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Summary

A cell is the basic functional unit of life. Most multicellular organisms, including
animals, are composed of a variety of different cell types that fulfil distinct roles. Within
an organism, all cells share the same genome, however, their diverse genetic programs
lead them to acquire different molecular and anatomical characteristics. Describing these
characteristics is essential for understanding how cellular diversity emerged and how it
contributes to the organism function.

Probing cellular appearance by microscopy methods is the original way of describing
cell types and the main approach to characterise cellular morphology and position in
the organism. Present cutting-edge microscopy techniques generate immense amounts
of data, requiring efficient automated unbiased methods of analysis. Not only can such
methods accelerate the process of scientific discovery, they should also facilitate large-scale
systematic reproducible analysis.

The necessity of processing big datasets has led to development of intricate image
analysis pipelines, however, they are mostly tailored to a particular dataset and a specific
research question. In this thesis I aimed to address the problem of creating more general
fully-automated ways of describing cells in different imaging modalities, with a specific
focus on deep neural networks as a promising solution for extracting rich general-purpose
features from the analysed data. I further target the problem of integrating multiple data
modalities to generate a detailed description of cells on the whole-organism level.

First, on two examples of cell analysis projects, I show how using automated image
analysis pipelines and neural networks in particular, can assist characterising cells in mi-
croscopy data. In the first project I analyse a movie of drosophila embryo development to
elucidate the difference in myosin patterns between two populations of cells with different
shape fate. In the second project I develop a pipeline for automatic cell classification in a
new imaging modality to show that the quality of the data is sufficient to tell apart cell
types in a volume of mouse brain cortex.

Next, I present an extensive collaborative effort aimed at generating a whole-body
multimodal cell atlas of a three-segmented Platynereis dumerilii worm, combining high
resolution morphology and gene expression. To generate a multi-sided description of cells
in the atlas I create a pipeline for assigning coherent denoised gene expression profiles,
obtained from spatial gene expression maps, to cells segmented in the EM volume.

Finally, as the main project of this thesis, I focus on extracting comprehensive un-
biased cell morphology features from an EM volume of Platynereis dumerilii. I design
a fully unsupervised neural network pipeline for extracting rich morphological represen-
tations that enable grouping cells into morphological cell classes with characteristic gene
expression. I further show how such descriptors could be used to explore the morphological
diversity of cells, tissues and organs in the dataset.





Zusammenfassung

Zellen bilden die funktionelle Grundlage des Lebens. Vielzeller, wie zum Beispiel
Tiere, bestehen aus vielen unterschiedlichen Zelltypen, die zur Erfuellung verschiedener
hochspezialisierter Funktionen existieren. Unterschiedliche genetische Programme fuehren
dazu, dass die Zellen eines Organismus verschiedene molekulare und anatomische Eigen-
schaften annehmen, obwohl sie dasselbe Genom besitzen. Die Beschreibung dieser Eigen-
schaften ist essentiell, um ein Verstaendnis darueber zu entwickeln, wie die Zellvielfalt
entstanden ist und wie sie zur Funktion eines Organismus beitraegt.

Die Mikroskopie dient als Standardwerkzeug, um die Morphologien und Positionen un-
terschiedlicher Zelltypen in Organismen zu beschreiben. Moderne Mikroskopiemethoden
generieren immense Datenmengen, welche wiederum automatisierte, unvoreingenommene
Algorithmen zur Verarbeitung benoetigen. Die Verwendung solcher Algorithmen kann
nicht nur das Finden wissenschaftlicher Entdeckungen beschleunigen, sondern auch die
Reproduzierbarkeit der damit verbundenen Analysen ermoeglichen.

Die Notwendigkeit der automatisierten Analyse von groen Mikroskopie-Datensaetzen
hat zur Entwicklung komplexer Bildanalyse-Methoden gefuehrt. Diese Methoden sind
jedoch in vielen Faellen auf den zu untersuchenden Datensatz und die unterliegende
Fragestellung zugeschnitten. Aus diesem Grund adressiere ich mit dieser Dissertation
das Problem der automatisierten generellen Beschreibung von Zellen in verschiedenen
Mikroskopie Modalitaeten. Viele der entwickelten Algorithmen basieren auf kuenstlichen
neuronalen Netzen, welche eine vielversprechende Loesung fuer die Extraktion hochqual-
itativer vielseitiger Eigenschaften aus den zu analysierenden Daten darstellen. Des Weit-
eren widme ich mich dem Problem der Integration verschiedener Daten-Modalitaeten, um
eine detaillierte Beschreibung von Zellen im Kontext des gesamten Organismus zu geben.

Konkret zeige ich zunaechst anhand von zwei Projekten, wie die Verwendung au-
tomatisierter Bildanalyse Algorithmen die Charakterisierung von Zellen in Mikroskopie-
Daten erleichtern kann. Im ersten Projekt analysiere ich Videos von sich entwickelnden
Drosophila-Embryos, um den Unterschied in den Myosin-Mustern zwischen zwei Zellpop-
ulationen mit verschiedenen Endformen zu erklaeren. Im zweiten Projekt entwickle ich
einen Algorithmus, basierend auf neuronalen Netzen, um die automatisierte Klassifizierung
von Zellen in einer neuen Mikroskopie-Modalitaet zu ermoeglichen. Dies soll dazu dienen,
um zu untersuchen, ob die Qualitaet der neuen Modalitaet ausreicht, um Zelltypen in
einem Volumen der Hirnrinde einer Maus zu unterscheiden.



Anschlieend stelle ich meinen Teil im Rahmen eines umfangreichen Kollaborativen
Projektes vor. Das Projekt zielte darauf ab, einen multimodalen Ganzkoerper-Zellatlas
eines dreisegmentigen Platynereis dumerilii Wurms zu erstellen, indem hochaufgeloeste
Mikroskopie-Daten der Zellmorphologie mit deren Genexpressionen kombiniert wurden.
Um in diesem Zellatlas eine vielschichtige Beschreibung von Zellen zu ermoeglichen, habe
ich eine Methode entwickelt, mit der Genexpressionen auf kohaerente und entrauschte
Weise segmentierten Zellen aus dem Elektronenmikroskopie-Volumen zugeordnet werden
koennen.

Schlielich, als mein Hauptprojekt, habe ich mich auf die umfangreiche unvorein-
genommene Extraktion von Zellmorphologie Eigenschaften aus dem Elektronenmikroskopie-
Volumen von Platynereis dumerilii konzentriert. Ich habe einen auf neuronalen Netzen
basierten Algorithmus entworfen, der vollkommen unsupervised, d.h. ohne Annotationen,
trainiert werden kann. Dieser Algorithmus extrahiert hochqualitative vielseitige Reprae-
sentationen der Zellmorphologie, welche die Gruppierung von Zellen in morphologische
Klassen mit charakteristischen Genexpressionen ermoeglichen. Zudem veranschauliche
ich weiter, wie diese Repraesentationen von Zellen benutzt werden koennen, um die mor-
phologische Diversitaet von Zellen, Geweben und Organen zu untersuchen.
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Chapter 1

Introduction

1.1 Cellular diversity

Life starts at the cellular level. A single cell is necessary and sufficient for all the main
attributes of life that include growth and reproduction, conversion of energy and chemical
compounds, and reaction to external and internal stimuli [1, 2]. Furthermore, the om-
nipresence and abundance of unicellular organisms, including archaea, bacteria, protists
and yeasts, show it is in fact a successful strategy to have one single cell independently
fulfil all the above mentioned functions. Nevertheless, groups of cells that briefly or per-
manently depend on each other have repeatedly appeared across the main branches of the
tree of life [3, 4, 5].

Making such multicellularity permanent allowed cells to progressively specialise in
fulfilling a particular function, giving origin to increasingly diverse cell types. For example,
choanoflagellates, the closest living unicellular relatives of animals, have only one cell type
that can switch between two forms - flagellate and amoeboid - that are presumed to give
rise to epithelial and crawling cells in animals [6]. The epithelial cell family in sponges
already shows gene regulatory modules necessary for actomyosin contractility and photo-
and mechanosensation, suggesting that they might further differentiate into sensory cells
and myocytes [7]. The latter group further diverges into smooth and striated muscles in
bilaterians, with smooth muscles regaining striation proteins to form cardiomyocytes in
vertebrates [8].

Such progressive functional diversification generated organisms comprising tens or
even hundreds of cell types. Still for every single individual all this diversity emerges from
one cell only - a fertilised egg, or zygote. A series of cell divisions will eventually transform
a zygote into an entire organism composed of up to trillions of different cells. All these
cells share the same genome, still under the influence of internal and/or external factors
they will end up expressing different genes: their transcriptomes will be slowly diverging,
reflecting their specialisations. This differential gene expression will in turn lead to the
production of different proteins, lipids and other metabolites, which will cause cells to have
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different morphological and physiological characteristics and traits, generally referred to
as cellular phenotypes. Such phenotypes, combined with cellular position will ultimately
define cell functions in the organism.

1.2 Describing morphological cell types with microscopy

The first ever attempt to describe cells was made in 1665 by Robert Hooke, who observed
a piece of cork under a self-made microscope and noticed regular structures that resembled
a honey-comb. Soon after, another scientist working on improving microscopes, Antonie
van Leeuwenhoek, for the first time described unicellular organisms. Centuries afterwards
microscopy would remain the main method of characterising cells, and cells would be
classified and even named based on their morphology and position.

At the moment, constantly improving light microscopy (LM) methods allow for diverse
ways of describing cellular phenotypes (reviewed in [9]). In transmission light microscopy,
used by Hooke and Leeuwenhoek, the image is formed when a sample absorbs the light
passing through it. However, most animal cells do not absorb enough light, so the resulting
image has relatively low contrast. Still, so far it is the easiest and the least phototoxic
way of imaging cells, so this low contrast is often compensated by powerful image post-
processing algorithms, making the method widely applicable for various medical screening
applications [10, 11, 12].

A big milestone for imaging biological samples has been achieved by using fluorescent
labels to target specific molecules of interest inside living cells. This allowed us, for the first
time, to directly investigate not just visible structures, but also molecular characteristics of
cells, such as subcellular localisation of various proteins and their interactions [13, 14, 15].
Another breakthrough was the development of light-sheet microscopes that use a thin
sheet of light to illuminate the sample, drastically reducing phototoxicity, thus allowing
for much longer imaging periods. This method is widely used for describing cellular
morphology and dynamics during organism development [16, 17, 18, 19, 20]. A further
major step forward was breaking the diffraction limit of light by superresolution methods
[21, 22, 23, 24, 25] that improved the ability to observe molecules directly under the
microscope. These methods enabled, for example, better characterization of chromatin
organisation [26], centrioles [27] or the nuclear pore complex [28].

While such fluorescent light microscopy methods allow following specific molecules
inside living cells with unprecedented resolution, their main limitation is the necessity to
label molecules of interest. In order to obtain a detailed view of all the cellular structures
at once the method of choice is electron microscopy (EM) that uses electrons instead
of light, enabling much higher resolutions. The image is generated by electrons either
transmitted through a thin sample (transmission electron microscopy, TEM) or reflected
from the sample surface (scanning electron microscopy, SEM).

Soon after the first electron microscope was produced by Ernst Ruska and Max Knoll
in 1931, it became a widely adopted method for examining biological tissues and cells [29,
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30]. Many cell types have been firstly described by scientists looking at EM samples [31, 32,
33]. Recent advances in instrumentation, sample preparation and postprocessing methods
allowed acquiring whole volumes of tissues, organs or even smaller organisms in 3D [34].
For the first time this gave access to fine 3D ultrastructure of cells at nanometer resolution,
allowing detailed morphological characterisation of membrane-bound and membraneless
organelles [35, 36, 37]. Furthermore, such resolution in 3D allows researchers to study
cellular neighbourhoods and interconnections, which is essential for describing cell types
where such connectivity also defines their function, e.g. neurons. Overall, methods that
profile both high resolution ultrastructure and interactions with other cells are crucial to
determine how cells function separately and as part of the whole organism.

1.3 Describing molecular cell types

The rise of single-cell transcriptomics has revolutionised the way cell types are defined [38].
High-throughput methods for profiling gene expression have shown that there is much more
cellular diversity within an organism than we previously expected based on morphological
appearance only. This led to discovering multiple new cell types in well-studied tissues and
organs, as well as in non-model organisms [39, 40, 41, 42]. The transcription information
can be further supplemented by profiling chromatin modifications, protein expression and
metabolite composition, generating an even more detailed molecular view of a cell.

However, at this level of precision it is not clear which differences truly define cell
types and which ones rather characterise temporary cell states. Consequently, there is
no generally accepted definition of cell type. Some researchers would define it based on
the origin of cellular diversity - complexes of transcription factors that drive cellular gene
expression programs, while the others would take into account its end goal - varying
functions fulfilled by different cell types [43, 44, 45, 46, 47]. Nevertheless, regardless of
which approach one chooses, it is clear that in order to get a comprehensive understanding
of how different cells function, one needs to consider both the molecular and the anatomical
description of a cell [48].

While single-cell omics technologies can describe cells in precise molecular details, the
information about cell location, morphology and connectivity is lost due to the necessary
step of tissue dissociation during sample preparation. To alleviate this problem, spatial
techniques for large-scale molecular profiling have emerged recently. Reviewed in more
detail in [49, 50, 51], these methods can now offer measuring the expression of thousands
of genes in a tissue at subcellular resolution while retaining information about the cell
location and phenotype, as visualised by a light microscope [52, 53]. At the moment the
application of such methods is still limited to tissue slices, while whole-body studies of
smaller model organisms typically rely on whole mount in situ hybridization [54]. This
technique can provide cellular resolution gene expression in 3D, however is still limited to
a few genes of interest at a time. Therefore, extending the available methods to probe
more genes in bigger volumes is necessary to describe the variety of cell types on a large
scale.
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1.4 Automating image-based cell type descriptions

The exponential increase in throughput of methods for both anatomical and molecular
characterisation of cells leads to the generation of massive amounts of data. The field of
’omics’ could never rely on manual data analysis, thus developing more precise and efficient
pipelines for fully automatic cell typing has constantly been of high priority. Analysing
microscopy images, however, has been historically done manually. In recent years multiple
computational solutions emerged, nevertheless many types of analysis are still performed
fully or partially by hand.

Developing automated methods for image analysis is of utter importance for two
main reasons. Firstly, manual examinations are often highly time consuming, making it
unfeasible to analyse, for instance, big EM volumes or extensive light-sheet microscopy
movies. Secondly, even when working with smaller amounts of data, manual analysis is
highly prone to research bias. This includes not only confirmation bias, when a researcher
unconsciously skews the analysis to confirm the desired hypothesis, but also simply focus-
ing on the parts of data that are more likely to be important for a given question, thus
potentially missing some interesting observations. For example, a researcher might acquire
a whole EM volume of a smaller animal to study nervous system. However, while focusing
on neurons only they might miss some rare cells of other types. Therefore, with more and
more imaging data being acquired, developing automated methods for analysing cells in
microscopy volumes is essential for systematic unbiased investigation of cellular diversity.

In order to quantitatively characterise cells in an imaging volume, one first needs to
delineate the cells present in the data. This is the task of cell segmentation, that aims to
find which pixels of the image belong to which cell. The emergence of ever increasing vol-
umes necessitates efficient automatic segmentation pipelines. A substantial improvement
to the accuracy of such pipelines has been brought by the adoption of neural network
based methods, allowing segmenting and analysing cells on a previously unimaginable
scale. For example, automatic segmentation of the whole Drosophila central brain helped
researchers identify around 25,000 neurons and trace the connections between them that
led to a better understanding of how specific fly behaviours function on a cellular level
[55]. For time-resolved data, segmenting and subsequent tracking of cells in light-sheet
microscopy videos of early mouse development enabled researchers to statistically quantify
dynamics of tissue morphogenesis [19].

While most of the modern pipelines for automatic large-scale morphology character-
isation necessarily start with cell segmentation, further analysis steps vary to a greater
extent. This arises from the fact that the very definition of morphology in microscopy stud-
ies heavily depends both on the type of acquired data and on the question a researcher
aims to address. In fluorescence microscopy cellular morphology can only be quantified
for the labelled structures, most commonly, cell membrane and nucleus. For example, Wu
et al. [56] use cell and nucleus segmentation of breast cancer cells to measure more than
200 morphological properties, which define distinct cell classes predictive of tumorigenic
and metastatic potentials. Electron microscopy gives researchers a chance to focus on a
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broader range of morphological characteristics. For example, in order to investigate en-
ergy management in phytoplankton, Uwizeye et al. [57] focus on morphological features
of plastids, mitochondria, nuclei, vacuoles and various energy storage structures. Another
interesting case of image-based cell characterisation is classifying neurons that historically
required additionally describing their branching patterns [58, 59].

The multitude of different ways to describe cellular morphology led to a great diversity
of manual and automatic pipelines for analysing cell imaging data. Such pipelines are often
dataset-specific, so addressing a new question often requires designing a completely new
pipeline. Thus, to facilitate image-based cell typing more general methods are needed
that are easily transferable between different datasets. A potentially promising solution
is the application of neural networks that have emerged in the last decade as a one-fits-all
solution for natural image processing. Designed to mimic the way our brain learns to
recognise different objects, they are able to automatically identify features important for
a specific task at various levels of detail. Particularly suitable for describing fine-grained
phenomena in big and complex data, neural networks have already been successfully used
for automating various biological image analysis problems [60, 61, 62], so adapting them
for characterising cellular morphology is likely the sought-for next step for automating cell
type investigation in imaging data.

1.5 Thesis overview

This thesis begins to address the problem of automating the description of cells in various
imaging modalities. I will describe different types of imaging data used to investigate cell
differences and show how computational methods could be used to automate analysing
such data. In particular, I will focus on neural networks as a generally applicable state-
of-the-art method for image analysis. Moreover, I will show how different data modalities
describing anatomical and molecular cell characteristics can be integrated, and further
discuss generating unbiased many-sided representations of cells.

To start with, in Chapter 2 I introduce a small example of how I automated image
processing to find the underlying cause of differences in cellular behaviour. During the
first stage of gastrulation in the fruit fly, initially similar cells of developing mesoderm
either expand or constrict based on their position. However, it is still not well understood,
how exactly this binary fate is triggered. I analysed myosin dynamics in a light-sheet
microscopy movie of Drosophila gastrulation [63], aiming to detect and quantify differ-
ences in myosin expression that could prompt such divergence in cell shape. I showed that
there is no obvious difference in myosin patterns between the two populations of meso-
derm cells, but their contrasting fates can rather be explained by the influence of their
neighbourhoods.

In Chapter 3 I describe a small pilot project aimed at evaluating how well a new
intermediate-resolution imaging modality captures cellular morphology. X-ray holographic
nano-tomography (XNH) was developed to bridge the gap between light and electron mi-
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croscopy and offers substantially higher resolution than LM methods, but a bigger field of
view than EM imaging, that is often necessary for neural circuit discovery [64]. In order to
quantify how prominent cell type specific morphology is in this type of data I set up a neu-
ral network cell classification pipeline and applied it to the mouse cortex volume acquired
by XNH with annotated cell types from [64]. I showed that the data quality is sufficient
to automatically classify brain cell types with high accuracy even without prior cell seg-
mentation, concluding that XNH imaging is suitable for differentiating morphological cell
types in the brain.

In Chapter 4 I present an extensive collaborative study aimed at integrating high-
resolution morphology and gene expression data for an entire annelid worm on the single-
cell level. In order to generate a more detailed description of different cell types, an
EM volume of the whole animal was acquired, fully segmented and aligned with multiple
whole-body gene expression maps [65]. As a part of this collaborative effort to generate
a multimodal cellular atlas of the whole animal, I improved gene expression assignment
by designing an automatic way to assign each segmented cell a coherent denoised gene
expression profile. Such profiles could be further used to integrate single-cell sequencing
data into the atlas, paving the way to elucidate the interconnection of gene expression and
phenotype.

