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Zusammenfassung

Wir stellen ein neues analytisches Modell vor, das die Gravitationswellenemission
in der Phase nach der Verschmelzung von Doppelneutronensternen beschreibt.
Das Modell wird durch eine Reihe von physikalischen Parametern bestimmt, die
mit verschiedenen Oszillationsmoden, Kombinationstönen oder nicht-linearen dy-
namischen Merkmalen zusammenhängen. Ausserdem wird die zeitliche Entwick-
lung der dominanten Mode nach der Verschmelzung mit einbezogen. Das Modell
beschreibt die numerischen Daten von Simulationen mit unterschiedlicher Gesamt-
masse mit sehr hoher Genauigkeit. Alle Parameter des Modells korrelieren mit
der Gesamtmasse des Doppelsterns. Für hohe Massen des Systems identifizieren
wir neue spektrale Merkmale, die von der nicht-linearen Kopplung zwischen der
quasi-radialen Oszillation und einer Deformation des Verschmelzungsüberrests
herrühren. Deren Einbeziehung erhöht die Genauigkeit des Modells signifikant.
Wir stellen fest, dass die subdominanten Frequenzkomponenten entscheidend für
die Konstruktion von zuverlässigen Gravitationswellenmodellen sind. Aufgrund
der hohen Genauigkeit ist unser Modell besonders für die Suche mit verbesserten
Versionen der aktuellen Detektoren (aLIGO+, aVirgo+) oder zukünftigen In-
strumenten geeignet. Wir finden eine quasi-universelle Beziehung zur Beschrei-
bung der Nähe eines Doppelsterns zum Einsetzen des Gravitationskollapses zum
Schwarzen Loch. Anschließend entwickeln wir eine Methode zur Bestimmung der
Grenzmasse für die direkte Bildung Schwarzer Löcher und der maximalen Masse
von nicht rotierenden Neutronensternen. Dieses Verfahren stützt sich auf eine
einzige präzise Messung der Gravitationswellen vor und nach der Verschmelzung.

Abstract

We present a new analytic model describing gravitational wave emission in the
post-merger phase of binary neutron star mergers. The model is determined by
a number of physical parameters that are related to various oscillation modes,
combination tones or non-linear features. The time evolution of the main post-
merger frequency is incorporated. The model achieves high fitting factors for
a sequence of equal-mass simulations of varying mass. All parameters of the
model correlate with the total binary mass. For high binary masses, we identify
new spectral features originating from the non-linear coupling between the quasi-
radial oscillation and an antipodal tidal deformation of the remnant, the inclusion
of which enhances the corresponding fitting factors. We find that subdominant
frequency components are crucial for the construction of faithful gravitational wave
templates. Because of the high fitting factors our model is particularly suitable for
searches with upgraded detectors of the current generation (aLIGO+, aVirgo+) or
future detectors. We find a quasi-universal relation for the proximity of a binary
configuration to black-hole formation. We then develop a method for determining
the threshold mass for prompt black-hole formation and the maximum mass of
non-rotating neutron stars. This procedure relies on one precise measurement of
the inspiral and post-merger phase.
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1. Introduction

1.1. Motivation

Neutron star (NS) mergers are rare astrophysical events and strong gravitational
wave (GW) emitters. The first GW detection from a source identified as a NS
merger, GW170817 [6], was reported in 2017. The GWs produced during the pre-
merger and post-merger phase contain information about the interior of NSs at
different high-density regimes, respectively. The total binary mass of the system
can be extracted from the GW signal, and also rough estimates of the distance
and localization of source can be obtained.

Neutron star mergers are also associated to electromagnetic (EM) transients
such as short gamma-ray burst (sGRB) [7, 8] and kilonova (see [9, 10]). Both
transients were detected along with GW170817 [11–20]. Short gamma-ray bursts
are bursts of gamma-rays with a typical duration of less than ≈ 2 s [7, 8]. They
exhibit a characteristic highly focused relativistic jet which is powered by the
accretion of matter to the remnant.

The kilonova is a quasi-isotropic EM transient occurring in NS mergers, that
originates from the radioactive decay of heavy, neutron-rich elements produced
through the rapid neutron-capture process (r-process) [21] in the ejecta of these
events. The r-process is a series of nuclear reactions where seed nuclei (like iron)
rapidly capture neutrons in a neutron-rich environment with a timescale shorter
than that of beta-decay. The production of half of the heavy elements in the
universe is explained by the r-process nucleosynthesis occurring in neutron-rich
environments such as those of NS mergers. These newly formed elements decay,
heat the ejecta, and when those expand enough, thermal radiation produces an
EM transient, the kilonova. The characteristics of the observed kilonova depend
on the total mass, velocity, and composition of the ejected material (see [22]),
and so, carry information about the properties of high-density matter and the
r-process. The detection of GW170817 and its EM counterparts, along with a
scrutinized analysis that followed, showed that NS mergers are likely the major
r-process element production sites in the universe.

Neutron star mergers provide a rich extraterrestrial laboratory for probing
physics at high densities. The underlying physics in the interior of NSs is described
by the so-called equation of state (EoS) of NSs which is, so far, only incompletely
known. Nevertheless, different theoretical models have been proposed. The prop-
erties of NSs, the GWs and the EM counterparts in NS mergers depend on the
EoS, and so, theoretical models can be tested with observations. Multi-messenger
observations, where information from GWs and EM counterparts is combined, can
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provide observational constraints on the EoS and reduce the uncertainties in the
extracted properties of the GW source.

There are two distinct phases of GW radiation in NS mergers, the inspiral
phase and the post-merger phase. In the inspiral phase, the NSs are in a quasi-
circular orbit, where their distribution of mass forms a quadrupole which results
to emission of gravitational waves. As energy is extracted from the system via
GW emission, the orbit shrinks, and the NSs eventually merge. In the late stage
of the inspiral, at a separation distance between the NS centers of approximately
35-45 km, tidal effects become important and accelerate the merger. Tidal effects
are connected to the EoS of NSs (see Sec. 1.2) via the tidal deformability Λ and thus
the inspiral can provide significant information about the underlying EoS [23,24].

In the post-merger phase, if the total binary mass (Mtot) is lower than a
threshold mass (Mthres) for prompt collapse [5, 25, 26], the remnant is a meta-
stable rapidly differentially rotating NS. Even if its mass exceeds the maximum
mass of a non-rotating NS, it is supported against gravitational collapse due to
rapid differential rotation and thermal pressure. The remnant is hot and highly
deformed, non-axisymmetric, and oscillates in different fluid (quasi) oscillation
modes which emit GWs in frequencies (around 2-4 kHz) that correlate with the
EoS (see [27–31]). The post-merger phase provides many channels for gaining
information about the NS EoS.

The dominant frequency component in the post-merger GW spectrum is as-
sociated to the quadrupolar oscillation mode (fpeak) [27, 31–47]. Generally, fpeak
reaches high values for soft EoSs and low values for stiff EoSs. For varying EoSs,
the frequency fpeak correlates with the radii of non-rotating NSs. The authors
in [48] performed a large number of binary simulations with fixed Mtot and found
tight correlations between fpeak and the radius R1.6 of a non-rotating NS with grav-
itational mass of 1.6M⊙. These relations were further explored for a slightly wider
mass range in [38,39] (and not a fixedMtot), with also slightly larger average scat-
ter between the data and the fits. More recently, [49] introduced two-parametric
empirical relations connecting chirp mass (Mchirp), fpeak, and different NS radii,
for a wide range of total binary masses. Such relations are important because with
those, a measurement of fpeak can be converted to a measurement of the NS radius.
The radius is uniquely linked to the EoS through the stellar structure equations
and does thus provide valuable information about the properties of high-density
matter.

Further information on the incompletely known EoS is encoded in the threshold
mass Mthres for black-hole (BH) formation. Generally, if Mtot ≥Mthres then a BH
is formed, while if Mtot < Mthres a meta-stable remnant is formed. The threshold
mass Mthres and its dependence on the EoS was first investigated in [25, 26] and
later in [50]. In these works, the authors explored correlations between Mthres,
different NS radii, and the maximum mass Mmax of a non-rotating NS. Following
the detection of GW170817, the authors in [51] (and later [50]) used an empirical
relation forMthres,Mthres(Mmax, R1.6) [26], to impose lower limit constraints on the
NS radius using the fact that the remnant of GW170817 most likely did not result
in a prompt collapse, as suggested by the properties of the EM emission [10, 22].
Additional studies on Mthres have been carried out recently e.g. [5,52–54]. Finally,
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Figure 1.1: Noise spectral densities for different detectors and GW spectra from
numerical relativity simulations for the analysis of GW170817 carried out in [1].
Figure adapted from [1]. Title: Properties of the Binary Neutron Star Merger
GW170817 .

we note that the post-merger GW emission can be employed to determine the end
product of a NS merger event.

As is apparent, the detection of GWs from the post-merger phase would pro-
vide plenty of new research opportunities and physics to explore. Unfortunately,
the early versions of the second-generation detectors, aLIGO and aVirgo, were
unable to detect the post-merger phase of GW170817 (see Fig. 1.1). Since then,
different upgrades to these detectors have been introduced and their sensitivity is
significantly improved (see [55]). We note that their target sensitivity is not yet
reached, and so, more improvements will follow in the future. An additional detec-
tor, KAGRA, started operating in 2020 (see [55]). Furthermore, plans for third-
generation detectors, such as Einstein Telescope [56] and Cosmic Explorer [57],
or dedicated high-frequency detectors [58–62] are currently being developed. Un-
der these circumstances, for a source with properties similar to GW170817 and
comparable luminosity distance, a measurement of the post-merger phase will be
feasible in the near future. This highlights the necessity to better understand the
post-merger GW emission and develop strategies for their detection.

In addition to detectors with sufficient sensitivity, GW detections also rely on
robust and efficient data analysis techniques for the identification of a source and
the parameter estimation for its properties. One approach is to employ matched-
filtering methods which require post-merger GW template banks. In those meth-
ods, a model describing the GW emission, namely a GW template, is correlated
with the unknown signal obtained from the detector in order identify the presence
of the model in the unknown signal. This process is computationally expensive and
requires fast and accurate waveform models for the GW emission in NS mergers
that cover a wide range of the parameter space.
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In this thesis we model NS mergers, and extract the emitted GWs, using 3-
dimensional simulations in numerical relativity. In those, Einstein’s equations
are solved numerically using complex parallelized codes that require substantial
computational resources. Although numerical simulations of binary NS mergers
provide a tool for studying the GWs in the post-merger phase, the total time
required for a simulation along with the large computational cost, renders these
simulations inapplicable for matched-filtering searches. Nevertheless, GWs from
the post-merger phase computed within numerical relativity aid the development
of GW templates. In recent years, several GW template time-domain or frequency-
domain models have been introduced e.g. [38,41,42,63–72] (see also Sec. 1.4).

To construct faithful GW template models for the description of the post-
merger emission an in-depth understanding of the spectral features of the GW
spectrum is essential. The dependencies of the various frequency components in
the GW signal on the characteristic properties of the system, such as the total
binary mass and the mass ratio, have to be explored. In addition, the impact of
the EoS on the GW spectrum has to also be assessed. To this end, it is imper-
ative to understand the physical mechanisms, couplings and combination tones
between frequency components, that generate those spectral features. To develop
general purpose GW templates for a large parameter space of total mass, mass
ratio, and EoS models, empirical relations for the properties of the GW spectrum,
such as the frequencies of the different components, are required. For this reason,
a precise explanation for the origin of the various spectral features is necessary for
the development of physically inspired and accurate correlations between specific
quantities, and combinations of those, associated to NSs with reduced scatter-
ing errors. Finally, we note that the inferred quantities and therefore the EoS
constraints, from the GW detection using such templates also rely on empirical
relations (as also described before). For these reasons, a study like the one car-
ried out in this thesis, where the spectral properties of the GW emission in the
post-merger phase for a large set of varying EoS, masses, and ratios, and also
simulation tools is important.

1.2. Neutron stars

Before we describe a detailed background for the different projects and goals of
this thesis, we give a brief overview about NSs. We discuss their formation, typical
values for mass, radius, central density, and their internal structure described by
the EoS.

Formation process

A NS is formed when the core of a massive star with an initial mass roughly larger
than 8 M⊙ undergoes gravitational collapse and supernova explosion ( [73–75] for
more details). If the initial mass is smaller than a critical value, a hot proto-
neutron star (with a temperature of several 10 MeV) is formed following the
supernova explosion. The hot proto-neutron star cools down due to neutrino
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emission in ≈ 10 s resulting in a cold1 NS, which is supported against gravity by
the repulsive forces of nuclear matter.

Typical values

Neutron stars have gravitational masses ranging from roughly 1.1 M⊙ to 2.0 −
3.0 M⊙, while their radius is expected to be around 10− 14 km (see [23,74]). The
lower limit in the NS mass is imposed by the formation mechanism (see [76, 77]
and references therein), while the maximum mass has to be at least equal to the
largest observed pulsar mass [78]. An upper limit on the maximum mass can be
estimated based on causality, that is, the speed of sound cannot be larger than
the speed of light [79]. The maximum rest-mass density at the core of the NS is
believed to be roughly around ≈ 1.0-2.5 · 1015 g/cm3. We remark that the exact
values of the maximum mass, the radius, and the maximum rest-mass density
depend on the so far incompletely known equation of state (see below).

Internal structure

The internal structure of a NS consists of five regions, namely the inner core, the
outer core, the crust, the envelope and the atmosphere [74, 76]. The envelope
and the atmosphere carry only a negligible fraction of the total mass. The crust
consists of neutron-rich nuclei, and at densities larger than the neutron drip density
of 4 · 1011 g/cm3 neutrons become unbound from the nuclei (the neutron chemical
potential becomes zero). At even higher densities, roughly from a fourth (1/4) to
a half (1/2) of the nuclear saturation density ρs = 2.7 · 1014 · g/cm3 the strongly
deformed nuclei form the so-called nuclear pasta phase [80]. This phase ends at
approximately 1/2 ρs where a phase transition to homogeneous nuclear matter
occurs at the boundary to the outer core. It is yet unknown whether there is a
clear boundary between outer and inner core but various theoretical models have
been proposed for the description of the composition of the inner core. It may
be that homogeneous nuclear matter continues to the inner core, or that exotic
states like hyperons, condensed kaons, pions, or deconfined quark matter (pure or
mixed with hadrons) exist. Finally, we note that calculations within perturbative
quantum chromodynamics (pQCD) are accurate for densities around 40ρs [81,82],
however, this regime is significantly higher than what is expected to be at the
center of NSs (10 ρs).

Equation of state

The relation between pressure P , rest-mass density ρ, internal specific energy ϵ
(or temperature T equivalently), and electron fraction Ye (the ratio of the number
of protons or electrons to the total number of baryons), P = P (ρ, ϵ, Ye) defines
the so-called EoS of a NS. The properties of NSs such as the mass, the radius,
and its maximum mass depend on the underlying EoS. In cold NSs, the pressure
and the internal specific energy are only functions of the rest-mass density, while

1The term cold refers to the fact that the nucleon Fermi energy is significantly higher than
the nucleon thermal energy.
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the electron fraction Ye is determined by the beta-equilibrium condition. The NS
EoS is yet only incompletely known and a unique model for the inner core does
not exist (see [83,84] for a review on various EoS models and [74] for a discussion
on the different parametrizations of the EoS).

1.3. Post-merger GW spectrum

The GW signal in the post-merger phase consists of different frequency compo-
nents associated with various oscillation modes and quasilinear combination tones
excited during the merger. Figure 1.2 shows a typical GW spectrum of the post-
merger phase. The dominant feature is connected to the quadrupolar oscillation
mode fpeak (see [27,31–47]). The frequency fpeak depends on the EoS. In addition,
there are several secondary features in the post-merger GW signal. Two of those,
the frequencies f2−0 and f2+0, originate from a non-linear coupling between the
frequency fpeak and the quasi-radial oscillation mode f0 (see [27,42]). The frequen-
cies f2±0 are combination tones and are expected to produce frequency peaks at
approximately f2±0 ≈ fpeak ± f0. Another component, fspiral, is connected to the
orbital motion of the two antipodal tidal bulges formed during the merger phase
(see [28]). These bulges have a lower angular velocity than the inner remnant and
thus the frequency fspiral is typically lower than fpeak. This frequency component
is a dynamical feature and typically lasts only a few milliseconds. In this work,
we discover a new coupling mechanism between fspiral and the quasi-radial mode
f0 (see Sec. 4.1.3).

1.4. Post-merger GW templates

To detect the post-merger GW phase, robust and efficient data analysis tech-
niques are needed. Currently, there are two main approaches. In the first one,
morphology-independent methods are employed [85,86]. The second one is based
on matched-filtering techniques, which require accurate GW post-merger template
banks. In this work, we focus on the latter method.

The authors in [42] introduced a time-domain analytic model, which utilizes
a combination of three exponentially decaying sinusoids. The model incorporated
the dominant post-merger peak fpeak and the two most significant secondary fre-
quency components, fspiral and f2−0, that also correlate with the binary’s prop-
erties. Informed by numerical relativity simulations, the authors in [41, 63–65]
introduced frequency-domain models, and time-domain models were introduced
in [38, 66–70]. A frequency-domain model (which can be inverted to the time
domain) for the amplitude and phase of the spectra, using a principal compo-
nent analysis (PCA), was developed in [41]. A frequency domain hierarchical
model, which generates amplitude spectra, was introduced in [64]. The authors
in [65] introduced a frequency-domain amplitude model, which utilizes Lorentzian
functions, in combination with relations connecting binary properties to the post-
merger characteristic features. A time-domain analytical model based on the
morphology of the post-merger waveforms (using numerical relativity informed
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Figure 1.2: GW spectrum for the post-merger phase. Colored dashed vertical
lines indicate the frequency peaks fpeak, fspiral, f2−0, f2+0. The dash dotted curves
denote the design sensitivity Advanced LIGO [2] and of the Einstein Telescope [3],
respectively. Figure adapted from [4].

relations), which can be combined with an inspiral waveform, was constructed
in [70]. Lastly, [68] introduced a time-domain analytic model that uses exponen-
tially damped sinusoids (as in [42]) and includes three frequency components. For
all frequency components in the model, a constant linear frequency-drift term was
introduced.

To develop faithful post-merger GW templates, it is important to understand
the underlying physical mechanisms, which dictate the different features of the
GW spectrum. The GW spectrum is complex and although some of its properties
are well studied and understood others are not.

In this thesis, the spectral properties of the post-merger phase along a sequence
of equal-mass binary NS merger simulations with increasing total mass are com-
pared. We observe a smooth transition of spectral features along this sequence
as anticipated in [28]. We examine the time evolution of the dominant frequency
component fpeak in the GW spectra (see also [68]) and using spectrograms we pro-
pose a time-dependent 2-segment piecewise analytic function, which models such
a frequency drift.

Furthermore, we identify a new coupling mechanism between the tidal antipo-
dal bulges (fspiral, see [28]) and the quasi-radial mode (f0). This coupling leads
to two frequency peaks in the GW spectra of high-mass models. We find that
this new feature is important for the construction of accurate GW templates for
systems with binary masses near the threshold mass to prompt collapse.

We construct a time-domain analytic model (based on [42]) for the post-merger
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GW emission, which incorporates the four frequency components (fpeak, fspiral,
f2±0) and allows a time-dependent description of the fpeak component. We de-
velop a hierarchical procedure to determine the analytic model’s parameters. The
performance of our analytic model is evaluated using the noise-weighted fitting fac-
tor (FF) which is a measure that quantifies the match between the model and the
waveform (see Eq. (5.6), (5.7) for the definition). The latter remains higher than
∼ 0.96 along the entire sequence of binary models considered. These high FFs are
comparable to, and in some cases even higher than, those of the best-performing
fits presented in [64,65,68,70].

Our new analytic model consists of physical parameters only, which is why
the model is also helpful to understand the general dynamics and dependencies
of the merger and its GW signal. We find that all the parameters correlate with
the total binary mass of the system. The model can be used for the detection
and parameter estimation of the post-merger phase in upcoming searches with
upgraded second-generation detectors, such as aLIGO+ and aVirgo+ (see [55]),
with future, third-generation (Einstein Telescope [56] and Cosmic Explorer [57])
or with dedicated high-frequency detectors [58–62]. Since the model is based on
physical parameters, it elucidates the mechanisms shaping the spectra and how
those depend on the binary mass.

1.5. Quasi-radial oscillation modes

Accurate post-merger GW templates are necessary for the successful detection
of GWs from the post-merger phase and a precise measurement of fpeak would
already put constraints on the EoS. In this work, we also address the question of
whether secondary frequency components in the GW spectrum contain additional
information about the EoS. To this end, we investigate the properties of the quasi-
radial oscillation modes in NS merger remnants. These couple to the fpeak mode
and are responsible for several secondary frequency components in the GW post-
merger spectrum.

Radial modes in non-rotating stars are the simplest modes (see [87]). They
provide information about the stability of the configuration in study and are typi-
cally used in validation tests in general relativistic numerical simulations. In those,
the frequency of the radial oscillation mode extracted from the simulation is com-
pared to the corresponding frequency computed from perturbation theory. Since
the radial modes are spherical, they do not emit GWs, however, the situation is
different for NS merger remnants (see [27,28]). In remnants, the quasi-radial oscil-
lation mode f0 can couple to the quadrupolar frequency fpeak (see [27], Chapter 4)
or to the fspiral frequency (see Chapter 4) and thus produce secondary frequency
components in the GW spectrum, f2±0 and fspiral±0, respectively. As the total
binary mass increases the NSs become more compact, the impact velocities are
larger, and thus the quasi-radial oscillation mode is strongly excited. The latter is
investigated in Chapter 4 (and also in [27,28]), where we show that, for a specific
EoS, the amplitude of the f0 oscillation is an increasing function of Mtot.

As previously mentioned and also discussed in Chapter 5, secondary compo-
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nents in the post-merger GW spectrum are crucial for the construction of accurate
post-merger GW templates. In this work, we show that additional information
about the EoS can be extracted from the secondary components connected to the
quasi-radial oscillation mode f0. We consider a scenario of an accurate measure-
ment of the total mass Mtot, the dominant frequency component fpeak, and the
quasi-radial frequency f0. The frequency f0 can be derived from f2−0 or f2+0 in
combination with fpeak or by measuring fspiral and fspiral−0 or fspiral+0. We propose
a method for determining the threshold mass Mthres for prompt BH formation,
with an average error of 0.040 M⊙, using the knowledge of Mtot, fpeak, f0. Then,
we employ empirical relations such as those introduced in [5], which connectMthres,
Mmax, and R1.6, to predict the maximum mass Mmax of a non-rotating NS. This
method exhibits an average error of 0.068 M⊙.

1.6. Goals and outline

In this section we summarize the goals of this work and provide an outline of
this thesis. This work addresses several questions, the first one being whether the
spectral features in the GW emission from NS merger remnants systematically
depend on the bulk properties of the system such as the total binary mass. Another
question is whether the GW post-merger emission can be described with relatively
simple analytic models, and if the parameters involved depend on the properties
of the system. To this end, we simulate a sequence of NS mergers with increasing
mass using the fully general relativistic Einstein Toolkit code. Furthermore, we
address the question of whether secondary components in the GW spectrum can
be used in order to obtain information about the so far incompletely known EoS.
For this, we construct one of the largest library of NS merger simulations created
so far, with varying total binary mass, mass ratio, and EoS model using the
SPH code. With this library, we study the quasi-radial oscillation modes in NS
merger remnants which are responsible for coupling mechanisms which produce
secondary features in the GW spectrum. More specifically, the following questions
are addressed throughout this work:

• Do the GW spectral properties of NS merger remnants systematically depend
on the total binary mass ?

• Does the quadrupolar mode fpeak exhibit a time-dependent frequency evo-
lution and how can it be described?

• Which of the secondary frequency components of the GW post-merger spec-
trum are most pronounced at different binary mass regimes?

• Do configurations with a total binary mass close to the threshold mass for
prompt collapse exhibit additional frequency components in their GW spec-
trum?

• Is it possible to describe the GW post-merger emission with an analytic
model which consists of exponentially decaying sinusoids and how well would
it perform for a wide range of total binary masses?
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• What is the appropriate complexity level of the analytic model (defined by
the number of components) in order to obtain sufficiently high fitting factors?

• Are the parameters of the analytic model smooth functions of some char-
acteristic property of the system, and if so, can a purely analytic model be
constructed?

• Can we use the secondary frequency components in the GW post-merger
spectrum to further constrain the EoS ?

The thesis is structured as follows: In Chapter 2 we present the different for-
mulations for constructing initial data, and performing 3-dimensional simulations
of NS mergers in numerical relativity. We also describe the additional implemen-
tations introduced to the codes throughout this work. In Chapter 3 we describe
the data sets of binary NS merger simulations that were constructed and used
throughout this work. In Chapter 4 we discuss the spectral properties of the GW
post-merger signal for a sequence of binaries of increasing total binary mass in
general relativity. In Chapter 5 we present a new analytic model for the grav-
itational wave emission in the post-merger phase in NS merger remnants. We
evaluate its performance and construct analytic relations for the model’s param-
eters. In Chapter 6 we discuss specific configurations with total mass close to
the threshold for prompt collapse and introduce two modifications to the analytic
model. In Chapter 7 we discuss the quasi-radial oscillation modes in NS merger
remnants and using those, we introduce a scheme for the prediction of threshold
mass for prompt collapse and maximum mass of a NS. In Chapter 8 we sum-
marize the findings of this thesis, discuss the conclusions and ideas about future
work directions. In Appendix A we assess the impact of residual eccentricity in
the initial data, the resolution, and the assumption of pi-symmetry on our results.
In Appendix B we include more detailed information on the results discussed in
Chapter 4 and Chapter 5. In Appendix C we present empirical relations for the
frequencies fspiral, fspiral−0, f0 using the symmetric binary data set described in
Chapter 3.

