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Abstract

Scene reconstruction from camera images is a challenging task which benefits many
applications, from visual effects to virtual and augmented reality applications
(VR/AR) over industrial quality inspection to robotics and autonomous driving.

This thesis is composed of four contributions to the field of passive 3D scene
reconstruction: a) A fractal, passive, self-identifiying calibration target which
provides a high number of calibration points independent of magnification. b) A
general, ray-based calibration approach which allows highly accurate calibration of
central and non-central single and multi-camera setups, from a passive calibration
target. The approach is capable of estimating the target imperfections which
enables fabrication of the calibration target via simple printing, where previously
an active target had to be employed. ¢) A light field depth estimation method,
which exploits the rich constraints from the many views of a light field capture to
improve depth estimation. To this end an improved occlusion model is introduced
and the resultant error terms are locally optimized using a fast patch-match
based optimization scheme. The accuracy of this approach improves upon the
previous state-of-the-art, as demonstrated in a multi-metric light field evaluation
benchmark. d) Finally, the light field depth estimation approach is extended to
exploit polarization cues captured with a light field polarization camera, which
improves the reconstruction quality on smooth, glossy surfaces.



Zusammenfassung

Szenenrekonstruktion aus Kamerabildern ist eine zentral Aufgabe von der viele
Anwendungsgebiete profitieren. Von Visual Effects tiber Virtual und Augmented
Reality (VR/AR) tiber Qualitatskontrolle zu Robotik und selbstfahrenden Autos.

Die Vorliegende Arbeit besteht aus vier Beitragen zum Gebiet der passiven
3D Szenenrekonstruktion: a) Einem passiven, selbstidentifizierenden fraktalen
Kalibrier-Ziel, welches ein hohe Anzahl von Kalibrationspunkten unabhénig
von der Vergroferung bereitstellt. b) Einem generischen, strahlenbasiertem
Kalibrationsverfahren, welches prazise Kalibration fiir zentrale und nicht-zentrale
Einzel- und Mehrkameraaufbauten ermoglicht. Das Verfahren ermdoglicht die
Berechnung der Verformungen des Kalibrierziels, was es erlaubt einfache gedruckte
Ziele zu verwenden, anstelle der vorher bendtigten aktiven Kalibrierziele. ¢) Eine
Methode zur Tiefenberechnung aus Lichtfelddaten, welche die vielen Sichtpunkte
der Lichtfelddaten ausnutzt um die Genauigkeit der Tiefenberechnung zu steigern.
Zu diesem Zweck findet ein verbessertes Verdeckungsmodell Verwendung. Die
Resultierenden Fehlerterme werden durch einen schnellen Patch-Match basierten
Ansatz optimiert. Die Genauigkeit wird gegentiber dem vorherhigen Stand
der Technik verbessert, was anhand eines Benchmarkdatensatzes demonstriert
wird. d) Auflerdem wird die Tiefenberechnung um die Méglichkeit erweitert
Polarisationsinformationen auszunutzen, was die Genauigkeit im Bereich glatter,
glénzender Oberflichen verbessert.
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Introduction

1.1 Motivation

Scene reconstruction from camera images is useful for a wide range of applica-
tions, from visual effects to virtual and augmented reality applications (VR/AR)
over industrial quality inspection to robotics and autonomous driving. Light
field imaging is one of the most promising approaches in the range of passive
measurement techniques, providing very high accuracy compared to for example
stereo imaging. In addition, light field imaging allows the extraction of additional
scene properties such as reflectance parameters, which is not directly possible for
other methods.

To make light field imaging usable in real world scenarios, the camera cali-
bration, which describes the relation between the images processed by the scene
reconstruction and the real world geometry, has to be of equally high accuracy as
the light field processing. Hence, highly accurate, but still easy to use calibration
approaches are required.

1.1.1 Calibration

Common methods for calibrating camera systems utilize passive targets with
checkerboard patterns, which can be fabricated by printing. Such targets are easy
to detect by a large range of available software, like the OpenCV library [13].
In computer vision tasks, it is already possible to locate image features with an
accuracy down to a few hundreds of a pixel, for example in light-field measurements
[23]. However, the camera calibration, critical in describing the relation between
the world and the observed features, commonly achieves an accuracy not much
below a tenth of a pixel, also visible in the evaluation, see section 3.4.4. Thus, a
lot of the accuracy cannot be exploited due to the lack of a suitable calibration.
Research in geometric camera calibration dates back to the photogrammetry
community, see e.g. [14, 16, 26]. Over the decades much research has been
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conducted, improving both the models used to describe the image formation, and
the methods available to estimate the parameters of these models.

Due to its simplicity in usage, the current de facto standard for camera calibra-
tion is Zhang’s method [106], implemented famously in the Camera Calibration
Toolbox by Jean-Yves Bouguet [12] and also ported to OpenCV [13] as well
as many other libraries. For this approach the user takes images of a planar
calibration target from several viewpoints. From the images, well-known target
locations are detected, and the parametric calibration model is estimated from
those target-to-image matches via a least-squares approach which simultaneously
estimates the camera extrinsic and intrinsic parameters.

While this approach is both robust and simple to use, it comes with some
limitations. Firstly, imperfections in the target reduce accuracy, and should be
corrected when estimating the calibration parameters [3, 8, 91]. The wide range
of lens designs and associated distortions may require secondary and specialized
distortion terms [50, 83]. And finally, extreme lens designs, such as ultra-wide,
fisheye, omnidirectional and catadioptric lenses require a non-central formulation
where the camera does not actually possess a single center of projection [61].

All of these limitations have been addressed in the past using specialized models.
However, finding the right parametric model for a given camera/lens combination
is difficult, and eventually it is difficult to assess whether a limited accuracy is
caused by an imperfect calibration model, inaccurately fabricated target or limited
localization accuracy. Indeed, even estimating the accuracy of the calibration
requires extra constraints in the calibration setup, like external reference points,
or a stereo setup [8].

The general camera model, also called unconstrained calibration, as described
by Grossberg and Nayar [40], models a camera as a collection of 3D rays, called
raxels by them, where each 3D ray maps to a 2D point on the camera sensor.
This formulation can describe any of the effects mentioned above. Hence, a
single model can be used for any type of camera, be it central or non-central.
In addition, even central, high quality lenses may be limited by the parametric
model as shown by Bergamasco et al. [10], in which case usage of the ray based
model can increase accuracy.

However, from a practical perspective, ray based calibration methods come
with one crucial disadvantage: With current methods, deriving the general camera
model is much more involved, compared to the simple planar target based methods
described above. While Bergamasco et al. [10] make a good case for improving
calibration accuracy using the ray based model, they require a calibration setup
with an active target. Such a requirement severely limits the usability of the ray
based model. Hence, in practice such approaches are only used in extreme cases,
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where the classic approaches fail to deliver acceptable results. In these cases this
work provides an approach which offers the accuracy of the ray based method, but
without the considerable effort and the limitations imposed by active calibration
targets.

1.1.2 Light Field Depth Estimation

Light-field imaging allows highly accurate depth estimation, by sampling a scene
from many viewpoints. The oversampling increases accuracy and the high number
of viewpoints reduce the chance of encountering a sample which is occluded in all
other views.

This means that compared to the otherwise similar problems of stereo depth
and optical flow, occlusion handling has a much bigger impact in light-field
depth estimation. An inaccurate occlusion model will limit reconstruction, as
foreground and background samples are confused within the data term around
object boundaries.

The importance of occlusion handling is well known, and all state-of-the-art
methods for light-field depth estimation implement some form of explicit occlusion
handling. However, previous methods implement occlusion handling as a problem
independent of the optimization step, often discarding a lot of data from the input
light field, and making no effort to enforce consistency between the reconstructed
depth and the used occlusion model.

Hence, it would be beneficial to merge the previously separated occlusion
handling into the optimization. While this makes cost-volume based optimiza-
tion unfeasible, a randomized solver based on PatchMatch Belief Propagation
(PatchMatch Belief Propagation (PMBP)) [73] can effectively solve such a model.

Thus, the first goal for this work is to provide a calibration approach which is
both very accurate, and easy to use, using a novel fractal calibration target, as
well as a generic ray based camera calibration.

The second goal is the design of a new depth estimation method for light
field imaging, which makes better use of available light field data, by improving
occlusion handling which leads to improved estimation accuracy. Finally, this
method is extended to light field polarization imaging, which improves depth
estimation on specular unstructured surfaces.
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1.2 How to read this Thesis

This thesis makes extensive use of internal references, which can directly be
followed when using the PDF version of this document. These references link the
different sections of this document, to support non-linear reading. In addition,
several glossaries are provided, a terminology glossary, which contains terminology
and abbreviations used throughout this thesis, a list of symbols, which is also
directly accessible by clicking on any math symbol when using the PDF version
of this thesis, as well as a list of figures, list of tables and the bibliography.

The structure of the thesis consists of an introduction in chapter 1, which
details the motivation and the contribution of this work. It also lists the related
work in section 1.3. The final chapter lists the conclusion in chapter 6 and gives
a summary and an outlook. The technical introductions appear at the beginning
of the respective topical chapters.

The rest of the work is structured around the two main topics: Light field depth
estimation, and camera calibration. In chapter 2 basic concepts and definitions
of camera geometry and calibration are introduced. On this basis chapter 3
introduces the novel fractal calibration target, and an evaluation which compares
it against the classic checkerboard target. Based on the fractal target is the novel
ray based calibration approach presented in chapter 4, including an evaluation
comparing against parametric calibration approaches. Chapter 5 is concerned
with the novel depth estimation method build around an improved occlusion
handling approach, and extensions to the method based on BRDF estimation
and polarization imaging in section 5.7. Finally, chapter 6 gives a summary of
the thesis and points out possible future works.

1.3 Related Work

The following details the related work grouped into four categories: Calibration
target, ray based camera calibration, light field depth estimation and polarization
imaging. Note that this section is concerned with the closely related works and
the current state-of-the-art, for more background information please refer to the
introduction into camera calibration in chapter 2, as well as to the introduction
to light fields in chapter 5.
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1.3.1 Passive Planar Calibration Targets

For passive calibration targets the related work can be grouped in two categories.
First calibration point localization, which is concerned with high accuracy lo-
calization of feature points from images. And secondly identification, which is
concerned with the overall design of a calibration target, so feature points can be
matched between multiple images.

Localization For passive targets there are two main types of localization features:
Checkerboard corners and circular markers.

For the checkerboard localization three main principles have been established.
The first method uses line intersection, where lines are refined individually
and the intersection of two lines defines the calibration points [4]. The second
approach uses functional descriptions of saddle points [55, 59, 67], where the local
neighborhood is approximated by a 2D polynomial in which the corner point
can be derived analytically. In comparison to line intersection, the saddle point
method is more suited to smaller neighborhoods and at higher resolutions achieves
either no improvements [67] or even worse results [59].

The third method makes use of orthogonal gradients, as implemented for
example by OpenCV [13]. It exploits the property that the vector from the
desired corner point to any edge pixel is orthogonal to the gradient vector in
this pixel. This provides better results compared to line intersection as shown by
Atcheson et al. [4]. Note that line intersection additionally suffers from distortion
bias [59].

For circular markers the modeling of the transformation from a perfect circle to
the observed image plays the largest role. Mallon et al. [59] evaluate localization
performance on real and simulated images, under blur, noise, perspective and
distortion. They conclude that circular patterns are dominated by perspective and
distortion bias and recommend, for circular patterns, the usage of small (10px)
circles and the correction according to the distortion model. Consequently, Datta
et al. [22] as well as Douxchamps and Chihara [24] use an iterative refinement
process which alternates between updating the camera model and refinement of
the calibration marker image location. While this gives high quality results this
approach inherently links the camera calibration with the marker refinement which
makes the process slow and inflexible, when compared to a two-step approach
where marker refinement and camera calibration are separate.
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Identification Calibration targets combine feature points, as described above,
with a specific structure or code-pattern, to enable automatic matching of feature
points between different images of the same target.

Before being used for camera calibration, self-identifying planar markers were
common in augmented reality applications, see Zhang et al. [105] for a comparative
study. More recent examples of this are the works of Sattar et al. [75] and
Bergamasco et al. [9].

Based on these ideas Fiala [28, 29] and Fiala and Shu [30] proposed the ARTag
marker system, explicitly for camera calibration, which is based on square markers
with a binary payload for identification. The binary code makes use of forward
error correction, to improve robustness and to uniquely identify the otherwise
ambiguous orientation, while localization is provided by line intersections of the
marker borders. The CALTag marker system by Atcheson et al. [4] improves
on this by utilizing a checkerboard like structure, which improves localization
accuracy as checkerboard corner locations can be localized using subpixel saddle
point refinement. At the same time Olson [66] improve the robustness of the
identification code of ARTag, by optimizing the coding scheme. Both approaches
can also deal with limited occlusions. Garrido-Jurado et al. [34] also improve the
robustness of the coding and add explicit occlusion handling, mostly targeted at
AR applications.

Another approach by Daftry et al. [21] uses circular markers with an angular
binary code, while da Camara Neto et al. [20] use a checkerboard pattern, where
squares are colored to provide identification.

A possible alternative to these passive methods that should also be mentioned
here are active targets, for example using fringe projection or active phase targets
(LCD screens). While such approaches can achieve high accuracy they come
with their own set of constraints, like requiring an extra device with control
and synchronization. This work focuses on passive targets which can easily be
fabricated by printing, and are therefore more practical outside of controlled lab
setups, see also section 2.4.2.

1.3.2 Ray Based Camera Calibration

Camera calibration using a ray based model has a long history, going back to
two plane calibration methods by Martin et al. [60]. Grossberg and Nayar [40]
introduce the concept of the raxel which associates a ray with an image pixel and
also describes the radiometric properties of the imaging system. They calibrate
cameras using known positions of an active target.
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Ramalingam et al. [69] and Sturm and Ramalingam [93] perform the calibration
using a passive target observed from unknown positions and interpolate interme-
diate samples from the sparse target using local homographies. However, while
the resultant model is useful to assess camera properties such as non-centrality,
they do not provide a method for undistortion of this irregular, sparse ray model.
In addition, the used targets make it difficult to obtain reference points close to
the image borders.

A different approach is adopted by Miraldo et al. [63], who assume smoothness
of the general camera model and describe it using radial basis functions. Their
calibration setup requires the observation of points with known world coordinates.

Later methods concentrate on active targets to derive dense image-to-target
correspondences, and achieve high accuracy [8, 65], but still require perfect target
geometry. Bergamasco et al. [10] apply this approach to central cameras, and
can show that a ray based, but central, model already improves accuracy, due to
better modeling of distortions not adequately described by the parametric model.
Our approach goes one step further by keeping the model fully unconstrained
and abolishing the requirement for an active target.