Finally, in Chapter 5 I describe my main PhD project aimed at designing a pipeline
for automated unbiased extraction of comprehensive cellular morphological representa-
tions from EM data. Cell morphology has been mostly described using a limited number
of manually defined features. However, such features are mostly restricted in the scope of
visual characteristics they can represent. As a part of the effort to generate exhaustive
morphological descriptors, I developed a pipeline for unsupervised deep-learning based ex-
traction of texture representations from cells segmented in EM data. I applied the pipeline
to the EM volume of Platynereis dumerilii and showed that these features, supplemented
by similarly extracted shape features [66], quantitatively outperform a broad set of manu-
ally defined descriptors on the tasks of finding similar cells and distinguishing cell classes.
I further show how these morphological representations capture visual similarities between
cells, allowing to group them into meaningful morphological classes consistent with gene
expression. Finally, I demonstrate how using such unbiased descriptors can assist exploring
the whole-animal volume, discovering rare cell types and tissues.

I conclude this thesis with Chapter 6, where I briefly summarise my contributions and
discuss the next steps to be taken to achieve the ultimate goal of fully automatic unbiased
complete description of cell types.
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Chapter 2

Characterising shape changes of
mesodermal cells during
Drosophila gastrulation

2.1 Background

Describing cells mostly implies investigating their molecular and morphological pheno-
types. However, the way cells develop and function is also heavily influenced by their
environment. This is especially prominent during embryo development, when individual
cell fates are often defined by complex interactions between different cell populations. In
this chapter I will focus on analysing shape fates of mesodermal cells during the early
stages of Drosophila gastrulation imaged by light-sheet microscopy. I use computational
analysis methods to show that the cell shape change during this process is regulated by a
combination of molecular determinants and mechanical interactions between neighbouring
cells.

2.1.1 How cell fate is decided

The development of most multicellular organisms starts with one cell only. The cell repeat-
edly divides and eventually its descendants differentiate to form the astonishing diversity
of cell types that we see in complex organisms. However, the way initially identical cells
choose astonishingly different cell fates is not trivial to describe. This divergence is caused
by differing genetic programs that can be triggered by a multitude of factors, or even their
combinations, that could be both intrinsic (e.g., cytoplasmic determinants) or extrinsic
(e.g., morphogen gradients, cellular interactions). Moreover, these factors are hardly ever
binary, meaning that cellular differences mostly arise not from the factor being fully present
in one cell and fully absent in the other one, but rather from a small variance in the fac-
tor magnitude in different cells. Such fate decisions, provoked by subtle fluctuations, are
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commonly referred to as symmetry breaking and can be observed, for example, during the
establishment of the anterior-posterior body axis as a result of the Wnt-proteins gradient
[67]. Many developmental processes based on symmetry breaking have been studied in
detail and the triggering factor is already known, however, describing how the continuous
factor translates into discrete outcomes is often far from straightforward.

2.1.2 Cells change their shape differently during Drosophila gastrula-
tion

An example of such a well-studied, yet not fully understood process is the shape change of
mesodermal cells during Drosophila gastrulation. Gastrulation is a process that transforms
an early embryo, that is a one layer sphere of epithelial cells, into a gastrula with three
layers. These three layers, ecto-, meso- and endoderm, will further give rise to all the
organism tissues. In Drosophila this transformation starts in the lower (ventral) part of
the embryo that contains prospective mesoderm. The mesoderm epithelium invaginates
along the midline to form a ventral furrow. This inward folding is initiated in the central
rows of mesoderm cells that accumulate substantial amounts of myosin in their apical parts.
Afterwards, a series of pulsed actomyosin contractions in these cells causes them to reduce
their apical surfaces. To preserve tissue integrity and compensate for this constriction the
apical surfaces of the immediate neighbouring rows of lateral mesodermal cells expand
accordingly [68, 69, 70, 71].

While the major molecular details of this constriction have been well-studied, what is
still not clear is how the differences between the constricting and expanding mesodermal
cells arise. Characterising genetic differences does not fully explain the binary fate decision:
these cells seem to follow a similar developmental program and express the same genes,
albeit in different quantities. The expression of many genes involved in myosin activation,
such as t48, fog, and mist, shows a dorsoventral gradient [72] that leads to a smooth
gradient in myosin concentration. The central mesodermal cells, located in the most
ventral part of the embryo show the highest levels of contractile actomyosin, are the first
ones to contract and have the highest degree of contraction. All these three characteristics
gradually decrease in mesodermal cells in the dorsal direction. Given that, it is clear that
myosin concentration is highly important for apical constriction, however, the mechanism
behind the lateral mesoderm cells expanding their apical area is yet to be understood.

2.1.3 Myosin concentration alone can not explain differences in shape

As a part of the project aimed at a better understanding of the influence of actomyosin
networks on constriction and expansion patterns [63], Sourabh Bhide and Denisa Gom-
balova imaged the apical surface of the Drosophila embryo ventral side during the time
when the central mesodermal cells constrict. Sourabh Bhide segmented the cells in these
videos and quantified cellular myosin concentrations. The analysis confirmed that at each
point of time the concentration of myosin is higher in constricting cells than in the ex-
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panding ones. Moreover, the rows with higher concentration of myosin - the central ones
- are the first ones to constrict. However, he also observed that the expanding cells are
reaching similar myosin concentrations, albeit at later stages of the process. Still, the
levels of myosin that triggered constriction in the central rows do not seem sufficient to
achieve a similar effect in the lateral mesoderm that expands nevertheless. This shows
that although at each single time point one could correlate the constriction level of a cell
to its myosin concentration, it is generally impossible to define a concentration threshold
that a cell needs to reach in order to start constricting.

2.1.4 Project aims and contributions

My aim was to investigate which differences could be detected between the cells with
the same concentration of contractile meshwork, that could explain the diverging fates of
otherwise similar cells during the process of ventral furrow formation. More specifically, I
wanted to analyse the imaged mesodermal cells to find intrinsic or extrinsic characteristics
potentially affecting the cell shape changes. First, I was interested if any visual difference
between the myosin loci exists and could be identified. Second, I wanted to examine if
cellular environment affects the shape changes as well.

The analysis described further was performed on the above-mentioned data acquired
by Sourabh Bhide and Denisa Gombalova as a part of [63] and has been included in the
paper. The hypotheses that guided the analysis were generated by Maria Leptin, Sourabh
Bhide and myself.

2.2 Results

2.2.1 Difference in myosin patterns

The first possibility that I wanted to explore is that given the same myosin concentration
the actomyosin meshwork might assemble differently in constricting and expanding cells.
In this case I expected to see some visual differences between the myosin loci in these cells.
To be able to automatically recognize such differences I referred to convolutional neural
networks (CNNs).

Neural networks are known to be strong feature extractors for images, with convolu-
tional layers designed to capture local texture patterns. So in order to see whether there
is a visual difference in myosin between the cells of different fates, I decided to train a
network to distinguish between these two types of cells. I expected that if such a difference
is noticeable, the network would be able to successfully predict if a cell will constrict or
expand based on the myosin distribution of the cell. To make sure such predictions are
based on the distribution only, and not the concentration, I planned to use the cells with
the same myosin concentration, meaning I would take constricting cells from earlier time
points and expanding cells from later ones.
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The biggest advantage of using CNNs for this type of problems is that one does not
have to manually define any visual descriptors, as the network decides itself which features
might be important for a given task. This means we can refrain from defining what the
potential difference might be and just let the network find it on its own. However, this
comes at the price that the features extracted by the network are not directly explainable.
Thus, it would not be straightforward to confirm whether the differences the network has
found are indeed related to the myosin pattern in the cells.

For training I used myosin channel only. However, I noticed that it is still possible to
infer cell shape from myosin distribution, and this could potentially give the network an
easier cue of what shape changes await a certain cell. That is why for all the experiments I
additionally performed a ’negative control’ - I trained the network in the very same setting
using cell segmentation masks instead of the myosin channel. Then, if the network can
predict the cell fate not only from the myosin distribution, but also from the cell mask, I
would not be able to claim there is any difference in myosin patterns.

Additionally, I considered that using the binary labels ’constricting’ or ’expanding’
might not be informative enough, because similarly to the myosin gradient, constriction
also follows a gradient, with more central cells constricting earlier and stronger than the
more lateral ones. That is why I used the row numbers defined by Sourabh Bhide as
labels. The enumeration starts with row 1 of the most central cells and ends with the last
layer of mesoderm cells of row 8. During gastrulation rows 1-6 gradually constrict and
rows 7 and 8 expand (Figure 2.1). Due to the imaging angle only the rows 3 to 8 could
be segmented, so I used labels 3-6 for constricting cells and 7-8 for expanding ones.

Figure 2.1: Training data and prediction accuracy for predicting the row number for cells
of the same time point. Upper row: cell segmentation masks, lower row: myosin. The
color coding of the rows is the following. Constricting rows: 3 - magenta, 4 - indigo, 5 -
blue, 6 - medium green, expanding rows: 7 - red, 8 - orange. During the training each cell
from the image was fed to the model separately. The prediction accuracy on the right of
each figure shows the percentage of correct predictions of constricting vs expanding rows
(see Methods for more details).
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In order to show that the network setup is functional, I tried to predict the row
numbers in the cells of the same timeframe. In the early timepoints of the video one can
not notice any difference neither in myosin pattern or concentration, nor in cell shape yet.
Over time the lower constricting rows start gradually accumulating higher concentrations
of myosin, but the cell shape change comes with a delay. This is clearly reflected in the
network predictions (Figure 2.1): at the early timestep of 250s the row number can hardly
be predicted from both cell masks and myosin images. At the later timestep of 375s the
shape is still not predictive, but the differences in myosin concentration already let the
network differentiate the rows. Finally, at the late timestep of 500s the network performs
well on both myosin and shapes. Not only this showed that the network is able to learn the
connection between myosin concentration and constriction patterns whenever they exist,
but also that it does not extract any myosin-unrelated cues from the early timepoints.

After I verified that the network is behaving as expected, I turned to the main aim
of the experiment - to examine if there are any differences in myosin pattern between the
constricting and expanding cells of the same myosin concentration. To make sure any
pattern differences are already well-pronounced, I selected the highest myosin concentra-
tion present in a sufficient number of both constricting and expanding cells (Figure 2.2).
The network scored the accuracy of 61% on cell shapes and 65% on myosin. This shows
that the network struggled to learn any differences and most of its performance can be
attributed to cell shape features rather than to the myosin patterning.

Figure 2.2: Training data for predicting the row number for cells with the same myosin
concentration. Examples of cells from different rows are shown.

It is important to stress out that these negative results can not be unambiguously
interpreted as no difference in myosin pattern. This outcome, however, shows that even
if a difference exists, it is not visually obvious or could not be captured by the imaging
methods used.
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2.2.2 Neighbourhood influence

Not finding any differences in myosin pattern, I aimed to investigate the influence of cellular
neighbourhoods. An observation that row 7, immediately adjacent to the constricting
cells, expands more than the following row 8 led me to the hypothesis that the inability to
constrict comes not from certain properties of the contractile network of the cell, but rather
from the high pulling forces acting on it from the neighbours that started constricting
earlier. This hypothesis could also explain why, when detached from their constricting
neighbours, the expanding rows regain the ability to constrict [73]. If this hypothesis proves
true, that would mean that the shape change of a cell depends on the concentration of
myosin both inside the cell and in its immediate neighbourhood. Thus, I aimed to correlate
the shape change to the myosin concentration inside and outside of each cell.

Again I decided to refrain from using the binary labels ’constricting’ and ’expanding’
and calculated the cell shape change as the area of a cell in the next time step divided by
the area in the given timestep. To calculate myosin concentration outside of a cell I first
considered calculating the average concentration of all the cell’s immediate neighbours.
However, I decided against it, since I expected that myosin loci further away from a given
cell might influence it less then the ones closer to it. Thus, given that neighbouring cells
might have different radii, such an approach could give an incorrect estimate of the myosin
that actually influences the cell. That is why, to calculate the outside concentration I took
a radius of 70 pixels (8.5 µm, approximately, one cell diameter) around the cell and divided
the sum of myosin intensity in this area by the size of the area (Figure 2.4A).

Figure 2.3: Size change depends on both cellular and neighbourhood myosin concentration.
A. Myosin concentration inside a cell plotted against the cell’s neighbourhood myosin
concentration. Color encodes the change in cell size over two consecutive time points (red
- constricting, blue - expanding). B. The neighbourhood myosin concentration plotted
against the relative size change for a subset of cells boxed in A.
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Finally, I plotted the concentration of myosin outside the cell vs inside the cell and
colored it by cell shape change (Figure 2.3A). The plot clearly shows that given the same
myosin concentration inside two cells, a cell tends to constrict more if its neighbours have
lower myosin concentrations. More specifically, for cells with similar myosin concentration
(around 105 units), the correlation between the neighbourhood myosin and the cell shape
change is around 0.76 (Figure 2.3B). This strongly suggests that the cell shape fate is
indeed influenced by the myosin concentration of the cell neighbourhood.

2.2.3 Calculating myosin offset

Given the demonstrated correlation, Maria Leptin expected that the pulling force of myosin
in constricting cells might lead to displacement of myosin loci in neighbouring cells. If
this holds true, we would expect constricting cells to pull neighbouring myosin stronger
towards their membrane than the expanding ones. To check whether it is the case, for each
cell in every timeframe I calculated the ’neighbourhood myosin offset’ - a value that shows
the average distance of surrounding myosin from a cell - with lower values indicating cells
where surrounding myosin is located closer to the cell and vice versa. This was achieved by
weighing the neighbourhood myosin, as defined before (Figure 2.4A, area between the two
yellow lines), by the distance from the cell boundary (membrane) (Figure 2.4B). Plotting
this value against cellular myosin concentration and colouring it by cell size change we see
that indeed given the same myosin concentration the constricting cells pull myosin loci
around them closer to their cell membrane than the expanding ones (Figure 2.4C).

Figure 2.4: Cellular neighbourhood and myosin offset. A. I calculated neighbourhood
myosin in a 70-pixel radius area around the cell (between two yellow lines). B. Distance
from the cell membrane that I used to weigh neighbourhood myosin to calculate myosin
offset in cell neighbourhood. C. For each cell I related its neighbourhood myosin offset to
the concentration of cell-internal myosin.
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To complement this, I also calculated myosin offset within each cell as the euclidean
distance between the centre of mass of a cell and the centre of mass of the myosin expression
within the cell. This also shows that bigger, expanding cells have their myosin loci further
away from their centre than smaller, constricting cells (Figure 2.5). From this I could
conclude that constricting cells could indeed exert a pulling force on the myosin loci of
their neighbours, preventing their constriction.

Figure 2.5: Internal myosin offset. All segmented cells of the embryo at 550s are shown
coloured by the degree of myosin offset inside a cell. The centers of mass of each cell and
its myosin intesity are shown as a green and red dot, respectively.

2.3 Discussion

2.3.1 Contributions

In this chapter I showed how differences in cell shape arise at the interplay of intrinsic
and extrinsic factors and how hypothesis-driven automated image analysis can assist in
elucidating and confirming these factors. More specifically, I have shown that constricting
and expanding mesoderm cells might not have differences in the pattern of contractile
meshworks, but rather take different fates due to the neighbourhood interactions. To
prove this, I have detected a correlation between myosin concentration inside and outside
the cell and cell area increase or decrease. Additionally, I have observed and quantified the
changes in location of myosin loci caused by pulling forces of the neighbouring constricting
cells.

2.3.2 Further development

While the results of the conducted analysis are unambiguous, more accuracy could still
be gained in describing cellular shape and myosin concentration changes. Firstly, more
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samples could be acquired to give the results more statistical significance. More data would
also allow for more precise quantification of myosin concentrations inside and outside of a
cell needed to trigger constriction or expansion.

Additionally, a better modelling of changes in both cell shape and myosin distribution
could be achieved by analysing the original 3D data instead of its 2D views. The biggest
obstacle for such analysis is segmenting cells in 3D that, even if assisted by the state-of-the-
art deep neural networks, would require a substantial time investment to generate training
data and to proofread the resulting segmentations. Still, obtaining 3D segmentation would
allow us to analyse the role of the overall myosin distribution in a cell, not just the apical
myosin. Similarly, this would facilitate describing true cell shape changes, rather than the
mere changes of the cell’s apical surface.
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Chapter 3

Classifying cells imaged by a new
intermediate resolution modality

3.1 Background

In the previous chapter I showed how cellular differences can be described by analysing
fluorescent microscopy data. While such type of data is sufficient to inspect cellular shapes
and examine one or a couple of proteins of interest, describing fine cellular morphology
requires higher resolution than a light microscope can provide. Although many efforts
are put into breaking the light diffraction limit, most studies that require characteris-
ing cellular ultrastructure or tracing thin cytoplasmic extensions are done using electron
microscopy. This technique has recently seen a rapid increase in both resolution and
throughput, but comes with with high costs and long acquisition times that substantially
limit the size of samples that can be imaged. In this chapter I focus on a newly developed
imaging method of intermediate resolution and, as a part of a pilot project, I investigate
how well it can describe brain cells based on their morphology.

3.1.1 The need to bridge the gap between light and electron microscopy

Imaging biological samples requires a trade-off between imaging scale and resolution. Tra-
ditionally, the task of describing fine morphology of a limited number of cells has been
solved by electron microscopy, while light microscopy was used to image bigger samples,
sometimes over the course of hours or days, yet with limited resolution. However, many
biological problems also require intermediate imaging techniques allowing for bigger sam-
ples than EM, but higher resolution than LM. This gap has been mostly bridged by X-Ray
imaging, with micro-CT scanners being increasingly often used as a fast and simple non-
destructive imaging method [74, 75]. This allowed, for example, examining the quality
of samples prepared for long EM data acquisition [55] or targeting specific regions of the
animal volume for further EM imaging [76].

21



Another example of an application that would greatly benefit from such intermediate
resolution and scale imaging is the field of connectomics that aims to map all the neural
connections in a brain [55, 77, 78]. Tracing axons and dendrites (neurites) and detecting
their connections (synapses) requires resolution higher than light microscopy can currently
offer. However, electron microscopy, which is currently the leading method in this field,
heavily restricts the field of view - size of the areas that could be imaged in block, due to
the high cost and time required for imaging. Thus, X-Ray imaging could be a promising
direction for characterising neural circuits. However, so far the limited contrast of the
method did not allow for imaging of label-free brain regions.

3.1.2 X-ray holographic nano-tomography for fast imaging of thick sam-
ples

To address this limitation Kuan et al. [64] proposed a new way of high resolution imaging
by adjusting X-ray holographic nano-tomography (XNH) for imaging thick densely-stained
brain samples. The authors improved both the contrast and the field of view, achieving
sub-100-nm resolution on volumes of central and peripheral nervous systems of mouse
and adult Drosophila. More specifically, they have shown that it is possible to achieve
resolution below 90nm with the field of view bigger than 50µm and resolution below 200
nm with the field of view around 250µm. They also showed a possibility of imaging a
whole Drosophila leg - a body part that is difficult to physically section, thus unsuitable
for EM imaging. Stitching together multiple XNH scans of the leg, the authors obtained
a volume over 1.4mm long - a size unreachable for the current EM methods.

With regards to describing neuron morphology, Kuan et al. showed the possibility
to identify and automatically segment neuron somas and larger neurites in XNH data.
Smaller neuron processes would still require higher resolution (5-10nm) EM imaging to be
resolved, so the authors also demonstrated a way to target smaller regions of interest, e.g.
areas with synaptic connections, using EM. They have additionally used the acquired EM
volumes to confirm that neurons in both datasets have similar morphological features and
tracing of larger neurites in the XNH volumes is reliable. The conducted work showed
that while reconstructing neural connections still requires EM imaging, applying the fast,
intermediate-resolution XNH imaging as the first step substantially increases the size of
neuronal tissue areas that can be simultaneously analysed. Thus, such a hybrid approach
can considerably simplify and accelerate describing neuronal types and their interplay.

3.1.3 Project aims and contributions

To further investigate the applicability of this promising approach to various neuroscience
problems, Aaron T. Kuan, Alexandra Pacureanu, Cornelius Gross, Anna Kreshuk and
myself have drafted a pilot project aimed to explore how well different cell types can be
told apart at such levels of resolution. More specifically, we sought to investigate the
possibility of automatically classifying cells in the lower-resolution (130nm) XNH volumes
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of the mouse cortex from the study (Figure 3.1). This resolution and the volume contrast
were not sufficient to automatically segment neuron somas, let alone neurites. Thus, I
wanted to check if, even in the absence of segmentation, cellular morphology at this level
of resolution is descriptive enough to predict the cell types.

