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Abstract. The dynamics of adult neurogenesis in the ventricular-subventricular zone are yet
to be fully understood. In particular, how the pool of neural stem cells (NSCs), in active and
quiescent states, is maintained while undergoing ageing effects. Mathematical modelling of
biological systems can help to gain insight into such dynamics, to discover dependencies that
may not be obvious purely from the data. This thesis evaluates different models of ordinary
differential equations (ODEs) to describe those dynamics. First, a simplified, macroscopic
model of neurogenesis based on an existing model of active and quiescent NSCs has been
developed via a steady-state for the fraction of active NSCs among all NSCs. It was used
to relate the parameters of the two former models via the macroscopic model, that does not
inherently distinguish between active and quiescent cell states. Secondly, two neurogenesis
model versions with constant and time-dependent self-renewal are compared and parame-
ter estimation is applied to the macroscopic model. Although the NSC dynamics can be
observed with all models, the macroscopic lense results in non-identifiable microscopic pa-
rameters. Furthermore, the model cannot capture the fraction of active NSCs among NSCs,

as expected, due to the single equation it is defined by.

Zusammenfassung. Die Dynamik der adulten Neurogenese in der ventrikulér-subventrikuldren
Zone ist noch nicht vollstédndig geklart. Insbesondere die Frage, wie die Population neuraler
Stammzellen (NSZs), in aktivem oder ruhendem Zustand, wihrend der Alterung erhalten
bleibt. Die mathematische Modellierung biologischer Systeme kann dazu beitragen, Ein-
blicke in solche Dynamiken zu gewinnen und Abhéngigkeiten zu entdecken, die aus den
Daten allein nicht ersichtlich sind. In dieser Arbeit werden verschiedene Modelle gewthn-
licher Differentialgleichungen zur Beschreibung dieser Dynamik verglichen. Zunéchst wurde
ein vereinfachtes, makroskopisches Modell der Neurogenese auf der Grundlage eines beste-
henden Modells aktiver und ruhender NSZ-Zustéinde entwickelt, das einen stationéren Zus-
tand fiir den Anteil der aktiven NSZ aus allen NSZ beschreibt. Es wurde verwendet um die
Parameter der beiden fritheren Modelle iiber das makroskopische Modell in Beziehung zu
setzen, das von Natur aus nicht zwischen aktiven und ruhenden Zellzustidnden unterschei-
det. Zweitens werden zwei Neurogenesemodellversionen mit konstantem und zeitabhéngigem
Selbsterneuerungsparameter verglichen und Parameterschéitzung wird auf das makroskopis-
che Modell angewendet. Obwohl die NSZ-Dynamik mit allen Modellen beobachtet werden
kann, fithrt die makroskopische Betrachtungsweise zu nicht identifizierbaren mikroskopischen
Parametern. Dariiber hinaus kann das Modell den Anteil der aktiven NSZ unter den NSZ

nicht erfassen, wie erwartet, da es durch eine einzige Gleichung definiert ist.
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1 Introduction

1.1 Mathematical modelling

Mathematical biology is concerned with the development of mathematical models of bio-
logical systems, which, when combined with experimental data, can help to gain insight
into complex processes, to discover underlying dynamics and dependencies that may not
be obvious purely from the data. The use of Ordinary Differential Equations (ODEs) to
model the change of system components over time is a common modelling approach, which
can be used on different scales, from single molecule interactions up to describing whole
organisms. It requires the assumption that the considered populations are well-mixed and
that stochastic effects can be neglected, which is reasonable as large populations do not
undergo rare statistical events. The equations result from the current understanding of the
systems dynamics: the different components of the models in this study are neural stem cells
(NSCs) in different activation stages (active NSCs (aNSCs) or quiescent NSCs (qNSCs)) and
the main interactions are proliferation and transitions between those stages (differentiation
and/or self-renewal). Given such a model, the parameters can be estimated numerically by
fitting the model values to data. Furthermore, they enable us to observe how the systems
dynamics depend on process parameters (such as rates or the initial state of the system)
in a qualitative manner. Adding new plausible reactions or time-dependencies allows us to
compare different model variations, taking into account complexity and capacity, to reflect
the experimental observations. Moreover, it can provide guidance for future studies in order
to confirm the hypothesized regulation terms and thus focus experimental efforts on the most

important cases [9)].

