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Abstract 

Genome sequencing efforts, coupled with technological advances and cost reductions, have 

led to the discovery of an increasing number of disease-related genetic variants. For the vast 

majority of these variants there is no known molecular mechanism for how they are related 

to the disease. This problem is particularly evident for diseases with complex genotype-

phenotype relationships, such as cancer. Fortunately, the parallel growth of data on protein 

families, structures, interactions, modifications, and other aspects of function, in addition to 

the development of new computational methods provide the means to predict or identify 

disease variant mechanism. 

In this thesis, I first present a systematic analysis of a large dataset of pan-cancer 

missense mutations to investigate whether positive selection of certain types of amino acid 

substitutions can reveal interaction-disrupting cancer driver mutations. Hundreds of 

mechanistically interesting variants were identified in both potentially novel cancer-

associated proteins and well-established cancer driver genes. I discuss new insights and for 

some instances, attempt functional interpretations by integrating information on protein 

structure and interactions that suggest putative novel mechanisms that question the 

classical oncogene/tumour suppressor paradigm. 

There is a wealth of publicly available resources that already provide valuable information 

on all aspects that define gene and protein function. This information has been collected 

from thousands of experiments or publications and has usually been manually verified or 

predicted using new approaches. This means that interpreting variants can be a tedious 

process of manually consulting and integrating the different functional data from multiple 

databases. Mechnetor was developed to aid this process: a freely available web tool that 

helps users understand the mechanism of protein variants. With a simple input from the 

user, Mechnetor automatically collects and integrates various relevant functional data and 

presents them in an interactive network that allows easy visualisation and interpretation of 

the results. 

Many databases are created from the individual efforts of hundreds of labs conducting 

similar experiments, combining their results to build and increase the confidence of 

biological knowledge. I had the opportunity to collaborate with the group of Prof. Dr. Felix 
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Wieland (Heidelberg University Biochemistry Center) in analysing and interpreting the results 

of one such experiment: a proteome-wide study of S-palmitoylation in Drosophila 

melanogaster. S-palmitoylation is an important reversible post-translational modification that 

controls protein membrane location and trafficking and is thus linked to many cellular 

processes. In contrast to humans, palmitoylation target proteins and responsible enzymes 

are largely unknown in invertebrates. Here, we identified and characterised the most 

complete set of S-palmitoylated proteins in Drosophila to date, as well as the putative 

substrate profiles of 10 Drosophila palmitoyl acyl transferases. Our results provide new 

insights and reveal many functional similarities of palmitoylation between Drosophila and 

humans. 

.  
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Zusammenfassung 

Genomsequenzierungsbemühungen, gepaart mit technologischen Fortschritten und 

Kostensenkungen, haben zur Entdeckung einer zunehmenden Zahl von krankheitsbedingten 

genetischen Varianten geführt. Für die überwiegende Mehrheit dieser Varianten gibt es 

keinen bekannten molekularen Mechanismus dafür, wie sie mit der Krankheit 

zusammenhängen. Dieses Problem ist besonders offensichtlich bei Krankheiten mit 

komplexen Genotyp-Phänotyp-Beziehungen wie Krebs. Glücklicherweise bietet das parallele 

Wachstum von Daten zu Proteinfamilien, Strukturen, Wechselwirkungen, Modifikationen und 

anderen Funktionsaspekten neben der Entwicklung neuer Rechenmethoden die Möglichkeit, 

Krankheitsvariantenmechanismen vorherzusagen oder zu identifizieren. 

In dieser Dissertation stelle ich zunächst eine systematische Analyse eines großen 

Datensatzes von „Missense“-Mutationen bei Krebserkrankungen vor, um zu untersuchen, ob 

eine positive Selektion bestimmter Arten von Aminosäuresubstitutionen Interaktions-

unterbrechende Krebstreiber-Mutationen aufdecken kann. Hunderte von mechanistisch 

interessanten Varianten wurden sowohl in potenziell neuen krebsassoziierten Proteinen als 

auch in gut etablierten Onkogenen und Tumorsuppressor-genen identifiziert. Ich diskutiere 

neue Erkenntnisse und versuche in einigen Fällen funktionelle Interpretationen, indem ich 

Informationen über Proteinstruktur und -wechselwirkungen integriere, die auf mutmaßlich 

neue Mechanismen hindeuten, die das klassische Onkogen/Tumorsuppressor-Paradigma in 

Frage stellen. 

Es gibt eine Fülle öffentlich zugänglicher Ressourcen, die bereits wertvolle Informationen 

zu allen Aspekten liefern, die die Funktion von Genen und Proteinen definieren. Diese 

Informationen wurden aus Tausenden von Experimenten oder Veröffentlichungen 

gesammelt und normalerweise manuell verifiziert oder mit neuen Ansätzen vorhergesagt. 

Das bedeutet, dass das Interpretieren von Varianten ein mühsamer Prozess sein kann, bei 

dem die verschiedenen Funktionsdaten aus mehreren Datenbanken manuell konsultiert und 

integriert werden müssen. Mechnetor wurde entwickelt um diesen Prozess zu unterstützen: 

ein frei verfügbares Webtool, welches Benutzern hilft den Mechanismus von 

Proteinvarianten zu verstehen. Mit einer einfachen Eingabe des Benutzers sammelt und 

integriert Mechnetor automatisch verschiedene relevante Funktionsdaten und präsentiert 
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sie in einem interaktiven Netzwerk, das eine einfache Visualisierung und Interpretation der 

Ergebnisse ermöglicht. 

Viele Datenbanken werden aus den individuellen Bemühungen von Hunderten von Labors 

erstellt, die ähnliche Experimente durchführen und ihre Ergebnisse kombinieren, um das 

Vertrauen in biologisches Wissen aufzubauen und zu stärken. Ich hatte die Gelegenheit, mit 

der Wieland-Gruppe (Biochemiezentrum der Universität Heidelberg) zusammenzuarbeiten, 

um die Ergebnisse eines solchen Experiments zu analysieren und zu interpretieren: einer 

proteomweiten Studie zur S-Palmitoylierung in Drosophila melanogaster. Die S-

Palmitoylierung ist eine wichtige reversible posttranslationale Modifikation, die die Lage und 

den Transport von Proteinmembranen kontrolliert und somit mit vielen zellulären Prozessen 

verbunden ist. Im Gegensatz zum Menschen sind die Zielproteine der Palmitoylierung und 

die verantwortlichen Enzyme bei Wirbellosen weitgehend unbekannt. Hier identifizierten und 

charakterisierten wir den bisher vollständigsten Satz von S-palmitoylierten Proteinen in 

Drosophila sowie die mutmaßlichen Substratprofile von 10 Drosophila-

Palmitoylacyltransferasen. Unsere Ergebnisse liefern neue Einblicke und offenbaren viele 

funktionelle Ähnlichkeiten der Palmitoylierung zwischen Drosophila und dem Menschen. 
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Chapter 1 
 
Introduction 

 
1.1   The genetic variant explosion: a challenge for molecular 
 biologists 

The Next-Generation Sequencing (NGS) revolution had an enormous impact on clinical 

research as it completely changed the paradigm of genomics, shifting its scope from the 

study of single genes linked to disease to the analysis of whole genomes (Koboldt et al., 

2013; Soon et al., 2013). Fast and inexpensive sequencing has been widely applied to the 

genomes of both healthy and diseased individuals, enabling the identification of an ever-

growing number of genetic variants of every kind: common human genetic variation (1000 

Genomes Project Consortium et al., 2015; Sherry et al., 2001), rare Mendelian disease-

causing variants (Amberger et al., 2019), and somatic mutations underpinning most cancers 

(Tate et al., 2019). As a result, large volumes of genomic data have accumulated and these 

are often publicly available. The challenge now lies in the identification of variants related to 

disease and, in particular, in their functional interpretation.  

Unfortunately, the genetic basis of most human traits, and especially human diseases, is 

often very complex. Historically, precise correlations between genotype and phenotype have 

only been established for a few genetic diseases caused by single, highly penetrant alleles, 

where the functional interpretation of variants is usually simpler (Amberger et al., 2019; 

Boycott et al., 2013). Cystic fibrosis, for example, is caused by mutations in CFTR (in 70% of 

cases by the deletion of a single residue, p.Phe508) (O’Sullivan & Freedman, 2009), and Rett 

syndrome is caused by loss-of-function mutations in MECP2 (Amir et al., 1999). For most 

diseases, however, the genotype-phenotype relationship is less clear. Either positively 

identified causative variants have low penetrance, leaving many others to be found, or the 

particular mechanisms by which they cause disease pathology are not well understood. The 
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result is that the vast majority of variants uncovered by sequencing are still classified as 

‘variants of uncertain significance’ (Federici & Soddu, 2020; Richards et al., 2015). 

The need to understand the molecular basis of disease has increased in recent years 

owing to the advent of precision medicine (Ashley, 2016). With NGS and other advanced 

technologies applied to individuals, it is increasingly possible to determine the specific 

genetic variants responsible for disease for each individual patient (Perkins et al., 2018). This 

now means that many diagnostic and treatment decisions depend on the interpretation of 

variants specific to a patient (Suwinski et al., 2019), which is particularly important in the 

field of precision oncology (Malone et al., 2020). The need for better tools to interrogate such 

variants has never been more acute. 

1.2   Cancer is a genetically complex and diverse disease 

Cancer is probably the most representative case of complex genotype-phenotype 

relationship, as it actually refers to a large group of diseases that show great genetic and 

phenotypic diversity. Cancers occur in almost every organ and tissue, and are the leading 

cause of death worldwide. Their unifying characteristic is they are all primarily caused by an 

accumulation of genetic abnormalities that lead to uncontrolled cell growth and division. 

Ultimately, these cells form a tumour that invades normal tissues and organs and can spread 

throughout the body (Stratton et al., 2009). Currently, the medical community has recognised 

around 200 cancer types according to the histology and subtype of tumour1. 

Cell transformation from normal to malignant is a multistep process driven by somatic 

mutations that are acquired progressively and then positively selected (Hanahan & 

Weinberg, 2000) (Figure 1.1), while negative selection was surprisingly found to be an almost 

absent force during cancer development (Martincorena et al., 2017). Inherited genetic 

variation however can contribute to an increased susceptibility to certain cancer types, and 

at least 5-10% of cancers are considered to arise due to highly penetrant germline mutations 

(Nagy et al., 2004). 

Cancer causative mutations, known as drivers, inhibit or alter the function of certain genes 

(cancer driver genes), disrupting the processes that regulate normal cell growth and 

homeostasis, and therefore, promoting tumorigenesis (Stratton et al., 2009). The analysis of 

the molecular processes driving cancer is usually aimed at the identification of twos of driver 

                                                           
1 https://www.cancer.gov/types 
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genes: oncogenes and tumour suppressors (TSGs). Proto-oncogenes are genes that 

promote cell growth and division, which upon gain-of-function mutations, become 

oncogenes with an increased and uncontrolled activity. TSGs, in contrast, are those that 

suffer loss-of-function mutations which diminish or completely inhibit their ability to restrict 

proliferation and stimulate DNA repair (Imbeaud et al., 2010; Lee & Muller, 2010; Weinberg, 

1994). 

 

Figure 1.1: Standard model of genetic mutation-driven tumour evolution. Credit: Darryl Leja, National 
Human Genome Research Institute. 

The collection of active cancer driver genes and mutations varies greatly between 

different cancer types, but also between different tumours of the same type, and even 

between cancer cells of the same tumour (Gerlinger et al., 2012; Park et al., 2010). These 

differences have important clinical significance, and are ultimately reflected in diagnosis, 

treatment and prognosis (Malone et al., 2020; Oser et al., 2015). In addition to wildly variable 

penetrance, driver mutations are often hidden between many other genetic lesions that are 

phenotypically neutral but equally passed along the lineage, known as passenger mutations 

(Lawrence et al., 2014; Stratton et al., 2009). For these reasons, understanding the particular 

molecular mechanisms behind every cancer is as valuable as it is challenging. 

1.2.1   Sequencing in cancer genomics 

NGS has been especially helpful for cancer research. First, because obtaining and comparing 

the genomes of tumour and normal cells from the same individual allows the identification 

of somatic mutations (Dou et al., 2018; Watson et al., 2013). Second, because the most 

obvious sign that a somatic mutation is positively selected for driving cancer is their 
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statistically significant recurrence across different tumour samples (Martincorena et al., 

2017). Thus, the abundance of sequencing data from different patients has provided the 

required statistical power to identify driver genes and mutations from the vast majority of 

effectively neutral passenger mutations, regardless of any previous knowledge of the 

context of the affected gene products (Campbell et al., 2020). Thereby, proteins, protein 

regions and protein positions in which mutations occur with a higher frequency than 

expected by random chance, immediately become putative cancer-driving candidates that 

warrant further investigation (Kim & Jeong, 2019; Yang et al., 2015). 

Coordinated efforts to sequence thousands of cancer genomes, such us The Cancer 

Genome Atlas (TCGA) (The Cancer Genome Atlas Research et al., 2013) or the International 

Cancer Genome Consortium (ICGC) (The International Cancer Genome Consortium et al., 

2010), have provided a massive collection of genetic changes associated to all possible 

cancer types (Campbell et al., 2020). Although mutations in non-coding regions have gained 

more attention in the last years and some driver mutations have been identified—such as 

those in the promoter of the telomerase reverse transcriptase gene in melanomas (Horn et 

al., 2013)—, they are still relatively unusual (Elliott & Larsson, 2021). Thus, while cancer 

sequencing projects have increasingly moved from whole-exome (Kandoth et al., 2013) to 

whole-genome sequencing (Campbell et al., 2020), the focus has traditionally been in the 

identification of driver mutations affecting protein-coding genes. In consequence, the 

catalogue of genes causally implicated in cancer, and the variants in those that lead to the 

acquisition of their oncogenic properties, have been greatly expanded in the last decade 

(Sondka et al., 2018). These efforts, together with advances in molecular oncology, have led 

to determining the hallmarks of cancer, a series of biological capabilities that are 

successively acquired by cells in their evolution to tumours, providing a framework to 

understand the neoplastic process (Hanahan & Weinberg, 2011) (Figure 1.2). 

Comparative genomics has also revealed patterns of somatic mutations across cancer 

samples that are distinctive for both types of drivers. Tumour suppressors are characterized 

by inactivating, usually truncating, mutations spread across multiple sites in their 

sequences, while in oncogenes, activating and mostly missense mutations are usually 

located in well-defined hotspots (Martincorena et al., 2017; Vogelstein et al., 2013) (e.g. 

Figure 1.3A). All currently confirmed human cancer driver genes are catalogued according 

to their role in the disease in the Cancer Gene Census (CGC), an ongoing project from the 

Catalogue Of Somatic Mutations In Cancer (COSMIC) (Sondka et al., 2018; Tate et al., 2019), 

that provides expert-curated functional descriptions of these genes. In COSMIC v95, the CGC 
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Figure 1.2: The hallmarks of cancer. The ten acquired capabilities that are required for neoplastic 
transformation. Adapted from its original publication (Hanahan & Weinberg 2011). 

comprises 563 genes exactly divided into 50% oncogenes and 50% TSGs if excluding fusion 

genes, those that due to chromosomic rearrangements are involved in fusions with other 

oncogenes or TSGs (Mertens et al., 2015) (Figure 1.3B). A set of 73 genes are classified as 

both oncogenes and TSGs, suggesting that they are supposed to act through opposite 

mechanisms. There is indeed increasing evidence supporting the notion that many proteins 

can have oncogenic or tumour-suppressing functions depending on the cellular context. For 

instance, this is the case of many transcription factors (e.g. TP53, RB1, or FOXO) (Shen et 

al., 2018) , but also of other proteins, such as Rho small GTPases (e.g. RHOA, RAC1), which 

are signal transducers involved in many biological processes (Zandvakili et al., 2017). These 

further highlight the importance of biological context in fully understanding the molecular 

mechanisms of gene variants underlying neoplastic transformation, or any other disease. 

1.3   Identifying disease variants 

The first step of variant interpretation is to determine which are causal of the disease. Many 

computational methods have been developed with the purpose of prioritizing the most likely 

pathogenic variants, and applied both to germline and somatic. In cancer, high allele 

frequency has been widely used to identify candidate driver genes and variants (Figure 1.4). 
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Figure 1.3: (A) Distribution of somatic missense mutations and nonsense mutations sites across the 
sequence of oncogenes KRAS and EZH2 and tumour suppressors SMAD2 and RB1. Lengths of 
mutation flags are proportional to sample count. Data were obtained from COSMIC. All mutations 
come from whole-genome sequencing, and are both confirmed somatic and predicted as pathogenic. 
(B) Classification of the Cancer Gene Census genes according to their role in cancer. A significant 
number of genes belong to more than one category. 

 

However, this can often be too simplistic. The steep growth of genomic data increased also 

the risk of obtaining false positives, which in turn propelled the development of more 

accurate background models to account for mutational heterogeneity when determining 

mutation rates (i.e. gene-specific models) (Lawrence et al., 2013). Moreover, others have 

identified groups of otherwise low-frequency mutations that are functionally equivalent, by 

looking for patterns of mutual exclusivity across different samples (Canisius et al., 2016). A 

study from our own group identified such patterns between several genes, like for instance 

inactivating mutations in Gi/Go-protein coupled receptors and oncogenic mutations in Gsα, 

which analogously enhance cAMP signalling (Raimondi et al., 2019). 

In general, most conventional variant prioritization tools have heavily relied on 

phylogenetic conservation for assessing putative impact, on the basis that mutations on 

highly conserved residues are more likely to be deleterious (e.g. SIFT (P. Kumar et al., 2009)  
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Figure 1.4: Main features traditionally exploited by variant prioritization methods: (a) recurrence 
across different samples/individuals (or allele frequency); (b) non-uniformal distribution; (c) overlap 
with functional sites, such as domains or phosphosites; (d) phylogenetic conservation of affected 
residues. 

 

and MutationAssessor (Reva et al., 2011)) (Figure 1.4). Some algorithms have also been 

trained using features based on protein sequence and known or predicted structure (e.g. 

PolyPhen-2 (Adzhubei et al., 2010) and CHASM (Carter et al., 2009, 2010)), as well as 

knowledge from already established disease-causing polymorphisms (e.g. MutationTaster2 

(Schwarz et al., 2014)). Others search for mutations clustered along the protein sequence 

(e.g. MuSiC (Dees et al., 2012) and OncodriveCLUST (Tamborero et al., 2013)) or for 

mutations overlapping with diverse protein functional sites (e.g. ActiveDriver (Reimand & 

Bader, 2013)) (Figure 1.4). In addition, some tools combine the scores from several of these 

algorithms in order to obtain a more consensual prediction (e.g. CADD (Kircher et al., 2014) 

and OncodriveFM (Gonzalez-Perez & Lopez-Bigas, 2012)). The advantage of all these 

approaches is that they can be quickly applied to the typically large number of variants 

identified in any sequencing experiment to obtain a reduced list of variants that can be 

ranked by a predicted pathogenicity score. However, they do not provide information on how 

the effect of these variants is achieved, typically only identifying whether variants are 

“pathogenic” or “damaging”. Moreover, since they focus on individual protein features, they 

usually ignore all functional or mechanistic context. 
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1.4   A gulf between genetics and molecular biology 

The large volume of sequencing data and the fast pace of new disease variant discovery 

cannot be matched by the experiments required to accurately characterize their functional 

impact. Understanding what variants might do to function is moreover often limited by a 

poor understanding of the affected genes or pathways. As a result, there is a growing number 

of confidently classified disease-causing variants that lack any reasonable explanation for 

the underlying mechanisms that translate them into the disease phenotype; there is thus a 

gulf between the fields of genetics and molecular biology (González-Sánchez et al., 2018). 

Fortunately, thanks to a parallel development of high-throughput proteomics techniques, 

structural biology and computational power in the last years, mechanistic data are also on 

the rise in the form of biomolecular structures, interactions, or post-translational 

modifications. Accordingly, different new methods and systematics studies have integrated 

mechanistic with sequencing data to provide new context-specific interpretations for 

disease genetic variation. 

1.5   Understanding molecular mechanism 

1.5.1   Pathways and networks 

Pathway analysis is one way to study genetic variants in a functional context. First, this 

higher level of organization allows to find rare, and a priori independent, genetic alterations 

that are functionally related because they affect common pathways (Figure 1.5). Second, 

identified variants are already associated to familiar biological processes and are easier to 

interpret. Under this principle, several pathway- and network-based methods have been 

applied to cancer data sets to identify new driver genes and their mechanisms, and expand 

the repertoire of disturbed cellular functions (Akavia et al., 2010; Creixell, Reimand, et al., 

2015). In order of complexity, these approaches include: gene set enrichment analysis 

(GSEA) (Subramanian et al., 2005), which consists in the identification of enrichment of fixed 

gene sets associated to certain biological categories (e.g. g:Profiler (Raudvere et al., 2019); 

de-novo construction of interaction networks with mutated genes, which can help discover 

non-mutated genes likely to be involved in the disease (e.g. GENEMANIA (Franz et al., 2018), 

STRING (Szklarczyk et al., 2019)); and pathway modelling, which tries to predict how the 

activity of known networks or pathways is altered by mutations in terms of changes in 

different qualitative and quantitative parameters (e.g. PARADIGM-SHIFT (Ng et al., 2012)). 
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For example, using PARADIGM-SHIFT, our group found particular pathway alterations 

preferences for different cancer types, like nephrin/Neph1 signalling in kidney tumours and 

ephrin A reverse signalling in thyroid cancer (González-Sánchez et al., 2018). 

