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Abstract

Owing to high stakes in the field of healthcare, medical machine learning (ML) applications
have to adhere to strict safety standards. In particular, their performance needs to be robust
toward volatile clinical inputs. The aim of the work presented in this thesis was to develop
a framework for uncertainty handling in medical ML applications as a way to increase their
robustness and trustworthiness. In particular, it addresses three root causes for lack of
robustness that can be deemed central to the successful clinical translation of ML methods:

First, many tasks in medical imaging can be phrased in the language of inverse problems.
Most common ML methods aimed at solving such inverse problems implicitly assume
that they are well-posed, especially that the problem has a unique solution. However,
the solution might be ambiguous. In this thesis, we introduce a data-driven method for
analyzing the well-posedness of inverse problems. In addition, we propose a framework to
validate the suggested method in a problem-aware manner.

Second, simulation is an important tool for the development of medical ML systems due
to small in vivo data sets and/or a lack of annotated references (e. g. spatially resolved blood
oxygenation (sO2)). However, simulation introduces a new uncertainty to the ML pipeline
as ML performance guarantees generally rely on the testing data being sufficiently similar
to the training data. This thesis addresses the uncertainty by quantifying the domain gap
between training and testing data via an out-of-distribution (OoD) detection approach.

Third, we introduce a new paradigm for medical ML based on personalized models.
In a data-scarce regime with high inter-patient variability, classical ML models cannot
be assumed to generalize well to new patients. To overcome this problem, we propose
to train ML models on a per-patient basis. This approach circumvents the inter-patient
variability, but it requires training without a supervision signal. We address this issue via
OoD detection, where the current status quo is encoded as in-distribution (ID) using a
personalized ML model. Changes to the status quo are then detected as OoD.

While these three facets might seem distinct, the suggested framework provides a unified
view of them. The enabling technology is the so-called invertible neural network (INN),
which can be used as a flexible and expressive (conditional) density estimator. In this
way, they can encode solutions to inverse problems as a probability distribution as well as
tackle OoD detection tasks via density-based scores, like the widely applicable information
criterion (WAIC).

The present work validates our framework on the example of biophotonic imaging.
Biophotonic imaging promises the estimation of tissue parameters such as sO2 in a non-
invasive way by evaluating the “fingerprint” of the tissue in the light spectrum. We apply
our framework to analyze the well-posedness of the tissue parameter estimation problem at
varying spectral and spatial resolutions. We find that with sufficient spectral and/or spatial
context, the sO2 estimation problem is well-posed. Furthermore, we examine the realism of
simulated biophotonic data using the proposed OoD approach to gauge the generalization
capabilities of our ML models to in vivo data. Our analysis shows a considerable remaining
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domain gap between the in silico and in vivo spectra. Lastly, we validate the personalized
ML approach on the example of non-invasive ischemia monitoring in minimally invasive
kidney surgery, for which we developed the first-in-human laparoscopic multispectral
imaging system. In our study, we find a strong OoD signal between perfused and ischemic
kidney spectra. Furthermore, the proposed approach is video-rate capable.

In conclusion, we successfully developed a framework for uncertainty handling inmedical
ML and validated it using a diverse set of medical ML tasks, highlighting the flexibility and
potential impact of our approach. The framework opens the door to robust solutions to
applications like (recording) device design, quality control for simulation pipelines, and
personalized video-rate tissue parameter monitoring. In this way, this thesis facilitates the
development of the next generation of trustworthy ML systems in medicine.

Zusammenfassung

Aufgrund des hohen Risikos im Gesundheitswesen müssen medizinische Machine Lear-
ning (ML)-Anwendungen strenge Sicherheitsstandards einhalten. Insbesondere muss ihre
Leistung gegenüber volatilen klinischen Eingaben robust sein. Das Ziel der in dieser Dis-
sertation vorgestellten Arbeit war die Entwicklung eines Frameworks für den Umgang
mit Unsicherheiten in medizinischen ML-Anwendungen. Solch ein Framework kann dazu
beitragen die Robustheit und Vertrauenswürdigkeit medizinischer ML-Anwendungen zu
erhöhen. Insbesondere werden drei Hauptursachen für mangelnde Robustheit adressiert,
die als zentral für die erfolgreiche klinische Translation von ML-Methoden angesehen
werden können:

Erstens lassen sich viele Aufgaben in der medizinischen Bildgebung als inverse Probleme
formulieren. Diemeisten gebräuchlichenML-Methoden, die darauf abzielen, solche inversen
Probleme zu lösen, gehen implizit davon aus, dass sie gut gestellt sind, insbesondere, dass
das Problem eine eindeutige Lösung besitzt. Es kann jedoch mehrere Lösungen geben. In
dieser Arbeit stellen wir eine datengetriebene Methode zur Analyse der Wohlgestelltheit
inverser Probleme vor. Darüber hinaus schlagen wir ein Framework zur Auswahl geeigneter
Metriken vor, um die vorgeschlagene Methode problemspezifisch zu validieren.

Zweitens ist die Simulation aufgrund kleiner In-vivo-Datensätze und/oder fehlender
annotierter Referenzen (z. B. ortsaufgelöster Sauerstoffsättigungen (sO2)) ein wichtiges
Werkzeug für die Entwicklung medizinischer ML-Systeme. Die Simulation führt jedoch eine
neue Unsicherheit in die ML-Pipeline ein, da ML-Leistungsgarantien im Allgemeinen davon
abhängen, dass die Testdaten den Trainingsdaten ausreichend ähnlich sind. Diese Disserta-
tion befasst sich mit dieser Unsicherheit, indem sie den Domain Gap zwischen Trainings-
und Testdaten über einen Out-of-Distribution (OoD)-Detektionsansatz quantifiziert.

Drittens führen wir ein neues Paradigma für medizinisches ML ein, das auf personalisier-
ten Modellen basiert. In einem datenarmen Regime mit hoher Inter-Patienten-Variabilität
kann nicht davon ausgegangen werden, dass klassische ML-Modelle gut auf neue Patien-
ten generalisieren. Um dieses Problem zu lösen, schlagen wir vor, ML-Modelle auf jedem
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Patienten individuell zu trainieren. Dieser Ansatz umgeht die Inter-Patienten-Variabilität,
erfordert jedoch ein Training ohne Überwachungs-Signal. Wir lösen dieses Problem über
die OoD-Detektion, bei der der aktuelle Status quo als in-Distribution (ID) unter Verwen-
dung eines personalisierten ML-Modells codiert wird. Änderungen am Status quo werden
dann als OoD erkannt.

Während diese drei Facetten unterschiedlich erscheinenmögen, bietet das vorgeschlagene
Framework eine einheitliche Sicht auf sie. Die Voraussetzungen des Frameworks bilden
sogenannte Invertierbare Neuronale Netze (INNs), die als flexible und mächtige (bedingte)
Dichteschätzer verwendet werden können. Auf dieseWeise können sie Lösungen für inverse
Probleme alsWahrscheinlichkeitsverteilung codieren sowie OoD-Detektionssaufgaben über
dichtebasierte Scores wie das Widely Applicable Information Criterion (WAIC) angehen.

Die vorliegende Arbeit validiert unser Framework am Beispiel der biophotonischen Bild-
gebung. Die biophotonische Bildgebung verspricht die Schätzung von Gewebeparametern
wie sO2 auf nicht-invasive Weise, indem der „Fingerabdruck“ des Gewebes im Lichtspek-
trum ausgewertet wird. Wir wenden unser Framework an, um die Wohlgestelltheit des
Gewebeparameterschätzungsproblems bei unterschiedlichen spektralen und räumlichen
Auflösungen zu analysieren. Unsere Untersuchung ergibt, dass bei ausreichendem spek-
tralem und/oder räumlichem Kontext das sO2-Schätzproblem gut gestellt ist. Darüber
hinaus untersuchen wir die Realitätstreue simulierter biophotonischer Daten mit dem vor-
geschlagenen OoD-Ansatz, um die Generalisierungsmöglichkeiten unserer ML-Modelle auf
In-vivo-Daten abzuschätzen. Unsere Analyse zeigt einen beträchtlichen Domain Gap zwi-
schen den In-silico- und In-vivo-Spektren. Schließlich validieren wir den personalisierten
ML-Ansatz am Beispiel des nicht-invasiven Ischämie-Monitorings bei minimal-invasiven
Niereneingriffen. Im Zuge der Studie entwickelten wir das erste laparoskopische multispek-
trale Bildgebungssystem, das im Menschen eingesetzt wurde. In unserer Studie finden wir
ein starkes OoD-Signal zwischen perfundierten und ischämischen Nierenspektren. Darüber
hinaus ist der vorgeschlagene Ansatz schnell genug für Video-Anwendungen.

Zusammenfassend haben wir erfolgreich ein Framework für den Umgang mit Unsi-
cherheiten im medizinischen ML entwickelt und es anhand einer Vielzahl medizinischer
ML-Aufgaben validiert, was die Flexibilität und den potenziellen Impact unseres Ansatzes
zeigt. Das Framework öffnet die Tür zu robusten Lösungen für Anwendungen wie dem
Design von Aufnahme-Geräten, der Qualitätskontrolle von Simulationspipelines und der
personalisierten Überwachung von Gewebeparametern mit Videorate. Auf diese Weise
ermöglicht diese Arbeit die Entwicklung der nächsten Generation vertrauenswürdiger
ML-Systeme in der Medizin.
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1. Motivation

0

20

40

60

80

DKFZ No Structure Circle Bullseye

25 50 75

0

20

40

60

80

Cross

25 50 75

Grid

25 50 75

Diagonals
Meanx: 53.76

Meany : 47.31

STDx: 16.13

STDy : 20.27

Corr: -0.06

Aggregates

Figure 1.1.: Summary statistics can hide structure in data. The seven 2D data sets
exhibit a wide range of patterns with identical mean, standard deviation, and
correlation coefficient up to the second decimal. The data sets were inspired
by and constructed using code from [MF17]. STD: standard deviation, DKFZ:
German Cancer Research Center.

Artificial intelligence (AI) and machine learning (ML) in particular have led to leaps in
many computer science and real-world problems (e. g. [Goo+14; RFB15; Sil+16; Sil+17;
Dev+18; Sil+18; Bro+20; Sen+20; Jum+21; Ram+22]). Therefore, it comes as no surprise that
ML has found its way into the medical domain. However, off-the-shelf methods oftentimes
do not meet the requirements due to the high-risk nature of medical care. Errors of a
recommender system might be acceptable, but an undetected polyp could have far-reaching
consequences. Hence, uncertainty quantification plays a central role in most medical
ML applications. Colloquially, uncertainty quantification is concerned with teaching ML
models to know what they do not know. The first approaches boiled down to interpreting
the actual prediction as a mean of some distribution and augmenting it with a standard
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Figure 1.2.: ML assumption violations in the clinic and how to solve them with
INNs. First row: Inverse problems encountered in a clinical setting are often
ill-posed, i. e. the solution to the problem might be ambiguous. We propose
cINNs to encode this ambiguity in multimodal posterior distributions. Second
row: Due to data sparsity, training data is often generated via simulation.
However, there might be a domain gap between the training and the testing
domain. We propose INNs to detect and quantify this domain gap as an out-of-
distribution (OoD) detection task. Third row: Clinical data sets are often small,
and the variability between patients (confounders) can cover the physiological
signal of interest (target). We propose INNs as unsupervised OoD detectors
to train personalized models circumventing the confounders. INN: invertible
neural network, cINN: conditional INN, WAIC: widely applicable information
criterion, ML: machine learning.
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deviation (e. g. [KG17]). The standard deviation becomes the uncertainty score. Figure 1.1
gives an idea of why this might be insufficient. As introduced in the work of Matejka and
Fitzmaurice [MF17], we see that summary statistics can hide a plethora of structure in the
data. This observation motivates our quest to access the underlying distribution.

An overview of our contributions can be found in figure 1.2. Each row contrasts a
common ML assumption with the clinical reality. It is of note that all addressed examples
are concerned with representing or coping with uncertainty. The last column hints at the
proposed solutions, which are methodologically powered by so-called invertible neural
networks (INNs) [Ard+18b]. In fact, this thesis’s core is built around a framework with
INNs at the center to wholistically handle the uncertainty in medical imaging applications.
INNs are a special neural network (NN) architecture that builds a family of very flexible
density estimators. This property is useful as many questions in uncertainty quantification
can be formulated in a probabilistic manner.

We will explore the proposed framework with the example of biophotonic imaging.
Biophotonic imaging is a new and fast-paced research area with great potential for patient
care. When light interacts with tissue, the resulting spectrum contains information about
the tissue composition on a molecular level. The value proposition of biophotonic imaging
is the recovery of the physiological tissue composition from the spectra (cf. figure 1.3,
left column). This approach is non-invasive, and if successful, it can pave the way to
new clinical applications like identifying the target for tissue ablation in cancer or cardiac
arrhythmia, temperature monitoring during the ablation, and tissue classification for polyp
detection (cf. figure 1.3, right column). The first success stories in biophotonic imaging
include monitoring hemodynamic changes in the porcine brain [Aya+19; Kir+19] and the
detection of sepsis [Die+21]. However, while these results are promising, we need to ensure
that the ML models are robust before proceeding with the clinical translation. We will
discuss this robustness along the common ML assumptions and how they are violated in a
clinical setting introduced in figure 1.2.

The first assumption (cf. figure 1.2, first row) concerns the well-posedness of inverse
problems. This might sound rather abstract, but the regression of tissue parameters from
spectra in biophotonic imaging is an example of solving an inverse problem. Most classic
ML algorithms implicitly or explicitly assume that the inverse problem is well-posed. One
aspect of this is that a solution exists and is unique. If this assumption is violated, the
consequences in an interventional setting might be drastic. Consider the example of
perfusion monitoring. If the biophotonic inverse problem is ill-posed, then there might
be two tissue parameter configurations, one with a high blood oxygenation (sO2) and one
with a low sO2, with nigh identical associated spectra. A classic ML method might collapse
to one of the two tissue parameter configurations. In the worst case, the model could
predict that an organ is still perfused, while it might actually have been severed from the
blood supply for some time. We will address this problem using cINNs [Ard+19]. Instead
of predicting a single tissue configuration per spectrum (point estimate), they provide a
full probability distribution conditioned on the spectral input, a so-called posterior. Such
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1. Motivation
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Figure 1.3.: Potential of biophotonic imaging in health. Left Column: Example
physiological tissue parameters that can potentially be reconstructed using
biophotonic imaging. Right Column: Example applications of biophotonic
imaging in health. The example images were taken and adapted from [Bel14;
Wir+17; Kir+19; Wai19; Wer20; Tie21]. The icons indicate if the tissue parame-
ter or clinical application is accessible via spectral imaging or photoacoustic
imaging, which are examples of biophotonic imaging modalities.
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a posterior can encode ambiguous solutions as multiple modes, making the ill-posedness
visible and actionable by the practitioners.

The second assumption (cf. figure 1.2, second row) concerns a domain gap between
the training and testing domain. The goal of biophotonic imaging is to predict spatially
resolved tissue parameters, but to date, there is no gold standard reference method that
could be used to collect training data for the ML models. However, in order to train a
supervised regression model, we need training samples consisting of spectra with associated
tissue parameters. The community-accepted solution to this conundrum is simulation.
Using a “digital tissue twin”, we can simulate the light-tissue interaction (mostly using
Monte Carlo (MC) methods) to generate the associated spectrum. However, human tissue
is complex, and certain modeling assumptions are necessary for a feasible simulation
implementation. These assumptions might come at the cost of the realism of the simulation.
The problem is that most ML methods are only guaranteed to perform on testing data
that is sufficiently similar to the training data. Even worse, oftentimes ML models fail
very confidently on so-called OoD data [Big+13; GSS14; Bro+17; CW17; Mad+17]. The
implications for medical applications are that if the domain gap between the (simulated)
training data and the (in vivo) testing data is too large, the ML model might predict high
sO2 levels, and even with high confidence1, even though the sO2 is once again very low.
There are multiple facets to solving this problem. One is hardening models against domain
gaps. Another is working toward diminishing the domain gap. In this thesis, we will take
one step back and aim to quantify the domain gap. As it turns out, it is easy to say that the
testing data needs to be “sufficiently similar”, but to put this into equations and numbers
is not as simple. While not solving the drop in model performance, a robust domain gap
quantification would at least allow to filter OoD data and prevent spurious predictions
of the main model. We will use ensembles consisting of INNs to represent the density
of the training or in-distribution (ID) data. We can use the ensembles at testing time to
estimate the likelihood of new data. We will enrich this information using the epistemic
uncertainty of the ensemble members, which leads to the widely applicable information
criterion (WAIC). WAIC can then be used as an OoD score, which we propose to use to
quantify domain gaps. This allows us to examine our simulation pipeline with regard to its
realism, and WAIC can be used as an indicator of the generalization capabilities for models
trained on in silico data when transferred to in vivo data.

The third assumption (cf. figure 1.2, third row) is directly related to the previous OoD
discussion. While the OoD approach allows us to detect if our simulation pipeline is
insufficient to cover in vivo data, the approach does not provide a constructive way to adapt
the simulation pipeline. Hence, we might be in a setting where we need to train on in vivo
data. As mentioned previously, with a lack of a gold standard reference method to collect
spatially resolved tissue parameters, we are already restricted in the types of models we
can train, i. e. regressing tissue parameters will be hard, but a coarse classification, e. g. into

1If the model is capable of producing such a score, like the cINN.
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1. Motivation

perfused and ischemic tissue, might be possible. However, medical data sets are notoriously
small. This is understandable because of the sensitivity of the data. The downside is that
often the patient cohorts are very small, and if the data exhibits high inter-patient variability,
we cannot hope to train a classifier that would generalize to new, unseen patients because
the data would be OoD with regard to the training patients. The direct solution to this
problem is to collect larger data sets such that the variability is better covered. This thesis
will pursue a complementary approach. Instead of representing the inter-patient variability
in the data, we will circumvent it with a personalized ML model, i. e. if we train a model on
each patient individually, we can ignore the inter-patient variability. If successful, such an
approach would be very interesting because it would allow us to ignore one of the main
confounders (the patient) in medical applications. However, such an approach requires
some care. Let us return to the perfused/ischemic classification example. A regular classifier
would require a training data set containing perfused and ischemic spectra. The spectra
would need to be labeled with a reference model. However, if we can classify spectra by an
alternative means (the reference), what is the point of the personalized model? Hence, we
rephrase the problem as another OoD detection problem. For example, at the beginning of
a surgical intervention, we can generally be sure that the organ in question is perfused. We
can collect spectra and define them as ID data. In other words, we train an ML model to
recognize the current tissue status quo. Later in the surgery, we can then detect changes to
the status quo as OoD data. In this way, we can detect ischemic spectra as a deviation from
the ID perfused spectra. As for the domain gap quantification, we propose INN ensembles
and WAIC as our OoD detectors of choice. The INNs, as flexible density estimators, are
trained to represent the ID data, and the likelihood, together with the epistemic uncertainty
of the ensemble members, will be aggregated in WAIC and used as an OoD score on unseen
data. INNs can be adapted to train fast enough (less than 1min) such that training at the
beginning of the actual procedure becomes realistic. In addition, the inference time is
fast enough to enable video rate perfusion monitoring after training. This personalized
approach is a completely new paradigm for ML in interventional health care.

ML breakthroughs in medicine are still missing, but we are confident that the proposed
framework for uncertainty quantification and INNs, with their versatility, can bring those
breakthroughs one step closer to reality.
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2. Research Questions

This chapter introduces the research questions that this thesis aims to answer. As ML
for medical applications is a highly interdisciplinary area, we have divided the research
questions into a technical part (T.1 – T.3) and a domain part (D.1 – D.3). The technical
research questions are related to methodological challenges that are broadly applicable
beyond the scope of medical imaging. The domain research questions concern concrete
domain-related problems that we need to address to bring ML methods to the patient.

T.1. How can we encode inherent ambiguities in inverse
problems?

As introduced in the previous chapter, most classic MLmodels assume that inverse problems
have unique solutions (cf. figure 1.2, first row). However, we would like to avoid this a priori
assumption and empirically analyze the well-posedness of biophotonic inverse problems.
To this end, we require a technique to encode ambiguous solutions. This is the content of
research question T.1.

When choosing our method to analyze the biophotonic imaging setting, the main consid-
eration is its diversity. There is not a single, static inverse problem, but the exact problem
depends on the chosen recording device, which influences the amount of spectral infor-
mation, and on the data in question. If we restrict our attention to porcine spectra, the
inverse problem might be unique, but including human spectra might lead to ambiguities.
In addition, due to the speed requirements for e. g. video rate applications, we do not
necessarily want to operate on whole images all of the time. This introduces another
source of possible ambiguities because of the reduced amount of spatial context. Hence, we
require a flexible method that can be easily adapted and applied to this changing setting
and provide a unified view of the well-posedness of the different instances of the inverse
problem. To the best of our knowledge, there is no prior work systematically providing
such a framework.

In this thesis, we propose cINNs to tackle this question. They encode the solution of an
inverse problem in a conditional probability distribution (the posterior). If the posterior
consists of more than one mode, this corresponds to an ambiguous solution. As an ML
model, they are perfectly suited for our volatile setting, as we can train them on the
appropriate data set for the chosen recording device, spectral resolution, spatial resolution,
and other factors like the species. The posteriors open the door for a fine-grained analysis
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2. Research Questions

of uncertainties for the inverse problem. Next to the number of modes, we have access to
measures of variability like the variance or the interquartile range (IQR). Hence, even for
unimodal posteriors, we can use the width of the posterior to gauge the certainty of the
cINN in its predictions and determine to what extent the inverse problem is solvable at all.

The posteriors of the cINN are accessible as a sample. Hence, this thesis will also propose
suitable post-processing steps to extract information from this representation. In particular,
we will discuss mode detection algorithms as the modes are not automatically labeled in
the sample. We will resort to unsupervised clustering algorithms taking into account that
we generally do not wish to specify the number of clusters in advance as the detection and
analysis of ambiguities is our main goal. Furthermore, the cINN can produce artifacts in
the posteriors, influencing our choice of mode detection algorithms.

We will approach research question T.1 using the example of biophotonic imaging, but
the methods should generalize to other inverse problems.

T.2. How can we validate posteriors?

While T.1 is concerned with the construction of posterior distributions, T.2 addresses the
question of how we can trust the posteriors. Before we base patient decisions on detected
multimodalities in a posterior, we better be certain that the posterior adequately describes
a solution to the inverse problem and that the modes are no artifacts. This validation of the
posteriors is by no means trivial.

Let us assume that we have a testing data set. In biophotonic imaging, such a data
set will generally consist of pairs of a spectrum and the corresponding tissue parameter
configuration. The proposed cINN approach will generate a complete posterior for a given
spectrum. Let us consider the case that the posterior is bimodal. Then we are faced with
the problem that we have exactly one reference tissue parameter configuration. In the
best-case scenario, this single reference coincides with one of the modes, but even in this
scenario, we have a second mode without an associated reference. Is the second mode a
false positive (FP), i. e. falsely generated by the cINN? Or is the model correct, and the fault
lies with the data set containing only a single reference per spectrum?

These and similar questions need to be answered to validate the posteriors. The extent to
which this is possible depends onmany factors, like the exact representation of the reference
data or the dimensionality of the problem. To the best of our knowledge, this problem has
only been addressed in a very ad hoc manner in the sense that a sensible set of metrics was
chosen for the inverse problem setting at hand, but leaving out the larger structure and
patterns of the setting that might inform a systematic, consistent, and transferable choice
of metrics. Such a framework could potentially lead to a community-accepted standard for
the validation of posteriors.

This thesis will approach research question T.2 by proposing a posterior validation
framework that attempts to cover a wide range of inverse problem settings and guide
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the user to a set of metrics that can be used to validate posteriors for their respective
application. To this end, we will explore an analogy between the computer vision task of
object detection and posterior validation for inverse problems. This analogy will allow us
to transfer metrics from object detection, which is a more mature field, to our setting. At
the same time, we will extend the object detection metrics by taking cINN peculiarities,
like the necessity to calibrate the posterior width, into account.

T.3. How can we detect out-of-distribution data in
biophotonic imaging?

There is a hoard of empirical evidence that ML models are only guaranteed to perform on
data that is sufficiently close to the training data [Big+13; GSS14; CW17; Mad+17]. This is
an important restriction as it is often impossible to create labeled in vivo data in biophotonic
imaging and many other fields. Hence, the community uses simulated data to address data
scarcity. However, simulation comes at the cost of added uncertainty. We have to ask
ourselves whether the simulation framework captures enough of the reality to allow for
robust ML models. What exactly “enough” means is hard to quantify, and this problem is
the content of research question T.3. We propose to analyze the problem through the lens
of OoD detection. In the OoD setting, there is ID data at training time, and we aim to find
a model that can detect any data that is not drawn from the same distribution1.

The detection of OoD data is common, and so many fields have developed their own
approaches. For low-dimensional data, we could hope to get away with quantile-based
methods. The computer vision community has developed approaches based on auto-
encoders and representation learning. The field of medical spectral imaging comes with
its own challenges and peculiarities. For example, we commonly operate on single pixels
or small regions of interest (ROIs), such that image-based approaches are hard to transfer.
At the same time, due to the higher spectral resolution, we are not in a low-dimensional
setting, even for single-pixel data. Thus, we have to check the fit of OoD methodologies and
adapt them to our special case. To the best of our knowledge, there is no prior work on OoD
detection methods tailored towards spectral imaging (SI). To approach research question
T.3, we will explore the potential of INNs as flexible density estimators and propose INN
ensembles with WAIC as robust OoD detectors on SI data.

D.1. Are inverse problems in biophotonic imaging well-posed?

Biophotonic imaging has the potential to recover physiological tissue parameters during
a medical intervention using only non-ionizing radiation. Still, the clinical impact of
biophotonic imaging hinges on research question D.1. An answer in the affirmative would

1Hence, OoD data.
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2. Research Questions

highly increase the trust that we can put into (classical) ML methods. However, even if we
have to answer in the negative, a thorough analysis and the capability to reliably detect
ambiguous situations can lead to an added value for the practitioner. If there are cases
where the same spectrum corresponds to multiple markedly different tissue parameter
configurations, we could warn the user about the situation. In a next step, this could even
lead to automated suggestions on how the ambiguity might be resolved, e. g. by proposing
additional recording poses.

As highlighted in research question T.1, we need a flexible, data-driven method as we
want to answer the well-posedness question empirically for the different recording devices
and data sets. Furthermore, we want to be able to predict ambiguous solutions for each data
point (e. g. spectrum) individually instead of being restricted to results about the general
well-posedness of the problem. This property would allow us to incorporate our method
into medical devices and use it at the bedside. The last requirement due to our aim for use
in interventional care is the video rate capability of the method.

To the best of our knowledge, the well-posedness in biophotonic imaging has only been
analyzed using analytical methods based on partial differential equations (PDEs) [Arr99;
RNR13; RT19]. There is previous work regarding uncertainty quantification in biophotonic
imaging [Grö+18], but this work used ML methods that produced a point estimate and an
(un-)certainty score, where the score was used to gauge the reliability of the point estimate.
While this is a valuable contribution to uncertainty quantification in general, this approach
cannot be used to detect ambiguities as it still produces a single prediction per input.

We propose the use of cINNs to approach research question D.1. We will use them to
explore how the amount of spectral context (different recording devices) and spatial context
(single pixels up to whole images) influences the well-posedness of the associated inverse
problem.

D.2. Are synthetic spectral images sufficiently realistic?

As the previous research question mentioned, biophotonic imaging opens the door for
non-invasive, interventional, functional imaging. The most prominent example is the
estimation of sO2 from spectral data. However, a big challenge in training and evaluating
ML models is a lack of a gold standard method to determine spatially resolved tissue
parameter maps (e. g. the sO2 distribution over an organ surface). The solution is to resort
to synthetic, i. e. simulated, biophotonic imaging data where we start with a “digital twin” of
the tissue in question, including all tissue parameters, and, using a physical model, generate
corresponding spectral data. This solves the missing reference problem, but at the cost of
introducing new errors and uncertainties due to inadequacies in the simulation framework.
The domain gap between the in silico and in vivo domain might be subtle and not at all
obvious to the human eye. For example, the simulated spectra not only depend on the tissue
in question but also on the light source. The human eye will quickly adapt to and ignore
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a change in light source, but an ML model which was trained on a specific light source
will deteriorate in performance after a light source switch. In an open surgery setting,
this might happen as easily as opening or closing the blinds or turning on the screen of a
medical device. Hence, it is important to quantify the difference between the in silico and
the in vivo domain.

As highlighted in the previous example, the realism of the simulated spectra can change
dynamically based on environmental factors. Therefore, we treat research question D.2
as a continuous OoD detection task, where we filter an incoming stream of new spectral
data for OoD data points. Depending on the exact application, the OoD data points could
simply be dropped, or the practitioners could be made aware of a detected change in the
spectra. This setting informs the requirements that the proposed method needs to satisfy.
Due to its continuous nature, we need video rate capabilities. As we want to cover the
broadest possible range of changes, we need a so-called unsupervised learning method that
does not require OoD examples at training time but is trained on ID data only. To the best
of our knowledge, there is no prior work toward continuous, task-agnostic OoD filtering
in biophotonic imaging.

We propose INN ensembles with WAIC as OoD detectors for biophotonic imaging. They
can be trained in an unsupervised manner, and they can run inference fast enough to enable
video rate filtering. Therefore, we think they are natural candidates to make progress
toward research question D.2.

D.3. Can physiological tissue changes be detected via an
out-of-distribution approach?

With the previous research question, we can answer if the simulated data fit the in vivo data,
but what do we do if they do not fit? In such a case, an ML model trained on simulated data
will not generalize to the in vivo domain. The remaining option is to directly leverage the
in vivo data. However, this option comes with its own challenges. First, we have already
noted that we are lacking a gold standard reference method to annotate physiological tissue
parameters. That is why we resorted to simulation in the first place. So, we cannot hope to
regress tissue parameters. Instead, we can aim at a more coarse prediction of the tissue
state, like if the tissue is currently perfused or not. Second, there is the problem that in vivo
medical data sets are notoriously small. This is understandable because of the sensitive
nature of the data. Nevertheless, it might prevent us from training standard classification
models. Each human is different, and if this difference strongly impacts the data, in more
technical terms, if the data exhibits a high inter-patient variability, then an ML model
trained on a small patient cohort cannot generalize well to new, unseen patients. The
new patient would always be OoD with regard to the (small) training cohort. The natural
solution to this dilemma is to increase the cohort size such that the inter-patient variability
is better represented in the data. However, this is a protracted process involving many
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regulatory hurdles. Instead, we propose a complementary approach. The approach is based
on the observation that inter-patient variability is only of concern if we want to apply a
fixed model to multiple patients. If we could train a personalized model, i. e. a separate
model for each patient, we could ignore the inter-patient variability. To the best of our
knowledge, such a personalized approach has not yet been used to detect physiological
tissue parameter changes.

One requirement of a personalized model is that it cannot be trained in a supervised
manner. For example, if we need perfused and ischemic spectra samples for the same
patient, then these samples were already correctly classified by an alternative means, which
would render our model obsolete. Instead, we phrase the problem as an OoD detection
task, where we train an ML model to recognize the current tissue status quo as ID. Later in
the procedure, changes to the tissue status quo can then be detected as OoD. This process
directly introduces a second requirement. If we want to use the model on the same patient it
was trained on, then the training time must be fast enough to be performed at the beginning
of a surgical intervention. As a last requirement, the inference needs to run fast enough to
be video rate capable.

With all these requirements in mind, we propose INN ensembles with WAIC as our
unsupervised OoD detectors of choice. With suitable offline pre-training, they can be
adapted fast enough (less than 1min) and run inference fast enough for a surgical setting.
We validate the approach with the example of a minimally invasive kidney surgery, more
precisely, a partial nephrectomy. During such a procedure, the kidney is temporarily
removed from the blood supply, and we will use our proposed method to monitor this
change in perfusion state as a means to approach research question D.3.
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3. Outline

This thesis consists of four parts: The introduction I1, the background II, the contributions III,
and the closing IV.

The introduction is made up of the motivation in section 1, the research questions of this
thesis in section 2, and the outline in this section (section 3).

The background consists of two chapters. First, chapter 4 contains the fundamentals of
inverse problems, biophotonics, and ML. The chapter closes with a section introducing the
central architecture of this thesis: the INN. Second, chapter 5 lists the related work in the
field of uncertainty quantification, posterior validation, and OoD detection.

Technical Medical
Research Question Section Research Question Section

T.1 6.1 D.1 7.1
7.2

T.2 6.2 D.2 7.3
T.3 6.3.1 D.3 7.4

Table 3.1.: Outline overview table. Relation between research questions and where they
are addressed in this thesis.

The contributions part is made up of a description of our framework for uncertainty
handling in biophotonic imaging using INNs (section 6) and the experiments and results
(section 7). Table 3.1 shows how the contribution sections relate to the research questions.
The framework chapter addresses the technical research questions (T.1 – T.3). The chapter
explains how cINNs can be used to generate posteriors for biophotonic inverse problems
(section 6.1), how suitable metrics for the validation of multimodal posteriors can be
chosen (section 6.2), and it introduces the widely applicable information criterion (WAIC)
in section 6.3 and how the criterion can be used for OoD detection and tissue parameter
monitoring. The experiments and results chapter describes our experiments to answer the
domain research questions (D.1 – D.3). Sections 7.1 and 7.2 analyze the well-posedness
of the inverse problems in multispectral imaging (MSI) and photoacoustic imaging (PAI)
respectively. Section 7.3 contains our experiments regarding the realism of synthetic MSI

1Which we have almost finished.

15



3. Outline

data using OoD methodology based on INNs and WAIC. Finally, section 7.4 describes our
study to detect ischemia in minimally invasive surgery via an OoD approach based on
INNs and WAIC as in the previous section.

The closing part contains the discussion of our findings (chapter 8) and a conclusion
with an outlook on open questions (chapter 9). Furthermore, the conclusion references
back to the research questions in the introduction.
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4. Fundamentals

This chapter is concerned with the necessary background material, i. e. the fundamentals,
to benefit from this thesis. We will start with some terminology regarding inverse problems
and how they can be phrased in a probabilistic framework (section 4.1). Afterward, we will
introduce the inverse problems addressed in this thesis which stem from the biophotonic
imaging domain (section 4.2). Then, there is a section about ML (section 4.3) in general,
where we start with a placement of machine learning (ML) within the wider range of
artificial intelligence (AI) and its relation to deep learning (DL). We continuewith definitions
of supervised and unsupervised learning and introduce out-of-distribution (OoD) detection,
deep learning, and uncertainty in ML. The last section of this chapter (section 4.4) will
introduce invertible neural networks (INNs) in detail as they are the main focus of this
thesis. Next to the architecture, we will present the concept of calibration and common
data preprocessing strategies.

4.1. Inverse Problems

Many tasks and problems we face in science and engineering can be phrased as so-called
inverse problems. They arise whenever there are parameters of interest that are not directly
observable but which are related to parameters we can observe, called observables. A
general pattern is that based on e. g. physical models, we have an understanding of how the
parameters of interest cause the observations. This is the forward problem. However, the
way from the observables back to the hidden parameters of interest is often more involved1.

A well-known example in the medical imaging domain is computed tomography (CT)
imaging. A CT scanner collects narrow-angle x-ray measurements (the observations), but
what we are actually interested in is a tomographic image. This tomographic image is
created using a reconstruction algorithm, and this process is an instance of solving an
inverse problem.

In section 4.1.1, we will introduce the mathematical definition of an inverse problem and
what it means for an inverse problem to be well- or ill-posed. This is central terminology
for the remainder of the thesis. In section 4.1.2, we will introduce a probabilistic view on
inverse problems. This view is useful if the inverse problem is suspected to be ambiguous
(i. e. to have multiple solutions) because it allows the representation of the solution to the
problem as a probability distribution over the solution space.

1This is not to say that the forward problem might not be involved, too.
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4.1.1. Mathematical Formulation

In the most general definition, an inverse problem is equivalent to solving an equation
given by some function. Let X,Y be sets, where we call X the space of parameters and Y
the space of observables. Let

F : X → Y, x 7→ y

be a mapping. We call F a forward problem. An inverse problem is given by the equation

F (x) = y, (4.1)

for a given observable y ∈ Y , which we want to solve for x ∈ X .
In our settings, the sets X and Y , as well as the map F , have additional structure. We

will restrict our attention to cases whereX and Y are Banach spaces (i. e. normed, complete
vector spaces) and F is continuous. In fact, X and Y will be finite-dimensional most of
the time so that they can be thought of as some Rn and Rm respectively, but the following
observations hold in the more general case2.

As a first instructive example, let us have a look at a finite-dimensional case, where F is
a linear map represented by a matrix A ∈ Rm×n, i. e.