1.2 Adult neurogenesis

As most organs, the adult rodent brain has a population of multipotent stem cells that can
replace tissue-specific cell types (like neurons or glia-cells) to face ageing or after injury. They
have long-term self-renewal properties at an individual cell level and enable the generation
of new neurons via differentiation, which is called neurogenesis. In the brain, this has
been studied in two regions: the subgranular zone of the hippocampus and the ventricular-
subventricular zone (V-SVZ) along the walls of the lateral ventricles, where the NSCs reside
in niche structures [14]. In the V-SVZ mainly symmetric self-renewal and differentiation has
been observed [16], yet the following models can capture asymmetric divisions, it is only the
interpretation of the parameters that changes'. The population of NSCs has been shown

to be largely quiescent, with a time-declining fraction of cells who enter the cell cycle (are

!The same holds for cell death, which is also not explicitly included in any of the following models.
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activated) to either self-renew (two NSC clones arise from one NSC) or differentiate (two
transit-amplifying progenitor cells arise from one NSC) [6]. Self-renewal maintains the stem
cell pool of the adult organism in the niche, while further differentiated cells detach from
the ventricle and migrate to the olfactory bulb [10, 11]. Whilst the stem cell pool declines
with age, the numbers do not approach zero, suggesting that cells come out of quiescence
to divide, and the daughter cells of self-renewal return to quiescence, limiting replication
to avoid accumulation of mutations. Even after several rounds of symmetric self-renewal
activated NSCs are able to return to long-term quiescence. The brain, like any other organ,
is prone to ageing, which is accompanied by a continuous age-related cognitive decline,
loss of regenerative capacity, limited plasticity, limited repair and reduced neurogenesis [8].
Additionally, trauma, seizures and diseases activate stem cell divisions, further contributing
to the pool loss. To account for possible ageing-related effects observed in experimental
data, time-dependent rates have been introduced. The most plausible mechanism explaining
saturated decline with age is increasing quiescence, represented by declining activation. An
alternative approach, which does not fit the data adequately is the increase of self-renewal
of aNSCs, which leads to more NSCs intead of progenitors [23].

1.3 Models

The current study is based on the model presented by Kalamakis et al. (2019), where
multiple scenarios for explaining the data from the V-SVZ are compared [10]. This model
is adapted from the model of hippocampal neurogenesis introduced by Ziebell et al. (2014,
2018) [22, 23]. In turn, the models of Ziebell et al. (2014, 2018) are inspired from and use
concepts introduced by the models for hematopoiesis by Stiehl et al. (2012, 2014) [20, 19].
In the model for hematopoiesis by Stiehl et al. (2012, 2014), only the total number of stem
cells serves as a model component [20], while the model by Kalamakis et al. (2019) divides
the cell population into two subgroups depending on their proliferation state (quiescent or
active) [10].

1.4 Goals of this thesis

The first goal of this study is to develop a simplified, macroscopic model of neurogenesis
starting from the existing model of Kalamakis et al. (2019) [10] and zooming out, pooling
all types of NSCs into one compartment whose dynamics is governed by a macroscopic self-
renewal rate as in the hematopoiesis models of Stiehl et al. (2012, 2014) [20, 19]. Two
model versions, with constant and time-dependent self-renewal are compared. Secondly, an
approximate model that merges the existing neurogenesis model by Kalamakis et al. (2019)

with the macroscopic model introduced here via a steady-state of the constant Kalamakis et
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al. (2019) model, is introduced and analysed in its ability to reproduce experimental data,

and understand parameter relations and underlying mechanims of neurogenesis.
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2 The models

2.1 Active and quiescent cells

The following model of neurogenesis in the subventricular zone, which depicts the dynamics
of neural stem cells, progenitor cells and neuroblasts as ODEs has been proposed by F.
Ziebell [10]. It is based on the model of hematopoiesis by Stiehl et al. (2012) [20] and
has been adapted by Ziebell et al. (2018) as a model of neurogenesis in the hippocampus
[23]. With rate r, qNSCs are activated. aNSCs divide symmetrically with rate p, either
into two quiescent stem cells (self-renewal) with probability b or into two progenitor cells
(differentiation) with probability (1 — b). In this second case, our model captures the exit
of active stem cells from the system, whereas the behaviour of progenitor cells will not be

covered in this thesis. This results in the following 2-dimensional linear system of ODEs:

di ANSC(t) = —r - GNSC(t) + 2-b- p- aNSC(t)
(2.1)
% aNSC(t) = r - gNSC(t) — p - aNSC(t)

Generic boundaries for r and b are (0,1) as they are probabilities, so overall we will study

the following 2-dimensional linear system of ODEs:

gNSC , [T 2bp gNSC
aNsC/  \ r —p) \aNSC (2.2)
for (r,0) € (0,1) x (0,1)

The system has a unique solution which can be proven via the Picard-Lindel6f theorem
[12], taking into account that finite linear matrix systems like (2.2) are always Lipschitz-
continuos due to boundedness by the matrix norm. Age-related changes of cell numbers

can be translated into time-dependent model parameters. Observed data shows a decline in

aNSC __ ___aNSC
NSC — aNSC + gNSC

time-decreasing activation rate of quiescent stem cells

the fraction which can be modeled with increasing quiescence through a

T’(t) = Tmaz ° e_ﬂrt- (23)