Figure 3.1: Comparison of the image resolution of the mouse cortex volume acquired by
XNH (X-ray holographic nano-tomography, left) and EM (electron microscopy, right).
The lower images show zoomed in central regions of the upper images.

For this Aaron T. Kuan, Jasper S. Phelps and Julie Han manually annotated cells in
the XNH volume of the mouse posterior parietal cortex, assisted, whenever available, by
the aligned EM volume. My goal was to see if by using these manual labels I could train
an automated algorithm to distinguish between these cell types by solely relying on the
XNH modality. The full description of the data and its acquisition can be found in [64].
The project was designed as a pilot project without the aim to publish the results.
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3.2 Results

3.2.1 Designing a neural network classification pipeline

To see whether the data resolution is good enough to automatically tell the cell types
apart, I decided to train a neural network using existing annotations as a source of super-
vision. Convolutional neural networks have been proven to be strong algorithms for image
data classification, so I have chosen a relatively shallow network ResNet-18 [79]. Having
comparatively few parameters, it can be trained on a modest amount of data, yet shows
good performance across multiple image datasets.

The available annotations contained four classes: pyramidal neurons, non-pyramidal
neurons, non-neuronal cells and unclassified cells (Figure 3.2). However, after inspecting
the latter class I decided not to include it into the training process due to the following
reasons. Firstly, some of the cells in this category were repeatedly confidently assigned
to one of the other classes by multiple of my trained networks. Manual verification done
by Aaron T. Kuan showed that in most cases this assignment was correct. Secondly,
many of the cells in this category were located on the border of the acquired XNH volume
(Figure 3.2, lower right) that led the network to predict any cell on the volume border as
unclassified.

Figure 3.2: Cell class annotations used for training a classification network. For each cell
class two example cells are shown.

As I have mentioned before, no segmentation was available for this dataset. The
annotations were done is a form of a node (’seed’) with the label, placed approximately
in the centre of each cell. Thus, just taking a region of a pre-specified radius (bounding
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box) around each cell was mostly sufficient to separate the cell from its surroundings. I
hypothesised that taking a bigger bounding box around a cell would increase the classifi-
cation accuracy, since the network would have more access to cell extensions such as axons
and dendrites. However, due to high cell density in some parts of the volume, this also
resulted in multiple cells being present in one bounding box, so decreasing its radius has
proven to be better for the final accuracy. The problem of having multiple cells in one
bounding box can be especially disadvantageous for convolutional neural networks, since
they do not have an explicit concept of position. That means the cell of interest in the
centre could be treated equally to any other cell on the periphery of the bounding box.
That is why I have also experimented with adding positional information to the input raw
volume. However, this approach did not bring any accuracy improvement.

Another problem that needed to be addressed was the high imbalance of the annotated
classes (Figure 3.2). Firstly, if not properly accounted for, it might lead to predictions
being biassed towards the most frequent class. To avoid this, I used weighted sampling -
sampling training examples (cell volumes) with frequency inversely proportional to their
class size. This ensures that the less represented classes are being sampled more frequently,
so that the network sees each class with equal probability. Another problem that occurs
due to the imbalance is that the low number of cells in the classes of non-pyramidal neurons
and non-neuronal cells could lead to overfitting on these classes. Overfitting is a problem
when due to the lack of variety in the training data a network might achieve good accuracy
on the training data, but fail to generalise to the previously unseen data. To increase
the variety of the data I applied extensive augmentations - various transformations that
produce different, yet realistic views of the training samples, such as rotations, adding
noise or moderate elastic deformations. To prevent overfitting I have also tried adding
self-supervised training objectives (e.g. data reconstruction), but this did not improve the
classification results.

The last problem of the dataset that I detected was the label assignment (annotation).
Though performed with the help of the EM volume, it was nevertheless error-prone. Thus,
both training and validation labels have some amount of noise. To ensure smoother
training despite the noisy labels, I used so-called ’soft labels’. More specifically, instead of
training the network to predict that, for example, a cell annotated as non neuronal should
be predicted as 100% non neuronal, I trained it to predict the cell as 90% non-neuronal,
5% pyramidal and 5% non-pyramidal neuron. This approach has been shown to improve
training on noisy labels [80] and also improved accuracy on the mouse cortex cell dataset.

3.2.2 Analysing results and failure cases

All the above mentioned adjustments to the training procedure led to the general clas-
sification accuracy of 85% (Figure 3.3). Closer inspection of the results showed that the
network managed to separate neuronal from non-neuronal cells with almost perfect ac-
curacy, but found it harder to distinguish pyramidal and nonpyramidal cells. This was
expected, since it is harder to separate the latter two classes for a human annotator as well.
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However, the overall performance of the network exceeded our expectations and showed
that the data quality is indeed good enough to distinguish between these cell types with
satisfactory accuracy.

Figure 3.3: Confusion matrix of the best prediction results. The rows correspond to
the annotated labels, the columns show the network predictions. The accuracy for each
class is stated on the right. (p - pyramidal neurons, n/p - non-pyramidal neurons, n/n -
non-neuronal cells).

To investigate the directions for further improvement I first identified the samples that
were consistently misclassified by multiple networks. These samples were then inspected by
Aaron T. Kuan, who, in many cases, concluded that the network predictions were indeed
correct, and the ground truth labels were wrong. A frequent case of truly wrong predictions
was observed near the edge of the scan volumes, where the image quality deteriorates and
the network could not access the whole intact cell or its extensions. Simply treating the
predictions on the volume edges with less confidence or fully excluding them could already
improve further analysis. Another common failure case was neuron cells where the apical
dendrite had poor contrast. Such cases are also difficult for human annotators, however,
one could try to mitigate this by adding more annotated low contrast cells to the training
data. Alternatively, one could try using more aggressive data augmentation techniques
to generate more training samples with poor contrast. Finally, the network also had a
higher rate of wrong predictions for the cells in soma-dense regions. As discussed above,
this happens because multiple cells occupied the same bounding box. The ideal way to
avoid it would be to first segment all cells in the volume. This would allow to separate
individual cells and provide the network only with the cell of interest as input.
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Figure 3.4: Examples of unsuccessful sepa-
ration of touching cells using ilastik segmen-
tation [81] (top row: XNH volumes, bottom
row: segmentation masks).

To test whether one could acquire cell
segmentation with low time investment I
used ilastik tool [81], requiring a minimal
amount of training data provided as scrib-
bles (brushstrokes). However, after invest-
ing around 20 hours to manually gener-
ate training labels, proofread the result-
ing segmentations and apply various post-
processing techniques to better separate
the objects, I obtained a mediocre-quality
segmentation that often failed to separate
touching cells (Figure 3.4). Using this seg-
mentation did not bring any improvements
to the classification training. I concluded
that either extensive manual corrections
or a sophisticated segmentation pipeline
might be required to generate segmenta-
tion of a sufficient quality. However, both of these options require a substantial time
investment, thus, were beyond the scope of this pilot project.

3.3 Discussion

3.3.1 Contributions

In this project I have shown that the data quality of the lower resolution (130nm) mouse
cortex XNH volume is high enough to automatically classify cell types with sufficient
accuracy even without cell segmentation. This proves that, given the increased speed
and scale of data acquisition in comparison to electron microscopy, the method of X-
ray holographic nano-tomography would allow to efficiently localise and annotate cells in
bigger brain volumes than it has been possible before.

3.3.2 Potential method improvements

The method presented in this chapter did not achieve a 100% accuracy on distinguishing
neuronal cell types, but knowing the cases where the network is more prone to errors could
allow for easier targeted proofreading of the automatically obtained classification results.
Additionally, I would expect that adding more training data for the underrepresented cell
classes will further improve the final accuracy.

Nevertheless, the most obvious and potentially most effective way to get better clas-
sification results would be to first segment all cells in the volume. This would also enable
subsequent automated morphological analysis and comparison of the different cell classes
in the volume. It is also important to note that, unless a corresponding EM volume is
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acquired, segmentation of at least larger axons and dendrites is required for many of the
subsequent analyses. Such a segmentation could also be leveraged to improve classification
accuracy.

3.3.3 Future directions

The results of this pilot project have been viewed as positive by all the stakeholders and
will be used for long-term planning of the brain imaging projects at EMBL Rome. The
next anticipated step is to investigate whether automatic neuron type identification using
aligned light microscopy data, such as spatial transcriptomics, could be used to replace the
lengthy step of manual cell annotation, which is needed in order to generate the ground
truth data for training a classification network.
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Chapter 4

More detailed cell characterisation
through combining genetic
information with high resolution
imaging

4.1 Background

Traditionally describing cells has been driven by a clear biological question or a hypothesis
in a researcher’s mind. Similar to the work mentioned in the previous chapters, researchers
often focus their attention on a limited number of cell types in order to characterise their
differences. Moreover, as I showed earlier, it is common to investigate specific genes
expressed in these cells that one expects to be responsible for these differences. Such
narrow focus certainly simplifies the analysis - it is easier to find something when you know
what you are looking for. However, generating a hypothesis in the first place often requires
extensive prior knowledge and heavily relies on previous observations and experiments. In
this chapter I talk about hypothesis-free ways to collect large-scale observations that can be
used to extensively describe variety in the data, which can in turn lead to new discoveries
and new hypotheses. Moreover, I discuss ways to combine different large-scale observations
to generate a more precise description of the object of interest. For this I introduce the
multimodal atlas of a whole organism - a three-segmented worm of Platynereis dumerilii
- that integrates fine morphology and gene expression on a single-cell level.

4.1.1 Analysing cells at scale

Rapid technological advancement of the methods used to acquire biological data are chang-
ing the very way we approach analysing cells. Current sequencing techniques allow us to
simultaneously access all the genetic information being transcribed in each cell of com-
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plex organisms. This enabled, for example, throwing light on gene regulatory programs
in early-branching metazoans [41], characterising cellular diversity of the human body
[82, 83, 84, 85] or showing parasite evolution inside host cells [86]. Imaging methods offer
both constantly improving spatial and temporal resolution, and the possibility of imaging
increasingly big samples. This has made it possible to image structures as small as a
single chloroplast pyrenoid [87], organs as big as the whole Drosophila brain at synaptic
resolution [88] or processes as extensive and dynamic as early mouse development at the
single-cell level [19]. Moreover, spatially resolved mass spectrometry has recently made it
possible to investigate not only proteins, but also metabolite composition of single cells
[89, 90]. This, among other discoveries, has led to a better understanding of both distri-
bution and function of various lipids in cells and tissues [91, 92, 93, 94].

All these advances finally make it possible to not be restricted to targeting specific
cells or molecules within. Now a researcher can just select an organ or an organism of
interest and analyse all the cells composing it simultaneously. This greatly expands the
amount of raw information we can get from an experiment, since now we are not limited to
confirming or rejecting a previously formulated hypothesis, but can discover and describe
novel categories - new cell types, genes or metabolites. We can access all the variety in
the data at once and get the most comprehensive description of this variety, not limited to
the groups we already know. This is how, for example, new types of lung [95], heart [96]
and intestine [97] cells were discovered in humans, or new interactions between cellular
organelles and microtubules were described [98].

4.1.2 Generating all-around descriptions of cells

Although all these methods expand our exploration of cells to the whole-organ or even
whole-animal scale, they nevertheless lack the ability to generate a truly comprehensive
description of a cell. Having a complete transcriptome will not allow us to precisely infer
which proteins and metabolites in which quantities a cell expresses. Similarly, having
a full proteome and metabolome will not enable us to unambiguously describe cellular
phenotype and functions, since these are heavily influenced by the environment the cell
grows and functions in. Evidently, only combining these observations would create a full
description of a cell, allowing to illuminate all the cellular variety in an organism.

Merging multiple types of cellular data into so-called multiomics datasets has been a
topic of thorough research in the last years. Various efforts have focused on technically
combining transcriptome with methylome [99, 100] or chromatin accessibility measure-
ments in single cells [101, 102], and computationally combining diverse measurements
obtained from different cells of the same population [103, 104, 105]. The analysis of
such combined modalities is far less straightforward, but often brings more insight than
analysing these modalities separately. For example, it allowed to identify previously un-
known lymphoid subpopulations [106], or helped to show that by default mouse embryonic
stem cells develop into ectoderm [107].
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4.1.3 Giving cellular descriptions their spatial coordinates

Another valuable method of describing cells that receives a lot of attention recently is
imaging data. Integrating multiomics data with imaging is essential, not only because
the latter provides us with the ultimate phenotype of a cell, but also because it gives the
whole dataset its spatial coordinates. Cellular functions in complex organisms are rarely
fulfilled by single cells, but rather by ensembles of neighbouring cells. Thus, knowing
cellular surroundings might be crucial to shed light on the way a cell functions.

However, such multimodal datasets including a spatial component, often referred to as
multimodal atlases, are still far from being abundant. The reason for this is the difficulty
of assigning the multiomics measurements to a defined cell in the imaging data. So far
this has been mostly done using transgenic lines in model organisms like Drosophila and
C. elegans, where such mapping is heavily assisted by extensive libraries and resources
already at hand [108, 109, 110, 111, 112]. For species with less prior knowledge available,
such a mapping can be done by hand, albeit for a smaller number of cells, like in a 64-cell
stage of a Phallusia embryo [113]. Clearly, both approaches do not scale when it comes
to exploring cellular diversity of new organisms that are larger in size.

The recent advances in spatial transcriptomics techniques make it a promising way to
bridge spatial and non-spatial modalities with minimal amount of manual work required.
While the method is limited in the number of genes whose transcription can be detected
in one sample, its indisputable advantage is the access to the physical location of the
studied expression at a subcellular resolution. Thus, when combined with full single-cell
transcriptomics data, this generates a complete transcription atlas in space [114, 115]. Such
spatially aware transcription data allows for a more precise description of cells and their
functions and have, for example, assisted characterising cell types and their communication
in sponges [7] or in hypothalamic preoptic region of the mouse brain [116]. Furthermore,
it gives access to the tissue or cellular morphology that could as well be integrated with
the gene expression data [117, 118, 50].

4.1.4 Incorporating high resolution cellular morphology

However, due to the limited resolution of light microscopy, such an approach would only
allow us to analyse some basic cellular morphology, such as the shape and size of cells
and nuclei. In order to get a better description of cellular interior, such as appearance
and distribution of both membrane- and membraneless organelles, one would need to ac-
quire an electron microscopy volume of the data. This could serve an ambitious goal to
simultaneously characterise and possibly correlate fine cellular morphology with genes ex-
pressed in a cell. However, in order to achieve this, the additional step of assigning spatial
gene expression to the EM data has to be resolved. So far this has only been done either
for a limited number of genes using correlative light and electron microscopy approaches
[119], or, as described above, using transgenic lines that required a considerable amount of
manual work. Thus, finding a way to automate such an assignment could substantially fa-
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cilitate bridging spatial gene expression data with high resolution morphology, that would,
in turn, eventually allow mapping single-cell transcriptomics data onto EM volumes and
characterising genotype-phenotype connection on the single-cell level.

4.1.5 Multimodal atlas of Platynereis dumerilii

To the best of my knowledge, the first work aimed at automatically bridging EM and
spatial gene expression, is the multimodal atlas of a young worm of Platynereis dumerilii
[65], that combines a fully segmented electron microscopy volume of the whole animal
with gene expression maps for over 200 genes (Fig 4.1). This animal is a newly estab-
lished model organism for studying evolution, development and neurobiology [120]. What
makes Platynereis particularly suited for such types of studies is the fact that at 6 days
post fertilisation (dpf) the animal possesses a multitude of almost fully differentiated cell
types [121]. Still at the same time it has a modest number of total cells that considerably
simplifies whole-animal analyses such as single cell transcriptomics or connectomics. Addi-
tionally, the development of Platynereis is highly stereotypical [122] that makes it possible
to unambiguously compare multiple animals or combine data from different modalities
into single-cell resolution atlases.

Figure 4.1: Platynereis data. A slice of the
volume is shown, with genes mhcl4 (red), glt1
(blue) and grm7 (green) overlaid on the left
and cell segmentation visualised on the right.

Such stereotypy allowed bringing to-
gether data types with greatly differing
resolutions to generate a combined mul-
timodal atlas. First, the EM volume of
the animal has been acquired using se-
rial block-face electron microscopy [123] by
Benjamin Titze and Christel Genoud at a
resolution of 25*10*10 nm, giving access to
high resolution ultrastructure of the ani-
mal. Then all the cells and nuclei of the an-
imal were segmented by Constantin Pape,
yielding more than 11,000 of morphologi-
cally diverse cells. Additionally, many ani-
mal tissues were segmented by Constantin
Pape, Hernando M. Vergara and myself.
Moreover, Kimberly I. Meechan segmented
chromatin to differentiate between heterochromatin (and nucleolus) and euchromatin. Fi-
nally, the gene expression maps, acquired with subcellular resolution by whole mount in
situ hybridization [124] were registered onto the EM volume by Christian Tischer, bringing
genetic information and morphology into a common space.
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4.1.6 Project aims and contributions

In order to investigate potential connections between gene expression and morphology of
each single cell, the gene expression had to first be accurately assigned to the segmented
cells - a challenging task due to substantial differences between the data modalities and
their resolutions. Thus, my aim was to devise an optimal strategy to unambiguously assign
each cell a vector of its gene expression. Additionally, I conceptualised an assignment
validation method in order to compare multiple assignments.

The results of this chapter have been published as a part of [65] that also describes
the Platynereis atlas and the discoveries it made possible in more detail.

4.2 Results

4.2.1 Assigning genes by overlap

The gene expression maps of the atlas were acquired at subcellular resolution. Never-
theless, these maps are unaware of cellular boundaries due to the absence of membrane
staining. In theory one could expect such gene expression to accurately follow cellular
boundaries. That would reduce the problem of assigning gene expression to the cells seg-
mented in the EM volume to calculating the overlap between the segmented cell and the
gene expression map.

However, in practice this expectation does not hold true for multiple reasons. Firstly,
even within a single cell one can not expect a gene to be expressed uniformly, and there
might be some areas truly lacking the expression of this gene. Secondly, the expression
maps were created not from a single animal, but are a result of averaging the spatial gene
expression of multiple animals. While at this stage of development the animal is highly
stereotypical, there are still some variations in cellular locations up to one cell diameter
(<4.7µm) [122]. Thirdly, due to the necessity of choosing manual thresholds that define
what a true expression is in the ProSPr pipeline used for obtaining the maps [122], some
gene expression volumes end up over- or undersaturated. Finally, registration of the gene
maps onto the EM volume also shows variable quality in different parts of the animal,
with the average registration error being around 3µm.

These factors combined lead to the fact that for many genes in various regions of the
animal, the expression front is not resolved to the boundaries of single cells. For example,
glutamate transporter glt1, whose expression is expected to be limited to the neuropil
(Figure 4.2A) leaks out into the neighbouring cells. Similar leakage can be also noticed
for the marker of striated muscles mhcl4 (Figure 4.2B) and the pan-neuronal marker
elav (Figure 4.2C). Such leakage greatly reduces the precision of a simple overlap gene
expression assignment.

To illustrate this, I started with calculating the overlap between all the genes in the
atlas and all the segmented cells of the EM volume. This gave me a range of values from
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Figure 4.2: Gene leakage. Examples of gene misalignment on the border of the gene
expression is shown for genes glt1 (A), mhcl4 (B) and elav (C). The areas where the gene
should not be expressed are encircled.

0 to 1 for each cell. Since the registration quality varies in different parts of the animal,
coming up with a reasonable threshold of what to consider a true gene expression of a
cell is not a trivial task. That is why I converged to using an intuitive margin of 0.5
- if half or more of the cell volume expresses a gene, I considered the gene to be truly
expressed. Such an assignment immediately highlighted the problem of leaking genes. For
example, in the animal regions, where the boundary between muscle and neuron tissues
lays, I found various cells expressing both the neuronal marker elav and the muscle marker
mhcl4 that should not be expressed in the same cell (Figure 4.3). Taking one step back
and checking the raw, non-binarized gene overlap values in these cells did not give me an
idea of what a good threshold could be that would keep the true expression and remove
the false one in these cells. Thus, I aimed to find a better way to assign gene expression
to the morphological cells in the EM volume.