F : X = Rn → Y = Rm, x 7→ y = Ax.

Then the corresponding inverse problem is solving the system of linear equations given
by A for a fixed y ∈ Rm. It is a well-established fact in linear algebra that there are three
cases regarding the solvability of this equation [Fis14]: The linear system of equations has

1. no solution,
2. infinitely many solutions, or
3. exactly one solution.

This observation for even the most simple case motivates the following definition: An
inverse problem given by equation (4.1) is called well-posed, if

Existence: for every observable y ∈ Y there exists a solution x ∈ X such that F (x) = y,
Uniqueness: the solution x ∈ X is unique, and
Stability: the solution is stable, i. e. for a sequence (yn)n∈N ⊂ Y with yn

n→∞−−−→ y ∈ Y
and corresponding parameters (xn)n∈N ⊂ X with F (xn) = yn and x ∈ X with
F (x) = y, we have that xn

n→∞−−−→ x.

If any of the above properties are violated, the inverse problem is called ill-posed. This
definition goes back to Hadamard [Had02; Had23] who originally only used it for linear
functions F . We note that the three properties build upon one another: Uniqueness

2An example when we need this more general case is if the inverse problem is given by a differential equation.
In these cases, X is a space of functions that is often infinite dimensional.
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only makes sense if existence is established, and for stability, we need the one-to-one
correspondence established by existence and uniqueness. The three properties can be
rephrased in more modern terms. Existence corresponds to F being onto (or surjective),
and uniqueness corresponds to F being one-to-one (or injective). Both together imply
that F is a bijection, i. e. that an inverse F−1 of F exists. The stability property is a
bit technical, but it is equivalent to saying that the inverse F−1 is continuous. Taking
everything together, we see that a well-posed inverse problem corresponds to a map F that
is continuous and bijective with a continuous inverse. Such a map has a special name. It is
called a homeomorphism.

It turns out that homeomorphisms introduce many restrictions on the form an inverse
problem might take. For example, if we return to the finite-dimensional case3 there is a
topological result with the name invariance of dimension by Brouwer [Bro12]. This theorem
states that if there is a homeomorphism between an Rn and an Rm, then n = m. By this
theorem alone, we can already see that any inverse problem where theX and Y dimensions
differ is ill-posed!

As a last example in this section, let us quickly revisit the CT inverse problem. If we
ignore artifacts introduced because of undersampled angles, one can show that for each
y ∈ Y , a solution to the problem exists and is unique, but the stability criterion is violated.
The reason for this is technical and lies in the fact that the Eigenvalues of the inverse
problem4 diverge [Her81]. This implies that the inverse is not continuous. Hence, small
errors in y could lead to large deviations in x. So we see that even one of the most classic
inverse problems in medical imaging is, in fact, ill-posed.

To conclude, the notion of a well-posed inverse problem is important, but we need a
framework to address problems where one or more of the well-posedness properties are
violated. The tools to represent them will be introduced in the next section.

4.1.2. Probabilistic Formulation

This section has been adapted from Stuart [Stu10]. In this section, wewould like to perform a
conceptual shift from a deterministic point of view, implied by well-posed inverse problems,
to a probabilistic point of view, which is more suitable for ill-posed inverse problems. This
shift is hinted at in figure 4.1.

As a starting point, let us consider how to find a solution x ∈ X to an inverse problem
given by equation (4.1). Even in the well-posed case, the properties are not constructive,
i. e. they do not come with instructions to find x given y. In a very limited and special
number of cases, an explicit formula for x given y might be derived. For all other cases, we
need an alternative. This alternative often comes in the form of phrasing the problem as an

3Please note that F need not be linear.
4Which is a linear map.
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Deterministic Probabilistic

Figure 4.1.: Conceptual shift from the deterministic to the probabilistic setting. The
deterministic inverse problem setting can be considered a special, degenerate
case of the probabilistic setting, where the distribution is given by a Dirac δ
distribution.

optimization task. We try to find

x̂ := argminx∈X ‖F (x)− y‖2Y . (4.2)

The advantage of this formulation is that there are many (constructive) optimization
algorithms. For example, if F is linear, we have the whole branch of linear optimization,
or if F is differentiable, we can hope to use first-order optimization methods like gradient
descent to find x̂. Furthermore, if the inverse problem is well-posed, then x̂ is guaranteed
to be the unique solution to the inverse problem.

However, what if the inverse problem is ill-posed? Equation (4.2) has the uniqueness
assumption ingrained, in the sense that we assume that a unique x̂ can be found. So this
optimization approach will always struggle if there is more than one solution to the inverse
problem. However, even if the uniqueness property is satisfied, a lack of stability together
with small errors in y might lead to a wrong minimum for x and large deviations. This
stability property is generally addressed using regularization. This means that the values of
x are drawn towards sensible regions of the space X based on prior knowledge. The most
common way to do this is to choose an anchor c ∈ X and penalize large distances between
x and c via ‖x− c‖2X . Hence, the optimization objective is updated to look like

x̂ := argminx∈X ‖F (x)− y‖2Y + ‖x− c‖2X . (4.3)

This still does not address inverse problems with ambiguous solutions. Even worse, there
is so far no reasoning from first principles, why the regularization term might make sense,
and there is no motivation behind the choice of norms ‖ · ‖Y and ‖ · ‖X .

A solution to this conundrum can be found by focusing on ambiguous inverse prob-
lems. What would be a good representation for the multiple solutions x belonging to an
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observation y? The most basic answer would be the pre-image

F−1({y}) := {x ∈ X | F (x) = y},

but there is a more informative alternative: Even though there are multiple solutions, some
might be more “likely” than others. Hence, it might be practical to represent the solutions
for y as a probability distribution P on the space X . We will assume that this distribution
(which is conditioned on y) has a probability density p(x | y)5. In this probabilistic setting
solving the inverse problem would correspond to finding the density p(x | y) for a given
y or equivalently (and often preferred because of computational reasons) the negative
log-density − log p(x | y).

To see how this point of view can help our understanding of inverse problems, let us try
to recover equation (4.3). For this, we need to invoke Bayes’ theorem [Bay63; Kle13], which
for densities reads

p(x | y) = p(y | x) · p(x)
p(y)

∝ p(y | x) · p(x).

For the negative log-density, multiplication and division transforms to addition and sub-
traction, which yields

− log p(x | y) = − log p(y | x)− log p(x) + log p(x) = − log p(y | x)− log p(x) + const,
(4.4)

where the constant only depends on y, but not on x. We can interpret the quantities in
equation (4.4):

• p(x | y) is called the posterior (distribution). It has been introduced above and encodes
the solution to the inverse problem.

• p(y | x) is called the likelihood. It represents our forward process, i. e. how the
parameters x influence the observables y.

• p(x) is called the prior (distribution). It encodes our prior knowledge and beliefs
about the parameter x.

As an example, let us assume that our forward process is “deterministic given by F
with some noise” then the likelihood could be represented by a normal distribution such
that y | x ∼ N (F (x), idY ), where N (µ, Σ) denotes a normal distribution with mean
µ and covariance matrix Σ. Furthermore, let us assume that we expect, because of prior
knowledge about the process, that parameters should be centered around c ∈ X , which
could also be modeled by a normal distribution via x ∼ N (c, idX). Plugging the density
of a normal distribution into equation (4.4) yields

− log p(x | y) = 1

2
‖F (x)− y‖2Y +

1

2
‖x− c‖2X + const. (4.5)

5This might not be the case. In fact, in some of our settings, the data distribution is restricted to a low-
dimensional sub-manifold of Rn so that such a density cannot exist.
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We see that equation (4.5) is identical to equation (4.3) up to an additive constant and
multiplication by a factor of 1

2 , which does not influence the location of the minimum of x.
Taking this together, we can interpret equation (4.3) as

x̂ = argminx∈X − log p(x | y) = argmaxx∈X log p(x | y) = argmax p(x | y)

or in other words, x̂ is the maximum a posteriori (MAP) estimate of p(x | y) given our
choice of likelihood and prior. Hence, we have reproduced our optimization objective, but
each term is now interpretable as a prior and a likelihood. So the regularization term and
the norms ‖·‖Y and ‖·‖X are dictated by the chosen distribution and likelihood. Even more,
we can quickly construct new optimization objectives by considering other distributions
for the forward process or the prior (e. g. one could replace the Gaussian distribution with
a Laplace distribution in the prior, which would change the L2 regularization to an L1
regularization).

Overall, we see that the probabilistic point of view can recover the optimization approach
motivated by the well-posed inverse problem case, but it is more flexible. Indeed, we are
not limited to parametric choices for the right-hand side, but we can also try to estimate
p(x | y) directly with a suitably flexible family of functions. By doing this, we can hope
to represent truly ambiguous inverse problems that have multiple perceptively different
solutions for a given y. One of the two main parts of this thesis lies in the exploration of
such a family of functions (the INNs introduced in section 4.4) and the validation of the
posteriors p(x | y) that they generate.

4.2. Biophotonic Imaging Modalities

Biophotonic imaging is a family of imaging modalities that are based on the interaction of
non-ionizing electromagnetic radiation in or close to the visible spectrum6 with biological
tissue. The common factor of all these modalities is that the tissue composition influences
the light-tissue interaction, which in turn leads to a change in the spectrum of the incident
light. This change is then measured by different means and used to gauge the state of
the tissue. In light of the previous sections, it might be apparent that we are faced with
an inverse problem. Our parameter of interest x is the tissue state, while our observable
y is a spectrum. The exact nature of the spectrum depends on the biophotonic imaging
modality, as introduced in the following paragraphs. In what follows, we will introduce
the forward model, i. e. how the tissue causes the spectrum. Our approach to solving the
inverse problem is deferred to section 4.4.2.

In section 4.2.1, we will introduce the general framework of light tissue interaction
and highlight how the tissue composition leads to a spectral fingerprint. In sections 4.2.2
and 4.2.3, we will introduce the two main biophotonic imaging modalities of this work,

6Also known as light.
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namely spectral imaging (SI) and photoacoustic imaging (PAI). The first modality, SI, uses
(diffusely) reflected light to construct the spectrum, while the second modality, PAI, uses
ultrasound waves generated by the absorbed light to construct the spectrum.

4.2.1. Light Tissue Interaction

In this section, we will introduce three processes by which light interacts with tissue:
total/specular reflection, scattering, and absorption. These processes are sufficient for a
top-level understanding of the image generation process in biophotonic imaging.

ultrasound light
source

specular
reflection

diffuse
reflection

transmission

multispectral
camera

scaering event

absorption event

ultrasound wave

device

tissue

Figure 4.2.: Schematic view of light tissue interaction. The left-hand side shows how
the interaction generates the PAI signal, while the right-hand side shows the
MSI signal generation process. MSI: multispectral imaging, PAI: photoacoustic
imaging.

If there is an interface between media with different refractive indices, then there is
a critical angle, and if the incidence angle of the light is larger than this angle, the light
will be reflected. This is called total or specular reflection, and this process is, in the best
case, uninteresting and, in the worst case, a nuisance for our application. Indeed, the
reflected light is not changed by the interaction with the tissue7 and hence does not carry
any information about it. Still, it is an effect that can be observed frequently in the surgical

7At least as a first approximation. The refractive index does depend on the wavelength of the light.
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setting, and for our methods, we need to ensure to only work in regions without these
specular reflections.

The other two processes, absorption and scattering can change the light spectrum and de-
pend on the exact tissue composition. Therefore, we are most interested in light undergoing
these two processes for our imaging modalities. In both scattering and absorption, a photon
interacts with matter. The difference between the two is that after an absorption event, the
photon is destroyed, whereas, after a scattering event, the photon remains, but its direction
and/or its wavelength have changed from the original. The probability of a photon being
scattered or absorbed depends on its color (i. e. its wavelength). This is encoded in so-called
cross sections σs(λ) for scattering and σa(λ) for absorption (unit: m2), where λ denotes the
wavelength (unit: m). Both quantities vary with the tissue composition.

An overview of the previous discussion of the light tissue interaction can be found in
figure 4.2. Multiple scattering events can lead to light leaving the tissue either on the
same or another side. Hence, this cumulative process is either called diffuse reflection or
transmission. If enough light is deposited in the tissue and subsequently absorbed, the stored
energy can lead to a thermo-elastic expansion [XYW14], which relaxes as an ultrasound
wave. This effect is used for PAI and will be handled in detail in section 4.2.3.

The above qualitative discussion can be made more quantitative using the radiative
transfer equation (RTE) as derived in Wang and Wu [WW12]:

1

c

∂L(r, s, t)

∂t
= −s·∇L(r, s, t)−µtL+µs

∫
S2

L(r, s′, t)·p(s·s′) dA(s′)+S(r, s, t). (4.6)

This differo-integral equation relates the radiance L (unit: Wm−2) with other optical
properties like the total absorbance µt and the scattering coefficient µs (units: m–1) which
might be functions of space r and time t and are themselves related to σa and σs. The
variable s ∈ S2 denotes a direction in 3D space and S (unit: Wm−2) is a source term,
due to light emitted in the tissue. Lastly, c denotes the speed of light and p(s · s′) is
a probability density function describing the probability that light from direction s′ is
scattered in direction s. All the above quantities can be wavelength λ dependent, but this
dependence has been dropped in favor of a clearer exposition.

Under mild modeling assumptions, the RTE describes the light tissue interaction very
well. However, in general, it is difficult to solve, and further simplifications or alternative
methods like MC simulations are necessary to retrieve (approximate) solutions for L.
Nevertheless, let us have a look at a strongly simplified model to ascertain that the tissue
properties are, in fact, encoded in the light spectrum. To that end, we will make the
following assumptions:

• We are in an equilibrium state, i. e. ∂L
∂t = 0.

• Our medium is non-scattering, i. e. µs = 0.
• There are no source terms, i. e. S = 0.
• We are only interested in the x direction, i. e. s =

(
1 0 0

)T .
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Plugging all these assumptions into equation (4.6) leads to the following much simpler
equation:

L′ = −µtL, (4.7)
where the prime denotes differentiation with regard to x. This first-order linear ordinary
differential equation is straightforward to solve, and the solution is

L(x) = L0 · exp(−µt · x). (4.8)

We see that we have recovered a Lambert-Beer type law [Bou29; Bee52; Lam92] from
the RTE which describes an exponential decrease of the radiance while the light travels
through the absorbing medium. A common further assumption is that µt linearly depends
on the absorption cross section σi

a times the concentrations ni (unit: m−3) of the absorbers
i making up the medium. This can be expressed as

µt(λ) =
∑
i

σi
a(λ) · ni, (4.9)

where we have reintroduced the wavelength dependence of µt and the σi
a. Taking the

logarithm of equation (4.8), we get

log
(
L(x, λ)

L0

)
=

∑
i

x · σi
a(λ) · ni

which is a linear equation in the absorber concentrations ni. If we know the absorption
cross sections of our absorbers (or equivalently molar absorption coefficients as in figure 4.3
for (deoxy-)hemoglobin (Hb) and oxyhemoglobin (HbO2)) and can measure L(x, λ) for
multiple wavelengths λ1, . . . , λk , we get a system of linear equations, which we can hope to
solve for the concentrations ni. These, in turn, can be used to estimate medically interesting
physiological parameters like blood oxygenation (sO2)

sO2 :=
n(HbO2)

n(HbO2) + n(Hb)
(4.10)

or blood volume fraction (vHb)

vHb := n(HbO2) + n(Hb), (4.11)

where we replaced the ni by n(·) to denote the concentration of the respective absorber.
We see that in this highly simplified setting, the radiance L (i. e. the light) contains

information about the tissue. This holds true for the general RTE too, but recovering the
information might be more difficult. We would like to point out that the Lambert-Beer law
is regularly applied to regress tissue parameters [Bak+14]. However, we see that we needed
strong assumptions to derive the equation8. This motivates our research of ML methods to
tackle the regression task, as we hope to avoid some of these modeling assumptions.

With this rough understanding of light tissue interaction, let us introduce SI and PAI.
8Some of the assumptions were not strictly necessary, but e. g. a low-scattering medium is required.
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Figure 4.3.: Differences in the molar absorption coefficient of Hb and HbO2. In
the visible and near-infrared light spectrum, there are regions where (deoxy-
)hemoglobin (Hb) and oxyhemoglobin (HbO2) are well separated. Please note
the logarithmic y-axis. The data for this figure was provided through [Pra98].

4.2.2. Spectral Imaging

In the previous section, we have convinced ourselves that the light spectrum contains tissue
information. In this section, we will discuss how that spectrum is recorded in the case of SI.

Not all the light will be absorbed in the tissue, and since biological tissue is, in fact, highly
scattering, we can hope for a large portion to leave the tissue and even on the same side as
the light source. This process is called diffuse reflection and is depicted on the right-hand
side of figure 4.2. In principle, our task is as simple as pointing a camera at the tissue. The
question is: Which camera?

If a high spectral resolution is required, but spatial resolution can be neglected, we can use
a spectrometer. In the opposite case, we can use so-called multi- or hyperspectral cameras.
These cameras are similar to regular RGB (red, green, blue) cameras (see figure 4.4). They
have a sensor with multiple pixels, which allow for spatial resolution. The cameras differ
from RGB in that they have a higher spectral resolution. There are multiple approaches to
collecting spectral information ranging from filter wheels to sub-pixels sensitive in narrow
spectral bands. For more details regarding the hardware setup of multispectral cameras,
we refer to [Cla+20]. The terms multi- and hyperspectral imaging are differentiated based
on the number of bands. In the range of ten to 100 bands, the method is called MSI. Above
this range, it is called hyperspectral imaging (HSI). An example for spectral responses of
MSI cameras can be found in the experimental section 7.1 in figure 7.2.
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MSI Laparoscope RGB Laparoscope

Figure 4.4.: Comparison of an MSI camera and an RGB camera. We can see that
the form factor of the multispectral imaging (MSI) and RGB (red, green, blue)
camera for laparoscopic surgery is virtually identical. The figure has been
adapted from [Aya+22].

Simulation of SI data
Our overarching goal is to solve the inverse problem of recovering tissue information from
the spectral information in SI recordings in a data-driven way. This requires training data
which is impossible to collect in-vivo. To date, there is no gold standard to determine e. g.
the oxygenation of an organ surface in a spatially resolved manner. Therefore, we have to
resort to simulation. As introduced in section 4.2.1, we could try to (approximately) solve
the RTE, but this approach is not very stable. Instead, we use MC simulation.

Qualitatively, we create a digital representation of our tissue with all necessary optical
and physiological parameters. Then, we simulate an ensemble of photons that travel
probabilistically through that tissue. In the end, we collect the fraction of photons that
were diffusely reflected to determine the emitted spectrum.

The actual implementation is based on the Monte Carlo Multi-Layered (MCML) frame-
work by Wang and Jacques [WJ92] and Monte Carlo eXtreme (MCX) framework by Fang
and Boas [FB09]. Implementation details and the exact tissuemodel can be found in [Wir+16;
Aya+22].

4.2.3. Photoacoustic Imaging

In SI, we collect the diffusely reflected light, i. e. the light that is not absorbed by the tissue.
In PAI, we do the exact opposite. The absorbed light leads to a local change in temperature,
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which in turn leads to a change in pressure9. This pressure is relaxed as an ultrasound (US)
wave which can be recorded using a standard US transducer. The effect which leads to this
US wave is called thermo-elastic expansion.

The RTE in equation (4.6) describes the light distribution in tissue. In this section, we
will explore the effects once the light is absorbed by the tissue. To this end, we follow and
adapt the exposition by Xia et al. [XYW14].

The change in tissue volume dV due to heating can be expressed as

dV
V

= −κp(r) + βT (r), (4.12)

where κ is the isothermal compressibility (unit: Pa−1) and β is the thermal coefficient
of volume expansion (unit: K−1). p and T describe the space-dependent pressure and
temperature, respectively.

In PAI, irradiation is commonly achieved by very short laser pulses. Because of this and
the inertia of the tissue, we can neglect the change in volume, i. e. dV = 0, which allows
us to solve equation (4.12) for the pressure

p(r) =
β

κ
T (r). (4.13)

In a last step, we can relate the temperature to the absorbed light via

p(r) =
β

κρCV
· µa · Φ(r) =: Γ · µa · Φ(r), (4.14)

where ρ is the mass density of the medium (unit: kgm−3), CV is the specific heat capacity
at constant volume (unit: Jkg−1K−1), µa is the absorption coefficient of the volume (unit:
m−1), and Φ is the optical fluence (unit: Wm−2), which relates to the radiance via

Φ(r) =

∫
S2

L(r, s) dA(s),

where we dropped the time dependence for simplicity. Customarily, all parameters except
the absorption coefficient and the fluence are collected in the Grüneisen parameter Γ (unit:
Ks−1). At a first glance, we seem to be in a similar position as when we derived the
Lambert-Beer law in section 4.2.1. The parameter µa relates to the tissue composition via
equation (4.9), and if we reintroduce the wavelength dependence λ, it seems that we can
build a system of linear equations which we can hope to solve for tissue parameters.

There are two problems with this. First, the Grüneisen parameter Γ is not as constant
as equation 4.14 makes it appear to be. Second and more importantly, if we look again at
the RTE (4.6), we see that Φ also depends on µa. Hence, we have a non-trivial, non-linear
relationship between µa and the pressure distribution p.

9This process requires that enough photons are deposited in the tissue in a very short period of time.
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While so-called linear unmixing methods10 are still prevalent in the PAI community, we
can already see that their accuracy has to be limited [Hoc+19].

So far, we have neglected to ask ourselves how we can hope to measure the pressure
distribution p(r), and indeed this is impossible. Instead, this initial pressure is relaxed as
an ultrasound wave following the wave equation

1

c2s
∂2
t p(r, t) = 4p(r, t) (4.15)

with the initial condition p(r, 0) = p(r) and cs the speed of sound of the tissue (unit: ms−1).
In the end, we record the traveling pressure wave at the skin or organ surface using an US
transducer.

We see that the forward problem in PAI consists of two forward problems. The first
is called the optical problem and describes how the tissue parameters11 cause the initial
pressure p. The second is called the acoustic problem and describes how the initial pressure
distribution leads to the acquired US signal.

In theory, the acoustic inverse problem is well-posed because the wave equation is well-
behaved. However, this neglects the fact that even in this case, we are missing information,
in the sense that cs can vary within the tissue, but there is no easy way to determine it.
Furthermore, we have only a finite amount of transducer elements which, in the case of
handheld devices, onlymeasure the USwave from a limited view. All this negatively impacts
the well-posedness. Still, there exist established methods to revert the US signal back to
an initial pressure distribution like time reversal [XW05], delay-and-sum (DAS) [GJ82;
Kim+16], and many derivatives [Mat+14; Kir+18]. Hence, many researchers focus on
inverting the optical problem exclusively.

Simulation of PAI data
As in the SI case (see section 4.2.2), we would like to solve the PAI inverse problem(s) using
data-driven methods. Hence, we need training data that relates the spectral information to
the tissue parameters. Again as in the SI case, it is hard to solve the RTE, and so we resort
to MC simulation for the optical problem.

The simulation is built on top of the MCX framework [FB09] which was wrapped in
a python framework dedicated to PAI called Simulation and Image Processing for Pho-
tonics and Acoustics (SIMPA) [Grö+22]. Additionally, SIMPA wraps the k-Wave frame-
work [Cox+04], which is used to solve the wave equation in the acoustic forward problem.
For more details on how tissue is represented in the framework and how the simulation is
carried out, we refer to [Nöl+21; Grö+22].

10This is the community-developed term for solving the system of linear equations implied by equation (4.14).
11And the light source characteristics.
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Figure 4.5.: Outline of artificial intelligence. (a) Relationship between AI, ML, and DL
depicted as a Venn diagram. (b) Proposed axis to delineate and structure the
definition of artificial intelligence as proposed in [RN20].

4.3. Machine Learning

Machine learning (ML) is a branch of the field of artificial intelligence (AI) (see figure 4.5),
but what is AI? There is some debate about this question. All camps have in common that a
machine or a computer is supposed to exhibit some sort of intelligence. Russell and Norvig
[RN20], in their popular AI textbook, delineate this discussion along two dimensions

• human vs. rational and
• thought vs. behavior.

The first dimension asks the question of whether the AI algorithm in question should be
judged based on its similarity to how a human would approach a problem or whether
the algorithm should be judged on how rational it is. The advantage of the rational
option is that it is more straightforward to formalize. The second dimension is concerned
with the question of whether intelligence is “a property of internal thought processes
and reasoning” [RN20] as opposed to intelligence being only detectable in “intelligent
behavior” [RN20] which is external. Russell and Norvig [RN20] continue to argue that the
rational-behavior quadrant is the most fruitful, i. e. that AI is concerned with understanding
and/or creating agents that act rationally on the information and objectives given.

This definition is still broad. Let us look at an example to better understand the difference
between AI and ML. One of the earliest general-purpose electronic computers, the ENIAC,
was developed for the US Army and ready for work in 1945 [BB81]. It was mostly used for
ballistics, i. e. computing the trajectory of missiles and bombs. In the very broad definition
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introduced above, this can be thought of as a very narrow AI. Given some input parameters
(e. g. the speed and shape of the missile, the launch angle, etc.), the ENIAC would produce
a trajectory. Assuming the programming was correct, the computer would act on the input
data and produce a physically sound result. In this sense, one could say that the ENIAC
acted rationally in its scope. Clearly, there is valid criticism calling the ENIAC an AI. The
most central for us is that the programming was static. If the trajectory predictions turned
out to be insufficient, there was no direct feedback loop to update the predictions. Instead,
humans needed to locate inadequacies in their modeling of the process, update the model
and then transfer it back onto the computer.

The ability to update its own prediction is a defining trait of ML, which sets it apart from
other AI methods. ML introduces another layer of abstraction. In the above example, the
program directly solved the problem at hand (finding a trajectory). In ML, the program has
the potential to solve many problems. To get the program to solve a specific problem, it is
taught what correct solutions look like. This requires so-called training data containing
example solutions. So in ML, there is a two-stage process. First, we train the program,
which is often called an ML model12, on the training data. Then, we can ask for predictions
on new input data.

For example, consider the conversion from the Celsius to the Fahrenheit temperature
scale. We know that there is a simple conversion formula, and we could look it up and
implement a program to do the conversion. This would be the classical approach from
above. If we were determined to apply ML to the problem, we would first collect some data
which would consist of pairs (xi, yi), where xi is a temperature measurement in °C and yi
a corresponding measurement in °F. Then we would need an ML model, which we would
like to train to represent this transformation. The most classic approach is called linear
regression, which assumes a linear13 relationship between the two quantities in question.
In other words, the model takes the form

y = m · x+ b,

where m is the slope and b is the bias of our model, and the model is trained by choosing
“optimal” m and b. If we assume there is some error in our measurements which is
distributed according to a normal distribution, and if we avoid regularization, there is
a closed form formula for optimal m, and b14 [Has+09]. Afterward, we can plug in new
temperatures x in °C and get predictions for the values in °F. We have chosen a very specific
example where we know the underlying transformation, which is, in fact, linear. Hence,
if the measurement errors are small, we can expect a good performance of our model for
arbitrary values. In less simplified cases, this cannot be guaranteed, and in fact, another big

12Not to be confused with e. g. a physical model describing some physical process.
13More precisely, an affine relationship, but by abuse of notation, we will stay with the widespread use of

linear.
14In general, finding these parameters is more involved and makes up a large portion of ML engineering.
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problem an ML engineer is confronted with is to gauge the generalization error of the model,
i. e. how much will the performance of the model drop when switching from training to
unseen test data?

The temperature example was an instance of a supervised learning problem. We had input
and output examples and wanted to learn a mapping between the two. In section 4.3.1,
we will introduce the difference between supervised and unsupervised learning as we will
see examples of both branches in the remainder of this thesis. In section 4.3.2, we will
introduce out-of-distribution (OoD) detection, which is an unsupervised learning task that
we use to explore the performance of our ML methods and which we apply in the setting of
novelty detection. Although ML is a special case of AI already, it is still a large field. In the
last ten years, the subfield of deep learning (DL) has received a lot of attention because of
its great successes in e. g. computer vision, natural language processing, playing games, and
protein folding [Goo+14; RFB15; Dev+18; Bro+20; Sen+20; Jum+21; Ram+22]. Most of the
applied ML methods in this thesis belong to the category of DL, which will be introduced
in detail in section 4.3.3. Since we are very much interested in uncertainty quantification,
we will turn towards the errors that ML methods inevitably make. Is it possible for a model
to know what it does not know? This subfield is called uncertainty quantification, and it is
of special importance for safety-critical applications as we face them in a medical setting.
It will be introduced in section 4.3.4.

4.3.1. Supervised and Unsupervised Learning

In the previous paragraphs, we have discussed learning based on data as an important
defining trait of ML. In this section, we will delineate the field of ML based on the properties
of the available data. This exposition has been inspired by [Jam+13; RN20].

We separate between supervised and unsupervised learning via the existence or lack of a
response or target variable denoted by y ∈ Y . In supervised learning, there exists a source,
predictor, or independent variable x ∈ X , the target variable y and we assume the existence
of an (unknown) mapping f : X → Y that, together with possibly some noise ε, translates
between the two, i. e. y = f(x) + ε. The task is to find an approximation for the unknown
mapping f . In unsupervised learning, there is only the source variable x, but no y, and we
are interested in understanding the structure of the distribution of x. Hence, unsupervised
learning is often more exploratory in nature. Three applications that fall under the umbrella
of unsupervised learning are low-dimensional projections/visualizations, clustering, and
density estimation. A special case that arises from density estimation is OoD detection.
That is the detection of samples that do not belong to the training distribution.

In the following, we will give a more mathematical introduction to supervised and
unsupervised learning.
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Supervised Learning

Let X ⊂ Rn be the source domain and Y ⊂ Rm be the target domain, and f : X → Y a
continuous map. Furthermore, let

D := {(xi, yi) ∈ X × Y | yi = f(xi) + εi, i = 1, . . . , N} ⊂ X × Y,

be the training set, where εi is a noise variable15 with zero mean and finite variance. In
addition, we need a hypothesis set

H := {h : X → Y | h satisfying some property}

which is a family of functions with which we hope to approximate f . Finally, there is a
loss or cost function

l : Y × Y → R

which we assume to be continuous and bounded from below. Then mathematically, the
task of supervised learning corresponds to solving the optimization problem

min
h∈H

N∑
i=1

l(h(xi), yi). (4.16)

In other words, we look for the hypothesis function ĥ ∈ H which minimizes the loss l
between the prediction ĥ(xi) and yi summed over all data points.

We can take some key observations from this

1. Equation (4.16) looks very similar to equation (4.2) from section 4.1. This highlights
the connection between supervised learning and inverse problems.

2. Equation (4.16) is the case of “vanilla” supervised learning. Analogously to the inverse
problem settings, we could augment the minimization with a regularization term r.

3. In principle, the family of hypotheses H could consist of all functions from X to Y ,
so with an empty property. However, this would make the optimization intractable.
Hence, we need to choose properties that allow for efficient solution computation
and properties that reflect prior knowledge about the function f . In the introduction
of this section, we have seen the linear regression example. In this case H would
consist of all linear functions from X to Y . This is a special case of a parametric
family H because the whole family is parameterized by a set of parameters, which
are m and b in the 1D case. Parametric families are quite common because they
are easy to represent. In this case, we write H = (hΘ)Θ∈Rp , where Θ ∈ Rp is the
parameter vector of the family. Another common property is that the functions hΘ
depend differentiably on Θ. This allows for efficient optimization because first-order

15Assumed to be independently and identically distributed.
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optimization methods like gradient descent are available [Cur44]. As an example of
a non-parametric family, one can think of nearest-neighbor approaches like nearest-
neighbor classification or regression. We omit to specify a family of functions but
pay for this flexibility with the need to keep (part of) the training data in memory.

4. The loss function l is often given by an Lp-norm, i. e.

l(y, y′) = ‖y − y′‖pp =
m∑
j=1

|yj − y′j |p,

but there are other common choices like binary cross entropy for classification,
structural similarity for images, etc.

Supervised learning problems are commonly further divided depending on the target
space Y . If the target variable is discrete, i. e. there is a discrete (often even finite) set of
values that y can take, the learning problem is called a classification task. On the other
hand, if the target variable is continuous, i. e. there is an infinite, non-discrete set of values
which y can take16 then the learning problem is called a regression task. For the inverse
problems that we will consider, we will mostly be concerned with regression tasks. There
are further subdivisions available (like segmentation and object detection). We refer the
interested reader to [Mai+22b].

Unsupervised Learning

The big difference between unsupervised learning compared to supervised learning is that
we only have a source domain X ⊂ Rn, but no target domain Y and also no function f
relating between the two. Instead, we have a data distribution17 PX , and generally speaking,
we would like to explore the properties of this distribution. To this end, we assume to have
a data set

D := {xi ∈ X | xi
iid∼ PX , i = 1, . . . , N},

where iid stands for identically and independently distributed according to the data distri-
bution PX . An unsupervised learning problem is then given by a hypothesis family

H := {h : X → Rm | h satisfying some properties},

where m depends on the exact problem and a loss term

l : X × Rm → R
16More precisely, we should say that the distribution of y is absolutely continuous relative to the Lebesgue

measure on Rm (that is where the continuous comes from), but that would take us too far.
17We could have talked about a data distribution in the supervised setting, too, but there it was optional. In

the unsupervised setting, it is mandatory.
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assumed continuous and bounded from below. The corresponding optimization problem is
then given by

min
h∈H

N∑
i=1

l(xi, h(xi)). (4.17)

Superficially, this setup looks very similar to the supervised case. We only drop all the
y dependencies. Hence, many of the supervised observations directly translate to the
unsupervised case (e. g. the use of parametric hypothesis families). Let us now turn toward
specific unsupervised learning tasks and how they fit in this framework.

Low-dimensional Projection/Visualization In this case, m is often chosen to be 2 for
planar visualizations. Themost iconic example in this task group is the principal component
analysis (PCA). For PCA, the family H is given by linear maps, and the loss l is chosen
in such a way that the variance of the projected data contains the most variance of the
original data distribution. We see that this loss definition is rather involved, which hints at
the complications we face in unsupervised learning.

Density Estimation Here, we assume that the data distribution PX has a density pX ,
which we would like to approximate. Hence, m = 1 and the properties for H are that each
function needs to be a density. So necessary conditions would be h ≥ 0 and

∫
X h(x) dx = 1.

Then we could maximize the (log-)likelihood of the data or, equivalently, minimize

min
h∈H

[
−

N∑
i=1

logh(xi)

]
. (4.18)

Depending on the exact family H, we might require more involved loss terms, as seen in
the next paragraph.

Clustering Clustering is not as straightforward to fit into this framework. A common
approach is to reduce it to a density estimation problem where we choose a family of
densities H, which can exhibit the required number of modes (which then translate to the
clusters). A common example would be to choose a Gaussian mixture model (GMM), a
distribution given by the sum of multiple Gaussians. This complicates the loss term, and
the minimization is not as simple as depicted in equation (4.18). Instead, the expectation-
maximization (EM) algorithm has to be applied, where, in one step, each data point xi is
assigned to its closest mode. Then the mode center and shape are updated based on the
current members. These two steps are iterated until convergence.

In this thesis, we will encounter unsupervised learning mainly in the form of clustering
and density estimation.
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4.3.2. Out-of-Distribution Detection

In the community, there are many interrelated terms in the space of out-of-distribution
(OoD) detection: novelty detection, anomaly detection, open set recognition, and outlier
detection. Yang et al. [Yan+21] developed the framework of generalized OoD detection to
define and explain the similarities and differences between these terms. In this section, we
will adapt their work [Yan+21] to introduce the central notions for this thesis.

The starting point of the discussion is the existence of an in-distribution (ID) and out-
of-distribution domain. Both domains are represented by a respective data distribution
PID(X × Y ) and POoD(X × Y ) being a joint distribution in the input space X and a
possible target space Y . Both distributions induce marginal distributions P·(X) and P·(Y ).
A shift in the input distribution, i. e. PID(X) 6= POoD(X), is called a covariate or sensory
shift, while a shift in the target distribution, i. e. PID(Y ) 6= POoD(Y ), is called a semantic
shift. Another dimension is whether OoD and ID data are available at the same time. The
co-existence of OoD and ID data during training defines the outlier detection task. In all
other cases, OoD data is detected in a test set after training. Detecting a covariate shift
in the data is denoted as sensory anomaly detection, while detecting a semantic shift is
classified as classical OoD detection. Depending on whether the ID data consists of a single
class or multiple classes and whether a classification of these multiple classes is desired,
the category of OoD detection is further split into semantic anomaly detection/single-class
novelty detection, multi-class novelty detection, and open set recognition.