 

 

Figure 1.5: Approaches at multiscale resolution used by variant interpretation tools providing deeper 
mechanistic insights: (a) identification of significantly mutated sets of genes that are all part of the 
same pathway; (b) identification of mutations that are not proximal on the protein sequence but that 
cluster on the 3D structure, commonly affecting binding sites, for instance; (c) analysis of edgetic 
effects, different variants in the same protein can affect different interfaces; (d) detection of otherwise 
scarce mutations in different proteins that are located in equivalent positions within a shared 
functional domain, thus resulting in a similar effect. 

1.5.2   Structures and interactions 

Biological processes are mediated by intricate networks of protein-protein interactions (PPI), 

comprising fast and transient contacts or stable macromolecular complexes, but also 

interactions with other (i.e. non-protein) biomolecules (Robinson et al., 2007). Large-scale 

and targeted interaction discovery experiments have illuminated the complex landscape of 

protein interactions in both human (Havugimana et al., 2012; Huttlin et al., 2015; Rolland et 
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al., 2014), and other model organisms (Li et al., 2004; Rajagopala et al., 2014; Yu et al., 2008). 

Although many interactions are relatively well understood, for example, those linking 

important cellular machineries like the ribosome (Ben-Shem et al., 2011) or nuclear pore 

complex (Alber et al., 2007), others remain more elusive. The total number of known, 

experimentally validated PPI thus far is estimated to represent only a fraction of the 

complete interactome for any organism, including humans (Luck et al., 2020). Some 

resources have tried to fill this gap by integrating computationally predicted interactions, 

based on genomic context, co-expression, transfer between organisms, or automated text 

mining (Franz et al., 2018; Szklarczyk et al., 2019). 

In parallel, efforts from structural biologists have resulted in an increasing number of high-

resolution three-dimensional (3D) structures of single and interacting proteins—typically 

deposited in the Protein Data Bank (PDB) (Berman et al., 2000)—that in turn has allowed the 

understanding in full molecular detail of how proteins interact. Although structures are far 

from being available for all known protein interactions, homologous pairs of interacting 

proteins were shown to bind through similar interfaces (Aloy et al., 2003), even to the point 

that it was suggested early on that there is a limited number of interaction types in nature 

(Aloy & Russell, 2004). Consequently, computational approaches based on homology 

modelling (e.g. Interactome3D (Mosca et al., 2013)) have expanded the structural coverage 

on both known single PPI and large protein complexes, as well as predicted completely new 

interactions (Aloy et al., 2004; Aloy & Russell, 2003).  

For variant interpretation, resources like Mechismo (Betts et al., 2015) or dSysMap 

(Mosca et al., 2015) have systematically integrated protein interactions and structures with 

variant data to predict their functional impact and identify putative mechanisms (e.g. (Rohde 

et al., 2014), Figure 1.6). Other methods look for mutational clusters in 3D space—groups of 

otherwise rare missense mutations that are in close proximity in structure— based on the 

assumption that they might elicit similar functional consequences and phenotypes (Figure 

1.5). Such 3D clusters have been found in both known and potentially new cancer genes 

(Fujimoto et al., 2016; Gao et al., 2017), many located within binding interfaces with proteins, 

nucleic acids and other small molecules, thus already hinting at a putative mechanism of 

action (Kamburov et al., 2015; Porta-Pardo et al., 2015). Analyses following these 

methodologies have highlighted several instances where different mutations in the same 

driver gene perturb different interaction interfaces. These interaction-specific—or 

edgetic―effects (Zhong et al., 2009) can lead to distinct phenotypes that might correlate with 

cancer severity in some cases (Raimondi et al., 2016). 
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Figure 1.6: Predicted effects of the small GTPase RHOA variant p.Leu69Arg (found in pediatric Burkitt 
lymphoma) on different interactions, using Mechismo (Betts et al., 2015). The same variant is 
predicted to have a negative impact (red arrows) on the interaction with several Guanine exchange 
factors (GEFs), a Guanine dissociation inhibitor (GDI), and the GTPase-activating protein (GAP) 
ARHGAP1, while also having an enhancing effect (green arrow) on the interaction with the GAP 
ARHGAP20. Top panels show the structural context of the Leu69, and how it lies in a polar/negatively 
charged pocket in ARHGAP20 (top left), but in a hydrophobic pocket with ARHGAP1 (top right), which 
are respectively favourable and unfavourable for a positively charged Arg. The bottom panel shows a 
schematic of how the balance between RHOA active and inactive forms is maintained by the action 
of GAPs, GEFs and GDIs. Rather than clearly oncogenic or tumour suppressive, the suggested 
mechanism for this variant was a subtler interaction tinkering that results in the shift of RHOA towards 
particular pathways. Figure adapted from (Rohde et al., 2014). 

Structure-based approaches are bottlenecked by the availability of template structures. 

Fortunately, the recently published AlphaFold2 (Jumper et al., 2021), which widely 

outperforms every other method, has produced such highly accurate predictions that the 

community of structural biology has called the protein folding problem to be solved. While 

this is certainly bound to have a tremendous impact in the advancement of molecular biology 

—in barely a year, the structural coverage of the entire human proteome has expanded from 

17% to 58% of residues and to 98.5% of proteins (Tunyasuvunakool et al., 2021)—, my 
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colleagues and I have argued that its impact on protein variant interpretation might be less 

significant than anticipated, owing for instance to the increasing predominance of disease 

variants in disordered or tandem-repeat protein regions and in protein interfaces, which are 

more challenging or impossible to model) (Diwan et al., 2021). 

1.5.3   Domains and protein families 

Proteins are generally composed of domains: conserved protein regions that fold into stable 

3D structures and behave as separate units that can function and evolve independently 

(Ponting & Russell, 2002). Proteins belonging to the same family typically share the same 

function and domain composition. This has been exploited to identify rare somatic 

mutations that affect conserved, functionally equivalent residues within shared protein 

domains, and that otherwise would escape detection (Miller et al., 2015; Peterson et al., 

2017) (Figure 1.5). Domain-centric approaches have detected mutation hotspots at the 

domain-level both in oncogenes and TSGs in many different cancer types, hinting not only at 

new potential drivers but also at the mechanistic consequences of these mutations, 

revealing similarities in mechanism between mutated proteins (Yang et al., 2015). 

Moreover, domains also have an important role mediating interactions. Through the 

analysis of interfaces in the 3D structures of protein complexes, thousands of domain-

domain interactions (DDIs) have been identified and classified (Finn et al., 2014; Mosca et 

al., 2014). In addition, several computational methods have expedited the discovery of more 

DDIs through the detection of correlated domain signatures in protein-protein interactions 

(Deng et al., 2002; Sprinzak & Margalit, 2001), based on the notion that recurrently finding a 

pair of domains in interacting protein pairs might be indicative that these domains mediate 

the interaction. Because domains behave as independent interacting elements in the protein, 

DDIs can be used to infer putative binding mechanisms for other known interacting protein 

pairs or even to predict novel interactions. DDIs thus extend the landscape of mechanistic 

possibilities that can help interpret disease variants (Yang et al., 2015). 

1.5.4   Linear motifs 

Domains can also interact with smaller interfaces, known as short linear motifs (SLiMs), that 

play critical functional roles in the cell. In contrast to domains, SLiMs only comprise between 

3 to 15 amino acids and are generally located in disordered—flexible and easily accessible—

protein regions (Davey et al., 2012). Binding motifs typically contain only a few key residues 
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that are actually involved in the interaction, and thus they mediate weak, transient and, 

consequently, reversible PPIs, which are essential for the dynamic networks that regulate 

many cellular processes (Davey et al., 2012; Perkins et al., 2010). Furthermore, motifs also 

act as post-translational modifications sites which are directly and specifically recognized 

by regulatory enzymes. Motifs thus have a key role in functions like cell signalling, protein 

trafficking, modification and degradation (Dinkel et al., 2012; Neduva & Russell, 2005; Van 

Roey et al., 2014). Due to their low-affinity, domain-motif interactions are difficult to identify 

experimentally; but thanks to curation efforts, there is an increasing catalogue of functional 

motif instances (notably the Eukaryotic Linear Motif (ELM) resource2 (Kumar et al., 2019), 

and thanks to computational methods, there are means of discovering new protein-motif 

pairs (Neduva & Russell, 2006). 

It has been shown that a significant fraction (~22%) of disease mutations occur in 

intrinsically disordered regions (Vacic et al., 2012). Moreover, in these regions mutations are 

enriched in SLiMs, and tend to occur at functionally important residues within them (Uyar et 

al., 2014). Mutations affecting SLiMs can deregulate many processes and have disastrous 

effects for the cell. A missense mutation of a single key residue of a SLiM is often enough to 

ablate function, but even mutations in flanking residues can have consequences (Van Roey 

et al., 2014). For instance, mutations associated with Noonan syndrome were found in a 14-

3-3 binding phosphopeptide motif in RAF1 (ELM motif: LIG_14-3-3_CanoR_1)3, resulting in 

the inhibition of the interaction and an overactive RAF1 mutant (Pandit et al., 2007).  

1.5.5   Post-translational modifications 

Post-translational modifications (PTMs) alter the physicochemical properties of a single 

residue, which might also affect protein properties such us stability, folding, binding affinity 

with other molecules, and thus modulate protein function. Thanks to high-throughput 

proteomics coupled with curation efforts, data regarding all types of modifications has 

increased substantially in recent years, particularly for the best studied modifications: 

phosphorylation, acetylation, ubiquitination, methylation, glyosylation and diverse types of 

lipidation; such data is accessible in different repositories like PhosphositePlus (PSP) 

(Hornbeck et al., 2015) or UniProt (Bateman et al., 2021). Knowledge of experimentally 

confirmed PTMs can help determining real motif instances, as due to the short size and often 

                                                           
2 http://elm.eu.org 
3 http://elm.eu.org/elms/LIG_14-3-3_CanoR_1.html 
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simple motif patterns, prediction of new SLiM instances by simple sequence matching 

usually identifies a large number of false positives (not functional instances). 

While natural human genetic variation generally avoids PTM sites (Reimand et al., 2015), 

dysregulation of PTMs is targeted by genetic alterations in several diseases, including most 

cancers. Indeed, PSP also provides with a sub-dataset of more than 25,000 PTMs that 

intersected with variants from thousands of genetic diseases and all types of cancers 

(Hornbeck et al., 2015). In particular, phosphorylation and cancer have been the subject of 

intense study, both at the level of regulatory enzymes (kinases and phosphatases) and 

phosphosites, highlighting the role of protein signalling rewiring as a prominent cancer 

driving mechanism (Creixell, Schoof, et al., 2015; Reimand & Bader, 2013). Other types of 

PTMs have more recently emerged with similar roles in disease, including acetylation and 

ubiquitination (Narayan et al., 2016), lysine methylation (Carlson & Gozani, 2016) and many 

more (Krassowski et al., 2021). 

1.6   Thesis outline 

The general aim of this thesis is to enhance the mechanistic understanding of protein 

variants through the prism of Systems Biology, i.e., considering their effect on the multiple 

components of the integrated molecular system controlling cellular activity. This work has 

been possible through the use of a wide range of computational tools and large datasets, all 

of which are properly credited. Each of the next three chapters includes their own 

introduction to general concepts, methodology, results and discussion, and conclusions. 

     In Chapter 2, I present a systematic study of a large genome-wide pan cancer mutation 

dataset to identify instances where positive selection of particular amino acid substitutions 

could be hinting at interaction-specific, possibly interaction switching events. These 

instances are then explored more in detail in order to make further mechanistic hypotheses, 

and discussed in the context of challenging the classical oncogene/TSG paradigm.  

     In Chapter 3, I deal with another tangential problem in the task of achieving a mechanistic 

understanding of proteins and their variants: the need of integrating data from numerous 

and diverse databases and resources, coupled with the difficulty of simultaneously 

visualizing those insights. As a solution, I present Mechnetor, an online tool that 

automatically performs these tasks, and provides interactive visualizations that facilitate 

investigating protein mechanism (González-Sánchez et al., 2021). Moreover, I discuss case 
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studies that showcase the advantage of examining protein sequence features in 

combination with various interaction information, as it can provide a detailed mechanistic 

understanding of disease-related variants. 

Finally, in Chapter 4, I focus on a proteome-wide study of a particular type of PTM, S-

palmitoylation, in Drosophila melanogaster, a model organism where this modification has 

barely been studied before. In this proteomics project, a close collaboration with Dr. Elena 

Porcellato, Dr. Christoph Metzendorf and others from the group of Prof. Dr. Felix T. Wieland 

(at Heidelberg University Biochemistry Center), we first identified and characterized the most 

complete palmitoylome in Drosophila to date, and then coupled it with a high-throughput 

interaction study in order to identify the potential spectrum of client protein-enzyme 

(palmitoyl-acid transferases) (Porcellato et al., 2022). 

     Although independent, these chapters are, overall, thematically linked and some concepts 

and terminology might be shared. Thus, reading them in order is advisable. 
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Chapter 2 
 
Investigating positive selection of 
interaction-perturbing mutations in cancer 

 
2.1   Introduction 

Many studies have already highlighted the contribution of amino acid changes at protein 

interfaces to human disease, evidenced by their enrichment at protein interaction interfaces 

(David et al., 2012). These mutations can result in structural and physicochemical changes 

that affect the stability and conformation dynamics of PPI interfaces leading to the loss of 

the interaction (Schuster-Böckler & Bateman, 2008), although their effects can also be more 

nuanced, resulting in a weaker or even a stronger interaction (Kucukkal et al., 2015). 

Moreover, disease mutations can have interaction-specific or ‘edgetic’ effects, meaning that 

the same variant in a particular interface does not affect all interactions equally, it might only 

impede certain interactions while at the same time others are stimulated or not affected at 

all (Sahni et al., 2015; Zhong et al., 2009). Potentially, two different variants at the same 

interface might have complete opposite effects that lead to a different phenotype. Edgetic 

perturbations and their subtler effects are often neglected in classic disease variant 

interpretations, particularly in cancer where everything is scrutinized under the 

oncogene/TSG paradigm, but can provide a mechanistic model to understand more complex 

relationships between genotype and phenotype. 

From an edgetic viewpoint, complete protein activation or inactivation (gain and loss of 

function) can be achieved solely by changes in interactions. In some other cases though, the 

effect of these changes could be rather interpreted as a switch of function, in the sense that 

a switch from one set of interactions to another results in an altered protein function (Reva 

et al., 2011), like for instance, the single Burkitt lymphoma missense RHOA variant 

p.Leu69Arg, showcased in the previous chapter (Figure 1.6) (Rohde et al., 2014). Interaction 
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fine-tuning as a driving cancer mechanism can only be the result of subtle missense 

mutations, implying that the amino acid substitutions of the residues located at a targeted 

protein interface are probably very specific in order to simultaneously favour and/or 

disfavour particular interactions, without having more drastic effects. 

In this chapter, I extend the work on this subject. The availability of many thousands of 

genomes for cancer patients provides interesting possibilities to study selection at work 

within cancers—whether collectively or as individual diseases—and to see if this selection 

can be illuminating or predictive about biological function and disease progression. Here, I 

focus in particular on the relationship between amino acid changes preferences in cancer 

and interaction switching events. To determine these preferences, it is necessary to 

establish a reference background to which cancer-related changes can be compared with. 

Many studies have previously used random-generated background models, even accounting 

for cancer type-, gene- and patient-specific mutation rates (Lawrence et al., 2014; Youn & 

Simon, 2011). However, non-disease related mutations or natural variants, which are also 

freely available in large repositories such as the 1000 Genomes Project (1000 Genomes 

Project Consortium et al., 2015), represent a more suitable experimental benchmark dataset 

of changes that are in theory phenotypically neutral (de Beer et al., 2013). Using this, first I 

did a general characterization of amino acid substitutions preferences and the patterns 

underlying them in human cancer. Next, I identified hundreds of positions within cancer 

datasets that appear to prefer changes likely to have drastic effects on interactions. I review 

a few interesting cases where cancer variants cause specific edgetic perturbations in 

interaction networks, as predicted through tertiary structure, that might lead to distinct 

phenotypic consequences. For some examples, this finding is borne out by oncogenic 

mechanisms already known, though for others these could imply potentially novel 

mechanisms that warrant further investigation. 
 

2.2   Results and discussion 

2.2.1   Cancer and natural variants datasets 

As source of cancer variants, I used the COSMIC database (v94) (Tate et al., 2019). COSMIC, 

or The Catalogue Of Somatic Mutations In Cancer, is the largest repository of human cancer 

somatic mutations, curated by experts from thousands of peer-reviewed publications of both 

gene-targeted and genome-wide screens, including also data from the TCGA (The Cancer 
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Genome Atlas Research et al., 2013) and the ICGC (The International Cancer Genome 

Consortium et al., 2010). Comprising nearly 1.5 million samples, it provides an ample 

coverage of the cancer somatic mutation landscape and the mechanisms that promote the 

disease. In order to avoid biases due to targeted sequencing, I only used data coming from 

whole-genome sequencing (WGS). In total, I collected more than 190 thousand missense 

somatic variants, belonging to more than a hundred cancer types (full numbers in Figure 2.1; 

Methods 2.3.1). 

 

Figure 2.1: Cancer and natural mutations were extracted from COSMIC and 1kG Project datasets and 
processes, yielding significantly different numbers. 

To properly characterize and assess the significance of cancer variants, I also gathered 

natural variants from the 1000 Genomes Project dataset (1kG) (1000 Genomes Project 

Consortium et al., 2015). The 1000 Genomes dataset was (now archived) a catalogue of 

common human genetic variation, created from sequencing 2,504 healthy individuals 

belonging to five mayor populations in the globe, thus it can be used as a natural background 

of germline amino acid changes in humans to determine differences of disease-associated 

variants. Despite this, to avoid rare variants that could potentially be related to disease, I only 

extracted those with a minor allele frequency >5%, to obtain more than 38 thousand non-

synonymous variants (Figure 2.1).  

The huge disparity between the total numbers of somatic and natural variants is due to 

two factors. First, the COSMIC database comprise data from a much larger number of 

individuals and it continues to grow, while 1000 Genomes Project was a finite effort of 

capturing human genetic variation completed in 2015. Second, natural variants are only 
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counted once, independently of the number of individuals that have them. This is because 

the same minor allele occurring in several individuals is most likely due to inheritance and 

not to different mutational events. Cancer variants in contrast represent somatic mutations 

that occurred in different samples independently, and thus are counted as many times they 

are observed. 

2.2.2   General evaluation of amino acid exchange preferences in  
   cancer 

2.2.2.1   Cancer and natural variants are differentially distributed 

Using recently predicted 3D structures for almost all human proteins (Tunyasuvunakool et 

al., 2021; Varadi et al., 2022), I calculated the relative solvent accessibility of all residues 

affected by either natural or cancer somatic variants to found that somatic variants are 

located in slightly less solvent-accessible (or buried) positions than natural polymorphisms 

(29% and 17% respectively; Figure 2.2); results that are in line with previous studies of 

genetic disease-associated mutations (de Beer et al., 2013; Savojardo et al., 2021). The 

general notion is that amino acid substitutions in buried positions are more likely to affect 

protein stability (Martelli et al., 2016; Sunyaev et al., 2001). Similarly, I assessed the 

distribution of variants within or outside functional protein regions, which were defined by 

the presence of Pfam domains (Mistry et al., 2021). Also as expected, somatic variants were 

found to be more enriched in residues located in functional domains (56% versus 42%; Figure 

2.2). Lastly, in line with other studies (Yates & Sternberg, 2013), somatic variants were also 

found to be significantly over-represented in interaction interfaces predicted through tertiary 

structure (see Methods 2.3.2) compared to natural variants (17% versus 4%), supporting the 

edgetic notion of interaction perturbations as a disease-leading mechanism. 

 

Figure 2.2: Distribution differences of residues affected by cancer or 1kG variants. Cancer variants 
are more likely to affect buried, functional and/or interface residues. 
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2.2.2.2   Cancer and natural variants have similar amino acid mutabilities 

The probabilities of the 20 amino acids to mutate, or mutabilities, are very different (Creixell 

et al., 2012). de Beer et al. established that the different amino acid mutabilities observed in 

natural variants of the 1000 Genomes Project mostly reflect underlying genetic properties, 

such as the degeneration of the genetic code, the codon usage biases, and the diverse 

mutation rates of codons due to their CpG content; while in comparison, the impact of protein 

structure restrictions on mutabilities was found to be relatively small (de Beer et al., 2013). 

For example, arginine (Arg) has by far the highest mutability among all amino acids (Cooper 

& Youssoufian, 1988). This arises from the fact that four of the six codons that code for Arg 

contain the CpG dinucleotide, which is known to have a mutation rate 10-50 times higher 

than other dinucleotides (Coulondre et al., 1978; Walser & Furano, 2010). de Beer et al also 

compared the mutabilities of amino acids between the 1000 Genome variants and a dataset 

of disease-associated variants obtained from OMIM and found no correlation whatsoever 

(de Beer et al., 2013). In a stark contrast, the comparison of amino acid mutabilities between 

the 1kG variants and the cancer dataset showed instead a moderate positive correlation 

(Figure 2.3). This difference is likely due to the fact that OMIM variants come from many  

 

Figure 2.3: Overall, mutability values in cancer variants are much higher than in natural variants, due 
to a much higher number of mutations. However, proportionally, amino acids show a moderate 
positive correlation between both data sets. 
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different experiments targeted to particular proteins. In contrast, the cancer variant dataset 

used here contains variants from whole-genome sequencing only and thus, it is generally not 

biased towards any protein or variants. In conclusion, this suggests that, overall, cancer 

variants are affected by the same constraints at the level of DNA than natural ones, although 

differences in some amino acids (Arg and Glu mutabilities are higher in cancer, for instance) 

may be due to positive selection for pathogenicity. 