Figure 4.3: Cells with contradictory gene expression. Shown are the examples of cells
expressing both the pan-neuronal marker elav (yellow) and the striated muscle marker
mhcl4 (red).
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4.2.2 Generating Virtual Cells

The gene map imperfections, resulting from biological variability of multiple samples av-
eraged per gene, are hard, if not impossible, to mitigate. However, I expected that the
contribution of the registration error, coming from the step of aligning the gene expres-
sion maps to the EM volume, could be removed if we take a step back and make use of
the unregistered spatial gene expression. More specifically, I assumed that defining gene
expression profiles already before the registration step could result in profiles of higher
quality. Thus, following how it was done in [122], I set out to identify ’coherent units of
homogeneous gene expression’ [122] referred to as Virtual Cells (VCs) (Figure 4.4, Figure
S2AB). It is worth to note that, despite being called Cells, VCs do not represent gene
expression profiles of single cells, but rather the profiles shared by multiple cells, mostly
neighbouring or bilateral.

Figure 4.4: Generation of Virtual Cells. A. An example of a region in the animal, where
genes M, C and O are expressed. B. An overlay of the expression of the three genes
on a supervoxel grid. C. Hierarchical clustering brings together supervoxels with similar
gene expression patterns, which make up Virtual Cells (VCs, shown in different colors).
The genetic profile of a VC is calculated as the average profile of all the supervoxels that
constitute the VC. Adapted from Hernando M. Vergara [65].

Assigning VCs to segmented cells instead of raw gene expression could offer multiple
advantages. First, as I have mentioned before, this would remove the impact of the
registration error. Second, since VCs are intended to be coherent homogeneous expression
profiles shared by many cells, we would expect such profiles to contain less noise simply
due to the averaging across multiple cells. Finally, an additional step of bilateral symmetry
checking during VC generation could lead to even further noise reduction.
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To generate such VCs I have taken the pipeline introduced by Hernando M. Vergara as
a part of [122] and automated the manual steps of it. More specifically, I have introduced
an automated curation that removed all the VCs smaller than a threshold defined by the
level of their spatial correlation. Additionally, I have added a step that splits the VCs into
connected components (CCs) and removes the CCs that are too small to represent a cell.
Finally, for all the CCs around the size of one cell I introduced a quality check step that
verifies bilaterality of such CCs (described in more detail in Chapter Methods 7). The
updated pipeline is available at https://github.com/mobie/prospr-vc-generation.

4.2.3 Assigning Virtual Cells by genetic distance

Having automated the pipeline, I generated VCs using the genes available in the atlas.
This resulted in 6426 VCs, i.e. distinct gene expression profiles. These VCs could be split
into 12,393 CCs that roughly corresponds to the number of cells segmented in the EM
volume (11,402).

Assign segmented cells to their corresponding VCs was based on the following logic.
I considered the above-mentioned overlap assignment to be a reliable, yet imperfect gene
expression profile, so instead of completely rewriting the assignment, I aimed at refining
it using the available VCs. That is why for each cell I found a VC in its vicinity with
the closest gene profile to the one assigned by overlap (Figure 4.5). Given the sample
variability and registration error, I defined the vicinity to be within approximately one
cell radius around the given cell (around 5µm).

Additionally, considering the highly non-uniform gene coverage of the animal, I de-
cided to allow any cell to be assigned an empty expression vector. This was done not
only in case there were no VCs found in the given radius around the cell, but also if such
assignment would still be genetically closer to the cell than any of the VCs in vicinity.
With this I allowed cells with minimal or completely absent gene expression to refrain
from being assigned any genetic profile at all.

This approach led to 10,293 cells being assigned a VC and 1109 cells having no gene
expression profile. In total, 4413 unique expression profiles got assigned.
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Figure 4.5: Comparing overlap and Virtual Cell assignment on bilaterally symmetric pairs
of cells. AB. Gene expression maps are visualised in the animal volume for (A) msx
(green) and patched (blue) and (B) lhx6 (green) and wnt5 (blue). Gene assignment by
overlap is shown in yellow boxes with genes not assigned (below 50% overlap) shown in light
gray, illustrating asymmetry of gene assignment by overlap. CD. Visualising Virtual Cell
(VC) assignment for the cells in A and B. For each cell all the VCs in the neighbourhood
are considered (shown in shades of brown with their genetic profiles stated in boxes of
corresponding colours). Each cell gets assigned the VC with the smallest genetic difference
(shown in yellow-brown) that results in a more consistent denoised genetic profile.

4.2.4 Validation via symmetric pairs

In order to compare the VC assignment to the assignment by gene overlap, I used the fact
that the animal is bilaterally symmetrical, thus, almost every cell on one side of the animal
has a symmetric partner on the other side. Such partners should look similar, making it
possible to manually identify pairs of symmetric cells. Moreover, I would expect them to
express the same genes, thus, allowing us to check the discrepancy in their gene profiles
assigned by the above-mentioned methods.
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Figure 4.6: Symmetric cell pairs. Some of the annotated cell pairs with similar morphology
and expectedly similar gene expression are visualised in the animal volume.

Thus, to validate the assignments, I first identified 208 symmetric cell pairs in the
volume. I chose the pairs based on my ability to unambiguously identify the symmetric
partner. This often implied that the pairs had distinct appearance. In order to account
for the variation in registration accuracy, I tried to cover all animal regions, whenever
possible (Figure 4.6).

For each symmetric cell pair I calculated the discrepancy in the assigned gene ex-
pression for both methods. The overlap and the VC assignments showed an average
discrepancy of 2.8 and 2.0 genes per pair, respectively, showing the VC assignment to be
around 30% more precise. The results show that the VC assignment performs better in
around 70% of symmetric cell pairs (Figure 4.7A). To investigate the influence of gene
coverage on the assignment quality, I related the gene assignment discrepancy in a cell
to the number of genes comprising the VC expression profile assigned to this cell (Figure
4.7B). This shows that, indeed, the assignment performance is higher for more gene-rich
VCs, suggesting that the quality of the gene assignment could be improved by expand-
ing the gene expression atlas, especially in gene-poor areas, such as the parapodia or the
midgut (Figure S1).
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Figure 4.7: Gene expression assignment accuracy. A. Gene expression assignment discrep-
ancy for the Virtual Cells and the overlap assignment in the manually annotated symmetric
cell pairs. B. More gene expression information leads to better assignment. The gene ex-
pression assignment discrepancy is plotted against the total level of gene expression in a
cell (the fractions of gene expression for each gene summed up).

4.2.5 Assigning Virtual Cells by proximity

I further explored whether the idea of refining the overlap assignment rather than rewriting
it was reasonable. Despite the fact that the location of the VCs assigned to segmented
cells in the EM volume was consistent with their original location before the volumes
registration (Figure S2), around 60% of segmented cells got assigned to a VC that was
not the spatially closest one. Thus, I investigated if assigning VCs by spatial proximity,
i.e. overlap, rather than by minimising gene distance, could bring better results.

To test this for each cell I determined the VC that overlapped the most with the
cell. In case no VC was overlapping with the cell, I assigned it an empty gene expression
vector. Validating this assignment using the above-mentioned symmetric cell pairs resulted
in a mean discrepancy value of 3.62. This showed the VCs are potentially even more
misaligned to the EM volume than the raw gene expression, and the initial raw gene
overlap assignment step is still required to get the best assignment accuracy.
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4.2.6 Cells with contradictory gene expression

Finally, I examined the cells on the border of the neuron and muscle tissues that, as I
noted before, express contradictory genes after the overlap assignment. While not all such
contradictory cases were resolved by the VC assignment, many cells got assigned a gene
expression profile that I could interpret as more reasonable. For example, according to the
VC assignment the cell depicted in Figure 4.3A does not express myosin marker mhcl4,
which overlaps the cell by 54%. However, the cell is assigned the expression of neuronal
genes kv33b (overlap of 43%) and stathmin (overlap of 47%). Such assignment could be
more justified both in terms of the genes function and their distribution in the animal
volume (Figure 4.8).

Figure 4.8: Gene expression corrected by VC assignment. Visualised in the EM volume
are the gene expression maps for mhcl4 (A, assigned by overlap, not assigned by VC),
kv33b (B, not assigned by overlap, assigned by VC) and stathmin (C, not assigned by
overlap, assigned by VC).
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4.3 Discussion

4.3.1 Contributions

This chapter was centred around combining gene expression data with high resolution
imaging as a way to better describe cellular diversity within a whole animal. More specifi-
cally, I focused on improving the gene expression assignment to the cells segmented in the
EM volume. I have highlighted the shortcomings of the simplest assignment by overlap
between a gene expression map and a segmented cell volume. Further, I have automated
a previously developed way of generating coherent denoised curated gene expression pro-
files - Virtual Cells - and developed a pipeline to assign these profiles to the segmented
cells in the EM data. Finally, I came up with a method to automatically validate such
assignments by leveraging the bilateral symmetry of the animal.

4.3.2 Potential improvements

An approach that I expect to significantly improve the gene assignment is to add more
genes to the gene atlas. As I have shown, the symmetric pair distance decreases with the
amount of genes comprising a Virtual Cell. Therefore, creating more gene-rich VCs would
result in a better assignment as well. Moreover, only a part of the atlas was generated
with the aim of uniformly covering the animal tissues, while a big portion was focused
on neural differentiation genes and transcription factors. Adding more genes to poorly
covered regions would lead to gene assignment of a more uniform quality. I presume the
best way to achieve this would be to use single-cell transcriptomics data. Having a full
picture of the gene expression of the animal would allow us to define genetic cell types
with corresponding specific genes. Afterwards, acquiring gene expression maps for such
differentially expressed genes would ensure uniform coverage for all the defined cell types.

Further, one could focus on improving the gene map and Virtual Cell generation
pipelines. There are multiple steps that could be refines, starting with optimising the
hybridisation protocols, image acquisition and registration procedures. As explained in
[122], each gene map is an average of multiple animals. Thus, I expect that both gene
maps and Virtual Cells would greatly benefit from defining more precise ways of deter-
mining what the true expression is already on the level of a single-animal single-gene map.
Likewise, finding a better way of combining gene maps from multiple animals could also be
a notable improvement. Better ways of curating the VCs, as for example the mentioned
above suggestion to use single-cell transcriptomics data, should also result in a better
assignment.

Another interesting idea to tackle the problem of leaking genes, besides improving the
gene assignment, might be to additionally calculate a confidence score for each assignment
that would reflect how trustworthy the assignment of this specific gene in this specific cell
is. This could be done, for example, considering the expression of the neighbours of a given
cell - the more of the neighbours express a gene, the more likely it is that the expression of
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this gene in this cell is a leakage from the neighbours, and vice versa. Another way of doing
it would be to take cellular morphology into account - the more dissimilar the neighbours
are that express this gene, the less likely it is that this gene expression is true. After such
confidence scores have been calculated, they can be used to decide on a threshold of what
a true expression is, i.e. the lower the confidence score is, the higher the gene overlap has
to be for us to claim that this cell expresses this gene.

4.3.3 Future possibilities

I expect the coherent genetic profiles of Virtual Cells to be the closest modality to single-
cell transcriptomics data. As I discussed earlier, gene expression overlap values do not
necessarily correspond to the actual levels of gene expression in a specific cell. Therefore,
in order to use the overlap values for matching single-cell transcriptomics profiles, one
would have to account for varying assignment quality in different parts of the animal.
This implies defining separate thresholds for each gene and potentially for each cell, which
is clearly far from straightforward. Virtual Cells, on the other hand, do not need such
thresholds, thus, are easier to match directly. The problem could be reduced even further
if, as I suggested above, one directly uses the available single-cell transcriptomics data to
generate and curate the VC profiles. Therefore, once such data is acquired for the 6dpf
stage of Platynereis dumerilii, I believe, Virtual Cells could be used to unambiguously map
this data to the cells in EM, creating the first multimodal atlas of such kind and resolution.
This would ultimately enable linking gene expression and phenotype data on the single-
cell level, allowing us to explore the interconnections between the genetic program and the
function of a cell.
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Chapter 5

Unsupervised comprehensive
description of high resolution
cellular morphology

5.1 Background

In the previous chapter I talked about combining gene expression and fine morphology
information on the single-cell level. I further discussed how it could assist us in generating a
comprehensive description of a cell and understanding the causation between genotype and
phenotype. I focused on assigning spatial gene expression data to EM volumes, which could
serve as a bridge to assign each cell its full genetic description - single-cell transcriptomics
data. However, in order to explore the connection between what a cell expresses and how it
looks, one also needs a full quantitative description of cellular morphology. In this chapter
I justify the need to develop automatic, unbiased ways of extracting such descriptions
in the most comprehensive manner. I further illustrate how these learned descriptions
can assist exploratory analysis and facilitate discoveries of cell types and tissues in the
whole-animal volume of Platynereis dumerilii.

5.1.1 Describing cellular morphology

Historically, morphological descriptions have been generated manually for a limited amount
of cells by a researcher equipped with prior knowledge of cellular structures. Currently,
fast advancement in volume EM allows us to image organs or small organisms composed
of thousands of cells. This opened up possibilities to explore, for example, cellular mor-
phology of the Drosophila brain [88, 55] or ultrastructural differences in cell types of
Platynereis [121, 65]. The computational progress follows along, enabling us to both seg-
ment [125, 98, 78, 37] and smoothly browse these large data volumes [126, 127, 128].
However, if the goal is characterising all the morphological diversity in such imaged sam-
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ples, generating manual descriptions quickly becomes infeasible.

Ideally, we would have a morphological description similar to the genetic one that we
get from single-cell transcriptomics. We would want to have a set of morphological features
and a way to automatically estimate the presence (or the amount) of each feature in every
cell, thus generating a feature vector per cell. These features should, ideally, fully describe
cellular appearance. Moreover, the created feature space should have the property that
cells mapped in close proximity are visually similar to each other, and the dissimilar cells
are located further apart. With this we would hope that grouping the imaged cells in
such feature space results in morphological cell types that we should further be able to
correlate to genetically-defined ones.

5.1.2 Automating morphological descriptions

So far automated morphological descriptions have mostly contained a limited number
of well defined features of interest. Such features, for example, include shape, volume,
surface area, sphericity and curvature and/or various intensity and texture features [56,
57, 129, 130]. While explicitly designed representations allow for automated large-scale
comparisons, such features have to be manually chosen. This resembled how researchers
were previously targeting only a couple of specific genes of interest - the approach delivered
good representations given one knows what one is looking for, however, might fail to
capture the full variety of morphology in a sample.

This problem has led various researchers to design complex modelling pipelines aimed
at automatically extracting the full range of morphological differences in a dataset. For
investigating shape variation, for example, good results were obtained using large de-
formation diffeomorphic metric mapping [131], spherical harmonic descriptors [132] or
user-assisted classification of approximate convex patches [133]. However, such pipelines
are still mostly limited to a certain aspect of cellular morphology, e.g. shape, and are
often tailored to a specific type of data and/or specific task.

To be able to get a full description of cellular morphology we need broadly applicable
pipelines that are not biassed neither by the pre-designed task, nor by the manual selection
of features. This is especially important if we aim at fully characterising a dataset, that
includes both describing already known morphological categories and discovering novel
ones, such as new morphologies and new cell types. We further need such pipelines to be
equally focused on various components of cellular morphology, such as shape and texture.
Moreover, we need such pipelines to be broadly applicable to various types of data.

5.1.3 Using deep neural networks to describe morphology

In the last decade the rapid development of artificial deep neural networks has rendered
using both manually defined features and complex feature extraction pipelines obsolete
for a wide range of tasks on multiple types of data. This especially concerns analysing
images, where convolutional neural networks (CNNs) have been shown to extract rich
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visual features suitable for multiple image processing and analysis tasks [60, 134, 135, 136].
However, a big obstacle still hindering free and easy application of such networks to
biological images is a massive amount of training data required to train a network. Such
data has to be manually labelled by an expert, and, for some tasks, for example, EM
segmentation that requires pixel-level annotations, generating this ground truth might
take multiple months [137, 98].

To reduce the amount of human work needed, multiple approaches have been proposed
and proven successful, including transferring models trained on one type of data to a
different one or initially using multiple data types to train huge models that are expected
to generalise well to new data (reviewed in more detail in [138, 139, 140]). Many efforts
are also focused on reducing the amount of labels needed to train a model [141]. The
most extreme example of this are unsupervised or self-supervised learning methods that
do not require any manual annotations, but instead use training signal obtained from the
data itself. Besides the obvious advantage of less manual labour, such methods do not
optimise the extracted features for a specific task, such as classification, and the features
they produce have been shown to be versatile and useful for diverse downstream tasks
[142, 143].

Until recently the main disadvantage of self-supervised methods was their inferior
performance in comparison to their fully supervised counterparts. Yet this has changed
since the emergence of so-called self-supervised contrastive learning methods that try to
bring closer the features of a sample and its modified versions. In the natural image
domain research on how to exactly produce these modified versions allowed to bring the
accuracy of contrastive learning on par with fully-supervised learning on classification tasks
[144, 145]. However, many of the techniques that bridged this gap rely on peculiarities
of natural images, e.g. varying scales and resolution, RGB channels, etc. Adapting the
latest self-supervised training procedures to the characteristics of biological imaging data
could enable researchers to use state-of-the-art deep learning to assist them in performing
extensive analysis of the data without generating manual labels or even formulating a
concrete analysis goal.

A handful of biological studies have already demonstrated promising results of self-
supervised feature learning, generating representations useful to classify cells or analyse
their morphological variability. However, many of them used a strong pretext task based
on available metadata, such as the prediction of cell lines [61] or experimental conditions
[146], or the classification of proteins fluorescently labelled in cells [62]. In the last example
the authors explicitly show that without the pretext classification task the method per-
formance declines more than 2-fold. Several studies used an autoencoder reconstruction
loss [147] to show the possibility to refrain from using any labels on single-cell imaging for
image-based profiling [148, 149]. Yet adapting contrastive learning for biological data has
so far only been used on 3D electron microscopy volumes for describing local morphology
of patches or subcompartments within neural cells [150, 151].
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5.1.4 Project aims and contributions

Unsupervised deep learning has been shown to extract rich representations from biological
data useful for various tasks. The aim of this project was to design a fully unsupervised
pipeline and apply it to the cells and nuclei in the EM volume of Platynereis dumerilii to
extract unbiased comprehensive morphological representations that would combine high-
resolution ultrastructure and shape morphology of a whole cell. Such representations
should allow us to access all the morphological diversity in the whole animal and to define
morphological cell types, which we later aim to correlate with the gene-defined cell types
in order to explore the genotype-phenotype connection.

Figure 5.1: Segmentation of the Platynereis
data (right: nuclei, left: cells).

The project was carried out together
with Johannes Hugger (EMBL-EBI) and
the results are available in [66]. The con-
tributions of Johannes Hugger, which com-
prise the whole shape training and extrac-
tion pipeline and adding neighbourhood in-
formation, will not be described here and
can be found in detail in [66]. The chapter
will, thus, focus on the texture feature ex-
traction and the analysis that was done by
myself.

5.2 Results

5.2.1 Feature extraction pipeline

The first step needed to extract useful features from a cell is to retrieve the cell of interest
from the EM data. Platynereis atlas contains full segmentation of 11,402 cells and their
nuclei available (Figure 5.1). I used segmentation masks to extract only the internal part
of each cell in order to ensure that the extracted features represent solely the cellular
morphology and not the cell surrounding (Figure 5.2). It is important to note that for
neurons only cell somas were segmented, thus, morphology here does not refer to neurite
morphology.

Further, I decided to split cells into three morphological components: shape, texture
context (a low resolution crop around the cell nucleus) and fine texture patches (multiple
crops of high resolution cellular texture) (Figure 5.2). This split was initially required by
the size and complexity of the data: a whole full resolution cell will not fit into the memory
of a standard GPU for processing. Moreover, it also ensured the model takes both shape
and texture into account and does not focus only on the most prominent features.