This thesis is mostly concerned with sensory and semantic anomaly detection. While
they are philosophically different, the methods to tackle them are often quite similar. For
example, having simulated spectra as ID data, detecting that in-vivo data looks different
would be a sensory anomaly detection task. While collecting spectra from perfused organs
as ID data and detecting spectra from unperfused (or ischemic) organs would be a type
of semantic anomaly detection. Both are handled in this thesis (sensory shift: section 7.3,
semantic shift: section 7.4).

By the definition of generalized OoD, it seems like a supervised learning task, but we
have repeatedly introduced it as an unsupervised learning task. The discrepancy arises
because in our setting during training, we have access to ID data only. Hence, we lack a
supervision signal provided by a non-constant target space Y . If OoD data is available
during training, the task is indeed supervised18. Whether OoD data is available during
training or not, during evaluation, we have a regular binary classification problem, such
that all classification metrics can be used to gauge the performance of the anomaly detection
method.

There is some variety concerning OoD detection methods or, more precisely, anomaly
detection methods. In the following, we will highlight three families that are commonly
used to solve OoD tasks (see figure 4.6 for a visual representation).
18If there is a large imbalance in the availability of ID and OoD data, the task is sometimes referred to as

semi-supervised learning.
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Distance-based Reconstruction-basedDensity-based

in-Distribution Out-of-Distribution Distance ReconstructionDensity

Figure 4.6.: Visualization of different out-of-distribution (OoD) detection algorithm
families. Left: The density of the in-distribution (ID) data is estimated and
used as an OoD score. Middle: A suitable distance to the ID data is used as an
OoD score. Right: A data compression method is trained on the ID data and
the reconstruction error is used as an OoD score.

Density-based Methods These methods are most closely related to unsupervised learn-
ing, as introduced in the previous section. The idea is to estimate the density of PID and use
it to detect OoD data points. The underlying assumption is that OoD data points should
have a lower likelihood under the ID distribution than ID data points. While this assumption
seems reasonable, there is empirical evidence, especially in high-dimensional spaces (think
images), that it is not always satisfied [CJA18; Nal+19b; KIW20]. An alternative explanation
could be that it is very hard to estimate densities in high-dimensional spaces because of
the curse of dimensionality. To counteract this problem, new methods were developed
that are based on density estimates but either post-process the density or project the input
space to lower dimensions before they estimate the density. Examples are likelihood ratios
[Ren+19], the test of typicality [Nal+19a], and WAIC [Wat13; CJA18], which will be a major
focus of this thesis.

Distance-based Methods These methods are generally non-parametric and require
keeping some representation of the training date, i. e. the ID distribution, in memory. The
idea is to first transform the ID distribution to a semantically meaningful representation
with a useful distance measure19. During inference, the distance of new data points to
the ID distribution is computed. This often takes the form of a k-nearest neighbor (k-NN)
distance computation. The underlying assumption of this approach is that OoD data should

19In lack of that, we can try our luck with the input space and the Euclidean distance.
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be further away from the ID distribution than new ID data points.
Interestingly, while the inspiration for distance-based methods is quite different, it turns

out that k-NN estimation can be rephrased as a density estimation task [BN06, chapter
2.5.2], such that, at least theoretically, there is little distinction between the two categories.
Nevertheless, the conceptual shift makes it worth keeping both categories in mind. This
observation also implies that we should expect failure cases as in the density-based setting.

Reconstruction-based Methods These methods are best interpreted as a learned com-
pression algorithm. We try to find a compression algorithm on the ID distribution that
optimally reconstructs the data. During inference, we can compress and decompress (or
encode and decode) new data points. The underlying assumption is that the performance of
this process should deteriorate for OoD data, which can be measured by the reconstruction
error.

Reconstruction-based methods turn out to be density-based methods in disguise too.
During the training of the compression algorithm, the reconstruction loss is often an
approximation of the log-likelihood of the data. For example, if we use a variational
auto-encoder (VAE), the loss term is the evidence lower bound, approximating the log-
likelihood after convergence. Again, it is worth keeping the category separate because
of the conceptual shift involved. Still, we should expect failure cases, just as for regular
density-based methods.

4.3.3. Deep Learning

In section 4.3.1, which introduced supervised and unsupervised learning, we saw that
their mathematical formulation depended on a family of hypothesis functions H. The
idea is to find a family that is flexible enough to approximate the unknown function
describing our problem. Furthermore, we noted that these families are often parametric,
i. e. H = (hΘ)Θ∈Rp where Θ ∈ Rp is the parameter vector. Simply put, deep learning (DL)
chooses a very specific parametric family (hΘ)Θ, which turned out to be very flexible and
powerful. Hence, DL is a special case of ML as depicted in figure 4.5. The hypothesis family
used in deep learning consists of neural networks (NNs) or neural nets for short. Of course,
there is far more nuance involved than simply specifying the hypothesis family, as we will
see in the following. This treatise was inspired by [RN20].

Superficially, NNs are inspired by nerve cells, also known as neurons. These neurons are
connected, and a previous neuron can change the electric potential of a successor. If this
change is large enough, the successor will, in turn, “start to fire” and change the potential of
the next neuron. This idea has been abstracted in the notion of a perceptron. A perceptron
can either be active or inactive, encoded by 0 and 1. Each perceptron can have a different
connection strength to neighboring neurons, which is indicated by a weight matrix W and
a bias b. If x denotes the input states for our perceptron (i. e. the states of the perceptron
that are connected to it), then the state of the current perceptron is given by the following
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rule:

perceptron(x) =

{
1 if W · x+ b > 0,

0 else.

So a single perceptron is a binary classifier that is based on a linear decision boundary.
By definition, a perceptron can only work for linearly separable data sets, which clearly
limits its expressive power. To remedy this, there was a research movement that tried to
stack perceptrons. The result is called a multi-layer perceptron (MLP). This is the point
of origin of the modern NN. However, there have been further adaptations that led to the
performance we experience today.

First, note that a perceptron can be divided into two parts: 1. a linear map given by W
and b and 2. a non-linear function applied to the output. This second function in today’s
terminology is an activation (function). In the classical perceptron, this activation was the
Heaviside step function, which is impractical for stacked networks. As we will see in a
second, NNs are trained using gradient descent. This implies that we need to be able to
differentiate the operations in our network to update the parameters20. The step function
is differentiable almost everywhere, but the derivative is 0. This renders gradient descent
impossible. Therefore, the Heaviside function has been replaced by other activations. In
fact, nowadays, there is a figurative zoo of activation functions with specific advantages
and disadvantages. One of the most common activation functions is the rectified linear
unit (ReLU), which is given by max(x, 0). At a first glance, this seems counter-intuitive
because the ReLU is “almost linear” and the idea behind the activation is to make the whole
perceptron non-linear, but it has been proven that NNs with non-polynomial activations
and depth at least two21 can approximate arbitrary continuous functions [Cyb89; HSW89;
Pin99]. So the family of NNs is very expressive.

Contemporary NNs are very deep22, and at least empirically, this seems to correlate with
the good performance results. With growing depth, our parameter vector Θ grows larger
too, and we need to adapt all these parameters in the training process. By construction, NNs
are differentiable (almost everywhere) and hence it is natural to use gradient descent [Nes03]
to update the parameters. For a single perception, it is easy to derive an equation for the
derivatives, but for deeper NNs, this becomes rather tedious. Furthermore, this manual
approach would make the whole approach very stiff because each change in network
architecture and loss term would require a recomputation. This circumstance slowed the
progress towards deeper NNs until, in the 60s, the backpropagation formula [Kel60; Bry61]
was found and promptly forgotten until it was rediscovered in the 80s [RHW85; RHW86].
Slightly simplified, the backpropagation formula is the application of the chain rule of
calculus to the special case of NNs. This leads to a set of equations that can be implemented
in code to automate the computation of the derivatives. This, together with new software
20Θ = (W, b) in the perceptron case.
21The depth counts the number of stacked perceptron layers.
22There are ResNets [He+16] with more than 100 layers.
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frameworks supporting automatic differentiation and more efficient hardware (like GPUs),
allowed the training of deeper NNs.

Still, it took until 2012 before deep learning really took off. One reason for this might
lie in the great flexibility of the model family: NNs can approximate a very large function
space. How can we be sure that we found the right function in this huge space? Or
another way to put it: If our data is noisy, how can we be sure that we actually learn the
deterministic relation in the data and not the noise? The problem of fitting noise in the data
is called overfitting, and because of their flexibility, NNs are very susceptible to it. While
regularization terms and data augmentation can prevent overfitting to some extent, the
most straightforward approach to counteract this tendency is more training data. Such
large data sets were not available in the 80s but quickly became so with the advent of the
internet. It is in this large data set regime where NNs really shine.

Another reason for their recent success lies in the ease with which NNs can be adapted
to specific problem classes. This is often called introducing an inductive bias into the NN
architecture. A simple example can be found in image classification. Multiple images of the
same class, for cultural reasons, let us stick with cat images, might contain the object in
question at different locations. The cat might be at the lower boundary or the left boundary,
or in the middle. Still, all these images show a cat, and the NN should ignore the shift or
translation of the cat. The observation that the classification result should be translation
invariant led to the introduction of the convolutional neural network (CNN) [FM82; LeC+89;
LeC+98]. These restrict the type of linear maps that are allowed to convolutions, which are
inherently translation invariant. This introduction of prior knowledge should simplify the
optimization task. While this turned out to be true, there is another reason why CNNs were
so successful. Early NNs suffered from an explosion in the number of trainable parameters
because the number of weights grew quadratically with the width of the NN and linearly
with the depth. This quickly became prohibitively expensive. Convolutions solved this
problem, too, because they drastically reduced the number of parameters.

There are more success stories like the CNN. Towork with sequential data like time series,
recurrent neural networks (RNNs) were introduced, propagating a state along the sequence
dimension to capture that structure. Lately, transformers have beaten the RNNs [Hop82;
HS97; Cho+14] on sequence tasks, especially in the domain of natural language processing
but also in the domain of protein folding. Additionally, there is active debate, if transformers
can also beat CNNs for computer vision tasks [Dos+21]. Transformers [Vas+17; Dev+18;
Bro+20] introduce an attention mechanism that allows the NN to focus on specific parts of
the sequence (or regions of the image in the computer vision case [Dos+21]).

In the last decade, NNs have led to astounding progress in the fields of computer vi-
sion [KSH12; Goo+14; RFB15], natural language processing [Dev+18; Bro+20], winning
games [Sil+16; Sil+17; Sil+18; Vin+19], protein folding [Sen+20; Jum+21], and many
more [Ram+22]. In recent years, we have seen how deep learning has found its way
into the domain of medical imaging and computer-assisted interventions [Suz17; Zho+21].
However, the domain comes with its own challenges, so we are still missing the huge suc-
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cess stories we have seen in other areas [Mai+22a]. Still, deep learning is a very promising
direction. One specialty of the medical domain is its high safety requirements. Hence, it is
important for us to understand when and where our NNs fail. An important building block
in this endeavor is uncertainty and its quantification, which will be introduced in the next
section.

4.3.4. Uncertainty in Machine Learning

If we perform the exact same measurement twice, it is anecdotal wisdom that we cannot
expect the same result. There is a grain of truth to this. Oftentimes, there is noise in the
measurement process, such that repeated recordings lead to (slightly) different results. We
have to cope with such uncertainties in the empirical sciences. However, not all uncertain-
ties are the same. In the ML community [HW21] and medical statistics community [IM17],
uncertainty is classified as either aleatoric/statistical uncertainty or epistemic/systematic
uncertainty. This section aims to introduce both notions. This exposition was heavily
influenced by Andrew Gelman’s blog post [Gel22] and an article by Tony O’Hagan [Oha04].

Aleatoric uncertainty describes an intrinsic variability of a process. The classic example
is the coin toss. Even if we know that the probability for heads is exactly Θ = 1

2 , there will
always be uncertainty in predicting the next toss. Mathematically, if C ∼ Bernoulli(Θ) is
the random variable representing the coin, then the aleatoric uncertainty can be expressed
by the non-vanishing variance Var[C] = Θ · (1−Θ) = 1

4 .
On the other side, there is epistemic uncertainty which describes uncertainty due to our

ignorance or lack of knowledge of the process. Another way of putting it is that we do not
know the exact parameters of our model. A central distinction between the two types of
uncertainties is that epistemic uncertainty is reducible by additional data, while aleatoric
uncertainty is not.

To highlight the differences between aleatoric and epistemic uncertainty, let us modify
the coin toss example. Let us assume that we know nothing about the coin, i. e. we do not
know the probability for heads, but that Θ ∈ [0, 1]. The Bayesian approach is to assume a
prior distribution for Θ, and as we know nothing about the coin, we choose the uniform
distribution U [0, 1] on the interval [0, 1]23. We can ask again what the probability that the
coin toss is heads will be. This computes to

p(C = head) =
∫ 1

0
p(C = head | Θ) · p(Θ) dΘ =

∫ 1

0
Θ · 1 dΘ =

1

2
.

The first observation is that the probability of heads for the (first) coin toss did not change,
although we seem to know way less than in the first example because of the uncertainty in
the parameter Θ. We could quantify this new uncertainty as in the previous example via
the variance Var[Θ] = 1

12 . Now, let us start collecting the coin toss results in a data set

D = (h, h, h, t, t, t, h, t, h, h),

23The example does not depend on the specific prior as long as it’s not degenerate (e. g. a point-mass).
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i.e. k = 6 heads in n = 10 tosses. Using Bayes’ theorem [Bay63; Kle13], we can compute a
posterior distribution for Θ given D

p(Θ | D) ∝ p(D | Θ) · p(Θ) =

(
n

k

)
·Θk · (1−Θ)n−k.

We can identify this as the density of a beta distribution with parameters α = k = 6 and
β = n − k = 4. So Θ | D is now distributed according to a beta distribution24. If we
compute the variance, we obtain

Var[Θ | D] =
αβ

(α+ β)2(α+ β + 1)
=

6

275
<

1

12
= Var[Θ].

Hence, the uncertainty in our parameter Θ has diminished. In other words, additional data
has reduced the epistemic uncertainty we had in the parameter of our model. At the same
time, there is still aleatoric uncertainty in the result of a coin toss, which no amount of data
can reduce. In a symbolic formula, we can think of aleatoric and epistemic uncertainty via

p(C | D)︸ ︷︷ ︸
total

=

∫ 1

0
p(C | Θ)︸ ︷︷ ︸
aleatoric

· p(Θ | D)︸ ︷︷ ︸
epistemic

dΘ,

where we assumed conditional independence p(C | Θ, D) = p(C | Θ).
Oftentimes (at least for me), discussions about aleatoric and epistemic uncertainties

lead to confusion because what does it mean that aleatoric uncertainty is inherent and
irreducible? For example, if we let a machine toss the coin with a very fixed setup and
knew which side was up before the toss, etc. we could potentially reduce the uncertainty
about the next toss. So is it really an epistemic uncertainty? The answer to this question is
context. Aleatoric and epistemic uncertainties do not live in a vacuum but depend on the
current context in the form of the experimental or model setup. In the above examples, we
assumed we knew nothing about the coin’s position before the flip. We could introduce
this information, but that would change the model. In this new model, the uncertainty of
the next coin toss could be reducible, which would transform it from aleatoric to epistemic
uncertainty.

Uncertainty quantification in biophotonic imaging modalities is the goal of this thesis.
We will encounter aleatoric uncertainty in the guise of ill-posed inverse problems (see
section 4.4) and actually exploit epistemic uncertainty for more reliable OoD detection (see
section 6.3).

24In fact, Θ was distributed according to a beta distribution already, since the uniform distribution is a beta
distribution with α = β = 1.
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4.4. Invertible Neural Networks

This section will introduce the central deep learning architecture of this thesis: the invertible
neural network (INN). It is well-suited to estimate complex, high-dimensional densities,
and we will see how we can apply this to inverse problems and OoD detection tasks.

Similar to residual NNs and other deep learning architectures, there are standardized
blocks that make up an INN. We will understand these blocks and see how they lead
to important INN properties in section 4.4.1. The original INN architecture is mostly
suited for unconditional density estimation. Hence, we will see how we can tweak the
architecture for conditional approximation. This refined architecture is then called a
conditional invertible neural network (cINN) and can be found in section 4.4.2. If we work
on images, we need an invertible way to change the image resolution. Haar downsampling
is introduced in section 4.4.3 to address this problem. In section 4.4.4, we will introduce
z-score normalization, which is good practice before applying INNs to a data set. Lastly,
we will introduce the concept of calibration for cINNs in section 4.4.5.

4.4.1. Building Blocks

Many tasks in ML can be phrased as having a complicated data distribution, and we would
like to estimate its density function. If we achieve this, we can compute the likelihood for
new samples to belong to the distribution or even try to generate new data points from it.
Probability theory hands us a tool that can potentially accomplish the estimation of this
distribution: the transformation theorem for probability densities.

Consider, we have a random variable on some space X = Rn with a probability density
pX : Rn → R≥0 and a diffeomorphism25 f : X = Rn → Z = Rn. Note that the dimensions
of X and Z need to be the same as explained in section 4.1.1. This leads to a new random
variable on Z , and the transformation rule tells us what the density of this new variable is.
Let x ∈ X then

pX(x) = pZ(f(x)) · | detDf(x)|, (4.19)

where Df is the total derivative of f , detDf(x) is the Jacobi determinant of f at point x
and | · | is the absolute value. Oftentimes, it is more practical to work with log-probabilities.
In this case, the formula reads

log pX(x) = log pZ(f(x)) + log | detDf(x)|. (4.20)

To return to our motivation of estimating complicated densities, we assume that pX
is our data distribution. We know how it transforms under general diffeomorphisms.
So the problem of estimating pX can be reformulated as the task of finding a suitable
diffeomorphism f such that pZ becomes a simple distribution like a Gaussian or a uniform
25This is a bijective, differentiable map with differentiable inverse.
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distribution. This is where we enter ML territory. First, we need to find a parametric family
of diffeomorphisms fΘ, where Θ is the parameter vector of that family. Then, instead of
using equation 4.20 to compute pZ , we prescribe the distribution we want and use the
equation as a loss-term to find the optimal Θ. In this thesis, we will only use Gaussians
with mean µ = 0 and covariance matrix Σ = id as pZ . Let (xi)Ni=1 be our data set (i. e. a
sample from the unknown training distribution). Then using the Gaussian assumption, the
optimization task becomes

max
Θ

N∑
i=1

log pX(xi) =
N∑
i=1

[
−1

2
‖fΘ(xi)‖2 + log | detDfΘ(xi)|+ const.

]
. (4.21)

The loss given by equation (4.21) is called maximum-likelihood loss and using it for training
is called maximum-likelihood training. Many optimization frameworks are implemented to
minimize instead of maximize. If this is the case, we minimize the negative log-likelihood.

The last ingredient to estimate the density is the family of diffeomorphisms fΘ, and this
family is given by the INN architecture. From the above discussion, we can collect three
necessary properties for INNs:

1. fΘ needs to be invertible,
2. detDfΘ needs to be efficiently computable, and
3. fΘ needs to be flexible enough to approximate a large set of distributions.

Especially the second point needs some thought because computing the determinant
of an arbitrary matrix is computationally costly. This problem is addressed by affine
coupling blocks. They were first introduced in a limited form in [DKB14] and then refined
in [DSB16; Ard+18b; KD18]. Architectures that are based on these coupling blocks are
often called normalizing flow architectures. This is motivated by the transformation rule
because each step through the network slowly “normalizes” the input distribution toward
a simpler distribution. In the setting of inverse problems, the name INN is more prevalent.
A schematic overview can be found in figure 4.7.

An input x ∈ Rn is split into x0 ∈ Rn0 and x1 ∈ Rn1 such that n0 + n1 = n (ni > 0)
and x0 operates on x1, while staying unchanged itself. Because x0 is conserved, we can
recover the transformations which were performed on x1, and the whole process becomes
invertible. In more detail, the affine coupling block consists of two functions s : Rn0 → Rn1

6=0

and t : Rn0 → Rn1 . Both functions can be parameterized by arbitrary NNs. In particular,
they do not need to be invertible. There is only the restriction that s needs to be nowhere
zero (i. e. no single dimension is allowed to be zero at any time). This is easily achieved by
exponentiating the output of a NN, but other alternatives exist. Let y1 be the transformed
x1 then in formulas we have

y1 = s(x0)� x1 + t(x0), (4.22)
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Figure 4.7.: Schematic depiction of an affine coupling block. The color encodes the
space on which each operation is performed. s and t are functions which can be
represented by arbitrary neural networks, with the restriction that the output
of s is non-negative in each component. x1 ∈ Rn1

6=0 if and only if x1,i 6= 0 for
all i = 1, . . . , n1.

where � denotes the Hadamard product (i. e. component-wise multiplication of the two
vectors). We see that equation (4.22) is an affine transformation which is parameterized by
x0. It is invertible because we never multiply by 0, and hence we can recover the original
x1 via

x1 = (y1 − t(x0))� s(x0), (4.23)

where � denotes component-wise division.
More importantly, if we consider the whole coupling block as

cb : Rn → Rn, [x0 : x1] 7→ [x0 : y1]

with y1 given by equation (4.22) then the derivative Dcb(x) of cb takes the following block
form

Dcb(x) =
(
idn0 0
∗ diag(s(x0))

)
=



1
. . .

1

0

∗
s1(x0)

. . .
sn1(x0)


. (4.24)

Indeed, since x0 is left unchanged the first block is simply the identity idn0 and the second
block is 0, because x0 does not depend on x1. The third block can become complicated
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as the derivatives of s and t with regard to x0 are non-trivial. However, as we will see in
a second, we do not need to compute them. This is because the fourth block is diagonal
once more given by s(x0) because the derivative of an affine transformation is just the
multiplication part. Taking all this together, we see that the matrix is lower-triangular (i. e.
there are only zeros above the diagonal), and the determinant of such a matrix is given by
multiplying all diagonal elements. Hence,

detDcb(x) =
n1∏
i=1

si(x0)

and with the absolute value and the logarithm, we can express this as a sum

log | detDcb(x)| =
n1∑
i=1

log |si(x0)|, (4.25)

which is efficiently computable as long as s is.
The affine coupling block satisfies the first two properties for our family fΘ, but in

isolation, they are too stiff in some regards. First, we note that we need to be able to split
the input for the whole architecture to work. This leads to a minimum input dimension
of n = 2. Furthermore, empirically it turns out that if the dimensional split is carried out
identically each time, then the information of the separate dimensions does not mix well.
This is counteracted by adding a fixed but random permutation in front of every coupling
block. A permutation leads to a Jacobi-determinant of ±1, which can be ignored after
taking absolute values. Recently, this approach has been extended. Permutations are a
subgroup of a group called the group of orthogonal transformations. They are represented
by matrices A ∈ Rn×n with At · A = idn, i. e. their transpose is their inverse. Hence,
the inverse is efficiently computable, and again the Jacobi-determinant is ±1. It is hard
to parameterize the whole group of orthogonal transformations, so instead, only certain
subgroups are considered, which are parameterized using reflections along randomly
initialized hyperplanes in Rn [TW16]. However, there is no empirical evidence that these
more flexible transformations improve performance, so we stick to fixed permutations in
this thesis.

There are further caveats with the affine coupling blocks. As mentioned previously, s
needs to be nowhere zero, and this is generally achieved via component-wise exponen-
tiation. However, exponential functions easily lead to exploding or vanishing gradients.
To counteract this tendency, we employ a clamping scheme. If s̃ is the NN output before
exponentiation, we use the area hyperbolic tangent with a constant c > 0 via

s̄(x0) = c · artanh
(
s̃(x0)

c

)
.

This enforces −c < s̄(x0) < c and then setting s(x0) := exp(s̄(x0)) bounds s as well. This
slightly restricts the expressibility of the coupling blocks, but this is no disadvantage, as
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stacking more blocks on top of each other will diminish the influence of the clamping. At
the same time, at the beginning of training, this can still lead to instabilities. The weights
are randomly initialized, and even if exponentiation bounds the block output by exp(c),
a network with d blocks can still end up with exp(dc) as the order of magnitude for the
network output. This can lead to floating point overflows. After a couple of iterations, this
is no longer an issue, but we can encounter NaNs in the beginning, such that the training
needs to be restarted with a new seed. In [KD18; Mac+21], a remedy was suggested. As we
have seen above, affine transformations are well suited for invertible operations. So the idea
was to add an affine transformation after each affine coupling block. The difference to the
coupling block above is that the new transformations do not depend on the input. Hence,
they were named global transformations. The exact form of this global transformation is

gt(x) :=
1

c
log(1 + exp(c · σ))� x+ τ = softplus(σ; c)� x+ τ, (4.26)

where σ, τ ∈ Rn are parameters of the transformation, which are trained during optimiza-
tion and c > 0 is a hyperparameter. The softplus function is always positive. Hence, the
transformation is invertible, and the log-Jacobi-determinant can be computed analogously
to equation (4.25). At initialization, σ is set to all 1s and τ to all 0s. If c is chosen smaller
than 1, the transformation will squeeze the output of the coupling blocks. This prevents
overflows. At the same time, the optimization can update σ and τ , and this can revert
the initial squeezing by c. So once the coupling blocks have learned to transform the data
roughly, the influence of the global transformations will slowly diminish. Hence, they do
not negatively impact the expressiveness of the architecture.

The affine coupling blocks, together with the permutations, the clamping, and the global
transformation, is the basic building block of the INN. Similarly to other architectures, like
residual NNs, we can build very expressive INNs by stacking these blocks on top of one
another. In fact, we still have not addressed the third property of our invertible family fΘ.
Ishikawa et al. [Ish+22] have shown that INNs are universal diffeomorphism approximators.
This is a very general class of functions and basically the best we could hope for. So it
turns out that INNs are very flexible, and we can hope to approximate many practical
distributions.

Lastly, we would like to mention that the INN architecture is not the only possible
parameterized family fΘ. For a good comparison of different invertible architectures with
their advantages and disadvantages, we refer to [Kru+21].

4.4.2. Conditional Invertible Neural Networks

In the previous section, we have seen how INNs can be used to estimate a distribution
with density pX . This is already useful for OoD detection (cf. section 4.3.2). However, in
the setting of inverse problems, we need to estimate conditional probability densities, i. e.
p(x | y). In this section, we will see how the INN architecture can be adapted to achieve
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this.
We will stick to the convention introduced in section 4.1.1. We have a forward problem

F : X → Y, x 7→ y and we would like to train an INN to learn the inverse problem in a
probabilistic manner (cf. section 4.1.2) via p(x | y).

The original idea [Ard+18b] was to use INNs to learn the forward and inverse problem
jointly. However, as presented in section 4.1.1, this is only possible for well-posed inverse
problems where dimX = dimY . For the overwhelming majority of real-life inverse
problems, this is simply not the case. Hence, the introduction of padding dimensions
became necessary. Two latent spaces ZX and ZY were introduced and appended to X and
Y , respectively, to guarantee

dimX + dimZX = dimY + dimZY .

ZX is only necessary if dimY > dimX , but ZY is necessary independently of any di-
mensional restrictions as this latent space is supposed to encode all ambiguities which
an ill-posed inverse problem might have. The intuition behind this is, if there are two
x0, x1 ∈ X with x0 6= x1, but F (x0) = F (x1) then the trained INN would also collapse
the two points x0 and x1, but that is not possible due to the intrinsic invertibility. Hence,
the lost information has to be encoded in ZY .

Practically, this whole approach leads to many problems during training. The maximum-
likelihood training as introduced in equation (4.21) is no longer possible because the dummy
dimensions due to ZX and ZY would lead to vanishing or exploding Jacobi-determinants.
In its place, four loss terms are necessary. Let

fΘ : X × ZX → Y × ZY , (x, zx) 7→ (y, zy)

be the INN. For a data point (x, y) and latent space samples zx and zy , we denote by
(ŷ, ẑy) = fΘ(x, zx) the forward prediction of the INN and by (x̂, ẑx) = f−1

Θ (y, zy) the
backward prediction. Then the four loss terms can be described as follows:

1. There is a forward loss which draws ŷ to y. This loss depends on the application. A
common choice is the L2 loss.

2. We would like to shape the distribution on ZY as a standard Gaussian distribution so
that we can sample from it. As such, we enforce that the ẑy are distributed accordingly.
This is achieved using maximum mean discrepancy (MMD), which is a metric on
distributions and can be computed on a sample. Details about MMD can be found in
section 6.2.3 and [Gre+12].

3. We assume that p(x | y) varies smoothly in y. So we disturb ŷ and ẑy and compute
the inverse f−1

Θ and assume that x̂ should still be close to x. This backward loss acts
as a regularizer and can be implemented as another L2 loss.

4. Given y and latent space samples zy drawn from a standard Gaussian N (0, id), we
assume that (x̂, ẑx) should have a joint distribution given by the training data x and
another GaussianN (0, σ2 id) on ZX . This is enforced using another MMD loss term.
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The four loss terms have to be balanced against each other, and the MMD terms introduce
further hyperparameters. Hence, the question arose whether there was no better way to
represent a conditional probability density in this framework.

We are interested in p(x | y) or equivalently in log p(x | y). Looking at the transforma-
tion rule in equation (4.20), there are two natural places where we could hope to integrate
the conditioning y:

log p(x | y) = log pZ(f(x; y)) + log | detDf(x; y)| or (4.27)
log p(x | y) = log pZ|Y (f(x) | y) + log | detDf(x)|. (4.28)

In equation (4.27), we have a density on the space Z which is independent of y. Instead, the
transformation f changes with y. So depending on the conditioning y, the transformation
looks different26. Equation (4.28) goes the opposite direction. In it, the transformation is
independent of Y , but the target distribution pZ|Y now depends on the conditioning. Both
approaches have been used. The first leads to an architecture that is called a conditional
invertible neural network (cINN) and was introduced in [Ard+19]. The second is often
implemented with a mixture of Gaussians in the latent space. This works well for categorical
Y , where each mixture component corresponds to one of the classes. It has been introduced
in [Ard+20] and needs further tweaking of the maximum-likelihood loss. Since in our
inverse problems setting, we are almost exclusively faced with continuous Y , equation (4.28)
does not suit our needs. So in the remainder, we will focus on the cINN architecture.

The building block of the INN is the affine coupling block (see equation (4.22)). We use
NNs s and t to operate on part of the input and transform the other part. In order to make
this coupling block conditional on y, we can simply make s and t conditional on y, i. e.

s(x0) 7→ s(x0, y) and
t(x0) 7→ t(x0, y).

In theory, this is all we need to move from an INN to a cINN. However, there are some
details worth mentioning. First, we have to be careful if our data has a certain shape.
So far, we have only talked about a general Rn, but often times the different dimensions
come with meaning and are collected accordingly in axes like Rnc×nw×nh for an image,
where nc denotes the channel dimensions and nw and nh the width and height of the
image respectively. Respecting this semantic information and incorporating it into the
architecture is often beneficial. For INNs and cINNs, this means that the splitting in the
affine coupling blocks is generally performed along the channel dimension while keeping
the spatial dimensions intact. The practical impact is that the easiest way to incorporate
the conditional information y is if it has the same spatial dimensions as the input x0.
Theoretically, it is possible to work around it, but practically this is a “golden rule”.
26Please note, that the derivative Df is only computed with regard to x and also the invertibility is only

guaranteed with regard to x.
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Besides this restriction, there is also a big advantage to cINNs. Compared to the original
architecture, the network is no longer invertible towards y. This allows for much more
flexibility regarding possible preprocessing of the conditioning input y. Especially for
high-dimensional y, one can employ a so-called conditioning network, which can be an
arbitrary NN, to transform the conditioning to a better representation for the actual cINN.
Furthermore, this conditioning network can be pre-trained on other tasks to simplify the
actual training. Lastly, the conditioning network is not restricted to a single output head
but could have multiple heads specialized for each coupling block. This allows for a lot of
flexibility.

Let us close with the remark that cINNs remove the need for the zero-padding (ZX and
ZY ) in the original architecture, and we are left with a single latent space that has the exact
same dimensions as the input space X . With that, maximum-likelihood training becomes
available again, removing the need for multiple loss terms and drastically stabilizing the
training procedure.

4.4.3. Invertible Downsampling

Many contemporary NN architectures use downsampling operations to reduce the spatial
resolution of images and similar structures, but common choices like max or mean pooling
are not invertible. However, we would like to be able to operate our INNs or cINNs on
multiple resolutions whenever we work with image data. Hence, we need an invertible
downsampling operation. There are multiple options for that. The trick is that spatial
resolution is transformed into channel resolution, i. e. if the spatial dimensions of the
images are halved, the channel dimension is quadrupled. We know that this is a necessary
condition to keep the dimensions constant. In this thesis, wewill use theHaar downsampling
operation [Haa09] as suggested by [Ard+19].

The downsampling operation can be implemented as a 2 × 2 convolution with four
output channels per input channel and fixed kernels given by the four matrices

1

2

(
1 1
1 1

)
,
1

2

(
1 −1
1 −1

)
,
1

2

(
1 1

−1 −1

)
, and

1

2

(
1 −1

−1 1

)
. (4.29)

Hence, each 1×2×2 input patch is transformed to a 4×1×1 output patch. The inverse is
given by four 1× 4 matrices applied to the 4× 1× 1 output patch. If the four input patch
members are ordered in “reading order”, then the matrix for each patch member is given by

1

2

(
1 1 1 1

)
,
1

2

(
1 −1 1 −1

)
,
1

2

(
1 1 −1 −1

)
, and

1

2

(
1 −1 −1 1

)
,

(4.30)
which are simply the flattened versions of the convolution kernels given in equation (4.29).
Hence, the inverse can also be computed with standard NN building blocks like a 1 × 1
convolution followed by reshaping the tensor.
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4.4.4. Data Normalization

The affine coupling blocks with the exponential clamping can change the volume of the
distribution only by a finite amount. This is counteracted to some extent by the global
affine transformation. Nevertheless, if the volume of the input data distribution differs
strongly from the latent space distribution, which has volume 1 by design, the INN might
not be able to learn the transformation. Even if it is capable, we would “waste” capacity
of the INN on simply squeezing or stretching the distribution, while we could as well
normalize the volume of the input distribution. This has the added benefit that we do not
need to adapt the noise augmentation to the specific scales of the input data. We use z-score
normalization, which affinely transforms the data set to have zero mean and unit variance.
This normalization is applied along each feature dimension separately, and if (xi)ni=1 is
such a feature of the data set, the normalized feature set (yi)ni=1 is computed as

µ̂ =
1

n

n∑
i=1

xi (4.31)

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(xi − µ̂)2 (4.32)

yi =
xi − µ̂

σ̂
. (4.33)

One has to be careful not to introduce data leakage through this type of normalization.
To this end, the mean and standard deviation is only computed on the training set and
afterward applied to the validation and test set(s). This might lead to non-zero means and
non-unit variance on these validation and test sets.

While z-score normalization is not so important for the conditioning input, having all
features on the same scale and simplifying noise augmentation is still beneficial. Therefore,
we also apply z-score normalization to the conditioning input throughout this thesis.

4.4.5. Calibration Curve and Error

We have seen how we can use cINNs to generate posterior distributions. While, in general,
the maximum-likelihood training ensures that the posterior relates to the ground truth
values, it might be that its width does not correspond to the model’s uncertainty. This
can happen e. g. because the noise augmentation is used too aggressively. In this case, the
posteriors would be too wide because the model would take up on the added uncertainty
due to the augmentation. In this light, it seems appropriate to ascertain that the shape of
the posteriors is indeed reliable. The tool for this task is the calibration curve as seen in
figure 4.8.

We need a test set with ground truth values to construct the calibration curve. For
each data point, we create a posterior, then we can determine the quantile of the ground
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Figure 4.8.: Schematic view of the calibration curve construction. We scan all confi-
dence interval (CI) levels and count the fraction of ground truth values within
the corresponding CIs. The identity corresponds to a perfect calibration, while
a curve above indicates under-confident posteriors and a curve below over-
confident posteriors.

truth within that posterior. Based on the quantile, we know what the smallest confidence
interval (CI)centered around the median is that contains the ground truth. Then, over the
whole data set, we scan all possible levels for CIs and count the fraction of ground truths in
the CI of that level. By definition, the CI to level 0 is empty and hence contains no ground
truth values, and the CI to level 1 is the whole real line, so it contains all ground truths.
Hence, we obtain a calibration curve CC : [0, 1] → [0, 1] with CC(0) = 0 and CC(1) = 1.

The underlying assumption behind the above construction is that for the posteriors to
be well-calibrated, the confidence level of the interval should correspond to the fraction
of ground truths within this CI. So, for example, the CI to the confidence level of 0.3
should contain 30% of the ground truths. This implies that a perfect calibration would
be represented by the identity. A curve that runs below the identity implies that the CIs
contain fewer ground truths than expected. This means that the posteriors are too narrow
or, in other words, that the model is over-confident. On the other hand, if the curve runs
above the identity, there are too many ground truths in a given CI. Hence, the posteriors
are too wide or, alternatively, the model is under-confident. In some cases, the calibration
curve crosses the identity one or more times in the interior of [0, 1]. If so, the model is over-
or under-confident on the respective sub-intervals.