2.2.2.3   Cancer differ from natural variants in residue exchange preferences 

The genetic code bias and the diverse codon mutabilities also determine the different 

probabilities of every amino acid substitution that is accessible through single-nucleotide 

variants (SNVs), which ultimately are reflected in amino acid exchange rates. For instance, 

Ala residues are most frequently mutated to either Thr or Val because not only they are 

obtainable from each of alanine’s four codons but also those changes imply a base transition 

(G→A for Thr, or C→T for Val) rather than a base transversion, which are generally less likely 

to occur (Collins & Jukes, 1994). In order to account for these general biases and be able to 

detect trends that are exclusively due to specific selection events, amino acid exchange 

rates from somatic cancer variants were compared to those from the 1kG natural variants 

dataset, used as a control. Considering all 150 amino acid substitutions that are accessible 

through non-synonymous SNVs, a statistical test confirmed that there is a significant 

difference in their frequencies between both variant types (χ² P-value << 0.01). Individual 

comparison of amino acid mutation profiles calculated from both datasets showed that, with 

the exception of Ala and Tyr, there are considerable differences in the exchange preferences 

of all other amino acids (Figure 2.4A). For example, Lys shows a strong preference to mutate 

to Arg in natural variants, while in cancer this substitution is diminished and Asn is 

considerably more frequent. For a more accurate assessment, I then calculated the 

frequency ratios to identify which particular amino acid substitutions were significantly 

enriched or depleted in cancer (cancer frequency > 1kG frequency or vice versa) (Figure 2.4B).  

Figure 2.4: (A) Linear plots showing the mutation profiles for every amino acid calculated from cancer 
somatic variants (blue) and from 1kG natural variants (orange). For clarity, on the X axis only amino 
acids accessible by SNVs are displayed. Grey background indicates that exchange frequencies for 
that amino acid were not found statistically different between both datasets. Mutation profiles for 
phosphorylated serine (Sp), threonine (Tp) and tyrosine (Yp), as well as acetylated lysine (Ka) are 
shown separately from their unmodified counterparts. Notice that no natural variants were found on 
known Yp sites. (B) Heatmap that shows the enrichment (blue) or depletion (orange) of the same 
amino acid substitutions in cancer, calculated as log-odds between the observed frequency 
(frequency in cancer) and expected frequency (frequency in 1kG). The amino acid rows correspond to 
the wild type while the columns indicate the mutant amino acids. 
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In particular, there are significant differences in the preferences of Lys, Ser and Thr, and 

their modified versions. For instance, while for Lys, substitution for Met is rather infrequent 

and not enriched in cancer, for ac-Lys this is almost the only observed change; which is 

single-handedly due to the well-known K27M mutation (and known ac-Lys) in Histone 3 

(Khuong-Quang et al., 2012). Phos-Ser and phos-Thr both show a significant preference for 

Ala mutations that contrast with the depletion of this substitution in unmodified Ser and Thr. 

2.2.2.4   Cancer variants show a preference for drastic amino acid exchanges 

Amino acid physicochemical properties 

A glance at these changes while in consideration of amino acid physicochemical properties 

(Betts & Russell, 2007; W. R. Taylor, 1986) (Figure 2.5) hints at a general trend where, within 

the cancer somatic variants, drastic changes are enriched while more conservative ones are 

avoided, in particular the second part (Figure 2.4B). For instance, Gly is the smallest amino 

acid but avoids substitutions for Ala or Ser, which are also tiny residues and thus could be 

considered fairly neutral changes. Instead, Gly shows a strong preference to mutate to 

glutamic acid (Glu), a negatively-charged and polar amino acid, and thus a more 

unfavourable change. Furthermore, Gly, which due to its neutrality and small size can be 

tolerated in almost any protein site, is one of the most avoided substitutions for other amino 

acids. The same can be said about Ser, small and polar, but quite avoided even by other polar 

residues, in particular Thr, which differs from Ser only in the presence of an extra methyl 

group. Moreover, the opposite change, Ser→Thr, is equally depleted. Instead, Ser shows an 

extreme preference for exchanges with Phe and Leu, both hydrophobic amino acids, 

although the opposite is not seen. Conversely, Ile, which is not only hydrophobic and 

aliphatic but also C-beta-branched (its C-beta carbon is attached to two non-hydrogen 

substituents whereas most other amino acids only have one) does not show a significant 

preference for the rather similar Leu or the other C-beta branched residues (Val and Thr), but 

to polar residues like Ser and Lys instead. 

But perhaps the most remarkable cases involve charged amino acids, which usually prefer 

to substitute for other similarly charged amino acids, but in cancer variants these rather 

neutral substitutions seem to be generally avoided as, for instance, Asp for Glu and vice 

versa. Asp instead shows a strong preference for Asn, which although it is also polar and 

fairly similar (its only difference is an amino group in place of an oxygen), it lacks the negative 

charge, meaning it could only be tolerated in contexts where the negative charge of Asp is 

not involved in an interaction with a cation or a positively charged protein residue (salt- 
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Figure 2.5: Venn diagram showing amino acid physicochemical properties classification originally 
proposed by William Ramsay Taylor (W. R. Taylor, 1986). Figure adapted from (Betts & Russell, 2007). 

bridges). Glutamine, on the other hand, shows a strong preference for Lys, a substitution that 

implies a side-chain charge reversal, what can potentially be very disruptive. Lastly, for Lys, 

Arg, the other residue with positive charge (Lys cannot mutate to His by a single nucleotide 

change) is its most significantly avoided substituent. 
 

Evolutionary conservation substitution matrix (BLOSUM62) 

A more accurate way of establishing the significance of the substitution of an amino acid by 

another is to use a substitution matrix. Such matrices indicate the relative probabilities of 

all amino acid substitutions as observed in alignments of a large number of proteins 

sequences. Perhaps the most commonly used one is the BLOSUM62 matrix (Figure 2.6A) 

(Henikoff & Henikoff, 1992)—it is by default the matrix used in protein sequence database 

search tools like BLAST—, which is derived from the substitution frequencies observed in 

ungapped local alignments of protein regions sharing an identity of 62% or less. Positive and 

negative scores indicate substitutions regularly seen or not in evolution, and thus likely to 

either conserve or have a negative effect on protein function. In line with the previous 

observation of physicochemical properties, a comparison of the enrichment values of amino 

acid substitutions in cancer with their scores from the BLOSUM62 substitution matrix shows 

a moderate negative correlation between both: enriched substitutions tend to have lower 

scores that those that are diminished (Figure 2.6C). 
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Figure 2.6: (A) BLOSUM62 matrix. (B) Interaction impact substitution matrix. (C) Lineplot showing the 
relationship between significant enrichment/depletion scores of amino acid substitutions in cancer 
variants (log-odds>1, or -1>log-odds, respectively) and their score in each of the substitution matrices. 
All scores have been normalized between 0 and 1. 

Interaction impact substitution matrix 

Not surprisingly, the different physiochemical properties of amino acid side chains mean 

that they have different affinities for each other, therefore residue substitutions can have 

potentially significant effects on protein-protein interactions. If the interaction affinity 
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between the substitute amino acid and its contact is lower or higher than with the original 

amino acid, the interaction can be reduced or enhanced, respectively. Interactions affinities 

for each pair of residues were previously calculated as pair-potentials derived from protein 

interfaces in a non-redundant set of structures, and indicate whether contacts between the 

residues are more frequent than expected by chance given the abundance of the amino acids 

at those interfaces. In other words, a positive value indicates a tendency to interact and a 

negative one a tendency to avoid each other (Aloy & Russell, 2002). I used an updated version 

of these pair-potentials, first used in the Mechismo system (Betts et al., 2015) and now 

calculated from a recent PDB release with a much larger number of protein structures, to 

construct a substitution matrix that scores the potential impact of amino acid substitutions 

on protein interactions (Figure 2.6B). The scores are based on the overall difference of 

interaction affinities between the original residue and its substitute (see Methods 2.3.4). 

Here, high positive scores indicate similar interaction affinities between the two residues 

and thus a more favourable substitution, while negative scores indicate the opposite. 

However, these scores show an even weaker negative correlation with cancer variant 

preferences than BLOSUM62 (Figure 2.6C), therefore, it is not possible to say with certainty 

that cancer variants are generally enriched in amino acid substitutions more likely to impact 

on protein function or interactions. 

It is important to note, however, that the scores from the two matrices are not always 

correlated and their interpretation must take into account the functional context. For 

example, according to the interaction impact matrix, Pro is not a bad substitution for most 

other residues, but it is well-known that its conformational rigidity means that it cannot 

substitute well for many amino acids, and this is reflected in the generally negative scores 

of the BLOSUM62 matrix. Conversely, the previously highlighted charge-reversing Glu→Lys 

substitution is positively scored (+1) by BLOSUM62, which means that it is not an uncommon 

substitution in evolution, and therefore, not particularly deleterious. The biological reason for 

this could be that both residues are polar and thus prone to be in contact with water when 

they are on the surface (~70% of residues in the human proteome). In contrast, this 

substitution is unfavourable in terms of affinity shift, most likely due to the fact that it results 

in a charge reversal of the side chain, which if occurring within a salt-bridge or a hydrogen-

bonded Glu-Lys or Glu-Arg interaction pair, would certainly have a disruptive effect. 
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2.2.3   Site-specific analysis of amino acid exchange selection in 
cancer variants 

2.2.3.1   Site-specific exchange preferences may hint at underlying specific 
mechanisms 

General preferences in amino acid substitution can only give an idea of how a cancer is 

driven, but the effects of mutations depend entirely on the functional context: the same 

amino acid substitution may be harmless in one context but catastrophic in another. 

Residues can have opposite physicochemical preferences depending on whether they are 

buried or on the protein surface (i.e. in different microenvironments), which in turn depends 

on the cellular location of the protein (e.g. cytoplasm, membranes or extracellular space). In 

addition, residues may be located in functional regions, such as short active sites or broader 

interaction interfaces (Betts & Russell, 2007). 

Recurrence of mutations across independent cancer tumours is usually considered the 

first sign of positive selection. This is usually sufficient to establish that the affected protein 

position is functionally important and that changes at this site are likely to affect protein 

function. However, depending on the functional context of this residue, the nature of the 

mutant amino acid may be of critical importance. In tumour suppressors, highly mutated 

positions usually show no preference for a particular variant, meaning that the substitute 

amino acid makes no difference and all have the same, usually disruptive, effect (Vogelstein 

et al., 2013). On the contrary, if a particular variant is significantly enriched over the rest of 

the possible but rarely seen variants at the same position, this could indicate that the 

resulting amino acid is selected for a very specific functional reason (typically in gain-of-

function mutations). Particularly in the case of mutations that affect protein interfaces, there 

is the possibility that the same variant can, in principle, affect different interactions 

differently (Sahni et al., 2015). I hypothesise that this mechanistic subtlety means that such 

variants are highly specific and that this specificity must be reflected in their mutational 

profiles if they are subject to positive selection. 

Consequently, I applied an approach similar to the one used to determine general amino 

acid preferences, but now at the level of individual positions that are recurrently affected by 

mutations, to identify protein positions that show a statistically significant enrichment for a 

particular amino acid substitution (henceforth called selected variants) (see Methods 2.3.6 

for details). 
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2.2.3.2   Selected variants are more likely to have effects on protein interactions 

To test the hypothesis that these variants are more likely to affect protein interactions, I used 

Mechismo, a tool for mapping variants to 3D structures and predicting their impact on 

protein interactions (Betts et al., 2015) (Figure 2.7A; Methods 2.3.7). I made predictions for 

all the missense mutations, both natural and cancer ones, then calculated various 

parameters for different subsets of variants. The subsets consist of: (i) all natural variants; 

(ii) all cancer variants; (iii) all cancer variants in the genes of the COSMIC cancer gene census 

(CGC); (iv) all cancer variants that are recurrent (present in at least 5 samples); and (v) the 

set of selected variants. 

The comparison of these parameters between the sets (Figure 2.7B) reveals that, as 

established before, cancer variants in general are more prone to have an impact on protein 

interactions than natural variants. Cancer-associated proteins, and in particular those in the 

CGC, have also a wider structural coverage, owing to their greater biomedical interest and 

larger number of targeted studies towards these proteins. Selected variants have a lower 

structural coverage in comparison exactly because of the opposite: many of the proteins 

they affect have not been causally implicated in cancer and not deeply studied yet. Within 

cancer, recurrent variants already have an increased preference for protein interfaces, but 

selected variants show an even higher enrichment at interfaces (also when considering only 

high-confidence predictions), and are also predicted to affect a larger number of interactions 

in those cases (Figure 2.7B). 

2.2.3.3   Selected variants suggest novel driver genes and new mechanisms for 
established ones 

In total, this approach identified 5,209 unique selected variants (45,770 by total sample 

count) located in 5,183 positions of 3,463 proteins. This means that proteins with this type 

of mutations have on average less than two highly selected mutations (1.49 to be exact), 

which in principle is in line with the typical oncogene mutational pattern where gain-of-

function mutations stand in single hotspots. Moreover, only ~21% of sites recurrently 

affected by cancer mutations (mutations observed in more than 5 samples; 24,432 sites in 

total) exhibit a significant preference for a particular amino acid substitution. The protein 

with the largest number of selected variants is, unsurprisingly, TP53, which is not only the 

most frequently mutated protein in cancer but also the most studied one, and it is considered 

a TSG that can act as an oncogene in certain contexts (Rivlin et al., 2011). It is followed by 

MUC16, proposed as an oncogene (Aithal et al., 2018); HLA-A, involved in oncogenic fusion  
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Figure 2.7: (A) Workflow of the Mechismo prediction tool. Variants are first mapped onto PDB 
structures, with different confidence levels depending on sequence similarity between protein and 
template. If possible, variants are then checked for location at interfaces with other proteins.  Variants 
can be at interfaces affecting interactions with a number of proteins, with either an enabling or 
disabling effect. (B) Comparison of different parameters calculated from all Mechismo predictions for 
different subsets of variants. 

with ROS1 (Uguen & De Braekeleer, 2016); and CDC27, for which roles as either TSG or 

oncogene has been suggested in different neoplasms (Kazemi-Sefat et al., 2021). However, 

the majority of selected variants (92%) are in proteins that have not been (yet) causally 

implicated in cancer, or at least not yet included in COSMIC’s Cancer Gene Census (CGC) 

(Figure 2.8A), and thus they are potentially interesting targets for future investigation. For 
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instance, p.Val384Asp in the DNA mismatch repair protein Mlh1 (MLH1) and p.Met293Lys in 

the trans-acting T-cell-specific transcription factor GATA-3 (GATA3) are the single-most 

enriched variant in each protein (Figure 2.8A,B). From the variants found in known cancer 

driver genes, more than half are located at oncogenes or proteins with dual TSG/oncogene 

dual functionality, but a significant proportion affect TSGs as well (Figure 2.8C). 

 

Figure 2.8: (A,B,D) Mutation profiles of MLH1, GATA3 and CHEK2, where a highly enriched variants 
represent the largest peaks. (C) Role in cancer of genes affected by selected variants. 

The presence of selected variants in TSGs contrasts with their typical characterization of 

being altered by truncating mutations throughout their sequences, and could suggest two 

things. The first is that loss of function could be achieved through a subtler mechanism that 

does not result in complete protein abrogation. Often, tumour suppressors are multi-

functional which means that cells presumably need other functions to still work. For 

example, variants in TP53 are clinically different. The most common ones affect the DNA 

binding function specifically; only rarer variants destroy the zing binding site and the protein, 

but these evolve later in cancers (Raimondi et al., 2017). The second is that these genes 

could perhaps act as oncogenes in particular contexts. For instance, I identified the highly 

enriched p.Lys373Glu mutation in the serine/threonine-protein kinase Chk2 (CHEK2) (Figure 

2.8D). CHEK2 has a well-established role as a tumour suppressor, regulating cell cycle arrest, 

DNA repair and apoptosis upon DNA damage through the phosphorylation of numerous 

substrates (Bartek & Lukas, 2003; Cai et al., 2009). Generally, CHEK2 variants are considered 

to be inactivating but the presence of the highly recurrent Lys373Glu results in a mutational 
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spectrum typical of oncogenes. Although it has been proposed that Lys373Glu also impairs 

CHEK2 function (Higashiguchi et al., 2016), there are several interactions potentially affected 

by this change according to Mechismo, but the most pronounced observation is that a 

similar variant in an equivalent kinase position is known to lead to constitutive activation, 

which at least warrants further investigation. 
 
 

2.2.4   Case study: structural subunit A of the serine/threonine-protein 
   phosphatase 2A 

The PPP2R1A gene encodes the 65kDa structural subunit A (UniProtKB accession: P30153) 

of the serine/threonine-protein phosphatase 2A (PP2A), an enzyme that has a major role in 

the negative regulation of cell growth and division, being implicated in the regulation of cell 

cycle initiation and most of its checkpoints, by dephosphorylating more than 300 substrates, 

and thus, a known tumour suppressor (Eichhorn et al., 2009; Wlodarchak & Xing, 2016). This 

broad range of activity is due to its particular structure. PP2A is a heterotrimeric enzyme 

formed by a dimeric core composed of subunit A and the 36KDa catalytic subunit C, and a 

regulatory subunit B. Subunit A is composed of 15 HEAT repeats arranged in a horseshoe-

like structure (or alpha solenoid) and acts as the scaffold that coordinates the assembly of 

the complete complex (Groves et al., 1999; Xu et al., 2006) (Figure 2.9A). It comes in two 

flavours: the alpha and beta isoforms (PP2A-Aα and PP2A-A β), encoded by genes PPP2R1A 

and PPP2R1B respectively, and although they share 87% sequence similarity, they have 

different binding affinities to the other PP2A subunits (Hemmings et al., 1990). However, 

PP2A-Aα, the one discussed here, is the one contained by the large majority of PP2A 

holoenzymes in adult tissues, as the β isoform is underexpressed in comparison (Zhou et al., 

2003).  

The dimeric core can associate with a wide variety of mutually exclusive regulatory B 

subunits, classified into four major families that share no sequence similarity, resulting in 

diverse PP2A holoenzymes with different specificities (Figure 2.9A). The regulatory subunit 

B is thus the one that mediates the substrate specificity of the whole holoenzyme. Although 

the different subunits B are structurally different, subunit A is able to suffer big 

conformational changes to adapt to all of them, while the interaction between B and C 

subunits remains very limited (Xu et al., 2008).  
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Figure 2.9: (A) The serine/threonine-protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric 
complex formed by a scaffolding subunit A (two isoforms), a catalytic subunit C (two isoforms) and a 
regulatory subunit B, for which multiple options exist and are classified into four different families. (B) 
Linear representation of PP2A-Aα, which is an α-solenoid composed of 15 HEAT repeats. Binding 
regions of the other two PP2A subunits are indicated below. All cancer missense mutations in this 
protein are shown with flags proportional to the number of tumour samples they have been observed. 
Amino acid changes are specified at the three major hotspots. 

     In general, mutations in PP2A-Aα are almost exclusive of endometrial and ovarian 

carcinomas. Missense mutations in this protein display a pattern that is more typical of gain-

of-function mutations and oncogenes than tumour suppressors: they cluster in two very 

clear hotspots in the subunit B-binding portion of the protein, with residues Pro179, Arg183 

(both located at HEAT repeat 5) and Ser256 (at HEAT repeat 7) as the most significantly 

affected (Figure 2.9B). In particular, variants Pro179Arg, Ser256Phe and Ser256Tyr were 

found to be highly selected, and moreover, to show different predicted effects on interactions 

with different regulatory subunits B of the holoenzyme (Figure 2.10). Variants in the two sites 

have enabling effects on interactions with the several isoforms of regulatory subunit B’ 

family (PR61α−ε), while Pro179Arg in addition has a disabling effect on two regulatory 
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subunits B’’ (PR72/PR130 and PR48/PR70). Additionally, these predictions were compared 

to those made for other possible variants at the same residues that are either much less 

frequent or totally absent in cancer, and revealed that the particular affinity changes were 

specific to these observed variants (Figure 2.10). The exact B’ enabling and B’’ disabling 

effects of Pro179Arg are not predicted for any of the other possible (and mostly absent) 

protein changes. In the case, of Ser256, both selected variants have the same enabling effect 

on B’ subunits, which is not predicted for other absent variants with the exception of 

Ser256Pro, although with weaker enabling scores (one could argue that a Pro might 

nevertheless not sit too well in the structure).  

A similar deduction can be made for position Arg183, where although variants at this 

position do not show a statistically significant deviation from expected frequencies 

according to my analysis, the two major variants seen here—Arg183Trp and Arg183Glu—also 

show exclusive predicted effects on the interactions with the different subunits B. In line 

with selected Pro179Arg, they are predicted to favour interactions with subunits of the B’ 

family while disfavouring those with the ones from B’’ family (including now G5PR among 

them), with the addition of a disabling effect also on the interactions with B family regulatory 

subunits (PR55α-δ) (Figure 2.10). 