Additionally, the available nuclei segmentation allowed me to further split cell cyto-
plasm and cell nuclei, generating in total 6 morphological components per cell. In practice,
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Figure 5.2: Feature prediction pipeline. A cell segmentation mask is used to extract the
raw volume of a given cell. This volume is used as input for separate neural networks
that yield morphology features for shape, coarse and fine texture of cytoplasm. The same
procedure is applied to nuclei (not shown here). The resulting feature vectors of a cell and
its nucleus together comprise one MorphoFeatures representation.

this fine-level split not only improved the quality of the features, but also made them more
interpretable. This made possible estimating which of these components played an essen-
tial role in a subsequent analysis, e.g. distinguishing cell types.

After splitting the data, neural network feature extraction pipelines are run on these
components separately, yielding distinct feature vectors of the same size (80 features) for
fine and coarse texture and shape for cytoplasm and nucleus. These vectors get concate-
nated to form one comprehensive morphological representation of the cell. This feature
extraction is run for each cell separately, resulting in one representation vector (480 fea-
tures) per cell. A matrix of these representations is then used for subsequent analysis.

5.2.2 Training pipeline

In order to obtain high quality morphological representations for each of the texture com-
ponents, I designed a suitable objective (training loss) that ensured the neural network
extracts relevant features. As described before, the most commonly used self-supervised
losses either predict some manually generated labels or meta-data already available for a
dataset. While such objectives often show outstanding performance, they limit the appli-
cability of a method to datasets where such labels or metadata are available in the first
place. Specifically, for EM data this is rarely the case, with the Platynereis atlas not being
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an exception.

After considering generating classification labels manually, I decided against it for the
following reason: training a network to predict specific classes should lead the network
to extract features that distinguish these classes, however, might have the adverse effect
of discarding the intra-class variability. For example, if we train a network to distinguish
muscles and neurons, it might not extract the features that would distinguish different
types of neurons. Consequently, being biassed towards the predefined classes might also
harm the network’s ability to discover new categories in the data.

For this reason I designed a fully unsupervised, non-biassed objective that should both
extract useful features and could be broadly applicable to any cell image dataset. The
aim of such an objective should be twofold. Firstly, it should ensure that the most of the
morphological information of a cell is present in the extracted representation. Secondly,
it should map the representations of morphologically similar cells close together and dis-
similar cells further apart, i.e. relative distances between cells in the representation space
would reflect their morphological similarity.

Figure 5.3: Training objectives for extracting coarse and fine texture features. An autoen-
coder neural network consists of an encoder that generates a feature vector from the input
volume and a decoder that is trained to reconstruct the input volume from the extracted
feature vector. Additionally, a contrastive loss is applied to the same feature vector that
encourages the representations of modified views of the same cell to be closer to each other
than to a different cell.
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Running multiple experiments helped me identify two fully unsupervised training
losses, which, when applied simultaneously, optimise for these two objectives (Figure 5.3).
The first one is an autoencoder reconstruction loss [147] that ensures the model learns a
comprehensive representation of the data. An autoencoder model normally consists of two
parts: an encoder that takes a full cell as an input and compresses it into a low-dimensional
representation vector, and a decoder that takes this low-dimensional vector and aims to
reconstruct the complete cell from it. Thus, the training objective is to reconstruct the
cell as accurately as possible. In order to do that the encoder has to learn an exhaustive,
but a concise representation.

The second loss is a contrastive learning objective called NT-Xent loss [152] that
enforces distances between the learned representations to be meaningful. In classical
contrastive learning, for a single training run one needs three samples: an anchor sample
(a cell of interest), a positive and a negative sample (a cell similar and dissimilar to the
cell of interest respectively). During the training an encoder sequentially extracts a low-
dimensional representation of each cell and the contrastive loss encourages the distance
between the anchor and the positive cell to be closer than the distance between the anchor
and the negative one. However, in a fully unsupervised setting, we do not know which
cells are similar. That is why, the anchor and the positive cell can be replaced by two
altered views of the same cell (orange representation in Figure 5.3). Assuming that these
altered versions should still be closer to each other than to any other cell in the dataset
(even if it is from the same cell type), one could just sample a random cell to be used as
a negative sample (blue representation in Figure 5.3).

In the training pipeline I combined these both losses, i.e. they share one encoder.
With this they also balance each other: the contrastive loss makes sure the autoencoder
loss is not extracting meaningless features (e.g., angle and position), while the autoencoder
loss ensures the triplet loss does not ignore features essential for reconstructing the cell
(Figure 5.3).

5.2.3 Cell class annotation

While the training procedure was designed to be free of any manual labels, further analyses,
including quantitative validation of feature quality, still required having some annotations.
In order to generate manual labels, as a part of [65], Rachel M. Templin, Kimberly I.
Meechan and myself have annotated around 1000 cells in the EM volume of Platynereis.

For this I first defined seven morphological categories of cells. These categories,
however, do not necessarily define cell types, but rather comprise groups of morphologically
distinct, easy to distinguish cells. The defined groups were neurons, muscles, epithelial cells
(cells outlining the animal surface or the foregut opening), midgut cells (all cells located
in the animal midgut), dark neurosecretory cells (cells having notably dark homogeneous
nuclei and cytoplasm), secretory cells (any cells containing abundant organelles/inclusions
that could indicate secretion, such as extensive ER and Golgi, vesicles, etc) and ciliary
band cells (Figure 5.4).
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Figure 5.4: Manually annotated morphological cell classes. For each class 3 example cells
are shown.

Afterwards, I sampled 10% of all the animal cells and Rachel M. Templin, Kimberly I.
Meechan and myself assigned one of the 7 labels to each cell. Cells for which we were not
sure about the label assignment were skipped. Even though cells were selected randomly, a
dataset bias might have been created by annotating only the cells we were confident about.
Additionally, the random selection led to a high class imbalance, though proportional to
the biological disparity of cell types in the animal: more than half of the animal (65%)
turned out to be neurons, 16% and 11% - epithelial and muscle cells, respectively, and
only 3.5% - dark cells, 2.38% - midgut cells, 1.80% - secretory cells and barely 0.35% -
ciliary band cells. In order to mitigate this imbalance I later added multiple cells from
underrepresented classes. More specifically, I ensured that each class contained at least 60
representative cells, with the exception of ciliary band cells, since the animal only possess
30 of them at this developmental stage.

5.2.4 Predicting cell classes

The created annotations enabled me to evaluate whether the learned features were good
enough to distinguish these 7 classes. In order to achieve this I trained a simple logistic
regression classifier on the extracted representations, using a balanced subset of the cell
classes as labels. The classifier works by assigning different weights to input features
and then finding a linear separation between the given classes in the feature space. Its
advantages include simplicity and possibility to train it with a few samples. Nevertheless,
it can learn to ignore the features useless for a specific task by assigning them a close-to-
zero weight. Therefore, one can expect a good classifier performance if at least a subset
of the learned features is correlated with the annotated cell classes.
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The model was trained using 5-fold cross validation and performed with an accuracy
of 96%, which proves that the extracted features describe cellular morphology well enough
to allow for recognition of these classes. The missclassifications made by the model (Figure
5.5, S3) indicate that, for example, the secretory class was more difficult to learn, than
the others. However, this was an expected outcome, given how broad and morphologically
heterogeneous it is.

Figure 5.5: Confusion matrix for the logistic regression predictions. The rows correspond
to the annotated labels, the columns show the network predictions (in %).

In order to ensure that this high performance is not just a result of a possible dataset
bias, I used the trained classifier to predict the classes for all cells in the animal (Figure
5.6). The results indicate that the dataset with approximately 60 cells per class was
sufficient to train a model with good generalisation. Specifically, for the class of epithelial
cells I trained the classifier on the cells of the outer animal surface only, but it correctly
predicted the epithelial cells of the foregut opening and the chaetae cells. Even more
surprisingly, some cells in the midgut of the animal were confidently predicted as neurons.
Subsequent literature research and visual examination helped me conclude that these cells
might indeed be enteric neurons.
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Figure 5.6: Predictions of the logistic regression model on the whole animal. From left
to right: top row: epithelial cells, neurons, muscles; bottom row: neurosecretory cells,
midgut cells, secretory cells, ciliary band cells.

I further wanted to compare MorphoFeatures to the morphological features from [65].
These are a comprehensive set of manually defined features, including diverse shape, in-
tensity and texture features extracted from the cell, nucleus and chromatin segmentations.
Training a logistic regression on this set showed an accuracy of 94%. In general, the classi-
fier made similar mistakes and also had a high missclassification rate for the secretory cell
class. However, the explicit features showed slightly worse performance in distinguishing
muscle and epithelial cells.

5.2.5 Finding bilateral neighbours

The fact that both sets of features performed so well on the task of morphological class
prediction indicates that more evaluations are needed in order to better assess the different
feature extraction pipelines. I further referred to the bilateral pair finding metric, designed
by Kimberly I. Meechan in [65] to estimate the quality of the morphological features
extracted manually.

The metric is based on the fact that Platynereis is bilaterally symmetric, thus for each
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cell we would expect to be able to find an almost identically looking symmetric neighbour
on the other side. In the previous chapter I described a manually labelled set of such pairs,
based on which Kimberly I. Meechan created the metric, extending it to all the cells. For
this David Puga annotated the midline of the animal, which was used to approximately
estimate the location of a potential symmetric neighbour on the other side. However, since
it is not possible to always find a symmetric neighbour at the mirrored location, a search
radius was introduced. This radius was based on the deviation from the mirrored location
for the manually annotated cell pairs.

Figure 5.7: Bilateral distance calculation. A. For a selected cell (red dot) all the cells
within a certain radius of the symmetric location are considered as potential symmetric
partners (red circle). B. All the other cells in the organism are ranked based on their
feature similarity to the selected cell. From the potential symmetric partners, the one
with the smallest ranking is chosen. Its rank is the bilateral distance of the selected cell.

Then for each cell the so-called bilateral distance is calculated as follows: first, one
calculates the distance from a cell of interest (Figure 5.7A, red dot on the left side of
the animal) to all the other cells in feature space. Based on this distance, a ranking of
all the cells is calculated in relation to this cell, with the closest cell having rank 1, the
second closest - rank 2, etc (Figure 5.7B). Then the location of the cell is projected to the
other side of the animal. All cells within the previously mentioned search radius from this
location are considered to be potentially the correct symmetric neighbour (Figure 5.7A,
red circle on the right side of the animal). For each of these cells its ranking in relation
to the cell of interest is checked. The cell with the minimal rank is considered to be the
true symmetric neighbour, and its rank defines the bilateral distance of this cell. This
procedure is repeated for all cells in the animal, and the bilateral distances are averaged
to get one value for a set of features.
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Figure 5.8: Bilateral distance distribution. For MorphoFeatures and the manually defined
features from [65] fraction of cells having bilateral distance within a certain range is shown.

According to this metric, MorphoFeatures perform 38% better than the manually
extracted features from [65]. The distribution of bilateral distances for all the animal
cells is visualised in Figure 5.8. This shows that while both sets of features perform
reasonably well on the easy task of cell classification, the task that requires more precise
morphological description shows the clear superiority of the features extracted by the
neural network pipeline.

5.2.6 Understanding extracted features

One of the main advantages of using neural networks as image feature extractors is the fact
that a network extracts the features directly from the data and makes its own decisions
about which features are important for a given task. However, this also makes it difficult
to ’decode’ the features afterwards. This especially hinders neural networks prevalence in
the medical imaging field, where understanding what exactly led to a specific diagnosis is
often not less important than the diagnosis itself. While not as vital, interpretability is
still desired for biological data to be able to better characterise, for example, what exactly
is different between the morphological cell types.

Thus I asked myself if it is nevertheless possible to get a grasp of which exact mor-
phological properties were learned by the network. In order to estimate it qualitatively,
I selected a random set of features and visualised which textures show the minimum and
maximum value of this feature. Contrasting these textures, I presumed, could give me a
hint at what the feature actually represents.
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Surprisingly, many, though not all, feature dimensions seemed to be visually inter-
pretable. For example, taking a look at the coarse texture features (Figure 5.9, upper
row), for the first visualised one, one can clearly say that the feature minimum is present
in elongated cells with the nucleus taking up almost the whole cell volume. The maximum
of this feature is found in short, but wide muscle cells. For nuclei, one of the first coarse
texture features I looked at showed its minimum in the cells with large spherical nuclei of
uneven surface and its maximum in smoother, more elongated nuclei.

Figure 5.9: Visualisation of the learned features. For a random feature, four cells that
show the minimal (blue) and the maximal (red) value of the feature are shown.

Visualising fine texture features showed that they indeed seem to describe fine ul-
trastructure (Figure 5.9, lower row). For example, a randomly chosen cytoplasm feature
could be used to discriminate between patches densely occupied by mitochondria and Golgi
cisternae and patches of evenly dark cytoplasm of dark neurosecretory cells. Similarly, one
of the first nuclear fine texture features that I sampled, differentiated between evenly dark
nucleoplasm and nuclear textures with distinct contrastive nucleoli.

I did not know in advance what each of the learned features correspond to. Still, a
simple manual inspection could already let me correlate many of the examined features to
some visually understandable morphological properties of cells and nuclei.
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5.2.7 Visually analysing representations

After showing that MorphoFeatures perform well in classifying morphological cell cate-
gories and finding symmetric neighbours, I wanted to check whether the MorphoFeatures
space fulfils the original objective that similarly looking cells should be grouped together.
For this, I first generated a representation of the multidimensional MorphoFeatures space
that could be visually examined. In order to simultaneously visualise the MorphoFeatures
of all the animal cells I used UMAP [153] - a dimensionality reduction method that tries
to preserve local distances between the data points. Having a two-dimensional represen-
tation, I marked the cells for which manual annotations were available (Figure 5.10).

Figure 5.10: UMAP representation of all cells in the animal based on their MorphoFea-
tures. The manually annotated cell classes are shown in colors. Each panel shows a cell
randomly sampled on the UMAP representation and its three nearest neighbors visualised
in the EM volume.

One can notice that most cell classes are consistently grouped together. The biggest
exception is the class of secretory cells. However, this is expected, given that the group
comprises multiple types of them, which are not always morphologically similar. Cell
groupings visualised in 2D also suggest that many classes can be split into multiple, po-
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tentially morphologically distinct subgroups. For example, one can notice two separate
groups of muscles in the upper right part of the UMAP representation. Notably, neurons
also display a wide range of potential morphological types, despite the fact that their
description was based on the soma morphology only.

I further wanted to investigate whether cells that are close in the representation space
are also visually similar. For this, I sampled a set of random cells and visualised the three
closest neighbours in the created representation space. As is shown in Figure 5.10, the
corresponding neighbours look notably similar. For instance, one can admire a group of
neurons with pigment granules (upper left blue panel), thin extended midgut cells (brown
panel), muscles (red panel) and ciliary band cells with characteristic nucleoli and abundant
mitochondria. A clear separation can be noted between the groups of thin extended and
large spherical epithelial cells (orange panels). Secretory cells are also grouped according
to their appearance, with two groups visualised: ’bright droplets’ cells [121], rich on round
bright vesicles, and parapodial spinning gland cells [121] containing plentiful ER sheets.
Interestingly, there is a group of cells that was manually annotated as neurons, located
closer to the epithelial cells in the representation space (upper right blue panel). Manual
inspection of this group, performed by Detlev Arendt, suggested that these are sensory
neurons, which are both evolutionarily and morphologically close to epithelial cells.

This simple visual investigation has shown that the distances between cells in the
MorphoFeature space indeed reflect their morphological similarity. Such analysis could
prove extremely useful for investigating new EM volumes, e.g. in case a researcher finds
a cell with a particular morphology and is interested in locating similar cells across the
animal volume. Furthermore, such fine groupings can potentially be used to separate and
describe morphological cell types of an animal.

5.2.8 Clustering the MorphoFeatures space

Having shown that local distances in the MorphoFeatures space indeed reflect visual simi-
larity, I was interested whether the feature space can be further partitioned into groups of
cells with consistent morphology. These smaller partitions might then represent the true
morphological cell types. In order to do that I used the Leiden algorithm for community
detection [154], which is widely used in the field of single-cell transcriptomics. It is im-
portant to mention that in order to cluster the data one has to manually set the desired
clustering resolution level that influences the number of detected clusters. I first aimed
at generating rather big general clusters, making it easier to visually inspect if cluster-
ing makes sense. However, afterwards, whenever needed, I could increase the clustering
resolution to get finer clusters.

This approach initially resulted in 16 general clusters (Figure 5.11). One of them I
discarded after manual inspection, since it only contained cells with split segmentation
errors. Out of the remaining 15 clusters, the biggest proportion (clusters 1-8) was taken
by neurons, reflecting their prevalence in the animal at this stage. Some of the neuron
clusters showed remarkably consistent location in the animal. For example, the location
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Figure 5.11: Morphological clusters plotted on the UMAP representation from Figure
5.10. The panels show the location of some clusters in the EM volume.

of cluster 4 (visualised in Figure 5.11) indicated it comprises foregut neurons.

Cluster 8 showed high morphological heterogeneity, indicating it might be composed
of multiple cell types, which were grouped together because each type contains only a few
cells. A finer clustering resulted in three subclusters. The first of them (8.1) consisted of
arch-shaped cells with big black inclusions that I identified as rhabdomeric photoreceptors
of the adult eye (Figure 5.12A). The second subcluster (8.2) contained various neuron-
shaped cells with smaller black pigment granules. The third one (8.3) comprised cells,
whose shape and cytoplasm resemble neurons (Figure 5.12B), however, their location in
the animal was restricted to the developing midgut (Figure 5.12C). This let me speculate
that these cells were the enteric neurons previously confirmed to autonomously regulate
digestion in Platynereis [8].

The clusters 9-11 were epithelial cells, with cluster 9 located predominantly in the
foregut, 10 - in the chaetae and 11 - on the outside surface of the animal. Cluster 12 was
composed of most of the muscle cells with the exception of foregut muscles that made
up cluster 13. Cluster 14 included all midgut cells of the animal, and cluster 15 grouped
together secretory and ciliated cells, that could be separated by finer clustering.
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Figure 5.12: Analysing subgroups of cluster 8. AB. Shape and ultrastructure of an average
cell of subcluster 8.1 (rhabdomeric photoreceptors, A) and subcluster 8.3 (enteric neurons,
B). C. Location of the enteric neurons subcluster in the animal midgut.

This cluster analysis showed that the MorphoFeatures space can be meaningfully
partitioned into morphologically coherent groups that mostly display consistent location
in the animal volume. I expected that such groups could represent morphological cell
types that should be relatable to genetic cell types.

5.2.9 Characterising morphological types genetically

To investigate whether the morphological grouping described above correlates with gene
expression, I used the expression maps from [65]. More specifically, I was interested to
examine if the morphological clusters also have differentially expressed genes, which in the
perfect case would be expressed in all cells of the cluster and nowhere else in the animal.

It is important to note that not all clusters would have such genes for the following
reasons. Firstly, though the gene expression atlas in the Platynereis resource is constantly
expanding, it is only available for a limited number of genes that cover the animal nonuni-
formly, so some of the truly differentially expressed genes might not be present in the
resource. Secondly, we would expect some morphological differences between cells to arise
from their location and neighbourhood, thus, not being manifested in their gene expres-
sion. Finally, due to the fact that neuron segmentation was only available for their cell
bodies, our morphological analysis is not taking into account the neurite morphology that
plays a crucial role in defining neural cell types.

Nevertheless, many clusters displayed a clear genetic signature (Figure 5.13, S4),
showing that the morphological types arising from the MorphoFeatures space might in-
deed correspond to genetic cell types. For example, the rhabdomeric photoreceptors of
the adult eye (cluster 8.1) were shown to specifically express the bHLH transcription fac-
tor mitf and globin-like - a cytoglobin (oxygen transferring molecule) that in Platynereis
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might play a role in protecting cells from oxidative stress [155]. Cluster 5 expresses he
bHLH transcription factor asci and TRV-channels pkd2, trpV4 and trpV5, which indicates
that the cluster contains sensory neurons. Cluster 6, which is composed of dark nurosecre-
tory cells, can be described by the expression of prohormone convertase phc2 and atrial
natriuretic peptide receptor anpra, which are both neurosecretion markers.

Figure 5.13: Gene expression analysis of the morphological clusters (dot plot). The dot
size reflects the fraction of the cluster expressing a gene; the dot colour reflects the gene
specificity to a cluster (see Methods).