1.7. Conventions

Unless otherwise noted, we employ a dimensionless system of units for which
c = G = M⊙ = 1. Throughout this work, the Latin indices range from 1 to
3, while the Greek indices range from 0 to 3. As in Einstein’s summation rule,
repeated indices correspond to summation. The symbol ∆ represents the Laplace
operator defined in the flat spatial metric. The flat space metric signature is
(−,+,+,+). The binray mass ratio is defined as q = m1/m2, where m1,m2 are
the masses of the companion stars with m1 > m2. For the analysis of the GW
spectra, the effective GW spectrum defined as heff,+(f) = f · h̃+(f), where h̃+(f)
is the Fourier transform of the strain h+(t), is used.
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2. Numerical methods

In this chapter, we describe the theory regarding the simulation tools used
in this work. First, we briefly introduce the basic theory of numerical relativity,
that is the Arnowitt–Deser–Misner (ADM) spacetime decomposition. We discuss
the construction of initial conditions for binary NS merger simulations in general
relativity using the LORENE code [88, 89]. We describe the two (numerical rela-
tivity) simulation tools employed in this work: a) the Einstein Toolkit [90] which
is a fully general relativistic grid-based code b) a smooth particle hydrodynamics
(SPH) code [91,92] where gravity is solved under the conformal flatness condition
(CFC) [93, 94]. Finally, we discuss two additional implementations we incorpo-
rated, namely the inclusion of tracer particles in general relativity and a scheme
for the reduction of residual eccentricities in the initial conditions of binary NS
mergers.

2.1. The ADM formalism

The spacetime is described by the ADM formalism [95]. The spacetime is foliated
in spacelike, non intersecting, hypersurfaces Σt which are parametrized with re-
spect to a global time function t. Under these considerations, a general spacetime
metric gµν can be expressed in the form

gµν = γµν − nµnν , (2.1)

where γµν is the so-called induced spatial metric on each hypersurface Σt, and
nµ is a unit timelike vector normal to the hypersurface Σt. γ

ν
µ is used to project

spacetime vectors and tensors to the spatial hypersurface Σt. The general line
element is given by

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj. (2.2)

where the metric potentials α and βi are the lapse function and shift vector,
respectively.

2.2. Initial data: Lorene

We construct initial data (ID) of circular quasiequilibrium solutions using the
LORENE library [88,89]. These are used for all the simulations, in this work, carried
out with the Einstein Toolkit (see Sec. 2.3). LORENE incorporates a spectral solver
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2 Numerical methods

which provides an accurate mapping of the ID to the computational grid of the
evolution code.

For the construction of quasiequilibrium states the following assumptions are
made: a) The spacetime is solved under the CFC approximation [93,94] and thus
the gravitational radiation is neglected, b) The individual stars’ velocity profiles
are either irrotational or rigid, c) the system is in equilibrium in the co-rotating
frame. These assumptions imply the existence of a helical Killing vector (see [89])
that in the ADM formalism reads

ξµ = (∂t)
µ + Ω (∂ϕ)

µ, (2.3)

where Ω is a constant referring to the orbital angular velocity of the binary, t and
ϕ are the coordinate time and azimuthal coordinate, respectively.

The spacetime is obtained by solving the five elliptic differential equations
derived from Einstein’s equations under the CFC approximation, and the maximal
slicing condition (see [89] for more details, and Sec. 2.6).

2.3. The Einstein Toolkit

The Einstein Toolkit is an open-source code [90] for 3-dimensional hydrodynamical
simulations in general relativity. The evolution of hydrodynamics is carried out in
a grid-based approach employing the Valencia formulation [96,97]. In the Einstein
Toolkit, this formulation is implemented in the GRHydro module [98, 99]. The
spacetime is evolved in a fully general relativistic manner using either the BSSN
[100–102] or the Z4c [103, 104] formulation. These evolution schemes have been
used extensively in the literature (see [105] and references therein). In Sec. 2.3.2
we further discuss these formulations. The Z4c formulation is implemented in
the CTGamma [106, 107] module, which is not part of the Einstein Toolkit code.
Nevertheless, due to the modular nature of the code we imported it to our version
of the code.

2.3.1. The Valencia formalism

We present the formulation for relativistic hydrodynamics typically employed by
grid-based codes such as the Einstein Toolkit. The evolution of hydrodynamics
is carried out according to the Valencia formulation [96, 97]. Because we do not
include magnetic fields in our simulations, we only discuss the original Valencia
formulation (see [96, 97]).

The fluid is described by the energy-momentum tensor of a perfect fluid which
is defined as

T µν = ρhuµuν + Pgµν , (2.4)

where ρ is the rest-mass density, P is the pressure, h is the relativistic enthalpy
defined as h = 1 + P/ρ + ϵ, ϵ is the specific internal energy and uµ is the four-
velocity of the fluid. The pressure is a function of ρ and ϵ, that is, P = P (ρ, ϵ),
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2.3 The Einstein Toolkit

however it can also depend on the electron fraction Ye (see Sec. 1.2). To evolve
the hydrodynamics we utilize the following local conservation laws

∇µj
µ = 0, (2.5)

∇µT
µν = 0, (2.6)

where ∇µ corresponds to the covariant derivative with respect to the spacetime
metric gµν . The first equation, Eq. (2.5) is a continuity equation and refers to
the conservation of the current of rest-mass defined as jµ = ρ uµ. The second
equation, Eq. (2.6), denotes the conservation of the energy-momentum tensor
T µν . Eq. (2.5)-(2.6) form a set of five equations which are used to determine the
evolution of hydrodynamical variables (ρ, ui, ϵ) or variations of those.

In this framework, the Eulerian observers whose four-velocity is equal to nµ,
measure the fluid velocity as

υi =
1

α

(
ui

u0
+ βi

)
=

ui

W
+
βi

α
, (2.7)

whereW is the Lorentz factor between the Eulerian observer and the fluid velocity
uµ with W ≡ −nαu

α = α u0. Subsequently, we define a new set of variables, the
conserved variables : the conserved density D, the conserved momentum Sj, and
the conserved energy density τ

D =
√
γρW, (2.8)

Sj =
√
γρhW 2υj, (2.9)

τ =
√
γ(ρhW 2 − p)−D. (2.10)

These are functions of ρ, υi, ϵ which are typically called primitive variables. With
the conservative variables, the system Eq. (2.5),(2.6) can be expressed in a hyper-
bolic flux-conservative form:

∂U

∂t
+
∂Fi

∂xi
= S, (2.11)

where the vectors U, Fi, and S are defined as

U =

DSj

τ

 , (2.12)

Fi = α ·


D

(
υi − βi

α

)
Sj

(
υi − βi

α

)
+
√
γPδij

τ
(
υi − βi

α

)
+
√
γPυi

 , (2.13)
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S = α
√
γ ·


0

T µν
(

∂gνj
∂xµ − Γλ

µνgλj

)
α
(
T µ0 ∂ lnα

∂xµ − T µνΓ0
µν

)
 . (2.14)

In this form, Eq. (2.11) can be solved using finite-volume techniques, which
perform well in the presence of discontinuities and shocks. As such, to evolve the
conservative variables, the fluxes Fi at the cell faces have to be determined. This is
achieved by solving the local Riemann problem at the cell interfaces. For this, the
values of the fluid states (conservative variables) have to be computed on the left-
hand side and right-hand side of the cell interface. This step is called reconstruction
and is achieved by interpolation using knowledge of the fluid variables at the cell
centers. In this work, we employ a weighted essentially non-oscillatory (WENO)
[108,109] reconstruction scheme which can reach up to fifth order accuracy under a
smooth flow of the fluid (see [99]). For the solution of the local Riemann problem,
we use the HLLE Riemann solver [110]. Finally, from the updated conservative
variables the primitive variables have to be recovered. The system of equations
Eq. (2.8)-(2.10) is numerically solved for ρ, υi, ϵ using the schemes introduced
in [111].

2.3.2. Metric solvers

We discuss the two general relativistic formulations for the evolution of spacetime
which are employed in this work, BSSN [100–102] and Z4c [103,104]. Both formu-
lations employ conformal transformations where the spatial metric γij is expressed
as a product of a positive scaling factor (such as e4ϕ) and a background metric
γ̃ij. This concept is expanded to other objects (tensors) in order to express the
Einstein’s equations into a numerically stable hyperbolic form. In this work, we
mainly employ the Z4c formulation.

BSSN

We present the evolution equations of the spacetime according to the BSSN for-
mulation. We note that since we use the McLachlan implementation [112, 113],
the equations presented below are the same as in the works of [114,115] but with
some modifications to the notation. By introducing appropriate conformal trans-
formations, the evolved variables of the BSSN scheme read

ϕ ≡ log

[
1

12
det γij

]
, (2.15)

γ̃ij ≡ e−4ϕ γij, (2.16)

K ≡ γijKij (2.17)

Ãij ≡ e−4ϕ

[
Kij −

1

3
γijK

]
, (2.18)

Γ̃i ≡ γ̃jkΓ̃i
jk, (2.19)
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2.3 The Einstein Toolkit

where e−4ϕ is the conformal factor and there γ̃ij refers to the background metric,
Kij is the extrinsic curvature which is provided by the ID, K is its trace (and
thus Ãij refers to the conformal traceless extrinsic curvature), and Γ̃i

jk refers to
the Christoffel symbols for the metric γ̃ij. The total number of these variables is
17 (1+6+1+6+3). The corresponding evolution equations read

∂0K = −e−4ϕ
[
D̃iD̃iα + 2∂iϕ · D̃iα

]
+ α

(
ÃijÃij +

1

3
K2

)
−αS, (2.20)

∂0ϕ = −α
6
K +

1

6
∂kβ

k, (2.21)

∂0γ̃ij = −2αÃij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k, (2.22)

∂0Ãij = e−4ϕ
[
αR̃ij + αRϕ

ij − D̃iD̃jα + 4∂(iϕ · D̃j)α
]TF

+ αKÃij − 2αÃikÃ
k
j + 2Ãk(i∂j)β

k − 2

3
Ãij∂kβ

k

−αe−4ϕŜij, (2.23)

∂0Γ̃
i = γ̃kl∂k∂lβ

i +
1

3
γ̃ij∂j∂kβ

k + ∂kγ̃
kj · ∂jβi − 2

3
∂kγ̃

ki · ∂jβj

− 2Ãij∂jα + 2α
[
(m− 1)∂kÃ

ki − 2m

3
D̃iK

+m(Γ̃i
klÃ

kl + 6Ãij∂jϕ)
]
− Si, (2.24)

where ∂0 ≡ ∂t−βj∂j, m = 1, the quantities with the ˜ symbol are connected to the
background metric γ̃ij, D̃i corresponds to the covariant derivative with respect to
γ̃ij, the operator [..]

TF refers to the traceless part of the expression in brackets, the

quantities R̃ij and Rϕ
ij are related to the Ricci tensor (see Eq. (17) and Eq. (18)

of [114]), and the source terms S, Si, Ŝij depend on the energy-momentum tensor
(and the Ricci tensor) and are defined in Eq. (16)-(18) of [115].

In addition, the system is supplemented by the evolution equations of the
metric potentials, the lapse function α and the shift vector βi. These, in their
most general form, read

∂0α = −α2f(α, ϕ, xµ)(K −K0(x
µ)), (2.25)

∂0β
i = α2G(α, ϕ, xµ)Bi, (2.26)

∂0B
i = e−4ϕH(α, ϕ, xµ)∂0Γ̃

i − ηi(Bi, α, xµ), (2.27)

where Bi is related to the time derivative of the shift vector βi, and f,G,H, η
are arbitrary functions. For the evolution of the lapse function we use the 1+log
slicing where:

f(α, ϕ, xµ) ≡ 2/α, (2.28)

K0(x
µ) ≡ 0. (2.29)
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2 Numerical methods

The evolution of the shift vector is carried out under the Γ-driver method where:

G(α, ϕ, xµ) ≡ (3/4)α−2, (2.30)

H(α, ϕ, xµ) ≡ e4ϕ, (2.31)

η(Bi, α, xµ) ≡ (1/2)Biq(r), (2.32)

with q(r) = 1 for a radial coordinate distance r ≤ R and q(r) = R/r for r > R
with R being a large value of the order of 370 km. Thus seven (1+3+3) additional
variables are evolved.

Furthermore, as shown in [75, 116], specific identities, commonly called con-
straints, must be satisfied in this system. They read

H ≡ R− ÃijÃij +
2

3
K2 − 16πρADM = 0, (2.33)

M i ≡ D̃jÃ
ij − 2

3
D̃iK + 6ÃijD̃jϕ = 0, (2.34)

where R is the Ricci scalar, ρADM = nαnβT
αβ. Eq. (2.33) is referred as the

Hamiltonian constraint, and the Eq. (2.34) is the Momentum constraint 1. These
equations are satisfied with good precision during the construction of the ID (since
these are the equations which are solved). However, in a numerical simulation, the
constraint equations are only monitored and so, are used to estimate the errors
in the simulation. The major difference between the BSSN and Z4c formulations
is the treatment of the violation of the constraints, since the latter scheme incor-
porates a method to damp this violation. Finally, we note that depending on the
exact evolution formulation (BSSN or Z4c), additional constraints for auxiliary
quantities may exist. These are also monitored during the evolution, however, we
do not present them in this work.

Z4c

We present the evolution equations for the spacetime according to the Z4c for-
mulation, where we follow the implementation described in [103, 104]. The Z4c
scheme originates from the more general Z4 formulation, which ensures that the
violation of the constraint equations is damped. In this framework, Einstein’s
equations are replaced by

Rαβ +∇αZβ +∇βZα = 8π(Tαβ −
1

2
gαβT )

+κ1[tαZβ + tβZα − (1 + κ2)gαβtγZ
γ], (2.35)

where Zα is the four vector of the constraints H and M i, tα is a time-like vector
field, and κ1, κ2 are constraint damping coefficients. When the constraints Zα van-
ish, Eq. (2.35) reduce to Einstein’s equations, and thus the solutions of Eq. (2.35)
are also valid solutions of Einstein’s equations. The Z4c scheme is derived from
the Z4 formulation by neglecting specific terms of the Z4 evolution equations and

1The momentum constraint is expressed in terms of the conformal traceless extrinsic curva-
ture, but generally is a function of the extrinsic curvature Kij .
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2.3 The Einstein Toolkit

introducing appropriate conformal transformations which lead to a system that
shares many similarities with the BSSN equations. The evolved variables read

χ ≡ γ−
1
3 , (2.36)

γ̃ij ≡ χ γij, (2.37)

K̂ ≡ K − 2Θ, (2.38)

Ãij ≡ χ (Kij −
1

3
γijK), (2.39)

Γ̃i ≡ 2γ̃ijZj + γ̃ij γ̃klγ̃jk,l, (2.40)

Θ = −nαZ
α, (2.41)

where K = γijKij is the trace of Kij, and Zj is the spatial projection of Zα.
The total number of these evolved variables is eighteen (1+6+1+6+3+1). The
corresponding evolution equations read

∂tχ =
2

3
χ
[
α(K̂ + 2Θ)−Diβ

i
]
, (2.42)

∂tγ̃ij = −2αÃij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k + βk∂kγ̃ij, (2.43)

∂tK̂ = −DiD
iα + α[ÃijÃ

ij +
1

3
(K̂ + 2Θ)2

+κ1(1− κ2)Θ] + 4πα[S + ρADM] + βi∂iK̂, (2.44)

∂tÃij = χ
[
−DiDjα + αR̃ij + αRχ

ij − 8παSij

]tf
+ α

[
(K̂ + 2Θ)Ãij

−2ÃikÃ
k
j

]
+ 2Ãk(i∂j)β

k − 2

3
Ãij∂kβ

k + βk∂kÃij, (2.45)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k − 2Ãij∂jα

+2α
[
Γ̃i

jkÃ
jk − 3

2
Ãij∂j lnχ− 1

3
γ̃ij∂j(2K̂ +Θ)

−κ1(Γ̃i − Γ̃d
i)− 8πγ̃ijSj

]
+

2

3
Γ̃d

i∂jβ
j − Γ̃d

j∂jβ
i

+βj∂jΓ̃
i, (2.46)

∂tΘ =
1

2
α
[
R− ÃijÃ

ij +
2

3
(K̂ + 2Θ)2 − 16πρADM

−2κ1(2 + κ2)Θ
]
+ βi∂iΘ, (2.47)

where ρADM = nαnβT
αβ, Si = −γiαnβT

αβ, Sij = γiαγjβT
αβ, and Γ̃d

i = γ̃jkΓ̃i
jk. As

before, the quantities with the ˜ symbol are connected to the background metric
γ̃ij, the operator [..]

TF refers to the traceless part of the expression in the brackets,
R̃ij and Rχ

ij are connected to the Ricci tensor and are defined in Eq. (20)-(21)
of [103]). Evidently, this system of equations shares some similarities with the
BSSN system Eq.(2.20)-Eq.(2.24) with one additional evolution equation for Θ.

As before, for the evolution of the lapse function α we employ the 1+log slicing
where we replace K and K0 with K̂ and K̂0 in (2.25), respectively. The evolution
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of the shift vector is carried out using the Γ-driver (see Eq. (2.26)-(2.27)). Finally,
the Hamiltonian and Momentum constraints in Z4c formulation are given by

H = R− ÃijÃij +
2

3
(K̂ + 2Θ)2 − 16πρADM, (2.48)

M i = ∂jÃ
ij + Γ̃i

jkÃ
jk − 2

3
γ̃ij∂j(K̂ + 2Θ)

−3

2
Ãij∂j(logχ). (2.49)

(2.50)

Numerical implementations

The implementation of the BSSN formulation is the McLachlan code [112, 113],
which is included in the Einstein Toolkit code, and is the default evolution formu-
lation. For the Z4c formulation, we couple the CTGamma module to the Einstein
Toolkit. The module is based on the same code infrastructure, namely the Cactus
code and thus, the coupling to the Einstein Toolkit is relatively straightforward.
The time integration of the equations of the BSSN and Z4c formulations is ac-
complished with the method of lines scheme [117]. In this, the spatial partial
derivatives are approximated with finite differences, while the time derivatives ∂t
are kept intact. In this form, the system becomes a system of ordinary differential
equations. We evolve it in time using a fourth order Runge-Kutta (RK4) time
integration. The spatial partial derivatives are approximated using fourth order
finite differences.

2.4. Implementation of tracers

In this section we describe our implementation of tracer particles (also called
tracers) in the Einstein Toolkit code. Tracers are particles which simply follow
the flow, that is the (coordinate) velocity field, of the fluid. They do not interact
with matter and do not influence the dynamics of the system. By interpolating,
one can obtain the value of any scalar or vector field at the position of the tracers.

For a tracer particle a with coordinates xi, we use interpolation to determine
its coordinate velocity at time t. Then the coordinate velocity can be used as an
equation of motion of the tracer particle a by integrating

dxi

dt
= ῡi, (2.51)

where ῡi is the coordinate velocity at the position xi. The coordinate velocity ῡi

is connected to the four velocity ui of the fluid as

ῡi =
dxi

dt
=
dxi

dτ

dτ

dt
=
ui

u0
for i=1,2,3. (2.52)

Because the Einstein Toolkit employs the Valencia formulation (see Sec. 2.3.1),
the fluid velocity field measured by the Eulerian observer, denoted by υiET in this
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2.5 Reduction of eccentricity

section for simplicity, is given by

υiET =
1

α

(
ui

u0
+ βi

)
. (2.53)

By inserting (2.52) into (2.53) we derive the expression for the coordinate velocity
ῡi as a function of υiET, the lapse function α, and shift vector βi:

ῡi = α υiET − βi. (2.54)

Thus the coordinate velocity ῡi at any position in space is calculated by interpo-
lating the quantities υiET, α, β

i which are stored during the simulation. We numer-
ically integrate Eq. (2.51) in time t for every tracer particle using a Runge-Kutta
of second order (RK2) and finally update their respective coordinate xi.

2.5. Reduction of eccentricity

In this section we discuss a scheme to reduce the residual eccentricity in the ID.
More specifically, we implement a modified version of the prescription introduced
in [118], and adapt it to the equations used in the LORENE code. This implementa-
tion improves the quality of our simulations since it leads to more realistic ID. This
is because gravitational radiation is expected to circularize the orbits in the final
stages of the inspiral [119]. Although the implementation itself is not lengthy,
a good understanding of the code and the formulation employed by LORENE is
necessary.

To reduce the residual eccentricity in the ID, the velocity field of the quasi-
equilibrium solution is changed by imposing an additional appropriate approaching
velocity component. As previously mentioned, for the quasi-circular (QC) solu-
tions we assume the existence of a helical symmetry Killing vector (see Eq. (2.3)).
For the correction we introduce the conformal Killing vector

ξµ = (∂t)µ + Ω (∂ϕ)µ − υ±(∂x)
µ, (2.55)

where we assume that the stars are on the x coordinate axis, the quantities υ+
and υ− apply to the stars for x > 0 and x < 0, respectively, and υ+ − υ− = 2υ
with υ being a constant.

As explained in [118] the spacetime field equations are unaffected by the re-
placement of (2.3) with (2.55). However, since the approaching velocity is not
compatible with the spacetime symmetry (in the co-moving frame), the hydro-
static equilibrium cannot be obtained. To this end, we only modify the (con-
verged) quasi-circular solution with (2.55) using a relatively small υ. The change
in ξµ enters the hydrodynamics equations via the considered observer with four
velocity parallel to ξµ (for more information see Eq(21)-(26) of [118]).

We determine the appropriate approaching velocity correction υ with an itera-
tive procedure using several successive simulations. We note that we use a slightly
modified version of the scheme described in [118]. The first iteration corresponds
to the simulation using the quasi-circular ID, and therefore υ = 0 and Ω = ΩQC is
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the orbital frequency of the QC solution provided by LORENE. We model the time
evolution of the separation distance d(t) with the function

s(t) = A0 + A1 t+ A2 t
2 +B sin(ωt+ ϕ0). (2.56)

where A0, A1, A2, B, ω, ϕ0 are free parameters. The polynomial terms (A0+A1 t+
A2 t

2) mimic the shrinking of the orbit due to the GW radiation, whereas the
modulation term (B sin(ωt + ϕ0)) is connected to the residual eccentricity of
the system. For perfectly circular orbits the parameter B vanishes (B → 0).
To minimize the modulation term B sin(ωt + ϕ0) and circularize the orbits, the
appropriate corrections to the orbital angular velocity Ω (δΩ) and approaching
velocity υ have to be determined.

We calculate the time evolution of the separation distance d(t), assuming that
the latter is equal to the coordinate distance between the centers of the two stars.
We also assume that the centers of the stars coincide with the cells with the
maximum rest-mass density, respectively. We only use their coordinates in the
orbital plane (xi, yi) for i=1,2. With these considerations the separation distance
d(t) is given by

d(t) =
√

(x1 − x2)2 + (y1 − y2)2. (2.57)

We note that d(t) is slightly noisy most likely because of the assumption that the
positions of the centers of the stars coincide with the cells with the maximum
rest-mass density. As a result, these positions are discretized and, at close times,
create a noise around the actual center. For this reason, we perform an averaging
between every five data points in the time series. We also discard the first 1-
3 ms of d(t) because this part of the simulation is dominated by the relaxation
of the ID (computed under the CFC approximation) to the general relativistic
dynamical variables (see the discussion in [118]). Then we perform an analytic fit
on d(t) using the model function Eq. (2.56) and extract the quantities B,ω, ϕ0.
We present the expressions for the corrections in δΩ and υ as presented in [118]
but with respect to the variables B,ω, ϕ0 used in this work. They read

δΩ = +
ω2B

2Ωd
sin(ϕ0), (2.58)

υ = −Bω
2

cosϕ0, (2.59)

where d is the initial separation distance of the system and Ω is the orbital fre-
quency of the system. The eccentricity can be approximated from the relation
e ≈ B

dω
. This procedure is repeated (roughly three times) until the eccentricity e

decreases significantly and thus the orbit is circularized.
We performed this iterative procedure using both spacetime evolution schemes

(BSSN and Z4c). We find that generally the inspiral phase with the Z4c evolution
scheme exhibits systematically lower residual eccentricities compared to that of
BSSN. This trend is observed even in simulations of the QC ID (without applying
any reduction in e). The reduction of eccentricity also performs best with the
Z4c scheme leading to significantly lower values of e, when convergence is reached,
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compared to when the BSSN evolution scheme is employed. One reason for this
behavior may be the treatment of the violation of constraints. As the inspiral
evolves, the errors in the BSSN formulation are stationary, while in the Z4c for-
mulation they are propagated away (see [103]). Therefore in the former case, the
errors are accumulated in the area where the inspiral takes place, and this may
influence the orbit and lead to higher values of e.

2.6. The SPH code

In this section we describe the relativistic SPH code [91, 92]. As previously men-
tioned, the spacetime is described by the ADM spacetime decomposition where
the general metric takes the form of Eq. (2.2). The evolution of hydrodynam-
ics is carried out with the relativistic smooth particle hydrodynamics formalism
(see [91])2.