Mutations in P179 have already been linked to these cancers (Nagendra et al., 2012; Shih 

& Wang, 2011), and in fact, their distinct effect on interactions with regulatory subunits has 

been reported (Houge et al., 2015). Pro179Arg has been also suggested to impair 

holoenzyme formation and its enzymatic activity specifically by increasing the rigidity in the 

alpha solenoid due to newly form internal interactions, ultimately hindering the binding of 

catalytic subunit C (Taylor et al., 2019); but they did not discard however more contextual 

effects, in line with the notion from Houge et al. Given the central role of regulatory subunits 

in determining the holoenzyme substrate specificity, Mechismo predictions suggest an 

affinity-shifting mechanism that results in a more nuanced dysregulation of PP2A activity 

rather than complete inhibition. This is further supported by the fact that both isoforms of 

the catalytic subunit of PP2A (PPP2AC), perhaps a more effective target for obliterating the 

enzyme, show a very low point mutation burden in cancer. Instead, both upregulation and 

downregulation of PP2Ac expression have been linked to different types of cancers, at least 

suggesting multiple mechanisms of action (Gong et al., 2016; Yang et al., 2021; Yong et al., 

2018). Strikingly, the predicted effect of favouring interactions with B’ subunits might hint at 

an oncogenic mechanism, as it has been shown that oncogene MDM2 can be 

dephosphorylated by PP2A holoenzymes specifically containing B’ subunits, when recruited  



2.2   Interaction-perturbing mutations in cancer: Results and discussion 
 

35 
 

 

Figure 2.10: Barplots on top show the proportion of observed variants at each position, and list those 
that are possible by SNVs but are rarely observed or not at all. Diagrams below show predicted effects 
for each variant on the interactions with different types of B subunits, which can be: enhancing 
(green), disabling (red), none (grey; when there is a contact but the effect is too weak), and mixed 
(yellow; when the same amino acid is favouring and disfavouring the interaction with two residues at 
the same interface).
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by cyclin G (Okamoto et al., 2002). Dephosphorylation of MDM2 leads to its activation, which 

can then mediate TP53 ubiquitination and promote its degradation. 

 

2.3   Materials and methods 

2.3.1   Collecting cancer somatic and natural variants 

Non-synonymous, ‘confirmed somatic’ protein variants were extracted from the COSMIC v94 

(Tate et al., 2019) whole genome screen-only dataset, present in at least 5 independent 

samples. This dataset thus only contains variants identified in studies that surveyed all 

genes and should not contain any bias. ‘Confirmed somatic’ indicates that the variant allele 

from the tumour was confirmed to be different from the germline allele of the same 

individual. The minimum sample cut-off was used to remove the most likely passenger 

variants which are neutral to cancer development. A total of 3,261,120 somatic variants, 

affecting 2,186,340 unique protein positions within 18,658 human proteins, from 103 

different cancer types were collected. From the 1000 Genomes Project (1kG) (1000 Genomes 

Project Consortium et al., 2015) dataset of common genetic variation, I extracted a total of 

38,781 missense germline variants with a minor allele frequency >5% (to avoid rare, 

potentially disease-related variants), located in 38,330 unique residues of 12,169 human 

proteins. 

All variants were mapped to the same canonical UniProtKB (The UniProt Consortium, 

2019) protein sequences of the human reference proteome (20,328 proteins, May 2018) via 

alignments between Ensembl transcripts and the UniprotKB sequences. Datasets were 

crosschecked to additionally exclude likely natural variants from cancer mutations. A 

summary of the data collected and its processing can be found in Figure 2.1. 

2.3.2   Determining solvent accessibility, domains and interfaces. 

Residues affected by cancer or 1kG variants were counted according to the following 

classifications (total fractions are shown in Figure 2.2.). 

The accessible surface area (ASA) of every protein residue was calculated with the DSSP 

program (Kabsch & Sander, 1983) from 3D structures predicted by Alphafold (Varadi et al., 

2022). The relative solvent accessibility (RSA) of a protein residue is calculated by 

normalizing the solvent accessible surface area observed in the crystal structure by the 

maximum possible ASA for that residue, for which the recommended reference values 
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provided by Tien et al. (Tien et al., 2013) were used. RSA is a metric to describe residues as 

either buried or exposed. I adopted the generally accepted convention that residues can be 

classified as buried if their RSA is <20%, and exposed otherwise. According to this, 71% of 

residues in the human proteome are exposed. 

Protein residues were classified as either functional or non-functional depending on 

whether they are inside or outside globular domains, which were extracted from Pfam (El-

Gebali et al., 2019). For the complete human proteome, 48% of residues are defined as 

functional. 

Residues location within interfaces was determined using the predictions from Mechismo 

(Betts et al., 2015), as part of the step described in section 2.3.7. 

2.3.3   Collecting post-translational modification data 

To study PTM-related variants, I retrieved 39,826 phosphorylation and 4,143 acetylation sites 

in 19,013 human proteins by non-redundantly combining annotations from UniProt and the 

PhosphositePlus database (Hornbeck et al., 2015). For the subsequent analysis, the amino 

acids presenting these modifications were considered separately from their non-modified 

equivalents, but equally analysed, as four additional residues: acetyllysine (Ka), 

phosphoserine (Sp), phosphothreonine (Tp) and phosphotyrosine (Yp). 

2.3.4   Calculating amino acid mutabilities and exchange frequencies 

Amino acid exchanges from the cancer and the 1kG variant datasets were independently 

counted and classified. The mutability of each amino acid was calculated as the total 

number of mutations for that amino acid in the dataset divided by its frequency of 

occurrence in the human UniProtKB reference proteome (Figure 2.3). The normalized 

frequencies of occurrence of each amino acid exchange were calculated by dividing the 

count by the total number of mutations observed for that amino acid. For each amino acid, 

the frequencies in its two mutation profiles (as determined from cancer or 1kG variants) were 

compared through a chi-square (χ²) test to determine if there was a significant difference 

(Figure 2.4A). A similar test was done using all exchange frequencies to determine, in this 

case, if there was an overall significant difference between both datasets. The enrichment 

or depletion of every amino acid substitution was computed as the log of the odds ratio 

between the observed frequency in cancer and the expected background frequency (as 

observed in the 1KG variant dataset), then plotted into a heatmap (Figure 2.4B). Maximum 
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and minimum values of 5 and -5 were set for those cases where the score cannot be 

calculated due to missing observed or expected frequency of a particular amino acid 

subsitution. This happens with some modified residues, for example, acetyllysine (Ka). 

 

Figure 2.11: Calculation of the interaction impact substitution matrix (purple-yellow matrix) from the 
interaction affinities of amino acid (green-red matrix). For clarity, values from both matrices are 
multiplied by 10 and stripped of decimals. Affinities are log-odds that measure how often a pair of 
residues is seen in contact at an interface compared to the expected frequency given the abundance 
of those residues generally at interfaces. The interaction impact scores measure how similar are the 
affinities of two residues with all others. 

2.3.5   Calculating the interaction impact substitution matrix 

As scores of interaction affinities between amino acids, I used pair potentials first developed 

by (Aloy & Russell, 2002) using a non-redundant set of structures, later updated and extended 

to consider phosphorylated and acetylated residues to be used by Mechismo (Betts et al., 

2015). I used an even more updated version of these pair-potentials—calculated from the 
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PDB 2018 version, which includes a much higher number of protein interfaces structures—

to construct a substitution matrix that scores the overall impact of an amino acid 

substitution if happening at a protein-protein interface. The scores are calculated as the sum 

of the absolute differences in interaction affinities between every two amino acids and all 

other amino acids, then normalized by calculating the standard deviation from the mean (Z-

score). Finally, the scores were inverted so that large positive numbers indicate a low impact 

change (similar interaction affinities), and large negative ones, changes that have a high 

impact (amino acids with different interaction affinities) (Figure 2.11). 

2.3.6   Defining selected sites and variants 

To identify positions and variants likely under positive selection in cancer, I first calculated 

expected background substitution rates for each amino acid-coding codon based on the 1kG 

variant dataset, resulting in 61 codon-amino acid mutation profiles. I took this approach to 

account for the fact that substitution rates for amino acids encoded by more than one codon 

generally differ between these codons, and there are substitutions that are possible (through 

SNVs) only for certain codons (Figure 2.12A). Then, I collected cancer variants that fulfilled 

the following conditions: (i) the variant is present in at least 5 samples; (ii) there is a 

statistically significant difference between the observed and expected mutation frequency 

for the residue/codon (χ² P-value < 0.05); (iii) the variant is significantly enriched relative to 

its expected frequency (log-odds > 1 and binomial test P-value < 0.05) (Figure 2.12B). P-

values were adjusted with the Bonferroni correction. 

2.3.7   Assessing functional impact of variants on protein interactions   

To predict the effects of protein variants on protein interactions, I used Mechismo (Betts et 

al., 2015). Mechismo4 is an online tool that attempts to map protein variants or modifications 

to available 3D structures of interacting proteins (using sequence homology to extend its 

coverage) and then assess their impact on interactions if located at interfaces. This impact 

is given in the form of a positive or negative score indicating whether the 

variant/modification enhances or hinders the interaction. The coverage of Mechismo is 

limited by the availability of known or homologous structures in the Protein Databank (Burley 

et al., 2019). The degree of sequence similarity between protein and structural template 

defines three confidence levels (low, medium or high). 

                                                           
4 http://mechismo3.russelllab.org/ 
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I ran Mechismo with all variants included in this project (both cancer and natural variants). 

I then computed various parameters for performance comparisons between different 

subsets of variants, such as the proportion of variants that mapped to a structure, the 

proportion of variants located at a protein interface, and the number of interactions affected 

by each variant; all these, under different confidence levels. 

 

 

Figure 2.12: (A) Codon-specific amino acid substitution frequencies for serine calculated from the 
1kG dataset of natural variants. (B) The approach for determining selected variants is illustrated using 
mutations seen at Ser427 of the retinoic acid receptor RXRA. The observed amino acid exchange 
frequencies are compared to the expected codon-specific frequencies to determine enrichment and 
asses the significance.
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2.4   Conclusions 

Conventional methods for identifying cancer drivers focus mainly on the frequency of 

mutations, as sites recurrently affected by point mutations are usually enough sign of 

positive selection and to warrant interest. However, considering the nature of the observed 

amino acid substitutions can be illuminating as it allows us to make hypothesis using prior 

mechanistic knowledge. 

Here, I first showed that cancer has preferences for particular amino acid substitutions, 

as well as avoids other ones, generally favouring changes that are a priori drastic. Of course, 

the effects of amino acid substitutions are highly dependent of the functional context of the 

protein in general and the protein site in particular. Consequently, I then sought to explore 

whether the presence of significantly enriched amino acid substitutions in cancer can be 

linked to oncogenic mechanisms, in particular, to subtler phenotypes that imply changes in 

interactions affinities with one or more different partners. I identified a large number of genes 

and positively selected mutations within those that may contain several potential novel 

driver genes as well as suggest new mechanisms for established ones. I reviewed a few 

cases and highlighted predicted effects on protein interactions that point to interesting 

(subtler) mechanisms. 

 Characterising protein variants and the interactions they influence is key to interpreting 

functional effects at the protein level. In the context of cancer genomics, given the increasing 

amount of genetic information and the wide diversity of cancers, this type of molecular 

interpretation can help to better understand the relationship between genotype and 

phenotype, promote the discovery of potential drug targets, and help guide medical 

diagnosis and treatment. 
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Chapter 3 
 
Interactive Visualization of Protein 
Mechanism with Mechnetor 

 
3.1   Introduction 

Efforts to catalogue functional information have resulted in a large number of resources that 

show or predict insights into protein function and mechanism at different levels, many of 

which were already mentioned in section 1.5. These include deposited protein sequences, 

together with their subcellular locations and functional descriptions based on literature 

review, protein families and domains identified through sequence alignments, but also a 

growing number of post-translational modifications, protein structures, interactions and 

pathways. All these multiple data types offer valuable insights on their own, but together 

they can give a more complete picture. By such a synthesis there is a great potential to 

perform systematic mechanistic analyses of all genetic variants. 

However, the volume and diversity of available protein -omics data makes the process of 

gathering, integrating and interpreting data to deduce mechanism very challenging (Gomez-

Cabrero et al., 2014; Subramanian et al., 2020). Assembling heterogeneous information to 

create a unified view requires coping with the lack of format standardization, multiple and 

asynchronous data updates, and many other issues. This process needs a systematic 

approach because manual assembly of data in different formats is cumbersome and prone 

to errors. Moreover, visualization is crucially important as it is often key to seeing the critical 

functional details that can explain the mechanism of particular genetic variants. The pace of 

data generation makes visualization essential for the interpretation of increasingly complex 

biological data―especially for data-driven research―and is equally important for 

communicating hypothesis and discoveries (O’Donoghue et al., 2010, 2018). Over the last 
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two decades, many visualization tools have been published, and almost every previously 

existing resource has added or improved its data visualization options.  

Proteins, due to the particularities of their organization, function and interactions, pose 

particular visualization challenges. Because they are linear amino acid sequences, they are 

usually represented in 2D diagrams where different functional features, such as domains, 

PTMs, variants, or any other sequence annotations can be displayed while maintaining their 

corresponding sequence positions and dimension. Such diagrams are for example used by 

Pfam (Mistry et al., 2021) and its popular domain diagram creation tool5 to represent domain 

architecture (Figure 3.1). Furthermore, simultaneous visualization of different features can 

enhance the ability to detect patterns; for instance, ProtVista (Watkins et al., 2017) is the 

feature viewer tool used by UniprotKB, and it allows integrative visualization of the many 

curated sequence features in their database (Figure 3.1). However convenient these one-

dimensional depictions are, proteins, of course, adopt specific three-dimensional structures 

that ultimately determine their function. There are dozens of visualization programs for 

protein structures, such as PyMOL (Schrödinger & DeLano, 2020), RasMol (Sayle & Milner-

White, 1995), Jmol6, Chimera (Pettersen et al., 2004), VMD (Humphrey et al., 1996), including 

several (e.g. JSmol) that can be readily embedded into web applications, for instance, to 

permit interactive relations with alignments or domain diagrams. 

Moreover, proteins function through coordinated interactions with other proteins and 

molecules. Databases such as IntAct (Orchard et al., 2014), BioGRID (Oughtred et al., 2021) 

or STRING (Szklarczyk et al., 2019) collect thousands of protein interactions and allow to 

visualize them in canonical protein networks that simply represent proteins as spherical 

nodes, and their binary interactions as edges between them (Figure 3.1). This kind of network 

however is only useful to indicate if an interaction happens or not rather than explaining how. 

Protein interactions occur through specific regions (interfaces), which are often functionally 

and structurally conserved sub-sequences known as protein signatures (domains, motifs, 

active sites). Moreover, proteins can interact with different partners through distinct 

interfaces. In consequence, single lines linking two nodes may not be really representative 

of an interaction if the particular interfaces that are involved are known. There are some tools 

that provide more detailed visualizations such as iELM (Weatheritt et al., 2012), which allows 

to generate PPI networks composed of the involved interaction-mediating linear motifs; 

ComplexViewer (Combe et al., 2017), which represents the specific binding regions along the  

                                                           
5 https://pfam.xfam.org/generate_graphic 
6 Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/ 
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Figure 3.1: Examples of different kinds of protein features visualization. 

protein sequences and maintains the topology and stoichiometry of macromolecular 

complexes (Figure 3.1); or Interactome3D (Mosca et al., 2013), which annotates PPI 

networks with available structures of the interacting proteins. However, these tools still lack 

plenty of other molecular details, for example, they do not allow the examination of positional 

differences, such as mutations or PTMs. There is a gap between the way protein sequence 

features are typically visualized, in linear diagrams, one protein at a time, and protein 

interaction network depictions in the form of graphs, where proteins are represented by 

simple nodes that do not allow to display any features. Since there is no way to readily 

visualize both at the same time, studying positional information such as changes, 

modifications or other annotations, in the context of protein interactions and the implicated 

protein regions is still challenging. 
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For this purpose, I, with the help from others, developed Mechnetor (Mechanistic 

Networks Explorer), a novel web resource that helps understanding protein mechanism in 

groups of interacting proteins, and studying protein changes in the right mechanistic context 

(González-Sánchez et al., 2021). Mechnetor helps in two main ways. First, it automatically 

gathers and integrates diverse interaction data—binary interactions with experimental 

evidence, known and predicted domain-domain (DDIs) and domain-motifs interactions 

(DMIs), and 3D structure-based interactions—coupled with information regarding function, 

post-translational modifications, variants and other annotations. Second, it represents the 

results into a fully interactive network that is visually appealing and easy to interpret, and 

which enables users to examine complex interaction mechanisms simultaneously. Figure 

3.2 outlines the Mechnetor web-server. 

 

Figure 3.2: Graphical overview of the Mechnetor web-server. Users can input interacting proteins, 
protein variants and/or protein modifications. Mechnetor will automatically annotate them with 
diverse mechanistic data (functional, structural, interaction data) and present them to the user in an 
interactive network (mechanistic network). This network can be explored and customized by using 
several interactivity options, as well as exported as a vector image
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The next sections will describe the development of this tool, from obtaining and 

integrating the data, to a description of Mechnetor’s features and all mechanistic information 

it provides. At last, I present a statistical analysis of the data to evaluate its coverage and 

usefulness, as well as discuss particular examples that illustrate Mechnetor’s features and 

use. 

3.2   Mechnetor’s database 

3.2.1   Data sources 

Mechnetor builds upon multiple data freely available in databases or resources that 

themselves were constructed from the experimental results, and thus the efforts, of many 

researchers. In order to exploit these data without propagating errors, it is essential to 

understand the nature of the information they contain and how it is structured. 

UniProt: The Universal Protein Resource 

UniProt (Bateman et al., 2021) is a freely accessible, comprehensive repository of protein 

sequence and functional information. It is an initiative of the UniProt Consortium, a 

collaboration between the European Bioinformatics Institute (EBI), the Swiss Institute of 

Bioinformatics (SIB) and the Protein Information Resource (PIR). The central component is 

the UniProt Knowledgebase which contains highly curated data for more than 120 million 

proteins across all living organisms (more than 80 thousand species). UniProtKB is itself 

divided in two datasets. The largest of the two, the UniProtKB/TrEMBL, contains protein 

records that were automatically annotated by a computational pipeline. It was initially 

created to keep pace with the high sequence data generation volume, and to this day all 

deposited protein sequences are placed here. Records are then selected for full manual 

annotation by an expert curation team and integration into the second database, the 

UniProtKB/Swiss-Prot, which contains only curated (termed “reviewed” by UniProt), non-

redundant protein records with high-quality information. Thus, data from multiple sources 

are integrated, interpreted and standardized with the goal of creating the most 

comprehensive functional description of a protein in a single record (Boutet et al., 2016). 

This information ranges from location, gene/functional ontologies, domains, interactions, 

orthology, post-translational modifications, polymorphisms, alternative splicing and much 

more. In later releases, UniProt placed a special emphasis on the annotation of the functional 
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impact and clinical significance of thousands of protein variants, many of which could be 

associated with particular Mendelian diseases (Amberger et al., 2019; Sherry et al., 2001). 

For all these reasons, UniProtKB is an excellent starting point to gather information about 

any protein of interest. It provides a central hub of biological knowledge that is linked to data 

sources or other databases, and can also be accessed programmatically (via API) or 

downloaded (via FTP) in community-recognised formats suitable for systematic 

approaches. UniProt identifiers for protein sequences and protein sequence features are 

also unique, stable and traceable. This is essential for data integration as diverse data 

repositories can reference the exact same proteins allowing for data cross-examination. 

Pfam: The database of Protein Families 

The Pfam database (Mistry et al., 2021) is a large collection of protein families and domains, 

comprising more than 19,000 entries in its release 34.0. Each entry is defined by a seed 

alignment of representative sequences and a profile hidden Markov model (HMM) built from 

this seed alignment, which can be used to find new members in other sequence databases. 

Thus, Pfam entries are evolutionary conserved modules at the sequence level, and are 

classified into one of six types: Family, Domain, Motif, Repeat, Coiled-Coil or Disordered, 

although the vast majority belong to the first two. A Pfam family is the most generic class 

and only indicates that the proteins are related, but a Pfam domain corresponds to a single, 

compact, globular structure, and thus, an autonomous unit that can be found in different 

protein contexts. Many of these are the product of the sequence-based, domain-hunting 

activities of the 1990s, which captured all the common domains (e.g. kinase catalytic 

domains, SH3, PH, Ras, etc.). Pfam motifs are short units found outside globular domains 

(e.g. AT-hook, IQ calmodulin-binding motif), while repeats are small units that form a stable 

structure only when two or more adjacent copies are present (e.g. WD40, TPR, HEAT, etc.). 

Pfam entries also include manually annotated functional information, as well as their 

phylogenetic distribution, structural models and interactions between domains observed in 

structures from PDB, if any (Finn et al., 2014). There are still numerous entries (around 25%) 

for domains of unknown function and uncharacterized protein families, but these are being 

annotated over time. Pfam uses UniProtKB sequences as reference, and its sequence and 

residue coverage is of ∼77% and ∼53%, respectively. 
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ELM: The Eukaryotic Linear Motif Resource 

The eukaryotic linear motif (ELM) resource (Kumar et al., 2019) is the most comprehensive 

repository of short linear motifs, or short protein interfaces (defined in detail in section 1.5.4), 

in eukaryotic organisms. ELM stores experimentally determined motif instances that are 

curated manually from the literature and classified into carefully annotated motif classes, 

according to the interaction they mediate. A motif class is mainly defined by a regular 

expression, derived from the observed sequence patterns of the motif instances it 

comprises, which specifies the residues that confer affinity and specificity to the interaction. 

Annotation of motif classes also includes detailed descriptions about their function, their 

binding domains and their taxonomic range. ELM classes are classified into several types 

according to their broad function as ligand (e.g. LIG_SH3_1, a SH3 domain-binding motif), in 

subcellular targeting (e.g. TRG_ER_KDEL_1, a Golgi-to-ER targeting signal), in proteolytic 

cleavage (e.g. CLV_C14_Caspase3-7, caspase-3 and -7 cleavage motif), in docking (e.g. 