The 3 clusters of epithelial cells could as well be differentiated by the genes they
express. For example, cluster 11, comprised of surface cells, shows specific expression
of protocadherin (pcdh15 ) and neurotrypsin (ntrps). It differs from cluster 9 of cells
outlining the foregut opening, that expresses the homeodomain factor pou3 (brn124 ),
shown to participate in stomodeal ectoderm in sea urchin [156] and bHLH transcription
factor sim1. The cluster 10 of chaetae cells shows a higher expression of the receptor pkd1.

While inspecting genes that can be used to distinguish the two groups of muscles,
I noted that the bigger cluster 12 specifically expresses such genes as leucin-rich, synap-
topodin, ache and, most importantly, myosin heavy chain mhcl4, which is specific to skele-
tal (striated) muscles. Interestingly, the foregut muscles (cluster 11) develop as smooth
muscles, but transform to striated at a later stage of development [8]. Thus, the absence
of mhcl4 in this cluster indicates that this switch is yet to occur. However, this cluster
of foregut muscles showed specific gene expression of the calexcitin2 (calexcitin-like sar-
coplasmic calcium-binding protein Scp2 ) [157], calmodulin and of the Boule homolog Boll
(boule-like), which indicates that this group of muscles might have developed a calcium
excitation mechanism different from striated muscles.

Another cluster with prominent specific gene expression was the developing midgut
(cluster 14) which showed highly unique expression for multiple genes, including for, trpv,
mrlc2, non-muscle-mhc, snd1, nb5r3, etc. Looking at gene expression plotted on the
UMAP representations (Figure S4) I suspected that this cluster might display high genetic
variability, thus, aimed to explore it further.
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5.2.10 Exploring midgut cell types

In order to characterise the heterogeneous midgut cells, I clustered this group with a higher
resolution, which resulted in three subclusters (Figure 5.14A). One of them appeared to
be located outside of the midgut (Figure 5.14B), however, the cells comprising it looked
visually similar to the midgut cells (Figure 5.14C). This subcluster did not have any
specific gene expression, so I further focused on the remaining two subclusters.

Figure 5.14: Analysing subgroups of the cluster 14. A. Finer clustering of the midgut
cluster results in three subgroups. BC. Location and appearance of the subgroup located
outside of the midgut.

To characterise the other two subclusters, I calculated their gene specificity within
the midgut cluster (Figure 5.15). This confirmed that they, indeed, have different gene
expression. Analysing the specific genes, I noticed that one of the subclusters expressed
the smooth muscle markers non-muscle-mhc and mrlc2. The other one showed specific
expression of a chitinase related to chitotriosidase (nov2 ) and the zinc finger transcription
factor mecom (Prdm16 ), which was shown to regulate homeostasis in epithelial cells of the
gut [158]. I hypothesised that the first subcluster could later differentiate into the muscle
cells and the second one into the epithelial cells of the Platynereis midgut.

In order to further confirm this hypothesis, I visualised both clusters and the above-
mentioned genes in the animal volume (Figure S5). The subclusters were proven to occupy
separate territories, consistent with the expression of the genes. This showed that such
type of exploratory morphological analysis can indeed reveal novel distinct morphological
groups with differing gene expression, which would not be apparent during browsing the
data, unless one knows in advance which groups to look for.
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Figure 5.15: Gene expression analysis of the midgut cell types. A. Gene expression dot
plot. The dot size reflects the fraction of the cluster expressing a gene; the dot colour
reflects the gene specificity to a cluster (see Methods). B. Some of the genes from A
plotted on the UMAP representation of the midgut region.

5.2.11 Investigating nuclear features separately

The fact that the pipeline explicitly combines different essential components of cellular
morphology makes it possible to investigate these components separately. In order to
use this opportunity, Detlev Arendt wondered how descriptive the pure nuclear features
are. To investigate this, I separated the nuclear features (shape, fine and coarse texture)
and performed a similar analysis on them. First, I generated a UMAP representation
of the combined nuclear features (Figure S6) that showed that the major morphological
categories were separated surprisingly well, given that no cytoplasmic features were taken
into account. For example, the ciliary band cells still form a coherent group in this
representation. Even more surprising is that muscle and midgut cells are distinguishable
from all the other cells based purely on their nuclei morphology.
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I was further interested in how the nuclear features compare to the complete Mor-
phoFeatures set on the quantitative tasks of cell class prediction and symmetric neighbour
detection. On the first task they scored 92% accuracy (in comparison to 96% for Mor-
phoFeatures and 94% for the manually defined ones), slightly losing accuracy in detecting
epithelial and secretory cells. The latter was expected, given that the whole class was
defined based on the cytoplasm appearance. On the symmetric neighbour detection task
the performance of the nuclear features was 73% worse than of the full MorphoFeature
set, but only 6% worse than the set of manually defined features from [65].

I was also curious if visualising separate components of nuclear morphology (coarse
and fine texture and shape) could reveal anything peculiar about the data. So I plotted
UMAP representations of these components separately; and by visual examination I no-
ticed that only in the nuclear fine texture representation plot there were some muscle cells
located closer to neurons than to other muscle cells (Figure 5.16). I visualised this group
in the animal volume and noticed that all of them are the antennal muscles (shown on
Figure 5.18). To see how justified it is to group these muscles with neurons, rather than
with other muscles, I visualised an example of nuclear texture from (1) an antennal muscle,
(2) a random oblique muscle and (3) a neuron close to the antennal muscles in the repre-
sentation space (Figure 5.16). I noticed that indeed the nucleus of an antennal muscle cell
looked more similar to the neuron nucleus, containing much less euchromatin and more
consistent patches of heterochromatin. This illustrated how a simple visual examination
of an extensive set of morphological features can lead to interesting observations.

Figure 5.16: UMAP representation of all cells in the animal based on their nuclear fine
texture features. The manually annotated cell classes are shown in colors. The panels
show nuclei of an antennal muscle cell (1), an oblique muscle cell (2) and a neuron (3).
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5.2.12 Comparing MorphoFeatures to explicitly defined features

I further wondered how MorphoFeatures compared to explicitly defined features in terms
of resolving morphological groups and types. As Kimberly I. Meechan showed in [65], the
set of explicit features showed good performance on separating all the manually labelled
cells classes (e.g., neurons, muscles, midgut cells), except for the secretory cells, which, as
mentioned before, one would not expect to be grouped together (Figure 5.17A).

Figure 5.17: Comparing MorphoFeatures to the manually defined features from [65]. A.
UMAP representation of the manually defined features. BCD. The morphological clusters
of rhabdomeric photoreceptors (A), enteric neurons (B) and foregut muscles (D) plotted
on the UMAP representation from A. The manually defined features split the group of
foregut muscles into two subgroups. The location of these subgroups in the animal volume
is visualised.

However, I wanted to inspect whether such features would also be able to define some
of the clear morphological types that were discovered by clustering MorphoFeatures. For
this I took the clusters with clear morphology that I was sure correspond to morpholog-
ical cell types - rhabdomeric photoreceptors and enteric neurons - and plotted them on
the UMAP representation of the explicitly defined features. In the representation of the
explicit features both groups did not seem to form coherent clusters, hinting that their
resolution might not be sufficient to distinguish these groups (Figure 5.17BC).

I further noticed that the explicit feature representation contained only one evident
cluster of muscles. So I also plotted the cluster of the foregut muscles on this representation
to see if these cells are grouped together (Figure 5.17D). While most of these muscles
indeed showed consistent location close to the striated muscles, a big portion of them was
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found in-between the dark neurosecretory cells and general neuron group. I investigated
the specific features that made these two subgroups so different from each other and found
that the subgroup close to neurons highly differed in their nuclear intensity features from
all the other muscle cells.

This comparison showed that, while both sets of features capture the differences be-
tween broad morphological classes well, MorphoFeatures achieved a higher resolution on
more precisely defined groups of cells. Moreover, the drastic split of the foregut mus-
cles hinted that the manually defined features might be too sensitive to specific intensity
characteristics.

5.2.13 Adding neighbourhood information

As previously shown in this thesis, cellular phenotype is mostly formed under the influence
of a combination of a cell’s internal genetic program and the environmental forces. In the
case of multicellular organisms, such environmental forces are often coming from neigh-
bouring cells. Cells in cellular neighbourhoods often influence each other to coordinate
their development and to be able work together in order to fulfil a specific function. Thus,
to describe a functional phenotype, it might be useful to describe the whole neighbourhood,
rather than a single cell.

To generate a morphological description of cellular neighbourhoods in Platynereis,
Johannes Hugger first investigated different ways of incorporating morphological informa-
tion from neighbouring cells, using the symmetric neighbour detection task to evaluate
how good a certain method is. He showed that the optimal way of integrating information
from cellular neighbourhood is simply taking an average of the neighbours MorphoFeature
vectors and appending it to the cell’s own MorphoFeature vector. I further refer to the
resulting representation as the MorphoContextFeature vector. This way of describing a
cell together with its immediate surrounding improved the symmetric neighbour distance
by 71%, showing, as expected, that local neighbourhood’s morphology is more indicative
of location than the morphology of single cells.

To estimate how well this description captures similar neighbourhoods, I generated
a UMAP representation of the MorphoContextFeatures. Visualising the coherent groups
of cells on this representation in the animal volume, I noticed that while MorphoFeatures
separated morphological cell types, MorphoContextFeatures distinguished the whole tis-
sues and organs of the animal (Figure 5.18). For example, the lower left part of the 2D
representation corresponds to the animal foregut, that consists of the foregut epithelium
(left orange panel), foregut muscles (lower red panel), foregut neurons (lower left blue
panel) and a layer of neuron-like cells surrounding the foregut muscles (lower central blue
panel). The representation also captured a group of muscles surrounding the foregut (left
upper red panel), secretory (green panel) and epithelial (upper orange panel) parapodial
cells and a group of antennal muscles (upper red panel), which participate in moving the
chemosensory antenna on the animal’s head. I also noticed that neurons got grouped into
ganglia (Figure 5.18, the upper right part) and I decided to analyse this grouping further.
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Figure 5.18: UMAP representation of the MorphoContextFeatures. The location of some
groups of cells in the animal is visualized in panels. Panel colors represent classes cells
belong to.

5.2.14 Distinguishing ganglia

To be able to better evaluate and characterise the ganglia grouping, I performed commu-
nity detection on MorphoContextFeatures of all cells, and selected the clusters correspond-
ing to the ganglia part of the UMAP representation. To annotate these groups, I relied on
the manual ganglia segmentation based on tissue boundaries done by Hernando M. Ver-
gara in [65]. In cases when MorphoContextFeatures clustering produced finer separation
than the manual segmentation, I consulted Hernando M. Vergara and Detlev Arendt to
refine the annotations. This helped me identify the groups of cells in the ganglia part of
the UMAP representation as cirral, palpal and dorsal ganglia of the head neurons (upper
blue panels from left to right), epithelial-sensory circumpalpal ganglion (orange panel),
the peripheral ganglia and the ventral nerve cord (VNC) (two lower right blue panels).

I further compared the results of the MorphoContextFeatures clustering to the manual
ganglia segmentation and to automatic ganglia detection by clustering of the available gene
expression [65]. In general, all three methods yielded comparable grouping (Figure 5.19).
However, in cases when no visible boundary was available, the manual separation was not
possible, as for example can be seen for the dorso-posterior and dorsal-anterior ganglionic
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nuclei and for the VNC and the peripheral ganglia. These groups are nevertheless well
separated by both gene expression and MorphoContextFeatures clustering, with the latter
method showing even higher resolution clustering of the dorsal ganglion. Similarly, as
expected, the gene expression clustering showed worse performance on the regions with
less gene expression available in the atlas. For example, the epithelial-sensory circumpalpal
ganglion, defined both by manual segmentation and MorphoContextFeatures clustering,
got merged with the neighbouring ganglia due to the lack of consistent gene expression.

Figure 5.19: Automatic ganglia detection by MorphoContextFeatures. A. Ganglia defined
by manual segmentation [65], MorphoContextFeature clustering and gene clustering are
visualised on the ganglia part of the MorphoContextFeatures UMAP from Figure 5.18.
B. The abovementioned ganglia are visualised in the animal volume.

To see whether the clusters defined by MorphoContextFeatures also display consistent
expression profiles, I examined their specific gene expression (Figure S7). Interestingly,
the above-mentioned circumpalpal ganglion, which was not detected by gene clustering,
still shows high expression levels of epithelial genes not present in other ganglia, such as,
for example, glycine neurotransmitter transporter glyt, semaphorin sema2 and glutamate
metabotropic receptor grm7. Despite the lack of clear tissue boundary, the VNC and the
peripheral ganglia can be clearly distinguished by their gene expression, with the ventral
ganglionic mass specifically expressing the homeobox transcription factors nk6, hb9 and
pitxb and the dorsal one having a higher phox2b expression.

67



5.2.15 Characterising foregut

To further explore the clustering of MorphoContextFeatures I shifted my attention to
the foregut region (Figure 5.18, the lower left part). The clusters in this region included
the foregut epithelium, foregut muscles, foregut neurons and the layer of neuron-like cells
(Figure 5.20). To identify the latter group, I visualised its shape and location in the
animal volume (Figure 5.20, in green). This structure is leaf-shaped and positioned below
the brain neuropil between the posterior pair of adult eyes (Figure S8B), forming a collar
around the foregut opening, and is surrounded by layers of muscle cells on both sides
(Figure 5.20, in red and beige, Figure S8A). This position made Detlev Arendt assume
that these neuron-like cells might be in fact neurosecretory, forming the infracerebral gland,
supposedly regulating glucose levels in the animal blood [159, 160, 161, 162]. The latter
might also hint that the cavity above the structure (Figure S8C) is a developing blood
vessel. I identified specific genes for the foregut clusters (Figure S9), and noticed that there
is a genetic difference between the foregut neurons and the infracerebral gland cells, with
the former expressing sodium channel scn8aa, and the latter being distinct in expressing
the homeobox transcription factor hnf6. I also observed that in comparison to the foregut
neurons, the infracerebral gland cells are positive for proliferative EdU stainings between
4 and 5 days post fertilisation, indicating that these cells might be less differentiated.

Figure 5.20: Foregut characterisation using MorphoContextFeatures. AB. Clustering of
the foregut visualised on the MorphoContextFeatures UMAP from Figure 5.18 (A) and in
the animal volume (B). C. 3D visualisation of the tissues defined by the foregut clustering.
3D volumes were generated by Johannes Hugger (adapted from [66]).
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I also got interested in a group of muscle cells located on the outer surface of the
infracerebral gland and surrounding the animal foregut (Figure 5.20, in red). To identify
them I referred to their specific gene expression (Figure S9), however, they seemed to
mostly display gene expression similar to the one of the foregut muscles. I suspected it
might be so because this layer of muscles is relatively thin, thus, one could expect a high
level of gene leakage from and to the neighbouring foregut muscles. Visualising some
of the genes in the animal volume proved this suspicion to be true, and I identified the
muscle junctional gene junctophilin1 and the type I collagen gene col1a1 as specific to
the unknown group of muscles only (Figure 5.21). The type I collagen has been shown
to be secreted by the axocord in Platynereis [163], indicating that this group of muscles
could be the anterior extension of the axochord. This hypothesis was further supported
by the location of the group - ”between central nervous system and axial blood vessel” as
described in [163].

Figure 5.21: Gene expression characterising the axocord muscles. Collagen gene co1a1
and muscle junctional gene junctophilin1 are visualised in three different EM sections.

In general, the analysis of MorphoContextFeatures showed that combining the mor-
phological information of a cell and its immediate neighbours reliably identified tissues,
ganglia and organs. Further exploration of the groups revealed by these morphological de-
scriptions helped me characterise structures that were not yet noticed in the EM volume
of the animal.

5.3 Discussion

5.3.1 Contributions

In this chapter, I developed a method for automatic unbiased extraction of texture fea-
tures from electron microscopy data using deep neural networks. The designed pipeline
can be trained in a fully unsupervised way, i.e. does not require any annotations or meta-
data available. For this I combined two training objectives - contrastive learning and
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autoencoder reconstruction - that ensured that the extracted features are representative
of cellular morphology and capture the morphological distances between the cells. Then I
applied the developed pipeline to a whole-animal segmented 3D EM volume of a marine
annelid Platynereis dumerilii that contains multiple morphologically distinct cell types.
This produced high quality features that perform better than a set of extensive manually
designed features [65] on the proxy tasks of cell classification and symmetric neighbour
detection. I also showed that many dimensions of the learned features can be interpreted
through visualisation of the inputs corresponding to feature minima and maxima.

I further analysed the extracted features and demonstrated that they not only cap-
ture fine morphological peculiarities, but can also be used to recognise morphological cell
types, which can be further described genetically. For example, I characterised two types
of muscles, three types of epithelial cells and multiple types of neurons. Furthermore,
I detected rare cell types, such as rhabdomeric photoreceptors, enteric neurons and two
populations (epithelial and muscular) of the developing midgut cells. Additionally, I anal-
ysed the combined morphological representations of cellular neighbourhoods, generated by
Johannes Hugger, and showed that these correspond not to cell types, but rather to tissues
and organs, such as foregut or ganglia. I used these representations to detect structures
previously unnoticed in the volume, such as infracerebral gland and axocord muscles, and
illustrated how one could categorise such structures.

5.3.2 Improving the pipeline

The developed pipeline showed outstanding performance on extracting comprehensive
morphological features from EM data. Still, a number of potential improvements could
further increase the pipeline resolution in capturing visual similarities and differences.
First, the pipeline was based on the state-of-the-art methods in the field of self-supervised
deep learning. However, the field is relatively new and extremely fast-developing - every
month there are new improvements hugely advancing the training procedures. Incorporat-
ing the latest progress of the field would definitely enhance the MorphoFeatures extraction
pipeline. For example, one could adapt pixel-level contrastive learning [164, 165] or extend
the definition of positive samples beyond the augmented versions of the anchor samples
[166].

Additionally, the pipeline could benefit from devising better strategies to incorpo-
rate coarse and fine texture. Right now the method only takes into account two scales
of ultrastructure resolution. However, one could also adapt a truly multiscale approach
and integrate multiple resolutions into one feature vector adapting, for example, a feature
pyramid approach [167]. Beside this, one could also focus on improving the calculation of
the morphological neighbourhood. For example, instead of simple averaging, one could as-
sign each neighbour a weight based on the area of contact between two cells. Furthermore,
the neighbourhood description might benefit from using novel methods for self-supervised
learning on graphs [168].

Finally, it would also be of high importance to focus on improving the interpretability
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of the extracted features. Even though, as I showed, many of the features learned by the
neural network can be traced back to human-understandable morphological properties, it
would be beneficial to be able to understand what each of the features means. For this, one
could focus on encouraging the learned features to be more interpretable in the first place,
for example, by enforcing them to be non-negative and sparse [169]. Alternatively, one
could integrate better mechanisms for tracing features back to the raw data characteristics,
for instance, Oclusion [170] or Grad-CAM [171] methods.

5.3.3 New datasets

Besides enabling a fast automated exploration of whole animal EM volumes, I expect the
pipeline to be of great use when comparing multiple EM volumes of the same species. This
could, for example, be necessary if one would want to compare the animal morphology
under different conditions or environments, or describe cellular morphology changes across
the course of the organism development. In this case the learned morphological features
could be used to both establish correspondence between similar cells in different volumes
and estimate the morphological difference between the corresponding cells.

Still, in order to apply the designed pipeline to multiple samples that were imaged
independently, one would have to adapt it for being trained on multiple datasets. More
specifically, the pipeline would have to be adjusted to ignore all non-biological differences
between the samples. For example, it is widely known that neural networks are intrinsically
intensity-sensitive, thus, one would have to make sure that the dataset intensities reflect
the true differences in the sample ultrastructure, rather than the imaging conditions. A
potential way to achieve this sample independence would be to use reverse gradients [172].
For this, one would train the network to additionally distinguish which sample a cell came
from, but ’penalise’ it every time the network guesses correctly.