All works mentioned above require perfect target geometry, up to the accuracy
of the calibration model. The joint estimation of feature locations and camera
parameters is common for structure from motion pipelines [82], where camera
calibration is often performed without calibration targets. Yet all ray based
calibration methods assume a perfectly planar target. However, highly accurate
targets are expensive, especially in larger sizes, as well as still limited in accuracy
[8, 91]. For central camera calibration, the advantage of estimating target defor-
mations for approximately planar targets has been examined by Albarelli et al.
[3] as well as by Strobl and Hirzinger [91], who also demonstrate improvements
in calibration accuracy even for a highly planar metallic target.

1.3.3 Light Field Depth Estimation

In the following, existing methods for depth estimation are discussed, focusing
the description on the occlusion handling.

Where the methods are also included in the quantitative evaluation, the ab-
breviation is noted in square brackets. Abbreviations are identical to the ones
submitted by the respective authors to the 4D Lightfield Benchmark [47, 48]
and all method results, including ours, can also be compared on the benchmark
website [47].

A very simple method of estimating the depth from light field data is the
structure tensor approach introduced to light field imaging by Wanner et al. [98],
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which estimates local orientations in an epipolar plane image (EPI) from image
derivatives. The raw results can then be optimized using various optimization
approaches [97, 98, 100] and multi-orientation analysis can be applied to get some
estimates for reflective or transparent surfaces [99].

Neri et al. [64, RM3DE] perform multi-resolution block matching, adapting
the window size with some local gradient measure, and performing matching
independently for different viewpoint directions from the center view. Occlusions
are handled by using only the best match from the directional EPIs for the final
median-filter based post-processing.

Lin et al. [53] build a focal stack from the light-field data, and exploit the
symmetry around the true depth in the stack to provide depth estimates, which
are then optimized in a cost volume. A heuristic is employed to generate a
separate occlusion map which is used to switch to an alternate cost for occluded
pixels prior to the cost volume optimization.

Strecke et al. [90, OFSY_330/DNR]| extend on this idea by improving the
occlusion handling using four partial focal stacks representing the four viewpoint
directions of a cross-hair subset of the light field, and using only the minimal
cost from the horizontal and vertical direction, which should be less affected by
occlusions. The method is notable for the explicit optimization of surface normals
in addition to depth, which improves the surface quality of the reconstruction.

Williem and Park [101] introduce two independent cost functions. Angular
entropy, which is a correspondence cost based on the entropy of photo-consistency,
and an adaptive defocus cost, both of which show some robustness against
occlusion. Reconstruction is then based on cost-volume filtering with graph
cut. In a later work they improve this method, [102, CAE] modifying both cost
functions to further improve the robustness against occlusion.

The Spinning Parallelogram Operator by Zhang et al. [104, SPO] scans the
depth volume with a histogram comparison operation, which compares the areas
left and right of the EPI line, defined by the respective disparity. This histogram
comparison is relatively robust to at least single occlusions, hence no extra
occlusion handling is performed in the guided filter based cost volume processing
of the local cost estimates. Sheng et al. [85, SPO-MO] expand on this approach
and add explicit occlusion handling by regarding multi-orientation EPIs and
selecting a single unoccluded one for the calculation of the cost volume, according
to an occlusion heuristic.

All of these methods make use of some form of cost volume optimization [53,
85, 90, 101, 102, 104], if not using a simple filter based approach [64]. Occlusion
handling is always separated from the cost volume optimization and comes in
several variants: By using cost functions robust against occlusions [101, 102, 104],
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by using the minimal cost from several EPI directions [64, 90] or by switching
between separate cost functions for occluded/unoccluded samples [53].

The works focusing on cost functions robust to occlusions show an interesting
pattern. While the original publications only use the proposed robust cost
functions [101, 104], later works mainly focus on the occlusion handling either by
further improving robustness against occlusion or by adding explicit occlusion
handling [85, 90]. It seems that even though cost functions exist which show some
robustness against occlusion, these cost functions do not return optimal results.

On the other hand, methods that handle occlusions by selecting the minimal
cost from several, possibly partial EPIs, discard a lot of samples from the input
light field. This reduces the number of samples over which the data cost can be
calculated and hence reduces accuracy.

Common to all methods is the fact that the used occlusion information is
independent of the final optimized depth estimate. The additional scene knowledge
available after optimizing the depth model is not reflected by the used cost function,
which is limited to the initial occlusion estimates. Our proposed method addresses
this point by using the current model to calculate the occlusions inline, during
the processing, and therefore improves the utilization of the available light-field
data.

Note that there are other methods which optimize the occlusions, like the works
by Wanner and Goldliicke [98, 100] where they filter local depth estimates with
a model enforcing global consistency with respect to occlusion. However, the
accuracy of this approach is limited by the fact that only local estimates are used
as priors in a regularization approach, and no updates on the cost are performed
for updates in the occlusion model.

Recently, deep learning based methods are also appearing, for example EPINet
by Shin et al. [86]. While these approaches show very promising performance,
competitive to the results shown in chapter 5, the lack of real world ground truth
data mostly limit them to synthetic benchmarks. For evaluations see [47, 48] and
the website [46] which is continuously updated.

1.3.4 Polarization Imaging

Polarization imaging makes use of polarization filters or sensors to get additional
information about the scene geometry, mainly by regarding surface normal cues
from polarization information. Note that polarization information only gives some
constraints on the surface normal, hence for a full 3D reconstruction it always
has to be combined with some additional estimation method.
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Atkinson and Hancock [5] show that polarization information from diffuse illu-
mination can be used to estimation surface normals of specular objects. Kadambi
et al. [49] use polarization information, obtained from three images with a linear
polarization filter to refine the depth model obtained from a Kinect camera.

Smith et al. [89] show that polarization information can be combined with
shading constraints on uniformly colored objects, while Cui et al. [19] demonstrate
that multi-view stereo can benefit from polarization constraints.

1.4 Contribution

The following lists the main contributions of this work, divided into the four
topics.

Chapter 3 — Fractal Calibration Target A new
passive, self-identifying, fractal calibration pattern
is presented, which increases the number of cali- |
bration points available from passive calibration

magnlﬁcatlon The target is robust against many
image deteriorations, and improves calibration accu-
racy due to better coverage and the higher number
of calibration points, as well as by reducing center
bias. The target is also dense enough to provide
the basis for the ray based calibration approach.
This contribution has also been published [79, 88].

Figure 1.1: Fractal calibra-
tion target.

Chapter 4 — Ray Based Camera Calibration
from an Imperfect Target To enable ray based
calibration from the passive, sparse calibration tar-
get, a novel intermediate calibration proxy represen-
tation is introduced. It provides the target to image
mappings at arbitrary image coordinates that are a
requirement for ray based camera calibration. We
demonstrate a new calibration method based on
this calibration proxy, which estimates a ray based
model from an imperfect target, using derivatives
of the calibration proxy to derive an error measure
in pixel coordinates, analogous to the reprojection error used in classic parametric

Figure 1.2: Ray visualization
of a non-central camera.
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calibration methods. In the evaluation we show the advantage of this method
over the parametric modeling of the distortion, even for a relatively low distor-
tion, central camera, demonstrating the limitations of the parametric calibration

paradigm.

Chapter 5 — Light Field Depth estimation with
Inline Occlusion Handling A novel approach to
perform occlusion handling for light-field depth
estimation is presented, which directly integrates
occlusions into the depth model. Compared to all
prior methods, this maximizes the use of the avail-
able data. Despite the complex occlusion model
a PatchMatch [6] based scheme based on local up-
dates is able to give good estimates on this model,
and in competitive processing time. Although the
method does not guarantee globally optimal solu-
tions, it achieves state-of-the-art results in nine out
of twelve error metrics, with a close tie for the re-

Figure 1.3: Epipolar plane
image structure with occlu-
sion.

maining three, on the most prominent academic light field benchmark [46]. This

contribution has also been published [80].

Section 5.7 — Light Field Polarization Imag-
ing Finally, a combination of polarization imag-
ing with the light field depth estimation approach
improves depth estimation for smooth specular sur-
faces, which violate the color constancy assumption,
improving reconstruction accuracy in these areas.

Figure 1.4: Surface normals
from polarization imaging.
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The Camera Calibration Pipeline

Figure 2.1: Example of an industrial computer vision camera with a wide-angle
lens.

This chapter gives an overview over the full geometric camera calibration
pipeline, introduces common approaches used for individual steps, and explains
their properties and key advantages and disadvantages.

This chapter also introduces the definitions and concepts which are the basis
for the novel fractal calibration target described in chapter 3 as well as the novel
ray based calibration method described in chapter 4.

Geometric camera calibration, also called camera resectioning in literature,
describes the geometric properties of a camera-lens system, with respect to how
the 3D world is projected onto the 2D camera sensor.

This means we are mainly interested in finding a description of the optical system
in question, which provides a mapping from 3D world coordinates two 2D sensor
coordinates, but disregarding the actual sensor response, which describes the
intensity distribution that a projected 3D point would cause. Those properties

13



2 The Camera Calibration Pipeline

3D scene locations
— optical system

2D pixel location

— imaging area

camera

Figure 2.2: The black box camera model, as used in this work. The camera
projects 3D scene coordinates into 2D image coordinates and is com-
pletely represented by the mapping between 3D rays and 2D pixels.

are described for example by the modulation transfer function [36], and the
photometric camera response, and are not under consideration in this thesis.

2.1 Outline

This chapter will be structured as follows: The definition of a camera as it will be
used throughout this thesis is introduced in section 2.2, followed by coordinate
system conventions in section 2.2.1 and the ideal pinhole camera in section 2.2.2.
Section 2.2.3 considers the deviations of real cameras from this ideal camera and
models for these aberrations are shown in section 2.3. Finally, the calibration
targets are introduced in section 2.4 which are a requirement for the actual
derivation of the model parameters in section 2.5.

2.2 Camera

For the scope of this work we regard the camera as a black box system, see
figure 2.2, composed of a two-dimensional imaging area and an optical system
which projects points from a scene onto the imaging area. Figure 2.1 on the
previous page shows a real world example of such a camera system. In this work

14



2.2 Camera

only the relation between the 3D world coordinates and the 2D sensor coordinates
are relevant, and we regard the camera as a black box system. The mapping
from world points to image coordinates is called projection. Camera calibration
is both the name for the process of determining parameters of such a mapping,
and for the result of this process.

In practice, the above definition is a bit too broad. In reality, we can limit
ourselves to the cases where all world points which are projected onto the same
image coordinate lie on a line in world space. This general camera model was first
described by this name by Grossberg and Nayar [40].

2.2.1 Coordinate Systems

A calibrated camera describes a mapping from 3D world space to 2D image space.
To allow reasoning about multiple cameras, which is important for light field
imaging, it is convenient to split the projection into two parts, the intrinsic and
the extrinsic parameters. For this we define the camera space, an additional 3D
coordinate system per camera location, with the origin at the center of projection.

Extrinsics describe a transformation from the world space into a camera space,
see figure 2.3 on the following page, while the intrinsics describe the actual
projection from the camera space to image coordinates, see figure 2.4 on the next
page. If the camera pose is changed, then only the extrinsics need to be adjusted,
while the intrinsics stay constant. In effect this means that the extrinsics can be
reduced to the pose of the camera, made up of the 3D rotation and 3D translation
of the camera.

2.2.2 Pinhole Projection — The Ideal Camera

From the perspective of computer vision applications, it is desirable to work with
images captured by an idealized pinhole camera. The projection of a pinhole
camera model is described by the following equations, and visualized in figure 2.5
on page 17:

T=C-p (2.1)
=10 f, c||py], (2.2)
0 0 1 D

Where, p denotes a point in the 3D camera coordinate system, f is the fo-
cal length in pixel and c is the location of the camera center.  is an image

15
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rotation translation

Figure 2.3: Visualization of the extrinsic transform which maps from scene to

camera coordinates, applying first rotation then translation to a scene
(point) to map it from scene to camera coordinates.

projection distortion

QA Ay

Figure 2.4: The intrinsics define a mapping between camera coordinates and
image coordinates and hence both the projection from 3D to 2D, and
the distortion of this mapping.
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A
y
f
zZ
\Camera center
Figure 2.5: Visualization of the projection of the pinhole model. The image is

projected by sending lines through the camera center (the pinhole),
onto the imaging plane, as described by equation (2.1).

image plane
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2 The Camera Calibration Pipeline

point in homogeneous coordinates. h converts from homogeneous to a euclidean
coordinates:

A £./%,
= pu— ~ ~ 2.
o) = (115, 23)

This can be rewritten using normalized camera coordinates p, by putting p
from equation (2.1) in equation (2.3), as:

p=h(p) (2.4)
x:<hMMHmﬂ:<hm+%> (2.5)

fypy/pz + ¢y fybDy + ¢y
and hence:

=10 fy, c||Dy], (2.6)
0O 0 1 1

Note that the above equation projects from the 3D camera coordinate system,
using the normalized 2D image coordinates to get the final pixel coordinates. This
form removes the depth information from p before projection with the camera, and
therefor demonstrates that depth information is not relevant for the ideal pinhole
camera model. For the ideal pinhole model equation (2.1) and equation (2.6) can
be used interchangeably, but working in normalized camera coordinates is often
preferred as it simplifies for example distortion handling, see section 2.3.

The camera extrinsics, which relate the camera to a common world or scene
coordinate system, consist of the camera rotation and translation relative to the
world coordinate system. This gives six degrees of freedom for each set of extrinsic
parameters. A point w in scene coordinates is transformed to camera coordinates
with:

p=Rw~+T, (2.7)

where R is a rotation matrix with three degrees of freedom, while 7" is a
translation vector.

Hence, the full model for the pinhole projection, from scene coordinates to
homogeneous image coordinates is:

#=C(Rw+T). (2.8)
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2.2 Camera

Note that notations in literature may differ from this, specifically homogeneous
coordinates are used more extensively for certain scenarios.

2.2.3 Aberrations — The Imperfect Camera

In reality, it is impossible to build a camera which perfectly follows the pinhole
projection above, due to the physics of optics (and budget). In the following
geometric deviations of real cameras from the ideal pinhole projection are described.
Only geometric aberrations are listed, aberrations which change e.g. the effective
resolution or the photometric response are out of the scope of this work.

Radial Distortion Radial distortions are most frequently encountered and most
pronounced and appear as a change in apparent image magnification depending
on the distance from the camera center. They are often described by their
appearance. For example: barrel distortion or pincushion distortion.

Tangential Distortion Tangential distortions are normally much weaker and
appear as an effect of decentering or imperfect alignment of lens elements in the
optical system. When seen from image space, these distortions influence the
projection depending on the angle (in image space) from the optical center.

Lateral Chromatic Aberrations If multiple wavelengths are observed through
the same optic, then wavelength dependent characteristics of the optic become
relevant as they may change magnification and other distortion characteristics,
as a function of the wavelength. The effect is that the recorded color channels
may not be aligned and need to be corrected independently. Not that this is only
possible with a color camera. A grayscale camera will integrate over a range of
wavelengths and lateral chromatic aberrations will be observed as a blur of the
image.

