35
fpert,1.6. In the bottom panel the derivative is corrected based on

δ
Λ
1/5
1.35
fpeak defined in Fig. 6.6b. The solid line is identical in all panels and represents a

second-order fit to the data in the upper panel. The maximum deviation in each panel
is shown as a gray shaded band. The two fit parameters read b1 = −7.293 kHz−1 and
b2 = −2.029 kHz−1. Adapted from [197].
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Figure 6.12: Mass-scaled dominant post-merger oscillation frequenciesMchirpfpeak ver-
sus mass-scaled perturbative frequencies MTOVfpert referring to stellar models with a
mass MTOV. Here MTOV = 1.23×Mtot/2, where Mtot is the total mass of the respec-
tive binary system. Black symbols denote 1.2 + 1.2 M�, blue symbols 1.35 + 1.35 M�,
red markers 1.4 + 1.4 M� and green symbols 1.5 + 1.5 M� systems, respectively. The
solid line displays a second-order fit to the data. The gray shaded area corresponds
to the 4% error band and includes all the points. Figure adapted from [197].

deviations in plots involving fpert are in agreement with deviations in the respective
fpeak relations (see Table 6.4). The matching frequency deviations might, up to some
extent, cancel each other out and result in rather accurate relations between fpert and
fpeak.

Figure 6.12 displays the mass-scaled post-merger frequency Mchirpfpeak, for each
one of the 57 binary systems considered here, as a function of the mass-scaled per-
turbative frequency MTOVfpert referring to stellar configurations with a mass MTOV.
Here Mchirp is the chirp mass9, while we relate binary systems to static stars through
MTOV = 1.23×Mtot/2, whereMtot is the total mass of each binary. We determine the
arithmetic value in the mapping between MTOV and Mtot following a similar analysis
to Appendix A. The values of fpert (and Λ1/5 in Fig. 6.13) for MTOV models are
computed based on a cubic spline fit to our perturbative data, which cover the range
[1.1, 1.9] M� with a spacing of 0.05 M�.

The solid line in Fig. 6.12 is a second-order fit to the data. Considering the scat-
ter of data points around the fit, we find mean and maximum deviations of 30 Hz
and 134 Hz, which shows that the relation is indeed very accurate. These deviations
are only slightly higher compared to those reported in Table 6.3. Notably, the re-
lations in Table 6.3 refer to fixed total binary masses, while the relation discussed
here is mass-independent. The very tight correlation between Mchirpfpeak(Mtot) and
MTOVfpert(MTOV) further demonstrates the strong link between the dominant post-
merger oscillation and the f−mode for the range of densities reached within the

9The chirp mass is defined as Mchirp = (M1M2)3/5

(M1+M2)1/5
, where M1 and M2 are the masses of the two

individual stars in the binary system. For equal-mass binaries the chirp mass is equivalent to the
total mass.
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Table 6.6: The third column provides mass-independent relations between the mass-
scaled dominant post-merger oscillation frequency Mchirpfpeak and stellar properties
of isolated stars. The first column indicates if the relation is shown in a figure. The
fourth and fifth columns list the average and maximum deviation for the corresponding
relation, respectively. All frequencies are in kHz, masses have units of M�, while the
tidal deformability is dimensionless. The table is adapted from [197].

Fig. Systems Fit Mean dev. Max dev.
[Hz] [Hz]

6.12 Equal-mass Mchirpfpeak = 0.299 + 0.595MTOVfpert + 1.392× 10−1 (MTOVfpert)
2 30 134

6.13 Equal-mass Mchirpfpeak = 11.846− 4.464Λ1/5 + 5.139× 10−1Λ2/5 31 138

6.14 All Mchirpfpeak = 0.013 + 0.794MTOVfpert + 1.042× 10−1 (MTOVfpert)
2 35 150

- All Mchirpfpeak = 11.536− 4.261Λ1/5 + 4.806× 10−1Λ2/5 36 151
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Figure 6.13: Mass-scaled dominant post-merger oscillation frequency Mchirpfpeak as
a function of the tidal deformability Λ1/5(MTOV) of static stars. Symbol colors and
MTOV are the same as in Fig. 6.12. The solid line displays a second-order fit to the
data. All data points lie within a 4% error band, shown as a gray shaded area around
the fit. Adapted from [197].