Spacetime

More specifically, the spacetime is evolved under the so-called CFC (conformal
flatness condition) approximation which assumes a spatial metric of the following
form

γij = ψ4 δij, (2.60)

where ψ is the conformal factor. We choose the maximal slicing condition which
states that the trace of the extrinsic curvature Kij and each partial time derivative
are zero, ∂tK = K = 0. Under these conditions, Einstein’s equations can be
converted into a set of five elliptic differential equations [94,120]:

∆ψ = −2πψ5E − 1

8
ψ5KijK

ij, (2.61)

∆(αψ) = 2παψ5(E + 2S) +
7

8
αψ5KijK

ij, (2.62)

∆βi +
1

3
∂i∂jβ

j = 16παρWûi + 2ψ10Kij∂j

(
α

ψ6

)
≡ Sβ, (2.63)

where the quantities E and S are the matter contributions and ρ, P,W, ûi are
defined below. In the CFC maximal slicing approximation the extrinsic curvature
Kij is given by

Kij =
ψ4

2α

(
δil∂jβ

l + δjl∂iβ
l − 2

3
δij∂kβ

k

)
. (2.64)

Furthermore, Eq. (2.63) can be transformed into a set of two Poisson-like
equations by introducing a new auxiliary vector field Bi of the form Bi = βi+ 1

4
∂iχ

2Although some of the variable symbols used in this section are also used in Sec. 2.3, we remark
that these variables are separate since the two codes are independent and the formulations are
different.
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[91]. By inserting βi(Bi, ∂iχ) to Eq. (2.63), the system reads

∆Bi = Sβ, (2.65)

∆χ = ∂iB
i. (2.66)

As a result, all the spacetime fields ψ, α, βi can be evolved by solving the afore-
mentioned set of Poisson-like differential equations Eq. (2.61),(2.62), (2.65),(2.66).
To solve these equations we use a multi-grid solver [121] on an overlaid (Carte-
sian) grid. Because ψ, α,Bi appear in the source terms, an iterative procedure is
employed until convergence is achieved, where we choose as an initial guess the
solution of the previous step. Since the hydrodynamics are described by the SPH
scheme (see below) we obtain the values of the hydrodynamical variables (which
also enter the source terms) at the grid positions using the typical SPH map-
ping, which is described below. The spacetime fields at the positions of the SPH
particles are computed using a third order interpolation. For the boundary condi-
tions for the fields in the source terms of Eq. (2.61),(2.62) we employ a multipole
expansion up to quadrupole order, while for the shift related quantities Bi, χ in
Eq (2.65),(2.66) we impose a fall-off law [92].

Finally, we remark that in the CFC condition the emission of GWs is neglected.
For this reason the GW radiation is externally computed using the slow-motion
quadrupole formalism, described in [91]. In addition, a back-reaction force pre-
scription is implemented in order to mimic the loss of energy and angular momen-
tum (see [91]).

Hydrodynamics

The matter fields are described by the energy-momentum tensor Tµν of a per-
fect fluid (see Eq. (2.4)). The quantities ρ, h, ϵ, P, uµ have the same meaning as
in Sec. 2.3.1. The matter fields enter the spacetime equations Eq. (2.61)-(2.66)
with the terms E = ρhW 2 − P and S = ρh(W 2 − 1) + 3P , where W = αu0 =√

1 + γijuiuj. As in the Valencia formulation (see Sec. 2.3.1) we define the con-
served variables: the conserved density ρ∗, conserved momentum û, and conserved
specific internal energy τ :

ρ∗ = ραu0ψ6, (2.67)

ûi = hui = h (ῡi + βi)ψ
4u0, (2.68)

τ = hW − P

ρW
−

√
1 +

ûiûjδij

ψ4
. (2.69)

These variables are derived from primitive variables ρ, ῡi, ϵ, where ῡi refers to the
coordinate velocity field. The latter is connected to the four velocity ui by the
relation ῡi = ui/u0. The relativistic SPH hydrodynamics follow a Lagrangian
approach, and so, the equations of hydrodynamics are solved on the co-moving

36



2.6 The SPH code

frame. The Lagrangian relativistic hydrodynamics equations read

d

dt
ρ∗ = −ρ∗∂iῡi, (2.70)

d

dt
ûi = − 1

ρ∗
αψ6∂iP − αû0∂iα + ûj∂iβ

j +
2ûkûk
ψ5û0

∂iψ, (2.71)

d

dt
τ = −ψ

6

ρ∗
(
ῡi + βi

)(
1− hW

ω

)
(∂iP )

− ψ6 P

ρ∗
∂i
(
ῡi + βi

)
− 6ψ5 P

ρ∗
(
ῡi + βi

)
(∂iψ)

− ûi
ψ4

(
1− hW

ω

)
(∂iα)

+
1

ψ4

(
1

hW
− 1

ω

)[
ûiûj∂jβ

i − 1

3
ûiûi∂jβ

j

]
, (2.72)

where d
dt

denotes the total derivative d
dt

= ∂t + ῡi∂i, and ω =
√

1 + ψ−4δijûiûj.
Finally, to close the system of equations an EoS is required. The EoS provides a
pressure relation of the form P = P (ρ, ϵ, Ye). Throughout the evolution, Ye is sim-
ply advected by solving the equation dYe

dt
= 0. We evolve these equations in time t

using a fourth order RK4 scheme within the SPH formulation (see below). From
the updated conserved (ρ∗, ûi, τ) variables we numerically recover the primitive
variables (ρ, ῡi, ϵ).

The discretization of the Eq. (2.70)-(2.72) is performed with the SPH formula-
tion (see [91,92]). The SPH particles are interpolation points which represent the
fluid. Each SPH particle has a sphere of influence, quantified by the smoothing
length h (see below). The value of a fluid field at a point in space is determined
by summing over all contributions of the neighbouring particles. We remark that
there is not a physical interpretation for the individual SPH particle, but they only
become meaningful as a collection of particles. Because the conserved density ρ∗

obeys the continuity equation Eq.(2.70), in the relativistic SPH framework, it is
also given by

ρ∗a =
∑
b

mbW (|r⃗a − r⃗b|, hb), (2.73)

where a denotes the particle a, mb is the rest-mass of the particle b, and W (|r⃗a −
r⃗b|, h) is the spherical kernel function W (r, h). The latter is an essential part of
the SPH formulation since it quantifies the influence of particle b to particle a and
vice versa. The quantity hb is the smoothing length and represents the effective
radius of influence of particle b. We also note that the (rest) mass of every SPH
particle is constant throughout the evolution.

As previously mentioned, the SPH particles are interpolation points that rep-
resent the fluid, and as such, the values of an arbitrary field A(r⃗), at position r⃗,
can be approximated by integrating the contributions of all SPH particles as

⟨A(r⃗)⟩ =

∫
A(r⃗′) W (|r⃗ − r⃗′|, h)dr⃗′. (2.74)
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In this example A is a scalar field but it can also be a vector field. Assuming a
collection of SPH particles, the above equation can be discretized as

⟨A(r⃗)⟩ ≈
∑
a

A(r⃗a)
ma

ρ∗a
W (|r⃗ − r⃗a|, ha), (2.75)

where A(r⃗a) is the value of the field at the position of the particle a, ha is the
smoothing length of particle a, and the ratio ma

ρ∗a
is the effective volume of the

particle a. Furthermore, the derivative of any field can be approximated in a
similar fashion using the derivative of the analytic kernel functions. For instance,
using Eq. (2.75), one can express the pressure gradient ∂iPa of a particle a, as

∂iPa = −ρ∗a
∑
b

mb

(
Pb

ρ∗b
2 +

Pa

ρ∗a
2

)
∂iW (|r⃗a − r⃗b|, hb). (2.76)

As becomes apparent, the kernel function has to be chosen carefully. In our
simulations, we use the Wendland kernel function (see [122, 123]). This kernel
function leads to less numerical damping in the GWs emitted in the post-merger
phase compared to other kernels used in earlier versions of the code (see [27, 28,
42, 124, 125]). This kernel also does not affect the corresponding frequencies in
the GW spectrum compared again to other kernels. This may be because the
Wendland kernel leads to SPH particle distributions which are more ordered and
less noisy compared to other Kernels (see [123]). The Wendland kernel in three
dimensions reads

W (q, h) =
1365

64πh3
max[(1− d), 0]8(32d3 + 25d2 + 8d+ 1), (2.77)

where d = |r⃗ − r⃗′|/h.
Furthermore, in the SPH framework shocks are treated with the inclusion of an

artificial viscosity scheme. In this work, we employ the scheme introduced in [126]
where every SPH particle is assigned to a time-dependent viscosity coefficient,
which becomes large in the presence of shocks (that is when the velocity divergence
becomes largely negative). Finally, the artificial viscous term is added to the
physical pressure term (see [91] for a detailed description).

Finally, we note that for the NS merger simulations carried out with the SPH
code, the ID are generated using the scheme described in [91, 92]. One difference
between this scheme and the one used in the LORENE code is the prescription
employed for determining the fluid velocity field. The two schemes are in good
agreement with deviations in angular momentum and orbital angular velocity of
the order of ≈ 1% (see [91]). We briefly summarize the method: starting from
an initial guess for the orbital angular velocity Ω of the system, the two stars
are relaxed towards a velocity distribution of a binary with the prescribed Ω. In
this phase, if the two stars begin to fall inwards then Ω is increased, and if their
separation tends to increase, Ω is decreased.
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3. Simulated models

In this chapter, we discuss the various simulations of binary NS mergers used
in this work. We describe the fully general relativistic simulations of a sequence
of models with increasing total binary mass Mtot using the Einstein Toolkit code.
Then we introduce two separate data sets of simulations using the SPH code: a)
we simulate mass sequences for several EoSs for symmetric binaries (q = 1); b)
we consider three EoS models, representative of soft, medium, and stiff EoSs, to
construct a grid of simulations for different mass ranges and binary mass ratios.

3.1. Sequence of binaries with the

Einstein Toolkit

We perform fully general relativistic simulations of NS mergers using the Einstein
Toolkit. We use the MPA1 [127] EoS model which is compatible with the current
constraints from GW170817 [128], and the mass measurement of 2.01±0.04M⊙ for
pulsar PSR J0348 0432 [78]. We consider a mass sequence of equal mass binaries
(with mass ratio q = 1) with increasing total binary massMtot. We simulate eight
models with Mtot = 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0 and 3.1 M⊙. We note that
none of the simulated binaries forms a BH during the simulation time of up to 25
ms of post-merger phase, while our most massive model has a total mass which is
close to the threshold mass Mthres for prompt BH formation [5].

We use the LORENE code [88, 89] to obtain circular quasi-equilibrium solutions
for the initial data for our simulations (see Sec. 2.2). We choose an initial sepa-
ration of 40 km between the centers of the NSs, which leads to a few revolutions
prior to the merger. As previously mentioned, the quasi-circular ID are subject
to residual eccentricity e (see Sec. 2.5), which we assess in Appendix A, and find
that the GW features are hardly affected by values of e < 0.01. We evolve the ID
using the Einstein Toolkit (see Sec. 2.3). As mentioned in Sec. 2.3, we employ the
GRHydro module [98, 99] for the evolution of hydrodynamics which adopts the
Valencia formulation [96,97]. The HLLE Riemann solver [110] is used along with
a weighted essentially non-oscillatory (WENO) reconstruction scheme [108, 109].
For the spacetime evolution we use the Z4c formulation described in Sec. 2.3.2
and the implementation of the CTGamma module [106,107].

The computational domain has seven refinement levels and the innermost one
corresponds to the finest resolution (dx = 277 m), while the grid spacing is doubled
at each external level. We choose a box size with xmax = 2126.276 km (and
xmin = −2126.276 km). In addition, we assess the resolution effects by considering
a higher resolution model (see Appendix A) and find only weak influence on the
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3 Simulated models

GW spectral features. The latter model is referred to as the HR simulation. We
reduce the computational costs of our simulations by imposing reflection symmetry
with respect to the orbital plane and pi symmetry to the axis normal to this
plane. We find that the spectral properties are essentially unaffected in simulations
without the pi symmetry (see Appendix A).

For the EoS we use a seven-segment piecewise polytrope [129] implementation
which is supplemented with an ideal-gas pressure component to approximate the
thermal effects. We set Γth = 1.75 which is a reasonable choice for modeling
post-merger GW emission [124].

The GWs are extracted using the Ψ4 formalism. In the latter, we decompose
the Weyl scalar Ψ4 in spin-weighted spherical harmonics at a finite coordinate
radius R, where we denote with Ψl,m

4 (t, R) the radially averaged component. In
our analysis we focus on the dominant model (l,m) = (2, 2) and use an extraction
coordinate radius of R ≃ 443 km. We tested that a larger extraction coordinate
radius of R ≃ 1033 km leaves the GW spectra essentially unaffected. To derive
the GW strain (from Ψl,m

4 (t, R)) a double integration with respect to coordinate
time t is required, however, typical integration methods lead to non-linear drifts in
the strain. This problem is avoided by performing the integration in the frequency
domain using a fixed frequency integration scheme [130].

We define the merging time tmerge as the time at which |h(t)| =
√
h2+(t) + h2×(t)

reaches the maximum. We perform a time shift (t → t − tmerge) so that t =
0 corresponds to the merging time. We split the GW signals into two phases
accordingly: a) the inspiral phase (t < 0) b) the post-merger phase (t ≥ 0).
All figures associated with GW quantities (such as GW spectrograms) use the
aforementioned convention meaning that t = 0 corresponds to the merging time
obtained from max |h(t)|. Figures and measures associated with the lapse function
(such as spectrograms of the minimum lapse function αmin) define the merging
time using the maximum of strain obtained from the quadrupole formula |hQF(t)|.
We note that (prior to our time shifting) the two times of the max |h(t)| and
max |hQF(t)| should differ by approximately ∆t ≃ 1

c
R ≃ 1.5 ms, which thus can

be removed as appropriate.

3.2. Large grid of SPH simulations

Furthermore, we generate two large libraries of binary NS merger simulations us-
ing the SPH code (see Sec. 2.6). We simulate in total 541 (350 + 191) binaries
varying the total binary mass Mtot, mass ratio q, and EoS model. For every sim-
ulation, we consider approximately 300000 particles (roughly 150000 particles per
star), which is a typical resolution employed in such works (see also [5, 124,131]).
The spacetime is solved on a grid (see Sec. 2.6) with a grid spacing of approxi-
mately 1.18 km. We note that a typical simulation using the SPH code requires
considerably less computational resources than the Einstein toolkit 1. However, a

1A typical simulation with the SPH code requires approximately 3000 CPU hours which is
significantly lower than in the case of a fully general relativistic simulation using the Einstein
toolkit for setups like the ones described in Sec. 3.1.
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straightforward comparison between these codes is not trivial since the hydrody-
namics and spacetime evolution are treated differently. For these simulations, we
use the Wendland kernel function (see Sec. 2.6) which, as previously mentioned,
leads to less noise and numerical damping of the GW signals and also does not
affect the frequencies of the GW spectrum compared to those obtained with other
kernels.

In the first library of binaries, we simulate several mass sequences for different
EoSs of symmetric binaries (q = 1) with increasing total mass Mtot. We use this
data set to investigate the dependence of the quasi-radial oscillation frequency f0
in NS merger remnants on the EoSs and binary mass. Subsequently, we use this
information to put constraints on Mthres and Mmax (see Chapter 7).

In the second library of simulations, we employ three EoSs (stiff, soft, medium)
and vary the total binary mass Mtot and mass ratio q. These simulations are
employed in the development of a hierarchical Bayesian method for deriving con-
straints on the radius R1.6 of a NS with gravitational mass of 1.6 M⊙, through an
ensemble analysis of binary NS mergers.

3.2.1. Symmetric binary sequences

We simulate eighteen mass sequences of symmetric binaries (q = 1) with varying
EoSs. Of the total of eighteen EoS models, ten of them are microphysical EoSs with
temperature dependence and eight are barotropic. We note that a barotropic EoS
model is constructed at zero temperature assuming the beta-equilibrium condition.
In this case, thermal effects are approximated with an ideal gas component with
Γth = 1.75 (see [124]). The microphysical temperature-dependent EoSs are: DD2
[132], SFHX [133], SFHO [133], TMA [134, 135], TM1 [134, 136], LS220 [137],
LS375 [137], NL3 [132, 138], and GS2 [139], BHBLP [140]. The barotropic EoSs
are: H4 [141], ALF2 [129,142], MPA1 [127], SLy4 [143], APR4 [144], WFF2 [145],
BSK21 [146], BSK20 [146]. For the majority of the barotropic EoSs (except BSK20
and BSK21) we use the prescription introduced in [129] where the EoS tables are
parametrized by a seven-segment piecewise polytrope. Figure 3.1 displays the
gravitational mass Mg and radius R relation for non-rotating NSs for all the EoS
models included in this data set. Table 3.1 provides the values ofMmax andMthres

for the respective EoSs (see [5]).

We simulate in total 350 symmetric binaries. For every EoS sequence we
consider a broad range of total binary masses, and for the majority of the models
we do not simulate configurations very close to the threshold mass Mthres for
prompt collapse to BH. This is because we are interested in remnants which survive
for a few milliseconds (≈ 15 to 20 ms) in the post-merger phase. The initial
separation distance between the centers of the stars is approximately 38 km which
results to a few revolutions of inspiral before the two stars merge. We note that this
separation distance is slightly smaller than the one employed in the simulations
performed with the Einstein Toolkit. This is because the generation of the ID and
spacetime evolution is carried out under the CFC condition (see Sec. 2.6), and
so, the unphysical transient typically observed at the beginning of simulations
with fully general relativistic codes due to a relaxation of the ID, is not observed
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Figure 3.1: Gravitational mass and radius relation for non-rotating NSs for all
the EoS models considered. Colored circles indicate the maximum mass configu-
rations.

Temperature-dependent EoSs
EoS Mmax [M⊙] Mthres [M⊙] EoS Mmax [M⊙] Mthres [M⊙]
DD2 2.421 3.325 SFHX 2.129 2.975
SFHO 2.058 2.875 TMA 2.010 3.175
TM1 2.212 3.375 LS220 2.043 2.975
LS375 2.711 3.575 NL3 2.789 3.800
GS2 2.091 3.175 BHBLP 2.100 3.125

Barotropic EoS
EoS Mmax [M⊙] Mthres [M⊙] EoS Mmax [M⊙] Mthres [M⊙]
H4 2.012 3.125 ALF2 1.975 2.975
MPA1 2.456 3.225 SLy4 2.045 2.825
APR4 2.189 2.825 WFF2 2.188 2.825
BSK20 2.167 2.875 BSK21 2.278 3.075

Table 3.1: General information on the EoSs included in this library and the cor-
responding maximum mass of a non-rotating NS Mmax, and the threshold mass
Mthres for prompt collapse to BH. Data taken from [5].

in these calculations (see [118]). An illustration of the parameter space in the
EoS-Mtot plane is shown in Fig. 3.2.
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Figure 3.2: Illustration of the parameter space of the simulated binaries. Orange
crosses indicate the threshold masses Mthres for the respective EoSs. Mthres values
taken from [5].

3.2.2. Grids of binaries

We simulate 191 additional binary configurations to construct three grids of sim-
ulations with varying total binary masses Mtot and mass ratio q for three different
EoS models. These are the DD2 [132], the SLy4 [143], and the SFHX [133], repre-
sentative of stiffer, softer, and medium EoSs, respectively. We note that the softer
EoSs lead to smaller NS radii and higher post-merger GW frequencies, assuming a
fixed total binary mass Mtot. As previously mentioned, the DD2 and SFHX mod-
els have a temperature dependence, while the SLy4 EoS is only available at zero
temperature assuming the beta-equilibrium condition. Thermal effects are again
described by the ideal gas approximation with Γth = 1.75 (see [124] for details and
a justification of this choice).

EoS
Mthres(q = 0.7)

[M⊙]
Mthres(q = 0.85)

[M⊙]
Mthres(q = 1.0)

[M⊙]
SFHX 2.925 2.975 2.975
DD2 3.275 3.325 3.325
SLy4 2.775 2.825 2.825

Table 3.2: Threshold masses for prompt collapse for different mass ratios q for the
DD2, SFHX, SLy4 EoS models. Data taken from [5].

We vary the total binary mass Mtot in a broad range, but we do not consider
systems that promptly form a black hole after merging (see Tab. 3.1). In all
of the simulated configurations, the remnants survive for at least 15 ms in the
post-merger phase. Generally, Mthres depends on the EoS model and exhibits an
additional (mild) dependence on the mass ratio q (see [5]). Table 3.2 provides
the values of Mthres for the respective EoSs included in this data set for mass
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ratios q ∈ {0.7, 0.85, 1.0} as computed in [5]. We consider six binary mass ratios
q ∈ {0.7, 0.8, 0.85, 0.9, 0.95, 1.0}. For the SFHX binaries, we use a finer grid in
Mtot. In total, the library contains 41 binaries with DD2, 132 binaries with SFHX,
and 41 binaries with SLy4.

Finally, we note that this data set is currently employed by external collabora-
tors for the construction of a hierarchical Bayesian method for deriving constraints
on R1.6 through an ensemble analysis of barely-informative, marginal detections
of the NS merger GW post-merger signal.
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4. Spectral properties of GWs

In this chapter, we investigate the GW emission in the post-merger phase
from NS mergers. We employ the data set with the fully general relativistic
three-dimensional simulations described in Sec. 3.1. We discuss the post-merger
spectral features for a sequence of equal-mass binaries (q = 1) of increasing total
binary mass. We study the time evolution of the main frequency component fpeak
and introduce an analytic function which models this evolution. We identify a
mechanism which explains the origin of so far unexplained spectral features, that
is, the non-linear coupling of the quasi-radial oscillation to the antipodal tidal
deformation of the remnant. These features become significant for high-mass
models.

4.1. Spectral analysis of post-merger

GW emission

In this section, we discuss the different spectral features of the post-merger GW
signal for the reference simulation of the model with total mass Mtot = 2.5 M⊙.
We study its GW spectrum and compute its spectrograms in order to extract the
time evolution of certain features. Subsequently, we introduce a new coupling
mechanism, which explains additional frequency peaks in the GW spectrum of
high-mass configurations.

4.1.1. Evolution of fpeak

The strongest feature in the post-merger GW signal, most commonly denoted
by fpeak or f2, is attributed to the fundamental quadrupolar oscillation mode
(see [27, 31–47]). The frequency fpeak depends dominantly on the EoS and total
binary mass, which is not unexpected since the size of the remnant is dictated by
the high-density regime of the EoS. However, as the remnant is subject to further
evolution, fpeak shifts to lower or higher frequencies. This is because the combined
effects of angular momentum redistribution and losses from GW emission, change
its stellar structure, thus leading to a change in the dominant oscillation frequency.

To understand the frequency evolution of the different components of the GW
signal, we compute spectrograms which utilize a wavelet-based scheme [147]. Fig-
ure 4.1 shows the spectrogram of the strain h+(t) for the reference simulation
(Mtot = 2.5 M⊙). The time evolution of the dominant component fpeak is clear.
In the first few milliseconds, a rapid evolution of fpeak takes place, and the signal
is split in two phases: (a) for t ≲ 6 ms, fpeak is decreasing approximately from
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about 2.8 kHz to 2.5 kHz; (b) for t ≳ 6 ms, fpeak is approximately constant at
fpeak = 2.5 kHz.
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Figure 4.1: Spectrogram of strain h+(t) for the reference simulation. The black
curve illustrates fpeak(t) determined by the maximum wavelet coefficient at given

time t. The white curve shows the 2-segment piecewise analytic fit f
analytic(t)
peak of

Eq. (4.1). The purple star indicates t = t∗, after which the frequency remains
constant. The cyan, yellow, green, and orange dashed horizontal lines indicate
fpeak, fspiral, f2−0, f2+0, respectively, as extracted from the spectrum shown in Fig.
4.2. Figure taken from [4].

We extract the evolution of fpeak(t) from the spectrogram (black curve) as the
frequency of the maximum wavelet coefficient at time t, and thus quantify the
frequency drift. We find that the time-dependent fpeak(t) can be modeled by a
simple two-segment piecewise analytic fit with respect to the time coordinate t.
The analytic function consists of: (a) a segment where the initial drift is described
by a linear function in the frequency-time plane; (b) a segment which assumes a
constant fpeak determined by the imposed continuity as

f analytic
peak (t) =

{
ζdrift · t+ fpeak,0 for t ≤ t∗
fpeak(t∗) for t > t∗

. (4.1)

Figure 4.1 displays the analytic fit as two line segments (white) and is in
good agreement with the numerically extracted fpeak(t). We note that Fig. 4.1
demonstrates a specific example where the initial drift is negative. In the general
parameter space of different EoSs and total binary masses, the initial drift may
be positive, negative, or nearly zero. There are also cases where a constant drift
up to the delayed collapse to a BH describes more accurately the time evolution,
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4.1 Spectral analysis of post-merger GW emission

and these cases are still covered by the above analytic description. There are also
cases where the frequency fpeak is not constant but continues to increase linearly,
and these cases are still covered by the above analytic description.
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Figure 4.2: Effective GW spectrum heff,+(f) for the post-merger phase of
the reference simulation. Colored dashed vertical lines indicate the frequency
peaks fpeak, fspiral, f2−0, f2+0. Shaded areas correspond to the frequency range of
fpeak, f2−0, f2+0 (see text for details). The dash dotted curves denote the design
sensitivity Advanced LIGO [2] and of the Einstein Telescope [3], respectively. Fig-
ure taken from [4].