DOC_PP1_RVXF_1, docking motif for PP1c), in degradation (e.g. DEG_APCC_DBOX_1, 

destruction motif recognize by the anaphase-promoting ubiquitin ligase complex APC/C) or 

in post-translational modification sites (e.g. MOD_Plk_1, phosphorylation site of Polo-like 

kinases). As of March 2021, ELM contains 291 motif classes, created from 3,542 

experimentally validated instances, which interact with 147 globular domains. The provided 

patterns can be used to identify new potential motif instances in almost every protein 

sequence although, for many motif classes with simple patterns, the vast majority of 

identified instances will be false positives. Any predicted instance needs to be scrutinized 

carefully or cross-referenced with other information to assess their validity. 

BioGRID: Biological General Repository for Interaction Datasets 

BioGRID (Oughtred et al., 2021) is a database of protein-protein, genetic and protein-chemical 

interactions manually curated from experimental evidence in the biomedical literature. It was 

initially created in 2006 as a comprehensive compendium of all biological interactions in the 

budding yeast. Today, BioGRID includes data for more than 70 species, over 1.93 million 

protein and genetic interactions (670,000 interactions for human), extracted from more than 

63,000 publications, although human and yeast data make up for almost two thirds of the 

total. Interactions in the database are described according to a controlled vocabulary, and 

interaction evidence is classified according to the experiment system. This allows for 

interactions between the same proteins to be quantified according to the number of 

experimental sources, both high and low throughput. 
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As opposed to other resources such as STRING (Szklarczyk et al., 2019) or GeneMANIA 

(Franz et al., 2018), BioGRID does not include predicted interactions. BioGRID is a high-

confidence interaction repository and is often used as a gold standard in many studies. Data 

can be queried online, accessed programmatically, or downloaded in different formats. 

BioGRID data is not UniProtKB-centric meaning it uses their own protein identifiers as well 

as gene symbols. 

3did: database of three-dimensional interacting domains 

3did  (Mosca et al., 2014) is a database of protein interactions mediated by globular domains 

binding other domains (domain-domain interactions) or binding short linear peptides 

(domain-motif interactions), for which high resolution 3D structural templates are known. 

These data are generated by searching for domains, as defined by Pfam, in the protein 

sequences of PDB structures, and then estimating the number of intrachain and interchain 

contacts between any pair of domains to determine whether they interact or not. In turn, 

domain-motif interactions are detected by a machine learning method (described in (Stein & 

Aloy, 2010)) that exploits the particular structural features of these peptides.  

3did website allows queries of particular domains or motifs of interest to obtain their 

interacting domains and motifs, and the 3D templates from the PDB that support those 

interactions. Moreover, it is possible to download the complete list of interacting domain-

domain and domain-motif pairs along with all the instances in 3D structures where the 

interaction is observed. This information allows users to infer mechanism and structurally 

characterize new protein-protein interactions. 

PhosphositePlus 

Reliable knowledge on PTMs can improve understanding of the fundamental mechanisms 

of cellular signalling, and the particular role of cellular regulation in health and disease. 

PhosphositePlus (PSP) (Hornbeck et al., 2015) is an online resource for the study of 

experimentally observed PTMs, including phosphorylation, acetylation, methylation, 

ubiquitination, and O-glycosylation. PSP data comes from manual curation of both low- and 

high-throughput data sources in the literature, as well as from their own mass spectrometry 

experiments carried out at Cell Signaling Technology Inc. PTM sites are already annotated 

on UniProtKB protein sequences, what greatly facilitates cross-referencing with other protein 

data. 

 



3.2   Mechnetor: Database 

51 
 

COSMIC: the Catalogue of Somatic Mutations in Cancer 

COSMIC (Tate et al., 2019), the most comprehensive database of somatic mutations in 

human cancers, was already introduced in the previous chapter (Section 2.2.1). COSMIC 

data are annotated with information regarding source, sample, cancer type, change in protein 

sequence, and cross-references with other datasets, and are regularly updated. Its web portal 

allows an in-depth exploration of the functional effects of cancer mutations, through detailed 

tables and interactive visualizations. 

Protein-coding variants in COSMIC are unfortunately not mapped to UniProtKB protein 

sequences. This means that there are instances where the provided amino acid change does 

not match the corresponding UniProtKB sequence. Thus additional checking and remapping 

steps might be required if one wants to use COSMIC data in an UniProtKB-centric fashion. 

3.2.2   Data integration and database creation 

Mechnetor uses an internal PostgreSQL7 database, tailor-made to support its needs. Data 

from the above sources is pre-assembled and integrated, dealing at this point with data 

quality control and identifier matching issues. This step is crucial as it ensures that all 

relevant information for any user query can be retrieved fast and efficiently. 

UniProtKB is the starting point for basic protein data: protein sequences and their 

identifiers, genes and descriptions. For every target organism, all UniProtKB proteins were 

obtained and this defines the complete set of proteins that are available in Mechnetor: in 

total, close to 317,000 protein entries, corresponding to approximately 152,000 genes in 8 

model organisms (plus SARS-CoV2) (Figure 3.3); all other data must be matched to these 

proteins/genes. From UniProtKB, multiple protein sequence annotations were also 

extracted, including chemical ligand and metal ion binding sites, mutagenesis-altered sites, 

as well as PTMs and disease-linked protein variants—the vast majority of them being human 

germline changes involved in Mendelian diseases described in the OMIM database 

(Amberger et al., 2019). The complete list of UniProtKB sequence features is shown in Table 

3.1. 

PTMs from UniProt were integrated with those from PhosphositePlus database into a 

single, more exhaustive dataset. In addition, for human proteins, cancer-related missense 

variants from the COSMIC database are included (the same dataset used in the previous 

chapter; see Methods 2.3.1). For each proteome, Pfam domains matches were obtained 
                                                           
7 https://www.postgresql.org 
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Figure 3.3: Number of genes of every species included in the Mechnetor database. 

directly from the Pfam database (release 34.0)8. In addition, the PfamScan tool (Madeira et 

al., 2019) was used to search for domain matches in those protein sequences that were not 

yet present in the Pfam database. In total, 61% of all proteins in Mechnetor’s database have 

at least one match to a Pfam entry, with a total residue coverage of 29.9%. On average, 

proteins with domains have 1.8 domain matches per sequence.  

More than 1.5 million protein-protein interactions were extracted from the BioGRID 

database (version 4.2.191), including their corresponding experiment throughput and 

publication source, and matched to UniProtKB accessions. Around 16,000 domain-domain 

interactions were non-redundantly obtained from Pfam and 3did, which are already provided 

as pairs of Pfam domain identifiers together with the PDB codes of the 3D structures that 

support them. Unfortunately, Pfam does not provide information about the structure where 

their domain interactions originate anymore; however, these DDI were kept as I noticed that 

a significant number were only present in their dataset (Figure 3.4). 

Thousands of known short linear motif (SLiM) instances and their binding-domains 

(domain-motifs interactions) were gathered from two sources: motifs curated from the 

literature, obtained from ELM, and motifs observed in 3D structures, obtained from 3did. The 

regular expressions of all SLiM classes were then used to perform a proteome-wide search 

of motif matches in every organism and identify all potential motif instances. The total 

                                                           
8 http://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/proteomes/ 
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Figure 3.4: Number of unique and common domain-domain interactions extracted from the 3did and 
Pfam databases.  

number of matches for any motif class is inversely proportional to the complexity of its 

pattern. For example, in human, the complex pattern of the WH1 domain-binding motif 

LIG_WH1 (ES[RK][FY].F[HR][PST][IVLM][DES][DE]) is only found in the sequences 

of three WASP proteins which correspond to the three experimentally verified instances of 

this class. Opposite, the pattern of a simple motif such as the Casein kinase 1 

phosphorylation site MOD_CK1_1 (S..([ST])...) is present in more than 90% of human 

proteins. Thus, most identified motifs are simply sequence pattern matches and likely to be 

false positives, only a tiny fraction of those correspond to experimentally confirmed motifs 

(<1% in human, for instance). 

3.2.3   Manual reviewing of domain-motif interactions from ELM 

The domain-motif interaction (DMI) data from the ELM resource simply contains a list of 

motif class and domain identifiers pairs9. The basic assumption is that DMIs can be 

extrapolated to any protein pair where the motif and its interaction domain are present, but 

the reality is that although motifs may interact with the same domain type, not all of them 

can interact with the same proteins. For instance, more than 30 ELM motif classes are known 

to interact with the protein kinase domain (Pkinase or PF00069 in Pfam), which is present in 

hundreds of proteins only in the human proteome. However, most protein kinases only 

recognize particular motif classes. For instance, the DOC_MAPK_gen_1 motif is the exclusive 

docking site of members of the MAP kinase family (MAPKs), while MOD_NEK2_1 is the 

                                                           
9 http://elm.eu.org/interactiondomains 

https://jex.im/regulex/#!embed=false&flags=&re=ES%5BRK%5D%5BFY%5D.F%5BHR%5D%5BPST%5D%5BIVLM%5D%5BDES%5D%5BDE%5D
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specific phosphorylation site of the Serine/Threonine-protein kinase NEK2. Moreover, some 

motifs are exclusively located in certain proteins, like the Pex14-binding site in Pex5 

(LIG_PEX14_1); while others are functional only in certain taxons, such as LIG_PAM2_2, which 

is a metazoan-specific variant of the PABP-interacting motif. Thus instances of motifs out 

of their specific functional contexts can be completely disregarded. 

All these annotations can be used to significantly narrow down DMIs to the most likely 

cases, but unfortunately they can only be found in the manually reviewed entries of each 

motif class at the ELM website, and not in a systematic format that can be automatically 

used. Consequently, I reviewed all entries in the ELM database and manually created a series 

of parameters and restrictions for each domain-motif pair that allows to automate the 

process of DMI filtering. These include restricting the DMI to certain taxons, restricting the 

interaction domain and/or the motif to only certain proteins, requiring the presence of other 

linear motifs in the same protein, or requiring the presence of an experimentally determined 

phospho-Ser/Thr/Tyr within the motif (Figure 3.5). In order to present only the most 

biologically relevant information, Mechnetor is by default configured to only show DMI that 

fulfil these requirements. 

3.2.4   Scoring and inferring DDI and DMI interactions  

In addition to the interactions obtained from Pfam and 3did, I also used a method to infer 

domain-domain interactions based on domain co-occurrence and first proposed by (Sprinzak 

& Margalit, 2001). Also known as the association method, it tries to identify pairs of 

sequence-signatures (such as domains) that, given their frequencies in the proteome, co-

occur in interacting proteins more often than expected by chance and thus are likely to 

mediate those interactions. 

For each organism independently, a subset of non-redundant PPI reported by two or more 

experiments were extracted from the full PPI set defined above. Next, for every possible 

combination of domain pairs, the number of interacting proteins pairs containing said 

combination were counted. For example, for domain A and domain B, this is the number of 

interacting protein pairs where one protein contains domain A and its partner contains 

domain B, then it was divided by the total number of interacting proteins pairs to obtain its 

observed frequency (𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴,𝐵𝐵). Domains were counted only once per protein, even if the same 

domain appeared two or more times. Correspondingly, the frequencies expected by chance 

were calculated as the combined probability of finding a protein with domain A and finding  
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Figure 3.5: Examples of additional annotations for domain-motif interactions which are the result of 
manually reviewing ELM entries: the metazoan-specific PP1-dockin motif (DOC_PP1_MyPhoNE_1); the 
auto-inhibitory interaction between motif TRG_LysEnd_GGAAcLL_2 and VHS domain (PF00790) in 
GGA1/3 which is regulated by Ser phosphorylation (first residue in the motif); and the Pex14 ligand 
motif (LIG_Pex14_3) in the peroxisomal import receptor Pex5, which varies in Fungi (Fungi instead 
contain the LIG_Pex14_4). Original ELM table only lists the interacting motif and domain (first two 
columns; although interaction domain name and descriptions are also included, they have been 
omitted here), the rest (yellow) are new. For specifying the proteins that have to contain the motif 
instance and/or the domains for the interaction to be accepted, regular expressions were used to 
catch different members of the same family 
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a protein with domain B in the whole dataset, which is the product of their individual 

frequencies, 𝐹𝐹𝐴𝐴 and 𝐹𝐹𝐵𝐵: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴,𝐵𝐵 = 𝐹𝐹𝐴𝐴 𝐹𝐹𝐵𝐵 =  �
𝑁𝑁𝐴𝐴
𝑁𝑁
��
𝑁𝑁𝐵𝐵
𝑁𝑁
� 

where 𝑁𝑁𝐴𝐴 and 𝑁𝑁𝐵𝐵 are the number of proteins in the set that respectively contain domains A 

and B at least once, and 𝑁𝑁 is the total number of proteins. 

Finally, to determine the degree of correlation, a comparison between observed and 

expected frequencies was calculated as the logarithm of the odds ratio, or log-odds. Thus 

the association score is: 

𝐴𝐴𝐴𝐴,𝐵𝐵 =  log2 �
𝑂𝑂𝑂𝑂𝑂𝑂𝐴𝐴,𝐵𝐵

𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴,𝐵𝐵
� 

A sequence-signature pair is enriched if its association score is greater than or equal to 2, 

but only if its observed count is also greater than or equal to 5 and the individual counts of 

proteins containing each of the signatures are greater than or equal to 4. These latter 

restrictions on the occurrence numbers are set to avoid pair of signatures that, despite 

having a high association score, are very rare.  

Additionally, to estimate the significance of these domain associations, a P-value was 

calculated through a binomial test. This was also done for all previously extracted DMIs. The 

P-value is reported along with all other interaction details and can be used as a threshold to 

exclude interactions/associations that are statistically irrelevant. 

3.2.5   Predicting interactions through tertiary structure 

Since the number of interaction types is limited (Aloy & Russell, 2004), it is to a degree 

possible to infer that proteins homologous to a known interacting protein pair will interact in 

a similar way (Aloy et al., 2003). This idea has been explored to determine the level of 

sequence similarity that is required for a pair of proteins to interact in an analogous way to 

one of known 3D structure. The web tool InterPreTS, when given a pair of protein sequences, 

will try to find homologues of known structure that are suitable for modelling the interaction 

between them (Aloy & Russell, 2002, 2003). More specifically, the method looks for regions 

in the query proteins that are homologous to those participating in an interface in the 3D 

structure of interacting proteins or protein complex. Then, the required contacts for the 

interaction are tested in these regions. If the template is suitable, the result is not only the 

identification of a potential interaction between the query proteins but also the identification 

of the protein segments that might mediate said interaction. 
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For Mechnetor, I adapted and integrated an internal version of InterPreTS (this version 

can run in batch, without graphic interface) to search for templates within the PDB (version 

2019) that can model the interaction between every protein pair included in the query. To 

save users time, InterPreTS predictions for the majority of known PPI of the currently 

supported organisms were pre-computed, but not for all protein pairs as that would take a 

very long time. As a solution, the database was designed to be populated with new 

predictions as new protein pairs are queried for the first time, saving time in future queries.

 

3.3   The Mechnetor web-server 

Mechnetor is a web-based resource where users can directly query their own proteins or 

protein modifications of interest. The general workflow is represented in Figure 3.6. Upon 

input submission, Mechnetor will systematically gather and integrate relevant functional and 

interaction information from its internal database, as well as, compute some additional data. 

As a result, the user will be presented with an interactive protein network where they can 

explore all the integrated data in a comprehensive way, with the aid of tools and options that 

facilitate visualization and interpretation. In addition, the results page also contains a fully 

searchable table that lists all interaction evidence contained in the network and that can be 

downloaded in different formats for local analysis. In its version 1.0, Mechnetor supports 

eight of the most common model organisms: human (Homo sapiens), mouse (Mus musculus), 

zebra fish (Dario rerio), frog (Xenopus laevis), fruit fly (Drosophila melanogaster), worm 

(Caenorhabditis elegans), mouse-ear cress (Arabidopsis thaliana) and yeast (Saccharomyces 

cerevisiae). The proteome of SARS-CoV-2 is also included and can be queried in combination 

with human proteins (Figure 3.3). 

For use by non-experts, Mechnetor was built with a simple and intuitive interface, and 

provided it with optional functionalities to extend the repertoire of tasks it can be applied for. 

Each query is given a unique URL which means that the result page can be bookmarked for 

later access or shared with other people. Mechnetor is free and open to all users without 

login or registration requirements10.  

 

 

                                                           
10 mechnetor.russelllab.org 
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Figure 3 6: The Mechnetor web-server pipeline. 

3.3.1   The mechanistic network 

The main component of Mechnetor is the network viewer, which allows to manually explore 

all mechanistic data gathered and integrated for the query proteins through an interactive 

visualization. As many other network representations, it is comprised of nodes representing 

proteins and edges representing interactions between them. However, instead of simple-

shaped nodes, here proteins are depicted as linear diagrams, proportional to their sequence 

lengths, with different functional elements (domain, linear motifs, PTMs, etc.) displayed in 

their corresponding protein positions/regions in a visually distinct fashion. This allows to 

show different types of interactions with edges that link entire proteins or specifically link 

the protein elements involved in the interaction, and are coloured according to the type of 

interaction they represent. Clicking on almost every element in the network will display a 

tooltip that shows specific information. In addition, some of the edges are weighted 

according to particular parameters, which is reflected in edge thickness to visually indicate 

the extent of interaction evidence; and/or are associated to a P-value (see section 3.2.4) that 

indicates the strength of the association and can be used to set a maximum threshold. Users 

can utilize several interactivity options to explore and customize the network which are 

explained in section 3.3.4. The specific details of all sequence features and interaction types 

are discussed in the next two sections. 
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3.3.2   Display of protein sequence features 

Domains 

Pfam domain architecture is shown roughly as described previously (Finn et al., 2016). 

Domains are depicted as rounded rectangles of different colours (randomly assigned each 

time the program is run) with the same domain in different proteins having the same colour, 

and with sizes that are proportional to domain lengths (Figure 3.7). The domain tooltip 

shows the full domain name, start and end positions, type (Family, Domain, Motif or Repeat), 

E-value (of the particular protein region aligned to the domain’s HMM) and identifier, which 

links to its Pfam entry. Mechnetor does not allow for overlapping domains. 

 

Figure 3.7: Mechnetor representations of different types of protein sequence features. From left to 
right and from top to bottom: domain, linear motif, DNA binding region (as an example of UniProtKB 
sequence annotation), PTMs (phosphorylation and acetylation), cancer missense mutations, genetic 
disease variant, and user-input variant. 

Short linear motifs  

SLiMs are represented by empty rectangles of randomly assigned colours (Figure 3.7), which 

is shared among all instances of the same motif class in all proteins. For clarity, unlike 
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domains, motif overlap is allowed but not all SLiMs identified in a protein are shown, only 

those for which a binding domain is present in another protein in the network, and therefore 

are potentially involved in an interaction. There is no E-value associated to SLiM instances 

either, as they are identified by sequence pattern matching (either they match or they do not), 

thus the number of motif instances identified in a protein is usually very high, but the majority 

are not relevant for the particular functional context defined by the other proteins in the 

network and they will not be displayed. 

The motif tooltip specifies whether the particular instance is real (status: ‘true positive’) 

or a predicted one (status: ‘unknown), its coordinates on the protein, and the corresponding 

sequence pattern. In addition, only for instances of ELM motifs (3did ones lack any 

annotation), tooltips include functional descriptions and links to the corresponding ELM 

entry. For SLiMs that require to overlap with phosphosites (e.g. a phosphorylated residue is 

required for recognition by a domain), their presence or not within the motif sequence is 

indicated.  

Post-translational modifications  

Three types of PTMs can be displayed independently on protein sequences: acetylations, 

phosphorylations and glycosylations. PTM sites are indicated by small flags, that are 

coloured differently by type (similar to ‘lollipop’ plots), and the corresponding text label 

(Figure 3.7). 

Sequence annotations 

These include a variety of regions or positions of interest in the protein―binding sites, 

secondary structure, diverse functional regions―, which were obtained from the curated 

entries in UniProtKB (Table 3.1). All these elements are coloured differently and can be 

toggled on and off independently, while relevant annotation is shown in their labels (Figure 

3.7). UniProtKB sequence features often provide functional information not found in the 

other data sources. For example, deletion mutagenesis experiments that lead to loss of 

particular interaction partners or inhibition of enzymatic activities are often captured in 

UniProtKB, as often are the mechanistic effects of particular PTMs or disease variant 

positions. 
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Table 3.1: Diverse protein features extracted from UniProtKB entries. 

UniProtKB feature Description 

Binding site Single-residue binding site for a chemical ligand (e.g. ATP) 

Metal binding Single-residue binding site for a metal ion (e.g. Iron) 

DNA binding DNA-binding domain (e.g. Homeobox)  

Transmembrane Membrane-spanning segments 

Disulfide bond Pair of cysteines residues forming disulphide bonds 

Mutagenesis Site altered by experimental mutation and its effect (e.g. W124A – No 
catalytic activity) 

Region Other functional regions of interest (e.g. regions mediating protein-protein 
interactions or regions involved in localization) 

Human cancer variants 

It is also possible to toggle on protein missense mutations observed in human cancers (pre-

filtered from genome-wide sequencing dataset in COSMIC). They are represented by dark 

blue T-shaped arrows, which are length-proportional to the number of samples where the 

mutation has been observed (Figure 3.7). Different mutations in the same protein residue 

are merged into a single node. Clicking on this node will display a table listing the different 

amino acid mutations, their corresponding nucleotide change in the coding DNA sequence, 

and the number of samples, as well as, links to the COSMIC entries of each mutation and the 

whole gene overview. By default, only cancer variants observed in more than two samples 

are displayed, but this limit can be changed via a slider. 