Another interesting application of the feature extraction pipeline would be a newly
acquired volume of the same species that is not yet segmented. In this case one should,
nevertheless, be able to use the fine texture part of MorphoFeatures to find corresponding
regions with similar morphology in the new volume. For example, if a researcher wants
to find a cell of interest in the new volume, they could just describe the cell as a set
of (non-averaged) fine texture feature vectors and look for similar vectors that are co-
localised in the new volume. Furthermore, fine texture features could also be used as a
biological prior to assist segmentation of new volumes, since the already segmented volume
could allow us to define which textures can co-exist in a cell and which ones are mutually
exclusive. For instance, one could (automatically) prohibit merging patches with muscle
fibres and secretory vesicles, since they never co-occur in a cell. This could, for example, be
implemented as negative potentials in the graph partitioning step of an EM segmentation
pipeline [173].
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5.3.4 Other types of data

One more important direction yet to be explored is adjusting the pipeline to other imaging
data modalities. Electron microscopy currently offers the richest description of cellular
morphology, however, it is still time-consuming and expensive. This is one of the reasons
why up until now there has been only a modest amount of whole-organism EM datasets,
and the absolute majority of data of such scale is taken by lower-resolution methods.
Therefore, in order to ensure the broad applicability of the MorphoFeatures pipeline, it
is vital to make sure that the pipeline produces reasonable results on the lower-resolution
imaging data modalities as well.

One could start with adapting the proposed method for feature extraction to interme-
diate resolution imaging techniques, as, for example, X-ray holographic nano-tomography
(XNH) [64, 174]. As I showed in Chapter 3, despite having lower resolution, this tech-
nique can produce volumes with cellular morphology descriptive enough to distinguish cell
types. For this reason I expect adapting the texture part of the MorphoFeatures pipeline
to this type of data to be a fairly straightforward process. Additionally, if the dataset
is segmented, one could also directly apply the shape part of the pipeline. However, the
data resolution provided by XNH is not high enough to trace smaller neurites, which are
an important part of neuron morphology. That is why, in order to to fully differentiate
neuron classe one would have to devise a way to supplement soma morphology description
from XNH data with neuronal branching features that could be extracted, for instance,
from EM data.

If the dataset of interest was acquired using light (fluorescence) microscopy and has
been segmented, one could directly apply the shape part of the MorphoFeatures pipeline.
However, the outcomes of applying the texture part would highly depend on which struc-
tures are labelled inside the cells. For example, a similar approach used on images of a
multitude of fluorescently labelled proteins in single cells [62] has been shown to extract
rich descriptions of protein subcellular localisation. Nevertheless, as the authors show, the
pipeline performs much worse when applied without the strong pre-text task of protein
classification. Since such descriptive classification labels are not always available even for
LM datasets, removing the dependence on such a pre-text task would be an important
step towards general usage of contrastive learning methods for training feature extractor
networks on light microscopy data.

5.3.5 Data integration

As I described in the previous chapter, in order to get a truly complete description of
an object of interest, e.g. a cell, one might have to combine multiple modalities of data
into one multi-sided representation. For instance, MorphoFeatures representation already
explicitly combines shape and texture. However, other types of data can additionally be
added to further improve the completeness of such descriptions.

One of the applications where such an integration would be highly needed is describ-
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ing neuronal morphology. While MorphoFeatures already show a good performance on
subgrouping neurons based on their soma morphology, in order to accurately distinguish
neuron types one needs to take into account their neurites as well. For example, con-
current to our work, Dorkenwald et al. [175] apply a method to the segmented cells in
mouse and human cerebral cortex that is similar to the texture contrastive learning part
of the MorphoFeatures pipeline. Instead of aggregating the fine texture features across
the whole cell, like we do, the authors experiment with limiting the patch aggregation to
a smaller radius, which allows them to classify cell parts, such as somas, axons, dendrites
and astrocytic processes. Moreover, they show that even a small aggregation radius can
still produce features descriptive of the main glia types (astrocytes, microglia, etc) and
general neuron classes (pyramidal, thalamic, basket, etc). While they successfully extract
texture features from axons and dendrites, what is still missing to precisely describe the
neural types is their branching patterns. Thus, to supplement pure texture features, de-
veloping a similar automated unbiased method to extract neuron skeletons features would
be of utter importance for unsupervised exploration of neuron types in brain EM volumes.

Another important direction, as discussed above, would be to combine morphological
descriptions with multiomics data. In this Chapter I showed how making use of integrated
gene expression data, even when limited to several hundreds of genes, could assist in de-
scribing new cell types and tissues that I discovered during the analysis of MorphoFeatures
in the EM data of Platynereis. I expect that extending such a gene atlas to thousands
of genes would allow us to automate the genetic characterisation of all the morphological
diversity in the data. This could be achieved by acquiring single-cell transcriptomics data
and mapping it to the EM volume via Virtual Cells, as proposed in Chapter 4. Such data
could also be combined with epigenome profiling, which is currently possible to acquire
in parallel with single-cell transcriptomics [99, 100, 101, 102]. In order to further enrich
the cellular descriptions one could also acquire spatial proteomics and metabolomics data
[89, 90] and align it with the EM volume in a similar manner to how the spatial gene
expression maps were aligned. This would add an additional intermediate state between
the gene expression and the final phenotype of cellular morphology, allowing to better
investigate how the former is translated into the latter.

Finally, an equally important task would be to investigate ways to integrate such
multimodal data. In this project I was mostly interested in finding and describing groups
of cells using the morphological representations of the dataset. However, given the full
gene expression data and possibly additional data modalities, one could start exploring
the variability of the combined data. For example, one could use the method proposed
by Argelaguet et al. [105] to find the major axes of heterogeneity across all the available
data views. This method could locate not only specific groups of cells, but also continuous
gradients of existing variations. Exploring all the heterogeneity in the data in an automatic
unbiased and explainable way could enable us to get a full picture of all the cell types in
an organism and understand how they develop and function.
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Chapter 6

Concluding remarks

6.1 Thesis summary

In brief, with this thesis I aimed to design better automatic ways of describing cells from
microscopy imaging data. I used various, mainly deep learning based computational meth-
ods to analyse cell differences in diverse imaging data modalities and to integrate informa-
tion from complementary modalities. Specifically, my contributions can be summarised as
follows:

� In chapter 2 I analysed a fluorescent light-sheet microscopy movie of a developing
Drosophila embryo. Using a neural network based pipeline I showed that there
are no obvious differences in myosin patterns between two distinct populations of
mesoderm cells. I further showed that the shape difference of these populations arise
from the combined influence of their own and their neighbourhood myosin.

� In chapter 3 I investigated a newly developed X-ray holographic nano-tomography
imaging method. Using a neural network classification pipeline I showed that the
method resolution is sufficient to automatically recognise cell types in the mouse
brain cortex.

� In chapter 4 I focused on integrating image-based gene expression data with EM
morphology on the whole-animal single-cell level. More specifically, I devised a way
to automatically assign coherent denoised gene expression profiles to segmented cells
in the EM volume of a three-segmented annelid worm Platynereis dumerilii.

� In chapter 5 I aimed at designing unbiased comprehensive descriptors of cellular mor-
phology in EM data. I designed a fully unsupervised neural network pipeline that ex-
tracts extensive morphological representations, grouping cells compatible with their
gene expression. I further showed how such representations could be used to discover
and describe morphological cell types, tissues and organs.

75



The work I have done only begins to address the fundamental problem of automating
generation of exhaustive image-based cell representations. In the following paragraphs I
will outline the two broad directions that I believe are necessary to pursue in order to
bring the field closer to this challenging goal.

6.2 General methods for extracting morphological informa-
tion from imaging data

The ever increasing amount and complexity of biological imaging data require efficient
automatic methods for unbiased analysis. This thesis, among multiple other works, il-
lustrates how computational methods can facilitate describing cell differences. However,
as I discussed in Introduction, current pipelines are mostly tailored to a specific dataset
and/or specific research question. Therefore, an essential direction of future research is
developing generally applicable methods for characterising cells in any imaging modalities.

The first step in this direction has been made by deep learning. There already exist
standard approaches to common analysis problems in the fields of natural, medical and
biological imaging that with a high probability deliver a successful solution. For example,
for classifying mouse brain cells (Chapter 3) I used a ResNet network [79], which is a
commonly used architecture for classifying images. I have experimented with multiple,
more modern architectures. However, given the modest amount of training data, which
is mostly the case in biological studies, the classical ResNet still showed the best perfor-
mance. A similar picture can be seen for various image-to-image problems that include, for
example, image segmentation, restoration and denoising. Despite many method advances,
the base network architecture used for these tasks - a Unet architecture [60] - remains
unchanged for years. If no training data is available, self-supervised approaches based on
contrastive learning are highly likely to extract useful features for multiple tasks, includ-
ing classification, segmentation or general exploratory data analysis, as I have shown in
Chapter 5. Thus, for most common cell analysis tasks there often exists a ’classical’ deep
learning approach to tackle it.

However, as humans, we normally do not approach such tasks separately. For example,
to segment individual cells we do not focus on separate boundaries, but rather on the
whole view of a cell that includes both the cell membrane and its inner morphology.
Furthermore, our view of a cell is sufficiently data-agnostic - we would recognise a nucleus
in both fluorescent and electron microscopy as the same structure. A challenging but
promising future step would, thus, be developing one model operating on any cell imaging
modality and universal for all cell-related image analysis tasks. Similar to our perception,
such a model should learn the very concept of a cell, therefore be able to properly describe
morphology, classify and segment cells in any kind of imaging data.

A recent focus in the field of natural image and language processing are so-called
foundation models [176, 177, 178] that are supposed to learn a holistic view of the data,
useful for a broad range of applications and modalities. To account for this, the architec-
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ture of such models, currently based on the transformer architecture [179], usually consists
of three major modules:

� (1) modality-specific encoders that process different types of input, i.e. different
data modalities, to generate modality-agnostic representations;

� (2) a general encoder receiving input from (1) and extracting fundamental data
representation, useful for multiple tasks;

� (3) small task-specific decoders that use the representation from (2) to generate the
desired output, for example segmentation masks or classification labels.

To promote such models to extract general-purpose, not task-specific representations,
the training of the general encoder (2) is done in a self-supervised manner, which en-
courages the model to rather learn the relationship between parts of the data, than some
limited set of labels. Afterwards, a minimal set of labels is normally used to train the
task-specific decoders.

I believe that the next step to automate morphological description of cells would be
adjusting such foundation models to biological data. At the moment the main limitation
of applying big transformer-based foundation models to biological data is the immense
amount of training data and computational resources required to train them. This, I
believe, could, on one hand, be mitigated by introducing smaller light-weight models,
as it is currently done in the medical imaging fields [180]. On the other hand, the ever
increasing amount of imaging data and better availability of computational resources would
eventually allow to train much bigger models on the biological imaging data as well.

The expected exponential increase of imaging data will also render it infeasible to
generate manual labels, thus, another direction of primary importance is designing proper
self-supervised training objectives that should be based on the profound understanding of
the underlying data. Developing such objectives has been shown to considerably contribute
to the success of self-supervised learning on natural images [144]. However, many of these
criteria are based on peculiarities of this domain (e.g. complementary RGB channels,
fixed orientation or object-centred images), and, therefore, are not directly transferable
to biological data. Multiple self-supervised objectives have been proposed for various cell
imaging datasets [146, 61, 62]. However, they are largely specific to a certain imaging
modality and/or type of experiment. Therefore, designing generally applicable, unbiased
training objectives for cell imaging data is the next essential step to be able to extract cell
descriptors from massive amounts of imaging data of different modalities.

6.3 Generating exhaustive cell representations

Concurrent to the development of general methods for extracting holistic cell representa-
tions from any imaging modality, another essential direction is integration of the repre-
sentations from other modalities. Ideally, for a full cell type description we would want to
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bring together all the molecular and anatomical characteristics of a cell on the whole-organ
or even whole-organism level. This would include genomics, epigenomics, transcriptomics,
proteomics and metabolomics, as well as morphology and physiological properties, such
as mechanical and electrophysiological properties, spatial distribution and connectivity of
individual cells. Combining all these views of a cell is essential to get a full understanding
of both how cell identity is established and how this identity leads to cellular function.

Several studies have already shown the possibility of successful automatic integration
of multiple modalities on the single-cell level. For instance, the Platynereis atlas [65],
discussed in Chapter 4, is, to the best of my knowledge, the first effort to automatically
integrate gene expression with EM morphology on the whole-organism single-cell level.
Another prominent example is a recent study generating a single-cell atlas of the mam-
malian primary motor cortex that combines transcriptomics, epigenomics, light microscopy
and electrophysiological properties [181]. Not only do such studies show the importance
of integrating multiple data sources to generate better cell type descriptions, they also lay
the methodological foundation for creating a multi-view representation of a cell.

Generalising from such multi-modal atlases, I expect single-cell transcriptomics to
be the cornerstone modality required for bringing together multiple data views. Various
studies have shown the possibility of acquiring transcription data together with epige-
netic [99, 100, 101, 102], electrophysiological [182, 183] or connectivity [184] profiles on
the single-cell level. These modalities could be used to specify cell types present in the
data and identify the genes defining these types. Such differentially expressed genes could
be further targeted by spatial transcriptomics, adding the information about cell location
and neighbourhood. To get a precise snapshot of cellular morphology, EM volumes could
be acquired and aligned with spatial transcriptomics data using some morphological land-
marks [185], for example, cell nuclei [65]. In case such alignment is hindered by a low
level of stereotypy of the studied organ/animal, the volumes could even be co-acquired
using the latest technology for spatial transcriptomics-correlated EM [186]. Afterwards,
other necessary modalities could be integrated computationally. For example, spatial pro-
teomics data could be matched with spatial transcriptomics by using both cell location
and expression features. Finally, functional descriptions of cells could be obtained using
genetic tools, such as transgenic lines.

The possibilities of analysing cell types with such united complete representations
are virtually limitless. In my opinion, one of the most interesting riddles such represen-
tations could tackle is the genotype-phenotype link. For example, the access to the gene
expression, protein content and morphology of every cell in an organism could be used
to disentangle which phenotypic features are caused by the gene expression program and
which are the result of environmental influences. One could further analyse cellular neigh-
bourhoods to examine how cells influence each other. The next exciting step would be to
add another dimension in order to investigate phenotype formation during the course of
the organism development. To achieve this, one could further acquire single-cell lineage
information [187, 188, 189] and integrate spatial transcriptomics and EM data at different
developmental stages with fluorescent movies of a developing embryo [190, 185]. Observing
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and correlating gene expression and morphology changes over time would result in a much
better understanding of how genetically identical cells acquire their functional specialisa-
tion over time. Finally, an ambitious, but highly promising direction would be to compare
such comprehensive cell type representations across different species, that has already been
attempted for single-cell transcriptomics data [191, 192]. Integrated knowledge of how the
genotype-phenotype relationship is established not only during the development of a single
organism, but also in the course of evolution would be invaluable for understanding the
emergence of cellular diversity.
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Chapter 7

Methods

7.1 Characterising shape changes of mesodermal cells dur-
ing Drosophila gastrulation

7.1.1 Neural network classification

The data and its generation is described in detail in [63]. For training I used two types
of input data: cell segmentation masks generated by Sourabh Bhide (as negative control)
and myosin channel of the acquired movies. In the first case each input cell was loaded
as a binary segmentation mask, while for myosin training cell segmentation masks were
used to extract myosin expression of each cell that was further normalised. Images were
cropped/padded to 96*96 pixel image, and the following augmentations were applied:
random flips, random rotations and random transposing.

I used the row numbers (3-8) assigned by Sourabh Bhide as classification labels,
renormalised to range [0, 1]. To test the network setup, I first tested row number prediction
on the cells of the same timeframe for timeframes 10, 15 and 20 (250s, 375s and 500s).
To further check for differences in myosin patterns between cells from different rows with
the same myosin concentration, for each cell I selected a timeframe where its myosin
concentration was 5 (+-30%). The value 5 was taken as the highest myosin concentration
still present in the sufficient number of cells (at least 10 in each row).

The data was input into a small convolutional neural network, consisting of 4 or 5
convolutional layers (for training on the cells from the same timeframe both showed similar
performance, however for training on the cells with the same myosin concentration, the
5-layer networks performed better). The initial number of feature maps was 8, increasing
two-fold with every convolutional layer. Afterwards, there was a global average pooling
layer, one fully connected layer with 20 neurons and the last fully connected layer with
one neuron and a sigmoid activation that output a value in range [0, 1].

For training I used L1 loss, Adam optimizer [193] with a learning rate of 0.0001,
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weight decay of 0.00005 and mixed precision training with O1 optimisation level. I used a
batch size of 5 for both training and validation. I evaluated the model every 100 iterations
and the best result was saved with a patience of 0.4. The learning rate was reduced by
0.98 whenever the validation score showed no improvement with a patience of 0.4. The
training was done for 20 epochs on a single laptop NVIDIA GeForce GTX 1050 Ti Mobile
GPU.

During prediction, the output values (in range [0, 1]) were renormalised back into
the range [3, 8] and rounded up to the closest integer to get a categorical row number.
However, since in the end I wanted to estimate if the network is able to distinguish between
constricting and expanding cells, rather than the row numbers, to calculate the final
accuracy I calculated the percentage of constricting cells predicted as any row from 3-6
and expanding cells as either row 7 or 8, and then took an average of these two values.

7.1.2 Investigating influence of myosin concentration

To understand whether cell shape change is connected to myosin concentrations inside
and outside the mesoderm cells I did the following. I first calculated myosin intensity
inside a cell (Figure 2.4A, inner circle) as a sum intensity of all pixels in a cell, and then
calculated myosin concentration by dividing the myosin intensity by the cell area. To
calculate myosin concentration in the neighbourhood I did the same calculation for the
area of 70 pixels around the cell boundary (Figure 2.4A, outer circle). Then for each cell
I calculated its relative shape change by dividing the cell area of the following time frame
by the cell area in the current one. For every cell I calculated a vector of each value over
the 25 time points, and further smoothed it along the time axis to reduce the noise using
a 1D Gaussian filter (sigma=3) [194].

7.1.3 Calculating myosin offset

To check the hypothesis that myosin in the neighbourhood of constricting/expanding cells
is located closer/further from the cell membrane respectively, I calculated the myosin offset
in the neighbourhood as follows: I multiplied the value of myosin intensity of each pixel in
a radius of 70 pixels from the cell membrane (Figure 2.4A, outer circle) by the distance of
this pixel to the membrane (Figure 2.4B). I summed up the resulting weighted intensity
and divided it by the total myosin intensity (sum of the outer circle on Figure 2.4A).

The obtained value shows the average distance of surrounding myosin from a cell,
with lower values indicating cells where surrounding myosin is located closer to the cell
and vice versa.

To calculate the myosin offset inside a cell I calculated the centre of mass of the
cell and the centre of mass of the myosin expression within this cell and calculated the
euclidean distance between the two values.

82



7.1.4 Software and code

I trained the networks using Python packages pytorch [195] and personally modified
repositories of inferno [196] and neurofire [197]. I stored and analysed the data using
h5py [198], numpy [199], pandas [200], scipy [194] and scikit-image [201] and visualised
it using matplotlib [202] and napari [203]. The code for the analysis can be found at:
https://github.com/vzinche/drosophila emryo cells

7.2 Classifying cells imaged by a new intermediate resolu-
tion modality

7.2.1 Neural network classification

To train a classification neural network I used two XNH volumes of the mouse cortex of
the resolution 130nm, acquired as described in [64]. To extract cells from the volume I I
cropped a region of 160 pixel diameter around each cell soma annotation seed. For the
training and validation I further reduced the crop size to 128 and normalised the data to
be in the range of [0, 1]. I additionally applied the following augmentations for the training
only: random flips, random noise (sigma=0.01), random elastic transforms (alpha=100,
sigma=50). I only used the labels ’pyramidal’, ’not pyramidal’ and ’non neuronal’.

This input data is further fed into a 3D ResNet18 [79] with 3 output classes. I used
soft cross-entropy as loss with 0.05 softening [80], Adam optimizer [193] with a learning
rate of 0.0001 and weight decay of 0.00005, mixed precision training with O1 optimisation
level and batch size of 20 for both training and validation. I evaluated the model every
100 iterations and the best result was saved with a patience of 0.4. The learning rate was
reduced by 0.98 whenever the validation score showed no improvement with a patience
of 0.4. The training was done for 20 epochs on a single NVIDIA GeForce RTX 2080 Ti
GPU.