Often, it is more practical to look at the deviation from the identity. This quantity is
called the calibration error

CE : [0, 1] → [−1, 1], CE(x) := CC(x)− x, (4.34)

where CC denotes the calibration curve.
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This still leaves us with a curve to interpret. If we want to aggregate the information
further, we can use the expected calibration error (ECE) which is given by

ECE :=

∫ 1

0
|CE(x)| dx ≈ 1

n+ 1

n∑
i=0

∣∣∣∣CE( i

n

)∣∣∣∣ . (4.35)

While well suited for a quick first check, the ECE has the disadvantage that we discard the
sign information. Hence, it can only indicate that the calibration is off, but not whether the
model is over- or under-confident.
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5. Related Work

This section aims at giving an overview of current work within the scope of this thesis. As
INNs are still rather niche, and a good portion ofML focuses on classification(-derived) tasks,
while we focus on regression problems, it is hard to find work that is directly applicable to
our setting. We will discuss the properties of the related work and what parts are better or
worse suited for our applications.

Section 5.1 will introduce related work to uncertainty quantification. We will first talk
about general, foundational work in ML and then give examples of how this work was
applied in a medical setting. For this section, we interpret uncertainty quantification as any
method of gauging the uncertainty of the actual prediction of the network, i. e. uncertainty
quantification is an auxiliary task to gauge the reliability of the main task. This section
is aimed at covering related work regarding research question T.1, which is concerned
with representing ambiguous solutions to inverse problems for data-driven analysis. As
this field is still rather small, we extended the scope of the related work section to include
general uncertainty quantification methods. Section 5.2 will be concerned with related work
regarding posterior validation. We will introduce commonly applied metrics and validation
strategies of posteriors for inverse problems in different application fields. In particular, we
will focus on how suitable the metrics are with regard to analyzing the well-posedness of
inverse problems. This section covers related work with regard to research question T.2,
which is concerned with the validation of (multimodal) posteriors. Section 5.3 will address
related work regarding OoD detection. We will introduce work based on reconstruction
algorithms and representation learning and how these approaches are applied in medical
imaging. Furthermore, we will outline the current discussion about the scope of OoD
detection and a lack of clear benchmarks to gauge progress in the field. This section covers
related work with regard to research question T.3, which is concerned with OoD detection
methods for biophotonic imaging. Section 5.4 contains a conclusion of the related work
discussion and their impact on our research questions.

5.1. Uncertainty Quantification

Uncertainty quantification is an active field of research in ML in general, but also in
medical imaging. In fact, “[…] medical AI, especially in its modern data-rich deep learning
guise, needs to develop a principled and formal uncertainty quantification (UQ) discipline
[…]” [BBK19]. Many tasks in medical imaging can be phrased as classification tasks or
classification-derived tasks, like segmentation or object detection. This is most likely one
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of the reasons why uncertainty quantification in a medical context has mostly focused
on these areas [Zho+21]. This circumstance has the downside that most uncertainty
quantification work is hard to transfer to our tasks, as we are mostly concerned with
inverse problems in the guise of regression tasks. Hence, we will start with general
DL uncertainty quantification methods that can also be applied to regression tasks and
afterward list uncertainty quantification approaches in medical imaging.

Uncertainty Quantification in General Machine Learning One of the first uncer-
tainty quantification approaches for NNs was based on dropout [Sri+14]. While originally
introduced to regularize the training and avoid overfitting, it was soon applied during
inference time too. This practice took the name MC dropout [GG16]. Dropout deactivates
some edges in the NN by setting the corresponding weights to 0. Which edges are chosen
is based on a Bernoulli distribution with (dropout) probability p. The probability might be
constant for all edges or change based on the layer or other environmental factors. For
MC dropout, the NN operates multiple times on the same input but with a newly sampled
dropout mask each time. This leads to multiple predictions, which are generally aggregated
using the mean. The standard deviation can then be used as an uncertainty measure. The
advantage of the approach is that it is very easy to implement, as most modern architectures
include dropout. The disadvantage is that multiple passes are necessary for a prediction.
Furthermore, it is hard to calibrate the uncertainty, i. e. since the loss term is unaware of
dropout and the use as a distribution, there is no signal to make sure that the spread of the
dropout distribution corresponds to a real physical quantity. Lastly, while dropout could,
in principle, lead to multimodal posteriors, first results in MSI [Ard+18b] suggest that
dropout tends to produce unimodal posteriors. Hence, dropout is a sub-optimal approach
to analyzing the ambiguity of inverse problems.

A secondwidely spread approach to uncertainty quantificationwas introduced by Kendall
and Gal [KG17]. This approach builds on the MC dropout approach and uses dropout as
one factor to gauge the uncertainty. In addition, they suggest how common loss terms
like the L2 loss or binary cross-entropy can be changed to include uncertainty. For the L2
loss, this is achieved via the observation that minimizing L2 is equivalent to maximizing
the log-likelihood of a Gaussian distribution with unit variance. Hence, the loss term is
updated to include a variance term, which is also dependent on the input. To achieve
this, the network architecture has to be modified to double the outputs. The first half is
interpreted as the original prediction1, and the second half is interpreted as the variance2.
The variance term, together with the MC dropout, is then used as an uncertainty score. As
with MC dropout, this approach is minimally invasive in that it only needs a doubling of
the output channels. The downside is the multiple passes necessary for the dropout and
the parametric assumptions in constructing the uncertainty score. Indeed, the construction

1Or the mean of the Gaussian
2In practice, the log-variance is chosen due to numerical stability.
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of the uncertainty score was based on an identification of the loss term with a parametric
family of probability distributions. Hence, the approach is only applicable to cases where
this identification is possible. As most parametric families are unimodal, this approach is
again disqualified for ambiguous inverse problems, where we want to encode ambiguous
solutions as multimodal distributions.

A classic approach to boost ML performance, even before the DL boom, was ensembling.
However, next to increased predictive performance, ensembles can also be used to quantify
uncertainty. As in the previous approaches, this is mostly achieved using the variance or
standard deviation between the ensemble predictions as an uncertainty score. For NNs
in computer vision this approach has been applied successfully, e. g. in [LPB17; SG18]. In
these works, the same network architecture was chosen but trained multiple times, leading
to different parameters for each ensemble member. In other works, the ensemble members
do not share the same architecture [Tra+22; Yam+22]. Again, this approach’s beauty is its
simplicity, requiring no modification to the underlying model. However, this simplicity
comes at the cost of increased computation time, as more models have to be evaluated.
Furthermore, the ensemble size is generally restricted to single digits. Hence, working with
the posterior generated by the ensemble does not make sense because we only have such
a small sample size. Thus, we are restricted to the above-mentioned uncertainty scores,
making this approach unsuitable for detecting ambiguities in inverse problems.

A last, more theoretic approach to uncertainty quantification is approximate Bayesian
computation (ABC). These approaches build a posterior distribution, as do the cINNs, but
they require the possibility of simulating new samples. Different flavors of ABC can be
found in [Wil13]. The underlying idea is rejection sampling. A small ball around the input,
spectra in our case, is chosen, then new data points (tissue parameters) are drawn based
on the prior distribution3. The new samples are used to simulate spectra. If the spectra
fall into the ball around the input spectrum, the generated samples are kept; otherwise,
they are rejected. This process is repeated until a threshold of kept data points is reached.
The kept data points make up a representation of the posterior. The clear advantage of
this approach is the generation of a full posterior distribution, which is exactly what we
want to detect ambiguities in inverse problems. However, we need to be able to simulate
new data to create it, and we perform rejection sampling, which can be very inefficient
depending on the prior distribution. Overall, this leads to a high computational burden,
which can become too costly for high-dimensional data or intricate simulation pipelines.
If simulation is impossible, we can try to apply ABC if our data set is large. In that case,
instead of simulating new data, we choose all spectra of the training data set that are within
the ball surrounding the input spectrum and build the posteriors using the associated tissue
parameters. This approach will break down for high dimensional data, where the data set
will be too sparse to find enough samples in a small ball.

3Or some clever modification of the prior distribution.
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Uncertainty Quantification in Medical Imaging As mentioned previously, the uncer-
tainty quantification work in medical imaging is mostly focused on classification(-derived)
tasks [BBK19].

For segmentation tasks, labeling uncertainty has been a major focus. There is a strong
inter-rater variability depending on how precise the annotation instructions are. It would
be desirable for segmentation models to incorporate and visualize this uncertainty at
inference time. This challenge has been addressed in two recent works [Koh+18; Mon+20].
Both are based on the U-Net architecture [RFB15], but modify it with additional latent
spaces. At inference time, multiple samples are drawn from the latent space leading to
multiple predicted segmentations. These can then be aggregated, and uncertainty scores
can be derived. The approach has been adapted to include cINNs on the latent space
level of the encoder-decoder architectures [Sel+20], but the sampling process to construct
the posteriors does not include the cINNs. Instead, it only uses the latent space of the
encoder-decoder architecture. While they were first developed for segmentation, these
approaches would lend themselves well to be adapted to the ambiguous inverse problem
setting, as they are based on multiple samples drawn from a latent space. However, the
architectures are generally more involved than cINNs and require more loss-terms. This
affects the amount of hyperparameter tuning necessary to acquire well-calibrated posterior
distributions. In addition, the encoders and decoders would need to be adapted to the new
setting. In particular, when we operate on single spectra compared to complete images as
in the segmentation cases above.

In MSI, there is previous work on uncertainty-aware tissue classification [Moc+18]. In
this work, tissue is classified using superpixels and a support vector machine (SVM) [CV95]
classifier. Uncertainty is quantified using the entropy and the Gini coefficient [Gin36]. This
approach allows for filtering uncertain classification results and thus increasing accuracy.
This method could easily be adapted to modern NN classifiers. However, the regression
regimemakes the entropy and Gini coefficient harder to compute. As such, they do not adapt
well to our ambiguous inverse problem setting. Overall, while MSI is a growing topic in
medical imaging, there is little dedicated work towards uncertainty quantification. Another
field where MSI is applied is remote sensing via satellite imagery. There, uncertainty
quantification has been explored more thoroughly [SSS19; Son+21]. However, the main task
seems to consist in classifying the ground in the image. Hence, the developed uncertainty
quantification methods are particular to classification(-derived) tasks.

One uncertainty quantification branch in medical imaging, where regression problems
are addressed, is PAI. A review of the current state of DL in PAI with a section about
uncertainty quantification can be found in [Grö+21]. Gröhl et al. [Grö+18] employed a
second model to estimate the prediction errors of a first U-Net, which was used to predict
the oxygenation of tissue using photoacoustic initial pressure spectra. This second model
was implemented as a U-Net, too, and received the initial pressure as well as the prediction
network output as input. The embracing network predictions were then interpreted as an
uncertainty score. In contrast to all other previously introduced methods, this approach
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introduces a single additional network and requires one extra evaluation. However, similar
to the other approaches, we are left with a confidence score but not a complete probability
distribution. While we can use this score to filter low-confidence predictions, we cannot
detect inherent ambiguities in the inversion process. Model-based Bayesian approaches to
uncertainty quantification in PAI have been developed in [Tar+13; TPT16; TPT19; Sah+20].
These models are built on strong error distribution assumptions, making it possible to invert
the problem and arrive at a tractable posterior. The advantage is that these methods require
far fewer data to fit and are less prone to overfitting. However, the modeling assumptions
make it hard to detect ambiguities.

5.2. Posterior Validation

One key property of cINNs is their capability of generating posterior distributions. However,
while a posterior promises access to more fine-grained information about the analyzed
inverse problem (e. g. ambiguous solutions), exhausting that potential seems very hard.

In the original INN publication [Ard+18b], the width of the posterior was validated using
the calibration curve as introduced in section 4.4.5. In addition, the MAP was determined
and used as a point estimate for classical regression metrics like the root-mean-squared
error. As the paper dealt with a simulation setting instead of validating the posteriors
directly, the reconstructed parameters were used to re-simulate the conditioning input, and
regression metrics were applied to this problem. Lastly, a qualitative comparison of the
1D marginals of the posteriors was performed comparing the INN posteriors to baseline
posteriors.

This kind of analysis is a common trend when applying cINNs to inverse problems
over a wide range of applications like high energy physics [Bie+21; But+21], astrophysics
[Kso+20; Kan+22; NAB22], remote sensing [Mar+22], stochastic processes [HHS21], and
epidemiology [Rad+20]. All these approaches have in common that the posteriors are
mostly used to extract an uncertainty score based on a measure of variability like the
standard deviation but without explicit mode detection and analysis of the well-posedness
of the inverse problem.

In settings where a reference posterior can be generated, there are rare cases where the
posteriors are not only compared using visual inspection but metrics to gauge the difference
between the distributions. Mokrov et al. [Mok+21] use cINNs to learn to represent stochastic
processes and use the symmetric Kullback-Leibler (KL) divergence [KL51] to gauge the fit
of the posteriors. Haldemann et al. [Hal+22] uses the Hellinger distance [Hel09] to compute
the distance between the cINN posteriors and posteriors generated using MC methods.

cINNs are also applied in computer vision, where they are used to conditionally generate
images [Ard+19]. This is a very high-dimensional setting such that the sample drawn from
the posterior is generally sparse. This complicates the posterior validation as e. g. clustering
a sparse data set is hard. In addition, in this generative setting, the focus is often shifted.
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The exact shape of the posterior is not so important, but the quality and diversity of the
generated images are. This is reflected in the metrics like the structural similarity index
measure [Wan+04], the peak signal-to-noise ratio, the Frechét inception distance [Heu+17],
or the variance as in [Ard+19; Chá22].

Overall, we see that there is a lack in the prior art regarding the identification and
validation of multimodal posteriors. However, reliable (multimodal) posteriors are central
to our application in analyzing the well-posedness of inverse problems. Furthermore, there
is not yet a community consensus on proper metrics for different settings or even a metric
selection framework as the one for classification(-derived) tasks in [Mai+22b].

5.3. Out-of-Distribution Detection

As introduced in section 4.3.2, there is not yet a community-wide accepted definition of
OoD detection. Hence, while there is a lot of prior work on OoD detection, the exact scope
varies from manuscript to manuscript. In the following, we will introduce common patterns
and how they relate to our setup.

One major branch of unsupervised OoD detection is based on reconstruction (cf. sec-
tion 4.3.2). In the age of DL, the reconstruction algorithm often takes the form of a VAE
as in e. g. [Zim+19] in the medical domain. The auto-encoder is trained on ID data with
the assumption that the reconstruction loss for OoD data points should be higher than for
ID data points after convergence. This vanilla approach can be modified by introducing
suitable data augmentation during training or adapting the exact loss term used as OoD
score (e. g. derivatives of the network could be taken into account). Another modification
to this approach concerns the absence of OoD data during training. The unsupervised
learning task can be transformed into a semi-supervised learning task by allowing a small
portion of OoD data during training. The signal of the OoD data can help to better define
the boundary of the ID data. This modification of the VAE approach was successfully
applied in the medical domain in [Tia+20].

A second major branch is based on representation learning. The idea behind this ap-
proach is that the pixel-space is not a good representation for OoD detection, e. g. because
of the manifold hypothesis, which implies that the images live on a low-dimensional sub-
manifold of the pixel-space. Hence, an unsupervised representation learning model is
trained to approximate a better representation of the data. Then classical OoD detection
algorithms like k-NN, SVM, kernel density estimation (KDE), or GMM can be used on this
lower dimensional representation [GAR19; Soh+21; KM22]. A widely-spread approach
to representation learning in computer vision is contrastive learning [Che+20]. A central
ingredient is access to a data augmentation scheme that preserves the semantics of the data.
For example, let us assume the data set consists of images. Then one image is augmented
twice, and it is assumed that both augmentations do not change the semantics of the image
(e. g. both images still show a cat), so the network is trained to embed both instances close
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in the representation space. At the same time, any pair of images from the data set is
assumed to represent different things, so they are pushed away from one another. This
scheme has been very successful for images and, more precisely, image classification, where
it is straightforward to construct randomized data augmentations that do not change the
semantics. However, our tasks are often regression-based, and we commonly work on single
spectra instead of whole images. This impacts the applicability of representation learning
at two sites. First, the set of data augmentations is far less diverse. In fact, in this thesis, we
use Gaussian noise augmentation almost exclusively. Second, it is far less obvious if our
augmentations preserve semantics. If the noise level is chosen too high, the spectrum could
potentially switch from a perfused to an ischemic spectrum. Hence, representation learning
does not transfer easily to our setting. Nevertheless, this paradigm has been successfully
applied in the medical imaging domain with the example of colonoscopy [Tia+21].

In [Nal+19a], a density-based approach to OoD detection which is task-agnostic was
proposed. A model is trained to learn the density of the ID data distribution. However,
instead of using the log-likelihood as an OoD score directly, they proposed a score based
on the typical set of a distribution. While the mode is the point with the highest density,
the region around this point (in high dimensions) generally has a low volume such that
few data points are drawn from that region. In fact, if we look for the region from which
we expect to draw most data points, we have to look at the mass of the distribution, which
is, intuitively speaking, related to the product of the density and the volume. Roughly,
this region with the highest mass is called the typical set. Its location can be determined
empirically using the entropy of an ID validation set. For new data points, the absolute
value of the entropy to the reference entropy is computed, which estimates the distance of
the new data point from the typical set, and is used as an OoD score. A disadvantage of
the approach is that it seems to require batches of new data points instead of working on
single data points due to the entropy estimation.

Another difficulty in OoD detection is a lack of a clear definition of what OoD means.
In [Win+20], this question is discussed and the notion of near and far OoD is proposed.
The idea is that OoD is a spectrum and that it would be beneficial to quantify the “OoD-
ness” of data points during the evaluation of OoD algorithms. For example, if the ID data
consists of color images, then grayscale images are “far” off, which should simplify their
detection as OoD. On the other hand, if the ID data contains cat images and the new data
consists of lynxes, then the new data is “close”, which might make it harder to detect. They
propose the confusion log probability as a score to measure how far OoD new data is and
build on contrastive learning as OoD detection methodology. While the general direction
of quantifying OoD is very interesting, the exact methodology is tailored toward image
classification tasks, and in particular, the confusion log probability assumes a discrete label
distribution. This hinders direct application to regression tasks.

A further consequence due to the “soft” definition of OoD is that results are hard to
reproduce and compare between tasks, data sets, and other settings. In fact, there are first
results questioning whether any of the new DL-based approaches truly is a new state of
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the art [Taj+21]. Public benchmarks and challenges are often useful for a community to
converge on an accepted definition and can simplify progress in the field. For the medical
domain, the Medical Out-of-Distribution Analysis Challenge (MOOD) was introduced as
part of the International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2020. The scope is to benchmark the performance of OoD detection
and localization in CT and magnetic resonance imaging (MRI) of the brain and thorax. The
community accepted the challenge, and MOOD has been a part of subsequent MICCAI
conferences.

5.4. Conclusion

With regard to research question T.1, we see that while there is prior art toward uncertainty
scores to gauge the reliability of a point estimate, there is little work encoding and analyzing
solutions to inverse problems as posterior distributions. One exception is work based on
ABC, but this is restricted to settings where (fast) simulation is available. Hence, we find
that the proposed methodology based on cINNs validated with the example of biophotonic
imaging addresses a gap in the literature.

Analogously, with regard to research question T.2, we find that while cINNs have recently
been applied to inverse problems over a diverse set of domains, there is not yet a consensus
regarding their proper validation. Generally, the width of the posteriors is validated using
calibration curves, but afterward, the posteriors are aggregated by a measure of centrality
(mean, median, or MAP) and a measure of variability (standard deviation, variance, or IQR).
In particular, there is little work toward detecting and validating (multiple) modes of the
posterior. Furthermore, there is not yet a discussion (even less agreement) on suitable
metrics for a multimodal setting. This observation motivated our development of a posterior
validation framework.

With regard to research question T.3, we see that OoD detection is an active field of
research with many recent contributions. However, many of the computer vision-based
OoD detection methods are not easily transferable to biophotonic imaging as we oftentimes
have to work on single spectra (due to data sparsity and limitations in the simulation).
Furthermore, OoD detection is often incorporated in the model addressing the main task,
which is regularly classification-based. As physiological tissue parameter estimation is
better described in terms of regression, we cannot accept this restriction. Hence, our
contribution proposes a task-agnostic OoD detection methodology adapted to the needs of
biophotonic imaging.
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6. Framework for Uncertainty Handling in
Biophotonics

This chapter introduces a framework for uncertainty handling in biophotonic imaging using
INNs. We will address the methodological challenges introduced in the technical research
question T.1 – T.3 in section 2. As such, the chapter is split into three sections, with each
section focussing on one research question. An overview of the proposed framework can
be found in figure 6.1.

In section 6.1, we will discuss how cINNs can be used to generate posteriors that represent
solutions to inverse problems. In addition, we will explain how we can detect the modes of
a posterior in an automated fashion, as this is central to judging the ill- or well-posedness of
the inverse problems. The content of this section is the foundation on which the remainder
of the posterior validation framework rests. The contributions in this section address
research question T.1, which was concerned with how to suitably encode solutions to
inverse problems. Section 6.2 will introduce a posterior validation framework to evaluate
potentially multimodal posteriors in an inverse problem setting. We will showcase edge
cases where classical metrics might fail, observe parallels between ambiguous inverse
problems and object detection, and, finally, build on these observations to suggest the
posterior validation framework. The contributions in this section address research question
T.2, which was concerned with the validation of the generated posteriors. Section 6.3.1
presents WAIC, how INNs can be used to estimate it, and how we can use the criterion
as an OoD score. In addition, we will elaborate on how OoD detectors can be used as
personalized models to track physiological tissue parameter changes while circumventing
confounders like inter-patient variability. The contributions in this section address research
question T.3, which was concerned with identifying biophotonic imaging-specific OoD
detection methods.

6.1. Representation of Inverse Problem Solutions as
Posteriors

Figure 6.2 (a) shows a schematic view of the motivating scenario of our quest to represent
solutions to inverse problems by posteriors. Light-tissue interaction is complex (as outlined
in section 4.2). Hence, a priori, we do not know if markedly different tissue parameter
configurations lead to similar or virtually identical spectra. This is indicated in the figure
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Figure 6.1.: Framework for addressing uncertainty in machine learning systems
for biophotonic imaging. Annotated data (spectra + tissue parameters) is
used to train and validate the posterior generating methods (cINNs in our case).
Afterward, newly collected data (spectra) is filtered for out-of-distribution
data on which prediction performance cannot be guaranteed. For the actual
prediction task, we use the validated cINN, which is capable of generating
full posteriors. These posteriors can then be used to analyze ambiguities in
the inversion process. This thesis’s focus is color-coded in turquoise. cINN:
conditional invertible neural network, sO2: blood oxygenation.
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using the tissue parameter sO2 as an example. A posterior representing the solution to
the inverse problem could encode such a scenario as multiple modes. Figure 6.2 (b) shows
a common setup of a cINN for solving such an inverse problem in order to analyze the
existence of ambiguities.

This section will first introduce how cINNs have to be adapted to the biophotonic setting
and how the posteriors are generated in detail (section 6.1.1). In particular, we will discuss
issues due to the very low-dimensional nature of the tissue parameter space. By themselves,
cINNs give us access to a density function to evaluate the posterior and a way to draw
samples from the posterior. However, there is no intrinsic way to identify the modes of the
posterior. Hence, we require post-processing tools to find them (section 6.1.2). Whereas
the low-dimensionality caused challenges for the cINNs architecture, we will exploit it for
mode detection, as there are algorithms that require a 1D setting.

Overall, this section will address research question T.1, which was concerned with how
to suitably encode solutions to inverse problems. In particular, with encodings that allow
the analysis of the well-posedness of the problem.

Tissue Parameter Distribution

Marginal Distributions

Latent Distribution

sO2 vHbSpectral DataSpectral Data

cINN

sO2
100%

60%

(b)(a)

Figure 6.2.: cINNs can be used to generate posterior distributions over tissue pa-
rameter space. (a) Schematic view of an ill-posed sO2 estimation task. (b)
Spectral data (top) is used as conditioning input. The latent space (left) follows
a Gaussian distribution. Drawing from this distribution, we can transform
the latent samples into tissue parameter samples. This process builds up the
posterior. For post-processing, we generally marginalize to the appropriate
tissue parameter. cINN: conditional invertible neural network, sO2: blood
oxygenation, vHb: blood volume fraction.

Disclosure and Contributions Lena Maier-Hein proposed the usage of INNs to analyze
biophotonic inverse problems, and she initiated the collaboration between our department
and the Institute of Scientific Computing at Heidelberg University, where the architecture
was developed. In particular, Lynton Ardizzone, Jakbo Kruse, Carsten Rother, and Ullrich
Köthe developed the INN and cINN architecture and gave advice regarding implementa-
tion details. Lena Maier-Hein advised the whole experiment process and gave feedback
throughout the method development. I adapted the cINNs architecture for use in MSI
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while Jan-Hinrich Nölke, in his master thesis under Lena Maier-Hein’s and my supervision,
adapted the architecture to PAI. Jan-Hinrich Nölke and I researched and discussed possible
mode detection algorithms together. I (re-)implemented the mode detection algorithms
used in this thesis.

6.1.1. Posterior Generation for cINNs

In section 4.4, we have described the construction and training process of cINNs in general.
This short section will describe how INNs are applied to biophotonic imaging and how we
can access the posterior distribution. Figure 6.2 (b) gives an overview of the cINN setup
for tissue parameter estimation. As seen in equation 4.19, we can evaluate the density of
the posterior thanks to the transformation rule. However, we generally do not work with
this representation. Our aim is to detect the posterior modes, which are not directly visible
from the density. We could perform gradient ascent, as the density is differentiable, but
there is little prior work on good seeding locations and the number of seeds necessary to
reliably localize all modes.

In addition to being discriminative models, i. e. giving access to the density, cINNs are also
generative models. Hence, we can draw samples following the posterior distribution. After
the training has converged, the latent space Z follows a standard Gaussian distribution
N (0, id). To construct the posterior for a conditioning input c, we sample z ∼ N (0, id)
and compute

x := f−1
Θ (z, c),

where fΘ denotes the cINN. This approach guarantees x ∼ p(x | c).
Repeating the process with multiple z leads to an arbitrarily large sample following

p(x | c)1 and mode detection transforms to the task of clustering as introduced in the next
section. The cost is an additional hyperparameter, namely the sample size of the posterior.

Next to these theoretic considerations, there are practical implicationswe need to consider
when working with the posterior. First, we have to de-normalize generated samples x. As
all training data is z-score normalized, so is the generated posterior. However, we need to
revert back to the original scale and units for interpretation purposes. This requires access
to the mean and standard deviation of the training data, which need to stay accessible at
inference time.

Additional post-processing steps might be necessary if the data is very low dimensional
or very high dimensional. As introduced previously, the cINN architecture demands at
least two input dimensions. If we work with only a single parameter of interest, we need
to perform padding at training time. This could be achieved via doubling the parameter of
interest or by adding a noise dimension. In both cases, the samples need to be marginalized.
Additionally, in the first case, it is advisable to check the consistency of the doubled
parameter dimensions. In the case of large dimensional data, like images, we run into the

1Assuming the training was successful.
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curse of dimensionality in the shape of sparse posteriors, i. e. it is hard to draw a large
enough sample to capture the shape of the posterior. This complicates the mode detection
process. In this thesis, we will circumvent this problem by working on smaller regions of
interest or even single pixels, i. e. we interpret and evaluate the marginalized posteriors
of each pixel separately. This approach has the drawback of discarding all correlation
information, but it is necessary to enable stable mode detection at all.

6.1.2. Mode Detection for cINNs

In section 6.2, we will see how we can select metrics to evaluate cINNs applied to inverse
problems. A central assumption of the metric selection framework will be that the predicted
posteriors have labeled modes. However, a cINN by itself only produces a posterior without
any mode labeling. Hence, mode detection needs to be addressed as a post-processing step.

While we can explicitly evaluate the posterior’s density, it is easier to simply draw samples
and work with this representation. In this representation, mode detection is equivalent to
clustering the data points. This is an unsupervised learning task as introduced in section 4.3.1
and there exist many off-the-shelf algorithms to tackle it (e. g. mean shift clustering, EM
with GMMs, density-based spatial clustering of applications with noise (DBSCAN), etc.).
For the inverse problems in this thesis, we do not know in advance how many modes to
expect. Hence, we require our clustering algorithms to automatically detect the number
of modes. This decreases the number of admissible algorithms. Conversely, the problems
of this thesis are either one- or two-dimensional, and even in the 2D case, we can work
on the 1D marginal distributions. This special structure of our problem gives us access to
clustering algorithms that do not generalize well to higher dimensions, and we will restrict
our focus to two of them.

The first is based on kernel density estimation (KDE). For 1D data, KDE can give a very
good representation of the density, and we can easily evaluate it on a grid. This leads to
a 1D array of values, and detecting modes reduces to finding local maxima in this array.
Another advantage in our setting is that we know the support of the distribution in advance
because the tissue parameters sO2 and vHb are restricted to the interval [0, 1]. So we can
be sure to evaluate the density in the correct region. The only hyperparameter left is the
bandwidth (bw) of the kernels. If it is too large, the KDE will smooth out the structure of
the posterior, if it is too small, the KDE will fit noise, and we will detect spurious modes.
For this work, we decided to use Silverman’s rule of thumb [Sil18] which estimates the
bandwidth based on the empirical standard deviation σ̂, the interquartile range (IQR), and
the data set size n via

bw = 0.9 ·min
(
σ̂,

IQR
1.34

)
· n− 1

5 . (6.1)

With this method, we can detect any number of modes, as long as they are separated by
roughly the bandwidth parameter.
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As Silverman’s rule of thumb is only a heuristic, we decided to employ a second scheme
to decide whether a posterior is multimodal or not. Again the central ingredient is that
we have a very good understanding of the plausible range of our parameters of interest
(sO2 and vHb) and even more on a lower bound on the required resolution of our mode
detection method. That means that it is irrelevant from an application perspective if
two modes closer together than e. g. 1 pp are resolved as separate or not. Based on this
knowledge, we can create a bandwidth range, and for each bandwidth in that range, we
check whether the corresponding KDE is multimodal or not. Afterward, we compute the
fraction of multimodal KDEs over the bandwidth range, and we call this value the KDE
score of the posterior. The score ranges in the interval [0, 1], and higher values indicate that
the posterior is multimodal. While this method does not produce the exact mode locations,
it is interesting to scan a whole data set for the fraction of multimodal posteriors while
reducing the bandwidth dependence of the method.

In addition to this handcrafted multimodality score, Hartigan’s diptest [HH85] can be
used to detect multimodal posteriors, which was brought to my attention by Jan-Hinrich
Nölke [Nöl21a]. This method is again restricted to 1D distributions, where the empirical
cumulative distribution function is compared to the closest unimodal cumulative distri-
bution function. This difference can be used as a test statistic, such that we can compute
the fraction of multimodal posteriors of a data set for a given α-level. For implementation
details, we refer to the original publication [HH85].

50% Confidence Intervals

Shortest CI
Mode

Example Distribution

Figure 6.3.: Heuristic of the half-samplemode (HSM)method. The shortest confidence
interval (CI) should be located around the highest mode of the distribution.
Iteratively choosing the shortest 50% confidence interval within the previous
confidence interval can be used to localize the (largest) mode.

As a second method to detect the mode location of our distribution, we use the half-
sample mode (HSM) method [BF06]. The intuition behind this method is depicted in
figure 6.3. For 1D distributions, it is easy to construct a confidence interval to a certain
confidence level. However, by itself, there is no CI for a given level. A common choice to
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get a unique CI is to choose the symmetric interval around the median. However, there
are other choices. A practical alternative for mode detection is to choose the shortest
confidence interval for the chosen confidence level. This CI should be located at the mode.
The HSM method uses this observation iteratively. We start with the shortest 50% CI, then
locate the shortest 50% CI within the first and continue in this fashion until convergence.
The advantage of this method is that there are no hyperparameters to set, and it is very
robust with regard to noise. The disadvantage is that we can only detect the largest mode,
and as such, it is ill-equipped to detect multimodal posteriors.

In the unimodal case, we can often get away with simply using the median as a mode
detector because the strength of the above-mentioned methods only comes into play if the
distribution is heavily skewed. As the median is faster to compute than the actual mode,
we will resort to it if we know that the inverse problem is sufficiently well-posed.

We will apply and compare the performance of these mode detection algorithms in
our experiments analyzing biophotonic inverse problems. Section 7.1 will discuss the
well-posedness of the estimation of sO2 and vHb in MSI, while section 7.2 will discuss the
well-posedness of the estimation of sO2 in PAI.

6.2. Posterior Validation Framework

The biggest advantage of cINNs for inverse problems is, at the same time, their biggest
problem: What are suitable metrics to evaluate a posterior distribution against a reference
value? This problem is by no means trivial. How should we handle a multimodal posterior
if we only have a single reference value? Is the second mode a false positive?

In section 6.2.1, we will highlight such caveats. In section 6.2.2, we will explore an analogy
between the task of object detection and the task of posterior validation. In section 6.2.3,
we will introduce a framework that aims at structuring and simplifying the process of
choosing suitable metrics when validating the results of cINNs.

The contributions of this section will address research question T.2., which was concerned
with the validation of the generated posteriors.

Disclosure and Contributions This section is heavily inspired by the metrics reloaded
framework introduced in [Mai+22b]. Lena Maier-Hein noticed the object detection analogy
and suggested adapting the framework to the inverse problems setting. I elaborated on
the analogy, adapted the framework, and collected feedback from our collaborators. In
this vein, I would like to thank and mention the valuable feedback from and discussion
with Lena Maier-Hein, Jan-Hinrich Nölke, Lynton Ardizzone, Sebastian Gruber, and Ullrich
Köthe.
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6.2.1. Validation Pitfalls

We can easily adapt most common regression metrics if we know that the inverse problem is
well-posed. This is because the posterior is unimodal in these cases. Hence, most summary
statistics work well to capture the shape of the distribution, and we can apply the regression
metrics to these summary statistics. However, oftentimes we do not know or do not want
to assume that the inverse problem is well-posed. This means we have to handle the
possibility of multimodal posteriors. In this section, we will highlight pitfalls related to the
validation of posteriors that we should keep in mind when developing metrics to assess
the performance of our cINNs. Figure 6.4 contains three example pitfalls, which we will
discuss in more detail. Naturally, this exposition cannot be exhaustive.

Mode Location vs. Shape (first row): Our model produces a posterior distribution, and
let us assume that our reference is a distribution, too. From a mathematical point of view,
we would aim for our posterior to follow the reference shape as closely as possible. Most
metrics or divergences that operate on distributions would encourage and measure this.
However, from an application point of view, the exact shape might not be important; instead,
precise localization of the modes might suffice. An example of this scenario might be when
the mode locations are intended as initialization for an iterative solver, where better initial
localizations are important, but the shape of the posteriors might not be incorporated. If
we are in this scenario, the chosen metric should reflect it. Instead of comparing the whole
distribution, one could only consider the mode location and compare the distance between
the predicted and the reference mode.

Classic Summary Statistics (second row): Many classic summary statistics have caveats,
e. g. the mean and the standard deviation are susceptible to outliers. One caveat that is
true for most of them is that they handle strongly multimodal distributions poorly. Let us
assume a bimodal distribution with two well-separated modes with equal mass, as indicated
in figure 6.4, second row. Then the mean as well as the median2 fall into low-density
regions. Assuming further that the distribution correctly captures an ambiguity in an
inverse problem, this also implies that the mean or median is far away from the reference.
Hence, any metric using the mean or median as a predictor would falsely rank the model’s
performance very low, even though it perfectly captured the ambiguity.

One solution to this problem is mode detection. If we can locate all the modes, we can
handle each as a separate instance and compute metrics on each mode separately. This
approach leads to an interesting analogy to object detection in computer vision, which will
be explored in section 6.2.2.

2If applied component-wise in the multivariate case.
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prediction
reference

shape shape≠
mode locations mode locations≈

Classical aggregates are
inappropriate for

multimodal posteriors.

Shape and mode location(s)
are complementary

approaches to be assessed.

