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Abstract

Anomaly detection and localization can learn what data looks like and point out
anomalous data samples, which may then be utilized to assist clinicians in identi-
fying anomalies. We employ a Variational Autoencoder (VAE) to learn the distri-
bution of the data and demonstrate several ways for highlighting abnormalities.
We show that using self-supervised learning and hierarchical representations can
increase performance, especially in situations with smaller and more difficult-to-
detect cases. We further investigate the approaches’ performance and assessment
in two contexts: an international public competitive setting and a real-world use-
case for discovering incidental findings in a population study. Overall, the results
are encouraging, and the algorithms can detect anomalies and incidental findings,
but they fall short in more complex and difficult cases and are not yet dependable
enough for real-world usage.
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Zusammenfassung

Mit Anomalie-Erkennung und Lokalisierung kann man die Verteilung von Daten
lernen und dann abnormale Daten erkennen und damit Ärtze bei der Identifkation
von Krankheiten und abnormalen Konditionen unterstützen. Wir benutzen einen
Variational Autoencoder (VAE) um diese Verteilung der Daten zu lernen und pre-
sentieren verschiedene Methoden wie man mit einem VAE Anomalien aufzeigen
kann. Wir zeigen, dass hierarchiche Representationen oder Representationen die
via self-supervied learning gelernt wurden die Performance verbessern können,
insbesodere für die kleineren und schwierigeren Anomalien. Wir untersuchen
die Analysen, Evaluierung und Benchmarking der Methoden: In einem interna-
tionalen und öffentlichen Wettbewerb und einem realitätsnahem Anwendungsfall
für die Identifkation von Krankheiten und abnormalen Konditionen in einer Pop-
ulations Studie. Insgesamt sind die Ergebnisse gut und die Algorithmen können
Anomalien und abnormale Konditionen identifizieren, aber sind jedoch noch nicht
zuverlässig genung für einen Einsatz in der täglichen Praxis.
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1 | Introduction

The technological advancements in the field of computer science and engineering
have made the recording of data easier, fast, and more affordable. Furthermore, the
storage and processing options of data have made it feasible to store, process, and
access data in a more efficient way. For example, natural images and videos can
easily be recorded using a smartphone camera and so e.g. every minute >500h of
video data is uploaded to YouTube [Statista, 2022]. Similarly for medical imaging
data, the progress, affordability, and availability of scanners has led to a steady
increase of image data every year by 1%-10% [Smith-Bindman et al., 2019].
However, to draw value from this increased data volume, it usually has to be
processed or analyzed. This has led to a 4-fold increase in workload for on-call
radiologists [Bruls and Kwee, 2020]. In such high-pressure and time-sensitive
situations, miss rates of diagnoses of up to 80% of on-call radiologists have been
reported [Pinto et al., 2016]. This is worsened by the fact that such diagnostic errors
cause a fatal outcome twice as often as any other medical error [Saber Tehrani
et al., 2013]. Furthermore, the increase of data has also led to an increase in ‘dark’
data, i.e. data that was recorded and stored but not further processed or analyzed
and is not used, findable or usable in any way [Haque et al., 2020].
One way to aid this process is to use an automated data processing and analysis
pipeline. While expert knowledge-based automated systems have been used for a
long time, the current increase in data has allowed for more data-centric systems.
These data-driven systems are not manually designed but rather use algorithms
that can learn from the labeled data and predict values for new data samples not
based on hard-coded rules but from knowledge obtained using the labeled data
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20 CHAPTER 1. INTRODUCTION

samples.
The increase in data volume, processing, and algorithmic progress has led to the
successful application of data-driven systems in many fields. As the research
progressed, this made it feasible to lift some constraints regarding the applicability
in real-life settings and extend them to increasingly more complex and general
domains. This progression is nicely laid out in the field of reinforcement learning
in games. First, an expert- and rule-based search tree algorithm was used to
challenge the chess champion, Gary Kasparov, in 1997. While chess has a ‘limited’
number of moves, solely the increase of computing power could steadily improve
the chess engines way beyond human potential. However, the game of Go, being
an exponentially harder problem with a larger number of moves, was hailed as
impossible to solve using these conventional methods (and algorithms were not
expected to reach expert human-level performance in this decade or the next
one). But later, in 2016, AlphaGo was able to beat the record world champion in
the game of Go, Lee Sedol. The used algorithm primarily drifted from expert-
based knowledge to a learned value function using reinforcement learning. This
continued with AlphaZero which, using self-play, was completely independent
of expert domain knowledge and was able to outperform AlphaGo as well as
current top-performing Go and chess engines [Silver et al., 2018]. However, in
chess and Go the space of possible states and moves is discrete and limited and
the whole environment is observable. Tackling the challenge of a non-observable
environment, a team from the CMU (Libratus) took on the game of poker and
was able to outperform the world’s best players [Brown and Sandholm, 2018].
Later on, Deepmind and OpenAI extended algorithms to a continuous state and
action space and were able to challenge human professional players in computer
games: Startcaft2 and Dota2 (in a constraint setting) respectively [OpenAI et al.,
2019; Vinyals et al., 2019]. This success was possible, particularly in games, due to
the increase in computing power, the availability of data (and the possibility to
collect large amounts of data), and methodological advancements.
Similar to games, the progress also made it feasible to extend the use of data-
driven systems to other ‘open’ domains. For example, language models are
applied in search and as programming support [Brown et al., 2020]. The protein-
folding problem is considered solved [Jumper et al., 2021], voice assistances have
found their application in daily life, and robotic control, image-based dog-breed
classification or 10,000 species recognition have made great progress.
However, the impact on daily life is still limited and most applications currently
struggle to extend toward real “open world” problems. For example, fully au-
tonomous driving, which was claimed to be solved in the past decade, is still not
readily deployed and usable. Furthermore, automated medical systems, which
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Figure 1.1: (a) Failure cases of a model trained on a city dataset. It wrongly
classifies animals as pedestrians [Anomaly Detection for Scientific Discovery, 2022;
Xuefeng et al., 2022a]. (b) Failure case of an organ segmentation model. The first
image shows the input image and the second the segmentation. Here, the contrast
agent is wrongly classified as a bone.

showed superhuman and very promising results, have struggled to be deployed
and not shown an added value [Heaven, 2020]. One factor hindering the broader
application of data-driven systems in the real world can be the domain shift be-
tween the training data and the real world data, e.g. including very rare and
unexpected events, not or only barely available in the training data, which can
cause catastrophic failure. Making the data-driven systems detect these unex-
pected and abnormal events and let them ‘know what they don’t know’ and be
fail-safe is a key challenge for the future. An example of such a failure can be seen
in Fig. 1.1. In the first example, deer and cattle were detected but recognized as
pedestrians (which is at least not a complete failure) because the training data
set did not contain animals and thus the trained model is not expecting ‘deer’.
In the next example, a state-of-the-art organ segmentation model is applied to
a real-world colonoscopy data set with a contrast agent, in which the contrast
agent is wrongly detected as bone. In such cases where the model encountered
something that it was not expecting on a segmentation, object, or image level, a
reliable report of “not-knowing” would be very valuable and potentially essential
in real-world practice (such a ‘safer failure’ example can be seen in Fig. 1.2).

Interestingly, not only machine learning algorithms are vulnerable to unexpected
input. Also humans, including experts in their fields, can be vulnerable to un-
expected events. This often termed ‘inattentional blindness’, is also prominent
in trained radiologists. In a study by Drew et al. [2013], the authors found that
during the assessment of a lung CT for lung nodules more than 50% of expert
radiologists failed to notice the presence of a gorilla image rendered in the CT (see
Fig. 1.3).
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Figure 1.2: Examplary results from an improved model, which ‘knows what it
doesn’t know’ and is more fail-safe. In particular, the model is able to label some
of the wrongly detected objects as OOD [Xuefeng et al., 2022b].

Figure 1.3: A gorilla rendered into a lung CT. 50% of trained radiologists did not
notice the gorilla when assessing the scan for lung nodules [Drew et al., 2013].

Hence, an algorithm that can point out an unexpected or abnormal input could
help (a) machine learning systems and (b) humans in practice: (a) when sup-
porting machine learning systems, the detection of these distribution shifts, Out-
of-Distribution (OoD) samples, or abnormal samples, can point to cases where
conventional algorithms might fail and thus call for human intervention and make
machine learning systems more trustable and reliable (please note that in this the-
sis we will use OoD data, abnormal samples, and anomaly interchangeably). (b)
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When supporting humans, algorithms that can learn the ‘normality’ or distribution
of healthy patient data samples can aid the detection of unexpected conditions
which might be overlooked. This can be implemented as a case-wise ranking
by normality and help prioritize and filter the data samples and thus reduce the
workload, particularly in a high-throughput setting.
In contrast to ‘classical’ machine learning algorithms which are tailored to specific
classes/conditions, an anomaly detection algorithm should not just identify abnor-
mal samples used during model development but also extend and generalize to
arbitrary abnormal samples. So a ‘general’ anomaly detection algorithm should be
able to detect any kind of abnormal input and not just the ones that the algorithm
was developed on and implicitly designed for. But when developing an algorithm
that can expect, detect, and handle the unexpected or ‘know what it doesn’t know’,
using abnormal test samples for validation and testing during the development
process can lead to an unwanted and implicit specialization towards these specific
abnormal samples. To notice, handle and avoid leaks of the test samples during
the development, it is particularly important to have a thorough evaluation of the
method and also to use independent test cases that were not known during the
development of the algorithm for a final evaluation.
So the aim of this thesis is to develop and improve algorithms that can detect
and localize abnormal input, with a focus on a medical setting. However, since a
thorough evaluation is similarly important we will also focus on the benchmarking
and real-world evaluation of such systems.
In particular, in the first part, we will show how a VAE can be used to detect
and localize abnormal inputs. And we will try to improve the performance in
particularly difficult settings, where these systems often struggle. In the second
part, we will focus on the benchmarking and evaluation of such systems, first in
an international challenge setting, and second in a real-world clinical use case.
Finally, we will point out the potential and possible pitfalls of such systems (and
whether some assumptions made will hold in general and how they potentially
influence the performance).
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2 | Background

2.1 Neural Networks

Neural Networks (NNs) are a powerful tool for learning & predicting data. NNs
were among the first machine learning methods to be proposed and originated
with a biologically inspired approach in mind. In contrast to other machine learn-
ing techniques whose main focus was parameter efficiency by means of Occams
Razor or VC dimensions, NNs have found great success by a large overparam-
eterization [Zhang et al., 2017]. Despite not yet completely understanding the
underlying theory of generalization, this has led NNs to be still a very powerful
tool for learning and predicting especially in high-dimension domains [Goodfel-
low et al., 2016].

2.1.1 Perceptron

The Perceptron, also known as Rosenblatt Perceptron, was one of the first machine
learning algorithms and is inspired by natural neurons [Goodfellow et al., 2016].
Given input signals/values composed in an input vector x, the Perceptron classifies
the input given some predetermined/learned weights w and a threshold function
f into two classes: −1 and 1: y = f(xTw) (see Fig. 2.1 for an illustration).
This allows for a linear separation of the input space in two disjunct classes. Given
some predetermined labeled samples xi,yi, the weights w can be determined to
optimize a certain risk or loss.

25
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Figure 2.1: Schematic representation of (a) a Perceptron, (b) a MLP and (c) a CNN.

One of the most common ways to determine the weights is to use the Perceptron
Learning Algorithm. Here, the loss function is defined as:

L =

N∑
i=1

yi(̇x
T
iw) (2.1)

The Gradient Descent Algorithm can be used to determine the weights w, which
minimizes the loss function and gives a local minimum of the loss function (given
the right step size).
Taking the derivative of the loss function with respect to the weights w gives:

∂L

∂w
=

N∑
i=1

yixi. (2.2)

Now the weights can be updated iteratively by the following formula:

wt+1 = wt − η
∂L

∂w
= wt − η

N∑
i=1

yixi, (2.3)

with step size η.
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The obtained weights that maximize the loss function for a convex loss function
reach the global optimum with the correct step size (and/or step size annealing)
and, as is here the case, reach the local optimum for the non-convex loss function.
However, calculating an update step over the whole dataset is not always possible.
Thus, one solution is Stochastic Gradient Descent (SGD) which is a variant of
Gradient Descent where the weights are updated only for a subset of the dataset.
This is done by randomly selecting a subset of the dataset and updating the
weights for this subset:

wt+1 = wt − ηyixi, (2.4)

for a random sample xi and label yi.

2.1.2 Multi-Layer Perceptron

A single Perceptron only allows for a linear separation in the input space into
two disjunct classes. However, a single Perceptron can be extended to a Multi-
Layer Perceptron (MLP) by adding an additional layer of neurons in a consecutive
fashion (see Fig. 2.1 for an illustration). This allows for a non-linear separation in
the input space. Theoretically, with only three layers and an infinite number of
neurons in the second, so-called, hidden layer, the MLP can express any function
in the input space and can be seen as “universal function approximator”.
Similar to the Perceptron, the weights/parameters of the MLP can be optimized
by the Gradient Descent Algorithm. Using the chain rule, the derivative of the loss
function with respect to the weights can easily be determined. As intermediate
values for each layer can be used for the “earlier” layers, this is often termed a
“backpropagation” algorithm.

2.1.3 Convolutional Neural Networks
Most natural data, e.g. images, is not completely random but contains repetitive
patterns and self-similarities. One very successful and parameter-efficient way to
utilize this are Convolutional Neural Networkss (CNNs). CNNs use the convolu-
tion (or to be correct, in most implementations cross-correlation) of the input signal
with a filter matrix to generate a new output (see Fig. 2.1 for an illustration). This
can increase the parameter efficiency and makes the CNN translation invariant
to the input signal. Hence CNNs have had great success and become the defacto
standard on image analysis tasks [Krizhevsky et al., 2012].
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Figure 2.2: Confusion matrix detailing TPs, TNs, FPs, and FNs.

2.2 Metrics

2.2.1 Classification metrics

Metrics are used to evaluate the performance of a model. Different metrics can
show, analyze and stress different properties of the model and outline strengths
and weaknesses.
In (binary) classification, the predictions of the model can be (given the reference
labels) categorized into four categories (as visualized in the confusion matrix in
Fig. 2.2):

• True Positives (TPs): The model predicts the target class and the prediction
is correct.

• True Negatives (TNs): The model does not predict the target class and the
prediction is correct, no target class should be predicted.

• False Positives (FPs): The model predicts the target class but the prediction
is wrong and wrongly “detected” a class sample.

• False Negatives (FNs): The model does not predict the target class but the
prediction is wrong and the model “missed” an instance.

Given those four categories, the following metrics can be used to evaluate the
performance of the model:
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Accuracy The Accuracy is the fraction of correct predictions given all predictions
of the model:

Accuracy =
TP + TN

TP + TN+ FP + FN
. (2.5)

Precision The Precision is the fraction of the correctly predicted positive samples
given all as positive predicted samples, i.e. how much a positively predicted
sample can be “trusted” a.k.a. how precise the model is:

Precision =
TP

TP + FP
. (2.6)

Recall The Recall is the fraction of the correctly predicted positive sample given
all positive samples, i.e. how many of the positive samples the model “detected”
or “recalled”:

Recall =
TP

TP + FN
. (2.7)

F-measures The F-measure is the harmonic mean of the Precision and the Recall.
In general, the Fβ measure controls the balance between the precision and the
recall, where β is a parameter that controls that balance:

Fβ =
1
β

2TP
2TP + βFN+ FP

. (2.8)

A special case of F-measures is the F1-measure also known as the Sørensen-Dice
coefficient, dice score, or Dice Similarity Coefficient (DSC):

F1 =
2TP

2TP + FP + FN
. (2.9)

However, the F-measures do not take the TNs into account and thus have to be
used with care.
While the previous metrics only consider a fixed binarization, some metrics try to
give a more varied performance estimate, often considering multiple classification
binarization threshold points/ modi operandi points and are often summarized
as the Area Under a Curve (AUC):

Area Under the Receiver Operating Characteristic Curve The Area Under the
Receiver Operating Characteristic Curve (AUROC) is the area under the Receiver
Operating Characteristic (ROC) curve. The ROC curve plots the True Positive
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Rate (TPR) against the False Positive Rate (FPR) at each threshold, i.e. describing
(from left to right) “how many additional false positives have to be allowed to
detect all positives as positive”. As the AUROC is an area under a (normalized)
curve, the best value is 1.0, which means that the model is perfect and can detect
all positives as positives. The “worst” value is 0.0, which means that the model
is not able to detect any positives at all, however, inverting the prediction of the
model would result in a perfect score. A value of 0.5 means that given balanced
classes the model decides randomly and thus the model has no discriminative
ability. While the AUROC score gives a fair estimate of performance in a balanced
label setting, in settings with unbalanced or unknown class distribution the score
is not very comparable between different settings (however it can still allow for
model comparison in the exact same setting).

Average Precision The Average Precision (AP) score tries to give a more bal-
anced estimate of the performance of a model. It is the average of the precision
scores at different recall thresholds. It can be seen as an imperfect approximation
of the area under the precision-recall curve. It summarizes the precision-recall
curve and the weighted mean (with the recall increase at the threshold as weight)
of the precision at each recall threshold:

AP =

N∑
i=1

Precisioni(Recalli − Recalli−1). (2.10)

2.2.2 Aggregation schemes

For simple classification, there is often only one level of aggregation, the dataset
level, i.e. the prediction of the model per sample and then aggregating the scores
of all samples (e.g. calculating the mean score of all samples). However, for
some tasks, such as pixel segmentation, there is an inherent hierarchy in the
prediction e.g. there are inherently two levels, the image level and the dataset
level. Here, different choices of metric aggregation are feasible. The simplest,
which is analogous to a single-level only aggregation, is to ignore the affiliation of
a pixel with an image/sample and just “throw all pixels in a bucket” and calculate
the metrics on all pixels of the dataset. We term this dataset-level aggregation. This
however can overshadow performance differences between different images, e.g.
not showing a big deterioration in scores, even if the predictions for a fraction of the
images completely fail (this can be particularly detrimental with class imbalances).
A more natural choice of aggregation is to keep the hierarchical structure intact
and first calculate the metrics on a sample level and then aggregate the results to
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the dataset level. We refer to this as sample-level aggregation. However, in this
case, the choice of aggregation method, e.g. mean, median, nth-percentile, etc.
is very important and the individual samples can be more affected by the label
disbalance (as not every sample contains all classes) and the choice of metric. To
choose the most fitting aggregation scheme, one has to choose a scheme that best
aligns with the target task, e.g. if failure should be way more penalized or there
can be catastrophic failures with only one image, then a sample-level aggregation
scheme would be more fitting.

2.2.3 Combining rankings
Often deciding on the right metric and dataset to compare methods results in
not choosing one fixed setting but multiple settings/metrics which each give one
ranking. While they can be used to detail certain aspects of the methods, there
are also methods to combine the rankings and give a final ranking and stability
analysis. One way to combine rankings is Consensus ranking. This is a ranking
where the scores are combined as the mean of the individual ranks. This is a
simple way to combine rankings but can be very sensitive to the individual scores
and each setting has the same importance, independent of the dataset size.
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2.3 Density estimation

Often we can assume that data is generated by some process that results in a
certain non-arbitrary distribution. For example, a Gaussian distribution. We can
use density estimation to estimate this distribution of the data [Bishop, 2006].

2.3.1 Gaussian Mixture Model

Given the central limit theorem, assuming normally distributed data is a good
base/starting assumption. This also allows for an easy way to estimate the distri-
bution of the data. Here, since the base assumption is that the data is distributed
normally, only the right parameters of the normal distribution have to be deter-
mined. Given the probability density function (PDF) of a normal distribution
as:

p(x|µ,Σ) =
1√

2πd|Σ|
e−

1
2 (x−µ)

TΣ−1(x−µ), (2.11)

the parameters can be determined/estimated analytically by simply computing
the mean and covariance matrix of the data.
However, as is often the case, the data is not generated by only one process but
by multiple processes (e.g. photos of cats and photos of dogs). In this case, the
parameters of the distribution can be estimated by a mixture model. The Gaussian
Mixture Model (GMM) is a probabilistic model that combines the parameters of
multiple normal distributions (e.g. one for photos of cats and one for photos of
dogs), where each normal distribution is weighted by a factor π:

p(x|π,µ,Σ) =
N∑
i=1

πi
1√

2πd|Σi|
e−

1
2 ,(x−µi)TΣ−1

i (x−µi). (2.12)

Here, shown for a GMM with N components. For this case, there is no direct
analytical solution for the parameters of the mixture model. Instead, the pa-
rameters are often estimated using a Maximum Likelihood Estimation (MLE)
algorithm. The MLE algorithm is an iterative algorithm that tries to find the best
parameters by minimizing the log-likelihood of the data, also often referred to as
Expectation-Maximization (EM). In the E-step of the MLE algorithm, the parame-
ters are estimated by maximizing the likelihood of the data. In the M-step of the
MLE algorithm, the parameters are estimated by maximizing the likelihood of the
parameters. However, different algorithms such as gradient descent also work for
this case [Richardson and Weiss, 2018].
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2.3.2 Variational Inference

While GMMs parameterize a pre-determined distribution, variational inference is
a more basic approach to estimating a data distribution.
There are multiple motivations and derivations for variational inference, which
all end up with a similar result. The most direct one for the use case of density
estimation is to find another expression or an approximation for p(x). Here, for
sake of (notation) simplicity, we aim to find an approximation for logp(x):

logp(x) = log
∫
pθ(x, z)dz

= log
∫
qλ(z|x)

qλ(z|x)
pθ(x, z)dz

>JI

∫
qλ(z|x) log

1
qλ(z|x)

pθ(x, z)dz

= Eqλ(z|x)
[

log
pθ(x, z)
qλ(z|x)

]
:− ELBO(x; θ, λ).