remnant.
In Section 6.2.1 we discuss how the mass-scaled fpert correlates remarkably tightly

with Λ−1/5 (see Fig. 6.3 and Table 6.2). Based on this discussion and Fig. 6.12, we ex-
pect that an accurate mass-independent relation betweenMchirpfpeak and Λ−1/5(MTOV)
should exist. Indeed, we find such a tight relation, which we present in Fig. 6.13
alongside a second-order fit to the data. We provide the fit expression and respec-
tive maximum and minimum deviation in Table 6.6. As expected, the deviations are
in perfect agreement with those found for the Mchirpfpeak(MTOVfpert) relation. Fur-
thermore, we remark that the average and maximum mass-scaled deviations in the
Mchirpfpeak(Λ−1/5(MTOV)) are 37 M� × Hz and 168 M� × Hz, respectively. Interest-
ingly, they are considerably smaller than those reported for relation (4) in [59].

Up to now we have only considered equal-mass binary systems. We extend our
analysis by considering also unequal-mass binaries and constructing relation of the
same type which cover a broad range of mass ratios q. To this end, we directly import
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Figure 6.14: Same as Fig. 6.12, but black and red symbols correspond to equal-mass
and unequal-mass systems, respectively. MTOV is given by Eq. (6.1). The solid line
displays a second-order fit to the data. The gray shaded array is a 4.6% error band.
All points lie within the band. Figure adapted from [197].

the data referring to unequal-mass binary systems presented in Table II in [305] for all
the EOSs listed in Section 6.1.3. The unequal-mass data set consists of an additional
40 binary systems. The lowest mass ratio is 0.67. To account for the variable mass
ratio, we relate binary systems to static stars via

MTOV =
[
a+ b× (1− q)2

]
× Mtot

2
, (6.1)

where a = 1.23 and b = −0.67. The value of a is such, that the relation reproduces
the previous mapping between binary configurations and static stars at the equal-
mass limit q = 1. We determine b based on a analysis similar to the one performed
in Appendix A. Overall, we find that unequal-mass systems are better captured by
static stars with a slightly smaller mass MTOV, compared to equal-mass binaries with
the same total mass.

We presentMchirpfpeak(Mtot) versusMTOVfpert(MTOV) for the combined data set of
equal- and unequal-mass binary configurations in Fig. 6.14. The solid line is a second-
order fit to the data. We find that including unequal-mass systems only marginally
decreases the accuracy of the fit. Similarly to the case of equal-mass systems, a
relation with Λ1/5(MTOV) as the independent variable can be constructed. We provide
the expressions for both relations in Table 6.6, alongside their mean and maximum
deviations. Notably, these mass-independent relations, which cover a broad range of
mass ratios, are highly accurate.
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7. Summary, conclusions and future
directions

In the context of this thesis we introduce a fundamentally new tool for studying
general relativistic problems in astrophysics. In particular, we extend the Arepo code
to perform simulations of general relativistic systems with dynamical spacetimes on a
moving mesh (Part II). We discuss our findings in Section 7.1, while our main results
are presented in [196]. In addition, we perform a systematic study of various GW
asteroseismology relations and discuss the potential for additional EOS constraints
(Part III). In Section 7.2 we provide concluding remarks for this study, while our
work is presented in [197]. In both cases, we also comment on future directions.

7.1. General relativistic moving-mesh hydrodynamics
simulations with Arepo

In this thesis, we perform moving-mesh simulations of NS systems with the Arepo
code. The original implementation of Arepo solves the equations of Newtonian
hydrodynamics, thus a number of modifications are required for the study of general
relativistic systems. In particular, GRHD is implemented into the code based on the
Valencia formulation. We couple a metric solver which adopts the CFC approximation
to account for dynamical spacetimes. Finally, since our main focus in the current
study is NS systems, we implement a microphysics module to account for the NS
high-density EOS.

We validate our implementation by evolving static NSs and monitoring the fre-
quency of the radial oscillation. We perform a series of simulations, considering both a
fixed and a dynamical spacetime. Our results are in agreement with independent sim-
ulations performed with other tools. Moreover, the stars remain close to their initial
equilibrium during the roughly 10 ms for which we evolve them. These tests show-
case that our implementation can successfully simulate general relativistic systems,
including a dynamical spacetime, on a moving mesh.