For analyzing the GW spectrum, we employ the effective GW spectrum de-
fined as heff,+(f) = f · h̃+(f), where h̃+(f) is the Fourier transform of the strain
h+(t) (in agreement with the definition currently used in the literature). We note
that in this work, fpeak, i.e. without explicit time argument, corresponds to the
frequency associated with the maximum amplitude of heff,+(f), and fpeak(t) refers
to dominant frequency as a dynamical quantity, which is extracted from the spec-
trogram.

Figure 4.2 displays the effective GW spectrum heff,+(f) for the reference simu-
lation, where we assume a distance of 40 Mpc and overplot the sensitivity curves
of Advanced LIGO and the Einstein Telescope for reference. The dominant fre-
quency peak corresponds to fpeak. As can be seen, the frequency peak fpeak may
not be necessarily symmetric, however, it can have a broad, one-sided distribu-
tion toward higher frequencies. One explanation for this feature is an evolving
time-dependent fpeak(t), which covers the corresponding frequency range. We use

the analytic piecewise function f analytic
peak (t) to obtain the frequency range of the

evolution (cyan-shaded area) and find a good agreement with the one-sided peak
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4 Spectral properties of GWs

of the dominant mode as seen in Fig. 4.2.
Finally, from the spectrograms we also compute the mean value of fpeak(t)

averaged over the duration of the drift, namely, the interval from 0 to t∗. We find
that the mean value ⟨f t∈[0,t∗]

peak (t)⟩ provides a measure for fpeak(t) at early times, but
it does not necessarily coincide with the maximum in the GW spectrum.

4.1.2. Secondary GW peaks f2±0 and fspiral

As depicted in the spectrogram (see Fig. 4.1) and the GW spectrum (see Fig. 4.2),
the GW signal in the post-merger phase not only contains the dominant oscillation
mode but also many secondary features. More precisely, a non-linear coupling be-
tween the quadrupolar mode and the quasi-radial oscillation mode f0 explains two
of those subdominant spectral features. This coupling is expected to produce side
peaks (combination tones) of the dominant peak at frequencies f2±0 ≈ fpeak ± f0.
We identify these secondary peaks in the GW spectrum in Fig. 4.2 at approxi-
mately fpeak ± f0. The quasi-radial frequency f0 is estimated from the Fourier
transform of the evolution of the minimum lapse function αmin, since f0 (being a
quasi-radial oscillation) does not contribute prominently to the GW spectrum.
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Figure 4.3: Spectrogram of minimum lapse function αmin(t) for the reference
simulation. The black curve shows f0(t), as determined by the maximum wavelet
coefficient at time t. The white line shows fpeak(t) − fspiral. The vertical dash-
dotted line indicates the merging time tmerge. Figure taken from [4].

In this analysis, we define and extract the f2±0 as the local maxima in the
effective GW spectrum heff,+(f) using the full signal including the inspiral phase.
We note that the relation f2±0 = fpeak±f0 is only approximate. This inequality is
due to the fact that the frequencies f2±0 are determined during the early and very
dynamical evolution of the remnant. In the early post-merger phase, the radial
oscillation is strongly excited and the main frequency peaks, in particular fpeak(t),
can evolve rapidly.
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4.1 Spectral analysis of post-merger GW emission

For this reason, we investigate the time evolution of the quasi-radial mode f0(t).
From the spectrogram of the time evolution of the minimum lapse function αmin(t)
(see Fig. 4.3) we extract the time-dependent f0(t). We employ a second order
polynomial fit to detrend the data to improve the quality of the spectrogram. We
note that f0(t) can also be extracted from the time evolution of the maximum rest-
mass density ρmax(t). The frequency change of f0(t) for the reference simulation is
small and comparable to the noise associated to the spectrogram scheme. We note
that for high-mass models the frequency drift of f0(t) is slightly more pronounced
(see Appendix B). As expected, the roughly constant f0(t) is in good agreement
with the dominant peak in the power spectrum of αmin (see Fig. 4.11).

Finally, we use the time evolution of both fpeak(t) and f0(t) to obtain the
time-dependent f2±0(t) = fpeak(t) ± f0(t). We derive the frequency ranges in
which f2±0(t) varies, as indicated by the green and orange bands in Fig. 4.2, and
find that they coincide well with the secondary peaks.

As already mentioned, we find that the exact values of f2±0 deviate by some
percent from fpeak ± f0 i.e. the frequencies extracted from the full signal, which
is a consequence of the initial evolution of the main peak frequency fpeak(t). We

find that employing the average ⟨f t∈[0,t∗]
peak (t)⟩, which is more representative for the

initial phase, an excellent agreement between f2±0 and ⟨f t∈[0,t∗]
peak (t)⟩±f0 is obtained.

The latter is understandable since f0 decays relatively fast in comparison to fpeak,
and thus one may expect that the coupling between both modes is determined by
fpeak(t) at the early stage.

Moreover, we identify another secondary peak, fspiral, originating from the or-
bital motion of tidal antipodal bulges formed during the merging phase (see [28]).
Figure 4.4 displays the rest-mass density in the orbital plane at different times in
the early post-merger phase where the formation of the antipodal tidal bulges can
be seen. Their angular frequency is lower than the inner remnant, and therefore
the fspiral has systematically lower frequency than fpeak. We note that the fspiral
component is present only for a few cycles. Our results show that the antipodal
bulges also appear in fully general relativistic simulations. In our analysis, we
treat fspiral as a constant in time quantity and we define it as the maximum of the
corresponding peak at the GW spectrum. In reality, fspiral may be subject to a
slight frequency evolution since the central remnant evolves in time and therefore
affects the motion of the bulges which generate fspiral. As shown in Fig. 4.1, at ap-
proximately t = 3 ms and f = 2.20 kHz, the frequency of fspiral increases. We note
that this frequency drift can also be seen in spectrograms with wavelet parameters
which enhance the frequency resolution. However, the amplitude of the fspiral fea-
ture drops rapidly and thus the impact of such frequency evolution is expected to
be small. The most dominant secondary frequency peak in our reference simula-
tion is fspiral, and therefore we expect the presence of an additional low-frequency
modulation at fpeak(t)− fspiral. The latter affects the remnant’s compactness and
therefore the evolution of αmin(t) (see [28]). Indeed, this modulation can be seen
in the spectrogram of αmin(t) in our reference simulation in Fig. 4.3, where the
extracted fpeak(t)− fspiral is overplotted (white).
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Figure 4.4: Rest-mass density profiles in the orbital plane at different times in the
early post-merger phase. Contour lines with white, gray, and black colors indicate
the regions with rest-mass density equal to 0.1ρmax(t), 0.5ρmax(t), and 0.95ρmax(t),
respectively.

4.1.3. fspiral−0 coupling

We discuss our findings regarding a new mechanism, which explains additional
spectral features in the GW spectrum. More specifically, we discuss a coupling
between fspiral and the quasi-radial oscillation mode f0. We find that the afore-
mentioned feature is more pronounced in high-mass configurations, and thus we
discuss the simulation with a total binary mass Mtot = 3.0 M⊙ (see Fig. 4.5). Be-
cause its total binary massMtot is close toMthres, the quasi-radial mode is strongly
excited [28]. In this configuration fspiral is clearly pronounced (see Fig. 4.5). Our
conjecture is that the strong radial oscillation affects the orbital motion of the
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4.1 Spectral analysis of post-merger GW emission

bulges, and this leads to a coupling between f0 and fspiral. Indeed, we find fre-
quency peaks at approximately fspiral±0 = fspiral ± f0.
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Figure 4.5: Effective GW spectrum heff,+(f) for theMtot = 3.0M⊙ model at post-
merger phase. Colored vertical lines indicate fspiral, fspiral−0, fspiral+0. Shaded areas
correspond to their frequency range visualized by the same colors respectively.
Orange curve shows the effective GW spectrum of a simple toy model discussed
in Sec. 4.1.3. Figure taken from [4].

Figure 4.5 displays the GW spectrum of the post-merger phase for this simu-
lation. Similarly to the previous case, the quasi-radial oscillation frequency f0 is
extracted from the maximum in the Fourier transform α̃min(f) of the minimum
lapse function (see Fig. 4.11). We estimate fspiral±0 using the fspiral from the GW
spectrum, and as shown in Fig. 4.5, we find that the estimates fspiral±0 match very
well with additional frequency peaks in the power spectrum. The low-frequency
fspiral − f0 is in good agreement with the corresponding frequency peak and in
contrast, the high-frequency fspiral + f0 exhibits a deviation by approximately
200 Hz. In order to assess our conjecture, we use the time-dependent f0(t), ex-
tracted from the spectrogram of αmin(t) (see Fig. 4.3), and estimate the frequency
ranges of fspiral±0. We find these ranges to be in good agreement with additional
peaks in the GW spectrum, and in particular, the frequency peak in the vicinity of
fspiral+f0 indeed lies in the corresponding frequency range. We note that a 200 Hz
deviation may be understandable because, in reality, the fspiral component is not
exactly constant. We emphasize that our finding is not restricted to this particu-
lar EoS model but is a general feature in NS merger simulations. We carried out
additional simulations using the SPH code employing different EoS models with
varying total binary masses, and observe it in the corresponding GW spectra (see
below).
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4 Spectral properties of GWs

To further corroborate our finding, we consider a simple toy model: We use
two point particles with individual masses m1 = m2 = 0.2 M⊙ on a circular
orbit with orbital frequency forb = 1

2
fspiral at a radius R = 9 km. In addition,

a radial oscillation with frequency f0 is superimposed on the circular orbit with
amplitude A = 1 km. We believe these values are representative numbers, guided
by a rough analysis of the simulation data. Since the bulges disappear after a
few milliseconds, we mimic this behavior using an exponential decay of the point-
particle masses with a timescale τm = 5.0 ms. Finally, we obtain the corresponding
GW radiation using the quadrupole formula and derive the Fourier transform,
which is overplotted in Fig. 4.5. This simple model produces a dominant peak at
fspiral (as is expected) and two secondary peaks coinciding with fspiral ± f0. The
same pattern of relative amplitudes of fspiral ± f0 in the simulation and the toy
model is apparent; fspiral + f0 is significantly enhanced.

The coupling to the quasi-radial mode f0 may also result in frequency peaks
at approximately fpeak(t)± 2 · f0 and fspiral ± 2 · f0, but these are expected to be
weak components. A exception may be the high total mass models, where the f0
mode is strongly excited and thus they may become significant. We note that our
simple toy model generates a peak (in its spectrum) at roughly f = 4.7 kHz which
coincides with fspiral + 2 · f0. In addition, a weak bump in the GW spectrum can
be seen in the vicinity of fspiral + 2 · f0. In Chapter 6 we identify more features in
the GW spectrum which can be associated to such couplings.

In the following subsubsection, we briefly discuss results using another simu-
lation tool, the SPH code, for different physical binary systems. With this, we
provide additional evidence on the spiral± 0 coupling and its presence in GW
spectra for additional EoS models.

SPH simulations with different EoSs

To show the generality of our results we identify the aforementioned spectral fea-
tures (fspiral±0) in six additional simulations using the SPH code (see Sec. 2.6). We
use a subset of the data set described in Sec. 3.2.1. We consider three EoS models,
namely, SFHX [133], DD2 [132], and LS375 [137] and analyse the GW spectra for
two configurations for every EoS model with total binary masses denoted byMtot,1

and Mtot,2, respectively. The total binary masses are chosen to be relatively high
(not far from the respective Mthres value for each EoS). This choice ensures that
the quasi-radial modes are strongly excited and so the coupling spiral± 0 may be
pronounced too. Table 4.1 provides information about the total binary masses
Mtot,1, Mtot,2 for all the configurations considered along with the corresponding
value of Mthres for equal-mass configurations. We note that Mthres exhibits a mild
dependence on the mass ratio q (see [5] for an elaborate discussion).

Figures 4.6-4.8 display the effective GW spectra in the post-merger phase for
the simulated models. We extract the frequency of the quasi-radial oscillation f0
from the Fourier transform of the time evolution of the minimum lapse function
αmin(t) (also described in Sec. 4.2.2). In order to identify the frequency fspiral
for every model, we first obtain a rough estimate of its frequency range using the
empirical relations introduced in [49]. Then we pick the frequency at the maximum
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4.1 Spectral analysis of post-merger GW emission

in the GW spectrum within the estimated frequency ranges (orange dashed line
in Fig. 4.6-4.8). Finally, we use the expression fspiral±0 ≈ fspiral ± f0 to derive the
frequency estimates for the combination tones fspiral±0.
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Figure 4.6: Effective GW spectra in the post-merger phase for the Mtot,1 (left
panel) and Mtot,2 (right panel) models for the SFHX EoS. Colored vertical lines
indicate fspiral, fspiral − f0, fspiral + f0. The dash dotted curves denote the design
sensitivity Advanced LIGO [2] and of the Einstein Telescope [3], respectively.
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Figure 4.7: As in Fig. 4.6 but for the DD2 EoS.

As is apparent in Fig. 4.6-4.8, the combinations fspiral ± f0 almost exactly
match with frequency peaks in the GW spectra for all the models in our subset of
simulations. This shows that the coupling spiral± 0 is indeed a general spectral
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Figure 4.8: As in Fig. 4.6 but for the LS375 EoS.

feature in the GW spectra, which appears for various EoS models and mass ranges.
We note that we have identified fspiral−0 for additional models in our data set of
symmetric binary simulations and constructed empirical relations for fspiral−0 as a
function of Mchirp and R1.6 following the parametrization introduced [49] for the
frequencies fspiral, f2±0 (see Appendix C).

EoS Mtot,1 [M⊙] Mtot,2 [M⊙] Mthres(q = 1) [M⊙]
SFHX 2.68 2.80 2.975
DD2 2.70 3.10 3.325
LS375 3.20 3.42 3.575

Table 4.1: Information about the subset of simulations. The values of Mthres are
taken from [5].

4.2. Sequence of merger simulations with

different total binary mass

In this section, we focus once again on the results obtained with the Einstein Toolkit.
More specifically, we discuss the sequence of merger simulations with different total
binary masses (see Sec. 3.1).

We focus on the dependence of the various components of the post-merger
GW signal on total binary mass. As previously mentioned, the total mass Mtot

ranges from 2.4 M⊙ to 3.1 M⊙ with a step size of 0.1 M⊙ (including the reference
simulation). We find a smooth transition in the GW spectra along the sequence,
and find that the strength and presence of the various spectral components con-
tinuously change as the total binary mass Mtot approaches the mass for prompt
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Figure 4.9: Effective GW spectra heff,+(f) for the mass sequence. Purple dashed
lines indicate fspiral−0. Purple shaded areas correspond to frequency ranges. The
other colors follow the notation of Fig. 4.2. Figure adapted from [4].

BH formation Mthres. Figure 4.9 displays the effective GW spectra heff,+(f) for
different total binary masses Mtot, where the frequencies fpeak, fspiral, f2±0 and
fspiral±0 are indicated.

4.2.1. Secondary GW peaks

We observe a clear dependence of the main and secondary peaks on the total
binary mass as shown in Fig .4.9. The morphology of the GW spectra is broadly in
agreement with the classification of the post-merger GW signals introduced in [28].
The latter is based on the presence and relative strength of the secondary peaks.
For low-mass configurations (Mtot ≤ 2.6 M⊙) the frequencies f2−0 and fspiral are
well separated, while f2−0 is relatively weak because the quasi-radial oscillation is
not strongly excited. In high-mass configurations (Mtot ≥ 2.8 M⊙), f2−0 becomes
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4 Spectral properties of GWs

more pronounced, and we observe a noticeable overlap between f2−0 and fspiral.
We note that the absolute height of the fspiral peak is approximately constant in all
models. In contrast, the f2−0 peak becomes stronger as Mtot increases, by nearly
one order of magnitude in heff,+(f).

In most of the models, the secondary frequency peak f2+0 is observationally
less interesting due to its lower amplitude, when compared to the other secondary
peaks, and because of the lower sensitivity of current detectors at higher frequen-
cies. Nevertheless, the two models with the highest mass within our sequence of
simulations exhibit an f2+0 with an amplitude comparable to the other secondary
peaks, and thus becomes observationally relevant. Interestingly, the frequency
f2+0 shows only a mild dependence on Mtot and ranges between 3.8 kHz and
4.0 kHz for the while mass sequence. The latter can be explained by the fact that
fpeak is an increasing function of Mtot while f0 decreases (see Chapter 7).

The high-mass configurations (and in particular the ones with total binary
mass Mtot ≥ 2.9 M⊙) exhibit a significant frequency fspiral−0 peak as shown (pur-
ple dashed line) in Fig. 4.9. Because fspiral grows with Mtot while f0 decreases,
the frequency fspiral−0 increases as the total binary mass approaches the threshold
mass for prompt BH formation Mthres. The strength of the fspiral−0 peak increases
with the total binary mass Mtot, and its absolute amplitude is always lower than
that of aforementioned secondary features. However, relative to the projected
detector sensitivity curves the signal-to-noise ratio of fspiral−0 coupling is roughly
comparable to that of f2+0. The fspiral−0 feature is thus important for configura-
tions with binary masses close to Mthres, where the quasi-radial mode is strongly
excited, which enhances both fspiral−0 and f2±0 (see lower right panel in Fig. 4.9).

4.2.2. Minimum of the lapse function
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Figure 4.10: Time evolution for minimum lapse function αmin(t) normalized to
merging time tmerge along the sequence of models with varyingMtot. Black vertical
dashed line shows the merging time tmerge. Figure taken from [4].
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Furthermore, we investigate the time evolution of the minimum lapse func-
tion αmin (as in [28]). As illustrated in Fig. 4.10 the behavior of αmin(t) for all
the models along the sequence is consistent with the respective GW spectra and
shows a clear dependence on total binary mass Mtot. The quasi-radial mode is
stronger excited as the total mass increases, as already noted for the models dis-
cussed in [28]. The latter explains the enhancement of those GW features, which
involve a coupling to this oscillation mode. The lower-mass and intermediate-mass
models exhibit only a weakly excited quasi-radial mode. In those models, αmin(t)
contains an additional oscillation with lower frequency fpeak(t) − fspiral, which is
the dominant component at the early phase of the remnant evolution. The mas-
sive orbiting bulges generating fspiral affect the remnant’s compactness and thus
lead to this low-frequency modulation (see [28] for details).

The trends present in Fig. 4.10 can be understood from the merger dynamics
and the remnant properties. The high-mass models are associated to collisions
with higher impact velocities (since they are more compact) and as a result the
quasi-radial oscillation is strongly excited.

We perform the Fourier transform of the minimum lapse function, α̃min(f),
and identify the aforementioned features, as shown in Fig. 4.11 (see also [148]).
We note that we compute α̃min(f) using an appropriate window function to select
the relevant post-merger phase and subtract the trend from the time series.

All of our models have a common feature, that is the pronounced quasi-radial
oscillation frequency f0 in the vicinity of 1 kHz. In low-mass configurations, we
identify the low-frequency fpeak(t) − fspiral modulation (the additional peak at
lower frequencies) with a strength comparable to that of the quasi-radial mode.
There are cases where the fpeak(t)− fspiral modulation appears to be dominant in
the initial phase in the time domain (see Fig. 4.10), however since the quasi-radial
mode oscillates longer the f0 peak in the post-merger spectrum is stronger.

The high-mass models exhibit a very dominant frequency peak f0. The strength
of the peak increases with total binary massMtot, and it becomes broader and one-
sided. The latter implies that the quasi-radial frequency undergoes an evolution,
which can be verified by spectrograms of αmin (see Appendix B). For intermediate-
mass models the fpeak(t)−fspiral peak overlaps and merges with the f0 peak, asMtot

increases. We remark that especially for high-mass models fpeak(t) initially evolves
rapidly toward lower values, while being initially higher that the fpeak identified
in the GW spectrum (see Appendix B). As a result, the difference fpeak(t)− fspiral
at the early times, when the low-frequency modulation is present, is in fact larger
than one would infer from the GW spectrum alone. In fact, in high-mass models
the difference is roughly consistent with the left side of the main peaks in Fig. 4.11.
Figure 4.11 displays the estimates for the frequency ranges for fpeak(t)−fspiral (red
band).

4.2.3. Evolution of frequencies

As in the case of the reference simulation (see Sec. 4.1), the time evolution of
fpeak(t) leads to an asymmetric (one-sided) peak for all the post-merger GW spec-
tra along the sequence of models (see Fig. 4.9). The exact morphology of this peak
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Figure 4.11: Fourier transform of the minimum lapse function along the sequence
models with varying Mtot. The vertical dashed line indicates the quasi-radial
frequency f0. The red band indicates the frequency range of fpeak(t) − fspiral.
Figure adapted from [4].

slightly varies as Mtot increases. To quantify the respective frequency drifts in
fpeak(t) we employ the two-segment piecewise linear/constant function f analytic

peak (t)
and perform a fit, as shown for the reference simulation in Sec. 4.1 (see Appendix B
for the spectrograms used for the extraction of the time evolution of the fpeak(t)

and Sec. 5.3 for empirical fits for the parameters of f analytic
peak (t) for the sequence

of models). The analytic fit f analytic
peak (t) provides a frequency range for each model

along the sequence, which we indicate by cyan bands in Fig. 4.9. These bands
coincide well with the full structure of the main peak in the different spectra.

Similarly, we estimate the frequency ranges of the secondary peaks from the
coupling between the quadrupolar and the quasi-radial mode. The frequency
f0(t) is extracted from the spectrogram of the minimum lapse function αmin(t),
and using the analytic fit f analytic

peak (t), we obtain the time evolution of f2±0(t) =

f analytic
peak (t) ± f0(t). The evolution of f2±0(t) during the first milliseconds provides
frequency ranges, which are overplotted in Fig. 4.9 (green and orange bands), and
as is apparent, they are in good agreement with the f2±0 peaks.
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Furthermore, the frequency range of the coupling between the fspiral and the
quasi-radial model (for high-mass models) is estimated from the time-dependent
fspiral−0(t) = fspiral − f0(t). The corresponding frequency range is overplotted in
Fig. 4.9 (purple bands), and is in good agreement with the fspiral−0 peak.

As for the reference simulation, the main frequency fpeak in Fig. 4.9 for many
binary masses does not exactly occur in the middle between f2−0 and f2+0 as is

expected for f2±0. Instead, we find that ⟨f t∈[0,t∗]
peak (t)⟩ (which is higher than fpeak in

all models) does agree very well with 1
2
(f2−0 + f2+0); i.e., it lies as expected in the

middle between the two secondary peaks. The latter can be explained by the fact
that the combination tones are rapidly evolving features, and the ⟨f t∈[0,t∗]

peak (t)⟩ is
more representative for fpeak(t) at early times.
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5. Analytic models for GWs in
NS merger remnants

In this chapter, we present a new analytic model for the gravitational wave
emission in the post-merger phase in NS merger remnants. The model consists of
a number of physical parameters that are related to different oscillation modes,
quasi-linear combination tones or nonlinear features that appear in the GW signal
in the post-merger phase. The model incorporates a time-dependent frequency
peak fpeak(t) described by a two-segment linear expression (see Chapter 4). We
evaluate the effectiveness of the model, in terms of the fitting factor, equivalently,
the reduction in the detection rate, along a sequence of equal-mass simulations of
varying mass. We find that all parameters of the analytic model correlate with
the total binary mass of the system. The model achieves high fitting factors for
a wide range of binary masses, thus it can be used for the detection and pa-
rameter estimation of the post-merger phase in upcoming searches with upgraded
second-generation detectors, such as aLIGO+ and aVirgo+, with future, third-
generation detectors (Einstein Telescope and Cosmic Explorer) or with dedicated,
high-frequency detectors.

5.1. Analytic and semi-analytic

post-merger models

We develop analytic waveform models for the post-merger phase employing the
spectral analysis of the post-merger GW signals described in Chapter 4. We build
an accurate analytic model of the post-merger GW signal. Our model extends [42]
which included fixed fpeak, fspiral and f2−0 frequencies with exponential damping,
and [68] which introduced a linear time dependence, i.e. with a constant slope,
of fpeak(t) throughout the time evolution. In this work, in comparison to the
aforementioned works, we include the higher-frequency combination tone f2+0 and
employ the two-segment piecewise linear model of Eq. (4.1) to model the time
evolution of fpeak(t). We note that this model can easily be extended to include
additional frequency components, such as fspiral−0 for high masses (see Sec. 4.1.3).

In addition to the fully analytic model, we also consider a semi-analytic model,
which incorporates directly a numerical representation of fpeak(t) extracted from
the spectrograms. This is extended in Chapter 6 to also include time-dependent
secondary components f2±0(t).

We note that these models consist of a relatively large number of parameters,
and therefore we employ several successive steps in order to determine the model’s
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5 Analytic models for GWs in NS merger remnants

parameters.These are described in the following subsections.