Pitfalls in Posterior Validation

The reference might be
incomplete suggesting

far off modes.

mean reference
distance

modes reference
distances

Figure 6.4.: Metric edge cases due to (multimodal) posteriors. First row: Depending
on the application, it might be more important to identify the mode location
than the exact posterior shape. This should be reflected in the metric. Second
row: For downstream tasks, it might be helpful to compute summary statistics
of the posterior, but classical summary statistics are often ill-equipped for
multimodal posteriors. Third row: Commonly, inverse problem data sets
consist of data points with exactly one solution to the inverse problem given
an observable, even though the solution is ambiguous. If the model predicts a
mode at a location without reference, it is hard to judge whether it is due to an
incomplete reference or an error of the model.
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Incomplete Reference (third row): There is a common pattern in how inverse prob-
lem data sets are constructed. The forward model is often accessible with manageable
effort, either through simulation or experimental design. Hence, some set of parameter
configurations is constructed, and the forward model is applied, leading to the observables.
This construction leads to a data set where each observable has exactly one corresponding
parameter configuration, even if the inverse problem is highly ambiguous. If we are lucky,
there is some other data point in the data set where we chose a parameter configuration
leading to the same observable so that we could hope to spot the ambiguity, but in general,
we cannot assume that.

Still, our model might pick up on the ambiguity and produce a multimodal posterior
through interpolation. At evaluation time, we are faced with the problem that our data
point has exactly one reference parameter configuration, which should coincide with one
of our modes. This leaves us with at least one other mode with no associated reference.
Naively, we could compute the distance between this second mode and the one reference
we have, but that would artificially downplay the model’s performance. Still, for some
applications, a falsely-detected mode (i. e. a false positive) might come at high costs, so it
would be great if we could determine the existence or non-existence of a fitting reference
value.

In some settings, this is possible. For example, if the data set is simulation-based, we
can use the predicted parameters and re-simulate the observables. If they are close to the
original, this validates the second mode. Alternatively, if the data set is large enough, we
can try to use a nearest neighbor approach on the observables3. We choose an observable,
allow for small deviations, and build a reference posterior by including all parameter
configurations whose observable fall within the deviation ball. The re-simulation and the
neighborhood approach can be interpreted as ABC.

In cases where we cannot identify all reference modes, we have to make do with a
reduced set of accessible metrics. Which metrics these are will be explored in the posterior
validation framework in section 6.2.3, which will cover this edge case.

6.2.2. Object Detection Analogy

In the previous section, we have seen that there are peculiarities to validating posteriors.
Most of them are concerned with multimodal posteriors. This is exactly the case where we
leave the classical regression regime, where there is exactly a single prediction which we
then compare to the reference using a suitable metric. If there is more than one mode, each
one has to be compared to the reference in some way. As seen previously, this can lead to
difficulties if the number of modes and the number of reference values do not match up.
While this is uncommon for regression tasks, there are other branches of ML where we
encounter similar problems, namely object detection.

3This is a more formalized version of the ’lucky approach’ mentioned at the beginning of this section.
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Figure 6.5.: Analogy between object detection and posterior validation. Each row
depicts a step in the validation process. First row: In the localization step,
predicted instances are filtered based on a confidence score, and distances to
reference instances are computed. This corresponds to filtering low-mass modes
and computing distances to reference modes for posterior validation. Second
row: In the assignment step, we match predicted to reference instances using a
matching algorithm. This corresponds to matching predicted modes to reference
modes for posterior validation. Third row: In the data set aggregation step,
we aggregate the per instance metrics via the confusion matrix and compute
counting metrics. This can be transferred one-to-one to the posterior validation
setting. In both cases, true negatives are undefined. Depending on the reference
completeness, false positives might be undefined in the posterior validation
case. AP: average precision, FN: false negative, FP: false positive, TP: true
positive.
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An image can easily contain multiple instances of the same object (e. g. the falcons in
figure 6.5, middle column). Similarly, detection networks produce multiple predictions (in
our example, bounding boxes). In the ambiguous inverse problems setting, the predicted
instances correspond to the modes of the posterior. Hence, we can think of the reference
values as the reference instances and the modes of the posterior as the predicted instances.
The analogy is depicted in figure 6.5.

We will use three object detection validation steps to highlight the similarities between
object detection and posterior validation. In [Mai+22b], there is a fourth validation step
which is concerned with calibration, but cINNs have their own calibration methodology (cf.
section 4.4.5) which is inconsistent with object detection calibration. While harmonizing
the two calibration notions is future work, this does not negatively impact the analogy
between the other validation steps. The first step (cf. figure 6.5, first row) concerns instance
localization. Generally, object detectors produce multiple instances with a confidence
score. This confidence score is then used to decide which candidates are kept for further
evaluation. For the kept candidates, suitable distances (like intersection-over-union) to
the reference instances are computed. In the posterior validation setting, the instances
correspond to modes, and we can use e. g. the relative mass of each mode as a confidence
score to decide which candidates we would like to keep. Then we can compute distances to
the reference mode(s). The second step (cf. figure 6.5, second row) is instance assignment.
We have the candidate instances and distances to the reference. In this step, we apply
matching algorithms (e. g. the Hungarian algorithm) to find an optimal matching between
predictions and references. This step translates one-to-one to the mode validation setting,
where we need to assign the predicted modes to the reference mode(s). The third step (cf.
figure 6.5, third row) concerns aggregation. The first two steps operate on each sample
individually. For object detection, the matched instances are aggregated using a confusion
matrix with the peculiarity that there are no true negatives (TNs). Then counting metrics,
like recall, precision, or average precision (AP), can be computed. This step translates
once more to the posterior validation setting, with the restriction that depending on the
completeness of the reference (cf. figure 6.4, third row) FPs might not be defined either.
This might restrict the set of available counting metrics.

We see that the analogy between object detection and posterior validation is quite exten-
sive. This observation sparked the development of a metric recommendation framework
based on [Mai+22b]. This framework is introduced in the next section.

6.2.3. Metric Recommendation

As we have seen in the previous two sections, some pitfalls can influence our choice of
metric, and depending on the structure of our inverse problem, we might hope to borrow
metrics from the object detection community. However, there are more important reasons
for a posterior validation framework. First, such a framework can be a starting point for
a discussion between communities, domains, and modalities. Instead of reinventing the
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wheel for each manuscript or an opaque inheritance of metrics from some prior work, we
can discuss the framework’s proposed branching points and refine them. Newly devel-
oped metrics can be incorporated at a central point instead of being proposed in a single
manuscript which might or might not get the attention of all potential users. Second, it
can increase comparability between contributions. If the framework reaches acceptance
within the communities and converges to some stable recommendations, benchmarking
of new methods becomes far more transparent. In this section, we would like to propose
such a posterior validation framework to begin a fruitful discussion. We will formalize key
properties that an inverse problem4 might have and use this problem blueprint to choose
the optimal set of metrics for the current situation.

Figure 6.6 contains the top-level overview of the framework. It can be separated into
four building blocks: the problem blueprint, distribution-based metric selection, object
detection-inspired metric selection, and data set aggregation. Each block may contain
sub-processes, denoted by S1 to S7, which will be discussed in the following paragraphs.
Each branching point references one of the key problem properties, which make up the
problem blueprint. As the problem blueprint takes such an important role in the framework,
the first sub-process (S1) is building said blueprint.

Problem Blueprint A pictorial representation of the blueprint can be found in figure 6.7.
We have categorized the defining properties into three groups. First, there are reference-
related properties. The granularity refers to the question of whether the reference is a
probability distribution or if the reference is a discrete set5 of mode coordinates, i. e. we only
have a discrete set of solutions to the inverse problem in the reference but not a distribution.
The mode labels property only comes into play if the reference is given by a distribution.
The question is whether all modes of the distribution are labeled or not. For a discrete set
of modes, this is automatically true. The last property in this group only comes into play
for a discrete set of modes, where we need to check whether our set of modes is exhaustive.
This goes back to the third edge case discussed in section 6.2.1.

The second property group relates to the representation of the prediction. Analytical
distribution asks whether the posteriors are given by an explicit density function, which
we can evaluate, or whether the distribution is only implicitly accessible through sampling.
The dimensionality property asks whether the whole problem is 1D because the 1D case has
access to a wider range of metrics and divergences. The binning property is about whether
it is possible to discretize the posterior. Oftentimes there is a natural bin size available. If
this is the case, some more metrics and distances become available. Lastly, the confidence
property is about the existence of a confidence score for each predicted mode, i. e. whether
the model can provide a score of how certain it is about each mode in its prediction. In
most cases, this score should exist, as we can use the mass of each mode relative to the

4And the model solving it.
5Maybe only consisting of a single member.
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Figure 6.6.: Top level view of the posterior validation framework. The framework
consists of four main parts. First, a problem blueprint is generated. This
blueprint identifies key properties of the problem that allow or preclude the use
of certain metrics. The metrics are selected via distribution properties or via the
object detection analogy. The final part is the data set aggregation, where we
aggregate the per-sample metrics over the whole data set. Sx with x = 1, . . . , 7
are sub-processes that describe the current selection stage. Each sub-process
has a corresponding figure in this section.
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total mass (which is 1) as the confidence score. However, if this approach is infeasible, one
might be in a situation without a confidence score, which has to be handled separately.

The last property group is about domain-related properties. This group is about the
application and how it might influence our metric choices. The first two properties are
related and aim to learn whether accurate predictions and/or accurate uncertainty are
important for the task. For example, accurate prediction might be the driving force, but
we can cope with uncalibrated uncertainty (e. g. over-confident predictions). On the other
hand, it might acceptable to trade some prediction accuracy as long as the model knows
what it does not know, i. e. the uncertainty estimation is very accurate. The third property
asks for the existence of a threshold scale. This is a rather technical property relating to
whether we can use threshold-independent metrics like AP. To be able to use it, we need
an application-motivated range of thresholds over which to compute the aggregated metric.
If we do not have it, we are restricted to single threshold or threshold-independent metrics.
The next property is about double assignments. If the reference distribution is unimodal
and very wide, but the predicted posterior is bimodal with both modes in the support of
the reference, we could potentially assign either one of them to the single reference mode.
We need to decide how to handle the second mode for this property. Depending on our
application, assigning both modes to the reference mode might be adequate. In another
setting, the surplus mode should be penalized because e. g. the correct estimation of the
number of modes is central. The last property concerns the availability of a predefined
cutoff. If a natural distance scale suggests a cutoff, we can use counting metrics to gauge the
quality of our predictions. Otherwise, we will only be able to use threshold-independent
metrics, like averaging the distances over a test data set.

Metric Selection With the complete problem blueprint, we can start walking through
the posterior validation framework (cf. figure 6.6). The first branching point is about the
reference granularity. Our prediction is always a posterior, but the reference might not be.
If it is a distribution, we can enter the distribution-based metric block of the framework.
If not, we jump directly to the object detection-inspired metric block. In this way, we
can address commonalities and differences between the object detection and the posterior
validation setting. Within the distribution-based metric block, we select a suitable metric
to compare the reference and the predicted posterior (sub-process S2). Afterward, we
might enter the object detection-inspired block. However, this requires that the reference
distribution has its modes labeled. Otherwise, we directly enter the aggregation block.

If we enter the object detection block because the reference consists of a discrete set of
modes, we need to add a calibration curve and calibration errors to our list of metrics. The
calibration curve and associated metrics were introduced in section 4.4.5. This is necessary
if we want to use measures of variability like standard deviation or IQR of our posterior
for uncertainty quantification. Otherwise, the width of the posterior might not reflect
the actual uncertainty. If the reference is also a distribution, a calibration is unnecessary
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Figure 6.7.: Pictorial representation of the problem blueprint for inverse problems.
The key properties of the problem are grouped into three categories: Properties
relating to the representation of the reference, properties relating to the rep-
resentation of the prediction, and domain-specific information. An in-depth
description of all properties can be found in the text of section 6.2.3.
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because the distribution-based metrics can cover the shape of the posterior, too, if so desired.
Assuming that both the predicted and the reference modes are labeled, we can use the
object detection analogy introduced in section 6.2.2. To this end, we need to match the
predicted modes to the reference modes. Sub-process S3 will guide us through the process
of selecting suitable metrics and algorithms. After all the modes have been assigned, we can
use metrics to gauge the match of the mode pairs. These might be as simple as measuring the
distance between the centroids of the modes or more involved distribution-based metrics.
Sub-process S4 will guide us through this selection.

The data set aggregation block consists of two sub-processes. If a threshold scale is
available, we can choose a multi-threshold metric as described in sub-process S6. Otherwise,
we can only use single-threshold or threshold-independent metrics as found in sub-process
S7. After all these steps, we have generated a comprehensive set of metrics to thoroughly
evaluate our model for ambiguous inverse problems. The following paragraphs will explain
the sub-processes in more detail.

Distribution-based Metrics If both the reference and the prediction are a (non-degen-
erate) distribution, we can use “distances” defined on distributions to measure the quality
of the fit. Please note that we can interpret single modes as distributions in their own right
and apply the distances, metrics, and divergences in this section to them too. Naturally,
only if all additional assumptions of the distance are satisfied.

If the density of the prediction is explicitly computable, we can compute the (negative-
)log-likelihood of the reference distribution under this density, i. e. we compute the cross
entropy of the predicted distribution q relative to the reference distribution p:

H(p, q) := −Ep[log q] ≈ − 1

|D|
∑

(x,y)∈D

log q(x | y), (6.2)

whereD is the data set representing the sample drawn from the reference distribution p. The
advantage of this approach is that we can avoid sampling from the predicted distribution q,
which would introduce errors due to the finite sample size. On the other hand, the scale of
the cross entropy is hard to judge absolutely. For example, the cross entropy H takes its
minimum for p = q, and at this point, it is equal to the entropy of p, but since the reference
distribution generally is only available implicitly as a sample, this value is hard to compute.
Hence, the cross entropy is a nice relative measure, but the absolute scale might be difficult
to interpret.

If the application domain allows for suitable binning (e. g. because we know a certain
resolution of change is sufficient, like detecting 1 pp sO2 change might be enough), we
can discretize both the reference and the predicted distribution. Hence, they are given by
sequences (pi)i and (qi)i respectively. In that case, the KL divergence is given by a sum6,

6Or a series if the sequences are infinite.
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distributions. Depending on the exact representation of the distributions and
additional properties of the data, only some metrics or distances are available.
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which can be computed as

DKL(p, q) ≈
∑
i

pi log
(
pi
qi

)
. (6.3)

In the continuous case, it is hard to compute the KL divergence because an integral would
need to be approximated and p is generally only available implicitly. The advantage of the
KL divergence is that its scale is clearer than the cross entropy’s. DKL is non-negative and
only equal to zero if p = q. However, it requires binning, which introduces discretization
errors. Furthermore, binning is very susceptible to the curse of dimensionality, so we should
expect the usefulness of the KL divergence to deteriorate quickly for higher dimensional
distributions p and q.

If we are in the very special case, where the distributions p and q are 1D, we can access
two distances. The first is based on the Kolmogorov-Smirnov (KS) test [Kol33; Smi48],
which tests if two 1D distributions significantly differ from one another. The test statistic is
based on the cumulative distribution functions Fp and Fq and is given by

dKS(p, q) := sup
x∈R

|Fp(x)− Fq(x)|. (6.4)

In principle, the test could be extended to the multivariate case by using the generalized
cumulative distribution function, but this extension is not straightforward as the orientation
onRn for the chosen representation can influence the supremum (see [JPZ97]). Interestingly,
dKS is the first distance measure that is symmetric in p and q. A further advantage is that
one can use the KS test to check whether the distributions differ significantly at the chosen
significance level. The other methods are less amenable to constructing such a hypothesis
test. Naturally, the restriction to the 1D case makes the applicability of this metric rather
niche.

Another metric that is mostly used in 1D is the Wasserstein distance [Kan60]. While it
can be defined in any dimension, computational costs grow fast. Hence, it is mostly applied
to 1D. However, as a trick to apply it to higher dimensional data, one can apply it to each
marginal distribution independently. Naturally, this comes at a cost of expressiveness of
the distance. Intuitively, the Wasserstein distance measures the minimal cost of moving
the mass of the first distribution to the second distribution. In 1D, this can be expressed by
the inverse of the cumulative distribution functions

Wn(p, q) :=

(∫ 1

0
|F−1

p (x)− F−1
q (x)|n dx

)1/n

, (6.5)

where n ≥ 1. In higher dimensions, the definition becomes more involved and harder to
compute. The advantage of theWasserstein distance is that it is a metric in the mathematical
sense on the space of distributions, i. e. it is non-negative, symmetric, satisfies the triangle
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inequality, and is 0 if and only if p = q. As for the KS statistic the main downside is its
“restriction” to 1D.

The only remaining branch is the catch-all branch. If our distributions have no exploitable
structure, we are either left with the heuristic Wasserstein distance (i. e. applying it to the
marginal distributions) as introduced above or with MMD. MMD is a kernel-based method
introduced in [Gre+12] in formulas it reads:

MMDk(p, q) := Ex,x′∼p[k(x, x
′)] + Ey,y′∼q[k(y, y

′)]− 2Ex∼p,y∼q[k(x, y)], (6.6)

where k : Rn × Rn → R is the kernel. Depending on certain properties of the kernel (cf.
[Gre+12] for more details), this defines a metric on the space of distributions. Oftentimes,
it is sufficient to work with translation-invariant kernels which take the form k(x, y) =
k̃(x− y). Two common kernels are the Gaussian kernel

k̃G(x) := exp
(
−‖x‖22

2σ2

)
, (6.7)

with parameter σ7 and the inverse multiquadric kernel

k̃IM(x) :=
1√

1 +
‖x‖22
σ2

(6.8)

with parameter σ as introduced in [Tol+17]. The inverse multiquadric kernel has the
advantage of falling off slower in the tails compared to the Gaussian kernel, which is
beneficial for comparing heavy-tailed distributions. The great advantage of MMD is that we
can apply it to any pair of distributions as a two-sample test. This flexibility is, at the same
time, its weakness: We have to choose a kernel, and each kernel comes with parameters
we have to determine. Even worse, starting with two kernels, we can create a new kernel
by summing them. The problem is that MMD is very susceptible to the chosen kernels and
parameters. For example, if we choose the Gaussian kernel and the distributions only differ
in their tails, then the MMD will suggest that the distributions are very similar because the
Gaussian distribution suppresses differences in the tails. Hence, it might become necessary
to perform a hyperparameter search just to find the optimal setting of the metric, which is
sub-optimal. Still, MMD is a great backup option if no other metric, distance, or divergence
is available.

Object Detection-inspired Metrics The object detection block consists of two main
blocks. The mode matching and the computation of metrics on the matched pairs. The
mode matching is summarized in sub-process S3 as seen in figure 6.9. In object detection,

7In principle, we are not restricted to an isotropic Gaussian but could use a more general covariance matrix
Σ as parameters.
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the matching step is separated into two steps: First, the localization step computes some
distance between or an overlap of the instances in question. This step is described in
sub-process S4 in figure 6.10. Second, the actual assignment step uses the previously
computed distances to come up with the matching. This step is described in sub-process
S5 in figure 6.11. We transfer the object detection matching steps one-to-one to the mode
matching steps.

Select mode-based
metric as

localization criterion
S4+

Select mode
assignment strategy

S5+

S3+

Select Mode
Matching Strategy

Mode Matching
Strategy selected

Figure 6.9.: Sub-process for matching predicted modes to reference modes. The
sub-process consists of two parts. First, the mode localization, which computes
a suitable distance between all pairs of modes, and second, the assignment,
where the predicted modes are matched with the reference modes based on the
localization criterion.

For the mode localization sub-process S5, we distinguish once more between a reference
distribution and a discrete set of reference mode coordinates. In the first case, we can
use all the distribution-based metrics introduced in the previous paragraph (sub-process
S2). To this end, we interpret each mode as a distribution in its own right. We have only
the predicted distribution if the reference is a discrete set of modes. In this case, we can
still compute the distance of the mode coordinates to the centroid of the predicted modes.
Depending on the skewness of the predicted mode, a normal distribution might be a good
approximation. In this case, the centroid distance can take the variance of the mode into
account via the Mahalanobis distance [Mah36]. In the same vein, if an exact match of the
centroids is not important, but a rough match with the mode is sufficient, a confidence
ellipsoid based on the mode could be built, and the computed distance would be binary
depending on whether the reference is within or outside of the confidence ellipsoid. All the
metrics that work for a discrete set of mode coordinates can also be applied if the reference
is a distribution by simply reducing to the mode coordinates. Whether this is advisable
depends on the application properties of the blueprint.

Distribution-based metrics will always take the shape of the modes into account and
might unfairly penalize a predicted mode whose location is correct but whose variance
is off. Hence, if uncertainty quantification is negligible, the distribution-based metrics
might not be a good proxy for the application’s success. Instead, a centroid-based distance
might be better suited because it only checks for the mode location, ignoring the variance
completely.

Once the modes are localized, i. e. a distance between each pair of reference and predicted
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Problem Blueprint:
P1.1 Reference granularity X

Mode-based
metric requested

Add
Centroid distance

Point inside
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Select one of the
strategies

Mode-based
metric selected

Discrete set of
mode coordinates

Distribution with
labeled clusters

S4+
Add

Distribution-based
metric applied to

modes

S2+

Figure 6.10.: Sub-process formode localization. Localization is the process of computing
a distance between the predicted and reference mode. This sub-process aims
at selecting the distance.

mode is computed, we can start with the final matching as shown in sub-process S5 (cf.
figure 6.11). The first branching point concerns the existence of confidence scores for the
predicted modes. If they exist, more confident modes should be assigned first (greedy).
If there is no confidence score, there are three options. We can still perform a greedy
assignment, in this case, based on the localization criterion. Alternatively, we can use
the Hungarian matching algorithm [Kuh55], which optimizes the global assignment costs.
Whether to prefer the greedy matching or the Hungarian matching is a bit of a philosophical
question. TheHungarian matching considers all assignments simultaneously and minimizes
global costs. For a theoretical evaluation, this might be exactly what we want. However,
for many downstream tasks, we might prefer not to have to handle all modes all the time,
but instead, start with the best located one and, only if that one does not fit, work our way
down to modes with worse localization. This would correspond to the greedy approach.
Another simple matching approach considers all pairs with the localization distance below
a certain threshold a match. This approach is only advisable if predicted modes cannot
overlap with multiple reference modes or if double assignments are of no concern.

In any case, as a last step in the assignment process, we need to decide how to handle
double assignments. This is again driven by domain-specifics. If it is okay that two or more
predicted modes are assigned to the same reference mode, we can simply ignore the double
assignment. Otherwise, a common practice is only to allow a single assignment (either
the one with the higher confidence or the better localization metric) and count the other
mode as unassigned. During metric aggregation, we can then tabulate the matched and
unmatched modes to build a confusion matrix8 and compute classification metrics like

8However, without the false negative cell.
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Problem Blueprint:
P2.4 Confidence Score

Assignment
strategy

requested

Add
Greedy (by Score) matching

Add
Greedy (by Localization) matching

Hungarian Matching
Matching via

"localization > fixed threshold"

Set double 
assignment to FP
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assignments

Problem Blueprint:
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Select one of the
strategies

Assignment strategy selection completed
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Yes
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X
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Figure 6.11.: Sub-process for mode assignment. Based on the localization criterion from
sub-process S4 (figure 6.10) and a possible confidence score, the reference
and predicted modes are assigned to one another. As a final step, double
assignments are handled.
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precision and recall. These would penalize the unassigned modes.
After the modes have been matched, we can compute metrics on the matched pairs. These

metrics coincide with the metrics used for mode localization introduced in sub-process S4.

Data Set Aggregation The previous paragraphs explained the process of collecting
metrics on a per data point basis, i. e. comparing a single predicted posterior to the reference.
In this paragraph, we will walk through the sub-processes to choose fitting aggregation
strategies to get a single value per data set. The whole data set aggregation block consists
of two sub-processes. One for multi-threshold metric aggregation (sub-process S6, cf.
figure 6.12) and one for single-threshold and threshold-independent metric aggregation
(sub-process S7, cf. figure 6.13). While S6 is only accessible with a predefined threshold
range, S7 is always accessible.

Problem Blueprint:
P1.1 Reference granularity

Multi-threshold
metric
requested Distance

per mode

Single distance 
per posterior

Select
Fraction of 

"distances < cutoff"

Problem  Blueprint:
P1.3 Mode coordinates exhaustive

No

Yes

Select 
AP

Select
Recall over cutoff

Multi-threshold metric selection completed

S6+

X

X

Figure 6.12.: Sub-process to select appropriate multi-threshold metrics. Depending
on whether the reference modes are labeled and the reference modes are
exhaustive, different metrics are available. AP: average precision.

In the multi-threshold setting, we first branch off based on the reference labeling state.
If the reference has no labeled modes, we can only use distribution-based metrics chosen
in S2. This setting is ill-fitting for the multi-threshold metric setting but is better suited to
threshold-independent metrics like summary statistics, as introduced in S7. At the same
time, if the metrics computed on the predicted and reference distribution bear meaning for
the application and come with a natural range, it might be interesting to scan this range and
record the proportion of data points below this cutoff. The plot might be informative for
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further exploration of the data set. For further aggregation, the area under curve (AUC) of
this curve might be considered. If the reference modes are labeled, we can apply counting
metrics based on the confusion table of a classification task. In fact, for each mode, we
either have an assigned partner or the mode is unassigned. This allows us to compute the
number of true positive (TP) (matched modes), false negative (FN) (unassigned reference
modes), and at first glance, FP (unassigned predicted modes). However, at a second glance,
we need the reference modes to be exhaustive to be able to compute the number of false
positives. Otherwise, the predicted mode might be unassigned due to a missing reference
mode. TNs are undefined in detection. With TP and FN, we have access to recall, also
known as sensitivity, which is defined as

recall = sensitivity :=
TP

TP+ FN
. (6.9)

If we have access to FP, we can additionally compute the precision (or positive predictive
value)

precision :=
TP

TP+ FP
. (6.10)

We can compute the precision-recall curve with precision and recall at different threshold
values, a standard tool for evaluating classification tasks. The precision-recall curve can be
aggregated further via the AP, which is defined as [ZZ09]:

AP :=
∑
i

(recalli − recalli−1) · precisioni, (6.11)

where i iterates over the threshold values. AP is restricted to the interval [0, 1] with higher
values indicating better detection performance. This makes the metric easy to interpret
and widely used. If the precision is unavailable, we can only compute the recall over
the threshold range and aggregate it via AUC, but this approach is rather limited in its
expressiveness.

Sub-process S7 describes the single-threshold and threshold-independent metric selec-
tion. If a threshold or cutoff is provided, the available counting metrics depend on the
completeness of the reference. If it is complete, we proceed completely analogously to the
object detection setting, where the cutoff might either be specified as a cutoff on the recall,
in which case we compute the precision at the specified recall cutoff, or as a cutoff on the
precision, in which case we compute the recall at the specified precision cutoff. A recall
cutoff is preferable if we want to limit the rate of undetected modes. A precision cutoff
will limit the number of unassigned predicted modes. If the reference is incomplete, we are
reduced to computing the recall. In this case, the cutoff cannot be defined in terms of a
counting metric, as there is no second counting metric that we could use, but instead would
need to be specified based e. g. on the localization criterion or the confidence score. If there
is no natural choice for such a cutoff, we are reduced to the threshold-independent metrics.
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Figure 6.13.: Sub-process to select single-threshold and threshold-independent met-
rics. The choice of metrics depends on the existence and completeness of
labeled reference modes. If a threshold value is available, the metrics corre-
spond to the multi-threshold setting S6 (cf. figure 6.12). Threshold-independent
aggregation is achieved via descriptive statistics over the appropriate distance
distribution. STD: standard deviation, IQR: interquartile range.
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For threshold-independent metrics, we have to consider the following cases. If the
reference modes are not labeled, we have distances computed between the predicted and
the reference posterior. In the other case, we have distances computed between the modes.
In both cases, we can compute descriptive statistics on the distribution of these distances,
e. g. the mean, median, mode, standard deviation, IQR, or many others. Which exactly will
depend on the application. Generally, quantile-based statistics are more robust with regard
to outliers, which might be preferable in a noisy setting. If the distances are computed on
the modes, we need to be careful because we introduce a hierarchical structure in the data.
The data set consists of posteriors, and each posterior consists of one or more modes. This
hierarchy should be respected when aggregating the data, i. e. the mode distances for a
single posterior should be aggregated first before aggregating the results for all posteriors.
For more details, please refer to [WWG06].

Please note that the original metric selection framework [Mai+22b] includes a block
to determine a suitable calibration metric for classification(-derived) tasks. However, the
calibration term used in object detection is slightly inconsistent with the calibration term
used for cINNs. While the cINN calibration is part of the proposed framework, object
detection calibration has been omitted from the current version, and transferring it remains
future work.

Overall, we have introduced a posterior validation framework that uses key properties
of an inverse problem setting (the problem blueprint) to derive a problem-specific set of
metrics. In this way, our framework can structure and increase the transparency and
comparability of posterior-based inverse problem analyses.

6.3. Out-of-Distribution Detection for Biophotonic Imaging

In section 4.3.2, we gave a general introduction to OoD detection and noted some of the
caveats we might encounter. One class of OoD detectors are the density-based methods. As
introduced in section 4.4, INNs were developed as density estimators, so it is only natural to
try to use them as OoD detectors. In this section, we will highlight a common disadvantage
of density-based OoD detectors and introduce the widely applicable information criterion
(WAIC) as a method to avoid it (section 6.3.1). Afterward, we will introduce our concept to
use OoD detectors to monitor physiological tissue parameter changes (section 6.3.2).

This section contributes toward answering research question T.3, which was concerned
with biophotonic imaging specific OoD detection methods.

Disclosure andContributions I proposed the use ofWAIC togetherwith INN ensembles
to gauge the realism of our MSI simulation framework. Lena Maier-Hein advised and
guided me and proposed experimental setups. I implemented the method, performed the
experiments, and collected the results. In addition, Lena Maier-Hein suggested the use of
WAIC to detect physiological parameter changes as an OoD detection task.
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Sampled Images Mode Image

Figure 6.14.: Comparison of four samples to the mode of a high-dimensional dis-
tribution. The samples are drawn from a Gaussian with mean µ = 0.5 and
standard deviation σ = 0.2 for each pixel and color of the image. The figure
was adapted from [Nal+19a].

6.3.1. The Widely Applicable Information Criterion for
Out-of-Distribution Detection

High-dimensional data often behaves unexpectedly. This observation is sometimes sub-
sumed in the term curse of dimensionality. Intuitively speaking, it is concerned with the
fact that the volume of a neighborhood of a point shrinks with increasing dimension. More
precisely, the fraction of the volume of the unit ball compared to the volume of the unit
hypercube9 goes to zero as the dimension goes to infinity. While this sounds rather ab-
stract, it has practical implications. Consider, for illustration purposes, a standard Gaussian
distribution. Its mode, i. e. its point with maximal density, is located at zero. Next, let us
consider a small ball around this mode and sample points for the Gaussian distribution.
In low dimensions, we can expect many points to fall within our ball, but the chances get
smaller as the dimension increases. Even though the mode is the point with the highest
density, we have to consider the volume surrounding it, which decreases ever further. As a
result, we should not expect to draw samples close to the mode for high-dimensional data
sets. They will stem from a region with lower density but larger volume. This set is called
the typical set [Sha48; Nal+19a].

An example of this phenomenon is depicted in figure 6.14. Each image on the left-hand
side is drawn from the same distribution of a Gaussian centered at µ = 0.5 with standard
deviation σ = 0.2 for each pixel and color. Clearly, the sampled images look very different
than the “mode image”, which is visible on the right-hand side.

The conclusion of this discussion is that using the likelihood of a data point as an OoD
score is misleading because a very high likelihood on high-dimensional data should be
taken as evidence for an outlier. There are multiple ways to address this issue [CJA18;
Nal+19a]. We will introduce one that is based on the epistemic uncertainty of the model
used to estimate the density.

9which is 1
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The first observation is that the true data distribution is not accessible for virtually every
realistic application. Hence, we are forced to estimate the density of the in-distribution (ID)
data using a family of densities pΘ (cf. section 4.3.2). Now, we take a Bayesian perspective
and assume there is no one correct parameter vector Θ, but instead a posterior distribution
p(Θ | XID) given the ID data XID. This perspective is natural in the deep learning regime,
where the models are generally overparameterized10, such that multiple parameter config-
urations could lead to similar predictions. The training enforces this behavior on the ID
data. However, there is no training signal to enforce that different Θ ∼ p(Θ | XID) lead to
similar densities pΘ(xOoD) for an OoD data point xOoD. On the contrary, we would expect
high uncertainty in this region because of the overparameterization.
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Figure 6.15.: Illustration of theWAIC score. The data set is represented by a 1D Gaussian
mixture model with two components (dark blue). The density estimation
models are depicted in dashed turquoise. The widely applicable information
criterion (WAIC), computed following equation (6.12), is depicted in solid
green.

Based on this theory, Choi et al. [CJA18] proposed the use of the widely applicable
information criterion (WAIC) as an OoD score. WAIC was introduced byWatanabe [Wat13]
and is given by

WAIC(x) := VarΘ[− log pΘ(x)] + EΘ[− log pΘ(x)] (6.12)
= VarΘ[log pΘ(x)]− EΘ[log pΘ(x)], (6.13)

where the expectation and variance is taken over Θ ∼ p(Θ | XID). The formula consists
of two terms. First, a variance term intended to measure the uncertainty as motivated
10Roughly speaking, this means they have too many parameters compared to the amount of available training

data.
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above. Secondly, the mean log-probability assures that data points from a low-density
region get assigned high WAIC values whether the uncertainty is high or not. Please note,
that Choi et al. [CJA18] use an opposite sign convention, such that lower WAIC values
imply OoD, but we follow the original convention as introduced by Watanabe [Wat13]. A
low-dimensional visualization of WAIC can be found in figure 6.15.

In order to compute WAIC, we need two ingredients. First, a way to evaluate the log-
density log pΘ. This explains the importance of INNs, as these enable us to estimate the
density of the ID data XID. Second, we need to aggregate over Θ following p(Θ | XID).
This is achieved using an ensemble approach. In our case, each INN is randomly initialized
with a separate seed and trained until convergence. The resulting parameter vectors are
interpreted as a sample from p(Θ | XID) and the expectation value and variance are
approximated using the empirical mean and variance:

µ̂(x) :=
1

n

n∑
i=1

log pΘi(x), (6.14)

σ̂2(x) :=
1

n− 1

n∑
i=1

(log pΘi(x)− µ̂(x))2, (6.15)

WAIC(x) ≈ σ̂2(x)− µ̂(x). (6.16)

All in all, INNs enable us to estimate higher dimensional densities, andWAIC counteracts
the problems of density-based OoD detection due to the curse of dimensionality. Both
together lead to an interesting OoD detection methodology for our biophotonic imaging
setting. We will see the validation experiments in section 7.3.

6.3.2. Out-of-Distribution Detection for Personalized Medicine

Commonly, we would phrase the task of monitoring physiological tissue parameters, like
sO2 or vHb, as a supervised learning task. To stay with the example of biophotonic imaging,
we would acquire a data set consisting of spectral data and corresponding labels. The labels
could either be actual tissue parameter values, in which case the task would be a regression
task, or a coarse description of the tissue state, like ischemic or perfused, in which case the
task would be a classification task. This classic approach to perfusion monitoring based
on classification can be seen in figure 6.16 in dark blue. As ML approaches in general and
DL approaches, in particular, are susceptible to OoD data, we would require a large and
diverse data set for this approach to work. Especially in settings where the inter-patient
variability is high, we would need a large patient cohort for new patients not to be OoD.
Analogous observations are true for variability due to a change in recording hardware
and/or the recording site. This is one of the reasons that complicate the application of
classic ML methods in medicine: It is notoriously hard to collect large, annotated data sets.

This section proposes a method that counteracts the problems due to e. g. inter-patient
variability. Depending on the viewpoint, the underlying idea is either elegantly or naively
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Figure 6.16.: Proposed personalized approach to tissue parameter monitoring. We
use the example of perfusion monitoring. Classic machine learning (ML)
approaches (blue) would treat this approach as a classification task that would
require a large and diverse patient cohort. The proposed solution (turquoise)
operates on a single patient. We use an invertible neural network (INN)
ensemble as a central component. They compute the likelihood of ischemia
based on a short multispectral video sequence of perfused spectra. Ischemic
spectra can then be detected as out-of-distribution (OoD). With pre-training,
the ensemble can be trained and perform inference fast enough for surgical
applications. This figure was adapted from [Aya+22].
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simple: We only have to consider the inter-patient variability if we want to apply the
same ML model to multiple patients. In other words, if we can train an ML model for
each patient individually, we can ignore many of the confounding effects that decrease the
performance of a model that is intended to operate on multiple patients (analogously for
multiple hardware setups and sites). Hence, the use of the term “personalized medicine”.

Naturally, such a personalized approach introduces its own set of problems. Let us stay
with the ischemia monitoring example. If we want to train a personalized model in a
supervised fashion, we would require labeled training data from the patient in question.
This training data would include labels (ischemic and perfused). However, that implies
the existence of a reference method that created the labels. Furthermore, in their natural
state, (luckily) most patients do not have ischemic organs. Hence, we would require an
intervention just to get the training data. Such an intervention seems ethically questionable,
and the existence of a reference method poses the question of the benefit of a second
classifier. Both together underline that supervised learning would be hard, if not impossible,
to use in a personalized setting.