Another way which has been studied to be less effective [10] in incorporating this ageing effect

is to substitute the constant parameter b with a time-dependent fraction of self-renewal

E) = L4 €2 by — 1) (2.4)
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describing an increase in self-renewal. The growth rate p will not be modified to model a
time-dependent cell cycle (lengthening with age), as this was considered in [10], but could
not explain the data. Proliferation rate p is derived from the average cell cycle length of
neural stem cells measured by Ponti et al. (2013) to be t¥¢™ = 17.5h [17]. It is interpreted
as the doubling time of the exponential growth process, leading to

In(2)

p= tstem' (25)

Any of the introduced time-dependent parameters still result in a unique solution via the
Picard-Lindel6f theorem by additionally considering the finiteness of the functions of the
incorporated changes (r(t),b(t) € (0,1)) and applying the matrix norm to the maximum.

Within the scope of this thesis this model will be referred to as the AaQNSC model
(Figure 1a).

2.2 Total number of NSCs

An extension of the model to be introduced in this chapter has been studied in the case
of hematopoiesis [20]. As shown in figure 1b, in our macroscopic neurogenesis model NSCs
proliferate with rate p either through symmetric self-renewal (with probability a) leading to
2 NSC or through differentiation (probability (1-a)) resulting into 2 progenitor cells. In this
second case our model captures the loss of one NSC, as the behaviour of progenitor cells will

not be covered in this thesis. This is represented by the following differential equation

% NSC(t) = 2ap NSC(t) — p NSC(t)
(2.6)

= (2a — 1)p NSC(t) for a € <0’ %)

where a indicates the ratio of self-renewal and has been shown to lie in (O, %) [20]. For a

given initial value NSC(0)= NSCj this differential equation has a unique solution
NSC(t) = NSCy - e(e Lt (2.7)

An extension of this model, following the example of time-dependent self-renewal parameter

b(t) (2.4) from the AaQNSC model would be to introduce an increasing self-renewal rate
1 Bat
a(t) = 5(1 + €72 amin — 1)). (2.8)

Similarly to the AaQNSC model introduced above, any time-dependency of a still leads to

a one-dimensional differential equation system with a unique solution due to the Picard-
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Lindelof theorem.
Within the scope of this thesis this model will be referred to as the TNSC model.

r‘ ghSC NSC
jbp

aNSC

2ap
2(1-a)p
2(1-b)p
{} {}

(a) AaQNSC model (b) TNSC model

Figure 1: Schematic of the two neurogenesis models studied in this thesis
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3 Materials and methods

3.1 Solving ODEs

For solving systems of differential equations in Matlab R2021a the routine ode45 has been
used [13]. It is based on an explicit Runge-Kutta (4,5) formula, also called the Dormand-
Prince pair [7]. Tt is a single-step solver which means that in each evaluation step n — n+1
the algorithm needs merely the value of the former step y, and the former step-size h,,.
Firstly, it computes the fourth and fifth order solutions of the Runge-Kutta method. The
Runge-Kutta method includes the weighted increments m of several time points in the time

interval [t,,t,+1]. The general formula for the fourth order Runge-Kutta with step-size h is

4
Ynt1 = Yn + I E bim;

i=1

with increments

my = f(tn, yn)

me = f(t, + g,yn + mlg)
ms = f(t, + g,yn + ng)
my = f(t, + g,yn + mgg)

such that the weights b; satisfy

The difference between the fourth and fifth order Runge-Kutta calculations is used as the
actual error of the fourth order solution in the determination of the adaptive step-size. This
combined application of the Runge-Kutta methods makes the algorithm more time- and
memory-efficient as it avoids unnecessary steps when the slope of the derivative changes
little, but decreases the step size when the derivative changes a lot. In this implementation
the default values of ode45’s error tolerance and maximal number of function evaluations

have been used.



3.2 Parameter estimation 3 MATERIALS AND METHODS

3.2 Parameter estimation

To numerically fit parameters in a given model in such a way that they lead to NSC num-
bers closest to our observed data, an optimization problem had to be solved. As our model
function is a solution of a system of ODEs and our parameters are in between certain bound-
aries to be biologically suitable, Matlab’s fmincon Interior Point Algorithm for Constrained

Optimization was used to estimate optimal parameters [18]. Given a problem
min f(x) s. t. e(x) <0 (3.1)

where x is the vector of parameters to be estimated, ¢ are the boundaries and f is the

objective function, the algorithm solves a sequence of approximate minimization problems
min f,(z, s) = min f(x) — ,uZlog(si) s. t. s<0, g(x) +s=0,leN. (3.2)