5.1.1. Analytic model

The analytic model consists of exponentially decaying sinusoids, where except for
the dominant frequency fpeak(t), we assume all the other frequencies of the model
to be constant in time. The model reads

h+(t) = Apeak e
(−t/τpeak) · sin(ϕpeak(t))

+ Aspiral e
(−t/τspiral) · sin(2πfspiral · t+ ϕspiral)

+ A2−0 e
(−t/τ2−0) · sin(2πf2−0 · t+ ϕ2−0)

+ A2+0 e
(−t/τ2+0) · sin(2πf2+0 · t+ ϕ2+0), (5.1)

where the fpeak component’s phase, ϕpeak(t), is

ϕpeak(t) =

{
2π

(
fpeak,0 +

ζdrift
2
t
)
t+ ϕpeak, for t ≤ t∗

2π fpeak(t∗)
(
t− t∗

)
+ ϕpeak(t∗), for t > t∗

. (5.2)

In the above expression, the phase ϕpeak is continuous and the corresponding

frequency fpeak(t) =
1
2π

dϕpeak

dt
exhibits a dependence as in Eq. 4.1.

In our analysis, the analytic model’s parameters are determined in several steps
and the model contains several frequency components, and as a result it is not
straightforward to find the optimal values which describe the data. We find that
by introducing a normalization factor N we obtain better fits with respect to the
fitting factor (see Sec. 5.2). We thus define

hFit+ (t) = N · h+(t), (5.3)

with h+(t) given as in Eq. (5.1). We drop the normalization factorN when simpler
(under-performing) analytic models are employed (using only one or two frequency
components). The normalization factor is only introduced as part of our procedure
for determining the best fit, and therefore with other fitting procedures it may not
be required.

Lastly, we improve the fits for this particular mass sequence and EoS by intro-
ducing a phenomenological modification to the analytic model in the description
of the fpeak(t) component. Our quasi-linear model of Eq. (5.1), presumably due
to the nonlinearities that are present immediately after merger, does not accu-
rately describe the very early evolution. We observe a mild delay in the starting
times of the exponentially decaying sinusoids between the fpeak component and
the secondary components fspiral and f2±0 during the first ≈ 1.0 ms (see the spec-
tograms in Appendix B). The latter is more pronounced in high-mass models. To
mimic this delay, we multiply the first line of Eq. (5.1), corresponding to the fpeak
component, by a Tukey window function, denoted here by W(t; s), where s is the
roll-off parameter. We employ a roll-off parameter s = 0.075 for models with
Mtot ≤ 2.9M⊙ and s = 0.1 for models with Mtot > 2.9M⊙.
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5.1 Analytic and semi-analytic post-merger models

The aforementioned phenomenological introduction of non-linear effects leads
to more accurate fits of the initial phases of the secondary components. After
≈ 1.0 ms from the onset of the post-merger phase, when the evolution is close
to quasi-linear (linear plus quasi-linear combination tones), the analytic model of
Eq. (5.1) is sufficient for its description.

In summary, the complete analytic model of the + polarization of the post-
merger signal amplitude reads

hFit+ (t) = N ·
(
hpeak+ (t) · W(t; s) +

∑
i

hi+(t)
)
, (5.4)

for i = spiral, 2± 0,

where hi+(t) = Ai e
(−t/τi) · sin(ϕi(t)) .

The cross polarization hFit× (t) is obtained by adopting the parameters for the
amplitudes, damping time scales and frequencies from hFit+ (t) and then assume a
phase shift of 90o degrees to each of the individual initial phases ϕi (for i=peak,
spiral, 2± 0).

5.1.2. Semi-analytic model

For the semi-analytic model we simply replace the phase ϕpeak(t) of the analytic
model with the numerical phase ϕnumerical

peak (t) derived from the spectrogram. We

first extract the instantaneous frequency f spectrogram
peak (t) from the spectrogram, and

then carry out the integration in time to obtain the phase at a particular time
step ti using the iterative formula

ϕi+1 = ϕi + 2πfpeak,i · (ti+1 − ti) , (5.5)

where ϕi ≡ ϕ(t = ti) and fpeak,i ≡ fpeak(t = ti). The initial phase ϕpeak,0 ≡ ϕ(t = 0)
is a parameter (like ϕpeak in the analytic model).

In Chapter 6 we extend semi-analytic model by including time-dependent sec-
ondary components f2±0(t) where the phases ϕ2±0(t) are extracted from the spec-
trograms in a similar way.

5.1.3. Parameter extraction procedure

In this subsection we describe our multi-step procedure for obtaining the fitting
parameters of our model. We first discuss the analytic description of fpeak(t),
and then describe how we obtain the secondary frequencies fspiral, f2±0, fspiral−0

from GW spectra. Then, we describe the method for the extraction of model
parameters (Ai, τi for i = spiral, 2± 0) of the secondary components. Finally,
we discuss the determination of the remaining parameters Apeak, τpeak, N , ϕi for
i = peak, spiral, 2 ± 0 and the fit to the simulation data. For all models of our
mass sequence we proceed as follows.
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5 Analytic models for GWs in NS merger remnants

Analytic description of fpeak(t)

The time-dependent fpeak(t) is extracted from the spectrograms as the frequency
of the maximum wavelet coefficient at time t. fpeak(t) is parametrized using the 2-
segment piecewise function Eq. (4.1). The parameters ζdrift, fpeak,0, t∗ are obtained
by fitting the analytic function of Eq. (4.1) to the extracted fpeak(t) using a curve
fitting routine. Finally, we insert the extracted parameters to the analytic model
via ϕpeak(t) as in Eq. (5.2).

Secondary frequency peaks

The secondary frequencies fspiral, f2±0 are computed in two steps. First, a rough
estimate of the ranges of the different components is obtained, which is necessary
to correctly identify the different features. Then we choose the frequency at the
maximum in the GW spectrum within the estimated frequency ranges of the dif-
ferent components. We estimate fspiral from the rest-mass density profiles on the
equatorial plane (as done in [28]). For the estimate of f2±0 we use the relation
f2±0 ≈ fpeak ± f0. We replace fpeak by the mean value of fpeak(t) during the first
milliseconds, while f0 is the dominant frequency peak in the Fourier transform of
the minimum lapse function αmin (see Fig. 4.11). We note that our choices are in
agreement with the empirical relations in [49].

Amplitudes Ai and decay timescales τi for secondary components

We describe the method to estimate the amplitudes Aspiral, A2±0 and timescales
τspiral, τ2±0 using the spectrograms. We find that in our results the secondary
frequency peaks in the GW spectrum are reproduced better using the following
procedure.

We use spectrograms to extract the wavelet coefficients as functions of time t
for the frequency components fspiral, f2±0 denoted by Aspiral(t), A2±0(t). Then we
consider a signal of the form Ai e

−t/τi cos(2π fi · t), for i = spiral, 2± 0, and treat
each component separately. We compute the coefficients at fi of this model’s signal
and using a curve fitting procedure we determine Ai and τi such that the coefficient
function matches the extracted Ai(t). The curve fitting procedure adopts a trust-
region-reflective algorithm [149–151].

We note that using this method, the various components are treated inde-
pendently, and therefore in the case of overlapping frequencies the method loses
accuracy since each component amplifies its neighboring component. As a result,
the scheme may overestimate the amplitudes Ai. This is compensated by intro-
ducing the aforementioned normalization factor N , which we determine in the
next step.

Fit to simulation data

In the final step, the remaining parameters Apeak, τpeak, ϕi for i = spiral, 2± 0,
N are determined. A fit of the analytic model to the simulation data is carried
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5.2 Performance of the analytic
and semi-analytic models

out, using the aforementioned curve fitting routine. We insert the previously
determined parameters in the analytic model.

We find that parameters of the fpeak feature, being the dominant component,
are well determined in this step. In contrast, the secondary features of the signal
are better reproduced from the spectrograms as described in Sec. 5.3.3.

5.2. Performance of the analytic

and semi-analytic models

In this section, we discuss fits of the analytic and semi-analytic models to the
GW signals (extracted from simulations) and quantify their performances. We
compare the fits to the numerical relativity waveform in the time and frequency
domains and examine how well certain GW features are reproduced.

The performance of the models is assessed with the noise-weighted fitting factor
defined by

FF ≡ (h1, h2)√
(h1, h1)(h2, h2)

, (5.6)

where (h1, h2) is the noise-weighted inner product between two waveforms and is
given by

(h1, h2) ≡ 4Re

∫ ∞

0

df
h̃1(f) · h̃∗2(f)

Sh(f)
, (5.7)

where Sh(f) is the detector’s noise spectral density, and h̃i(f) is the Fourier trans-
form of the waveform hi(t) (for i = 1, 2).

In addition, we introduce simpler versions of our analytic model which include
only a subset of GW features. By this, we assess the significance of the individual
components of the GW signal.

5.2.1. GW fits

We start by presenting the analysis of the reference simulation (Mtot = 2.5M⊙),
and then extend the discussion to the sequence of models with other binary masses.

Reference simulation

The parameters of the analytic model Eq. (5.4) for our reference simulation are
determined with the method described in Sec. 5.1.3. Figure 5.1 shows the compar-
ison of the simulation data to the analytic model in the time domain. Throughout
the whole post-merger evolution of 24 ms, the agreement of the two signals is
very good. In the early phase, the dominant and the secondary components are
significant, whereas during the later evolution only the fpeak component is present.
It is important to note that the time-dependent fpeak(t) simultaneously leads to a
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Figure 5.1: GW strain r · h+(t) for the reference simulation and for the analytic
model hFit+ (t) of Eq. (5.4). Figure taken from [4].

proper description of the early and the late phase. The model captures the phase
evolution very well at late times.

The success of the analytic model is also seen in the GW spectrum heff(f)
(see Fig. 5.2). The analytic model reproduces remarkably well the one-sided fpeak
structure.

We further assess the time evolution of fpeak(t) and its analytic model of a 2-

segment piecewise linear function f analytic
peak (t), Eq. (4.1). For this purpose, we gen-

erate the semi-analytic model, as described in Sec. 5.1.2. We extract f spectrogram
peak (t)

from the spectrogram and insert the numerical phase ϕpeak(t) using Eq. (5.5) in
the analytic function Eq. (5.4). All other parameters are determined as described
in Sec. 5.1.3. We remark that the semi-analytic model cannot be used in real de-
tection scenarios, nevertheless, it is a useful tool for assessing the effectiveness of
analytic model. Figure 5.2 displays the resulting GW spectra, which are compared
to the numerical waveform from the simulation. As apparent, both models yield
spectra that are very close to the spectrum of the numerical simulation. The accu-
racy of the models is quantified by calculating their fitting factors (with respect to
the numerical simulation) assuming the projected Einstein Telescope sensitivity
curve [3]. We report fitting factors of FF = 0.969 for the semi-analytic model
and FF = 0.956 for the analytic model. The semi-analytic model yields a slightly
higher FF than the analytic model but this is expected since the former contains
more accurate information about the fpeak component. However, the difference of
only 1.34% between the fitting factors of the two models is small and thus demon-
strates that using the analytic model f analytic

peak instead of the numerically extracted

f spectrogram
peak (t) is sufficient for the description of the time evolution of the fpeak(t)
component.
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5.2 Performance of the analytic
and semi-analytic models

Both the analytic and semi-analytic models successfully reproduce the triplet
of secondary frequencies fspiral, f2±0 as demonstrated in Fig. 5.2. This implies that
our fitting procedure gives reasonable estimates of the corresponding parameters
Ai and τi. We note that the secondary peak f2−0, for the purpose of detectability,
is more important than f2+0. Nevertheless, the inclusion of f2+0 makes the analytic
model more complete and increases the quality of the fit because the absence of a
frequency component in the early phase may spoil the determination of the other
parameters. For similar reasons, the inclusion of the phenomenological Tukey
window function W(t; s) for the fpeak component is useful.

Our model does not include the additional frequency peak at 3.5 kHz in Fig. 5.2
and therefore does not reproduce it. This frequency peak remains to be explained
and modeled.

0 1 2 3 4 5
f [kHz]

10 22

10 21

h e
ff,

+
(4

0
M

pc
)

FFsemi analytic = 0.969
FFanalytic = 0.956

f spectrogram
peak (t)

f analytic
peak (t)

Figure 5.2: Post-merger effective GW spectra heff,+(f) for the numerical simula-
tion (black line), for the analytic model hFit

+ (t) (orange dashed line) and for the
semi-analytic model (cyan line, see text), for the reference simulation. Colored
boxes indicate the respective fitting factors FFs. Figure taken from [4].

Figure 5.3 displays the spectrograms of the simulation (upper panel) and of
the analytic model (lower panel). We observe a very good agreement considering
the simplicity of the analytic model.

Fitting factors along the whole sequence of merger simulations

We test the performance of the analytic model along the sequence of models with
different Mtot (see Chapter 3.1). The spectra for the analytic fits (in comparison
to the simulation spectra) are shown in Fig. 5.4. For all configurations the analytic
model performs well. It achieves fitting factors FFs (assuming the sensitivity curve
of Einstein Telescope [3]) in the range [0.955, 0.979] for the majority of the models
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Figure 5.3: Top panel: spectrogram of h+(t) for the reference simulation. The
black line corresponds to the numerically extracted f spectrogram

peak (t) as described in

Fig. 4.1. Bottom panel: spectrogram of hFit+ (t) for the reference simulation. The

white line illustrates f analytic
peak (t). Figure taken from [4].

with the exception being the most massive configuration of this sequence1. For
this model (which is close to the threshold for prompt collapse), we find that an
extended analytic model (introduced in Chapter 6) achieves a comparable fitting
factor of 0.962.

The analytic model reproduces well the secondary frequency components of the
spectra in Fig. 5.4. In addition, the shape of the frequency peaks agrees with that
obtained from the simulations. This means that the parameter values obtained via
our fitting procedure, as described in Sec. 5.1.3, describe well the secondary peaks.
However, we note that the amplitude of the f2+0 combination tone, A2+0, has to
be individually amplified at the end of the above fitting procedure for models with
Mtot ≥ 2.8M⊙, in order to obtain better agreement with the simulations.

1As for the reference simulation, we obtain only slightly better FFs for the semi-analytic
model - even for the most massive model - and hence we only report the FFs for the analytic
model along the whole sequence.

68



5.2 Performance of the analytic
and semi-analytic models

0 1 2 3 4

10 22

10 21
h e

ff,
+

(4
0

M
pc

)

Mtot = 2.40 M FF = 0.979

0 1 2 3 4

Mtot = 2.50 M FF = 0.956

0 1 2 3 4

Mtot = 2.60 M FF = 0.956

0 1 2 3 4

10 22

10 21

h e
ff,

+
(4

0
M

pc
)

Mtot = 2.70 M FF = 0.977

0 1 2 3 4

Mtot = 2.80 M FF = 0.976

0 1 2 3 4
f [kHz]

Mtot = 2.90 M FF = 0.962

0 1 2 3 4
f [kHz]

10 22

10 21

h e
ff,

+
(4

0
M

pc
)

Mtot = 3.00 M FF = 0.955

0 1 2 3 4
f [kHz]

Mtot = 3.10 M FF = 0.907

Figure 5.4: Post-merger effective GW spectra heff,+(f) for the simulations (black
lines), for the analytic model (orange dashed line), and the semi-analytic model
(cyan line) along the whole sequence of models. The fitting factors FFs for the
analytic model are reported in each case. Note that for the highest-mass model
withMtot = 3.1M⊙ an extended analytic model is introduced in Chapter 6, where
a higher FF is achieved. Figure adapted from [4].

5.2.2. Simplified analytic models

To further test our analytic model, we consider simplified analytic models and
quantify their performance using FFs. The purpose of such test, is to investigate
whether models with less parameters, that are computationally less expensive,
yield comparable quality in the fits. As previously, we first study the reference
simulation and then extend the discussion to the whole sequence of merger simu-
lations.
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Model description Name Included components Performance

Complete analytic

model

Ac f analytic
peak (t), fspiral, f2−0, f2+0 Best

Complete

semi-analytic

model

Sc f spectrogram
peak (t), fspiral, f2−0,
f2+0

Best

Simplified

(2-component)

analytic model

A2 f analytic
peak (t), fspiral or f2−0 Good

Simplified

(1-component)

analytic model

A1 f analytic
peak (t) Inadequate

Simplified (const.

frequencies)

complete analytic

model

sAc ⟨f t∈[0,t∗]
peak ⟩, fspiral, f2−0, f2+0 Inadequate

for this EoS

Table 5.1: Definitions for the various analytic, semi-analytic and simplified mod-
els that we consider. When the time-dependence is explicitly written, a time-
dependent description is employed for that particular component. Table adapted
from [4].

Definitions of the simplified analytic models

We introduce three simplified analytic models. For the first one we only con-
sider the time-dependent fpeak(t) component, and for the second one we include
the fpeak(t) component plus one secondary component. As before, the analytic

2-segment function f analytic
peak (t) models the fpeak(t) component. For low-mass mod-

els, including the reference simulation, the dominant secondary component is the
fspiral, while for higher mass configurations f2−0 becomes the most prominent fea-

ture. For the third model, we keep fpeak(t) constant and equal to fpeak = ⟨f t∈[0,t∗]
peak ⟩,

while all the secondary frequency components are included.
We emphasize that for the 2-component model (one secondary component) we

do not incorporate the normalization factor N . For the 1-component model we
discard the phenomenological window W(t; s), because it leads to a slightly higher
fitting factor in this case.

Table 5.1 summarizes information on the various analytic, semi-analytic and
simplified models and their assigned names.

Fitting factors for the reference simulation

We use the aforementioned procedure to compute the fits for the complete analytic
model (Ac), the 2-component analytic model (A2), and the 1-component analytic
model (A1). We display the corresponding post-merger GW spectra in Fig. 5.5
for the reference simulation. Because all three models include the time-dependent
description for f analytic

peak (t), as expected, they reproduce well the shape of the fpeak
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Figure 5.5: Post-merger effective GW spectra heff,+(f) for the simulation (black
lines) and for three analytic models, Ac (cyan line), A2 (orange line) and A1 (green
line) for the reference simulation. In each case, the corresponding fitting factor
FF is shown. Figure taken from [4].

peak. However, these models differ significantly with respect to the FFs. The
complete analytic model achieves FF = 0.956. Unsurprisingly, the fewer compo-
nents are included in the model, the worse is the value of the fitting factor. The
2-component model achieves FF = 0.931, whereas the 1-component model drops
significantly the performance with FF = 0.825.

The impact of the differences in the achieved fitting factors is further under-
stood when we convert them to the reduction in detection rates, which is con-
sidered to scale as (1 − FF3) · 100 [152]. For the reference simulation shown in
Fig. 5.5, the complete analytic model achieves a reduction of the detection rate of
only 12.63%, whereas the simpler, 2-component and 1-component analytic models
suffer from larger reductions of 19.30% and 43.85%, respectively.

The above comparison quantifies the importance of including at least one sec-
ondary component to the analytic description of the post-merger phase. This in-
clusion significantly increases the detectability of the signal with matched-filtered
techniques, otherwise more than half of the candidate events would go undetected.

Phase evolution

We perform a comparison between the analytic model fits with respect to the
gravitational phase ϕ(t) defined by

ϕ(t) = − arctan

(
h×(t)

h+(t)

)
. (5.8)
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5 Analytic models for GWs in NS merger remnants

The phase difference ∆ϕ(t) = ϕfit(t)− ϕsimulation(t) is computed between the ana-
lytic models and the GW signal from the simulation (see Fig. 5.6). In our analysis,
the complete semi-analytic model (Sc) where the fpeak(t) component is modeled by
f spectrogram
peak (t) is also included. We split the post-merger signal in two phases: the
initial phase, which lasts approximately 8 milliseconds and the late phase referring
to the rest of the signal.
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Figure 5.6: Gravitational phase difference ∆ϕ(t) between simulation and analytic
or semi-analytic model fits for the reference simulation in post-merger phase. Fig-
ure taken from [4].

The phase differences ∆ϕ(t) in the early phase are characterized by low am-
plitude spikes which are present in all of the analytic models. The semi-analytic
model follows the same trends, although with slightly lower amplitudes. The phase
difference for the analytic models in the late post-merger phase is dominated by
f analytic
peak (t). That is because by that time the secondary peaks have practically
diminished. We note that the semi-analytic model has a phase evolution different
from that of the analytic models, although the absolute value |∆ϕ(t)| is compara-
ble.

Fitting factors along the whole sequence of merger simulations

We compare the fitting factors achieved by the complete analytic (Ac) and semi-
analytic (Sc) models, and the simplified analytic models (A2, A1) along the whole
sequence of merger simulations in Fig. 5.7. The corresponding reduction in de-
tection rates is reported in Tab. 5.2. We find that the general trend agrees with
our findings for the reference simulation, that is, the complete analytic and semi-
analytic models perform best leading to the highest fitting factors. For the simple
1-component analytic model the fitting factors are between 0.82 and 0.86 for most
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Reduction in detection rates (%)
Mtot[M⊙] Sc Ac A2 A1

2.4 5.01 6.17 9.86 43.03
2.5 9.01 12.63 19.30 43.85
2.6 7.88 12.63 13.45 37.93
2.7 3.56 6.74 21.88 40.52
2.8 5.30 7.03 9.01 42.82
2.9 8.45 10.97 17.73 41.36
3.0 11.53 12.90 22.38 55.75
3.1 24.39 25.39 33.01 72.28

Table 5.2: Reduction in detection rates for various analytic and semi-analytic
models. The definition of each model is given in Tab. 5.1. Table taken from [4].
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Figure 5.7: Fitting factors FFs for the analytic, and semi-analytic model fits
for a source at polar distance of 40 Mpc using the Einstein Telescope sensitivity
curve [3]. The blue circle displays the FF for the Ac model fit for the HR simulation
(see Appendix A.2). Figure taken from [4].

simulations, however, they deteriorate drastically for the two highest-mass simu-
lations, leading to a reduction of the detection rate of up to 72.28%. Even though
the 2-component model performs significantly better than the 1-component model,
however, it is still insufficient when compared to the complete analytic or semi-
analytic models. We thus conclude that several secondary components such as
fspiral and f2±0 should be included in post-merger GW templates, if a small reduc-
tion of the detection has to be achieved.
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Fitting factors (FFs) Reduction in detection
rates (%)

Mtot[M⊙] Ac sAc Ac sAc
2.4 0.979 0.827 6.17 43.44
2.5 0.956 0.727 12.63 61.58
2.6 0.956 0.773 12.63 53.81
2.7 0.977 0.845 6.74 39.66
2.8 0.976 0.846 7.03 39.45
2.9 0.962 0.824 10.97 44.05
3.0 0.955 0.779 12.90 52.73
3.1 0.907 0.797 25.39 49.37

Table 5.3: Fitting factors FFs and reduction in detection rates (%) for the Ac and
sAc analytic models for the post-merger GW emission (see Tab. 5.1 for definitions).
Table taken from [4].

Importance of the 2-segment description of fpeak(t)

We assess the importance of the time-dependent description of fpeak(t) in the
analytic model in comparison to the constant frequency description. We employ
the simplified complete analytic model (sAc) where fpeak(t) is constant and equal

to fpeak = ⟨f t∈[0,t∗]
peak ⟩. Then, we perform the fits for the models Ac, sAc and compare

the fitting factors FFs.

The fitting factors along the mass sequence are shown in Tab. 5.3 and Fig. 5.8
(top panel). The model sAc leads to small fitting factors FFs, ranging from 0.727
to 0.846, while the Ac model performs significantly better. The sAc model in
terms of the reduction in detection rates, is significantly worse than the Ac model.
We note that for the two highest mass models (Mtot = 3.0, 3.1 M⊙) substituting

⟨f t∈[0,t∗]
peak ⟩ with fpeak leads to FFs close to the ones obtained with Ac.

5.3. Parameters of the analytic model

In this section we discuss the analytic model’s parameters and how they depend
on the total binary massMtot. We find a systematic dependence onMtot for all the
parameters of the model and obtain analytic descriptions of the respective depen-
dencies using polynomial fits. We first discuss the analytic description of fpeak(t)
and the parameters which determine the 2-segment piecewise function, Eq. (4.1).
Subsequently, we provide empirical relations for the secondary frequency compo-
nents. We then focus on the amplitudes Ai, timescales τi and normalization factor
N . We address the initial phases ϕi and we find additional correlations between
these parameters. Finally, with empirical relations for all the parameters of the
analytic model (Ac) we construct a purely analytic model which uses exclusively
analytic functions and discuss its performance.
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Figure 5.8: Top panel: Fitting factors FFs for the Ac and sAc analytic fits. Bottom
panel: Reduction in detection rates for the Ac and sAc analytic fits. The circles
indicate the FF (blue) and reduction in detection rates (pink) for the sAc model
fit for the HR simulation (see Appendix A.2). Figure taken from [4].

5.3.1. fpeak(t) parametrization

Figure 5.9 displays the parameters ζdrift, t∗, fpeak,0, extracted from fpeak(t), as func-
tions of total mass Mtot for our sequence of simulations. We find that these pa-
rameters follow specific dependencies that can be modeled by second and third
order polynomials (black lines) respectively, given by

ζdrift = −1.420 ·M3
tot + 11.085 ·M2

tot

−28.834 ·Mtot + 24.943, (5.9)

fpeak,0 = +0.908 ·M2
tot − 3.974 ·Mtot + 7.058, (5.10)

t∗ = −8.523 ·M2
tot + 40.179 ·Mtot − 40.741. (5.11)

The final frequency fpeak(t = t∗), which by definition is determined by the
parameters ζdrift, fpeak,0, t∗ (black dashed curve) is determined by Eq. (5.9)-(5.11))
is shown in (bottom) Fig. 5.9.