We discuss the first BNS merger simulation on a moving mesh. For this particular
calculation, we employ a mesh which is well-adapted to the geometry and the mass
distribution of the system, which demonstrates the flexibility of the code. We find
that the resolution in high-density regions is comparable to those employed nowadays
in merger simulations. The simulation run for a few weeks on roughly 200 cores, which
highlights the potential for higher resolution calculations.

The general dynamics and qualitative features of the simulation agree with inde-
pendent simulations employing either SPH or Eulerian grid-based methods. Notably,
the timescales over which different dynamical features evolve in the post-merger phase
are longer in our moving-mesh simulation compared to these independent calculations.
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In particular, we find that the quasi-radial oscillation survives for a long time. Fur-
thermore, the initial double-core structure, which forms after the merging, persists for
more than 20 ms, significantly longer compared to fixed-grid calculations. Angular
momentum also redistributes on longer timescales.

The observed prolonged timescales of major dynamical features in the post-merger
phase may very well mean that the lifetime of the remnant is extended with respect
to what other simulations report. This could have important implications. Consider-
ing that even at the very end of our simulation density spiral arms starting from the
remnant can be clearly identified, the central object still loses mass. This material is
either ejected or might end up in the surrounding torus. Material from the torus (or
accretion disk) can also become gravitationally unbound at later times and contribute
to the ejecta [160, 199, 234, 270, 314]. The amount of ejected material, as well as its
properties (e.g. composition, entropy, geometric distribution), impacts heavy-element
nucleosynthesis in the ejecta. Hence, the abundance pattern of produced heavy ele-
ments and the properties of the observable kilonova can potentially be affected by a
prolonged remnant lifetime and accompanying mass ejection pattern. A systematic
analysis requires to run the simulation further, until the gravitational collapse of the
central object. To evaluate if and how r-process calculations and electromagnetic ob-
servables are affected, we need to monitor mass ejection and perform nucleosynthesis
calculations in the ejecta. A more complete analysis would require to include addi-
tional mechanisms that might affect properties of the ejecta (e.g. neutrino transport,
magnetic fields).

Focusing on the post-merger GW emission, we find that the dominant oscillation
frequency is in good agreement with independent simulations of the system employing
different codes. Notably, the GW signal is damped very slowly. The system strongly
emits GWs during the whole post-merger phase that we simulate (≈ 40 ms), while
the GW signal amplitude remains large even at the end of the simulation.

The height of the peaks in the GW spectrum determines which features are de-
tectable based on the sensitivity curves of the detectors. Compared to an indepen-
dent SPH simulation, we find that the peaks in the GW spectrum extracted from the
moving-mesh simulation are more pronounced. Hence, the strong GW emission in the
moving-mesh simulation, which lasts for a long time, suggests a higher probability to
observe the system. We note that to better estimate the detectability of the system
through GWs, one should consider damping mechanisms which act in addition to GW
emission, such as magnetic or bulk viscosity [19, 168, 214]. Furthermore, we need to
systematically examine the effect that the CFC approximation has on the damping
times.

Overall, the fact that dynamical features of the remnant survive for long times,
as well as the slow damping of the GW signal, suggest that numerical viscosity is
rather low in our simulation. We remark that taking into account additional damping
mechanisms might result on shorter timescales. However, performing and interpreting
simulations which are not significantly affected by numerics is important, if we wish
to extract timescales which reliably reflect how different physical processes act . This
is a rather important point, which highlights the potential benefits of employing the
moving-mesh approach in the study of BNS mergers.

In summary, future work should further investigate the time scales over which dy-
namical features evolve in the post-merger phase. A systematic study, which considers
a broad range of EOSs and binary masses, is required to determine if moving-mesh
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simulations consistently feature low numerical viscosity. Aspects like the lifetime of
the remnant, the damping of the GW signal and heavy element nucleosynthesis in the
ejecta should be considered in detail. These points could have important consequences
on the detectability of mergers through GWs, the abundances of elements synthesized
in such events and how we interpret electromagnetic observations based on modeling
the kilonova.