7.2.2 Software and code

To process the data, train the network and analyse the results I used Python packages
pymaid [204], numpy [199], pandas [200], z5py [205], scipy [194], scikit-image [201], scikit-
learn [206], pytorch [195] and personally modified repositories of inferno [196] and neurofire
[197]. The code for data fetching, training and analysis can be found at https://github
.com/vzinche/brain cells.
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7.3 More detailed cell characterisation through combining
genetic information with high resolution imaging

7.3.1 Automating Virtual Cell generation

The detailed description of how the VCs were generated can be found in [122]. I improved
the pipeline by automating the previously required steps of manual curation. More specif-
ically, in the automated pipeline I firstly removed all the VCs composed of less than 16
supervoxels. According to Hernando Vergara, this was the threshold below which VCs
showed low spatial correlation, indicating that these VCs might be an artefact of mixed
gene expression on the cell borders. Afterwards I split all the VCs into spatially connected
components (CCs) that potentially represent single cells or groups of neighbouring cells. I
further removed CCs composed of less than 5 supervoxels, since these were much smaller
than we expected cells to be. All CCs above the size of 8 supervoxels were considered
big enough not to be considered artefacts, but the ones in the range between 5 and 8
supervoxels were kept only if there was a CC with the same genetic profile symmetrically
located on the other side of the animal. Symmetric location was defined by mirroring the
coordinates of the CC centre to the other side of the animal and defining a radius of 4
supervoxels around this location. Next, all the CC that were retained after this curation
were assembled back into VCs and their average expression was used as the VC expression
profile. The full pipeline that includes the VC generation and curation is available on
GitHub at https://github.com/mobie/prospr-vc-generation.

7.3.2 Virtual cell assignment

In the first step of the assignment I calculated the overlap between each gene expres-
sion map and each segmented cell. This is further referred to as overlap assignment.
Afterwards, for each segmented cell I located all the VCs in the radius of 5µm from the
boundaries of the cell. This radius was chosen based on the estimated registration error
and biological variability in cell locations. Next, for each segmented cell I compared the
expression profile assigned by overlap to the profiles of all the VCs found within the radius,
and assigned the VC that was the closest genetically. However, I expected that for some
cells there might be no matching VC, thus, if not assigning any gene expression (assigning
a profile with zero expression of all genes) was genetically closer than any VC in the prox-
imity, I assigned zero expression instead. I used version 1.0.0 of the segmentation data
and performed the assignment only for the cells that had nuclei assigned (column cells in
the table https://github.com/mobie/platybrowser-project/blob/main/data/1.0.0

/tables/sbem-6dpf-1-whole-segmented-cells/default.tsv ). The resulting assign-
ment can be accessed at https://github.com/mobie/platybrowser-project/blob/mai
n/data/1.0.0/tables/sbem-6dpf-1-whole-segmented-cells/vc assignments.tsv.
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7.3.3 Assignment validation

To validate the assignment I manually identified 208 symmetric cell pairs in the animal,
aiming to cover most of the animal regions. I defined the cells as symmetric pairs if they
showed similar morphological appearance and were symmetrically located on two sides of
the animal. To estimate the assignment accuracy for each pair I calculated the difference
between the expression profiles assigned to the cells comprising the pair and averaged this
difference across the 208 pairs.

7.3.4 Software and code

For the assignment I used Python packages numpy [199], elf [207], pybdv [208] and vigra
[209]. For data visualisation I used matplotlib [202], mayavi [210] and MoBIE [128]. The
code can be found at https://github.com/mobie/platybrowser-project/blob/main/
mmpb/extension/attributes/vc assignments impl.py.

7.4 Unsupervised comprehensive description of high reso-
lution cellular morphology

7.4.1 Data, training and feature extraction

The data used is described in detail in [66]. I only used the cells with assigned nuclei and fil-
tered out the obvious merge errors. I also excluded cells at the top of the animals head and
the lower part of pygidium, since the algorithm used for intensity correction of the EM vol-
ume performed unreliably on the boundaries of the volume. The excluded cells, negatively
affected by intensity correction, were taken from https://github.com/mobie/platybrow

ser-project/blob/main/data/1.0.0/tables/sbem-6dpf-1-whole-segmented-cells/

extrapolated intensity correction.tsv.

The network to extract features from the data consists of six encoders (Figure 5.3)
which are extracting shape, coarse and fine-grained texture of cells and nuclei. The shape
extraction network was designed by Johannes Hugger and is described in detail in [66].

I did the following to extract the texture features: ”Due to the limitations of the
GPU memory, for the coarse texture a central crop is taken from a downsampled version
of the data (80*80*100nm). The centre of mass of the nucleus is determined, and a
bounding box of size 144*144*144 pixels (cytoplasm) or 104*104*104 (nuclei) is taken
around it. During prediction the bounding box is increased to 320*320*320 (cytoplasm)
and 160*160*160 (nuclei) to fit more information. Fine texture patches have a higher
resolution (20*20*25nm) and are taken separately from cytoplasm and nucleus. For this
the bounding box surrounding cytoplasm or nucleus is split into cubes of 32*32*32 pixels,
and only those cubes are considered, which are less than 50% empty. For both coarse and
fine texture the data is normalised to the range of [0, 1] and for cytoplasm crops the nuclei
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are masked out and vice versa.

The encoding of fine texture details and coarser contextual information is done using
the encoder of a U-Net [60]. The fully convolutional network reduces spatial information
gradually by employing 3 blocks that consist of 3D convolutional layers with ELU activa-
tions [211] separated by 3DMaxPooling layers. The number of feature maps starts with
64, increases twofold in each block, and afterwards gets reduced to 80 by an additional
convolutional layer followed by an ELU activation. In the end a global average pooling
operation is applied to reduce feature dimensionality from 3D to 2D. To ensure that empty
regions of the data are not affecting the final feature vector, they are excluded for this
final pooling” [66].

The training is done in a fully unsupervised way using a combination of contrastive
and autoencoder losses as the training objective. As described in [66], ”First, we randomly
sample a mini-batch of cells or nuclei. Two augmented views are then created for each
sample in the batch and concatenated to form an augmented batch of twice the size. To
create positive samples for the contrastive training of texture we used random flips and
rotations and elastic transformations of the data.The augmented batch is passed through
the neural network encoder to compute representations. Those representations that share
the same underlying sample are considered as positive pairs whereas the others are con-
sidered as negative pairs. The NT-Xent loss [144] is then used to score the representations
based on their similarity, and, therefore, encourages the network to embed positive pairs
closer to each other than negative pairs.

In order to learn representations of texture, we combine the NT-Xent loss with an
Autoencoder reconstruction objective. The latent representations, taken before the dimen-
sionality reduction step of global average pooling, are further processed by a symmetric
decoder part of the UNet network with only 1 block, which aims to reconstruct the net-
work inputs. The reconstructions are then compared to the original inputs and scored by
a mean squared error loss. Additionally, an L2-Norm loss was applied to flattened bottle-
neck features to restrict the range of possible values. The final loss is thus a weighted sum
of the NT-Xent, the mean squared error loss and the L2-Norm loss. The batch size was
set to 12 and 16 for cell and nuclei coarse texture and to 32 for fine texture. For training
we used Adam [193] as optimizer with a learning rate of 0.0001 and a weight decay of
0.00005. The model was evaluated every 100 iterations and the best result was saved with
a patience of 0.95. The learning rate was reduced by 0.98 whenever the validation score
did not show improvement with a patience of 0.95.

In order to compute the MorphoFeatures representation for the whole animal, we pro-
cessed each cells cellular and nuclear shape and texture, as described in previous sections,
with our trained networks. For the fine texture patches to get one feature vector per cell
the feature vectors of all the patches from a cell were averaged. Each cell is represented by
a 480-dimensional vector that consists of a nuclear and cellular part. Each of these parts
consists of a shape, coarse and fine-grained texture 80-dimensional feature vector”.

To get a representation of cellular neighbourhood morphology - MorphoContextFea-
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tures - Johannes Hugger combined MorphoFeatures of each cell and its immediate neigh-
bours as described in [66].

7.4.2 Evaluating MorphoFeatures

To quantify how good MorphoFeatures can predict cell classes, I used broad cell cate-
gories, annotated as described in [65] and Chapter 5. I then extracted MorphoFeatures
for every cell in the animal with a nucleus assigned (except cells with substantial merge
segmentation errors) and standardised these representations across the whole dataset. Af-
terwards I trained a logistic regression model with stratified 5-fold cross-validation [206]
(C=1, solver=lbfgs). Since the initial number of features was higher than the number of
training samples, to prevent overfitting I reduced the amount of correlated features using
feature agglomeration [206] (n clusters=100).

To further quantify how well MorphoFeatures can detect symmetric neighbour cells I
used the bilateral pair evaluation, introduced by Kimberly Meechan in [65].

To compare MorphoFeatures to explicitly defined features I used the set of morpholog-
ical features from [65] manually designed by Kimberly Meechan. The cellular features can
be accessed at https://github.com/mobie/platybrowser-project/blob/main/data/1
.0.1/tables/sbem-6dpf-1-whole-segmented-cells/morphology.tsv and the nuclear
and chromatin features at https://github.com/mobie/platybrowser-project/blob/m
ain/data/1.0.1/tables/sbem-6dpf-1-whole-segmented-nuclei/morphology.tsv. The
UMAP of these features can be found at https://github.com/mobie/platybrowser-pr
oject/blob/main/data/1.0.1/tables/sbem-6dpf-1-whole-segmented-cells/morpho

logy umap.tsv.

7.4.3 Umap and clustering

As I described in [66], ”Visualisation was done using the UMAP package [153] with the
following parameters: euclidean metric, 15 neighbours and 0 minimal distance. Cell meta-
data, such as annotated types, animal regions or gene expression were plotted on the
resulting UMAP.

Cell clustering was done according to the following procedure. First the features
were standardised to zero mean and unit variance. Then, following [212] a weighted k-
neighbour graph was constructed from MorphoFeatures representations of all the animal
cells using the UMAP algorithm [153] with the following arguments: n neighbors=20,
metric=euclidean, min dist=0. Afterwards the Leiden algorithm [154] for community de-
tection was used to partition the resulting graph, using the CPMVertexPartition method
and a resolution parameter of 0.004. This resulted in 16 clusters, one of which was dis-
carded, since it contained only cells with split segmentation errors. For more fine-grained
clustering the resolution was increased to 0.1 to split apart secretory and ciliary band cells,
0.2 to split photoreceptors and enteric neurons, 0.07 to split the midgut cluster, 0.005 for
muscle neighbourhood cluster (n neighbors for the UMAP clustering was adjusted to 10)
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and 0.01 for splitting foregut neurons and epithelial cells. To visualise average shape and
texture of a cluster, a median feature vector was computed across the cluster and the cell
with the feature vector closest to the median one was taken as the average cell”.

7.4.4 Gene expression analysis

As I describe in [66], ”to produce the cluster gene expression ’dot plots’ the gene expression
values for each cell were taken from [65] at https://github.com/mobie/platybrowser-
project/blob/main/data/1.0.1/tables/sbem-6dpf-1-whole-segmented-cells/gene

s.tsv. Similar to [65], for each cluster and for each gene we calculated three values: (A)
the mean expression in the cluster, (B) the fraction of the total animal/region expression
within this cluster (the sum of expression in this cluster divided by the sum of the ex-
pression in the whole animal or the selected region) and (C) the specificity defined as C
= 2AB(A + B). Intuitively, A indicates how much of the cells in a given cluster express a
given gene, B shows how selective this gene for this cluster is and C is a harmonic mean
of the two values. To create a dot plot only the genes with C value above 0.15 were used.
For the neuron clusters 1, 3 and 5 the threshold was increased to 0.2 due to a high number
of specifically expressed genes available. For the midgut clusters to show only the genes
differing between the two clusters, the genes were removed, where the specificity was above
0.15 in both clusters, but differed by less than 0.4. The size of dots in the plots reflects
A and the colour corresponds to B. The cluster with the most gene expression was deter-
mined and the remaining clusters were sorted by their similarity to it. To illustrate some
of the genes showing differential expression in these groups, the corresponding regions of
the UMAP representation were cut out and these genes were plotted on top”.

7.4.5 Ganglionic nuclei analysis

To compare ganglionic nuclei I used manual segmentation from https://github.com/mob

ie/platybrowser-project/blob/main/data/1.0.1/tables/sbem-6dpf-1-whole-segm

ented-cells/ganglia ids.tsv and https://github.com/mobie/platybrowser-projec

t/blob/main/data/1.0.1/tables/sbem-6dpf-1-whole-segmented-cells/regions.ts

v and gene clusters from https://github.com/mobie/platybrowser-project/blob/mai

n/data/1.0.1/tables/sbem-6dpf-1-whole-segmented-cells/gene clusters.tsv [65].

7.4.6 Software and code

I trained the networks using Python packages pytorch [195] and personally modified repos-
itories of inferno [196] and neurofire [197]. I stored and analysed the data using z5py [205],
h5py [198], pybdv [208], numpy [199], pandas [200], scipy [194], scikit-learn [206], scikit-
image [201], networkx [213], igraph [214], leidenalg [154] and umap [153]. I visualised the
data using matplotlib [202], seaborn [215] and MoBIE [128]. The code for the training
and analysis can be found at https://github.com/kreshuklab/MorphoFeatures.
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[5] A. Sebé-Pedrós, B. M. Degnan, and I. Ruiz-Trillo, “The origin of metazoa: a unicel-
lular perspective,” Nature Reviews Genetics, vol. 18, no. 8, pp. 498–512, 2017.

[6] T. Brunet, M. Albert, W. Roman, M. C. Coyle, D. C. Spitzer, and N. King, “A
flagellate-to-amoeboid switch in the closest living relatives of animals,” Elife, vol. 10,
p. e61037, 2021.

[7] J. M. Musser, K. J. Schippers, M. Nickel, G. Mizzon, A. B. Kohn, C. Pape, P. Ronchi,
N. Papadopoulos, A. J. Tarashansky, J. U. Hammel, et al., “Profiling cellular di-
versity in sponges informs animal cell type and nervous system evolution,” Science,
vol. 374, no. 6568, pp. 717–723, 2021.

[8] T. Brunet, A. H. Fischer, P. R. Steinmetz, A. Lauri, P. Bertucci, and D. Arendt,
“The evolutionary origin of bilaterian smooth and striated myocytes,” Elife, vol. 5,
p. e19607, 2016.

[9] K. Thorn, “A quick guide to light microscopy in cell biology,” Molecular biology of
the cell, vol. 27, no. 2, pp. 219–222, 2016.

[10] S. L. French, P. Vijey, K. W. Karhohs, A. R. Wilkie, L. J. Horin, A. Ray, B. Posorske,
A. E. Carpenter, K. R. Machlus, and J. E. Italiano Jr, “High-content, label-free
analysis of proplatelet production from megakaryocytes,” Journal of Thrombosis
and Haemostasis, vol. 18, no. 10, pp. 2701–2711, 2020.

89

https://www.merriam-webster.com/dictionary/life
https://www.britannica.com/science/life/Life-on-Earth
https://www.britannica.com/science/life/Life-on-Earth


[11] M. Buckup, J. M. Kaneda, A. M. Birk, E. Glockner, R. Venook, A. Jain, S. Sharma,
C. Wong, and K. Sutha, “Utilising low-cost, easy-to-use microscopy techniques for
early peritonitis infection screening in peritoneal dialysis patients,” Scientific reports,
vol. 12, no. 1, pp. 1–15, 2022.

[12] J. Lad, S. Serra, F. Quereshy, M. Khorasani, and A. Vitkin, “Polarimetric biomarkers
of peri-tumoral stroma can correlate with 5-year survival in patients with left-sided
colorectal cancer,” Scientific Reports, vol. 12, no. 1, pp. 1–14, 2022.
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and T. Harkany, “Integration of electrophysiological recordings with single-cell rna-
seq data identifies neuronal subtypes,” Nature biotechnology, vol. 34, no. 2, pp. 175–
183, 2016.

[184] B. Tasic, Z. Yao, L. T. Graybuck, K. A. Smith, T. N. Nguyen, D. Bertagnolli,
J. Goldy, E. Garren, M. N. Economo, S. Viswanathan, et al., “Shared and distinct
transcriptomic cell types across neocortical areas,” Nature, vol. 563, no. 7729, pp. 72–
78, 2018.

[185] A. Santella, I. Kolotuev, C. Kizilyaprak, and Z. Bao, “Cross-modality synthesis of
em time series and live fluorescence imaging,” eLife, vol. 11, p. e77918, 2022.

[186] P. Androvic, M. Schifferer, K. P. Anderson, L. Cantuti-Castelvetri, H. Ji, L. Liu,
S. Besson-Girard, J. Knoferle, M. Simons, and O. Gokce, “Spatial transcriptomics-
correlated electron microscopy,” bioRxiv, 2022.

[187] B. Spanjaard, B. Hu, N. Mitic, P. Olivares-Chauvet, S. Janjuha, N. Ninov, and J. P.
Junker, “Simultaneous lineage tracing and cell-type identification using crispr–cas9-
induced genetic scars,” Nature biotechnology, vol. 36, no. 5, pp. 469–473, 2018.

[188] B. Raj, D. E. Wagner, A. McKenna, S. Pandey, A. M. Klein, J. Shendure, J. A.
Gagnon, and A. F. Schier, “Simultaneous single-cell profiling of lineages and cell
types in the vertebrate brain,” Nature biotechnology, vol. 36, no. 5, pp. 442–450,
2018.

[189] A. Alemany, M. Florescu, C. S. Baron, J. Peterson-Maduro, and A. Van Oudenaar-
den, “Whole-organism clone tracing using single-cell sequencing,” Nature, vol. 556,
no. 7699, pp. 108–112, 2018.

[190] M. Lalit, M. Handberg-Thorsager, Y.-W. Hsieh, F. Jug, and P. Tomancak, “Reg-
istration of multi-modal volumetric images by establishing cell correspondence,” in
European Conference on Computer Vision, pp. 458–473, Springer, 2020.
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Appendix

Figure S1: Gene expression density in the animal after the Virtual Cell assignment. The
colourmap represents the number of genes assigned to a cell.
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Figure S2: Gene expression maps and Virtual Cells (VCs). A. Gene expression maps
for genes gata123, tal and pax6 are shown in the animal volume. B. Visualised are the
Virtual Cells that express all three genes (green) or just gata123 and tal (blue). C. The
cells segmented in the EM volume that have been assigned the VCs from B are shown in
the EM volume.
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Figure S3: Errors of the logistic regression model. For each wrongly predicted cell the
true label (L) and the predicted class (P) are shown.
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Figure S4: Specific gene expression. Selected genes specific for the clusters of rhabdomeric
photoreceptors (1), neurons (2), midgut cells (3), muscles (4) and epithelial cells (5) are
plotted on the UMAP representation from Figure 5.10.
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Figure S5: Two clusters of midgut cells and their specific genes. Two EM sections (upper
and lower rows) of the animal midgut are shown, visualising the location of the two clusters
(left panel), the expression of the genes nov2 and ppib, specific to the cluster of epithelial
digestive cells (central panel) and the expression of the genes mrlc2 and non-muscle-mhc,
specific to the cluster of smooth muscles (right panel).
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Figure S6: UMAP representation of all cells in the animal based on their nuclear Mor-
phoFeatures. The manually annotated cell classes are shown in colors.
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Figure S7: Gene analysis of ganglia clusters. A. Gene expression dot plot. The dot
size reflects the fraction of the cluster expressing a gene; the dot colour reflects the gene
specificity to a cluster (see Methods). B. Some of the genes from A plotted on the ganglia
part of the UMAP representation from Figure 5.18.
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Figure S8: Infracerebral gland location and anatomy. A. Dorso-ventral view. The black
arrows point to the neuropil and surrounding secretory cells, the red arrows - to surround-
ing muscles. B. Anterior-posterior view. The black arrows point to the posterior pair of
adult eyes. C. Dorso-ventral view, ventrally to (A). The black arrow points to a cavity
that might be a developing blood vessel.
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Figure S9: Gene analysis of foregut clusters. A. Gene expression dot plot. The dot
size reflects the fraction of the cluster expressing a gene; the dot colour reflects the gene
specificity to a cluster (see Methods). B. Some of the genes from A plotted on the foregut
part of the UMAP representation from Figure 5.18.
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