The parameter fpeak(t∗) (see Fig. 5.9) approximately coincides with fpeak (de-
fined as the frequency of the highest peak in the GW spectra). It also increases
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Figure 5.9: Top panel: ζdrift parameter along the mass sequence. The black curve
shows a third order polynomial fit. Middle panel: t∗ parameter along the mass
sequence. The black curve shows a second order polynomial fit. Bottom panel:
fpeak,0 parameter (orange) along the mass sequence. The black solid curve shows a
second order polynomial fit. In addition, data points (red) along the mass sequence
are shown for fpeak(t∗), which is determined by ζdrift, fpeak,0, t∗. The black dashed
curve is determined by polynomial fits to ζdrift, fpeak,0, t∗. Cyan circles indicate
the fpeak extracted from the GW spectra (see Fig. 4.9). The circles indicate the
respective parameters (for each figure) for the HR simulation (see Appendix A.2).
Figure taken from [4].
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with the total mass Mtot because the remnant becomes more compact. We
note that fpeak,0 shows a similar dependence on the total mass Mtot. We pre-
viously mentioned that the evolution of fpeak(t) becomes faster and more sig-
nificant for high-mass configurations, and that is confirmed by the difference
∆fpeak = fpeak,0 − fpeak(t∗). ∆fpeak increases with total mass Mtot from 0.288
kHz for the model with the lowest mass to 0.462 kHz for the configuration with
Mtot = 3.1M⊙.

The duration of the frequency drift, t∗, is a decreasing function of the total
binary mass Mtot. We note that it is possible for t∗, in particular, to depend on
the numerical scheme, resolution and physics of the simulation tool, which can
affect the angular momentum redistribution of the remnant and possibly prolong
or shorten the drift.

The slope parameter ζdrift is approximately constant (≈ −0.060kHz2) forMtot ≤
2.8M⊙. However, a rapid decrease occurs as the total massMtot approachesMthres

(see Fig. 5.9). Such a trend may not be unexpected as a result of an accelerated
evolution of the remnant (in the early post-merger phase) due to the strong gravity.

If it is possible to extract ζdrift, t∗ and ∆fpeak, one may use this information to
estimate the proximity to a prompt collapse. For this, the occurrence of a faster
frequency evolution for high-mass binaries should be confirmed for other EoS
models, possibly considering ζdrift, t∗, ∆fpeak relative to fpeak, instead of absolute
values.

5.3.2. Secondary frequencies fspiral, f2±0

Figure 5.10 shows the secondary frequency components fspiral, f2±0 as a function
of the total binary mass Mtot. For comparison, we also show the mean value
⟨f t∈[0,t∗]

peak (t)⟩ as a function of Mtot. All these frequencies follow specific trends
which we model with linear and second order polynomials for the f2+0 and fspiral,
f2−0, respectively. The fits read

fspiral = +0.319 ·M2
tot − 0.758 ·Mtot + 1.914, (5.12)

f2−0 = +0.236 ·M2
tot + 0.167 ·Mtot − 0.433, (5.13)

f2+0 = +0.371 ·Mtot + 2.929. (5.14)

The fit for ⟨f t∈[0,t∗]
peak (t)⟩ is determined by the fits for ζdrift, t∗, fpeak,0 (see Chap-

ter 5.3.1).

5.3.3. Amplitudes, timescales, normalization factor

We discuss the properties of the dominant component’s parameters Apeak, τpeak,
the parameters of the secondary components Aspiral, A2±0, τspiral, τ2±0 and the
normalization factor N . The parameters determined for the complete analytic
model (Ac) are employed.
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Figure 5.10: Secondary frequencies fspiral, f2±0 and mean ⟨f t∈[0,t∗]
peak (t)⟩ as a function

of total binary mass. Continuous curves indicate the corresponding linear and
second order polynomial fits.

Apeak and τpeak

The parameters Apeak, τpeak are displayed in Fig. 5.11a, 5.11b. Apeak and τpeak
follow dependencies, which can be modeled by second order polynomial fits given
by

Apeak = −0.409 ·M2
tot + 3.657 ·Mtot − 6.130, (5.15)

τpeak = +7.782 ·M2
tot − 53.040 ·Mtot + 93.542. (5.16)

Apeak increases with Mtot, which may be expected, because the involved masses
are higher and also the initial excitation is more pronounced. τpeak decreases as
the total binary mass Mtot increases, indicating a stronger damping.

Aspiral, A2±0, τspiral and τ2±0

The parameters Ai, τi (for i = spiral, 2± 0) are shown in Fig. 5.12a, 5.12b. The
amplitudes Ai and timescales τi exhibit dependencies on the total mass Mtot and
follow specific trends. We quantify these trends by performing second order poly-
nomial fits resulting in

τspiral = −0.874 ·M2
tot + 3.521 ·Mtot − 2.005, (5.17)

τ2−0 = +2.057 ·M2
tot − 10.804 ·Mtot + 14.606, (5.18)

τ2+0 = +8.469 ·M2
tot − 48.785 ·Mtot + 71.671, (5.19)
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Figure 5.11: Top left panel: Analytic model dimensionless amplitude Apeak for

r · h+(t) for the analytic model which employs the f analytic
peak (t) description. Black

curve corresponds to second order polynomial fit. Top right panel: Analytic model
timescale τpeak for the analytic model which employs the f analytic

peak (t) description.
Black curve corresponds to second order polynomial fit. Bottom panel: Analytic
model products (A · τ)peak. Black dashed curves determined by fits to Apeak, τpeak.
The blue circles indicate the respective parameters (for each figure) for the HR
simulation (see Appendix A.2). Figure adapted from [4].

Aspiral = +2.649 ·M2
tot − 13.580 ·Mtot + 17.752, (5.20)

A2−0 = −1.704 ·M2
tot + 10.004 ·Mtot − 13.909, (5.21)

A2+0 = +0.816 ·M2
tot − 3.920 ·Mtot + 4.734. (5.22)

These relations are not particularly tight, especially for A2−0 and τspiral. This
is likely caused by the difficulty to precisely extract secondary features from the
complex signal. However, the amplitudes of all secondary features clearly increase
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Figure 5.12: Top left panel: Analytic model dimensionless amplitudes Aspiral, A2−0,
A2+0 for r ·h+(t) extracted from spectrograms. Black curves correspond to second
order polynomial fits. Top right panel: Analytic model timescales τspiral, τ2−0, τ2+0

extracted from spectrograms. Black curves correspond to second order polynomial
fits. Bottom left panel: Analytic model products (A · τ)spiral, (A · τ)2−0, (A · τ)2+0.
Black dashed curves determined by polynomial fits to Ai, τi for i=spiral,2 ± 0.
Yellow dashed curve corresponds to the fourth order polynomial fit to (A · τ)spiral.
Bottom right panel: Analytic model correction factor N for the analytic model
which employs the f analytic

peak (t) description. Black curve corresponds to a linear
fit. The colored circles indicate the respective parameters (for each quantity and
figure) for the HR simulation (see Appendix A.2). Figure adapted from [4].

with mass.

The components f2±0 become more prominent as the total massMtot increases,
and this is seen in A2±0 too (see Fig. 5.12a). This trend is understandable, due
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to the stronger excitation of the radial oscillation mode which occurs for high-
mass models. For low-mass configurations, the coupling to the radial oscillation
is significantly suppressed (see Fig. 4.10), and consequently the amplitudes of
the couplings f2−0 and f2+0 should be small, which is only the case for the f2+0

component. The relatively high amplitude A2−0 for small Mtot is most likely an
artifact of the fit and is compensated by a very small decay timescale. As such,
the weakness of the radial oscillation implies that the damping times τ2±0 are not
very meaningful measures for low-mass systems. For higher total binary masses
there is a noticeable mild increase of τ2±0, and this is in line with the behavior in
Fig. 4.10. The fspiral component’s timescales show a mild decrease, corresponding
to a faster dissipation of the tidal bulges. The amplitude of the fspiral component
similarly increases with Mtot.

In addition, we consider the product (A · τ)i as a quantitative measure for the
strength of a secondary feature. The products (A·τ)i for each frequency component
are shown in Fig. 5.12c. Equations (5.17)-(5.22) are used in order to derive analytic
expressions displayed by dashed curves. As expected, the products (A · τ)2±0

increase systematically with Mtot and closely follow the analytic expressions. The
product (A · τ)spiral is roughly constant 2.

The strength of the secondary components quantified as in Fig. 5.12c resembles
the behavior which was anticipated in [28]. It reproduces the different types of
post-merger GW emission: for low-mass binaries the fspiral component is dominant
(Type III in the notation of [28]), for intermediate masses the strength of fspiral
and f2−0 is roughly comparable (Type II), and for models with very high Mtot

the couplings with the radial oscillation are dominant over fspiral (Type I). Thus,
the products (A · τ)i may serve as a quantitative measure to classify different
types of post-merger dynamics and GW emission including the morphology of the
spectrum.

We note that the method we employ for the derivation of Ai, τi introduces a
bias whenever f2−0 and fspiral are close (see Sec. 5.3.3). This is possibly one of the
reasons for the scattering of Ai, τi from the analytic fits.

Normalization factor N

The normalization factor N as a function of total mass Mtot for fits with the
complete analytic model (Ac) is shown in Fig. 5.12d. We find a linear dependence
on Mtot modeled by

N = −0.485 ·Mtot + 2.025 (5.23)

For low-mass configurations, N becomes less important (close to 1) and more
significant (close to 0.50) for high-mass configurations. One reason for such a
trend may be that for estimating Ai, τi we treat each component separately. Since
in low-mass configurations the components fspiral and f2−0 are well separated, the
parameters Ai, τi are accurately derived. In contrast, for high-mass configurations,

2(A · τ)spiral shows a large scatter from the derived analytic expression (using
Eq. (5.20), (5.17)), however, we find that a fourth order polynomial fit describes well the trend.
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5 Analytic models for GWs in NS merger remnants

where the peaks overlap, the parameters may be overestimated and the correction
becomes necessary.

Another reason may be the fact that the f2±0 components are significantly
weaker than the fspiral components for low-mass systems (see e.g. the products (A·
τ)i), and as a result, their contribution to the total signal is minor, and so, a single
secondary feature does not require significant corrections by the normalization
factor.

5.3.4. Initial phases ϕpeak, ϕspiral, ϕ2±0
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Figure 5.13: Initial phases ϕi (for i=peak, spiral, 2 ± 0) for the analytic model
which employs the f analytic

peak (t) description as a function of total binary mass. Col-
ored curves correspond to piecewise linear fits. The colored circles indicate the
respective parameters for the HR simulation (see Appendix A.2). Figure taken
from [4].

We discuss the properties of the initial phases ϕi (for i = peak, spiral, 2± 0) for
all the models in the sequence of simulations. In this analysis we add multiples of
2π to the initial phases ϕi such that ϕi(Mtot) becomes an increasing function (see
Fig. 5.13).

We find a tight correlation between ϕi and the total mass Mtot. This depen-
dence is modeled with a 2-segment piecewise function consisting of two linear fits
which intersect at total mass of Mtot = 2.7 M⊙ (see Appendix B.2).

We stress that these remarkably tight correlations imply that the properties of
the gravitational phase ϕ(t) (see Eq. (5.8)) in the early post-merger phase depend
systematically on the total mass Mtot.

We also find tight correlations between the initial phases ϕspiral, ϕ2±0 and ϕpeak
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Figure 5.14: Initial phases ϕi (for i=spiral, 2 ± 0) with respect to ϕpeak for the

analytic model which employs thef analytic
peak (t) description. Black curves correspond

to linear fits. The colored circles indicate the respective parameters for the HR
simulation (see Appendix A.2). Figure taken from [4].

as shown in Fig. 5.14. These correlations are modeled with linear fits given by

ϕspiral = +0.953 · ϕpeak + 0.756 (5.24)

ϕ2−0 = +0.980 · ϕpeak + 1.345 (5.25)

ϕ2+0 = +0.975 · ϕpeak − 2.166. (5.26)

There is only a small difference, at most by 3%, between the slope parameters
in Eq. (5.24)-(5.26) and therefore they are approximately equal. We note that the
slopes are also close to 1. The latter would imply a constant difference in phase
between the fpeak component and the secondary components. These relations and
the ones shown in Fig. 5.13 may be in reality even tighter and the small but finite
scatter results from finite resolution in the simulations or the fitting procedure.
Tight relations like these can be employed to reduce the complexity of the analytic
fit by reducing the parameter space.

We find that the ϕpeak(Mtot) and ϕspiral(ϕpeak), ϕ2±0(ϕpeak) relations (see Eq. (5.24)
to Eq. (5.26)) can be used to reduce the number of the analytic model’s parame-
ters (and thus the complexity of the fitting procedure) and still obtain good fits
to the data. We test this by substituting the initial phases ϕi with the predictions
made by Eq. (B.1), Eq. (5.24)-(5.26). We find that the FFs only differ by a few
percent (0.5-3%) compared to fits to the analytic model. When we perform a
phase alignment in the waveforms the FFs differ by at most by ≈1% .

We overplot the initial phases ϕi (for i=peak, spiral, 2 ± 0) for the HR simu-
lation in Figures 5.13 and 5.14 (see Appendix A.2). These appear to be slightly
larger than the ones from the mass sequence simulations, however, their relative
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difference is similar to the mass sequence simulations as corroborated by Fig. 5.14.
Furthermore, we find that these tight correlations between the initial phases

(Eq (5.24)-(5.26)) are unaffected by residual eccentricities in the ID (see Fig. A.3
and Appendix A.1).

5.3.5. Purely analytic model

Fitting Factors (FFs)
Mtot[M⊙] Ac P(Mtot, t) P(Mtot, t;ϕpeak)

2.4 0.979 0.653 0.801
2.5 0.956 0.795 0.847
2.6 0.956 0.912 0.913
2.7 0.977 0.878 0.922
2.8 0.976 0.878 0.899
2.9 0.962 0.848 0.905
3.0 0.955 0.595 0.864
3.1 0.907 0.887 0.898

Table 5.4: Fitting factors FFs for the analytic model Ac fits, the purely analytic
model P(Mtot, t), and the analytic model with one free parameter P(Mtot, t;ϕpeak).
Table taken from [4].

Furthermore, we introduce a purely analytic model P(Mtot, t). This is possible
due to the systematic dependence of all the parameters of the analytic model on the
total binary mass. The model uses the analytic functions Eq. (5.9)-(5.23),(B.1)-
(B.4), which depend only on Mtot.

The model’s performance is evaluated by computing the respective FFs. Ta-
ble 5.4 shows the FFs for the analytic model P(Mtot, t) compared to the Ac an-
alytic fits. We observe a significant drop in the FFs as expected, however, the
majority of the fits still result in FFs ≳ 0.80. The FFs can be further improved by
considering an analytic model where ϕpeak is treated as a free parameter, denoted
by P(Mtot, t;ϕpeak). In this case, almost all configurations lead to FFs ≳ 0.85 (see
Tab. 5.4).

These considerations show that it may be possible to determine the different
analytic functions Eq. (5.9)-(5.23),(B.1)-(B.4) (or only piecewise linear segments
of these functions) by several simulations and anticipated observations and then
use those functions to interpolate the model in Mtot.
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6. Models close to prompt collapse

In this chapter we discuss the spectral properties of configurations with a total
massMtot close to threshold mass for prompt collapseMthres. For these high-mass
configurations, FFs decrease, which indicates that our model becomes less accu-
rate.The first modification consists of a time-dependent treatment of f2±0(t), while
the second is the inclusion of the fspiral−0 component (see Tab. 6.1). Finally, we
describe how different frequency components and their higher-order combination
tones may explain most of the spectral features in the GW spectrum.

6.1. Extended analytic models and GW fits

We separately introduce two modifications to the analytic model. First, we con-
sider a dynamical evolution of f2±0(t). Second, we include the fspiral−0 component,
i.e., an additional coupling between fspiral and f0 (see Sec. 4.1.3). Table 6.1 sum-
marizes information for the extended analytic models.

Model description Name Components

Extended analytic model 1 M1 f analytic
peak (t), fspiral, f2−0(t),
f2+0(t)

Extended analytic model 2 M2 f analytic
peak (t), fspiral, f2−0, f2+0,
fspiral−0

Table 6.1: Definitions for the two extended analytic models. When the time
argument is explicitly written, a time-dependent description is employed for that
particular component. Table taken from [4].

The importance of the time evolution of f2±0(t) is assessed by extracting f2±0(t)
from spectrograms (see Chapter 4) and inserting the numerically extracted values
into the analytic model (see Sec. 5.1.2). We find below that even the complete
numerical description of f2±0(t) yields only a minor improvement, and thus we do
not further discuss a parametrization of f2±0(t).

The fits to the simulation with total binary mass Mtot = 3.1 M⊙ for the
extended analytic models are shown in Fig. 6.1. We find that the inclusion of
the time-evolving components f2±0(t) leads to a mild increase of the fitting factor:
FFnew,1 = 0.916 compared to the original of FFold = 0.907 (see Sec. 5.2.1). This
increase in FF slightly improves the reduction in detection rates from 25.39% to
23.14%. We also note that the model with the dynamical f2±0(t) qualitatively
reproduces a small peak at approximately 1.9 kHz (orange curve in Fig. 6.1).
However, it still does not yield a good description of the simulation below 2 kHz.
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Figure 6.1: Effective GW spectra heff,+(f) for simulation, and analytic models for
Mtot = 3.1 M⊙ model. Black line corresponds to the simulation. Colored curves
illustrate the analytic model fits as described by the labels. Colored boxes show
the corresponding fitting factors FFs. Dashed vertical lines indicate secondary
frequencies. Figure taken from [4].

The blue curve in Fig. 6.1 includes the fspiral−0 component. We assume the
frequency fspiral−0 to be constant and we also adopt constant values for f2±0 as in
the original model. Since we do not observe a distinct peak in the GW spectrum
for the frequency fspiral+0, we do not incorporate this component in our modified
analytic model. We determine the parameters Aspiral−0, τspiral−0 from the spectro-
grams as described in Sec. 5.1.3.

The inclusion of the fspiral−0 component substantially increases the fitting factor
FFnew,2 = 0.962. The reduction in the detection rates is significantly improved
to 11%. The importance of the fspiral−0 component is also apparent in the GW
spectrum (compare orange and blue curve below 2 kHz). The fspiral−0 component
has a large impact on the FF because as previously mentioned, the strength of
fspiral−0 relative to frequency dependent sensitivity curve is similar to f2+0 (for this
mass configuration).

We remark that the first modification (time-evolving f2±0(t)) only slightly
improves the analytic fits but increases the complexity of the model since a
parametrization of f2±0(t) would require a number of additional parameters. The
second modification (inclusion of fspiral−0) improves significantly the analytic fits
(with respect to FFs) and only introduces a minimum of new parameters (Aspiral−0,
τspiral−0, ϕspiral−0), while the frequency is already derived from the other compo-
nents).
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6.2 Additional spectral features

6.2. Additional spectral features

Finally, we note that the different components and their couplings provide ex-
planations for basically every feature in the GW spectrum up to about 6 kHz if
one additionally considers higher order combination tones. This is corroborated by
Fig. 6.2 which displays the GW spectrum for the simulation with total binary mass
Mtot = 3.1M⊙, where we also draw the fit for the simplified analytic model (green
curve). Those additional frequencies are estimated by employing the dominant fre-

quency at early times ⟨f t∈[0,t∗]
peak ⟩ and using the expressions f2+20 ≈ ⟨f t∈[0,t∗]

peak ⟩+2 · f0
and fspiral+20 ≈ fspiral + 2 · f0. The respective frequency ranges are determined

by inserting the time evolution of f0(t) and f
analytic
peak (t). The estimated frequency

ranges for f2+20 and fspiral+20 match relatively well with peaks in the GW spec-
trum. We note that the frequencies f2+20 and fspiral+20 are also expected to follow
empirical relations, which can be exploited in more sophisticated analytic models.
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Figure 6.2: Effective GW spectra heff,+(f) for simulation, and simplified analytic
model for Mtot = 3.1 M⊙ model. Black line corresponds to the simulation. Green
line displays the simplified 1-component analytic model (A1). Dashed, dash-dotted

vertical lines indicate secondary frequencies ⟨f t∈[0,t∗]
peak ⟩, fspiral, f2±0, fspiral−0, f2+20,

fspiral+20. Shaded areas visualize their respective spread due to the time evolving
frequencies. Figure taken from [4].

We also remark that the frequency component f2−20 is most likely less impor-

tant than fspiral−0. We use the expression f2−20 ≈ ⟨f t∈[0,t∗]
peak ⟩ − 2 · f0 to estimate its

frequency at f2−20 = 1.309 kHz, and this is significantly lower than the peak in
the GW spectrum (fspiral−0 = 1.664 kHz).
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6 Models close to prompt collapse

Another relevant feature is the re-excitation of the quadrupolar mode fpeak,
which occurs roughly 10 ms after merging in high-mass models, see Appendix B.2.2,
possibly due to the excitation of a low-|T/W | rotational instability (see, e.g.
[153–155] and references therein). This feature is not captured by the adopted
single exponential decay of the amplitude.

88



7. Quasi-radial oscillations
in NS merger remnants

In this chapter we discuss the quasi-radial oscillation modes in NS merger rem-
nants. To our knowledge, this is the first comprehensive analysis of quasi-radial
oscillations in NS merger remnants. We analyse the libraries of binary NS simu-
lations introduced in Sec. 3.2. For every remnant in our collection of simulations,
we extract the quasi-radial oscillation frequency f0 and the quadrupolar frequency
fpeak. We find a quasi-universal relation that connects the ratio f0/fpeak to the
proximity to the threshold mass for prompt formation of BH. Finally, we propose
a method for determining the threshold mass Mthres and maximum mass Mmax

which relies on only one precise measurement of Mtot, fpeak, f0.

7.1. The f0/fpeak relation

In this section we introduce a new quasi-universal empirical relation which con-
nects the quasi-radial oscillation frequency f0, the quadrupolar oscillation fre-
quency fpeak, and the proximity to the threshold mass for prompt BH formation
∆M =Mthres−Mtot (see Fig. 7.2). In the following analysis, we only discuss sym-
metric binaries but our results can, in principle, be generalized for asymmetric
binaries (see Sec. 7.4).
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Figure 7.1: Quasi-radial oscillation frequencies f0 for the DD2, SLy4, SFHX, and
LS220 EoS models as a function of total binary mass.
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7 Quasi-radial oscillations in NS merger remnants

For every simulation in our data set we extract the quasi-radial oscillation
frequency f0 from the Fourier transform of the time evolution of the maximum
rest-mass density ρmax(t) (alternatively, one may use the minimum lapse function
αmin(t) as in Chapter 4). We first detrend the data using a second order polynomial
fit and employ the Tukey window function with a rolloff parameter of s = 0.1.
We locate the peak with the maximum amplitude in the region of 1 kHz and then
perform a second order polynomial fit where we finally identify f0 as the frequency
which corresponds the analytic maximum of the polynomial. We extract fpeak
from the Fourier transform of the GW post-merger signals using the procedure
described in Chapter 4 and we also employ the second order polynomial fit, as we
do for f0, to resolve fpeak more accurately. Furthermore, for the models where the
coupling frequency f2−0 is adequately excited and thus can be identified in the GW
spectrum, we compare the extracted frequency f0 to the difference fpeak−f2−0 ≈ f0
and find good agreement with the extracted f0.

Figure 7.1 displays the frequencies f0 as a function of total binary mass Mtot

for the EoSs DD2, SLy4, SFHX, and LS220. We only present these four EoSs as
an example but we note that the same conclusions can be drawn for all the EoSs
in our data set. For every EoS model we simulate configurations with increasing
total binary mass and only stop when Mtot is close to Mthres. We find that, in
contrast to fpeak, the frequencies f0 do not change drastically and generally range
from approximately 0.8 kHz to 1.2 kHz.

For every EoS, we identify two trends in f0 as the total massMtot increases: a)
For the configurations with total mass Mtot being well below the threshold mass
(∆M ≳ 0.25 M⊙), the frequencies f0 are roughly constant and approximately
around 1.0 kHz. We observe a correlation of the frequencies f0 (in thisMtot regime)
with the radius R1.6 of the 1.6M⊙ non-rotating NS. b) For the configurations where
Mtot approaches the threshold mass Mthres (∆M ≲ 0.25 M⊙), the frequencies
f0 start to decrease significantly and tend to approach zero. This is a trend
which is also observed in perturbative calculations [87] where the frequency of the
fundamental radial oscillation mode goes to zero when the gravitational mass is
close to Mmax (for higher mass configurations the frequencies f0 become complex
and lead to unstable modes).

Furthermore, we introduce a new quasi-universal relation between the ratio
f0/fpeak and ∆M =Mthres −Mtot, which measures the proximity to the threshold
mass, shown in Fig. 7.2. As can be seen in Fig. 7.2, f0/fpeak is an increasing
function of ∆M . For all binaries in our data set, we compute the ratio f0/fpeak
and then use the total mass Mtot and the values of Mthres from [5] to determine
∆M . Figure 7.2 shows the ratios f0/fpeak as a function of ∆M for the various
EoS models employed in this work. As apparent, there is a noticeable scatter in
this relation, however, all the EoS models exhibit this trend. We find that this
relation can be modeled with a third order polynomial (see black curve and gray
band in Fig. 7.2).