(2.13)

Here the ELBO is a lower bound on the log-likelihood of the data distribution
p(x). While p(x) is often untractable, the ELBO is tractable. Maximizing the lower
bound often gives a good approximation of the true data distribution.
Another derivation comes from the motivation to find a good approximation of
the hidden factors/variables z, which ‘cause’ an observation/data x. Here, for
a data sample x, the ‘true’ hidden variables z are given by the process pθ(z|x),
which we can not directly compute. Hence, we use a tractable distribution qλ(z|x)
to approximate the hidden variables (i.e. an inference model). To make qλ(z|x)
approximate the true distribution pθ(z|x) as close as possible, we can use the
Kullback-Leibler (KL)-divergence between these two and minimize this divergence
(with respect to λ):

DKL(qλ(z|x)||pθ(z|x)) =

∫
qλ(z|x) log

qλ(z|x)

pθ(z|x)
dz

=

∫
qλ(z|x) log

qλ(z|x)pθ(x)

pθ(z, x)
dz

=

∫
qλ(z|x)

(
logpθ(x) + log

qλ(z|x)

pθ(z, x)

)
dz

= logpθ(x) +
∫
qλ(z|x) log

qλ(z|x)

pθ(z, x)
dz

= logpθ(x) + ELBO(x; θ, λ),

(2.14)
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and since logpθ(x) is independent of λ it is equivalent to optimize the KL-
divergence or to optimize the ELBO (also note that the last line can be reformu-
lated to single out logpθ(x) and since the KL-diverence is always > 0 this again
proofs that the ELBO lower bounds logpθ(x) ).
There are multiple ways to optimize the ELBO such as Black-Box Variational
Inference or Gradient Estimation via Monte Carlo (MC) Sampling. However, in
this work, we are more interested in parameterizing the distributions with neural
networks.
Here, the ELBO is often rewritten as:

ELBO(x; θ, λ) = Eqλ(z|x)
[

log
pθ(x, z)
<

qλ(z|x)

]
= Eqλ(z|x)

[
log

pθ(x|z)pθ(z)

qλ(z|x)

]
= Eqλ(z|x)

[
logpθ(x|z) − log

qλ(z|x)

pθ(z)

]
= Eqλ(z|x)(logpθ(x|z)) −DKL(qλ(z|x)||pθ(z)),

(2.15)

where DKL is the KL-divergence.

2.3.3 Normalizing Flows

Normalizing Flows (NFs) are based on the ‘Change of Variable Formula’:

px(x) = pz(f
−1(x))|det(

∂f−1(x)

∂x
)| (2.16)

for an invertible function f and a distribution pz. This allows the mapping of
samples from an arbitrary distribution px to samples from a predetermined dis-
tribution pz. Note that in this case, both distributions need to have the same
dimensionality. In practice, pz is chosen as a Normal distribution and f as an
Invertible Neural Network (INN), that maps from the data space to the normal
distribution, where likelihood, etc. can easily be computed. There are multiple
different choices for invertible layers in neural networks with computable deter-
minants of the Jacobian. One of the oldest and most popular choices is a Planar
Flow [Rezende and Mohamed, 2016]:

x = f(z) = z+ uh(wTz+ b), (2.17)

where u,w,b are learnable parameters and h is a restricted activation function e.g.
tanh. Other popular choices are additive coupling layers, rescaling, and reshuffling
layers.
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2.3.4 Autoregressive density estimation
Using the chain rule, we can derive the density of a datapoint x as:

p(x) =

N∏
i=1

p(xi|x1, x2, ..., xi − 1) =
N∏
i=1

p(xi|x<i), (2.18)

which is the basis for autoregressive models. Expressed colloquially, the data is
assumed to be an ordered sequence of sub-data points xi (e.g. pixels or time steps),
and the next point in the sequence is predicted/modeled based on the previous
points. For autoregressive density estimation, models are used, which are trained
to predict the next point in the sequence, for example, pixelRNN [Van Den Oord
et al., 2016] which uses all previous pixels as input and tries to predict the next
pixel or pixelCNN [Van Den Oord et al., 2016] which uses a masking strategy so
that during the convolution only “previous” pixels are used as input to predict
the next pixel.
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3 | Advancements for VAE-based

anomaly localization

3.1 Anomaly localization beyond the reconstruction
error using VAEs

3.1.1 Motivation - How to use a VAE

As previously described detecting abnormal “unexpected” samples has the poten-
tial to greatly aid the process of day-to-day manual or semi-automatic reviewing
of medical images. Especially due to its label efficiency, generalizability and gen-
eral applicability, anomaly localization is attributed with much promise in the
field of automated medical image analysis and diagnosis. Early approaches using
unsupervised anomaly detection methods in the medical field were mostly based
on a reconstruction error, i.e. the difference between the reconstructed image of
a limited model and the original image. This is based on the assumption that
the limited model is only accurately able to reconstruct data that is similar to
the data the model was built with but fails for data that is different, in particular
anomalous data samples. Van Leemput et al. [2001] proposed to use a statistical
model to reconstruct the input tissue-wise, identifying anomalies as discrepancies
between the actual image and the model prediction. Liu et al. [2014] used low-rank
decomposition, where the low-rank elements represent the normal parts of the
image, and high-frequency elements represent anatomical and pathological varia-
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tions. In the deep-learning era, Autoencoders (AEs) have also been used as these
‘limited’ reconstruction models, by limiting the information that can be passed
through the bottleneck [Chen and Konukoglu, 2018; Chen et al., 2018; Pawlowski
et al., 2018]. However, these ‘limited’ reconstruction model approaches are always
dependent on the hypothesis that anomalies will not get reconstructed as well
and thus the capacity of the model. This can be a ‘walk on a fine line’ between
getting a good reconstruction and at the same time not being able to reconstruct
anomalous data. Consequently, the capacity for a given problem also depends on
the data complexity and size.
A more principled direction, often used in basic statistics, is to model the dis-
tribution of the data and test if data samples belong to this distribution. Here,
recent density estimation techniques have shown promise with higher-dimension
and more complex and structured data such as images. Variational Autoen-
coders (VAEs), flow-based models and autoregressive models are among the
current de-facto standard methods for density estimation on images using deep-
learning based explicit models and have shown early success in anomaly/out-of-
distribution sample detection tasks [Abati et al., 2018a; An and Cho, 2015; Kiran
et al., 2018; Nalisnick et al., 2018].
In this chapter, we will investigate to which extent VAEs can be used for anomaly
localization. We will first explain the basics of VAEs and their capabilities to learn
data distributions. Next, we will discuss different modes of anomaly localization
and demonstrate why reconstruction-based anomaly detection with VAEs might
be sub-optimal. We discuss the possibility of data leakage during model devel-
opment in particular, as well as the reasons why reconstruction-based methods
can still perform well on unsupervised tasks: to some extent, these shortcom-
ings can be compensated for by modifying the model architecture to be ideally
suited for specific tasks (see also [Chen et al., 2018; Goldstein and Uchida, 2016;
Pawlowski et al., 2018]), as is common practice when optimizing hyperparameters
on annotated validation sets. However, task-specific hyperparameter optimization
contradicts the assumption-free anomaly detection approach (note: some defini-
tions, formulations, and equations of this section were previously published by
myself in [Zimmerer et al., 2019a]).

3.1.2 Previous works & concurrent works

Most previous works only considered AEs as reconstructing models for anomaly
localization. Pawlowski et al. [2018] compare different AEs for CT-based pixel-
wise anomaly localization. Chen et al. [Chen and Konukoglu, 2018; Chen et al.,
2018] compare different AE-based approaches and propose an extension with an
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adversarial latent loss.
Some early works used VAEs instead of AEs, however using them as reconstruc-
tion models only. Here, Baur et al. [2018] propose to use a AE with an adversarial
loss on the reconstruction to get a more realistic reconstruction. However, the
localization method in these papers is purley based on a reconstruction error and
can only outline suspicious regions if they can not be adequately reconstructed by
the models.
Concurrently to our work You et al. [2019] also propose to use a more holistic
approach for VAE-based anomaly localization and include the KL-term for an
iterative restoration approach that moves data samples closer to the learned data
manifold and thus measures a proxy of distance to the data manifold.
In an attempt to unify and compare the approaches, Baur et al. [2020] used the
same architecture for different models and compared them on different datasets.

3.1.3 Methodology

Introduction into VAEs

VAEs implement the concept of Variational Inference in NNs, in particular, try
to optimize a parameterized ELBO given the training data. Revisiting the ELBO
(Eq. (2.15)), it can be expressed as:

ELBO(x; θ, λ) = Eqλ(z|x)(logpθ(x|z)) −DKL(qλ(z|x)||pθ(z)). (3.1)

For simplicity, we will minimize the negative ELBO instead of maximizing
the ELBO. This results in two terms in the ELBO that can be minimized:
DKL(qλ(z|x)||pθ(z)) and −Eqλ(z|x)(logpθ(x|z)).

KL-divergence term To make the first part tangible, we will make some assump-
tions: pθ(z) is assumed to be a isotropic normal distribution with mean 0 and
standard variation 1: pθ(z) = N(z|0, 1). qλ(z|x) is also chosen to be a diagonal
normal distribution.
The inference distribution qλ(z|x) is parameterized and amortized by NNs fµ, fσ:

q(z|x) = N(z; fµ,θ1(x), fσ,θ2(x)). (3.2)

This makes it possible to solve the KL-divergence term analytically in a closed
form.
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Expectation term For the second term pθ(x|z) is also classically chosen as a
diagonal normal distribution and is parameterized by a NN gµ and constant c:

p(x|z) = N(x;gµ,γ(z), I ∗ c). (3.3)

The expectation is approximated with MC sampling, where empirically a MC
sample size of 1 has shown sufficient and is often chosen. This also allows to
compute the expectation analytically and find a closed form for the second term
as well. Note that during the optimization this term boils down to an L2 loss indi-
rectly weighted by the constant c (which is summed up over the input dimensions
and not averaged as is common). As consequence this term is often also referred
to as the reconstruction term or reconstruction loss of a VAE. Different choices of
distributions for pθ(x|z) correspond to the different commonly used loss functions,
e.g. a Laplace distribution corresponds to L1 loss and a Binomial distribution
to a cross entropy loss. Backpropagating through the sampling process is done
using the reparameterization trick, i.e. sampling z̃ from N(0; 1) and then trans-
forming the samples to N(fµ,θ1(x), fσ,θ2(x)) with: z = fσ,θ2(x) ∗ z̃+ fµ,θ1(x), which
is differentiable with respect to the encoder parameters.

VAE as AE When these assumptions and design decisions are made, the struc-
ture resembles AEs. The networks fµ,θ1 and fσ,θ2 are used to encode the input x
into a latent space z and the network gµ,γ is used to decode the latent space z into
the output x. The only difference is (1) that the encoder f does not directly infer a
latent vector but rather parameterizes a distribution from which the latent vector
is sampled and (2) that the KL-divergence is used to ‘regularize’ this encoding
process.

Training a VAE A VAE can then in analogy to traditional neural networks be
trained using SGD (or more often, Adam [Kingma and Ba, 2017]). The loss for the
VAE training is the approximate negative ELBO, composed of the KL-divergence
loss LKL and the reconstructing loss Lrec:

LVAE(x) = LKL(x) + Lrec(x). (3.4)

An illustrated example of the VAE training with a 2D Gaussian can be seen in 3.1.

Anomaly detection with VAEs

After successful training of the VAE, the approximate ELBO can be a very faithful
estimate of the true data likelihood. Especially, given adequately large and expres-
sive neural networks fµ, fσ, and gµ and a large enough latent space, VAEs with
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Figure 3.1: Example of VAE training on a 2D Gaussian. The images in the first
column illustrate the GMM and samples that were drawn from the GMM. The
images in the second-fifth column show the log-likelihood progression of the VAE
during training.

Gaussian encoders and decoders can (and given the right conditions will [Dai and
Wipf, 2019]) approximate the true data distribution. Thus the approximate ELBO
or VAE-loss LVAE is a natural choice to score data samples for anomaly detection.

Anomaly localization with VAEs

While the VAE-loss is an intuitive choice and often used for sample-level anomaly
detection, previous work on anomaly localization with VAEs has almost exclu-
sively adopted the AE reconstruction error strategy to localize the anomalies.
While this can show good results in certain settings with adapted neural networks
and encoding capacities, it is not very effective in general. In contrast to anomaly
detection, it furthermore ignores one of two terms in the VAE-loss: the KL-loss,
and thus potentially ignores important information. For example, a low likelihood
and consequently high anomaly score can be caused by a high reconstruction error
and/or a high KL-divergence. We thus suggest multiple “more holistic” ways to
trace back the likelihood deviations to the pixel level and localize the anomalies,
which incorporate both terms of the VAE-loss and thus the approximate ELBO.

A case for the score One way to interpret the results of some AE-based models
with a denoising criterion, is as Alain and Bengio [2012] have shown, that the
reconstruction error approximates the score. The score (which was also recently
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Figure 3.2: Example of VAE-based anomaly scores on a 2D GMM. Visualized
are the GMM and the samples drawn from the GMM with the gradients of the
log-likelihood in the first column. In the next column, the scorings and gradients
of the different terms are Visualized: the reconstruction term, the KL term, and
the VAE loss (the combination of the reconstruction term and KL term).

prominently used for diffusion models [Song and Ermon, 2019]) is defined as:

∂ logp(x)
∂x

. (3.5)

One bold hypothesis can consequently be that many AE- and reconstruction-based
models work due to an approximation of this score.
Consequently and based on the following assumptions, we hypothesize that the
score can give a good approximation for an abnormality rating:

• The score gives the direction towards the normal data sample (which, in
the context of medical data, refers to a sample with diseased and abnormal
anatomy turned into healthy tissue),

• The magnitude of the score indicates how abnormal the pixel is.

We note that the above-mentioned assumptions can be violated in practice, espe-
cially in cases far away from the healthy sample data distribution or for multi-
modal distributions.

Different localization methods We thus propose and compare the following
methods for anomaly localization:
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• “Reconstruction Error”: The reconstruction error is a simple measure of the
distance between the input and the reconstruction:

Rec-Error(x) = ‖x− g(f(x))‖. (3.6)

• “ELBO-grad”: Based on the premise that L provides a close enough approx-
imation to the underlying data distribution and that the score can be used to
point out anomalies, we propose to use the derivative of L with respect to
the input. This results in a pixel-wise vector pointing towards a data sample
with a lower L:

ELBO-Gradscore(x) = |[
∂L

∂x
]| = |

∂(−DKL(q(z|x)||p(z)) + Eq(z|x)[logp(x|z)])
∂x

|.
(3.7)

This can colloquially be interpreted as the “direction towards normality”
for each pixel. The magnitude of the pixel gradient should correspond to a
pixel-wise anomaly score [Alain and Bengio, 2012] (given that L is locally
convex).

• “KL-grad”: To get a pixel-wise score for only the KL-term of L, we differen-
tiate the KL-term with respect to the input:

KL-Gradscore(x) = |
∂(−DKL(q(z|x)||p(z)))

∂x
|. (3.8)

• “Rec-grad”: To get a pixel-wise score for only the reconstruction-term of L,
we differentiate the reconstruction-term of L with respect to the input:

Rec-Gradscore(x) = ||
∂Eq(z|x)[logp(x|z)])

∂x
|. (3.9)

• “Combi”: We can also directly use the reconstruction error and combine it
with “KL-grad” instead of differentiating the reconstruction-term of L. This
should be less vulnerable to noise artifacts. For this approach, we combine
the derivative of the KL-term with the reconstruction error by multiplication,
since the terms differ by several orders of magnitude:

Apixel = |x− g(f(x))|� |
∂LKL(x)

∂x
|. (3.10)

A Visualization of a VAE trained on a 2D GMM with the respective scorings
and gradients can be seen in Fig. 3.2. In the next section, we will present the
performance of the approaches and the benefits compared to a reconstruction-
based detection on an anomaly segmentation task.
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3.1.4 Experiments & results

First, we will investigate the performance of the different terms of VAE-loss on
the FashionMNIST dataset and see if one is superior to the other. Then, we will
apply the method to brain imaging datasets and see if and how well it can be used
to detect abnormal brain images as well as for anomaly localization.

Anomaly detection

We compare the discriminative performance of the ELBO L, the KL-term, and the
reconstruction term separately on an anomaly detection task to analyze how well
they capture the data distribution and consequentially the concept of abnormality.
We further analyze the robustness and generalizability across different parameter
choices.

Setup for the FashionMNIST experiments We use the FashionMNIST dataset
[Xiao et al., 2017] and train and validate the model on 54000 images using 9 of
the 10 supplied classes, and then assess performance by attempting to distinguish
between the classes observed during training and the 10th unseen/’odd’ class.
This dataset is often used as a benchmark for the performance of basic models and
is a good starting point for the evaluation of more complex models. In particular,
for the use-case of medical imaging, this dataset is interesting because it has one
input channel with continuous values, which is comparable to a one-sequence
MRI dataset.
We employed a model with a 3-layer fully connected encoder and decoder with 400
hidden units and ReLU non-linearities for the VAE model, similar to Paszke et al.
[2017]. To assess robustness, we alter the number of latent variables, the standard
deviation c of p(x|z) (which results in a down or up-weighing of the reconstruction
loss), image size/scaling, and the ’odd’ class that is excluded during training. We
use 20 latent variables by default, c = 1, a scaling factor of 1, and class 0 is omitted
during training.

Setup for the BraTS experiments We also train and validate the models on the
imaging data from the HCP dataset [Van Essen et al., 2012] (N = 1000 scans). For
the evaluation we use the BraTS2017 dataset [Menze et al., 2015] (N = 250 scans).
Disclaimer: This setup is not perfect. We opted for this setup since it is often used
in literature [Baur et al., 2018; Chen et al., 2018], holds some clinical relevance
and no “perfect” public dataset is currently available for this use case. Here, the
HCP participants are all young healthy subjects. The scans in the BraTS dataset all
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contain brain tumors. This already denotes a domain shift between the datasets,
which may complicate the assessment of model applicability and performance.
Furthermore, the type of anomalies in the BRATS dataset is limited to brain tumors
and presents a rather ‘easy-to-detect’ anomaly case.
To apply the dataset to this anomaly detection use-case we treat slices without
annotations as healthy and we define slices with at least 20 annotated tumor voxels
as diseased/abnormal.
During training, we used minor data augmentations, such as multiplicative color
augmentations, random mirroring, and rotations. The default model was inspired
by DCGAN [Radford et al., 2015] and consists of a 5-Layer fully-convolutional
encoder and decoder with the feature-map size of 16-32-64-256. The model down-
samples using strided convolutions (stride 2) and upsamples with transposed
convolutions, each followed by a LeakyReLU non-linearity.
The number of latent variables (default 256), the standard deviation c of p(x|z)
(default 1), and the image size (default 64 × 64 pixels) are modified as ’design-
choice hyperparameters,’ illustrating the influence on the performance, robustness,
and generalizability of the different loss-terms.
The models are trained using Adam [Kingma and Ba, 2017] and a 0.0001 initial
learning rate. The learning rate is reduced if the validation loss Lval approaches a
plateau by lowering it by a factor 0.1. When the validation loss does not reduce
after three epochs, the training is terminated. We run each model five times and
present the mean as well as the maximum and minimum performance.

Detection results The sample-wise results across different parameter settings
for the FashionMNIST dataset can be seen in Fig. 3.3 and for the BraTS dataset in
Fig. 3.4.
Overall the results are very similar for both datasets. In most cases, the recon-
struction term has lower discriminative power than either the KL-term or the
ELBO. This emphasizes the point that using only the reconstruction term might
discard useful information, potentially for anomaly localization as well. In par-
ticular, in cases where the reconstruction term has better performance, the model
is severely constrained, for example by having a small latent variable dimension.
Dai and Wipf [2019] showed that this hinders VAEs from approximating the data
distribution and leads to poor reconstruction. Thus the robustness of the KL-term
can perhaps also be partially explained by Dai and Wipf [2019], in which it is hy-
pothesized that the ELBO best approximates the data distribution having “perfect
reconstructions using the fewest number of clean, low-noise latent dimensions”
for VAEs.
The results provided thus far have used the default model with no manual changes
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Figure 3.3: Anomaly detection performance across different VAE hyperparame-
ter/design choices. The plots show the AUROC for reconstruction-term (Rec), the
KL-term, and the ELBO L for the FashionMNIST dataset each graph depicting
a variation along one ‘hyperparameter dimension’. The odd class 5? shows a
fine-tuned performance with odd-class 5 (log c = 1.4) [Zimmerer et al., 2019a].

to the hyperparameters. In some circumstances, tuning them may allow one
technique to clearly outperform the others. So as a next step we show that
the hyperparameters can be tuned in such a fashion that the KL-term (or the
reconstructing-term) alone can give a competitive performance.
To prove this we use the FashionMNIST dataset and chose the ‘odd’ class 5, which,
in the default setting, has, from all ‘odd’ classes, the largest margin between
a strong reconstructing-loss (AUROC of 0.73) and a weak KL-loss (AUROC of
0.42). Only adapting a single hyperparameter by hyperparameter search on a
labeled validation set (explicitly: setting log c = 1.4), the KL-term performance
improves significantly, resulting in an AUROC of 0.82, which clearly outperforms
the reconstruction-loss for this ‘odd’ class (and surpasses all other methods by a
wide margin).
All in all, this suggests that for an unsupervised anomaly detection task (where
usually by definition no annotated validation set is available), no one, neither the
reconstruction term nor the KL-term, might, in general, be superior to another
for anomaly scoring, and leakage of labeled information (e.g. using a labeled
validation set to determine hyperparameters) can strongly bias the achieved results.
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Figure 3.4: Anomaly detection performance across different VAE hyperparame-
ter/design choices. The plots show the AUROC for reconstruction-term (Rec), the
KL-term, and the ELBO L for the BraTS2017 dataset [Zimmerer et al., 2019a].

And this indicates that in general the KL-term may also present a beneficial
addition to the often used reconstruction error for anomaly localization. Next,
we show how the previously defined methods can be used to implement this, i.e.
using the reconstruction-term as well as the KL-term for anomaly localization.

Anomaly localization

Experimental setup To explore the feasibility of applying the models to anomaly
localization and investigate the potential and peculiarities of the VAE-loss we
used a similar experimental setup to the previous experiments on the BraTS
dataset (Section 3.1.4), for which also segmentations of the anomalies/tumors are
available.
Here, again, we vary the ‘design-choice hyperparameters’ (the number of latent
variables (default 256), the standard deviation c of p(x|z) (default 1) and the image
size (default 64× 64 pixels)) to outline the robustness and generalizability of the
different scoring methods.
To localize the anomalies we use the previously described scoring methods (Sec-
tion 3.1.3). The backpropagation of the different loss terms onto the image (and ap-
proximation of the score) is implemented with the Smoothgrad algorithm [Smilkov
et al., 2017]. Due to checkerboard artifacts caused by the convolution, we apply a
Gaussian smoothing with kernel size 5 to the gradients.