Furthermore, the flexibility offered by Arepo, particularly regarding the mesh
setup (e.g. mesh motion, geometry, adaptive refinement/derefinement), suggests that
the code should be rather well-suited for the study of other general relativistic systems
as well. Besides BNS mergers, the code can be employed to study systems such as NS-
black hole mergers, black hole accretion, relativistic jets, accretion tori and NS-white
dwarf systems.

Regarding future development of the code, adding support for fully temperature-
dependent EOSs and neutrino transport is currently ongoing. Other directions, which
might be considered, include implementing magnetic fields in the code and, based on
the current communication infrastructure, coupling a fully general relativistic metric
solver. We also plan to investigate the effect that a number of technical elements
have on the simulations. Such aspects include implementing a more advanced Rie-
mann solver, a more sophisticated description of the atmosphere and experiment-
ing with various mesh setup details, e.g. different initial mesh geometries and refine-
ment/derefinement criteria.

7.2. Frequency deviations in universal relations

Another direction, which we considered in this thesis, are GW asteroseismology re-
lations for two distinct systems. Based on perturbative calculations we compute the
f−mode frequencies fpert in isolated NSs. In addition, we employ full 3D simulations
of BNS systems to extract the GW frequency originating from the dominant fluid
oscillation fpeak in BNS merger remnants. In both cases we consider a broad range of
EOSs.

In the case of isolated stars, we consider relations between fpert and stellar pa-
rameters such as the radius R, the moment of inertia I and the tidal deformability
Λ. We construct fits between fpert (or the mass-scaled Mfpert) and the various stellar
parameters based on a consistent data set. This enables us to compare the accuracy of
different relations. Relations involving the moment of inertia or the tidal deformabil-
ity turn out to be the most accurate. Moreover, our analysis supports that the scatter
of points in GW asteroseismology relations is, at least partially, influenced by the
high-density EOS. We find similar results in the case of merger remnants, considering
relations between fpeak and properties of isolated stars (see Tables 6.3 and A.1).

The main result of this work is that data points scatter in a very similar way
when comparing relations referring to isolated NSs and BNS merger remnants side by
side. This is particularly interesting, because each data point refers to a stellar model
described by a specific EOS. In essence, when we inspect the position of individual
data points with respect to the fit to all data, we are practically examining how a
particular EOS yields stellar parameters which deviate from “mean” values predicted
based on the complete EOS sample. The fact that data points distribute in a very
similar manner for isolated NSs and merger remnants indicates that these deviations
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are a signature of the EOS.
As an illustrative example, we explicitly show that the frequency versus radius

relation referring to 1.6 M� isolated stars features extremely similar deviations as
the corresponding relation constructed for merger remnants of 1.35 + 1.35 M� binary
systems. Overall, we consider a number of different pairs of relations between GW
frequencies and stellar parameters and verify that this finding holds for all the binary
systems considered in this study (see Table 6.4). Notably, this systematic behavior
is rather unexpected, because we compare oscillations in two very different systems.
The f−mode in cold, isolated, non-rotating NSs and the dominant fluid oscillation in
hot, massive, rapidly rotating merger remnants.

We study how the EOS influences the exact distribution of points in fpert versus R
relations. We trace the frequency deviations in such relations to the tidal Love number
k2. In particular, measuring frequency deviations results in a better determination of
k2. For a fixed stellar mass, k2 and R fully determine Λ (equivalently k2 and Λ fully
determine R). Thus, better estimates of k2 can be extremely useful considering that
Λ or R can in principle be extracted from observations. We remark that inferring
the sign of the frequency deviation from an observation already reduces the error in
determining k2 by half. Moreover, the reported agreement of frequency deviations
between isolated NSs and BNS merger remnants supports that frequency deviations
from BNS mergers can also be employed to better estimate k2. A similar analysis
of relations involving the frequency and tidal deformability yields constraints on the
derivative with respect to the mass dΛ1/5/dM .

Finally, we present relations between fpert and fpeak, which hold for a broad range
of binary system masses. In this direction, we also extend the data set to include
unequal-mass binaries and produce rather accurate relations covering a wide range of
binary masses and mass ratios.