This version of (3.1) has an additional term to minimize a so-called logarithmic barrier
function such that if the barrier parameter p approaches zero, (3.2) approaches (3.1). There
are two types of iteration steps. If possible?, the algorithm takes a Direct step® where (3.2)
is optimized for the current given jy; such that (z,s) gets adjusted. Otherwise the barrier
parameter gets updated such that it further approaches 0. For the objective function, which
quantifies the assumed error of a model, the standard approach is to use a least squares (LS)

function: .
objective; ¢ = Z £ (3.3)

i=1

where

gi =y — gj(z,t;)

are the residuals, i.e. the distance between the measurements and the model values for dif-
ferent the models 7 at the same point in time. Instead of merely considering the squared
residuals as in the general least squares (LS) method, a weighted least squares (WLS) ap-
proach was taken, such that the different variance of measurements at each time point is

incorporated into the objective function:

n

. 1
objectivey, ;¢ = Z U—(yi — gj(z,t))? (3.4)

i=1 ti

20ne of the cases where it is not possible is when the approximate problem is not locally convex near the
current iterate.
3Also called a Newton step.
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Here, g;(x,t;) is the ode45-solution of our differential equation(s) with parameters x at time
t;. If the variance is small, the weight % is greater than for distantly scattered measurements,
such that the influence of what is assumed to have been less prone to noise is valued more.
The initial conditions NSCy or (aNSC, qNSC), for the both systems have also been param-
eters to be estimated by fmincon. In the case of the AaQNSC model the total number of
NSCs at day 0, NSCy, served as an input to the objective function. The steady state which
is derived in the fraction chapter 4 was used to compute the separate amounts of active and

quiescent cell numbers’ initial value aNSCy and gNSC,, from NSCy. This results in the initial

aNSC
NSC

ratio of being dependent on the parameters (r,b), 7(0) or b(0).

3.3 Model comparison

In order to assess which model represents our data best, while also considering the trade-
off between goodness of fit and complexity of the model, the Akaike Information Criterion
(Akaike, 1998) was applied [2]. In the following, I will address the AIC and its corrected
version, the AICc, which is an adaptation for smaller sample sizes. For each model g; the
AIC is defined as

AIC =nln (Eéi> + 2k (3.5)

n

where n is the total number of measured datapoints, k is the number of parameters and é&;
are the weighted residuals? of those datapoints, i.e.
g€ = L (9;(2.t:) — i),
0
where ¢; is the time at which the datapoint y; has been measured [1, 3]. The AIC is con-
structed such that Overfitting® is avoided, as the AIC value increases for a higher number
of parameters, thus favouring models with smaller number of parameters [4]. The corrected
version for small sample sizes is
2k% + 2k
AlCc = AIC + ——— 3.6

* n—k—1 (36)
where, as before, k is the number of parameters the model g; depends on [21]. The additional
term in (3.6) modifies the rating such that it becomes infinite when the number of parameters
k gets close to the number of data points n minus one. The actual AIC or AICc values do not

matter absolutely, they merely give a relative rating of different models/model variations,

4The hat emphasizes that those are the residuals of optimized parameters & in contrast to the residuals
in the objective function which is needed to find those 'optimal’ parameters.

SWhen the fit adjusts to the noise of the measurements, due to a too high number of parameters in the
model.
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and we consider the value only in relation to the smallest AIC: A; = AIC; — AIC, ;..

3.4 Experimental data

The data used in this thesis have been provided by the group of Prof. Dr. Martin-Villalba
and described by Kalamakis in [10]. Three different experimental setups were used. To
count the number of NSCs, aNSCs and qNSCs, the SVZ of mice was dissected and the
cells in a single cell suspension were counted via flourescence-activated cell sorting (FACS).
Antibodies of various types were used to stain the sample. Due to the significant cell loss
associated with this method, the fractions of active vs. quiescent cells were also determined
using immunohistostaining. This procedure was repeated three times for mice of various

ages. In short, in this work, two time-series datasets have been used:

e the total number of NSCs at timepoints 60 days (6 mice), 210 days (3 mice), and 660
days (3 mice)

e the fraction of active cells among label-retaining cells at 60 days (3 mice), 210 days (2

mice), and 660 days (3 mice), which is an approximation of the fraction 2>

10
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4 The fractions

In chapter 2 we introduced the AaQNSC model of ordinary differential equations to model

the number of quiescent and active NSCs in the ventricular/subventricular zone:

qNSC /_ —r 2bp\ [gNSC (41)
aNSC/  \r —p) \aNSC '

Studying this system for constant parameters one can also inspect the derived ODEs of

the fractions

aNSC qNSC
aNSC+qNSC () and aNSC+qNSC (#). (4.2)

For simplicity, in the following we denote A := aNSC and @) := qNSC. By using the
product rule of differentiation, by inserting the equation (4.1) and by the identity oA =