Localization performance The pixel-wise anomaly localization performance on
the BraTS2017 dataset for the space of the different ‘design-choice hyperparameter’
settings is presented in Fig. 3.5. In this pixel-wise / pixel-level anomaly detection
scenario, we use pixel-wise reconstruction-error (Rec-Error), the backpropagated
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Figure 3.5: Anomaly localization performance across different VAE hyperparame-
ter/design choices. The plots show the AUROC on the BraTS2017 dataset for the
reconstruction loss, the KL-term gradient, the reconstruction-term gradient, the
ELBO L gradient and the proposed combi method [Zimmerer et al., 2019a].

L (Elbo-Grad), its backpropagated KL-term (KL-Grad) and reconstruction-term
(Rec-Grad) separately as well as the combi model present above (Section 3.1.3).
Here, similar to the sample-wise FashionMNIST example, there is no clear winner
in most cases, and the reconstruction error alone is often outperformed by other
methods. Rather, in the proposed default VAE hyperparameter settings as well
as for most design choices, the KL-Grad and the combi model perform best. This
indicates that for this setting, the reconstruction term alone might not be optimal
and that other choices can offer a more robust performance (for this particular
dataset).
Next, we will further show the importance and potential of the KL-term and
contrast the KL-term even more with the reconstruction term. In particular, we
will see what performance the KL-term can achieve when optimizing the hyper-
parameter setting and see if the results are comparable or even competitive with
results reported in the literature using the reconstruction term alone.

Optimal setting performance Given the previous setting, the top methods
already exhibit a high AUROC of > 0.9 for some settings. Particularly interesting
is here the KL-term, which was previously often ignored for anomaly localization,
and shows such a top performance as well as robust scores across most settings.
Consequently, as it was previously never reported, we are interested in the top
performance the KL-term approach can achieve for these datasets. Here, as is often
done in the literature when presenting a reconstruction-based approach, we use
an annotated validation set to tune the hyperparameters (Note: while we believe
that this is in general not good practice, in the next chapter we will discuss how
this annotated set can be created automatically and that it does not have to leak
information about the anomalies in the test set).
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In particular, here we chose a model from the previously reported hyperparameter
space that showed top performance regarding the KL-term. First, we compare
different VAE intrinsic detection methods, and basic AE-based methods and then
compare them with results reported in the literature.

First, we inspect the score, dividing it into the reconstruction-loss gradient and
KL-loss gradient, to get insights into the benefits of including the KL-term in
the anomaly detection. We extend the analysis with more metrics that can be
derived from a VAE such as the reconstruction error of the VAE, the smoothed
reconstruction error, and the sampling deviations by determining the standard
deviation of multiple MC samples. Lastly, a reconstruction-error-based Denoising
Autoencoder (DAE) [Vincent et al., 2010] with the same architecture using the
reconstruction error is evaluated as well.

The results are presented in Fig. 3.6 and Table 3.2 (and for the ELBO gradient
in more detail in Fig. 3.8), samples and the corresponding pixel-wise ratings for
samples can be seen in Fig. 3.7.

As similarly previously observed in [Chen et al., 2018; Pawlowski et al., 2018],
the reconstruction-error based VAE and reconstruction-error based DAE detec-
tion performed roughly on par which each other. Further postprocessing using
smoothing improves the results by removing high-frequency detections which
likely are artifacts of the reconstruction error. The reconstruction-loss gradient
interestingly performed better than the reconstruction error but showed poorer
performance than the KL-loss gradient.

The best performance with an AUROC of 0.94 was achieved by the approximated
score using the ELBO gradient (KL-loss + reconstruction-loss). However, the KL-
loss alone performed similarly well and adding the reconstruction-loss gradient
only showed marginal benefits.

Fig. 3.7 shows a clear difference between the reconstruction-loss gradients and the
KL-loss gradients. An interpretation of Fig. 3.7 could be that the reconstruction-
loss gradient focuses more on parts of bad reconstruction and thus given the
performance of the reconstruction error, not always corresponds to an anomaly.
The KL-loss on the other hand may focuses more on the distance of the feature
(distribution) to the prior and thus “feature deviation from normality”.

Finally, we calculated the DSC to compare the performance of the models to
previously reported results. Here, the DSCs are calculated by thresholding the
anomaly score values at a threshold that was determined using a greedy search on
1
5 of the test dataset. The reported DSCs were then taken from the other 4

5 th of the
dataset. Results are shown in Table 3.1.
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Table 3.1: Whole tumor DSC on the BraTS Dataset for several ’unsupervised’
approaches (the number in brackets identifies the year of the BraTS dataset used).
Hand-crafted non-deep learning algorithms that were explicitly created with
domain knowledge of the dataset in mind outperform our solution, which is
comparable to existing deep-learning-based anomaly detection methods.

deep-learning ours non deep-learning
α-GAN VAE-Rec default fine-tuned GHMRF X-Saliency GMM

(15) (15) (17) (17) (13) (HGG 14) (15)
0.37 0.42 0.36 0.44 0.72 0.75 0.22

Figure 3.6: Comparison of the pixel-wise tumor localization performance on the
BraTS-2017 dataset [Zimmerer et al., 2018].

Table 3.2: Pixel-level AUROC values of the different scoring methods (see 3.6).

AUROC
DAE 0.808± 0.009
Reconstruction Error 0.817± 0.003
Smoothed Reconstruction Error 0.843± 0.008
Sampling Variance 0.855± 0.013
Reconstruction-Loss Gradient 0.894± 0.020
KL-Loss Gradient 0.939± 0.007
ELBO Gradient 0.939± 0.008
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Figure 3.7: Samples from the dataset with the different pixel-wise rating schemes,
showing the original sample (I), the annotation (II), the reconstruction error
(III), the smoothed reconstruction error (IV), the sampling variances (V), the
reconstruction-loss gradient (VI), the KL-loss gradient (VII), and the combined
gradient which approximates the score (VIII) (for more samples, see Fig. 6.1 and
Fig. 6.2) [Zimmerer et al., 2018].

Figure 3.8: Pixel-level ROC and PR Curve on the BraTS 17 test set using the ELBO
gradient.

3.1.5 Discussion & conclusion

We presented a way to localize anomalies using a VAE beyond the reconstruction
error. As early experiments on the simple FashionMNIST dataset showed the
reconstruction error alone is not the optimal choice for sample-level anomaly
detection. We further extended that to anomaly localization on medical images
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and showed that using the gradients as a localization method, this statement
also holds true for anomaly localization on medical images. To the best of our
knowledge, this is the first time VAE gradients were used for anomaly detection
or localization. Using gradient-based approaches, which furthermore are more
theoretically grounded, the VAE-based anomaly detection score on the BraTS
tumor segmentation dataset could be improved compared to previously reported
results outperforming the previously best reported AUROC of 0.92 [Chen and
Konukoglu, 2018; Chen et al., 2018].
Overall, we showed, that for ‘basic’ VAE-based anomaly localization, the free lunch
theorem holds, there is no superior version that is best in all cases and settings.
However, this also means that for many cases in the anomaly localization setting
the reconstruction error does not always automatically give the best performance
and can regularly be improved by combining it with the backpropagated KL-term.
Using fewer latent variables or putting more importance on the KL-loss could,
while potentially causing inferior overall performance, lead to a more competitive
performance of the reconstruction error. However, this may hinder the model
from effectively learning the true data distribution [Dai and Wipf, 2019] and
unnecessarily limits the model and its capacity. The use of both the KL-term and
reconstruction-term is in line with the common practice of using the approximate
ELBO, which constitutes the definition of the combination of the KL-term with
the reconstruction-term, as a basic way to detect outliers using VAEs instead of
only using the reconstruction error. Moreover, the ELBO is theoretically inspired
and may be deployed as the base of other appropriate on-top techniques like
‘test-of-typically’ [Nalisnick et al., 2019]. The reconstruction term alone has a
less theoretical foundation. Overall, combining multiple aspects may be more
robust across different settings (as hinted by the experiments) and thus effectively
reduce the need for manually turning on a validation set. In particular, the
relative influence of the reconstruction loss can depend on the regularization of
the latent variables. Furthermore, using the ELBO-grad method outperformed the
previously reported results, which only use a reconstruction error. Consequently,
we want to stress the point that including the KL-loss and the score of a model
can lead to an improvement in VAE-based methods for anomaly localization and
should not be ignored by default.
Particularly, the ‘score’ method of detecting anomalies can be generalized and is
directly applicable to other state-of-the-art density estimation techniques, such
as Grow [Kingma and Dhariwal, 2018] or Pixel-CNN++ [Salimans et al., 2016].
Furthermore, later research showed that the gradients can be competitive for a
sample-level anomaly detection task [Huang et al., 2021; Igoe et al., 2022].
On the BraTS dataset, it appears that non-deep learning approaches perform better
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than our method. This, however, overlooks the fact that these models, through
their algorithmic design, integrate specialized domain knowledge. While this
results in a good performance, it makes them inappropriate for use in other organs
or modalities. Our suggested technique does not impose such assumptions, is
adaptable in terms of the precise selection of hyperparameters, and can therefore
be successfully applied to different situations or datasets without change.
We feel that our suggested technique is an important step toward advancing
anomaly identification in medical imaging applications and allows VAE-based
methods to tap into the potential of the KL-term. Furthermore, the score, while a
good anomaly localization method as-is, might offer further potential for uncer-
tainty indicators and semi-automatic evaluation.
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3.2 Improving anomaly localization with self-
supervised learning

3.2.1 Motivation

The previous results have shown that feature deviations from the prior in a VAE
can be used to identify anomalies. This stresses the importance of learned features
and this use case, learning “meaningful” features, be it for pretraining or clustering
was one of the early selling points for VAEs. However, recent research has shown
that the features learned by a VAE often focus on low-level information and
statistics. Self-supervised learning methods, which have lately become popular,
attempt to tackle this problem by utilizing a human-crafted task that ideally
encourages the model to learn meaningful features. Thus with the advancement
of the self-supervised learning approaches, the ‘classical’ unsupervised feature
learning approaches were outperformed and replaced in many areas by self-
supervised approaches. This raises the question of whether the success of self-
supervised learning methods translates to anomaly localization settings as well
and if they can be integrated into the existing VAE-based approaches (note: some
definitions, formulations, and equations of this section were previously published
by myself in [Zimmerer et al., 2019b]).

3.2.2 Related work & SotA

Self-supervised learning Self-supervised learning usually refers to the use of a
human-crafted task to optimize the model parameters for later usage, e.g. pretrain-
ing or linear classification using the pre-trained features. One of the first models
that could classify as self-supervised learning models were the DAEs [Vincent
et al., 2010]. Here, an AE was trained to reconstruct a previously noise-perturbed
image. Other early works that have shown good performances for pretraining
used recolorization [Zhang et al., 2016], predicting the rotation of an image [Gi-
daris et al., 2022], reordering of image patches similar to a jigsaw puzzle [Noroozi
et al., 2017], predicting the relative position of two patches to each other [Doersch
et al., 2016], inpainting or context encoding masked out parts of an image [Pathak
et al., 2016], and exemplar-based learning (i.e. seeing each individual image as
one class and classifying augmentations of this image as belonging to this class)
[Dosovitskiy et al., 2015].
While the first mentioned methods have shown incremental performance improve-
ments, especially the latter two, masking and exemplar learning, have proven to
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be more effective in the current state of the art. While exemplar learning on its
own has not shown fundamental improvements, an incremental adaptation of
the idea, contrastive learning, was shown to be a powerful method for improving
the performance of self-supervised learning [Oord et al., 2019]. Masking on the
other hand has proven similar performance in particular for sequence models
such as transformers and has there become one of the most successful pretraining
methods [He et al., 2021].

Contrastive learning Similar to the concept of examplar learning, contrastive
learning utilizes a sample to generate positive pairs (semantically similar data
points), which attract each other, and negative pairs (semantically different data
points), which repel each other in the latent space. As proposed by Oord et al.
[2019], a Normalized Temperature scaled cross-entropy (NT-Xent) loss is used
and is one essential part of the success of contrastive learning [Oord et al., 2019].
While the NT-Xent loss is in common for all contrastive learning approaches,
the way to generate the positive pairs is different for each method. The early
works on contrastive learning [Oord et al., 2019] interpreted samples as sequences
(e.g. an image as a sequence of pixels) and used the current sequence sample
and the consecutive sequence sample as positive pairs, while non-sequential
sequence samples were seen as negative. This has shown good performance on
multiple different downstream tasks in multiple domains. However consecutive
work has shown to be more effective for images and circumvented the need for
a sequence representation. Particularly in computer vision, data augmentation
has been proven to be a simple and effective way to produce positive pairs. For
example, Simple framework for Contrastive Learning of visual Representations
(SimCLR) [Chen et al., 2020] uses random data augmentation on a sample to
generate two augmented samples, which form the positive pair. Other augmented
image pairs in the batch are seen as negatives for that sample. This way of
pretraining has shown to be rather robust and easy to implement and has on one
hand shown new SoTA performance on computer vision tasks while on the other
hand allowing for a significantly reduced number of labeled samples to achieve
similar performance previously reported fully-supervised methods. Furthermore,
the features produced by SimCLR alone demonstrated greater linear separability
for subsequent classification tasks than other self-supervised techniques and AEs,
implying that the SimCLR features match better to human-interpretable semantic
information.

Masking Inpainting research can be considered one of the origins of using mask-
ing as a pretraining method. The original goal of image inpainting was to re-edit
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images, remove objects, image restoration or manipulation, ... and has recently
achieved impressive results [Lugmayr et al., 2022; Zheng et al., 2022] and made
it into everyday consumer products [Photos, 2021]. The Context-Encoding (CE)
framework [Pathak et al., 2016] was the first to use inpainting or masking as a pre-
training method. Here, a network was tasked to inpaint and restore a previously
removed part of the image. The trained network showed great performance on
further downstream tasks such as image segmentation, and image recognition.
The authors suspect this to work better than other reconstruction methods, because
to inpaint the missing information, the network has to learn the semantics of the
image, which later on can help for downstream tasks. While better performing
pretraining methods for CNNs have been proposed, lately masking has regained
importance as a pretraining method for transformer networks [He et al., 2021].

Self-supervised learning for anomaly detection Some of the self-supervised
ideas have been incorporated into different anomaly detection approaches. For
example, Golan and El-Yaniv [2018] use a rotation prediction and learn the distri-
bution of the final logits to detect anomalies. Later, some works have incorporated
contrastive learning for anomaly or out-of-distribution detection. Here, Winkens
et al. [2020] extend a classification model with a contrastive learning task, which
has shown to improve out-of-distribution detection. The authors argue that this
can be attributed to the more general and less target-task-dependent features
learned by the contrastive learning task.
To the best of our knowledge, there was no prior work for a self-supervised
method for anomaly localization. Later on, Venkatakrishnan et al. [2020] pro-
posed a multi-task prediction framework for self-supervised anomaly localization
and compared themselves with the work presented here, however, showing no
significant improvements.
So next we want to introduce two ways of using self-supervised learning for
anomaly localization, first using masking/CE incorporated into the VAE frame-
work and second using contrastive learning to localize anomalies.

3.2.3 Methodology

Context-Encoding

Next, we present an integration of CE into VAEs as an anomaly detection method:
the Context-encoding Variational Autoencoder (ceVAE). By extending VAEs with
CE, we aim to improve the internal latent representation and as such make devi-
ations from the prior more suited for anomaly detection on a sample as well as
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Figure 3.9: The model structure of the ceVAE. On the top is the VAE branch
depicted and on the bottom is the CE branch [Zimmerer et al., 2019b].

pixel level. Similar to a VAE, we implement the ceVAE with fully convolutional
encoders fµ, fσ and a decoder g. There CE-part only uses the mean encoder fµ
to encode a data sample (similar to VAEs fµ and fσ share most of their weights
[Kingma and Welling, 2013], see Fig 3.9).

VAE branch The VAE branch in the ceVAE is the same as a VAE. It is used to
get a proxy for the likelihood of a data sample. As is common, encoders fµ, fσ, a
decoder g, and a standard diagonal Gaussian prior p(z) are used, resulting in the
VAE objective:

LVAE = LKL(fµ(x), fσ(x)2) + LrecVAE(x,g(z)), (3.11)

where z ∼ N(fµ(x), fσ(x)2) using the reparametrization trick and LKL is the KL
divergence loss with a standard Gaussian as in Eq. (3.4).

CE branch For the CE-part, first, a sample x is noised/masked with CE noise.
In particular, one or multiple rectangular regions with random size at a random
position of the original sample x are randomly masked out to create a perturbed
sample x̃. The objective of the CE-branch is then to reconstruct the original sample
x given x̃ which at the same time potentially improves the “latent-space features”
of the VAE. Therefore is it first fed through the encoder fµ and then the decoder g:

LrecCE(x,g(fµ(x̃))). (3.12)

A further benefit the CE might give is that the reconstruction error can become
more expressive. As noted by [Alain and Bengio, 2012] for a DAE the reconstruc-
tion error (under some approximations and assumptions) can approximate the
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derivative of the log-density with respect to the input ∂ logp(x)
∂x

. While the CE noise
is no additive noise (and does not decrease during training), this might still hold
true, and for simple 2D experiments, we could see a strong correlation between a
DAE with Gaussian additive noise and a DAE with CE noise.

ceVAE By combining the CE and the VAE, we aim at increasing the expressive-
ness of the model-internal latent space and thus allow for a better delineation of
anomalies, in particular when using the deviations from the prior. The combined
objective function is consequently given as:

LceVAE = LKL(fµ(x), fσ(x)2) + LrecVAE(x,g(z)) + LrecCE(x,g(fµ(x̃))), (3.13)

where LKL is the KL-loss, z is sampled using the reparametrization trick and x̃ is
perturbed by masking out regions as in CEs. The CE task (with LrecCE) does not
impose normality restrictions on the prior p(z|x) during training. This is necessary
to stop the model from classifying these altered cases as “normal”. Additionally,
the CE and VAE working simultaneously can have a regularizing influence and
inhibit the posterior collapse of the VAE.

Anomaly detection and localization While for this work we prioritize the local-
ization of anomalies, the ceVAE model also allows for the detection of anomalies
on a sample level. After training the ceVAE, optimizing the loss and ideally in-
creasing the approximated ELBO, the trained model allows for an estimate of the
data sample likelihood. This likelihood can then be used to determine the anomaly
score of a data sample. Thus the sample-wise anomaly score is given as:

Asample = LKL(x) + LrecVAE(x,g(z)), (3.14)

Simultaneously, to localize abnormal parts in the data sample we can use the meth-
ods proposed in Section 3.1.3. Overall, as stated before, we aim for a combination
of the reconstruction error and the KL-loss to capture both aspects of the VAE. In
particular, by adding the CE part, we aim at improving the reconstruction term
and even more the importance of the feature distribution deviations from the prior
due to the increased expressiveness of the latent space.
Here, we propose a generalization of the combi method using an element-wise
function h to combine the scores. The pixel-wise anomaly score is defined as:

Apixel = h

(
|x− g(f(x))|, |

∂(LKL(x) + LrecVAE(x, z))
∂x

|

)
, (3.15)



3.2. IMPROVING ANOMALY LOCALIZATION WITH SELF-SUPERVISED
LEARNING 59

where the reconstruction error is the absolute pixel-wise difference, and the pixel-
wise derivative is calculated by backpropagating the ELBO back onto the data
sample.
Choosing h as pixel-wise multiplication returns the known combi scoring:

Apixel = |x− g(f(x))|� |
∂LKL(x)

∂x
|. (3.16)

Contrastive learning

While CE, due to its similarity to AEs, allowed for a simple extension of the VAE,
for contrastive learning we propose a different two-stage approach. The two
stages can be seen in Fig. 3.10. In the first stage an encoder f is trained using
contrastive learning to produce a ‘useful’ feature space/ mapping from images to
features: z = f(x). During the second stage, a generative model p is fitted on the
representations to allow for a likelihood estimate of a representation. The Negative-
Log-Likelihood (NLL) of its representations is given as: s(x) = − log(p(f(x))).
The pixel-level anomaly scores are obtained similarly to the method proposed in
3.1.3 by back-propagating the gradients of the representation NLL into the sample.
Overall, we term this approach Contrastive Representations for unsupervised
Anomaly Detection and Localization (CRADL).

Contrastive training The contrastive pretext task is similar to SimCLR [Chen
et al., 2020] in that positive pairings are created by randomly selecting and apply-
ing data augmentations t from a collection of augmentations T. In a minibatch of
N samples, each sample xi undergoes two transformations, resulting in the two
distinct enhanced samples each that make up the positive pair.
By minimizing the NT-Xent contrastive loss, the representations formed by passing
augmented samples through the encoder and projection head, ũi = g(f(t̃(xi)))
and ûi = g(f(t̂(xi))), are steered to be identical:

l(x̃i, x̂i) = − log
exp(sim(ũi, ûi)/τ)∑

ū∈Λ− exp(sim(ũi, ū))/τ)
(3.17)

Here the set Λ− consists of all examples except ũi, all other 2N− 1 examples in the
minibatch. The loss over the whole minibatch is obtained by summing all positive
pairs (with both permutations).

Generative model In general, any suitable generative model can be fitted on
top of the representations learned by the contrastive model. Here, we propose to
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Figure 3.10: (a) CRADL fitting pipeline: (1) learning the contrastive pretext task
with SimCLR. (2) fitting of the generative model on the learned features. (b) Visu-
alization of the testing/prediction phase of the model. The anomaly score/predic-
tion is calculated as the gradient of the predicted likelihood with respect to the
input image.

use a GMM as the generative model, since it is one of the most basic generative
models used for anomaly detection and the closely related Mahalanobis distance
has shown good results in previous studies [Kamoi and Kobayashi, 2020; Winkens
et al., 2020]. As noted in 2.3.1 the probability distribution of a GMM with K
components is given as:

p(x;Θ) =
K∑
k=1

N(x;µk,Σk) · πk (3.18)

We used the EM algorithm [Dempster et al., 1977] to determine the model parame-
ters with the number of components K being specified before the fit.

3.2.4 Experiments & results

To evaluate the benefits of masking and contrastive learning for anomaly local-
ization, we first conducted a simple experiment using the ceVAE and outline
the benefits masking can bring to the problem, without much modification of
the existing approaches. Next, we then investigate if contrastive learning can be
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used to improve upon masking as pretraining for anomaly localization and then
compare both in an idealized setting.