Non-Central Cameras Real lenses have non-zero thickness which can lead to
non-central characteristic, especially for extreme designs like fisheye lenses. This
means that such lenses do not possess a single center of projection, but rather the
apparent center of projection shifts depending on the angle of the incoming light.
This property leads to distortions that appear depth-dependent, as explained in
section 4.3, and hence are more difficult to correct.
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Asymmetric Distortions Photographic lenses are made up of between only a
few and up to dozens of individual lens elements, which are often difficult to
align (or keep aligned) perfectly. Hence, the actual distortions may also possess
asymmetric properties which can not be described by radial and tangential
distortions. The magnitude of these secondary distortions is normally much lower,
compared to the primarily radial and tangential distortion components. However,
these secondary distortions may still be relevant for calibration, depending on
the required accuracy.

2.3 Distortion Models

A range of models have been proposed in the past, whose power in correcting the
aberrations listed above differs.

The most common approach is to regard the aberrations as simple image space
distortions, which can be implemented directly in image space, and is commonly
formulated using normalized image coordinates:

p= L(p), (2.9)

here p are the distorted coordinates, derived from the ideal normalized image
coordinates p using a distortion function L. The distorted coordinates are then
projected as before (equation (2.1)):

fﬂc 0 ¢ Dz
z=10 fy Cy Dy | - (2.10)
0 0 1 1

Therefore, the full model becomes:

#=C - L(h(Rw +T)), (2.11)

which applies the following operations to a scene point w: First apply extrinsics
(map point into camera coordinates), normalize, apply a 2D distortion and finally
project using the camera matrix C'.

Regarding the distortion model L, a lower number of parameters simplifies
calibration because fewer parameters have to be estimated, which also reduces
the chance of overfitting. Therefore, the most basic distortion models only correct
radial distortions, where:

L=p+K(r)p. (2.12)
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2.3 Distortion Models

The simplest distortion functions are low order polynomials, and euclidean
distance for r, e.g.:

Ly = k7 + kyr? (2.13)

r= /P2 + P2 (2.14)

A convenient optimization is to choose polynomials with terms of only even
degree, which allows to avoid the calculation of the square root in r.

The next step are models which add secondary terms to correct for tangential
distortions which depart from the perfectly radial symmetry of the purely radial
models, justified by lens decentering and imperfect alignments of optics [15]:

1 (L) p 0 + 22) + 20020 (2.15)
ET\Le(r) P+ 26922 + ta(r? + 2p2) '

Indeed, these models (low order polynomial with or without tangential terms)
are probably the most widely used in practice [35, 45, 77|, as they provide a
simple model which handles most distortions adequately. A range of additional
models have been proposed, like the radial division and rational polynomial
models [57, 72, 92], as well as alternatives for r, to better capture the strong
distortion properties of e.g. fisheye lenses, see [50, 72, 92] for examples.

One variant extension is the division model implemented in OpenCV [13], which
is not directly found in literature, but is a simple extension of the division models,
and has wide a adoption due to the easy availability in the open source OpenCV
library.

I believe that the main reason why no other models have gained wider usage
is that the alternative models are mainly interesting for specific optics, and
measuring the actual calibration performance using external means is quite hard,
compare section 4.5, and hence often skipped even in calibration literature.

From a distortion function it is straightforward to create an undistortion
mapping, as an image with the same dimensions as the (target) image, where
each pixel stores the distorted coordinates. This table can directly be filled using
the distortion function, as it maps from undistorted to distorted space.

Note that there is an alternative formulation of the distortion pipeline presented
above, based on undistortion functions, see for example [18]. However, while such
a formulation is sometimes convenient when directly working on distorted material,
as the undistortion function is directly available, the creation of an undistortion
mapping is more problematic as it requires the inverse of the distortion function,
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2 The Camera Calibration Pipeline

which might not be available analytically. Also problematic is that the reprojection
error is not directly available and hence other measures must be minimized (e.g.
Sampson distance), which might not perform as well [27, 43].

All of these approaches above work well if the chosen distortion model is
adequate for the actually observed lens distortions. However, in practice the
correct model might not be known beforehand. In addition, if very high accuracy
is required, then radial and tangential models can be insufficient as they only
provide an approximation to the actually observed distortion [8, 10].

Therefore, this approach can be further extended with arbitrary 2D functions,
which do not put any prior on symmetries in the distortion. Note that the
models proposed up to here will be denoted as parametric calibration (models),
in contrast, the following models, are conceptually more similar to a lookup-table,
with support points between which the actual distortion is interpolated. Of course,
in the end they also consist of a number of parameters, but this number is much
higher (hundreds to thousands instead of under ten):

L(p) = U(p) (2.16)

Where U is a function from R? — R2?, which implements an arbitrary 2D
distortion.

A limited version of this is to assume no specific model but assume purely
radial distortion [44], thus calculating a lookup table for the distortion, while
estimating the center of distortion and the focal length, however this does ignore
tangential effects.

An example for such a mapping is the model by Grompone von Gioi et al.
[39] which is based on a sparse mapping of correspondences between distorted
and undistorted images, together with affine interpolation based on delaunay
triangulation. Other approaches are based on thin plate splines [81], Bézier
patches [37] or locally weighted homographies [70]. As shown in the respective
works, these approaches can correct some distortions more accurate compared to
a parametric approach.

All models described until now only regard deviations in the 2D image space.
However, as described by Magill [58] and Fraser and Shortis [33], real cameras
also can exhibit non-central characteristics, where the projection does not actually
follow the perfect pinhole model, by effectively not possessing a single center
of projection. Examples are, among others, fisheye optics and catadioptric and
omnidirectional cameras [61, 76, 94]. In these cases the lines in 3D space which
describe which points are mapped onto an image coordinate, do not intersect in
a single point.
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2.4 Calibration Targets

These non-central cameras possess, when compared with a pinhole camera, an
effectively depth dependent distortion, please see section 4.3 for a derivation of
this property.

Such a camera may be modeled similar to a pinhole camera by replacing the
intrinsic camera matrix projection with a more generic function C' : R3 — R?
which maps from 3D camera space to 2D image space using a ray based model,
see also section 2.2:

z = C(p) (2.17)

For specific types of non-central optics, parametric models have been developed
in a similar fashion to the polynomial and rational radial models [61, 94].

However, analogous to interpolation based generic 2D distortion models, which
only use image space distortion, see section 2.3, it can be beneficial to not constrain
the ray based camera model to a specific parametric model, but instead use a less
constrained mapping. The most extreme approach is to assign an independent
ray to every individual pixel on the imaging plane, which does not constrain
the projection in any way, aside from assuming ray properties. Indeed, this is
the approach normally chosen for ray based calibration, for example by Barreto
et al. [7], Bergamasco et al. [8, 10], Grossberg and Nayar [40] and Nishimura et al.
[65]. Note that these approaches all make use of an active target, as otherwise
derivation of per pixel ray support points is not possible.

However, such a model is difficult to estimate, therefore the incorporation of
additional constrains on the observed distortion, like a smoothness assumption
[62], leads to simpler models, which nonetheless retain most of the desirable
characteristics of not assuming some specific distortion model and not constraining
the projection to a central pinhole projection.

Another possible constrain is the assumption of radial symmetry for the rays,
which effectively leads to a 1D radial camera model [17], but this is less generic.

Please see chapter 4 for more in-depth explanations on how to handle and
parametrize ray based calibration, as well as the novel calibration approach based
on the fractal passive target introduced in chapter 3.

2.4 Calibration Targets

Calibration targets are physical objects with a well-known shape and appearance,
which are placed in the scene. The target is observed with the cameras which
should be calibrated. Targets are designed so individual feature points of the
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target can be localized and identified which results in target coordinate to im-
age coordinate matches. If enough matches are available from several different
viewpoints of a target, then estimation of the calibration parameters becomes
possible, see section 2.5.

2.4.1 Key Properties

To enable simple and high quality calibration, a calibration target should fulfill
several key properties. For a comparison of different target types please see
table 2.1 on page 26 as well as table 3.1 on page 40, which also compares the
current state-of-the-art with the new target introduced in this work.

Self-ldentifying Calibration points on the target must be distinguishable from
the recorded images, else no mapping to target coordinates is possible.

High Localization Accuracy The accuracy of the calibration point localization
determines the accuracy of the calibration.

Calibration Point Density More calibration points give the calibration method
more data points to estimate the calibration parameters, which lead to more
accurate and stable results and reduces the chance of overfitting. Note, that
localization accuracy and the number of calibration points are of course somewhat
exchangeable as more calibration points of a fixed accuracy also increase the
calibration accuracy due to the law of big numbers. Interesting is of course not
the physical density, but the effective density of calibration points in the recorded
image, which is influenced by many factors.

Completeness It should be possible to get calibration points for the whole
imaging area. If for example the corners are left out, then the accuracy of the
calibration will suffer in the corners.

Low Bias Target localization should not be biased by e.g. illumination changes
or perspective, as this bias would transfer to the calibrated parameters.

Fabrication and price The target should be relatively easy and cheap to fabri-
cate, to ease adoption.
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2.4 Calibration Targets

Usability Finally, a calibration method should be easy to use, to allow fast and
reliable calibration under field conditions.

2.4.2 Target Types

The following gives an overview of available target types, and their main properties,
a tabular overview of the properties listed in section 2.4.1 is given in table 2.1 on
the next page.

Planar 2D Targets Planar 2D target are made up of specific patterns printed on
a planar surface. The patterns provide identification and localization. Examples
of such targets can be found in [4, 28, 29, 30, 34, 66]. The main advantage of
planar targets is the ease of fabrication as well as high localization accuracy.
The inherent disadvantage is that all previously available planar targets give a
relatively sparse set of calibration points, which is not well suited for e.g. ray
based calibration.

Active Targets Active targets utilize LCD screens [7, 8, 10, 40, 65], to change
to shown calibration pattern over time. The screens show multiple patterns while
the camera-screen pose stays unchanged, which allows very accurate localization
of the target location of every pixel of the camera. Hence, density and accuracy
are very good, however fabrication is much more difficult, which is relevant if
large targets are to be used, because then a fitting screen might not be available
(or very costly). Also, for high resolution cameras it might be difficult to find a
correspondingly high resolution screen. Recording the required calibration data
is much more involved compared to passive targets, as camera and screen need to
be synchronized and more calibration images must be recorded.

3D Targets Instead of self-identification based on 2D patterns, it is also possible
to use a 3D target made up of (colored) spheres, arranged within a 3D volume.
This is advantageous especially for rapid multi-view/multi-camera calibration, as
shown by Shen and Hornsey [84], where the same target can be observed from all
directions at the same time. However, the density of calibration points is much
lower which limits the maximum accuracy. Non-planar calibration targets are
more common in the photogrammetry community [32, 56, 71|, and often called
test fields. While they are more difficult to construct they can require fewer
calibration images, as scale constraints are already embedded in the 3D target.
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passive planar active planar 3D targets
identification yes yes limited!
marker accuracy high high high
effective density medium high low
completeness high high low
bias low low low
fabrication simple very involved? medium
price very cheap expensive cheap
usability high involved? very high

I Colored sphere can be used, but only with color cameras, and only a limited
number of colors can be distinguished.

2 pretty much impossible if no off-the-shelf target (LCD screen) is available

with the required specifications.

normally controlled movements with a translation stage as well as multiple

shots of the same screen are required

3

Table 2.1: Comparison of calibration target types from section 2.4.2 according
to the key properties listed in section 2.4.1.

2.5 Model Parameter Estimation

Performing a camera calibration means to actually estimate the parameters of a
camera model from some input. A calibration method commonly describes the
combination of a target type, together with a distortion model and an algorithm
which can estimate the model parameters from observations of the calibration
target.

Most commonly used are iterative non-linear least-squares approaches, to find
a parameter set @ which minimizes the reprojection error of a model m:

a = argmin » (i; — m(t;,a))?, (2.18)
“

where a are the parameters of the model (intrinsics and extrinsics) and the
t; are 3D locations on the calibration target, known from the self-identifying
patterns on the target, while i; are the respective image space locations where
these calibration points where observed on the target. The camera model m
describes the projection from scene coordinates into image space, as described by
equation (2.11).
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As the reprojection error is a measure in image space, it is directly meaningful,
and problems due to heteroscedasticity, because of e.g. varying magnification of
observed features are avoided. Therefore, the reprojection error is also considered
the gold standard for calibration error metrics [27]. Other metrics, which have
to be used for example for calibration of undistortion models may be biased for
example towards more distant calibration points, which can reduce the accuracy
of the calibration [8]. As the internal structure of the minimized least-squares
problem is sparse, efficient solvers are available today [2], which make fasts
estimation possible. These solvers rely on derivatives of the objective function,
which is provided by automatic differentiation [38, 51, 68].

This approach can also be extended to unknown target geometries, where only
correspondences between two or more images are known, but not the true position
of the correspondence in world space. With enough views and correspondences this
problem is still well-defined and the 3D world locations of the correspondences are
simply more unknown parameters estimated during the least-squares optimization.
Indeed, in such a configuration the challenge is not the estimation of the calibration
parameters, but the identification of correct matches from a set which contain
false correspondences [82], often using RANSAC [31], as well as finding a good
initialization. However, usage of well-defined physical calibration targets can still
provide a higher accuracy, as well as more robust matching.

This approach does not directly work for the more complex ray based calibration
models. The reason is that for ray based calibration there is no explicit projection
available, and hence it is not possible to directly calculate a reprojection error.
In addition, use of a passive target requires interpolation or regularization in the
ray space, as individual subpixel correspondences from the calibration target are
very unlikely to coincide with a ray pixel location (when the model is made up of
one ray per image pixel).

Therefore, most ray based calibration approaches make use of an active target
[8, 10, 40, 65], like a large LCD screen, see also section 2.4.2, together with a high
accuracy translation stage. Active targets provide a very dense pixel to target
mapping, but again no projection and therefore no reprojection error is available.
Target point to ray distance is therefore often used, which can only approximate
the performance of the reprojection error [27].

Another approach is to use a passive target and to interpolate the target location
to image mappings, to provide calibration points at arbitrary pixel positions,
which again allows independent estimation of individual rays [69, 93]. The novel
calibration method introduced in chapter 4, for ray based calibration from passive
targets belongs to this last family, but overcomes some limitations mentioned
here, by utilizing the intermediate representation of the calibration proxy. This
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structure implements the interpolation necessary for ray based calibration from a
passive (and hence sparse) target, and enables the derivation of a reprojection
error for ray based calibration. Please see section 4.4.2 for the details.
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High Density Passive Fractal
Calibration Target

Figure 3.1: A view of the fractal calibration target. From left to right each
step reduces the width of the cut-out to a fifth. Note how individ-
ual calibration dots resolve to square features when increasing the
magnification.