Mendelian disease variants 

There is also available a second pre-loaded set of variants, in this case related germline 

changes involved in Mendelian diseases described in the OMIM database and obtained from 

UniProt. Thin nodes indicate the position of the variant, while the amino acid change and 

disease are shown in node labels. Node colour is distinct for each disease to help identify 

variants related with different pathologies in the same protein (Figure 3.7). 
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User-input variants 

Protein variants, PTMs or other modifications submitted by the user will be added as an 

independent set of nodes, drawn as red inverted triangles at the specified protein positions. 

Labels indicate the variant/modification, as well as any custom annotation the user might 

have included (Figure 3.7). 
 

3.3.3   Display of interactions 

Protein-protein interactions 

Grey-coloured edges (green on mouse-over) represent the current experimental evidence 

supporting the interaction between pairs of proteins (binary protein-protein interactions). 

These edges simply link entire proteins without specifying the protein segments that are 

potentially involved in the interaction. They are weighted according to the total number of 

experiments―both high and low throughput―that determined the interaction between the 

two proteins. Both of these numbers are displayed in the edge tooltip, which also contains 

links to the BioGRID website entries of the two proteins (Figure 3.8). 

 

Figure 3.8: Example of PPI representation in Mechnetor network showing the interaction between 
MDM2 and CHEK2, which is supported by seven low-throughput experiments according to the 
BioGRID database. 
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Domain-domain interactions 

Based on the fact that domains are evolutionarily conserved modules that interact 

independently, interactions between two proteins can be inferred when these have a pair of 

known interacting domains. Accordingly, for any pair of domains present in the network (in 

two different proteins), an edge is drawn between the two if there is evidence for the two 

domain classes to interact. The same edge is drawn for all domain instances of the same 

class, even if the domain is repeated in the same protein. Based on the type of evidence, 

there are two types of domain-domain interactions (DDIs):  

• DDIs derived from contacts observed in 3D structures (described in section 3.2.2), 

represented by cyan edges whose thickness is proportional to the number of 3D templates 

in the PDB where the domain interaction is present, thus indicating higher or lower 

confidence. The edge tooltip also includes the number of PDB structures, in addition to the 

pair of proteins and domains that are being linked, the source of the DDI (3did, Pfam, or both) 

and the interaction P-value (Figure 3.9). 

• DDIs inferred by domain co-occurrence (following the method described in section 

3.2.4) which are represented by yellow edges that are weighted according to their association 

score. The higher the score, the most enriched is the domain pair association. A cut-off value 

for this score that limits which interactions of this type are shown in the network, can be 

easily modified with a slider. The exact association score and interaction P-values can be 

consulted in the tooltips (Figure 3.9). 

 

Figure 3.9: Examples of the two DDI types supported by Mechnetor. DDIs that were inferred from 3D 
structures (cyan edges), or predicted by domain co-occurrence (method by (Sprinzak & Margalit, 
2001); yellow edges). 
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Domain-motif interactions  

Under a similar principle than DDIs, interactions edges are drawn between any linear motif 

and its known binding domain in any two proteins in the network, regardless the motif 

instance has been confirmed or just detected by sequence matching. Two types of domain-

motif interactions (DMIs) were defined based on the data source, both unweighted but 

providing different levels of confidence: 

• DMIs obtained from the ELM database—displayed as purple edges (Figure 3.10)—are 

the most confident ones as they come from manual literature curation efforts. Based on the 

rich annotations of ELM motif classes, Mechnetor imposes a series of additional restrictions 

to reduce the number of false positive motif and DMI instances (process described in detail 

in section 3.2.3), instead of drawing every possible edge. Moreover, it is possible to manually 

activate an option to show only those experimentally confirmed instances. 

• DMIs inferred from 3D structures—displayed as pink edges—involve the motif classes 

obtained from the 3did database. Since these were identified from protein structures through 

an automatic pipeline (Stein & Aloy, 2010), they are generally less reliable. Because these 

motifs are not annotated in any way, there is not any possibility of narrowing them down. For 

this reason, it is recommended to toggle on only confirmed instances, which in this case 

correspond to those actually observed in 3D structures.  

 

Figure 3.10: DMI between the LxCxE motif in Histone deacetylase 2 and the B pocket of the 
retinoblastoma-associated protein. 

Tertiary structure-based predicted interactions  

Protein interactions predicted de-novo through tertiary structure homology modelling with 

InterPreTS (described in 3.2.5) can be also visualized in the network as their own interaction 

type. These are illustrated as red edges linking two red ellipses that indicate the 
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corresponding predicted interfaces in each protein, and they are labelled with the PDB 

structure used as template (Figure 3.11). It should be noted that these interacting protein 

regions do not necessarily correspond to other known protein modules (such as Pfam 

domains or ELM motifs), they simply indicate those regions that significantly aligned with 

the sequences of the interacting template chains and that have the required contacts for an 

interaction to take place. Consequently, InterPreTS regions cannot be toggled on 

independently as on their own they do not mean anything. Tooltips displayed when clicking 

on the region nodes or interaction edge show the alignment scores (E-value, % identity), 

coordinates of the protein region–3D structure chain alignment, and scores that indicate the 

strength of the prediction (P-value and Z-score). 

 

Figure 3.11: Mechnetor visualization of the interaction and interfaces between KPNA4 and NUP50 as 
predicted by InterPreTS (Aloy & Russell, 2003), using PDB structure:2C1M as template.   

Interactions inferred from sequence annotations.  

UniProtKB does not systematically provide information on interfaces between proteins, in 

the sense that there is not a single field in their protein entries following a particular format. 

However, this type of information can be sometimes found in certain sequence features. For 

example, many UniProtKB regions of interest are annotated as mediating interactions with 

other proteins, and sites affected by mutagenesis experiments are often annotated to impair 

certain protein interactions. Mechnetor automatically extracts these connections and draws 

edges linking the particular protein region or site to the referred protein. The functional 

nature of this connection is specified in both the region label and the interaction tooltip 
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(Figure 3.12). As opposed to all other types of edges, these appear automatically when the 

corresponding sequence feature is toggled on. 

 

Figure 3.12: A UniProt region of interest in protein SORT1 is annotated as being involved in the 
interactions with GGA1 and 2 (apart from Golgi to endosome transport). Since protein GGA1 is also 
present in the current network, Mechnetor automatically draws an arrow linking both.  

3.3.4   Usage 

3.3.4.1   Input 

Two types of input data that can be submitted to Mechnetor: proteins and protein 

variants/modifications. Proteins will define the elements of the resulting network while 

variants/modifications will be mapped into the corresponding positions within those 

proteins. Both can be typed directly into input boxes or uploaded as text files, following the 

same formats. The user also has to select the corresponding organism (Figure 3.13). 

• Protein input box. Proteins can be specified by their UniProtKB identifier (e.g. 

M3K20_HUMAN), UniProtKB accession (e.g. Q9NYL2) or gene symbol (e.g. MAP3K20). Users 

can input a list of proteins (one protein per line) or a list of protein pairs (two proteins 

separated by whitespace per line). In the first case, Mechnetor will search for interactions 

between all input proteins, while in the second, it will only search for interactions between 

the specified pairs. It is also possible to mix both formats, in which case, proteins from 

specified pairs will be kept separately but individual proteins will be searched against all the 

others.  



   3.3   Mechnetor: Web-server 

67 
 

• Variant/Modification input box. Users can optionally submit protein variants or 

PTMs. They have to be introduced one per line following a particular format: the protein, 

followed by a forward slash, followed by the residue modification, which itself has to contain 

the original residue, its position and the modified residue, in that order (e.g. the protein 

variant Q9NYL2/F368C, or the phosphorylation site MAP3K20/S599S-p). Proteins with 

modifications are automatically added to the network even if they were not included in the 

protein input box, meaning you do not need to enter them twice. 

 

Figure 3.13: Mechnetor web-server index page. Users can query lists of proteins, protein pairs and/or 
protein variants and modifications, for any of 8 model organisms, including human. Additional options 
allow to configure the final network as well as automatically import known interactors for the user’s 
proteins. 

A few additional options allow to further customize user queries: 

• Additional interactors. This allows to specify a number of known interactors for each 

protein in the user input that will be automatically imported to the query (none by default). 

These interactors are extracted from the PPI database, from highest to lowest number of 

experiments supporting them. Thanks to this feature, users can input proteins without 

specifying a set of interactions—or even input just a single protein—and study them in the 

context of their best known interactome.  
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• Only interactions between input proteins and known interactors. When the previous 

feature is used, automatically imported interactors will by default be checked for interactions 

against every other protein in the network (on by default). This accessory option can be 

activated to avoid that, forcing the final network to contain only interactions between the 

known interacting protein pairs. This is useful if one does not care how these additional 

interactors interact with each other but only with their input protein of interest, and it can 

save computational time and result in a simpler network. 

• Hide unconnected proteins. This option (on default) makes proteins in the resulting 

network to be hidden if no mechanistic connection (any interaction evidence that is not a 

general PPI) to any other protein could be found. Hidden proteins can be later toggled on 

manually. 

• Examples. To illustrate the input formats as well as the different interaction types 

Mechnetor supports, four examples are available and can be loaded by simply clicking in the 

corresponding buttons. 

There is no restriction on how many proteins the user can submit, but very large numbers 

can result in longer job computation times. Besides, Mechnetor is not a tool suitable to 

visualize large protein networks because those would be too convoluted and one would not 

be able to see all details clearly. For this reason, there is a limit of 20 proteins to be contained 

in a network at most. If the user input contains a larger number of proteins, Mechnetor will 

give priority to those for which mechanistic information is found when building the network, 

however, the table below the network will still contain everything. 

3.3.4.2   Interactivity options in the network 

Upon job completion, results will be presented in a network where users can utilize several 

interactivity options to explore the data and customize the view (Figure 3.14). These include: 

• Mouseover effects. To enhance user-experience, all network nodes and edges display 

some kind of visual change (in size, colour or style) when the mouse is over them. Protein 

region labels will change to show the corresponding sequence coordinates, while labels of 

single position features (PTMs, variants) are shown on mouseover. In the case of edges, 

hovering over them will also highlight the two elements involved in the interaction.  

• Tooltips. Clicking on almost any element will display a popup box containing more 

information as well as direct links to original data sources. Some extra customization 

options are available for some nodes. For example, the main protein tooltip allows you to 

switch the displayed protein name to either the gene symbol, the UniProtKB accession or the 
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UniProtKB identifier. For interactions edges, these tooltips specify the proteins and protein 

elements involved and the evidence or scores supporting the interactions. 

• Toggles. The sidebar checkboxes allow the user to toggle on or off all different types 

of protein features and interactions individually. In addition, some offer options to filter the 

displayed elements. For example, it is possible to toggle on only experimentally verified 

instances of SLiMs, or to use sliders to set a minimum required score for predicted domain-

domain interactions, as well as to adjust the P-value cut-off for all interactions. 

3.3.4.3   Table of interactions 

The table located below the network will always contain all types of interactions found for 

the input proteins independently of what the network is showing (Figure 3.14). Each row 

specifies the pair of interacting proteins, the interaction type, the interacting protein regions 

(if applies), as well as those user-input variants that are located within those regions. The 

table can be searched for any term and/or sorted by the values of any column. 

3.3.4.4   Export files 

Mechnetor can export a snapshot of the network view at any time as an image file (JPG or 

PNG), or export the full network as a vector graphic (SVG) which can be edited with any vector 

image processing software to prepare publication-quality figures. The table can also be 

exported in several formats (CSV, Excel or PDF). 

3.3.5   Technical specifications 

Mechnetor is implemented as a web server using Python (Python 3.6.8) and the Flask micro 

web framework11. The InterPreTS tool was fully rewritten in Python so that it could be 

integrated into the pipeline. The interactive graph component is rendered using 

cytoscape.js12, an open-source JavaScript-based graph library that offers a wide range of 

visual and performance features for creating highly customizable and interactive networks 

that can be easily integrated into web interfaces (Franz et al., 2015). The biggest challenge 

in cytoscape.js implementation was finding a way to create networks where proteins, 

traditionally represented by single nodes of simple shape, could instead be represented as 

linear arrangements of their diverse functional elements (domains, motifs, PTMs and other   

                                                           
11 https://flask.palletsprojects.com 
12 https://js.cytoscape.org 
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Figure 3.14: Mechnetor results are primarily presented in a mechanistic network where users can 
explore the data using different interactivity options. In addition, a table below lists all types of 
interactions found in the network, including all user-input variants located in the relevant interacting 
elements.  

sequence features) allowing for the possibility of drawing interactions between those 

elements independently; which is not natively supported by cytoscape.js.  The solution was 

to make proteins a composition of a thin rectangular node proportional to protein length 

representing its sequence, plus independent, visually distinct nodes for each protein element 

that can be assigned to it. The latter are superimposed over the protein sequence node by 

giving them the same y axis coordinates, but placed in their corresponding positions by 
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varying their x axis values. All nodes belonging to the same protein are attached to a 

common invisible parent node that makes possible that the protein can be dragged as whole 

without disrupting its internal node layout. 

Mechnetor’s source code and the code required to build its database is freely available13. 

3.4   Case studies 

To find cases where I could showcase usability, I looked for instances where mechanistic 

differences highlighted by Mechnetor correspond to different pathologies. Next, I describe 

in detail two particular cases together with the view that can be obtained from Mechnetor. 

3.4.1   β subunit of the heterotrimeric epithelial sodium channel 
(SCNN1B) 

The epithelial sodium channel (ENaC, or also amiloride-sensitive sodium channel) mediates 

the first step of active sodium reabsorption across the apical membranes of tight or high 

resistance epithelial cells, in particular in the distal nephron of kidneys. This channel plays a 

key role in maintaining electrolyte and water homeostasis, and regulating extracellular 

volume and blood pressure. ENaC is an heterotrimer composed of homologous subunits α 

(or δ), β and γ (Garty, 1994; Hanukoglu & Hanukoglu, 2016). β subunit (or SCNN1B) is 

annotated (UniProtKB: P51168) with disease-causing variants related to two different 

genetic diseases: bronchiectasis with or without elevated sweat chloride 1 (BESC1), 

characterized by an abnormal persistent dilatation of the bronchi, excess mucus build-up 

and other symptoms; and Liddle syndrome 1 (LIDLS1), an autosomal dominant disorder that 

causes severe hypertension (Shimkets et al., 1994). With Mechnetor it is possible to infer the 

mechanisms through which these variants affect protein function (Figure 3.15). We can 

observe that BESC1 variants are distributed along the large conserved protein region that 

corresponds to the actual amiloride-sensitive sodium channel (ASC; Pfam accession: 

PF00858), which suggests that these variants are more likely to be deleterious and result in 

decreased channel activity (Fajac et al., 2008). In contrast, LIDLS1-causing variants are 

located in a 4-residue long region at the C-terminus (residues 616-620) where they clearly 

disrupt a WW domain binding motif (ELM identifier: LIG_WW_1). This motif is recognized by 

                                                           
13 https://github.com/JCGonzS/mechnetor 
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the WW domains of E3 ubiquitin ligases such as WWP2 and NEDD4, which are experimentally 

verified interactors of SCNN1B. It seems reasonable to deduct that LIDLS1 variants impair 

these interactions and thus inhibit ubiquitination and subsequent degradation of the ENaC. 

A constitutively active channel ultimately leads to an increase of blood volume and pressure 

(Abriel et al., 1999; Furuhashi et al., 2005).  

 

Figure 3.15: Mechnetor view of the epithelial sodium channel β subunit (SCNN1B) and E3 ubiquitin 
ligases WWP2 and NEDD4. Experimentally verified interactions between two proteins are represented 
by grey lines, while domain-linear motif interactions are shown as purple lines. Positions 
corresponding to disease variants are indicated along SCNN1B (Bronchiectasis variants in orange; 
Liddle Syndrome variants in green). The C-terminal region of SCNN1B has been amplified to enhance 
visualization of the overlap of Liddle syndrome variants and the LIG_WW_1 motif. 

3.4.2   Catenin beta-1 (CTNNB1) 

Mechnetor can also help to understand mechanism of somatic cancer variants, as 

demonstrated in Figure 3.16 with catenin beta-1 (CTNNB1), a well-established oncogene with 

roles in cell adhesion regulation, and gene transcription as part of the Wnt signalling pathway 

(UniProtKB: P35222) (MacDonald et al., 2009). Here, by loading cancer missense variants 

with a sample count of at least 5, a hotspot of highly recurrent mutations becomes clearly 
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apparent at the N-terminal region of CTNNB1, targeting several GSK3B (UniProtKB: P49841) 

phosphorylation sites (S33, S37, T41 and S45), as indicated by the overlap with the kinase 

GSK3B recognition motifs (ELM identifier: MOD_GSK3_1). Due to the simplicity of MOD_GSK3 

motif pattern (...[ST]...[ST]), several matches are found on the CTNNB1 sequence, but the 

overlap with experimentally-proved phosphosites can be used as an indicative of functional 

motif instances. Furthermore, another binding motif overlaps with this region: a diphospho-

dependent degron (ELM identifier: DEG_SCF_TRCP1_1), which is required for CTNNB1 

recognition by the WD40 β-propeller of the E3 ubiquitin-protein ligase complex component 

BTRC (UniProtKB: Q9Y297). Since BTRC binding to CTNNB1 is dependent on these 

phosphosites, by inhibiting N-terminal phosphorylation, these somatic mutations ultimately 

prevent ubiquitination and degradation of CTNNB1 by the proteasome. The accumulation of 

CTNNB1 is the same effect as the activation of the Wnt signalling pathway, and results in 

unrestricted transcription of its target genes (Shang et al., 2017). 

 

 

Figure 3.16: Mechnetor view of catenin beta-1 (CTNNB1), the kinase GSK3B and E3 ubiquitin-protein 
ligase complex component BTRC, showing their domain composition. Domain-linear motif 
interactions are shown as purple lines. Displayed along CTNNB1 sequence: phosphosites (small 
yellow flags), cancer missense variants (present in at least 5 samples; blue T-shaped flags of height 
proportional to number of samples), the GSK3 recognition motifs (MOD_GSK3, green empty box) and 
the BTRC-binding phospho-dependent degron (DEG_SCF_TRCP1_1; orange empty box). Popup boxes 
show more detailed annotations and let us know that the required phosphosites are found within 
these motifs. Zoomed CTNNB1 N-terminal region better shows the overlap between these element
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3.5   Conclusions 

It is a challenge to make sense of the wealth of variant data that is increasingly available. 

There is thus a growing need for tools that facilitate the integration of different datasets and 

the extraction of meaningful information in order to answer particular biological questions. 

This is becoming more relevant as we are moving into the era of precision medicine where, 

to be able to tailor patient-specific medical treatments, understanding individual variability 

at the molecular level will be crucial. Mechnetor was created with this purpose in mind. 

Mechnetor is a tool that considers multiple existing protein and mechanistic data and 

presents them where they might be applicable. Although formally it does not contain any 

trained prediction algorithm, the information gathered by this tool can often predict 

interactions between proteins not known to interact and/or unveil novel mechanistic details. 

In particular, domain-domain and domain-motif interaction data are extracted from relatively 

small sets of verified instances. Mechnetor is by default configured to infer mechanism 

where it makes sense even though the protein pair being studied is not present in any of the 

original datasets. For this reason, it is very important to provide results together with tools 

so that users can explore and understand the information provided and ultimately arrive at 

their own conclusions. 

Consequently, one of the priorities was to make Mechnetor very user-friendly so, in 

essence, it can be used as simply as inputting a pair of proteins, clicking the submit button 

and, in just a few seconds, visualizing different interaction evidence between them. Further 

possibilities include studying larger datasets of interacting protein pairs by directly 

downloading the integrated data for local analysis, mapping custom protein variants into 

proteins to investigate them in a mechanistic context, or representing and visualizing 

custom protein interactions and interfaces. 

In addition, there is the possibility of adapting Mechnetor into an individual component 

that can then be easily implemented into other tools and projects. For example, the 

Mechnetor framework was used to interrogate MS-based cross-linking information14, 

allowing us to make mechanistic suggestions about what particular cross-links could be 

doing and thus aiding in deciphering structures of large macromolecular assemblies.

                                                           
14 xlinterpreter.russelllab.org 
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Chapter 4 
 
Analysis of S-palmitoylation in Drosophila 
melanogaster 

 
4.1   Introduction 

S-acylation, commonly referred to as S-palmitoylation, is a post-translational modification of 

proteins that consists in the attachment of palmitic acid—a 16-carbon saturated fatty acid—

to a cysteine via thioester linkage and, unlike all other protein lipid modifications, it is fully 

reversible (Chamberlain & Shipston, 2015; Schmidt & Schlesinger, 1979) (Figure 4.1). 

Although other fatty acids can be attached via S-acylation (stearate or oleate), palmitate is 

the most commonly found in endogenous S-acylated proteins, and thus both terms are 

generally used synonymously (Muszbek et al., 1999). 