Data

Training data For all the experiments, the T2-weighted brain MRI images were
used. Here, the normal dataset was comprised of brain scans from the HCP dataset
[Van Essen et al., 2012], i.e. giving the definition and distribution of normal data
samples. For the ceVAE model, the HCP dataset was split into 1092 patients for
training and 20 for validation. For CRADL, the models were trained on a subset
of the HCP dataset [Van Essen et al., 2012] using 894 scans split into training
and validation set and used the left-over scans to determine some model-specific
parameters: Using the left-over scans, we created a synthetic anomaly dataset
(similar to [Zimmerer et al., 2020]) from 100 HCP separate scans (HCP synthetic
anomaly dataset (HCP Synth.)) by rendering real-world objects into different
brain scans. So the trainig set and the HCP Synth. datasets stem from the same
distribution (i.e., same scanner, site, ...) and only the introduced foreign objects
cause the difference in the distribution. TheHCP Synth. dataset was divided into
two halves, each of which has 49 scans: one for model development (i.e., choosing
our hyperparameter values and K) and one for testing alone.

Test data To test the models on different medical datasets, containing different
anomaly types, the BraTS-2017 [Bakas et al., 2017] dataset, split into 20 scans for
validation and 266 for testing, and the ISLES-2015 [Maier et al., 2017] dataset, split
into 8 scans for validation and 20 for testing, was used.

Preprocessing Each dataset was preprocessed similarly, with a patient-wise z-
score normalization and clipping the range of intensities to [−1.5, 1.5]. Due to
memory constraints, the sample slices were resized to a resolution of 64× 64 for
the ceVAE experiments and to 128 × 128 for CRADL. In order to prevent over-
fitting, we employed random mirroring, rotations, and multiplicative brightness
augmentations during training. During training, we selected the top-performing
model with respect to the validation loss for testing.

Model implementations

ceVAE For the ceVAE, the encoder and decoder networks, inspired by the deep
convolutional architecture in [Radford et al., 2015], are implemented with CNNs
with five 2D-Conv-Layers and 2D-Transposed-Conv-Layers respectively with
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CoordConv [Liu et al., 2018], kernel size 4 and stride 2, each layer followed by a
LeakyReLU non-linearity. The encoder and decoder are symmetric with 16, 64,
256, and 1024 feature maps and a latent variable size of 1024. As is common for
VAEs [Kingma and Welling, 2013] the encoder for µ and σ have shared weights,
only splitting at the last layer into two heads (one for µ and one for logσ).
The reconstruction loss Lrec was chosen as the L1-Loss (assuming a Laplace distri-
bution for the expectation-term/reconstruction term in the ELBO equation). This
was shown to be a similarly good choice for VAEs and produce visually sharper
images.
In analogy to Pathak et al. [2016] the CE noise was chosen as 1-3 randomly sized
and positioned squares, however with a random ‘color’ value, which slightly
deviates from the original image CE. This makes the challenge of correcting the
noise slightly harder, is conceptually more akin to DAEs with Gaussian noise and
bears similarities to the later developed Foreign Patch Interpolation (FPI).
The model was optimized with Adam [Kingma and Ba, 2017] with a learning rate
of 2× 10−4 and trained with a batch size of 64 for 60 epochs.

CRADL Similar to the ceVAE the CRADL encoder solely consists of 2D-Conv-
Layers, starting with an feature map size of 64. The latent dimension size was
set to 512. The projection head was implemented with a 2-layer MLP with ReLU
non-linearities, a 512 dimensional hidden layer, and output of size 256.
Using the Adam [Kingma and Ba, 2017], a learning rate of 1e-4, cosine annealing,
10 warm-up epochs, a weight decay of 1e-6, and a temperature for the contrastive
loss of 0.5, the encoder undergoes 100 epochs of contrastive pretext training on the
HCP training set. The encoder with the lowest loss on the HCP validation set is
chosen for further experiments. We combined random cropping, random scaling,
random mirroring, rotations, multiplicative brightness, and Gaussian noise to
create several (positive and negative) samples for the contrastive training.
The GMM was fitted on representations of the encoder using all samples in the
HCP training set without any augmentation. The means of the components were
randomly initialized, and the convergence limit for the EM algorithm was set to
0.1.

Benchmark methods

As methods for comparing the suggested models with, an One Class Support Vec-
tor Machine (OC-SVM) and different AE-based methods, which have shown state-
of-the-art performance on similar tasks [Baur et al., 2018; Chen and Konukoglu,
2018; Chen et al., 2018; Pawlowski et al., 2018] were chosen.
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Figure 3.11: Slice-wise anomaly detection performance (AUROC) of different
models on the BraTS-2017 dataset [Zimmerer et al., 2019b].

The OC-SVM was based on the libsvm implementation [Chang and Lin, 2011]. The
AE-baseline methods, a standard AE, a DAE, a CE, and a VAE, were implemented
using the same model structure and training scheme as the ceVAE.
To further inspect the benefits of combining the CE and VAE,a ceVAE weighting
factor, termed ceVAE-Factor, is introduced which indicates the ratio of the CE Loss
(LrecCE in Eq. (3.13)) to the VAE-Loss (LKL and LrecVAE in Eq. (3.13)). A ratio of
0.0 implies that the model was trained as a VAE only, a ratio of 1.0 implies that
the model was trained as a CE only, and the other ratios are differently weighted
ceVAE models.
To compare the benefits of the contrastively trained features, in addition to the
GMM a Flow-based method, in particular, RealNVP [Dinh et al., 2016], was used.
To further show the benefits and rule out the effects of the Flow-based method, a
Glow-like [Kingma and Dhariwal, 2018] model was directly trained on the raw
images.

ceVAE experiments

Given the proposed framework the effect of combining a CE with a VAE is first
evaluated on a slice-wise anomaly detection level. This is followed by an evalua-
tion of the benefits of combining the reconstruction error with the gradient of the
KL-Loss for a pixel-level localization of the anomalies.

Slice-wise detection The first comparison is of the different approaches on the
slice-wise anomaly detection task. Fig. 3.11 shows the performance of different
methods on the BraTS 2017 dataset. As expected, the OC-SVM had difficulties
with high-dimensional and highly structured data [Goldstein and Uchida, 2016].
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Figure 3.12: Pixel-level localization performance (DSC and AUROC) of the ceVAE
for different ceVAE-Factors on the ISLES-2015 and BraTS-2017 dataset [Zimmerer
et al., 2019b].

Furthermore, some more observations can be made regarding the ranking of the
different AE-based models: (1) The most basic model, the AE, was already per-
formant enough to outperform the OC-SVM. (2) Using denoising as an auxiliary
task during the training helped improve the performance. (3) CE noise appears to
outperform Gaussian noise as noise for a denoising objective. (4) Surprisingly, a
VAE outperforms the DAE models by a margin, further indicating the importance
of the KL-term. (5) The combination of a VAE with a denoising objective can
further boost the performance.

Pixel-level localization For the experiments for the pixel-level localization task,
we opted to focus on the CE, VAE, and ceVAE since performance on the sample-
level task was convincing and VAEs and their variants have become a de-facto
standard in anomaly localization for medical images [Baur et al., 2018; Chen et al.,
2018; Kiran et al., 2018]. The pixel-wise AUROC and DSC on the BraTS-2017 and
ISLES-2015 datasets are shown in Fig. 3.12.
After inspecting the results for the sample-wise task, the results for the VAE and CE
were mostly expected: the CE performed best when using solely the reconstruction
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BraTS-
2017

ISLES-
2015

HCP

Figure 3.13: Sample images and predictions from different data sets. The 1st, 2nd,
and 3rd rows show good (+), medium (∼), and failure (-) cases respectively. For
each sample image, the original sample (I), the reconstruction (II), the annotation
(III), the reconstruction error (IV), the gradient (V), and the resulting segmentation
(VI) are presented [Zimmerer et al., 2019b].

error, in contrast, the VAE performs best using solely the gradient of the KL-loss
and outperforms the CE.

The ceVAE using the ‘combi’ score outperforms the CE and VAE for all cases.
Furthermore, in total the ‘combi’ method also appears to yield the best results for
these datasets.

If just the reconstruction error is considered, the ceVAE even improves upon the
CE, possibly due to the regularizing effects described in Section 3.2.3.

An obvious insight is a difference in absolute performance between the two
datasets. While the type and/or expression of the anomalies in the images are
similar, one probable explanation is the difference in dataset quality and thus a
distribution shift to start with, which can impede the performance of the models.

Qualitative results for each dataset are shown in Fig. 3.13.
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Figure 3.14: Comparison of different representations for pixel-level anomaly local-
ization on the different data sets. Compared are features from CRADL, a ceVAE,
and a VAE all with a GMM fitted to the features and the backpropagated log-
likelihood (CRADL & ceVAE + GMM & VAE + GMM), and additional for VAE
and ceVAE the gradient of the KL-Divergence (ceVAE KL Div. & VAE KL Div.).

CRADL experiments

Next, while we have seen the benefits self-supervised learning can bring to the
anomaly localization task, we will see if the masking task can be improved upon
by a contrastive learning task. Thus, in the context of anomaly localization, we
first examine the discriminative capability of the representations created using
contrastive learning compared to that of generative models. In the next step to
evaluate the absolute performance, we compare then the anomaly localization
performance with the ceVAE model.

Discriminative power of representations for anomaly localization To compare
the discriminative power of representations from generative models, in particular
VAE and ceVAE, and their applicability to anomaly localization we fit a GMM on
their representations in an identical scheme to CRADL (see Sec. 3.2.3). While a
GMM model can parameterize almost arbitrary distributions given a large enough
number of components K, we believe that VAEs, due to their unimodal Gaussian
prior, represent a very benign case and a small number of components should be
able to capture the distribution. In addition, for the VAE models, we compare
the gradient of the KL-Divergence, since the KL-divergence also can measure the
feature distribution deviations and is inherent to the model.
The performances of the anomaly localization methods are depicted in Fig. 3.14.
Here it becomes apparent that CRADL-based representations outperform both
VAE and ceVAE-based representations for both ISLES and HCP Synth., while on
BraTS the KL-Divergence of the ceVAE showed performance similar performance.
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Figure 3.15: Pixel-level scores for different samples from the different datasets
using the different self-supervised approaches (clamped and normalized for visual
inspection).

This supports the theory that self-supervised representations may include more
semantic information, allowing for a better localisation of subtle semantic distinc-
tions between abnormal and normal brain volumes, and that contrastive learning
in particular may be a task that fits well.
To verify that the main benefits stem from its contrastively learned representations
and not from the GMM fitting difference between the models, we tested Flow-
based Deep Generative Models additionally,(Real NVP [Dinh et al., 2016]) which
show the same trend as the GMMs (for more details, see Section 6.0.3).

Comparison to ceVAE Here, we further compare CRADL with the ceVAE. The
quantitative results are shown in Table 3.5 and qualitative results can be seen in
Fig. 3.15. Here, for the CRADL model, we present the best-performing model,
with the optimal choice of the number of GMM components K.
CRADL outperforms ceVAE on the HCP Synth. dataset by a large margin and by
a small margin on the ISLES dataset. The ceVAE on the other hand outperforms
CRADL on the BraTS dataset by a small margin.
On hypothesis why the strong score from CRADL on the HCP Synth. dataset does
not extend to the other datasets is the domain gap between the HCP dataset on
which the models were trained to the other dataset (i.e., different scanners, image
quality, and the patients’ overall health) and contrastive learning might be more
sensitive to such changes.
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Table 3.5: Pixel-wise anomaly localization metrics for the different datasets.

CRADL ceVAE

HCP Synth. AUROC 0.978 ± 0.001 0.921 ± 0.004
AP 0.288 ± 0.010 0.172 ± 0.015

ISLES AUROC 0.898 ± 0.003 0.879 ± 0.002
AP 0.186 ± 0.039 0.145 ± 0.013

BraTS AUROC 0.942 ± 0.001 0.948 ± 0.003
AP 0.380 ± 0.016 0.483 ± 0.003

3.2.5 Discussion & conclusion

Self-supervised learning and representations obtained using self-supervised learn-
ing have shown great improvements in follow-up tasks and allowed better linear
separability of semantic classes. In this section, we wanted to investigate if ‘more
semantic’ features can improve anomaly localization performance. As the results
showed, integrating self-supervised learning in the form of masking into a VAE
anomaly localization framework showed localization improvements and also
contrastive learning on its own showed competitive performance for anomaly
localization.
Similar to the literature, contrastive learning has shown to be a top-performing
and easy-to-use self-supervised training task for CNNs, and this result was also
mirrored in the presented anomaly localization results. However, in recent years
improvements and new self-supervised tasks were proposed and continued to im-
prove performance. In particular, masking has recently received a lot of attention
in the transformer model literature, and with changes in architectures and new
datasets, it is expected to be a more effective pretraining method for anomaly local-
ization. As such we expect that there is no best or standard go-to self-supervised
task for anomaly localization. Rather, integrating different self-supervised learning
methods into an anomaly localization framework will be a good starting point
for new architectures. Following this line of thought, we believe that as the ex-
periments showed, integrating a self-supervised task, independent of the exact
task, and thus ‘more semantic’ features can boost the performance of anomaly
localization.
However, the current approaches only model the feature distribution on one
‘network layer’ or one abstraction level. This can potentially overfocus on certain
types or sizes of anomalies, as some minor texture changes might only be present
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in the lower-level features and are ‘abstracted away’ in the higher level or ‘more
semantic’ features. Therefore, in the next chapter, we will explore the possibility of
using an explicit hierarchy of features to better model the distribution of anomalies.
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3.3 Improving anomaly localization with hierarchical
representations

3.3.1 Motivation

In classical medical image segmentation, the U-net has proven to be the de facto
standard and its variants have been applied in different areas/tasks for several
years and won multiple challenges. One of the factors for the success of the U-net
can be attributed to its hierarchical encoder-decoder structure. In the encoder, the
local information is compressed into semantic information as the layers progress.
In the decoder, the semantic information can then be used together with the local
information to achieve a good and detailed segmentation. This information fusion
is possible due to the skip connections, i.e. the use of the feature maps from the
encoder layer on the respective decoder layer in addition to the features from the
decoder layer above.
While AEs are structurally similar to the U-net, they miss these skip connections
(since it would make the reconstruction task very easy and the model would
not have to use the upper layers). This, however, enforces AEs to pass all the
information through the bottleneck and given the choice of architecture trade
local information for semantic information. The loss of local information and thus
local modeling can hinder the reconstruction and potentially fine-grained anomaly
localization.
However, in medical imaging VAEs have often been used for unsupervised pre-
training, feature extraction and OoD / anomaly detection [Baur et al., 2018; Chen
et al., 2018; Litjens et al., 2017; Shin et al., 2013; Zimmerer et al., 2018]. In this
regard, due to the previously mentioned issues, VAEs are often designed to either
contain ‘high-level features’ or model only basic image features and thus are often
criticized to have over-smoothed reconstructions and only learn low-level statis-
tics [Dai and Wipf, 2019; Larsen et al., 2015; Nalisnick et al., 2018; Razavi et al.,
2019]. Especially in medical applications faithful reconstruction and small textural
differences can be important.
Here, inspired by Principal Component Analysis (PCA) and Vector Quantized
Variational Autoencoder (VQVAE)-2 [Razavi et al., 2019], we introduce a sim-
ple hierarchical model with a low-level reconstruction branch that enforces the
partitioning into high-level and low-level components which, in our case, corre-
spond to the coarser and the finer structure of brain MRIs. The model, which
we call primary components conditional hierarchical VAE (pchVAE), shows bet-
ter reconstructions than a normal VAE while having similar or slightly better
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anomaly/OoD detection performance (indicating they capture the data distribu-
tion similarly well) (note: some definitions, formulations, and equations of this
section were previously published by myself in [Zimmerer et al., 2019c]).

3.3.2 Related work

Recently, hierarchical latent models [Maaløe et al., 2019; Sønderby et al., 2016;
Zhao et al., 2017], which can model features on different network layers and ab-
straction levels, have been proposed. However, studies have shown that when
learning and differentiating between high- and low-level features, these hierarchi-
cal models currently exhibit only a minor or no gain compared to conventional
VAEs [Maaløe et al., 2019; Zhao et al., 2017]. One example is the Ladder VAE
[Sønderby et al., 2016] which has been shown to collapse to a single-level model in
practice [Zhao et al., 2017]. However, by utilizing a particularly deep multi-stage
design where each level is dependent upon the lower and higher levels, BIVA
[Maaløe et al., 2019] has been demonstrated to provide some benefits. Child [2021]
proposes a hierarchical extension to VAEs, which show sharp generated images
and comparable performance to autoregressive models, even for high-resolution
images. However, they do not analyze its applicability for anomaly detection. One
approach that models multiple feature hierarchies for out-of-distribution detection
was proposed by Song et al. [2019]. In detail, they repurpose the learned batch
normalization layer statistics to find batches for which these deviate for a test
data batch. This allows the detection of out-of-distribution samples on a per-layer
basis, but requires batching of data samples, is trained in a supervised manner,
and different layer statistics are not combinable or comparable.

3.3.3 Methodology

Inspired by recent research, which found that VAEs pursue PCA directions (by
accident) [Rolinek et al., 2018] and the fact that VAEs also optimize the mutual
information between the input and the latent variables (which we will show later),
we propose the optimization problem for a non-linear VAE with two components
(in contrast to PCA which maximizes the variance for the components, this maxi-
mizes the mutual information of the input and the first component) [Zimmerer
et al., 2019c].
We derive this optimization problem, starting from the following optimization
problem for a linear hierarchical AE with input X and weights w1,w2, where the
first term models the ‘main’ component and the second term models the ‘residual’:
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min
w1,w2

λ1||X−w1w
>
1 X||+ λ2||(X−w1w

>
1 X) −w2w

>
2 (X−w1w

>
1 X)||. (3.19)

Given this, we derive a similar optimization problem:

λ1||X−w1w
>
1 X||+ λ2||(X−w1w

>
1 X) −w2w
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>
1 X)||
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(triangle inequality)
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(3.20)

For further modularity, we introduce λ3 instead of λ2 for the third term. However,
in practice we chose λ2 = λ3:

min
w1,w2

λ1||X−w1w
>
1 X||+ λ2||X− (w1w

>
1 X+w2w

>
2 X)||+ λ3||w2w

>
2 w1w

>
1 X||. (3.21)

Transferring this problem to a non-linear NN model, i.e. substituting arbitrary
non-linear functions parameterized by neural networks for the weight matrices,
by amortizing the optimization over mini-batches/samples (as indicated by the
lower case x), and using conditional models results in:

w1w
>
1 X

implemented as−−−−−−−−→ gθ1(fγ1(x)),

w2w
>
2 X

implemented as−−−−−−−−→ gθ2(fγ1(x), fγ2(x)),

w2w
>
2 w1w

>
1 X

implemented as−−−−−−−−→ gθ1(fγ1(gθ2(fγ1(x), fγ2(x))).

Here fγ1 , fγ2 are encoders (sharing the first layers) and gθ1 ,gθ2 are decoders. This
results in the following optimization problem:

min
θ1,θ2,γ1,γ2

λ1||x− gθ1(fγ1(x))||+ λ2||x− (gθ1(fγ1(x)) + gθ2(fγ1(x), fγ2(x)))||

+λ3||gθ1(fγ1(gθ2(fγ1(x), fγ2(x)))||.
(3.22)

From an information-theoretical perspective, the last term can be interpreted as
minimizing the mutual information between the low-level components and the
high-level components [Chen et al., 2016] as we will show in the next paragraph.
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As there are some similarities between this optimization problem and the VQVAE-
2, this formulation can be transferred to a conditional hierarchical VAE with a
similar architecture to VQVAE-2, by using a normal prior for the latent variables
z1, z2 and condition gθ2 not just on z2 (∼ fγ2(x)) but also on z1 (∼ fγ1(x)).
As VAEs have proven themselves to show good performance in our anomaly
detection tasks and since we are thus interested to find the latent factors of a
generative hierarchical model we integrate this into the variational auto-encoding
framework, in analogy to [Kingma and Welling, 2013; Rezende et al., 2014],:

L =λ1Ez1∼N(fγ1,µ(x),fγ1,σ(x))N(x;gθ1(z1), c)

+DKL(N(fγ1,µ(x), fγ1,σ(x))||N(0, 1))
+λ2Ez1∼N(fγ1,µ(x),fγ1,σ(x))Ez2∼N(fγ2,µ(x,z1),fγ2,σ(x,z1))N(x;gθ1(z1) + gθ2(z1, z2), c)

+DKL(N(fγ2,µ(x, z1), fγ2,σ(x, z1))||N(0, 1))
+λ3Ez1∼N(fγ1,µ(x),fγ1,σ(x))Ez2∼N(fγ2,µ(x,z1),fγ2,σ(x,z1))

+Exlow∼N(gθ2(z1,z2))Ezlow∼N(fγ1,µ(xlow),fγ1,σ(xlow))N(0;gθ1(zlow), c).
(3.23)

Here, as previously mentioned, the last term can be interpreted as encouraging the
mutual information in the conditioned low-level component xlow and the high-
level encoding to be zero. Using MC sampling with sampling size 1, choosing
c appropriately, and integrating the reparametrization step into the decoders g
gives the final and familiar loss function:

L = λ1||x− gθ1(fγ1(x))||

+ λ2||x− (gθ1(fγ1(x)) + gθ2(fγ1(x), fγ2(x)))||

+ λ3||gθ1(fγ1(gθ2(fγ1(x), fγ2(x)))||

+ λ4DKL(N(fγ1,µ(x), fγ1,σ(x))||N(0, 1))
+ λ5DKL(N(fγ2,µ(x, fγ1(x)), fγ2,σ(x, fγ1(x))).

(3.24)

An overview of the complete architecture can be seen in Fig. 3.16.

AEs and mutual information For AEs, it can be shown that optimizing a recon-
struction objective is similar to optimizing the mutual information between the
input and the latent space [Chen et al., 2016]. Given the input x, an encoder f, a
decoder g and the encoding/ latent space f(x) = z, we can express the mutual
information between the input x and its inference/ encoding distribution F(x) as :
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I(x; F(x)) = H(x) −H(x|F(x))
= Ez∼F(x)[Ex ′∼P(x|z)[logP(x ′|z)]] +H(x)
= Ez∼F(x)[DKL(P(·|x)||G(·|x)) + Ex ′∼P(x|z)[logG(x ′|z)]] +H(x)
> Ez∼f(x)[Ex ′∼P(x|z)[logG(x ′|z)]] +H(x),

(3.25)

where P(x|z) is the intractable generative distribution and we make use of an
auxiliary distribution G(x|z) to approximate P(x|z).
Using Lemma A. 1 from [Chen et al., 2016] can simplify the equation and eliminate
the intractable sampling from x ′ ∼ P(x|z):

I(x; F(x)) = H(x) −H(x|F(x))
> Ez∼F(x)[Ex ′∼P(x|z)[logG(x ′|z)]] +H(x)
= Ex∼P(x),z∼F(x)[logG(x|z)]] +H(x).