To better understand this relation, we first focus on the configurations with
Mtot far fromMthres (∆M ≳ 0.25M⊙). In this mass regime, the frequencies f0 are
roughly constant but also, depending on the softness/stiffness of the EoS, range
from ≈ 0.9 kHz (stiff EoSs) to ≈ 1.2 kHz (soft EoSs). The frequencies fpeak, for a
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7.1 The f0/fpeak relation
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Figure 7.2: Quasi-universal relation of the ratio f0/fpeak as a function of the
proximity to the threshold mass ∆M . Black curve corresponds to the third order
polynomial fit. Gray band indicates the average absolute error between the data
and the fit.

fixed EoS mass sequence, increase with the total mass, however, they also exhibit
a scatter in the frequency ranges. Low values of fpeak (around 2.0− 2.4 kHz) are
attributed to stiff EoSs and high values (around 3.2 − 3.6 kHz) to soft EoSs. By
considering the ratio f0/fpeak, the EoS dependent scatter (in f0 or fpeak) due to the
softness/stiffness of the EoS is cancelled out. The decreasing trend is maintained
(originating from the increase of fpeak as the mass increases).

For the configurations where Mtot is close to Mthres (∆M ≲ 0.25 M⊙), the
frequencies f0 decrease significantly. The frequencies fpeak, again for a fixed EoS
mass sequence, continue to increase at an even higher rate than previously as
the total mass increases (see [156]). The combination of those effects lead to the
slightly steeper trend in the f0/fpeak relation around the vicinity of ∆M = 0.

We note that the threshold masses Mthres for all these EoSs, are determined
using another version of the SPH code which employs a different, more dissipative,
kernel and thus some minor changes of a few percent inMthres may affect the exact
value of ∆M and possibly improve a bit the relation. We are currently performing
additional simulations in this regard.

Finally, we remark that it may be observationally preferable to construct a
variant of the f0/fpeak relation where the ratio f0/fpeak is replaced by (fpeak −
f2−0)/fpeak ≈ f0/fpeak which uses quantities measured directly from the signal.
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7 Quasi-radial oscillations in NS merger remnants

7.2. Determining Mthres

In this section we introduce a method for determining the threshold mass Mthres

using the aforementioned f0/fpeak relation. We consider a scenario where the total
binary mass Mtot, the dominant frequency fpeak, and the quasi-radial oscillation
frequency f0 are measured with good accuracy. In practice, this means that we
do not consider any uncertainties in Mtot, fpeak, f0. The total binary mass Mtot

can be determined by the inspiral phase, while the frequencies fpeak and f0 from
the post-merger phase using templates as the ones described Chapter 5. We
note that the frequency f0 has to be inferred by measuring at least one of the
secondary frequencies f2±0 or the doublet fspiral±0 and fspiral. In Sec. 7.4 we discuss
a generalization of our method where the total mass Mtot (threshold mass Mthres)
is replaced by the chirp mass Mchirp (chirp threshold mass M thres

chirp ), which is the
quantity measured with highest accuracy so far, but we find it more intuitive to
introduce our scheme with regard to Mtot.
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Figure 7.3: Proximity to threshold mass ∆M as a function of the ratio f0/fpeak
for all binaries in our data set. Black curve shows the sixth order polynomial fit.
Gray band indicates the average absolute error between the data and the fit.

The f0/fpeak relation can be used to determine the proximity to threshold mass
∆M =Mthres −Mtot (see Fig. 7.2), however, we find it more convenient to invert
this relation and perform a fit on ∆M with respect to f0/fpeak (see Fig. 7.3). In
addition, we only consider a subset of our data set with models with proximity
to threshold mass ∆M ≤ 0.5 M⊙. This choice is meaningful because models with
larger ∆M are likely to have only weakly excited quasi-radial oscillations and thus
a measurement of f0 may be difficult. Moreover, our library of waveforms consists
of considerably less simulations with ∆M > 0.5 and so the empirical law we derive
is statistically more accurate for low values of ∆M . Finally, we employ a sixth

92



7.2 Determining Mthres

order polynomial (and not a third order one in order to increase the accuracy) to
model the general trend of the data. It reads

∆M = +1.0463 · 105 (
f0
fpeak

)6 − 1.9257 · 105 (
f0
fpeak

)5 + 1.4455 · 105 (
f0
fpeak

)4

− 5.6669 · 104 (
f0
fpeak

)3 + 1.2257 104 · ( f0
fpeak

)2 − 1.3891 · 103 (
f0
fpeak

)

+ 64.572. (7.1)

We evaluate the quality of our fit with the average of the absolute deviation
between the data and the empirical relation (see gray band in Fig. 7.3) and find
it to be equal to 0.038 M⊙. This quantity is important because it shows how well
our relation describes the majority of our data and avoids the biases which come
from extreme models. A rather conservative index for assessing this relation is the
maximum deviation, which is equal to 0.138 M⊙. The latter can be interpreted as
the maximum uncertainty in our predictions. Since we consider a precise measure-
ment in total mass Mtot and so the uncertainty in Mtot is zero, any uncertainty in
the relation (7.1) becomes the uncertainty in predicting the threshold mass using
the expression Mthres =Mtot +∆M .
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Figure 7.4: Threshold mass predictions Mprediction
thres as a function of the numerical

relativity values M simulation
thres . Black line indicates the perfect match of y = x. Gray

band shows the average absolute error between the predictions and the data. Gray
dashed lines show the maximum deviation between the fit and the data. Color
bar indicates the proximity to threshold mass ∆M .

We then convert the estimates of ∆M to Mthres. We treat every model in our
sample as a potential detection where Mtot, fpeak, and f0 are known with zero
uncertainties. From the ratio f0/fpeak and the empirical relation (7.1) we obtain
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7 Quasi-radial oscillations in NS merger remnants

the proximity to threshold mass ∆M and then predict the threshold mass using
the expression Mthres = Mtot + ∆M . Figure. 7.4 shows the comparison between
our predictions (Mprediction

thres ) and the numerical relativity values (M simulation
thres ) calcu-

lated in [5], where the colors indicate the proximity to threshold mass ∆M . The
predictions agree relatively well with the numerical relativity calculations with an
average deviation of 0.038 M⊙. The latter is identical to the average deviation on
∆M , which is expected as previously explained. The aforementioned apply to the
maximum deviation which is equal to 0.138 M⊙.

Table 7.1 provides information about the scheme’s predictionsMprediction
thres for all

EoS models of our sample. We find that the ∆M which results to the lowest devia-
tion from the simulation value, that is, our best prediction (BP), is not necessarily
the one with the smallest ∆M for the respective EoS (see Tab. 7.1). This may be
explained in the following manner: The accuracy of the method increases when
the pair (f0/fpeak,∆M) coincides with (or is close to) the empirical law Eq. (7.1).
For a fixed EoS mass sequence, the scatter of the points (f0/fpeak,∆M) compared
to Eq. (7.1) is not necessarily a monotonic function of ∆M , and thus it may be
that intermediate values of ∆M are closer to Eq. (7.1) than lower/higher values of
∆M . In practice, binaries with (f0/fpeak,∆M) being outside of the gray band in
Fig. 7.3 underestimate or overestimate Mthres with an error larger than 0.038 M⊙,
and this can occur at different ∆M regimes for the different EoS models.

EoS
M simulation

thres

[M⊙]
MBP

thres

[M⊙]
MMD

thres

[M⊙]
∆MBP

[M⊙]
∆MMD

[M⊙]
DD2 3.325 3.325 3.256 0.305 0.485
SFHX 2.975 2.972 2.913 0.095 0.495
SFHO 2.875 2.871 2.790 0.075 0.315
TMA 3.175 3.172 3.078 0.095 0.495
TM1 3.375 3.385 3.259 0.215 0.495
LS220 2.975 2.975 2.880 0.035 0.435
LS375 3.575 3.563 3.497 0.075 0.495
NL3 3.800 3.782 3.689 0.120 0.480
GS2 3.162 3.157 3.109 0.042 0.122
BHBLP 3.110 3.109 3.035 0.410 0.170
H4 3.125 3.125 3.195 0.425 0.245
ALF2 2.975 2.976 3.113 0.435 0.255
MPA1 3.225 3.226 3.143 0.345 0.305
SLy4 2.825 2.820 2.870 0.405 0.265
APR4 2.825 2.821 2.886 0.345 0.025
WFF2 2.825 2.822 2.881 0.225 0.305
BSK21 3.075 3.116 3.181 0.395 0.315
BSK20 2.875 2.864 2.965 0.375 0.255

Table 7.1: Mthres determined from numerical relativity, best predictions of the
threshold mass MBP

thres, predictions which lead to the maximum deviation to the
numerical relativity threshold mass MMD

thres, and the corresponding proximity to
threshold mass ∆M , for all the EoSs in our data set.
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7.3 Constraints on Mmax

We also provide the threshold mass estimate which deviates the most from
the actual value of Mthres, that is our maximum deviation (MD) estimate, and
its corresponding ∆M . From the configurations where the predictions of Mthres

deviate from the numerical relativity value by less than the average deviation (gray
band) we find an average ∆M approximately equal to 0.24 M⊙. This quantity
gives only a rough estimate for the optimal ∆M where the method can produce
good performance. Generally, the scheme performs well for the majority of the
EoSs with the exception being the BSK21 EoS where the best prediction has an
absolute difference of 0.053 M⊙ (see Tab. 7.1).

7.3. Constraints on Mmax

Furthermore, we introduce a method to convert the predictions of Mthres to pre-
dictions on the maximum mass Mmax for a non-rotating NS. As previously, we
assume one detection where a precise measurement of Mtot, fpeak, and f0 occurs.
We then use the f0/fpeak relation andMtot to determine the threshold massMthres

with an average error of 0.038 M⊙(see Sec. 7.2). Subsequently, we determine R1.6

from fpeak and Mtot using empirical relations like those in [49]. Finally, we utilize
the bi-linear relations introduced in [5] to determine Mmax using Mthres and R1.6.
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Figure 7.5: Bi-linear relation for the maximum mass Mmax as a function of the
threshold mass Mthres and R1.6. Blue points correspond to the values of Mmax and
R1.6 for the EoSs considered in this work.

More specifically, a precise measurement of fpeak can be used to determine
R1.6. To achieve this one may employ the empirical relations introduced in [49]
which connect R1.6 to fpeak and chirp mass Mchirp

1. The authors provide different
versions of these fits for only symmetric and general ratio binaries with a 1σ

1Because we assume a precise measurement of the total mass Mtot, the chirp mass Mchirp

would be also measured accurately sinceMtot is inferred fromMchirp (see Sec. 7.4 for an extension
of our method).
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7 Quasi-radial oscillations in NS merger remnants

standard deviation of 0.108 km and 0.117 km, respectively. Alternatively, one
may invert the empirical relation of fpeak as a function of R1.6 introduced in [48],
which exhibits an average deviation of ≈ 35 meters. This relation is computed
for a fixed total binary mass of Mtot = 2.7 M⊙, however once Mtot is known, new
empirical relations for R1.6(fpeak(Mtot)) can be constructed with possibly slightly
different average deviations.

Finally, we use bi-linear empirical relations from [5] to predict Mmax. The
authors provide the bi-linear relations for Mthres(Mmax, R1.6) (for different EoS
subsets and mass ratios), which can be trivially converted to Mmax(Mthres, R1.6)
and thus predict the maximum mass Mmax for various EoS models. The bi-linear
relation reads

Mmax = Ã ·Mthres + B̃ ·R1.6 + C̃ (7.2)

where the coefficients Ã, B̃, C̃ are derived from A,B,C of the Mthres(Mmax, R1.6)
relation (no. 14) in Tab. I in [5] via the relations Ã = + 1

A
, B̃ = −B

A
, C̃ = −C

A
.

Figure 7.5 displays the maximum masses Mmax for all the EoS models consid-
ered in this data set overplotted on the bi-linear relation Eq. (7.2). As apparent,
the data fit very well the bi-linear relation with an average deviation of 0.0344M⊙.

Our method can be summarized in the following three steps:

1) R1.6 is inferred from fpeak and Mtot using the relations of [49].

2) Mthres is inferred from Mtot, fpeak, f0 with the method described in Sec. 7.2

3) Mmax is inferred using the bi-linear relation Mmax(Mthres, R1.6) introduced
in [5].

We estimate the uncertainty in the prediction ofMmax in step 3) by propagation
of the error in steps 1) and 2). Since we consider precisely measuredMtot, fpeak, f0,
which is a reasonable assumption for future generation detectors, we only propa-
gate the uncertainty in measuring Mthres (ŝMthres

) and R1.6 (ŝR1.6). The expected
uncertainty in Mmax (ŝMmax) in Eq. (7.2) is obtained from the expression

ŝMmax =

√(
∂Mmax

∂Mthres

)2

ŝ2Mthres
+

(
∂Mmax

∂R1.6

)2

ŝ2R1.6

=
√
Ã2 ŝ2Mthres

+ B̃2 ŝ2R1.6
(7.3)

We obtain ŝMthres
, ŝR1.6 from the average deviation between the empirical relations

and the respective data used for the fits (see Sect. 7.2 and [49]). These correspond
to ŝMthres

≈ 0.038 M⊙ and ŝR1.6 = 0.108 km (for the relation of the symmetric
binaries in [49]). Finally, we estimate the uncertainty in Mmax to be ŝMmax =
0.0725 M⊙. For zero uncertainty in R1.6 we obtain ŝMmax = 0.066 M⊙.

As previously done, we treat each simulation as a mock detection where Mtot

(Mchirp), fpeak, f0 are precisely known, and then use the steps 1) to 3) to estimate
Mmax. As is apparent, the accuracy of our method depends on how good our
predictions for R1.6 and Mthres are in steps 1) and 2). We have already discussed
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Figure 7.6: Maximum mass predictions Mprediction
max as a function of Mmax derived

from the EoSs. Black line indicates the perfect match of y = x. Gray band shows
the average absolute error between the predictions and the data. Gray dashed lines
show the maximum deviation between the fit and the data. Color bar indicates
the proximity to threshold mass ∆M .

the uncertainties in Mthres from the f0/fpeak relation, however, for the uncertainty
in R1.6 we rely on the reported values in [49]. We test the empirical relation
of [49] on our data set and find an average deviation of ≈ 219 meters (instead of
108 meters). One explanation may be that the data set employed in [49] includes
118 waveforms in total, while our data set (configurations with ∆M < 0.5 M⊙) is
more than two times larger with a total of 270 waveforms. Another reason may
be that we focus on configurations with Mtot close to Mthres and therefore we may
deviate from the total mass parameter space used in [49]. For these reasons, we
consider the scenario where R1.6 is determined with an ideal empirical relation
of fpeak and Mtot, and is equal to the value of R1.6 obtained directly from the
EoS. This test allows us to decouple the errors between the predictions in Mthres

and R1.6, and evaluate the performance of our new method which utilizes the
knowledge of f0/fpeak.

Figure. 7.6 displays the Mmax predictions (Mprediction
max ) for all the simulations

of our data set (∆M ≲ 0.5 M⊙) in comparison to the values of Mmax obtained
directly from the EoS model. The black line shows the ideal match (y = x), while
the colors indicate the proximity to threshold mass ∆M . We find an average
deviation between the predictions and the Mmax values obtained from the EoS of
0.067 M⊙. This is not surprising as it is almost equal to the value computed from
the error propagation with zero uncertainty in R1.6. The maximum deviation is
0.271 M⊙, which is a rather large value, but as can be seen from Fig. 7.6 it is
mostly due to two EoS model outliers.

So far, we assumed perfect knowledge of R1.6 which may not be the case in a
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EoS
Mmax

[M⊙]
MBP

max

[M⊙]
MMD

max

[M⊙]
∆MBP

[M⊙]
∆MMD

[M⊙]
DD2 2.421 2.419 2.315 0.425 0.485
SFHX 2.129 2.142 2.258 0.455 0.255
SFHO 2.058 2.064 1.963 0.115 0.315
TMA 2.010 2.010 1.893 0.415 0.495
TM1 2.212 2.228 2.011 0.215 0.495
LS220 2.043 2.040 1.876 0.035 0.435
LS375 2.711 2.661 2.547 0.075 0.495
NL3 2.789 2.786 2.626 0.120 0.480
GS2 2.091 2.100 2.168 0.362 0.282
BHBLP 2.100 2.099 1.951 0.290 0.170
H4 2.012 2.022 1.840 0.345 0.505
ALF2 1.975 1.974 2.246 0.455 0.255
MPA1 2.456 2.471 2.577 0.425 0.025
SLy4 2.045 2.049 2.134 0.405 0.265
APR4 2.189 2.191 2.095 0.145 0.185
WFF2 2.188 2.187 2.289 0.225 0.305
BSK21 2.278 2.273 2.384 0.395 0.315
BSK20 2.167 2.185 2.265 0.335 0.255

Table 7.2: Mmax derived from the EoSs, best predictions of the maximum mass
MBP

max, predictions which lead to the maximum deviation to the maximum mass
MMD

max, and the corresponding proximity to threshold mass ∆M , for all the EoSs
in our data set.

detection scenario. In addition, as we mentioned previously, using relations from
other works and different data sets may introduce systematic uncertainties in R1.6

which would propagate to predictions in Mmax. For these reasons, we perform an
additional test in order to evaluate the impact of the error in R1.6 but also keep
the uncertainties under control. For every mock detection in our data set we add
a noise to the values of R1.6 such that R1.6 → R1.6 + δR1.6 and then calculate the
predictions in Mmax. δR1.6 is drawn from a uniform distribution U [−∆R,+∆R]
where −∆R and +∆R are the lower and upper limits, respectively. We consider
three noise realizations, U [−100 m,+100 m], U [−200 m,+200 m], and the extreme
case of U [−400 m,+400 m]. We find average deviations of 0.067 M⊙, 0.071 M⊙,
and 0.0857 M⊙ and maximum deviations of 0.265 M⊙, 0.288 M⊙, 0.316 M⊙ for
the three cases (∆R = 100, 200, 400 m), respectively. Interestingly, the difference
in the average deviations is negligible for the first two cases, even though the noise
distributions differ significantly. In the third, extreme, case, the average scatter
is larger than the others, however, it is still relatively small. It may be that the
additional scatter in R1.6 is compensated by the scatter in Mthres and thus the
final prediction of Mmax is only mildly affected. The maximum deviations are
systematically increasing but this is expected due to the larger noise and the fact
that is dictated by only one data point.
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7.4 Extensions

7.4. Extensions

In this section we introduce two extensions to our method. First, we illustrate how
a generalization of the f0/fpeak relation to different mass ratios is possible. Then
we discuss a variation of the f0/fpeak relation where the proximity to the threshold
mass ∆M is replaced by the proximity to the threshold chirp mass (M thres

chirp ) defined

as ∆Mchirp =M thres
chirp −Mchirp.

7.4.1. Asymmetric binaries
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Figure 7.7: Quasi-universal f0/fpeak relation for the extended data set which in-
cludes asymmetric binaries of q = 0.9. Black curve corresponds to the third order
polynomial fit. Gray band indicates the average absolute error between the data
and the fit.

We extend our analysis on the f0/fpeak relation and include configurations
from the data set described in Sec. 3.2.2. We consider the mass sequences with
the DD2 and SFHX EoS models and a binary mass ratio of q = 0.9. We note that
the SFHX and DD2 sequences consist of 17 and 6 simulations (for ∆M ≤ 0.8M⊙),
respectively. We will refer to these asymmetric sequences with the name of the
EoS along with a star symbol as DD2* and SFHX*. We note that we do not
include the mass sequence for the SLy4 EoS and q = 0.9 in this analysis. This is
because for a portion of those models the quasi-radial mode is only weakly excited,
and identifying f0 is not trivial. Similarly, we do not include the sequences with
lower values of q because as the asymmetry grows, the radial oscillation becomes
weaker, additional spectral features may emerge, and thus it is not straightforward
to identify f0 just from the Fourier transform of ρmax(t) but an eigenmode analysis
is required (see [27]). We remark that while this section serves as an example on
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7 Quasi-radial oscillations in NS merger remnants

how the method can be extended, it is not a detailed and systematic study of
the impact of binary mass and mass ratio on f0 and its amplitude. We plan to
conduct a comprehensive study of these concepts in future work.

We compute the frequencies f0 and fpeak as previously described. Figure 7.7
displays the ratios f0/fpeak as a function of ∆M for the extended data set. As is
evident, the asymmetric binary sequences DD2* and SFHX* are in agreement with
the quasi-universal f0/fpeak relation. There is a noticeable scatter for a portion of
the SFHX* models, however, the general trend is the same. The general agreement
is not unexpected because, at least qualitatively, the quantities fpeak, Mthres, and
f0 do not change significantly as the ratio q changes (even though the amplitude of
the f0 oscillation is clearly affected by it). Nevertheless, a quantitative comparison
between f0 and fpeak for different mass ratios is not yet carried out (see [5] for a
systematic study of the impact of q to Mthres). All of the above suggest that an
f0/fpeak relation for all different mass ratios may exist. However, it may also be
that multiple f0/fpeak relations can be constructed for different mass ratios q (or
mass ratio ranges), leading to more tight relations than in the case of a general q.

7.4.2. Chirp-mass parametrization
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Figure 7.8: Modified quasi-universal relation of f0/fpeak as a function of the
proximity to threshold chirp mass ∆Mchirp for the extended data set. Black curve
corresponds to the third order polynomial fit. Gray band indicates the average
absolute error between the data and the fit.

We discuss a variant parametrization for the f0/fpeak relation which is a func-
tion of proximity to the threshold chirp mass (M thres

chirp ) defined as ∆Mchirp =

M thres
chirp − Mchirp. This one may be preferable since the chirp mass Mchirp is the

quantity measured directly from the inspiral signal and so for asymmetric bina-

100



7.4 Extensions

ries we only need this one instead of Mtot and q (which may be determined less
accurately). We consider the extended data set described in Sec. 7.4.1 which con-
sider symmetric and asymmetric binaries. For every EoS model we convert the
threshold mass Mthres to a chirp mass by assuming a binary with total mass equal
to Mthres and mass ratio q. Figure 7.8 displays the modified f0/fpeak relation
parametrized with respect to ∆Mchirp. The general trend still holds, and thus this
variant may be used to determine the threshold chirp mass M thres

chirp . Nevertheless,
the previous analysis has to be repeated for this relation in order to quantitatively
compare the two parametrizations.
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8. Conclusions

The goal of this thesis project was to investigate the GW spectral features of
NS merger remnants using 3-dimensional simulations in numerical relativity. To
this end, we employed two different codes (the Einstein Toolkit and an SPH code)
to perform several simulations where the total binary mass Mtot, the EoS model,
and the binary mass ratio are varied.

In the first project of this work, we used the fully general relativistic Einstein
Toolkit code to simulate a sequence of models with increasing total binary mass
for an EoS model compatible with current observational constraints. We inves-
tigated the spectral properties of the GW emission of NS merger remnants and
developed an accurate analytic model for the post-merger GW emission, which
employs exponentially decaying sinusoids. The main findings of this project were
published in [4].

We discussed the GW spectral features and their dependence on total binary
mass. Furthermore, we investigated the time evolution of certain frequency com-
ponents using spectrograms. We found that the dominant frequency component
(fpeak) in the GW spectrum exhibits a time evolution which can be described by an
analytic 2-segment piecewise function. For high-mass configurations, we identified
a new mechanism which explains a low frequency peak (in the GW spectra), caused
by a coupling between the antipodal bulges (fspiral) and the quasi-radial mode (f0).
Our analytic model incorporates a time-dependent fpeak(t) and three secondary
components. The model’s performance is assessed using the noise-weighted fitting
factor FF where we found good agreement with the simulations with FF > 0.95 for
the majority of the models. We found that accurate post-merger GW templates
(with large FFs) should incorporate at least two secondary components (fspiral,
f2−0) by considering simplified analytic models with fewer frequency components
and comparing their fitting factors. In addition, we explored the dependencies
of the analytic model’s parameters, and correlations among them, on the total
binary mass. These are important because they may constrain the corresponding
parameter space. Finally, potential modifications to the analytic model for the
configurations with Mtot close to Mthres were explored.

Our model’s high FFs are comparable to, and in some cases even higher than,
those of the best-performing fits reported in [64, 65, 68, 70]. They are also (along
with those of [68]) higher than the average FFs reported in [64,65,70]. However, in
most of those studies, a relatively large sample of binary simulations with varied
EoS models is employed, which may decrease their overall performance. In this
work, we first focus on understanding the underlying physical mechanisms, and
different combination tones, which produce the various GW spectral features, and
only then describe them with our model.
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8 Conclusions

We provided an in-depth analysis of the dependence of the spectral properties
of the remnants on the total binary mass and presented an analytic model with
a clear physical interpretation which describes accurately the GW emission. We
showed that subdominant frequency components are essential for the construction
of faithful GW templates. This is a first step in the direction of constructing a
complete general purpose template which depends on the binary mass, the bi-
nary mass ratio, and the EoS model. These GW templates are necessary for the
detections and parameter estimation, and thus the extraction of the binary prop-
erties, in the upcoming searches with the upgraded second-generation detectors
aLIGO+, aVirgo+, with future, third-generation detectors such as Einstein Tele-
scope, Cosmic Explorer. The difference between our model and those presented
in the literature, is that we focused on understanding the underlying mechanisms
which produce these features (couplings, combination tones, frequency evolution),
and their dependence on total binary mass.