Similar to other lipid modifications, the main effect of S-palmitoylation is to increase 

protein hydrophobicity and thus defining roles in membrane targeting and trafficking: the 

attached palmitic acid acts as a membrane anchor of cytosolic proteins that normally lack 

transmembrane domains, and promotes the distribution of membrane proteins to different 

subcellular compartments (Chamberlain & Shipston, 2015). Since S-palmitoylation is a 

reversible process, cycles of palmitoylation/depalmitoylation provide a dynamic regulation 

of localization and function to proteins in a wide range of cell types and tissues. It is thus 

implicated in the control of many cellular processes including GPCR signalling (Jia et al., 

2014), trafficking of membrane proteins from early secretory pathways to the plasma 

membrane (Smotrys & Linder, 2004) or synaptic plasticity (Fukata and Fukata 2010). 

Palmitoylation has been also shown to regulate the stability of integral membrane proteins 

by impeding their ubiquitination and subsequent degradation (Valdez-Taubas & Pelham, 

2005). Particular examples of dynamically regulated proteins and processes include 

trafficking of mammalian H-Ras and N-Ras between Golgi and plasma membrane to 
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modulate Ras signalling (Goodwin et al., 2005); and lateral distribution of proteins on the 

plasma membrane to lipid rafts, such as with the PKA anchoring protein AKAP79 (Delint-

Ramirez et al., 2011). 

Although some proteins have been shown to autopalmitoylate spontaneously (Chan et 

al., 2016), for the majority, the palmitoylation cycle is mediated by the action of two kinds of 

enzymes (Figure 4.1). Protein S-palmitoylation is catalysed by palmitoyl acyl-transferases 

(PATs), which are integral membrane proteins harbouring a 50 residue-long cysteine-rich 

domain that itself contains a conserved Asp-His-His-Cys (DHHC) motif, thus giving them the 

common name DHHC PATs (Mitchell et al., 2006). The opposite process—enzymatic removal 

of S-acyl modifications—is catalysed by thioesterases (Hunt & Alexson, 2002). 

  

Figure 4.1: Palmitoylation & depalmitoylation cycle mediated by palmitoyl acyltransferases & 
acylthioesterases. 

In mammalian genomes, more than 20 different PATs, which distinctly reside in different 

cell membranes, have been identified or predicted (Chamberlain & Shipston, 2015; Fukata et 

al., 2004; Gottlieb & Linder, 2017). In contrast, the number of thioesterases is much lower: 

mammals typically contain two lysosomal palmitoyl-protein thioesterases (PPT1 and PPT2), 

in charge of removing palmitate during lysosomal degradation (Camp & Hofmann, 1993; 

Soyombo & Hofmann, 1997); and two cytosolic serine hydrolases, the acyl-protein 

thioesterases (APT1 and APT2) (Duncan & Gilman, 1998; Tomatis et al., 2010), which are 
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responsible for depalmitoylation of a wider range of substrates directly on membrane 

surfaces. More recently, the members of the α/β-hydrolase domain-containing protein 17 

family (ABDH17A, ABDH17B and ABDH17C) were established as novel depalmitoylation 

enzymes, acting on substrates like NRAS (Lin & Conibear, 2015). This imbalance in the 

number of both type of enzymes is also seen in Drosophila where 22 DHHC PATs (many of 

which show several isoforms), and only three thioesterases (Ppt1, Ppt2 and Apt1) have been 

identified to date (Bannan et al., 2008). 

The importance of this modification has grown in the last years especially because 

alterations in the palmitoylation cycle have been linked to several diseases, including 

nervous system disorders (e.g. Huntington’s disease ) (Sanders et al., 2015) and cancer (Ko 

& Dixon, 2018). Consequently, this process is well characterized in mammalian cell lines and 

tissues with both target proteins and associated enzymes largely identified (Blanc et al., 

2015; Sanders et al., 2015). In contrast, little is known about S-palmitoylation in 

invertebrates. The first systematic identification of S-palmitoylated proteins (i.e. the first 

palmitoylome) for an invertebrate was performed in Caenorhabditis elegans (Edmonds & 

Morgan, 2014). In Drosophila melanogaster, the first palmitoylome was published recently 

(Strassburger et al., 2019). Whereas the SwissPalm database—the largest compendium of 

S-palmitoylated proteins—comprises around 3700 genes, mainly from the aggregation of 

human, mouse and rat experimental studies, there are fewer than 200 palmitoylated proteins 

from invertebrates (Blanc et al., 2015). Moreover, just a handful of DHHC PATs–substrate 

interactions in Drosophila are known. These include the Drosophila Huntingtin-interacting 

protein 14 (dHip14), ortholog of the mammalian DHHC PAT ZDHHC17/HIP14, which interacts 

with SNAP25, cysteine string protein (CSP) and the short gastrulation (Sog) protein (Kang & 

Bier, 2010; Ohyama et al., 2007; Stowers & Isacoff, 2007). The DHHC family member 

approximated (app), ortholog of human ZDHHC14, was shown to have both DHHC PAT-

dependent and independent functions. app binds to and localizes Dachs to the apical 

junctional region of imaginal discs and palmitoylates the large protocatherine Fat, resulting 

in repression of Fat function and promoting tissue growth (Matakatsu & Blair, 2008). In more 

recent work, Strassburguer et al. published the first palmitoylome, and identified 13 of those 

proteins as potential targets of dZDHHC8. Among them, Ras64B stability was found to be 

strongly dependent on palmitoylation by this enzyme (Strassburger et al., 2019). 

Besides this handful of proteins, knowledge of S-palmitoylation targets in Drosophila is 

acutely lacking. Here we set out to provide a new and more comprehensive catalogue of S-

palmitoylated proteins in this model organism. For this, our collaborators experimentally 
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purified and identified S-palmitoyl-proteins from the transmembrane fraction of S2R+ cells 

(Drosophila embryonic cell line). They also developed a novel BioID-based method allowing 

the identification of potential and specific interaction partners of 10 selected Drosophila 

DHHC PATs. I was responsible for the subsequent systematic analysis to validate and 

integrate the results, provide functional annotations and assess the level of conservation 

with mammalian palmitoylomes. This work resulted in the second and most complete 

palmitoylome in Drosophila melanogaster, which when coupled to the experimentally-

determined DHHC PAT interaction profiles allows the identification of their potential client 

proteins. We provide novel insights into the scope and mechanisms of this important post-

translational modification. This work expands the understanding of S-palmitoylation in 

invertebrates and, in some instances, provides insights into mammalian orthologs.

 

4.2   Results and Discussion 

4.2.1   The Drosophila melanogaster palmitoylome 

4.2.1.1   Identification of S-palmitoylated proteins 

Our collaborators used the acyl-resin assisted capture (acyl-RAC) assay (Forrester et al., 

2011) to purify S-palmitoylated proteins from the membrane fraction of S2R+ (S2 receptor 

plus) Drosophila melanogaster embryonic cells (Yanagawa et al., 1998), coupled with LC-

MS/MS for their subsequent identification. Acyl-RAC is an alternative to the widely used acyl-

biotin exchange (ABE) assay, a biochemical technique for capturing and identifying S-

acylated proteins (Drisdel & Green, 2004), with the advantage that it replaces the 

biotinylation step of ABE―detection of biotinylated proteins requires complex and expensive 

methods―with direct conjugation of free cysteines by a thiol-reactive resin (Figure 4.2). 

Thus, acyl-RAC is fast, has fewer steps, and can be also applied to a wider range of samples. 

From the results of this experiment, 1188 proteins were initially identified which were then 

filtered to keep those with a fold change equal to or above 2 (FC>=2), a false discovery rate 

below 0.1 (FDR<0.1), and that did not lack cysteine residues. In addition, six proteins were 

excluded for being likely false positives as they were enzymes with thioester bonds known 

to not play a role in protein lipidation. The remaining 198 proteins were deemed S-

palmitoylated. Of these, 51 were further classified as high confidence (HC) due to a high 

enrichment (FC>=20), with the others being referred to as normal confidence (Figure 4.3A).  
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Figure 4.2: Overview of the acyl-resin assisted capture acyl-RAC and acyl-biotin exchange (ABE) 
assays. First, free thiols groups are blocked with methyl methanethiosulfate (MMTS). Next, thioester-
linked S-palmitic fatty acids are cleaved using neutral hydroxylamine (NH2OH). In ABE, newly freed 
thiols are first biotinylated and then captured with streptavidin-sepharose beads. In acyl-RAC, these 
are directly captured with thiopropyl-sepharose beads. After pull-down assay, captured proteins are 
eluted with reductant and subsequently analysed by SDS-PAGE with either protein staining or 
immunoblotting.  

A cursory glance already finds proteins among these that are well-known to be 

palmitoylated in mammals: Snap24, an  Snap25 homologue; the cysteine-string protein 

(Csp), a chaperone of the DnaJ family that functions in regulated exocytosis in synaptic 

vesicles (Greaves et al., 2008); and Flotillin-1/-2, membrane-associated scaffolding proteins 

involved in endocytosis, cell signalling and protein trafficking (Morrow et al., 2002). For all 

these, palmitoylation is known to play key roles in regulating function via increasing 

membrane association. The following sections go over different approaches I used in order 

to try to validate the whole putative Drosophila S2R+ palmitoylome. 

 

4.2.1.2   The Drosophila palmitoylome differs between whole larvae and S2R+ cells 

Until publishing these results, the only list of S-palmitoylated proteins in Drosophila had been 

obtained from instar L2 larvae and comprised 159 proteins (Strassburger et al., 2019). This 

is roughly 25% smaller than our embryonic S2R+ cell palmitoylome, which is surprising as 

larvae are more complex, and thus expected to have a wider range of proteins subjected to 

palmitoylation. Most likely, this difference is due to the fact that Strassburger et al. used the 
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ABE assay instead of acyl-RAC, where more proteins can be lost in the required extra steps. 

Embryonic and larval palmitoylomes were found to have 61 proteins in common (Figure 

4.3B), which represents 30% and 38% of each total respectively, and thus are the set of S-

palmitoylated proteins in Drosophila with the highest support. We can only speculate whether 

the larger non-overlapping palmitoylome fractions are indeed due to experimental  

 

 

 

Figure 4.3: Identification and validation of Drosophila S2R+ cell palmitoylome. (A) The acyl-RAC assay 
identified 1188 proteins from the membrane fraction of S2R+ cells. Proteins fulfilling FDR and FC cut-
offs are defined as putative palmitoylated proteins with either normal (NC) or high confidence (HC). 
(B) Overlap between S2R+ and larval palmitoylome from Strassburger et al. 2019. (C) Barplots indicate 
the fraction (%) of proteins that have: a mammalian ortholog (left), a mammalian ortholog that is 
palmitoylated (centre), and a mammalian ortholog that is palmitoylated with “high” confidence (right); 
in each of the protein sets defined above. The palmitoylation status of the mammalian orthologs was 
obtained from the SwissPalm database. (D) Barplot that shows the fraction (%) of proteins predicted 
to be palmitoylated by CSS-Palm in each of the protein sets. 
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differences, or if they really reflect a distinct palmitoylation status in different stages of 

development (or probably, a mix of both). The fact that only 21 proteins that were identified 

in the acyl-RAC experiment but deemed as not significantly S-palmitoylated (25% of the total 

990) are actually included in the larval palmitoylome rather points to the former. Since the 

total number of S-palmitoylated proteins is unknown, it cannot also be ruled out that these 

two experiments are only small samples of a much larger set. This highlights the importance 

of obtaining more data in Drosophila, as it will progressively allow to confidently establish 

which proteins are really subject to palmitoylation and in which tissues. 

 

4.2.1.3   S-palmitoylated proteins are conserved between Drosophila and mammals 

To further validate our results and assess the degree of conservation, the Drosophila S2R+ 

palmitoylome was compared to the much better-studied and complete mammalian 

palmitoylome (combining those from human, mouse and rat; see Methods). As for  

palmitoylome size, although initial estimations suggested that at least 10% of the human 

proteome is susceptible to palmitoylation (Sanders et al., 2015), based on more recent data 

from SwissPalm, this number is close to 17.5% (see Methods). In Drosophila, considering that 

S2R+ cells were previously reported to express 5885 genes on average (Cherbas et al., 2011), 

their 198-protein palmitoylome only represents 3.4% of the total. However, a more realistic 

estimation of this number at the whole-body level can be calculated as the fraction of 

proteins from the full Drosophila proteome (data from UniProt) that can be confidently 

matched to a S-palmitoylated mammalian ortholog, which ranges between 8.9% and 17.1%, 

depending on the confidence of the palmitoylation status of the mammalian ortholog (Figure 

4.3C; see Methods). Although this does not necessarily imply that orthologs in Drosophila 

are also S-palmitoylated, the similarity of this fraction to the mammalian one seems to 

indicate a high degree of conservation between palmitoylomes. It also supports the idea that 

our experiments only identified a small subset from a larger pool of proteins that can be 

targeted by palmitoylation. Considering that Drosophila contains approximately 14,000 

protein-coding genes, a conservative estimation would point at a size of roughly 1000 S-

palmitoylated proteins. 

In addition, overlap with mammalian palmitoylome could be used to further corroborate 

that Drosophila S2R+ proteins were correctly determined to be S-palmitoylated. Mammalian 

ortholog searches were done for the three subsets of proteins defined from the acyl-RAC 

experiment: non-palmitoylated, palmitoylated with normal confidence and palmitoylated 

with high confidence (Figure 4-3C). As expected, the percentage of proteins with S-
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palmitoylated mammalian orthologs is much higher within the S2R+ normal and high 

confidence palmitoylomes (56.5% and 62.7%) than in the complete proteome (17.1%). 

However, a significant fraction of non-palmitoylated proteins from the acyl-RAC dataset also 

have mammalian S-palmitoylated orthologs (62.6%). Further restricting the criteria to define 

a mammalian ortholog as S-palmitoylated―thus having higher confidence―these fractions 

are all reduced, but the difference between Drosophila palmitoylated (44.9%-52.9%) and non-

palmitoylated proteins (43.5%) becomes more apparent (Figure 4-3C).  

Overall, these results support the validity of the acyl-RAC assay to recover real S-

palmitoylated proteins. However, it also suggests that although many proteins were not 

found palmitoylated in S2R+ cells, they are likely real palmitoylation targets that either were 

missed due to the experimental conditions or they are only subjected to palmitoylation in 

other cell types or tissues. 

 

4.2.1.4   Palmitoylation predictions support the Drosophila S2R+ palmitoylome but  
     yield a high number of false positives 

Machine learning algorithms have been developed to predict palmitoylation sites in proteins, 

and their accuracies have steadily improved thanks to the growing set of experimentally-

determined palmitoylation sites that can be used for training them (Kumari et al., 2014; Ren 

et al., 2008; Zhou et al., 2006). However, since these data come almost exclusively from 

mammals (and despite the relatively high degree of conservation between Drosophila and 

mammalian palmitoylomes), how well these prediction methods perform in Drosophila is 

unknown. Nevertheless, using the most recent version of one such method―CSS-Palm 4.0 

(Ren et al., 2008)―I predicted the number of palmitoylated proteins for the complete 

Drosophila proteome and the three protein subsets derived from the acyl-RAC assay (Figure 

4-3D, see Methods). 

From the results, two conclusions are immediately apparent. The first is that, as expected, 

there is a very significant increase (>25%) in the fraction of predicted sites in the two subsets 

of experimentally determined S-palmitoylated proteins (with normal or high confidence) in 

comparison with either the complete proteome or the non-palmitoylated set. However, the 

second is that there is a considerably high number of proteins wrongly predicted as 

palmitoylated, as 49% for the whole proteome is, by all means, a strong overestimation (9%-

17% was just determined to be a plausible range). To check that this high number was not 

due to Drosophila-specific artefacts, I similarly used CSS-Palm to predict the fraction of 

palmitoylated proteins of the complete human proteome, and this was also around 50%, 
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which is significantly much higher than the currently estimate of 17.5%. Hence, although 

CSS-Palm does seem to be able to predict palmitoylated proteins, it does so with a high false 

positive rate regardless of the query organism. This can be explained perhaps by the fact 

that this algorithm is intended for predicting palmitoylation sites on known/suspected 

palmitoylated proteins, rather than predicting new palmitoylation target proteins.  It is likely 

that the lack of context in these prediction methods could explain the over-prediction, which 

might, in the future, be solved by considering protein networks or similar biological contexts 

as has proved successful for phosphorylation sites (Linding et al., 2007). 

 

4.2.1.5   Functional characterization of Drosophila S2R+ S-palmitoylated proteins 

To corroborate if the putative Drosophila S2R+ palmitoylome is in broad functional 

agreement with other sets of S-palmitoylated proteins, I did a Gene Ontology (GO) term 

enrichment analysis and obtained functional terms describing their location in the cell, 

molecular activities and broad physiological roles (the three main GO ontologies), which 

were over-represented in the set of putative S-palmitoylated proteins (Figure 4.4A). 

In terms of cellular location, the huge enrichment in membrane proteins is itself not 

meaningful as only the membrane fraction was used in the acyl-RAC assay. However, there 

is also enrichment of particular endomembrane systems components, including the plasma 

membrane, the Golgi apparatus, the endoplasmic reticulum (ER), cytoplasmic vesicles, or 

organelle membranes, but excluding the nuclear membrane. This is in agreement with the 

known common compartments of S-palmitoylated proteins: membrane compartments in 

general and the ER/Golgi to cytoplasmic membrane system in particular. Although 

palmitoylation in the nucleus and/or nuclear membrane proteins has been reported (Fontana 

et al., 2019), it seems to be limited to very few targets and would likely not lead to significant 

enrichment.  

Enriched terms from biological process and molecular function ontologies also reveal 

that the palmitoylome of Drosophila S2R+ cells mostly comprises proteins with localization 

and transporter activities (Figure 4.4A). For example, these include several different SNARE 

proteins which mediate vesicle fusion to the target membrane in vesicular transport from ER 

to Golgi (e.g. Bet1), retrograde transport from Golgi to ER (e.g. Sec20), or from Golgi to 

plasma membrane (e.g. Snap24), which has an important role regulating neurotransmitter 

release via synaptic vesicle fusion to neuronal membrane. Palmitoylation of SNARE proteins 

has been also observed in yeast (Roth et al., 2006) and mammals (Valdez-Taubas & Pelham, 

2005). Other transporter proteins directly enable the movement of ions and molecules across 
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Figure 4.4: GO enrichment analysis of S-palmitoylated proteins in S2R+ cells. (A) Barplot of the most 
significantly enriched functional terms in the three GO ontologies. Red vertical line indicates the 
adjusted p-value cut-off (0.05). Some bars are coloured differently to match the figure below. (B) 
Alternative network-like visualization of selected, non-redundant, enriched GO terms and proteins 
associated to those, created with the ClueGo+CluePedia plugin for Cytoscape (Bindea et al., 2009). 
Circles represent GO terms and their size is proportional to their significance (although all p-values < 
0.05); small diamonds represent proteins. Colours represent functional groups of closely related GO 
terms. For clarity, terms associated with ‘intrinsic component of membrane’, which are virtually 
associated to every protein, were excluded. 

the plasma membrane, like: Indy (“I’m not dead yet”), which transports Krebs cycle 

intermediates through the gut epithelium; the putative sodium-dependent transporter bdg 

(bedraggled) involved in R3/R4 photoreceptor cell fate commitment; and NtR, a predicted 

neurotransmitter-gated ion channel required for synaptic transmission (Figure 4.4B). In 

addition, there is significant enrichment in the G protein-coupled receptor (GPCR) signalling 

pathway, due to the presence of several different heterotrimeric G protein alpha (Gα) 

subunits (Galphai, Galphao, Galphas, Galphaq and cta, in Figure 4.4B). In mammals, 

palmitoylation of Gα targets the fully assembled G protein to the cytoplasmic face of the 

plasma membrane, where it binds to the GPCR and remains inactive until the arrival of a 

signal (Wedegaertner et al., 1993). Indeed, palmitoylation modifies almost every component 

of G protein signalling, including GPCRs and regulator proteins, and thus cycles of 

palmitoylation/depalmitoylation have a key regulatory role in the whole pathway (Smotrys & 

Linder, 2004). GPCR signalling mediates the response to numerous extracellular stimuli and 

is thus involved in a wide variety of physiological processes, such as sensory transmission, 

immune system activity regulation, or cell growth and metastasis. This observation suggests 

that palmitoylation-dependent regulation of this key signalling pathway is conserved in 

Drosophila. 

Another important subset of proteins are the DHHC PATs themselves, which result in 

enrichment in protein-cysteine S-palmitoyltransferase activity. Of the 22 DHHC PATs known 

so far in Drosophila, nine were identified in our acyl-RAC experiment (suggesting that at least 

those nine are expressed in S2R+ cells), of which seven were palmitoylated. Most of them 

are known (or inferred by homology) to be located in the Golgi apparatus (Dnz1, GABPI, 

CG5196, CG8314), and while for the others location in plasma membrane is also predicted 

(CG34449, Hip14 and CG1407), it has only been experimentally determined for CG1407 

(Figure 4.4B). That these enzymes were positively identified in the palmitoylome is not 

surprising as it has been shown that many DHHC PATs modify their substrates via a two-

step ping-pong mechanism where they undergo auto-acylation (Stix et al., 2020) (Figure 
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4.5A). Regarding the opposite process—depalmitoylation—, our palmitoylated protein set 

also includes several thioesterases. In mammals, S-palmitoylation of APT1/2 and the ABHD-

family thioesterases is also required for proper tethering to the plasma or endosomal 

membranes, while they can detach from them via auto-depalmitoylation (Figure 4.5B). Thus, 

thioesterase activity is also regulated by cycles of palmitoylation/depalmitoylation (Kong et 

al., 2013; Lin & Conibear, 2015). The Drosophila ortholog of the thioesterase APT1 (Apt1 or 

CG1885) was identified but not found to be significantly enriched by acyl-RAC, and thus we 

 

Figure 4.5: (A) DHHC PATs are integral membrane proteins which are first autopalmitoylated on the 
cysteine residue of the DHHC motif, which is located at the cytoplasmic face. Then, the palmitic acid 
is transferred to an acceptor cysteine of the substrate protein. (B) Mammalian acylprotein 
thiosterases (ATP1/2) undergo S-palmitoylation to localize to the membrane where they can carry out 
depalmitoylation of their substrates. In this process, their hydrophobic pocket accepts the palmitate 
and positions the substrate’s palmitoylated cysteine close to the serine residue of their active site. 
Finally, it can depalmitoylate itself to detach from the membrane. (C) Cysteine-rich N-terminal region 
of mammalian thioesterases ABHD17A-C where S-palmitoylation takes place is conserved in their 
Drosophila ortholog CG33096 (UniProtKB accession Q9VBXB). Figures A-B were obtained from (Ko & 
Dixon, 2018). 
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cannot confirm that is palmitoylated. However, I did find CG33096, a palmitoylated ortholog 

of the ABHD17 family, that shows conservation of the cysteine-rich N-terminal region where 

palmitoylation takes place (Figure 4.5C). This is the first evidence that members of this 

group of thioesterases are conserved and active in Drosophila. Thirdly, I also found 

palmitoylated Ppt1 (Figure 4.4), ortholog of the lysosomal thioesterase, which in mammals 

is also known to be subjected to palmitoylation, although it has been proposed that this does 

not affect its location but rather results in decreased enzyme activity (Segal-Salto et al., 

2016). 