Many different future directions can be considered. Directly inferring frequency
deviations depends to a great extent on the accuracy of the theoretical relations to
which the measurement should be compared. Relations constructed based on high
precision 3D simulations can, in principle, further enhance the observed correlation of
frequency deviations between isolated NSs and BNS remnants. Furthermore, highly
accurate relations could result in an even better determination of k2 from BNS ob-
servations. Hence, frequency deviations in BNS systems should be investigated with
independent hydrodynamical codes. One such possibility would be Arepo, which
treats hydrodynamics in a finite-volume fashion on a moving mesh, namely a com-
pletely different approach compared to the SPH code that we employ to extract fre-
quency deviations. Another approach would be to consider perturbative calculations
of equilibrium NSs with rotational profiles which resemble merger remnants [95,175].

We only briefly considered frequency deviations in unequal-mass systems. A more
systematic study is required to determine the effect of mass ratio on frequency devi-
ations and potential observational applications. Similarly, subdominant peaks of the
GW spectrum are only shortly mentioned. Frequency deviations of secondary features
of the GW spectrum need to also be examined to ascertain whether they exhibit the
same systematic behavior. Finally, extracting frequency deviations from GW signals
offers the potential for more accurate GW asteroseismology relations, which take into
consideration how the EOS influences the deviations.
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A. Accuracy of relations between fpeak
and stellar properties of static stars

In Chapter 6 we consider relations between the dominant post-merger frequency
fpeak and various stellar properties of static stars with a fixed mass (e.g. Table 6.3
and Figs. 6.5, 6.6, 6.12 and 6.13). The fiducial mass of the static stars is a free
parameter, which, however, affects the accuracy of the relation (see also [45]). Here
we investigate which choices for the static star mass lead to the tightest relations
for the various binary systems and static star properties that serve as independent
variables. This discussion follows the appendix in [197].
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Figure A.1: Accuracy of relations of the form fpeak(Λ
1/5
M ) for 1.35 + 1.35 M� binary

systems versus the fiducial mass M . Three different figures of merit are shown. The
gray curve depicts the maximum deviation, blue curve shows the average deviation
and green curve illustrates the normalized sum of squared residuals of the least-squares
fit. The minima of each curve is marked by a vertical dashed line of the same color.
Adapted from [197].

We focus our attention on relations between fpeak and the four stellar properties
discussed in Chapter 6, namely the radius R, the radius of the sphere containing
90% of the mass of the stellar configuration R90%, the radius Rcc where the rest-
mass density equals the crust-core transition density ρcc and the fifth-root of the tidal
deformability Λ1/5. We employ three different metrics to evaluate the accuracy of the
respective fits. In particular, we use the mean deviations, the maximum deviations
and the sum of squared residuals of the least-squares fit.

Overall, we find good agreement between the three different figures of merit. For
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example, Fig. A.1 shows all three figures of merit for the relation of the form fpeak(Λ
1/5
M )

for 1.35+1.35 M� binary systems and different values of the fiducial mass M . Based
on the three distinct accuracy metrics, we identify 1.55−1.65 M� as the optimal mass
range for this particular binary system and relation.

Table A.1: Optimal range of fiducial masses which result in the tightest relations be-
tween post-merger frequencies and stellar parameters of static stars. The first column
displays the masses of the binary systems. The second column indicates which stellar
parameter is used as the independent variable in the respective fit. The third column
shows the identified optimal mass range. The fourth column provides an upper limit
on the average and maximum deviations computed in the corresponding mass range.
The table is adapted from [197].

Binary masses Independent Optimal mass Mean/Max
[M�] variable range [M�] dev. [Hz]

1.2 + 1.2 R 1.6− 1.75 < (33, 82)
1.2 + 1.2 R90% 1.5− 1.6 < (20, 49)
1.2 + 1.2 Rcc 1.7− 1.75 < (18, 57)
1.2 + 1.2 Λ1/5 1.4− 1.45 < (18, 50)

1.35 + 1.35 R 1.7− 1.8 < (38, 91)
1.35 + 1.35 R90% 1.7− 1.75 < (22, 62)
1.35 + 1.35 Rcc 1.75− 1.85 < (28, 69)
1.35 + 1.35 Λ1/5 1.55− 1.65 < (27, 65)

1.4 + 1.4 R 1.85− 1.9 < (42, 105)
1.4 + 1.4 R90% 1.8− 1.85 < (30, 99)
1.4 + 1.4 Rcc 1.85− 1.9 < (28, 98)
1.4 + 1.4 Λ1/5 1.75− 1.8 < (35, 109)