More specifically, the models of the mass sequence exhibit a time-dependent
fpeak(t) which is expressed as an one-sided frequency peak in the GW spectrum.
We modeled this evolution with a 2-segment piecewise function (see Eq. (4.1))
and reproduced the one-sided structure remarkably well using the analytic model.
We have shown (see also [68]) that, at least for some EoS models, the inclusion
of a time-dependent treatment for the quadrupolar frequency fpeak improves sig-
nificantly the ability to accurately model the waveform (large FFs). In addition,
we found that as the total binary mass increases, the secondary components f2±0

become more pronounced and there is an overlap between f2−0 and fspiral (in
agreement with the classification scheme introduced in [28]). We evaluated the
significance of various subdominant features in the GW spectrum using simplified
analytic models with fewer frequency components. We found systematic depen-
dencies for all the analytic model’s parameters with respect to the total binary
mass, which can be modeled using second order polynomials. We also discovered
tight correlations between the initial phases of the secondary components and the
initial phase of the quadrupolar mode, which may suggest a constant phase differ-
ence between the fpeak and secondary components. These results are important
because they provide a detailed description of the evolution of the various spec-
tral features at different masses, and thus have to be taken into account in the
GW data analysis since they can constrain the parameter space and reduce the
computational cost in future detections.

In our analysis, we introduce a hierarchical procedure to determine analytic
model’s parameters based on curve fitting procedures. Although our scheme is
relatively fast and computationally efficient, it is rather complex and requires
several not-fully automated steps in order to obtain the optimal fit. Ideally, one
may employ an alternative, maybe computationally more expensive, approach
which guarantees that the optimal parameters are determined in a more robust
manner. We plan to explore more sophisticated and robust parameter estimation
techniques, such as the Bilby Bayesian inference library [157], which also generate
distributions in the parameter space. These provide further information about
the model’s parameters and thus allow us to better understand the underlying
correlations between those.
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In future work, we plan to evaluate the model’s performance on a large sample
of EoS models and for asymmetric NS mergers. For instance, we first aim to
simulate sequences of models with different binary mass ratios for the same EoS
model. This way, we can examine the impact of the mass ratio q on the different
secondary components. For instance, it is expected that the quasi-radial oscillation
mode is only weakly excited when the binary becomes more asymmetric because
the low mass star is disrupted at lower orbital frequencies. In this case, it may
be that the secondary components f2±0 become less relevant as the asymmetry
of the system grows. In addition, the question of whether the tidal bulges are
formed in asymmetric binaries is still not addressed. If the contribution of these
components is only weak, simplified GW templates with fewer parameters may
be proposed for asymmetric binaries. Finally, we plan to explore the dependence
of the analytic model’s parameters on the EoS model. For instance, it may be
that specific parameters, such as the amplitude of the quadrupolar mode, exhibit
different trends for the various EoS models which can then be used for constraining
the EoS model.

In the second project of this work, we have built one of the largest data sets of
binary NS merger simulations created so far, using the SPH code for a wide range
of binary masses, ratios, and EoS models. With this data set, we studied the
quasi-radial oscillation modes f0 in NS merger remnants. These are responsible,
through different coupling mechanisms, for several secondary components in the
GW spectrum and thus can potentially be measured in future detections. We
introduced a scheme for determining the threshold massMthres and maximum mass
Mmax of a NS which relies on only one accurate measurement of Mtot, f0, fpeak.

More specifically, from symmetric NS merger simulations, we extracted the
quasi-radial frequency f0 for several sequences of increasing mass for different
EoSs. We developed a method for the prediction of the threshold mass Mthres

and the maximum mass Mmax, which employs a quasi-universal relation between
f0/fpeak and the proximity to threshold mass ∆M = Mthres − Mtot, and relies
on one detection of the inspiral and post-merger signal. Our method requires
a precise measurement of Mtot, fpeak and f0, where f0 is derived from the sec-
ondary components of the GW post-merger spectrum. With these measurements,
the quasi-universal relation is employed and the proximity to threshold mass is
estimated and subsequently converted to a measurement of Mthres. The scheme
performs well with predictions of Mthres that deviate from the numerical relativity
values with an error of 0.040 M⊙. Subsequently, the measurement of Mthres is
converted to a prediction for the maximum mass Mmax of a NS using bi-linear
empirical relations between Mthres, Mmax and R1.6 (introduced in [5]). The radius
R1.6 can be estimated from empirical laws which connect Mtot, fpeak with R1.6.
This method exhibits an average deviation between the predictions of Mmax and
the values directly obtained from the EoS of 0.068M⊙. Using the measurements of
Mthres andMmax, we can thus probe the properties of high-density matter. Finally,
we showed that this method is also applicable for mildly asymmetric sequences of
binaries with q = 0.9 using additional sequences with two other EoS models.

Our proposed method showed that further constraints on the EoS can be de-
rived by extracting the complete information contained in the GW post-merger
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signal. Interestingly, this method gives an estimate for Mthres (and thus Mmax)
from configurations which are not necessarily close to Mthres (∆M ≲ 0.5 M⊙).
This direction of research is important because, assuming that a sufficient sen-
sitivity is achieved in future-generation detectors and the post-merger phase can
be measured for a source with similar properties as GW170817, it is imperative
to have the tools to extract all the information about the EoS contained in the
post-merger GW signal.

We also note that a subset of the binary NS merger simulations is currently used
by external collaborators for the development of a hierarchical Bayesian model for
deriving constraints on the incompletely known EoS using an ensemble analysis of
barely-informative, marginal detections of the NS merger GW post-merger signal.

Finally, we note that our large data set of binary NS mergers provides plenty
of possibilities for future work. For example, we plan to assess the capabilities of
our analytic model on a large set of binary waveforms with different EoS models
and binary mass ratios. The large size of this data set allows us to construct
accurate empirical relations for the frequencies of the different oscillation modes
and combination tones and potentially develop a GW post-merger template which
describes a large range ofMtot, q, and EoS models. Furthermore, we plan to further
explore the effect of the binary mass ratio q on the frequencies fpeak, fspiral and f0.
Another direction of future work may be the systematic study of the dynamical
ejecta produced during the merger phase, which play an important role in the
kilonova EM emission. We note that even though the dynamical ejecta in NS
mergers have already been thoroughly investigated in the literature, our data set
provides a fine sampling of the Mtot, q parameter space which may provide new
information.
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A. Numerical setup

In this chapter we further discuss the numerical setup for simulations described
in Sec. 3.1. We investigate the impact of residual eccentricity in the ID, initial
orbital separation, numerical resolution, and pi-symmetry on the spectral features.

A.1. Effect of residual eccentricity in ID and

of initial orbital separation

0 5 10 15 20 25 30 35
t [ms]

10

20

30

40

50

d
[k

m
]

QC
RE

Figure A.1: Time evolution of the coordinate separation distance d(t) for the
simulations QC (blue) and RE (orange). Figure taken from [4].

We investigate the effect of the residual eccentricity in the ID to the spectral
features. We reduce the residual eccentricity in the ID using the method described
in Sec. 2.5. We perform two additional simulations with total binary mass Mtot =
2.5 M⊙ (as in the reference simulation) and initial separation distance of d =
50 km. In order to reduce the eccentricity we employ the aforementioned iterative
procedure (see Sec. 2.5 and [118]), which uses a few revolutions during the inspiral.
It performs better at large initial separation, e.g. d = 50 km, which is why we
choose a larger d for these tests. Otherwise the numerical setup is the same as
for the mass sequence simulations (see Sec. 3.1). Considering these two additional
simulations we can assess the impact of eccentricity on the spectral features since
this is the only parameter, which differs between those two calculations. We
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A Numerical setup

refer to the simulation with the quasi-circular ID and the simulation with reduced
eccentricity as QC and RE, respectively.

The separation distance between the two NSs is computed by assuming that
the center of mass of the star coincides with the location of the maximum rest-
mass density ρmax. With these coordinates (xmax, ymax) in the orbital plane we
define the separation distance by

d(t) = 2 ·
√
x2max + y2max. (A.1)

where the factor 2 reflects the pi-symmetry of the system.
The time evolution of the coordinate separation distance d(t) for both sim-

ulations is shown in Fig. A.1. We find that the residual eccentricity in the QC
simulation is e ≈ 0.0088 and the reduced residual eccentricity of the RE simulation
is e ≈ 0.00089. As expected, the QC simulation exhibits small modulations in the
separation distance d(t), while in the RE simulation these oscillations disappear,
due to the reduced eccentricity.
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Figure A.2: Effective GW spectra heff,+(f) for the reference simulation (black) and
simulations QC (blue) and RE (orange). The dash dotted curves denote the design
sensitivity Advanced LIGO [2] and of the Einstein Telescope [3], respectively.
Figure taken from [4].

The GW spectra for the reference simulation and the simulations QC and
RE are shown in Fig. A.2. The spectra agree in the general features and their
morphology, and the frequency peaks coincide. The spectra exhibit an fpeak which
is one-sided, and a dominant secondary peak, fspiral, with comparable strength.
We conclude that it is unlikely that the residual eccentricity in the ID affects the
mechanisms for the frequency of evolution of fpeak or the formation of the antipodal
bulges and thus fspiral. We observe small differences in the amplitudes of the
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A.2 Resolution study

frequency peaks. These might be explained by differences in the impact velocities
during the collision. However, these differences can also be seen between the
reference simulation and the simulation QC, which only differ in initial separation
distance. We also note that the morphology of the main peak is to some extent
affected by the initial orbital separation.

We compute the analytic (Ac) and semi-analytic (Sc) model fits for the two
simulations and find large fittings factors of FF ≳ 0.970 (see Tab. A.1). The initial
phases ϕi (for i = peak, spiral, 2± 0) are overplotted together with Eq. (5.24)-
(5.26) in Fig. A.3. We find that the tight correlations between the phases still
hold and the impact of residual eccentricities is negligible. The initial phases ϕi

(for i = peak, spiral, 2± 0) are shifted with additions or subtractions of multiples
of 2π.
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Figure A.3: Initial phases ϕi (for i=spiral, 2 ± 0) with respect to ϕpeak for the
analytic model (Ac) fits for the simulations QC (square) and RE (circle). Colored
lines correspond to Eq. (5.24)-(5.26). Figure taken from [4].

Fitting Factors (FFs)
Simulation Sc Ac

QC 0.969 0.978
RE 0.981 0.979

Table A.1: Fitting factors FFs for the analytic (Ac) and semi-analytic (Sc) model
fits for the simulations QC and RE.

A.2. Resolution study

Furthermore, we study the impact of the resolution on the spectral properties.
We carry out an additional high resolution simulation with total binary mass
Mtot = 2.5 M⊙ (as in the reference model) and finest grid spacing of dx = 185 m
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(keeping same number of refinement levels). The rest of the numerical setup is
identical to the one described in Sec. 3.1. We refer to the high resolution simulation
as HR.
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Figure A.4: Effective GW spectra heff,+(f) for the reference simulation (black)
and the high resolution simulation HR (blue). The dash dotted curves denote the
design sensitivity Advanced LIGO [2] and of the Einstein Telescope [3], respec-
tively. Figure taken from [4].

The GW spectra for the reference and HR simulation are shown in Fig. A.4.
The agreement between the frequency peaks is remarkable, although there are
small differences in the morphology of the main peak. The time-dependent fpeak(t)
is in agreement in both simulations, and also we find a very good match between
the secondary frequencies, especially for fspiral, f2−0. The spectrograms for the two
simulations are shown in Fig. A.5. These confirm that in spite of the differences in
the structure of the main peak shown in the spectra of Fig. A.4, the time-evolution
of fpeak(t) is qualitatively similar in both cases. It can thus be described by the
same analytic model that we describe in the main text.

Fitting Factors (FFs)
Simulation Sc Ac

ref. 0.969 0.956
HR 0.978 0.974

Table A.2: Fitting factors FFs for the analytic (Ac) and semi-analytic (Sc) model
fits for the HR simulation.

We also compute the analytic (Ac) and semi-analytic (Sc) model fits for the
HR simulation and find large fitting factors of FF ≳ 0.970 (see Tab. A.2). We
note that for this particular configuration the FFs are even larger than the ones
obtained for the reference simulation.
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Figure A.5: Top panel: spectrogram of h+(t) for the reference simulation. Bottom
panel: spectrogram of h+(t) for the high resolution simulation HR. The black
curves correspond to the numerically extracted f spectrogram

peak (t) for the reference
simulation and HR, respectively. Figure taken from [4].

A.3. Effect of pi-symmetry

We discuss the impact of the pi-symmetry during the simulations. We perform
additional simulations using the same numerical setup as described in Sec. 3.1 but
without pi-symmetry. We consider models with Mtot = 2.5 M⊙, 2.7 M⊙, 2.9 M⊙
and 3.0 M⊙. Figure A.6 displays the GW spectra for the simulations with and
without pi-symmetry. We find a very good agreement between the respective GW
spectra. We conclude that imposing pi-symmetry does not impact the spectral
features and in particular the fspiral±0 coupling, which is discussed in Sec. 4.1.3, is
unaffected by the pi-symmetry.
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Figure A.6: Effective GW spectra heff,+(f) for theMtot = 3.0M⊙ simulation with
pi-symmetry (black) and without pi-symmetry (blue). The dash dotted curves
denote the design sensitivity Advanced LIGO [2] and of the Einstein Telescope [3],
respectively. Figure adapted from [4].
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B. Analytic model &
spectral analysis

In this chapter we provide additional figures regarding the discussion of Chap-
ter 4, Chapter5.

B.1. Spectral properties of

the mass sequence models
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Figure B.1: As Fig. 4.2 but including the inspiral signal. Figure taken from [4].

We present supplementary figures for the mass sequence models described in
Sec. 3.1. Figure B.1 shows the GW spectra including the inspiral signal. Figure B.2
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B Analytic model & spectral analysis

displays the spectrograms for the post-merger GW signal h+(t). Figure B.3 pro-
vides the spectrograms for the minimum lapse function αmin(t) starting at a few
milliseconds before the merging phase.
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Figure B.2: As Fig. 4.1 but for all models in our mass sequence. Figure taken
from [4].
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Figure B.3: As Fig. 4.3 but for all models of our mass sequence. Figure taken
from [4].

B.2. Analytic model

In this section we present supplementary figures regarding the analytic model
introduced in Sec. 5.

B.2.1. Spectrogram analysis

We quantitatively analyze the spectrograms of the numerical simulation and of
the analytic fit. Figures Fig. B.4a to Fig. B.4c depict the wavelet coefficients
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Apeak(t), Aspiral(t), A2−0(t), which we extract at the corresponding frequencies
from the spectrograms as function of time, for the simulation (blue line) and for
the analytic fit (orange line). The three coefficient curves of the simulation data
are reproduced very well by the analytic model. For illustration purposes, we omit
the normalization factor N and overlay the corresponding exponentially decaying
sinusoid functions for each frequency component while we rescale the coefficient

curves by a constant factor which ensures that the maxima of
(
hpeak(t)W(t; s)

)
and Apeak(t) coincide.

We note that the three components exhibit different magnitudes of the co-
efficient curves Ai(t), whereas the amplitudes Ai (i = peak, spiral, 2− 0) of the
analytic model are roughly comparable. For our reference simulation with a total
binary mass Mtot = 2.5M⊙, we actually expect that the fspiral component is the
strongest secondary feature, which is also suggested by the GW spectrum, and
in fact the maxima of the coefficients show this hierarchy. We thus remark that
the amplitudes Ai of the analytic model may have only a limited physical mean-
ing, while other quantities, such as the surface area under Ai(t), the maxima of
Ai(t) or the product Ai · τi may turn out to be more representative for the merger
dynamics and GW emission.

B.2.2. Sequence of simulations with different masses

Figure B.5 shows the time-domain signals for the simulation and the analytic
model along the sequence of simulations with different masses. Notice the possible
excitation of a low-|T/W | rotational instability in the highest-mass model, after
∼ 10 ms from the onset of merger [153–155].

B.2.3. Initial phases

We find that the initial phases ϕpeak, ϕspiral, ϕ2±0 correlate with the total binary
mass Mtot. We model this dependence with a 2-segment piecewise function con-
sisting of two linear fits which intersect at Mtot = 2.7 M⊙. These are given by

ϕpeak =

{
+18.957 ·Mtot − 46.321 for Mtot ≤ 2.7 M⊙
+43.425 ·Mtot − 113.152 for Mtot > 2.7 M⊙

(B.1)

ϕspiral =

{
+17.580 ·Mtot − 42.199 for Mtot ≤ 2.7 M⊙
+40.448 ·Mtot − 104.258 for Mtot > 2.7 M⊙

(B.2)

ϕ2−0 =

{
+18.541 ·Mtot − 43.911 for Mtot ≤ 2.7 M⊙
+43.613 ·Mtot − 112.705 for Mtot > 2.7 M⊙

(B.3)

ϕ2+0 =

{
+16.064 ·Mtot − 41.163 for Mtot ≤ 2.7 M⊙
+43.309 ·Mtot − 115.341 for Mtot > 2.7 M⊙

(B.4)
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Figure B.4: Top left panel: Coefficient curves Apeak(t) for the fpeak component
extracted from the spectrograms of simulation and analytic model. Purple dashed
line indicates amplitude Apeak. Black dotted horizontal line shows maximum of
Apeak(t) for simulation. Purple sinusoidal curve shows fpeak component as used
in the analytic model. Dashed black curve shows its exponential decay. Top
right panel: Coefficient curves Aspiral(t) for the fspiral component extracted from
spectrograms of simulation and analytic model. Yellow dashed line shows the
amplitude Aspiral. Black dotted horizontal line indicates the maximum of Aspiral(t)
for simulation. Yellow sinusoidal curve shows fspiral component as used in the
analytic model. Dashed black curve shows its exponential decay. Bottom panel:
Coefficient curves A2−0(t) for the f2−0 component extracted from spectrograms
of simulation and analytic model. Yellow dashed line shows amplitude A2−0.
Black dotted horizontal line indicates maximum of A2−0(t) for simulation. Yellow
sinusoidal curv shows f2−0 component as used in the analytic model. Dashed black
curve shows its exponential decay. Figures taken from [4].
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Figure B.5: As Fig. 5.1 but for all models of our mass sequence. Figure adapted
from [4].
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B.2.4. Empirical relations

In subsection we summarize the notation and the units for all the parameters of
our analytic model. Table B.1 provides information about the analytic model’s
parameters. The fits are carried out for the signals r · hs(t) (for s = +,×).

Analytic model’s parameters
Symbol Unit Equation
M M⊙ -

heff,+(f) = f · h̃+(f) dimensionless -

Sensitivity curve ≡
√
Sh(f) · f dimensionless -

fpeak kHz -
fspiral kHz -
f2±0 kHz -
fspiral±0 kHz -
ζdrift kHz2 (5.9)
fpeak,0 kHz (5.10)
t∗ ms (5.11)
Apeak dimensionless (5.15)
τpeak ms (5.16)
τspiral ms (5.17)
τ2−0 ms (5.18)
τ2+0 ms (5.19)
Aspiral dimensionless (5.20)
A2−0 dimensionless (5.21)
A2+0 dimensionless (5.22)
N dimensionless (5.23)
ϕpeak rad (B.1)
ϕspiral rad (5.24),(B.2)
ϕ2−0 rad (5.25),(B.3)
ϕ2+0 rad (5.26),(B.4)

Table B.1: The analytic model’s parameters. Table taken from [4].
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C. Empirical relations

In this chapter we present empirical relations for fspiral, fspiral−0, and f0 con-
structed using the data set described in Sec. 3.2.1. We find that the secondary
frequency fspiral correlates well with the quadrupolar frequency fpeak for a wide
range of binary masses. We identify fspiral−0 in the post-merger GW spectra and
construct empirical relations, which may aid the construction of GW templates
like those described in Chapter 5. Furthermore, we propose an empirical relation
which connects f0 to fpeak and Mchirp. We note that these empirical relations can
also be used to constrain the incompletely known EoS.

C.1. Description of data

In this section we describe the two different subsets of the symmetric binary sim-
ulations that we use for the construction of the empirical relations.

For the empirical relations for the frequencies fspiral and fspiral−0 we only con-
sider binaries where the proximity to threshold mass is roughly ∆M ≳ 0.1 M⊙.
This is because for models close to prompt collapse the GW spectrum is more
complicated and the identification of fspiral is not trivial. It may be that addi-
tional oscillation modes and combination tones are excited (see Chapter 6), or for
some EoS models fspiral is not sufficiently strong. In these cases, a close inspection
of the density profiles (see [28]) is required for identifying fspiral. In this work, we
follow the method described in Sec. 4.1.3 in order to identify fspiral and fspiral−0.
In summary, we use the empirical relations of [49] to obtain a rough estimate of
fspiral and then pick the frequency at the maximum in the GW spectrum in the
vicinity of the estimate. Similarly, we identify fspiral−0 using the approximate re-
lation fspiral−0 ≈ fspiral − f0. The frequency f0 for each model is extracted using
the method described in Chapter 7. In addition, we note that for low masses
fspiral−0 is typically not excited. Thus, when there is no clear frequency peak in
the vicinity of the estimate of fspiral−0, we do not include the corresponding model
in the construction of the empirical relation.

In the empirical relation for f0 we do not have the aforementioned problem
for high-mass models because determining f0 is relatively straightforward at least
for symmetric binaries. However, as in the case of fspiral−0, we exclude low mass
configurations where the quasi-radial model is only weakly excited.
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C Empirical relations

C.2. fspiral

We introduce a quasi-universal relation between the secondary frequency fspiral
and the quadrupolar frequency fpeak. Figure C.1 displays the frequencies fspiral
as a function of fpeak for all the binaries considered in this subset of simulations.
Such relations were introduced in [41] but only for fixed binary masses, while in
this work we consider a wide range of masses. We remark that we do not find
quasi-universal relations of the other secondary components, f2±0 and fspiral±0, as
a function of fpeak. This is because the other components contain information of
f0, which does not follow such simple relation (see Chapter 7). In contrast, the
angular velocity of the antipodal bulges is expected to correlate with the inner core
of the remnant and fpeak. We model the fspiral(fpeak) relation with a linear function
and find an average absolute error between the data and the fit of 0.05 kHz. The
analytic fit reads

fspiral = +0.9571 fpeak − 0.5246. (C.1)
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Figure C.1: fspiral as a function of fpeak for a wide range of symmetric binary
simulations.

C.3. fspiral−0

The authors of [49] computed empirical relations for the frequencies fpeak, f2−0, fspiral.
They considered the scaled by Mchirp frequencies fi/Mchirp (for i = peak, 2-0, spi-
ral) and performed the fits using a two-parameter function of the form

fi/Mchirp = a1Mchirp + b1Rx + a2M
2
chirp + b2R

2
x

+cMchirp ·Rx + d, (C.2)
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C.4 f0

where i = peak, 2-0, spiral, Rx is the radius of the NS with gravitational mass x
with x = 1.2, 1.4, 1.6, 1.8. Relations like these can be employed in GW templates.
For this reason, we use Eq. (C.2) for Rx = R1.6 and perform a fit for the frequency
fspiral−0 for our subset of symmetric binary merger simulations. Figure C.2 displays
our empirical relation for fspiral/Mchirp as a function of Mchirp and R1.6. The two-
parameter fit reads

fspiral−0/Mchirp = +6.112 Mchirp − 1.409 Rx

−0.790 M2
chirp + 0.058 R2

x

−0.256 Mchirp ·Rx

+7.275. (C.3)

We convert the predictions from the empirical relation to values of fspiral−0 and
find an average absolute deviation between the data the empirical relation of
0.0517 kHz and a maximum deviation of 0.264 kHz. Both numbers are comparable
to those of the empirical fits for fpeak, fspiral, f2−0 in [49].
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Figure C.2: fspiral−0/Mchirp as a function of R1.6 and Mchirp for the subset of
symmetric binary merger simulations.

As can be seen in Fig. C.2, the values of fspiral−0/Mchirp follow a rather smooth
trend. This implies that the mechanism which produces this frequency component,
namely the spiral± 0 coupling, depends systematically on the characteristics of
the system. This supports our conjecture that fspiral−0 is indeed a general feature
of the GW spectra, which may be measurable in future searches.

C.4. f0

We find a correlation between the quasi-radial frequencies f0/Mchirp, the chirp mass
Mchirp, and the quadrupolar frequency fpeak (see Fig. C.3). We consider a two-
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parameter function similar to Eq. (C.2) where we replace Rx with fpeak/Mchirp

(inspired by [49]) and perform the fit. Figure C.3 shows the empirical relation
f0/Mchirp(Mchirp, fpeak/Mchirp) along with the simulation data. The relation reads

f0/Mchirp = +3.035 Mchirp + 5.373 fpeak/Mchirp

−0.202 M2
chirp − 1.101 (fpeak/Mchirp)

2

−1.654 fpeak

−5.357. (C.4)

We find an average absolute deviation between the data the empirical relation
of 0.0487 kHz and a maximum deviation of 0.182 kHz.
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Figure C.3: f0/Mchirp as a function of Mchirp and fpeak/Mchirp for the subset of
symmetric binary merger simulations.

We remark that using this relation, a combined measurement ofMchirp obtained
from the inspiral and a measurement of fpeak obtained from the post-merger signal
determines f0. As discussed in Chapter 7, f0 encodes information about the
threshold mass, and so, it may be used to constrain the EoS. Furthermore, this
relation provides a method that is independent of the GW data analysis tool used
during the detection. This is because f0 is determined from Mchirp and fpeak and
not from the secondary components of the GW spectrum. We aim to further
explore this particular relation in future work.
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