This chapter introduces a novel, passive, fractal calibration target, see figure 3.1.
This target increases the density of calibration points, enabling higher accuracy
calibration. Thanks to its fractal nature the target can provide a high number
of calibration points independent, within bounds, of the camera magnification.
When coupled with a classic parametric calibration scheme, the target alone
can outperform the accuracy of a calibration derived from the conventional
checkerboard target, as shown in section 3.4.4. In addition, the density is high
enough to provide the basis for the novel ray based calibration scheme introduced
in chapter 4. The target was also published under an open source license [78, 79, 88]
to ease adoption.
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frame

orientation

9 bit payload

Figure 3.2: Schematic of a single marker. The constant color border with the hole
at one side allows detection and fixes the orientation. A single marker
contains a payload of 9 bits which is used for identification. .

3.1 Qutline

The target introduced in this chapter relies on a self-identifying fiducial marker
pattern, combined with a fractal structure, where many calibration points are
recursively inserted at several scales. This keeps the number of calibration points
within a fixed bound, independent of the magnification factor. The reasoning and
design of the fractal structure is discussed in section 3.2. For related work please
refer to section 1.3.1

Markers are identified using a 3 x 3 binary pattern, see figure 3.2, where a
black bordered and a white bordered marker are always processed together. This
effectively results in 18 bits of payload, which are used to encode the 2D marker
position on a regular grid.

Detection starts with the identification of the large scale markers, see sec-
tion 3.3.1, combining checkerboard corner detection and the payload for identifi-
cation, as well as error detection by correlating neighboring marker candidates.
In a second step the recursive dots are detected using a recursive strategy which
fits 2D Gaussian distributions onto dot candidates, compare figure 3.3 on page 32,
whose positions are estimated from the previous scale. The recursive refinement
scheme is described in section 3.2.3 and section 3.3.2.

As is visible in figure 3.1 on the previous page, the recursion scheme operates
with powers of five. The minimum size for successful fitting is around four pixels,
which means that for high quality images we get one calibration point for every
4-20 pixels in each dimension, or between 2500 and 62500 calibration points for
each megapixel of image data.

While the individual calibration points are not necessarily detected with a higher
accuracy compared to other calibration targets, the high number of calibration
points leads to better calibration results as errors are averaged out. Compared
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to the OpenCV subpixel refinement we can increase the accuracy of the camera
calibration by one order of magnitude, when comparing the calibrated projection
against the ground truth projection, as shown in section 3.2.2.

3.2 Design

Regarding the marker size, there are two possible directions. Either few, large,
individually highly accurate markers, as used by Douxchamps and Chihara [24],
or many small markers of individually low accuracy.

3.2.1 Why Marker Size does not Matter

It can be argued that the underlying measurement accuracy for large and small
markers is similar, as it depends solely on the quantity and magnitude of image
gradients. A large marker could be regarded as a collection of smaller ones, which
implies that they should achieve similar accuracy. Indeed, the subpixel marker
locations are constrained by the individual image gradients. If the same quantity
of gradients is used, where each gradient has the same quality (signal-to-noise
ratio), then it does not really matter whether those gradients are spread over few,
large markers or several smaller ones. However, the size of the individual markers
still has practical implications on the way detection can be performed and where
markers can be placed. Note that this underlying accuracy is not reflected by the
root mean square error (RMS) scores of calibration methods, as those only give
the error between the fitted model and the detected markers. Larger markers
have already averaged out more of the gradient noise due to the larger marker
sizes, where small markers provide a higher ratio of data samples to parameters
in the overconstrained minimization problem of the calibration method, which
will also lead to a reduction of the influence of gradient noise.

3.2.2 Why Marker Size Matters — And smaller Markers are
Better

The localization of larger markers is dominated by perspective and radial distortion
[59], which requires a more complex localization approach for accurate results.
While perspective bias is easy to compensate for, even without doing a full
calibration, to correct distortion bias, the marker localization has to incorporate
the radial distortion [22, 24, 59], which ties marker refinement directly into the
calibration. Thus, it is impossible to separate marker detection and camera
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Figure 3.3: An example of the detection performance with small calibration points
at the image border. On the left the original input image, on the right
the fitted calibration points. Note how the small calibration points
can be detected less than 10 pixels from the image border.

calibration, which also makes it difficult to adapt new calibration methods to
such a combined calibration scheme. This means that small features are better
suited for a generic calibration pattern, as the individual calibration features are
not affected much by bias.

In section 3.2.1 we argue that the underlying accuracy for larger and small
markers is basically the same. However, there are two ways in which smaller
markers can provide accuracy improvements over large markers. A single marker
has to be fully visible to provide localization. But the larger the size of an
individual marker, the larger the area that is missing, if a part of the marker is
obstructed by the image border. Hence, the contribution of edges and corners is
reduced for larger markers, which is problematic for camera calibration, as those
areas often exhibit the strongest distortion. The result is, that larger markers
show a more pronounced center bias, where the quality of the calibration is better
in the center of the imaging area than in the corners, while small markers can be
detected close to the image borders, see figure 3.3, which reduces center bias.

Lastly, as the number of calibration points decreases due to increased marker
size, the probability of overfitting increases due to the reduced ratio of calibration
points to calibration parameters.

3.2.3 Fractal Layout

For the reasons exposed in section 3.2, we try to minimize the calibration point size.
Of course there is a minimal size for calibration points, before detection becomes

32



3.3 Implementation

impossible, because individual calibration points blend together. However, a
pattern which is optimal in one given situation can become completely useless if
the magnification is decreased. As the effective scale at which target features are
projected onto the image sensor changes with distance, angle and radial distortion,
it would therefore be necessary to capture a range of targets, each optimal at a
different scale, and later fuse the calibration information from multiple targets.

Our solution to this tedious multi-target process is the adoption of a fractal
scheme, which operates with multiple scales of calibration points. By using a
target which includes calibration points at multiple scales, it is possible to get
optimal calibration point density at several magnification ratios. Figure 3.1 on
page 29 shows the calibration pattern at several magnifications.

Detection is initially performed only for the coarsest layer, then again on the
next, higher resolution layer, and so on. When some calibration points cannot be
matched at one scale, the distances between fitted calibration points are examined
to decide whether detection of the next finer scale should be attempted. While
this does not guarantee a, in practice hard to define, optimal density of calibration
points, it keeps the density within a fixed bound, depending on the effective image
resolution and the deterioration by external sources, like noise, blur and other
aberrations.

The used calibration points are individual square dots. Due to the fractal
nature of the pattern the finest resolvable calibration points are always at the
pixel scale, where several independent degradations, like physical pixel aperture,
lens aberrations, diffraction, etc., render a calibration point as a Gaussian-like
2D distribution. When a calibration point becomes large enough that the non-
Gaussian characteristics come to bear, it is already possible to resolve the next
recursion layer, making more complex refinement methods unnecessary. In
addition, this elegantly avoids the bias problems of large markers, as the fractal
nature of the calibration pattern always allows the detection of relatively small
markers, with a size close to the resolution limit.

A new layer of calibration points is generated from a coarser layer by resizing
the pattern with a factor of 5, using nearest-neighbor interpolation. In the scaled
pattern, new calibration points are inserted at every fifth pixel by inverting the
respective pixel, see figure 3.1 on page 29 for a visualization.

3.3 Implementation

The detection of the fractal pattern is split into two parts, the actual detection
using the payload for identification, and the fractal refinement. Detection takes
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3 High Density Passive Fractal Calibration Target

place in scale space, using an x-corner detector followed by a brute force iteration
of possible markers using neighboring corner candidates. For each set of four
corners, the containing image area is projected onto a marker template using a
perspective transform, to assess whether the corner selection represents a marker
candidate.

3.3.1 Identification

It is important that parts of the pattern are allowed to be out of view, to give
the freedom to cover the whole imaging area with the calibration target, and
to place calibration points close to edges and corners. Our method builds on
square blocks with uniform borders and a payload of 9 bit in the center, see
figure 3.2 on page 30. The orientation is fixed using an opening in the border and
markers are arranged in a checkerboard manner, compare figure 3.1 on page 29
and figure 3.5 on page 37. This means that borders are either black or white.
The coding scheme combines the payload of black and white markers to provide
18 bits of payload for addressing and always requires the detection of at least
two neighboring black and white markers. The address is encoded using an XOR
mask to provide a bit of randomization and to keep the overall distribution of
bits more uniform. In contrast to other fiducial marker systems, like for example
CALTag [4], the payload within the markers does not provide error detection or
correction. Instead, the address of neighboring markers is compared to check
whether they are consistent, which provides very robust error detection but no
error correction. This means the marker grid can have a maximum size of 512
x 512 markers which results in 262144 markers overall. For more details on the
identification scheme please see [87].

3.3.2 Fractal Refinement

The fractal refinement starts after markers have successfully been detected. Ex-
pected positions of the first layer of calibration points are estimated from their
respective marker using a perspective transform, compare figure 3.4 on the facing
page, (a),(c),(e). Those positions are then refined using a least-squares solver
which fits rotated 2D anisotropic Gaussian distributions, with a linear gradient
as background, compare figure 3.4 on the next page. Individual pixels are used
as samples in the fit, with a weighting relative to the initially estimated position.
This step is repeated once more to improve accuracy by using the updated center
position.
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(b) step 0 fits
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Figure 3.4: Visualization of the fractal refinement scheme. From top to bottom,
the refinement from coarse to fine is shown, with candidates on the left and the
actual fits on the right. As edges are ignored they are simply estimated from
the marker size for visualization purposes, while the 2D distributions (right side)
are a correct visualization of the estimated fit. Calibration point positions at
layer n are estimated by a perspective transform from known calibration points
of layer n — 1. These estimation candidates are shown as circles in (a),(c),(e).
Then, individual 2D distributions are fitted to these estimates. The resulting fits
are visualized in (b),(d),(f). This process is repeated until calibration point size
is too small for a successful estimate. For reference, (h) shows the input image
and (g) shows the difference between the final fit and the input, multiplied by 10.
Not that all calibration points which were successfully detected in (f) show no
discernible error in (g) (black areas). a5
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The recursion works by repeating this procedure, see figure 3.4 on the preceding
page, until the size of the calibration points becomes too small for a meaningful
fit, which is less than 4 pixels across. Various heuristics are used to verify the
validity of the fit, like rejecting calibration points for which either the residual of
the fit is too large, or for which the expected accuracy is low due to low contrast,
steep background gradient, too small or too large width of the Gaussian, or due
to saturation.

3.3.3 Bayer pattern mode

Because individual pixels are directly used as data points in the fit, it is possible
to leave out individual samples. For color images acquired using a color filter
array, demosaicing can be avoided by processing colors independently of each
other, simply leaving out the pixels which belong to a different color channel.

3.4 Evaluation

The evaluation is based on rendered images corrupted with Gaussian blur, additive
Gaussian noise, uneven illumination, reduced contrast and radial distortion.
We compare classic checkerboard detection with subpixel refinement using the
implementation from OpenCV, with our fractal calibration pattern. The detected
calibration points are then used for either a full camera calibration, again using
the implementation from OpenCV, or to solve only for the camera pose under
known camera intrinsics (Perspective-n-Point).

3.4.1 Ground Truth Data

The evaluation images were rendered with the Cycles renderer from Blender [11]
using 1024 samples per pixel, with Gaussian anti aliasing at a resolution of 1920
x 1080. For distortion simulation the images were rendered with the resolution
increased by a factor of four and scaled down after performing the distortion
in order to reduce the influence of the interpolation. Figure 3.5 on the next
page shows some examples of the calibration target, filtered with the described
degradations.
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3.4 Evaluation

(¢) uneven illumination

Figure 3.5: Examples of the applied degradations. The view angle images were
rendered from different viewpoints, the radial distortion images were interpolated
from images with the linear resolution increased by a factor of four. The uneven
illumination images were generated by addition and multiplication with very low
resolution noise images.
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3 High Density Passive Fractal Calibration Target

3.4.2 Error Metric

In the literature cited in section 1.3, there are two principal methods of evaluating
calibration patterns, the RMS error of the calibration model and the RMS error
of calibration points against ground truth, called true pixel error (TPE) by
Douxchamps and Chihara [24]. The calibration RMS is a poor choice, as it will
not detect bias but simply incorporate it into the model. The TPE works well for
example for the evaluation of different refinement methods of corner points, but
it cannot be used for a meaningful comparison of calibration targets where the
number of calibration points is not roughly the same. The reason is that more
calibration points of similar localization performance obviously lead to better
calibration results which is not reflected in the TPE.

A further method, which is frequently encountered, is to compare triangulated
world coordinates of calibration points or the extrinsics of the calibrated cameras.
While these are valid metrics for some applications, they will also miss problematic
areas like the corners of the image, if there were no calibration points present for
that area. This is especially problematic, because the calibrated model will be
bad specifically in those areas where no calibration points were acquired.

However, with ground truth data, it is possible to compare the projection
defined by the fitted camera model with the known ground truth projection.
This gives an error measure which relates to the actual camera calibration and
incorporates the error distribution and bias of the used calibration pattern, as
well as averaging from multiple markers. We compare the camera models in image
space, by projecting each pixel into the scene, at the depth of the target, using
the ground truth model, and then projecting them back into image space with the
calibrated model. The root-mean-squared difference between the original pixel
coordinate and the projection of the calibrated model defines the error metric,
which we call ground truth pixel error (GPE):

GPE(z) = J > (i= m(”;ﬁ(i’ 205 (3.1)

The GPE is calculated using the root-mean-square error between every pixel
coordinate ¢ and the results of projecting this pixel into the world using the depth
z, the known ground truth projection mg7 and reprojecting with the evaluated
model m. Note that R,T" are set to zero, because we only want to evaluate the
(un-)distortion performance.
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3.4 Evaluation

For comparison, when (i, t) iterates all target to image correspondences detected
by the calibration pattern, the RMS is calculated as:
Y
RS = |y Lm0 (3.2)
w7
which shows how the RMS is merely the residual between model and (detected)
calibration points and hence heavily biased by the distribution and quality of the
calibration points, while the TPE

TpE = |y Mer) —m(®)” (3.3)
(i) i

shows the error between ground truth and model, but again only for the
detected image points.

The GPE measures an error in pixel units, stating the localization accuracy
of the tested pattern in the context of the tested calibration model. The metric
gives a score averaged over the whole image, including the edges and corners,
which are the most problematic areas in the context of camera calibration, both
because they exhibit the strongest distortion and because it is difficult to place
calibration markers on the edges of the image.

For this evaluation the z-coordinates are calculated from the known target
position, using the depth of the first view. Alternatively the metric can also be
calculated over a depth volume, using a number of depth slices for the reprojection.
However, the results then depend more on how good the calibration method can
estimate the camera model from a limited number of slices through this volume,
than from the marker accuracy. Therefore, in the following the GPE is always
measured at the depth of the calibration target. If multiple views were tested,
the depth from the first target is used.

3.4.3 Comparison

Table 3.1 on the following page compares the developed fractal target with a
range of targets found in literature. A quantitative comparison with the common
checkerboard target is performed in section 3.4.4.