1 — =4 we get

Q+A
A Y A A , ,
(ar3) ~ara- @@+
_rQ —pA A
=04 _(Q+A)2(2b_1)pA
0 A A \? (4.3)
~'Q+Aa Pgya _(2b_1)p<Q+A>
A A A\
(- g - v - @- (g ) -
Denoting the fraction Q:%A as 4 we get a single nonlinear ODE
Fy=r—(r+p)Fa+(1-2b)pF;. (4.4)
Analogously, for Fy := ﬁj we get
(. Q@ Q .
ro=(qta) “ata e
_ rQ+2pA @ B
ST 014 (Qrap®-bed
@ A @ (4.5)

= o+ A TPo A Q+A(2b_1)pA+Q
= —rFg+ 2bp(1 — Fy) — Fp(2b — 1)p(1 — Fy)

= —rFg + 2bp — 2bpF — (2b — 1)pFg + (20 — 1)pF}
= 2bp — (r — p+4bp)Fo + (2b — 1)pFy,.

11
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A

4.1 The equilibrium points of O A

For this chapter, we define

f:R = R with f(Fy):=7— (r4+p)Fa+ (1 —2b)pF3

(4.6)
for ;b in (0,1).

This corresponds to our nonlinear, autonomous, ordinary differential equation (4.4). In the
following we will distinguish three cases of b in relation to %, as they have rather different
implications for the following examination. For the sake of completeness all three cases will

be mathematically examined, although all of the observed data suggests b < %

case 1: b < % Equation (4.6) has two equilibrium points, i.e. points in which the solution

to the differential equation is constant, namely

(r+p) £ +/(r+p)2 —4(1 — 2b)pr

F; , =
A2 2(1 - 2b)p

(4.7)

To obtain the local behaviour of the solutions in the phase space near our equilibria we take
a look at the linearization (4.8) of our problem (4.4) at those equilibria and confirm that no

eigenvalue \; of the linearization has a real part equal to 0 (4.9)°.

(Df)(F3) = £/(r+p)? —4(1 = 2b)pr =2 \; (i = 1,2). (4.8)

(r+p)? —4(1 —2b)pr > 0

& (r+p)* + Sbpr —4pr > 0

& 12+ p? + 2pr + 8bpr — dpr > 0 (4.9)

st p? —2pr+ 8bpr >0

& (r—p)*+8bpr >0

which is true as r,b € (0,1).
As this is the case, the Hartman—Grobman theorem can be applied, stating that locally the
non-linear system behaves like the linearized system for the two hyperbolic” equilibria [5].
The stability of those equilibria of the linearized problems corresponds to the stability of the
equilibria of (4.6) in the following way: Due to the principle of linear stability, F'y (i = 1,2)

61f the squared term of the linearization is strictly positive, the eigenvalues are strictly positive or negative.
TA hyperbolic equilibrium is one for which the eigenvalues are non-zero.

12
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is an asymptotically stable equilibrium if

Re(\1 ) = Re(£+/(r +p)? — 4(1 — 2b)pr) < 0 (4.10)

and an unstable equilibrium if the opposite holds. Now, considering the second equilibrium
point F7i, we get that it is a stable equilibrium of (4.8, i = 2), due to (4.9), while F; is an
unstable equilibrium of (4.6).

As F, is a fraction, it is assumed to be in [0,1], so it is interesting to check where our
equilibria are situated in relation to 0, 1 and also to each other. For b < % the denominator

of our equilibria is positive, such that F; > Fj . It is also true that F3, >0 as

Fy,>0

S (r4+p) —(r+p)?—4(1—-2b)pr >0

& (r+p) > /(r+p)?—4(1 —2b)pr (4.11)
& (r+p)? > (r+p)?—4(1—2b)pr

< 4(1—=2b)pr >0

r+p

Figure 2 shows F;, and F};, plotted for different values of (r,b) in (0,1) x (0, 5). Computation

0.5 100
0.5 1
0.45 90
0.45 09
0.4 80
0.4 08
0.35
70 0.35 07
0.3 60 0.3 06
Q025 s0 Q025 05
0.2 40 0.2 0.4
0.15 30 0.15 : 03
0.1 20 0.1 02
0.05 10 0.05 1 01
0 0 HH
0 0.2 0.4 0.6 0.8 1 : ' !
r

(a) F}3, (b) F,

Figure 2: F and F; for b < i

shows that the minimal F} is 1 while the maximal F} is around 100. The minimal F}  is
0 (which only occurs for » = 0) and the maximal F;, is 1. F is not biologically relevant,

since [y = ﬁ should lie in [0, 1]. In figure 3 you see the phase diagram of our solution to
(4.3).