Overall, location and function of the proteins in the Drosophila S2R+ palmitoylome agree 

with known roles for S-palmitoylated proteins and further confirm the reliability of our 

dataset. Moreover, despite the fact that GPCR repertoire of invertebrates and vertebrates 

varies considerably, these results suggest that dynamic S-palmitoylation regulation of GPCR 

signalling could have an origin prior to the formation of the major GPCR superfamilies 

(Nordström et al., 2011). 

4.2.2   The Drosophila melanogaster DHHC PAT interactome 

4.2.2.1   Identification of DHHC PAT interactors 

To identify potential substrates of DHHC PAT enzymes, our collaborators used BioID or 

proximity biotinylation. This is a technique that allows the in vivo identification of protein-

protein interactions through the expression of a protein of interest fused to the bacterial 

biotin ligase mutant BirA (R118G), leading to covalent biotinylation of nearby proteins (and 

likely interaction partners). Standard affinity purification followed my mass spectrometry 

can then be used to identify biotin-tagged proteins (Roux et al., 2018) (Figure 4.6A). The main 

advantage of BioID is that it can capture weak or transient interactions, such as those 

between enzymes and their substrates, with the possible disadvantage of also retrieving 

non-interacting proteins near to the target (Liu et al., 2018). BioID had been successfully 

applied to many mammalian systems, but so far not in Drosophila. Our collaborators 

optimized conditions and developed a protocol that enabled the use of BioID in the S2R+ 

embryonic hemocyte-like cell line of this organism. The viability of this protocol for 

identifying specific interactions between DHHC PAT and their putative client proteins was 

first verified using the Drosophila Huntingtin-interacting protein 14 (dHip14) and Snap25, 

which is an interaction known and shared with their mammalian orthologs (Figure 4.6B). 
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After establishing that BioID works in this organism, it was extended overexpressing 

BioID-fusion constructs for ten different Drosophila DHHC PATs (dHip14, CG8314, CG5196, 

CG5880, Patsas, app, GabPI, CG1407, CG4676 and Dnz1), and performed two independent 

experiments (with three replicates per DHHC PAT) to identify their interactomes and putative 

client spectra. A total of 2162 proteins were identified between both experiments, of which 

487 proteins were enriched in at least one DHHC PAT-BioID sample compared with the 

negative control (S2R+ cells transfected with empty vector), and thus considered potential 

interactors for one or more of the ten target enzymes.  

 

Figure 4.6: (A) Schematic illustration of the basis behind BioID method. Target protein (bait) is fused 
with the biotin ligase BirA which, after adding biotin, is able to biotinylate in situ all proteins located 
near the bait (preys) and thus candidate interactors. (B-C) Western blot and quantification 
corresponding to BioID test assay with the co-overexpressed DHHC-PATs dHip14, Patsas and app as 
BioID-fusion target proteins, together with FLAG-dSnap25 wild type (25) and FLAG-dSnap25 proline 
mutant (25*). dSnap25* contains a proline-to-alanine mutation at a key residue in the known dHip14 
binding motif which is known to inhibit the interaction (Lemonidis et al., 2015). As expected, only the 
interaction between dHip14 and the wild type version of dSnap25 is recovered, confirming that the 
assay is specific enough. 
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Next, I checked the overlap with the previously determined palmitoylome and found that 

only 25% of S-palmitoylated proteins could be assigned to any DHHC PAT (Figure 4.7A). The 

fact that no interactions were found for the large majority could be due to several factors. 

First, the experiments only covered 10 out of the 22 total DHHC-PATs (known so far) in 

Drosophila, thus many of these S-palmitoylated proteins might be substrates of the enzymes 

that were not tested. Second, for the ten chosen enzymes, we did not consider existing 

alternative splicing isoforms. Most DHHC PATs have several isoforms (e.g. CG1407 has at 

least 6) that differ mainly in their C-terminal cytoplasmic tails, which are believed to be 

important for protein recognition, and therefore result in different substrate spectra (Howie 

et al., 2014). Lastly, despite the high sensitivity of the BioID technique, this new protocol for 

the Drosophila S2R+ cell line was just established by our collaborators and it might still not 

be as efficient as in other systems. It is likely that many enzyme-substrate transient 

interactions are missed. 

 

 

Figure 4.7: (A) Venn diagram showing the overlap between the proteins determined to have at least 
one putative DHHC-PAT interaction in the BioID experiment #1 (pink bubble), BioID experiment #2 
(green bubble) and the proteins determined to be S-palmitoylated in the acyl-RAC assay (purple 
bubble). (B) Barplot showing the distribution in the number of DHHC-PAT interactions (up to 10) for 
those proteins that showed at least one interaction in any or both BioID experiments. Bars are divided 
into proteins that were deemed palmitoylated and those that were not. In addition, line plots in the 
right axis indicate the percentage of palmitoylated proteins and the percentage of proteins with a 
palmitoylated mammalian ortholog in each bar. 
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4.2.2.2   Target proteins interact with several DHHC PATs 

Substrate specificity of the different DHHC PATs still remains obscure even for better-

researched organisms. For many important palmitoylation targets, the responsible DHHC 

PATs have not been yet clearly discerned. Although S-palmitoylated proteins can be modified 

by more than one DHHC PAT (Hou et al., 2009), the degree of promiscuity among PATs is 

still unknown. According to yeast and mammalian DHHC PAT−substrate analyses, most 

client proteins are unlikely to be palmitoylated by more than 4-6 different enzymes (Greaves 

& Chamberlain, 2011). However, in yeast most of the seven DHHC PATs can be knocked out 

without adverse effects, indicating that some proteins might be palmitoylated by any 

available enzyme (Roth et al., 2006) or that they could suffer spontaneous palmitoylation in 

the presence of palmitoyl-CoA, as suggested previously (Corvi et al., 2001). Conversely, BioID 

has a chance of recovering proteins that are not direct substrates or binders of the target 

DHHC PAT, but simply neighbouring, accessory proteins within the 10 nm labelling-distance, 

which are not functionally relevant (Figure 4.6A). Thus the question that remains open is 

how high the number of DHHC PAT interactions per client protein can be without being 

simply the result of co-localization. 

In Drosophila S2R+ cells, I found that identified putative client proteins interact with 3.5 

DHHC PATs on average. I also looked at the distribution in the number of DHHC PAT 

interactions per protein, under the assumption that enrichment of interacting S-

palmitoylated proteins could be indicative of real enzyme client proteins (Figure 4.7B). I was, 

however, not able to infer a range or maximum limit to the number of DHHC PAT interactions 

per client protein, as the fraction of S-palmitoylated does not show a clear preference (blue 

line in Figure 4.7B). However, the range between 4-6 DHHC PATs seems to be the most 

enriched, which agrees to the previous estimations from mammals. In addition, I used the 

percentage of proteins with palmitoylated mammalian orthologs as another indicative (red 

line in Figure 4.7B), but found these numbers to be too variable to indicate any enrichment. 

I did notice that there were zero S-palmitoylated proteins within those that interact with the 

10 DHHC PAT. Despite the high degree of overlap in their client spectra, it seems unlikely 

that real target proteins can be palmitoylated by all 10 enzymes even if only for their different 

cellular locations, thus it can be concluded that many of these 10-interaction proteins are 

suspected of being general accessory or palmitoylation-irrelevant proteins. 
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4.2.2.3   DHHC PATs can be divided in two groups according to preference for  
     transmembrane substrates or substrates with the Hip14-binding motif 

Next, I studied and compared the results for the different DHHC PATs (Figure 4.8A). While 

the number of potential interactors for each enzyme is quite diverse―ranging from little more 

than 100 in app and Hip14 to more than 200 in CG8314 and CG4676―the fraction of these 

that are S-palmitoylated (according to the Drosophila S2R+ palmitoylome) remains relatively 

constant, at ~10%, indicating that the different sizes in substrate spectra might be real. 

The current paradigm is that most acyltransferases show strong overlap in their substrate 

spectra (Hou et al., 2009). However, studies in yeast and mammals have shown that PATs 

can be grouped according to the relative position of the palmitate-accepting cysteine residue 

in relation to transmembrane domains in their substrates (Roth et al., 2006), or according to 

their preference for soluble proteins and for integral membrane proteins (Ohno et al., 2012). 

To check whether substrate preferences could be inferred from our data, I obtained 

transmembrane domains (TMD) annotations for all target proteins (either from UniProtKB 

directly or predicted; see Methods), and found a certain bias of a group of four DHHC PATs 

(group 1: CG8314, CG5196, CG5880 and Patsas) towards substrates with TMDs compared 

to the other six enzymes (group 2: app, Hip14, GabPI, CG1407, CG4676 and Dnz1) (Figure 

4.8B). On average 39% of interactors for enzymes in group 1 have at least one TMD, as 

opposed to 22.3% for enzymes in group 2 (t test p-value < 0.01). If this comparison is 

restricted to S-palmitoylated interactors, which are more likely to be real DHHC PATs 

substrates, this difference becomes even more apparent: 84% v. 52.4% (t test p-value << 

0.01). Further classifying interactors into single TMD- or multiple TMD-containing proteins 

revealed that there were no significant differences between the group 1 and 2 of DHHC PATs 

in the fraction of multi-pass membrane proteins, rather the big gap was due to a sharp 

difference between the percentage of single-pass membrane proteins (60% v 24%, t test p-

value << 0.01; not shown in Figure). This is consistent with previous findings that already 

pointed to DHHC PATs preference differences in regard to the number of membrane-

spanning domains of their substrate proteins (Ohno et al., 2012).  

I did then a similar analysis calculating now the fraction of interactors that have the 

known Hip14 (or zDHHC17)-recognition motif. When focusing on S-palmitoylated target 

proteins, I observed an interesting correlation between the same two groups of DHHC PATs: 

those enzymes that show a preference for transmembrane proteins seem to disfavour 

interactions with proteins containing the Hip14-binding motif, and vice versa (Figure 4.8C).  
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Figure 4. 8: (A) Number of identified interactors in the BioID experiments (bar plot) and the fraction of 
those that were found palmitoylated (line plot), per DHHC PAT. (B) Fraction (%) of interactors with at 
least one transmembrane domain with respect to the total number of interactors (blue bars) or the 
number of S-palmitoylated interactors (grey bars). (C) Same as B but showing the fraction of 
interactors that contain the Hip14-binding motif. (D) Cluster analysis of DHHC PATs according to the 
Pearson correlation coefficients calculated by pairwise comparison of their interaction profiles with 
respect to all interactors or (E) only S-palmitoylated interactors. In both cases, the DHHC PATs cluster 
into two clearly defined groups of four and six members, respectively. 
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Group 1 enzymes, with the exception of CG8314, have no S-palmitoylated interactors that 

contain the Hip14 motif; in contrast, 23% of S-palmitoylated interactors for group 2 enzymes 

have the motif (1.25% v. 23%, t test p-value <<< 0.1). Cluster analyses of the DHHC PATs 

interaction profiles using all identified interactors (Figure 4.8D) ―and more confidently, when 

using only those that are S-palmitoylated (Figure 4.8E) ― confirmed the broad subdivision of 

the ten enzymes into two groups according to their substrate preferences. 

More specific substrate similarities between DHHC PATs are difficult to infer and even 

more difficult to relate to particular structural features of the enzymes. According to the 

cluster analysis, the protein sharing the most similar interaction profiles are CG4676 and 

Dnz1, both of which are located at the ER and contain 4 TMDs; as well as Patsas and CG5880, 

also having 4 TMDs but located at the Golgi (Figure 4.9C). dHip14 and Patsas are both 

orthologs to the zDHHC17/13 mammalian S-acyltransferases (mammalian HIP14), and thus 

the only enzymes that have Ankyrin repeat regions which mediate substrate recognition via 

the Hip14-binding motif (Lemonidis et al., 2015). Strikingly, they not only cluster in different 

groups but none of Patsas S-palmitoylated interactors actually contain this motif (Figure 

4.8C). This agrees with the previous co-expression experiments with Snap25 and mutant 

Snap25 that showed that only dHip14 interacts with this known substrate via the Hip14-

binding motif (Figure 4.6B-C). This is also in agreement with the notion that dHip14 and 

Patsas are more distantly related than their mammalian orthologs (ZDHHC17/HIP14 and 

ZDHHC13/HIP14L) (Bannan et al., 2008).  

In terms of cellular location, Drosophila DHHC PATs are mainly located at the ER or the 

Golgi with the exception of CG1407 that, like its human counterpart ZDHHC20, localizes on 

the plasma membrane (Bannan et al., 2008; Ohno et al., 2006) (Figure 4.9C). Enrichment 

analysis of the target proteins for the two DHHC PAT groups revealed that, while location at 

the Golgi is shared equally, there is specific enrichment of endoplasmic reticulum location 

in target proteins of group 1 enzymes (CG8314, CG5196, CG5880 and Patsas), and of plasma 

membrane location in the targets of the group 2 enzymes, which is likely due to the client 

proteins of CG1407 exclusively. Considering that, out of the four group 1 enzymes, CG5196 

is reportedly the only one primarily located at the ER (the others localize in the Golgi), 

enrichment of their target proteins in this compartment is surprising. This might be another 

hint that the same client protein might be palmitoylated at different endomembrane system 

components. 
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Figure 4.9: (A) Canonical structure of DHHC PAT with conserved motifs. (B) The DHHC motif within 
the cysteine-rich region is conserved among the 10 PATs studied here, with the exception of GabPI 
where Cys is substituted by Ser. (C) Schematic showing different structural features and 
corresponding mammalian orthologs for the 10 DHHC PATs, which are divided in group 1 (green) and 
group 2 (blue) defined by substrates preferences and clustering analysis (see Fig 4.8). 

Examples of proteins that seem to be preferential clients of the group 1 DHHC PATs are 

the SNARE proteins Bet1 and Use1, both single-span transmembrane proteins involved in 

vesicle-mediated transport. As reported before (Valdez-Taubas & Pelham, 2005), DHHC PATs 

might have here a protective role in cellular quality control of integral membrane proteins, 

since palmitoylation of Cys residues on the cytoplasmic end of their TMDs protects proteins 

from premature ubiquitination. Alternatively, exclusive targets of group 2 enzymes include 

several plasma membrane proteins such as the proton-coupled amino acid transporter-like 

protein pathetic (path), the phospholipid scramblase (scramb2) or the protein ben (be), all 

with roles in the synaptic function. In addition, CG33096, the Drosophila ortholog of the 

mammalian thioesterase family ABHD17A-C was found to be a substrate of the DHHC PAT 

Dnz1, providing further evidence that it is a thioesterase (as discussed in section 4.2.1.5, 

thioesterases require to be palmitoylated). The DHHC PAT Dnz1 is also interesting because 
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even though it has been reported to locate at the ER (Bannan et al., 2008), it is most likely an 

ortholog of human ZDHHC21, which is primarily localized at the plasma membrane (Ohno et 

al., 2006). I found that, together with CG1407, Dnz1 is the DHHC PAT with the highest fraction 

of plasma membrane client proteins, and thus hypothesize that this enzyme, similarly to 

ZDHHC21, could have more than one location in the cell. 

     Finally, in contrast to the other DHHC family members, GabPI does not actually contain 

the conserved DHHC motif but a DHHS one, replacing the functionally essential Cys residue 

for a Ser (Figure 4.9B). In fact, GabPI has been reported to lack palmitoylation activity and 

instead to have a role in the proper localization of galactosyltransferases in the Golgi through 

tight interactions (Johswich et al., 2009). The high number of interactors that were identified 

for GabPI, if not simply the experimental result of promiscuous binding, could suggest a 

similar activity towards a wider range of proteins.

 

4.3   Materials and methods 

4.3.1   Experimental procedures 

Extensive information about experimental methods can be found in our publication 

(Porcellato et al., 2022). All experimental work was exclusively done by Dr. Elena Porcellato, 

Dr. Christoph Metzendorf and others at the group of Prof. Dr. Felix Wieland, thus it will not 

be covered here. 

4.3.2   Data analysis & statistics 

The MaxQuant software (Tyanova et al., 2016) was used for processing the raw mass-

spectrometry data. The resulting protein intensities were normalized by the median 

difference between each sample and the negative controls. Subsequent analysis, calculation 

of fold-changes and respective significance was done using a novel method, proDA (version 

0.1.), developed by two collaborators, Constantin Ahlmann-Eltze and Dr. Simon Anders, and 

which specifically deals with the common problem of label-free proteomics that is the large 

number of non-random missing values. Instead of simple value imputation, proDA uses the 

overall dropout-probability for each intensity and empirical Bayesian priors to calculate a 
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principled statistical test, recovering more true positives while controlling the false discovery 

rate (Ahlmann-Eltze & Anders, 2019). 

4.3.3   Bioinformatics analysis 

Protein identifiers, sequences, descriptions, and gene names were obtained from UniProt 

(Bateman et al., 2021). As UniProt contains many redundant and poorly annotated entries 

for Drosophila melanogaster, all proteins were mapped to unique entries of Flybase (Larkin et 

al., 2021). Flybase is a dedicated and centralized resource with highly curated data of 

Drosophila melanogaster genes. 

To determine mammalian orthologs for Drosophila proteins, I used the DRSC Integrative 

Ortholog Prediction Tool (DIOPT) (Hu et al., 2011) to search against human, mouse and rat 

proteomes, selecting only those orthologs with the highest confidence. Proteins were 

considered to have mammalian orthologs if there was a hit in any of these three organisms, 

although human alone was sufficient for 95% of proteins, as Drosophila orthologs found in 

rodents and not humans are rare. The palmitoylation status of these mammalian orthologs 

was then determined by searching in SwissPalm (Release 3 2019-09-08) (Blanc et al., 2015). 

If present in this database, mammalian proteins were considered palmitoylated; in addition, 

if they were reported by at least one targeted study, or by at least two different experimental 

techniques, they were additionally classified as high confidence. The human palmitoylome 

fraction (17.5%) was calculated as the current number of human proteins in SwissPalm 

(3593) divided by the human proteome size in UniProt (20577 in release 2022_01). 

Palmitoylation sites were predicted using the program CSS-Palm 4.0 (Ren et al., 2008) 

with high threshold. CSS-Palm was the first palmitoylation site predictor (F. Zhou et al., 2006) 

and has been updated and improved since, partly thanks to the progressive publication of 

more experimentally determined palmitoylation sites that can be used as training data. Since 

the algorithm predicts palmitoylation sites, any protein with predicted sites was considered 

palmitoylated (Figure 4.3D). 

Data about transmembrane domains were obtained from UniProt if available, otherwise 

predicted using TMHMM-2.0 (Krogh et al., 2001). 

Functional enrichment analyses of Gene Ontology (GO) terms were performed using 

Fisher’s Exact test and False Discovery Rate (FDR) for multiple-testing correction, through 

the PANTHER overrepresentation tool (Mi et al., 2019). For putative S-palmitoylation proteins 
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resulting from the acyl-RAC experiment, the full list of proteins identified by the experiment 

was used as the appropriate background gene list. 

 All computer analyses were performed using Python. 

4.3.4 Data availability 

Fully annotated tables containing the S2R+ cell palmitoylome and DHHC-PAT interactome 

are available online at russelllab.org/jcgonzalez 

4.4 Conclusion 

Due to its broad range of substrates, palmitoylation is involved in multiple cellular processes 

and has thus gained attention in recent years, particularly since it has been linked to several 

neurological diseases and also to cancer. Consequently, knowledge of the mammalian 

palmitoylome and involved enzymes has also increased substantially. In contrast, there is 

almost no information of palmitoylation in Drosophila. Here, we provided the second and 

most comprehensive list of putative S-palmitoylated proteins in this model organism, the 

first interactome―including potential substrate-client spectra―for 10 DHHC PATs, and many 

new insights that highlight the functional similarities and high degree of conservation 

between palmitoylation-regulated proteins and processes in Drosophila and mammals. 

These new insights and available data provide a useful resource that the community can 

build upon to further characterize this important protein modification. Future experiments 

could iteratively help to expand the catalogue of S-palmitoylation targets as well as to 

validate those previously established and ultimately elucidate the level of substrate 

specificity and redundancy for the DHHC protein family. 
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