As can be seen from table 3.1 on the next page the fractal target is the
only one that can keep a high density of calibration points, independent of
camera magnification, which leads to a high effective calibration accuracy, see
also section 3.4.4. The high marker density enables the use of the fractal target
for ray based camera calibration, as shown in chapter 4.
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3 High Density Passive Fractal Calibration Target

Accuracy  Density  Completeness
Fourier tag [75] — low!? low
ARTag [28] low medium’ high
CalTag [4] medium  medium' high
da Camara Neto et al. [20] | medium  medium® high
AprilTag [66] — low’? low
Daftry et al. [21] medium  medium! high
Bergamasco et al. [9] medium low!? low
novel fractal pattern high? high high

! Effective image space marker density depends on magnification

2 Use case from literature is individual markers with data payload (for e.g. VR
or interaction)

3 individually markers not very accurate, but very high number of markers lead
to high overall accuracy, see figure 3.11 on page 44 and figure 3.15 on page 46.

Table 3.1: Comparison of calibration target types from section 2.4.2 according
to the key properties listed in section 2.4.1.

3.4.4 Evaluation

For reference, a checkerboard with 12 x 6 squares is detected using the checker-
board detection from OpenCV with subpixel refinement over an area of 21 pixels.
When evaluating the performance under blur and noise we noticed that under
most circumstances the refinement was dramatically improved by performing a
Gaussian blur with a sigma of 2 before refinement, which is therefore used in the
whole comparison.

In most cases the results of the fractal target surpass the accuracy of the
checkerboard pattern by one to two orders of magnitude, for example in figure 3.6
on the facing page and figure 3.7 on the next page. In general the calibration is
very robust to noise, reduced contrast, uneven illumination and radial distortion.
Two areas where the method is not as robust and where it is eventually surpassed
by the checkerboard detection are detection under shallow angles and under strong
blur. The reasons and possible countermeasures are discussed in section 3.5.

In figure 3.6 on the facing page the GPE is evaluated under varying radial
distortion, as shown in figure 3.5(b) on page 37. Both methods are quite insensitive
to radial distortion, with only slight increases in GPE with increased radial
distortion. The fractal target has over a magnitude lower GPE for the tested
range.
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Figure 3.6: A plot of the GPE
obtained dependent on the rel-
ative radial distortion, compare
figure 3.5(b) on page 37. The frac-
tal target provides both better
GPE scores, and a lower variabil-
ity of the results. Both methods
achieve slightly worse results with
increased distortion.

GPE

rel. distortion

Figure 3.7: With decreasing con-
trast the GPE stays constant, but
there comes a point where the
quality starts to decrease. Re-
action is stronger for the fractal
target, but the results are always
better than for the checkerboard
target.

GPE

contrast

Figure 3.7 shows another variable where both methods show strong performance.
Under varying contrast the results a very identical for a large range, with an
increase in GPE at low contrast values. Here the results are nearly two orders of
magnitude better for the fractal target.

Again similar are the results when the camera is rotated around the camera z
axis, see figure 3.8 on the next page. In this case both methods show an interesting
symmetry, although the checkerboard method has a higher variance.

One area where the fractal target delivers worse results is under strong per-
spective, e.g. when looking at shallow angles, see figure 3.9 on the following page.
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3 High Density Passive Fractal Calibration Target

Figure 3.8: Plot of the depen-
dency of the GPE on the rotation
around the z axis. Both meth-
ods show a distinctive symmetry
which hints at some underlying
systematic dependency on the z-
angle. Results for the fractal tar-
get have a lower variance and are
more stable.
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Figure 3.9: Plot of the depen-
dency of the GPE on the view
angle. Zero degrees means the
camera points directly towards
the target, while at 90 degrees
it is oriented parallel to the tar-
get. The checkerboard target is
insensitive against the view an-
gle, but the fractal target shows a
strong dependency and eventually
is surpassed by the checkerboard

target at around 60 degrees from N S I N 10
the normal. 0.0 15.0 30.0 45.0 60.0 75.0 90.0

angle from normal in degrees

= 10°
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In this case the performance drops under the performance of the checkerboard
detection from an angle of 60 degrees from the normal.

An area where the fractal target shows a particularly large advantage is with
strong background gradients, as present with uneven illumination as shown in
figure 3.5(c) on page 37. In figure 3.10 on the facing page we can see that the
checkerboard target quickly deteriorates under even mildly uneven illumination,
where the fractal target stays quite stable. The reason for this behavior is the
localization based on the orthogonal gradient method in OpenCV which is very
sensitive to gradiation changes, while our fractal target locates individual dots
which are nearly unaffected by image gradients.
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3 10°  Figure 3.10: This plot shows the
] influence of an uneven illumina-
tion which increases the gradient
overlaid on the calibration target.
Because the fractal target derives
localization information from in-
dividual calibration points there
] is nearly no influence on the ac-
..1103 curacy, as each calibration point
is composed of gradients in all di-
rections. On the other hand the
0* checkerboard target derives cali-
bration information by observing
the orthogonal gradients around
a checkerboard corner and is very
sensitive to strong image gradi-
ents.

checkerbo

GPE

i i | I
1
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rel. illumination uneveness

The effects of Gaussian blur and noise are shown in figure 3.11 on the next
page, which shows that our fractal target is very robust with regard to noise,
but looses accuracy under strong blur, while the checkerboard deteriorates under
noise, but is more robust to blur.

One reason for the introduction of the new target was the goal of reducing
center bias by adding calibration points close to the edges of the target. To
evaluate center bias, the GPE is measured at the four corner pixels, and at the
center of the images. The center bias B is then defined as:

GPEcorner - GPECemeT

B =
GPEcenter

(3.4)

A perfect result would thus be a B of zero, while a B of one means that the
corners only reach half the quality of the center. As is visible in figure 3.13 on
page 45 and figure 3.12 on the next page the checkerboard calibration has a very
strong center bias between 10 and 100. On the other hand the fractal target
achieves values for the center bias close to one, and even outliers are below 10.
On average the fractal pattern again has an advantage of around one order of
magnitude.

These values also explain the even larger advantage of the fractal target in
figure 3.14 on page 45 which shows the GPE results for the corners only.
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Gaussian noise o

Fractal Target Checkerboard
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Figure 3.11: The plot shows the quality of the calibration, as measured by the

Gaussian noise o

GPE, dependent on both noise and blur. The two targets show quite
orthogonal behavior, where the fractal target is robust to noise and
the checkerboard target is more robust to blur. Note that the fractal
target starts at a much lower error value, hence the checkerboard
target only has an advantage in the case of strong blur but very weak
noise.
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Figure 3.12: Comparison of center and corner quality. The plots show the
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reduction of center bias by our dense target. The improvements in
the corners are much more pronounced compared to the center, with
more than two orders of magnitude improvement in some areas. This
effect can be attributed to the fact that the recursive target always
covers the corners which is not the case for the checkerboard target.
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Figure 3.13: Evaluation of the center bias as defined in equation (3.4). The
plots show the reduction of center bias by our fractal target. Note
that while the overall calibration quality depends on noise and blur,
the center bias, which is basically the difference between center and
corner results, seems to be independent of those parameters, and is
dominated by noise. In addition, the center bias is around an order
of magnitude smaller for the fractal target. This can be explained
by the ability of the fractal target to place calibration points close
to the image border and hence improve calibration results in those
areas.
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Figure 3.14: Evaluation of the accuracy in the image corners, as measured by
the GPE. Compared to figure 3.11 on the preceding page the corners
show a more pronounced advantage of the fractal pattern, which also
confirms the results of figure 3.13.
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Figure 3.15: This plot shows the number of individual calibration points found
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for the targets. The checkerboard always returns the same number
(else detection would not be possible), while the fractal target finds
a much higher number in good conditions, and reduces this number
slightly as the noise increases and much more strongly as the blur
increases.
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Figure 3.16: The TPE shows a similar behavior to the marker count, compare
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figure 3.15, for the fractal target, while the quality decreases only
with the increase of noise for the checkerboard target. This is in
line with the other results, and shows that the checkerboard target
performance depends solely on the performance of the checkerboard
corner detection.



3.5 Discussion

Furthermore, figure 3.15 on the preceding page shows the number of calibration
points that were actually detected, again for different values of blur and noise,
while figure 3.16 on the facing page shows the RMS error of the detected individual
markers, i.e. not averaged over the calibration (the TPE as defined by Douxchamps
and Chihara [24]). From those two plots we can see that, while the RMS error
of the individual calibration points is higher in most cases for the fractal target,
the number of markers is also much higher which offsets the advantage of the
individually higher accuracy markers of the checkerboard pattern, just as argued
in section 3.2. Indeed, when comparing figure 3.15 on the preceding page and
figure 3.16 on the facing page with figure 3.11 on page 44 it is visible that the
quality of the checkerboard calibration is directly linked to the quality of the
individual markers as the number of markers is constant, while quality of the
calibration with the fractal target is reduced as the number of markers decreases
and the individual marker RMS increases due to blur.

3.5 Discussion

While the fractal target delivers most of the anticipated advantages, with highly
improved general accuracy, it fails to completely remove center bias and it performs
badly under strong blur and shallow view angles.

Regarding the center bias, it seems a dense target is not enough to completely
solve the problem. A possible solution could be to introduce a weighting scheme
into the calibration method which weights corner samples stronger, however more
work is required to estimate good weighting factors and the influence on the
overall calibration results.

The second shortcoming, low robustness under shallow view angles and strong
blur is a direct result of the desired characteristic of uncoupling the pattern
detection from the calibration process. As Mallon and Whelan point out [59],
most patterns need to incorporate the calibration within the pattern refinement
to remove perspective and distortion bias from the pattern localization. While
the checkerboard refinement does not suffer from this drawback, the 2D Gaussian
fits used in our target do have this problem. The workaround is to use very small
calibration points where this bias is very small, which works for most cases as
the fractal structure ensures that the smallest calibration points can be used
independently of the magnification. This fails only if the smallest scale cannot be
used for another reason than the image scale, which are blur and the perspective
distortion, which appears at shallow view angles.
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3 High Density Passive Fractal Calibration Target

Reliable correction of this bias needs the calibration information, which would
tie the pattern detection to the camera calibration. However, this would reduce
the universality of the calibration pattern which in the current form can be used
completely independent of the camera calibration.
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Ray-Based Camera Calibration from
a Passive Imperfect Target

The most widely used models for camera calibration are based on parametric
modeling of lens distortions, often using radial functions, as described in section
section 2.3. The reasons are the ease of use provided by calibration methods
based on passive planar targets, as well as sufficient accuracy for many vision
tasks. However, as the demands for calibration accuracy increase, for example
from light field imaging where state-of-the-art methods [80, 86| are now measured
with 0.01 pixel error thresholds [48], the absolute performance is increasingly
limited by the standard parametric camera models [8, 10], see also section 2.3.
The ray based general camera model [40] removes many of the limitations and can
increase calibration accuracy even for regular optics [10], but requires complex
calibration setups involving active targets. In this chapter we introduce a novel
calibration method which can derive a very accurate ray based calibration based
on the passive fractal calibration target introduced in chapter 3. The method
additionally supports the estimation of the target deformation, easing high quality
calibration, as perfectly planar targets are expensive to manufacture. This makes
the usage of the ray based calibration model as simple in usage as the standard
parametric calibration, but at a much higher quality. The approach scales from
non-central wide angle lenses to high quality central lenses.

4.1 Outline

In this chapter a novel, ray based calibration method is introduced. For the
related work please refer to section 1.3.2.

First the general camera model and the used parametrization is defined in
section 4.2 and with this parametrization, the effectively depth dependent distor-
tion property of non-central cameras is derived in section 4.3. Following this the
actual calibration method is described in section 4.4. Section 4.4.9 shows how
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(0.0,0) camera center

X

Figure 4.1: Two plane parametrization for the ray based general camera model,
in camera coordinates. The ray [; is defined by the origin o on the
camera plane and a direction d. The first plane is at z = 0, the second
plane at z = 1. Also shown are two views vy, vy of the target and the
respective intersections t; ., , ., With [;.

the model can be used to perform undistortion and rectification, on which basis a
quantitative evaluation on both synthetic ground truth and a real world stereo
validation set is performed in section 4.5.

4.2 The General Camera Model

In the following a parametrization of the general camera model is introduced,
which will be used for this work. The general camera model, already briefly
introduced in section 2.2, describes an imaging system as a collection of lines
in 3D. Each line consists of all world points which are projected onto the same
position of the imaging sensor. We restrict the model slightly, by using a two
plane parametrization, which limits the calibration to the hemisphere in front
of the camera. This simplifies our model by allowing the direct definition of the
rays by four parameters, compare figure 4.1. With this restriction we formulate a
camera as a collection of pixels, where each image pixel 7 is associated with a 3D
ray [; which contains all 3D points which are projected onto the pixel:
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4.2 The General Camera Model

0iy d;,
li=0;i+z-di= |05, | +2|d, (4.1)
0 1

Here, 0;,, 0;, refer to the origin on the camera plane (the xy-plane in camera
coordinates). The ray direction is given by d;, and d;,. For a point represented
with equation (4.1) the depth (the distance from the camera plane) is directly
represented as z. Thus, equation (4.1) describes the mapping from 3D camera
coordinates onto the pixels of the imaging device. To relate the rays which are
given in camera coordinates, with a point in target coordinates, the pose between
calibration target and camera is also required. This is given as a rotation R and
translation 7', from target into camera coordinates:

131
p=R|t2|+T (4.2)
t3

Here, t = (t1,t2,t3) is a point in target coordinates and p is a point in camera
coordinates. The point p must be contained in the ray [; which represents the
projection from world to image coordinates, so we set:

li = p; (4.3)
OZ+Zdz:th+T

Which, given multiple target points, can be used to solve for the ray parameters
as well as R and T' simultaneously. Analogous to the parametric models used for
central cameras, R and T' describe the extrinsics of the camera, while o and d
are the intrinsic parameters, which define how points in camera coordinates are
projected onto the imaging plane.

4.2.1 Canonical Form

Lets regard a camera ¢ with the intrinsics defined by the rays [;, as well as extrinsics
R and T'. This camera is not unique, because a change in the extrinsics can be
compensated by an appropriate change in the ray parameters. The consequence
is that the origin of the camera coordinate system is not connected to the rays
in any way, and hence does not have any correlation with the real camera pose.
To make our model comparable to classic, parametric camera models we want
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the z-axis to point forward and the x-axis to point right. Also, we would like the
origin to be the point where the rays are closest to each other and therefore most
closely resemble a central camera. We therefore impose several constraints on the
canonical form ¢ of the camera model:

1. The center ray [. points from the camera center in the positive z-direction:
O¢; = 0¢, = do, = d., = 0. This prevents rotation and translation of the
model around, the z- and y-axis of the camera.