13
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Fr F
0 1

Figure 3: Sketch of the phase diagram for b < %

case 2: b > % Similarly to the case b < % the equation 4.6 has the equilibrium points

(r+p) £+/(r+p)2 —4(1 — 2b)pr
2(1— 20)p

Fi, = (4.12)
and those equilibrium points have the same stability properties as those in case b < %, Le. F},
is asymptotically stable and F7; is unstable. Figure 4 shows F; and F}, plotted for different

values of (r,b) in (0,1) x (3,1): Computation shows that the minimal F is approximately

1 1 05
0.95 10 0.95 045
0.9 -20 0.9 0s
0.85 -30 0.85 035
0.8 40 0.8 03
0 075 -50 0 0.75 025
0.7 -60 0.7 02
0.65 -70 0.65 015
0.6 -80 0.6 0.1
0.55 -90 0.55 0.05
0.5 -100 0.5 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r r
(a) F3, (b) F3,

Figure 4: F and F} for b > §

-100 while the maximal F} is below -1. The minimal F;, is 0 and the maximal F}, is

approximately % As before, the unstable equilibrium F;, < 0 is not biologically relevant.

N .
0 1
2

Figure 5: Sketch of the phase diagram for b > %

14



4 THE FRACTIONS 4.2 The convergence of ==+ Q+A

case 3: b= This assumption changes our model significantly as our system of equations

2
gNSC I gNSC (4.13)
aNSC r  —p) \aNSC

(4.1) becomes
which statistically looks as if for each quiescent cell becoming active we ’get’ one quiescent

cell such that the sum of active and quiescent cells stays constant:
(qNSC + aNSC)’ = —rgNSC + paNSC + rgNSC — paNSC = 0 (4.14)

Our equation (4.6) becomes

A ' A
(Q+A> =r—(r+p)<Q+A> (4.15)
which is solved by
A (t) = Fu(t) = et [ Fy(0) — 4 + T ot>0 (4.16)
Q+A oA 4 r+p) r+p ’ '
/
(4.15) has the equilibrium F; = = which due to (m) Py = —(r+p) < 0is a sink,
meaning all solutions in the phase space converge to @ b = 3 is a bifurcation.
r
r+p
B VE VI I IDID DI
0 1

Figure 6: Sketch of the phase diagram for b = %

4.2 The convergence of 77 Q |

In the previous section we analysed the phase space of equation (4.6) in the constant scenario
of the AaQNSc model and showed that for (r,b) € (0,1) x (0, 1) the solutions converge to a
steady state I} . In order to check how fast this happens we generated random values for
(r,b,qNSCy,aNSCy) € (0,1) x (0, %) x (0,1000) x (0,1000) via uniform sample and plotted

the solutions to equation (4.3) (Figure 7). It is easy to see that the displayed functions

aNSC
NSC

Nsc\ (= 2 N
gNSC _ r 2bp\ [qNSC (4.17)
aNSC r o —p aNSC
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reach their equilibrium point after some days, so = I}, is a close approximation in the

constant scenario.
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Figure 7: oA

over time for different, randomly chosen parameters (r,b,¢gNSCy, aNSCy)

4.3 Application of the fraction results

In previous chapters we introduced two models for cell population development of neural

stem cells.
d [gNSC —r 2bp\ [gNSC d
7 (aNSC>() (T _p) (aNSC)() -7 NSC(t) = (2a — 1)p NSC(t)

.7 €(0,1)

1
a € (0,5)

We derived a stable equilibrium for constant parameters to which the fraction converges for

1
b 0, =
(03

any of our parameters r € (0,1),b € (0,%). As shown in figure 7 the fraction converges really

fast to the equilibrium point, so we use the approximation

A
+

A
F3,

—F, e Q+A= (4.18)

O+A
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which can be inserted into our one equation model in the following way:

%s = (20— 1)pS = (24— D)p(Q + A) = (2a— 1)

pFIZz
I (4.19)
d
Q+A) = (2~ DpA = (20— 1pF3,(A+Q)
SO 4
(20— Dp- = (26— DpFi, (A + Q)
As
& (2a—1)=(2b—1)F}, (4.20)
o - DE 11
2
and a and (r,b) are related in the following way
1 (r+p) — /(r+p)*—4(1 — 2b)pr
=—1(2b—1 1
Ga=3|2-1 2(1 — 2b)p N
2 _ 4(1 —
_ L (rtp) V(a2 —d( - 2pr (4.21)
2 —4p 4p
1 T V(r+p)2—4(1 —2b)pr
4 4p 4p
We define
0: 0,1 x (0.2) =5 0,1) with a(r,p)i= L - Lo VO EPPZAA=hr o
P ) W T T 4 4p '
and consider the problem
d
pm NSC(t) = (2a(r,b) — 1)p NSC(t). (4.23)

Furthermore, we include the time-dependency of r and/or b to do parameter estimations
with the one equation model with varying a: a(r,b),a(r,b(t)),a(r(t),b),a(r(t),b(t)). This
is certainly only an approximate model, but the goal is to see how much of the original
AaQNSC dynamics can be captured with such a simplified model. ODE (4.23) has a unique
solution for a given initial value NSCy, also in any aging scenario. This kind of merged model
will be referred to as the MTNSC model.
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5 RESULTS

5 Results of the parameter estimations

5.1 Comparing AaQNSC and TNSC model variations

To clarify that the parameter estimation implementation works correctly the results have

been compared to those of Kalamakis et al. (2019), which confirmed that the code is working

properly, as the AaQNSC parameters are approximately the same.