(3.26)

Here, in analogy to VAE, some assumptions can be made that show that this
corresponds to a reconstruction objective. Choosing G(x|z) as a normal distribu-
tion with constant variance and the mean parameterized by a NN g can collapse
logG(x|z) back to a NN decoder with an Mean Squared Error (MSE)/L2 recon-
struction loss. Using the reparametrization trick and MC sampling where F, the
inference/ encoding distribution is parameterized by a NN f resolves the expec-
tation. Furthermore H(x) is given by the data distribution and can be assumed
to be constant. Thus optimizing the reconstruction loss of an AE with MSE can
be interpreted as optimizing the mutual information between the input and the
latent space.

3.3.4 Experiments & results

As one goal was to be able to detect more ‘fine-grained’ anomalous structures,
we focus the evaluation on two aspects: (1) the reconstruction performance on
a held-back test set and (2) the semantic OoD [Ahmed and Courville, 2019] /
anomaly detection performance.
Both aspects can hopefully give truthful insights on how well the data distribution
was captured, i.e. (1) if the data is not reconstructed truthfully the model has
probably not learned the data distribution to the whole extent, especially fine-
grained details and (2) if the anomaly score is not sufficient to tell apart normal
data from anomalous data, the model has probability issues capturing the basic
structure of the data. We refrain from using a likelihood-based comparison since
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Figure 3.16: Depiction of the pchVAE model. The green part represents the en-
coder, consisting of the low-level encoder f1 (dark green) and the high-level en-
coder f2 (lighter green). The blue part represents the high-level decoder g1 and the
red part the low-level decoder g2. The arrows with straight lines and white heads
are (transposed) convolution operations, where the up-/downward convolutions
have an up-/down-sampling factor of two [Zimmerer et al., 2019c].

likelihood-based comparisons have often been criticized to be easily influenced by
other factors [Nalisnick et al., 2018; Theis et al., 2015], and thus we believe that the
other metrics are more expressive for anomaly detection.

Data Here, we again focus on brain MRI scans. All models are trained on brain
MRIs from a subset of 800 scans of the HCP dataset [Van Essen et al., 2012]. The
reconstruction performance is evaluated on 200 held-back patients from the HCP
dataset and the OoD/ anomaly detection performance on two different datasets:
(1) Similar to HCP Synth., we use the 200 held-back patients from the HCP dataset
and randomly render natural objects in the brain area of some slices, which are
then considered anomalies. (2) As the second dataset we use the BraTS2017 [Bakas
et al., 2017; Menze et al., 2015] dataset with slices with tumor annotations being
considered as anomalies.

Models To factor out the effects of the different hierarchical levels in the pchVAE
we compare with the following models: (1) The VQVAE-2 ([Razavi et al., 2019])
model, which has a similar hierarchical structure and is being applied in many
different areas for image quantization. (2) The “high-level” VAE (High VAE),
which is similar to the high-level component branch of the pchVAE (the green
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Figure 3.17: Reconstructed input of different models given the same input. Recon-
structed images for the VQVAE-2, the Low VAE, the High VAE, and the pchVAE
are shown. The reconstruction of pchVAE is furthermore split into the high-level
components (Eq. (3.22) term 1) and the low-level components (Eq. (3.22) term 2)
and as ‘pchVAE zero’ the low-level components passed through the high-level
encoder & decoder which is steered towards zero during training (Eq. (3.22) term
3). More examples can be found in Fig. 6.3 and Fig. 6.4 [Zimmerer et al., 2019c].

and blue parts in Fig. 3.16) with 4 up-sampling operations. (3) The “low-level”
VAE (Low VAE) only consists of the low-level part of the pchVAE model (the
dark green and dark blue parts in Fig. 3.16) with 2 up-sampling operations. (4) A
default conditional hierarchical VAE (chVAE) (similar to the model in Fig. 3.16 but
without the dark blue part and term 3 in Eq. (3.22)). This division of the pchVAE
into several VAE variations may provide insights into the advantages that the
hierarchical structure and mutual information objective provide to the pchVAE
model. All models are upscaled to have slightly more parameters and the same
number of latent variables as the pchVAE. Each model was trained for 10 epochs
(which based on a validation set showed convergence for all models) with Adam
[Kingma and Ba, 2017] with a learning rate of 0.0001 and a batch size of 64. As is
common practice [An and Cho, 2015; Kiran et al., 2018], the approximated ELBO
is used as OoD/ anomaly score for each slice.

Results We report the MSE for reconstruction performance and AUROC and
AP (as suggested by Ahmed and Courville [2019]) for OoD/anomaly detection
performance. The results are presented in Table 3.6 and Fig. 3.17 and indicate
that the pchVAE performs similarly to or slightly better than the High VAE on the
OoD detection task, with the pchVAE having greater reconstruction performance.
The Low VAE and VQVAE-2 do significantly better on the reconstruction job,
nevertheless. But these two models perform poorly according to the OoD detection
task, indicating that they have concentrated more on low-level statistics of the
data and frequently fail to capture the data distribution in this situation.



3.3. IMPROVING ANOMALY LOCALIZATION WITH HIERARCHICAL
REPRESENTATIONS 77

Reconstruction OoD
MSE ↓ AUROC ↑ AP ↑

VQVAE-2 0.02823± 0.0001 0.6965± 0.0036 0.4585± 0.0058
Low VAE 0.01169± 0.0002 0.7101± 0.0010 0.4922± 0.0025
High VAE 0.07036± 0.0007 0.7207± 0.0005 0.5154± 0.0010

chVAE 0.02124± 0.0040 0.6716± 0.0009 0.4341± 0.0008
pchVAE 0.03224± 0.0017 0.7277± 0.0002 0.5321± 0.0017

Table 3.6: Mean and standard deviation of reconstruction and sample-level
anomaly detection performance of the different hierarchical models (over five
different runs).

3.3.5 Discussion & conclusion

The results suggest that the pchVAE performs reasonably well. By including a
conditioned low-level reconstruction branch and an extra forward pass into a
VAE, we could trade off computational complexity for improved reconstruction
performance. We think that a strong reconstruction performance with attention to
detail is crucial, particularly for tasks involving the localization and identification
of medical anomalies.
More realistic and sharper reconstructions have also been the goal of other methods
like adversarial losses [Baur et al., 2018; Larsen et al., 2015]. However, even though
these adversarial losses produce sharper reconstructions, because of their design
they are unable to ‘generate’ more low-level information and frequently “make
up” convincing information, which can increase the MSE and may be hazardous
in medical applications.
Overall we could overserve that ‘deeper’ VAEs with more high-level features
were better at capturing the data distribution and thus detect out-of-distribution
/ anomalous samples. At the same time, the ‘deeper’ VAEs struggled with a
high-fidelity reconstruction. ‘Shallower’ VAEs had lower reconstruction errors,
but they were not able to capture the data distribution as well. Here the pchVAE,
a hierarchical model, which is composed of VAEs at different levels and due to
the mutual information/residual information component has a clear hierarchical
structure of the latent spaces as well, shows a low reconstruction error and top
OoD/anomaly detection performance.
The total anomaly detection performance of the pchVAE is comparable to that of
the ceVAE but in no way superior. However, a hierarchical model is orthogonal to
the use of self-supervised pretraining, and a combination in a suitable form might
further boost the performance (even more than the individual contributions) and
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might present a valuable direction for further research.
However, all the previous experiments were a bit constrained by the choice of
dataset, anomalies, and their overall setting and the assumptions made during
the experiments might not translate well to a more applied setting. Therefore we
try to address these issues and focus on the benchmarking and comparison of
anomaly detection and localization methods in the following chapter.



4 | Performance evaluation be-

yond the standard setting

While it is necessary to create and advance techniques, it is also necessary to obtain
a truthful and valid evaluation of the methods’ performance. In contrast to the
previous chapter which focused mainly on the methodological development of
methods in a fixed/research/“standard” setting, this chapter will focus on the
evaluation of the performance of the methods beyond the standard setting. The
first section will focus on a fair and standardized comparison between methods in
form of an international challenge/benchmark and the second section will focus
more on the evaluation of the methods in a real medical use case setting.

79
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4.1 Validation in an international competitive con-
text: The Medical Out-Of-Distribution Analysis
Challenge (MOOD)

Besides some of the examples shown in the previous chapter, there is a lot of
recent research on improving anomaly detection [Abati et al., 2018b; Ahmed and
Courville, 2019; Akcay et al., 2018; Beggel et al., 2019; Choi et al., 2018; Guggilam
et al., 2019; Maaløe et al., 2019; Piciarelli et al., 2019; Sabokrou et al., 2018] particu-
larly in the medical imaging field [Baur et al., 2018, 2021; Chen et al., 2018; Schlegl
et al., 2017; Zimmerer et al., 2019a]. However, in the medical imaging field, most
approaches were validated in slightly different settings and on different datasets.
A public benchmark or dataset was missing.
Benchmarks have shown great potential and responsibility in comparing different
approaches on a plain playing field, outlining the different strengths and weak-
nesses of each approach and promoting directions worth investigating further.
While for other areas, such as for tabular medical data [Avati et al., 2021; Ulmer
et al., 2020] as well as natural images, such as default detection [Bergmann et al.,
2019a] or abnormal traffic scene detection [Hendrycks et al., 2019], different bench-
marks have recently been proposed, anomaly detection on medical images still
lacked such a benchmark.
So with The Medical Out-Of-Distribution Analysis Challenge (MOOD) [Zimmerer
et al., 2020, 2022a], we aimed at filling this void and wanted to create a standard-
ized dataset and benchmark for anomaly detection. However, there are several
aspects to be considered when creating a benchmark for anomaly detection: (1)
There should be no domain gap between the training and test data distribution,
as this might inherently already encompass a domain gap (e.g. due to the differ-
ent image acquisition protocols or devices) and unnecessarily introduce further
unwanted factors. These unwanted factors may impede a clean and meaningful
evaluation. Thus, combining different test sets which differ from the training set
to introduce multiple types of anomalies might not be a good choice. (2) To have
a realistic and close-to-real-world setting, the types of anomalies in the test set
should not be known beforehand. Knowing this beforehand can potentially cause
‘leakage’ of the test set into the algorithm development and thus bias the devel-
oped algorithm and may hinder its generalizability to new and unseen anomalies.
However, particularly in anomaly detection, the generalizability to new and un-
seen anomalies is one of the most crucial points and leads to an overconfident
method evaluation and in the long term potentially dangerous outcome when
deploying such methods in practice. Recent studies have shown that this has been
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observed in practice [Goldstein, 2014; Shafaei et al., 2019; Zimmerer et al., 2019a;
Škvára et al., 2018]. Hence, knowing what anomalies to expect can complicate the
comparability of different algorithms.

To consider the two aspects and solve the issues in the MOOD Challenge, we
included two separate datasets: a brain MRI dataset and an abdominal CT dataset.
For both datasets, the training set was selected as a subset of scans in which no
anomalies were identified. The test set was comprised of a different disjunct subset
of scans in which no anomalies were identified and a subset containing naturally
occurring anomalies. In addition, we extended the test set with synthetic/artificial
anomalies with different properties. For the synthetic anomalies, we included a
wide variety of different anomalies (e.g. a tumor or an image of a gorilla rendered
into the brain scan [Drew et al., 2013]) to outline the weaknesses and strengths of
the methods using different factors (e.g. type, size, contrast, and others). Overall,
this may facilitate a fairer comparison of the generalization capabilities of the
different approaches across different anatomies and modalities.

The MOOD Challenge was further split into two different tasks: a sample-level
anomaly detection task and a pixel-level anomaly localization task. The sample-
level task aims to detect and classify scans on a per-scan basis. Here, examples of
anomalies could be previously unseen pathological conditions or image acquisition
artifacts not available in the training set. Identification of these cases could allow
physicians to distrust results obtained from (not specifically designed) supervised
algorithms or prioritize scans for manual inspection. The pixel-level task aims at
localization of the anomaly and pixel-level scoring of the scan, i.e. assigning each
pixel an individual anomaly score. This can highlight abnormal regions in the
scan and by guiding the physicians’ attention potentially provide a more accurate
assessment of the scan.

Overall this was organized as an international open challenge with the aim of
a controlled and fair comparison of different anomaly detection algorithms in
a variety of both real-life and simulated cases. As this was implemented as a
MICCAI challenge, a detailed description of the challenge design according to the
BIAS statement [Maier-Hein et al., 2020] is available [Zimmerer et al., 2020].

In the next sections, we will describe the challenge setup in more detail, in par-
ticular, the datasets, the tasks, and our evaluation procedure. Then we will first
summarize the submitted approaches and present and analyze the results (note:
some definitions and formulations of this section were previously published by
myself in [Zimmerer et al., 2022a]).
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4.1.1 Data

In the challenge, we included two different datasets, a brain MRI dataset and an
abdominal CT dataset. The training set was selected as a subset of scans in which
no anomalies were identified. The test set was comprised of another subset of
scans in no which anomalies were identified and a subset containing naturally
occurring anomalies combined with artificial/ synthetic anomalies.

Datasets

While the two datasets represent different modalities and anatomies, they are
both prepared in the same way and are therefore comparable. The submitted
algorithms were expected to be able to handle both datasets, only allowing a
change of hyperparameters and individual training. The performance on both
datasets was equally important. Next, we will describe the datasets in more detail:
Brain: The brain dataset is based on the HCP dataset [Van Essen et al., 2012] and
contains 3T brain MRI images of young healthy adult participants (ages 22-35). All
scans were recorded using the same protocol and equipment and were processed
according to the same pipeline, given in [Van Essen et al., 2012].
Abdominal: The abdominal dataset is based on a CT colonoscopy dataset [Johnson
et al., 2008]. The dataset contains CT scans of female and male patients >50 years,
which were scheduled for a screening colonoscopy and had not had a colonoscopy
in the past 5 years. The scans were recorded at 15 study centers using standard
bowel preparation, stool and fluid tagging, mechanical insufflation, and multi-
detector row CT scanners (with 16 or more rows). In contrast to the brain dataset,
the abdominal dataset contains some anatomical variations to some degree, e.g.
polyps that were not considered abnormal. Only cases with severe or rare naturally
occurring anomalies were considered to be abnormal.
Furthermore, for each dataset, four toy cases consisting of three scans with toy
anomalies, i.e. a sphere with random intensity placed into a scan, and one normal
scan were available for sanity checks. The toy cases were not included in the test
set.

Challenge preprocessing

In addition to the dataset-specific processing, both datasets were further prepro-
cessed with the same additional challenge-specific preprocessing. We applied the
following transformations: cropping, intensity shift and resampling. Since there
was no difference in the preprocessing between the training set and test set, no
additional domain shift was introduced here.
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Anomalies

Figure 4.1: The anomaly categories of the challenge. The seven different categories
of anomalies are divided into 4 global (affecting the whole scans) and 3 local
(affecting only parts of the image) categories. One example for each, the brain
and abdominal dataset, is given (some anomalies have been exaggerated for
illustration purposes) [Zimmerer et al., 2022a].

For the anomalies, we can make two broad differentiations: local vs. global and
natural vs. artificial.
Local vs. global: The local anomalies can be constrained to a specific region in the
image and can be assigned a clear segmentation mask. The local anomalies were
used in the sample-level and pixel-level tasks. In contrast, the global anomalies
could not be assigned a clear segmentation mask or extended to the whole image.
Consequently, the global anomalies were only assigned to the test set for the
sample-level task.
Natural vs. artificial: All scans in the dataset were reviewed manually (multiple
times by two human annotators using a consensus annotation protocol) and
classified as normal (containing no abnormalities) or abnormal. The scans with
naturally occurring anomalies were assigned to the test set as natural global
abnormal samples. The artificial anomalies on the other hand were designed to
emulate a broad and partially unpredictable range of anomalies.
For the further analysis of the strength and weaknesses, we further categorized
the anomalies as follows (and see Fig. 4.1 for a visualization):
Local anomalies:
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• Images: Actual images embedded into the scans in line with [Drew et al.,
2013].

• (local) Pathologies: Various local diseases, like tumors or lesions, superim-
posed on the healthy scans.

• Corruptions: Local picture corruptions, such as local contrast change or
local pixel shuffling.

Global anomalies (sorted from mild to strong corruptions to the images):

• Corruptions: Small global image corruptions, such as deformations, that
generate a legitimate image but are only detectable with a large quantity of
training data.

• (global) Medical conditions: Rarely occurring medical conditions/varia-
tions (which were deemed global variations since these anomalies were
usually not confined to a specific place).

• Alterations: Global scan alterations that result in a legitimate scan but should
be immediately evident, such as severe blurring.

• Destructions: Operations conducted on the scan that corrupt or invalidate
the entire scan, such as omitting slices.

Overall, the samples that had no annotations and were considered normal and
were split into the training set and test set. For the test set, one part of the normal
scans were used as base samples to create the abnormal test cases by adding the
artificial anomalies. Another part of the normal scans were used as the normal
part of the test. Thus there is no domain shift between the training cases and the
normal test cases. The artificial anomalies were generated synthetically and thus
allow for a perfect pixel-level segmentation mask or sample-level label for each
image.
However, despite this controlled setting, there might be different sources of errors
related to the annotations. First, true anomalies may be missed by the human
annotators and appear in the training set (e.g. polyps that were not detected or a
patient with an abnormal kidney).
But for a case like this, it would be the same premise for all methods, and while
potentially favoring more robust methods, given the large number of training
cases, we believe this is not a problem and will not change the results to a large
extent. Second, some of the artificially introduced anomalies could coincidentally
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be very similar to some of the ‘as normal’ considered anatomical variations in
the training set. However, due to the manual review and design of the artificial
anomalies, this is very unlikely and if it occurs, it is again equally challenging
for all approaches and thus might not influence the results of the methods in a
significant way. Furthermore, the software used to generate the artificial anomalies
has been tested beforehand for some years and has undergone stringent in-house
testing.

Dataset ratios

As the artificial anomalies in the test set can be created in an almost arbitrary
number, we were not bound by a total number of test cases. However, to prevent
any bias and fine-tuning of the scores, we chose a balanced dataset with a roughly
50%-50% split and did not disclose the exact number of test cases to the partici-
pants. Hence, considering reasonable time constraints for the evaluation and the
number of available normal samples, we chose the following number of cases.
Brain dataset: 800 training samples, 688 sample-level and 542 pixel-level test cases.
Abdominal dataset: 550 training samples, 599 sample-level and 358 pixel-level test
cases.

4.1.2 Challenge setup

This challenge was run as a challenge at MICCAI 2020 (and thus the challenge
design was reviewed and accepted by two independent reviewers and a meta-
reviewer). The MOOD Challenge consisted of two tasks:
Sample-level The objective of the sample-level task was to report one score/label
for each sample. This score for a sample should indicate a “probability” of how
likely it is that this sample is abnormal. The reported scores were expected to be
in the range of [0-1], where 0 indicates no abnormality and 1 indicates the most
abnormal input. Scores outside [0-1] were clamped to [0-1] and missing scores
were set to 0.
Pixel-level The objective of the pixel-level task was to report a score for each
pixel/voxel of a sample (similar to segmentation). Again, this score should indicate
a “probability” of how likely it is that a pixel in a given sample is abnormal. The
reported scores were expected to be in the range of [0-1], where 0 indicates no
abnormality and 1 indicates the most abnormal input. Scores outside [0-1] were
clamped to [0-1] and missing scores were set to 0.
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Challenge timeline

The challenge started with the release of the training data on 01.05.2020. The
submission system allowed submissions until the end of the challenge. The chal-
lenge ended on 07.09.2020. The final results were then announced on 08.10.2020 at
MICCAI and were consecutively made public.

Evaluation process

The submission was implemented using the Synapse platform [Synapse, 2020] and
a local GPU cluster. Each method could be submitted as a self-contained docker
container with an entry point to the scoring script, which was executed on the
GPU cluster. A runtime of 600 sec/case was allotted during the evaluation. Each
team was allowed 10 submissions in total, however, only the last submission was
considered. After submission and execution, a report containing the performance
of the four toy cases and the runtime was sent to the participants.
To check the compatibility of the docker-container with the submission system,
the participants could also submit their docker-container to a ‘toy-cases only’
queue, which only reported back the performance of the docker run on the GPU
cluster with only the toy-cases. Since the participants were provided the toy-
cases beforehand they could validate the consistency of their submission on the
evaluation platform. Submissions on this ‘toy-cases only’ queue did not count in
any way towards the final results.

Metrics & scoring

As the metric for both tasks, we opted to use the AP to evaluate the predicted
scores together with the ground truth label.
The AP was calculated as follows:

AP =
∑
n

(Rn − Rn−1)Pn, (4.1)

where Rn is the recall and Pn is the precision at the n-th threshold.
For this use case, the AP was chosen as the primary metric since it is more robust
than AUROC in terms of class imbalance and has been suggested and used in
many recent papers [Ahmed and Courville, 2019; Bergmann et al., 2019b; Chen
et al., 2018; Hendrycks et al., 2019; Zimmerer et al., 2019a]. While the previous
papers focused on benefits of the AP in the sample-level setting, most medical
papers use this metric in the pixel-level setting as well.
For the sample-level task, the AP was computed over all samples at once.
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However, due to computational and time constraints, for the pixel-level task,
the AP was computed over batches of 20 samples. The batches were randomly
selected and contained each submission once. The arrangement of the batches
was fixed and consistent for all participants. To reduce the variance due to the
batching process, the dataset was batched two times and the second run over the
dataset was used to validate the first run.
To combine the rankings of the two datasets into a final ranking, a consolidation
ranking schema was used.
Our validation code was released publicly in conjunction with the dataset [GitHub,
2021].

4.1.3 Participating teams
In the end, 65 teams registered for the challenge and data access, of which 11
actively submitted to the toy-cases queue. However, only 8 valid methods were
submitted for each task. Two teams chose not to further engage in the challenge
analysis and are only represented anonymized in the final analysis. A summary
of the other valid submissions is given in the following:

Team: Canon Medical Research Europe

The Team Canon Medical Research Europe uses a combination of two models: first,
a DAE with Gaussian noise which uses the reconstruction error as the anomaly
score and second, a segmentation model which is trained to segment synthetical
spherical anomalies rendered into the scans. For the segmentation model, the
class probabilities are used as the anomaly scores. Both models are combined
by a weighted sum of the individual scores which directly results in the pixel-
level scoring. The sample-level result is obtained by taking the mean pixel-level
anomaly for each sample.