Instead, we propose an unsupervised learning approach based on OoD detection (cf.
figure 6.16, turquoise). While most patients do not have ischemic organs, we can collect
perfused organ spectra with a reasonable effort at the beginning of an intervention. We
define these perfused spectra as ID. Under the condition that we can train an OoD detector
fast enough, we can then use it to detect ischemic spectra as OoD. This approach removes the
need for a reference method11 and the model would be trained during the main intervention,
sidestepping ethical problems. We will use INN ensembles and WAIC as OoD detectors.
The INNs can be pre-trained on simulated data, shortening the training time on the actual
patient to a realistic range for training during the actual intervention. Additionally, the
inference time of the approach is fast enough to allow video rate predictions.

For the proposed method to work reliably, we need to ensure that the detected change is
due to the change in physiology and not due to a confounding factor like a change in pose
or lighting. We will address this issue with the setup of our validation experiments as found
in section 7.4. Overall, personalized physiological parameter monitoring is an exciting
new avenue in medical ML. It has the potential to circumvent many of the common ML
generalization problems due to new patients, hardware, or sites, leading to more robust
medical ML systems.

11As long as we are sufficiently certain that the organ is perfused at the beginning of an intervention.
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7. Experiments and Results

In this chapter, we will demonstrate the value of our framework for uncertainty handling in
biophotonic imaging by means of four experiments. We will thereby underline the strengths
of INNs and cINNs that put them at the core of our methodology. The experiments roughly
follow the domain research questions D.1 – D.3 introduced in chapter 2. In sections 7.1 and
7.2, we will analyze the well-posedness of the inverse problems in MSI and PAI. To this
end, we will construct cINN architectures and encode the solutions to the inverse problems
as posterior distributions. The contributions in these sections address research question
D.1, which was concerned with the well-posedness of inverse problems in biophotonic
imaging. In section 7.3, we will explore the realism of our simulated MSI data and compare
them to in vivo data using an OoD approach based on INNs and WAIC. The contributions
in this section address research question D.2, which was concerned with the realism of in
silico MSI data. In section 7.4, we will transfer this OoD approach to detect physiological
parameter changes at the example of ischemia detection in minimally invasive kidney
surgery in humans. The contributions in this section address research question D.3, which
was concerned with the possibility of monitoring physiological tissue parameters as an
OoD detection task.

All experimental sections follow the same structure. First, there is a short introduction to
the experiment, including a paragraph about disclosures and contributions explainingwhere
the work might have been previously published and what my contribution to the work was
compared to my collaborators. Second, there is a section about method details introducing
any methods particular to the experiment not introduced in the general methods section.
Third, the experimental setup is described in detail, followed by the results and a short
experiment-specific discussion. A longer and more exhaustive discussion considering this
thesis’s findings can be found in chapter 8.

7.1. Analyzing the Well-Posedness of Quantitative
Multispectral Imaging

In this experiment, we try to understand how cINNs can potentially help us to design
better multispectral cameras. Indeed, higher spectral resolution generally comes at the
cost of slower acquisition time or lower spatial resolution. Hence, it makes sense to only
record spectral bands that help in the prediction task. cINNs are good candidates to identify
these bands. With a full posterior distribution, we are not restricted to simple prediction
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performance but can take the spread and possible multimodes of the posterior into account.
As a proof of concept, we performed an in silico study where we used high-resolution,
simulated spectra and the filter response functions of different cameras to adapt the spectra
to each camera. Afterward, we trained cINNs to predict the physiological tissue parameters
sO2 and vHb.

The above formulation of the experimental goal is very application-driven, but there
is an equivalent formulation that highlights the relation of our experiment to research
question D.1. D.1 asks whether biophotonic inverse problems are well-posed. Here, we
will use the posteriors generated by the cINNs and the different cameras to answer this
question for varying spectral resolutions.

Disclosure and Contributions This work is based on previous work published at the
International Conference on Information Processing in Computer-Assisted Interventions
(IPCAI) 2019 [Adl+19b]. However, the results found in this thesis are a reproduction,
using cINNs, whereas the original publication was based on the older INN architecture.
Since INNs are very hard to train in the inverse problem setting, they have effectively
been outdated by the newer cINNs. Hence, we focus on the state of the art architecture.
Regarding the original publication, I would like to mention the following contributions:
Lena Maier-Hein came up with the study idea and design. She supervised the whole
process and provided valuable feedback and guidance. Leonardo Ayala, Anant Vemuri, and
Sebastian Wirkert generated the in silico data set used for this study. Thomas Kirchner
and Janek Gröhl discussed all preliminary results and provided valuable feedback. Lynton
Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe developed the INN and cINN
architecture and gave advice regarding implementation details. I performed all experiments,
implemented all the code, and evaluated all results.
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Figure 7.1.: Schematic overview of the conditional invertible neural network (cINN)
architecture. The latent distribution is transformed by ten affine coupling
blocks to the tissue parameter distribution. Each coupling block receives a
camera spectrum (either RGB, Kaneko, SpectroCam, or IMEC) as a conditioning
input. The figure was adapted from [Adl+19b].

100



7.1. Analyzing the Well-Posedness of Quantitative Multispectral Imaging

7.1.1. Method details

As mentioned in the introduction of the section, we aimed to compare the performance of
different cameras for medical use with the example of regressing sO2 and vHb from the
spectra generated by each camera. In this section, we will introduce the cINNs trained on
the camera data sets and the posterior validation process.

cINN Architecture and Training For each camera, we trained a cINN as introduced
in section 4.4.2 consisting of ten affine coupling blocks (see figure 7.1). The cINNs were
implemented in PyTorch using the framework for easily invertible architectures (FrEIA)
[Ard+18a]. We predicted sO2 and vHb leading to a 2D latent space. Depending on the
chosen camera, the conditioning input was either 3D, 8D, or 16D. Each affine coupling block
consisted of a shallow fully-connected subnetwork with a single hidden layer of dimension
256, ReLU activations, and was initialized using the Kaiming initialization scheme [He+15].
We performed exponent clamping with 2.0 and initialized the global transformation with 0.7.
For optimization, we used the maximum-likelihood loss as introduced in equation (4.21) and
the AdamW optimizer [LH17] with a learning rate of 5 · 10−4 and L2 weight regularization
parameter of 1 · 10−5. We trained each network for 100 epochs, and the batch size was
256. In addition, we added Gaussian noise to the training data with standard deviation
σ = 0.01 for the spectra (conditioning) and σ = 0.001 for the tissue parameters (input) as
data augmentation.

Posterior Validation We computed a full posterior distribution over the tissue param-
eter space for each spectrum by sampling 1024 latent samples and transforming them
with the cINN. We computed the calibration curve and error for each camera and tissue
parameter combination as introduced in section 4.4.5. We used the posterior median as a
tissue parameter predictor and computed the absolute error distribution. Furthermore, we
computed the IQR as a measure of spread for the posteriors. Lastly, we used the diptest
introduced in section 6.1.2 at level α = 0.01 to compute the proportion of multimodal
posteriors.

7.1.2. Experiment description

Cameras In this experiment, we compared the performance of four virtual representa-
tions of cameras. Two of the cameras were multispectral cameras: 1.) the Pixelteq (Largo,
FL, USA) SpectroCam (8 bands) and 2.) the XIMEA (Münster, Germany) MQ022HG-IM-
SM4x4-VIS (16 bands) abbreviated as IMEC. In addition, we approximated a regular RGB
camera using Gaussian filter responses. Lastly, we used another 3-band camera, which was
suggested, for medical applications [Kan+14], which we abbreviate as Kaneko. The filter
response functions of the four cameras can be found in figure 7.2.
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Figure 7.2.: The filter response functions of the cameras. Each function describes
the sensitivity of the camera filter in a certain spectral range. The figure was
adapted from [Adl+19b].

Data Set The data set was generated using Monte Carlo simulation with 106 photons
per spectrum building on the MCML framework [WJ92]. The data set was simulated for
previous work, and the exact implementation can be found in [Wir+17; Aya+22]. We
modeled tissue as three infinitely wide layers with assigned optical and tissue parameters
as found in table 7.1. The output was a high resolution spectrum (300 nm to 1000 nm in
2 nm steps). This spectrum can be adapted to different cameras using the filter response
functions of each camera respectively (cf. figure 7.2). The tissue parameters for each layer
were drawn independently, leading to three sO2 values and three vHb values per sample.
We aggregated these to obtain a single sO2 and vHb value by averaging the values up to a
depth of 250 nm, weighting each value by the layer thickness. The depth was chosen based
on the penetration depth of light in tissue.

Tissue Parameter vHb [%] sO2 [%] amie [cm−1] bmie [1]

Distribution U(0, 30) U(0, 100) U(5, 50) U(0.3, 3)
Tissue Parameter g [1] n [1] d [cm]

Distribution U(0.8, 0.95) U(1.33, 154) U(0.002, 0.2)

Table 7.1.: Tissue parameters of a single layer of the simulation framework. The
tissue parameter distributions for the three layers were identical. vHb: blood
volume fraction, sO2: blood oxygenation, amie: reduced scattering coefficient
at 500 nm, bmie: scattering power, g: tissue anisotropy, n: the refractive index,
d: thickness of the tissue layer, U(a, b): Uniform distribution between a and b.
This table was adapted from [Aya+22].
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Figure 7.3.: Example tissue parameter posteriors. The examples were chosen based on
the interquartile range (IQR) of the IMEC camera (best, median, and worst).
The first row depicts blood oxygenation (sO2) posteriors, while the second
row depicts blood volume fraction (vHb) posteriors. The IMEC (turquoise) and
SpectroCam (green) performance is almost indistinguishable, making the IMEC
posterior nigh invisible in the plots. The figure was adapted from [Adl+19b].

Overall, we simulated 450,000 spectra for the training set, 50,000 for the validation
set, and 50,000 as a test set. All reported results were computed on the test set, which
was evaluated only once. The spectra were L2 normalized individually to remove the
light intensity dependence. Afterwards, the data was band-wise z-score normalized (cf.
section 4.4.4). The mean and standard deviation of the training set were applied to the
validation and test set.

7.1.3. Results

Figure 7.4 shows the calibration curves and errors. For vHb, all cameras are well calibrated
with a ECE of at most 1.3 pp. For sO2, the RGB and Kaneko camera are still well cali-
brated with a slight over-confidence of the cINN (ECE ≤ 1.3 pp), whereas the SpectroCam
and IMEC are very under-confident (ECE ≈ 18 pp). This implies that the posteriors for
SpectroCam and IMEC are too wide.
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Figure 7.4.: Models are either well calibrated or under-confident. The calibration
curve describes the fraction of ground truth (GT) values found in a certain
confidence interval (CI). The calibration error is given by the fraction minus
the confidence interval percentile. The figure was adapted from [Adl+19b].
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Using the median as the tissue parameter predictor yields the absolute error distribution
depicted in figure 7.5, first row. For sO2, there is a deterioration in the absolute error of
the Kaneko and RGB camera compared to the IMEC and SpectroCam cameras. For vHb,
there is no trend in performance visible. The width of the posteriors as measured by IQR
can be found in figure 7.5, second row, and mirrors the observations for the absolute error:
For sO2, SpectroCam and IMEC produce more narrow posteriors compared to the Kaneko
and RGB camera. The median RGB IQR (21 pp) is noticeably higher than the Kaneko IQR
(18 pp). For vHb, there is no clear trend.
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Figure 7.5.: Comparison of the absolute error and IQR distribution over varying
spectral resolution. The absolute error distribution for sO2 is lower for higher
spectral resolution, while for vHb no effect is visible (first row). The interquartile
range (IQR) of the sO2 posterior decreases with spectral resolution, while the
IQR of the vHb posterior seems constant over spectral resolution changes. The
median of the posterior was used as the tissue parameter predictor.

The fraction of multimodal posteriors detected using the diptest (α = 0.01) can be found
in figure 7.6. For IMEC 4.0% of the sO2 posteriors are multimodal, but the median IQR of
the multimodal posteriors is 0.9 pp. Kaneko is the only other camera with a considerable
fraction of multimodal posteriors (0.8%) and median IQR of 11 pp. SpectroCam is the only
camera with a non-negligible fraction of multimodal vHb posteriors (1.3%) and median
multimodal IQR of 0.14 pp.

Figure 7.3 shows example posteriors with the best, median, and worst IQR based on the
IMEC camera IQRs. For sO2, the IMEC and SpectroCam posteriors are located close to the
ground truth and very narrow, except for the worst-case example where the posterior is
wider, indicating uncertainty, and the location is off. The RGB and Kaneko camera exhibit
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Figure 7.6.: A low fraction of posteriors was detected as multimodal. The diptest
(cf. section 6.1.2) at level α = 0.01 was used to identify multimodal posteriors.
Please note that the y-axis stops at 4%.

wider posteriors throughout, highlighting the decreased performance in line with figure 7.5.
For vHb (cf. figure 7.3, second row), we find that only the best posterior is narrow and
located well around the ground truth value for all four cameras. In the median and worst
case, the posteriors for IMEC and SpectroCam are very wide, approximating the prior
distribution and indicating high uncertainty in the prediction. The worst example shows a
failure case of the RGB and Kaneko camera, which produced narrow posteriors, but whose
location does not correspond to the ground truth.

7.1.4. Discussion

In most cases, the calibration error of the posteriors is very small. However, the calibration
curve shows a strong under-confidence for the two MSI cameras, SpectroCam and IMEC,
in the sO2 case. This means that the posteriors should be more narrow. There are two
factors contributing to this under-confidence. First, as depicted in figure 7.5, most posteriors
are already very narrow, and it seems that the network cannot concentrate the standard
Gaussian distribution in the latent space to a distribution with such a small support. The
3-band cameras, Kaneko and RGB, do not suffer from this problem because their predictive
performance is worse; hence, a wider posterior is appropriate. The problem worsens
because the difficulty of the sO2 prediction and vHb prediction seems very asymmetric.
As seen in figure 7.5, first row, there are large vHb prediction errors for all four cameras.
This is reflected in wider posteriors for vHb. However, the network actually learns a joint
distribution for sO2 and vHb. So for the MSI cameras, this joint distribution would be
highly anisotropic (high variance along the vHb axis, very low variance along the sO2

axis), and the network does not seem powerful enough to represent this strong anisotropy.
Nevertheless, the results stay interpretable because an under-confidence implies that the
predicted IQR is an upper bound for a well-calibrated IQR.

The first row of figure 7.5 shows the benefit of MSI for sO2 prediction. Both IMEC
and SpectroCam can predict sO2 virtually perfectly in this simulation setting(median
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absolute error (MedAE) of 0.4 pp and 0.6 pp for IMEC and SpectroCam respectively). The
3-band cameras perform worse and have a MedAE of 8 pp (Kaneko) and 10 pp (RGB)
which is too large for medical applications. The prediction of vHb seems more challenging
(MedAE ≈ 3 pp for all cameras), which is in line with our previous results [Adl+19b].
In particular, higher vHb values seem hard to predict. One reason might be that higher
overall concentration leads to more absorption and, hence, a decrease in reflected light,
which might negatively impact the signal-to-noise ratio. Another explanation might be
that our aggregation scheme for the 3-layer vHb values is too limited such that the network
performance deteriorates.

Additionally, we see that the MSI inverse problem seems very well-posed with at most 4%
multimodal posteriors. Even better, these multimodal posteriors for IMEC and SpectroCam
should be interpreted as artifacts of the diptest instead of true multimodal posteriors because
of the low IQR. Even if they were multimodal, their different parameter predictions would
be indistinguishable at the current noise level. Only the Kaneko sO2 posteriors might be
truly multimodal, which could explain the bad prediction performance of the median in
this case. However, even in this case, only 1% of the posteriors are affected.

A peculiarity of this study is that it was only performed on in silico data. However,
this was necessary as no reference method can provide spatially resolved oxygenation
maps of human tissue surfaces. Hence, simulation is the only remaining option for such a
comparison study.

Overall, we see how cINNs might be useful in characterizing and choosing cameras for
surgical applications. In addition to the regular predictive performance, we have access
to uncertainty measures like IQR or the number of modes. This enables a more fine-
grained optimization procedure. For example, predictive power could be traded off for
well-calibrated uncertainty depending on the application.

7.2. Analyzing the Well-Posedness of Quantitative
Photoacoustic Imaging

As established in section 4.2.3, the optical inverse problem in PAI is generally ill-posed.
However, most inversion schemes regularize the problem in a way that leads to a single
solution. Hence, there was little prior work empirically testing the extent of ill-posedness.

We decided to approach this question using cINNs as they have the potential to encode
ambiguities in multimodal posteriors. In particular, we wanted to understand how spatial
context influences the uniqueness of the solution. To this end, we performed an in silico
study where we provided different amounts of spatial context as a conditioning input to
the cINN. Because of the in silico setting, we have access to ground truth tissue parameter
values, which is a single parameter in this study: blood oxygenation (sO2). This allows
for a quantitative comparison of the performance subject to the amount of context of the
photoacoustic initial pressure distribution.
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In a second step, we tried to understand the generalization capabilities of cINNs from
the simulation domain to in vivo data. Diminishing this domain gap is an active field of
research [Kar+15; FK18; Dre20], so we anticipated a considerable domain gap. However, we
expected that for smaller regions or even single pixels, the simulation might be an adequate
approximation, whereas on a global scale, i. e. a whole photoacoustic image, we expected a
noticeable drop in performance.

The in silico part of the experiment addresses research question D.1 in the way that we
analyze the well-posedness of the optic inverse problem of PAI using cINNs. The in vivo
part of the experiment can be seen as a first glimpse at research question D.2, which is
concerned with the realism of our in silico data.

Disclosure andContributions Thework presented in this section was performed by Jan-
Hinrich Nölke in his master thesis [Nöl21b], which he executed under Lena Maier-Hein’s
and my supervision. Preliminary results of the thesis were published at Bildverarbeitung
für die Medizin Workshop (BVM) 2021 [Nöl+21]. Lena Maier-Hein and I came up with
the project and developed the thesis scope. Furthermore, we gave regular feedback and
discussed the project status. Kris Dreher, Melanie Schellenberg, and Janek Gröhl developed
the PAI simulation pipeline SIMPA and supported Jan-Hinrich Nölke during data genera-
tion. Jan-Hinrich Nölke implemented all methods, developed the evaluation pipeline, and
presented all results.
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Figure 7.7.: Experimental setup using different amounts of spatial context. Left: A
single pixel or a single pixel with a local neighborhood (four or eight neighbors)
of the multispectral initial pressure image is used to predict the sO2 posterior
of the central pixel. Right: The whole multispectral initial pressure image is
preprocessed by a conditioning network before being used to generate an sO2

map distribution. The figure was adapted from [Nöl21b].
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7.2.1. Method details

Networks and Training Two families of cINNs were applied for this experiment. An
overview of the two settings can be found in figure 7.7. Both families were implemented in
PyTorch using the FrEIA framework [Ard+18a].

For small spatial context (a single pixel, four neighbors, or eight neighbors), we used
a fully-connected cINN (fc-cINN). We call these the local models. The spatial context
was flattened and passed directly to the coupling blocks as conditioning input, and each
coupling block used shallow fully-connected subnetworks with a single hidden layer with
512 dimensions and ReLU activations. The only tissue parameter of interest is sO2, but by
design, the cINN architecture requires at least two input dimensions. The sO2 dimension
was doubled and used twice to achieve this.

The networks were trained for 30 epochs with a learning rate of 10−3 using the AdamW
optimizer [LH17] and L2 weight regularization factor of 0.01. The learning rate was
reduced by a factor of 10 after epochs 15, 20, and 25. The batch size was chosen as 256,
and the norm of the gradients of the network was clipped to 10. We used Gaussian noise
augmentation with standard deviation σ = 0.001 for the normalized sO2 and σ = 0.06
for the normalized initial spectra dimensions. In the case of the four and eight neighbors
model, the conditioning input was randomly horizontally flipped with a probability of
p = 0.5.
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Figure 7.8.: Architecture of the convolutional conditional invertible neural network.
The conditioning network is a U-Net with 3x3 convolutional layers (turquoise),
instance normalization, and leaky ReLU activation. At the correct resolutions,
the conditioning input is forwarded to the affine coupling blocks (green). The
coupling blocks operate at different spatial resolutions. This is achieved using
Haar downsampling layers (yellow), which trade spatial resolution for channel
resolution. After the last block before the latent space, the representation is
flattened (purple). The figure was adapted form [Nöl21b].
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The other cINN architecture (the global model) was applied to whole initial pressure
images. In this case, a complete sO2 map for the whole image was generated instead
of a posterior for a single pixel, as in the local models. Fully-connected networks are
ill-adapted at handling whole images. Hence, we used a convolutional cINN (conv-cINN),
where the subnetworks were CNNs made of two blocks consisting of a convolution layer
with 128 hidden channels, followed by 2D batch normalization, and ReLU activation, and
a final convolution layer to the correct output channel dimension. The kernel size of
the convolutions was set to 3 × 3. We employed Haar downsampling as introduced in
section 4.4.3. Thus, coupling blocks on three levels of the spatial resolution were employed
before the representation was flattened for the latent space representation. This process is
described in figure 7.8.

In contrast to the fc-cINN case, the conditioning input (the initial pressure image) was
preprocessed by a conditioning network, which was a standard U-Net [RFB15] adapted
to the number of channels of the initial pressure image. The spatial resolutions of the
U-Net correspond to the spatial resolutions of the conv-cINN, such that each corresponding
resolution was used as conditioning input to the appropriate coupling block. This setup is
described in figure 7.8.

X
b

Log Initial Pressure [au]
@ 800 nm Segmentation

X
r

Figure 7.9.: Comparison of in silico to in vivo PAI data. Left column: Logarithm of
the initial pressure distribution at 800 nm. The in vivo data set Xr exhibits
strong noise patterns. Right column: Segmentation map with background
(blue) and vessels (red). The figure was adapted from [Nöl21b].
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The conv-cINN was trained for 600 epochs. The learning rate, optimizer, and L2 weight
regularization were the same as for the local models. The learning rate was reduced by
a factor of 10 after epochs 200, 300, and 400. The batch size was chosen as 32, the norm
of the gradients was clipped to 10, and the individual gradients were clipped to 0.25. We
used Gaussian noise augmentation with standard deviation σ = 0.001 for the normalized
sO2 and σ = 0.12 for the normalized initial spectra dimensions. Additionally, random
horizontal flips were applied with p = 0.5.

Multimode Detection To quantify the number of modes in a posterior, we applied the
KDE score as introduced in section 6.1.2. We scanned the bandwidth parameter equidistantly
in the range of 5 pp and 20 pp at 31 values for each sO2 posterior.

Mode Localization To compute the absolute error of our predictions, we needed to
aggregate the full posterior to a single measure, which should reflect the location of the
dominant mode even in the case of a multimodal posterior. As a first rough approximation,
we employed the median for this task, as it is efficiently computable and robust to outliers.
As alternatives, we located the mode using a KDE and the half-sample method [BF06] (cf.
section 6.1.2).

7.2.2. Experiment description

Data Sets We used three data sets for this experiment, two of which were simulated
and one in vivo data. For the simulation data sets, we modeled volumes with a depth of
22.1mm and width of 44.2mm. The third axis had a length of 40mm, but as the geometry
and all other properties were assumed constant along this axis, we will neglect it from
further discussion. The voxels were spaced at 0.34mm. At the top of the volume, the model
of the photoacoustic probe was stacked. For more details, please refer to [Dre20].

Each volume comprised three types of tissue: muscle (or background), skin, and vessels.
For each tissue type, the chromophore concentrations were drawn from an appropriate
distribution, which can be found in table 7.2. The skin was placed at the top of the volume,
and the thickness was drawn from a Gaussian distribution with mean 0.22mm and a
standard deviation of 0.1mm. The vessels were represented by disks1 with the radius
uniformly distributed between 1mm and 3mm. The number and placement of the vessels
differed for the two simulated data sets as follows.

For the base data set Xb, the volume was split into 2 to 7 regions horizontally. The
number of regions was drawn uniformly, and all regions had the same width. A single
vessel was placed within each region at a uniformly random location. However, each
region’s outermost 3mm was excluded to avoid a vessel spilling over in another region.

1Or tubes if the third dimension is taken into account.
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For the geometric data set Xg, the volume was split into three regions horizontally with
constant width. First, the radii r1 and r2 of two vessels were drawn as described above.
Afterward, the distance between the two vessels was drawn uniformly at random between
r1 + r2 and 3mm. The first vessel was positioned at the center of the region with regard to
width and uniformly at random with regard to depth but with the restrictions that both
vessels would still fit in the volume if the second vessel were positioned vertically above or
below the first at the chosen distance. Then an angle in [0, 2π] was chosen uniformly at
random to determine the final location of the second vessel.

For both data sets, we obtained 1000 photoacoustic images with 128 × 64 pixels. For
Xb, this led to approximately 530 k vessel pixels and for Xg, to approximately 700 k vessel
pixels. 70% of the data was used as the training set, 15% for validation, and 15% was
reserved as a test set. The split was performed on the image level, such that all pixels of
the same vessels were assigned to the same split. Each simulation was performed at 26
wavelengths equidistantly chosen in the range of 700 nm to 950 nm. The obtained spectra
were L2 normalized for each pixel independently. As further preprocessing, the data was
z-score normalized (cf. section 4.4.4).

The in vivo data set Xr was recorded using theMSOTAcuity Echo system (iTheraMedical
GmbH, Munich, Germany) on healthy human volunteers. The study was approved by the
ethics committee of the medical faculty of Heidelberg University. The reference number
is S-451/2020, and on the German Clinical Trials Register the study can be found under
DRKS00023205. For each participant, the neck, the forearms, and the calves were recorded.
The 26 wavelengths from the simulation were chosen. To obtain the initial pressure
spectrum, i. e. to solve the acoustic inverse problem, the DAS beamforming algorithm
[GJ82; Kim+16] as mentioned in section 4.2.3 was applied. In a second step, the images were
corrected for changes in laser pulse energy at different wavelengths, and five images were
averaged to reduce noise. Lastly, the images were resampled to a spacing of 0.31mm. The
vessels in the images were annotated manually, taking a co-registered ultrasound image into
account. As preprocessing, the spectra were L2 normalized and z-score normalized using
the mean and standard deviation of the corresponding training data set. A comparison of
Xr and Xb can be found in figure 7.9.

Posterior Validation The whole evaluation was restricted to vessel pixels. In the case of
the local models, the model was only applied to vessel pixels, while for the global model,
the prediction was performed on whole images, but none-vessel pixels were discarded
afterward. The local models predicted the sO2 value twice because of the minimum input
dimension restriction mentioned above. In [Nöl21b], it was shown that the deviation
between the two components is 0.04 pp on average; hence, we simply drop one of the two
values.

First, we performed a quantitative evaluation of the simulated data set. We began with
the calibration curves and the calibration errors to gauge the reliability of the posterior
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Tissue Type c(H2O) c(HbO2) c(Hb) c(Melanin)

Skin 0.68 0 0 U(0.002, 0.005)
Muscle U(0.64, 0.72) U(0, 1) 1− c(HbO2) 0
Vessel 0.68 U(0, 1) 1− c(HbO2) 0

Table 7.2.: Chromophore concentrations for the PAI simulation. c: Chromophore
concentration as a fraction between 0 and 1, HbO2: Oxyhemoglobin, Hb:
Hemoglobin (not oxygenated), U(a, b): Uniform distribution between a and
b.
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Figure 7.10.: Independent of spatial context, the models are well calibrated. First
row: For each confidence interval (CI), the fraction of the ground truth sO2

values falling into the CI of the corresponding posterior is plotted. Second
row: The Calibration is the difference between the fraction of ground truths
(GT) in the CI and the CI. The figure was adapted from [Nöl21b].
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width. Then we observed the development of the absolute error with changing spatial
context, where we used the mode of the posterior as sO2 predictor. Lastly, we compared the
uncertainty as measured by IQR and ambiguities as measured by the KDE score introduced
above.

The data sets exhibit a hierarchical structure: Each volume contains multiple vessels,
and each vessel consists of multiple pixels. We respected this hierarchical structure in
the evaluation by successively aggregating the metrics, i. e. the absolute error or IQR is
computed per pixel, then averaged over all pixels in each vessel, and then this value is
averaged for all vessels in the volume. Hence, each data point visible in the jitter plots
corresponds to a volume, not a pixel. The only exception to this scheme is the calibration
curve/error, where we need access to the full posterior of every pixel.

We perform only a qualitative evaluation for the volunteer study data due to a lack
of ground truth data. To this end, we compute posteriors for all vessel pixels and use
the median as an sO2 predictor. Finally, we aggregate all individual vessel predictions
per vessel using the mean. Using these values, we check whether the predictions are in
physiologically plausible ranges for healthy human veins and arteries.

7.2.3. Results
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Figure 7.11.: Increased spatial context reduces error on in-distribution (ID) data.
Absolute blood oxygenation (sO2) error hierarchically aggregated over vessels
and volumes for the base data set Xb (first row) and the geometric data set Xg
(second row). The location of the sO2 posterior is estimated using the median
(blue), the mode as detected by kernel density estimation (KDE) (turquoise),
and the mode as detected by half-sample mode (HSM) (green). The figure was
adapted from [Nöl21b].

114



7.2. Analyzing the Well-Posedness of Quantitative Photoacoustic Imaging

Figure 7.10 contains the calibration curves and errors for the two simulation data sets.
All models are well calibrated on both data sets, even though they were only trained on
Xb. The conv-cINN is slightly over-confident on Xb. Overall, these results imply that the
shape of the posteriors is reliable.
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Figure 7.12.: Spatial context decreases uncertainty. The IQR of each posterior was first
averaged over all vessel pixels and then averaged over all vessels per volume.
Results were grouped by the base data set Xb and geometric data set Xg. The
figure was adapted from [Nöl21b].

The absolute error drops with additional spatial context for both Xb and Xg as shown
in figure 7.11. The largest jump is from single pixel predictions to incorporating the four
neighboring pixels. There is no large difference in using the median, the KDE mode, or the
HSM mode as a predictor. Only in the single pixel case is there a perceivable difference
between the three methods, where the median is slightly better than the other two.
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Figure 7.13.: Spatial context decreases ambiguity. The KDE score of each posterior was
first averaged over all vessel pixels and then averaged over all vessels per
volume. Results were grouped by the base data set Xb and geometric data set
Xg. The figure was adapted from [Nöl21b].

A similar picture emerges with regard to the IQR of the posteriors, as seen in figure 7.12.
More spatial context leads to more confident predictions. For the local models, the IQR on
Xg seems elevated compared to the IQR on Xb. For the full image model, this effect is not
visible.

115



7. Experiments and Results

p0@800nm Complete Volume Vessel

0 50 100

Oxygenation [%]

Single Pixel

0 50 100

Oxygenation [%]

4 Neighbors

0 50 100

Oxygenation [%]

8 Neighbors

0 50 100

Oxygenation [%]

D
en

si
ty

[a
u]

Full Image

ground truth

0

25

50

75

100

O
xy

ge
na

tio
n
[%

]

0

50

Pr
ed

ic
tio

n
er
ro
r[

pp
]

0

20

40

60

IQ
R
[p

p]

Figure 7.14.: Example of how spatial context resolves ambiguities. First row: The
oxygenation map of the whole volume and restricted to a single vessel (blue
box). The initial pressure (p0) distribution at wavelength 800 nm is also de-
picted. The gray pixel in the vessel oxygenation map is the pixel for which the
sO2 distribution is shown in the second row. Second row: sO2 posterior of
the pixel marked in the first row for the four cINN models. The ground truth is
depicted by a turquoise line. Third row: Error map of the marked vessel (first
row) for the four cINN models. Fourth row: IQR map of the marked vessel
(first row) for the four cINN models. The figure was adapted from [Nöl21b].
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The four neighbors, eight neighbors, and full image model produce almost no multimodal
posteriors as measured by the KDE score seen in figure 7.13. While the KDE score for the
single pixel model is around 20%. An example of a multimodal posterior can be found
in figure 7.14, second row. As seen there, the posterior for the single pixel model is wide
and strongly bimodal, but with added spatial context, the posteriors become unimodal and
more narrow. The posteriors are located almost perfectly around the ground truth value
for the eight neighbors and full image model.
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Figure 7.15.: Predicted blood oxygenation (sO2) for the in vivo data set. We used the
median as the sO2 predictor on the pixel level and aggregated the results over
individual vessels using the mean. The figure was adapted from [Nöl21b].

Figure 7.14, third row, shows the prediction error distribution for a single vessel. For the
single pixel model, there is a pattern visible in the error, where a half-moon at the top of
the vessel has systematically positive prediction errors2, while the prediction errors in the
center are too low. While less expressive, the same pattern can be observed for the four
neighbors and eight neighbors model. The IQR depicted in figure 7.14 fourth row captures
this error pattern, i. e. the IQR is elevated in the same regions where the prediction errors
are highest.

The in vivo results can be found in figure 7.15. The local models predict higher sO2 values
than the global model, whose median sO2 prediction is below 50%. However, all prediction
distributions are very wide, with the four and eight neighbors model predicting values
above 100% and all three local models predicting values below 60%. An example can be
found in figure 7.16, which shows a volume crop around two vessels. The posteriors of
one vessel pixel are shown. We see that all three posteriors are very narrow, implicating a
high certainty in the prediction. While the local models predict values above 90%, the full
image model predicts values below 50% sO2. The oxygenation map in the first row shows
that this behavior is consistent over all vessel pixels.

2This means the predicted values are systematically too high.
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Figure 7.16.: Example blood oxygenation (sO2) map and histograms. First row:
Manual segmentation with vessels in red and the pixel, for which the spectrum
and histogram are plotted, is shown in grey in the first column. The remaining
columns show the predicted sO2 maps using themedian as a predictor. Second
row: The initial pressure spectrum of the marked pixel and the corresponding
sO2 posteriors. The figure was adapted from [Nöl21b].

7.2.4. Discussion

The findings show that added spatial context increases the prediction performance and the
confidence of the cINN prediction. Furthermore, small changes in the domain, as presented
in the differences of Xb, on which all models were trained, andXg were no problem for the
models. This is promising as Xg was assumed to be more challenging than Xb as the first
does not contain vessels that can shield one another from the probe. However, for larger
domain shifts like the shift to in vivo data, this is no longer true, as seen on the Xr data set,
where many predictions are unphysiological for a healthy human, like sO2 below 60% and
completely impossible predictions like sO2 above 100%. Even worse, the cINN is confident
in its (wrong) predictions, as indicated by the narrow posteriors. Hence, the uncertainty
score of cINNs trained to solve inverse problems is unsuitable for detecting OoD data.

At first, it might be surprising that the mode predictions for the single pixel model are
worse than the median prediction (cf. figure 7.11), while this effect is not observable for
any of the other models. However, this observation is cast in a new light under figure 7.13,
where we see that the single pixel model is the only model with a substantial proportion
of multimodal posteriors. For unimodal posteriors, the difference between the median,
KDE mode, and the HSM mode should be very small, but for a multimodal posterior, the
difference might be larger, and for the two mode detection methods the distance to the
ground truth might be even larger, in cases where the highest mode is the incorrect mode,
i. e. the ground truth is closer to a/the smaller mode. As the median’s location is less
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extreme, the error on average is smaller. This can explain the higher absolute error for the
KDE mode and HSM mode in the single pixel case.

While not directly visible in the results, a downside of the cINN approach is the necessity
of a second input dimension. For the local models, this leads to doubling the sO2 values,
which is undesirable because the constructed distribution is not absolutely continuous
relative to the Lebesgue measure on R2. In theory, this could trip the maximum-likelihood
training of the cINNs, but in our case, with the added noise augmentation, the cINN seems
powerful enough to overcome this. For the global model, the problem manifests in the
form that we cannot apply coupling blocks at full image resolution3. Instead, we had to
apply a Haar downsampling operation which halves the dimension along each spatial axis.
As there are no fine-grained structures in the simulations4, the reduced spatial resolutions
did not seem to impact the performance negatively, but for more realistic data with smaller
structures, a negative impact should be expected. There are two avenues to address this
issue. First, the coupling block architecture could be adapted. In the conditional case,
building an invertible coupling block that can operate on a single input dimension should
be possible. Second, we could consider another tissue parameter to increase the input
dimension naturally. This is difficult with the current simulation framework as the only
other varying quantity is the light fluence Φ (cf. section 4.2), which is not interesting for
clinical practitioners in and of itself. In principle, the blood volume fraction (vHb) as in
the MSI applications might be a candidate, but since we focus almost exclusively on blood
vessels, this quantity should be approximately 1 in all cases. A third alternative might be
the speed of sound of the tissue, but this is not sufficiently covered by the simulation at the
moment.