Mechanism Parameter Kalamakis et al. AaQNSC
No aein r 0,278 0,22
SIS b 0,489 0,493
r 0,28 0,28
Increasing self-renewal bumin 0,0049 0,46
B 0,0276 6,8-1073
T'mag 0,453 0,458
Increasing quiescence o 9,5-1074 9.7-1074
b 0,494 0,492
T'mag 0,445 0,444
. . B 9,2-1074 9,1-1074
Increasing quiescence and self-renewal by 0,489 0.473
B 0,0022 5,7-1073

Table 1: Comparison of parameter estimation results

The plots of total number of NSCs and fraction of active cells over total number of NSCs

are shown in the following figure:
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v
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N0 aging

o w

s NO aQing
s |nCT. Self-renewal
Incr. quiescence
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o
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Figure 8: AaQNSC model fits

The graph of the fraction in the 'Increasing self-renewal’ scenario shows a rapid drop at

the beginning, which can be explained with the initial fraction

18
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5 RESULTS 5.1 Comparing AaQNSC and TNSC model variations

steady state from chapter 4, which is an approximation derived from the 'No aging’ scenario®.

As already observed by Kalamakis et al. (2019), only the scenarios 'Increasing quiescence’
and ’Increasing quiescence and self-renewal’ captured the time-dependent decrease of the

fraction adequately [10].

Model Mechanism Parameters AAICc

P = 0, 444
B, =9,1-10*
Increasing quiescence and self-renewal (b) b, = 0,473 0
By =>5,7-1073
NSCy = 1757
Tmaz = 0,458
. . Br=9.7-10"14
Increasing quiescence

AaQNSC b= 0,492
NSCy = 981

r=0,28

bmin = 0,46

By =06.8-1073

NSCy = 1869

r=20,22

No aging b=0,493 33.6
NSCy = 655

Increasing self-renewal (b) 19.33

Table 2: Model Comparison of AaQNSC model variations

The parameter estimation in the case of the TNSC model resulted in the curves shown
in figure 9. Introducing an increasing a(t) self-renewal ratio in the TNSC model improved

the TNSC model resulting in an adequate fit of stem cells. Per definition, the TNSC model

. . . . NSC
alone is not capable of depicting the ratio 555

8For which it is also merely an approximation, but certainly more accurate as the same mechanism is the
foundation of the approximation.
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Figure 9: TNSC model variations

Computing the AICc’s (see figure 3) for the TNSC model variations suggests the time-
dependent TNSC model variation as a better trade-off between simplicity and minimal error.
There is a lot less information covered in the TNSC model as it provides no output about

the amount of cells proliferating.

Model Mechanism Parameters AAICc
Qpmin = 0,492
Increasing self-renewal (a) 3, =6.7-1072 0
TNSC NSCy = 1695
: a = 0,498
No aging NSCy = 932 4.2

Table 3: Model Comparison of TNSC model variations

To visualize the additional information captured in the AaQNSC model, figure 10 shows

the amounts of active and quiescent NSCs we get as a result for fitted parameters.
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Comparing AaQNSC and TNSC model variations
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Figure 10: AaQNSC fits of active and quiescent NSCs
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5.2 Merged TNSC model

Another aim of this thesis was to study the relation between the TNSC and AaQNSC model
(in particular the relation of the parameters) and for that purpose a Merged TNSC (MTNSC)

model has been introduced:

£ NSC(1) = (2a(r, ) — 1)p NSC(1)
where a(r,b) = i a éf_p * lreoP ;p4(1 = o
for r,b € (0,1) x (0, %)

First, to ensure that the MTNSC model with its parameters represents the structure of the
AaQNSC model, it is plotted for the optimal AaQNSC parameters. Figure 11 shows that
indeed the MTNSC model recapitulates the behaviour of the AaQNSC, as expected.
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Figure 11: AaQNSC fits and MTNSC model with AaQNSC parameters. The subscript in
each legend suggests which parameter is time-dependent.
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5 RESULTS 5.2 Merged TNSC model

By estimating the parameters, we observe that the MTNSC model on its own is capable
of matching the NSC data adequately for all time-dependent mechanisms, but not for the

constant scenario. The results of the MTNSC parameter estimation are shown in figure 12.