Team: FPI

The Team Foreign Patch Interpolation (FPI) also frames the anomaly detection task
as a segmentation task. They employ a wide residual encoder-decoder U-Net to
predict a pixel-level segmentation mask of an into the image interpolated foreign
image patch. The rectangular foreign patch is chosen from another scan on a
similar localization and then interpolated with the target patch. The interpolation
factor, patch size, and patch location are randomly sampled from uniform distri-
butions. The network is then trained to segment the foreign patch and predict
its interpolation factor. This potentially forces the network to detect any foreign
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or not normal objects in the target scan. The segmentation logits are used as the
anomaly scores [Tan et al., 2020].

Team: Nina Tuluptceva

The Team Nina Tuluptceva uses the reconstruction difference of a Deep Perceptual
AE [Tuluptceva et al., 2020] in a perceptual feature space. The Deep Perceptual AE
uses a feature difference in a “perceptual” feature space as a reconstruction error.
To transfer the images into a meaningful feature space a VGG19 [Simonyan and
Zisserman, 2015] network was pretrained self-supervised using SimCLR [Chen
et al., 2020] and then activations at certain layers from the trained network were
used as features. The team trained three different Deep Perceptual AEs, one
for each image direction, and then combined the three models by averaging the
respective reconstruction errors. To get a pixel-level reconstruction error from a
feature-level reconstruction, the feature differences were rescaled and mapped to
the original pixel space.

Team: NUDT

Team NUDT used a U-Net as DAE with an additional Canny operator recon-
struction loss. As a denoising task, an inpainting objective was chosen. The
reconstruction error was a combination between an MSE and the feature differ-
ence of features extracted by a Canny operator to enforce more texture consistency.
The reconstruction difference was also chosen as the anomaly score with fur-
ther postprocessing which was comprised of connected component analysis and
removal of objects with less than 100 voxels.

Team: Sergio Naval Marimont et al.

The Team: Sergio Naval Marimont et al. used a two-stage approach: A VQVAE
as feature extraction and PixelSNAIL as autoregressive density model to model
the feature distribution. The VQVAE is an AE with a categorical latent space and
thus, after training, can encode the images into a lower-dimensional categorical
feature space. The distribution of the features is then modeled in an auto-regressive
manner using PixelSNAIL. The sample-level anomaly scoring is obtained by taking
the log-likelihood of the features. For the pixel-level anomaly score, latent variables
above a certain threshold are resampled using the autoregressive model and then
the updated latent variables are decoded to get a pseudo-normal reconstructed
image. The pixel-level anomaly score is then calculated as the L1 distance between
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the original image and the pseudo-normal reconstructed image [Marimont and
Tarroni, 2020].

Team: Victor Saase

Team Victor Saase used a non-deep-learning reconstruction-based method using
PCA. They used extensive preprocessing with affine registration to the MNI
space, sample-wise z-normalization across all brain mask voxels, and voxel-wise
z-transformation with the mean and standard deviation estimated on the training
samples. The processed images were used to learn a projection to a “normal”
vector space using PCA. During testing, the (preprocessed) images were also
projected to the vector space and the residual vector was used as pixel-level
anomaly score and its norm as sample-level score [Saase et al., 2020].

4.1.4 Results

Next, we will show the performance of the different methods in the official chal-
lenge results. After presenting the results, we will investigate if the provided toy
cases were predictive enough to determine the final challenge ranking. Last, we
analyze how the performance of the methods is influenced by anomaly size and
color contrast and anomaly type and extend this to an estimation of performance
in a clinical application setting.

4.1.5 Challenge ranking

Sample-level results

Table 4.1: The ranking of the sample-level task with the performance on each
dataset given as AP.

Rank Team Brain Abdom.
1. FPI 0.962 0.874
2. Sergio Naval Marimont, et al. 0.873 0.874
3. Canon Medical Research Europe 0.845 0.871
4. NUDT 0.792 0.876
5. Nina Tuluptceva 0.840 0.861
6. A1 0.831 0.780
7. Victor Saase 0.800 0.770
7. A2 0.634 0.816



90
CHAPTER 4. PERFORMANCE EVALUATION BEYOND THE STANDARD

SETTING

Figure 4.2: Pixel-level result heatmap visualizations for the different valid sub-
missions for exemplary and representative brain samples (some of these were
solely created for this illustration). Each row corresponds to one example. The first
column shows a raw image slice, the second column the ground-truth annotation
and the next columns delineate predictions by different submissions (sorted by
their pixel-level challenge ranking) [Zimmerer et al., 2022a].

In Table 4.1 the final challenge ranking is presented. The first column shows
the rank of the team, the second column the team name, the third column the
performance on the brain dataset and the fourth column the performance on the
abdominal dataset. The rank was obtained using the corresponding consensus
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Figure 4.3: Pixel-level result heatmap visualizations for the different valid submis-
sions for exemplary and representative abdominal samples (some of these were
solely created for this illustration). Each row corresponds to one example. The first
column shows a raw image slice, the second column the ground-truth annotation
and the next columns delineate predictions by different submissions (sorted by
their pixel-level challenge ranking) [Zimmerer et al., 2022a].
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ranking between the two datasets. It is noticeable that between the top teams there
are hardly any margins on the abdominal dataset, while for the brain datasets
there are clear performance differences.

Pixel-level results

Table 4.2: The ranking of the pixel-level task with the performance on each dataset
given as AP.

Rank Team Brain Abdom. Abbrev.
1. FPI 0.449 0.394 (S1)
2. Canon Medical Research Europe 0.416 0.288 (S2)
3. Nina Tuluptceva 0.211 0.221 (S3-1)
3. Sergio Naval Marimont, et al. 0.273 0.217 (S3-2)
5. NUDT 0.201 0.239 (S5)
6. Victor Saase 0.204 0.014 (S6)
7. A1 0.160 0.072 (S7)
8. A2 0.002 0.014 (S8)

In analogy to the sample-level results, the pixel-level results for each dataset and
the following consensus ranking are given in Table 4.2.

Toy samples as predictive validation set

The previous official challenge results were obtained using datasets, each con-
taining a large and extensive set of abnormal samples. However, next, we will
explore if a simpler and smaller ‘proxy’ dataset can have similar predictive power.
This may make a fair comparison feasible without the need for such a ‘difficult
to obtain’ and resource-intensive dataset. In particular, we generated samples
similar to the provided toy examples and compared the ranking between the
results obtained on this dataset and the official results.
As the ‘proxy’ dataset, we generated 100 abnormal examples with the same algo-
rithm as the toy cases by in-painting either spheres or cubes with random size and
intensity into the scans (e.g. see Fig. 4.2, 3rd row). Note that the samples generated
with this method highly differ from most of the anomalies in the official challenge
test set. For the latter analysis, we term this ‘proxy’ dataset toy-ish dataset as it is
similar to the provided toy cases.
Comparing the rankings, the winning algorithm could be correctly predicted by
the toy-ish dataset across all tasks and datasets. Furthermore, for each dataset and
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task respectively, the ranking between the toy-ish dataset and the official challenge
dataset placed the same two teams in the top three. This ranking similarity can be
further quantified using the Kendall tau rank distance (“Kendall’s tau”). Kendall’s
tau is a correlation coefficient that compares correlations between rankings. We
used the tau-b version of Kendall’s tau which can handle ties and results in a
value of 1.0 for a maximally positive correlation, −1.0 for a maximally negative
correlation, and 0.0 for no correlation. The results are presented in Table 4.3.
When Kendall’s tau was used to compare the ranks of the toy-ish dataset and the
official challenge dataset, some association between the rankings could be found
(given the limited data size). In particular, there is a strong correlation between
the abdominal dataset and a weaker one for the brain dataset. One reason for this
could be the overall increased difficulty of the abdominal dataset, and thus the toy
cases already pose a challenging enough task. Also across both challenge tasks,
the toy-ish dataset had a higher level of predictive accuracy for the (potentially
harder) pixel-level task.
These results now allow for the question if a large and more complex dataset is
necessary for early-stage method development or whether a simple dataset can
provide sufficient information. This is also supported by anecdotal evidence, as
the top-ranking teams in the challenge used a simple self-made synthetic dataset
or just the provided toy cases to validate their methods.

Table 4.3: Kendall tau rank distance between the rankings on the ‘proxy’ toy-ish
dataset and the challenge test set.

Sample-level Pixel-level
Brain 0.357 0.500

Abdominal 0.642 1.000

Analysis

Contrast & Size One research question we wanted to answer is whether the size
or color contrast of the anomaly affects the detection performance. To test this, we
opted to create a dataset based on toy-ish anomalies, where the size and color of
the anomaly was varied. This was a compromise between a more comprehensive
time- and computing-intensive analysis with more varied anomaly types and
combinations and the bias introduced by the toy-ish dataset, and a simpler and
more computationally efficient analysis with a single anomaly type. The results
are presented in Fig. 4.4.
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Figure 4.4: Performance (AP) of the different algorithms on anomalies of different
sizes and levels of contrast. Each line corresponds to a submitted algorithm (S1-S7).
The top row of graphs shows the performance for a single toy-ish example which
is always in the same position but varies in size (from a radius of 0-80 pixels
for the brain dataset and a radius of 0-160 pixels for the abdominal datasets). In
the bottom row, the performance for a toy-ish example which is always at the
same position with a varying color value (from 0.0 to 1.0 in 0.05 steps) is shown
[Zimmerer et al., 2022a].

Not surprisingly, the bigger the anomaly size and the higher the contrast (differing
from the mean of 0.5), the higher the performance of most submissions and
particularly the top-performing algorithms show a distinct bathtub curve. Also
as later noted by Meissen et al. [2021], most algorithms performed better on very
bright (pixel value≈ 1) anomalies than on to very dark (pixel value≈ 0) anomalies.
This can be perhaps attributed to the background color, which was assigned the
value 0.

Anomaly classes Next, we wanted to analyze the effect of the different anomaly
classes on the performance of the algorithms. For a quantitative comparison,
we created a dedicated test set with an exact 50%-50% normal-abnormal data
sample split, each anomaly type having the same fixed and consistent number
of samples for each subcategory, which can make the metrics as comparable
as possible. Exemplary (pixel-level) anomalies and submission predictions are
shown in Fig. 4.2 and Fig. 4.3. In the next paragraphs, we will show a detailed
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Figure 4.5: Sample-level performance (AP) of the median submission per category
for the different anomaly categories. The top row shows the mean of the grouped
categories, and the second row gives more detailed results for the subcategories, i.e.
the top row categories being split up into fine-grained subcategories. The median
submission performance was used as a base for the subcategories [Zimmerer et al.,
2022a].

differentiation of the anomaly classes for the sample-level and pixel-level tasks.

Sample-level An analysis of the median sample-level performances for the cate-
gories presented in Section 4.1.1 is shown in Fig. 4.5.
The results show a clear distinction between the local and global anomalies. Across
all categories, the median submission performance was higher for the global
anomalies than for the local anomalies. In addition, a random prediction (ran-
domly predicting the label ‘0’ or ‘1’) or constant prediction (always predicting
the label ‘0’, i.e. no anomaly) is outperformed by the median sample-level perfor-
mance.
To go into more detail and have a more fanned-out view of the different categories,
we can look at the individual subcategories in more detail. Fig. 4.5 shows the
median performance on all subcategories sorted by median performance. Similar
to the top-category performance, the median performance for the subcategories
on global anomalies is in most cases better than for the local anomalies and overall
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Figure 4.6: Median submission performance (AP) on subcategories of two different
anomaly categories. The subcategories (classes 1-6, 1-8) are sorted by the human
perceived difficulty in descending order, i.e. class 1 is the class that was perceived
as the hardest and classes 6 (and 8) are the classes perceived as being easiest
[Zimmerer et al., 2022a].

quite similar for the brain and abdominal dataset.
Furthermore, we wanted to see if the humanly judged subjective difficulty of
the different categories would correlate with the performance of the algorithms.
Hence, we rated the anomaly subclasses by human-perceived difficulty and show
the median submission performance for the different categories, sorted by the
human-perceived difficulty in ascending order (see Fig. 4.6). While not strictly
increasing, a clear trend can be observed.
The results seem promising and allow for the question if the submitted approaches
are ready for translation to a clinical setting and could deliver added value.

FPR@0.95TPR As one way to evaluate the clinical applicability of the pro-
posed approaches, we chose the False Positive Rate at 95% True Positive
Rate (FPR@0.95TPR) metric, which shows a false-positive rate at 95% true-positive
rate.
Given the 50%-50% split of the normal-abnormal data, a score of 0 would mean
that an algorithm could detect 95% of the anomalies without diagnosing a single
normal sample as abnormal, thus allowing physicians to accelerate their diagnostic
processes greatly. A prefiltering with an approach with a score of 0.5 could still
result in every second ‘anomalously labeled’ image being normal, thus giving a
rough acceleration of just 1

4 . A score of 1.0 would require the physician to inspect
every sample regardless, providing no acceleration.
Here, the choice of an FPR@0.95TPR is arbitrary and possibly higher TPRs might
be required in a clinical setting. However, despite the exact choice of the TPR, the
metric for different values is strongly related and this exact choice was often used
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Median performance Best submission Max performance

Figure 4.7: FPR@0.95TPR for the different anomaly subclasses of the abdominal
dataset (top) and the brain dataset (bottom). The median submission performance,
the performance of the best sample-level submission and the maximal perfor-
mance of algorithms (i.e. picking the best algorithm for each subclass) are shown
[Zimmerer et al., 2022a].

in other OoD work [Choi et al., 2018; Hendrycks et al., 2019] and discussions with
physicians have indicated this to be of interest.
Similar to and in the same order as the results in Fig. 4.5, the sample-level
FPR@0.95TPR scores are shown in Fig. 4.7. Here, the median performance, the in-
dividual top subcategory performance (the best submission for each subcategory),
and the overall best performing algorithm (i.e a realistic best-case performance
estimate) are compared.
The relative performance of the FPR@0.95TPR is similar to the AP metric. The
best results are for classes with global destruction or corruption and in the best
case, the top model can find 95% of the anomalies without inspecting a single
normal image. But this only presents an exemption from most other categories,
and especially from the categories with higher clinical relevance such as the local
anomaly categories and medical category. Here, the amount of cases that would
have to undergo inspection to find 95% of anomalies could not even be reduced
by half.
Next, we will present the results for the pixel-level delineation of anomalies.
However, we did not perform an FPR@0.95TPR analysis on a pixel- or object-level,
because this would require binary objects and thus a binarization and connected-
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Figure 4.8: Pixel-level performance (AP) for the different anomaly categories. The
top row shows the mean of the grouped categories, and the second row gives
more detailed results of subcategories, i.e. the top row categories being split up
into fine-grained subcategories. Median submission performance was used as the
basis for the subcategories [Zimmerer et al., 2022a].

component analysis. This could, due to the choice of a binarization threshold,
introduce some bias. Since this has not been extensively done or tested in prior
work, we opted for conventional metrics only.

Pixel-level Qualitative results of the pixel-level predictions can be seen in Fig. 4.2
and Fig. 4.3 and quantitative results of the median submission for pixel-level
anomaly categories in Fig. 4.8. Here, the difference between the absolute values
for the brain dataset and the abdominal dataset is very prominent. Exemplary, the
median performance on the toy-ish brain dataset has an AP of 0.8, while for the
abdominal dataset, the AP is roughly half, namely around 0.4.
A more fanned-out analysis for the subcategories is presented in the second row.
For most subcategories of the abdominal dataset, there is hardly any difference
observable between a constant guess, showing great room for improvements for
such cases.

4.1.6 Discussion & conclusion

With the challenge, we wanted to benchmark different anomaly detection and
localization approaches and determine if and how they could be used in a clinical
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setting (however with the primary objective being on a controlled yet realistic
setting, and not 100% driven by a clinical dataset). Overall the top submissions
were reliably able to detect certain types of anomalies (mostly image corruption),
but not all. On most anomaly categories, especially the local anomalies, most
algorithms performed rather poorly and were far from achieving clinically ac-
ceptable performance. In general, the clinical relevance and transferability are
discussable: the relevance of the easy-to-detect anomalies, such as anomalies
mimicking imaging failures and large image artifacts, in current clinical practice is
unclear as they can easily be detected by a trained physician and not lead to much
ease or speedup. Furthermore, the algorithms all exhibited a rather high inter-case
and inter-participant variability, which is also evidently in Fig. 4.2 & Fig. 4.3. As
reliability and as such a certain degree of guaranteed performance is important
for trust and added benefit in a computer-assisted diagnostics tool, this opens up
an area in which the current algorithms need to be improved upon. But some
algorithms showed also very promising results on certain harder-to-detect local
anomalies. Thus, while it’s currently hard to recommend any specific algorithm
for general anomaly detection in practice, we believe that the different contrasts,
sizes, and types of anomalies show the potential of the different algorithms and
point to areas for further research.

One interesting, but not unexpected, finding is the performance difference be-
tween the abdominal and brain dataset. For this challenge, we on purpose chose
two different datasets: first, the brain dataset, which is quite homogeneous, was
recorded on the same scanners with the same parameters, has a narrow selection
of participants (young healthy adults) and has a very low anatomical variance.
Furthermore, most anomaly detection algorithms in the medical field were previ-
ously evaluated on brain datasets as well. The abdominal dataset, on the other
hand, is 4x the size of the brain dataset, has a much larger selection of participants
(including elderly people who had varying natural anatomical conditions as well
as natural and unnatural pathological conditions), inherently more anatomical
variation (encompassing multiple deformable organs and structures), and was
recorded on multiple different sites. However, to test the generalizability of the
approaches, we wanted to contrast the brain dataset with a dataset that has not
been used in the anomaly detection field yet. So while it’s not unexpected that
algorithms perform better on the brain dataset, the following reasons might explic-
itly explain some of the differences: (a) Most previous medical anomaly detection
algorithms were designed with brain datasets in mind [Baur et al., 2018; Chen
et al., 2018; Schlegl et al., 2017; Zimmerer et al., 2019a], and as such there might be
a bias in the developed algorithms towards brain datasets. (b) The data sample
size and variation in the abdominal dataset are much larger than in the brain
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dataset. However, the number of data samples is rather consistent (as predeter-
mined by the original number of data samples for the respective studies [Johnson
et al., 2008; Van Essen et al., 2012]). This increased dataset complexity for the
abdominal dataset might also require an increased number of data samples to
achieve comparable performance. So we believe that these points can explain the
difference in performance between the datasets to a large part, and developing
more data-efficient and less brain-specific algorithms can help to improve the
generalizability of the algorithms to new datasets.
Another interesting but also not an unexpected finding is the difference in per-
formance between global and local anomalies. Here, we want to introduce some
related terms and concepts can be introduced: semantic vs. non-semantic anoma-
lies as described by Ahmed and Courville [2019] or far OoD vs. near OoD as
described by Winkens et al. [2020]. Semantic vs. non-semantic anomalies describe
the difference if anomalies vary only contextually/semantically but originate from
the same domain vs. anomalies originating from a different domain. Near vs. far
OoD describes the concept similarly, i.e. near anomalies stem from the same or
very similar domain, while far OoD anomalies originate from a different and/or
far away domain. As such the local anomalies could be categorized as semantic
near-OoD anomalies, since introducing an object into a part of the scan with the
same image statistics will not largely alter the image and can only be differentiated
given the context (i.e. scans of healthy people vs. scans of not healthy people). The
global anomalies on the other hand could be categorized as non-semantic far-OoD
(or potentially also near-OoD) anomalies. As claimed in Ahmed and Courville
[2019]; Winkens et al. [2020] the non-semantic far-OoD (i.e. global anomaly) cases
might be less interesting from a methodological point of view since quite simple
(statistics-based) methods could already be viable solutions. The semantic near-
OoD (i.e. local anomaly) cases, which possibly are also more clinically relevant,
on the other hand, were claimed to be of more interest as they require more com-
plex methods to be solved. However, exactly for these kinds of anomalies, the
performance of the algorithms is not as good as for the global anomalies and a per-
formance gap between the global and local anomalies is observable. Furthermore,
the subjectively harder the anomalies were to detect, the worse the performance
of the algorithms. So while the performance on the global anomalies might be
sufficient, the most interesting cases from a methodological perspective as well as
clinical perspective, the local semantic anomalies, can be a good starting point for
further research.
One point noted in [Meissen et al., 2021], which can also be found in the anal-
ysis presented here, is the dependence between localization performance and
color intensity. While Meissen et al. [2021, 2022] claim that due to an inherent
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dataset/anomaly property many anomaly detection methods fall back to simple
threshold-based intensities detectors, especially the top-performing methods here
don’t. While for example FPI also shows weaker performance on dark anomalies
and anomalies with less contrast, in their method approach and dataset there is
nothing that would favor bright anomalies. Thus we believe that for this case
a controlled setting, as in this challenge, is important to further investigate this
phenomenon.
One trend in general machine learning and computer vision research that is also
reflected in the submissions is the rise of self-supervised methods [Chen et al.,
2020; Li et al., 2021]. Especially three of the top four teams utilized self-supervised
methods in some way, e.g. as pretraining to initialize a perceptual model or as a
proxy task during algorithm training. However, perhaps one factor for the success
of the self-supervised methods is possibly the similarity to the target task. One
might argue that the performance gains of the self-supervised methods are caused
by the synthetic anomalies in the test set which might coincidentally resemble
some of the self-supervised tasks. Nevertheless, the self-supervised submissions
also show good performance on the naturally occurring anomalies (compared to
the other approaches). Furthermore, follow-up studies on these approaches have
shown that the self-supervised methods also translate their performance to other
medical datasets [Kascenas et al., 2021; Tan et al., 2020; Tuluptceva et al., 2020]
and similar approaches have been proposed for other anomaly detection tasks [Li
et al., 2021].
One of the other ‘big’ trends in anomaly detection, AE-based methods [Baur et al.,
2021; Chen et al., 2018; Zimmerer et al., 2019a], are also reflected in three of the
top four teams (two teams using both, AE-based methods and self-supervised
learning). Here, follow-up and consecutive papers have also extended the methods
and shown good performance when applied to other medical datasets [Marimont
and Tarroni, 2020; Pinaya et al., 2021].
Another property that the submissions have in common with recently proposed
anomaly detection methods is the 2D processing of the samples. Here, while the
samples are available as 3D volumes, all submissions processed the 3D volumes
in 2D slices. In contrast, for segmentation tasks, most recent approaches have
opted to trade off additional compute and time constraints (which might be the
limiting factors) for a better segmentation performance of the 3D volumes [Isensee
et al., 2018]. However, for anomaly detection algorithms, the current state of
method development is not yet as saturated as for segmentation tasks and thus the
teams opted for ‘faster feedback loops’ using faster and more compute-efficient 2D
processing. This slice-wise processing can lead to some processing artifacts (see
Fig. 4.3). Here, the use of 3D methods or integrating global context and position
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information might give a further performance boost and outline a further area of
research.
One final surprising point, which might also has the potential to influence the
further development of anomaly detection algorithms, is the correlation between
the performance on the ‘big’ challenge test set and a ‘small’ and simple toy dataset.
Tuning an algorithm solely on such a toy dataset might not directly generalize
to other, more general anomaly detection settings. However, in this case, the toy
dataset proved to be challenging enough for all submissions and no submission
was able to perfectly detect all these toy anomalies, especially when the contrast
and size were varied. Thus the performance on a toy dataset can be seen as
the upper limit for the performance on the ‘big’ challenge test set and as long
as there are settings in which the algorithms struggle on the toy dataset, they
probably will also struggle on a more challenging dataset. Furthermore, as shown
by the correlation between the performance on the ‘big’ challenge test set and the
performance on the ‘small’ toy dataset, such a dataset could be used as a simple
benchmark to compare different algorithms. Hence, creating and using a simple
toy dataset can present a useful tool for the development and benchmarking of
new algorithms (as anecdotally most of the top teams did).
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4.2 Validation in the real world: a reality check

While the previous sections demonstrated the advancement of anomaly detection
techniques in a research context and the benchmarking of approaches in a con-
trolled but not entirely clinical scenario, we will now look at the application in a
real-world scenario (note: some definitions, formulations, and equations of this
section were previously published by myself in [Zimmerer et al., 2022b]).