2. A fixed second ray [, may not point up or down: d,» = 0. This prevents
rotation around the z-axis. We choose the ray directly to the right of [, as
[

3. To move the approximate projection center to the origin (in camera coordi-
nates), the canonical form ¢ of all equivalent cameras ¢ must satisfy:

¢=argmin ) o.;’ (4.5)

)

4.3 Depth Dependent Distortion

A non-central camera in the form of the general camera model can be regarded
through a regular pinhole camera, as introduced in section 2.2.2, by projecting
individual rays with the camera matrix C', which is made up of the focal length
f and a projection center c:

fe 0 ¢\ [or+2-dy

p=10 fy ¢f|o2atz-do (4.6)
0 0 1 z
fz(o1 + zdy) + ¢z
p=| fylos+ zds) + cy2 (4.7)
z

which results in the pixel coordinates:

fzol
o (L2 fditc,
= {2 . 4.8
P (fy? + fyda + cy> (4.8)

This directly shows that the direction of the ray specifies the constant part
of the projected pixel position, while the origin of the rays appears as a depth
dependent term. In other words the depth dependent distortion is directly caused
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Figure 4.2: Visualization of the non-central nature of a fisheye lens. The image
shows a 10 mm depth slice of the central area. For comparison, the
vectors of the axis indicator have a length of 1 mm. The standard
deviation for the ray origins, estimated from the covariance of the
solution, were around 50 pm.

by the non-central characteristics of the imaging system, while image space
distortions depend on the direction of the rays. This dependency is also visualized
in figure 4.2 and figure 4.3 on the following page, which visualize depth dependent
distortion from an actual fisheye lens.

4.4 Calibration Method

The goal is to derive the calibration parameters using observations of the pas-
sive fractal calibration target, introduced in chapter 3. To this end, we first
derive sparse image-to-target correspondences from the calibration images, see
section 4.4.1. We assume smoothness of the calibrated projection, and interpolate
the missing correspondences for individual rays from these sparse correspondences,
see section 4.4.2. To enable the calculation of model errors in image space, the
derivative of the interpolation is exploited. The actual calibration is then mostly
a question of correctly formulating the error metric and adopting a sensible
initialization, as detailed in section 4.4.5 and section 4.4.5. Finally, the actual
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Figure 4.3: Depth dependent lens distortion of the fish-eye lens, according to
equation (4.8), at a distance of 1 m. Note that the depth dependend
distortion component is around one pixel for a large part of the image,
highlighting the need for a non-central camera model for this type of
lens.

calibration is implemented using a standard non-linear least-squares solver, in
this case Ceres Solver [2], see section 4.4.6.

4.4.1 Input

For the calibration target we use the fractal calibration target described in
chapter 3. It provides many calibration points, independent of image magnification,
and hence gives a relatively dense sampling, for a passive target, of correspondences
between image points j and the respective target points ¢;. For color images
acquired using a Bayer pattern sensor, the pattern detection allows the selection
of the relevant pixels of the image, allowing the separate detection of the different
color channels without the possible bias induced by demosaicing.

4.4.2 Calibration Proxy

Recall that the general camera model consists of a collection of rays. Each ray
l; maps a single image location 7, to a collection of target locations ¢; ,, one for
each view, see figure 4.1 on page 50. For successful calibration it is necessary to
obtain multiple corresponding target points for each ray, to provide the support
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4.4 Calibration Method

points which define the ray in space. However, given the sparse collection of
correspondences from the passive calibration target, only few pixels, if any, will
have multiple corresponding target matches.

Similar to Ramalingam et al. [69] we assume that the projection of our camera
is smooth in image space, and derive the missing target correspondences by fitting
a function ©;, which maps from image to target coordinates. This fit is done
independently for each ray ¢ and view v.

Because of the assumed smoothness of the derived mappings we do not require
one ray per pixel, but instead use a subset of M x N pixels. We call this collection
of target locations, calculated by the function fits, the calibration prozy:

{tiw}iemxn (4.9)

vEviews

We use M = 65 and set N accordingly, depending on the aspect ratio. Compared
to Ramalingam et al. [69], who derive the image to target mappings by fitting a
local 4-point homography, we extend the model by adding a generic 2D polynomial.
This allows us to derive a very accurate image to target mapping around the
pixel coordinate i using a locally weighted collection of all correspondences
Cy, = {(J,t;)} between pixels coordinates j and target locations t; of view v:

W, Top,, = argmin Y (t; — O(4))* - G(j — 1) (4.10)
22 (e,

O(z) = V(z) + Too(x) (4.11)

G(z) = exp (;) (4.12)

Here © estimates target coordinates from an image coordinate x using a perspec-
tive warp W and the 2D polynomial Tyy. The quadratic error is weighted according
to the Gaussian distribution G, to give more weight to samples which are close
to the desired image coordinates. The o is a constant, expressing the smoothness
of the mapping. W is a simple perspective transform using 8 parameters, while
the 2D polynomial Y5, has the constant and linear terms removed, as those can
be modeled by W:

T22(33) = V13 92
+U90 T Y+ Vg x Y (4.13)

2 2 2 2
+v31 T7HU30 7Y + U3z 7Y

Our implementation also allows, if desired, the usage of polynomials of higher
degrees, with higher order terms added according to the scheme in equation (4.13).
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4 Ray-Based Camera Calibration from a Passive Imperfect Target

The result of equation (4.10) is used to calculate the corresponding target
locations for all rays ¢ in all views v, which are then stored in the calibration

proxy:

tiw = O;.(0). (4.14)

)

4.4.3 Calibration

In the following, a range of error terms will be introduced, whose minimization
can solve the calibration problem, starting with F; which is basically just a
rewrite of equation (4.3):

E1<0ad>R7T;t):p_(O+p3'd) (415)

with p as in equation (4.2). The constant target location ¢ is provided by the
calibration proxy, while the ray origin o and direction d, as well as transformations
from target to camera coordinates given by R and T" are the parameters we would
like to estimate. In E; the error is calculated as the difference, in camera
coordinates, between the measured target location, and the intersection between
the ray and the plane defined by ps. The desired calibration is then estimated
using a non-linear least-squares approach:

arg min E Ei(o;,d;, RU,RU;tm)2 (4.16)
0,d,R,T i€rays
VEVIEWS

This formulation already gives usable results when initialized correctly, see sec-
tion 4.5, but there are possibilities for improvement.

Because E; calculates the residuals in camera coordinates, the different scales
and orientations under which the target is observed is a source of heteroscedasticity
in Fq, as errors arise from the marker localization in image space, and not in
camera space. With parametric central cameras this is easily accounted for, by
using the reprojection error as the error metric. With ray based models these
effects are difficult to account for, because we are missing a projection. Indeed,
Ramalingam et al. [69] do not consider these effects, while Bergamasco et al. [§]
implement only a partial compensation, and assume scale effects to be negligible.

However, in this case the calibration proxy not only derives correspondences, but
functions ©;,, which map from image to target coordinates, see equation (4.11).
To calculate the error in image coordinates we regard the error propagation using
first order Taylor series expansion of ©;, about the image point 7, given as the
Jacobian matrix J;,, which can be calculated numerically on proxy generation.
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4.4 Calibration Method

Figure 4.4: Example of a calibrated deformed target. (a) The mesh used to render
the calibration images. (b) The fitted target deformation. (¢) Added
border constraints, see section 4.4.4.1.

The step from camera to image coordinates can then be implemented using R~*
to move from camera to target coordinates, and the inverse of the Jacobian, to get
from target to image coordinates. The error in image coordinates, given constant
target coordinates ¢ and Jacobian J;, is then:

Es(0,d, R, T; Jipt) = Jiy - R - Ey(0,d, R, T;t). (4.17)

4.4.4 Target Geometry

The above error metrics still assume perfect target geometry. However, it is
quite difficult to fabricate sufficiently accurate targets [3, 91]. Normally, when
calibrating using a planar target, the same target points are observed at different
image locations in multiple images. It is then possible to add the 3D locations of
the observed target points as additional parameters to the calibration model, and
jointly optimize the target geometry and the camera model [91].

In our calibration model this is not possible, as the image points are defined by
the rays, and the associated target points vary. To enable the determination of
target geometry, the target is therefore modeled as a fixed resolution mesh using
a regular grid, where each grid point g stores the offset from the perfect target.
These offsets are transferred to the observed target locations in the proxy using
bilinear interpolation. This influence of grid points to the observed target points is
only determined by the observed target coordinates, and therefore independent of
the optimization process. For the implementation this means that the additional
parameters can be passed as four 3D parameters with associated constant weights
v determined by the bilinear interpolation in target space:

Es(g,0,d, R, T;v, Jiy,t) = Jin ' - R7' - Ei(0,d, R, T;t,,(g;v,t)) (4.18)
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4 Ray-Based Camera Calibration from a Passive Imperfect Target

tm(g;v,t) =t + Zun “ On (4.19)

Here the v, are the additional constant weights, determined using the known
target coordinates and the four neighboring mesh points g,.

Leaving the whole target geometry variable introduces ambiguities, because
target scale and orientation are not fixed, which means that changes in the target
orientation and scale can be countered by corresponding changes of the extrinsics
between target and camera. The solution, as described by Strobl and Hirzinger
[91], is to fixate three points of the mesh.

4.4.4.1 Border Constraints

At the borders of the visible area the deformation problem is not well posed,
because it is possible that a grid point influences only a single residual. To avoid
artifacts on the border of the mesh, we additionally add an explicit smoothness
term only to grid points which fall below a certain number of samples. See
figure 4.4 on the preceding page for an example of a calibrated target.

4.4.5 Initialization

Due to the very generic formulation of the general camera model, the problem is
non-convex and requires sensible initialization. To this end we initialize under
the assumption that we have, in a small part of the image, an approximately
rectilinear projection, and add an error term which conforms to the traditional
projection model, using an additional unknown parameter for the focal length f
plus a camera center which is fixed at half the image size. This term is inversely
weighted with the distance to the image center, so only the center area is forced
to conform to the regular central camera model.

The solver is then started with a small subset of all observed views and a set of
sensible initial parameters. The used parameters, which worked for all cameras
that were tested, are a set of extrinsics which place all targets in front of the
camera at a distance of 10 meters, a focal length of 10000 pixels and initial rays
that all point towards the target in the same direction.

4.4.6 Implementation

To derive the calibration we use a standard non-linear least-squares solver [2],
minimizing £, but with all ray origins fixed at (0,0) and the target mesh fixed
at the perfect geometry. After this initial problem has converged we relax the
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4.4 Calibration Method

problem by removing the projection constraints, replacing £y with F3, and adding
the target geometry as parameters to the solver. In the last step the fixed ray
origins are also free to vary, so the model jointly optimizes rays and geometry.
For the whole calibration procedure the canonical constraints 1 and 2 from
section 4.2.1 are enforced by setting the respective parameters to zero. The
resultant calibration is not necessarily in the canonical form, as equation (4.5)
is not enforced. Therefore, a post-processing step is performed after successful
calibration, adjusting 73 and the ray origins o;, so equation (4.5) is fulfilled.
Note that the implementation is a direct, very straightforward implementation
of the equations presented in this work, all the magic required to perform least-
squares optimization, like auto-diff, is provided by the Ceres Solver library [2].

4.4.7 OQOutliers

The input target/image correspondences, and the calibration proxy sometimes
contains a few outliers. This happens nearly exclusively when input images exhibit
strong blur or noise. For this reason we filter out outliers when fitting the proxy,
as well as on final calibration, by examining the sample residuals and removing
samples above a certain threshold (we used 5x the median). In all experiments
the number of outliers was below 3% of the total sample count.

4.4.8 Stereo and Multi-View

The calibration model is trivially extended to calibration scenarios with multiple
cameras, by adding additional constraints where relative camera poses should
stay the same. For example if the relative extrinsics between the two cameras
A, B of a stereo setup should stay the same (otherwise stereo imaging would not
make much sense), then an additional error term is added as:

EA,B = Z K,(RUA — RUB — RAB>2 + n(TvA — TvN — TAB)2- (420)

(2

Here v indexes different views of the calibration target, taken with both cameras
at the same time.

The new parameters R p and Tsp give the relative rotation (as an angle-
axis vector) and the relative translation between the two cameras which are
new unknowns which will be estimated by the least-squares optimization. This
additional constrain enforces that this relative pose stays the same over all
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calibration views. When the whole setup (or the calibration target) is moved,
and as a result the relative pose also changes, then /4 g > 0.

Note that it is not necessary to estimate these jointly, they can also be estimated
after running the full calibration by fixing all other parameters, which allows an
estimation the stability of the stereo or multi-view rig, according to the calibration
data. The parameters x and 7 allow adjusting the weight of the constraints relative
to each other and to the main calibration residual. Low weights will not influence
the calibration result much, while large weights will lead to a large overall residual
if the setup is not rigid, thus allowing the evaluation of the rig rigidity.

This extension to multi-view is a significant improvement on the method of
Bergamasco et al. [8], which calibrates multiple cameras separately and then
calculates the transforms in a second step.

4.4.9 Correction Tasks

To calculate the corrected images from distorted inputs, we use the calibrated
ray model of a camera and intersect the model rays with the depth plane for
which we want to derive the correction. The points resulting from the intersection
are then projected with the desired virtual camera (e.g. a pinhole camera). The
result is a sparse pixel to pixel mapping between the distorted and the desired
undistorted images. To derive a dense interpolation we chose thin plate splines
[25], due to their excellent extrapolation properties, which is important at the
image borders. Note that the depth chosen for the intersection only matters for
non-central cameras, or when performing rectification. If the calibrated camera is
central and the virtual camera is placed at the same position, then the depth has
no effect on the calculated mapping.

For undistortion we simply place a virtual camera exactly at the position of
the calibrated camera.

For rectification, we have an additional constraint for the reference camera,
whose x-axis must be parallel to the line given by the extrinsics between the
two (or multiple) cameras, which will result in an undistortion which fulfills the
rectification constraints on the remapped images.

4.5 Experiments

This sections evaluates the calibration performance with a range of experiments,
both on synthetic data, see figure 4.5 on the next page, and on real images,
see figures 4.2 and 4.6 and table 4.1 on page 53, on page 62 and on page 63.
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Figure 4.5: Evaluation with a non-central camera on ground truth data, evaluating
the GPE, see text, against depth. The dotted vertical lines give the
minimum, average and maximum distances at which the target was
observed in the calibration images. The central rational camera model
[18] is unable to cope with the depth dependent effects and optimizes
for the average of the observed distortions. Our non-central model
achieves much better accuracy and can extrapolate reasonable well
to unobserved depths. Note how the full model (F3) gives slightly
worse results as it may deform the target, although in this evaluation
the target is perfectly planar. F; gives worse results than either Fo
or F5 due to the heteroscedasticity in the input data, which leads to
increased weights for samples observed from a larger distance.