Overall, the experiments showed how cINNs could be used to find ambiguities in the
optical inverse problem of PAI. Furthermore, we could see how these ambiguities were
resolved with higher spatial resolution and how the confidence of the predictions increased.
This is especially interesting as we can easily locate ambiguous pixels in the larger volume,
which gives us another tool to find patterns that make the inverse problem ill-posed.
This might then be the first building block to increase PAI performance by suggesting
measurements from additional poses or optimizing the probe shape, as both suggested
in our work [Nöl+21]. At the same time, the domain gap to in vivo PAI data is too large
for the cINNs to generalize to this setting leading to confident but wrong predictions. To
overcome this obstacle, future work on both the simulation and the cINN sides is needed.

3At least without adding a second channel dimension via doubling of sO2 or a noise dimension.
4The vessels have a minimum radius.
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7.3. Gauging the Realism of Synthetic Multispectral Imaging
Data

As elaborated in section 4.3.2, OoD detection is inherently error-prone. Especially for
high-dimensional data, the curse of dimensionality can lead to prohibitive performance
drops. Hence, these three experiments aim to showcase the potential of WAIC computed
by an INN ensemble in the setting of MSI.

As a first step, we performed an in silico validation. We used simulated spectra and
trained on a subset of this data which was chosen based on a threshold of the first principal
component. The test set spectra outside this threshold should be detected as OoD. This
experiment was performed as a pure sanity check of the method. For the second experiment,
we exploited a shortcoming of our simulation pipeline. It assumes that the main chro-
mophores in the tissue are Hb, HbO2, and if the skin is involved, melanin. However, this
assumption is violated for the gallbladder, where bilirubin is another major chromophore.
We trained a WAIC ensemble on simulated spectra and evaluated it on multiple porcine
organ spectra, including the gallbladder. Our OoD detector should assign higher scores
to the gallbladder than to organs closer to the simulation domain. The last experiment
analyzed the potential for WAIC to detect changes in lighting during recordings. Most oxy-
genation quantification methods are sensitive to the chosen light source as it influences the
spectrum [Aya+20]. Hence, a method that could automatically notice such lighting changes
would be potentially beneficial as it could warn practitioners or disable downstream tasks
until the correct conditions are restored. To this end, we recorded a multispectral video of
the lip of a healthy human volunteer. During the recording, the light source was switched.
The WAIC ensemble was trained on simulated spectra adapted to one of the light sources
to detect the second light source as OoD.

Next to validating the general feasibility of WAIC as an OoD score for MSI, the exper-
iments address research question D.2, where we want to gauge the realism of in silico
MSI data. The light source change experiment can be seen as a very preliminary experi-
ment toward research question D.3, which is concerned with detecting physiological tissue
parameter changes (instead of light source changes) via an OoD approach.

Disclosure and Contributions The results of this section were previously published
at the MICCAI Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
(UNSURE) 2019 workshop [Adl+19c] as well as a long abstract at Medical Imaging with
Deep Learning Conference (MIDL) 2019 [Adl+19a]. Lena Maier-Hein and I developed
the experimental setup. Lena Maier-Hein advised me and supervised the whole process.
Leonardo Ayala and Anant Vemuri simulated the MSI data. Anant Vemuri and Sebastian
Wirkert recorded the porcine organ spectra. Hannes G. Kenngott and Beat P. Müller-Stich
performed the surgery on the pigs and operated the laparoscope during measurements.
Leonardo Ayala and I recorded the human lips. Lynton Ardizzone, Ullrich Köthe, and
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Figure 7.17.: Training and Inference of the WAIC approach. (a) The invertible neural
network (INN) ensemble is trained on in-distribution (ID) data only to estimate
its density. (b) During inference, the widely applicable information criterion
(WAIC) is computed and used to separate ID from OoD data.

Carsten Rother introduced the INN and gave advice regarding INN implementation details.
I implemented all code, performed all experiments, and evaluated all results.

7.3.1. Method details

Training of theWAIC Ensemble For each experiment, we trained an ensemble of INNs
consisting of five members. Each member was randomly initialized using the Kaiming
initialization scheme [He+15] and trained for 100 epochs using PyTorch and the FrEIA
framework [Ard+18a]. Each INN consisted of 20 affine coupling blocks, exponential clamp-
ing of 1.0, and global transformation initialized at 0.7. The subnetworks of the coupling
blocks were fully-connected shallow NNs with a single hidden layer of width 256 and ReLU
activations (see section 4.4 for an introduction of the hyperparameters). For optimization,
we used the maximum-likelihood-loss as introduced in equation (4.21) with AdamW as
optimizer, an initial learning rate of 10−4, L2 weight regularization parameter 10−4, and
AdamW-betas 0.9 and 0.95. If the validation loss did not increase for 15 epochs, we reduced
the learning rate by a factor of 10 to a minimum of 10−7. We used a batch size of 2048.
The training data was z-score normalized as introduced in section 4.4.4 and Gaussian noise
with σ = 0.05 was applied as augmentation. All other data sets were normalized using the
mean and standard deviation computed on the training data. An overview of the setup can
be found in figure 7.17.

Evaluation The widely applicable information criterion (WAIC) was computed following
equation (6.12). It was computed on an untouched, unseen test set. For far OoD data, WAIC
can explode. We computed the natural logarithm of WAIC for easier visualization in these
cases.
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7.3.2. Experiment description

Data Sets The simulated data set was described in detail in section 7.1. It consists of
450,000 spectra for training, 50,000 spectra for validation, and 50,000 for testing. The in
vivo data was recorded with two different multispectral cameras: 1.) the Pixelteq (Largo,
FL, USA) SpectroCam (8 bands) abbreviated as SpectroCam and 2.) the XIMEA (Münster,
Germany) MQ022HG-IM-SM4x4-VIS (16 bands) abbreviated as IMEC. Hence, the simulated
spectra were adapted to each camera respectively. As a light source for the adaptation, we
used a Wolf (Knittlingen, Germany) IP20 Xenon light source. We abbreviate the data sets
X ·

sc and X ·
IMEC, where · indicates the training (tr), validation (va), or test (te) split. For the

in silico validation, we performed a PCA on X tr
sc and retained only samples, whose values

on the first principal component were below 0.1. This process artificially introduced OoD
components in the test data. This reduced the training set size to approximately 337,000
spectra. The validation set was projected to the same coordinates and reduced analogously
(Size ≈ 37, 500). These two data sets are denoted by X tr

pca and Xva
pca, respectively. The test

set was not restricted such that X te
pca := X te

sc . A visualization of the validation and test set
distribution in the first two principal components can be found in figure 7.18, left column.

The porcine data set was recorded using the SpectroCam and consisted of the organs:
abdominal wall, bowel, diaphragm, liver, spleen, and gallbladder. For each organ, there are
200 spectra available. The data set is denoted by Xpig.

The lip data was recorded using the IMEC camera and consisted of 100 frames of the
lip of a healthy human volunteer. In the beginning, a Wolf IP20 Xenon light source was
used for illumination. At approximately frame 80, the light source was changed to a Wolf
Endolight LED 2.2 light source. The different stages are depicted in figure 7.20 (c). The lip
data set is denoted Xlip.

In Silico Validation A WAIC ensemble was trained on X tr
pca and evaluated on X te

pca with
the aim to test the hypothesis that data points with a low WAIC score should be in the
support of the training distribution, while data points with a high WAIC score should
be outside the support. To this end, we projected the data using PCA computed on X tr

sc,
plotted the density of the validation and training data set and highlighted the location
of the test data points with the highest and lowest WAIC score (1% of X te

pca respectively).
Furthermore, the distribution of WAIC values is compared.

Anomaly Detection in Porcine Organs A WAIC ensemble was trained on X tr
sc and

evaluated on Xpig. The distribution of WAIC values for the different organs and the
simulated data (using X te

sc) were compared.

Change Detection for Lighting Conditions A WAIC ensemble was trained on X tr
IMEC

and evaluated on Xlip. A ROI of 10× 10 pixels in a well-illuminated region of the lip was
chosen, and the time series of the WAIC values was computed. We expected higher WAIC
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values after the light source was switched to LED as the simulation was adapted to a Xenon
light source.

7.3.3. Results

The results of the in silico validation can be found in figure 7.18. The test data points with
the highest WAIC value fall into the tail of the test distribution, while the data points
with the lowest WAIC value fall mostly into the support of the training and validation
distribution. The median WAIC value of the validation set is −1.47 while that of the test
data set is −1.36. If the test set is split in the ID and the OoD portion (according to the
PCA threshold), the ID median WAIC becomes −1.47 and the OoD median WAIC −0.62.
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Figure 7.18.: High WAIC scores are outside the support of the ID distribution. Left:
The 1% test data points with the highest widely applicable information cri-
terion (WAIC) are in the tail of the test distribution, while the 1% lowest is
at the center of the validation (i. e. the ID) distribution. Right: The WAIC
distribution of the test set is higher than that of the validation set. If the test set
is separated in in-distribution (ID) and out-of-distribution (OoD) data points
the ID distribution is in accordance with the validation set, while the OoD
portion has higher WAIC values. This figure was adapted from [Adl+19c].

In figure 7.19, we see that all porcine organs have increased WAIC values compared to
the simulated data. However, the distance is particularly distinct for the gallbladder with a
median WAIC value of 25.9 compared to the simulated test set of −1.6.

An example of the recorded lip data can be found in figure 7.20 (b), where the MSI
data was transformed into an RGB image. Figure 7.20 (a) depicts the corresponding WAIC
values for the example in (b). The time series in figure 7.20 (c) shows a distinct jump after
switching from the Xenon to the LED light source, with peaks at frames 90 and 100. The
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Figure 7.19.: Distribution of WAIC values separated by porcine organ. The inset is a
zoomed-in version of the box plots for better visibility. The figure is adapted
from [Adl+19c]. WAIC: widely applicable information criterion.
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Figure 7.20.: WAIC time series for the light source change experiment. (a) Example
widely applicable information criterion (WAIC) map with ROI used for (c)
inscribed as a blue square. (b) Example RGB image corresponding to (a). The
RGB image was reconstructed from the multispectral image. (c) WAIC time
series with values over the ROI aggregated via mean. The confidence band
denotes the 95% confidence interval. Please note the logarithmic values. The
figure was adapted from [Adl+19c].
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ROI, which was used as a basis for the time series computation, is marked by a blue square
in figure 7.20 (a) and (b). Even for the Xenon time range the WAIC values are high with a
median of 190 (the median log WAIC is 3.8), but the median WAIC of the LED time range
is even higher at 10, 200 (the median log WAIC is 8.8).

7.3.4. Discussion

In all three experiments, we observerd good separation between ID and OoD data using
WAIC. This can be seen as evidence that INNs withWAIC are well-suited for OoD detection
applications in MSI. For the in silico validation the distribution of the ID portion of the test
set is almost identical to the validation set, while the OoD portion shows increased WAIC
values.

In the porcine organ experiment, the gallbladder is correctly identified as OoD. However,
the WAIC distribution of each organ is easily separable from the WAIC distribution of the
simulated test set. This indicates that there remains a domain gap between the simulation
and the in vivo domain. Against our expectation, the WAIC values for the spleen are
elevated compared to the other ID organs. As the data set consists of a very small set of
spectra, the reason for this is hard to pinpoint. The simulation parameters might not cover
the configuration of the spleen sufficiently or analogously to the gallbladder, there might be
a missing chromophore. Alternatively, there could have been an issue during measurement,
e. g. the camera losing focus or being soiled.

The lip experiment confirms the capability of WAIC to detect changes in the light source,
and the LED light source is correctly identified as OoD. The jump during the switch between
the Xenon and the LED light source is due to the darkness, which led to a loss of signal in
the recorded frames. The peak at frame index 100 is due to a movement of the subject and a
subsequent loss of focus of the camera. The WAIC values in the lip experiment are orders of
magnitude higher than in the in silico and pig experiments, while the values are still small
on the test set. This is evidence of a domain gap between the simulation and the measured
domain. However, since the porcine data was collected with a different camera, the WAIC
values are not comparable. Hence, it is impossible to judge whether the increased values
are caused by the change in camera or a worse fit of the simulation to human lip spectra.
The higher spectral resolution of the IMEC camera might make it easier for the ensemble
to detect OoD data.

While the results are promising, there are caveats connected to WAIC that are worth
mentioning. We operated on 8D and 16D data in our setting, which is still rather low-
dimensional. As INNs cannot reduce the dimension of the input data, application to truly
high-dimensional data will most likely introduce new challenges. Furthermore, WAIC
needs an ensemble of INNs. In this offline setting, this was no issue, but for time-critical
applications, WAIC might be too slow, or the networks might become too large. To this
end, additional experiments to determine a sufficient ensemble size might be insightful to
conserve resources.
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Figure 7.21.: Comparison of the clinical state of the art to anMSI powered system. In
current clinical practice, ischemia induction via clamping of the renal artery is
confirmed using the contrast agent ICG (blue). Successful induction is visible
as a lack of fluorescence signal. After a failed induction, a washout period of
30min is necessary before the technique can be applied again. We propose a
new, contrast agent-free, video-rate approach based onMSI and DL (turquoise).
The figure was adapted from [Aya+22]. DL: deep learning, ICG: indocyanine
green, MSI: multispectral imaging.

Overall, the experiment underlines the power of INNs and WAIC for OoD detection in
multispectral imaging.

7.4. Detecting Ischemia in Minimally Invasive Kidney Surgery

Detecting whether an organ is still perfused or ischemic is an important task during many
types of surgery [Tho+07; Bor+13; McC+14]. Oftentimes, an organ is artificially removed
from the blood supply to avoid bleeding during the actual procedure. This process is
called ischemia induction. An example of where ischemia induction is beneficial is partial
nephrectomy, where a tumor is surgically removed from the kidney. The kidney is removed
from the blood supply to avoid bleeding during the tumor resection. The difficulties in
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ischemia induction arise from the variability of human anatomy. For example, the number
of arteries supplying the kidney varies from person to person [LT20]. Furthermore, the
arteries are often hardly visible on pre-operative images, so the surgical team has to confirm
the actual number during the procedure. In this light, it is nigh impossible to confirm
ischemia induction through visual inspection alone, so solutions based on the contrast
agent indocyanine green (ICG) are widely spread (cf. figure 7.21). Once the surgical team
suspects that all arteries are clamped, ICG is injected. Normally, it accumulates in the
kidney on a time scale of seconds. If ICG does not accumulate, the ischemia induction was
successful.

However, there are downsides to the use of ICG. The most prominent is the long washout
period of the agent (ca. 30min), which prevents a second application of the method in the
same surgery. In other words, if the ischemia induction failed on the first try, there is no
possibility of confirming the induction on the second try. Additionally, while ICG is overall
safe, there are rare cases of complications (e. g. anaphylactic shocks) [Chu+17; PGM17].
Lastly, ICG requires a specialized camera to make the fluorescence visible. Altogether, there
is a case to be made for an alternative ischemia detection method that works without a
contrast agent.

In this experiment, which was previously published as [Aya+22], we wanted to demon-
strate the benefits of MSI in ischemia detection in a surgical setting. We suspected that
the additional spectral information might enable us to detect perfusion changes that are
invisible to the human eye. We restricted our attention to minimally invasive partial
nephrectomy.

We phrase the task as a binary classification task (perfused/ischemic), but while the
final aim is to classify new spectra accordingly, we did not follow the classical supervised
learning paradigm but instead focused on OoD detection. The rationale behind this decision
is twofold: First, we had to collect all the data ourselves, which limited our data set size.
Second, preliminary analyses (shown in figure 7.23) indicated high inter-patient variability
in the spectra. Both together highly diminish the generalization capabilities of supervised
learning methods to unseen data and patients.

The OoD approach allowed us to train our method on each patient separately, circum-
venting the inter-patient variability issue. This was possible because we trained on perfused
spectra only and detected ischemic spectra as OoD. Nevertheless, this approach comes
with its own limitations. Most importantly, we had to confirm that the detected change
was truly due to a change in perfusion state and not to some confounding factor (like a
change in pose or lighting). We addressed this concern with our experimental setup.

In the following, we will mostly focus on comparing the OoD detection methods as this
was my major contribution to [Aya+22]. Naturally, we will introduce all necessary details
of the study, but for an in-depth treatise, we refer to the original [Aya+22].

This experiment is aimed completely at answering research question D.3, which was
concerned with the possibility of monitoring physiological tissue parameter changes via
an OoD approach.
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Disclosure and Contributions This section is based on work that was previously pub-
lished [Aya+22]. Lena Maier-Hein started the work on MSI, supported data interpretation,
and suggested the idea of phrasing the ischemia detection task as an OoD task. Lena Maier-
Hein, Leonardo Ayala, and I developed the experimental setup and the recording protocol.
Leonardo Ayala prepared the checklist for the protocol. Dogu Teber and Lena Maier-Hein
initiated the collaboration between Städtisches Klinikum Karlsruhe and German Cancer
Research Center (DKFZ). Leonardo Ayala and Alexander Seitel coordinated all legal and
ethical aspects of the study from the DKFZ side. Christina Engels, Alexey Aksenov, and
Leonardo Ayala coordinated the recording schedule. Leonardo Ayala, Silvia Seidlitz, Jan
Sellner, Diana Mindroc, Brittaney Everitt, and I recorded the data. Christina Engels, Dogu
Teber, Alexey Aksenov, Matthias Bodenbach, Pia Bader, and Sebastian Baron performed
the surgical procedure and operated the laparoscope with the MSI camera. Sebastian
Wirkert, Anant Vemuri, and Leonardo Ayala developed the recording software, hardware,
and data preprocessing pipeline. Sebastian Pirmann and Leonardo Ayala developed and
implemented the tracking algorithm. Leonardo Ayala performed the data preprocessing
steps and performed the exploratory analysis on the distribution of the MSI data. I imple-
mented all OoD methods, performed the method comparison, and developed the ischemia
index. Manuel Wiesenfarth, Nicholas Schreck, and Annette Kopp-Schneider performed the
generalized linear mixed-effects model analysis on the MSI data. Silvia Seidlitz and Jan
Sellner created the final data visualizations (for [Aya+22]). Minu Tizabi consulted us on
medical considerations and the clarity of our exposition.

7.4.1. Experiment description

Study Design The study was approved by the Landesärztekammer Baden-Württemberg
(DE/EKBW01, study reference number: B-F-2019-101), it is in accordance with the Dec-
laration of Helsinki, and it is registered with the German Clinical Trials Register (DRKS-
00020996). The data collection took place at Städtisches Klinikum Karlsruhe, Germany.
All patients of full age undergoing minimally invasive partial nephrectomy were eligible.
Each patient was informed about the study by a doctor and was free to choose whether to
consent to it or not.

The recording setup during the procedure can be found in figure 7.22. After the kidney
had been prepared by the surgical staff, we inserted the MSI laparoscope in an unused port
and recorded a section of cleaned tissue surface for 60 s. This sequence is called perfused1.
Afterward, the laparoscope was removed and directly reinserted. The surgeon was asked
to locate the exact same pose as previously. A second 60 s sequence of the perfused kidney
was recorded, which is called perfused2. TheMSI laparoscope was removed, and the surgical
team continued with the clamping of the kidney. After the ischemia induction, the MSI
laparoscope was reinserted, and a 60 s MSI video of the cleaned kidney surface was recorded.
This last sequence is denoted ischemic. During the last 15 s of the ischemic sequence,
the success of the ischemia induction was verified using ICG. The MSI laparoscope was
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extracted, and the surgery continued as usual.

Recording Protocol

Insert
Laparoscope

Record
Perfused
Spectra

Record
Perfused
Spectra

Insert
Laparoscope

Insert
Laparoscope

Retract
Laparoscope

Retract
Laparoscope

Clamp
Blood
Supply

Retract
Laparoscope

Record
Ischemic
Spectra

Figure 7.22.: Experimental setup for the ischemia index validation study. We
recorded three multispectral video sequences with intermittent retraction
and reinsertion of the laparoscope. Two sequences of perfused kidney, one of
ischemic kidney. The figure was adapted from [Aya+22].

We recorded two sequences of perfused spectra to capture variability in pose and lighting
introduced by the surgeon operating a free-hand instrument. This allowed us to confirm
whether our OoD approach detects the change in the perfusion state or a confounder.

Based on the recorded images and the ICG signal, we excluded all patients in which the
ischemia induction failed and all patients with a bloody kidney surface.

For image acquisition, we used the following hardware:

MSI Camera: MQ022HG-IM-SM4x4-VIS, XIMEA GmbH, Münster, Germany with a spatial
resolution of 272× 512 pixels and 16 bands

Filter: 335–610 nm band-pass filter (FGB37, Thorlabs Inc., Newton, New Jersey, United
States) to restrict the light to the physiologically interesting regions

Laparoscopes: standard 30 ° laparoscope; either 26003BA, KARL STORZ SE & Co. KG,
Tuttlingen, Germany or Panoview, Richard Wolf, Knittlingen, Germany

Camera Laparoscope Adapter: C-Mount Adapter (20200043, KARL STORZ SE & Co.
KG, Tuttlingen, Germany)

Light source: Xenon (IP20, Richard Wolf GmbH, Knittlingen, Germany)
Recording equipment: Laptop (MSI GE75 Raider 85G, Intel i7, NVIDIA RTX 2080) with

custom C++ recording software.

Region of Interest Annotation and Tracking On each kidney, Leonardo Ayala anno-
tated two square ROIs of size 30× 30 at the beginning of each recorded sequence. These
ROIs were tracked automatically for at least 70 frames using a tracking algorithm based on
discriminative correlation filter with channel and spatial reliability (DCF-CSR) [LuN+18]
which was adapted to our setting in a master thesis [Pir20]. The ROIs were chosen to be
completely located on the kidney surface, in a region without blood, and a region that was
well illuminated (at most 5% of the ROI pixels were allowed to be overexposed). Further-
more, if the tracker was unable to track the ROI for 70 frames, the ROI was discarded, and
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a new one was chosen instead. Overall this led to six disjoint ROI sequences per patient:
Four on perfused kidney and two on ischemic kidney.

Data Normalization To reduce the influence of hardware imperfections, each multi-
spectral image was normalized using a white and a dark image. As the absolute value of the
spectrum depends on the light intensity, which fluctuates due to movement, we rescaled
all spectra to L2-norm one. Furthermore, the training data set was z-score normalized as
introduced in section 4.4.4 on a per-pixel basis. The testing data set was normalized using
the mean and standard deviation computed on the training data.

Simulation Data Set for Pre-Training To speed up the training on the patient data, we
pre-trained all INNs on simulated data. We utilized the simulated data set introduced in
section 7.1 adapted to the IMEC camera used for data collection. We applied the same data
normalization as for the patient data, i. e. L2 normalization of all individual spectra and
z-score normalization along each band.

7.4.2. Method details

OoD Detection Methods Our proposed method is based on WAIC as introduced in
section 6.3, which is computed using an ensemble of five INNs (see section 4.4). As training
data, we used the first perfused sequence, i. e. the training data consisted of 2 · 70 = 140
ROIs. This is too little data to train a INN directly. Instead, we trained the INNs on single
pixels, which drastically increased the data set size (140 · 30 · 30 = 126, 000). However, we
had to remove individual pixels which were oversaturated. The training procedure of the
INN ensemble can be found in figure 7.17 (a).

At inference time, the log-probability as approximated by the five INNs was aggregated
into the WAIC score following equation (6.12). High WAIC indicates an OoD sample, while
low WAIC indicates ID (see figure 7.17 (b)).

As a baseline, we used k-nearest neighbor (k-NN) distances. k-NN is based on computing
the distance of a new spectrum to the k nearest neighbors in the training data set. The
training data set was the same as for the INN ensembles, i. e. the k-NN distances were
computed on single spectra. We chose k = 5 and used the mean of the 5 distances as an
OoD score.

Ischemia Index By construction, we received one OoD score per pixel. In the end, we
wanted a single value per frame. This is what we call an ischemia index. Let (i, j) denote
the spatial coordinates of an ROI then the OoD score (e. g. WAIC or k-NN distance) was
aggregated per ROI via

score(ROI) = median(i,j)[score(i, j)], (7.1)
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where score denotes any OoD score.
To end up with the final ischemia index, we averaged the two ROIs per frame:

ischemia index(frame) =
1

2
(score(ROI1) + score(ROI2)) . (7.2)

For ease of visualization, the ischemia index was min-max normalized. As this is a strictly
monotone transformation5, the operation has no influence on the area under receiver
operating characteristics curve (AUROC) metric.

Implementation Details The INNs and the WAIC computation were implemented in
PyTorch using the FrEIA framework [Ard+18a]. Each INN consisted of 20 affine coupling
blocks. The subnetworks were fully-connected with a single hidden layer of width 256 and
ReLU activations. The INNs were trained using the AdamW optimizer [LH17] with the
maximum likelihood loss as introduced in equation (4.21) and a learning rate of 1 ·10−4 and
L2 weight regularization with factor 1 · 10−4. Each INN was randomly initialized using the
Kaiming initialization scheme [He+15]. The training data was augmented using additive
Gaussian noise with standard deviation σ = 0.05. The INNs were trained for 100 epochs
on the simulated data as pre-training and fine-tuned on the patient data for ten epochs.
For the ablation without pre-training, the INNs were trained for 100 epochs on the patient
data. The hyperparameters were determined on pre-existing data from a previous study.
Only the number of training frames was determined on this data set, and only patients 1-5
were used to determine this number.

For the k-NN model, we used the scikit-learn [Ped+11] implementation to build the
nearest neighbor tree. We used k = 5 neighbors, the L2 metric as a distance between
spectra, and the kd_tree algorithm to build the neighborhood tree.

Generalized LinearMixed-Model Analysis We used a generalized linear mixed-effects
model to determine the proportion of variance in the spectra, which can be explained by
the perfusion state (fixed effect) and the change in patients (random effect). This analysis
was performed by Manuel Wiesenfarth with support from Leonardo Ayala. For method
details please refer to [Sch19; Aya+22].

Generation of RGB Spectra The MSI camera is unable to record RGB images. Hence,
we depended on reconstructed RGB images to gauge the performance difference between
MSI and RGB. To this end, we trained a linear regression model between the MSI filter
responses and RGB filter responses and used this model to transform the higher resolution
spectra into RGB spectra. For more details, please see [Aya+22].
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Figure 7.23.: The perfusion state can explain only a minority of the variance. The
variance was computed using a generalized linear mixed-effects model as
introduced in [Sch19]. The figure was adapted from [Aya+22].
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Figure 7.24.: Ischemia index computed for ten patients. (a) Ischemia index distribution
for the perfused2 and ischemic sequence of each patient. The distributions are
well separated, except for patient 7. For ease of visualization, the index was
min-max normalized. (b) Example time series of the ischemia index highlights
the index’s separation over the complete time periods. The figure was adapted
from [Aya+22].
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7.4.3. Results

Fist application of MSI laparoscope at video-rate in humans To the best of our
knowledge, we were the first to bring a multispectral, laparoscopic imaging system to
surgery in humans. Central properties of the system are its compact nature (26× 26× 31
mm), its small weight (32 g), and its frame rate of 25Hz. These properties are necessary for
easy operation by the surgical team.

Generalized Mixed-Effects Model As can be seen in figure 7.23, for almost all bands,
the perfusion state explains less than half of the variance. The only exceptions to this are
bands 2 and 3, where roughly half of the variance is explained. On the other hand, the
inter-patient variability is dominant in explaining the variance in nine of the 16 bands.

Patient 3 Patient 7
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Figure 7.25.: Spectra distribution comparison between Patient 3 and 7. First row:
Reconstructed RGB images of the two patients taken from sequence perfused2.
Second row: A principal component analysis (PCA) was computed on the
spectra of each patient individually. The results were plotted as a density
plot using a kernel density estimation (KDE). The explained variance of each
principal component (PC) is depicted in brackets at the axis labels.

5As long as the score is not constant.
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WAIC-based Ischemia Index Performance Figure 7.24 (a) shows the ischemia index
distribution (based on WAIC) for all ten patients. Perfused and ischemic frames are well
separated, except for patient 7, which is inverted. Figure 7.24 (b) highlights the change of
the ischemia index over time in the example of patient 8. The good separation performance
is visible in the mean and median AUROC values of 0.9 and 1.0, respectively.

A comparison between a representative patient (patient 3) and the failure patient (patient
7) can be found in figure 7.25. A reconstructed RGB frame is shown for visualization, and
the first two principal components of an PCA on the spectral data are plotted. While the
spectra from the ischemic sequence are clearly separated from the perfused1, and perfused2
sequences for patient 3, they overlap for patient 7.
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Figure 7.26.: Different ischemia indices exhibit different trade-offs with regard to
accuracy and speed. (a) Classification accuracy of the methods measured
by the area under receiver operating characteristics curve (AUROC) for each
patient. (b) Total training time for each method and patient. (c) Inference
time per spectrum for the different patients and methods. The inset magnifies
the inference time in the gray dashed box.

OoD Detection Method Comparison Figure 7.26 summarizes the performance of
the considered OoD detection methods along the axes of classification performance as
measured by AUROC, total training time, and inference time per spectrum. Except for the
failure of patient 7, we see that all methods have a perfect AUROC score of 1.0 when using
MSI data. For RGB data, the performance drops. k-NN and the non-pre-trained WAIC
ensemble are on par and beat the pre-trained WAIC ensemble in terms of median AUROC
(0.98 vs. 0.90).

The k-NN training time is almost instantaneous (MSI: 0.4 s, RGB: 0.1 s median training
time), followed by the pre-trained WAIC ensemble with 42 s median training time on MSI
data and 41 s median training time on RGB data. The WAIC ensemble without pre-training
is far off with a per network training time of over 6min (CPU: AMD Ryzen 9 3900X 12-Core
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Processor, RAM: 64GB, GPU: NVIDIA GeForce RTX 3090). The training time is almost
equal for the MSI and RGB settings.

For the inference time, which includes only the evaluation of new spectra but not e. g.
model loading, k-NN runs distinctly slower on MSI data than all other configurations
with approximately 1ms per spectrum on average. As expected, the inference time for
WAIC with and without pre-training are indistinguishable and below 0.01ms. The k-NN
evaluated on RGB data is even faster with an inference time of less than 0.005ms per
spectrum.

7.4.4. Discussion

With a median and mean AUROC of 1.0 and 0.9, the experiment confirms that contrast
agent-free ischemia detection is indeed possible. Because of this, multiple applications
during the same surgery are possible. As the camera has a recording speed of 25Hz and
the inference speed of the WAIC ensemble per ROI is 140Hz, our approach is is video rate
capable.

The proportion of explained variance underlines the need for our personalized approach,
as there is high inter-patient variability. Additionally, a training time of less than 1min
makes it realistic for the models to be trained during surgery.

Figure 7.26 shows that ischemia detection is possible with RGB data too, but with
decreased performance. In addition, the RGB data is simulated from MSI data. This fact
introduces uncertainties that are hard to quantify. In particular, it is unclear how well our
results would transfer to actual RGB images.

While all OoD methods perform almost perfectly with MSI data, there is a trade-off
regarding training and inference time. While k-NN trains the fastest, the inference time on
MSI data is too slow to be used for live ischemia monitoring. At the same time, training
the WAIC ensemble from scratch is potentially too slow during surgery. The sweet spot is
achieved with the pre-trained WAIC ensemble, which takes less than 1min to train and
exhibits an adequate inference time.

All MSI methods are successful on nine out of ten patients but fail on patient 7. Counter-
intuitively, this is encouraging, as the finding is consistent between different OoD methods
indicating that the problem is located in the data and not in the OoD detection method.
Indeed, a closer analysis of the data revealed that there is a lot of scarring and fatty tissue
at the kidney surface of patient 7. This change in tissue composition, together with the
limited penetration depth of the light, seems to overlay the contribution of the perfusion
state to the spectra. Interestingly, the methods do not exhibit this strong failure case on the
simulated RGB data. One reason for this might lie in the simulated nature of the RGB data.
Depending on the exact filter locations, it might be that the parts of the MSI spectrum that
differs between perfused and ischemic state is amplified, while the part of the spectrum
that makes the ischemic spectra look similar to the perfused spectra might be aggregated
and reduced to a single band of the RGB camera. However, it is worth mentioning that
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the RGB data exhibits outlier patients too. To distinguish between the effect of the RGB
reconstruction process and that due to the actual RGB representation, we would need to
record MSI and RGB images at the same time. Currently, we do not have the hardware to
perform such an experiment, rendering the conclusive identification of the cause of this
result impossible.

We would like to point out that patient 4 deviated from our described preprocessing
pipeline. This was necessary because the white measurement, used for normalization, was
corrupted. Hence, we used the white measurement of patient 3, which used the identical
hardware setup. Because of the identical hardware setup, this should have a negligible
impact on the results of patient 4. In fact, we examined the influence of using white
measurements from other patients, which did not change the performance on patient 4.

Overall, we could show that ischemia detection without a contrast agent is possible,
the detection task can be phrased as an OoD detection, and training and inference time is
fast enough for use in the operating room (OR). Lastly, there is a clear performance boost
of MSI over RGB on average, although MSI fails on one patient. Hence, the experiment
highlights the usefulness of INNs in medical OoD detection tasks.
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8. Discussion

This section will discuss the experimental results, methodological peculiarities of the INN
architecture, and their impact on the medical domain. To this end, this discussion is
separated into two sections. Section 8.1 will discuss technical and methodological aspects
of our findings, whereas section 8.2 will discuss the domain aspects.

8.1. Technical Aspects

This section is separated into three parts. Section 8.1.1 addresses all remarks that relate
to the (c)INN architecture in general, i. e. to (c)INN properties which are shared by the
inverse problem and by the OoD setting. Section 8.1.2 discusses our findings regarding
cINNs for biophotonic inverse problems and the open questions regarding the validation of
multimodal posteriors. Section 8.1.3 closes this chapter with a treatment of the application
of INN ensembles together with WAIC as OoD detectors.

8.1.1. (Conditional) Invertible Neural Networks

The main strength of the INN architecture is the exact log p computation. This enables
maximum-likelihood training and enables INNs to represent arbitrary distributions. This is
in contrast to other generative models like VAEs or generative adversarial networks (GANs).
VAEs have access to an approximation of log p via the evidence lower bound, but GANs
cannot evaluate the density. This implicit representation is responsible to some extent
for the difficulties that GANs exhibit, like mode collapses. INNs do not suffer from this
problem because the invertibility (and hence the exact log p) forbids the network from
discarding information. At the same time, the generative power of INNs is still not on par
with more specialized architectures like GANs. Especially in high-dimensional applications
like image generation, the GAN images are sharper and more pleasing to the eye than
anything an INN can produce [XYA20]. One reason for this is the curse of dimensionality.
GANs and VAEs are not invertible. Hence, they can operate on a lower-dimensional latent
space, while the INN latent space has the same dimension as the input dimension. Thus
sampling in the INN latent space is inherently less efficient than sampling in the GAN or
VAE latent spaces. Since our applications are all in a low- to medium-dimensional domain
(1D - 26D)1, we do not suffer as much from this curse. Still, we need to keep it in mind if

1Except for global PAI model with 80,192 dimensions. Still, the evaluation was restricted to 1D marginal
distributions.
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we want to extend our local, single-pixel models to larger image patches or whole MSI or
PAI images. As the PAI experiments in section 7.2 show, we might expect roadblocks, e. g.
in the form of a stronger susceptibility to domain shifts.

Theoretical results have shown that INNs can approximate arbitrary diffeomorphisms
[Ish+22]. This highlights the architecture’s flexibility, and with a large enough training set,
we can hope to estimate a large set of data distribution. At the same time, the architecture
in the form of the affine coupling blocks and its subnetworks is peculiar, such that it is
often difficult to translate new, successful NN tricks to INNs. For example, dropout is a
staple operation in most modern NN architectures, and it can be applied to INNs, too,
but removing the dropout during evaluation time drastically reduced the performance
of the INN in some of our experiments. This is surprising for the INN novice as such
behavior seldomly occurs for more widely spread architectures. Similarly, in our experience,
INNs and batch normalization require specialized fine-tuning. This all goes to show that
while the architecture is very expressive, it is far enough removed from other widely
spread NN architectures that a specialized toolkit for “network engineering” and “network
optimization” is necessary, such that new users need to perform a cost-benefit analysis
whether the unique selling points of INNs outweigh the special needs during architecture
development and training.