4.2.1 Motivation: how well does a limited research setting trans-
late to a real-world example

The majority of past performance assessments were completed in research settings,
i.e., where training data could be ensured to stem from healthy subjects and where
test sets homogeneously consisted of one type of pathology. While this can be
useful in the development of novel approaches, it has certain limits in terms
of validity and applicability to real-world scenarios: (1) Definition of normality:
the performance depends on the definition of normality and the selection of the
training and test set. In a truly unsupervised setting, a normal scan refers to a
sample without known medical conditions, for example as given by a population-
based representative sample. In general, the definition of normal and abnormal
is frequently not ’black and white’ and is dependent on the dataset’s assessment
protocol. This can result in potential ambiguities and thus not ensure that none
of the existing abnormalities are overlooked during curation. (2) Anomaly variety:
Current methods are frequently explored on the same and extremely limited
collection of abnormalities, namely brain tumors and lesions [Baur et al., 2020;
Chen and Konukoglu, 2018; Pawlowski et al., 2018; Uzunova et al., 2019; You et al.,
2019; Zimmerer et al., 2019b]. While this is most likely due to the frequency of such
conditions and the availability of corresponding annotated datasets, it raises two
questions for unsupervised anomaly detection: first, whether there is a need for
unsupervised techniques for those explicit pathologies, and second, whether the
developed techniques are biased towards these anomalies. This is especially true
when generalization to other anomalies is not demonstrated, despite the presence
of large and high-quality datasets. The ability of a method to identify any, even
uncommon or undiscovered conditions or biomarkers, represents a medically
important task. (3) Dataset mixture: often multiple different datasets with different
populations are mixed to create a dataset of normal and abnormal samples. This
often leads to datasets containing a fixed but not realistic ratio of normal and
abnormal samples. Furthermore, in some cases, these datasets are derived from
multiple sources or populations, which can further complicate matters because
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this necessarily includes domain shifts, which can lead to bias in the results.
Despite the limitations described before, a controlled research setting may be ex-
tremely beneficial for method development and as a reference baseline. However,
we are interested in how current anomaly detection systems might generalize in
a more realistic situation, in particular the detection of Incidental Findings (IFs)
in a Large Scale Population Study (LSPS). In contrast to previous works, the
10000+ participants of the LSPS that was considered in this work are sampled
representatively and contain a variety of different anomalies. Radiologists have
previously examined each image. This allows for an evaluation of the general-
ization of anomaly detection methods on a real-world example and tackles the
previously mentioned short-comings: (1) Definition of normality: it allows for a
well-defined definition of normality. Here, as in the general population, we have a
multitude of different conditions with a spectrum of severity/ progress. In this
setting, the labeling protocol defined anomalies as IFs which would require direct
medical intervention. (2) Anomaly variety: due to the nature of the dataset contain-
ing a cross-section of the population, multiple different, more and less frequent
anomalies are present in the data. (3) Dataset mixture: here, the data was collected
in 5 different centers. But in contrast to the previously mentioned issue of mixing
different datasets, here the same acquisition protocol was used for each site and
the distribution of participants for each site was the same. Consequently, this does
not introduce and distribution shift regarding the data source or population and
contains a representative and realistic normal:abnormal data ratio. All-in-all, this
allows for the use of multi-centric data without bias and can give further insights
into how well the approaches generalize to such a multi-center dataset.

4.2.2 Experiment setup

Datasets

The data used for this work stems from a prospective epidemiological study
resource for health and disease research in Germany, i.e., an LSPS. For this study
30000+ participants between the ages of 20-69, representing the population of
almost all federal states and covering metropolitan, urban, and rural regions, were
randomly selected from the general population from local municipal population
registries within defined strata of age and sex, and were offered whole-body
MRI scans. The study data includes 30000+ T1-weighted (T1) and FLAIR brain
scans and reported reference Incidental Findings (refIFs). The refIFs only contain
medical conditions which need an immediate medical follow-up, and as such
constitute a definition of what we define as abnormal (this also facilitates the often
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very ambiguous task to determine if an anatomical variation, in general, can be
seen as normal or abnormal and where to draw the line, see Section 6.0.4). The
data was recorded at 5 different sites. For research purposes, in the first release,
≈10000 scans and refIFs were made available. In this work, we focused on brain
data, as is mostly done in unsupervised anomaly detection on medical images
[Baur et al., 2020; Chen and Konukoglu, 2018; Pawlowski et al., 2018; Uzunova
et al., 2019; You et al., 2019; Zimmerer et al., 2019b]. The brain was extracted using
BET [Isensee et al., 2019] and the T1 and FLAIR scans were co-registered using
FSL before being z-score normalized. The refIFs were available as a single point
and we manually added a radius. All findings that were not in the brain region
were excluded. This resulted in 84 refIFs. The annotations were binary, i.e. refIF
or no refIF. For a more detailed analysis, we further manually chose and classified
the refIFs in 3 gradings: C1: clearly noticeable (“should definitely be found”), C2:
Partially noticeable (“could be found”), C3: unobtrusive (“without context and/or
expert knowledge hard to detect”).

To generate a near-real-world scenario, we randomly selected 5000 test samples
from the preprocessed images (having no labeled anomaly/refIFs), which com-
prise the test set together with all of the refIFs samples. We selected 4800 samples
for training and 200 for validation from the remaining images, which were all
’regular’ scans with no annotated refIFs. As it was shown in Section 4.1.5 that
simple toy anomalies already give a good indication of performance, to help with
the issue of model and threshold selection, we constructed a validation set with
100 samples that have relatively basic ‘toy-sphere” abnormalities (see Fig. 6.5).
The study was approved by the IRB committee and all participants gave informed
consent.

Anomaly detection

We picked three anomaly detection techniques to evaluate and compare using
the dataset. First, we chose a VAE with iterative image restoration [You et al.,
2019] which has shown good performance and was recommended for medical
anomaly localization tasks by Baur et al. [2020]. Second, we chose the winning
approach of the MOOD 2020 Challenge, the self-supervised approach termed FPI
[Tan et al., 2020]. Last, we chose the ceVAE, a combination between VAEs and
self-supervision that has also shown good performance recently in independent
studies (especially with regards to AUROC) [Baur et al., 2020; Bengs et al., 2021;
Bercea et al., 2022]. Next, we will describe the methods in more detail.
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VAE The goal of a VAE [Kingma and Welling, 2013; Rezende et al., 2014] (see
Section 3.1.3) is to optimize a lower bound (known as ELBO) on the log-likelihood
of a data sample:

LVAE = DKL(q(z|x)||p(z)) − E
z∼q(z|x)

[logp(x|z)] 6 logp(x). (4.2)

In practice, q(z|x) is chosen as a Normal distribution that is parameterized by an
CNN encoder f(x) = µz,σz, p(z) , p(z) is chosen as an isotropic Gaussian with
zero mean and variance 1, the expectation is estimated using MC sampling with a
sample size of 1, and p(x|z) is chosen as a Gaussian with fixed variance and mean
given by a CNN decoder g : p(x|z) = N(x|g(z), c). As a consequence, the VAE-loss
LVAE can be calculated analytically and optimized with the training set.
The anomaly score proposed by You et al. [2019] is calculated via iterative image
restoration: the iterative image restoration Variational Autoencoder (irVAE), and
has shown good performance in [Baur et al., 2020]. The goal of the iterative
restoration is to optimize the following objective:

arg max
x

logP(x|y) = arg max
y

[logP(y|x) + logP(x)] , (4.3)

where the data-likelihood logP(x) is approximated by the VAE loss and the data
consistency term logP(y|x) is chosen as total variation Norm ||x−y||TV . This leads
to the final optimization objective

x̂ = arg max
x

[−λ||x− y||TV + LVAE(x)] , λ > 0, (4.4)

which can be optimized using gradient descent. Finally, the difference between the
‘more likely’ restored image x̂ and the original image x gives a pixel-level anomaly
score S:

Spixel = ||x̂− x||. (4.5)

In contrast to You et al. [2019] we did not use a mixture model, but rather N(0, 1)
as VAE latent-space prior (a prior conversation with the authors revealed that the
difference between the priors was minor in their experiments).

ceVAE A ceVAE (see Section 3.2.3) augments VAEs with self-supervised learning,
in particular, CE and in-painting. For the ceVAE in addition to the VAE-loss LVAE
a reconstruction loss between the reconstructions of perturbed input samples x̃
and the unperturbed samples x is added:

LceVAE = LVAE + λLce, λ > 0, (4.6)
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with
Lce(x, x̃) = Lrec(x,g(f(x̃))). (4.7)

Here the samples were perturbed with context-encoding, i.e., one to three random
rectangular regions of the image were masked out. We employ the gradients of
DKL with respect to the input image x as anomaly score as proposed in Section 3.1.3
since they are more unaffected by pixel-value magnitudes than a reconstruction
difference:

Spixel =
∂(−DKL(q(z|x)||p(z))

∂x
, (4.8)

FPI FPI [Tan et al., 2020] perturbs an area of the input slightly and uses a segmen-
tation net to detect this perturbation. The idea behind this is, that to detect these
small perturbations, the network has to learn what a normal sample looks like
and is consequently also able to flag anomalies and pathological conditions which
are not present in the training set as perturbations. To create these perturbations
for training, FPI selects a rectangular area termed ‘patch’ and in this patch area
interpolates the original image with a similar ‘foreign’ image. In this case, slices
at the same position from different scans are used for the interpolation. The size,
location, and interpolation factor of the patch are chosen randomly. The segmen-
tation target is to predict the interpolation factor for each pixel (0 if the pixel is
not interpolated, otherwise the interpolation factor). The segmentation network,
often an encoder-decoder model such as a U-Net [Ronneberger et al., 2015], is then
trained to segment the interpolated patches. To detect anomalies for each pixel, the
predicted interpolation factor is used as an anomaly score during inference. Since
the FPI model was only proposed for single-channel input, we trained one model
for each imaging sequence (T1 and FLAIR) and used the averaged prediction from
the two models (on the validation set we could see a clear increase in performance
for the averaged prediction compared to the single models, and thus chose to use
the averaged prediction for the test set prediction ).

Post-processing We subsequently post-processed the predictions with a Gaus-
sian Filter of size 3 and cropped the predictions to just the brain area, similar to
Baur et al. [2020].

Metrics

The earlier deep-learning-based medical image unsupervised anomaly detection
papers often used the AUROC as the primary metric [Baur et al., 2018; Chen
and Konukoglu, 2018; Pawlowski et al., 2018; Zimmerer et al., 2019b]. Lately,
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papers have instead recommended focusing on the AP for sample-level anomaly
detection [Ahmed and Courville, 2019], and AP has also found wide adoption in
anomaly detection (or rather localization) on medical images [Baur et al., 2020;
Zimmerer et al., 2020]. AP is often preferred because it can handle labeling balances
differently than AUROC since it puts more weight on less frequent classes [Ahmed
and Courville, 2019; Baur et al., 2020].
An additional metric used in medical image anomaly detection is the DSC which
is one of the primary metrics in medical image segmentation. After choosing a
binarization threshold and binarizing the anomaly scores into binary segmentation,
the DSC can be calculated [Baur et al., 2020; Chen and Konukoglu, 2018; Zimmerer
et al., 2019b].
Consequently, we also adapted AP, AUROC, and DSC for this work. To determine
a binarization threshold, which we term detection-threshold, for binarizing the
anomaly scores and consequently calculating the DSC on the test set, we use the
“toy-spheres” validation set. For each method, we determine the binarization
threshold which would achieve the best DSC on the “toy-spheres” validation
set and use it for binarization of the test set predictions. Other approaches to
determining such a threshold are choosing the n-th percentile of the anomaly
scores on the training data [You et al., 2019], assuming that there are already n%
abnormal pixels in the training set. If a “toy” validation set is available, we believe
that this however allows for a better estimate of such a threshold (and not guessing
n arbitrarily, since for the optimal case n should be 0).
However, we believe that there are two issues with the commonly used metrics:
(1) Dataset-level vs. sample-level/per-scan metrics: In medical image segmentation, the
DSC is often calculated on a sample-level/per-scan level and then aggregated via
mean or median for the whole dataset. In contrast to medical image segmentation,
in anomaly detection, not all samples contain abnormal pixels, and as such for
these samples with all pixels having the same class, DSC, AP, and AUROC are not
defined. One way to circumvent this is to group all pixels in the dataset into one
bucket and calculate the metrics on a dataset level directly (without any division
into scans). This however needs quadratically more computationally resources
(for AP and AUROC since for these metrics the scores have to be sorted) and
also can underestimate the importance of small objects, which is described in the
second issue.
(2) Indifference towards small objects: The DSC and AP primarily consider TPs, FPs,
and FNs, but do not have a concept of objects. As such if in one image/case there
are multiple objects and one object is much bigger than the other object it put less
importance on the small objects. In extreme cases, a better DSC can be achieved by
better segmenting an already detected and reasonably well-segmented big object
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than segmenting and thus detecting a small object at all (since the improvement
for the big object results in more TPs and causes potentially less FPs for the harder
smaller object) [Reinke et al., 2021]. This property can get exaggerated when the
metrics are directly calculated on a dataset level and not calculated on a per-scan
level and then aggregated.
To solve these issues we propose to also include object detection-based metrics in
the analysis. In particular, to go from segmentation to an object level, we used the
following method: first, we used the detection-threshold to binarize the anomaly
score predictions. Then, using connected component analysis, the segmentations
were divided into different objects. To reduce noise, we removed objects with
less than 1200mm3 (≈ half the size of the smallest annotated refIF). We then
presented the detected objects to an expert radiologist (∼ 10 years of experience in
neuroimaging) to determine TP, FP, FN. We also propose an automatic evaluation
into TP, FP, and FN by checking for each object whether the center of mass of the
segmentation falls into a ground truth segmentation, and the size difference is
only by a factor of 2.
We believe that these object-based metrics can give more information regarding
clinical relevance since for medical image anomaly detection it is often not impor-
tant if the object is perfectly segmented, but rather more important if all abnormal
objects/anomalies are detected, so that a physician can be notified for further
assessment.

Model and parameter selection

For unsupervised anomaly detection, to have a fair and unbiased evaluation
of a test set it is important not to leak too much information about the test set
beforehand. Thus, we only once per approach predicted the test set and directly
report the results here. For example, in our opinion, running the same model
twice with different hyperparameters and claiming the performance of the model
to be the max performance of the two runs already introduces some bias from the
test set and might not generalize to another test set (we believe this is similar to
the “reproducibility crisis” in reinforcement learning [Zhang et al., 2018]). This,
however, results in the problem of model and hyperparameter selection. We were
inspired by Shafaei et al. [2019]’s approach as well as the strategy adopted by the
majority of MOOD Challenge contestants (where the participants had no access to
the test set as well) [YouTube, 2020, 2021]: here, the approaches were validated on
a different (in-house) dataset beforehand.
To select a model and hyperparameters we used the previously described valida-
tion set with artificial “toy-sphere” anomalies. This may generate a bias for models



110
CHAPTER 4. PERFORMANCE EVALUATION BEYOND THE STANDARD

SETTING

Table 4.4: Performance comparison of the three models on the 100 toy-sphere
validation samples and the 84 refIF samples from the LSPS (dataset-level).

irVAE ceVAE FPI

Validation
AP 0.065 0.253 0.376
AUROC 0.904 0.954 0.956
DSC 0.065 0.324 0.434

refIFs
AP 0.017 0.312 0.016
AUROC 0.787 0.838 0.815
DSC 0.035 0.382 0.026

towards anomalies that resemble “toy-spheres”, but, as previously demonstrated,
it may also be a reasonable proxy task for more general anomaly detection perfor-
mance. Thus, after each epoch, we calculated the AP on the validation set for all
approaches and then, respectively, selected the best model for the final evaluation.
However, due to the added computation cost of the iterative restoration, for irVAE
it was unfeasible to run the iterative restoration procedure after each epoch and we
selected the best model based on the best AP using reconstruction error scoring.

4.2.3 Results

Comparison of methods

First, we compare the irVAE, the ceVAE, and FPI on the “toy-spheres” validation
set and the 84 samples with the refIFs (see Table 4.4). One thing that becomes
apparent is that while all seem to work reasonably well on the validation set the
irVAE and FPI results seem not to generalize to LSPS data (we believe that for
the irVAE the low performance in terms of the AP score, while at the same time
having a reasonably well AUROC score, can be attributed to the model being
selected by the reconstruction error AP).

Dataset-level vs. object-level metrics

Since the irVAE and FPI did not show well enough results, we focused the follow-
ing analyses on the ceVAE only. The ceVAE has a (dataset-level) AUROC of 0.838
and an AP of 0.312, which seem to in the same range as the reported results on
the BraTS17 dataset [Zimmerer et al., 2019b] (please note that the results are not
entirely comparable because for the LSPS we approximated the refIF segmentation
with a sphere). For the refIF scans only, there is already a clear contrast between the
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Figure 4.9: Histogram of sample-level/per-scan AP scores and histogram of
sample-level/per-scan AUROC scores for the ceVAE [Zimmerer et al., 2022b].

dataset DSC of 0.382 and an aggregated sample-level/per-scan DSC of 0.061 and
the dataset AP of 0.312 and an aggregated sample-level/per-scan AP of 0.108 when
contrasting the dataset level metrics with the aggregated sample-level metrics.
Some differences between the dataset-level metrics and the aggregated sample-
level metrics can be explained by the AP histogram (Fig. 4.9): for the AP histogram
two modes/peaks can be detected, one at 0.0 and one at 0.6, i.e. while it seems
to work quite well for a few scans, for most scans, the algorithm fails. However,
we discovered that the instances on which the ceVAE works well are those with
the most labeled pixels, i.e., scans with big and easily detectable abnormalities.
As a result, big and easily detectable anomalies dominate the dataset AP score,
overshadowing the performance of perhaps more medically relevant, harder to
identify, and smaller abnormalities. The AUROC appears to be more resilient
to dataset and per-scan changes, but it does not appear to reflect the fact that
the model works well just for simple anomalies. As a result, in order to get a
more direct performance metric of anomalous object detection (which is arguably
more relevant than pixel-level delineation), a radiologist manually assessed the
algorithm’s predictions.

Evaluation with an expert radiologist

While the previous analysis was only performed on the refIF samples of the LSPS
dataset due to the high computational cost of calculating the AP and AUROC
over the whole dataset and AP, AUROC, and DSC not being defined for sam-
ples without anomalies, this section will use object-based metrics to evaluate the
performance of the ceVAE model on the whole dataset.
During the first inspection of the results on the test set, we noted that the algorithm
detected anomalous scans, which were not and probably would not be classified as
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Figure 4.10: Qualitative anomaly detection results of the top performing algorithm
(ceVAE). First row (from left-to-right): Images 1&2 show not detected refIFs,
images 3&4 false positives, and images 5&6 detected refIFs. Second row (from
left-to-right): Image 1 shows a detected imaging artifact, image 2 shows a detected
brain extraction failure, image 3 shows a detected not medically relevant anomaly,
image 4&5 detected medical anomalies which would not classify as IFs, and image
6 a detected anomaly which is not in the refIFs and possibly could be classified as
IF [Zimmerer et al., 2022b].

refIFs, but nevertheless had an anomalous appearance. To further investigate this
and check if such scans were also present in the training set and if the algorithm
would also detect these in the training set (which was presented as ‘normal’ during
the training phase), we extended this analysis to the whole dataset (training +
validation + test set).
Overall, the algorithm detected 84 suspicious regions/objects in the whole dataset.
We compared the detectioned objects to the refIFs, and in total 19 of 84 refIFs were
found, but almost all (16/19) were C1 (see Table 4.5). However, a large amount
(21/37 ,> 50%) of C1 findings were not still detected.
Furthermore, the predictions which exceeded the detection-threshold together with
the corresponding scans, were presented to an expert radiologist (∼ 10 years
of experience in neuroimaging). The expert was asked to classify those that
could not be matched to a refIF into one of the five classes: False Positive, Brain
Extraction (BET) Failure, Imaging Artifact, Not Medically Relevant Anomaly, Medical
Condition (see Table 4.5). We further sub-divided the Medical Condition class into
IFs (i.e., needing medical interventions) and Other Anomaly.
Using the as IFs categorized detections, we also explored the possibility that any
detected findings may be unreported or missed refIFs. Here, an additional review
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Table 4.5: Detections by the ceVAE model classified into categories and compared
with the reference data.