The method is evaluated against the division model implemented by OpenCV
[13], which has a very high adoption throughout computer vision community.
In addition, the method is compared to the parametric calibration with target
geometry estimation [91], using the same distortion model. This evaluation does
not seek the best parametric model for the tested lens. In practice, it is not
feasible to perform evaluation of distortion models every time a camera calibration
is required. The method is also not evaluated against other generic, ray-based
calibration approaches, as those require an active target. Where an active setup
is feasible, it can be expected that active methods surpass this approach, due to
the much higher number of data points which can be collected from an active
target.
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Model max avg max avg fit rmse (px)
max rmse rmse
division [13] (checkerboard) 3.0566 0.0308 0.8753 0.2276 0.120

division [13] (calibration proxy) | 2.8728 0.0298 0.9517 0.2198 0.096
imperfect target ([91]+[13])) 2.7276 0.0275 0.7561 0.1949 0.023

ours (fully unconstrained) 1.3883 0.0176 0.32890.1080 0.0067
ours (planar) 1.5800 0.0170 0.4343 0.1103 0.0290
ours (central) 1.6156 0.0159 0.3546 0.0965 0.0072
ours (planar & central) 1.36050.0158 0.3492 0.0963  0.0320

Table 4.1: Results of the stereo evaluation. For all stereo pairs of the verification
set, the checkerboard corners are triangulated and the distances of
all directly neighboring corners are compared. We report the highest
change between maximum and minimum distance (max), the average
over the distance between the max and min over all pairs (avg max),
the maximum root-mean-squared deviation from the respective average
over all corner pairs (max rms) and the average (avg rms). All results
are reported as percentage of the respective average distance. We also
list the calibration residual (fit rms). The best values are denoted in
bold.

The only ray based method which operates on passive targets is the method
by Ramalingam et al. [69, 93]. However, the method produces a sparse irregular
collection of rays, where the ray placement depends on the target placement
and might not extend to the image borders. As the evaluation is based on the
correction performance of the calibration, it is not possible to evaluate [69, 93],
due to the missing undistortion.

When evaluating the quality of a calibration method, the residual is a poor
proxy for the actual quality of the calibration, as detailed section 3.4.2. For
example problematic areas, like image corners, may not be part of the calibration
data. Also, more data points increase the residual as well as the quality, and
more parameters can lead to overfitting. Some of these effects are visible in
table 4.1 and figure 4.6 on the current page and on the facing page, compare
also section 3.4.4. For this reason we look at two different quality metrics. For
experiments on synthetic data we can compare with the known ground truth
projection. We use the GPE introduced in section 3.4.2; see also [79, 88], which
is defined as the root-mean-squared difference between the ground truth and the
calibrated projection over all pixels.
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Figure 4.6: Plot of the calibration accuracy, as measured by the avg RMS error
of the stereo setup, see table 4.1 on the preceding page, depending
on the image count of the calibration set. The number of calibration
images only has a small influence on the calibration accuracy.

In figure 4.5 on page 61 we compare a division model as implemented by
OpenCV [13], against our unconstrained model on synthetic data, rendered with
a non central camera. While the central model fits reasonably well to the average
depth observed in the calibration images, our unconstrained model performs
much better at all depths. Thanks to the non-central model the performance also
decreases much slower at unobserved depths. Results for the calibration of a real
non-central imaging system are shown in figure 4.2 on page 53, where we show
the results of our method on a wide-angle fish-eye lens, which exhibits strong
non-centrality.

The main focus of this work are not the more uncommon non-central cameras,
but the usage of the ray based calibration to improve the accuracy of regular
lenses, as those might be used for example in stereo or light field setups. To assess
the performance from real data, the evaluation roughly follows Bergamasco et
al. [8, 10] and utilizes a stereo setup. For the evaluation, a set of 60 calibration
and 60 verification images are recorded from a stereo rig. The two cameras are
calibrated from the calibration set and the resultant models are used to undistort
the images in the verification set. The verification set consists of images of a
checkerboard target. From the undistorted stereo data sets we triangulate the
corners of the checkerboard pattern and observe the distance between neighboring
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Figure 4.7: Plot of the reprojection error of the calibration against the number of
calibration images. Once again, the reprojection error demonstrates
its independence from the accuracy of the calibration, as the RMS
error actually increases with the increase in calibration accuracy, as
shown in figure 4.6 on the preceding page.

checkerboard corners as the target is moved around the scene. The consistency of
these distances gives us a good external estimate of the quality of the calibration.
For a high quality calibration the triangulated points should keep the same
distance to each other, independent of the target distance or orientation. The
results in table 4.1 on page 62 show that our method is much more accurate even
for this highly central, low distortion lens.

We also investigate the target planarity, by performing two additional tests:
First we disable deformation estimation in our method. Secondly, we add the
estimation of the target deformation by also optimizing the target geometry for
the parametric model [91]. We found that while this improves the RMS error a lot,
the accuracy is only slightly improved. To check whether the calibrated camera
is actually central, we constrain our calibration to only estimate ray directions,
with the ray origins fixed at the camera center. As calibration with a fixed planar
target and central ray model appears to provide the highest accuracy, we assume
that the tested camera is, to a very high degree, central and the target planar.

Note that our findings are similar to the ones reported by Bergamasco et al.
[10], but while they evaluate their method using an only nearly central camera,
our evaluation is based on a highly central camera, as indicated by the slightly
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increased evaluation error when using the unconstrained model. Hence, the
improvement shown in table 4.1 on page 62 stems solely from the improved
distortion modeling capability of the ray based model, and not from the non-
central nature of the calibrated camera.

We also evaluate the influence of the number of calibration images on the
calibration quality, see figure 4.6 on page 63. Interestingly, the number of
calibration images does not have a large influence after some threshold, which
is seven images for our approach and just three for the division model. We also
show the reprojection error depending on the number of images in figure 4.7 on
the facing page, which illustrates once more why the reprojection error of the
calibration is a bad measure of the absolute calibration accuracy.

4.6 Discussion

In its current formulation the method is limited to imaging systems with a field
of view below 180 degrees. Note that this limitation is a direct result of the
two-plane parametrization of the ray based model, see section 4.2. While this
formulation is convenient for expressing our calibration method, it should directly
transfer to a more generic ray parametrization.

The method possesses several tuneable constants, mostly concerned with the
generation of the calibration proxy. While the resultant calibration model seems
to change little for different values, we evaluated only few combinations.

As shown in section 4.5 our approach allows high accuracy calibration of
central and non-central cameras from the passive target, without the requirement
of a perfectly manufactured target. Compared to previous approaches this
simplifies camera calibration and avoids the necessity to select the right calibration
model beforehand, which should make calibration easier to use and more robust,
especially for specialist optics, like extreme wide-angle lenses.
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Light Field Depth Estimation

Depth estimation from multiple images is a central task in computer vision, with a
long-standing history. Depending on the application area, different types of depth
sensors are utilized, ranging from passive and active stereo cameras, over active
depth cameras, to light field cameras. If depth accuracy is the most important
factor, compared to e.g. financial budget or portability, then light field cameras
might be the best choice. Light Field depth may be used for a broad range of
scenarios, from special effects to industrial inspection, or autonomous driving
scenarios. Alternative active sensors like time-of-flight cameras or Lidar may not
always be viable due their active nature which leads to interference and limited
range.

In this chapter a novel depth estimation approach for light field imaging is
introduced, which is build around proper occlusion reasoning which improves both
discontinuities in the estimated disparity map, and allows better regularization.

5.1 Outline

For related work please see section 1.3.3. This chapter is structured as follows.
Section 5.2 explains core concepts of light field imaging and section 5.3 shows
the occlusion problem and the importance of occlusion handling. Section 5.4
introduces the novel depth estimation method, with further details split into the
modeling in section 5.4.1, occlusion reasoning in section 5.4.2, the data term in
section 5.4.3, smoothness term in section 5.4.4, optimization in section 5.4.5 and
the initialization in section 5.4.6. Finally, the method is evaluated on real and
synthetic data, showing that this method outperforms the previous state-of-the-
art, see section 5.5. In addition, two extensions are presented, implementing
BRDF surface normal enhancement in section 5.6 and light field polarization
imaging in section 5.7.
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(a) Center view (b) Ground truth disparity

(c) OURS (d) SPO-MO, Sheng et al. [85]
BadPizy g7 = 10.8

Figure 5.1: Improved reconstruction through our inline occlusion handling
approach, in comparison with Sheng et al. [85, SPO-MO]. Note the
considerably improved reconstruction of the partially occluded content
within the box and on the right side of the box. The improvement
can also be measured quantitatively by the percentage of bad pixels
(error > 0.07 px), here 10.8 for ours and 15.5 for Sheng et al.
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5.2 Light Field Imaging

The term light field imaging is commonly applied to approaches based on the
multi-dimensional sampling of a scene, using recording setups which can capture
more dimensions than the two-dimensional projection of a perspective camera.
This data driven approach is inspired by the plenoptic function [1], which describes
a scene by the light passing through every point in space:

L(z,y,2,0,0,t,X), (5.1)

which gives the light intensity (radiance), where (z,y, z) is the 3D scene point,
(0, ) are the angles giving the direction of the light, ¢ is the time and A is the
wavelength. Note that this could still be extended with, for example, polarization
information, to get an even more complete description of the scene. In com-
puter vision, time is often regarded in discrete time steps, and wavelength is
simplified to a few color channels, therefore it is not necessary to regard those
as continuous dimensions, and they are normally dropped from the function, to
reduce dimensionality to five dimensions. See figure 5.2 on the next page for a
visualization:

L(z,y,2,0,0). (5.2)

Furthermore, if we constrain the problem solely to the light leaving the scene
through a defined window. This constrain allows us to simplify this to 4 dimensions,
sampled at an intersection plane, see figure 5.3 on page 71:

L(u,v, s,t), (5.3)

where (u,v) is the intersection points at the first plane and (s,t) the intersection
at the second plane.

Note that while this is a common parametrization of the plenoptic function, in
this work we will instead regard perspective 2D projections of the scene, acquired
with an idealized pinhole camera, by translating the viewpoint along the 2D plane,
see figure 5.4 on page 72. This also gives a sampling of the 4D plenoptic function.
In this viewpoint (or subaperture view) parametrization the projection from scene
to image space follows the form described in equation (2.8) from section 2.2:

t=C(Rw+T). (2.8 revisited)
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Figure 5.2: Visualization of the five-dimensional plenoptic function where the
“star” locations represent the three dimensional spatial components
and the arrows the two-dimensional angular components.

Assuming a scene coordinate system aligned with the camera where R is the
identity and 7" = (T,,T,,0)”, then movements of the camera via T directly
translate to image space movements as:

t=Clw+T) (5.4)
=10 fy, | |w,+Ty]|, (5.5)
0 0 1 w,
And hence:

fawz + foTy +w.cy
= | fywy+ fyTy+wsey |, (5.6)
Wy
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Figure 5.3: By assuming that the radiance stays constant outside of the scene, the
plenoptic function can be parametrized as a 4D function, for example
using a two plane intersection model as shown here.

applying h then gives:

o (feE et fay
S\ et )

This is convenient, as we can compare two viewpoints with different translations
A, B:

(5.7)

f e
TA— T = (f A;iZBy> . (58)
Y w,

If the spacing between cameras along a direction (here x) is expressed by the
baseline b = A, — B,. Then the image feature movement can be used to estimate
the distance z by rewriting equation (5.8) as:

(5.9)
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Figure 5.4: Viewpoint parametrization of a 4D light field using a 2D camera array.
Each camera captures a 2D perspective projection of the scene from
a single viewpoint, multiple viewpoints capture a range of samples
from the angular and spatial domains of the full light field.

Here d is the disparity, the distance (in pixels) of the apparent motion of object
points in image space, caused by the viewpoint shift.

This is well known from stereo imaging, but with a light field setup more
than two viewpoints are available, compare figure 5.4, which allows the re-
parametrization of the light field as an EPI, see section 5.4.1. EPIs are a
convenient structure for light field depth estimation, as the orientation of lines in
an EPI allows the measurement of the disparities, while at the same time the EPI
enables reasoning about occlusions in the scene, where scene content occludes
parts of the scene for some viewpoints, see also section 5.4.2. Occlusion reasoning
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is not possible to this extent in stereo imaging, as occluded are only visible from
one view, whereas in light field imaging they might be observable from multiple
viewpoints.

5.3 The Importance of Occlusion Handling

Light-field imaging allows for highly accurate depth estimation, by sampling a
scene from many viewpoints, compare section 5.2. Compared to stereo imaging,
the oversampling increases depth accuracy and the large number of viewpoints
reduces the chance of encountering a sample which is occluded in all other views.
As for related tasks, such as stereo depth and optical flow, proper occlusion
handling is essential for obtaining high-quality depth reconstructions. An inaccu-
rate occlusion model will immediately reduce the reconstruction quality, since
foreground and background samples are confused within the data-term around
object boundaries. This is a well-known problem and virtually all state-of-the-
art methods for light-field depth estimation implement some form of occlusion
handling. However, they differ in the way how they perform this. Please see
section 1.3.3 for the approaches used in related works.

We can classify occlusion handling approaches into three different paradigms
to handle occlusion, each with a different level of complexity. At one end of the
spectrum there are approaches which formulate an elaborate model for jointly
estimating depth and occlusions, ideally for all views jointly. This explicit joint
optimization has been formulated by Kolmogorov and Zabih [52], however their
approach is prohibitively slow with existing solvers, even when restricting the
problem to stereo and single pixel accuracy [95]. Hence, there are currently no
practical realizations of such an approach for light-field imaging. At the other
end of the spectrum, there are all the existing approaches to light-field depth
estimation. In a nutshell, they employ a pre-processing step to filter out all
potentially occluded pixels in each view. However, the way to achieve this differs.
After this pre-processing step one, or sometimes multiple, cost volumes are derived
explicitly or implicitly from the image data. The cost volumes are then used to
derive the depth for (normally) the center view of the camera. The hope is that
the cost volume is free of the influence of occlusion. Obviously, such a two stage
procedure is sub-optimal for various reasons. One major problem is that wrongly
discarded non-occluded pixels are lost for the remaining computation steps.

This chapter introduces a new way to incorporate occlusion reasoning in a
more integrated fashion than existing approaches, and in this way makes the most
use of the available data. To achieve this goal while keeping computation costs
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down, we borrow from PatchMatch [6], which allows very fast optimization using
a randomized approach and local optimization, and can be extended to make use
of a data term and a smoothness term [73]. In our case both the data term and
the smoothness term is subject to the occlusion information of neighboring pixels.

In effect, we continuously update the occlusion information during the process-
ing, which means that it is always consistent with the estimated depth, and by
virtue of this synchronization the occlusion information is implicitly improved
with every iteration.

In the original PatchMatch the local errors directly sum up to a global energy
which is implicitly minimized, as there are no local interactions. However, while
we also perform only local evaluations and updates, because of the interaction
between depth model and occlusion, these local updates do not give any guarantees
with respect to the global error. By using PatchMatch we are able to achieve our
goal of efficiently estimating a depth model where occlusion information does not
have to be pre-computed. By doing so, we observe a substantial improvement in
reconstruction quality, both qualitatively and quantitatively. Interestingly, our
improvements are not only located at object boundaries, but also the quality of
interior surface reconstruction improves. This stems from the fact that we can
make better use of the available data than other methods, even those methods
with a strong focus on regularization.