In this thesis, we have mostly focused on the INN architecture, like the number of
coupling blocks or the setup of the subnetworks, but there is another important ingredient
when INNs are used as (conditional) density estimators. This is the latent distribution. We
fixed it to a standard Gaussian. Any continuous function maps connected components to
connected components, and homeomorphisms even conserve the number of “holes” in the
connected components [Hat04]. Consequently, an INN with a Gaussian latent space cannot
represent a distribution with two or more truly disjoint modes. There is always a small path
connecting the two components. For most practical applications, this is of little concern
because most real-world distributions do not show completely disjoint modes, but it might
still be worthwhile to consider other latent distributions. GMMs can alleviate the mode
problem and have been used in previous work [Ard+20]. The trade-off is that a GMM has a
fixed number of modes, which we might not be willing or capable of specifying a priori.
Another consideration regarding the latent distribution is that the distributions of interest
have compact support in our applications. sO2 and vHb are restricted to the interval [0, 1],
but a Gaussian distribution has an infinite support. It might be an interesting inductive
bias for the network to work with a distribution with compact support in the latent space.
This could potentially simplify training as the INN does not need to concentrate the latent
space as much. However, a deep enough network with loose enough exponent clamping
should resist this problem, as seen in our experiments.

A last technical consideration is that the current affine coupling block architecture re-
quires at least two input dimensions. For the local PAI applications, this was a problem,
as we have only a single quantity of interest (sO2). We overcame this obstacle by simply
doubling the sO2 dimension and checking that the predictions in both components were
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consistent. This approach has the problem that a “diagonal distribution” in R2 is degen-
erate and has vanishing volume. Hence, the cINN might have trouble representing the
distribution, but with suitable noise augmentation, the cINN succeeded. An alternative
approach is to add a noise dimension, i. e. a dimension with standard Gaussian noise. This
has the advantage that the constructed distribution is absolutely continuous with regard
to the Lebesgue measure on R2 such that it should be easier for the cINN to transform
it to the latent distribution. An alternative avenue could be to adapt the coupling blocks.
In the conditional setting, half of the channels and the conditioning input are fed to the
subnetworks, and then the other half of the channels are (invertibly) transformed. In the
1D case, we could only feed the conditioning input to the subnetworks and transform the
1D input. This operation would still be invertible (as long as the conditioning is provided).
At the same time, 1D affine transformations consist of only two parameters (the slope and
the bias) which might not be powerful enough for our distributions.

Overall, we see that INNs and cINNs are very versatile (conditional) density estimators.
They are naturally well-suited for medium-dimensional data (10s to 100s of dimensions) as
present in our biophotonic imaging applications. To tap their full potential, it pays well to
be aware of the idiosyncrasies hard-coded invertibility entails.

8.1.2. Representing Solutions to Biophotonic Inverse Problems

The experiments in sections 7.1 and 7.2 show that cINNs are a useful tool to explore
uncertainty and ambiguity in biophotonic imaging modalities. When operating on single
pixels, i. e. spectra, they lead to well-calibrated posteriors, unless the inverse problem is
“too deterministic”, which leads to very narrow posteriors. At some point, the cINN cannot
concentrate the latent space enough to achieve this. Especially if other parameters are harder
to reconstruct. Thus, we observe under-confident predictions for the multispectral cameras
in section 7.1. Still, under-confident posteriors are useful for uncertainty quantification
because they give an upper bound on the actual uncertainty. For the MSI cameras the
median IQRs on sO2 were very low with 1.6 pp and 2.3 pp for IMEC and SpectroCam
respectively.

In the photoacoustic experiments in section 7.2, we saw that it is possible to apply a
cINN to whole images and still yield well-calibrated posteriors, but we also saw that the
generalization performance suffered. While the local models (single pixel, four neighbors,
and eight neighbors) generalized somewhat from the simulation to the real domain, the
global model failed completely. The reason for this is most likely a mixture of a large
training set size mismatch and a larger domain gap for whole images than for local models.
While a single simulated volume generates 100s of vessel pixels, which make up the data
points of the local models, it is still a single volume for the global model. Of course, the
images allow for more data augmentation, but this cannot compensate for the two orders
of magnitude in data set size difference. At this point, we have not even considered the
difference in model size. Additionally, while single simulated spectra seem close to real data,
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global noise patterns are hard to recreate. Furthermore, for this study, the cINN was trained
on the initial pressure spectrum, i. e. we ignored the acoustic inverse problem. However, we
cannot record the initial pressure directly, so we needed to apply a reconstruction algorithm
to the in vivo data, introducing some of the mentioned noise patterns. To alleviate the
domain shift, we could either simulate the acoustic forward problem and train on the time
series data or reconstruct the initial pressure from the acoustic forward simulation and
use that as conditioning input for the cINN. In parallel, improvements to the simulation
framework should be pursued like in [Dre20; Grö+22].

In addition to the uncertainty score given by a suitable measure of variability (like
the standard deviation or IQR), which are available through simpler architectures [KG17;
Grö+18], the posteriors allowed us to examine the well-posedness of the inverse problem
by evaluating the modes. This property sets cINNs apart from classical ML approaches. In
the MSI experiments, we found higher uncertainty with a lower spectral resolution but few
multimodal posteriors for sO2. For vHb, we found high uncertainty with few multimodal
posteriors for all spectral resolutions. In the PAI experiment, we found that there are some
ambiguous posteriors for the single pixel model. Furthermore, the ambiguities virtually
vanish with more spatial context. This analysis was only possible because of the full
posterior distribution.

While the posteriors are the greatest strength of the cINNs, there are still open questions
relating to their validation. We are in the unfortunate position that there is only a single
reference sO2 and vHb value per spectrum. In terms of our posterior validation framework,
this means that our reference consists of a discrete set of mode locations2 and the number
of reference modes might be incomplete. This strongly restricts the number of available
metrics. In fact, next to the number of TP and FP, which would require a suitable localization
threshold, we are left with only centroid-based distance metrics between the reference and
the posterior modes. These are exactly the metrics we chose for our experiments. So we
see that while our reference properties limit the number of available metrics, our posterior
validation framework was still applicable to the setting.

So, with the current reference, we can validate if at least one posterior mode is located
correctly, but verifying the location of the remaining mode(s) is hard. A remedy could
be re-simulation, i. e. simulating new spectra using the reconstructed tissue parameters.
However, the cINNs do not reconstruct all the parameters necessary for re-simulation. In
the MSI setting, we could include all parameters for the three-layer model, but as was shown
in [Ard+18b], most of them cannot be recovered with any certainty. The problem is even
more fundamental for the local PAI models. Because of the locality, the model is ignorant of
the absolute position of the pixel in the volume. Hence, the computed posterior is implicitly
averaged over all pixel locations. For re-simulation, this implies that we would have to
try out all pixel locations (including all possible tissue parameter configurations for the
remaining pixels of the volume) to test if one of them generates the correct spectrum under

2In this case, the set consists of a single element.
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re-simulation. This leads to a combinatoric explosion that is computationally prohibitively
expensive. In this regard, improving the global models and the simulation pipeline is even
more important to enable re-simulation. However, this would require mode detection, i. e.
clustering, of a very high-dimensional posterior (80,192D in the PAI case), which introduces
its own problems. As we were in the fortunate position that our inverse problems were
rather well-posed, we did not have to validate multimodal posteriors, and the unimodal
posteriors matched the references well in the case of sO2 while the vHb posteriors for MSI
were very wide at all considered levels of spectral resolution, indicating that reconstruction
of vHb might be impossible at the current spectral range.

Our experiments show the value of cINNs as an analysis tool for inverse problems, but at
the moment, it remains a tool for theoretical and methodological study. For practitioners,
like surgical or medical staff, multimodal posteriors are impractical to interpret and act
on. There is a need for further automatic post-processing of the posteriors and extracting
valuable insights for the user. This is especially important in the medical domain, where
robust uncertainty quantification is key to the safe usage of ML methods. Hence, there
are many interesting open questions in the intersection of cINNs and medical imaging,
highlighting the potential for meaningful impact of this research area.

8.1.3. Out-of-Distribution Detection for Biophotonoic Imaging

The experiments in sections 7.3 and 7.4 show that INNs in conjunction with WAIC can
successfully detect OoD data in an in silico as well as in an in vivo setting. We observed a
gap between the simulation domain and the obtained spectra from porcine organs. This
domain gap was especially high for the gallbladder, which contains a chromophore not
covered in our simulation (bilirubin). The lighting change experiment on human lips
showed that WAIC has potential on human organs as well and that the change could be
detected. At the same time, the experiment revealed an even higher domain gap between
the simulation and the lip spectra. This is likely due to the lip not being an inner organ and
hence containing some amount of melanin, which is also mostly ignored in the simulation
pipeline. In addition, we used a different camera for the lip experiment with a higher
spectral resolution which might also contribute to the larger domain gap. As a proof of
concept, the experiment was still a success.

Our INN ensemble consisted of five members, which seem to be sufficient. We performed
preliminary experiments, where we increased the member size up to 20 for the porcine
experiments. The WAIC values for the ID organs stabilized for values lower than ten, and
the separation effect of ID and OoD data was good for all ensemble sizes. The WAIC values
for the gallbladder increased throughout. Hence, higher ensemble sizes might increase the
separation effect of WAIC but at the cost of significantly higher computation power and
time. This trade-off has to be evaluated for each individual application.

One downside of WAIC concerns its arbitrary scale. WAIC can become negative, and
there is no clear lower bound like zero for a (mathematical) metric. Furthermore, WAIC
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values between different ensembles and/or use cases are not comparable, as the scale
depends on the complexity of the ID data and the degree of convergence of the ensemble
members. Nevertheless, WAIC introduces an order on the data points of a single task.
Even if the exact numerical values are hard to interpret, we can resort to the induced
ranks and work with ranking-based methods, like discarding the n% data points with the
highest WAIC values. Such an approach can already increase the prediction performance
of downstream tasks and harden them against OoD samples. One approach to make WAIC
more interpretable might lie in the calibration of the WAIC values on an ID validation data
set. A simple approach could be to z-score normalize the WAIC values on that validation
set. However, this process might require some care if the WAIC distribution is highly
skewed. In addition, we could take the final training or validation losses of the networks
into account to normalize the scale.

Motivated by the first encouraging results, we used WAIC’s change detection capabilities
to detect the perfusion state of human kidneys during minimally invasive surgery. We
addressed the domain gap by replacing the simulation completely and training on a single
patient’s perfused spectra. For nine out of ten patients, we could successfully detect the
change in the perfusion state. As discussed in the experiment’s discussion section, the
failure patient, patient 7, showed a lot of fatty tissue and scarring on the kidney surface.
This most likely confused our model. The WAIC computed on reconstructed RGB images
did not suffer as much from this outlier, but overall performance was not on par with WAIC
built on MSI data. One reason might be that WAIC suffers from the curse of dimensionality
on the 16D MSI data, while the 3D RGB data is low dimensional enough to avoid it. Indeed,
further analyses using PCA (cf. figure 7.25) and the variance of the spectra indicated that
the support of the ischemic distribution was contained in the support of the perfused
distribution, leading to the inversion of the WAIC scores.

This leads us to one of the main open questions regarding WAIC. While we found
empirical evidence for its usefulness and others found the same [CJA18], there are so far
no theoretical guarantees for its effectiveness. In fact, patient 7 can be seen as a failure
mode of WAIC. With a lack of theoretical guarantees, empirical validation and analysis
of the failure modes3 become even more important to make sure that ML models can be
safely applied in the clinics.

Another observation was that WAIC did not outperform k-NN on MSI data, but they
showed similar classification performance. However, the evaluation time of WAIC was
orders of magnitude faster. This indicates that the spectral information in the MSI data
already leads to a strong perfusion signal such that a rather simple approach like k-NN can
pick up on it. However, the evaluation time for k-NN on higher-dimensional data will only
grow longer, as they do not scale well, such that the application to cameras with higher
spectral resolution or working with a larger spatial context is out of the question. An INN
ensemble could be applied to both settings with a negligible drop in speed, as suggested by

3As we performed for patient 7.
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the minimal inference time change between RGB and MSI data.
While we observed a domain gap between the simulation and in vivo measurements, the

simulated MSI data still seemed to provide a useful inductive bias, such that pre-training
on the simulation and fine-tuning on the patient data led to the same accuracy as complete
training on the patient data. This circumstance enabled an acceptable training time during
surgery.

There is one more big open question in general when it comes to phrasing ischemia
detection as OoD detection. This problem is attribution. By design, OoD detection methods
like WAIC only detect whether new data differs from the training data, but they cannot tell
us why or how. So, during the design of such a system, we need to be careful to ensure
that the change we detect is actually due to the “change of interest”. In the very controlled
setting of our experiments, we can guarantee this, but for translation in the generally
more volatile clinical practice, we have to address that we actually measure a change in
perfusion state and not a change in e. g. lighting or pose. This will most likely require
suitable representations of the surgical scene that are invariant to the confounding factors.

We have seen the power that exact log p estimation can bring to the field of biophotonic
imaging. We can validate our simulation data, detect changes in the measurement envi-
ronment, and detect changes in physiological tissue parameters. While there remain open
questions before the OoD methods are ready for translation to the clinic, these experiments
revealed the utility that these methods can bring to constructing robust ML applications in
the medical domain.

8.2. Domain Aspects

This section will discuss the domain impact of our findings. To this end, it is subdivided
into two parts. Section 8.2.1 will treat our contributions to uncertainty aware ML methods
for biophotonic imaging. This subsumes the treatment of ill-posed inverse problems and
the treatment of OoD data points. Section 8.2.2 will discuss our personalized approach to
perfusion monitoring.

8.2.1. Uncertainty-Aware Biophotonic Imaging

The representation of ambiguities opens new doors for uncertainty-aware biophotonic
imaging. In the previous discussions of our MSI experiments, we have taken the cameras as
a given and discussed their influence on the well-posedness of the inverse problem and how
the cINNs are capable of representing the ambiguities. However, from amedical perspective,
it is more interesting to think about it the other way around and ask what the optimal
camera for a certain application is. Generally, cameras with lower spectral resolutions have
higher spatial resolutions and/or faster acquisition speeds, which might be necessary if
e. g. strong organ movement is expected during the intervention. In such a scenario, the
“best” camera would be the camera with the lowest possible spectral resolution, which still
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solves the inverse problem adequately well. Our framework based on cINNs enables the
computation of previously inaccessible metrics to answer this question. With classic ML
models, we could only compare the prediction to the reference and evaluate error metrics.
cINNs allow the computation of the same error metrics but give us access to additional
metrics based on the spread of the posterior (e. g. the standard deviation or IQR) or based on
the number and location of detected modes. With the additional metrics, we can generate
a more complete picture of the advantages and disadvantages of a certain camera. An open
challenge in this regard is the development of robust, automated mode detection algorithms.
We have proposed clustering algorithms, but many introduce additional hyperparameters or
are restricted to low-dimensional or 1D use cases. A unified framework would be desirable.

One peculiarity of our analysis is that it only used in silico data. This is, at the same time,
an advantage and a disadvantage. It is advantageous in the sense that we can easily apply
it to any recording device for which the filter response functions are available without
the necessity of purchasing the camera in question and performing cost-intensive and
bureaucratic in vivo measurements. This can speed up the turn-around time and might
even inform the decision to purchase a certain camera. At the same time, we have to cope
with the possibility that the in silico data is OoD with regard to the in vivo data, i. e. if
the simulation pipeline is not realistic enough, there is some uncertainty regarding the
transferability of the results to the in vivo domain. However, the great strength of our
approach is its flexibility so that we can easily adapt our analysis to evolving simulation
frameworks, closing the domain gap step by step.

Further evidence for our framework’s flexibility can be seen in the ease with which we
could transfer it to PAI. While we compared cameras in the MSI setting, we worked with
varying amounts of spatial context in the PAI case. Such an analysis can be useful to gauge
the trade-off between incorporating more context for a more stable prediction and the
prediction speed of the method. For example, we mostly focus on vessel pixels, so it would
be desirable to restrict the sO2 estimation model to these pixels instead of using pixels that
are discarded afterward. With cINNs, we can quantify the context amount necessary such
that the inverse problem turns well-posed.

Another interesting property of our ambiguity detection approach is its spatial resolution.
Instead of predicting whether the inverse problem is ill-posed for a whole volume, we
can create “ambiguity maps” highlighting pixels for which the (marginalized) posterior is
multimodal. This enables us to use the predictions in regions with high certainty while
warning users about regions where the predictions might not be trustworthy. Such an
ambiguity map could also be the basis of a method to resolve ambiguities, e. g. by suggesting
additional recording poses to avoid shielding by other structures. Furthermore, visualizing
the ambiguities and uncertainties can be seen as one way to make ML methods more
interpretable which is an important ingredient in increasing trust and acceptance of the
models in clinical practice.

While we have focused on biophotonic imaging applications in this thesis, our approach
to ambiguity detection can easily be extended to other medical imaging applications,
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like image registration [Tro+20]. The value proposition in all cases is the detection of
potentially ambiguous situations that might spoil the results of classical ML models using
point estimates.

Next to ambiguity detection, we have introduced an OoD detection method based on
INN ensembles andWAIC. Our experiments show that our method can detect domain shifts
between the in silico and in vivo domain but also changes in the interventional environment,
like changes in lighting. These findings highlight the potential of our methodology to be
used as a building block for robust medical ML systems.

One core property of our methodology is that it is task agnostic. At training time, we only
need to know how ID data looks like without further specification of what the downstream
ML system does. At inference time, the OoD detector could then be used to filter data before
it can lead to spurious results in the downstream task. This would require no change to the
main ML model. If a global change in the recording condition, like a change in lighting,
were detected, the OoD detector could go one step further and warn the practitioners about
a continued input data mismatch. Instead of a silently failing system, the surgical team
would get the chance to troubleshoot. To stay with our lighting example, this could lead to
the surgical staff identifying an erroneously turned-on lamp that would otherwise have
invalidated the network predictions.

Overall, we see that INNs have great potential as enabling factor for robust ML in
medicine.

8.2.2. Personalized Perfusion Monitoring

The proposed OoD detection approach to perfusion monitoring presents a new paradigm
in MSI. We avoid physics-based models, like e. g. the Lambert-Beer law, that are not
sufficiently realistic while simultaneously being able to train our model in a very low
data regime, i. e. on a single patient. This allows us to overcome the observed high inter-
patient variability and lets us avoid confounders due to different patients [ZAP20; Die+21].
Interestingly, our findings of high inter-patient variability are in contrast to observations in
porcine organs [Stu+21], where the inter-specimen variability in the MSI spectra is lower.
Since the patient cohort is rather limited, it is difficult to find the cause for the changes
in spectra. Indeed, the cancer type with the comorbidities is sufficient information to
identify a patient in our cohort. At this point, we have not even considered confounders
due to the complex surgical environment, like the free-hand operation of the laparoscope,
which introduces variation in the poses. We can use data normalization to reduce the
effect of some confounders, but overall, the extent of the possible analysis stays limited. In
this regard, a larger patient cohort would be desirable, but the scientific benefit has to be
weighed against bureaucratic and, more importantly, ethical considerations when using
prototype equipment in the OR.

However, independent of the cause of the high inter-patient variability, its mere existence
underlines our personalized approach’s advantage. In particular, in the light of recent
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findings suggesting that ML performance is often overestimated due to biased test data
selection [Rob+21; Sha+21]. One disadvantage of the personalized approach consists in the
necessity to train the INN ensemble on each patient. However, with suitable pre-training,
the training time can be reduced to less than 1min per network (five networks, training can
be parallelized). This training time is short enough to avoid delays in the surgical workflow.
The training could, for example, be performed after the kidney’s preparation during the
localization of the renal artery. After training, the proposed method can perform inference
at video rate with an ROI inference rate of 140Hz.

Currently, the success of ischemia induction in partial nephrectomy is confirmed using
ICG fluorescence. Our approach has the decided advantages that it does not require a
contrast agent, i. e. it is non-invasive, it is video rate capable, and it can be performed
multiple times during the same procedure. A drawback of our approach is that it currently
requires a clean kidney to work reliably. In fact, blood, scars, or fatty tissue on the kidney’s
surface can lead to our approach’s failure. We hope to overcome this limitation by using
multispectral cameras that are sensitive in the near-infrared region of the spectrum, as this
range offers deeper tissue penetration. However, such recordings are out of scope for our
current equipment, both with regard to the camera and a suitable light source.

We want to stress that while there is previous work using tissue parameter estimation-
based approaches to detecting ischemia [Wir+17; Aya+19], we resorted to theOoD detection-
based approach because these models failed in preliminary experiments on the (diseased)
human kidney spectra. As mentioned previously, we require MSI data with annotated tissue
parameters to train such estimation models. As a gold standard method for annotation of
in vivo data is missing, we are restricted to in silico training data. Further analysis showed
that the in vivo spectra were OoD with regard to the in silico training data.

The proposed approach worked on nine out of ten patients. However, it failed on patient
7. We conducted further experiments and found that the spectra for this patient did not
markedly differ between the perfused and ischemic stages. In fact, a KDE on the first two
principal components showed a large intersection of the two stages (cf. figure 7.25). A
second peculiarity was that the perfused spectra showed a higher variance than the ischemic
spectra. Technically, these findings suggest that the support of the ischemic spectra lay
within the support of the perfused spectra, which might explain the misclassification. As
for the reasons why the distributions overlapped so much, we suspect a suboptimal kidney
surface. The patient exhibited a lot of scarring and burned fatty tissue on the kidney surface.
This tissue composition seems to have overridden the signal due to the change in the
perfusion state. It is further worth mentioning that patient 7 was the only smoker in the
cohort, but with the limited cohort size, we cannot gauge whether this caused the failure.
Lastly, we would like to point out that our clinical collaborators described the video of the
kidney as “unusually looking”, which might be taken as soft evidence that patient 7 is an
outlier in our cohort.

Overall, our approach performed exceptionally well considering the overly complex
surgical setup. In particular, we needed to retract our laparoscope in between the acquisition
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of the perfused and ischemic spectra. The retraction was necessary because the port for
the MSI laparoscope was needed during regular parts of the surgery, and we wanted to
keep the changes to the intervention as non-invasive as possible. However, our evaluation
became more difficult because we could not guarantee to identify the same ROIs for the
different recording stages. In fact, the free-hand operation of the laparoscope led to changes
in the pose at each stage, but also artificial relocations of the kidney due to the clamping of
the artery led to a change in view. With a lack of landmarks because of the small field of
view, it was even hard for a human to identify the same regions for some of the patients.
To make sure that the detected change was actually due to a change in perfusion state and
not due to a change in pose, we acquired two perfused sequences, perfused1, and perfused2,
with re-insertion of the laparoscope in between. We trained on perfused1 and evaluated
on perfused2. If the detected change had been due to a change in pose, our method should
have failed on the perfused2 sequence. However, as mentioned before, there was a clear
separation between perfused2 and the ischemic sequence for nine out of the ten patients.
Overall, the results might be seen as a lower bound for the actual performance of a clinically
certified system which would simplify the tracking between stages as the re-insertion could
be avoided.
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This thesis presented a framework for uncertainty quantification for inverse problems
which builds upon INNs as core components. We used this framework to address important
domain-related research questions. We successfully analyzed the well-posedness of inverse
problems in a data-driven way with the help of cINNs. Furthermore, we introduced a
new method to examine the realism of our simulation framework based on OoD detection,
which used INN ensembles and WAIC as OoD detectors as central ingredients. Lastly, we
introduced a personalized approach to tissue parameter monitoring, circumventing the
challenges due to inter-patient variability. This approach introduced a new paradigm for
medical ML formulating change monitoring as another OoD detection problem, with the
current tissue parameter configuration interpreted as ID. In this way, we were the first
to apply a laparoscopic MSI system in human surgery, where we applied the proposed
tissue parameter monitoring approach to the task of perfusion monitoring during partial
nephrectomy.

In the following, we will discuss this thesis’s contribution in more detail. In section 9.1,
we will circle back to our research questions T.1 – T.3 and D.1 – D.3 and note our progress
toward answering them. Please recall that solutions to T.1 – T.3 are methodological
contributions that are, in principle, broadly applicable across modalities and domains. In
contrast, D.1 – D.3 are specific to the field of medical biophotonic imaging with potentially
high domain impact. In section 9.2, we will continue with an outlook of open challenges
and opportunities.

9.1. Summary of Contributions

This section’s structure mirrors chapter 2, where the research questions were introduced.
Here, we will collect the progress toward answering the research questions and reference
corresponding publications.

T.1. How can we encode inherent ambiguities in inverse problems?

Wewere the first to analyze biophotonic inverse problems using posterior distributions over
the tissue parameter space generated with cINNs. We successfully examined the influence
of the spectral resolution on the well-posedness of the inverse problem at the example
of MSI (section 7.1) and the influence of spatial resolution on the well-posedness of the
inverse problem at the example of PAI (section 7.2). Our experiments highlight that cINNs
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are powerful enough to learn biophotonic inverse problems and that they are capable of
encoding uncertainty in general and ambiguities in particular in their posteriors. Overall,
this underlines the potential of our proposed framework and INNs for the analysis of
ambiguities in inverse problems, not only in biophotonic imaging but beyond the frontiers
of the medical domain.

The results on analyzing ambiguities in MSI using INNs led to a publication [Adl+19b]
at IPCAI and an associated journal publication at the International Journal of Computer
Assisted Radiology and Surgery (IJCARS). My short presentation received the audience
vote for one of the interventional imaging session’s two best presentations. My work on
tissue parameter estimation in MSI also contributed to a patent application [Mai+18a]. My
initial work on ambiguities in biophotonics was extended to PAI by Jan-Hinrich Nölke
in his master thesis [Nöl21b] under Lena Maier-Hein’s and my supervision. Parts of the
results were published at BVM [Nöl+21]. Jan’s latest manuscript, with me as second
author, on well-posedness in PAI, is currently under review at IEEE Transactions in Medical
Imaging. Next to biophotonic imaging, we have extended our cINN approach to C-arm pose
estimation. This work was led by Darya Trofimova and supported by me and culminated in
a MIC meets Conference on Neural Information Processing Systems (NeurIPS) workshop
contribution (preprint of the work presented at the workshop [Tro+20]). A follow-up to
this work led to a master thesis by Sebastian Gruber [Gru22] under Lena Maier-Hein’s and
Jan-Hinrich Nölke’s primary and my secondary supervision.

T.2. How can we validate posteriors?

We were the first to propose a posterior validation framework taking key properties of
the inverse problem and the available reference data into account to end up with the best
set of metrics. To this end, we discovered and expanded an analogy between the task of
object detection in computer vision and the process of validating posterior modes. We
successfully transferred and extended object detection metrics to the posterior validation
setting. Overall, we found that the extent to which a posterior could be validated strongly
depended on the quality of the reference data. In particular, it is very hard to validate
multimodal posteriors if the reference data is ignorant of ambiguous solutions, which is
often the case if the reference data is generated using a simulation of the forward problem.
Nevertheless, our proposed framework covers these cases and will provide a potentially
smaller but suitable set of metrics.

This thesis is the first time that we revealed this framework to the public. We are currently
working on a manuscript to introduce a wider audience to our results.

T.3. How can we detect out-of-distribution data in biophotonic imaging?

We were the first to apply INN ensembles in conjunction with WAIC as an OoD detector
to SI. We successfully validated the OoD capabilities in an in silico setting and applied the
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detector to porcine and human data to examine the realism of our simulation framework.
Lastly, we displayed the strength of our proposed OoD methodology by using it to detect
physiological parameter changes in an unsupervised manner during minimally invasive
kidney surgery. To this end, we addressed challenges due to small data sets which required
training on single pixels instead of whole multispectral images. However, this solution
increased the noise in our predictions, which we tackled with suitable post-processing steps.
Overall, we observed a strong separation between ID and OoD data using (post-processed)
WAIC as the score. We compared our methodology to a baseline method based on k-NN
and found similar classification performance. However, k-NN does not scale well to higher
dimensions, such that the inference time was orders of magnitude slower than that of the
INN ensemble with WAIC. At the same time, with suitable offline pre-training, the INNs
exhibited an adequate training time for live training during interventions. All in all, our
results highlight the fit of OoD detection based on WAIC for SI.

Our results analyzing the realism of synthetic MSI data using our OoD approach were
published at the MICCAI UNSURE workshop [Adl+19c], where I received one of three oral
presentation spots. Our overarching framework joining OoD detection with ambiguity
detection was published as a long abstract at MIDL [Adl+19a]. Furthermore, I supported
David Zimmerer during the MOOD 2020 challenge, which aimed at introducing a common
benchmark for OoD detection in medical imaging1. The challenge results were published
at IEEE Transactions in Medical Imaging [Zim+22]. Our work on ischemia detection in
minimally invasive kidney surgery led to a manuscript that is currently under a second
round of revision at Science Advances. Leonardo Ayala and I are shared first authors. A
preprint of the manuscript can be found on medRxiv [Aya+22]. In addition, our results
were accepted as a long abstract at IPCAI 2022. Our OoD-based framework to change
detection of physiological parameters led to a patent application [Mai+18b].

D.1. Are inverse problems in biophotonic imaging well-posed?

We were the first to analyze the well-posedness of biophotonic inverse problems over
varying spectral context (for MSI) and spatial context (for PAI) using our data-driven
framework based on cINNs. We focused on the recovery of sO2 for MSI and PAI and of
vHb for MSI and adapted the cINN architecture to operate on such low-dimensional spaces.
We found that sO2 estimation is well-posed in most cases. Only with minimal spatial
context (i. e. a single pixel) did we find a perceivable amount of multimodal posteriors in
PAI. Besides that, we found the expected increase of certainty (measured by the posterior
IQR) in the prediction with increasing spectral and/or spatial context. The problem of
vHb estimation in MSI was found to be ill-posed at all provided levels of spectral context.
However, the ill-posedness did not lead to multimodal posteriors but to very wide posteriors,
indicating that the cINNs could not narrow down the solution space at all. All the results

1With a focus on CT and MRI.
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were produced on in silico data because of the lack of a gold standard reference method for
in vivo data. This limits the expressiveness of our results. Nevertheless, the very flexible
nature of our framework allows for its easy application to new data sets, such that the
analysis can keep up with evolving simulation frameworks. If a gold standard reference
method became available, we could easily apply our framework to that setting, too, with
no need for modifications.

The dissemination of our contributions toward research question D.1 overlaps with the
dissemination of our contributions toward research question T.1 and can be found in that
paragraph.

D.2. Are synthetic spectral images sufficiently realistic?

Wewere the first to propose an OoD detection approach based on INN ensembles andWAIC
to gauge the realism of simulated SI data. We did this with the explicit goal in mind that an
unsupervised OoD approach would allow us to use it as a filtering stage in a robust ML
pipeline filtering data points that could lead to spurious predictions on downstream tasks.
Overall, we found a perceivable domain gap between our in silico data and in vivo data for
both porcine and human spectra. These findings indicate that further improvements to
our simulation framework are necessary to bridge the domain gap. At the moment, we
should expect non-negligible performance drops when ML models that were trained on
the in silico data are applied to in vivo data.

The dissemination of our contributions toward research question D.2 overlaps with the
dissemination of our contributions toward research question T.3 and can be found in that
paragraph.

D.3. Can physiological tissue changes be detected via an
out-of-distribution approach?

We were the first to apply a personalized ML approach to the problem of monitoring
physiological parameter changes using MSI data. To this end, we phrased the problem as an
OoD detection task and applied our OoD detection methodology based on INN ensembles
and WAIC. Furthermore, to our knowledge, we were the first to develop a laparoscopic
MSI system that was successfully applied in human surgery. To achieve our goal, we
overcame obstacles due to data sparsity and noise introduced due to the volatile setting of
a surgical intervention. Overall, we found that our OoD approach is capable of detecting
tissue parameter changes. Besides the good classification performance, we found that with
suitable pre-training, the INN ensemble could be adapted to the current patient in less than
1min, implying an adequate training time for in-surgery training. While the classification
performance of our approach was on par with the results of a baseline method based on
k-NN, the inference time of the proposed methodology was orders of magnitude faster
than the baseline leading to video rate capabilities of our approach. Lastly, we found a
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clear classification performance drop when using (reconstructed) RGB data to monitor
the perfusion state as compared to MSI data. Our proposed personalized approach to ML
models introduces a new paradigm to medical AI, which, together with MSI, can open the
door to new non-invasive functional imaging applications and increased patient benefit.

The dissemination of our contributions toward research question D.3 overlaps with the
dissemination of our contributions toward research question T.3 and can be found in that
paragraph.

Miscellaneous Contributions

My ML expertise, together with my core project contributions, led to a number of fruitful
collaborations with me in a supporting role. In this paragraph, I wanted to mention some
of the highlights. I supported Thuy Nuong Tran and Amine Yamlahi in their work on the
Computer Vision in Endoscopy (EndoCV) 2022 challenge [Tra+22; Yam+22]. Our efforts
culminated in first place in the polyp detection challenge and third place in the polyp
segmentation challenge [AG22]. Furthermore, I participated in the Hackathon on Energy
Efficient AI (AI-HERO) 20212 organized by the Helmholtz Association, where my team
won second place on the medical classification task [Deb+21].

The second half of my Ph. D. studies was under the influence of the coronavirus disease
2019 (COVID-19) pandemic. At the height of the first wave, my supervisor Lena Maier-Hein
initiated a collaboration with the department of tropical medicine and infectious diseases at
Heidelberg university hospital, which is led by Claudia Denkinger. Other members of our
department and I supported the department of tropical medicine in analyzing COVID-19
symptom screening data and developing methods for optimized testing strategies. Our
contribution to this work led to a joint manuscript which is currently under review at
eClinicalMedicine (part of The Lancet publishing group). The corresponding study protocol
can be found under [Dec+21].

9.2. Outlook

This thesis has presented a framework for uncertainty handling inmedical imaging validated
with the example of biophotonic imaging based on INNs. This work lays the foundation
for exciting new opportunities with regard to robust medical applications based on ML.
Our contribution to analyzing the well-posedness of inverse problems can directly be
applied for camera3 selection. Furthermore, with little adaptation, we can use it to analyze
recording poses or geometries and their influence on the inverse processes. Our work on
OoD detection can be directly incorporated as quality control in simulation frameworks.
Additionally, it can be used as a task-agnostic filtering step for downstream ML methods to

2Postponed to early 2022.
3Or more generally, recording device
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increase their prediction robustness. Lastly, our approach to personalized ML models is
not restricted to tissue parameter monitoring in settings with high inter-patient variability.
On the contrary, it can be applied to general (binary) classification tasks, where variability
due to confounders covers the class signal. This variability might be due to e. g. a change
in the recording device or in the recording environment (like different hospitals). Next to
these immediate applications, our framework has the potential for a wider impact which
we will describe below.

Detecting ambiguities is a valuable first step, but optimally, we do not stop there. Instead,
it would be desirable for the medical device to suggest ways of resolving the ambiguity.
For example, using a handheld PAI device, the model could propose new recording poses
that could reduce the uncertainty of some tissue parameter estimation. Such a device is
only thinkable with a robust method for ambiguity detection, as the proposed framework
promises. Nevertheless, additional work on representing the device’s environment in the
ML model and advanced data fusion strategies are necessary to achieve this goal.

Our OoD detection approach could become a stepping stone for more robust ML methods
in medicine. Next to its video rate capabilities, it is completely task-agnostic. Hence, it
can be used as a filter in front of arbitrary downstream ML models. This approach can
potentially prevent spurious predictions on OoD data, leading to more reliable results,
which is a central requirement for medical applications. In addition, our OoD detection
methodology could become an enabling factor in continual learning. For example, if the
domain shifts over time, maybe due to the aging of the recording device, we might need to
adapt models to this new reality. OoD detectors could trigger such retraining of the models
once a sufficient domain shift is detected. Bringing such an approach to the clinic would
require further standardization and possibly a common platform for ML models so that the
different components, like the OoD detector and the downstream model, can communicate
using well-defined interfaces.

The proposed personalized approach to physiological tissue parameter monitoring in-
troduces a completely new paradigm to ML applications in medicine. While we are still
at the early stages of the methodology, the first results are very promising. The biggest
open challenge concerns the hardening of the OoD detection to confounders, like changes
in pose or lighting. This will most likely require suitable (learned) representations of the
surgical scene that are confounder invariant. However, once this obstacle is overcome,
the medical applications are nigh countless. Whenever there is a stable status quo at the
beginning of an intervention and if deviations from this status quo might have medical
implications, our personalized approach has the potential to be adapted to the task. The
most obvious example, and the example examined in this thesis, is perfusion monitoring,
but there are other examples that fit this general setting, like monitoring the concentration
of an administered agent or monitoring a patient for the onset of sepsis.

Next to the thesis’s medical potential, the proposed validation framework for posteriors
could initiate a community-wide discussion that might lead to standardized benchmarks
for data-driven examination of (medical) inverse problems. Such an exchange could be
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very valuable for developing robust ML methods in medicine.
Overall, our results regarding uncertainty quantification are a first step toward the

spectacular opportunities for medical ML waiting on the horizon.

With this, we have reached the end of my thesis, and there is only one thing left to say:

So long, and thanks for all the fish.4

4from Adam Douglas’s “The Hitchhiker’s Guide to the Galaxy”
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