#Detected #Reference
refIF C1 16 37
refIF C2 3 39
refIF C3 0 8
FP 28 -
BET failure 10 -
Imaging artifact 12 -
Not med. relevant 3 -
Medical condition 12 -

and assessment by the expert radiologist revealed that the algorithm was able to
detect 2 findings that could possibly be considered refIF (however, those were
borderline cases and also arguments for not classifying them as refIFs could be
made).
Of all detected ‘Medically Relevant Anomalies’, 3/12 were in the test set (excluded-
ing the refIF scans), 2/12 in the validation set, and 7/12 in the training set. This
indicates some robustness of the ceVAE model to outliers during training. Some
examples can be seen in Fig. 4.10.

4.2.4 Interpretation of results for clinical application / clinical
value

The findings challenge the direct application of anomaly detection methods in
medical practice. However, the system was still capable of detecting 2 suspicious
samples that were not reported. It is unclear whether these occurrences were truly
overlooked or if there were inconsistencies in the reporting, data management, or
labeling protocols (e.g. potentially reporting/noting the conditions elsewhere and
not in the LSPS scope).
One further open discussable point is the difference in performance between the
models. We believe that this setting with medical conditions in the training set
made the task of learning normality harder and required the algorithms to have
robustness for large variations in the training data. Here, the ceVAE with its
masking and inpainting tasks possibly performed best, since during training it
had to cope with inputs with large perturbations and also learn how to handle and
correct these perturbations. The irVAE and FPI possibly were not that resistant
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to these outliers during training. This is further supported by the fact that the
ceVAE considered some “normal”, not-IF medical conditions as anomalies while
the irVAE and FPI did not. One possible cause for the difference between the
irVAE and the ceVAE could be the used scoring method. While the ceVAE uses
the gradient directly and as such to a large portion can be invariant to the image
intensity, the irVAE which uses a reconstruction error is more dependent on the
image intensity (since an anomaly with an image intensity similar to the mean
image intensity will likely not be able to stand out compared with an anomaly with
extreme image intensities). The large performance discrepancy for FPI between
the validation set and the refIF samples can possibly be explained by the similarity
of the artificially created “toy-spheres” anomalies and the interpolation anomalies
of the FPI task. In the MOOD 2020 challenge a similar performance gap could
be observed. Perhaps the FPI team’s subsequent work [Tan et al., 2021], which
extended FPI and has shown good performance on additional datasets, might
better translate the validation set’s performance to the LSPS dataset.
Given the medical conditions in the LSPS training set and the presence of the
one abnormal data sample in the well-curated HCP dataset, it is critical that the
algorithms are capable of handling such occurrences during training. Furthermore,
for use “in the wild”, robustness to some anatomical variations (e.g. variations that
occur with aging) might be needed or models need to be made more context-aware.
Overall, the results demonstrated that only extremely obvious abnormalities
were found, which a radiologist could spot with little effort and would only
provide minor advantages in a day-to-day workflow, especially given huge labeled
datasets which are readily accessible for these conditions. Furthermore, even these
conditions were not properly recognized. The employed algorithm has difficulty
detecting the more commonly overlooked and perhaps more ‘useful’ abnormalities.
As a result, it is difficult to suggest the tested models for routine clinical usage.
However, with the identification of imaging artifacts and big anomalies it may
make useful prefiltering step for fully automated diagnosis pipelines, finding
OoD data on which a subsequent algorithm may fail or behave unpredictably, or
serving as a backup-check in such a LSPS scenario.
So we feel that to come closer to a translation to the real-world, we must reconsider
the alignment of the medical goal with the metrics used, as well as the assumptions
made and if they are plausible.
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In this chapter, we will put the previous chapters’ findings into a broader research
context and discuss various hypotheses and assumptions made throughout this
thesis.

Localization scoring (residual vs. gradient vs. pixel-level modeling) We
mostly focused on and used the residual of a reconstruction-based approach,
the gradient of a density-based model or a combination of both. The residual
approach is based on the assumption that by limiting a model capacity only the
main factors of the data can be learned/represented and thus the model will
not be able to reconstruct abnormal data successfully and have a large residual
for abnormal data, which can pinpoint the anomaly. However, finding the right
balance between model capacity and reconstruction is not trivial, and usually
necessitates a validation set to be tuned to. Furthermore, restricting the model
capacity hampers the ability to detect small and fine-grained anomalies. This can
lead to suboptimal general performance in harder cases as also noted by Meissen
et al. [2021]. The gradient-based approach might fix some of the described issues.
It is based on the assumption that the score, i.e. the gradient of the log-likelihood
and its magnitude, is a good indicator of the anomaly. While for simple unimodal
distributions and points far away from the learned distribution this is the case, in
the case of a more complicated distribution, interference can cause the assumption
to be violated. If and how much this worsens the detection performance in practice
is not clear. Also, due to the network architectures, the gradients are often noisy
and can have convolutional artifacts, which can be smoothed out by using the
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Smooth Gradient. From a theoretical perspective, the ‘cleanest’ approach would
be the direct modeling of the pixel distribution. However, this carries its own
problems and constraints. First, direct modeling of the pixel distribution might be
aggravated by the curse of dimensionality. Ann second, doing this directly using
autoregressive models has shown no optimal performance [Goldstein and Uchida,
2016]. Since the pixels are correlated with each other, a model would have to
factor all correlations in and the modeling of this covariance might need enormous
amounts of data. But recently models try to solve that by learning “super-pixel
features” and modeling the “super-pixel” distributions [Marimont and Tarroni,
2020; Pinaya et al., 2021]. Nevertheless, we believe that using the gradient-based
approach is a good compromise.

Assumptions inherent to VAE-based models Another assumption made, is
that the approximated ELBO of a VAE is a good indicator of the anomaly. VAEs
themselves were shown to be competitive with recent generative models and are
often used for multiple use cases [Child, 2021]. However, using the log-likelihood
as a score might not be optimal in all cases. First, Theis et al. [2015] showed that
multiple factors can easily influence the likelihood and the actual content might
not be the most deciding factor. Also, while mostly focusing on flow-based models,
as shown by Nalisnick et al. [2018], generative models were criticized to focus
mostly on low-level statistics and not on the content of the data, and thus also are
vulnerable to out-of-distribution data and fail to ‘know what they don’t know’.
Next, for high dimensional Gaussian distributions, almost all samples are not close
to the mean or have the highest likelihood, but lie in a “soap bubble” [Huszár,
2017] around the mean (e.g. images drawn from an isotropic Gaussian distribution
with zero mean would almost always seem noisy and not consistently grey, as the
mean would). Thus, for example, a test-of-typicality [Nalisnick et al., 2019] score
was proposed as an indicator of the anomaly. Here, a ‘normal’ likelihood range is
determined by some normal data and only data in this ‘normal likelihood range’ is
considered normal. While these issues are definitely a factor to consider and need
further investigation and research, we believe they are not a major issue in the
current state of the art. The interesting anomalies in the here-presented medical
use cases are mostly near semantic anomalies, which do not lie far away from the
data distribution. We believe that for these cases the previously described issues
are not the crucial factor and do not harm the overall performance in a meaningful
way.

Explicit modeling vs. modeling with a surrogate task While this density-based
modeling of the data seems theoretically very sound and clean, the previous
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section showed that in practice there are some points to consider. Another recent
trend that has shown to be a good alternative is modeling with a surrogate task.
While not yet being a prominent research direction at the time of proposing and
implementing the design of the MOOD challenge, we already considered whether
such approaches might be a very suitable option for this case. While these models
do not directly model normal data, they use a surrogate task to ‘trick’ conventional
and established segmentation techniques into finding abnormal regions of the
data. For a challenge, like MOOD, where artificial anomalies are rendered into
an image, training a model to segment other artificial anomalies might be a good
option. However, the anomalies in the challenge were not known and thus vary
a lot from the anomalies used to train the model. Thus the question is whether
these models generalize to other artificial and more importantly, to real anomalies
as well. FPI, the winning team of the MOOD challenge, used interpolated patches
from different images/scans as an anomaly and trained a model to segment
these. Similarly, the team Canon Medical Research Europe, second in the anomaly
localization task, used a model trained to segment different interpolated spheres
as one part of their submission. To counter the fact that these only work on
synthetic anomalies, both teams have later published consecutive papers which
show that this generalizes to different natural medical conditions/anomalies as
well [Kascenas et al., 2021; Tan et al., 2020, 2021]. Interestingly, independent of the
challenge, CutPaste [Li et al., 2021], which also uses ‘cut and pasted’ foreign image
patches to detect and localize anomalies (but applied to an industrial inspection
anomaly detection dataset) was proposed at a similar time frame as the consecutive
papers. So this strategy might in fact generalize towards more general anomalies
and is a promising future direction that can build on the success and progress in
segmentation models. However, applying these methods unaltered to a medical
real-world 3D dataset showed some room for further improvements.

Metrics One point that is worth mentioning is the use of metrics. Metrics are
often used to measure performance and compare different models. However, to
make such statements about model performance, it is important to understand
what the metrics measure and how/if it aligns with the task at hand. As shown
by Maier-Hein et al. [Maier-Hein et al., 2022; Reinke et al., 2021], particularly for
medical image segmentation and instance detection, caution should be exercised
when choosing metrics. E.g. for multiple instances with different sizes, the DSC
overfocuses on the bigger instances and might not be a good measure of the
detection performance. In the field of anomaly detection, AUROC has been the
most established metric [Baur et al., 2018; Chen and Konukoglu, 2018; Goldstein
and Uchida, 2016]. However, in recent years papers have argued that AP might be
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better suited, especially for settings with unbalanced classes, as is often the case
for anomaly detection [Ahmed and Courville, 2019]. Hence, AP has augmented
and partially replaced the use of AUROC [Baur et al., 2020; Zimmerer et al., 2020].
In analogy, AP was also inherited as a metric for the newer anomaly localization
task. Furthermore, AP is also related to the DSC and the DSC was also used as a
measure of localization performance on a binarized localization scoring. However,
as previously described, when dealing with different-sized instances, this can lead
to a biased evaluation of the performance. In terms of anomaly localization, the
detection/location of minor and challenging anomalies may provide the most
value and practical advantage. These situations should be prioritized. However,
using AP or the DSC, the opposite is the case, and the score is mainly influenced
by bigger-sized instances. Thus, while not yet adopted by the research community,
we believe that using additional object detection-based metrics, as done for the
real-world evaluation, could bring further benefit and move the metrics closer to
the task at hand.

Definition of normality As previously mentioned, “due to its label efficiency,
generalizability and general applicability, anomaly localization is attributed with
much promise in the field of automated medical image analysis and diagnosis”.
However, this statement is mainly based on the usage of anomaly detection mod-
els for finding general abnormal or pathological conditions. But this requires the
model to be trained on normal data and thus learn what normal data looks like.
But especially in the real world, it is hard to define a black-and-white differentia-
tion between normal data and abnormal data. For example, a normal condition
for an 80-year-old would be highly abnormal for a 20-year-old. And often the
assessment in clinical practice uses a grading scheme and not a binary classifica-
tion. Coincidentally, the anomaly score is also on a continuous scale, which would
make it applicable to such a scenario. Nevertheless, the algorithms, which are
based on the assumption to only be fed normal data, might have to be adopted to
be able to deal with mostly normal data but also some representative abnormal
data. Another possible approach could be the integration of more context (e.g.
age, sex, ...) to help bring the images into a broader context.

Summary Anomaly detection and localization can learn what data looks like
and point out anomalous data samples, which may then be utilized to assist clini-
cians in identifying anomalies. We employed a Variational Autoencoder (VAE) to
learn the distribution of the data and demonstrated several ways for highlighting
abnormalities. We showed that using self-supervised learning and hierarchical
representations could increase performance, especially in situations with smaller
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and more difficult-to-detect cases. We further investigated the approaches’ perfor-
mance and assessment in two contexts: an international public competitive setting
and a real-world use-case for discovering incidental findings in a population study.
Overall, the results were encouraging, and the algorithms could detect anomalies
and incidental findings, but they fell short in more complex and difficult cases and
were not yet dependable enough for real-world usage.
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Figure 6.1: More samples and predictions as shown in Fig. 3.7, showing the orig-
inal sample (I), the annotation (II), the reconstruction error (III), the smoothed
reconstruction error (IV), the sampling variances (V), the reconstruction-loss gra-
dient (VI), the KL-loss gradient (VII), and the ELBO gradient which approximates
the score (VIII).
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Figure 6.2: More samples and predictions as shown in Fig. 3.7, showing the orig-
inal sample (I), the annotation (II), the reconstruction error (III), the smoothed
reconstruction error (IV), the sampling variances (V), the reconstruction-loss gra-
dient (VI), the KL-loss gradient (VII), and the ELBO gradient which approximates
the score (VIII).
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6.0.2 More pchVAE examples
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(a) Input
.

(b) VQVAE-2 reconstruc-
tion

(c) Input
.

(d) VAE-low reconstruc-
tion

(e) Input
.

(f) VAE-high reconstruc-
tion

(g) Input (h) pchVAE reconstruction

Figure 6.3: More reconstructed inputs of the different hierarchical models, similar
to Fig. 3.17.
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(a) Input (b) pchVAE reconstruction

(c) pchVAE high (Eq. (3.22)
term 1)

(d) pchVAE low (Eq. (3.22) term
2)

(e) pchVAE zero (Eq. (3.22)
term 3)

Figure 6.4: More sample images of the pchVAE reconstruction, divided into the
different pchVAE parts, similar to Fig. 3.17.
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6.0.3 CRADL detail results

Pixel-level anomaly localization metrics on test datasets: Values are shown in the
section selected based on the results of the best AUPRC scores on the validation
set:

HCP Synth. HCP Synth. BraTS BraTS ISLES ISLES
Pretext Gen. Model Score AUPRC AUROC AUPRC AUROC AUPRC AUROC
VAE GMM 1 Comp nll-grad 0.0236±0.0011 0.8501±0.0035 0.1282±0.0123 0.8889±0.0023 0.0563±0.0033 0.86±0.0016

GMM 2 Comp nll-grad 0.0206±0.0006 0.8436±0.0022 0.1095±0.0096 0.8808±0.0021 0.0471±0.0024 0.8523±0.0036
GMM 4 Comp nll-grad 0.0348±0.004 0.8851±0.0054 0.1295±0.0173 0.8918±0.0038 0.0562±0.0057 0.8578±0.0035
GMM 8 Comp nll-grad 0.048±0.0086 0.9019±0.007 0.1345±0.013 0.8949±0.0026 0.0584±0.0058 0.8605±0.0028
Real NVP nll-grad 0.04±0.0066 0.8885±0.0077 0.0978±0.012 0.8666±0.009 0.0498±0.0098 0.8516±0.0048
VAE combi 0.2491±0.0063 0.9546±0.0005 0.2269±0.0328 0.9198±0.0038 0.077±0.0122 0.8745±0.0059

kl-grad 0.0373±0.0032 0.8657±0.0014 0.0772±0.0091 0.8446±0.011 0.0409±0.0047 0.8466±0.0081
rec 0.2101±0.003 0.9511±0.0003 0.2976±0.0035 0.9248±0.0006 0.0513±0.0001 0.8532±0.0023

ceVAE GMM 1 Comp nll-grad 0.1072±0.0109 0.901±0.01 0.2343±0.0816 0.9129±0.0159 0.0618±0.0176 0.86±0.0089
GMM 2 Comp nll-grad 0.0757±0.0057 0.8952±0.0041 0.177±0.0426 0.9062±0.0097 0.0449±0.0093 0.8445±0.0068
GMM 4 Comp nll-grad 0.0967±0.0156 0.9116±0.0085 0.1906±0.0184 0.9105±0.004 0.0511±0.0123 0.8456±0.006
GMM 8 Comp nll-grad 0.1122±0.016 0.9223±0.0058 0.2068±0.033 0.9119±0.006 0.0612±0.0084 0.8488±0.0055
Real NVP nll-grad 0.0606±0.0148 0.9008±0.0101 0.1072±0.0159 0.8756±0.0079 0.0304±0.0007 0.8157±0.0013
VAE combi 0.1716±0.0146 0.9212±0.004 0.483±0.0299 0.9482±0.0032 0.1451±0.0125 0.8794±0.0022

kl-grad 0.0702±0.0069 0.8586±0.0047 0.3394±0.067 0.9252±0.0163 0.1085±0.0163 0.8785±0.0059
rec 0.0913±0.0023 0.9266±0.0017 0.4073±0.0389 0.9269±0.0074 0.0653±0.0044 0.8544±0.005

CRADL GMM 1 Comp nll-grad 0.2263±0.0112 0.9664±0.0017 0.3341±0.0402 0.9357±0.0035 0.1859±0.0385 0.8977±0.0033
GMM 2 Comp nll-grad 0.2243±0.0125 0.9685±0.0017 0.3802±0.0163 0.9418±0.0009 0.1653±0.02 0.8955±0.0029
GMM 4 Comp nll-grad 0.2875±0.0101 0.9741±0.0006 0.3383±0.0161 0.9384±0.0012 0.1441±0.0024 0.8935±0.003
GMM 8 Comp nll-grad 0.3246±0.0076 0.9779±0.0003 0.2908±0.0199 0.9309±0.0022 0.1257±0.0151 0.8906±0.0019
Real NVP nll-grad 0.0924±0.0097 0.9397±0.0031 0.1362±0.0102 0.8736±0.0068 0.0393±0.0044 0.8213±0.0153

INN nll-grad 0.0148±0.0005 0.7618±0.0018 0.3563±0.0023 0.9139±0.002 0.0443±0.0017 0.8307±0.0047

Pixel-level anomaly localization metrics on validation datasets: Values show the
best AUPRC scores which are used for hyperparameter selection on the test set:

HCP Synth. HCP Synth. BraTS BraTS ISLES ISLES
Pretext Gen. Model Score AUPRC AUROC AUPRC AUROC AUPRC AUROC
VAE GMM 1 Comp nll-grad 0.0353±0.0056 0.8547±0.0025 0.0935±0.0047 0.8841±0.0022 0.0676±0.0149 0.8745±0.0095

GMM 2 Comp nll-grad 0.0276±0.0018 0.8487±0.0031 0.0799±0.0046 0.8751±0.0038 0.0548±0.0102 0.8632±0.0067
GMM 4 Comp nll-grad 0.0503±0.0071 0.8859±0.0043 0.1009±0.0131 0.8897±0.0058 0.0627±0.0064 0.8701±0.0032
GMM 8 Comp nll-grad 0.0774±0.0035 0.9088±0.0023 0.0925±0.0073 0.8875±0.0041 0.0624±0.0029 0.8805±0.0006
Real NVP nll-grad 0.0395±0.0008 0.8665±0.0021 0.0691±0.0036 0.8584±0.0052 0.0509±0.0091 0.863±0.0091
VAE combi 0.2945±0.0059 0.9527±0.0005 0.1842±0.0403 0.9171±0.0061 0.0894±0.012 0.8812±0.0051

kl-grad 0.0735±0.0012 0.8771±0.0007 0.0677±0.0096 0.8553±0.0131 0.041±0.0009 0.8456±0.0044
rec 0.2081±0.0042 0.9426±0.0004 0.2248±0.0077 0.9119±0.0015 0.0543±0.0082 0.8618±0.0056

ceVAE GMM 1 Comp nll-grad 0.1212±0.024 0.9057±0.011 0.2313±0.0829 0.9181±0.0138 0.0609±0.0166 0.8633±0.0059
GMM 2 Comp nll-grad 0.0741±0.0142 0.8989±0.0065 0.1611±0.0291 0.9126±0.0051 0.0385±0.0056 0.8436±0.005
GMM 4 Comp nll-grad 0.1067±0.0132 0.9167±0.0039 0.1955±0.0214 0.9163±0.0024 0.0423±0.0058 0.8513±0.0033
GMM 8 Comp nll-grad 0.1464±0.0285 0.9286±0.007 0.1841±0.0162 0.911±0.0002 0.0404±0.0054 0.8471±0.0044
Real NVP nll-grad 0.0907±0.0144 0.9002±0.0081 0.0784±0.0144 0.8681±0.0088 0.0311±0.0017 0.8223±0.0094
VAE combi 0.2183±0.0206 0.9148±0.0057 0.4321±0.005 0.9393±0.0038 0.1628±0.0242 0.8847±0.0042

kl-grad 0.096±0.0096 0.8655±0.0037 0.3337±0.04 0.9317±0.0078 0.0956±0.0278 0.8751±0.0092
rec 0.1163±0.0019 0.9117±0.0021 0.2884±0.0403 0.9068±0.0088 0.1321±0.029 0.8649±0.0041

CRADL GMM 1 Comp nll-grad 0.3176±0.0102 0.9671±0.0007 0.2796±0.0244 0.9294±0.0007 0.3295±0.0279 0.9251±0.0029
GMM 2 Comp nll-grad 0.3125±0.0095 0.9686±0.0005 0.3334±0.0105 0.9363±0.0012 0.3281±0.0155 0.9197±0.002
GMM 4 Comp nll-grad 0.3338±0.0111 0.9685±0.0009 0.2597±0.0451 0.9262±0.009 0.2989±0.0168 0.9117±0.0033
GMM 8 Comp nll-grad 0.3297±0.003 0.9721±0.0004 0.2518±0.0102 0.927±0.0003 0.2765±0.0136 0.9099±0.001
Real NVP nll-grad 0.1276±0.0043 0.9347±0.0004 0.137±0.0107 0.8876±0.0031 0.1039±0.0141 0.864±0.0095
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6.0.4 Definition of refIFs for 4.2
Considered as IF:

• Acute stroke

• Acute intracranial/ intraspinal hemorrhage

• Solid cerebral mass:

– Supratentorial mass > 2cm

– Infratentorial > 1cm

– Multiple masses

– Mass with edema/ csf blockage/ midline shift

• Pituitary gland mass

• Suspicious cerebral/ meningeal mass in need of clarification (except uncom-
plicated meningioma)

• Neurofibromatosis with > 5 neurofibromas

• Cerebral vascular malformation with risk of hemorrhage

• Suspicious solid mass in the viscerocranium > 2cm

• Intracranial aneurysm
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Not considered as IF:

• Unspecific white matter lesions

• Not acute stroke

• Multiple sclerosis

• Hydrocephalus

• Asymmetric ventricles

• Enlarged periventricular space

• Megacisterna magna

• Reduced brain mass

• Lipoma

• Congenital disorder

• Chiari malformation

• Developmental venous anomaly

• Mastoiditis

• Syringomyelia

• Hygroma

• Leukoencephalopathy

• Pineal gland cyst

• Uncomplicated meningioma
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6.0.5 Samples from the LSPS validation set

Figure 6.5: LSPS validation set “toy-sphere” anomalies. Artificial “toy-sphere”
anomalies are rendered into validation set images, to generate a validation set
with anomalies.
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