1800

1600 — MTNSCc

1400 — MTNSCb

1200+ MTNSCr
Q 1000 — MTNSC
wn rb
=Z 800+

600

400 -

200 + .

0 100 200 300 400 500 600 700

Time (days)
Figure 12: MTNSC fits

In terms of AICc rating, the 'Increasing quiescence’ and ’Increasing self-renewal’ MTNSC
model variations surpass the other scenarios. This happens because the fits of all 3 model
variations with time-dependent parameters are quite similar, such that the additional pa-

rameter is taken into account more severely.
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Model Mechanism Parameters AAICc
Trmaz = 0,374
. . B, =6,7-1073
Increasing quiescence b— 0,487 0
NSCy = 1611
r=0,487
. bmin = 0,488
Increasing self-renewal betay = 6,2 - 10~ 0
MTNSC NSCy = 1697
r = 10,966
No aging b=0,488 3,2
NSCy =932
Tmaz = 0,414
beta, = 3.5-1073
Increasing quiescence and self-renewal (b) = b,,;,, = 0,487 6,3
beta, = 3.2 - 1073
NSCy = 1658

Table 4: Model Comparison of MTNSC model variations

To check how the parameters’ purpose changes in the MTNSC model, the optimal
MTNSC parameters were input into the AaQNSC model, such that the total number of

NSCs and the fractions &8¢ could be observed (Figure 13).
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Figure 13: AaQNSC model with MTNSC parameters

While one can observe that the total number of NSCs in the MTNSC model is fitted
nicely (see figure 12), the plots worsen a lot when those same parameters are used in the
AaQNSC model, although the same NSC data is used to produce the fits. This however is

easily understandable when one looks at how a(r,b) looks for different parameters r and b
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(Figure 14).
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Figure 14: a(r,b)

Many completely different combinations of the parameters r and b lead to the same
macroscopic a, such that the information of those separate rates gets lost in the process
of estimation. In other words, parameter a is non-identifiable with respect to r and b
[15]. For the fractions, the MTNSC model does not capture the behavior at all, which is

understandable as the data used to fit the model only consists of total numbers of NSC

aNSC

observations, and does not take into account the fractions of f55 -
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6 FINAL REMARKS

6 Final remarks

Adult neurogenesis in the V-SVZ? is an important process supplying the olfactory bulb with
new neurons throughout life and serving as a backup in the event of damage or trauma.
It is not fully understood how the supply of adult neural stem cells keeps slowly declining,
neither saturating nor draining, while undergoing ageing effects. Models of neurogenesis via
ordinary differential equations include ageing-related effects by introducing time-dependent
parameters, observing which parameters explain the systems dynamics and lead to minimal
deviation from the data. Previous research by Kalamakis et al.(2019) suggested a decreasing
activation rate r(t) with age ('Increasing quiescence’) to be the best explanation and trade-
off between simplicity and error. Parameter estimation computes an initial amount of about
1000 NSCs at birth and shows a small decline in stem cell numbers compared to a scenario
with ’increasing self-renewal’ b(t), where initial NSCs are estimated to be around 2000. The
combination of both mechanisms is able to improve the fit with more reasonable estimated
initial conditions.

In this thesis, a one-equation neurogenesis model governed by a macroscopic fraction of
self-renewal (a) as in the hematopoiesis model by Stiehl et al. (2012, 2014) has been studied
in its ability to explain the experimental data. Introducing a time-dependent self-renewal
ratio a(t) improved the fit to match the experimental observations. While it reflects the
data, the model (by definition) does not inherit the ability to describe the fraction of active
cells. A steady-state of the fraction of active NSCs over NSCs has been derived, and served
to build a merged model. The newly built model relates the self-renewal (b or b, 5)
and activation (r or 7pa, fr) parameters of the Kalamakis et al. (2019) model with the
macroscopic self-renewal (a) parameter as in the model by Stiehl et al. (2012, 2014) and
matches the experimental data. It is not inherently unable to give information about the
fraction of active cells, but does not reflect the fraction data, as it is simply not fitted to it,
due to the model description via one single differential equation. Furthermore, the relation of
the parameters illustrates the loss of information moving from a two-dimensional into a one-
dimensional space. For any model, observing the number of NSCs at day 0 experimentally
can lead to more accurate fits and fraction data at day 0 is valuable for fitting the AaQNSC
model, possibly scaling down the error that might occur from estimating the initial fraction
with the steady-state of the 'No aging’ scenario. Also, additional data especially for more
(early) time points would be useful in determining how quickly cell counts decrease in the
beginning. Data from later time points would reveal if the cell counts achieve any saturation

or continue to decline until death.

9As neurogenesis in the hippocampus shows similar behaviour the models evaluated in this study can
lead to better insights in both brain regions, the ventricular-subventricular zone and the hippocampus.
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