1.5 + 1.5 R 1.75− 1.8 < (33, 76)
1.5 + 1.5 R90% 1.75− 1.8 < (26, 64)
1.5 + 1.5 Rcc 1.9 < (17, 43)
1.5 + 1.5 Λ1/5 1.65− 1.75 < (30, 73)

Table A.1 lists the results of our analysis for all binary systems considered in
Chapter 6 and independent variables. For each relation we identify the optimal range
of fiducial masses, where all three figures of merit are minimized. In addition, we
provide upper limits for the mean and maximum deviations for the respective relation
within the optimal mass range. For all binary systems, relations w.r.t. the radius
become more accurate for slightly higher values of the fiducial mass compared to tidal
deformability relations. More massive binary systems correlate better with stellar
properties of more massive static stars, as expected1. The remnants exhibit higher
rest-mass densities in the interior compared to the two inspiralling stars. As a result,
the identified mass ranges always refer to properties of static stars which are more
massive compared to the each of the two companions.

1Binary systems with Mtot = 3 M� deviate from this observation, because most EOSs result
in a direct collapse to black hole after merging for such massive systems. Hence, the data set is
significantly smaller compared to the data sets of less massive systems.
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Figure A.2: Maximum rest-mass density ρmax
max found in remnants of 1.35 + 1.35 M�

binary systems within the first few oscillation cycles after merging as a function of
the central rest-mass densities ρc of 1.6 M� static stars modeled by the same EOS.
A second-order fit to the data is presented with a solid green curve. The fit reads
ρmax

max = 0.372− 0.446 ρc + 1.296 ρ2
c. Horizontal dashed lines present densities in terms

of the nuclear saturation density. Figure adapted from [197].

As shown in Table A.1, for each binary system, we identify a mass range of about
0.25 M�, within which fpeak relations become most accurate for the four independent
variables considered here. To better understand this result, we compare the rest-mass
densities exhibited within the remnant in the first few milliseconds after merging to
the central rest-mass densities ρc of static stars described by the same EOS and chosen
such that they lie within the identified optimal mass range. A single characteristic
density in the remnant cannot be uniquely defined, because in the early post-merger
phase oscillations are strongly excited and the system is dynamically evolving. Here we
track the maximum density within the remnant during the first few milliseconds and
identify its maximum value2. We call this rest-mass density value ρmax

max (see [39, 59]).
We show the extracted remnant densities for 1.35+1.35 M� systems versus the central
densities of 1.6 M� static stars in Fig. A.2. Each point refers to a different EOS.
Evidently, the densities at the center of 1.6 M� isolated stars are quite similar to the
highest densities within the remnant in the early post-merge phase. This agreement
demonstrates why the choice of such a fiducial mass results in tight relations. Binary
systems described by softer EOSs collide typically with higher impact parameters
and the remnant compression is more pronounced compared to stiff EOSs. Hence,
they reach higher rest-mass densities in the remnant, which match better with central
densities of higher fiducial masses. This aligns with the mass ranges reported in
Table A.1, where for binary systems with a total mass of 2.7 M� the optimal fiducial
masses extend also a bit higher than those reached in 1.6 M� static stars.

Summarizing, we conclude that the accuracy of relations between fpeak and dif-
ferent stellar properties of static stars is sensitive to the chosen fiducial mass of the

2An alternate definition which considers the average of the maximum rest-mass density over the
first few milliseconds leads to very similar results.
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static stellar configuration. The optimal mass range, which we identify based on three
different figures of merit, varies for the various independent variables considered here,
namely R, R90%, Rcc and Λ1/5. Typically, the tightest relations occur when consider-
ing properties of static stars with densities comparable to the densities reached in the
remnant over the first few oscillation cycles after merging. Given that the deviations
are defined with respect to the fit to the data points, the various figures of merit
should, up to some extent, be affected by the set of EOSs considered, the functional
form of the fit and potentially details of the numerical modeling. Nevertheless, we
expect that the ranges reported in Table A.1 are robust and fiducial masses within
these ranges result in tight relations, because the minima of the different accuracy
metrics in Fig. A.1 are relatively broad.
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