5.4 Method

Given the fact that the depth model which is being reconstructed implicitly
contains the information required for proper occlusion handling, we formulate
the cost function in a way that makes explicit use of the occlusion information
encoded within the model, see section 5.4.2 for more details. This makes occlusion
a first class citizen of the model.

This cost could in principle be optimized with some global optimization method.
However, as the resultant optimization problem is highly ill-posed, this approach
would probably be extremely slow, compare [52, 95]. Therefore, we base our
approach on PatchMatch [6] to perform only local optimization, and introduce
extra constraints into the cost term to avert suboptimal solutions arising from
this fast, but globally suboptimal optimization.

Apart from the implications of the occlusion handling, the approach is formu-
lated as a standard minimization problem with a cost based on a regularization
term and a data term, where both are influenced by the occlusion handling.

74



5.4 Method

5.4.1 Model and Data

The model used here is the disparity map of the central view. To simplify
occlusion handling we confine the data to the subset of viewpoints shifted only
horizontally or only vertically from the central viewpoint (cross-hair configuration),
see figure 5.6 on page 77. The volume of the horizontal 3D subset can be sliced
row-wise to obtain a set of epipolar plane images (EPIs, compare figure 5.5 on
the following page), which represent the full information content of the subset.
The central row of an EPI corresponds to a row of the center view, which directly
maps to the same row in the disparity map. The same applies to columns in the
vertical 3D subset. A single sample from the disparity map corresponds to a 2D
line in the respective EPIs, where the slope of the line represents the disparity
and hence encodes the depth, compare figure 5.7 on page 78. The cost function
E;(d) for a single sample i of our model (a pixel of the center view disparity map
D), based on the data term &;(d) and the regularization term (;(d) is formulated
as the cost associated with a disparity d, where the disparity map D is held
constant for the evaluation of the sample:

Ei(d) = p- Ci(d) + &(d), (5.10)

where p is a regularization weight.

5.4.2 Occlusion Handling

Compared to the methods in section 1.3.3, we obtain occlusion information from
our depth model, and not via some heuristic external to the optimization. This
simplifies our occlusion metric to a simple threshold 6;. We consider a disparity
sample d in the disparity map to be potentially occluded by any other sample d;
ifd; —d >0,

The actual decision whether a sample is occluded or not is performed during
the evaluation of the cost terms, which means that updates to the model per-
formed during an iteration of the optimization, directly affect the costs of all
future evaluations, which speeds up the propagation of locally good solutions, as
advocated by the PatchMatch algorithm [6].

5.4.3 Data Term

Because we only consider either horizontal or vertical camera movement, relative
to the central view, only samples from the same row (or column, respectively),
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| T R

Figure 5.5: Epipolar Plane Images (EPIs) are extracted from a linear 3D
subset of the 4D light field, by extracting all rows (for a horizontal
subset) and stacking them together, shown at the bottom. For the
vertical stack the same is done with columns. Because the apparent
motion of scene points between the different viewpoints depends on
the depth of the point within the scene, the orientation of features
in the EPI encodes the depth of the respective points. Note that the
EPI shown here is pre-shifted so a disparity of 0 is not at infinity but
rather within the scene, hence disparities may also be negative.
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Figure 5.6: Multi-Camera cross-style light field setup. The cross configuration
samples two 3D subsets of the full 4D light field in orthogonal di-
rections, which allows sampling of most of the interesting effects of
a scene, including observation of isotropic and anisotropic BRDF
characteristics. It also gives good constraints for depth estimations as
both purely vertical and purely horizontal image space features can
be detected, something whic is not possible for stereo imaging.

can occlude any given sample in an EPI, compare figure 5.5 on the facing page
and figure 5.7 on the next page. In the following we will always assume that we
are looking at horizontal EPIs, but all statements apply to vertical EPIs via a
corresponding 90° rotation of EPI, view and disparity map.

To evaluate the data error for some disparity d at location 7 in the disparity
map, we sample along the corresponding line I'y;(s), see figure 5.7 on the following
page, by evaluating I'y; for all rows s of the EPI. A sample I'y;(s) = x corresponds
to a pixel position at the image coordinate (x,1,) of view s. While i, is an integer,
x is a fraction, hence the actual pixel value Cy(x, i) is derived by interpolation
in the horizontal direction. To actually calculate the data error we generate all
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=7,

Figure 5.7: Occlusion handling in an EPI: The lines [' are defined by the
respective disparities D; in the center view, represented by a cross
(x), while the EPI samples on I'y; are shown as star (). From the
intersections ®; (white dots), the one closest to the center view is
obtained with I'g j,, hence all samples behind this point minus a safety
distance if one pixel are disabled (grayed out).

intersections between I'y; and all other lines I'y; of the EPI which fulfill the
occlusion condition in equation (5.11). Note that lines from samples to the left
of i can only intersect above the center view, while samples to the right can
intersect below. Given these left /right intersections as ®; and ®,, respectively,
the occlusion term noce(s, ®;, ®,.) is set to zero or one:

. if s<¢p—0, Yoped,
noce(s, &y, @,.) = and s>¢+0, Voed, (5.11)
0 otherwise,

The occlusion area is extended by one pixel from the intersection point, to
avoid mixing of foreground and background when deriving the actual color sample
Cs(x,1,) from the input view s via linear interpolation. Given the occlusion
terms, the data error is simply the variance of all visible samples. We extend
the previous definitions by the subscripts A and v to denote the horizontal and
vertical EPI variants respectively (following terms with respect to a fixed sample
i and a fixed disparity d):
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(i — C(Tn, 8))? - nocen(s, ©niPh,) +
/ Zt(p“ _ C(Fva t))Q : TLOCCU(t, (I)v l(Dv r)
; = — 12
§i(d) > noce (s, @p P )+ ’ (5.12)

> nocey(t, @y P, )

where g is the mean of all unoccluded samples for (i, d).

To avoid failures due to the local nature of our approach, we also threshold
the data term on the number of unoccluded samples, and set the error to infinity
if less than 6, samples are unoccluded, because otherwise, moving individual
samples (incorrectly) towards the background can reduce the variance in flat
areas, by reducing the number of unoccluded samples.

Even with this occlusion constraint there is a second case where the local
solution can substantially deviate from the correct depth. This can be observed
on purely horizontal or vertical structures in the scene. For such structures the
data error is zero for one direction, hence, if e.g. for a vertical structure, the
vertical component of the data term is zero, then if a large connected block of
the vertical structure is moved into the background, the remaining horizontal
component also becomes zero because we observe only a single sample in that
direction. We protect against this by checking, for each candidate, whether the
chosen disparity leads to a single pixel wide background structure, as measured by
04 over a range of 10 pixels. If such a case is detected, the error is set to infinity.

5.4.4 Smoothness Term

For a disparity sample d at location ¢ in the disparity map, the smoothness error

is defined by:

Ci(d) = (d — Qi(d))* (5.13)

Where ) is a smoothing filter based on the bilateral filter. This filter smoothes
the disparity map using a weighted mean, with weights derived from the color and
disparity difference against a central sample. The filter uses hard thresholds 6,
and 6. to determine which samples are allowed to influence the smoothing, which
gives well-defined borders without disparity bleeding. Given the color values of
the center view as C', and the current disparity map as D, the smoothing filter 2
is given by:

Q(d) = W (5.14)
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where j indexes a 7 x 7 window around 1.

The relative weight A; ;(d) of the disparity map sample D; is calculated de-
pending on the color difference A;; = a|C; — C;| and the disparity difference
,;(d) = B|d — D;| between the sample j and the central sample i, with « and 3
as parameters which steer the relative weighting of color and disparity differences.
The weights are calculated as

Aij(d) = max{eq, \/A%j + A 05(d)} (5.15)

it A;; <04and d; < 0., and

Aij(d) = max{e., \/AF; + 63(d)} (5.16)

if Ag;j > 04 and §; < 6. Otherwise \; ;(d) is set to zero. The thresholds 6, and 6,

set the maximum difference for disparity based weighting (if % <6fqgand d; <46,.)

or color based weighting (if % > 64 and 6; <40,).

The € are used to provide damping against zero differences, and €. also provides
some adaption to noise in the input images, using €. = ¢4 + 6, - E’(dy), where E
is identical to E;, aside from changing €. to €. = €;. Hence, E!(dy) is the initial
error at this iteration, using the initial disparity dy. This increases the minimal
blurring of the smoothing filter, when no good candidates where found in the
previous iteration — which after a few iterations is mostly due to noise in the
input images.

The crucial part is the usage of the current disparity candidate d within the
filter, which lets the smoothing filter adapt to the value of the candidate. The
current disparity at ¢ from the model, D; is not used during the evaluation. This
means that the smoothness term can switch, for example at an object border,
from averaging over the foreground to averaging over the background, depending
on the evaluated disparity candidate, as shown in figure 5.8 on the next page.

The thresholds encourage the smoothing according to the model (i.e. disparity
map) by making the disparity difference the dominating weight term for small
disparity differences (% < #,). The color differences play a secondary role and
encourage smoothing along similar colors. At the same time the hard thresholds
mean that the weight is quickly set to zero if the differences in color and/or
disparity become too large, ensuring that only those samples are taken into
account for which it is likely that they belong to the same object, both from the
color and the disparity similarities.

The simple smoothness term as described above limits the estimation accuracy
in two ways. Firstly, the method tends to over-smooth at object edges when both
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candidate d; = . candidate dy =

0.7 10.6 10.5

0.9

0.8

Figure 5.8: Switching behavior of the smoothness term. The two grids
represent the identical neighborhood around a central disparity sample
d, indicated by the brightness of the cells. Depending on the value of
a candidate d;, the weights, given as numbers within the cells, change
according to equation (5.15) and equation (5.16), which by design
leads to a distribution which generates a smoothing of those samples
most similar to the central candidate in both color and disparity.

sides of the object are visible, because the edge of the object will be averaged
with the neighbors from both sides. Secondly, planes with a steep inclination
tend to show staircase artifacts, as the thresholding in the filter encourages areas
to be piecewise planar.

We extend the filter to preserve normals and planes separately. In the smoothing
filter, consistent normals between the central sample 7 and some other sample j
are detected by comparing the local gradients in D. If the gradient difference is
below 6, then D; is corrected by this normal when it is used in equation (5.14).

For planar surfaces we add a metric which detects purely planar surfaces, by
taking four samples around the central sample, located at the corners of a square
with a size of 11 x 11, and fitting a plane through these four corners. If the
residual from the fit is below 0 and the distance between the plane and disparity
candidate are below 04 we evaluate the plane at ¢ and use this result instead of 2.

Both of these metrics are applied with a damping factor, where the correction
with normal and plane is weighted with the original smoothing filter with a weight
of 0.5 to prevent overshooting.
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Figure 5.9: Flow chart visualizing the data flow of our method. After initialization
all pixels of the disparity map are iterated. For every pixel in the
disparity map several candidate disparities are evaluated, and the one
with the lowest sum of smoothness and data error is chosen to update
the disparity map. This process is repeated 20 times, changing the
direction of processing between each iteration.

5.4.5 Local Optimization

Both the data term and the smoothness term are formulated with a strong
focus on correct occlusion handling with hard thresholds in disparity and color
differences. While this encourages well-defined borders in the model, it makes
the problem harder to optimize, owing both to the sudden onset of the influence
of samples, and to the complex interaction between samples due to occlusion.
Pre-calculating the error terms for a number of discrete disparity labels and
building a cost volume is also not possible, as both terms deliberately depend on
the current state of the model. Therefore, we base our method on PatchMatch [6].
The method iterates the disparity map and, at each sample, calculates the local
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Figure 5.10: Candidate disparities are predicted from the direct neighbors already
processed in this iteration. Processing reverses direction after each
iteration, so good solution can propagate in all directions.

error F; for the current disparity dy, as well as for several disparity candidates.
If any of the candidates has a lower error over the previous solution, the model is
immediately updated, which allows propagation of locally good solution.

We use four predictors to provide the disparity candidates which are evaluated
with the local error term, also visualized in figure 5.9 on the facing page.

Propagation: Depending on the iteration number, the solver iterates over the
disparity map either left-to-right and top-to-bottom, or the reverse, see figure 5.10.
The disparities of all neighbors (either direct or over the corner) which were already
processed in the current iteration are used as candidates for evaluation. As the
model is always directly updated when a lower error is found, an improved
estimate at one sample will directly be used in the data and smoothness term
of the next sample, within the same iteration. Hence, as the improved disparity
at a sample is provided as a candidate to the solver for the next sample, good
solutions can quickly spread over the whole disparity map.
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Random Improvement: At each iteration, candidates d; are generated by sam-
pling u from a uniform distribution between —1 and 1 as:

d; = dy + 7 sign(u)u? (5.17)

where 7 is the parameter which steers the max range of the refinement. The
quadratic term ensures that smaller changes are sampled with a much higher
frequency than larger ones.

The following two predictors are only activated if the error of the current model
is above an activation threshold 6,.

Random Neighbor: For some scenes a feasible candidate might be not directly
adjacent but further away, e.g. when a surface is partly occluded by some detailed
foreground object, like a smooth background behind the branches of some plant.
For this reason we also use distant neighbors, by sampling uniformly within a
range of +15 px.

Random Guess: Finally, we also sample randomly from the valid disparity
range.

5.4.6 Initialization

If the solver is simply initialized, either with a uniform or random disparity, the
solver is not able to converge to a good solution in most cases, because it will tend
to preserve clumps of uniform disparities as long as the data term doesn’t force a
change. This means that a wrong initialization on low structured regions will be
preserved. To resolve these ambiguous, low textured areas we use an initialization
which is based on line fits through zero crossings.

For each EPI we calculate the zero-crossings of the second derivative in the
horizontal direction to collect a number of feature points, and store their location.
In a second step we regard all these feature points on the bottom row of the EPI
and iterate over all feature points within the disparity range of the top row. Using
these two points we fit a line RANSAC-style, and compare the two points to the
points on the rows in between, using configurable thresholds for the maximum
horizontal distance and the maximum gradient difference.

The resulting lines are mapped into the center disparity map to provide a sparse
but highly accurate initialization of disparities. This map contains now most of
the foreground structures of the light field, e.g. features that are visible from
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0, 0.05K |0, 0.025K |6; 0.01K
0, 3 0, 025V |6, 0.01
a 0.15 520 ea 0.5
p 003751 | 7 02K |6, 400

Table 5.1: List of parameters used for all results but figure 5.11 on the next page,
where V' is the total number of views, K the disparity range of the
scene and [ the current iteration number.

either all horizontal or all vertical views. To retrieve a dense initialization of our
model — the center view disparity map — we now interpolate the missing samples
from the sparse disparity map. For each missing sample we check for the next
samples in the sparse map in horizontal and vertical direction, and weight them
with respect to the color difference between the sample which is to be calculated
and the color of the respective sample from the sparse map. Finally, a median
filter is applied on the dense map.

The result of the initialization is a disparity map where unstructured areas are
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